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Preface

Now that object technology is mainstream, it can be studied in combination
with other technologies devoted to achieving high-quality software. TOOLS
Europe is a long-standing conference that brings together researchers, prac-
titioners and students to discuss all aspects of object technology and related
fields, in particular model-based development, component-based development,
language implementation and patterns, in a holistic way. TOOLS Europe has a
strong practical bias, without losing sight of the importance of correctness and
performance.

The 49th International Conference on Objects, Models, Components and
Patterns (TOOLS Europe 2011) was held during June 28-30, 2011 at the Swiss
Federal Institute of Technology (ETH) in Zurich, Switzerland, organized by the
Chair of Software Engineering.

TOOLS Europe 2011 received 68 abstract submissions of which 66 were sub-
mitted as full papers. The Program Committee suggested 19 papers for presen-
tation and inclusion in these proceedings. This corresponds to a 28% acceptance
rate, which indicates the level of competition that occurred during the selection
process. All submissions were peer-reviewed by at least three members of the
Program Committee. Submissions and the reviewing process were administered
by EasyChair, which greatly facilitated these tasks. Continuing with the tradi-
tion started by Jan Vitek last year, a face-to-face PC meeting was held in Zurich
on Saturday March 19 to discuss all papers and decide the final program. Twelve
members attended in person and the other 19 joined by Skype. The meeting sig-
nificantly contributed to a better analysis of the papers and a more thorough
selection process.

The TOOLS Europe 2011 keynote speakers were Oscar Nierstrasz and Frank
Tip. Abstracts of their talks are included in these proceedings. We thank them
very much for accepting our invitation and for their enlightening talks.

Finally, we would like to acknowledge the work of the many people that made
this conference possible. In the first place we would like to thank the Publicity
Chair, Esther Guerra, for handling so efficiently all the dissemination activities
and for taking care of the website. We would also like to thank the authors for
their submissions, whether accepted or not, and the Program Committee mem-
bers and their subreviewers for their thorough and professional reviews. Alfred
Hofmann and the Springer team were really helpful with the publication of this
volume. Finally, we would like to warmly thank the TOOLS series General Chair,
Bertrand Meyer, and the local organizing team, “Max” Pei Yu, Hans-Christian
Estler and Claudia Giinthart, from the ETH in Zurich, for their continuous sup-
port and great help with all logistic issues.

April 2011 Antonio Vallecillo
Judith Bishop
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Synchronizing Models and Code
(Invited Talk)

Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract. Object-oriented development promotes the view that “pro-
gramming is modeling”. Nevertheless, it remains difficult to correlate
domain concepts and features with source code, to reconcile static and
dynamic views of object-oriented code, and to evolve software of a run-
ning system. There continues to be a significant gap between high-level
models of software applications and the code that realizes these models.
We review some recent research of the Software Composition Group that
attempts to address these shortcomings, and we put forward some chal-
lenges for future object-oriented development systems.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Finding and Fixing Bugs in Web Applications
(Invited Talk)

Frank Tip

IBM Thomas J. Watson Research Center
Hawthorne, NY USA
ftip@us.ibm.com

Abstract. Today’s society is critically dependent on the existence of
web applications. From online purchases to personal banking to mobile
devices, web applications are the backbone of the 21st century’s eco-
nomy. However, web applications have a number of characteristics that
make them highly fragile and prone to bugs that threaten the important
applications they enable. In particular, they are typically written in a
combination of multiple languages, they often rely on low-level manipu-
lation of string values to generate dynamic web page content, and the
flow of control in web applications usually depends strongly on interac-
tive input from the user. In this presentation, I will present an overview
of the Apollo project at IBM Research, which aims to make web appli-
cations more robust by assisting programmers with finding and fixing
bugs, using automated techniques for test generation, fault localization,
and program repair.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, p. 2, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Test Suite Quality for Model Transformation Chains

Eduard Bauer!, Jochen M. Kiister', and Gregor Engels?

! IBM Research - Zurich, Siumerstr. 4
8803 Riischlikon, Switzerland
{edb, jku}@zurich.ibm.com
2 Department of Computer Science, University of Paderborn, Germany
engels@upb.de

Abstract. For testing model transformations or model transformation chains, a
software engineer usually designs a test suite consisting of test cases where each
test case consists of one or several models. In order to ensure a high quality of
such a test suite, coverage achieved by the test cases with regards to the system
under test must be systematically measured. Using coverage analysis and the re-
sulting coverage information, missing test cases and redundant test cases can be
identified and thereby the quality of the test suite can be improved. As test cases
consist of models, a coverage analysis approach must measure how complete
models cover the domains of the transformations in the chain and to what degree
of completeness transformations are covered when executing the test suite. In this
paper, we present a coverage analysis approach for measuring test suite quality
for model transformation chains. Our approach combines different coverage cri-
teria and yields detailed coverage information that can be used to identify missing
and redundant test cases.

1 Introduction

Model transformations are used nowadays in model-driven engineering for model re-
finement, model abstraction, and for code generation. Model transformations can ei-
ther be implemented directly in programming languages (such as Java) or using one
of the available transformation languages that have been developed in recent years
(e.g. [6/14]). For complex model transformations, several smaller model transforma-
tions can be concatenated to build a model transformation chain [22]. Besides reduc-
ing the complexity, this enables reuse and distributed development of individual model
transformations. One example for such a model transformation chain is a solution for
version management of process models in the IBM WebSphere Business Modeler [[1]].

For testing model transformations or model transformation chains, systematic soft-
ware testing has to be applied in order to ensure a high quality of the model transforma-
tion chain. In this context, a software engineer usually designs a test suite consisting of
test cases where each test case consists of one or several models. One important aspect
of testing is to measure and ensure a high coverage level which is used to be certain that
the test suite and the system under test are of a high quality.

Measuring the coverage level of a test suite requires a coverage analysis approach
which allows measuring the coverage achieved by a test case with regards to the model

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 319, 2011.
(© Springer-Verlag Berlin Heidelberg 2011



4 E. Bauer, J.M. Kiister, and G. Engels

transformation chain. The result of coverage analysis can then be used to identify miss-
ing and redundant test cases. Application of traditional code coverage analysis tech-
niques usually leads to information about non-covered code. However, such information
is not sufficient for identifying missing and redundant test cases: It cannot be directly
used for constructing new test cases which yield higher coverage and it does not take
into account whether test cases cover the domains of model transformations sufficiently.

Existing work on testing model transformations (cf. [4]) shows how a metamodel
of the input language of one single model transformation can be used to determine the
quality of this model transformation. To the best of our knowledge, there is currently
no approach known for measuring test suite quality for model transformation chains. In
particular, there exists no means of identifying missing and redundant test cases.

In this paper, we present an approach for measuring test suite quality of model trans-
formation chains. Our approach measures coverage achieved by a test case in the model
transformation chain by computing a footprint which contains the main characteris-
tics of the test case execution. Based on the footprints, it is then possible to identify
missing and redundant test cases in a test suite. We have validated our approach using
a large model transformation chain for version management of process models in the
IBM WebSphere Business Modeler [[1]].

The paper is structured as follows. We first give some fundamentals concerning
model transformation chains and coverage analysis, and establish requirements for mea-
suring test suite quality in Section2] Section[Blintroduces a coverage analysis approach
for model transformation chains which is then used in Sectiond! for identifying missing
and redundant test cases. In Section [3 we present our coverage analysis tool which has
been used on a larger model transformation chain to improve the quality of a test suite.
We discuss related work in Section [6]and conclude.

2 Background and Motivation

A model transformation chain is composed of several individual model transformations.
Each model transformation itself transforms one or more source models into one or
more target models. To design a model transformation, a software engineer has to define
the metamodels that specify the source and target models and implement the transfor-
mation definition which contains the logic to transform the models [7]. In addition to the
transformation definitions, transformation contracts [8]] are used to specify declaratively
what a transformation has to do. Such an approach is inspired by the design-by-contract
approach [18]], adapted for model transformations. To design a model transformation
chain, several model transformations are composed so that models produced by one
transformation are used for a consecutive model transformation.

In general, a metamodel used to specify the domain of a model transformation can be
defined by a standard (i.e. the UML language definition) or it can be domain-specific.
In the latter case, the software engineer can define an own domain-specific metamodel,
specifying the input/output language of the model transformation. The transformation
definition can be expressed using one of the numerous model transformation languages
(e.g. QVT [ILQ] or ATL [[14]) or using a programming language such as Java. In the case
when source and target metamodels are the same, the model transformation is called
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endogenous model transformation, otherwise it is called exogenous model transforma-
tion [7]]. Transformation contracts are defined independently of the implementation of
the model transformation. They consist of different kinds of contract rules which specify
conditions for the models used and created by the model transformation: A precondi-
tion rule specifies conditions that have to hold for the source models. A transformation
condition rule specifies conditions for the relation between source and target models. A
postcondition rule specifies conditions that have to hold for the target models. A vari-
ety of possibilities exist to express transformation contracts. Cariou et al. [8]] use Object
Constraint Language (OCL) to define transformation contracts. Guerra et al. [ 1] define
a separate visual language to specify transformation contracts.

In this paper we use as a case study the complex model transformation chain Com-
pare/Merge Model Transformation Chain (CMTC) that is used in the IBM WebSphere
Business Modeler [[1] for version management of process models. Given two business
process models expressed in Business Process Modeling Notation (BPMN) [19], this
model transformation chain computes their differences in the form of a Difference
Model. A simplified BPMN metamodel that is used in this paper is shown in Figure[Il

The models of the
CMTC and their re- fovcenen
lation are shown in
Figure 2l The rounded - FowNode | source = Sequencefiow
rectangles  represent e
models, the arrows £ Activity S event I cateway
show which models are S
transformed into which £ subprocess =i = =| =
other models. The two "= *"

BPMN models bpmn;

and bpmny are trans- Fig. 1. BPMN Metamodel (Simplified)

formed into Workflow

Graph (WFG) models

wfg1 and wfgs. These models are transformed by an endogenous model transformation
to models that are called Process Structure Trees (PSTs) (pst; and pstz). The PST
models conform to the same metamodel as WFG models but have different properties
which are more suitable for difference detection. Comparing the PST models pst; and
psto yields the model comp;, which maps the model elements that are similar in the
two PST models to each other. Finally, based on these PST models and the comp;
model, the diffj model is computed which represents the difference between the two
initial BPMN models. The whole test suite of the model transformation chain CMTC
consists of 188 different test cases. A detailed overview of the CMTC is given by
Kiister et al. [[15]].

In addition to specifying the do- = ) )

= FlowElement * 1 H Process

- flowElements

mains of the model transformations < Y
by metamodels, the CMTC makes use } S > diff,
of transformation contracts to spec- L ps‘/ ] A

ify what the transformations have to :
do. For the transformation of BPMN Fig. 2. Models of the CMTC



6 E. Bauer, J.M. Kiister, and G. Engels

models into WFG models, one transformation condition rule is that each Activity
without outgoing edges is transformed into a node in the WFG that is connected to the
end of the WFG model.

A complex model transformation chain, such as the CMTC, has to be systematically
tested in order to achieve a high quality. Software testing is usually done by creating
a number of test cases, consisting of input values and expected results, which define
how a software component should behave for a given input. For a model transformation
chain, a test suite consists of test cases where each test case consists of models. Two
sample test cases for the CMTC are shown in Figure Bl each in a separate column.
As the CMTC is used for difference detection for two process models, each test case
consists of two process models. The expected Difference models are not shown.

In the context of coverage analy-
sis [2l], one uses the concept of a test
requirement in order to represent a "m O ;p;"l O
particular element of the System Un- )
der Test (SUT),1 like ffotr1 eg;rfr;pl; a E— 0| oo
statement or a class of the , that bpmn, SN - @.
has to be tested. The elements that are - .
used as test requirements are defined
by coverage criteria. One very com- Fig. 3. Test Case 1 and Test Case 2
mon coverage criterion is statement
coverage, which derives a test requirement from each statement of the SUT. Another
coverage criterion deriving test requirements from the input domain of model transfor-
mations is class coverage that yields a test requirement for each class of the metamodel.
A test requirement is covered, if the according element is executed/used by a test case
in the test suite. If for example a model contains an instance of a particular class of
the metamodel, the according test requirement derived from this class is covered. The
result of coverage analysis contains information about covered and non-covered test re-
quirements. This information is called coverage information. Nonetheless, it has to be
mentioned that covering all test requirements does not imply absence of faults in the
SUT.

For coverage analysis, the SUT is also called coverage artifact. Based on the distinc-
tion between source code or specification as two kinds of coverage artifacts, coverage
criteria are divided into specification-based and code-based coverage criteria. For model
transformation chains, metamodels can be considered as part of the specification as they
specify all possible input and output models. Transformation contracts specify the logic
of the model transformation by preconditions and postconditions for models.

When analyzing test suite quality for model transformation chains, an approach is
required that measures coverage of the domains of the separate model transformations
that build the transformation chain. In addition, the coverage of the transformation con-
tracts resulting from models created during the execution of the test suite has to be taken
into account. Information about missing test cases should be given in such a way that
a tester can use this information to create new test cases which cover a certain part.
In this context, endogenous as well as exogenous model transformations have to be
supported. For determining redundant test cases, the behavior of test cases in the whole

Test Case t, Test Case t,
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model transformation chain has to be taken into account. The removal of such test cases
should not affect the fault detection effectiveness of the test suite.

3 A Combined Coverage Approach

In this section, we present a combined coverage approach [3]] for measuring test suite
quality of model transformation chains. The combined coverage approach combines
different specification-based coverage criteria for model transformation chains. We start
by explaining relevant coverage criteria and then elaborate on how coverage analysis is
performed.

3.1 Coverage Criteria

Based on the specification of the model transformation chain, test requirements are
derived by different coverage criteria from metamodels and transformation contracts.

Metamodel. In the follow- [ —

ing, we describe coverage

criteria for metamodels (par- AowElements -ﬂowgﬂents - flowElements
tially based on Fleurey et | Z:startevent e | Endevent

al. [9]]). The following exam- _ EE:::E = "Subprocess”

ples make use of the BPMN - flowElements g :‘;cﬂt‘i’f'eme”“
metamodel shown in Fig- £ Sequencefiow i@ name = "Activity”

ure [Il and one particular in-

stance of this metamodel, Fig. 4. Abstract Syntax of the bpmna Model of 11

shown in Figure 4

Class Coverage. The coverage criterion class coverage [9] uses the classes of a meta-
model to derive test requirements: For each class ¢ in a metamodel, a test requirement is
derived. Such a test requirement for a class c is satisfied, if a model (being an instance of
the metamodel) contains an object of class c. As instances of the classes StartEvent,
Activity, and Process, belong to the BPMN model, the test requirements derived
from these classes are satisfied.

Attribute Coverage. The coverage criterion attribute coverage [9]] derives test require-
ments from the attributes of the classes of a metamodel. For this, the common software
testing technique equivalence partitioning [2]] is used. For an attribute a, let D be the do-
main of the attribute a. Assuming an equivalence partitioning E of D, attribute coverage
derives a test requirement for each block e € E. As an example, the equivalence parti-
tioning for attributes with the data type Boolean with the domain D = {true, false}
is E = {{true}, {false}}. This yields two test requirements, one for each block. The
BPMN model shown in Figure ] covers the test requirement derived from the block
{true} for the attribute Subprocess.transaction.

Association Coverage. The coverage criterion association coverage [9] uses associa-
tions of a metamodel to derive test requirements. Each association has a multiplicity,
which defines the lower and upper number of instances of the association’s target class
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which are allowed to be referenced. Since this can be seen as the domain of associ-
ations, equivalence partitionings can again be used in this situation. Let an associa-
tion a with the lower bound [/ and upper bound u be given. This yields the domain
D = {n € N |1 <n < u}. Given an equivalence partitioning E for D, we derive a test
requirement for each block e € E of the equivalence partitioning E for association a. A
possible equivalence partitioning for the association Subprocess.flowElements
is E = {{0},{n | n € NAn > 1}}, yielding two test requirements. The test re-
quirement for the block {0} is covered by the BPMN model shown in Figure[d] as the
Subprocess does not contain any elements.

Feature Coverage. A feature can be seen as a particular characteristic of a model, such
that the model can be considered as a special case. Since models consists of model el-
ements, a feature is a particular combination of several model elements of that model.
The coverage criterion feature coverage uses the features defined in the context of a
metamodel to derive test requirements. For a feature f defined in the context of a meta-
model, a test requirement is created that requires the instances of the metamodel to
have the particular combination of model elements defined by feature f. A possible fea-
ture for the shown metamodel is the nesting of subprocesses. Describing features by
OCL expressions yields the OCL expression self.flowElements->exists (x
| x.0clIsTypeOf (Subprocess)), defined in the context of the class
Subprocess. None of the BPMN models shown in Figure 3] cover the test require-
ment derived from this feature.

Transformation Contract. Transformation contract coverage uses the contract rules
of a transformation contract to derive test requirements. For each contract rule cr of a
transformation contract, a separate test requirement is created. We call the result of the
evaluation of a transformation contract for a sequence of models a contract result. The
contract result contains the evaluation of each contract rule which is called contract rule
result. A contract rule result is a number which counts how often the condition stated
by the contract rule is fulfilled.

For the exemplary contract rule (Each Activity without outgoing edges is trans-
formed to a node in the WFG that is connected to the end of the WFG model, cf.
Section [2)) evaluated on the BPMN model shown in Figure[4] we see that the contract
rule result is two as the condition is evaluated twice successfully. The test requirement
derived from this contract rule is then satisfied if the contract rule result has a positive
value.

3.2 Test Requirements for Model Transformation Chains

The coverage criteria for metamodels and transformation contracts are used to derive
test requirements from the specification of a model transformation chain. The com-
bined coverage approach distinguishes between two levels of the specification of model
transformation chains, called type level and composition level. The type level contains
all distinct metamodels and transformation contracts. The composition level describes
the assembly of these metamodels and transformation contracts and by this defines
the structure of the model transformation chain. Here, a metamodel or a transforma-
tion contract from the type level can be used at several positions in the structure of



Test Suite Quality for Model Transformation Chains 9

Type Level

. - >
= >{ ERMN J {WFG/PSTJ { Cony } { i }( SR Input/Output Domain

- - N of Transformation Contract
o o
e v Distinct
i 7 o feudeany — Metamodel
r -
et Distinct
W —( WFG2PST ) —(PSTComp2Diff, Transformation
B Contract

i —

‘_ Composition Level

BN, | WFG/PST, WFGIPST, | >
\ . |npu|/0utpu_tDomain

of Transformation Contract

Metamode!
BPMN @NZWF)— FG/PST Qezps} FGIPST) — 5 @'ﬁ‘@
; Contract
. Execution Level
A g

: 44 4 : <
~{ bpmn‘ }_y{ w'fg‘ }_y{ pst. L ," Contract Result Evaluated
\ /' on Relation Between Models

e g S

>
Has Type - v — —
------ > bpmn2wfg wfg2pst, @ml RE@
Instance Of o 2 - 2 —

Fig. 5. Specification and Execution Level of CMTC

the model transformation chain. Metamodels and transformation contracts belonging to
the composition level are referred to as applied metamodels and applied transformation
contracts, respectively.

Figure [3] shows the type level, the composition level and the execution level for the
CMTC. The execution level here refers to the models and contract results created and
used during one sample execution of the CMTC (cf. Figure P). The CMTC makes use
of four distinct metamodels and four distinct transformation contracts (top of Figure [3).
As a transformation contract specifies a model transformation, it refers to the metamod-
els specifying the domain of the model transformation chain. An incoming arrow to a
transformation contract originates from a metamodel specifying the input domain, an
outgoing arrow connects to a metamodel specifying the output domain.

On the composition level, the distinct metamodel BPMN is applied twice, yield-
ing the two applied metamodels BPMN; and BPMN-. Similarly, the applied transfor-
mation contracts BPMN2WFG; and BPMN2WFG-> have the transformation contract
BPMN2WFG as type. During execution, each applied metamodel is instantiated once,
each applied transformation contract is evaluated once. For the sake of clarity, we omit
some of the dashed lines describing the has type and instance of relations in Figure

We denote by MTCyype = {M1,..,M;,TC1,..,TC;} the set of distinct metamodels
and transformation contracts of the model transformation chain MTC. With MTC_,,,,
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= {My,...M,,TCy,...,TC,,} we denote the specification on composition level. We
denote by MTC',,. = {my,...,my,fc1,...,tcy,} all models and contract results that
are created and used during the execution of test case t. We refer by S(M) to all
the possible models of an applied metamodel M € MTC,. Similarly, we refer by
S(TC) to all possible evaluations (contract results) of the applied transformation con-
tract TC € MTClopp.

To derive test requirements, we use each applied transformation contract and applied
metamodel separately. For each applied metamodel M € MTC,,,,, we can make use
of different equivalence partitionings for attributes and associations, as well as features
defined in the context of the applied metamodel. Each test requirement that is derived
from any applied metamodel M € MTC,,, is unique, although the applied metamodels
can have the same distinct metamodel as a type. Similarly, each test requirement derived
from any applied transformation contract 7C € MTC,,,,, is unique. We use the notation
RX to describe all the test requirements resulting from the coverage artifact X.

3.3 Coverage Analysis

Coverage analysis aims at analyzing which test requirements are covered and which
not by a given test suite. In the context of the combined coverage approach, so-called
coverage counters determine the coverage of these test requirements. In addition to
measuring whether the test requirement is satisfied, a coverage counter determines how
often the test requirement is covered.

Definition 1 (Coverage Counter). Let MTC be a model transformation chain. Let
MTCeomp = {Mn,....M,,TC1, ..., TC,, } be the set of applied metamodels and applied
transformation contracts for MTC. Let RMTC be the set of test requirements derived from
MTCopp. Let v € RMTC pe q test requirement derived from X € MTC,opp. A coverage
counter c,, which measures the coverage of test requirement r, is a function that deter-
mines a coverage count for the test requirement r using x € S(X). ¢, is defined as follows:

- ¢, : S(M) — N for applied metamodel M € MTCqp, from which r is derived.
- ¢, : S(TC) — N for applied transformation contract TC € MTClopp, from which r
is derived.

We say that c, accepts a model m € S(M), M € MTC_opp, if r is derived from M. We
say ¢, accepts tc € S(TC), TC € MTCeomp, if 1 is derived from TC.

As an example, consider the class Activity in the applied metamodel BPMN; that
has the type BPMN (cf. Figure [l and Figure [3). The coverage of the resulting test
requirement r is measured by a coverage counter ¢, which counts how often the class
Activityisinstantiated by a model bpmn; . For the test case t7, the resulting coverage
count is 1 because the test case only contains one instance of type Activity.
Aggregating all coverage counts for all test requirements during the execution of a
test case yields the footprint of a test case, which is the central concept representing
coverage information in the context of the combined coverage approach. The footprint
f; for a test case ¢ characterizes ¢ in terms of coverage counts for test requirements.
By this, the footprint f; contains information about the parts of the applied metamodels
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Table 1. Footprints for Test Cases shown in Figure[3]

Model Test Requirement ty t2

bpmnl Activity 1
Subprocess 0
Gateway 2
ParallelGateway 0
ExclusiveGateway 2
({true}, {{true}, {false}}, Subprocess. transaction) 0
({false}, {{true}, {false}}, Subprocess.transaction) 0
({0}, {{0},{n | n € NAn# 0}}, Subprocess.flowElements) 0
({n|neNAn#0},{{0},{n|ne€NAn+#0}}, Subprocess. flowElements) 0

Each Activity without outgoing edges is transformed to a node that is connected to the end of the WFG 0

2
1
0
0
0
1
0
1
0
2

bpmn2 Activity
Subprocess
Gateway
ParallelGateway
ExclusiveGateway
({true}, {{true}, {false}}, Subprocess.transaction)
({false}, {{true}, {false}}, Subprocess.transaction)
({0}, {{0},{n | n € NAn# 0}}, Subprocess.flowElements)
({n|neNAn#0},{{0},{n|ne€NAn+#0}}, Subprocess. flowElements)
Each Activity without outgoing edges is transformed to a node that is connected to the end of the WFG

SO~ OO OoO =~ OCOOCCOCOoOOCOO R~

and applied transformation contracts that are covered by the test case ¢. The test re-
quirements and their coverage counts describe the behavior of the test case during the
execution of the model transformation chain. Formally, we define:

Definition 2 (Footprint). Let a model transformation chain MTC be given. Let RMTC
be the set of test requirements derived from MTCyyp. Let t € T be a test case of the
test suite T. Let MTC', ,. = {my,...,my, tc1, ..., tcy, } be the set of models and contract
results used or created during the execution of t in MTC. A footprint f; for the test
case t is a function f; : RM'C — N that maps each r € RM'C 1o its coverage count:

fi(r) = ¢r(x), with x € MTC:, . and c, accepts x.

exec

For evaluating the coverage of the test requirement » € RX derived from X € MTC_ o
only exactly one x € MTC.,,., with x € S(X), exists. This results from the construction
of the composition level specification. For example, for an applied metamodel M €
MTC, oy only exactly one model m € MTC.,, ., with m € S(M), exists that can cover
r € RM. As a consequence, only one model/contract result x € MTC',,. is used by the
coverage counter for computing the coverage of a test requirement 7.

An extract of footprints for the test cases #; and t shown in Figure [3lis presented
in Table [Tl We use triples for describing the block of an equivalence partitioning for
an association or attribute. The first element of the triple describes the block, the
second element the equivalence partitioning, and the third element addresses the at-
tribute/association. As an example, for both #; and 7, the coverage count for the test
requirement derived from Subprocess is 0 for bpmn; which shows that both do not
contain subprocesses.

During coverage analysis of a given test suite, a footprint is created for each test case.
This coverage information is used afterwards for measuring the quality of the test suite

which we will describe in the following.
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4 Ensuring Test Suite Quality

Test suite quality targets the adequacy and minimality of a test suite. Test suite adequacy
is concerned with determining which parts of the model transformation chain are tested
by the test suite and which parts remain untested. In contrast to this, analyzing the
minimality of a test suite involves identifying redundant test cases that do not yield any
new insights for finding faults in the model transformation chain and removing these
unnecessary test cases.

4.1 Test Suite Adequacy

To determine the adequacy of a test suite, the information represented by the footprint of
each test case is used. One footprint contains information about the parts of the model
transformation chain that are executed by one test case—in terms of test requirements
derived from applied metamodels and applied transformation contracts and their cover-
age counts. Combining the footprints of the test cases belonging to the test suite yields
information about the parts of the model transformation chain that are tested by the test
suite. Untested parts are identified by test requirements, for which the coverage counts
are 0 for all test cases of the test suite:

Definition 3 (Unsatisfied Test Requirement). Let a model transformation chain MTC
be given. Let RMTC be the set of test requirements derived from MTCopp. Let T =
{t1,....tm} be a test suite for MTC. Let f,,, ....f;, be the footprints of t1, ..., ty. A test
requirement r € RMTC is called unsatisfied if and only if Vt; € T : f,(r) = 0.

As test requirements are derived from applied metamodels and applied transformation
contracts, testers of model transformation chains receive feedback from unsatisfied test
requirements that is close to the terms and concepts used in the domain of model trans-
formation chains. Accordingly, test cases that are currently missing in the test suite can
be easily created by the tester of model transformation chains.

As an example, assume a test suite consisting of the test cases shown in Figure 3
The resulting footprints are shown in Table[Il The table shows several unsatisfied test
requirements that we describe in the following:

— The first BPMN models of the two test cases do not contain any Subprocesses,
yielding the unsatisfied test requirements derived from the class Subprocess
and its attributes and associations which belong to the applied metamodel BPMN; .
Due to this, test cases with a model bpmn; should be created that contain
Subprocesses in order to increase coverage.

— The BPMN models do not contain parallel gateways and lead to unsatisfied test
requirements for the element ParallelGateway. Here, new test cases which
contain parallel gateways should be created.

Based on these observations, a tester can now create a new test case in order to increase
the coverage level. Figure [6] shows a possible new test case where the previous deficits
have been removed.
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In general, if the unsatisfied test requirement is de- Test Case
rived from one of the source metamodels, a model from %4»%
the input language of the model transformation chain > Subprocess A
can be used to satisfy the test requirement. For satisfy-

ing an unsatisfied test requirement that is derived from > v

one of the target metamodels, a model has to be created &»Q
which is transformed into a target model that covers the > Subprocess | A
test requirement. This can in some cases be difficult as it
requires a detailed knowledge of the model transforma- Fig. 6. Test Case 13
tion chain itself.

In the context of increasing coverage systematically, the concept of a composition
level (which makes use of applied metamodels and applied transformation contracts)
has several important advantages:

— For endogenous model transformations, unsatisfied test requirements can be
mapped to the source or the target metamodel of the endogenous model transfor-
mation.

— The concept of applied metamodels also has advantages for defining features and
equivalence partitionings: For example, for the model transformation that trans-
forms WFG models to PST models, we use different features for the source and the
target metamodel (which has the same metamodel as type). One feature, for exam-
ple, requires PST models with exclusive fragments to exist which is meaningless
for the same metamodel for WFG models. The reason for this is that WFG mod-
els do not make use of combinations of model elements that represent exclusive
gateways.

In spite of the support achieved by our approach to systematically increase coverage,
it is important to note that the adequacy of a test suite depends on equivalence par-
titionings for attributes and associations, as well as features defined in the context of
applied metamodels. Since the equivalence partitionings and features are defined by
the tester/developer of the model transformation chain, the knowledge of these actors
influences the adequacy of the test suite.

4.2 Test Suite Minimality

For determining the minimality of the test suite as well as for reducing the test suite,
the information provided by footprints of test cases is used. Finding unnecessary test
cases that do not yield any insights for finding faults in the model transformation chain
is based on comparing the footprints of test cases. If footprints are seen as vectors, the
distance between footprints can be used as an indicator for their similarity. We use the
Manhattan distance between these vectors to define the distance between footprints:

Definition 4 (Distance Between Footprints). Let a model transformation chain MTC
be given. Let RMTC be the set of test requirements derived from MTCopp. Let t1,t2 € T
be two test cases belonging to the test suite T. Let f;,,f;, be the footprints of the test
cases 1,1z Then the distance dy, 1, between the footprints fi, and fi, is defined as

dfr1 Sio T ZreRMTC |ﬁ1 (}’) —Jz (}’) |
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In the case when the distance between footprints of two test cases is zero, the test cases
yield the same coverage counts for all test requirements. As a consequence it is very
likely that they behave similarly during the execution of the model transformation chain.
Nonetheless, only the tester of the model transformation chain can approve the complete
similarity and unnecessity of such test cases. We call these test cases redundant since
they test the same functionality of the model transformation chain. An example for a
pair of redundant test cases for the CMTC is the test case zo shown in Figure 3] and
the test case 74 shown in Figure [/l These test cases have the same footprints for the
CMTC (distance between footprints: 0) because the difference detection is based on the
structure of the graph and not on the names of the activities.

One test case of a pair of redundant test cases can be re-
moved from the test suite without affecting the fault detection CH’ O
effectiveness of the test suite. Extending this idea to partition -
the test suite into partitions of mutually redundant test cases and | >S9k O
using one test case out of each partition yields the redundancy
reduction algorithm.

The pseudo code for this algorithm is given in Algorithm [l
The input of the redundancy reduction is a test suite 7" and the set of footprints F', which
contains a footprint f; for each test case r € T. The result of the algorithm is the reduced
test suite 7”, which does not contain any redundant test cases. The for each loop in
lines 4-10 creates partitions of mutually redundant test cases p € P. All test cases that
are redundant to each other belong to one partition p. Observe that the for each loop
iterates over each pair of footprints f;, and f;, with a distance of 0. This also holds true
for any single footprint f;, € F. Thus, in the case when #; is not redundant to any other
test case #, this yields a partition p = {f;, }.

The problem of reducing the size of the test suite while maintaining the satisfied test
requirements is called the test suite reduction problem [[12]]. The solution to this problem
is a so-called smallest reduced test suite that covers the same test requirements as the
whole test suite. Compared to the known test suite reduction heuristics our redundancy
reduction has two advantages:

First of all, by retaining redundant test cases that do not yield any new insights for
finding faults in the model transformation chain, the fault detection effectiveness of the
test suite should usually not be affected. This is different for the fault detection effec-
tiveness of the reduced test suites that are computed by test suite reduction heuristics
(e.g. [21413]).

Secondly, redundancy reduction does not favor large test cases, which subsume other
test cases. For example, it does not favor test cases whose footprints have higher cov-
erage counts for each test requirement compared to other footprints. Keeping large test
cases in the reduced test suite is usually a property of the test suite reduction heuristics,
as large test cases tend to subsume small test cases in terms of covered test require-
ments. Accordingly, the reduced test suite resulting from the redundancy reduction does
not necessarily consist of test cases consisting of large models which are usually poorly
maintainable.

Test Case t,

Fig. 7. Test Case 14
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Algorithm 1. Redundancy Reduction

Input : 7 = {r1,...,1,} test suite
Input : F = {f,,...,fi,} footprints of test cases T = {r1, ..., 1}
Output: 7' C T reduced test suite

1 redundancyReduction (T,F)

2 T — 0;

3 P — (;

4 foreach f,,, f;; € F with dy, f; = 0do

5 it3peP:3f€p:dsy, =0then
6 add f,,,f; top

7 else

8 P—PU{{fi.fy}}

9 end

10 end

11 foreach p € P do

12 t — t; € T forexactlyone f;, € p ;
13 T —T Ut

14 end

15 return 7’;

16 end

5 Tool Support and Validation

For supporting the combined coverage approach, we have created the Test Suite Ana-
lyzer for model transformation chains, which consists of a set of Eclipse plug-ins. The
Test Suite Analyzer supports obtaining coverage information as well as investigating
the coverage information. Figure[8] shows a screenshot and illustrates the obtained cov-
erage information (bottom of figure) and one particular footprint (top of figure). The
supported use cases are shown in Table[2]

Table 2. Summary of Applications of the Combined Coverage Approach

Use Case

Coverage Analysis
Adjustment of coverage analysis

Performing coverage analysis
Investigation of coverage information
Display/Compare Footprints

Redundancy Computation
Reduction of Test Suite

Identification of unsatisfied test
requirements

Description

For performing the coverage analysis, the user is provided with functionality to
express equivalence partitionings for attributes and associations, define features
in the context of applied metamodels, and specify transformation contracts for
transformation definitions.

During performing coverage analysis, the actual calculation of the coverage
information in terms of footprints for test cases is created and persisted. An
overview of the results is shown in the view at the bottom of Figure[§]

Different views are provided for the analysis of separate footprints as well as
for the comparison of different footprints.

Computation of pairs of redundant test cases.

Application of the redundancy reduction algorithm. Removal of redundant test
cases.

The information about unsatisfied test requirements is shown to the user.
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Fig. 8. Test Suite Analyzer for model transformation chains

Applying the combined coverage approach to the model transformation chain CMTC
had the following results: Analyzing the adequacy of the test suite provided informa-
tion about several unsatisfied test requirements. For example, nested subprocesses were
identified as missing. The subsequent creation of test cases containing nested subpro-
cesses uncovered some faults in the model transformation chain. Concerning the mini-
mality of the test suite, 27 pairs of redundant test cases have been identified. The main
reason for such a high number is the creation of the test suite by different people and the
lack of maintenance of the test suite throughout the years. The redundancy reduction
algorithm allowed us to remove 19 test cases from the overall 188 test cases. A manual
investigation showed that only those test cases that behaved similarly to other test cases
were removed. Accordingly, the fault detection effectiveness of the reduced test suite
should be comparable to the fault detection effectiveness of the whole test suite. The
Test Suite Analyzer has already been successfully used when evolving the CMTC for
supporting another input language for the process models.

6 Related Work

In the domain of software testing, several coverage criteria exist to determine the ade-
quacy of test suites. McQuillan et al. [17] introduces a code-based coverage criterion
for model transformations to derive test requirements from transformation definitions
composed in ATLAS Transformation Language (ATL). In contrast to their work, we
focus on specification-based coverage analysis as this facilitates the derivation of test
cases for increasing coverage.

Specification-based coverage analysis has been studied by Andrews et al. [3]]. They
define coverage criteria for models composed in Unified Modeling Language (UML),
including coverage criteria for UML class diagrams. Andrews et al. define three coverage
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criteria, which are called association-end multiplicity criterion, generalization criterion,
and class attribute criterion. Fleurey et al. [9]] adapt the approach of Andrews et al. for
deriving test requirements from the source metamodel of a model transformation. In our
approach, we extend metamodel coverage to applied metamodels that are used at any
position of the model transformation chain. Furthermore, we introduce transformation
contract coverage which allows us to analyse coverage also for the transformation logic.

To determine similarity between test cases, the domain of software profiling makes use
of execution profiles for test cases. Leon et al. [[16] as well as Yan et al. [23] detect similar
test cases by defining metrics for computing the distance between execution profiles. Yan
et al. 23] use the euclidean distance between execution profiles for this computation. In
contrast to using euclidean distance, we make use of the Manhattan distance, although
both possibilities yield the same results for finding redundant test cases.

Reducing the size of the test suite based on coverage information is a common prob-
lem in software testing—the test suite reduction problem [12]]. Solving this problem re-
quires finding the smallest possible subset of test cases which satisfies the same test
requirements as the whole test suite. Harrold et al. [12] formulate this problem mathe-
matically and show that finding such a subset is NP-hard. They present the first heuris-
tic to solve this problem. In recent years, several different test suite reduction heuristics
have been published (see e.g. [20]). A drawback of such heuristics is the potentially
decreased fault detection effectiveness of the reduced test suite. Empirical experiments
(see e.g. [21]]) yield the conclusion that the simple reduction of the test suite, based
on the test suite reduction problem and the test suite reduction heuristics, decreases the
fault detection effectiveness of the test suite significantly. In contrast to these reductions,
we make use of redundant test cases to reduce the test suite, which does not decrease the
fault detection effectiveness of the test suite. In addition, other than test suite reduction
heuristics, our approach does not tend to retain large test cases in the test suite which
are difficult to understand and maintain.

7 Conclusion

Coverage analysis achieved by test cases for a model transformation chain is important
for ensuring the quality of the test suite. In particular, such coverage analysis must al-
low the software engineer to discover missing and redundant test cases. In this paper,
we have introduced the combined coverage approach for measuring the quality of a test
suite. Our approach is independent of a specific model transformation language and
computes a so-called footprint of a test case. This footprint allows a detailed analysis
and is also used for identification of missing and redundant test cases. We have vali-
dated our approach on a large model transformation chain where it has been used for
discovering several missing and redundant test cases.

Future work includes the automatic generation of missing test cases based on the
result of coverage analysis. Another direction of future work is a detailed investigation
of how results from our coverage analysis approach relate to traditional code coverage
analysis approaches.
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Abstract. Reusability is an important software engineering concept ac-
tively advocated for the last forty years. While reusability has been ad-
dressed for systems implemented using the same programming language,
it does not usually handle interoperability with different programming
languages. This paper presents a solution for the reuse of Java code
within Eiffel programs based on a source-to-source translation from Java
to Eiffel. The paper focuses on the critical aspects of the translation
and illustrates them by formal means. The translation is implemented
in the freely available tool J2Eif; it provides Eiffel replacements for the
components of the Java runtime environment, including Java Native In-
terface services and reflection mechanisms. Our experiments demonstrate
the practical usability of the translation scheme and its implementation,
and record the performance slow-down compared to custom-made Eiffel
applications: automatic translations of java.util data structures, java.io
services, and SWT applications can be re-used as Eiffel programs, with
the same functionalities as their original Java implementations.

1 Introduction

Code reuse has been actively advocated for the past forty years [12], has become
a cornerstone principle of software engineering, and has bred the development
of serviceable mechanisms such as modules, libraries, objects, and components.
These mechanisms are typically language-specific: they make code reuse practi-
cal within the boundaries of the same language, but the reuse of “foreign” code
written in a specific language within a program written in a different “host” lan-
guage is a problem still lacking universally satisfactory solutions. The reuse of
foreign code is especially valuable for languages with a small development com-
munity: some programmers may prefer the “host” language because its design
and approach are more suitable for their application domain, but if only a small
community uses this languages, they also have to wait for reliable implementa-
tions of new services and libraries unless there is a way to reuse the products
available, sooner and in better form, for a more popular “foreign” language. For
example, the first Eiffel library offering encryption] was released in 2008 and still
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is in alpha status, while Java has offered encryption services in the java.security
standard package since 2002.

A straightforward approach to reuse foreign code is to wrap it into compo-
nents and access it natively through a bridge library which provides the necessary
binding. This solution is available, for example, in Eiffel to call external C/C++
code—with the C-FEiffel Call-In Library (CECIL)—and Java code—with the
Eiffel2Java Library; the Scala language achieves interoperability with Java us-
ing similar mechanisms. Such bridged solutions execute the foreign code in its
native environment which is not under direct control of the host’s; this intro-
duces potential vulnerabilities as guarantees of the host environment (provided,
for example, by its static type system) may be violated by the uncontrolled for-
eign component. More practically, controlling the foreign components through
the interface provided by the bridge is often cumbersome and results in code
difficult to maintain. For example, creating an object wrapping an instance of
java.util. LinkedList and adding an element to it requires six instructions with
Eiffel2Java, some mentioning Java API’s signatures encoded as strings such as
method id := list. method id ("add”, ” (Ljava/lang/Object;)Z”).

A source-to-source translation of the foreign code into the host does not incur
the problems of the bridged solutions because it builds a functionally equivalent
implementation in another language. The present paper describes a translation
of Java source into Eiffel and its implementation in the tool J2Eif [§]. While
Eiffel and Java are both object-oriented languages, the translation of one into
the other is tricky because superficially similar constructs, such as those for
exception handling, often have very different semantics. In fact, correctness is
arguably the main challenge of source-to-source translation: Section Bl formalizes
the most delicate aspects of the translation to describe how they have been
tackled and to give confidence in the correctness of the translation.

As shown by experiments in Section El J2Eif can translate non-trivial Java
applications into functionally equivalent Eiffel ones; the system also provides
replicas of Java’s runtime environment and a precompiled JDK standard library.
The usage of the translated code is, in most cases, straightforward for Eiffel pro-
grammers; for example, creating an instance [ of java.util. LinkedList and adding
an element e to it becomes the mundane (at least for Eiffel programmers):

create l.make JAVA UTIL LINKEDLIST ; r:= l.method add from object (e)

Since Eiffel compiles to native code, a valuable by-product of J2Eif is the
possibility of compiling Java applications to native code. The experiments in
Section [ show that Java applications automatically translated into Eiffel with
J2Eif incur in a noticeable slow-down—especially those making an intense use
of translated data-structure implementations. The slow-down is unsurprising, as
a generic, automated translation scheme is no substitute for a carefully designed
re-engineering that makes use of Eiffel’s peculiarities. Using J2Eif, however, en-
ables the fast reuse of new Java libraries in Eiffel applications—a valuable service
to access Java’s huge codebase in a form congenial to Eiffel programmers. Per-
formance enhancement belongs to future work.
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Section [2 gives an overview of the architecture of J2Eif; Section [B] describes
the translation in detail; Section @ evaluates the implementation with four ex-
periments and points out its major limitations; Section [l discusses related work;
Section [6] concludes.

2 Design Principles

J2Eif [§] is a stand-alone compiler with graphical user interface that translates
Java programs to Eiffel programs. The translation is a complete Eiffel application
which replicates the functionalities of the Java source application by including
replacements of the Java runtime environment (most notably, the Java Native
Interface and reflection mechanisms). J2Eif is implemented in Java.

JRE B
Library
Source D

Code
Helper
Classes

Java B

Program
Source JoET

Code AN
. Program Eiffel
> Source Compiler -exe
[ N\ Code
Java

Libraries
Source
Code

—

Native
Libraries

Fig. 1. High-level view of J2Eif

High-level view. Figure [Il shows the high-level usage of J2Eif. To translate
a Java program, the user provides the source code of the program, its Java
dependencies, as well as any external native libraries referenced by the program.
J2Eif produces Eiffel source code that can be compiled by an Eiffel compiler
such as EiffelStudio. Native libraries called by native methods in Java are then
directly called from Eiffel. While J2Eif can compile the complete code of the
Java Runtime Environment (JRE) library source, it comes with a precompiled
version which drastically reduces the overall compilation time.

Translation. J2Eif implements the mapping 7: Java — Eiffel of Java code into
Eiffel code. Both languages follow the object-oriented paradigm and hence share
several notions such as objects, classes, methods, and exceptions. Nonetheless,
the semantics of the same notion in the two languages are often quite different.



Automated Translation of Java Source Code to Eiffel 23

Section [3] describes all the aspects taken into account by the translation and
focuses on its particularly delicate features by formalizing them.

J2Eif implements the translation 7 as a series 11, ..., T, of successive incre-
mental transformations on the Abstract Syntax Tree. Every transformation T;
takes care of exactly one language construct that needs adaptation and produces
a program in an intermediate language L; which is a mixture of Java and Eiffel
constructs: the code progressively morphs from Java to Eiffel code.

Ty : Java — L
T = T,o0---0Ty, where T: Ll = L
T, : L,_1 — Eiffel

The current implementation uses 35 such transformations (i.e., n = 35).
Combining small transformations has some advantages: several of the individual
transformations are straightforward to implement and all are simple to maintain;
it facilitates reuse when building other translations (for example into a language
other than Eiffel); the intermediate programs generated are readable and easily
reviewable by programmers familiar with Java and Eiffel.

3 Translating Java to Eiffel

This section describes the salient features of the translation 7 from Java to Eiffel,
grouped by topic. Eiffel and Java often use different names for comparable object-
oriented concepts; to avoid ambiguities, the present paper matches the terms in
the presentation, whenever possible without affecting readability, and uses only
the appropriate one when discussing language-specific aspects. Table [I] lists the
Java and Eiffel names of fundamental object-oriented concepts.

Table 1. Object-oriented terminology in Java and Eiffel

Java Eiffel Java Eiffel
class class member feature
abstract/interface deferred field attribute
concrete effective method routine
exception exception constructor creation procedure

3.1 Language Features

We formalize some components of 7 by breaking it down into simpler functions
denoted by V; these functions are a convenient way to formalize 7 and, in
general, different than the transformations T; discussed in Section B} the end
of the present section sketches an example of differences between V’s and T;’s.
The following presentation ignores the renaming scheme, discussed separately
(Section[34), and occasionally overlooks inessential syntactic details. The syntax
of Eiffel’s exception handling adheres to the working draft 20.1 of the ECMA
Standard 367; adapting it to work with the syntax currently supported is trivial.
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Classes and interfaces. A Java program is defined by a collection of classes;
the function V¢ maps a single Java class or interface into an FEiffel class or
deferred (abstract) class.

T(Cy,...,Ch) = Ve (Ci),...,Vc(Cr)

V¢ (class name extend { body }) = class name V(extend) Vg (body) end

V p (interface name extend { body }) = deferred class name Vi (extend) V;g(body) end
where name is a class name; extend is a Java inheritance clause; and body a Java class body.

V' translates Java inheritance clauses (extends and implements) into Eiffel
inherit clauses. The translation relies on two helper classes:

JAVA PARENTis ancestor to every translated class, to which it provides helper
routines for various services such as access to the native interface, exceptions,
integer arithmetic (integer division, modulo, and shifting have different se-
mantics in Java and Eiffel), strings. The rest of this section describes some

of these services in more detail.
JAVA INTERFACE PARENT is ancestor to every translated interface.

Java generic classes and interfaces may have complex constraints which cannot
be translated directly into Eiffel constraints on generics. 7 handles usages of
genericity with the same approach used by the Java compiler: it erases the generic
constraints in the translation but enforces the intended semantics with explicit
type casts added where needed.

Members (features). Vp and V,p respectively translate Java class and in-
terface bodies into Eiffel code. The basic idea is to translate Java fields and
(abstract) methods respectively into Eiffel attributes and (deferred) routines.
A few features of Java, however, have no clear Eiffel counterpart and require a
more sophisticated approach:

Anonymous classes are given an automatically generated name.

Arguments and attributes can be assigned to by default in Java, unlike in
Eiffel where arguments are read-only and modifying attributes requires set-
ter methods. To handle these differences, the translation 7 introduces a
helper generic class JAVA VARIABLE [G]. Instances of this class replace
Java variables; assignments to arguments and attributes in Java are trans-
lated to suitable calls to the routines in the helper class.

Constructor chaining is made explicit with calls to super.

Field hiding is rendered by the naming scheme introduced by 7 (Section B4)).

Field initializations and initializers are added explicitly to every constructor.

Inner classes are extracted into stand-alone classes, which can access the same
outer members (features) as the original inner classes.

JavaDoc comments are ignored.

Static members. Eiffel’s once routines can be invoked only if they belong
to effective (not deferred) classes; this falls short of Java’s semantics for
static members of abstract classes. For each Java class C, the translation 7
introduces a class C' STATIC which contains all of C’s static members and
is inherited by the translation of C; multiple inheritance accommodates such
helper classes. C STATIC is always declared as effective (not deferred), so
that static members are always accessible in the translation as once routines.
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Varargs arguments are replaced by arguments of type array.

Visibility. Eiffel’s visibility model is different than Java’s, as it requires, in
particular, to list all names of classes that can access a non-public mem-
ber. 7 avoids this issue by translating every member into a public Eiffel
feature.

Instructions. V), maps Java method bodies to Eiffel routine bodies. As ex-
pected, Vs is compositional: Vjs(inst; 3 insta) = Vas(insty) ;5 Var(instz),
hence it is sufficient to describe how Vs translates Java instructions into Eiffel.
The translation of many standard instructions is straightforward; for example,
the Java conditional if (cond){doThen} else {doElse} becomes the Eiffel condi-
tional if Vg(cond) then V(doThen) else Vs (doElse) end, where Vg maps
Java expressions to equivalent Eiffel expressions. The following presents the
translation of the constructs which differ the most in the two languages.

Loops. The translation of loops is tricky because Java allows control-flow break-
ing instructions such as break. Correspondingly, the translation of while loops
relies on an auxiliary function Vyy : Javalnstructionx { T, L} — Eiffellnstruction
which replicates the semantics in presence of break (with t € {T,L}):

V m (while (stayIn) {body}) = from breakFlag := False
until not Vg (stayIn) or breakFlag
loop Vw (body, 1) end

Vw (break, t) = breakFlag := True

Vo (inst insta, t) Vw (inst1, t) 5 Vw (instz, T) if inst; contains break
insty ; ins =
w 1 2 Vw (inst1, t) 5 Vw (inste, t)  if inst; doesn’t contain break

Vw (atomicInst, T) = if not breakFlag then V ,;(atomiclnst) end
Vw (atomicInst, L) = Vu (atomicInst)

The break instruction becomes, in Eiffel, an assignment of True to a fresh
boolean flag breakFlag, specific to each loop. Every instruction within the loop
body which follows a break is then guarded by the condition not breakFlag
and the loop is exited when the flag is set to True. Other types of loops (for,
do..while, foreach) and control-flow breaking instructions (continue, return)
are translated similarly.

Ezxceptions. Both Java and Eiffel offer exceptions, but with very different se-
mantics and usage. The major differences are:

— Exception handlers are associated to whole routines in Eiffel (rescue block)
but to arbitrary (possibly nested) blocks in Java (try..catch blocks).

— The usage of control-flow breaking instructions (e.g., break) in Java’s try..
finally blocks complicates the propagation mechanism of exceptions [I5].

The function Vs translates Java’s try..catch blocks into Eiffel’s agents (similar
to closures, function objects, or delegates) with rescue blocks, so that exception
handling is block-specific and can be nested in Eiffel as it is in Java:
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Vum(try {doTry} catch (¢ e) {doCatch}) = skipFlag := False
(agent (args) do
if not skipFlag thenV  (doTry) end
rescue
if e.conforms to (Vr(t)) then
V v (doCatch) ; Retry := True; skipFlag := True
else Retry := False end
end).call
V m (throw (exp)) = (create { EXCEPTION?}).raise (Vg (exp))

The agent’s body contains the translation of Java’s try block. If executing it
raises an exception, the invocation of raise on a fresh exception object transfers
control to the rescue block. The rescue’s body executes the translation of the
catch block only if the type of the exception raised matches that declared in the
catch (Vr translates Java types to appropriate Eiffel types, see Section B.2)).
Executing the catch block may raise another exception; then, another invoca-
tion of raise would transfer control to the appropriate outer rescue block: the
propagation of exceptions works similarly in Eiffel and Java. On the contrary, the
semantics of Eiffel and Java diverge when the rescue/catch block terminates
without exceptions. Java’s semantics prescribes that the computation continues
normally, while, in Eiffel, the computation propagates the exception (if Retry is
False) or transfers control back to the beginning of the agent’s body (if Retry
is True). The translation V), sets Retry to False if catch’s exception type is
incompatible with the exception raised, thus propagating the exception. Other-
wise, the rescue block sets Retry and the fresh boolean flag skipFlag to True:
control is transferred back to the agent’s body, which is however just skipped
because skipFlag = True, so that the computation continues normally after the
agent without propagating any exception.

An exception raised in a try..finally block is normally propagated after ex-
ecuting the finally; the presence of control-flow breaking instructions in the
finally block, however, cancels the propagation. For example, the code block:

b=2; while(true){try{throw new Exception();}finally{b++; break;}}
b+

terminates normally (without exception) with a value of 4 for the variable b.
The translation Vj; renders such behaviors with a technique similar to the
Java compiler: it duplicates the instructions in the finally block, once for normal
termination and once for exceptional termination:
Vum (try {doTry} finally {doFinally}) = skipFlag := False
(agent (args) do
if not skipFlag thenV s (doTry ; doFinally) end
rescue V) (doFinally)
if breakFlag then
Retry := True ; skipFlag := True
end
end).call

A break sets breakFlag and, at the end of the rescue block, Retry and skipFlag;
as a result, the computation continues without exception propagation. Other
control-flow breaking instructions are translated similarly.
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Other instructions. The translation of a few other constructs is worth discussing.

Assertions. Java’s assert exp raises an exception if erp evaluates to false,
whereas a failed check ezp end in Eiffel sends a signal to the runtime which
terminates execution or invokes the debugger. Java’s assertions are therefore
translated as if not exp then V,/(throw (new AssertionError ())) end.

Block locals are moved to the beginning of the current method; the naming
scheme (Section [34]) prevents name clashes.

Calls to parent’s methods. Eiffel’s Precursor can only invoke the parent’s
version of the overridden routine currently executed, not any feature of the
parent. The translation 7 augments every method with an extra boolean
argument predecessor and calls Precursor when invoked with predecessor
set to True; this accommodates any usage of super:

V B (type method (args) { body }) = method (args ; predecessor: BOOLEAN): V(type) do

if predecessor then Precursor (args, False)
else Vs (body) end

end
V e (method(exp)) = method (Vg (exp), False)
V i (super.method(exp)) = method (Vg (exp), True)

Casting and type conversions are adapted to Eiffel with the services pro-
vided by the helper class JAVA TYPE HELPER.

Expressions used as instructions are wrapped into the helper routine
dev null (a: ANY): V(exp) = dev null (Vg (exp)).

Switch statements become if..elseif..else blocks in Eiffel, nested within a
loop to support fall-through.

How J2Eif implements 7. As a single example of how the implementa-
tion of 7 deviates from the formal presentation, consider J2Eif’s translation of

exception-handling blocks try{doTry} catch(t e){doCatch} finally{doFinally}:

skipFlag := False ; rethrowFlag := False
(agent (args) do
if not skipFlag then Vs (doTry)
else if e.conforms to (Vr(t)) then Vs (doCatch) else rethrowFlag := True end end
skipFlag := True ; Vs (doFinally)
if rethrowFlag and not breakFlag then (create { EXCEPTION}).raise end
rescue if not skipFlag then skipFlag := True ; Retry := True end
end).call

This translation applies uniformly to all exception-handling code and avoids
duplication of the finally block, hence the agent’s body structure is more similar
to the Java source. The formalization Vj; above, however, allows for a more
focused presentation and lends itself to easier formal reasoning (see Section E.T]).
A correctness proof of the implementation could then establish that Vj; and
the implementation J2Eif describe translations with the same semantics.

3.2 Types and Structures

The naming scheme (Section B.4) handles references to classes and interfaces as
types; primitive types and some other type constructors are discussed here.
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Primitive types with the same machine size are available in both Java and
Eiffel: Java’s boolean, char, byte, short, int, long, float, and double ex-
actly correspond to Eiffel's BOOLEAN, CHARACTER 32, INTEGER 8,
INTEGER 16, INTEGER 32, INTEGER 64, REAL 32, and REAL 6.

Arrays in Java become instances of Eiffel’s helper JAVA ARRAY class, which
inherits from the standard EiffelBase ARRAY class and adds all missing
Java functionalities to it.

Enumerations and annotations are syntactic sugar for classes and interfaces
respectively extending java.lang. Enum and java.lang.annotation. Annotation.

3.3 Runtime and Native Interface

This section describes how J2Eif replicates, in Eiffel, JRE’s functionalities.

Reflection. Compared to Java, Eiffel has only limited support for reflection
and dynamic loading. The translation 7 ignores dynamic loading and includes
all classes required by the system for compilation. The translation itself also
generates reflection data about every class translated and adds it to the produced
Eiffel classes; the data includes information about the parent class, fields, and
methods, and is stored as objects of the helper JAVA CLASS class. For example,
T generates the routine get class for JAVA LANG STRING STATIC, the Eiffel
counterpart to the static component of java.lang.String, as follows:

get class: JAVA CLASS once ("PROCESS”)
create Result.make (”java.lang.String”)
Result.set superclass (create { JAVA LANG OBJECT STATICY)
Result.fields.extend ([’ count” field datal)
Result.fields.extend ([’ value” field datal)

Result.methods.extend ([”equals” method datal))

end

Concurrency. J2FEif includes a modified translation of java.lang. Thread which
inherits from the Eiffel THREAD class and maps Java threads’ functionalities
to Eiffel threads; for example, the method start() becomes a call to the routine
launch of class THREAD. java.lang. Thread is the only JRE library class which
required a slightly ad hoc translation; all other classes follow the general scheme
presented in the present paper.

Java’s synchronized methods work on the implicit monitor associated with
the current object. The translation to Eiffel adds a mutex attribute to every class
which requires synchronization, and explicit locks and unlocks at the entrance
and exit of every translated synchronized method:

V g(synchronized type method(args){body}) = method (args): Vr(type)
do mutex.lock ; Vr(body) ; mutex.unlock end

Native interface. Java Native Interface (JNI) supports calls to and from pre-
compiled libraries from Java applications. JNI is completely independent of the
rest of the Java runtime: a C struct includes, as function pointers, all references
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to native methods available through the JNI. Since Eiffel includes an extensive
support to call external C code through the CECIL library, replicating JNI’s
functionalities in J2Eif is straightforward. The helper class JAVA PARENT—
accessible in every translated class—offers access to a struct JNIEnv, which
contains function pointers to suitable functions wrapping the native code with
CECIL constructs. This way, the Eiffel compiler is able to link the native imple-
mentations to the rest of the generated binary.

This mechanism works for all native JRE libraries except for the Java Virtual
Machine (jom.dll or jum.so), which is specific to the implementation (OpenJDK
in our case) and had to be partially re-implemented for usage within J2Eif. The
current version includes new implementations of most JVM-specific services,
such as JVM FindPrimitiveClass to support reflection or JVM ArrayCopy to
duplicate array data structures, and verbatim replicates the original implementa-
tion of all native methods which are not JVM-specific (such as
JVM CurrentTimeMillis which reads the system clock). The experiments in
Section [ demonstrate that the current JVM support in J2Eif is extensive and
sufficient to translate correctly many Java applications.

Garbage collector. The Eiffel garbage collector is used without modifications;
the marshalling mechanism can also collect JNI-maintained instances.

3.4 Naming

The goal of the renaming scheme introduced in the translation 7 is three-fold:
to conform to Eiffel’s naming rules, to make the translation as readable as pos-
sible (i.e., to avoid cumbersome names), and to ensure that there are no name
clashes due to different conventions in the two languages (for example, Eiffel is
completely case-insensitive and does not allow in-class method overload).

To formalize the naming scheme, consider the functions 1, ¢, and :

— 71 normalizes a name by successively (1) replacing all “” with “ 17, (2)
replacing all “.” with “”, and (3) changing all characters to uppercase—for
example, n(java.lang.String) is JAVA LANG STRING;

— ¢(n) denotes the fully-qualified name of the item n—for example, ¢(String)
is, in most contexts, java.lang.String;

— A(v)is an integer denoting the nesting depth of the block wherew is declared—
for example, in the method void foo(int a){int b; for(int ¢=0;...)...}, it is
Aa) =0, A(b) =1, A(c) = 2.

Then, the functions Ag, Ap, Ay, A respectively define the renaming scheme
for class/interface, field, method, and local name; they are defined as follows,
where @ denotes string concatenation, “className” refers to the name of the
class of the current entity, and € is the empty string.
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Ac (className)

Ap (fieldName)

Ay (localName)

A (className(args))
A (methodName(args))

n(¢(className))
“field” @ A(fieldName) @ “” @ fieldName @ “” @ Ac(className)
“local” @ A(localName) @ “ 7 @ localName
“make ” @ Ax(args) @ Ac(className)
“method ” @ methodName @ A 4 (args)
€ if m=0
“from” @ S(t1) D ... D I(twm) ifm >0
“p” @t if t is a primitive type

Aa(ty ng, ooy tm Nyy)

4(t)

t otherwise

The naming scheme renames classes to include their fully qualified name. It
labels fields and appends to their name their nesting depth (higher than one
for nested classes) and the class they belong to; similarly, it labels locals and
includes their nesting depth in the name. It pre-pends “make’ to constructors—
whose name in Java coincides with the class name—and “method’ to other
methods. To translate overloaded methods, it includes a textual description of
the method’s argument types to the renamed name, according to function A4;
an extra p distinguishes primitive types from their boxed counterparts (e.g.,
int and java.lang.Integer). Such naming scheme for methods does not use the
fully qualified name of argument types. This favors the readability of the names
translated over certainty of avoiding name clashes: a class may still overload a
method with arguments of different type but sharing the same unqualified name
(e.g., java.util. List and org.eclipse.Swt. Widgets. List). This, however, is extremely
unlikely to occur in practice, hence the chosen trade-off is reasonable.

4 Evaluation

This section briefly discusses the correctness of the translation 7 (Section ETJ);
evaluates the usability of its implementation J2Eif with four case studies (Sec-
tion L2)); and concludes with a discussion of open issues (Section E3).

4.1 Correctness of the Translation

While the formalization of 7 in the previous sections is not complete and over-
looks some details, it is useful to present the translation clearly, and it even
helped the authors find a few errors in the implementation when its results did
not match the formal model. Assuming an operational semantics for Java and
Eiffel (see [I7]), one can also reason about the components of 7 formalized in
Section B and increase the confidence in the correctness of the translation. This
section gives an idea of how to do it; a more accurate analysis would leverage a
proof assistant to ensure that all details are taken care of appropriately.

The operational semantics defines the effect of every instruction I on the

program state: o L, &' denotes that executing I on a state o transforms the
state to o’. The states o, ¢’ may also include information about exceptions and
non-terminating computations. While a Java and an Eiffel state are in general
different, because they refer to distinct execution models, it is possible to de-
fine an equivalence relation ~ that holds for states sharing the same “abstract”
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values [I7], which can be directly compared. With these conventions, it is pos-
sible to prove correctness of the formalized translation: the effect of executing a
translated Eiffel instruction on the Eiffel state replicates the effect of executing
the original Java instruction on the corresponding Java state. Formally, the cor-

rectness of the translation of a Java instruction I is stated as: “For every Java

. . I V(I
state o; and Eiffel state og such that oy ~ o, if 05 — ¢/, and og RAIICIN ol

then o/ ~ o;.”

The proof for the the Java block B: try {doTry} catch (¢ e){doCatch}, trans-
lated to Vs (B) as shown on page 20 is now sketched. A state o is split into
two components o = (v,e), where e is | when an exception is pending and
otherwise. The proof works by structural induction on B; all numeric references
are to Nordio’s operational semantics [I7, Chap. 3]; for brevity, consider only

one inductive case.

doTry raises an exception handled by doCatch. (v;,x) o, (v, 1), the

type 7 of the exception raised conforms to ¢, and (v/,!) doCatch, (
(vg,*) EN (v],e) by (3.12.4). Then, both (vg,*)

V s (doCatch . . .
(W, 1) Yar(doCateh), (v, €’y hold by induction hypothesis, for some v ~ v/,
1"

v ~ v, and € ~ e. Also, e.conforms to (Vr(t)) evaluates to false on the

state v;. In all, (vg,*) Yu(B), (v, €’) by (3.10) and the rule for if..then.

V'], e), hence

Vi (doTry) (v, 1) and

4.2 Experiments

Table 2] shows the results of four experiments run with J2Eif on a Windows
Vista machine with a 2.66 GHz Intel dual-core CPU and 4 GB of memory. Each
experiment consists in the translation of a system (stand-alone application or
library). Table Pl reports: (1) the size in lines of code of the source (J for Java)
and transformed system (E for Eiffel); (2) the size in number of classes; (3) the
source-to-source compilation time (in seconds) spent to generate the translation
(7', which does not include the compilation from Eiffel source to binary); (4) the
size (in MBytes) of the standard (s) and optimized (o) binaries generated by
EiffelStudio; (5) the number of dependent classes needed for the compilation
(the SWT snippet entry also reports the number of SWT classes in parentheses).
The rest of the section discusses the experiments in more detail.

Table 2. Experimental results

Size #Classes Compilation Binary Size #Required
(locs) (sec.) (MB) Classes
J E J E T s o
HelloWorld 5 92 1 2 1 254 65 1208
SWT snippet 34 313 1 6 47 318 88 1208 (317)
java.util.x 51,745 91,162 49 426 7 254 65 1175

java.io tests 11,509 28,052 123 302 6 255 65 1225
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HelloWorld. The HelloWorld example is useful to estimate the minimal number
of dependencies included in a stand-alone application; the size of 254 MB (65
MB optimized) is the smallest footprint of any application generated with J2Eif.

SWT snippet. The SWT snippet generates a window with a browsable calen-
dar and a clock. While simple, the example demonstrates that J2Eif correctly
translates GUI applications and replicates their behavior: this enables Eiffel pro-
grammers to include in their programs services from libraries such as SWT.

java.util.* classes. Table [ reports the results of performance experiments on
some of the translated version of the 49 data structure classes in java.util. For
each Java class with an equivalent data structure in EiffelBase, we performed
tests which add 100 elements to the data structure and then perform 10000
removals of an element which is immediately re-inserted. Table Bl compares the
time (in ms) to run the test using the translated Java classes (column 2) to the
performance with the native EiffelBase classes (column 4).

Table 3. Performance of translated java.util classes

Java class Java time Eiffel class Eiffel time Slowdown
ArrayList 582 ARRAYED LIST 139 4.2
Vector 620 ARRAYED LIST 139 4.5
HashMap 1,740 HASH TABLE 58 30
Hashtable 1,402 HASH TABLE 58 24.2
LinkedList 560 LINKED LIST 94 6
Stack 543 ARRAYED STACK 26 20.9

The overhead introduced by some features of the translation adds up in the
tests and generates the significant overall slow-down shown in Table Bl The fea-
tures that most slowed down the translated code are: (1) the indirect access
to fields via the JAVA VARIABLE class; (2) the more structured (and slower)
translation of control-flow breaking instructions; (3) the handling of exceptions
with agents (whose usage is as expensive as method call). Applications that do
not heavily exercise data structures (such as GUI applications) are not signifi-
cantly affected and do not incur a nearly as high overhead.

java.io test suite. The part of the Mauve test suite [II] focusing on testing
input/output services consists of 102 classes defining 812 tests. The tests with
J2Eif excluded 10 of these classes (and the corresponding 33 tests) because they
relied on unsupported features (see Section .3]). The functional behavior of the
tests is identical in Java and in the Eiffel translation: both runs fail 25 tests and
pass 754. Table ] compares the performance of the test suite with Java against
its Eiffel translation; the two-fold slowdown achieved with optimizations is, in
all, usable and reasonable—at least in a first implementation of J2Eif.
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Table 4. Performance in the java.io test suite

Overall Average time Slowdown
time (s) per test (ms)

Java 4 5 1
Eiffel standard 21 27 5.4
Eiffel optimized 9 11 2.2

4.3 Limitations

There is a limited number of features which J2Eif does not handle adequately;
ameliorating them belongs to future work.

Unicode strings. J2Eif only supports the ASCII character set; Unicode sup-
port in Eiffel is quite recent.

Serialization mechanisms are not mapped adequately to Eiffel’s.

Dynamic loading mechanisms are not rendered in Eiffel; this restricts the ap-
plicability of J2Eif for applications heavily depending on this mechanism,
such as J2Eif itself which builds on the Eclipse framework.

Soft, weak, and phantom references are not supported, because similar no-
tions are currently not available in the Eiffel language.

Readability. While the naming scheme tries to strike a good balance between
readability and correctness, the generated code may still be less pleasant to
read than in a standard Eiffel implementation.

Size of compiled code. The generated binaries are generally large. A finer-
grained analysis of the dependencies may reduce the JRE components that
need to be included in the compilation.

5 Related Work

There are two main approaches to reuse implementations written in a “foreign”
language within another “host” language: using wrappers for the components
written in the “foreign” language and bridging them to the rest of the application
written in the “host” language; and translating the “foreign” source code into
functionally equivalent “host” code.

Wrapping foreign code. A wrapper enables the reuse a foreign implementation
through the API provided by a bridge library [BI4J19/13]. This approach does
not change the foreign code, hence there is no risk of corrupting it or of in-
troducing inconsistencies; on the other hand, it is usually restrictive in terms
of the type of data that can be retrieved through the bridging API (for exam-
ple, primitive types only). J2Eif uses the wrapping approach for Java’s native
libraries (Section B.3)): the original Java wrappers are replaced by customized
Eiffel wrappers.
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Translating foreign code. Industrial practices have long encompassed the manual,
systematic translation of legacy code to new languages. More recently, researchers
proposed semi-automated translation for widely-used legacy programming lan-
guages such as COBOL [2/T4], Fortran-77 [TI21], and C [23]. Other progress in
this line has come from integrating domain-specific knowledge [6], and testing
and visualization techniques [I§] to help develop the translations.

Other related efforts target the transformation of code into an exten-
sion (superset) of the original language. Typical examples are the adaptation
of legacy code to object-oriented extensions, such as from COBOL to OO-
COBOL [16/20/22], from Ada to Ada95 [10], and from C to C++ [9I24]. Some
of such efforts try to go beyond the mere execution of the original code by refac-
toring it to be more conforming to the object-oriented paradigm; however, such
refactorings are usually limited to restructuring modules into classes.

As far as fully automated translations are concerned, compilation from a high-
level language to a low-level language (such as assembly or byte-code) is of
course a widespread technology. The translation of a high-level language into
another high-level language with different features—such as the one performed
by J2Eif—is much less common; the closest results have been in the rewriting of
domain-specific languages, such as TXL [3], into general-purpose languages.

Google web toolkit [7] (GWT) includes a project involving translation of Java
into JavaScript code. The translation supports running Java on top of JavaScript,
but its primary aims do not include readability and modifiability of the code gen-
erated, unlike the present paper’s translation. Another relevant difference is that
GWT’s translation lacks any formalization and even the informal documentation
does not detail which features are not perfectly replicated by the translation. The
documentation warns the users that “subtle differences” may exist but only
recommends testing as a way to discover them.

6 Conclusions

This paper presented a translation 7 of Java programs into Fiffel, and its im-
plementation in the freely available tool J2Eif [§]. The formalization of 7 built
confidence in its correctness; a set of four experiments of varying complexity
tested the usability of the implementation J2Eif.

Future work includes more tests with applications from different domains; the
extension of the translation to include the few aspects currently unsupported (in
particular, Unicode strings and serialization); and the development of optimiza-
tions for the translation, to make the code generated closer to original Eiffel
implementations.

Acknowledgements. Thanks to Mike Hicks and Bertrand Meyer for their support
and advice, and to Louis Rose for comments on a draft of this paper.

2 http://code.google . com/webtoolkit/doc/latest/tutorial/JUnit.html


http://code.google.com/webtoolkit/doc/latest/tutorial/JUnit.html

Automated Translation of Java Source Code to Eiffel 35

References

1.

2.

oo

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Achee, B.L., Carver, D.L.: Creating object-oriented designs from legacy FORTRAN
code. Journal of Systems and Software 39(2), 179-194 (1997)

Canfora, G., Cimitile, A., Lucia, A.d., Lucca, G.A.D.: A case study of applying an
eclectic approach to identify objects in code. In: IWPC, pp. 136-143 (1999)

. Cordy, J.R.: Source transformation, analysis and generation in TXL. In: PEPM,

pp. 1-11 (2006)

. de Lucia, A., Di Lucca, G.A., Fasolino, A.R., Guerra, P., Petruzzelli, S.: Migrating

legacy systems towards object-oriented platforms. In: Proc. of ICSM, pp. 122-129
(1997)

. Dietrich, W.C., Nackman Jr., L.R., Gracer, F.: Saving legacy with objects. SIG-

PLAN Not. 24(10), 77-83 (1989)

. Gall, H., Klosch, R.: Finding objects in procedural programs: an alternative ap-

proach. In: WCRE, pp. 208-216 (1995)

. Google Web toolkit (2010), http://code.google.com/webtoolkit/
. J2Eif. The Java to Eiffel translator (2010), http://jaftec.origo.ethz.ch
. Kontogiannis, K., Patil, P.: Evidence driven object identification in procedural

code. In: STEP, pp. 12-21 (1999)

Llamosi, A., Strohmeier, A. (eds.): Ada-Europe 2004. LNCS, vol. 3063. Springer,
Heidelberg (2004)

Mauve project (2010), http://sources.redhat.com/mauve/

Mcilroy, D.: Mass-produced software components. In: ICSE, pp. 88-98 (1968)
Meyer, B.: The component combinator for enterprise applications. In: JOOP,
vol. 10(8), pp. 5-9 (1998)

Millham, R.: An investigation: reengineering sequential procedure-driven software
into object-oriented event-driven software through UML diagrams. In: COMPSAC,
2002, pp. 731-733 (2002)

Miiller, P., Nordio, M.: Proof-Transforming Compilation of Programs with Abrupt
Termination. In: SAVCBS 2007, Dubrovnik, Croatia, pp. 3946 (2007)

Newcomb, P., Kotik, G.: Reengineering procedural into object-oriented systems.
In: WCRE, pp. 237-249 (1995)

Nordio, M.: Proofs and Proof Transformations for Object-Oriented Programs. PhD
thesis, ETH Zurich (2009)

Postema, M., Schmidt, H.W.: Reverse engineering and abstraction of legacy sys-
tems. Informatica, 37-55 (1998)

Serrano, M.A., Carver, D.L., de Oca, C.M.: Reengineering legacy systems for dis-
tributed environments. J. Syst. Softw. 64(1), 37-55 (2002)

Sneed, H.M.: Migration of procedurally oriented cobol programs in an object-
oriented architecture. In: Software Maintenance, pp. 105-116 (1992)
Subramaniam, G.V., Byrne, E.J.: Deriving an object model from legacy Fortran
code. In: ICSM, pp. 3-12 (1996)

Wiggerts, T., Bosma, H., Fielt, E.: Scenarios for the identification of objects in
legacy systems. In: WCRE, pp. 24-32 (1997)

Yeh, A., Harris, D., Reubenstein, H.: Recovering abstract data types and object
instances from a conventional procedural language. In: WCRE, pp. 227-236 (1995)
Zou, Y., Kontogiannis, K.: A framework for migrating procedural code to object-
oriented platforms. In: APSEC, pp. 390-399 (2001)


http://code.google.com/webtoolkit/
http://jaftec.origo.ethz.ch
http://sources.redhat.com/mauve/

A Generic Solution for Syntax-Driven
Model Co-evolution

Mark van den Brand, Zvezdan Proti¢, and Tom Verhoeff

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.G.J.v.d.Brand, Z.Protic, T.Verhoeff}@tue.nl

Abstract. In this paper we discuss, and provide a generic solution to
the problem referred to as model co-evolution: How to evolve models in
case their metamodels evolve?

‘We solve this problem by extending a traditional three-step approach.
In the first step, differences between an original and an evolved meta-
model are determined. Unlike traditional approaches, we treat meta-
models as models conforming to a special metamodel, thus the same
difference representation and calculation mechanisms for metamodels as
for models are used in our approach. In the second step, metamodel dif-
ferences are classified into four groups based on their possible influence
on co-evolving models, and the possibilities of handling them automat-
ically. We adopt two of these groups (non-breaking and breaking and
resolvable differences) from the existing co-evolution approaches, and we
introduce two new groups (breaking and semi-resolvable and breaking and
human-resolvable differences). In the third step, based on the determined
metamodel differences, a generic co-evolution transformation is invoked.
This transformation takes the metamodel differences, and a model as
arguments, and returns an adapted model.

We validated our approach by incorporating our method into a pro-
totype tool for generic model co-evolution, and by testing this tool on a
large set of metamodels and models.

1 Introduction

Model evolution is a frequent research topic in the context of model-driven engi-
neering. Modelers often need to determine the extent and the nature of changes
between different versions of the same model. To understand the evolution of a
model, modelers compare two versions of that model, and visualize the resulting
differences.

Traditionally, models are described as instances of metamodels that, in turn,
are instances of a selected metametamodel. Without exception, metametamodels
(e.g. MOF [20] or Ecore [9]) allow for the representation of models as hierarchi-
cal labeled attributed graphs, i.e. each model can be represented as a tredy.

! Model elements are nodes of the tree, and edges of the tree are aggregation relations
between model elements.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 36-B1, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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The model differences are also considered as trees in [AISITSITON], and the
comparison of models [I7/1] is based on tree comparison techniques [3].

There are two conceptually different types of approaches to the representation
and calculation of model differences. In the state-based approaches, the model
differences are calculated between two states of a model, i.e. between two ver-
sions of a model. In the operation-based (also called change-based) approaches,
the model differences are represented by a set of operations which when applied
to the initial model produce the final model. Thus, in the operation-based ap-
proaches, all the tools used to develop models must supply the operations in a
predefined form, while in the state-based approaches this is not necessary. Visu-
alization of the model differences is usually accomplished by superimposing the
model differences on the old version of a model, and by using different colors to
denote different types of differences (e.g. green for added, red for deleted, and
blue for changed model elements) [2412].

Often, the metamodels also evolve in the modeling process, either during de-
velopment or during maintenancdd. This raises the question of co-evolution of
modeldd: how to adapt models conforming to the original version of a meta-
model such that they conform to the target (evolved) version of that meta-
model? Since metamodels in model-based engineering correspond to languages
in language-based engineering, model co-evolution can be compared to the sit-
uation in language-based engineering, where a new version of a programming
language requires adaptation of the source code written in the old version of a
language. Similar problems also exist in database schema evolution, where evolu-
tion of a database schema (which corresponds to a metamodel of the underlying
data) induces evolution of the related database content.

The basic idea of existing approaches to model co-evolution, which we also
adopt here, is: first calculate the differences between an evolved metamodel and
an original version of the same metamodel, and then, based on those differences,
(semi-)automatically generate model differences. The schematic of our approach
is depicted in Figure [l

In this paper we consider model co-evolution in the context of model configu-
ration management systems. Therefore, we have specified a set of requirements
that a co-evolution process should satisfy in order to be efficiently usable in such
systems, and we have defined our co-evolution process to satisfy these require-
ments:

1. The co-evolved models are syntactically correct, i.e., conforming to the new
metamodel.

2. The difference between the old model and the new (co-evolved) model is
minimal, i.e., only ‘necessary’ changes are carried through.

3. The co-evolution process allows for (user-defined) extensions to preserve se-
mantic correctness.

2 Similarly to model difference, a metamodel difference denotes the change set between
an old and a new version of a metamodel.

3 Also called coupled evolution of models or coupled evolution of metamodels and mod-
els.
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Fig. 1. The schematic of our approach to co-evolution of models

4. The co-evolution process itself maximizes automation, i.e., minimizes human
intervention, and where intervention is unavoidable it should be well-defined.

In order to satisfy the first requirement our process of co-evolution is guided
by syntax. We decided to focus on syntax because in co-evolution approaches
which deal with state-based (meta)model differences, it is very hard to correctly
infer the intention of a developer in case of complex changes. Thus, in the state-
based co-evolution approaches it is much harder to reason about the influence
of metamodel changes on models, than in the co-evolution approaches that deal
with operation-based model differences, where the intent of the model developer
is discernible from the nature and the order of the operations supplied by tools.
Therefore, in our approach we consider only the syntactic structure and the
static semantics of models as a basis of the automated part of the co-evolution
process, and do not take into account dynamic semantics of models. By dynamic
semantics we mean a formal system of rules (e.g. Structured Operational Se-
mantics), that allows reasoning about the behavior of systems represented by
models. Thus, in contrast to approaches to database schema evolution, which
are geared towards automatic resolution of semantic issues (i.e. retaining the
relations between data items), but are constrained only to schema evolution, we
loosen the requirement of automatic resolution of semantic issues, in order to
be more generic and to support arbitrary metamodels. Hence, our approach can
support the co-evolution of databases, ontologies, state machines, petri-nets, etc.
Nonetheless, as specified in the third requirement, it is possible to define user
extensions to ensure the semantic correctness of the co-evolved models. This
means that advanced algorithms for schema evolution or petri-net evolution can
be applied as extensions to our approach.

The second requirement states that the co-evolved model should be changed
as little as possible to conform to the new metamodel, thus allowing efficient
implementation of our approach in configuration management systems.
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The fourth requirement states that the co-evolution process should be as au-
tomatic as possible, and that the reasons for, and extent of, human interventions
should be well-specified and minimized. In this regard, existing approaches to
model co-evolution [T3ITTI6I23I8IT4] classify metamodel differences based on how
they affect both the co-evolving models and the possibility to automate the co-
evolution process. Three groups can be distinguished: non-breaking differences,
breaking but resolvable differences, and breaking but non-resolvable differences.
Non-breaking differences (NBD) to a metamodel do not require any change in
the models. Breaking but resolvable differences (BRD) require a transformation
of the model, which can be automated. Breaking but non-resolvable differences
(BNRD) require user intervention and are almost impossible to automate. Next,
the existing approaches define, depending on which metametamodel is used (e.g.
MOF or Ecore), all possible metamodel differences, and relate these differences to
the three defined groups. Furthermore, the non-breaking differences, and break-
ing but resolvable differences, are used to automatically generate model differ-
ences, and the breaking but non-resolvable differences are resolved with the help
of a human.

We split the possible differences into four groups based on their influence
on the syntactic structure of co-evolving models and based on the possible au-
tomation of the co-evolution process. In particular the group of breaking but
non-resolvable differences is split into two groups: breaking and semi-resolvable
differences (BSRD) and breaking and human-resolvable differences (BHRD).
Breaking and semi-resolvable differences are differences which can be automat-
ically resolved by configuring the co-evolution process. These differences also
encompass the semantic differences which can be resolved by taking into ac-
count the semantics of the models. Breaking and human-resolvable differences
can only be resolved by a user in a differences-resolution environment and can-
not be fully automated. For example, if a reference, which has a lower bound
of 1, is added to a metamodel, in order to obtain the correct resulting models,
concerning the intention of a metamodel developer, a user needs to connect the
correct objects in models.

As already mentioned, although our approach is not geared towards automatic
resolution of semantic problems, the specified tool architecture is extensible and
can be extended to deal with the semantic issues. For example, a logic-based
conflict resolver such as Aleph used in [7], a generic model transformation method
like Viatra [22], or, in case of database schemas, a database schema matching
algorithm like Cupid [I9] can be used to resolve possible semantic problems.

The outline of the rest of the paper is as follows. In Section 2 we discuss some
preliminaries necessary to understand our approach. Then, in Section [3, we dis-
cuss the evolution of metamodels. Next, in Section [] we discuss the process of
co-evolution of models. Furthermore, we describe the tool we built that faith-
fully implements our approach, and we describe an experiment we performed
to validate our approach. Finally, in Section [6] we conclude the paper and give
some directions for further research.
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2 Preliminaries

In this section we give some preliminaries necessary for understanding our method
for model co-evolution. We first describe a special domain-specific metametamodel
which we use in describing our method. This metametamodel is simple, but allows
formal reasoning on metamodels, models, and their relation. Next, we describe a
generic differences metamodel, which is based on the described metametamodel.
This differences metamodel is used to capture the differences between two models,
and, in our approach, also the differences between two metamodeldd.

2.1 Domain-Specific Metametamodel

We approached the problem of generic model differences by designing a domain-
specific metametamodel, that exposes not only the details of metamodels, but
also the details of models, and the relations between metamodels and models.
Metamodels are obtained by instantiating the Metamodel element (non colored
elements in Figure 2]), and models are obtained by instantiating the Model ele-
ment (grey elements in Figure 2]). Each metamodel can contain a set of named
elements. Each of these elements can contain named and typed attributes, and
labeled references to other metamodel elements. Each model can contain a set
of model elements, that must be related to a conforming metamodel elements.
Moreover, each model element can contain attribute instances (containing val-
ues), and reference instances (referencing other model elements). Unlike in tra-
ditional metametamodeling approaches (e.g. MOF or Ecore), in our approach
models are not considered instances of metamodels, but models only conform-to
metamodels. However, both models, metamodels, and their relationships, are in-
stances of the introduced metametamodel. Notice that although our metameta-
model is designed for a specific domain of model differences, it allows for de-
scription of labeled attributed graphs, and thus is quite generic (i.e. it allows for
description of all graph-based systems)2. The architecture of the metametamodel
allows the specification of a metamodel-independent differences metamodel [IJ,
which is discussed in the following section.

2.2 Model Differences

Our approach to the representation of model differences satisfies all of the re-
quirements specified in [5], These requirements allow model differences to be
seamlessly used in model configuration management systems. The differences
between two models are represented by a differences model that conforms to a dif-
ferences metamodel. The differences metamodel is an extension of the metameta-
model introduced in the previous section and is depicted in Figure[3l Differences

4 The details of both metametamodel and the differences model can be found in [T].

® For example, we have developed transformations from metamodels conforming to
Ecore, and models conforming to those metamodels, to our formalism. This makes
it possible to use our co-evolution approach with the Ecore-based metamodels and
models.
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Fig. 2. Metametamodel

models are instances of the DifferencesModel element. The building blocks of the
differences models are instances of ChangedElement, DeletedElement, AddedFEle-
ment, and MovedElement. Assuming that the differences model represents the
differences between models A and B, then the instances of the AddedElement are
elements that are in model B and not in model A, the instances of the DeletedFEle-
ment are elements that are in model A but not in model B, and the instances
of the ChangedElement are elements that represent the same entities in both
models but are not structurally identical. Since a differences model contains
only references to models, this differences metamodel is generic (metamodel-
independent).

3 Metamodel Evolution

Traditional approaches to metamodel evolution define special mechanisms for
representing, calculating and visualizing metamodel differences. These meth-
ods are usually based on techniques for representing, calculating and visualizing
model differences, but there is a clear separation between metamodels and mod-
els, and thus also between metamodel differences and model differences.

In our approach, the techniques for representing, calculating and visualizing
model differences are applied directly to metamodel differences. Our key idea
is to represent metamodels as models conforming to a special metamodel. In
this way, all the techniques for model comparison can be directly applied to
metamodel comparison.

In order to represent metamodels as models, we define a special metamodel for
metamodels (MMfMM). The metamodels can now be interpreted as (i.e. trans-
formed to) the models conforming to the MMfMM. Consequently, the differences
between metamodels are obtained by transforming metamodels to models, and
by calculating the differences between the resulting models. This approach is
particulary useful in the context of a model configuration management systems,
because it allows a unified treatment of models and metamodels.
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In the next section we describe our metamodel for metamodels (MMIMM).
By consulting this metamodel, it is possible to specify all the possible types
of metamodel differences, and their influence on co-evolving models, which is
discussed in Section

3.1 Metamodel for Metamodels - MM{fMM

In this section we discuss a metamodel for metamodels (MMIMM), depicted in
Figure[dl Since MMIMM is a metamodel, it is an instance of the Metamodel el-
ement from our domain-specific metametamodel (depicted in Figure [2). Models
that conform to the MMfMM represent metamodels. Thus, each metamodel has
two representations: its natural representation (instance of the Metamodel ele-
ment), and a transformed representation (instance of the Model element that
conforms to the MMfMM)@ However, we designed MMfMM in such a way
that a transformation from a natural representation of a metamodel to a trans-
formed representation is trivial. For example, a MMfMM element named MMFEle-
ment represents metamodel elements. Elements in models that are instances of
MMIMM, and that conform to MMfMM element named MMFElement represent

metamodel elements.

5 In EMF terminology, MMfMM corresponds to a metamodel Ecore.ecore. Ecore.ecore
is an Ecore-based metamodel that allows for the creation of Ecore-based models such
that there is a bijection between any of those models and an Ecore-based metamodel.
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Fig. 4. A metamodel for metamodels - MMfMM

A natural representation of an example metamodel, and a transformed rep-
resentation of the same metamodel, are depicted in Figure Bl

A natural representation of a metamodel (top left part of the Figure [ is
named example, and has two metamodel elements named State and Transition.
Both the State element, and the Transition element, have an attribute Name
of type String. Moreover, a Transition element has a reference that has a label
Connects. In the transformed (i.e. model) representation of a metamodel (lower
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Fig. 5. Example metamodel represented both as an instance of a Metamodel element
and as an instance of a Model element conforming to the MM{MM
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right part of the Figure[l), the rectangles represent instances of model elements
conforming to specific MMfMM elements. The labels of those rectangles can be
split into two parts, before and after the token ”:”. The first part denotes the
MMIMM element that the element represented by the rectangle conforms to. The
second part represents the type of the model element (MElement, MAttribute
or MReference). For example, a metamodel element named State is represented
with one model element, and with one attribute of that model element that has
a value State (dark grey part of Figure[]). The attribute Name of a metamodel
element named State is also represented with one model element. However, this
element has two attributes having values Name and String, representing the
name and type of the Name attribute.

3.2 Metamodel Differences

As already mentioned, in this paper we focus on automatic processing of syn-
tactic changes (differences) to metamodels. The list of all detectable metamodel
differences, and the consequences of these differences are given in Appendix [Al
In some cases we mention the relation of differences to the (static) semantic
of models, and these relations guided our reasoning in many cases. However,
since we did not choose any semantic formalism for interpreting the behavior of
models conforming to a certain metamodel, we did not formally reason about
semantics.

4 Model Co-evolution

In this section we present a method for calculating model differences, based on
metamodel differences.

In order to obtain the model differences from the metamodel differences, a
necessary prerequisite is the existence of formal methods for the representation
of metamodels, models and model differences, as well as a method for the cal-
culation of model differences. As mentioned before, without loss of generality
we use the metametamodel depicted in Figure 2l for the representation of meta-
models and models, and a metamodel for the representation of model differences
depicted in Figure

Next, we assume that the differences between the evolved and original meta-
model have been calculated and are presented as a differences model labeled
differences. Then, for each model M that conforms to the original metamodel,
the algorithm described in the following section can be used to calculate the
differences model DM, that can be used to patch model M to obtain a new
(evolved) model M’ that conforms to the evolved metamodel.

4.1 Model Differences Calculation Algorithm

The calculation algorithm is an implementation of the causal relations between
metamodel differences and model differences described in Appendix [Al The al-
gorithm traverses the graph representation of a model (actually a tree represen-
tation, where the edges are instances of the containment relation, is traversed),
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and for each model element checks if the metamodel element that that element
conforms to has changed. If this was the case, then, based on the changes to
the metamodel element, the model differences for that particular element are
generated, otherwise nothing happens.

For solving breaking and human-resolvable differences we introduced two spe-
cial functions in the algorithm. The first of these functions is warningrequest(name,
id). This function first checks for the presence of conflicts (breaking and human-
resolvable differences) of the specified name in all model elements that conform
to the metamodel element of the specified id. If there are no conflicts then the
function terminates, and if there are conflicts, an environment for manual con-
flict resolution is started. This function is used in case of possible conflicts, for
example if the references bounds change, this function checks if the model is in
a conflicting state, and starts an environment for manual conflict resolution if
this is the case. The second function is conflictrequest(name, id). This function
denotes that there is a conflict, having a name as specified in the argument of
the function, and that it is necessary to start an environment for manual con-
flict resolution, for all model elements that conform to the metamodel element
identified by the specified id argument. This function is used in case of affirmed
conflicts, for example if the type of a reference changes.

4.2 Validation

In order to validate our co-evolution method we built a tool that faithfully
implements our method, and we systematically tested this tool with a large set
of metamodels and models.

The tool consists of two parts. The first part is responsible for the completely
automatic transformation of models by considering non-breaking differences, or
the breaking differences which are resolvable by providing a configuration file.
The second part is a graphical application, that allows manual resolution in case
of breaking changes which are not resolvable automatically. The tool is extensi-
ble, and thus users can define additional (e.g. metamodel specific) transforma-
tions in order to solve semantic issues that may arise during the co-evolution
process. The tool can be configured to call the user-defined transformation func-
tions before, during, or after the part of the co-evolution process that is fully
automated.

Our goals in testing the tool were:

— Assessing the capability of a tool in detecting metamodel differences;

— Assessing the functional correctness of a tool in cases of both automatic and
semi-automatic processing of differences;

— Assessing the extent of user involvement in adaptation of a larger set of
co-evolved models.
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For the testing we selected 10 metamodels, and for each metamodel 10 con-
forming models, giving rise to one hundred models altogetherﬂ. In order to make
our experiment transparent, we decided to co-evolve the selected models by us-
ing the co-evolution scenarios specified in previous research in this area. For this
reason, we selected 9 operations from the set of 61 co-evolution operations de-
fined in [16], and we applied each operation to each metamodel, thus obtaining
90 co-evolved metamodels. These operations were selected such that they ensure
coverage of all cases of possible resolution scenarios as specified in Section
Next, we applied our co-evolution tool to each evolved metamodel, co-evolving
models accordingly.

For each operation we measured: the number of metamodels for which the tool
correctly detected the co-evolution operation, the number of fully automatically
co-evolved models, the number of semi-automatically co-evolved models, the
number of models that need to be manually co-evolved, and the number of
models that did not need to change. The results are given in Table [Il

Table 1.

Operation Correctly Detected Automatically Semi-automatically — Manually  Unaffected Total

in Metamodels adapted models adapted models adapted models models models
Create Class 10 0 0 0 100 100
Create Attribute 10 0 80 0 20 100
Create Reference 10 0 0 100 0 100
Delete Reference 10 100 0 0 0 100
Rename Attribute 10 0 0 0 100 100
Make Reference Composite 10 0 100 0 0 100
Change Attribute Type 10 0 90 0 10 100
Move Feature Over Reference 10 0 73 0 27 100
Reference To Class 10 0 T4 0 26 100
TOTALS 100 100 417 100 283 900

The interpretation of the results is as follows: Create Class and Rename At-
tribute operations are completely automated, and the models do not need adap-
tation. Delete Reference operation is also completely automated, but models
are affected. Create Reference operation requires user intervention in specifying
possible instances of the created reference. Create Attribute operation is semi-
automated by defining the configuration entry specifying the default value of the
created attribute. Change Attribute Type operation is semi-automated by defin-
ing the configuration entry specifying a function for transforming the values of
attributes of the original type, to attributes of the new type. Make Reference
Composite, Move Feature Over Reference and Reference To Class operations
are semi-automated by specifying specific model transformations that deal with
semantic issues of these operations. In particular, these operations are built up
of many atomic metamodel differences, thus detecting these operations requires
pattern matching on model differencesd. Furthermore, the resolution of these
operations requires more complex algorithms than those provided by a tool.

" The metamodels used in the tests are generated by using a metamodel-generator
tool that we developed, and models used in the tests are generated by using a
model-generator tool that we developed. The output metamodels and models are
Ecore-based, but are transformed to our metamodeling formalism for the purpose of
this validation study.

8 In a state-based approach to model differences, which is employed by us.
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Our conclusion is that while most models require some form of interven-
tion, this intervention can usually be specified on a per-operation, or on a per-
metamodel basis, and not on a per-model basis.

The developed tool, as well as the test metamodels and models, are available
online [21]@.

5 Related work

Our approach is applicable in case of a state-based representation and calculation
of model differences [I]. In contrast to approaches that deal with operation-based
representation and calculation of model differences, such as COPE [15], our
approach can also be used for modeling tools that have as output only complete
(meta)models and not the set of operationd™.

In our approach, we represent metamodels as models conforming to a meta-
model specifically designed for this purpos. The first advantage of our ap-
proach with respect to the existing approaches featuring state-based model
co-evolution is that we do not need to invent a special representation mecha-
nism for metamodel differences, but we represent the metamodel differences as
model differences. This allows us to use generic techniques for the representation
and calculation of model differences as described in [I]], to represent and calcu-
late metamodel differences. For example in [4l]7], for each metamodel a custom
differences metamodel must be specified, whereas in our approach only one dif-
ferences metamodel is used. Furthermore, our differences metamodel provides
a more detailed representation of model differences than, for example, the ones
used in [4[7] (for details see [1]).

Another advantage of our approach is that, since our technique for repre-
senting (and calculating) differences is state-based, it does not require special
modeling-tool support like operation-based approaches [I4JI3], but can be used
also with the tools that provide this support.

Furthermore, most existing co-evolution approaches [I2/11], use a single heuris-
tic algorithm for metamodel comparison, where we reuse a generic declarative
model-differences calculation algorithm, which is based on tree-comparison tech-
niques, and can be configured such that it does not use heuristics at all [I]. There-
fore, in our approach it is possible to easily configure the comparison algorithm,
such that it suits the needs of the users.

Finally, we introduce a metametamodel which involves only two metamodeling
levels. Because of this we do not require the use of higher-order model transforma-
tions for calculating co-evolved model differences [TTI4U7], but the differences are
obtained by an ordinary, first-order model transformation. The advantage of this
is that the tool based on our co-evolution approach is easy to build and maintain.

9 http://www.win.tue.nl/ zprotic/coevol.html

10 Thus, our approach is most useful if a company uses multiple tools for managing its
models. However, if a company uses only one tool for managing all its models, and if
that tool can provide operations, an operation-based approach would be preferred.

1 Thus, metamodels need to be transformed to equivalent models in order to be used
in this manner.
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6 Conclusion

In this paper we define a method to support the co-evolution of models as induced
by the evolution of metamodels. Our main contributions are:

— We show that by representing metamodels as models conforming to a spe-
cial metamodel, existing techniques for representing and calculating model
differences can be directly applied to calculation of metamodel differences;

— We show that the group of breaking and non-resolvable metamodel differences
can be further split into two sub-groups based on further possibilities for
automation of the resolution process;

— We show that it is possible to have only one, generic, transformation for co-
evolving models, which is an improvement to the previous approaches where
higher-order transformations were employed;

— We execute a large validation study, showing that it is possible to automate
most of the co-evolution process, and that for only a small percentage of
changes to metamodels, the co-evolution requires manual intervention.

Our method ensures syntactic correctness of the resulting models. Ensuring se-
mantic correctness of the co-evolved models is supported by providing an ex-
tension mechanism for user-defined transformation functions. An example of a
semantic issue that can be solved by a user-defined transformation is the intro-
duction of an attribute in a metamodel element whose value in the corresponding
model element is to be obtained by combining multiple values of attributes in
other model elements.

Since our method uses a state-based approach to representation and calcula-
tion of model differences, and since it is independent of a specific framework and
(meta)metamodel, it is directly applicable in an industrial context for companies
that use a variety of tools and that would like to co-evolve models developed
with those tools. The stand-alone tool that we developed supports this claim.

Future work includes conducting an even larger and more thorough case study
based on an industrial case. Furthermore, it would be interesting to adapt our
approach to more popular metamodeling formalisms like MOF [20] or EMF [9].
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A Possible Metamodel Differences

In this Appendix we describe all the possible types of atomic metamodel differences
and (separated by — symbol) the possible impact of those differences to the co-evolving
models. This set of atomic differences is sound and complete. Notice that each type of
metamodel difference is related to one group of metamodel differences introduced in
Section [l This relation is denoted by an abbreviation of a group (BRD, NBD, BSRD
or BHRD).

1.

In the new metamodel, an element was deleted (BRD) — The conforming model

elements should be deleted from all the models.

In the new metamodel, an element was added (NBD) — Nothing should change

in co-evolving models.

In the new metamodel, the name of an element was changed (NBD) — This

change does not have any influence on the conforming models.

In the new metamodel, an attribute of an element was deleted (BRD) — The in-

stance of that attribute should also be deleted from all model elements conforming

to that metamodel element.

In the new metamodel, an attribute was added to an element (BSRD) — The

instance of added attribute should be added to all the model elements conforming

to the changed metamodel element. However, a default value should be provided
for all added attributes. This value can be provided in a static (per-metamodel)
configuration file, making this Breaking and semi-resolvable difference.

In the new metamodel, an attribute of an element was changed; the following

options are possible:

(a) In the new metamodel, the name of the attribute was changed (NBD) —
Nothing should be changed in the models, because models do not reference
attributes by name.

(b) In the new metamodel, the type of the attribute was changed (BSRD) —
The values of that attribute in models might not be valid anymore. Thus, a
transformation function that transforms the old values of the attributes to the
new values of the new type should be provided in a configuration file.

In the new metamodel, a reference of an element was deleted (BRD) — All

instances of it should also be deleted from all of the model elements conforming to

the changed metamodel element.

In the new metamodel, a reference was added to an element (BHRD) — The

changes to model elements depend on the lower bound of the added reference. If

the lower bound of the reference is zero (0), then, syntactically, the models are
correct without any change. If the lower bound on the reference is not zero, then
the appropriate instances of the reference should be added by a user.

In the new metamodel, a reference of an element was changed:

(a) In the new metamodel, the label of the reference was changed (NBD) —
Nothing should change in models.



A Generic Solution for Syntax-Driven Model Co-evolution 51

(b) In the new metamodel, the bounds of the reference were changed (BHRD)
— A syntactic check should be invoked in the target model and appropriate
warnings/errors should be issued in case the new bounds of the references are
not respected in the model elements conforming to the changed metamodel
element.

(¢) In the new metamodel, the reference was changed to refer to a different
element (BHRD) — The reference instances do not point to the right type of
elements, and a user should resolve the conflict.

10. In the new metamodel, a contained element was deleted (BRD) — All in-
stances of the deleted subelement should be deleted from the instances of the
model elements conforming to the changed metamodel element.

11. In the new metamodel, a contained element was added (NBD) — Nothing
should change in models.

If in the new metamodel the contained element has been changed, then for each changed
subelement the defined differences should be processed recursively.
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Abstract. Domain-Specific Modeling Languages (DSMLs) are getting
more and more attention as a key element of Model Driven Engineering.
As any other software artefact, DSMLs should continuously evolve to
adapt to the changing needs of the domain they represent. Unfortunately,
right now evolution of DSMLs is a costly process that requires changing
its metamodel and re-creating the complete modeling environment.

In this paper we advocate for the use of EMF Profiles, an adaptation
of the UML profile concept to DSMLs. Profiles have been a key enabler
for the success of UML by providing a lightweight language-inherent ex-
tension mechanism which is expressive enough to cover an important
subset of adaptation scenarios. We believe a similar concept for DSMLs
would provide an easier extension mechanism which has been so far ne-
glected by current metamodeling tools. Apart from direct metamodel
profiles, we also propose reusable profile definition mechanisms whereby
profiles are defined independently of any DSML and, later on, coupled
with all DSMLs that can benefit from these profiles. Our approach has
been implemented in a prototype integrated in the EMF environment.

Keywords: language extensions, UML profiles, language engineering.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) have gained much attention in
the last decade [7]. They considerably helped to raise the level of abstraction in
software development by providing designers with modeling languages tailored
to their application domain. However, as any other software artifact, DSMLs are
continuously subjected to evolution in order to be adapted to the changing needs
of the domain they represent. Currently, evolving DSMLs is a time-consuming
and tedious task because not only its abstract and concrete syntax but also
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all related artifacts as well as all DSML-specific components of the modeling
environment have to be re-created or adapted.

UML has avoided these problems by promoting the use of profiles. Indeed,
the profile mechanism has been a key enabler for the success and widespread
use of UML by providing a lightweight, language-inherent extension mecha-
nism [I4]. Many UML tools allow the specification and usage of user-defined
profiles and are often shipped with various pre-defined UML Profiles. Induced
by their widespread adoption, several UML Profiles have even been standardized
by the OM.

In the last decade, many debated? on pros and cons of creating new modeling
languages either by defining metamodels from scratch (with the additional bur-
dens of creating a specific modeling environment and handling their evolution)
or by extending the UML metamodel with UML Profiles (which provide only a
limited language adaptation mechanism) have been going on.

However, in this paper we propose a different solution to combine the best of
both breeds. We advocate for adapting the UML Profiles concept as an anno-
tation mechanism for existing DSMLs. We believe the usage of profiles in the
realm of DSMLs brings several benefits:

(1) Lightweight language extension. One of the major advantages of UML Pro-
files is the ability to systematically introduce further language elements without
having to re-create the whole modeling environment such as editors, transfor-
mations, and model APIs.

(2) Dynamic model extension. In contrast to direct metamodel extensions, also
already existing models may be dynamically extended by additional profile in-
formation without recreating the extended model elements. One model element
may further be annotated with several stereotypes (even contained in different
profiles) at the same time which is equivalent to the model element having mul-
tiple types [2]. Furthermore, the additional information introduced by the profile
application is kept separated from the model and, therefore, does not pollute the
actual model instances.

(8) Preventing metamodel pollution. Information not coming from the modeling
domain, can be represented by additional profiles without polluting the actual
domain metamodels. Consider for instance annotating the results of a model
review (as known from code reviewing) which shall be attached to the reviewed
domain models. Metaclasses concerning model reviews do not particularly relate
to the domain and, therefore, should not be introduced in the domain meta-
models. Using specific profiles instead helps to separate such concerns from the
domain metamodel and keeps the metamodel concise and consequently, the lan-
guage complexity small.

(4) Model-based representation. Additional information, introduced to the mod-
els by profile applications, is accessible and processable like ordinary model in-
formation. Consequently, model engineers may reuse familiar model engineering

! mttp://www.omg.org/technology/documents/profile_catalog.htm
2 Consider for instance the panel discussion “A DSL or UML Profile. Which would you
use?” at MoDELS’05 (http://www.cs.colostate.edu/models05/panels.html)
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technologies to process profile applications. Due to their model-based represen-
tation, profile applications may also be validated against the profile definition
to ensure their consistency as it is known from metamodel/model conformance.

Until now, the notion of profiles has not been adopted in current metamodeling
tools. Thus, the contribution of this paper is to adapt the notion of UML profiles
to arbitrary modeling languages residing in the Eclipse Modeling Framewor
(EMF) which is currently one of the most popular metamodeling frameworks.
Thanks to this, existing modeling languages may easily be extended by profiles
in the same way as it is known from UML tools. Besides this, we propose two
novel techniques to enable the systematic reuse of profile definitions across dif-
ferent modeling languages. First, we introduce generic profiles which are created
independently of the modeling language in the first place and may be bound later
to several modeling languages. Second, we propose meta profiles for immediately
reusing them for all modeling languages. Finally, we present how our prototype
called EMF Profiles is integrated in EMF.

2 From UML Profiles to EMF Profiles

In this section, we present the standard profile mechanism (as known from UML)
for EMF. Firstly, we disclose our design principles. Secondly, we discuss how
the profile mechanism may be integrated in EMF in a way that profiles can
seamlessly be used within EMF following the previous design principles. Finally,
we show how profiles as well as their applications are represented based on an
example.

2.1 Design Principles

With EMF Profiles we aim at realizing the following five design principles. Firstly,
annotating a model should be as lightweight as possible, hence, no adaptation of
existing metamodels should be required. Secondly, we aim at avoiding to pollute
existing metamodels with concerns not directly related to the modeling domain.
Thirdly, we aim at separating annotations from the base model to allow importing
only those annotations which are of current interest for a particular modeler
in a particular situation. Fourthly, the annotations shall be conforming to a
formal and well-known specification such as it is known from metamodel/model
conformance. Finally, users should be enabled to intuitively attach annotations
using environments and editors they are familiar with. Consequently, annotations
shall be created either on top of the concrete (graphical) syntax of a model or
on top of the abstract syntax using e.g., generic tree-based editors.

2.2 Integrating Profiles in the EMF Metalevel Architecture

The profile concept is foreseen as an integral part of the UML specification.
Therefore, the UML package Profiles, which constitutes the language for

3http://www.eclipse.org/modeling/enf
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specifying UML Profiles, resides, in terms

of the metamodeling stack [9], at the meta- UML

metalevel M3 [13] as depicted in Fig. [l A o Core cimports Profiles
specific profile (aProfile), as an instance of = Ao T A
the meta-metapackage Profile, is located at Iinstanceots «instanceof»i
the metalevel My and, therefore, resides on g UML oneeng, | aProfile
the same level as the UML metamodel itself. T A

Thus, modelers may create profile applica- lcinstanceof»  «instanceof» |
tions (aProfileApplication on Mi) by instan- = | aUML | . icns aProfile
tiating aProfile just like any other concept in Model [€=====""1 Application
the UML metamodel.

To embed the profile mechanism into EMF, Fig. 1. UML Architecture
a language (equivalent to the package Profiles
in Fig. [[)) for specifying profiles is needed as a first ingredient. This is easily
achieved by creating an Ecore-based metamodel which is referred to as Profile
MM (cf. column Profile Definition in Fig.[2). Specific profiles, containing stereo-
types and tagged values, may now be modeled by creating instances, referred to
as aProfile, of this profile metamodel. Once a specific profile is at hand, users
should now be enabled to apply this profile to arbitrary models by creating
stereotype applications containing concrete values for tagged values defined in
the stereotypes. As already mentioned, in UML, a stereotype application is an
instance—residing on M;—of a stereotype specification in My (cf. Fig. [).

Unfortunately, in contrast to the UML architecture, in EMF no profile sup-
port exists in M3. The level M3 in EMF is constituted only by the metamodeling
language Ecore (an implementation of MOF [12]) which has no foreseen profile
support. Extending Ecore on level M3 to achieve the same instantiation capabil-
ities for profiles as in UML is not a desirable option, because this would demand
for an extensive intervention with the current implementation of the standard
EMF framework. Therefore, in EMF, our profile metamodel (ProfileMM in col-
umn Profile Definition of Fig. [2)) is defined at level My and the user-defined
profiles (aProfile) reside on M;. As an unfortunate result, a defined stereotype
in aProfile cannot be instantiated for representing stereotype applications (as in
UML), because aProfile is already located on M; and EMF does not allow for
instantiating an instance of a metamodel, i.e., EMF does not directly support
multilevel modeling [I].

Therefore, more sophisticated techniques have to be found for representing
stereotype applications in EMF. In particular, we identified two strategies for
lifting aProfile from M; to My in order to make it instantiable and directly
applicable to EMF models.

(1) Metalevel Lifting By Transformation. The first strategy is to apply
a model-to-model transformation which generates a metamodel on Ms, corre-
sponding to the specified profile on M;. The generated metamodel, denoted as
aProfile as MM in the first column of Fig. [ is established by implementing
a mapping from Profile concepts to Ecore concepts. In particular, the trans-
formation generates for each Stereotype a corresponding EClass and for each
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Fig. 3. EMF Profile Metamodel

TaggedValue a corresponding EStructuralFeature. The resulting metamodel
is a direct instance of Ecore residing on My and therefore, it can be instantiated
to represent profile applications.

(2) Metalevel Lifting By Inheritance. The second strategy allows to directly
instantiate profiles by inheriting instantiation capabilities (cf. <inheritsFrom> in
the right column of Fig.[2)). In EMF, only instances of the meta-metaclass EClass
residing on M3 (e.g., the metaclass Stereotype) are instantiable to obtain an
object on M; (e.g., a specific stereotype). Consequently, to allow for the di-
rect instantiation of a defined stereotype on M;, we specified the metaclass
Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereo-
type application may be represented by a direct instance of a specific stereotype.
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We decided to apply the second strategy, because of the advantage of using
only one artifact for both, (1) defining the profile and (2) for its instantiation.
This is possible because by this strategy, a profile is now a dual-faceted entity
regarding the metalevels which is especially obvious when considering the hori-
zontal <instanceOf> relationship between aProfile and aProfileApplication (cf.
Fig. B). On the one hand, a profile is located on M; when considering it as
an instance of the profile metamodel (ProfileMM on Mys)). On the other hand,
the stereotypes contained in the profile are indirect instances of EClass and are
therefore instantiable which means that a profile may also be situated on M.
Especially, when taking the latter view-point, the horizontal <instanceOf> re-
lationship between profile and profile application shown in Fig. [2 will become
the expected vertical relationship as in the UML metalevel architecture.

2.3 The EMF Profile Metamodel

The metamodel of the profile definition language is illustrated in package Stan-
dard EMF Profile of Fig. Bl As a positive side effect of choosing the met-
alevel lifting strategy 2, the class Stereotype may contain, as an EClass, also
EAttributes and EReferences which are reused to represent tagged values.
Thus, no dedicated metaclasses have to be introduced to represent the concept
of tagged values. Please note that stereotype applications also require to have
a reference to the model elements to which they are applied. Therefore, we in-
troduced an additional metamodel package, namely ProfileApplication in Fig. Bl
This metamodel package contains a class StereotypeApplication with a ref-
erence to arbitrary EObjects named appliedTo. Whenever, a profile (instance
of the Profile package) is saved, we automatically add StereotypeApplication
as a superclass to each specified stereotype. To recall, this is possible because
each Stereotype is an EClass which may have superclasses. Being a subclass
of StereotypeApplication, stereotypes inherit the reference appliedTo auto-
matically. In the following subsection, we further elaborate on the EMF Profile
metamodel by providing a concrete example. Please note that the so far un-
mentioned packages Generic Profile and Meta Profile in Fig. B are discussed in
Section Bl

2.4 Applying the EMF Profile Metamodel

To clarify how profiles and profile applications are represented from a techni-
cal point of view, we make use of a small example. In particular, a simplified
version of the well-known EJB profile is applied to an Entity-Relationship (ER)
model [4]. Fig.[dl(a) depicts an excerpt of the ER metamodel and the EJB profile.
The EJB profile contains the stereotypes SessionBean and EntityBean, which
both extend the metaclass Entity of the ER metamodel. Besides, the profile
introduces the stereotype IDAttribute extending the metaclass Attribute to
indicate the ID of an Entity.

As already mentioned in the previous subsection, internally, we use the Pro-
fileApplication metamodel (cf. Fig. B(b)) to weave the necessary concepts for
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Fig. 4. EMF Profiles by Example: (a) Profile definition user-view, (b) Internal profile
representation, (c) Profile application

a profile’s application into a profile model. In particular, the class Profile-
Application acts as root element for all StereotypeApplications in a profile
application model. Furthermore, all Stereotypes inherit the reference appliedTo
from StereotypeApplication. When instantiating (i.e., applying) the EJB
profile, a root element of the type ProfileApplication is created which may
contain stereotype applications as depicted in Fig. d(c). For determining the ap-
plicability of a stereotype s to a particular model element m, it is checked whether
the model element’s metaclass (m.eClass()) is included in the list of metaclasses
that are extended by the stereotype (s.getBase()). If so, the stereotype s is
applicable to model element m. Each stereotype application is represented as
a direct instance of the respective stereotype (e.g., <EntityBean>) and refers
to the model element in the BaseModel to which it is applied by the reference
appliedTo (inherited from the class StereotypeApplication). Please note that
the EJB profile application resides in a separated model file and not in the orig-
inal ER model denoted with BaseModel in Fig. @l
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3 Going Beyond UML Profiles

Originally, the profile mechanism has been specifically developed for UML. Hence,
profiles may only extend the UML metamodel. In the previous section, we showed
how this lightweight extension mechanism is ported to the realm of DSMLs.
However, in this realm a whole pantheon of different DSMLs exists which are
often concurrently employed in a single project. As a result, the need arises to
reuse existing profiles and apply them to several DSMLs. Thus, we introduce
two dedicated reuse mechanisms for two different scenarios:

(1) Metamodel-aware Profile Reuse. The first use case scenario is when
users aim to apply a profile to a specific set of DSMLs. Being aware of these
specific DSMLs’ metamodels, the user wants to take control of the applicability
of stereotypes to a manually selected set of metaclasses.

(2) Metamodel-agnostic Profile Reuse. In the second use case scenario,
users intend to use a profile for all DSMLs without the need for further con-
straining the applicability of stereotypes. Therefore, a stereotype shall—agnostic
of the DSMLs’ metamodels—be applicable to every existing model element.

To tackle scenario (1), we introduce generic profiles allowing to specify stereo-
types that extend so-called generic types. These generic types are independent of
a concrete metamodel and may be bound to specific metaclasses in order to reuse
the generic profile for several metamodels. For tackling scenario (2), we propose
meta profiles which may immediately be applied to all DSMLs implemented by
an Ecore-based metamodels.

3.1 Generic Profiles

The goal behind generic profiles is to reuse a profile specification for several
“user-selected” DSMLs. Therefore, a profile should not depend on a specific
metamodel. Inspired by the concepts of generic programming [10], we use the no-
tion of so-called generic types instead. In particular, stereotypes within a generic
profile do not extend concrete metaclasses as presented in the previous section,
they extend generic types instead. These generic types act as placeholders for
concrete metaclasses in the future. Once, a user decides to use a generic profile
for a specific DSML, a binding is created which connects generic types to cor-
responding concrete metaclasses contained in the DSML’s metamodel. For one
generic profile there might exist an arbitrary number of such bindings. Conse-
quently, this allows to reuse one generic profile for several DSMLs at the same
time. Furthermore, it enables users to first focus on the development of the
profile and reason about the relationship to arbitrary DSMLs in a second step.

As example, consider the same EJB profile which has been specified in terms
of a concrete profile in Section 2l Now, we aim at specifying the same profile
in a generic way to enable its use also for other DSMLs. In particular, we show
how the EJB profile may first be specified generically and we subsequently illus-
trate the binding of this generic profile again for ER models. We get the same
modeling expressiveness as before but now in a way that allows us to reuse the
EJB profile when using other data modeling languages. The original EJB pro-
file for ER extends two metaclasses, namely the stereotypes SessionBean and
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Fig. 5. Generic EJB Profile and its Binding to the ER metamodel

EntityBean extend the metaclass Entity and the stereotype IDAttribute ex-
tends Attributes (cf. Fig.[). To turn this concrete profile into a generic one, we
now use two generic types, named Container and Property in Fig. Bl instead
of the two concrete types Entity and Attribute.

Before we describe how generic profiles may be bound to concrete DSMLs, we
first discuss conditions constraining such a binding. When developing a concrete
profile, the extended DSML is known and consequently only suitable metaclasses
are selected to be extended by the respective stereotypes. For instance, in the
concrete EJB profile for ER, Entities can be annotated with the stereotype
EntityBean. For marking the Entity’s ID attribute, the EJB profile introduces
the stereotype IDAttribute which extends Attributes. This is reasonable, be-
cause we are aware of the fact that Entities contain Attributes in the ER
metamodel, otherwise it obviously would not make any sense to extend the meta-
class Attribute in this matter. However, generic profiles are developed without
a concrete DSML in mind. Hence, profile designers possibly need to specify con-
ditions enforcing certain characteristics to be fulfilled by the (up to this time)
unknown metaclasses to which a generic type might be bound in future.

Therefore, EMF Profiles allows to attach conditions to generic profiles. Such
conditions are specified by simply adding references or attributes to generic
types. This is possible because, as a subclass of EClass, generic types may con-
tain EReferences and EAttributes. By adding such a reference or attribute
in a generic type, a profile designer states that there must be a corresponding
reference or attribute in the metaclass which is bound to the generic type. Inter-
nally, these references and attributes are translated to OCL constraints which
are evaluated in the context of the metaclass a user intends to bind. Furthermore,
the profile designer must specify which meta-features, such as the cardinality of
the reference or attribute in a generic type, shall be enforced. In our example in
Fig.[B the profile designer specified a reference from the generic type Container
to Property as well as an attribute name in Property. To enforce this, the OCL
constraints in Listing [[LT] are generated. These constraints must be satisfied by
each metamodel on which we want to apply this profile on.
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Listing 1.1. OCL Constraints generated for Container and Property

context Container inv:

self.eReferences—>exists(r | r.eType = Property)}

context Property inv:

self.eAttributes—>exists (a | a.name = "name” and a.eType = EString)

AW N e

Once the stereotypes and generic types are created, the profile is ready to be
bound to concrete DSMLs. This is simply achieved by selecting suitable meta-
classes of a DSML for each generic type. In our example depicted in Fig. Bl the
generic types Container and Property are bound to the metaclasses in the ER
metamodel Entity and Attribute, respectively, in order to allow the applica-
tion of the generic EJB profile to ER models. When the binding is established, it
can be persisted in two different ways. The first option is to generate a concrete
profile out of the generic profile for a specific binding. This concrete profile may
then be applied like a normal EMF profile as discussed in Section Pl Although
this seem to be the most straightforward approach, the explicit trace between
the original generic profile and the generated concrete profile is lost. Therefore,
the second option is to persist the binding directly in the generic profile defini-
tion. Whenever a user intends to apply a generic profile to a concrete DSML, the
EMF Profile framework searches for a persisted binding for the concrete DSML’s
metaclasses within the profile definition. If a binding exists, the user may start
to apply the profile using this persisted binding. Otherwise, the user is requested
to specify a new binding.

To support generic profiles, we extended the EMF Profile metamodel by the
class GenericType (cf. FigB). Generic types inherit from EClass and may con-
tain Conditions representing more complex constraints going beyond the afore-
mentioned enforced references and attributes for bound metaclasses.

3.2 Meta Profiles

With meta profiles we tackle a second use case for reusing profiles for more than
one DSML. Instead of supporting only a manually selected number of DSMLs,
with meta profiles we aim at reusing a profile for all DSMLs without the need
of defining an explicit extension for each DSML. This is particularly practical
for profiles enabling general annotations which are suitable for every DSML. In
other words, stereotypes within a meta profile must be agnostic of a specific
metamodel and shall be applicable to every model element irrespectively of its
metaclass, i.e., its type.

In EMF, every model element is an instance of a metaclass. Each metaclass
is again an instance of Ecore’s EClass. Therefore, meta-stereotypes in a meta
profile do not extend metaclasses directly. Instead, they are configured to be
applicable to all instances of instances of EClass and, consequently, to every
model element (as an instance of an instance of EClass). This approach is in-
spired by the concept of potency known from multilevel metamodeling [I]. Using
the notion of potency, one may control on which metamodeling level a model
element may be instantiated. By default, the potency is 1 which indicates that
a model element may be instantiated in the next lower metamodeling level. By
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a potency p > 1 on a metamodeling level n, a model element may also be con-
figured to be instantiable on the level n — p instead of the next lower level. In
terms of this notion of potency, a meta-stereotype has a potency of p = 2.

Meta profiles are created just like normal profiles. However, a new attribute,
namely isMeta, is introduced to the profile metamodel for indicating whether a
stereotype is a meta-stereotype (cf. Fig. Bl). The Boolean value of this attribute
is regarded by EMF Profiles when evaluating the applicability of stereotypes. In
particular, if isMeta is true, a stereotype is always considered to be applicable
to every model element, irrespectively of its metaclass.

Our example for presenting metaprofiles is a model review profile (cf. Fig. [G).
The goal of this profile is to allow for annotating the results of a systematic
examination of a model. Since every model irrespectively of its metamodel can
be subject to a review, this profile is suitable for every DSML. For simplicity, we
just introduce three stereotypes in the review profile, namely Approved, Rework,
and Declined, which shall be applicable to every kind of element in every DSML.
Therefore, these three stereotypes extend the class EClass and are marked as
meta-stereotypes (indicated by <meta-stereotype> in Fig. [). By this, the ap-
plicability of these stereotypes is checked by comparing the meta-metatypes of
model elements with the metaclasses extended by the stereotypes. As a result,
the metaprofile in our example is applicable to every element in every DSML.
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In the example shown in Fig. [6 we depicted the Object Diagram of two sepa-
rate applications of the same metaprofile to two models conforming to different
metamodels. In the first Object Diagram, an Event and one LogicalConnector
within an Event-driven Process Chain (EPC) model have been annotated with
the meta-stereotype <«Approves and <Rework>, respectively. This is possible
because both instances in the EPC model are an instance of a metaclass which
is again an instance of EClass. The same metaprofile can also be applied to any
other modeling language. Of course, also UML itself is supported by EMF Pro-
files. Therefore, the model review profile may also be applied to, for example, a
UML Use Case Diagram (cf. Fig.[d). In this figure, the stereotype < Approves has
been assigned to the UseCase named “Order Goods” and the stereotype <De-
clined> is applied to the Includes relationship.

3.3 Summary

Both techniques for enabling the reuse of profiles for several DSMLs have their
advantages and disadvantages depending on the intended use case. Meta pro-
files are immediately applicable to all DSMLs without further user intervention.
However, with meta profiles no means for restricting the use of such profiles for
concrete DSMLs exist. If this is required, generic profiles are the better choice.
When specifying generic profiles, explicit conditions may be used to control a
profile’s usage for concrete DSMLs. On the downside, this can only be done
with additional efforts for specifying such conditions in the generic profile and
creating manual bindings from generic profiles to concrete DSMLs.

4 A Tour on EMF Profiles

In this section, we present our prototypical implementation of EMF Profiles which
is realized as Eclipse plug-in on top of the Eclipse Modeling Framework and
Graphical Modeling Framework (GMF). Please note that we refrained from
modifying any artifact residing in EMF or GMF. EMF Profiles only uses well-
defined extension points provided by these frameworks for realizing profile sup-
port within the EMF ecosystem. For a screencast of EMF Profiles, we kindly
refer to our project homepageﬁ.

Profile Definition. To define a profile, modelers may apply either the tree
editor automatically generated from the Profile Metamodel or our graphical
EMF Profiles Editor which is realized with GMF (cf. Fig. [l for a screenshot). The
graphical notation used in this editor takes its cue from the UML Profiles syntax.
With these editors, modelers may easily create stereotypes containing tagged
values and set up inheritance relationships between stereotypes and extension
relationships to metaclasses of arbitrary DSML’s metamodels. Metaclasses may
be imported by a custom popup menu entries when right-clicking the canvas of
the editor and are visualized using the graphical notation from Ecore.

4http://www.eclipse.org/gmt
® http://www.modelversioning.org/emf-profiles
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Profile Application. Defined profiles may also be applied using any EMF-
generated tree-based editor or any GMF-based diagramm editor. The screenshot
depicted in Fig. 8, shows the afore presented EJB profile applied to an example
Ecore diagram. To apply profiles, our plugin contributes a popup menu entry
(cf. Fig. B (1)) which appears whenever a model element is right-clicked. By this
menu, users may apply defined profiles (i.e., creating new profile application) or
import already existing profile applications. Once a profile application is created
or imported, stereotypes may be applied using the same popup menu. When a
stereotype is applied, the defined stereotype icon is attached to the model el-
ement (cf. Fig. B (2)). For this purpose we used the GMF Decoration Service,
which allows to annotate any existing shapes by adding an image at a pre-defined
location. Furthermore, we created a Profile Applications view, which shows all ap-
plied stereotypes of the currently selected model element (cf. Fig. Bl (3)). The
currently selected model element is retrieved using the ISelectionProvider in-
terface which is implemented by every EMF or GMF-based editor. For assigning
the tagged values of an applied stereotype, we leverage the PropertyView (cf.
Fig. B (4)) which generically derives all defined tagged values from the loaded
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profile‘’s metamodel. The separate file resource which contains the profile appli-
cations is added to the EditingDomain of the modeling editor. Hence, as soon
as the model is saved, all profile applications are saved as well. Finally, pro-
file applications can be unloaded and reloaded at any time without loosing the
application information.

5 Related Work

One alternative to profiles as an annotation mechanism is to use weaving models
(e.g., by using Modelinkd or the Atlas Model Weaverf] [6]). Model weaving en-
ables to compose different separated models, and thus, could be used to compose
a core model with a concern-specific information model in a non-invasive man-
ner. However, although weaving models are a powerful mechanism, annotating
models with weaving models is counter-intuitive. Since this is not the intended
purpose of weaving models, users cannot annotate models using their familiar
environment such as a diagramming editor which graphically visualizes the core
model. Current approaches only allow to create weaving models with specific
tree-based editors in which there is no different visualization of the core model
and the annotated information. Not least because of this, weaving models may
quickly become very complex and challenging to manage.

Recently, Kolovos et al. presented an approach called Model Decorations [§]
tackling a very similar goal as EMF Profiles. Kolovos et al. proposed to attach
(or “decorate”) the additional information in terms of text fragments in GMF’s
diagram notes. To extract or inject the decorations from or into a model, hand-
crafted model transformations are employed which translate the text fragments
in the notes into a separate model and vice versa. Although their approach is
very related to ours, there also are major differences. First, for enabling the
decoration of a model, an extractor and injector transformation has to be man-
ually developed which is not necessary with EMF Profiles. Second, since Kolovos
et al. exploit GMF notes, only decorating GMF-based diagrams is possible. In
contrast to our approach, models for which no GMF editor is available cannot
be annotated. Third, the annotations are encoded in a textual format within
the GMF notes. Consequently, typos or errors in these textual annotations can-
not be automatically identified and reported while they are created by the user.
Furthermore, users must be familiar with the textual syntax as well as the dec-
oration’s target metamodel (to which the extractor translates the decorations)
to correctly annotate a model. In EMF Profiles, stereotypes may only be applied
if they are actually applicable according to the profile definition and editing the
tagged values is guided by a form-based property sheet. Consequently, invalid
stereotype applications and tagged values can be largely avoided.

EMF Facettd, a spin-off of the MoDisco subproject [3] of Eclipse, is another
approach for non-intrusive extensions of Ecore-based metamodels. In particular,

Shttp://www.eclipse.org/gmt/epsilon/doc/modelink
"http://www.eclipse.org/gmt/amw
8 http://www.eclipse.org/modeling/emft/facet
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EMF Facet allows to define additional derived classes and features which are com-
puted from already existing model elements by model queries expressed, e.g., in
Java or OCL. Compared to EMF Profiles, EMF Facet targets on complementary
extension direction, namely the dynamic extension of models with additional tran-
sient information derived from queries. In contrast, EMF Profiles allow to add new
(not only derived) information and is able to persist this additional information in
separate files. Nevertheless, the combination of both complementary approaches
seems to be a subject for future work. For example, this would allow to automat-
ically extend or complete models based on EMF Facet queries and persist this
information with EMF Profiles.

The concept of meta-packages has been proposed in [5] for the lightweight
extension of the structural modeling language XCore which is based on packages,
classes, and attributes. New modeling concepts are defined by extending the
base elements of XCore and can be instantly used in the standard XCore editor.
Compared to meta-packages, EMF Profiles are more generic, because not only one
modeling language may be extended, but any Ecore-based modeling language.

6 Conclusions and Future Work

In this paper, we adapted the notion of UML Profiles to the realm of DSMLs
residing in the Eclipse Modeling Framework. Using our prototype EMF Profiles,
DSMLs may be easily extended in a non-invasive manner by defining profiles in
the same way as done in UML tools. Moreover, we introduced two novel mech-
anisms, namely Generic Profiles and Meta Profiles, for reusing defined profiles
with several DSMLs. Although, the presented approach has been presented based
on EMF, the general procedure is also applicable for other metamodeling frame-
works which comprise a similar metalevel architecture as EMF. Furthermore, the
presented metalevel lifting strategies may also be adopted for other scenarios in
which model elements on M; need to be instantiated.

We successfully applied EMF Profiles for instance in the context of our model
versioning system AMORY. In AMOR we created and applied a change pro-
file for annotating changes performed on models. Moreover, we also used EMF
Profiles for marking conflicts caused by concurrent changes of the same model ar-
tifact using a conflict profile. Both profiles have been defined as meta profiles to
build change detection and conflict detection components which are generically
applicable, i.e., independent of the used modeling languages.

In the future, we plan to elaborate on more sophisticated restriction mecha-
nisms to allow constraining the application of stereotypes (e.g. with OCL condi-
tions) and composing several independent profiles which are not mutually com-
plementary in one profile application as proposed by [I1I]. A consistent mix of
several profiles requires a mechanism to specify conditions constraining applica-
bility across more than one profile. For instance, one may need to specify that
a stereotype of profile A may only be applied after a stereotype of profile B,
holding a specific tagged value, has been applied. Next, we plan to derive an

9 http://www.modelversioning.org


http://www.modelversioning.org

From UML Profiles to EMF Profiles and Beyond 67

easy-to-use API for programmatically creating, modifying, and accessing profile
applications. Finally, we aim at integrating EMF Profiles into the EMF Facet
project to combine their complementary features. By this, a synergy of the ex-
tension mechanism of EMF Profiles for additional persisted information and of
EMF Facet's for derived information can be accomplished.
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Abstract. Domain-specific languages and models are increasingly used
within general-purpose host languages. While traditional profiling tools
perform well on host language code itself, they often fail to provide mean-
ingful results if the developers start to build and use abstractions on top
of the host language. In this paper we motivate the need for dedicated
profiling tools with three different case studies. Furthermore, we present
an infrastructure that enables developers to quickly prototype new pro-
filers for their domain-specific languages and models.

1 Introduction

Recent advances in domain-specific languages and models reveal a drastic change
in the way software is being built. The software engineering community has
seen a rapid emergence of domain-specific tools, ranging from tools to easily
build domain-specific languages [I8], to transform models [I7], to check source
code [I1], and to integrate development tools [13].

While research on domain-specific languages has made consistent progress in
language specification [5], implementation [4], evolution [6] and verification [§],
little has been done to support profiling. We consider profiling to be the ac-
tivity of recording and analyzing program execution. Profiling is essential for
analyzing transient run-time data that otherwise would be difficult to harvest
and compare. Code profilers commonly employ execution sampling as the way to
obtain dynamic run-time information. Unfortunately, information extracted by
regularly sampling the call stack cannot be meaningfully used to profile a high-
level domain built on top of the standard language infrastructure. Specialized
domains need specialized profilers.

Let us consider the example of the Mondrian visualization engine (details
follow in [Section 2.1). Mondrian models visualizations as graphs, i.e., in terms
of nodes and edges. One of the important performance issues we recently faced
is the refresh frequency: nodes and edges were unnecessarily refreshed too often.
Standard code profilers did not help us to localize the source of the problem
since they are just able to report the share of time the CPU spends in the
method displayOn: of the classes MONode and MOEdge. The problem was finally
resolved by developing a custom profiler that could identify which nodes and

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 68-F2, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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edges were indeed refreshed too often. This domain-specific profiler was able
to exploit knowledge of Mondrian’s domain concepts to gather and present the
needed information.

We argue that there is a need for a general approach to easily develop spe-
cialized profilers for domain-specific languages and tools. A general approach
must offer means to (i) specify the domain concepts of interest, (ii) capture the
relevant information from the run-time execution, and (iii) present the results
to the developer.

In this paper we introduce MetaSpy, an event-based approach for domain-
specific profiling. With MetaSpy, a developer specifies the events of interest for
a given domain. A profiler captures domain information either by subscribing to
existing application events, or by using a reflective layer to transparently inject
event emitters into the domain code. The collected events are presented using
graph-based visualizations.

The contributions of this paper are: (1) the identification of the need for
domain-specific profilers, (2) the presentation of three real-world case-studies
where domain-specific profilers helped to significantly improve performance and
correctness of domain-specific code, and (3) the presentation of an infrastructure
for prototyping domain-specific profilers.

Outline. The remainder of this paper is structured as follows: Section 2] illus-
trates the problems of using a general-purpose profiler on code that is built on
top of a domain-specific language. introduces our approach to domain-
specific profiling. demonstrates how our approach solves the require-
ments of domain-specific profilers with three use cases. presents our
infrastructure to implement domain-specific profilers. [Section 6l presents an anal-
ysis on the performance impact of MetaSpy. [Section 7lsummarizes the paper and
discusses future work.

2 Shortcomings of Standard Profilers

Current application profilers are useful to gather runtime data (e.g., method
invocations, method coverage, call trees, code coverage, memory consumption)
from the static code model offered by the programming language (e.g., packages,
classes, methods, statements). This is an effective approach when the low-level
source code has to be profiled.

However, traditional profilers are far less useful for a domain different than
the code model. In modern software there is a significant gap between the model
offered by the execution platform and the model of the actually running applica-
tion. The proliferation of meta-models and domain-specific languages brings new
abstractions that map to the underlying execution platform in non-trivial ways.
Traditional profiling tools fail to display relevant information in the presence of
such abstractions.
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2.1 Difficulty of Profiling a Specific Domain

This section illustrates two shortcomings of traditional profiling techniques when
applied to a specific domain.

CPU time profiling

Mondrian [I0] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised]. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [7], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltadkg7 tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot (MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:
| 18.1% {3799ms} MOEdge>>displayOn:

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:

23.47, {4911ms} MOEdge>>displayOn:

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consuime resources.

Traditional execution sampling profilers center their result on the frames of the
execution stack and completely ignore the identity of the object that received the
method call and its arguments. As a consequence, it is hard to track down which
objects cause the slowdown. For the example above, the traditional profiler says
that we spent 30.9% in MONode>>displayOn: without saying which nodes were
actually refreshed too often.

! http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
2 http://www.pharo-project.org/
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Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [12].

A number of grammars have been implemented with PetitParser, including
Java, Smalltalk, XML and SQL. It would be useful to establish how much of the
grammar is actually exercised by a set of test files to identify untested produc-
tions. The if statement parsing rule is defined as follows3:

PPJavaSyntax>>ifStatement
~ ('if' asParser token , conditionalExpression , statement) ,
('else' asParser token , statement) optional

Coverage tools assess the coverage of the application source code by listing the
methods involved in an execution. Some tools can even detect the coverage inside
methods. Let us consider a|Java grammar in PetitParser which is defined in 210
host language methods. These methods build a graph of objects describing the
grammar. Traditional coverage tools focus on the source code artifacts instead
of domain-specific data. In the example this means that all methods are covered
to build the grammar, but some parts of the resulting graph are not used. This
is why we are unable to analyze the parsing and production coverage of this
grammar with traditional tools.

2.2 Requirements for Domain-Specific Profilers

The two examples given above are representative. They illustrate the gap be-
tween a particular domain and the source code model. We argue that to efficiently
profile an arbitrary domain, the following requirements need to be fulfilled:

— Specifying the domain. Being able to effectively designate the objects rele-
vant for the profiling is essential. Since we are concerned with what makes
up a visualization in Mondrian, we are interested in the different nodes and
the invocation of the displayOn: methods, rather than focusing on the imple-
mentation classes. Grammars in PetitParser are represented as an executable
graph of primitive parser objects, each with its own execution behavior.

— Capturing domain related events. Relevant events generated by the domain
have to be monitored and recorded to be analyzed during or after the ex-
ecution. An event represents a particular change or action triggered by the
domain being profiled. Whereas the class MOGraphElement and its subclasses

3 Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples aloud and interpret them as normal sentences: An invocation to a method
named method:with:, using two arguments looks like: receiver method: argl
with: arg2. Other syntactic elements of Smalltalk are: the dot to separate state-
ments: statementl. statement2; square brackets to denote code blocks or anony-
mous functions: [ statements ]; and single quotes to delimit strings: 'a string'.
The caret ~ returns the result of the following expression.
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total more than 263 methods, only fewer than 10 methods are related to

displaying and computing shape dimensions.

— Effectively and concisely presenting the necessary information. The informa-
tion collected by traditional profilers is textual and targets method invoca-
tion. A method that invokes another will be located below it and indented.
Moreover, each method frame represented has a class name and a method
name, which completely ignores the identity of the object and arguments
that are part of the call. Collected information has to be presented in such a
way as to bring the important metrics and domain object composition into

the foreground.

Common code profilers employ execution sampling as the way to cheaply ob-
tain dynamic information. Unfortunately, information extracted when regularly
sampling the method call stack cannot be used to profile a domain other than

the source code model.

3 MetaSpy in a Nutshell

In this section we will present MetaSpy, a framework to easily build domain-
specific profilers. The key idea behind MetaSpy is to provide domain-specific

events that can later be used by different profilers with different objectives.

Instrumentation strategies

Metalnstrumenter

handler

install

shows a class diagram of MetaSpy. There are two main abstractions:
the instrumentation strategies and the domain-specific profilers.

An instrumentation strategy is responsible for adapting a domain-specific
model and triggering specific actions in the profiler when certain events occur.
A profiler models a domain-specific profiling requirement by composing multiple
instrumentation strategies.

Profilers

Profiler

model
strategies

setUp observeClass:do:
tearDown observeClass:selector:do
uninstall observePackage:do:
observePackagesMatching:do:
observeParser:in:do:
install
Annot MethodInstrumenter Parserinstr setUp
Instrumenter theClass parser tearDown
announcer selector grammar uninstall
install methdo replacement A
uninstall doesNotUnderstand: install
run:with:in: uninstall
install
seflp MondrianProfiler OmniBrowserProfiler PetitParserProfiler
tea}rDown setUp setUp setUp
uninstall visualize visualize visualize

User provided classes

Fig. 1. The architecture of the MetaSpy profiler framework
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Some instrumentation strategies work by registering to existing events of the
application domain. Other instrumentation strategies intercept the system by
meta-programming, i.e., conventional instrumentation. Installing an instrumen-
tation strategy activates it and its associated events, while uninstalling deacti-
vates them.

Some of the instrumentation strategies provided by MetaSpy are:

— Announcement Instrumenter dispatches events satisfying a particular con-
dition from the announcement framework to the external profiler.

— Method Instrumenter triggers an event whenever a specific method is invoked
on any instance of a specified class.

— Object Instrumenter triggers an event whenever a specific method is invoked
on a particular object. This is called object-specific profiling.

— Parser Instrumenter triggers an event whenever a specific grammar pro-
duction is activated. This is a very specific instrumentation strategy only
working with PetitParser productions.

Other dedicated instrumentation strategies can be implemented by adhering to
the same interface.

Profilers are responsible for modeling the domain-specific behavior to profile
the main abstractions in each domain. The abstract Profiler class models the
behavior of a general profiler. Subclasses are instantiated with a domain-specific
model and implement the set-up and tear-down of one or more instrumenta-
tion strategies into the model. Furthermore, they define how and what data
is collected when the instrumented model is exercised. To actually instrument
the model and start collecting events the method install is used. Similarly, to
remove all instrumentation from the model, uninstall is used. Both methods dis-
patch the requests to the respective instrumentation strategies using the current
model.

Each profiler is responsible for presenting the collected data in the method
open. Depending on the nature of the data, this method typically contains a
Mondrian [I0] or Glamour [3] script, or a combination of both. Mondrian is a
visualization engine to depict graphs of objects in configurable ways. Glamour
is a browser framework to script user interfaces for exploratory data discovery.

Next, we will show real-world examples of domain-specific profilers.

4 Validation

In this section we will analyze three case studies from three different domains. We
will show how MetaSpy is useful for expressing the different profiling require-
ments in terms of events. We will also demonstrate how MetaSpy fulfills the
domain-specific profiling requirements, namely specifying, capturing and pre-
senting domain-specific information.

For each case study we show the complete code for specifying and capturing
events. We do not show the code for visualizing the results, which typically
consists of 20-50 lines of Mondrian or Glamour scripts.
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4.1 Case Study: Displaying Invocations

A Mondrian visualization may comprise a great number of graphical elements. A
refresh of the visualization is triggered by the operating system, resulting from
user actions such as a mouse movement or a keystroke. Refreshing the Mondrian
canvas iterates over all the nodes and edges and triggers a new rendering. Ele-
ments that are outside the window or for which their nesting node has an active
bitmap in the cache should not be rendered.

A graphical element is rendered when the method display:on: is invoked.
Monitoring when these invocations occur is key to having a global view of what
should be refreshed.

Capturing the events

The MetaSpy framework is instantiated to create the MondrianProfiler profiler.

Profiler subclass: #MondrianProfiler
instanceVariableNames: 'actualCounter previousCounter'

MondrianProfiler defines two instance variables to monitor the evolution of
the number of emitted events: actualCounter keeps track of the current number
of triggered events per event type, and previousCounter the number of event
types that were recorded before the previous visualization step.

MondrianProfiler>>initialize
super initialize.
actualCounter := IdentityDictionary new.
previousCounter := IdentityDictionary new

The installation and instrumentation of Mondrian by MetaSpy is realized by
the setUp method:

MondrianProfiler>>setUp
self model root allNodes do: [ :node |
self

observelbject: node

selector: #displayOn:

do: [ :receiver :selector :arguments |

actualCounter

at: receiver
put: ((actualCounter at: receiver ifAbsent: [ 0 1) + 1) 1 ]

All the nodes obtained from the root of the model object are “observed” by
the framework. At each invocation of the displayOn: method, the block given
as parameter to do: is executed with the object receiver on which displayOn: is
invoked, the selector name and the argument. This block updates the number of
displays for each node of the visualization.



Domain-Specific Profiling 75

Specifying the domain

The instrumentation described in the setUp method is only applied to the model
specified in the profiler. This model is an object which models the domain to
be profiled, in this case a Mondrian visualization. The instrumentation is only
applied to all nodes in this visualization. Only when these nodes receive the
the message displayOn: will increment the actual counter. This object-specific
behavior is possible due to the use of a reflection framework called Bifrést [14].

Presenting the results

The profiling of Mondrian is visualized using Mondrian itself. The visualizeOn:
method generates the visualization given in

006 Mondrian Profiler o alala) Mondrian Renderer =

Bpart v || © | © ) Export ~ || © | © )
ByteArrsy m— \
ByteString
ByteSymbal m
CharacterSet ™

CharacterSetComplement S——————

Collection —————

ColorArray m—
CompiledMethod == oc
Cubic® L {3
DependentsArray m—

J n..- . I_I '_»| ’_| T “
Dictinoacy - v £ ) 25

Fig. 2. Profiling (left) the System Complexity visualization (right)

One important point of visualizeOn: is to regularly update the visualization
to be able to see the evolution of the domain events over time. The profiler is
uninstalled when the profiler Mondrian visualization is closed.

gives a screenshot of a visualization and the profiler. The right-hand
side is an example of the System Complexity visualization [9] of the collection
class hierarchy in Pharo. The left-hand side shows the profiler applied to the
visualization. The horizontal bar indicates the number of times the corresponding
node has been displayed.

The profiling monitors each node of the profiled visualization. Each node is
associated to a progress bar that widens upon node refresh. The profiled vi-
sualization remains interactive. Clicking and drag-and-dropping nodes refreshes
the visualization, thus increasing the progress bar of the corresponding nodes.
This profile helps identifying unnecessary rendering. We identified a situation in
which nodes were refreshing without receiving user actions. This was perceived
by the user with a sluggish rendering. Edges were constantly refreshed, even
without being apparent. This problem is addressed in version 2.30 of Mondrian.
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4.2 Case Study: Events in OmniBrowser

OmniBrowser [2] is a framework to define and compose new browsers, i.e., graph-
ical list-oriented tools to navigate and edit elements from an arbitrary domain.
In the OmniBrowser framework, a browser is described by a domain model spec-
ifying the domain elements that can be navigated and edited, and a metagraph
specifying the navigation between these domain elements. Nodes in the meta-
graph describe states the browser is in, while edges express navigation possi-
bilities between those states. The OmniBrowser framework then dynamically
composes widgets such as list menus and text panes to build an interactive
browser that follows the navigation described in the metagraph.

OmniBrowser uses announcements for modeling the interaction events of the
user with the IDE. A very common problem is to have certain announcements be
triggered too many times for certain scenarios. This behavior impacts negatively
the performance of the IDE. Moreover, in some cases odd display problems are
produced which are very hard to track down.

Capturing the events

To profile this domain-specific case we implemented the class OmniBrowserProfiler:

Profiler subclass: #0mniBrowserProfiler
instanceVariableNames: 'actualCounter previousCounter'

The instrumentation in the setUp method counts how many times each an-
nouncement was triggered.

OmniBrowserProfiler>>setUp
self
observeAnnouncer: self model announcer
do: [ :ann |
actualCounter
at: ann class
put: (actualCounter at: ann class ifAbsent: [ 0 ]) + 1 ]

Specifying the domain

We specify the entities we are interested in profiling by defining the model in
the profiler. For example, we could define 0BSystemBrowser browsing a specific
class. All OmniBrowser instances have an internal collaborator named announcer
which is responsible for the signaling of announcements. This is the object used
by the profiler to catch the announcement events.

Presenting the results

A Mondrian visualization was implemented to list the type and the number of

announcements triggered (Figure 3).
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Fig. 3. Profiling (left) an OmniBrowser instance (right)

4.3 Case Study: Parsing framework with PetitParser

Rigorous test suites try to ensure that each part of the grammar is covered by
tests and is well-specified according to the respective language standards. Vali-
dating that each production of the grammar is covered by the tests is a difficult
activity. As mentioned previously, the traditional tools of the host language work
at the method and statement level and thus cannot produce meaningful results in
the context of PetitParser where the grammar is modeled as a graph of objects.

Capturing the events

With MetaSpy we can implement the grammar coverage with a few lines of code.
The instrumentation happens at the level of the primitive parser objects. The
method observeParser:in: wraps the parser object with a handler block that is
called for each activation of the parser.

1 PetitParserProfiler>>setUp

2 self model allParsers do: [ :parser |

3 self observeParser: parser in: self grammar do: [
4 counter

5 at: parser

6 put: (counter at: parser ifAbsent: [ 0 1) + 1 ] ]

Line 2 iterates over all primitive parser objects in the grammar. Line 3 attaches
the event handler on Lines 4-6 to each parser in the model. The handler then
counts the activations of each parser object when we run the test suite of the
grammar.

Specifying the domain

The domain in this case is an instance of the grammar that we want to analyze.
Such a grammar may be defined using hundreds of interconnected parser objects.



78 A. Bergel et al.

LN AN

Fig. 4. Visualization of the production coverage of an XML grammar with uncovered
productions highlighted in black (left); and the same XML grammar with updated test
coverage and complete production coverage (right). The size of the nodes is proportional
to the number of activations when running the test suite on the grammar.

Presenting the results

This provides us with the necessary information to display the grammar coverage

in a visualization such as that shown in

5 Implementing Instrumentation Strategies

MetaSpy has two ways of implementing an instrumentation strategies: listen-
ing to pre-existing event-based systems, or using the meta-level programming
techniques of the host language to define a meta-event the strategy is interested
in.

Let us consider the class AnnouncementInstrumenter, whose responsibility is to
observe the generation of specific announcements.

AnnouncementInstrumenter>>install
self announcer
on: Announcement
send: #value:
to: self handler

The install method installs an instrumentation strategy object on the domain
specified in the install method. In this snippet of code we can see that the
strategy is hooked into the announcement system by evaluating the strategy’s
handler when an announcement is triggered.

However, not all profiling activities can rely on a preexisting mechanism for
registering to events. In some cases, a profiler may be hooked into the base code
using an existing event mechanism, for example the OmniBrowser profiler. In
other cases, extending the base code with an appropriate event mechanism is
simply too expensive. Because of this, we need to rely on the meta-programming
facilities of the host language. These facilities are not always uniform and require
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ad hoc code to hook in behavior. To avoid this drawback we decided to use a
framework that provides uniform meta-programming abstractions. Bifrost [14]
offers a model of fined-grained unanticipated dynamic structural and behavioral
adaptation. Instead of providing reflective capabilities as an external mechanism,
Bifrost integrates them deeply into the environment. Bifrost is a reflective system
based on explicit meta-objects to improve meta-level engineering.

Bifrost has been designed as an evolution of partial behavioral reflection
for Smalltalk [I5], which in turn was conceived as an extension of the Reflex
model [16]. Bifrost’s meta-objects provide a structural view and a behavioral
view. In the context of MetaSpy we were mainly interested in behavioral reifica-
tions. A behavioral meta-object reifying message sends was used for the message
send instrumenter. A Message Received event is also provided by the behavioral
meta-object. State read and write are also supported thus MetaSpy can pro-
file these dynamic events. Bifrost meta-objects when attached to a single object
are object-specific in nature, thus fulfilling an important domain-specific profiler
design requirement.

Let us consider the Message Received Instrumenter, whose responsibility is to
instrument when a specific object receives a specific message.

MessageReceivedInstrumenter>>install
self observerMetalbject bind: self object

MessageReceivedInstrumenter>>setUp
profilingMetaObject := BehaviorMetaObject new
when: self selector
isReceivedDo: self handler

The method install binds a meta-object to the object to be observed. The
method setUp initializes the profiling meta-object with a behavioral meta-object.
This meta-object evaluates the handler when a specific message is received by
the profiled object. This mechanism is termed object-specific instrumentation.

Object-specific instrumentation is not trivial to achieve in class-based lan-
guages like Smalltalk and Java. Classes are deeply rooted in the language inter-
preter or virtual machine and performance is tweaked to rely heavily on these
constructs. Moreover, most languages provide a good level of structural reflection
to deal with structural elements like classes, method, statements, etc. Most lan-
guages, however, do not provide a standard mechanism to reflect on the dynamic
abstractions of the language. There are typically no abstractions to intercept
meta-events such as a message send, a message receive, a state read, etc.

In our implementation, the profiled application, the profiler, and the visual-
ization engine are all written in the same language, Pharo, and run on the same
virtual machine. Nothing in our approach prevent from decoupling these com-
ponents and having them written in a different language or running remotely.
This is actually what often happen with the profilers and debuggers running on
the Java virtual machine (e.g., Java debugging interfaced).

4Thttp://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html
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6 Micro-Benchmark

Profiling always impacts the performance of the application being analyzed. We
have performed a micro-benchmark to assess the maximal performance impact
of MetaSpy. We assume that the behavior required to fulfill the profiling require-
ments is constant to any instrumentation strategy.

We analyze the impact of MetaSpy on both profiling uses cases. All bench-
marks were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in
Pharo 1.1.1 with the jitted Cog VM.

Registering instrumentation strategies to a preexisting event-based system
depends heavily on the the system used and how it is used.

Using meta-level programming techniques on a runtime system can have a
significant performance impact. Consider a benchmark in which a test method
is being invoked one million times from within a loop. We measure the execution
time of the benchmark with Bifrost reifying the 10 method activations of the
test method. This shows that in the reflective case the code runs about 35 times
slower than in the reified one. However, for a real-world application with only few
reifications the performance impact is significantly lower. Bifrost’s meta-objects
provide a way of adapting selected objects thus allowing reflection to be applied
within a fine-grained scope only. This provides a natural way of controlling the
performance impact of reflective changes.

Let us consider the Mondrian use case presented in The main
source of performance degradation is from the execution of the method displayOn:
and thus whenever a node gets redisplayed. We developed a benchmark where
the user interaction with the Mondrian easel is simulated to avoid human delay
pollution in the exercise. In this benchmark we redraw one thousand times the
nodes in the Mondrian visualization. This implies that the method displayOn:
is called extensively. The results showed that the profiler-oriented instrumenta-
tion produces on average a 20% performance impact. The user of this Mondrian
visualization can hardly detect the delay in the drawing process. Note that our
implementation has not been aggressively optimized. It has been shown [I] that
combining instrumentation and sampling profiling leaded to accurate profiles
(93-98% overlap with a perfect profile) with low overhead (3-6%). The profil-
ers we presented in this paper are likely to benefit from such instrumentation
sampling.

7 Conclusions and Future Work

Our contributions are the following:

1. We demonstrated the need for domain-specific profilers. We argued that
traditional profilers are concerned with source code only and are inadequate
for profiling domain-specific concerns. We demonstrated this drawback with
two use cases.

2. We formulated the requirements domain-specific profilers must fulfill: speci-
fying the domain, capturing domain related events and presenting the nec-
essary information.
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We presented MetaSpy, a framework for defining domain-specific profilers.
We also presented three real-world case-studies showing how MetaSpy fulfills
the domain-specific profiler requirements.

future work we plan to:

Provide ready-made and pluggable visualizations that can be used by new
domain-specific profilers. We plan to use Glamour to build these visualiza-
tions.

Apply MetaSpy in the context of large meta-models, such as the FAMIX
meta-model in Moose and the Magritte meta-model in Pier.

Provide additional ready-made event types that enhance the expressibility
of new profilers.

Profiler scoping is of key importance to obtain adequate information. We
plan to enhance the scoping mechanism to be able to dynamically attach
events to groups of objects.
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Abstract. Cumbia is our platform to develop applications based on
multiple, coordinated executable models which can be described using
different languages. The coordination of models is achieved by describ-
ing how their elements should interact, and mapping those descriptions
into low level coordination primitives. Moreover, the description of the
coordination is described externally: it does not have an impact either
on the metamodels or on the models, and this results in lower coupling
and increased flexibility. This approach, which is appropriate when the
metamodels are highly independent, has limitations when it comes to de-
scribing dependencies that are inherent to the concerns. In those cases,
it makes sense to incorporate those dependencies into the metamodels
descriptions. The goal of this paper is thus to discuss two alternative
ways to establish those dependencies, and illustrate their usage, benefits,
and drawbacks in a concrete example.

Keywords: Metamodel relations, Model relations, Executable models,
Model composition, Cumbia.

1 Introduction

Cumbia is a platform to develop applications based on model driven engineering
(MDE) and using multiple concern specific languages. For each language sup-
ported in Cumbia, a metamodel has to be defined whose goals are to describe
the abstract syntax and the semantics of the language. This is achieved by using
metamodels based on open objects [1].

Open Objects are an abstraction that we developed to describe all the elements
that belong in a Cumbia metamodel, and therefore all the elements of a concern
specific language. Open objects are composed by three elements: an entity, a
state machine associated with the entity, and a set of actions. Entities are plain
old Java objects with properties and methods. State machines are abstractions
of the associated entity life cycle and stay in sync with the entity state. State
machines are formed by states and transitions, and each of the latter has to
be marked with the type of the events that can trigger it. Actions represent
behavior associated with the transitions of the state machine.

The execution of a set of open objects is coordinated by means of event pass-
ing and by means of method invocations. Open objects generate events in two
situations: when methods of the entity are executed, or when the state machine

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 83-P§, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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follows a transition and switches its current state. Events are distributed among
open objects, and they are locally processed. The state machine of each open
object that received an event is updated based on the type of the event, and
in turn this generates more events. Furthermore, actions, implemented as Java
classes and associated to transitions, are executed when these transitions occur.
The coordination based on method invocation is more straightforward: any open
object can invoke methods of another one at any given moment, and these in-
vocations can be found in methods implementations, or in actions associated to
the state machine [IJ.

Open objects are used to describe and structure the elements that belong in a
metamodel. Afterwards, models conformant to these metamodels are executed by
a component called Cumbia Kernel. This kernel, which is an engine to execute
open objects’ based models, is generic and is reused for every Cumbia based
application and language. In fact, the essence of this kernel is managing event
distribution and processing, which includes updating the state machines, but
does so independently of the languages or metamodels used.

A common issue in the design of modeling languages is to balance their ex-
pressiveness and generality, and their size and complexity. If a language is very
expressive and general, then it is likely to be big or complex, and thus difficult to
implement, to support, and to use. On the other hand, if the language is small
or simple, then it is likely to be less expressive and thus insufficient to solve
certain problems. The Small DSLs approach addresses this by grouping multiple
languages that are very expressive but that have a relatively small scope [2]. This
approach is followed in Cumbia, where we can have multiple and complementary
concern specific languages. By doing so, each language can be designed to focus
on a particular concern, and focus on offering very expressive constructs for it.
From a technical point of view, this is achieved by offering means to coordinate
the execution of models, regardless of the languages used to describe each one
of them.

Previously, we have explored two different mechanisms to describe the coordi-
nation of the models. In [3], we presented the means to describe the coordination
at the model level, and externally to the models themselves. This description is
used, at run time, to synchronize the execution of the models. The second mech-
anism to describe coordination does so at a higher level of abstraction (the meta-
model level) and externally to the metamodels themselves [4]. This is done via
a language called M2CL, which describes the relations that can be established
between elements from different metamodels. This second strategy is built on
top of the elements provided by the first one, and both of them have in common
that they maintain the independence of the metamodels or the languages. They
are always oblivious one of the other, and as a result, they can be easily replaced,
removed, or modified. Also, new languages and concerns can be added as they
become necessary.

Nevertheless, these two types of mechanisms are not always adequate. There
are cases where some concerns have strong dependencies towards other concerns,
which may or may not be known. To address this, metamodels should be designed
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from the beginning to be composed with those other metamodels. Therefore, in
those cases it is desirable to include inter-metamodel dependencies, and include
those within the metamodels’ definitions. That implies higher coupling and lower
flexibility, but it reflects better the dependencies between the concerns.

The goal of this paper is to present two strategies that we implemented in
Cumbia to describe relationships between metamodels. The first one of these
strategies is based on the definition of explicit dependencies between concrete
metamodels. The second one, is based on the description of contracts for entities
of the metamodels, and deferring the specification of the concrete bindings. These
strategies are useful in different cases, and provide different degrees of flexibility.
Furthermore, this paper illustrates the usage of these strategies with a concrete
application: a simulator that uses four domain specific languages to describe
complementary aspects of a traffic simulation scenario.

This paper is structured as follows: in section [2] we introduce the traffic sim-
ulation application, and we describe the concerns and languages involved in it.
While doing so, we also introduce some additional background on the Cumbia
platform. Then, in section B we present the strategies proposed to establish and
maintain relations between metamodels. Finally, sections[d] and Bl present related
work and conclude the paper.

2 An Application for Traffic Simulation

In this section we describe a traffic simulation tool based on the Cumbia platform.
There are several reasons that make this an interesting application to illustrate
Cumbia. In the first place, this is an application intended to be used by domain
experts (traffic experts), and it would thus be desirable to offer high level, do-
main specific languages for the definition of simulation scenarios. Secondly, each
simulation scenario needs to include many details, which can be of different na-
tures. Therefore, it makes sense to modularize scenario definitions, for instance
by separating concerns. This decision makes it possible to have concern specific
languages and facilitates the reuse of scenarios. Finally, the concerns that we can
identify for a traffic simulation application are not totally crosscutting: there are
relations and interactions between them, and we can even identify a few elements
that appear in multiple concerns.

For the traffic simulation that we are about to present, we have identified
the four concerns shown in figure [[I For each one of these, we have defined
a concern specific language, and built the elements to run models described
using those languages. Furthermore, we have analyzed the interactions between
these concerns, and we have created the artifacts to coordinate their execution.
The rest of this section presents more details about each concern, about their
implementation on top of Cumbia, and about the coordination of their execution.

2.1 Crossroads Structure

This is the central concern in the scenario, and it describes roads, lanes and
routes for cars in the simulation to travel. This concern also handles the location
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Fig. 1. Concerns and relations in the traffic simulation scenario

and state of pedestrian and traffic lights. The Crossroads concern is limited to
describing structural aspects of the simulation: without further inputs from other
concerns, a simulation of this concern would be static.

We have designed a graphical notation to describe crossroads models, and
implemented an editor for domain experts to use. Besides serving to create dia-
grams like the one shown in figure Pl this editor also hides the complexity of the
XML-based syntax that Cumbia uses to describe models.
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Fig. 2. Crossroads diagram

The diagram in figure [2] presents five roads, labeled from 1 to 5. Each road
contains at least one lane. For example, road 8 has two lanes, named F and
F. The arrows drawn over the lanes indicates the orientation of the lane and
also represent the available routes. For example, cars traveling on lane F' can
continue to lanes A, I or G, but not H.

This syntax also describes pedestrian lights and traffic lights. The former are
represented by solid lines drawn over the roads. Figure Rl shows three pedestrian
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lights, located on roads 1, 4 and 5. Traffic lights are more complex than pedes-
trian lights because it is necessary to specify which routes they control. These
lights are represented by small circles located in front of the lanes, connected to
boxes that provide additional information about one or several traffic lights and
the routes they control. In our example we place two traffic lights, L1 and L9,
in front of lane J. Traffic light L1 controls the cars coming from lane J that are
going to take lanes D and E, while L9 controls the cars coming from lane J that
are going to take lane A.

2.2 Lights Control

During the simulation, policies control the traffic lights, determining when each
one has to show its green light. Each policy is defined as a sequence of states, and
each state has a set of traffic lights that are supposed to show green when the
state is active. A policy also indicates for how long each state has to be active
and their order of activation. The language designed for this concern is textual,
as shown in the following snippet:

Policy Normal

St1 := {L2,L3,L5};
St2 := {L1,L9,L4};
St3 := {L7};
St4 := {L8};
st5 := {L2,L6,L3};

Sequence {(St1,100) (St2,80) (St3,20) (St4,20) (St5,20)};

In this description, a policy called Normal is defined. The policy has five
states, StI to St5. The sequence indicates that the first state is St and has to
be activated for 100 seconds. During those 100 seconds, only the lights L2, L3,
and L5 in a simulation scenario have to show a green light. The last state of the
sequence is St5 and it has to be activated for 20 seconds. Afterwards, the cycle
has to restart by reactivating state St1.

2.3 Policies Management

After defining the policies available to control the traffic lights in the simulation,
it is necessary to specify the conditions to apply each policy. For this application,
we use a simple mechanism which associates policies to time intervals in a day.
The language to describe this is illustrated in the next snippet:

TimeBased ("6:30 - 9:00") => RushHour
TimeBased ("9:01 - 16:29") => Normal
TimeBased ("16:30 - 20:30") => RushHour

The example presents three time intervals and the policies that have to be
applied for each one. During rush hours (6:30 to 9:00 and 16:30 to 20:30) the
RushHour policy is applied. From 9:01 to 16:29 the Normal policy controls the
traffic lights. This language can be extended to include new types of conditions
besides time-based, with minimal impact to the rest of the concerns.
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2.4 Traffic Generation

The previous concerns would not be interesting without simulated cars traveling
the routes and being controlled by traffic lights. In our simulator, the traffic is
modeled using probability distributions of car arrivals to the routes and lanes
of a crossroads model. The language developed to model traffic is textual and is
illustrated in the following example:

Route "B-G"
Poisson 3

Route "C-G"
Poisson 4
Poisson 7

This snippet shows that routes are represented by a source lane and a target
lane. The snippet also shows that it is possible to assign multiple probability
distributions to a single route.

2.5 Implementing the Concerns in Cumbia

To build the traffic simulator on top of Cumbia, for each of the previously de-
scribed concerns, a metamodel had to be created. Figure Bl shows the structure
of the four metamodels, but because of space restrictions we cannot present in
detail each one of them. Nevertheless, it has to be highlighted that each element
in those metamodels is an open object, and that each metamodel reflects the
abstract syntax of one of the concern specific languages previously shown. Given
this context, creating a simulation scenario involves the creation of four models,
each one conformant to one of the metamodels.

From the descriptions of the concerns, it should be clear that they have several
points of contact. Therefore, to execute a complete simulation scenario it is not
enough to independently execute the four models that compose it: they have
to be executed in a coordinated way and information has to be shared between
them. For instance, the element Generator in the Traffic model has an indirect
responsibility in creating Cars in the Crossroads model.

This kind of coordination is achieved by means of CCL, M2CL, and M1CL
(see figure @) [4]. CCL (Cumbia Coordination Language) is a low level language
that provides primitives, based on event passing and methods invocations, to de-
scribe how to coordinate model instances. CCL is useful to describe coordination
between model instances, but does not offer mechanisms to describe coordination
at higher levels, i.e, between metamodels and models. To solve this we developed
a language called M2CL, that serves to encapsulate coordination rules between
metamodel elements (M2 level). The entities that encapsulate this information
are called composites, and they include the structural and behavioral aspects
of the coordination. Finally, there is M1CL, the language to describe instances
of those composites, which depend on the selection of elements from particular
models. With the information available in the M2CL and M1CL descriptions,
CCL code is generated automatically and is used, at run time, to ensure the
coordination of the model instances.
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Fig. 4. Coordinating the execution with external descriptions

This coordination mechanism describes the coordination rules and restric-
tions externally to the coordinated elements themselves. This means that nei-
ther model definitions, nor metamodel definitions are impacted by the presence
of coordination. As a result, the coupling between languages and metamodels is
low, and languages can be replaced or modified with relative ease.

The downside of this approach is that the strict dependencies between the
metamodels are not materialized. For example, with the means available it is not
possible to say that the Lights Control element in the Lights Control model
should be the same Lights Control element in the Policies Management model.
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Instead, we are forced to first duplicate the elements in the two metamodels, and
then to keep their instances in sync while executing. To solve these issues, the
next section presents new composition and coordination concepts that we are
introducing into Cumbia.

3 Dependencies between Metamodels

The mechanism currently offered by Cumbia to establish relations between meta-
models, models and model instances does not properly support the representa-
tion of strict dependencies between Cumbia metamodels. To address this, we
now propose a set of extensions to Cumbia that have an impact on the way open
objects and metamodels are defined, as well as on M2CL, M1CL, and CCL. We
have categorized these extensions according to the kind of dependencies that
they aim to support: on the one hand, we have direct dependencies, which have
the highest impact on coupling and flexibility; on the other hand, we have behav-
toral dependencies, which are not as rigid and do not eliminate all the flexibility
that we gain from the usage of externalized coordination descriptions.

3.1 Direct Dependencies

The first mechanism we propose is to enable the specification of explicit de-
pendencies between metamodels. This means that we are enabling the usage of
elements in metamodels where they were not initially defined. Besides impacting
the definition of the metamodels where these elements are used, this also has an
impact on the definition of models, and on model instances (see figure [l). In
the original open objects model, the elements used in a model definition had to
be completely defined in the metamodel used to describe the model. With this
extension, it is no longer necessary to duplicate open objects across metamodels.
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Figure [6] shows how the metamodels in the traffic simulator can be redefined
using direct dependencies, in order to better convey the dependencies that exist
between them. In particular, we are defining two direct dependencies. The first
one states that the element Traffic Light in the Lights Control metamodel is
now going to be the element Traffic Light in the Crossroads metamodel. The
second one states that the element Lights Control of the Policies Management
metamodel is going to be the element Lights Control of the Lights Control
metamodel. We are now going to show how the first dependency affects the
metamodels and models definition.

<metamodel name="LightsControl" version="1.1">
<dependencies>
<metamodel -dependency name="crossroads" version="1.1"
metamodel="Crossroads" />
</dependencies >

<external-type with="crossroads" externalTypeName="TrafficLight"
typeName="Traffic Light"/>

</metamodel >

Prog. 1. Metamodel definition: direct dependency description

In the first place, we have to modify the definition of the metamodel. Pro-
gram 1 shows the relevant parts of the metamodel description that define that a
type in a given metamodel is defined in another metamodel. For this, a general
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dependency towards the Crossroads metamodel is first defined, and then specific
dependencies are described. This is achieved with the tag external-type, which
creates a local reference to the type defined in the other metamodel. In the sample
case, we declare an external type called Traffic Light, which depends on the
element with the same name in the Crossroads metamodel.

Models conformant to metamodels with dependencies must explicitly state
which models satisfy which dependencies. They also have to explicitly “im-
port” the necessary elements defined in the other models. Program 2 is a frag-
ment of a model definition that shows how this is done in a sample scenario.
The description of the model starts with a declaration of a dependency to-
wards another model, which satisfies a dependency declared at the metamodel
level. Then, the structure of the model explicitly states which elements are
going to be “imported” from the other model. For this, it is only necessary
to specify in which model the element sought is located, and its name. The
Cumbia platform is now capable of verifying the consistency of those “imports”,
with respect to the types of the elements and the structure of the
metamodels.

<definition metamodel="LightsControl" version="1.1"
modelName="LightsSample">

<dependencies>
<model -dependency name="crSample"
model="CrossroadsSample"
mmDependencyName="crossroads"/>
</dependencies >

<model -structure>
<elements>
<external-element externalName="tl1l" dependency="crSample" />

</elements>

</model -structure>
</definition>

Prog. 2. Model definition: direct dependencies usage

The final step is to use CCL to properly establish the references between
elements in the model instances. Program 3 shows how this is achieved, using
the new instruction fixReference. The usage of this instruction used in the
sample CCL program can be translated as follows: “In the instance [ instance
of the LightsSample model, resolve the declared dependency crSample using
the elements found in the instance ¢ instance of the CrossroadsSample model”.
Given these directions, the Cumbia Weaver (the component that executes CCL
programs) is capable of replacing placeholder elements in the instance of the
LightsSample model with references to elements in concrete instances of the
CrossroadsSample model.
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assembly {
load (LightsControl:LightsSample 1_model, Crossroads:CrossroadsSample

c_model);
on:Init {
c_instance = new c_model;
l_instance = new 1l_model;
fixReference(l_instance, "crSample", c_instance);

}
}

Prog. 3. CCL: resolving direct dependencies at model instance level

3.2 Behavioral Dependencies

Defining dependencies directly and explicitly in the metamodel and model def-
initions is a simple and effective approach, but it results in high coupling. To
alleviate this, we propose an alternative which replaces explicit dependencies
with dependencies based on behavioral contracts. By doing so, it will still be
possible to have dependencies between metamodels, but they will not be com-
pletely known beforehand. This new strategy involves extensions to the meta-
model specification language, to M2CL, to M1CL, and to CCL. Figure [ shows
the elements involved in this strategy.
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Fig. 7. Behavioral dependencies using virtual open objects

To describe behavioral contracts and dependencies in metamodel definitions,
we introduced a new type of open object called virtual open object. Virtual open
objects have some similarities to normal open objects [I]: they have a state ma-
chine, they generate events, and they have a public interface that announces the
set of methods understood by each open object. However, virtual open objects
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are not executable, because they do not implement the methods declared on the
interface, and because they cannot autonomously generate events. In the rest
of the section we will revise the case study used in section 3.1, but we will use
behavioral dependencies instead of direct ones. Program 4 presents the definition
of a virtual open object called TrafficLight in the Lights Control metamodel.

<metamodel name="LightsControl" version="1.0">
<state-machine-reference name="tlight" file="1light.xml" />

<virtual-type name="TrafficLight"
interface="simulator.lights.ITrafficLight"
state-machine-name="1light">
<event name="becameGreen"/>
<event name="becameRed"/>
</virtual-type>
</metamodel>

Prog. 4. Metamodel definition: virtual open objects defined

To execute an instance of a model conforming to a metamodel that includes
virtual open objects, it is necessary to bind the virtual open objects with regular
open objects. This means that, at run time, each virtual open object needs to
be bound to a concrete open object.

These bindings have to be defined at the model level, using M1CL. Further-
more, at the metamodel level it is necessary to characterize the types of valid
bindings. This is achieved in M2CL, using descriptions similar to the one shown
in program 5. In that snippet, we have established that instances of the virtual
type added to the Lights Control metamodel can be bound to instances of the
TrafficLight type in the Crossroads metamodel. Furthermore, we had to de-
scribe a mapping between the two types: this mapping relates 1) methods in the
interface of the virtual open object with methods implemented in the concrete
open object; 2) and events emitted by the concrete open object with events that
the virtual open object should emit.

Once the types of bindings have been defined using M2CL, it is possible to
use M1CL to establish concrete bindings between model elements. Program 6
shows how this is done: an instance of the binding type is defined, and it specifies
which pair of elements are going to be bound together. Note that exactly one of
these elements has to be a virtual open object.

Finally, to create the concrete bindings between elements in model instances,
some CCL code is required. This code is generated from the M2CL and the
M1CL descriptions and in particular from the mapping defined for events and
methods. Program 7 shows a fragment of the code generated in the sample case
studied. It illustrates the new instructions added to CCL, namely bindEvent
and bindMethod. Using the former, an instance of a virtual open object, which
operates as a proxy, is configured to re-emit certain events produced by the
concrete element. The latter instruction serves to configure which methods of
the concrete element to invoke when a method is invoked in the virtual element.
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binding TrafficLightBinding
use Crossroads.TrafficLight cLight
use LightsControl.TrafficLight vLight

bind cLight:isOn to vLight:becameGreen
bind cLight:is0ff to vLight:becameRed

bind vLight.reset to cLight.setOff
end

Prog. 5. M2CL: definition of a binding

TrafficLightBinding L2_to_L12
cLight : CrossroadsModel.L2
vLight : LightsControlModel.L2

end

Prog. 6. M1CL: binding of elements in models

4 Related Work

Meta case tools, such as MetaEdit+[5], GMEG], the Eclipse GMHY, or the Mi-
crosoft DSL Tooldd have been used to define and use DSMLs in industrial settings
[7U819]. These tools are based on metamodeling, and one of their main strengths
is the capability of automatically generating the tools that the DSMLsAAZ users
require (editors). Up to this point, we have not used any of these tools to de-
scribe Cumbia models. Instead, we have developed ad-hoc editors for each of our
DSMLs. However, we plan on using one of the available open tools with Cumbia
soon.

Because of the importance of establishing and maintaining relationships be-
tween modelsaAZ elements, there are many proposals to manage these relation-
ships. In [10], BrAduer and Lochmann identify four of those strategies. The first
strategy is based on model weaving, such as in the Motorola WEAVR [I1] and
in AMW [12JT3]. A second strategy is based on model mappings and model-to-
model transformations, which are also used on [12]. The third strategy is based
on named-based references between model elements, and it is used in SMART
[0 and NAOMI [I4]. SmartEMF [15] is a tool to represent, check, and main-
tain constraints in multimodels that use these kinds of references. The Cumbia
framework can be partially classified in this strategy, although the semantic rela-
tionships are stronger than just a name: with open objects, the notion of element
type also exists. Finally, the strategy presented in [I0] is based on an upper on-
tology, and on connectors that establish semantic links between languages. This
approach also has similarities to Cumbia (the open objects structure can be

! Eclipse Graphical Modeling Framework, http://www.eclipse.org/modeling/gmf/
2 Microsoft: Domain-Specific Language Tools, http://msdn.microsoft.com/en-
us/library /bb126235(VS.80).aspx
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load (LightsControl:LightsSample 1l_model,
Crossroads:CrossroadsSample c_model);

c_instance = new c_model;
l_instance = new 1l_model;
c_L2
1_L2

findByName(c_instance ,"L2");
findByName(l_instance ,"L2");

bindEvent(1_L2, "becameGreen", c_L2, "isOn");
bindEvent(1_L2, "becameRed", c_L2, "isOff");

bindMethod(1_L2, "reset", c_L2, "setOff");

Prog. 7. CCL: binding of methods and events

likened to an upper ontology), but, since it is much more general, it is not exe-
cutable, i.e. for each upper ontology an implementation has to be created.

Executability is the primer goal of some modeling frameworks, although the
meaning of the term execution, and the reasons to achieve execution, vary from
tool to tool. According to [16], executing a model involves the computation of
a sequence of states in the model, in response to input data. This definition is
consistent with their overall reason for using models, which is to define, validate,
simulate, and generate the code of a system. Although it is less formal, Ptolemy
II [I7] follows a similar perspective on execution, and, in particular, it aims to
generate code for embedded systems. In NAOMI [14], model execution has a
slightly different meaning and intent: NAOMIs models are executed by taking
some inputs from a repository, running the models to obtain outputs, and writing
the outputs back into the repository. The execution of NAOMIs multimodels is
achieved by executing each model while following an execution plan based on
model dependencies.

5 Conclusions

In this paper we have presented two strategies to define dependencies between
metamodels. The first one, which we call direct dependencies, results in highly
coupled metamodels. In spite of the negative effect on flexibility, this strategy is
useful because of its simplicity and because it removes the need to duplicate ele-
ments or coordinate several elements between several metamodels. Furthermore,
this approach enables the static validation of dependencies, while metamodels
are designed, instead of doing it dynamically when models are executed.

To reduce the coupling introduced with the first strategy, we proposed a sec-
ond one that introduces a level of indirection in the definition of the dependen-
cies. This indirection materializes in the definition of contracts which specify the
name of methods and events used to bound elements. This strategy depends on
external information available outside the metamodels and models to resolve the
dependencies at run time, which is provided using M2CL and M1CL.

Moreover, the two strategies proposed do not replace the coordination mech-
anisms that were already present in Cumbia. They complement them, and they
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are intended to be used when the characteristics of a domain require a tighter
coupling between the metamodels.

The strategies presented in this paper are our first attempt to implement
new types of relations between metamodels, models and model instances in the
Cumbia platform. Because of that, they have some evident limitations that we
expect to remove in the future. For example, currently behavioral dependencies
only support the binding of methods that do not receive parameters and one-to-
one event mappings. In the future, we expect to remove this kind of limitations
by supporting the definition of more complex mappings. In particular, we want
to support methods with more detailed signatures, and also complex events

mapping.
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Abstract. Automatic prediction tools play a key role in enabling the ap-
plication of non-functional requirements analysis to selection and assem-
bly of components for Component-Based Systems, reducing the need for
strong mathematical skills to software designers. Exploiting the paradigm
of Model Driven Engineering (MDE), it is possible to automate trans-
formations from design models to analytical models, enabling for formal
property verification. MDE is the core paradigm of KlaperSuite presented
in this paper, which exploits the KLAPER pivot language to fill the gap
between Design and Analysis of Component-Based Systems for reliability
and performance properties. KlaperSuite is a family of tools empower-
ing designers with the ability to capture and analyze QoS views of their
systems by building a one-click bridge towards a number of established
verification instruments.

1 Introduction

Discovering late during the development process that a software system does
not meet certain non-functional requirements can be harmful. The impact of
changes — if applied when a complete implementation of a system exists —
on development costs and on failure risks may be non negligible. Indeed, it
has been already pointed out that anticipating the analysis of non-functional
properties — such as performance and reliability — at design time can mitigate
these issues [1I213]. The work we present in this paper goes in this direction, by
supporting early analysis of non-functional attributes for software systems built
with a Component-Based (CB) development paradigm.

Component-based software systems are essentially assemblies of preexisting,
independently developed components. The focus of the development process
shifts from custom design and implementation to selection, composition and
coordination [45]. In a component based setting, analysis must be carried out
before assembling and this can lead to early discovery potential problems related
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to non-functional attributes. Which components are selected, how they are com-
posed, and how they are coordinated should in turn depend on the results of
analyses, as pointed out by Crnkovic in [4].

However, existing techniques for non-functional analysis rely on very specific
performance-related formalisms — such as Queueing Networks (QNs), Petri Nets
(PNs), or Markovian models — but software systems are rarely represented in
these terms. Designers, who usually lack sufficient experience in performance en-
gineering, prefer design-oriented formalisms such as UML [6] which reflect more
the modeling intent. Although both design-oriented models and performance-
related models carry the same pieces of information required for the analysis of
non-functional properties, the way such information is captured, i.e., the syntax,
makes the difference from a user perspective.

To cope with this mismatch between representations, tools have been recently
proposed in literature. The idea is leverage Model Driven Engineering (MDE)
[7] techniques to automatically derive, by means of model transformations, per-
formance models from design-oriented models of the system (augmented with
additional information related to the non-functional attributes of interest). Ex-
isting analysis methodologies [2I8/9/T0] may be in turn applied as is.

However, defining this kind of transformations could be quite difficult. The
large semantic gap between the source and the target meta-models of the trans-
formation, the heterogeneous design notations that could be used by different
component providers, and the different target analysis formalisms are all ex-
amples of barriers for transformations development. The usage of intermediate
modeling languages, which capture relevant information for QoS analyses, has
been proposed to mitigate these problems. Intermediate languages in fact bridge
design-oriented and analysis-oriented notations, and help in distilling the in-
formation needed by performance analysis tools [ITJI2J9]. Instead of directly
transforming design models to performance models, a two-step transformation
from the source model to the intermediate model, and from the intermediate
model to the target model is proposed.

In this paper we describe KlaperSuite, an integrated environment for the
performance and reliability analysis leveraging KLAPER (Kernel LAnguage for
PErformance and Reliability analysis) [11]. KLAPER is an intermediate lan-
guage supporting the generation of stochastic models, to predict performance
and reliability, from design-level models of component-based software systems.
Transformations from design models to analytical models are completely auto-
mated in a one-click way. Designers are indeed empowered with the ability to
analyze their systems, with established verification instruments, in a seamless
and integrated environment.

The remainder of this paper is organized as follows. Section 2l outlines the
KLAPER language and its main characteristics. In section Bl we present the
different types of analysis included in KlaperSuite, spanning from reliability,
to performance, and to generation of simulation prototypes. Sections [ and
describe existing literature related to our work and future research directions,
respectively.
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2 KLAPER

In this section we first present the key points of our MDE-based approach to
the generation of a performance/reliability model for a CB system (Section 2.T]).
Then we present the meta-model of the intermediate language that we use to
support this approach (Section [Z2]).

2.1 The Basic Methodology

The central element of our framework is the usage of KLAPER [I1] whose goal
is to split the complex task of deriving an analysis model (e.g. a queueing net-
work) from a high level design model (expressed using UML or other component-
oriented notations) into two separate and presumably simpler tasks:

- extracting from the design model only the information that is relevant for the
analysis of some QoS attribute and expressing it in terms of the key concepts
provided by the intermediate language;

- generating an analysis model based on the information expressed in the in-
termediate language.

These two tasks may be solved independently of each other. Moreover, as a
positive side effect of this two-step approach, we mitigate the “n-by-m” problem
of translating n heterogeneous design notations (that could be used by different
component providers) into m analysis notations (that support different kinds of
analysis), reducing it to a less complex task of defining n + m transformations:
n from different design notations to the intermediate language, and m from it
to different analysis notations.

The KLAPER goal is to capture in a lightweight and compact model only
the relevant information for the stochastic performance and reliability analysis
of CB systems, while abstracting away irrelevant details.

To integrate this kernel language into an MDE framework, leveraging the
current state of the art in the field of model transformation methodologies,
KLAPER is defined as a Meta-Object Facility (MOF) meta-model [I3]. Accord-
ing to MOF, a (meta)model is basically a constrained directed labeled graph,
and a meta-model defines the syntactic and semantic rules to build legal models.

Hence, we can use the MOF facilities to devise transformations to/from
KLAPER models, provided that a MOF meta-model exists for the corresponding
source/target model. According to the MDE perspective, these transformations
can be defined as a set of rules that map elements of the source meta-model onto
elements of the target meta-model.

2.2 The KLAPER Meta-Model

Figure [1l shows the structure of the KLAPER meta-model[11]. To support the
distillation from the design models of a CB system of the relevant information for
stochastic performance/reliability analysis, KLAPER is built around an abstract
representation of such a system, modeled (including the underlying platform) as
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an assembly of interacting Resources. Each Resource offers (and possibly re-
quires) one or more Services. A KLAPER Resource is thus an abstract modeling
concept that can be used to represent both software components and physical
resources like processors and communication links.

A scheduling policy and a multiplicity (number of concurrent requests that
can be served in parallel) can be associated with a resource to possibly model
access control policies for the services offered by that resource[IT]. Each service
offered by a resource is characterized by its formal parameters that can be in-
stantiated with actual values by other resources requiring that service. We point
out that both the formal parameters and their corresponding actual parameters
are intended to represent a suitable abstraction (for the analysis purposes) of
the real service parameters. For example, a real list parameter for some list pro-
cessing software component could be abstractly represented as an integer valued
random variable, where the integer value represents the list size, and its proba-
bility distribution provides information about the likelihood of different sizes in
a given analysis scenario. We explicitly introduce service parameters to better
support compositional and parametric analysis [11].

To bring performance/reliability related information within such an abstract
model, each activity in the system is modeled as the execution of a Step that
may take time to be completed, and/or may fail before its completion: the in-
ternalExecTime, internalFailTime and internalFailProb attributes of each step
may be used to give a probabilistic characterization of these aspects of a step
execution.

Steps are grouped in Behaviors (directed graphs of nodes) that may be asso-
ciated either with the Services offered by Resources (reactive behavior), or with
a Workload modeling the demand injected into the system by external entities
like the system users (proactive behavior). Control steps can be used to regulate
the flow of control from step to step, according to a probabilistic setting.

A ServiceCall step is a special kind of Step that models the relationship
between required and offered services. Each ServiceCall specifies the name of
the requested service and the type of resource that should provide it.

The relationship between a ServiceCall and the actual recipient of the call
is represented separately by means of instances of the Binding metaclass. This
allows a clear separation between the models of the components (by means of
Resources/Services) and the model of their composition. In fact a set of bindings
can be regarded as a self-contained specification of an assembly. Similarly, since
the service call concept is also used at the KLAPER level to model the access
of software components to platform level services, a suitable set of bindings can
model as well the deployment of the application components on the underlying
platform.

Finally, we point out that the performance/reliability attributes associated
with a behavior step concern only the internal characteristics of the behavior;
they do not take into account possible delays or failures caused by the use of
other required services, that are needed to complete that step. In this respect,
we remark that when we build a KLAPER model (first task outlined above) our
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goal is mainly “descriptive”. The Bindings included in the model help to identify
which external services may cause additional delays or failure possibilities. How
to properly mix this “external” information with the internal information to get
an overall picture of the service performance or reliability must be solved during
the generation and solution of an analysis model derived from a KLAPER model.
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1.1

resource
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workload | 0..* E Service callee caller |El Binding
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step 1. signaling
[ Transition out from B Step
0..* 1.1
in to
0.* 1.1 wait
0..1 binding 0..1
H Start = End H Activity H Wait
H Acquire [ Release [ ServiceControl
acquire |0..* release | 0..* actualParam 0..*
[ Branch [ Fork [ Join [ ActualParam

Fig. 1. The KLAPER MOF meta-model

3 The KlaperSuite Analysis Tools

The main purpose of the KLAPER-based analysis is to provide a set of tools
that support early verification of non-functional requirements. Such an analysis,
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Fig. 2. Menu for the launches of the KlaperSuite tools

applied at early stages of design, allows identifying possible issues while the
development team has the largest decision scope.

KlaperSuite aims at providing a family of KLAPER-based tools which can
execute a number of analysis tasks on KLAPER models. All the tools in the
KlaperSuite are fully automated and require at most a few configuration param-
eters to be set. The entire environment is integrated in the Eclipse IDE [I4], in
order to provide a unified interface and a familiar environment for both academic
and industrial developers.

Most of the tools are able to automatically transform KLAPER models into
appropriate inputs for each of the external tools involved in the analysis process,
and then capture analysis results and store them in text files, which are human
readable. It is then easy to extend the suite by adding specific parsers in order
to put back results into any computer readable form.

The KlaperSuite’s purpose is to fill the gap from KLAPER to non-functional
verification tools. A consolidated development process may possibly benefit from
the implementation of automatic model transformations from already established
design metamodels to KLAPER. This single time investment can enable design-
ers to take advantage of the entire family of analysis tools.

Analysis plugins can also store intermediate files (i.e. third parties tools input
files) that can be further analyzed for different purposes or by external experts.
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Fig. 3. High level view of KlaperSuite

Download instructions for the KlaperSuite can be found at http://home.dei.
polimi.it/filieri/tools2011. In the same location is also available an exam-
ple workspace, which has not been described in this paper because of the lack
of space. A snapshot of the KlaperSuite is shown in Fig.

In the following of this section we present the set of verification features cur-
rently supported by KlaperSuite and illustrated in Fig.[3l They will be grouped in
three subsets depending on the purpose of their inclusion. More specifically, Sec-
tion [3.] will present analysis features concerning reliability estimation, Section
concerns performance prediction, while Section B3] will present a simulation-
based analysis tool which provides verification of both reliability and perfor-
mance properties, as well as a lightweight prototype of the system to be.

3.1 Reliability

Reliability is the first non functional aspect we focus on. There are a number of
tools that allow the evaluation of various facets of reliability [I5]. A KLAPER
model can be automatically mapped in a Markov Chain, that is a stochastic
characterization of the system under design able to capture various information
affecting software reliability.

Reliability is one of the so-called user-centered property [16], in the sense that
the reliability of a system strictly depends on its usage. While a failure prob-
ability is associated with each system component, the actual usage determines
which parts of the systems are more stressed by clients and thus can have an
higher perceived impact. The usage profile of a system is embedded in two parts
of a KLAPER model, namely workload and branch annotations. Workload is
directly related to the intended usage of the system by its clients, that is, which
functionalities they invoke. Branch probabilities are instead more related to the
distribution of inputs inserted by the clients.
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PRISM Model-Checking. Mapping a KLAPER model into a corresponding
Discrete Time Markov Chain (DTMC) is straightforward. A DTMC can be
roughly seen as finite state-transition automata where each state s; has a certain
probability p;; to reach state s;. As for Probability theory, for each state s; it
holds that > jPij = 1. States of a DTMC are used to represent relevant states
of the execution of a software system. For example a state may represent an
internal action or the invocation of a service. In DTMC-based reliability analysis,
it is common to enhance the model of the system with a set of states that
represents meta-condition of the execution, that is, they do not correspond to
neither internal actions nor external invocations, but rather to failures or success.
These meta-states are typically related to permanent conditions of the system,
and thus their counterpart in the domain of DTMCs are absorbing states. Any
state s; such that p;; = 1 is said to be absorbing, with the immediate meaning
that state s;, once reached, cannot be left.

Reliability can be defined as the probability of reaching any absorbing state
corresponding to a success condition from the state corresponding to the execu-
tion’s start. But a designer may be interested also in more complex properties
related to reliability, such as the probability that the system fails given that it
reached a certain execution state, or that a certain kind of failure arises. In order
to specify those properties, given a DTMC model of the system under design,
it is possible to use special purpose logic languages, such as PCTL [I7] and its
extension, PCTL* [I§]. Such logics allow the formal description of a set of paths
through a DTMC. Then a Probabilistic Model-Checker is able to compute the
probability for the execution to follow exactly those paths.

For example, assuming that there is a single absorbing success state sg, we
are interested in considering all the possible paths which will eventually reach
ss. Such a path property can be easily formalized in PCTL(*) as ¢s = s, which
literally means that eventually (¢) the current state of execution (s) will be equal
to the success state (s;5). The eventually operator assumes that the execution of
the system always begin from its defined initial state (which corresponds to a
start step of a KLAPER workflow) and that can reach s in any finite number
of state transitions.

This preamble is to justify the idea to include in our suite a transformation
toward a DTMC+PCTL* model. In order to be able to exploit available model
checkers, transformation must finally provide input files for one of them. The
two mostly established are PRISM [19/20] and MRMC [21]. The former exploits
symbolic manipulation of PCTL properties in order to verify them on a compact
representation of the state space; so it might be beneficial in case of complex
formulae. The latter uses an explicit state-space representation that makes it
possibly require more memory, but makes the verification quite fast, at least for
simple formulae such as reachability. The reader interested in more details about
Probabilistic Model Checking could refer to [22].

KlaperSuite is able to automatically transform a KLAPER model into a
PRISM input, that is, a DTMC and a PCTL represented in PRISM’s textual
syntax. Our tool is able to extract the global reliability and to put it in a text
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file. But the produced PRISM models are completely consistent with all the in-
formation in the KLAPER source, and can thus be further analyzed by means
of the other PRISM’s advanced features [20], viable also through its graphical
interfaces. Also PRISM can itself convert models and properties in MRMC’s
syntax, thus enabling a second way of analysis.

The transformation from KLAPER to PRISM is realized in two steps. The
first is a model-to-model transformation from KLAPER to an intermediate meta-
model which reproduce the structure of a PRISM model. This transformation is
implemented in QVT-Operational, the imperative model-to-model transforma-
tion language standardized by the OMG [23]. The second step is a model-to-text
transformation implemented in Xpand2 [24], that generates the textual repre-
sentation of the PRISM model to be analyzed. Both QVTO and Xpand2 are
natively supported by Eclipse.

The most critical issue in analyzing KLAPER models for reliability through
PRISM is that KLAPER model supports the specification of (possibly recursive)
function calls. Such a feature is not naturally captured by Discrete Time Markov
Chains, which are instead successfully adopted in many research works [25]. The
reason is that software’s control flow is hard to be flattened in a finite sequence of
function calls without loosing precision (remember that highly reliable software
may require estimation’s precision up to 10~7). In order to properly analyze
our models through PRISM, we need to enhance DTMC models with some
Process Algebra constructs in order to stochastically simulate function calls.
This formalization allows PRISM to obtain results with arbitrary accuracy. By
default KlaperSuite requires results with maximum error magnitude of 10~'2.
This value can be increased or decreased at will.

The problem with the combination of DTMCs and Process Algebra lies in the
exponential state-space explosion. Hence even small KLAPER models can lead
to untreatable PRISM analyses, in presence of recursive invocations. This issue
introduce the need for a more efficient way to deal with recursiveness, namely
Recursive Markov Chains, that will be presented in the next section.

Recursive Markov Chains. A Recursive Markov Chain can be seen as a
collection of finite-state Markov Chains with the ability to invoke each other,
possibly in a recursive way. They have been introduced in [26] and come with
a strong mathematical support. RMCs can be analyzed (by means of equation
systems) in a very efficient way in order to evaluate reachability properties.
Reliability, intended as the probability of successfully accomplish the assigned
task, as well as the probability of failure given that the execution has reached a
certain execution state, can be formalized as reachability properties, as well as
a number of other interesting requirements.

Also, by construction KLAPER behaviors are 1-exit control flows, that is they
only have a single end step. This allow us to verify any reachability property
in P-time. In practice RMC analysis of KLAPER models has been successfully
applied in the european project Q-Impress [27] and proved to be really efficient
on real-world industrial models.
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The first step of the transformation from KLAPER to RMC is the same
model-to-model transformation used for the PRISM based analysis. From the
intermediate PRISM-tailored model, KlaperSuite extrapolates a system of equa-
tions that is directly solved by our Java implementation, without any need for
external tools.

Reliability estimation is then reported in the result file, while an extensive log
file contains a textual representation of the equations system and the complete
solution, that is, the probability, from each modeled execution state to reach the
successful completion of the execution.

With respect to PRISM, RMC-based analysis can handle very large models
with recursive invocations. On the other hand it does only support verification of
reachability properties over Markov chains. The accuracy of results is arbitrary
also for RMC analysis and set by default to 10712.

3.2 Performance

Early evaluation of performance can be obtained by either analytical modeling
or simulation. In this Section we focus on modeling, while in Section we will
briefly discuss simulation facilities of the KlaperSuite.

The two most basic, though general-purpose, measurable properties for per-
formance are response-time and throughput. One of the most widely accepted
mathematical models to estimate those properties are Layered Queuing Networks
(LQNs) [928]. LQNs introduce new modeling concepts to represent software
systems. Systems are represented as a layered hierarchy of LQN tasks (each one
corresponding to a KLAPER Resource) which interact, and generate demands
for underlying physical resources. Each task may offer different kinds of services,
called entries. An entry corresponds to a KLAPER service and can be described
either as a phase or as an activity. Phases allow for description of simple sequen-
tial behaviors; activities allow for description of more complex behaviors, e.g.,
with control structures such as forks, joins, and loops.

An LQN model can be analyzed by means of special purpose mathematical
softwares. In the KlaperSuite we make use of the LQN Solver from Carleton Uni-
versit. In order to produce input files for that solver we designed a two step
model transformation. The first step is a QVTO model-to-model transformation
from KLAPER to an intermediate meta-model which is an abstract representa-
tion of the analytical model. Then, the abstract representation is transformed
into an input file for the LQN solver by means of an Xpand model-to-text trans-
formation.

The obtained LQN models can then be solved. Examples of the kind of anal-
ysis results that can be derived applying the LQN solver to the obtained LQN
model are task utilization, throughput and response time. Different configura-
tions can be easily analyzed by a simple change in the LQN parameters. The
analysis of the obtained performance results can help in the identification of
critical components, such as bottlenecks, which can prevent the fulfillment of
performance requirements.

!http://www.layeredqueues.org
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3.3 Simulation

The simulation engine of the KlaperSuite was initially designed with the only
purpose to validate the previous analysis tools, but can be used to simulate any
KLAPER model, tough it was not designed to deal with scalability issues.

The simulator is based on the SimJava library for the simulation of discrete
event systemsg. Upon SimJava, KlaperSuite builds a lightweight prototype of the
system in which each service is simulated through a SimJava Entity. Each entity
runs in its own thread and is connected to the others by ports which allow com-
munications consisting of sending and receiving events. Communications among
entities are defined consistently with the corresponding KLAPER, behavior to
be simulated. A central control thread monitors the execution of the prototype
and records execution times and failure occurrences of each Entity, as they are
inferred from the trace of events. The control thread’s log is then analyzed in
order to derive statistical estimation for performance and reliability properties.

In order to produce the Java code of the prototype another two steps model
transformation is in place. The first step transforms the KLAPER model into an
intermediate meta-model corresponding to the structure of the prototypeﬁ and
is implemented in QVTO. The second step is a model-to-text transformation
implemented in Xpand which generates the Java code.

The previous tools have been validated through simulation [29]. Notice that
for intrinsic reasons simulation is computationally expensive with respect to
mathematical analysis to verify the set of reliability and performance properties
discussed in this paper. Nevertheless, the use of an established tool such as
SimJava allows for further enhancement of the Java prototypes, that can, for
example, be instrumented with a larger set of monitors or with special purpose
features.

4 Tools Integration Status

Table [l shows the current development status of the KlaperSuite. Some of the
tools have been developed in the past as standalone and their integration is still
ongoing. All the single tools are hosted on Sourceforge@.

5 Related Work

In the last years, it has been widely recognized the need of including early quality
prediction in the software development process. In particular, there has been an
increasing interest in model transformation methodologies for the generation of
analysis-oriented target models (including performance and reliability models)
starting from design-oriented source models, possibly augmented with suitable

2 http://www.dcs.ed.ac.uk/home/hase/simjava/
3 The meta-model can be found in the Sourceforge repository.
4Thttp://sourceforge.net/projects/klaper/
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Table 1. Tools integration status

Integration

Tool
00 Purpose Features Status

— System mapped to DTMC model.

— Reliability properties expressed in
PCTL*.

— Efficient on complex formulae.

— Does not scale on recursive service
invocations.

Klaper2Prism Reliability Fully integrated

— System mapped to RMC model.
— State reachability properties only.
Klaper2RMC Reliability =~ — Efficient for recursive service invo- Fully integrated
cations.
— Highly scalable on large systems.

— System mapped to LQN model.

— Response time, throughput, state
residence time.

— Does not scale on large systems

Klaper2LQN Performance Still standalone

— System mapped to SimJava appli-

cation. . .
Klap er2 Simulation  — Reliability and performance esti- Partially  inte-
SimdJava mation grated

— Extensible via SimJava features.

annotations. Several proposals have been presented concerning the direct gen-
eration of performance analysis models. Each of these proposals focuses on a
particular type of source design-oriented model and a particular type of target
analysis-oriented model, with the former including, for example, UML, Message
Sequence Chart, Use Case Maps, formal or ADL languages and the latter includ-
ing Petri nets, queueing networks, layered queueing network, stochastic process
algebras, Markov processes (see [2J3]. To have an overview the topic, see for
example the WOSP conference series [10].

The gap between design-oriented models and analysis-oriented ones is often
long. Nevertheless, most of the proposals we are aware of start from UML mod-
els with proper annotations, and directly generate reliability models such as
fault trees, state diagrams, Markov processes, hazard analysis techniques and
Bayesian models. (e.g. [30/3I]). Another tool specialized to the prediction of
QoS is Palladio tool suite [§]. It provides its own meta-model called PCM (Pal-
ladio Component Model), able to describe component-based software architec-
ture with support for parametric QoS contacts[§]. Currently, it allows to design
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PCM models with its own graphical editor and analyze them for performance
and reliability via simulation.

A different way to deal with transformation complexity is to pass through an
intermediate model (the "kernel”) by pruning the information from the design
model that is not needed to execute the desired analyses, but still retaining
needed one.

Among the transformation approaches that make use of intermediate mod-
els, Petriu et al. [32] proposed the CSM (Core Scenario Model). CSM is a MOF
compliant kernel metamodel, specifically related to performance analysis. Trans-
formation from UML to CSM and from it to different performance models are
provided. PUMA [9] adopts CSM as intermediate language to predict perfor-
mance via layered queueing networks, an analysis model that extends queueing
networks and stochastic Petri nets. Gu et al. [I2] proposed, in a similar way,
their own intermediate metamodel to transform UML model with performance
annotations to performance modeling formalisms.

With respect to the kernel languages of [12/9)32], KLAPER is intended to
serve also for reliability and, possibly trade-off analysis between performance and
reliability. KLAPER and is specifically targeted to component-based systems. It
has been applied for the analysis of performance and reliability using queuing
networks and Markov models [IT] and experienced with the CoCoME case study
[33134]. Extensions of KLAPER has also been proposed to analyze self-adaptive
[35] and reactive [36] systems. In these works the KLAPER models have been
designed manually, without using any automated transformation tool.

Recently, KLAPER has been used within the European project Q-ImPrESS
[27]. Q-ImPrESS aims at building a framework for service orientation of critical
systems. The framework provides a tool suite for the modeling and the predic-
tion of QoS. Q-ImPreSS models can be manually created and extracted from
software source code thought reverse engineering tools. Once, the model is com-
pleted, several tools are exploitable for the analysis of reliability, performance,
and maintainability. Such a framework is deeply founded on model transfor-
mations, which allow to automatically fill the gap between design and analysis
models. In Q-ImPreSS, KLAPER facilities have been exploited for the construc-
tion of the reliability features in the Q-ImPrESS tool chain, and validated on
industrial cases.

With respect to previous works, we presented in this paper KlaperSuite a fully
automated and integrated environment including a family of tools empowering
designers with the ability to capture and analyze the performance and reliability
figures of their systems. The possibility of using different verification tools to-
gether with a simulation-based analysis tool could make KlaperSuite a valuable
instrument for predicting the software qualities during the development process.

6 Conclusions

In this paper we presented KlaperSuite, an integrated environment for per-
formance and reliability analysis leveraging KLAPER intermediate language.
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KlaperSuite allows the automatic generation of stochastic models to verify and
predict performance and reliability properties of component-based software sys-
tems. Analyses can be applied on high level design models, in order to provide
support for early properties evaluation. By using this tool, designers are em-
powered with the ability to analyze their systems, with established verification
instruments, in a seamless and integrated environment.

As future extension of the KlaperSuite, we are planning to implement model
transformations from higher level design models (first of all UML) to KLAPER.
In this way KlaperSuite will be easier to integrate in established development
cycles. On a longer perspective, we also plan to explore the possibility of extract-
ing KLAPER model directly from annotated code, which will encourage the use
of analytical models by programmers.

Finally, only part of the tools have been evaluate on real industrial models
inside the Q-Impress project. We are currently working on the experimentation
of this environment on different testbeds, to assess its effectiveness through a
more comprehensive set of real experiments.
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Abstract. Subjective behavior is essential for applications that must
adapt their behavior to changing circumstances. Many different solu-
tions have been proposed in the past, based, for example, on perspectives,
roles, contextual layers, and “force trees”. Although these approaches are
somehow equally expressive, each imposes a particular world view which
may not be appropriate for all applications. We propose a unification of
these approaches, called Subjectopia, which makes explicit the underly-
ing abstractions needed to support subjective behavior, namely subjects,
contextual elements and decision strategies. We demonstrate how Subjec-
topia subsumes existing approaches, provides a more general foundation
for modeling subjective behavior, and offers a means to alter subjective
behavior in a running system.

1 Introduction

We, as humans, generally strive to be objective, that is we try to behave in a
unique and consistent way, independent of personal feelings or external influ-
ences. In practice, however, we are often required to behave subjectively, that is,
we must adapt our behavior depending on circumstances.

In fact, real world entities are subjective. We have learned, for example, in the
20" century that physical measurements are relative to the frame of reference
used by the observer. As a consequence, real-world problem domains that we
model in software applications are also subjective. The various elements that
collaborate to achieve a common goal may need to adapt their behavior when
specific events or conditions are met.

Object-oriented languages follow the objective approach. An object behaves
always the same way when receiving the same stimulus. To faithfully model the
real-world domains we need mechanisms to model subjectivity. We can charac-
terize the key approaches that have previously been proposed as follows:

Perspectives. Smith and Ungar proposed adding multiple perspectives to an
object, where each perspective implements different behavior for that ob-
ject [12]. When an object sends a message through a perspective the receiver
behaves differently depending on this perspective. Therefore, an object be-
haves subjectively depending on the perspective through which other objects
see it.

Roles. Kristensen introduced the concept of roles to model subjective behav-
ior [6]. People behave differently depending on the role they are playing. For

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 115-[[30, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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example, the same person may behave differently as a father, an employee
or a shopper. A role is attached to an object to specify additional or mod-

ified behavior. Kristensen explicitly models subjects — objects with roles
— whose behavior depends on the role they are playing for the sender of a
message.

COP. Context-oriented programming (COP) was introduced by Costanza et al.
[1]. The behavior of an object is split into layers that define the object’s
subjective behavior. Layers can be activated and deactivated to represent
the actual contextual state. When a message is sent, the active context de-
termines the behavior of the object receiving the message.

SMB. Darderes and Prieto proposed subjective message behavior [2]. The dif-
ferent behaviors for a message are split into a set of independent methods
and combined with a tree-based decision mechanism, called a force tree.

Although formally the approaches are equivalent in expressive power, they are
not equally suitable in all circumstances. Each of these approaches imposes a
particular modeling paradigm which may be appropriate for certain problem
domains, but not for others. Consider the use case where a user wants to send
an email using a mobile device [2]. If the network is available the email should be
sent immediately, otherwise the email should be saved and sent when possible.
Modeling the network with either roles or perspectives does not make sense. This
subjective problem is not about roles of networks or emails, or about perspec-
tives through which they may be seen, but rather about whether the network
is available in the current context. Whereas COP or SMB might be more ap-
propriate for modeling subjectivity in this domain, perspectives or roles would
be more suitable to model behavior that varies with respect to the sender of a
message.

Furthermore, the responsibility of determining which subjective behavior should
be selected may lie varyingly with the sender of a message, the receiver, or even
the context. For example, in the perspective- and role-based approaches it is
the sender of the message which determines the perspective or role to be used.
Consider communicating with a person who might be at work or on holidays,
thus triggering completely different responses. In such a case it would make more
sense for the receiver and not the sender to determine the subjective behavior.

Our approach. To alleviate the problem of having a fixed subjectivity model,
we propose a framework, called Subjectopia, which unifies and generalizes the
earlier approaches. Subjectopia reifies three key abstractions that are only im-
plicit in the other approaches. A subject is an object that behaves subjectively.
Any object may be turned into a subject. Subjective behavior is modeled by
a decision strategy. A decision strategy determines the appropriate subjective
behavior based on the value of a set of contextual elements. Decision strategies
can be configured to model roles, perspectives, force trees or layers, thus sub-
suming the earlier approaches. Furthermore, they can be dynamically adapted
at runtime, which is important for adapting long-lived software systems.
presents a review of previous approaches to modeling subjective be-
havior. In [Section 3l we explain how Subjectopia models the subjective behavior
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of objects and discuss our implementation. [section 4] validates our approach by
showing the drawbacks of previous approaches in solving subjective problems
and demonstrates how Subjectopia circumvents these shortcomings. In
we summarize the paper and discuss future work.

2 State of the Art

Subject-oriented programming was first introduced by Harrison and Ossher [4].
They advocated the use of subjective views to model variation, thus avoiding the
proliferation of inheritance relations. Up to that point subjective behavior was
modeled in an ad hoc fashion using idioms such as self-delegation and multiple
dispatch. Various researchers subsequently proposed dedicated approaches to
model subjective behavior in a more disciplined way. We briefly survey the key
approaches and discuss their limitations.

2.1 Perspectives

Smith and Ungar [I2] proposed to model subjective behavior through a set of
possible views of an object. These views are called perspectives and are composed
of zero or more hierarchically ordered layers. Each layer is composed of pieces
modeling one behavior for one message and one object. For the approach to
be deterministic a layer should never have two or more pieces corresponding
to the same message and one object. An object sending a message selects the
perspective through which it views the subject. Smith and Ungar developed a
prototype called US on top of the Self [I4] programming system.

The approach forces the developer to translate a given problem in terms of
perspectives, which may not always suit the problem domain. Consider again the
use case in which a user wants to send an email using a mobile device [2]. (If the
network is available the email should be sent immediately, otherwise the email
should be saved and sent when possible.) Network availability is a property of
the current context of the user, not a “perspective” through which sending of
email can be viewed.

A further difficulty is that the object initiating an interaction is responsible
for selecting the current perspective. By contrast, in this use case it would be
more appropriate for the mobile device to decide how to behave.

A general problem of this approach is that there is no way to overrule the
process that decides the subjective behavior to be executed for a method. This
decision is hardcoded in the internals of the approach.

2.2 Roles

Kristensen [0] stressed the importance of roles in the subjective behavior of en-
tities: “we think and express ourselves in term of roles” when dealing with
the real world. The notion of a role can be deduced from psychology as a set
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of connected behaviors, rights and obligations as conceptualized by actors in a
social situation.

A role object is attached to a regular object, called an intrinsic object, and
adds, removes or redefines the latter’s original behavior. An intrinsic object to-
gether with its role is called a subject. Roles have no responsibilities of their own,
i.e., they only have meaning when attached to an intrinsic object. The is-part-of
relationship of the role to its intrinsic object refers to the location of part objects
introduced by Madsen and Mpgller-Pedersen [10]. An object sending a message
selects the role through which it knows the subject. There are implementations
of role-based programming relying on BETA [7] and Smalltalk [7].

Role-based programming forces the developer to model domain entities as
playing various roles. Let us consider the group programming example [12] of a
system for registering changes on source code of an object-oriented application.
In the original implementation changes were modeled as perspectives, allowing
us to have different views of the source-code. However, modeling changes as roles
does not reflect reality. The source code does not play a particular role but rather
is viewed differently by different developers.

As with perspectives, it is the sender of a message that decides which role
the subject plays in an interaction. Scenarios in which the subjective behavior
should be selected by the subject cannot be modeled directly.

2.3 Context-Oriented Programming

Context-Oriented Programming (COP) refers to programming language mecha-
nisms and techniques that support dynamic adaptation to context [5]. COP was
first introduced by Costanza and Hirschfeld [I]. The behavior of an object in
COP is split into several layers (not to be confused with the layers introduced
by perspectives). Each layer models the behavior associated to a particular con-
text. Every definition not explicitly placed in a user-defined layer belongs to a
default root layer. When an object receives a message, its behavior depends on
the active layer, representing the current context.

ContextL [5] extends CommonLisp with layers and PyContext [9] does the
same for Python. Implementations also exist for Java, JavaScript, Smalltalk and
Schemdl.

With COP the developer is required to model subjective behavior in terms
of contextual layers. Consider again the use case where a user wants to send
an email using a mobile device [2]. If the receiver of the email is in the same
room as the sender then the email is sent with high priority. The mail deliverer
is responsible for delivering the emails with a given priority. With layers, we will
have two implementations for the send mail responsibility, one with high priority
and the other without. The default layer activation of COP, using explicit layer
activation, does not allow us to faithfully model this problem domain. We require
a mechanism from the sender to activate the appropriate layer before sending
the message. Thus a perspective approach would model this problem better.

!http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html


http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html

Unifying Subjectivity 119
2.4 Subjective Message Behavior

Darderes and Prieto [2] proposed to represent subjective behavior by modeling
the forces that might influence an object to behave subjectively. There are four
types of forces: (i) the sender force is the object sending the message, (ii) the self
force is the receiver of the message, i.e., the subject, (iii) the collaborator force
is any object collaborating with the subject, and (iv) the acquaintance force is
any other object influencing the message.

Subjective Message Behavior proposes to split all possible behaviors for one
message into a set of behaviors. The decision process is realized by a dispatch
mechanism called a force-tree, consisting of determinant nodes, each consisting of
a condition to be fulfilled and corresponding behavior. The method determinant
node models one possible behavior for a given message of the object. The force
determinant node models a boolean condition based on one force to decide which
determinant has to be evaluated next. When an object receives a message, the
root determinant of the force tree corresponding to that message is evaluated.
The force tree has to be complete, acyclic and free of simultaneously active
determinants in order for its evaluation to result in a unique possible behavior
for a given message in a particular invocation context. Leaf nodes should always
be method determinant.

Subjective Message Behavior requires the developer to model subjective be-
havior using a force tree, which may be overly complex for certain domains:
Consider again the group programming example [I2] of a system for registering
changes to source code of an object-oriented application. Perspectives naturally
model the behavior of a developer who wants to see his version of the source code.
Casting this use case in terms of forces and force trees introduces unnecessary
complexity.

3 Modeling Subjective Behavior

In this section we introduce Subjectopiaﬁ Both Subjectopia and the examples
presented in this paper are implemented in Pharo Smalltallfd. Objects with sub-
jective behavior are explicitly modeled as subjects, emphasizing the difference
to common objects. A subject needs to select its correct behavior from a set of
possible behaviors. We use decision strategies to explicitly model the way subjec-
tive decisions are taken. Finally, contextual elements model context-dependent
information, which can influence the behavior of a subject. Our model allows us
to change the subjective behavior of a subject by changing its decision strategy.
Decision strategies and contextual elements allow us to model perspectives, roles,
context-oriented programming, subjective message behavior and other subjec-
tivity models. Hence, Subjectopia does not force the developer to use a fixed
modeling paradigm.

2 http://scg.unibe.ch/research/subjectopia/
3 http://www.pharo-project.org/
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To explain the Subjectopia model we use the bank account example from
the perspective approach [I2]. The use case consists of users transferring money
through bank accounts. The user object sends the message transfer:to: to its
bank account indicating as arguments the amount of money and the bank ac-
count the money should be transferred to. The bank account object changes its
balance by the amount of money transferred and sends the message addAndRecord:

to the bank account receiving the money. However, a user should not be able

to directly send the message addAndRecord: to a bank account to guarantee that
only bank accounts can trigger a transfer and maintain the balance invariant of
the banking application. As a consequence the message addAndRecord: has two
different behaviors for a bank account, depending on whether a user or a bank
account object sends the message.

The following subsections introduce the concepts of subject, decision strategy
and contextual element and describe how they can be used to model the example

3.1 Subjects

A subject is an object that behaves differently under different contextual circum-
stances. A subject may be fully subjective or only present subjective behavior for
certain responsibilities. To transform a regular object into a subject we send the
message becomeSubject to the object. For example, we can tell the bank account
object aBankAccount to become a subject:

aBankAccount becomeSubject.

The transformation of aBankAccount into a subject adds the necessary behavior
to enable it to behave subjectively for certain messages. The bank account object
can also directly inherit from Subject, which will have the same effect. The
bank account subject will only change its balance if the sender of the message
addAndRecord: is a bank account. We therefore define the message addAndRecord:
in the aBankAccount subject as being subjective:

aBankAccount register: aDecisionStrategy for: #addAndRecord:.

The original behavior of the aBankAccount subject for the message addAnd-
Record: is replaced by a decision strategy which models the subjective decision
process. Modeling subjects explicitly has the advantage that the subjective parts
of an application can be detected and thus reflected upon accordingly. Otherwise,
this information would be encoded in the application source code and we would
have to use ad hoc mechanisms to detect the subjects.

3.2 Decision Strategies

A decision strategy models the process of deciding how a subject has to behave
when it receives a specific message. Because we use explicit decision strategies

3 Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples aloud and interpret them as normal sentences: An invocation to a method
named method:with:, using two arguments looks like: receiver method: argl
with: arg2.
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aUser »( aBankAccount

‘ aContextualElement ‘
addAndRecord: 200
aDecisionStrategy

aDecisionStrategy

Decision strategy
for addAndRecord:

aDecisionStrategy

Fig.1. The object aUser sends message addAndRecord: with argument 200 to
aBankAccount. The subject performs a lookup and finds the subjective method. The
method evaluates the decision strategy selecting the appropriate behavior for the cur-
rent context.

we can define our own or reuse existing decision models such as those that
express perspectives, roles, context-oriented programming or subjective message
behavior. We can also directly implement behavior in a decision strategy.

shows the process of the subject aBankAccount receiving the message
addAndRecord: from aUser. The subject performs a traditional method-lookup.
Since addAndRecord: was defined as a subjective method, the method’s behavior
is adapted to evaluate the decision strategy:

aBankAccount>>addAndRecord: aNumber
| message |
message := self generateCommunicationInformation.
~(self findDecisionStrategyFor: #addAndRecord: evaluate: message)

The subjective method uses two steps to make the subject behave subjectively.
The first step consists in the subject creating a contextual element representing
the meta-information of the message. In this message object contains
the following information:

— The message selector #addAndRecord:

— The argument 200.

— The sender of the message, the aUser object.

— The receiver of the message, the aBankAccount subject.

The second step consists in evaluating the decision strategy with the contextual
information provided by the message object. The decision strategy determines
which information provided by the message object is used. The evaluation of a
decision strategy may be resolved as:

— Delegating to another decision strategy for further evaluation, allowing us
to model decision hierarchies.
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— Executing behavior, if the decision strategy directly models behavior.
— Sending a message to the subject, if we model all possible behaviors in the
subject.

In the user object aUser wants to change the balance of the bank ac-
count aBankAccount, increasing it by 200 Fr. The decision strategy examines the
message object and denies the request to change the balance because the sender
is a user object.

Decision strategies can be replaced, in case the paradigm for modeling subjec-
tive behavior needs to be adapted over time. It is even possible to use multiple
decision strategies within a single subject, thus allowing, say, role-based and
perspective-based approaches to be combined, if the problem domain demands
it.

3.3 Contextual Elements

Contextual elements model information available to a decision strategy for se-
lecting subjective behavior. We have already seen the example above where a
message object reifies the meta-information of a communication, to be used by
the decision strategy.

Other examples of contextual elements are perspectives, roles or context lay-
ers. These abstractions are contextual objects that can affect the decision strat-
egy depending on the subjective model we are in. We can also directly implement
behavior in a contextual element, for example to simulate roles. A contextual
element can be passed to a decision strategy in two ways: either the decision
strategy has direct access or it is sent together with the message.

aUser »( aBankAccount

aMessageContextualElement
addAndRecord: 200

aDecisionStrategy

Contextual element
influences decision
or behavior

aDecisionStrategy

aContextualElement

aDecisionStrategy

Fig. 2. Two ways of using contextual elements
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describes the process of how a decision strategy uses a contextual
element to model subjective behavior. We can use contextual elements to model
the bank account using perspectives. Bank account subjects send the message
addAndRecord: through the perspective, modeled as aMessageContextualElement.
Since addAndRecord: was defined as a subjective method, the method behavior
is adapted to allow the use of contextual elements:

aBankAccount>>addAndRecord: aNumber through: aContextualElement
| message |
message := self generateCommunicationInformation.
~(self findDecisionStrategyFor: #addAndRecord: evaluate: message
with: aContextualElement)

Because the decision strategy is modeled explicitly we can change the way the
decision is taken. For example we can let the decision strategy automatically
determine, using the message object, which perspective has to be used. In this
way we do not have to send the contextual element together with the message.
In this corresponds to the green contextual element, modeling the per-
spective, which is directly accessed by the decision strategy.

Sometimes we need composed contextual elements, for example when mod-
eling perspectives. One contextual element models one layer of the perspective.
The layers as contextual elements are hierarchically composed to one perspec-
tive. The evaluation order of the composed contextual elements is determined
by the decision strategy.

3.4 Implementation

The proof-of-concept implementation of Subjectopia is written in Smalltalk, due
to its advanced support for run-time reflection. At present, a subject must di-
rectly inherit from the class Subject to be able register subjective behavior. We
transform existing objects to subjects by sending the message becomeSubject
which adds the necessary behavior to the object receiving the message.

Each subject has a special decision strategy, called decision meta-object, which
maps subjective message names to decision strategies. Registering a subjective
method by sending register:for: to the subject consists of two steps. First,
it creates an entry in the decision meta-object with the message as key and
the decision strategy as value. Second, it adapts the behavior of the registered
method. Instead of performing the original behavior, the method collaborates
with the subject’s decision meta-object to evaluate the corresponding decision
strategy.

For example, to model subjective behavior on the bank account subject for
the message addAndRecord: we send the message register: aDecisionStrategy
for: #addAndRecord:. First, the subject creates an entry with key addAndRecord:
and value aDecisionStrategy in its decision meta-object. Second, the subject
generates the following method automatically:

aBankAccount>>addAndRecord: aNumber
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Subject
-aDecisionMetaObject : DecisionMetaObject

1 DecisionMetaObject

— -receiver
-namesToDecisions
) - -arguments
+register:for:

T

|

} % DecisionStrategy ContextualElement
|

|

} +decideOn:

|

| I

|

I MessageSendIinformation
|

I -sender

|

|

|

L—

-contextualElements
-messageSelector

Fig. 3. Class diagram of Subjectopia

“self findDecisionStrategyFor: #addAndRecord: evaluate: thisContext

The object thisContext represents the communication context, which is auto-
matically generated in Smalltalk. If an object sends the message addAndRecord:
to a bank account subject, it evaluates the decision strategy corresponding to
the message addAndRecord: .

Prior to the evaluation of the decision strategy, the subject generates an
object representing the meta-information of the message with the help of the
thisContext object. Next, the subject sends the message decideOn: to the deci-
sion strategy with the meta-information object as argument, which triggers the
evaluation. Currently Subjectopia models decision strategies for perspectives,
roles and subjective message behavior.

Subjectopia allows the sender of any subjective message to add through:
to send a contextual element together with it. Since we are in the context of
Smalltalk we solved this by overriding doesNotUnderstand: in the Subject class.
The doesNotUnderstand: method will look for the decision strategy correspond-
ing to the message without through:. Then it evaluates the decision strategy
sending the contextual element together with the message send information. It
is possible to implement a solution in other languages as well, even if it requires
modifications to the virtual machine or the compiler.

Consider an object that sends the message addAndRecord: 200 through:
aBankAccountPerspective to a bank account subject. Since this message is not
defined for the subject the doesNotUnderstand: method of the class Subject will
be evaluated. The subject performs a decision lookup to get the decision strategy
for the message addAndRecord: from the decision meta-object. The contextual el-
ement aBankAccountPerspective will be included in the object representing the
meta-information of the message. The decision strategy can take the contex-
tual element aBankAccountPerspective into consideration available through the
meta-information object.
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4 Validation

Subjectopia does not force the developer to use a fixed subjectivity model. Be-
cause we can choose among different subjectivity models we can model where
the subjective decision is taken, whether it is the sender or receiver of the mes-
sage. In this section we demonstrate this flexibility through four use cases. Two
of them were used by previous approaches as examples of subjective behavior.
The other two use cases are subjectivity requirements taken from the Moose
platform for software and data analysis@.

4.1 Mobile Mail Application

Let us consider the mobile mail application introduced by Darderes and Pri-
eto [2]. The use case is about having users sending emails from their mobile
device. A user can only send emails from his own device. The user collaborates
with a mail deliverer which can only send the email if the the device is connected
to a network. Otherwise, the mail deliverer retains the email until a connection
is established.

The mail deliverer behaves subjectively for the message deliver: aMail, as
users may only send emails from their own device. The original implementation
models the subjective behavior for the message deliver: as a force tree associated
to the mail deliverer. Our implementation follows the original approach since
Subjectopia can model subjective message behavior.

Modeling the deliver: message’s subjective behavior with perspectives del-
egates the decision to the sender. However, in reality the user does not choose
through which perspective he sees the mail deliverer, but the mail deliverer
chooses how to react to the message depending on the context. Modeling this
problem domain with perspectives is not natural.

Perspectives are not suitable to model the mail deliverer problem due to the
sender-oriented context definition. However, since Subjectopia models the deci-
sion taking process explicitly, we can modify it. We can make the mail deliverer
responsible for deciding through which perspectives other objects send their mes-
sages. The mail deliverer has two perspectives: delivery and deny delivery, which
model the acceptance and denial of the mails being sent by users.

4.2 Group Programming

The group programming application is introduced by Smith and Ungar to explain
perspectives [12]. In this use case a system keeps track of all the changes to the
source code of an object-oriented application. We can either see the changes
performed by a single developer or the merged changes of several developers.
For this particular example we consider objects to be containers of meth-
ods. When a developer needs to see an object’s method source code he collab-
orates with its MethodContainer. A MethodContainer models a container for the

4 http://www.moosetechnology.orgl A ready-made image with Subjectopia and
Moose can be found at: http://scg.unibe.ch/research/subjectopia/
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source code of one object. To obtain the textual representation for a particu-
lar method the developers send the message getSourceCodeFor: aMethodName to
the MethodContainer. The MethodContainer reacts subjectively to the message
getSourceCodeFor: depending on the contextual view of the developer. To model
the different views of the object we use perspectives thus we install a perspec-
tive decision strategy for the message getSourceCodeFor:. A single perspective
defines the changes that a developer performs to the system. The changes of the
source code for a particular method are modeled as contextual elements which
represent layers. The perspectives are modeled as composed contextual elements
which are sent by the developer together with the message getSourceCodeFor:
. The textual representation of the source code is different depending on the
chosen perspective.

The group programming use case can be modeled by using a perspective
decision strategy with Subjectopia. Other approaches are not well suited for
naturally solving this problem domain. For example, Subjective Message Be-
havior would model changes to the source code as forces. This is not natural
because forces influence the behavior of objects and we need to have multiple
views on an object. Additionally, force trees are not supposed to change, i.e.,
add or remove determinants, at runtime. If we want to have dynamic force trees
we need to check after each change that the force tree is still complete, acyclic,
free of simultaneously active determinants and that all leaf nodes are method
determinants.

4.3 Subjective Behavior Regarding Types of Objects in Moose

Moose is a platform for software and data analysis providing facilities to model,
query, visualize and interact with data [3/II]. For analyzing software systems,
Moose represents the source code in a model described by the FAMIX languages-
independent meta-model [13]. For example, the model of the software system con-
sists of entities representing various software artifacts such as methods (through
instances of FAMIXMethod) or classes (through instances of FAMIXClass).

Each type of entity offers a set of dedicated analysis actions. For example,
a FAMIXClass offers the possibility of visualizing its internal structure, and a
FAMIXMethod presents the ability of browsing the source code. These actions are
renderable as a contextual menu.

A group of entities is modeled through a MooseGroup, and is also an entity.
Like any other entity, groups can support specific actions as well. For example,
a group of FAMIXClass can be visualized using a System Complexity View [§], a
visualization that highlights the number of attributes, methods and lines of code
of classes within a class hierarchy.

We want to solve the problem of offering different behavior depending on
the type of the collected entities. As an example we take the subjective behav-
ior for the System Complexity View. When a MooseGroup receives the message
viewSystemComplexity it should only display the contained entities that are of
the type FAMIXClass. Thus, ideally, we should offer the possibility of viewing the
system complexity only if all contained entities are classes.
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Our solution models a MooseGroup as a subject that behaves subjectively when
receiving of the message viewSystemComplexity. We separately model the deci-
sion, called decideAvailableActions, and the behavior, called systemComplezity,
as decision strategies. The decideAwvailableActions strategy determines whether
the MooseGroup has a behavior for viewSystemComplexity or not. If a MooseGroup
contains only FamixClass entities, the decideAvailableActions strategy attaches
the systemComplexity strategy. Each time the list of entities is manipulated the
decision strategy decide AvailableActions recalculates subjectively which actions
are available.

Up until now, subjective behavior in Moose is currently realized by sub-
classing MooseGroup (see [Figure 4)). For example a group of classes is of type
FAMIXClassGroup, while a group of methods is of type FAMIXMethodGroup. There-
fore, changes in the list of entities can result in a change of the runtime type
of the group. The decision which type to choose for a given group is currently
implicit and it is based on names. For example, we cannot easily introduce a de-
cision of defining actions for a mixed group containing both classes and methods.

MooseGroup 1 * MooseEntity
FamixClassGroup FamixClass
+viewSystemComplexity

Fig. 4. Current class hierarchy of Moose elements

Using our approach, we extend MooseGroup to implement subjective behavior,
without depending on the class hierarchy. We simply change the decideAvail-
ableActions strategy to decide the new case and model the new behavior as a
decision strategy.

Moose is a large system with many extensions defined on top. Thus, any
change to the core should limit the impact on the other parts. This would imply
significant effort with other subjectivity approaches. For example, using COP
would have implied to translate a large part of the system to layers which en-
tails a considerable engineering effort. The subjective behavior is influenced by
the elements contained in the MooseGroup, thus we would need to define an activa-
tion protocol for the layers. Splitting the contextual behavior of MooseGroup into
several layers also implies a high effort because of the shared behavior between
the different kinds of groups.
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4.4 Subjective Behavior Depending on the Moose Environment

Moose provides a generic graphical user interface to interact with the model
of the software system. In the MooseGroup entities of the model are
listed. A right click on a group opens the contextual menu listing the possible
actions. For example a group of FamixClass entities shows the action Visualize
— System complexity. By selecting a menu entry a message is sent to the selected
group. For example, selecting Visualize — System complexity sends the message
viewSystemComplexity to the selected FAMIXClassGroup.

x -0 Moose Panel e s

Models Model x

Model Model (MooseModel) i v Al famixclasses (2192) (FAMIXClassGroup) i ¥
2L B T B e
W All famixaccesses (119608) ~ @ Smalltalk:FSStream ~
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Fig. 5. User interface provided by Moose. Selecting the entry System Complexity re-
sults in sending the message viewSystemComplexity to the selected group of classes.

The problem is that some visualizations may require contextual information
not retrievable from the objects and subjects involved in the communication.
Let us consider that we select a group of classes and that we want to view
them as highlighted on the overall system complexity. This can be achieved by
sending the message viewAsSelectionOnSystemComplexity to the group. This be-
havior also requires all other FamixClass entities of the model to create this
visualization. However, in different analysis contexts we want to see only a sub-
set of all classes as a basis for the visualization. Thus, the simple action of
viewAsSelectionOnSystemComplexity requires both the receiving group and the
reference group. Moose currently uses model-wise global variables to store this
information. The problem is that each new instance of the graphical user inter-
face of Moose can override the value of that global variable and this results in
unwanted side effects.

Our solution uses contextual elements to model the additional, context-
sensitive information. The context influencing the behavior of the selected
FamixClass group is all FamixClass entities of that model. Therefore, each model
creates and maintains its own set of contextual elements holding all of its
FamixClass entities for each user interface. We use a decision strategy modeling
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the behavior for the message viewAsSelectionOnSystemComplexity. The decision
strategy has access to the contextual elements of its model, i.e., all FamixClass en-
tities of the model. The decision strategy determines, using the meta-information
of the message, which interface has sent the message and accordingly uses that
contextual element.

With the Subjectopia approach we can model context-dependent behavior
while other approaches cannot. For example, using roles would not suit this
problem domain, as roles model different behaviors and not a way of reflecting
on the context. The Moose groups behave subjectively depending on contextual
information which is not included in the default message object. Roles also as-
sume that the sender determines through which role it knows the MooseGroup,
whereas it is the MooseGroup that determines its roles.

5 Conclusion

In this paper we have presented Subjectopia, a unified approach to modeling
subjectivity. Specifically, our contributions are the following;:

1. We surveyed prior work and identified a lack of generality when modeling
different problem domains.

2. We presented a novel approach to subjectivity that explicitly models sub-
jects, decision strategies and contextual elements. The reification of these ab-
stractions avoids the need to impose on the developer a particular paradigm
for modeling subjective behavior.

3. We developed a fully working prototype of the Subjectopia system and pre-
sented the implementation of non-trivial subjective use cases.

4. We demonstrated that our approach can model all other existing subjective
approaches as well as new, customized strategies. Moreover, we showed that
other approaches cannot model all use cases while our approach can adapt
and represent them all.

Introducing subjective behavior in legacy applications might have a consider-
able impact on the overall behavior of the application. Being able to scope the
subjective changes to specific objects helps in controlling this impact. We plan
to analyze reflection frameworks to allow Subjectopia to perform object-specific
subjective adaptations.
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Abstract. New programming languages that allow to reduce the com-
plexity of software solutions are frequently developed, often as extensions
of existing languages. Many implementations thus resort to transforming
the extension’s source code to the imperative intermediate representa-
tion of the parent language. But approaches like compiler frameworks
only allow for re-use of code transformations for syntactically-related
languages; they do not allow for re-use across language families. In this
paper, we present the ALTA4J approach to bring such re-use to language
families with advanced dispatching mechanisms like pointcut-advice or
predicate dispatching. ALIA4J introduces a meta-model of dispatching
as a rich, extensible intermediate language. By implementing language
constructs from four languages as refinements of this meta-model, we
show that a significant amount of them can be re-used across language
families. Another building block of ALIA4J is a framework for execution
environments that automatically derives an execution model of the pro-
gram’s dispatching from representations in our intermediate language.
This model enables different execution strategies for dispatching; we
have validated this by implementing three execution environments whose
strategies range from interpretation to optimizing code generation.

1 Introduction

A recent IBM whitepaper [23] identifies complexity as the most relevant factor
in the software development process: A reduction of complexity is directly pro-
portional to an improvement of the overall process. Accidental complexity, i.e.,
complexity not inherent to the problem solved by a program, is mainly caused by
the inability to accurately represent the conceptual solution in a given program-
ming language. Thus, research in programming languages produces many new
languages with mechanisms to structure a program in a way more suitable to
conceptual solutions. The key technique here is abstraction where one concrete
program module does not refer to another explicitly, but only abstractly specifies
the functionality or data to be used. The relevance of abstraction can be seen in
the continuous progress in the history of programming language research [24],

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 131-[[49, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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resulting in advanced abstraction mechanisms like multiple [I0] and predicate
dispatching [15], pointcut-advicd] [20], or context-oriented programming [18].
Many new languages employing these mechanisms are extensions of Java:
MultiJava [I1], JPred [21], Aspect] [19], CaesarJ [2], Compose* /Java [12], Con-
textJ [I8], etc. Some of these are further extended by others; thus, languages
and their extensions can be arranged in a genealogical tree, with languages of
different paradigms being siblings, as exemplified below for a few languages.

Java

1/ Shape intersect(Shape s)
MultiJava AspectJ 2 when s@Rectangle { ... }

o)

i
T

AspectJ + ﬂﬂ W ] %ematches

» Rl »

1 after() : call(* Shape.intersect(..))
2 && args(Rectangle) { ... }

JPre

,_h
©
=

Language constructs provided by the individual languages are presented as
dots in different shades of gray in the figure. The black dot represents a con-
cept shared by all languages except Java, e.g., resolution of abstractions based
of argument values. Vertical and horizontal overlap of the languages with re-
gard to this construct is highlighted by the rounded boxes, hatched vertically
and horizontally, respectively. But as the two listings to the right show, lan-
guages like JPred (top) and AspectJ (bottom) express the same concept using
different notations: a predicate (s@Rectangle) respectively a pointcut designa-
tor (args(Rectangle)).

Dispatching is the mechanism that resolves abstractions and binds concrete
functionality to their usage, e.g., when invoking Shape.intersect above. Abstrac-
tions commonly found in programming languages influence the resolution of
method calls and field accesses. In the following, we use the term dispatch site
uniformly to refer to sites of both method calls and field accesses in a program.
A common example of dispatching is receiver-type polymorphism: Whenever a
virtual method is invoked, the runtime environment chooses from among differ-
ent functionalities (i.e., the overriding methods) and transfers control to the one
alternative applicable in the current program state (i.e., corresponding to the
dynamic receiver type). We call languages that go beyond classic receiver-type
polymorphism advanced-dispatching languages, as they compose functionality in
different, more powerful ways (e.g., before/after advice) and can act on addi-
tional runtime state (e.g., argument values/types).

The implementation of a programming language typically consists of
two parts, a front-end and a back-end, which are decoupled by means of an
intermediate language. The front-end processes source code and emits a code
representation conforming to the intermediate language. The back-end either

! A particular flavor of aspect-oriented programming (AOP).
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executes this intermediate representation (IR) directly or further compiles it
into a machine-executable form. Typically, implementations of new languages
build on the back-ends of established languages; thus, their front-ends have to
emit IR in an intermediate language tailored to a different source language. For
the aforementioned source languages, e.g., only the parent (Java) provides its
own intermediate language (Java bytecode).

The resulting semantic gap between source and intermediate language, i.e., the
inability of the intermediate language to express the new mechanisms directly, re-
quires transforming the high-level language concepts to low-level imperative code.
Compiler frameworks support this task by means of code transformations [22/T4/3].
They only support re-use along the vertical dimension as they require a language
to be a syntactic extension of another in order to re-use its implementation; hori-
zontal re-use is not possible. While code transformations defined on the common
intermediate language are shared among all language extensions, they cannot ex-
ploit knowledge about source language constructs, which is lost during the trans-
formation to the common intermediate language.

In this paper, we present the ALIA4J approac}E for implementing advanced-
dispatching languages. It offers a meta-model consisting of just a small number of
well-defined, language-independent abstractions commonly found in advanced-
dispatching languages. This meta-model can act as an intermediate language,
thereby closing the semantic gap that currently exists between these source lan-
guages and their parent’s intermediate language. Furthermore, re-using the im-
plementation of horizontally overlapping constructs becomes viable.

For executing code defined in the intermediate language, we provide several
back-ends, including platform-independent ones. These back-ends instantiate a
framework that can automatically derive an execution model from the advanced-
dispatch’s intermediate representation. As the execution model retains the IR’s
declarative nature, the back-end is free to chose from different execution strate-
gies, ranging from interpretation to optimizing code generation.

The goal of ALIA4J is to ease the burden of programming-language implemen-
tation resting upon both researchers of new abstraction concepts and designers
of domain-specific languages. It should be emphasized that our approach is con-
cerned with the ezrecution semantics of the different languages. They may differ
greatly in the way language (sub-)constructs are used or combined. Based on this,
the languages can make different guarantees on the program behavior or perform
different semantic checks. For example, in the case of predicate dispatching, a
compiler ensures that there is always exactly one applicable predicate method
at runtime. Performing syntactic and semantic checks is the responsibility of a
language’s compiler and not covered by our approach.

The contributions of this work are threefold:

1. We introduce advanced-dispatching as an execution model.
2. We provide a meta-model for advanced dispatching. Its generality is shown
by refining it with (sub-)constructs of the languages AspectJ, Compose*,

2 See http://www.alia4j.org/.
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CaesarJ, JPred, ConSpec, and several domain-specific languages; the overlap
in refinements used by these languages shows their re-usability.

3. For executing the advanced-dispatch IR, we provide a framework that does
not impose any particular execution strategy on the back-end and demon-
strate this freedom of choice by providing three back-ends based on different
execution strategies: STEAMLOOMALIA| SiRIn, and NOIRIn.

In the following section, we discuss approaches related to ours and their limita-
tions. The ALIA4J approach, including the meta-model and the framework, is
fully presented in Sect. Bl and evaluated in Sect. [l Section 1] describes how to
map existing and new languages to our approach, thus demonstrating re-usability
of meta-model refinements. Section outlines the different framework instan-
tiations, proving the independence of our execution model from a back-end’s
execution strategy. Finally, Sect. Bl concludes and discusses future work.

2 Related Work

Several approaches provide abstractions in the intermediate language that are
closer to the source-language constructs of aspect-oriented, context-oriented, or
similar languages than established intermediate languages. The immediate goals
of these approaches range from improving performance to providing a precise
operational semantics of the intermediate language. Nevertheless, they also fa-
cilitate horizontal re-use of the implementation of the constructs added to the
intermediate language. But as the granularity of the added abstractions is very
coarse, many re-use opportunities are still missed. Furthermore, intermediate
languages and the definition of their semantics are tied to a specific execution
strategy in all cases; this hinders moving to back-ends with different strategies.

The Nu project [13] extends Java bytecode with two instructions supporting
aspect-oriented programming: bind and remove. By means of these primitives,
dynamic deployment and undeployment of aspects can be realized. The bind
instruction expects two arguments: a Pattern object selecting relevant code lo-
cations by means of their syntactic and lexical properties and a Delegate object
specifying a method to execute as advice. It returns a BindHandle, which then
may be passed as argument to the remove primitive to undo a specific binding.
Nu requires an imperative definition of Delegates and other concepts like the
execution order of aspects; it only supports access to a limited set of context
values. Nu’s two primitives are implemented on top of the HotSpot Java virtual
machine, which has been modified to accept the extended IR.

The Reflex project [27] provides behavioral reflection implemented through
dynamic bytecode instrumentation. Hooksets are expressions over properties of
structural abstractions of the code, like classes or methods. Links associate hook-
sets and metaobjects which are Java classes that may be implicitly instantiated.
A link specifies which method of the metaobject is to be called and is config-
ured by link attributes. While some attributes are first-class entities in Reflex,
this model is not very fine-grained. As a consequence, their implementation can-
not be re-used in the implementation of language (sub-)constructs that partially
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map to existing activation conditions or parameterizations. Parameters as well
as scopes cannot be user-defined and extending the available parameters and
scopes requires a modification of the Reflex framework.

Schippers et al. [25] present a delegation-based execution model for the Multi-
Dimensional Separation of Concerns (delMDSOC). They define primitive op-
erations in their execution model and provide an operational semantics that
allows formal reasoning about language constructs. The model’s expressiveness
is shown by realizing Java-like, AspectJ-like, and context-oriented languages in
it. The deIMDSOC model is not declarative in the definition of dynamic be-
havior; instead, language constructs are represented by imperative and often
program-specific code. A declarative model of context exposure is missing.

The Java Aspect Metamodel Interpreter (JAMI) [17] defines a meta-model to
capture the semantics of features in aspect-oriented languages. Due to JAMI’s
interpreter approach, meta-model refinements must resort to using reflection and
optimizing code generation cannot be realized.

3 The ALIAA4J Architecture

In this section, we present the Advanced-dispatching Language-Implementation
Architecture for Java (ALIA4J) that facilitates both vertical and horizontal re-
use of implementations of all language (sub-)constructs governing dispatch. Pre-
decessors of ALTA4J have been the subject of earlier work [85]. ALIA4J has two
main components: The Language-Independent Advanced-dispatching Meta-model
(LIAM), a common meta-model for expressing advanced-dispatch declarations as
well as relations between them, and the Framework for Implementing Advanced-
dispatching Languages (FIAL), a framework for execution environments that
handle LIAM-based advanced-dispatch intermediate representations.

3.1 Components of ALTA4J

Figure [1l shows the architecture of our proposed approach. It is centered around
LIAM, a meta-model of primitive concepts participating in advanced dispatch.
When implementing a new language following the ALIA4J approach, the build-
ing blocks of the language’s semantics must be concretized by either re-using
existing meta-model refinements, implementing new refinements, or a mixture
of both; this yields a language-specific LIAM refinement. When compiling a
program in the new language, the compiler needs to separate the advanced dis-
patch declarations from those parts directly expressible in Java. From the former,
a program-specific advanced-dispatch IR conforming to the refined, language-
specific meta-model is created; the latter are turned directly into Java bytecode.

When executing a program, the FIAL framework (top right) derives an ex-
ecution model for each dispatch site—i.e., for each method call, field read or
write—from the program-specific advanced-dispatching IR. To this end, FIAL
processes the IR but only refers to it in terms of the language-independent LIAM
entities; thus, FIAL and its instantiations are de-coupled from the given source
language.
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LIAM: Dispatch-
Declaration Meta-Model

FIAL: Framework for Ex-

ecution Environments
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Language-Specific
LIAM Refinement
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Java Virtual Machine

Advanced-Dispatch IR

Program-Specific ’

Java Bytecode W

Fig. 1. Overview of an ALTA4J-based language implementation

Since our targeted languages are based on the Java platform, we expect that
FIAL is instantiated as a plug-in or extension for an existing Java virtual ma-
chine (bottom right). By interacting with this JVM, the FIAL instantiation
implements dispatch as mandated by the provided execution model, e.g., by in-
terpretation or different code generation approaches (cf. Sect. 2)). FIAL itself
handles services like dynamic class loading and dynamic deployment, i.e., to add
or remove intermediate representations of advanced-dispatch at runtime. FTIAL
instantiations only need to implement a few well-defined interfaces and LIAM
refinements are not at all concerned with these services’ implementation.

FIAL offers four generic services required by any execution environment sup-
porting LIAM-based advanced-dispatch IR:

1. FIAL assists in deploying and undeploying such IR at runtime.

2. It handles dynamic class loading in the presence of dispatch IR already
deployed.

3. It can trigger an importer component which transforms advanced dispatch
declarations from the source language to the intermediate representation.

4. From the currently deployed advanced-dispatch IR it derives an execution
model for each dispatch site in the executed program.

To derive a dispatch site’s execution model, FIAL partially evaluates the LIAM-
based IR and constructs the dispatch function for the dispatch site combining
all individually declared dispatch predicates. In the ALIA4J approach, the re-
sult of a dispatch function can be composed of multiple actions; it is a Boolean
function f : B™ — B™ that characterizes which of the m actions should be
executed when the dispatch site is reached, depending on the evaluation of n
predicates. A detailed discussion of the construction of dispatch functions [26],
and of partially evaluating LIAM-based IR and resolving relations between
dispatch declarations [7], Sect. 5] is found elsewhere.
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3.2 The Meta-Model of Advanced Dispatching

Figure Plshows a UML class diagram of LIAM’s meta-entities for the declaration
of advanced dispatch, termed an Attachment, and relations between such dec-
larations. An Attachment specifies which functionality should execute (Action)
at which join pomtsﬁ (Specialization) and when it should execute relative to the
join point (Schedule Info), i.e., before, after, or around. The Specialization en-
tity is divided into entities specifying static (Pattern) and dynamic (Predicate)
properties of selected join points as well as a list of values (Context) which must
be exposed to the Action at selected join points. Hereby, a Pattern specifies
syntactic and lexical properties of instructions executing at a join point. These
instructions are generally connected to a member, e.g., the target method for an
invocation. Patterns are composed of multiple sub-patterns matching on the dif-
ferent elements of the member’s signature like the name or parameter types [4].
A Predicate is a Boolean expression of Atomic Predicate entities modeling con-
ditions on a join point’s dynamic state.

5

2.
Attachment ’ " PrecedenceRule

) N 1 +]
I Action ] I Specialization l I Schedulelnfo l I CompositionRule ’
(]
L o — ]
I Context ﬁ I Predicate ﬁ I Pattern l
* 0..1

AtomicPredicate

Fig. 2. Entities of the Language-Independent Advanced-dispatching Meta-Model

As Fig. [ shows, it is not only a Specialization that can refer to a Context
to specify that this context value is exposed to an Action; Atomic Predicate
and Context itself can also refer to Contexts. This means that the evaluation
of Atomic Predicates and Contexts, respectively, depends on the exposure of
further context valuesH For example, a refinement of Context that realizes the
reflective thisJoinPoint keyword of AspectJ declares its dependency on the indi-
vidual context values that it composes, like argument values passed to the join
point and whether the join point is a method call or field access.

Relations between Attachments are defined in terms of Precedence Rules and
Composition Rules. Both kinds of rules govern the execution of Actions jointly
applicable at the same join point. The former rules specify a partial order among
the Actions and the latter rules specify which Actions must or must not be
executed together. In all cases, a relation between Attachments carries over to the
Actions contributed by the Attachments. The entities printed in italics in Fig. [2],

3 The term, borrowed from AOP, refers to a specific execution of a dispatch site.
* Circular dependencies must be ruled out by the front-end.
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i.e., Action, Atomic Predicate and Context, can be refined with the specific sub-
constructs of a language being implemented in the ALTA4J approach. All other
entities represent logical groupings of the refinable entities. They are fixed and
used by FIAL to partially evaluate LIAM-based IR.

The listing below shows an AspectJ aspect with one pointcut-advice. This
aspect will be compiled to a class with the name A and a method, say before 0(),
containing the body of the before advice. The aspect’s instantiation strategy is
to create a singleton instance of A and always invoke the method thereon.

1 aspect A issingleton() {
> before() : call(x x.m(..)) { /* advice body =/ }

3

Figure [ shows the LIAM-based IR for the pointcut-advice in this example.
This example is minimalistic on purpose and does not use all of LIAM’s features;
section ] discusses creating our IR from advanced-dispatch declarations in dif-
ferent languages, including AspectJ, in detail. At the moment, just note that
AspectJ pointcuts are expressed by Specializations in LIAM. But Specializa-
tions also have additional purposes, for instance, they refer to a Context entity
that realizes the aspect’s instantiation strategy. In the example, PerTupleContext
realizes the issingleton strategy. The Action maps to the advice functionality and
the Schedule Info maps to the keyword before, after or around.

l :Attachment l
:MethodCallAction | :Schedulelnfo

method="A.before_0()" N} time=BEFORE
’ :Specialization l
[ :MethodPattern

pattern="% x.m(..)"

I :PerTupleContext }é

Fig. 3. Example of a LIAM-based advanced-dispatching IR

3.3 FIAL and LIAM in Practice

The execution model of FTAL gives rise to both default compilation and inter-
pretation strategies for dispatch sites. Either can be pursued by a FIAL instan-
tiation. This facilitates a modular implementation of a LIAM entity’s semantics
in terms of a plain Java method, referred to as the entity’s “compute” method.

When using the default code generation, the execution model is traversed
depth-first until a LIAM entity is reached that does not depend on another one.
For such a leaf, code is generated to invoke the “compute” method. In case
of, e.g., a Context, this “compute” method returns the modeled value, which
can then be passed to the “compute” method of the entity depending on the
Context, and so forth. Glue code is generated to ensure the correct evaluation of
the dispatch function, depending on the result values of the Atomic Predicates.
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A variation to this default compilation strategy is to delegate bytecode gen-
eration to the LIAM entity itself rather than just generating a call to its “com-
pute” method. Because the bytecode-generation method is called individually
for each dispatch site, its static context can be considered and the bytecode can
be tailored to each site. Both strategies can be mixed freely; a LIAM entity must
simply implement a “compute” method or one that directly emits Java bytecode.

As an example of a LIAM entity, consider the JoinPointKindContext presented
below. It represents a string value describing the kind of the join point, accessible
via thisJoinPoint.getKind() in AspectJ. The entity passes a signature Context to
its super-constructor (line[]), thus stating that it depends on this Context, which
returns the signature of the member associated with the current join point. As
a consequence, a signature object is passed to the method getObjectVaIueE the
“compute” method, whenever the JoinPointKindContext is to be evaluated. In the
example, this method picks one of the constant values defined in the JoinPoint
class from the AspectJ runtime library appropriate to the signature (lines[@ ff.).

public class JoinPointKindContext extends Context {
public JoinPointKindContext() {
super(Collections.singletonList(ContextFactory.findOrCreateSignatureContext()));

}

1
2
3
4
s public Object getObjectValue(Object liamSignature) { // "compute” method
6 if (llamSignature instanceof FieldReadSignature)

7 return JoinPoint.FIELD GET;

8 else ...

o} }

An alternative implementation declaring BytecodeSupport (line[l) is presented
below. Its method emitting bytecode for a specific dispatch site (lines EHIO)
inspects the signature of the associated member (line [@) and simply emits an
instruction fetching the appropriate constant (line [ ff.). Because the generated
bytecode does not contain conditional control flow, it is more efficient than the
“compute” method. No required Contexts have to be declared (line B]) as evalu-
ation of this Context now does not depend on the signature Context.

public class JoinPointKindContext extends Context implements BytecodeSupport {
public JoinPointKindContext() {
super(Collections. < Context>emptySet());

if (site.getSignature() instanceof FieldReadSignature)
builder.appendGetstatic(JOIN POINT CLASS, "FIELD GET",
TypeDescriptorConstants.STRING CLASS);
9 else ...

0} }

1
2
3
4
s public void build(BytecodeBuilder builder, GenericFunction site) {
6
7
8

® The name, parameters and return type of a “compute” method must follow naming
conventions that are ruled by methods not shown in this example.
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The generation of bytecode for a LIAM entity may also depend on the actual
execution strategy of the back-end. Therefore, ALIA4J uses Abstract Factories
to create LIAM entities. A FIAL-based execution environment can override the
factory methods for those entities for which back-end-specific bytecode can be
generated; this is completely transparent to the front-end.

4 Evaluation

We evaluate the ALTA4J approach on two levels: First, we investigate LIAM’s
ability to realize new as well as existing languages and the degree of re-use
facilitated by our approach. Second, we show the independence of both FIAL
and our execution model of a concrete environment’s execution strategy.

4.1 Evaluation of LIAM

To validate our approach, we have refined LIAM with the concrete language sub-
constructs found in several languages. In the following, we will briefly discuss
these refinements. For a full discussion of AspectJ, CaesarJ, Compose*, JPred,
MultiJava, and ConSpec as well as the necessary LIAM refinements, we refer to
our electronic appendixﬁ For the languages AspectJ and ConSpec we provide
importers that automatically map source code to program-specific LIAM models.

AspectJ. The AspectJ compiler creates a class for each aspect, with a virtual
method for each advice. The aspect’s instantiation strategy, defined in the “per-
clause”, specifies whether a new instance of this class must be created at a join
point or an existing instance is to be used. In either case, the virtual methods
compiled from the advice are invoked on this instance. When mapped to LIAM,
an aspect’s instantiation strategy is represented by a Context: The pertarget,
perthis and issingleton strategies are mapped to a PerTupleContext, which asso-
ciates a tuple of input values with a lazily created instance of the aspect class;
for the former two a l-ary tuple containing a CalleeContext or a CallerContext is
used, for the latter a O-ary tuple. The percflow and percflowbelow strategies are
mapped to a PerCFlowContext and PerCFlowBelowContext, respectively. Each Spe-
cialization refers to the Context representing the instantiation strategy as its
first exposed Context. All pointcuts defined in an aspect are replaced by their
conjunction with the pointcut by which the aspect’s per-clause is parameterized.
For each pointcut-advice pair in the aspect body, one Attachment is created,
its Action being a MethodCallAction that refers to the method the compiler created
for the advice. The Schedule Info trivially mirrors the keyword before, after, or
around. Each pointcut is mapped to a set of Specializations. The mapping of
individual pointcut designators to LIAM is best illustrated by a representative
example: The args pointcut designator can be parameterized by an identifier
corresponding to a pointcut parameter. This imposes a dynamic constraint on an
argument’s type and exposes the argument’s value to the advice. The restriction
is mapped to an InstanceofPredicate with an associated ArgumentContext. For the
value exposition, an ArgumentContext is associated with the Specialization.

5 See [http://www.aliadj.org/alia4j-languages/mappings)
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When precedence is defined between aspects in terms of declare precedence,
for each pair of Attachments from the referred aspects one Precedence Rule is
created. Named pointcuts, abstract aspects and pointcuts, and inter-type mem-
ber declarations [I6] can also be realized with the ALIA4J approach, but we
omit their discussion for the sake of brevity. Inter-type declarations that modify
the type hierarchy (declare parents) or emit errors and warnings during compila-
tion (declare error, declare warning) are naturally out of scope for ALTA4J.

CaesarJ. While CaesarJ’s pointcut-advice language features are the same as
AspectJ’s, a CaesarJ class can also be deployed and undeployed dynamically
using deploy, undeploy, or a dedicated API. In this case, the program specifies an
actual instance of the class which is to be deployed, i.e., an ObjectConstantContext
parameterized with this object is used as the first context of all Specializations.
Dynamic deployment also can add a scope, i.e., the class’s pointcut-advice may
be active only within in a single thread or while a specified object is execut-
ing. This scope is modeled as an Atomic Predicate and the Predicates of all
Specializations are replaced by a conjunction with this Atomic Predicate.

Compose*. In Compose*, filter modules are superimposed (deployed) on so-
called inner objects and contain filters that react upon methods invoked either
on (inputfilters) or by (outputfilters) the inner object. Data fields in a filter module
can be defined, e.g., as internals that have a distinct value for each inner object.

For each of a module’s filters, consisting of filter type, condition part, matching
part, and substitution part, an Attachment is created. Hereby, the filter type and
the substitution part are together mapped to an Action, the former determining
the kind of Action and the latter its parameterization. Filter types like the
Exception filter are predefined and are mapped to dedicated Action entities.
Filter types provide a specification of their effects: Whether they are active in
the calling or returning flow is captured by a Schedule Info entity; whether the
message flow continues after the Action or whether subsequent filters are skipped
is captured by Composition Rules. Conditions are implemented as methods in
Compose* and represented by LIAM’s MethodPredicate. Access to internal data
fields is represented as PerTupleContext configured with a 1l-ary tuple exposing
the CalleeContext, when accessed from an input filter, or the CallerContext, when
accessed from an output filter.

Filter modules have to be explicitly superimposed; the corresponding Attach-
ments are not deployed by default. Superimposition acts on a set of classes on
whose instances a filter module is to be superimposed. This is modeled by a
conjunction of the affected Attachments’ Predicates with an ExactTypePredicate
Atomic Predicates (configured with either CalleeContext or CallerContext for in-
put and output filters, respectively). Further constraints between filter modules
specified in Compose* can be represented using LIAM’s Precedence Rules and
Composition Rules.

JPred. In JPred, methods may have a predicate in a when clause. A class can
contain multiple methods with the same name and formal parameters but with
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different when clauses. When the method is invoked, the implementation with the
most specific, satisfied predicate is executed; an implementation whose predicate
implies the predicate of another implementation overrides it. Methods defined
in a super-class are also overridden. The JPred compiler statically checks that
for each method-call site exactly one implementation will be applicable.

For all these predicate methods, the compiler generates a plain Java method
with a unique name. For each predicate method an Attachment is created with a
MethodCallAction configured to execute this method. The Pattern of the Attach-
ment selects invocations of the method according to the predicate-method name
and the Predicate corresponds to the predicate specified by the when clause. As
only a single predicate method must ever be executed, even if multiple predicates
may be satisfied, the overriding relations are mapped to Composition Rules.

ConSpec. Uunlike the above languages, ConSpec [1] is not a general-purpose
language but used only to express security policies. Regardless, it shares a num-
ber of characteristics with aspect-oriented languages: Its notion of events and
guards is akin to AOP’s pointcuts whereas its notion of updates is akin to advice,
the key difference being a constrained set of possible actions; updates can only
affect a limited set of state variables in limited ways. These state variables can
moreover exist in several scopes, which allows them to be associated with par-
ticular objects (OBJECT) or persisted across program runs (MULTISESSION).
In either case, LIAM can express scopes using an appropriate PerTupleContext; in
the latter case, e.g., the lazily created instance is initialized with the persisted
state.

New, Domain-Specific Languages. The ALIA4J approach was used in the
course “Advanced Programming Concepts” (2009/10) taught at the University
of Twente to illustrate the execution semantics of advanced-dispatching lan-
guages and to perform practical assignments. During this course, groups of two
or three students developed prototypes of domain-specific languages (DSLs), cov-
ering domains as diverse as (1) the declarative definition of debugging activities,
(2) annotation-defined method-level transactions, (3) asynchronous Future-based
inter-thread communication, (4) runtime model checking, (5) authentication and
authorization, and (6) the automatic enforcement of the Decorator design pat-
tern. All language prototypes except the sixth could be implemented by re-using
the already existing LIAM entity implementations. This shows that our approach
is well suited for the implementation of domain-specific languages.

Summary and Lessons Learned. Table[J]shows the different concrete entities
we implemented while mapping the languages AspectJ, CaesarJ, JPred, Multi-
Java, Compose*, and ConSpec to LIAM, as well as their usage in the different
language mappings. CaesarJ shares the column with AspectJ, as the pointcut-
advice part of the language largely overlap with AspectJ; JPred and MultiJava
share a column because the former subsumes the latter.
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Table 1. Usage of LIAM entities in different languages. v': non-trivial entity directly
used in language mapping; v *: trivial context adapting interface of value; (v'): non-
trivial entity used indirectly.

AspectJ/ Com- JPred/ Con- AspectJ/ Com- JPred/ Con-
CaesarJ pose* MultiJava Spec CaesarJ pose* MultiJava Spec
Context Pattern
Argument v v v v Method v v v v
Callee v v v V' Constructor v v v
Caller v v Staticlnit. v
Result v v v FieldRead v
Arguments v v FieldWrite v
Debuglnfo v AtomicPredicate
Signature v v Instanceof v v v
PerTuple v v v Method v v v v
PerCFlow v ExactType v v v
PerCFlowBelow v CFlow v
ObjectConstant v v CFlowBelow v
AspectJSignature Ve Bin.Relation v v v
JoinPointKind v Action
Sourcelocation Ve FieldRead (/) (\/) (\/) (\/)
ThisJoinPoint v FieldWrite V) ) ) )
Thread V' (CaesarJ) MethodCall v v v v
Constant v v’ CFlowEnter v
Field v v\ CFlowExit v
ArrayElement v V" NoOp v v
BinaryOperation v v\ Throw v v
UnaryOperation v v
MethodResult v v v
ReifiedMessage Ve

4.2 Evaluation of FIAL

We have developed various FIAL-based back-ends (STEAMLOOMALIA| SiRIn,
and NOIRIn) using different execution strategies reaching from interpretation
over bytecode generation to direct generation of machine code. Experiments have
shown that native machine-code generation for LIAM entities of simple language
concepts does not improve performance significantly. Thus, we will not discuss
the implementation of STEAMLOOMALIA and its use of modularly implemented
machine-code generation strategies here. Nevertheless, this support is useful for
more complex VM-integrated optimizations, e.g., for cflow [6].

SiRIn. SiRIn, the Site-based Reference Implementation, wraps every dispatch
site into a special method and generates bytecode for these “reified” dispatch
sites using the ASM bytecode engineering libraryE Each wrapper method

" See http://asm.ow2.org/
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contains code derived from the dispatch function. SiRIn may duplicate code
if several leaf nodes share an Action. This code-splitting approach opens up new
optimization opportunities for the JVM’s just-in-time compiler. SiRIn itself is a
Java 6 agent; it does not require a native component and is thus fully portable.

NOIRIn. NOIRIn, the Non-Optimizing Interpreter-based Reference Imple-
mentation, refrains from code generation and interprets the execution model
produced by FIAL. Based on NOIRIn, implementing generic IDE support for
debugging FIAL’s execution models is straight-forward [28/9]. Because NOIRIn
does not generate bytecode for dispatch sites, it can only handle LIAM entities
which implement a “compute” method. This is not a restriction because it can
be expected that for each LIAM refinement a “compute” method is implemented
at first, eventually supplanted by an optimizing bytecode generation. Like SiRlIn,
NOIRIn integrates with any standard Java 6 VM.

Integration Testing. We provide an extensive suite of integration tests, which
use the FIAL framework to define and deploy LIAM-based dispatch represen-
tations, execute an affected dispatch site, and verify the correct execution. The
suite is independent of any concrete FIAL instantiation and, thus, also acts as
compatibility test. It contains one JUnit test case per provided LIAM entity
and several test cases for FIAL’s services like dynamic deployment or ordering
actions at shared join points. Each test case contains up to 512 tests using the
tested entity or service in different ways and executing dispatch sites with dif-
ferent characteristics. Nearly all of the 4,045 tests are systematically generated
to cover all relevant variations of dispatch sites: execution in a static or virtual
context; dispatch of a method call, field read or write; etc.

5 Conclusions and Future Work

In this paper, we have presented the ALIA4J approach to implementing lan-
guage extensions. Phrasing them in terms of advanced-dispatching enables us to
implement numerous languages, ranging from AspectJ to new, domain-specific
languages, using just a few core abstractions. With a fine-grained intermediate
representation close to the source-level abstractions, re-using the implementation
of language sub-constructs is possible even across language families.

The re-use of implementation facilitated by ALIA4J allows programming-
language researchers and designers of domain-specific languages to focus on their
immediate task: developing source languages for solving certain problems. Al-
ready established language sub-constructs do not have to be implemented anew.
ALTA4J’s back-end-independent execution model and the possibility to modu-
larly implement bytecode generation for language constructs make optimizations
developed in back-ends immediately available to all languages implemented with
our approach using the affected construct. We believe that this can improve the
quality of language prototypes, but this is subject to future studies.

Language extensions developed using ALIA4J all build on the same language-
independent meta-model: LIAM. This gives rise to the possibility of combining,
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e.g., AspectJ and JPred within a single program without unwanted interferences
caused by low-level code transformations. But such a detailed study of the high-
level interactions of different language implementations has yet to be done.

We also plan to re-implement several past research results uniformly within
the ALIA4J approach. An optimized implementation of control-flow-based
Atomic Predicates [6] in STEAMLOOMALIA  e.g. will benefit everyone using this
platform-dependent back-end. As the LIAM-based intermediate representation
is independent of a specific execution strategy, the same code is still executable
on a less optimizing but platform-independent back-end. We also plan to map
additional languages to our approach to further strengthen our claim of its gen-
erality.

Research is currently going on in developing new optimizations of language
sub-constructs and making them available through the interface of LIAM. Fur-
thermore, we are investigating extensions to LIAM and FIAL to make them
more suitable to support tasks like debugging or profiling advanced-dispatching
programs [9128]. Other research focuses on optimizing the generic service im-
plementations in FIAL like the evaluation of Patterns [4], which will benefit all
FIAL-based back-ends and thus all languages implemented in our approach.
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A Heuristic Approach for Computing Effects
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Abstract. The effect of an operation on an object network can be de-
scribed by the access paths along which the function reads or writes
object properties. Abstracted to access path permissions, the effect can
serve as part of the operation’s documentation, augmenting a type sig-
nature or a contract for the operation. Statically determining such an ef-
fect is a challenging problem, in particular in a dynamic language which
represents objects by hash tables like the current breed of scripting lan-
guages.

In this work, we propose an analysis that computes access permissions
describing the effect of an operation from a set of access paths obtained
by running the program. The main ingredient of the analysis is a novel
heuristic to abstract a set of access paths to a concise access permission.

Our analysis is implemented as part of JSConTest, a testing frame-
work for JavaScript. It has been applied to a range of examples with
encouraging results.

1 Introduction

For a program in an untyped scripting language like JavaScript, maintenance
and understanding can be a nightmare. Given a function or method, it is often
not clear which types of arguments are required to make the function work as
expected and which types of values are returned. A first step towards under-
standing such an operation is thus to find a type signature for it.

However, a type signature only describes the functional behavior of an opera-
tion, but its side effects are equally important. In most object-oriented languages
side effects are limited thanks to data encapsulation. The situation is different in
a scripting language like JavaScript: Objects lack any kind of encapsulation, so
that an operation can arbitrarily explore and modify the object graph starting
from any object in scope.

The goal of this work is thus to provide a concise description of the way that
an operation accesses and modifies the object graph. This information can be
vital for program understanding and program maintenance.

Our approach is to describe the effect of an operation on the object graph
by the set of access paths along which the function and its callees read or write
object properties. These paths can start from any object accessible to the oper-
ation, that is, it either has to be passed as an argument or it must be bound to a
global variable. Reads and writes in objects that are created within the operation
do not matter for the effect as they are not observable from the outside.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 147-l63, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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As the set of access paths is potentially infinite, it cannot usefully serve as
a high-level description of an operation’s effect. Instead, we approximate sets
of access paths by concise access path permissions. Such a permission can be
attached to any variable in scope and can thus become part of the operation’s
documentation in addition to a type signature or a contract. Permissions are
easy to understand because they are structured like file paths with wildcards.

In a statically typed language, it would be feasible to compute the effect of
an operation statically. In a scripting language with dynamic types and where
objects also serve as hash tables and arrays, computing an access permission
statically would be much harder, if possible at all, because the description of a
permission may depend on particular values like strings and indexes. A manual
effect annotation is, of course, possible, but too time consuming.

The main contribution of this work is a heuristic analysis that learns access
path permissions from access paths sampled from running JavaScript programs.
This information can be used to enhance type-signature-based contracts as pro-
posed in our previous work [I]. Because a static analysis of the effects is not
feasible, we perform a dynamic analysis which collects access paths during runs
of the program. The heuristic extracts concise access path permissions from the
collected path sets. The extraction procedure is user configurable so that the
results can be refined interactively.

Our analysis is implemented and available as part of J SConTest a testing
framework for JavaScript. It has been applied to a range of examples with en-
couraging results.

2 Testing Effects

Previous work of the authors [I] proposes a contract framework for JavaScript.
It permits the specification of contracts which are similar to type signatures
and provides the facilities to perform contract monitoring as well as contract-
based testing. This contract system is value-oriented in the sense that a contract
specifies restrictions on the values that are passed to a method and returned
from it. However, a value-oriented contract misses an important facet of the
semantics of a method because a type signature does not specify its side effects.

Subsequent work [2] extends the contract language with access permissions
that restrict the side effects that a method is allowed to perform. An access
permission explicitly states the set of paths (sequences of property accesses)
that a method may access from the objects in scope. Being able to state such
permissions is important in a language like JavaScript, where a side effect is
often the raison d’étre of an operation. For such an operation, a value-oriented
contract is insufficient as the following example code shows:

function redirectTo (url) {
window.location = url;

¥

! http://proglang.informatik.uni-freiburg.de/jscontest/
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The type signature /xc (string) — undefined x/ fully describes the functional be-
havior of redirectTo: its argument should be a string and it returns the value
undefined as there is no explicit return statement. However, the interesting infor-
mation about the function is that it changes the location property of the window
object, which has the further effect of redirecting the web browser to a new page.
To specify this effect, our extended contract language enables us to add an access
permission to the above contract:

.. with [window.location]

This access permission lets the function access and modify the location property
of window but denies access to any other object. Contract monitoring for the
thus extended contract enforces the permission at run time. For example, if the
function’s implementation above were replaced by

function redirectTo (url) {
window.location = url;
myhistory.push (url);

}

while keeping the same type signature and access permission, then monitoring
would report a contract violation as soon as the function accesses myhistory.

The paper further reports two case studies to validate the significance of
access permission contracts. The results demonstrate that contracts with effects
can detect 6-13% more programming errors than contracts without effects.

While these results are encouraging, their preparation is tedious. Functional
contracts are mostly straightforward to write and can be finalized in a few it-
erations of testing with the framework, but careful manual scrutiny is required
to come up with concise and useful effect annotations. The main problem is the
dynamic nature of JavaScript, which permits non-obvious control flows (e.g.,
callback functions or method invocation through several levels of prototypes) as
well as non-obvious data accesses when object properties are addressed using the
array notation as in obj[prop]. Furthermore, from an interprocedural perspective,
it is not straightforwardly possible to compose effect annotations of callees to
the effect annotation of the caller.

For these reasons, we propose to record all access paths by running test cases
on the program after constructing the type-signature contracts. These access
paths are generated by our framework by setting all effect annotations to # and
recording all access violations. From the collected access paths, we compute a set
of access permissions by abstracting the recorded paths to a restricted regular
expression.

This abstraction is guided by a heuristic because there is no easy way to
define a best abstraction of a finite language to a regular expression. As each
finite language is regular, there is always a (potentially huge) regular expression
specifying the language of observed access paths exactly. On the other hand,
every language is contained in the regular language .x. As both extremes are
useless, the goal of the heuristic is to find a regular language that includes
the observed access paths but which also includes further likely access paths
exhibited by the same program.
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Fig. 1. Syntax of access paths and access permissions

p € Prop property names P C Prop set of property names
m =€ | p.w access paths b :=¢e| P.b| P+.b path permissions

v ::= R | W access classifiers a :==0|b|la+a access permissions

k = y(m) classified access path 7 = Prop, @={ C Prop

For that reason, our inference algorithm is based on the intuition that objects
have an fixed structure a few levels of properties deep, followed by a traversal
of a recursive structure (repeated list or tree links), and ending in objects with
fixed structure. Thus, we have chosen a particular result template for an access
permission. The inferred permissions are either concrete paths of small lengths or
they start with a few concrete path elements, followed by an arbitrary sequence
of path elements, and then finish with a few concrete path elements. The number
of concrete initial and final path elements are parameters of the algorithm, which
can be modified by the user to interactively find a satisfactory permission. The
underlying algorithm guarantees the soundness of the resulting permission.

The arbitrary list of path elements in the middle can be further refined to
enumerate the properties that can be repeated.

3 Inference Algorithm

This section first formally defines the syntax and semantics of access paths and
access permissions and states some of their properties. Then, it describes the
three phases of the inferences algorithm: trie building, extraction of access per-
missions, and simplification. Finally, it considers some special cases which are
covered by the implementation, but which are not reflected in the formal devel-
opment.

3.1 Access Paths and Access Permissions

Fig. [0l defines the syntax of access paths and access permissions. An access path
is a sequence of property names. It is classified with an access classifier v as
either a read path or a write path yielding a classified access path k.

A path permission extends an access path by admitting a set P of properties
in each step. A component in a path permission may also be P to match any
sequence of property names in P. An access permission is either empty, a path
permission, or the union of two access permissions. We abbreviate the path
component ? x to x*.

While the definitions of path permissions and access paths inductively add
path elements only to the left ends, we also decompose permissions and paths

2 Which is supported by our examples, but not yet empirically validated.
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Fig. 2. Matching access permissions

<b epP <b
W) <e R(e) <b V() P V()
~v(p.m) < P.b ~(m) < Px.b
y(m) < Px.b peP K < a1 K < a2 (Vee K)k<a
y(p.w) < Px.b K< a1+ a2 K < a1+ a2 K<a

“w

from the right as in @ = 7’.p or even consider the infix as concatenation
operator as in the permission 7. % .7’. We write |r| for the length of a path and
say that 7’ is a prefiz of m if m = «’.x”, for some «”. Dually, 7’ is a suffix of 7 if
m=n".7', for some 7”. A set of paths IT is prefix-closed (suffix-closed) if = € IT
implies that «’ € II, for each prefix (suffix) of 7.

We define the semantics of access permissions using the inference rules in
Fig.[2l Let K be a set of classified access paths. A classified access path « (or a
set K of those) matches an access permission a, if the judgment k£ < a (K < a)
is derivable from the inference rules. Property names in the permission must be
matched exactly in the path, whereas * components in the permission match any
sequence of property names. The component @ matches no property. When the
path is exhausted (7 = ¢), matching distinguishes read and write paths. While
a read path is accepted with any remaining permission, a write path requires
the permission to be exhausted, too. With this convention, a permission ending
in @ specifies a set of read paths without giving write permission. In summary,
write accesses W (7) must be matched entirely by a path permission whereas
read accesses R(m) just need to be extensible to a full match. Hence, the set of
read access paths is closed under prefixes.

Lemma 1. 1. IfR(m.p) < a, then R(7) < a.
2. If W(m.p) < a, then R(7) < a.
3. W(n) £ b.@.

3.2 Algorithm

The task of the access path inference algorithm is thus to map a set of classified
access paths to a set of reasonable path permissions. This task is akin to the
problem of learning a (regular) language from a set of positive examplesﬁ The
problem of this task is that there is no best solution. For example, there are
always two trivial path permissions that match a given classified path set:

Lemma 2. Let K = {v;(m;) | i € I}.

1. Let b; = m; considered as a path permission. Then K < ZZ b;.
2. K < .

3 A negative example would be an impossible access path.
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Fig. 3. Example trie

For that reason, we have devised an algorithm based on a heuristic that computes
reasonable results for a range of interesting examples.

Our algorithm has three phases. The first phase collects access paths in a trie
data structure. This data structure enables efficient operations during the second
phase. The second phase extracts access permissions from the trie. The third
phase simplifies the resulting access permissions. The first two phases keep read
and write paths separate because there are subtle differences in their handling
due to the prefix closure of read accesses.

Building the Trie. For our purposes, a trie [3] is a rooted, directed graph
where each node is labeled with an integer and each edge is labeled with a
property name. The trie T'(I]) represents a set of access paths IT as follows. The
root node r is labeled with the number of paths |II|. For each property p, let
p\II = {x | p.m € II'} be the set of path tails of paths that start with p. If p\II
is non-empty, then the trie for I includes T'(p\II) where there is an edge from
r to the root node of T'(p\II).

For example, the path set ITjs: = {l, h, h.d, h.n, h.n.d, h.n.n, h.n.n.d} is rep-
resented by the trie in Fig. Bl The trie can also be considered a finite automaton
recognizing the set IT with final states indicated by the double circles in the
figure.

Extracting Access Permissions. The goal of the extraction algorithm is to
create access permissions of one of the forms m or w.P* .7’ where P C Prop and
7’ may be empty. The initial component 7 is determined by computing a set of
“interesting” prefixes from a set of paths IT, where 7 is a prefix of IT if there
exists some 7’ € IT such that 7 is a prefix of 7’.

Given two integers [ > 0 and d > 1, we consider a path as (I, d)-interesting
with respect to a path set IT if it is a prefix of IT and it is either shorter than
the base length [ or it has a branching degree less than or equal to d above length
l. Here, the branching degree of a path BDeg; () is the number of properties g
such that 7.q is a prefix of some path in IT. The (I, d)-interesting prefixes of IT
are formalized by Prefixes; 4(II), which is simple to compute from T'(IT).



A Heuristic Approach for Computing Effects 153

BDegp(m) = |{q| (3n') m.q.n" € IT}]
Prefixes; ¢(II) = {p1...pn |
(3m) p1...ppm eI,
(Vjed{l,...,n—1}) BDegy(p1...p;) < d}

To continue the example from the preceding subsection,

{e}
{e,l,n}
{e,l,h,h.d, h.n}

{e lhhdhnhndhnnhnnd}
= Preﬁxeskyg(ﬂlm) (VEk)

Prefixesg 1 (ITjist) =
Prefixesy 1 (ITjist)
Prefixesg 1 (ITjist)
Prefixesg,2 (ITjist)

At this point, we distinguish the treatment of read paths from the treatment
of write paths. As read paths are closed under taking the prefix, we may compute
the prefix reduct by removing all paths that are proper prefixes of other paths.

Reduct(Il) = {m e II | ¥Vr') |7'| > 0= n.x" ¢ IT}
Continuing the example further:

Reduct(Prefixesg, 1 (ITjst))

Reduct(Prefixesy 1 (ITjst))

Reduct(Prefixess 1 (jst)) = {l h.d,h.n}
Reduct(Prefixesg o(Iy;st)) = {I, h.d, h.n.d, h.n.n.d}

For write paths, a more conservative reduction must be applied. Only those
proper prefixes can be removed that are not members of the underlying original
set. Let IT be a set of prefixes of I1j.

ReductW (11, I1y) = Reduct(IT) U (IT N I1)

Given an interesting prefix 7 of path set IT, we now construct the left quotient
of IT with respect to m, i.e., the set of suffixes

o\l = {r' | .7’ € IT}

Technically, we construct this set in time linear in the length of © by returning
the subtrie of the trie T'(IT) obtained by following the path .

If we continue the example with Reduct(Prefixesy 1 (Iist)) = {I, h}, we obtain
the following sets of suffixes:

l\Hlist = {5}
P\ s = {e,d,n,n.d,n.n,n.n.d}

For each of these sets, we now consider the set of interesting suffixes, where
“interesting” is defined in the same way as for prefixes. Technically, we just
reverse all path suffixes and apply the interesting-prefixes algorithm. That is,

-—

Suffixes; ¢(X) = Preﬁxesl’d((f)
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Fig. 4. Reversed suffix trie

where & = {7 | 7€ X} and T is the reverse of a path 7.

Going back to the example, Fig. Ml shows the trie containing the reversed
suffixes of h\Il}s:. From this trie, it is easy to see that the (0,1)-interesting
suffixes of h\IT};s: are {e,d,n}, whereas there is only one respective suffix of
INI};s¢, namely e.

The final step of the algorithm considers for each pair of interesting prefix
and interesting suffix the remaining part in the middle. The right quotients of
the suffix language yield exactly this remaining part. The right quotient IT/7 of
a language with respect to a path 7 is defined dually to the left quotient by

I)r={x" |77 € I}

To abstract the resulting middle language, we restrict the algorithm to two
choices. Either ¢, if the middle language is {}, or Px in all other cases.

In the example, we need to consider four cases, with the computation shown
left and the resulting access permission shown in the right column:

(I\Myist) /e = {e} =1
(h\Ijist) /e = b\IIj;s¢  — h.{n,d}*
(h\I}st)/d = {e,n,n.n} — hnx.d
(h\}st)/n = {e,n} — h.on*.n

This result is not entirely satisfactory because h.{n, d} * clearly subsumes h.n *.d
and h.n x.n, but the latter two permissions are more informative and thus prefer-
able. Unfortunately, even together, they do not cover the access path h, which
is only covered by h. *.

The source of the problem is that the set {e, d, n} is suffix-closed. For prefixes,
we apply the prefix reduction because the semantics of access paths is prefix-
closed. However, we cannot just apply suffix reduction as the example shows: If
the suffix (in this case €) is actually an element of the underlying set h\IT}st,
then dropping the suffix would be incorrect.

The solution is to treat the suffixes which would be removed by suffix reduction
but which are elements of the underlying set specially and drop the rest. The
special treatment is simple: we just declare their middle language to be {e}.
With this treatment (specified in function BUILDPERMISSIONS in Fig. [B), the
case (h\IIl};s) with suffix € yields the access permission h. The function has
to be called for each interesting prefix with the corresponding suffix language
(function PERMISSIONSFROMPATHSET).
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Fig. 5. Building access permissions
function BuiLDPERMISsIONS(7r, X, sl, sd)
> 7 is a prefix, X corresponding suffix language, sl, sd suffix length and degree
R~ > result set of access permissions
Yo « Suffixesg,sq(X) > set of interesting suffixes of X
for all 0 € Yy do
if o is proper suffix of an element of Xy then

if 0 € Y then

R=R+mo
else

if ¥/o = {e} then > middle language is empty
R=R+m.o

else
R=R+7m.Px.o > P is set of properties in X'/o

return R

function PERMISSIONSFROMPATHSET (110, 11, sl, sd)
> Iy set of prefixes of IT, sampled set of paths, sl, sd suffix length and degree
R0 > result set of access permissions
for all = € IIp do
R = R + BUILDPERMIsSIONS (7, w\I1, sl, sd)

return R

The final result of this phase applied to the running example is the set of
access permissions {l, h, h.n*.d, h.n*.n}.

Simplifying Access Permissions. The result of the previous phase is not
as concise as it could be. It may still generate redundant access permissions.
Consider the result of the example {l, h, h.*.d, h. % .n}. As this set only contains
read permissions, which are closed under prefix, it follows that permissions h is
subsumed by h.*.d and h.*.n, so that the result is equivalent to (the simpler
set) {l,h.*.d, h.*x.n}.

To perform this simplification, we first define a subsumption relation C on
path permissions.

FoC P'x.t PCP FPbLCV

}_Egb / / / /
- PbC P'x.b - PbC P'x.b

FoCv PCP
FPx.bC P'x.b
This relation is sound in the sense that it reflects the semantic subset relation
on sets of accepted access paths.

Lemma 3. IfR(w) <b and - b C ¥V, then R(w) < b'.

Given this relation, simplification just removes all read path permissions that
are subsumed by other (read or write) path permissions as specified in Fig. [6l



156 P. Heidegger and P. Thiemann

Fig. 6. Simplification
function SIMPLIFY(R, W) 1 sets of path permissions, R for reading, W for writing
while (3b,') be RA(V € RAb#bY VY e W)AFbC b do
R—R-D
return (R,W)

Fig. 7. Overall algorithm
function MAIN(II", [TV, pl =1,pd = 1,5l = 0,sd = 1)
> II" read paths, IT" write paths
> pl, pd prefix length and degree, sl, sd suffix length and degree
II§ «— Prefixesp; pa(1I") > interesting prefixes of IT"
Iy — Prefixespi pa(1I") > interesting prefixes of IT%
R «— PERMISSIONSFROMPATHSET (Reduct (1), II", si, sd)
W «— PERMISSIONSFROMPATHSET(ReductW (I15), IT*, sl, sd)
(R,W) «SIMPLIFY(R, W)
return R.Q + W

In the example, clearly - h C h.n*.d, so that h can be removed from the read
path permissions.

Putting it Together. Fig. [l summarizes the overall algorithm as explained
up to this point. The parameters that determine the length and degree for the
computation of interesting prefixes and suffixes have default values that yield
good results in our experiments. In addition, our implementation makes them
accessible through the user interface for experimentation, on a global as well as
on a per-function basis.

3.3 Special Cases

There are two special cases of property accesses that lead to extremely high
branching degrees. The first case is that an object is used as an array. The
symptom of this case is the presence of accesses to numeric properties. Our
implementation assumes that arrays contain homogeneous data and collapses
all numeric property names to a single pseudo property name §. This collapsing
already happens when the trie is constructed from the access paths.

Similarly, an object might be used as a hash table. This use leads to the
same high branching degrees as array accesses, but cannot be reliably detected
at trie construction time. Instead, the implementation makes a pre-pass over
the trie that detects nodes with a high number of successors (e.g., set with
the parameter HIGH DEGREE which defaults to 20), merges these subtries, and
relabels the remaining edge to the merged successor trie with a wildcard pseudo
property name 7.

As the rest of the algorithm does not depend on the actual form of the property
names, the introduction of these pseudo property names is inconsequential.
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3.4 Soundness

To establish the soundness of the algorithm, we need to prove that each element
of the original path set is matched by the extracted access permission. The first
phase, building the trie, is trivially sound. The third simplification phase is sound
by Lemma Bl It remains to consider the second phase. We only examine the case
for read paths with write paths handled similarly.

Suppose w € II, the initial set of access paths. As I, =
Reduct(Prefixes; 4(IT)) is prefix free, there are two possibilities. Either, there
is exactly one element my € Il such that m( is a prefix of 7, or there is at least
one element 7’ € Iy such that 7 is a prefix of 7'.

In the second case, «’ will be prefix of an access path 7'.b with = < 7’.b.

In the first case, it remains to show that 7 is extended to an access path that
matches m = mp.m1. Let Xy be the set of interesting suffixes of X' = mo\II. By
construction, m; € Y. We need to show that there is an element o € Xy where
either m = o or m < x.0.

For a contradiction, suppose that neither is the case and let ¢ be the maximal
suffix of 71 in Xy (such o must exist). If o is a proper suffix of an element of
Yo and o € X, then ¢ = w1, a contradiction. If ¥'/o = {e}, then ¢ = 71, a
contradiction. If X'/o # {e}, then m < *.0, a contradiction.

Hence, all cases are matched.

4 Implementation

Our effect inference algorithm is implemented as part of the JSConTest system
for contract-based testing of JavaScript programs. JSConTest supports a typical
workflow for unit testing, which starts with augmenting the unit under test with
a specification of the tests that should be performed. Then JSConTest generates
the test cases from the contracts and produces a test report from the outcomes.
The test report either contains concrete evidence that some part of the desired
behavior of the unit under test is incorrect or, if all tests pass, it increases the
confidence that the unit under test behaves according to its specification.

Figure [l illustrates this workflow. First, the tester specifies the desired prop-
erties of the program under test by annotating functions with contracts. The
resulting annotated source file (Fig. B annotated linked—list.js) is passed to the
JSConTest compiler. The compiler generates an instrumented version of the
program (instr. linked—list.js). To test a JavaScript program inside a browser, a
HTML file is needed to start the JSConTest framework and include the nec-
essary files. The result of execution is a test report that documents which of
the contracts are fulfilled by the unit under test. Depending on the parameters
passed to the JSConTest compiler, the instrumented code does not only report
contract violations, but also collects run-time data, for instance, what proper-
ties are accessed during test execution. As the JSConTest run-time framework
is event-driven, it is possible to extend it to execute arbitrary algorithms on
the collected data and thus create comprehensive test reports instead of just
reporting raw data to the user.
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Fig. 8. Overview over JSConTest
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In this work we make use of this feature and let the JSConTest compiler
generate code that reports all property accesses and invokes a handler for doing
effect inference. As the effect inference is an interactive process, which depends
on a number of interactively modifiable parameters, the test report is not just
a static page with the test results, but a dynamic interface that interacts with
the inference algorithm.

5 Evaluation

To evaluate the inference algorithm, we applied it to a few examples and com-
pared the computed access permissions with manually constructed permissions.

The first example is a small third-party library (200 LOC) which implements
a singly-linked list data structured Its interface comprises one constructor for
list nodes and six methods to operate on the list: add, remove, find, indexOf, size,
and toString.

The first step towards effect inference is to come up with contracts for each
of the functions. The result is a source file annotated as in this code snippet:

1+ /xc js:ll.(top) — undefined x/
> function add(data) { ... }

s /xc js:ll.(top) — top */

+ function item(index) { ... }

s /*c js:ll.(top) — top */

¢ function remove(index) { ... }

4https://github.com/nzakas/computer-science-in- javascript
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In these contracts, js:Il describes the receiver object, the parenthesized phrase
the types of the arguments, and the phrase following the — the result type. In
particular, js:Il refers to JavaScript function that generates and checks a certain
kind of lists, top stands for any value, and undefined is the undefined value, which
is returned when no return value is given.

The JSConTest compiler picks up the contracts in the special comments, gen-
erates code for assertions derived from the contracts, and creates a test suite
for checking the contracts. This setup enables the tester to test the input/out-
put behavior of all functions using directed random testing as explained in our
previous work [T].

In the current version of JSConTest it is furthermore possible to infer the
effects of the functions as follows. To obtain a first impression what properties
are accessed by the different functions, it is sufficient to add the empty effect
to the contract as in the contract /«c js:Il.(top) — undefined with [] x/ for the add
function. This augmented contract states that the function with this contract is
not allowed to change anything in the heap that already exists before invocation
of the function. Extending the remaining functions’ contracts in the same way
and applying the JSConTest compiler again results in instrumented code that
monitors all property accesses.

When the compiled code executes in a browser, it collects, as a side effect,
thousands of property accesses which violate the empty effect annotation. From
this raw data, our effect inference computes concise access permissions. The
syntax of these permissions is inspired by the syntax of file paths. For example,
the computed effect for add is

this. _head, this. head.nextx, this. length

which means that add only accesses objects via its this pointer, it reads and writes
the head and _length properties, and it reads and writes a next property that
is reachable via _head followed by a sequence of next properties as indicated by
nextx. All three path permissions are write permissions that implicitly permit
reading all prefixes of any path leading to a permitted write.

The computed effect for remove is also interesting:

this. _head.nextx.data.@, this. head.nextx, this. length

The function remove deletes a given value from the list. To this end, it compares
this value with all data properties reachable via head and a sequence of (all
next) properties, as indicates with the first access path. Its ending in @ indicates
a read-only path. Furthermore, remove changes next pointers and modifies the
_length property of this.

Full details of this example are available on the project homepage of JSCon-
TestH 1t presents the outcomes of four examples complete with the annotated
source code, the instrumented source code, and a web page to execute the ex-
ample locally.

® http://proglang.informatik.uni-freiburg.de/jscontest/
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On the webpage, there is another similar example implementing binary search
trees. For these two examples the algorithm infers a precise effect annotation.

As a larger example, which is also detailed on the webpage, we consider the
Richards benchmark from the Google V8 benchmark suite. After annotating
its source code with contracts as outlined above, the effect inference algorithm
automatically obtains informative results albeit less precise than the manually
determined effects that we used in our previous work [2]. This example uncovered
a number of new points for our inference algorithm, in particular, that special
treatment for arrays and objects used as hash tables is required (see Sec. B3).
This treatment is also covered in a micro benchmark in the webpage.

6 Related Work

Effect analysis in programming languages has some history already. Initial efforts
by Gifford and Lucassen [4] perform a mere side-effect analysis which captures
allocation as well as reading from and writing to variables. Subsequent work
extends this approach to effects on memory regions which abstract sets of heap-
allocated objects [Bl6]. Such an effect describes reading, writing, and allocation in
terms of regions. An important goal in these works is automatic effect inference
[7], because regions and effects are deemed as analysis results in a phase of a
compiler.

Path related properties are also investigated by Deutsch [§], but with the main
goal of analyzing aliasing. His framework is based on abstract interpretation and
offers unique abstract domains that provide very precise approximations of path
properties.

In object-oriented languages, the focus of work on regions and effects is much
more on documentation and controlling the scope of effects than on uncover-
ing optimization opportunities. Greenhouse and Boyland [9] transpose effects
to objects. One particular point of their effect system is that it preserves data
abstraction by not mentioning the particular field names that are involved in
an effect, but by instead declaring effect regions that encompass groups of fields
(even across classes) and by being able to have abstract regions. In contract, our
work is geared towards the scripting language JavaScript, which provides no data
abstraction facilities and where the actual paths are important documentation
of an operation that aids program understanding.

Skalka [I0] also considers effects of object-oriented programs, but his effects
are traces of operations. The goal of his is to prove that all traces generated by
a program are safe with respect to some policy. Data access is not an issue in
this work.

The learning algorithm in Sec. abstracts a set of access paths to a set
of access permissions, which are modeled after file paths with wildcards. The
more general problem is learning a language from positive examples, which has
been shown to be impossible, as soon as a class of languages contains all of the
finite languages and at least one infinite language [ITJ12]. Clearly, the class of
regular languages qualifies. Better results can be achieved by restricting the view
to “simple examples” [13] or to more restricted kinds of languages [14].
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Transformation of JavaScript programs is a well-studied topic in work on en-
forcing and analyzing security properties. For example, Maffeis and coworkers
[15] achieve isolation properties between mashed-up scripts using filters, rewrit-
ing, and wrapping. Chugh and coworkers [16] present (among others) a dynamic
information flow analysis based on wholesale rewriting. Yu and coworkers [I7]
perform rewriting guided by a security policy. BrowserShield [I§] relies on simi-
lar techniques to attain safety. As detailed in our submitted work [2], extensive
rewriting has a significant performance impact and gives rise to subtle semantic
problems. These problems are shared among all transformation-based tools.

7 Conclusion

The current version of JSConTest induces access path permissions from sam-
ple test runs. In many cases, the resulting permissions are as good as manually
determined ones. In the few remaining cases, interactive tweaking of the pa-
rameters is required to obtain good results. Thus, effect inference appears to be
a useful tool to analyze JavaScript programs and enhance their contracts with
effect information.

Effect inference or effect learning removes much of the tedium of declaring
effect annotations for a given program. However, it is important for then infer-
ence to run with tight contracts or/and a test suite with high coverage, since
the inference algorithm can only find a accurate effect annotation, if all aspects
of the code under test are explored.

Tightness of the contract is required because a loose contract essentially causes
the generation of entirely random test cases. It is unlikely that these random test
cases discover the access path pattern of a function. For that reason, some of
our examples rely on custom contracts that generate random values in the shape
expected by the function.

Similarly, if the coverage of a test session is low, then it is likely that some
paths through the input data are never traversed. Thus, high coverage increases
the probability that all access paths are exercised.

One way to circumvent these restrictions is to observe the program running in
the wild and collect and evaluate the resulting trace data. To be most effective
and efficient, this approach would require instrumenting a JavaScript engine
to collect the required access traces. Our evaluation back end and inference
algorithm, however, would remain the same.
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Abstract. Every new programming technique makes claims that software
engineers want to hear. Such is the case with aspect-oriented programming
(AOP). This paper describes a quasi-controlled experiment which compares the
evolution of two functionally equivalent programs, developed in two different
paradigms. The aim of the study is to explore the claims that software
developed with aspect-oriented languages is easier to maintain and reuse than
this developed with object-oriented languages. We have found no evidence to
support these claims.
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1 Introduction

Object-oriented programming (OOP) aims to support software maintenance and reuse
by introducing concepts like abstraction, encapsulation, aggregation, inheritance and
polymorphism. However, years of experience have revealed that this support is not
enough. Whenever a crosscutting concern needs to be changed, a developer has to
make a lot of effort to localize the code that implements it. This may possibly require
him to inspect many different modules, since the code may be scattered across several
of them.

An essential problem with traditional programming paradigms is the tyranny of the
dominant decomposition [36]. No matter how well a software system is decomposed
into modules, there will always be concerns (typically non-functional ones) whose
code cuts across the chosen decomposition [25]. The implementation of these
crosscutting concerns will spread across different modules, which has a negative
impact on maintainability and reusability.

The need to achieve better separation of concerns (SoC) gave rise to aspect-
oriented programming (AOP) [19]. The idea behind AOP was to implement
secondary concerns as separate modules, called aspects. AOP has been proven to be
effective in lexically separating different concerns of the system [33]. However, the
influence of AOP on other quality attributes is still unclear.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 163-178, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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On the one hand, replacing code that is scattered across many modules by a single
aspect can potentially reduce the number of changes during maintenance [27]. In
addition, modules may be easier to reuse, since they implement single concerns and
do not contain tangled code.

On the other hand, constructs such as pointcuts and advices can make the ripple
effects in aspect-oriented (AO) systems far more difficult to control than in OO
systems. Current AO languages rely on referencing structural properties of the
program such as naming conventions and package structure. These structural
properties are used by pointcuts to define intended conceptual properties about the
program. The obliviousness property of Aspect] implies that the underlying system
does not have to prepare any hooks, or in any way depend on the intention to apply an
aspect over it [18]. Thus, maintenance changes that conflict with the assumptions
made by pointcuts introduce defects [27]. This phenomenon is called the pointcut
fragility problem [20]. It occurs when a pointcut unintentionally captures or misses a
given join point as a consequence of seemingly safe modifications to the base code
[20], [27]. Kastner et al. [17] reported such silent changes during AO refactoring.

Obliviousness also leads to programs that are unnecessarily hard to understand
[14]. Since not all the dependencies between the modules in AO systems are explicit,
an AO maintainer has to perform more effort to get a mental model of the source code
[35]. Creating a good mental model is crucial to understand the structure of a system
before attempting to modify it [24]. Studies of software maintainers have shown that
30% to 50% of their time is spent in the process of understanding the code that they
have to maintain [11], [34], [13].

Moreover, incremental modifications and code reuse are not directly supported for
the new language features of Aspect] [15]. In particular, concrete aspects cannot be
extended, advice cannot be overridden, and concrete pointcuts cannot be overridden.
Hanenberg & Unland proposed four rules of thumb [15], which allow one to build
reusable and incrementally modifiable aspects. However, enormous complexity is the
price that has to be paid for it.

2 Motivations

Many unsupported claims have been made about AOP. Here are a few examples:

e AOP “can be seen as a way to overcome many of the problems related to software
evolution” [25].

e AOP “produces code that is simpler and more maintainable, as well as increasing
the flexibility, extensibility and re-usability of the separated concerns” [3].

e AO software “is supposed to be easy to maintain, reuse, and evolution” [41].

e AOP leads to “the production of software systems that are easier to maintain and
reuse” [33].

e AOP “increases understandability and eases the maintenance burden, because
modules tend to be more cohesive and less coupled” [22].

It is commonly acknowledged that designs with low coupling and high cohesion lead

to software that is both, more reusable and more maintainable. Table 1 enumerates
work that documented these relationships. Since in our previous study [30] we did not
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find empirical evidence that AOP increases cohesion, but we found that AOP
increases coupling, we doubt the claims about the positive impact of AOP on
reusability and evolvability. However, we do not intend to reject these claims as
invalid with indirect evidences. Therefore, we conduct a quasi-experiment. We
assume that the reader has a basic knowledge of Aspect] programming.

Table 1. Impact of coupling and cohesion on reusability and maintainability

reusability maintainability
coupling | [5], [16] |[S], [16], [6], [8], [23]
cohesion | [5], [4] [5], [29]

3 Measurement System

In order to identify the metrics to be collected during the study, we used the G-Q-M
(Goal-Question-Metric) approach [2]. G-Q-M defines a measurement system on three
levels (Fig. 1) starting with a goal. The goal is refined in questions that break down
the issue into quantifiable components. Each question is associated with metrics that,
when measured, will provide information to answer the question.

. con | —_— —
Purpose comparison » toreuse » Level

L .
Issue software evolvability and reusability s IR IEEIES

OO and AO implementations ofa
Object queue data structure, thatundergoes How easy isit Atomic
five functionality increments » to evolve » Change

the system?

Viewpoint software maintainers

Fig. 1. GQM diagram of the study

Our goal is to compare AO and OO systems with respect to software evolvability
and reusability from the viewpoint of the developer. Evolvability and reusability are
quality characteristics that we cannot measure directly. Instead, we can perform an
experiment that involves maintenance tasks and then we can measure how much
effort is required to evolve the system and how much of the existing code can be
reused in the consecutive release.

The amount of reuse is usually measured by comparing the number of reused
"items" with the total number of "items" [12], where items depend on the granularity
chosen, e.g. lines of code (LOC), function, or class. Since we are going to measure
code reuse, we have chosen the granularity of LOC, yet we count only these reused
lines that are part of the modules reused by applying the composition mechanisms of
the underlying programming language. Thus, our reuse level metric is defined as:
LOC_of_reused_modules / total_LOC_in_system.
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The evolution metric we use is based on previous studies performed by Zhang et
al. [40] and Ryder & Tip [32]. In their work, the difficulty of evolvability is defined in
terms of atomic changes to the modules in a program. At the core of this approach is
the ability to transform source code edits into a set of atomic changes, which captures
the semantic differences between two releases of a program. Zhang et al. [40]
presented a catalog of atomic changes for Aspect] programs. For the purpose of our
study, we have slightly modified their catalog. Firstly, we consider deleting a non-
empty element as an atomic change. Secondly, we use the term “module” as a
generalization of class, interface, and aspect. Our list of atomic changes is follows:
add an empty module, delete a module, add a field, delete a field, add an empty
method, delete a method, change body of method, add an empty advice, delete an
advice, change an advice body, add a new pointcut, change a pointcut body, delete a
pointcut, introduce a new field, delete an introduced field, change an introduced field
initializer, introduce a new method, delete an introduced method, change an
introduced method body, add a hierarchy declaration, delete a hierarchy declaration,
add an aspect precedence, delete an aspect precedence, add a soften exception
declaration, delete a soften exception declaration.

4 Empirical Evaluation

The difficulty of performing evolvability and reusability evaluation in AOP is that
there are not yet industrial maintenance reports for AO software projects available for
analyses. Thus, we have to simulate maintenance tasks in a laboratory experiment.
We compare OOP with AOP on a classical producer-consumer problem. In a
producer-consumer dilemma two processes (or threads), one known as the “producer”
and the other called the “consumer”, run concurrently and share a fixed-size buffer.
The producer generates items and places them in the buffer. The consumer removes
items from the buffer and consumes them. However, the producer must not place an
item into the buffer if the buffer is full, and the consumer cannot retrieve an item from
the buffer if the buffer is empty. Nor may the two processes access the buffer at the
same time to avoid race conditions. If the consumer needs to consume an item that the
producer has not yet produced, then the consumer must wait until it is notified that
the item has been produced. If the buffer is full, the producer will need to wait until
the consumer consumes any item.

We assume to have an implementation of a cyclic queue as shown in Fig. 2a. The
put(..) method stores one object in the queue and get() removes the oldest one. The
nextToRemove attribute indicates the location of the oldest object. The location of a
new object can be computed using nextToRemove, numltems (number of items) and
buf.length (queue capacity). We also have an implementation of a producer and a
consumer.

The experiment encompasses five maintenance scenarios which deal with the
implementation of a new requirement. We have selected them because they naturally
involve the modification of modules implementing several concerns.
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4.1 Adding a Synchronization Concern

To use Queue in a consumer-producer system an adaptation to a concurrent
environment is required. A thread has to be blocked when it tries to put an element
into a full buffer or when it tries to get an element from an empty queue. In addition,
both put(..) and get() methods have to be executed in mutual exclusion. Thus, they
have to be wrapped within synchronization code when using Java (Fig. 2b). Since the
code supporting the secondary concern may throw an exception, there is also a
technical concern of error handling. The core concern here is associated with adding
and removing item from the buffer. The presented implementation tangles the code
responsible for the core functionality with the code responsible for handling errors
and for cooperating synchronization. Moreover, the implementation of both secondary
concerns are scattered through the accessors methods. As a result, the put(Object) and
get() methods contain similar fragments of code.

public class Buffer extends (ueus {
public Bufferiint n) { super(n); }
+  ConsumerQusue] piublic synchrond zed hnulean put (0bject x) |

+ consumenteger] : woid il :
+ runf] : woid e { isFall(} | &

Caonsumer

wrait (] ;
\L’_huﬁer i} catch (InternaptedException =1 {:
o ipystem . ok, princln je) ;)
: Super . puat (M) 2
# buf: I:Il:-|e-d_[[]] notd £ 1l () ; K ierpor bandling copcers
# numltems:int return true; symchrot Ea bion cmmosrm
# nextToRemove: int
} g
+  Eueus(int) public symwchrondzed Object "gEt.I::I {
+ isFull]] : boalean while [ isEmptyi)
+ isEmpty(] :boolean waiti);
+  size(]:int i H
+ put[Objeat] DOCITH i} .c:atch | Tri- er ]‘.‘uptEdE}{E?pt-.an el i
« getf]: Object itstem. cut . printlnie) ; H
Thutier Object tmp = Ssuper.get() ;
noti fyRll () ;
turn tmp;
Froducer } e F
times: ink I3

+  ProducerGueus, int]
+  produce(]: int
+ runf] : woid

Fig. 2. a) An initial implementation; b) A new class for Stage I

Lexical separation of concerns can be achieved by using AO constructs (Fig. 3).
The secondary concerns are implemented in ErrorHandler and SynchronizedQueue.
SynchronizedQueue::waiting() is a hook method to introduce an explicit extension
point. This joinpoint is used by ErrorHandler to wrap wait() invocation. Despite
of lexical separation, SynchronizedQueue is explicitly tied to the Queue class,
and so cannot be reused in other contexts. Moreover, Queue is oblivious of
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public aspect ErrorsHandler
protected pointout waiting(iexecutionivoid Synchr ond ze dluene wraitingl));
woid arouwnd () @ waiting() |
try {proceed(); } catch [ nterngtedException &) {Systen_ ok _println le); }

}
declare soft: Irncer nptedExcept ion -wait ing() ;

}
public aspect Synchronizediaeus pertarget| instantciation() ) {
protected podntouwt instantiation(): tawvget ((ueus);
protected podntout call get(): execution| Object (ueue.get i) )7
protected podntouwt call put(Cbject x):
execution [ boolean (aene.pus(Object) | 44 arge (X)) ;
protected wodd waiting() { wait{i; }
Object around(fueus gl: call _get() 44 targebigl{
synchrond zed (this) |
vhile { o.isEmptyl) ) waiting();
Object tmp = procesdidg);
notifyalll) ; return top;
}
}
boolean around (Queue g, Object x): call putix) &2 target (og) |
synchrond zed (this) |
while | o isFulli) ) waitingi):
proceed (o, x) ;
notifyhll(); return true;
}
}
}

Fig. 3. New aspects for Stage I

SynchronizedQueue. This makes it difficult to know what changes to Queue will lead
to undesired behavior.

4.2 Adding a Timestamp Concern

After implementing the buffer a new requirement has occurred — the buffer has to
save current time associated with each stored item. Whenever an item is removed, the
time how long it was stored should be printed to standard output. A Java programmer
may use inheritance and composition as reuse techniques (Fig. 4a). The problem is
that three different concerns are tangled within put/get and so these concerns cannot
be composed separately. It means that e.g. if a programmer wants a queue with timing
he cannot reuse the timing concern from TimeBuffer; he has to reimplement the
timing concern in a new class that extends Queue. A slightly better solution seems to
be using AOP and implementing the timing as an aspect (Fig. 4b).

Unless explicitly prevented, an aspect can apply to itself and can therefore change
its own behavior. To avoid such situations, the instantiation pointcut is guarded by
Icflow(within(Timing)). Moreover, the instantiation pointcut in SynchronizedQueue
has to be updated. It must be the same as in Timing. This can be done only
destructively, because Aspect] does not allow for extending concrete aspects.
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public class TimeBuffer extemnds Buffer {
protected Qusue delegacelates;
public TimeBuffer(ink capacity) |
super (Capacity ) ;
delegatebates = mew Quene (capacity);
}
public synchrond zed boolean put (Object x) |
super.put (x) ;
delegatebates. ot (newr Loty (System . cuprernt Tinaillis()) ),
return true;
}
public symchrondzed Object geti) |
Ohiject tmp = super. geti) ;
Long date ({Lotwy) delegatelates.get (),
lomg ocurr Syrstem. current Ninadillisi);
System. cub princln{oarr - date. longWalue());
return tmp;
}
}

public privileged aspect Tining pertarget| instamcd) ) |

protected Ousue delegacelates;
protected podntout instant (: target (Queue) 24! cflow(withinTimineg) );
protected podntout init (fueus o): executionueus et ) ) &4 tavget (o)
protected podntout execution geti):execution| Object [ueus.get() 7
protected podntout exeoution put(): execution(boolean (usue pat(0b]ect));
after{fu=ue o) initig) { delegatelates = mewr Queve (g baf lengthl; }
after(): exeoution get() |

Loty date = (Long) delegatebates. get ()

Bypstem. out _princlnddysten. oarrentTinefH 11i=s() - dace. longfWalusi));
}
after{): execution puti) {

delegatelates. put (newr Long (System. ourrent Tinefillis() ) ); }

Fig. 4. a) The TimeBuffer class; b) The Timing aspect

4.3 Adding a Logging Concern

The buffer has to log its size after each transaction. The OO mechanisms like
inheritance and overridden allow a programmer for reusing TimeBuffer (Fig. 5a). The
only problem is that four concerns are tangled within the LogTimeBuffer class. A
module that addresses one concern can generally be used in more contexts than one
that combines multiple concerns.

The AO solution is also noninvasive and it reuses the modules from the earlier
stages. It just requires defining a new aspect (Fig. 5b). When advice declarations
made in different aspects apply to the same join point, then by default the order of
their execution is undefined. Thus, the declare precedence statement is used to force
timing to happen before logging. The bufferChange pointcut enumerates, by their
exact signature, all the methods that need to captured. Such pointcut definition is
particularly fragile to accidental join point misses. An evolution of the buffer will
require revising the pointcut definition to explicitly add all new accessor methods to
it.
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TimeEuffer public aspect Logging {
declare precedence :© Logohng, Timiweg;
4\:\ pointocut bafferChange () : |

execution | * Queus. get() ) ||
execution | * Queus_ put(. )

LogTimeBuffer 1 &8 leBlowiwithing Timdvg) ) ;
+ LogTimeButter(int] after(usus o) - bufferChange () 46 targeb (o) {
# log[String]: woid Svstem. out. princlng
P P "buffer size: "4og.sizel() );
+  put[Object]: boolean }
+ get[]: Object }

Fig. 5. a) A new class for Stage III; b) The Logging aspect

4.4 Adding a New Getter

The buffer has to provide a method to get “N” next items. There is no efficient
solution of this problem neither using Java nor Aspect]. In both cases, the condition
for waiting on an item has to be reinforced by a lock flag. A lock flag is set when
some thread initiates the “get N” transaction by getting the first item. The flag is unset
after getting the last item. In Java (Fig. 6a), not only does the synchronization concern
has to be reimplemented but also logging. The reason is that in LogTimeBuffer
logging is tangled together with synchronization, so it cannot be reused separately.
The duplicate implementation might be a nightmare for maintenance.

TimeEuffer public aspect Logying {
pointcut bufferChange () :
lcflowrivdithin( Timineg) ) &4
lefAlowrivithinoode (* Quene. get (ink) ) &8
{ execution] ¥ (ueus. get( . ) ) ||
EnhancedLogTimeBuffer exerution! * Quene.pii ) 1 );

# lock: boolean } SARE

+ EnhancedLogTimeEufferint) [ Public aspect ErrorsHamdler |

# lock[boolean]: woid protected pointout waitirveg () :

# isLock(]: boolean execution |

#  log(String] : void woid Enbepice dSynehy ond me dihasie . waiting () )

asnchz | excution | wid Quens waitingl) );

+  put[Object] : boolean .

+  get[]: Object }

+ getfint] : Objecy]

Fig. 6. a) A new class for Stage IV; b) Modifications in the pointcuts

In Aspect], although synchronization is implemented in a separate module, it also
cannot be reused in any way because an aspect cannot extend another concrete aspect.
Thus, all code corresponding to the synchronization concerns has to be
reimplemented (Fig. 7). A new method to get N items and locking mechanism are
introduced to Queue by means of inter-type declaration.
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public aspect Enhancedfvynchr onizedfuens pertarget | instanc () )
private boolean (ueue . lock = falge;
public wid Juene locki{boolean by { lock = b; }
public boolean Queue. isLock() { retwrn lock; }
public synchrond zed Object [] Dueue_get (int n) |
while { isEmptyi) |[isLocki) ) waitinegi) ;
lodk (truwe) ;
Object[] twp = mew Object[n];
for(int i=0; i-<n; i++) {
while | isEmpty () ) waitdineg() ;
tupl[i] = get (}:
}
lock (falze) ;
return tmp;

}

private woid Quewe_ waitingi() { wait(); }
protected wodd waiting() { waic{): }

protected pointout inst ant(): target (Dusue) 48 o flowivd thin (Timine i
protected podntout call geti):
lcflowrivithincode (* Quene. get (dnt) ) 448 call {Object Dasus get () 1;
Object around(Cieus gi:call get () &a target (o) |
synchrond zed (this) |
vihile (o.isEupty () | |q.isLhock () ) waiting();
Object tup=procesd o) ;
notifyklli); return tmp;
}

}
decl are precedence :

EnhancedSynchy ond zedluene, Logogitg, Timiteg:
Fioo.

Fig. 7. A new aspect for Stage IV

In addition, destructive changes in the Logging::bufferChange() pointcut are required
(Fig. 6b). Otherwise logs would be reported n times in response to the get(int n)
method, instead of just once after completing the transaction. This is due to that
get(int n) uses get() for retrieving every single item from the buffer. Furthermore, the
ErrorsHandler::waiting() pointcut also needs adjusting to the new decomposition.

4.5 Removing Logging and Timestamp

A programmer needs the enhanced buffer from Stage IV, but without the logging and
timing concerns. In Java, he once again has to reimplement the get(int) method and
much of the synchronization concerns. All to do in the AO version is to remove
Logging and Timing from the compilation list.

5 Lessons Learned

In an AO system, one cannot tell whether an extension to the base code is safe simply
by examining the base program in isolation. All aspects referring to the base program
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need to be examined as well. In addition, when writing a pointcut definition a
programmer needs global knowledge about the structure of the application. E.g. when
implementing the Timing aspect, a programmer has to know that the current
implementation of the synchronization concern affects each Queue structure, while
the timing concern requires a non-blocking Queue.

Moreover, when a system includes multiple aspects, they can begin to affect each
other. At Stage C, we have had to explicitly exclude logging the state of the queue
that is used by the Timing aspect. Furthermore, we have observed the problem of
managing interactions between aspects that are being composed. When advice
declarations made in different aspects affect the same join point, it is important to
consider the order in which they execute. Indeed, a wrong execution order can break
the program. In our experiment, we have used precedence declarations to force timing
to happen before logging and to force both of them to happen within the
synchronization block.

In most cases, aspects cannot be made generic, because pointcuts as well as
advices encompass information specific to a particular use, such as the classes
involved, in the concrete aspect. As a result, aspects are highly dependent on other
modules and their reusability is decreased. E.g. at Stage I, the need to explicitly
specify the Queue class and the two synchronization conditions means that no part of
the SynchronizedQueue aspect can be made generic. In addition, we have confirmed
that the reusability of aspects is also hampered in cases where “join points seem to
dynamically jump around”, depending on the context certain code is called from [3].
Moreover, the variety of pointcut designators makes pointcut expressions
cumbersome (see EnhancedSynchronizedQueue::call_get()).

Some advocates of AOP believe that appropriate tools can deal with the problems
of AOP we encountered. We think that they should reject AOP at all, since some
research [31] “shows” that OOP with a tool support solves the problem of
crosscutting concerns:)

6 Empirical Results

Table 2 presents the number of Atomic Changes and Reuse Level for both releases for
every stage. The measures were collected manually. Lower values are better for
Atomic Changes but worse for Reuse Level. AOP manifests superiority at Stage II1
and V, while OOP in the rest of the cases. At Stage IIl we have implemented a
logging concern which is one of the flagship examples of AOP usage. At this Stage,
the OO version requires significantly more atomic changes and new lines of code than
its AO counterpart. At Stage V, the maintenance tasks are focused on detaching some
concerns instead of implementing new ones. The AO solution has turned out to be
more pluggable.
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Table 2. Number of Atomic Changes and Reuse Level per stage

Atomic Changes Reuse Level
Oop AOP OOpP AOP

I, Adding a synchronization concern T 19 0,71 (0,66

Stage

Il. Adding a timestamp concern ] 19 0,85 0,67
IIl. Adding a logging conc ern g 3] 0,88 0,95
I Adding a nesw oetter g 16 0,73 0,458
Y. Removing logging and timestamp ) 3 0,74 1,00

7 Threats to Validity

7.1 Construct Validity

Construction threats lie in the way we define our metrics. Evolvability and reusability
like other quality factors are difficult to measure. Our dependent variables are based
on previous studies performed by Zhang et al. [40], Ryder & Tip [32] and Frakes
[12]. It is possible that other metrics will be better fitted for the purpose of our study.

7.2 Internal Validity

Internal validity of our experiment concerns the question whether the effects were
caused only by the programming paradigm involved, or by other factors. The
experiment has been carried out by the author during his research for the achievement
of a Doctor of Philosophy Degree. As the author does not have any interest in favour
of one approach or the other, we do not expect it to be a large threat. Nevertheless,
other programmers could have chosen the different strategies for implementing
secondary concerns.

7.3 External Validity

Synchronization, logging, and timing present the typical characteristics of
crosscutting concerns and as such they are likely to be generalizable to other
concerns. Unfortunately, the limited number of maintenance tasks and size of the
program make impossible the generalization of our results. However, the academic
setting allows us to present the whole programs in detail and to put forward some
advantages and limitations of AOP.

8 Related Work

Coady & Kiczales [9] compared the evolution of two versions (C and AspectC) of
four crosscutting concerns in FreeBSD. They refactored the implementations of the
following concerns in v2 code: page daemon activation, prefetching for mapped files,
quotas for disk usage, and tracing blocked processes in device drivers. These
implementations were then rolled forward into their subsequent incarnations in v3 and
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v4 respectively. In each case they found that, with tool support, the AO
implementation better facilitated independent development and localized change. In
three cases, configuration changes mapped directly to modifications to pointcuts and
makefile options. In one case, redundancy was significantly reduced. Finally, in one
case, the implementation of a system-extension aligned with an aspect was itself
better modularized.

Bartsch & Harrison conducted an experiment [1] in which 11 students were asked
to carry out maintenance tasks on one of two versions (Java and Aspect]) of an online
shopping system. The results did seem to suggest a slight advantage for the subjects
using the OO version since in general it took the subjects less time to perform
maintenance tasks and it averagely required less line of code to implement a new
requirement. However, the results did not show a statistically significant influence of
AOQP at the 5% level.

Sant’Anna et al. [33] conducted a quasi-controlled experiment to compare the use
of OOP and AOP to implement Portalware (about 60 modules and over 1 KLOC).
Portalware is a multi-agent system (MAS) that supports the development and
management of Internet portals. The experiment team (3 PhD candidates and 1 M.Sc.
student) developed two versions of the Portalware system: an AO version and an OO
version. Next, the same team simulated seven maintenance/reuse scenarios that are
recurrent in large-scale MAS. For each scenario, the difficulty of maintainability and
reusability was defined in terms of structural changes to the artifacts in the AO and
OO systems. The total lines of code, that were added, changed, or copied to perform
the maintenance tasks, equaled 540 for the OO approach and 482 for the AO
approach.

Kulesza et al. [21] present a quantitative study that assesses the positive and
negative effects of AOP on typical maintenance activities of a Web information
system.They compared the AO and OO implementations of a same web-based
information system, called HealthWatcher (HW). The main purpose of the HW
system is to improve the quality of services provided by the healthcare institution,
allowing citizens to register complaints regarding health issues, and the healthcare
institution to investigate and take the required actions. In the maintenance phase of
their study, they changed both OO and AO architectures of the HW system to address
a set of 8§ new use cases. The functionalities introduced by these new use cases
represent typical operations encountered in the maintenance of information systems.
Although they claim that the AO design has exhibited superior reusability through the
changes, there is no empirical evidence to support this claim. The collected metrics
show only that aspects contributed to: (1) the decrease in the lines of code, number of
attributes, and cohesion; (2) the increase in the vocabulary size and lexical separation
of crosscutting concerns. They also tried to evaluate coupling, but in our earlier study
[30] we argued why their coupling metric is invalid. An additional interesting
observation from Kulesza’s study [21] is that more modules were needed to be
modified in the AO version, because it requires changing both the classes along the
layers to implement the use case functionality and the aspects implementing the
crosscutting issues.

Munoz et al. [28] showed that aspects offer efficient mechanisms to implement
crosscutting concerns, but that aspects can also introduce complex errors in case of
evolution. To illustrate these issues, they implemented and then evolved a chat
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application. They found that it is very hard to reason about the aspects impact on the
final application.

Mortensen et al. [26] examined the benefits of refactoring three legacy applications
developed by Hewlett-Packard. They followed the evolution of the applications across
several revisions. The modifications needed to evolve these systems required changes
to fewer software items in the refactored systems when compared to the original. The
reduction of the average number of modules and files changed between revisions was
4% and 3% respectively.

Taveira et al. conducted two studies to check if AOP promotes greater reuse of
exception handling code than a traditional, OO approach. In the first study [38], they
assessed the suitability of AOP to reuse exception handling code within applications.
They refactored three medium-size applications implemented originally in Java.
Aspects were used to implement the exception handlers. Though AOP promoted a
large amount of reuse of error handling code, the overall size of the refactored
systems did not decrease due to the code overhead imposed by Aspect]. The number
of handlers was sensibly lower in the refactored versions but the amount of error
handling code was much higher. In the second study [37], they refactored seven
medium-size systems to assess the extent to which AOP promotes inter-application
reuse of exception handling code. They found out that reusing error handling across
applications is not possible in most of the cases and requires some a priori planning.
Only extremely simple handlers could be reused across applications.

The experiment closest to ours is the one conducted by Figueiredo et al. [10] in
which they quantitatively and qualitatively assess the positive and negative impacts of
AOP on a number of changes applied to MobileMedia. MobileMedia is a software
product line for applications with about 3 KLOC that manipulate photo, music, and
video on mobile devices. The original release was available in both Aspect] and Java
(the Java versions use conditional compilation as the variability mechanism). Then, a
group of five post-graduate students was responsible for implementing the successive
evolution scenarios of MobileMedia. Each new release was created by modifying the
previous release of the respective version. A total of seven change scenarios were
incorporated. The scenarios comprised different types of changes involving
mandatory, optional, and alternative features, as well as non-functional concerns.
Figueiredo et al. found that AOP usually does not cope with the introduction of
mandatory features. The AO solution generally introduced more modules and
operations. A direct result of more modules and operations is the increase in LOC.
Moreover, depending on the evolution scenario, Aspect] pointcuts were more fragile
than conditional compilation. In order to compare their and our results, we have
derived the simplest form of Reuse Level and Atomic Changes (Table 3) from their
measures. Atomic Changes has been limited to counting operations only, while Reuse
Level has been calculated as: number_of_reused_LOC / LOC. In general, the
measures demonstrate that there is no winner with respect to Reuse Level. The AO
solution is significantly better only at Stage VII. With regard to Atomic Changes, the
OO implementations are superior for every release.
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Table 3. Atomic changes and Reuse Level in MobileMedia

releasem| m | | v | V| vl
Feuse | Q0| 073|086|096|048| 075|001 0,76
Level [AQ|OG2|052(0583|055| 076|029 074
Atomic | QO] 1200 BB[ 20[ 111| 88| 335] 149
Change | AOQ] 1500 90] 22| 134] 102] 437| 175

7 Summary

In 2001 the editors of January/February “MIT Technology Review” announced AOP
as a standard in the commercial production of software in the next 15 years.
Nowadays, ten years later, AOP is still not widely adopted. We believe that, the
transfer of AOP to the mainstream of the software development depends on our
ability to find its true benefits and to be aware of its potential pitfalls. In this paper,
we have evolved a simple program in order to assess the potential of AOP to improve
evolvability and reusability in the presence of crosscutting concerns. Although a
definitely conclusion cannot be drawn from only the one discussed experiment, an
important outcome has been achieved in that the advocates of AOP have to take a
position on our results. By reviewing other research, we have shown that the claims
presented in Section 2 are not backed up by any convincing evidence. In our study,
the superiority of AOP has been observed only when detaching secondary concerns
and when implementing logging, which is a flagship example of AOP usage. OOP has
fared better in implementing secondary concerns in three out of four scenarios.

The experience gathered during the maintenance tasks points out that (1)
understanding the intricate dependencies existing between the modules of an AO system
is an arduous task; (2) aspects are holding too much information (the crosscutting logic
and target module information) to fully take advantage of lexical SoC. Thus, it seems
that the abstractions that AOP has provided to solve some of the evolution problems
with traditional software, actually introduce a series of new evolution problems. This
phenomenon has been called the evolution paradox of AOP [39], [28].
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Abstract. To support roles and similar notions involving multiple views
on an object, languages like Object Teams and CaesarJ include mecha-
nisms known as lifting and lowering. These mechanisms connect pairs of
objects of otherwise unrelated types, and enables programmers to con-
sider such a pair almost as a single object which has both types. In the
terminology of Object Teams this is called translation polymorphism. In
both Object Teams and CaesarJ the type system of the Java program-
ming language has been extended to support this through the use of
advanced language features. However, so far the soundness of transla-
tion polymorphism has not been proved.

This paper presents a simple model that extends Featherweight Java
with the core operations of translation polymorphism, provides a Coq
proof that its type system is sound, and shows that the ambiguity prob-
lem associated with the so-called smart lifting mechanism can be elimi-
nated by a very simple semantics for lifting.

Keywords: Formal foundations, language design, lifting/lowering,
Translation Polymorphism, type systems

1 Introduction

In this paper we investigate the mechanisms lifting and lowering that provide
a means to connect pairs of objects of otherwise unrelated types; mechanisms
that have existed since 1998 [I5IT6/IT], but have so far not been proved sound.
The Object Teams/Java language (OT/J) [1119] calls them translation polymor-
phism [I0].

OT/J is an extension of the Java programming language [8] that facilitates
non-invasive customisation through addition of code instead of modification.
This is done by introducing two new types of classes called teams and roles.
Roles solve many of the same problems as aspects [I4/13], i.e. extension of ex-
isting code; teams provide the means of controlling which roles are active, along
with state that is shared between roles in the team. In other words teams pro-
vide the context for families of related roles, and in fact teams implement family
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polymorphism [5]. Furthermore teams can inherit and extend the roles of their
super class, a feature known as virtual classes [7]. Each role is connected to a
regular class, the base class, through a special playedBy relation, making these
two objects seem almost like a single object. The mechanisms lifting and low-
ering use the playedBy relation and provide the translation between roles and
base classes. In situations where a role is expected but a base class is given,
lifting translates the base class object into the appropriate role. Similarly if a
base class object is expected but a role is given, lowering translates the role
into the base class object. In both cases the role and the base are connected via
the playedBy relation, either through smart lifting (OT/J) or through a flexible
invariant on the playedBy relation (this calculus). In OT/J lifting works across
inheritance hierarchies on both the role side and the base side. Smart lifting is an
algorithm that lets the run-time system choose the most specific role for a base
class. We note that smart-lifting makes it possible to make old code produce
errors without modifying it, due to the fact that it tries to always provide the
most specific role when lifting. This calculus features a straightforward lifting
operation that is always safe. OT/J is defined in terms of its implementation
and a language specification document. A soundness proof for the extensions to
the Java programming language type system has not been presented so far. For
the full details on OT/J see [I1].

The main contributions of this paper are: a minimal calculus of translation
polymorphism, along with a full soundness proof of this calculus; a resolution
of the ambiguity problems of smart lifting through a straightforward semantics
for the lifting operation; and a description of a safe language design space for
languages with translation polymorphism. The soundness proof is made using the
Coq proof assistant [2], on the basis of a Featherweight Java (FJ) [12] soundness
proof by De Fraine et al. [3].

Excluding comments and empty lines, the modifications to the FJ source code
amount to ~550 changed lines of code and ~400 new. To put these numbers into
context, the original FJ source code is ~1000 lines of code. The introduction of
roles had a large impact in general, while lifting and lowering mainly resulted in
an increase in the number of cases for the safety properties.

The concepts described in this paper are not specific to OT/J, and thus no
previous knowledge of OT/J is required. However, we use some terminology
of OT/J which will be explained as it is introduced. The rest of this paper
is structured as follows. In section 2] we describe our choice of features for this
calculus, give an example program, and describe the way objects are represented.
Section [3] presents the calculus and gives the proof of standard type soundness.
Section Ml discusses the semantics of lifting in more detail. In section [l related
and future work is discussed, and in section [f] the paper is concluded.

2 The Model

In this section we first argue why we do not model various features of OT/J. After
that an example of a program written in the calculus is provided. The example is
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used to highlight some problems with the lifting operation that demand careful
consideration, and we present our solution to these problems. Finally, because our
representation of objects is non-standard, we conclude this section by describing
objects.

We ignore all features of OT/J that are not at the core of translation poly-
morphism. Thus the following features are not part of the model: teams, team
activation, call-in bindings, and call-out bindings.

Teams are not in the model because the only part they play in relation to
translation polymorphism is to contain roles. Instead of being contained in teams
roles are top-level classes. It may seem surprising that our model omits teams,
because their semantics are at the core of the semantics of OT/J (just like classes
containing cclasses are at the core of CaesarJ). However, we do not need to
model the support for virtual classes in order to establish a universe which is
sufficiently rich to support a model of lifting and lowering with a semantics that
mirrors the behaviour of full-fledged languages. In fact, the connected pairs of
roles and base objects in OT/J can simply be modelled as a cloud of objects with
a label pointing to the currently active one. An object in our calculus is then
such a cloud, which is just a finite set of objects of which one is an instance of a
normal class (the base object), and the remaining objects are instances of role
classes: the set of roles which the base class is currently playing. Such an object
cloud works as the base object when its label points to the base object, and as a
role object when its label points to one of the role objects. Lowering just means
changing the label from one of the role objects to the base object, and lifting
means changing the label from the base object to one of the roles in the cloud.
In case the base object has not yet played the role which is requested in a lifting
operation, a fresh instance of that role is created and added to the cloud. This
semantics corresponds to a redistribution of the role objects in OT/J, where
each team is responsible for storing existing roles of that team in some internal
data structure managed by the language run-time. In this way, not modelling
teams is in some sense equivalent to restricting OT/J to a single global and
always active team, inside which every role is defined. Without teams there is no
need for modelling the team activation constructs. As our aim is to stay close to
the implementation of translation polymorphism in OT/J, in which a legal base
class is not a role of the same team [I1], we do not allow roles to be playedBy
another role.

Call-in and call-out bindings provide the Aspect-Oriented Programming fea-
tures of OT/J, and are thus unrelated to the core of translation polymorphism.
Lifting and lowering do occur inside these bindings, but not in a way that is
different from regular method and constructor invocations.

To summarise, translation polymorphism is defined by roles and the opera-
tions lifting and lowering. Thus those are the concepts we add to FJ. Roles are
restricted in two ways: they cannot be part of an inheritance hierarchy, and
they cannot have state. Fields in roles are inessential because roles may still
add non-trivial behaviour to a base object by accessing its fields. Moreover, in a
calculus that does not support mutable state, role objects with fields would have
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to initialise their fields to values that could as well be computed when needed.
In other words, state could easily be added to roles, but it would be essentially
useless unless the calculus were extended with mutable state. This may be an
interesting extension in itself, but in line with FJ we claim that a calculus with-
out mutable state is capable of producing a useful analysis of the soundness of
an object-oriented language, and that is the approach we have taken here. The
main reason for disallowing role inheritance is that it simplifies the calculus, and
thus the soundness proof, yet still allows us to model the core semantics of lifting
and lowering.

2.1 Example

Let us demonstrate with an example what a program looks like in our calculus,
see figure [[l The class Point is a regular FJ class that describes a point in the

class Point extends Object {

int x;

int y;

Point(int x, int y) { this.x = x; this.y = y; }
}

class Location playedBy Point {
string getCountry() {
int x = lower(this).x;
int y = lower(this).y;
string country = "DK"; // placeholder for (possibly advanced)
// computation converting a point in
// the plane to the name of a country

return country;
}
}

lift(new Point(3,4), Location).getCountry();

Fig. 1. Example

plane. Location is a role class that is playedBy Point, and provides a view of
points in the plane as physical locations on a map of the world. A new instance
of Point is lifted to a Location, which makes it possible to call the method
getCountry on that object. getCountry shows how members of the base class
are accessed: using the lower keyword to retrieve the base class object.

As an example of the difference between our lifting operation and the smart
lifting operation of OT/J consider the following situation, where we assume
that role inheritance is part of our calculus and that playedBy is required to
be covariant (as in OT/J): we might have a class 3DPoint that extends Point,
and two classes SpacelLocation and SeaLocation that both extend Location
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and are playedBy 3DPoint. In OT/J this could lead to a run-time error due to
ambiguity [I0], because the smart lifting algorithm would not know whether to
lift to SpaceLocation or Sealocation, given an instance of 3DPoint and target
role Location. In our calculus we avoid this problem because lifting always
returns an instance of the requested role.

As mentioned in section [Il smart lifting introduces the possibility of making
old code fail without modifying it. This is due to the ambiguity mentioned above;
a piece of code that looks safe when viewed in isolation might years later become
the source of lifting errors because new code can extend old roles, thereby cre-
ating an inheritance hierarchy with similar structure as the previous example.
A compile-time warning can be given for the new code, but the old code is not
necessarily available so the warning cannot point out which part of the program
may fail. This requires a whole program analysis at compile time, which in turn
requires that all sources are available. A lifting operation in the old code is now
possibly passed a base class object from the new code that makes the lifting
operation fail at run-time.

As we have removed the ambiguity of lifting this problem does not exist in
our calculus. In general it is always safe to return a role R that is a subtype of
the statically required role Ry, as long as R is a super type of the role R,,_; after
which the hierarchy fans out. This is illustrated in figure 21 For R, ; and Ry 2,
an “ambiguous lifting” error must be raised at run-time unless a choice can be
made based on a separate user-defined priority system or something similar.

Fig. 2. When a lifting operation lifting to R; is given a base class object of type B, it
is always safe to return a role object between R1 and R,—1 (inclusive)

2.2 Objects

This calculus uses objects with more structure than what is common among cal-
culi in the FJ family. As mentioned, what we think of as an object is represented
by a cloud of objects. In this section we explain in more detail what requirements
this cloud must satisfy, and why.
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These requirements are in fact influenced by the possible semantics of the
lifting operation. The lifting operation is capable of delivering a role whose
playedBy class is a strict supertype of the class of the base object of the cloud.
This means that we may obtain a Location role from a 3DPoint object, even
though Location specifies that it is playedBy a Point. The obvious alternative
would be to insist that the cloud contains only roles that directly specify the
class of the base object as its playedBy class. However, it is necessary in order
to preserve type soundness to allow for a flexible invariant. The two situations
are illustrated in Fig. Bl

B
@ P pB

Fig. 3. Left: an object cloud containing only roles directly playedBy the base class.
Right: an object cloud containing roles playedBy super types (A) of the base class (B).

Assume we have a class 3DPoint that extends Point from the previous exam-
ple. The wrapper method for the lifting operation, shown in figure @, illustrates
the problem. makeLocation might be called with a p that is an instance of

Location makeLocation(Point p) {
return 1ift(p, Location);

}

Fig. 4. Example

3DPoint at run-time. Thus if lifting is unable to lift to roles playedBy super
types this might get stuck at run-time. This is obviously also a problem for any
full-fledged language which contains our calculus as a sub language, because pro-
grams may choose to omit the use of inheritance for roles. Moreover, the use of
inheritance will not make the problem go away. Given that FJ is a sub language
of Java, our calculus is essentially a sub language of any language that supports
translation polymorphism; hence this property applies to them all.

In the Point and Location example we included a standard new expression
for the creation of an object. The formal calculus does not include such an
expression; instead it directly creates an object cloud containing a base object
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and a list of roles. It would be easy to define a surface language that includes
traditional new expressions and a preprocessing stage that transforms them to
cloud creation expressions with an empty role list. In this situation programs
would never create clouds with pre-existing roles, they would always come into
existence on demand during a lifting operation. However, we note that the actual
calculus is safe even without the restriction that all roles are created on demand.
We discuss this issue in more detail in section Ml

Before we give the formal definition of the calculus, figure Bl provides the
intuitive relation between the base class type hierarchy and the evaluation and
typing rules for lifting and lowering.

Evaluation & typing Lowering —— Typing

Lifting Evaluation

Fig. 5. The relation between the base class hierarchy and lifting/lowering expressions.
Lifting both types and evaluates to roles of a super type. Lowering types to the roles’
base but evaluates to a subtype of it.

3 Formal Definition of Lifted Java

In this section we present the formal definition of the calculus. Staying in the
same style as FJ, we use a sequence notation similar to the one used in the
original article on FJ [12], i.e. writing e.g. C means C; ... Cy, for some n > 0. This
also applies to binary arguments, such that C £ means C; £;...C, £,,. We use e to
denote the empty list. In the following, the meta variables C and D range over class
names; R ranges over role names; G can be both class and role names; £ ranges
over field names; m ranges over method names; x ranges over variable names; t
ranges over terms; v ranges over values; CL ranges over class declarations; RL
ranges over role declarations; and M ranges over method declarations.

Section [B.1] describes the syntax, section the semantics, and section (3.3l
gives the soundness proof of the calculus.

3.1 Syntax

As Lifted Java is an extension of FJ the basic syntax is the same, with the follow-
ing exceptions: a new class definition for roles has been added, called RL; a new
object creation term replaces the standard object creation term to accommodate
our objects with more structure; the value is replaced by the new object creation
term; and a term for each of the operations lifting and lowering has been added.
The complete syntax can be seen in figure [6l
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Terms and values

t
v

x | [new C(t), R, C] | t.f | t.m(t) | Lift(t,R) | lower(t) terms
[new C(v), R, G] values

Member and top-level declarations

CL := class C extends D{C £f; M} classes

RL = class R playedBy C {M} roles

M:= G m(G x) { return t; } methods
Fig. 6. Syntax

In the new class definition RL the extends relation of regular classes is replaced
by the playedBy relation. Using this class definition results in defining a role
class that has the class given by the right-hand side of the playedBy relation
as its base class. Note that RL does not specify fields, a consequence of the fact
that roles cannot have state.

The new object creation term is used to instantiate classes. It is a record
that, when fully evaluated, describes an object. From left to right it consists of
a base class instance, a list of role instances, and a label set to the class name
of the currently active object. As long as roles do not have state, the list of role
instances in the tuple can in fact be simplified, and so we replace it by a list of
roles. As mentioned in section [2] this tuple can be viewed as a cloud containing
a base class and any number of roles floating around it. The list of role names is
only used in the evaluation rules for lifting; rules that may also modify the list
of role names if the object is lifted into a role not in the list.

The term 1ift(t,F) lifts the term t to the role F. Similarly the term lower(t)
lowers the term t to the base class instance in the object cloud.

For the programmer this syntax amounts to more work compared to that of
OT/J. We have chosen this approach in order to prioritise a simple calculus with
simple proofs rather than simple programs, as is common when working with
calculi. In particular we use explicit lifting and lowering operations; this differs
from OT/J where lifting and lowering is typically performed implicitly, with
the compiler inserting the appropriate method calls. Thus we assume that the
preprocessing step that inserts calls to the lifting and lowering operations has
been run. Furthermore, accessing members of a roles’ base class does not happen
through a base link, but rather by lowering the object first and accessing the
field on the resulting object; and lifting an already lifted object to a new role
can only be done by lowering the object first.

3.2 Semantics

Apart from the evaluation and typing rules for roles, lifting, and lowering, the
small-step semantics of Lifted Java consist of two new auxiliary functions defining
the behaviour of the playedBy relation. In the following we will first describe
these auxiliary functions, then the evaluation rules, and finally the typing rules.
The functions fields, mbody, mtype, and override, are the auxiliary functions from
FJ; they are standard, so we will omit the formal definition. For the same reason
we will omit the congruence rules for method invocation and field access.
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Before we proceed we give the definition of the flexible invariant on the types
of objects in a cloud. As presented in section the cloud has the following
structure: the base object has a specific type C, and the role objects have role
types Ry ...Rg that are playedBy classes C; ...Cy, respectively. The intuitively
simplest invariant would then be to require that C; = C for all ¢ or that C; is the
most specific supertype of C that plays a role which is R;, but we employ the
more flexible invariant where it is just required that C; is a supertype of C.

Auxiliary functions. The auxiliary functions are defined in figure[[l The rule
PLAYEDBY is used to determine whether a role is playedBy a given base class, i.e.
playedBy(R, C) holds if and only if the playedBy relation in the role definition of
R mentions the class name C. Alone this rule is insufficient for a sound approach
to translation polymorphism, as discussed in section 2l Thus, we define the rule
PLAYEDBYWIDE which is the formal definition of the flexible invariant on the
playedBy relation. It is similar to the PLAYEDBY rule except that it takes sub-
typing into account, i.e. playedByWide(R,C) holds if and only if the playedBy
relation of R mentions a super type of C.

PLAYEDBYWIDE
PLAYEDBY C<:B
CT(R) = class R playedBy C {M} CT(R) = class R playedBy B {M}
playedBy(R, C) played By Wide(R, C)

Fig. 7. The auxiliary functions for Lifted Java

Evaluation. Figure 8 shows the evaluation rules. The evaluation rules extend
those of FJ to include evaluation of the terms 1ift(t,R) and lower(t). Congru-
ence rules are added for these two terms as well, and the congruence rule for the
object creation term is updated.

Lifting of the value v to the role R is split into two rules: one for when R does
not occur in the cloud of v (E-LiFT-NEW), and one for when it does (E-LIFT-
OLD). In both cases it is required that R is in fact a role and that R is playedBy
the currently active class object or a super type of it. Both facts are checked
by playedByWide. In the first case the role is added to the cloud of v, and the
name of the currently active instance is updated to R. In the second case only
the name of the currently active instance is updated.

Lowering the value v is taken care of by a single rule, E-LOWER, that only
requires that the name of the currently active object of v is a role. It would
be straightforward to make it possible to lower a regular class to itself and still
maintain soundness, as long as the typing rule for lowering also allows typing
of a lower expression where the active object is the base object. However, to
maintain a simple calculus we have decided that lowering should not be smarter
than lifting.

The congruence rules, EC-LIFT and EC-LOWER, provide the necessary eval-
uation of the individual arguments to the lifting and lowering terms.
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E-INnvk E-FIELD
mbody(m, G) = x.eq fields(C) =C £
[new C(e), R, G].m(d) [new C(e), R, C].f; — e;
— [d/x, [new C(e), R, G]/this]eo
E-LirT-OLD E-LIFT-NEW
playedByWide(R;,C) playedByWide(R, C) R¢R
lift([new C(e), R, C|,R;) lift([new C(e), R, C|,R)
— [new C(e), R, R — [new C(e), R ++ R, R]
EC-LOWER
E-LOWER o — o’
lower([new C(e), R, R]) lower(e) — lower(e’)

— [new C(e), R, C]

EC-LIrFT EC-NEw-ARG
e —e’ e; —e’;
lift(e,R) — lift(e’,R) [new C(...,ei,...), R,G]

— [new C(...,e’;,...), R,G]

Fig. 8. The evaluation rules for Lifted Java

Typing. The typing rules can be seen in figure @l The FJ typing rules are
extended to include well-formedness for roles, typing of the 1ift(t,R) term, and
typing of the lower(t) term. Furthermore, the typing rule of the new object
creation term is updated.

The typing rule for object creation terms, T-NEWw, states that the type of
an object is always the class corresponding to the active instance. This can be
either the base class C or one of the role classes R; in the cloud. In order for the
rule to apply it is required that the arguments to the constructor of the base
class have the correct types, and that the currently active instance is either a
role playedBy a super type of C or that it is C.

The rule T-LIFT is the typing rule for the 1ift(t,R) term. It states that a
1ift expression has the type of the role lifted to. It is required that the type of
the first argument plays the role R, or is a subtype of a class that does.

The T-LOWER rule describes the requirements for typing the lower(t) term.
It states that the lower expression has the type of the base class of the currently
active instance, and thus requires that the type of the argument is a role. Like
with the evaluation rule for the lower(t) term it would be straightforward to
allow the term to be typed when the argument has the type of a regular class
and still maintain soundness, as long as the evaluation rule is also updated to
allow evaluation of a lower expression with a value where the active object is
the base object.

The rule for role typing (T-ROLE) is similar to the rule for regular class typing
(T-Crass), except for the fact that there are no fields and no constructor to
check. T-METH is the rule for method typing.
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T-FIELD
T-Var I'ke:C  fields(C)=C £
I'tx:TI'(x) I'kef;:C;
T-INVK T-NEW
I'ke:cC miype(m,C) =D — D fields(C)=cC £ I'ke:D
I'ke:C C<:D D<:C playedByWide(G,C) VG =C
I'+em(e):D I't [new C(e), R, G] : G
T-LiFT T-LOWER
I'e:C playedByWide(R, C) I'He:R playedBy(R, C)
I' -1ift(e,R) : R I' - 1lower(e): C
T-METH

this: CF to : Eg
Eo <: Co CT(C) = class C extends D{C f; M} override(m,D,C — Co)

Co m(C x) { return to; } OK in C

T-CLAss T-ROLE
MOK in C M OK in R

class C extends D{C f; M} OK class R playedBy C {M} OK
Fig. 9. The typing rules for Lifted Java

3.3 Safety Properties

Under the assumption that all defined classes and roles are well-formed, the
following safety properties hold for the calculus presented in the previous section:

Theorem 1 (Preservation). If et e : T and e — €' then there exists some
T such that et e’ : T and T' <: T.

Theorem 2 (Progress). If e - e : T then e is either a value or e — €' for
/
some e’.

Corollary 1 (Type soundness). If e - e : T and e —* &' where € is a
normal form, then €' is a value and e+ e’ : T/, where T/ <: T.

Corollary [l follows easily from the preservation and progress theorems, the proof
of which is implemented in the Coq proof assistant, following the pattern intro-
duced in [I8]. We invite the reader to download the Coq source code for the
proof from [6] for the details.

Note that we have been able to simplify the proofs by assuming empty type en-
vironments. The resulting preservation property is still sufficient to prove Corol-
lary 1. Hence, the weaker preservation property is sufficient to show standard
type soundness, and consequently the extra work required to show preservation
with non-empty environments would be superfluous. This technique was used by
De Fraine et al. both in their implementation of the A Calculus [4] and in the
implementation of FJ [3] which we use as a basis.
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4 Discussion

In this section we will discuss three things: our choices with regard to the se-
mantics of lifting and lowering; the case of unrestricted roles in object creation
expressions as mentioned in section 2.2} and the flexible invariant.

Lifting. In OT/J lifting is smart, i.e. it will produce a role with the dynamically
most specific type rather than the statically known type. This can lead to ambi-
guity, the reason for which is that a base object might be lifted to a role that is
extended by two otherwise unrelated roles. If the object cloud of the base object
does not already contain a role of the requested type, such a role should now be
created. In this situation it is ambiguous which of the two unrelated roles is the
most specific, and thus which of them the smart lifting algorithm should select.
In OT/J this causes an exception at run-time, and it may happen in a piece of
code that was compiled without warnings or errors, possibly long before the two
unrelated roles were written.

We have chosen a simpler semantics for lifting whereby the statically known
role type is used, and our soundness proof shows that this semantics is sound.
However, the difference between our semantics and smart lifting is orthogonal
to soundness, because the role chosen at run-time is in any case a subtype of
the statically supplied role type, and it is always sound to modify the semantics
to yield a more specific value for any given expression. It should be noted that
OT/J roles support inheritance, and that the playedBy relation enforces covari-
ance (more specific base type means same or more specific role type), whereas
our lifting semantics removes the need for subtyping among role types. Hence,
our soundness proof shows that all the possible language designs where lifting
produces a subtype of the statically known role type are sound. There are many
sound ways to remove the ambiguity problem in this language design space:
the static approach taken in our calculus; approaches based on taking the most
specific type that does not cause ambiguities; or using programmer declared
precedence are among the possible choices. It is a main contribution of this work
to clarify that this ambiguity problem can be solved by choosing any language
design within this language design space.

Lifting and lowering is always explicit in our calculus, using the special func-
tions 1lift and lower, whereas they are generally added by the compiler in
OT/J. This means more work for programmers using our calculus, but since it
would be easy to add calls to these functions to the code in a preprocessing step
where needed, there is no need to have implicit lifting and lowering as part of the
calculus. In fact the OT/J compiler takes this approach, automatically inserting
calls to lifting and lowering methods.

Flexible invariant. An interesting property of our calculus is that it employs a
flexible invariant for the types of objects in a cloud, and the soundness proof
shows that this is a safe thing to do. We introduced a widePlayedByrelation
in the calculus in order to express this invariant. The important fact to note
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is that almost any choice of semantics for the lifting operation from the above-
mentioned language design space would require a more or less flexible invariant
in the sense defined here.

Objects. From the calculus syntax in section [3] it is clear that there is no
restriction on the role names that can be in the object cloud of an object creation
expression. Programmers could therefore write programs that contain object
creation expressions including roles that do not have a widePlayedByrelation to
the class of the base object, let us call them junk roles. Intuitively this creates
the problem that the cloud contains roles that are not playedBy the given base
object, not even via a superclass! Figure [0l illustrates this situation. It may seem
dangerous to allow programs to run when some objects contain junk roles, but
this is in fact benign. The undeniable argument is that the Coq soundness proof
works for a formalisation that allows junk roles to exist; the associated intuition
is that these junk roles are unreachable because roles can only come into play
when being selected by a lifting operation — this will never happen for a junk
role.

Fig. 10. The cloud as implemented in the model. J marks junk role names.

5 Related and Future Work

The Aspect] language [I3] was the first to introduce Aspect-Oriented Program-
ming [14] in a general purpose programming language. However, aspects are at
the other end of OT/Js features compared to our focus on translation polymor-
phism, and thus we will not treat them further.

CaesarJ [I] solves the same scenario as OT/J, non-invasive customisation
through addition instead of modification. The following are the similarities that
are relevant with respect to our work. Like in OT/J, virtual classes and fam-
ily polymorphism are added to the language. The equivalents to roles and base
classes are called wrappers and wrappees. To translate an object of a wrappee
type to an object of a type wrapping it (lifting), a wrapper constructor is called
with the wrappee object as an argument. The translation from wrapper to
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wrappee (lowering) is done using an explicit wrappee link. We will not go into
detail with CaesarJ, but simply note that the model and observations in this
paper apply to that language as well.

Adding role inheritance to our calculus would be an interesting direction to
explore in the future. For the calculus presented in this paper simplicity is a
major feature, because it isolates the core of translation polymorphism. A more
elaborate model would be interesting to explore in order to address the problems
with ambiguity in smart lifting directly, for instance demonstrating that a certain
class of priority mechanisms could enable lifting to produce a most specific role
in some sense, and remain free of run-time errors.

6 Conclusion

Translation polymorphism, also known as lifting and lowering, is a language
mechanism which enables multiple objects, organised into pairs of base and role
objects, to act almost as if they were single objects supporting multiple unrelated
interfaces. This paper demonstrates for the first time that the core semantics of
translation polymorphism is provably type sound, and that the thorny issues of
ambiguity associated with the mechanism known as smart lifting may be elimi-
nated through a very simple choice of semantics for lifting; namely the semantics
whereby a base object is lifted to a role via a statically selected base object type.
This extends to a smart lifting semantics without ambiguity, because it may be
based on the most specific dynamic type of the base object that does not give
rise to ambiguity, and in general it outlines a language design space containing
many different safe choices. The results in this paper were achieved by means
of a very simple formal calculus that models lifting and lowering independently
of the advanced features, such as virtual classes and family polymorphism, that
are typically present in languages supporting translation polymorphism. The
completeness and correctness of the soundness proof of this calculus has been
verified mechanically by means of the Coq proof assistant. Consequently, trans-
lation polymorphism can now be considered safe.

References

1. Aracic, 1., Gasiunas, V., Awasthi, P., Ostermann, K.: An overview of CaesarJ. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment I. LNCS, vol. 3880, pp. 135-173. Springer, Heidelberg (2006)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
— Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical Com-
puter Science, vol. XXV. Springer, Heidelberg (2004)

3. De Fraine, B.: Language Facilities for the Deployment of Reusable Aspects. Ph.D.
thesis, Vrije Universiteit Brussel (2009),
http://soft.vub.ac.be/soft/_media/members/brunodefraine/phd.pdf

4. De Fraine, B., Ernst, E., Siidholt, M.: Essential AOP: The A calculus. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 101-125. Springer, Heidelberg (2010)


http://soft.vub.ac.be/soft/_media/members/brunodefraine/phd.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

Lifted Java: A Minimal Calculus for Translation Polymorphism 193

. Ernst, E.: Family polymorphism. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,

vol. 2072, pp. 303-326. Springer, Heidelberg (2001)

. Ernst, E., Ingesman, M.D.: Coq source for Lifted Java (2011), available at

http://users-cs.au.dk/mdi/liftedJavaCoq.tar.gz

. Ernst, E.; Ostermann, K., Cook, W.R.: A virtual class calculus. In: Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL 2006, pp. 270-282. ACM, New York (2006)

. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification, 3rd

edn. Addison-Wesley, Reading (2005)

. Herrmann, S.: A precise model for contextual roles: The programming language

Object Teams/Java. Appl. Ontol. 2, 181-207 (2007)

Herrmann, S., Hundt, C., Mehner, K.: Translation polymorphism in Object Teams.
Tech. rep., Technical University Berlin (2004)

Herrmann, S., Hundt, C., Mosconi, M.: OT/J Language Definition, version 1.3 edn.
(2010)

Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 396-450 (2001)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327-353. Springer, Heidelberg (2001)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S.(eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

Mezini, M., Lieberherr, K.: Adaptive plug-and-play components for evolutionary
software development. In: Proceedings of the 13th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
1998, pp. 97-116. ACM, New York (1998)

Mezini, M., Seiter, L., Lieberherr, K.: Component integration with pluggable com-
posite adapters. In: Software Architectures and Component Technology: The State
of the Art in Research and Practice, Kluwer Academic Publishers, Dordrecht (2000)
Ostermann, K.: Dynamically composable collaborations with delegation layers. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 89-110. Springer, Heidel-
berg (2002)

Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Com-
put. 115, 38-94 (1994)


http://users-cs.au.dk/mdi/liftedJavaCoq.tar.gz

Location Types for Safe Distributed
Object-Oriented Programming*

Yannick Welsch and Jan Schéfer

University of Kaiserslautern, Germany
{welsch, jschaefer}@cs.uni-kl.de

Abstract. In distributed object-oriented systems, objects belong to dif-
ferent locations. For example, in Java RMI, objects can be distributed
over different JVM instances. Accessing a reference in RMI has crucial
different semantics depending on whether the referred object is local or
remote. Nevertheless, such references are not statically distinguished by
the type system.

This paper presents location types, which statically distinguish far
from near references. We present a formal type system for a minimal
core language. In addition, we present a type inference system that gives
optimal solutions. We implemented location types as a pluggable type
system for the ABS language, an object-oriented language with a concur-
rency model based on concurrent object groups. An important contribu-
tion of this paper is the combination of the type system with the flexible
inference system and a novel integration into an Eclipse-based IDE by
presenting the inference results as overlays. This drastically reduces the
annotation overhead while providing full static type information to the
user. The IDE integration is a general approach of its own and can be
applied to many other type system extensions.

1 Introduction

In distributed object-oriented systems, objects belong to different locations. A
location in this paper is regarded to be an abstract concept, but in practice it
may, for example, refer to a physical computation node, some process (like a JVM
instance in RMI [19]), or can even be a concept of a programming language. For
example, in object-languages with concurrency models based on communicating
groups of objects such as E [18], AmbientTalk/2 |24], JCoBox [22], or ABS [15],
the location of an object can be considered as the group it belongs to. In these
scenarios it often makes a difference whether a reference points to an object at
the current location, i.e., the location of the current executing object (in the
following called a near reference), or to an object at a different location (a far
reference). For example, in the E programming language [18], a far reference
can only be used for eventual sends, but not for immediate method calls. In
Java RMI accessing a remote reference may throw a RemoteException, where
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accessing a normal reference cannot throw such an exception. It is thus desirable
to be able to statically distinguish these two kinds of references. This is useful
for documentation purposes, to reason about the code, and to statically prevent
runtime errors.

We present location types which statically distinguish far from near references.
Location types can be considered as a lightweight form of ownership types 4,
21] with the following two characteristics. The first is that location types only
describe a flat set of locations instead of a hierarchy of ownership contexts.
The second is that ownership types typically define the ownership context of
an object in a precise way. Location types abstract from these precise locations
by only stating whether an object belongs to the current location or some other
location. These two simplifications make location types very lightweight and easy
to use, while still being expressive enough to guarantee their desired properties.
Location types are not used to enforce encapsulation, which is the main goal of
many ownership type systems.

As with any type system extension, writing down the extended types can
become tiresome for programmers. Furthermore, these annotations may clutter
up the code and reduce readability, especially when several of such pluggable
type systems [2, 9] are used together. This reduces the acceptance of pluggable
type systems in practice. The first issue can be solved by automatically inferring
the type annotations and inserting them into the code. But this results again
in cluttered code with potentially many annotations. Our solution is to lever-
age the power of an IDE and present the inferred types to the programmer by
using unobtrusive overlays. They give the programmer full static type informa-
tion without cluttering the code with annotations nor reducing readability. The
overlays can be turned on and off according to the programmer’s need. Type
annotations are only needed to make the type checking and inference modular,
where the degree of modularity just depends on the interfaces where type anno-
tations appear. This way of integrating type inference into the IDE drastically
simplifies the usage of the proposed type system and is applicable to similar type
system extensions.

Contributions. The three main contributions of this paper are the following. (1)
We give the formalization of a type system for location types in a core object-
oriented language. (2) We describe a type inference system that gives optimal
solutions and helpful error messages. (3) We present an implementation of the
type and inference system for the ABS language and show how to integrate
such a system into an IDE by using a novel way of visualizing inferred type
information.

Outline. The remainder of this paper is structured as follows. In Sect. 2 we
give an informal introduction to location types and illustrate their usage by
an example. Section [3| presents the formalization of location types for a core
object-oriented language and the inference system. In Sect. ] we explain how
we implemented and integrated location types into an IDE, and provide a short
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evaluation. Section [ discusses location types in the context of related work.
Section [6] concludes.

2 Location Types at Work

Location types statically distinguish far from near references. To do so, stan-
dard types are extended with additional type annotations, namely location types.
There are three different location types: Near, Far, and Somewhere. Location
types are always interpreted relatively to the current object. A variable typed as
Near means that it may only refer to objects that belong to the same location as
the current object. Accordingly, a Far typed variable may only refer to objects
that belong to a different location than the current object. Somewhere is the
super-type of Far and Near and means that the referred object may either be
Near or Far. Important to note is that only Near precisely describes a certain
location. A Far annotation only states that the location of the referred object is
not Near. This means that a Far typed variable may over time refer to different
locations which are not further defined, except that they are not the location
of the current object. What a location actually means is irrelevant to the type
system. So whether the location of an object refers to a JVM instance or has
some other form of object grouping does not matter. It is only important that
an object belongs to a unique location for its entire lifetime.

We illustrate the location type system by applying it to a small implemen-
tation of a chat application. For the description we use the abstract behavioral
specification language (ABS) [15], which we explain hand-in-hand with the ex-
ample.

ABS is an object-oriented language with a Java-like syntax. It has a con-
currency model that is based on so-called concurrent object groups (COGs).
COGs can be regarded as the unit of concurrency and distribution in ABS. Ev-
ery object in ABS belongs to exactly one unique COG for its entire lifetime.
This is similar to the Java RMI setting where objects belong to certain JVM
instances, which may run distributed on different machines. At creation time
of an object it is specified whether the object is created in the current COG
(using the standard new expression) or is created in a fresh COG (using the
new cog expression). Communication in ABS between different COGs happen
via asynchronous method calls which are indicated by an exclamation mark (!).
A reference in ABS is far when it targets an object of a different COG, otherwise
it is a near reference. Similar to the E programming language [18], ABS has the
restriction that synchronous method calls (indicated by the standard dot nota-
tion) are only allowed on near references. Using a far reference for a synchronous
method call results in a runtime exception. Our location type system can be
used to statically guarantee the absence of these runtime exceptions.

The chat application is a simple IRC-like application, which consists of a single
server and multiple clients. For simplicity, there is only a single chat room, so all
clients actually broadcast their messages to all other clients. The basic interfaces
of the chat application in the ABS language are given in Fig. [[l Note that only
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interface Server {

[Near] Session connect(

[Far] Client c, String name); }

interface Session {

Unit receive(ClientMsg m);

Unit close(); }
interface Client {

Unit connectTo([Far] Server s);

Unit receive(ServerMsg m); }

.2 COG O object - -»> farreference —> near reference

Fig. 1. The annotated interfaces
of the chat application Fig. 2. Runtime structure of the chat application

1 class Clientimpl(String name) implements Client {

2 [Far] Session session; ...

3 Unit connectTo([Far] Server server) {

4 Fut<[Far] Session> f = server!connect(this, name);
5 session = f.get; } }

Fig. 3. Fully annotated implementation of the Clientlmpl class

Server, Client, and Session are actually reference types, the types Unit, ClientMsg,
and ServerMsg are data types and represent immutable data and not objects.

Figure 2] shows a possible runtime structure of the chat application. As the
clients and the server run independently of each other, they live in their own
COGs. This means that all references between clients and the server are far
references. The Session objects that handle the different connections with the
clients live in the same COG as the Server object. This means that references
between Session and Server are near references. In a typical scenario, the client
calls the connect method of the server and passes a reference to itself and a
user name as arguments. The server then returns a reference to a Session object,
which is used by the client to send messages to the server. The interfaces of
Fig. [l are annotated accordingly, e.g., the connect method of the server returns
a reference to a Session object that is Near to the server.

Figure B shows the Clientlmpl class, an implementation of the Client interface.
It has a field session which stores a reference to the Session object which is ob-
tained by the client when it connects to the server. Lines 3-5 show the connectTo
method. As specified in the interface, the Server parameter has type Far. In Line
4, the client asynchronously (using the ! operator) calls the connect method of
the server. The declared result type of the connect method is [Near] Session (see
Fig. [Ml). The crucial fact is that the type system now has to apply a viewpoint
adaptation |7]. As the target of the call (server) has location type Far, the return
type of connect (which is Near) is adapted to Far. Furthermore, as the call is
an asynchronous one, the value is not directly returned, but a future instead
(i.e. a placeholder for the value). In Line 5, the client waits for the future to be
resolved.
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1 class Serverlmpl implements Server { 10 Unit publish(ServerMsg m) {

2 List<[Near] Session> sessions = Nil; 11 List<[Near] Session> sess =

3 [Near] Session connect( 12 sessions;

4 [Far] Client c, String name) { 13 while (~isEmpty(sess)) {

5 [Near] Session s = 14 [Near] Session s = head(sess);
6 new Sessionlmpl(this, c, name); 15 sess = tail(sess);

7 sessions = Cons(s,sessions); 16 s.send(m);

8 this.publish(Connected(name)); 17 P

9 return s;} 18 '}

Fig. 4. Fully annotated implementation of the ServerImpl class

Figure M shows the Serverlmpl class, an implementation of the Server interface.
It has an internal field sessions to hold the sessions of the connected clients.
List is a polymorphic data type in ABS whose type parameter is instantiated
with [Near] Session, which means that it holds a list of near references to Session
objects. When a client connects to the server using the connect method, the server
creates a new Sessionlmpl object in its current COG (using the standard new
expression), which means that it is statically clear that this object is Near. It then
stores the reference in its internal list, publishes that a new client has connected,
and returns a reference to the session object. In the publish method at Line 16,
the send method is synchronously called. As ABS requires that synchronous calls
are only done on near objects, the type system guarantees that s always refers
to a near object.

3 Formalization

This section presents the formalization of the location type system in a core
calculus called LocJ. We first present the abstract syntax of the language and its
dynamic semantics. In Sect. Bl we introduce the basic type system for location
types as-well-as its soundness properties. In Sect. we improve the precision
of the basic type system by introducing named Far types. In Sect. we present
the location type inference system.

Notations. We use the overbar notation x to denote a list. The empty list is
denoted by e and the concatenation of list  and y is denoted by x - y. Single
elements are implicitly treated as lists when needed. M|z — y] yields the map
M where the entry with key z is updated with the value y, or, if no such key
exists, the entry is added. The empty map is denoted by [] and dom(M) and
rmg(M) denote the domain and range of the map M.

Abstract Syntar. LocJ models a core sequential object-oriented Java-like lan-
guage, formalized in a similar fashion to Welterweight Java [20]. The abstract
syntax is shown in Fig. Bl The main difference is that objects in LocJ can be
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P:=C E ::= new c in fresh Cu=F,H runtime config.
Cu=classc{V M} |new cinz |z H =1+~ (l,¢,D) heap

Vi=Tzx | z.m(y) | z.f F = (S,D)>™  stack frame
M:=Tm\V){V S§}IT:=c Di=z—w variable-value map
Su=xz—E|zf—y v = ¢ | null value

Fig. 5. Abstract syntax of LocJ. ¢ ranges Fig.6. Runtime entities of LocJ. ¢
over class names, m over method names and ranges over object identifiers and [ over
z,y,z, f over field and variable names (in- locations

cluding this and result)

created at different locations. For this, the new-expression has an additional ar-
gument, given by the in part, that specifies the target location. The target can
either be fresh to create the object in a new (fresh) location, or a variable = to
create the object in the same location as the object that is referenced by ol We
do not introduce locations as first class citizens as they can be encoded using
objects, i.e., objects can be simply used to denote locations. To keep the pre-
sentation short, LocJ does not include inheritance and subtyping. However, the
formalization can be straightforwardly extended to support these features.

Dynamic Semantics. The dynamic semantics of our language is defined as a small-
step operational semantics. The main difference to standard object-oriented lan-
guages is that we explicitly model locations to partition the heap. The runtime
entities are shown in Fig.[6l Runtime configurations ¢ consist of a stack, which is a
list of stack frames, and a heap. The heap maps object identifiers to object state