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Preface

Now that object technology is mainstream, it can be studied in combination
with other technologies devoted to achieving high-quality software. TOOLS
Europe is a long-standing conference that brings together researchers, prac-
titioners and students to discuss all aspects of object technology and related
fields, in particular model-based development, component-based development,
language implementation and patterns, in a holistic way. TOOLS Europe has a
strong practical bias, without losing sight of the importance of correctness and
performance.

The 49th International Conference on Objects, Models, Components and
Patterns (TOOLS Europe 2011) was held during June 28–30, 2011 at the Swiss
Federal Institute of Technology (ETH) in Zurich, Switzerland, organized by the
Chair of Software Engineering.

TOOLS Europe 2011 received 68 abstract submissions of which 66 were sub-
mitted as full papers. The Program Committee suggested 19 papers for presen-
tation and inclusion in these proceedings. This corresponds to a 28% acceptance
rate, which indicates the level of competition that occurred during the selection
process. All submissions were peer-reviewed by at least three members of the
Program Committee. Submissions and the reviewing process were administered
by EasyChair, which greatly facilitated these tasks. Continuing with the tradi-
tion started by Jan Vitek last year, a face-to-face PC meeting was held in Zurich
on Saturday March 19 to discuss all papers and decide the final program. Twelve
members attended in person and the other 19 joined by Skype. The meeting sig-
nificantly contributed to a better analysis of the papers and a more thorough
selection process.

The TOOLS Europe 2011 keynote speakers were Oscar Nierstrasz and Frank
Tip. Abstracts of their talks are included in these proceedings. We thank them
very much for accepting our invitation and for their enlightening talks.

Finally, we would like to acknowledge the work of the many people that made
this conference possible. In the first place we would like to thank the Publicity
Chair, Esther Guerra, for handling so efficiently all the dissemination activities
and for taking care of the website. We would also like to thank the authors for
their submissions, whether accepted or not, and the Program Committee mem-
bers and their subreviewers for their thorough and professional reviews. Alfred
Hofmann and the Springer team were really helpful with the publication of this
volume. Finally, we would like to warmly thank the TOOLS series General Chair,
Bertrand Meyer, and the local organizing team, “Max” Pei Yu, Hans-Christian
Estler and Claudia Günthart, from the ETH in Zurich, for their continuous sup-
port and great help with all logistic issues.

April 2011 Antonio Vallecillo
Judith Bishop
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Synchronizing Models and Code

(Invited Talk)

Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland

http://scg.unibe.ch

Abstract. Object-oriented development promotes the view that “pro-
gramming is modeling”. Nevertheless, it remains difficult to correlate
domain concepts and features with source code, to reconcile static and
dynamic views of object-oriented code, and to evolve software of a run-
ning system. There continues to be a significant gap between high-level
models of software applications and the code that realizes these models.
We review some recent research of the Software Composition Group that
attempts to address these shortcomings, and we put forward some chal-
lenges for future object-oriented development systems.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://scg.unibe.ch


Finding and Fixing Bugs in Web Applications

(Invited Talk)

Frank Tip

IBM Thomas J. Watson Research Center
Hawthorne, NY USA
ftip@us.ibm.com

Abstract. Today’s society is critically dependent on the existence of
web applications. From online purchases to personal banking to mobile
devices, web applications are the backbone of the 21st century’s eco-
nomy. However, web applications have a number of characteristics that
make them highly fragile and prone to bugs that threaten the important
applications they enable. In particular, they are typically written in a
combination of multiple languages, they often rely on low-level manipu-
lation of string values to generate dynamic web page content, and the
flow of control in web applications usually depends strongly on interac-
tive input from the user. In this presentation, I will present an overview
of the Apollo project at IBM Research, which aims to make web appli-
cations more robust by assisting programmers with finding and fixing
bugs, using automated techniques for test generation, fault localization,
and program repair.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Test Suite Quality for Model Transformation Chains

Eduard Bauer1, Jochen M. Küster1, and Gregor Engels2

1 IBM Research - Zurich, Säumerstr. 4
8803 Rüschlikon, Switzerland

{edb,jku}@zurich.ibm.com
2 Department of Computer Science, University of Paderborn, Germany

engels@upb.de

Abstract. For testing model transformations or model transformation chains, a
software engineer usually designs a test suite consisting of test cases where each
test case consists of one or several models. In order to ensure a high quality of
such a test suite, coverage achieved by the test cases with regards to the system
under test must be systematically measured. Using coverage analysis and the re-
sulting coverage information, missing test cases and redundant test cases can be
identified and thereby the quality of the test suite can be improved. As test cases
consist of models, a coverage analysis approach must measure how complete
models cover the domains of the transformations in the chain and to what degree
of completeness transformations are covered when executing the test suite. In this
paper, we present a coverage analysis approach for measuring test suite quality
for model transformation chains. Our approach combines different coverage cri-
teria and yields detailed coverage information that can be used to identify missing
and redundant test cases.

1 Introduction

Model transformations are used nowadays in model-driven engineering for model re-
finement, model abstraction, and for code generation. Model transformations can ei-
ther be implemented directly in programming languages (such as Java) or using one
of the available transformation languages that have been developed in recent years
(e.g. [6,14]). For complex model transformations, several smaller model transforma-
tions can be concatenated to build a model transformation chain [22]. Besides reduc-
ing the complexity, this enables reuse and distributed development of individual model
transformations. One example for such a model transformation chain is a solution for
version management of process models in the IBM WebSphere Business Modeler [1].

For testing model transformations or model transformation chains, systematic soft-
ware testing has to be applied in order to ensure a high quality of the model transforma-
tion chain. In this context, a software engineer usually designs a test suite consisting of
test cases where each test case consists of one or several models. One important aspect
of testing is to measure and ensure a high coverage level which is used to be certain that
the test suite and the system under test are of a high quality.

Measuring the coverage level of a test suite requires a coverage analysis approach
which allows measuring the coverage achieved by a test case with regards to the model

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 3–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 E. Bauer, J.M. Küster, and G. Engels

transformation chain. The result of coverage analysis can then be used to identify miss-
ing and redundant test cases. Application of traditional code coverage analysis tech-
niques usually leads to information about non-covered code. However, such information
is not sufficient for identifying missing and redundant test cases: It cannot be directly
used for constructing new test cases which yield higher coverage and it does not take
into account whether test cases cover the domains of model transformations sufficiently.

Existing work on testing model transformations (cf. [4]) shows how a metamodel
of the input language of one single model transformation can be used to determine the
quality of this model transformation. To the best of our knowledge, there is currently
no approach known for measuring test suite quality for model transformation chains. In
particular, there exists no means of identifying missing and redundant test cases.

In this paper, we present an approach for measuring test suite quality of model trans-
formation chains. Our approach measures coverage achieved by a test case in the model
transformation chain by computing a footprint which contains the main characteris-
tics of the test case execution. Based on the footprints, it is then possible to identify
missing and redundant test cases in a test suite. We have validated our approach using
a large model transformation chain for version management of process models in the
IBM WebSphere Business Modeler [1].

The paper is structured as follows. We first give some fundamentals concerning
model transformation chains and coverage analysis, and establish requirements for mea-
suring test suite quality in Section 2. Section 3 introduces a coverage analysis approach
for model transformation chains which is then used in Section 4 for identifying missing
and redundant test cases. In Section 5 we present our coverage analysis tool which has
been used on a larger model transformation chain to improve the quality of a test suite.
We discuss related work in Section 6 and conclude.

2 Background and Motivation

A model transformation chain is composed of several individual model transformations.
Each model transformation itself transforms one or more source models into one or
more target models. To design a model transformation, a software engineer has to define
the metamodels that specify the source and target models and implement the transfor-
mation definition which contains the logic to transform the models [7]. In addition to the
transformation definitions, transformation contracts [8] are used to specify declaratively
what a transformation has to do. Such an approach is inspired by the design-by-contract
approach [18], adapted for model transformations. To design a model transformation
chain, several model transformations are composed so that models produced by one
transformation are used for a consecutive model transformation.

In general, a metamodel used to specify the domain of a model transformation can be
defined by a standard (i.e. the UML language definition) or it can be domain-specific.
In the latter case, the software engineer can define an own domain-specific metamodel,
specifying the input/output language of the model transformation. The transformation
definition can be expressed using one of the numerous model transformation languages
(e.g. QVT [10] or ATL [14]) or using a programming language such as Java. In the case
when source and target metamodels are the same, the model transformation is called
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endogenous model transformation, otherwise it is called exogenous model transforma-
tion [7]. Transformation contracts are defined independently of the implementation of
the model transformation. They consist of different kinds of contract rules which specify
conditions for the models used and created by the model transformation: A precondi-
tion rule specifies conditions that have to hold for the source models. A transformation
condition rule specifies conditions for the relation between source and target models. A
postcondition rule specifies conditions that have to hold for the target models. A vari-
ety of possibilities exist to express transformation contracts. Cariou et al. [8] use Object
Constraint Language (OCL) to define transformation contracts. Guerra et al. [11] define
a separate visual language to specify transformation contracts.

In this paper we use as a case study the complex model transformation chain Com-
pare/Merge Model Transformation Chain (CMTC) that is used in the IBM WebSphere
Business Modeler [1] for version management of process models. Given two business
process models expressed in Business Process Modeling Notation (BPMN) [19], this
model transformation chain computes their differences in the form of a Difference
Model. A simplified BPMN metamodel that is used in this paper is shown in Figure 1.

Fig. 1. BPMN Metamodel (Simplified)

The models of the
CMTC and their re-
lation are shown in
Figure 2. The rounded
rectangles represent
models, the arrows
show which models are
transformed into which
other models. The two
BPMN models bpmn1

and bpmn2 are trans-
formed into Workflow
Graph (WFG) models
wfg1 and wfg2. These models are transformed by an endogenous model transformation
to models that are called Process Structure Trees (PSTs) (pst1 and pst2). The PST
models conform to the same metamodel as WFG models but have different properties
which are more suitable for difference detection. Comparing the PST models pst1 and
pst2 yields the model comp1, which maps the model elements that are similar in the
two PST models to each other. Finally, based on these PST models and the comp1

model, the diff1 model is computed which represents the difference between the two
initial BPMN models. The whole test suite of the model transformation chain CMTC
consists of 188 different test cases. A detailed overview of the CMTC is given by
Küster et al. [15].

Fig. 2. Models of the CMTC

In addition to specifying the do-
mains of the model transformations
by metamodels, the CMTC makes use
of transformation contracts to spec-
ify what the transformations have to
do. For the transformation of BPMN
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models into WFG models, one transformation condition rule is that each Activity
without outgoing edges is transformed into a node in the WFG that is connected to the
end of the WFG model.

A complex model transformation chain, such as the CMTC, has to be systematically
tested in order to achieve a high quality. Software testing is usually done by creating
a number of test cases, consisting of input values and expected results, which define
how a software component should behave for a given input. For a model transformation
chain, a test suite consists of test cases where each test case consists of models. Two
sample test cases for the CMTC are shown in Figure 3, each in a separate column.
As the CMTC is used for difference detection for two process models, each test case
consists of two process models. The expected Difference models are not shown.

Fig. 3. Test Case 1 and Test Case 2

In the context of coverage analy-
sis [2], one uses the concept of a test
requirement in order to represent a
particular element of the System Un-
der Test (SUT), like for example a
statement or a class of the SUT, that
has to be tested. The elements that are
used as test requirements are defined
by coverage criteria. One very com-
mon coverage criterion is statement
coverage, which derives a test requirement from each statement of the SUT. Another
coverage criterion deriving test requirements from the input domain of model transfor-
mations is class coverage that yields a test requirement for each class of the metamodel.
A test requirement is covered, if the according element is executed/used by a test case
in the test suite. If for example a model contains an instance of a particular class of
the metamodel, the according test requirement derived from this class is covered. The
result of coverage analysis contains information about covered and non-covered test re-
quirements. This information is called coverage information. Nonetheless, it has to be
mentioned that covering all test requirements does not imply absence of faults in the
SUT.

For coverage analysis, the SUT is also called coverage artifact. Based on the distinc-
tion between source code or specification as two kinds of coverage artifacts, coverage
criteria are divided into specification-based and code-based coverage criteria. For model
transformation chains, metamodels can be considered as part of the specification as they
specify all possible input and output models. Transformation contracts specify the logic
of the model transformation by preconditions and postconditions for models.

When analyzing test suite quality for model transformation chains, an approach is
required that measures coverage of the domains of the separate model transformations
that build the transformation chain. In addition, the coverage of the transformation con-
tracts resulting from models created during the execution of the test suite has to be taken
into account. Information about missing test cases should be given in such a way that
a tester can use this information to create new test cases which cover a certain part.
In this context, endogenous as well as exogenous model transformations have to be
supported. For determining redundant test cases, the behavior of test cases in the whole
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model transformation chain has to be taken into account. The removal of such test cases
should not affect the fault detection effectiveness of the test suite.

3 A Combined Coverage Approach

In this section, we present a combined coverage approach [5] for measuring test suite
quality of model transformation chains. The combined coverage approach combines
different specification-based coverage criteria for model transformation chains. We start
by explaining relevant coverage criteria and then elaborate on how coverage analysis is
performed.

3.1 Coverage Criteria

Based on the specification of the model transformation chain, test requirements are
derived by different coverage criteria from metamodels and transformation contracts.

Fig. 4. Abstract Syntax of the bpmn2 Model of t1

Metamodel. In the follow-
ing, we describe coverage
criteria for metamodels (par-
tially based on Fleurey et
al. [9]). The following exam-
ples make use of the BPMN
metamodel shown in Fig-
ure 1 and one particular in-
stance of this metamodel,
shown in Figure 4.

Class Coverage. The coverage criterion class coverage [9] uses the classes of a meta-
model to derive test requirements: For each class c in a metamodel, a test requirement is
derived. Such a test requirement for a class c is satisfied, if a model (being an instance of
the metamodel) contains an object of class c. As instances of the classes StartEvent,
Activity, and Process, belong to the BPMN model, the test requirements derived
from these classes are satisfied.

Attribute Coverage. The coverage criterion attribute coverage [9] derives test require-
ments from the attributes of the classes of a metamodel. For this, the common software
testing technique equivalence partitioning [2] is used. For an attribute a, let D be the do-
main of the attribute a. Assuming an equivalence partitioning E of D, attribute coverage
derives a test requirement for each block e ∈ E. As an example, the equivalence parti-
tioning for attributes with the data type Boolean with the domain D = {true, false}
is E = {{true}, {false}}. This yields two test requirements, one for each block. The
BPMN model shown in Figure 4 covers the test requirement derived from the block
{true} for the attribute Subprocess.transaction.

Association Coverage. The coverage criterion association coverage [9] uses associa-
tions of a metamodel to derive test requirements. Each association has a multiplicity,
which defines the lower and upper number of instances of the association’s target class



8 E. Bauer, J.M. Küster, and G. Engels

which are allowed to be referenced. Since this can be seen as the domain of associ-
ations, equivalence partitionings can again be used in this situation. Let an associa-
tion a with the lower bound l and upper bound u be given. This yields the domain
D = {n ∈ N | l ≤ n ≤ u}. Given an equivalence partitioning E for D, we derive a test
requirement for each block e ∈ E of the equivalence partitioning E for association a. A
possible equivalence partitioning for the association Subprocess.flowElements
is E = {{0}, {n | n ∈ N ∧ n ≥ 1}}, yielding two test requirements. The test re-
quirement for the block {0} is covered by the BPMN model shown in Figure 4, as the
Subprocess does not contain any elements.

Feature Coverage. A feature can be seen as a particular characteristic of a model, such
that the model can be considered as a special case. Since models consists of model el-
ements, a feature is a particular combination of several model elements of that model.
The coverage criterion feature coverage uses the features defined in the context of a
metamodel to derive test requirements. For a feature f defined in the context of a meta-
model, a test requirement is created that requires the instances of the metamodel to
have the particular combination of model elements defined by feature f . A possible fea-
ture for the shown metamodel is the nesting of subprocesses. Describing features by
OCL expressions yields the OCL expression self.flowElements->exists(x
| x.oclIsTypeOf(Subprocess)), defined in the context of the class
Subprocess. None of the BPMN models shown in Figure 3 cover the test require-
ment derived from this feature.

Transformation Contract. Transformation contract coverage uses the contract rules
of a transformation contract to derive test requirements. For each contract rule cr of a
transformation contract, a separate test requirement is created. We call the result of the
evaluation of a transformation contract for a sequence of models a contract result. The
contract result contains the evaluation of each contract rule which is called contract rule
result. A contract rule result is a number which counts how often the condition stated
by the contract rule is fulfilled.

For the exemplary contract rule (Each Activity without outgoing edges is trans-
formed to a node in the WFG that is connected to the end of the WFG model, cf.
Section 2) evaluated on the BPMN model shown in Figure 4, we see that the contract
rule result is two as the condition is evaluated twice successfully. The test requirement
derived from this contract rule is then satisfied if the contract rule result has a positive
value.

3.2 Test Requirements for Model Transformation Chains

The coverage criteria for metamodels and transformation contracts are used to derive
test requirements from the specification of a model transformation chain. The com-
bined coverage approach distinguishes between two levels of the specification of model
transformation chains, called type level and composition level. The type level contains
all distinct metamodels and transformation contracts. The composition level describes
the assembly of these metamodels and transformation contracts and by this defines
the structure of the model transformation chain. Here, a metamodel or a transforma-
tion contract from the type level can be used at several positions in the structure of
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Fig. 5. Specification and Execution Level of CMTC

the model transformation chain. Metamodels and transformation contracts belonging to
the composition level are referred to as applied metamodels and applied transformation
contracts, respectively.

Figure 5 shows the type level, the composition level and the execution level for the
CMTC. The execution level here refers to the models and contract results created and
used during one sample execution of the CMTC (cf. Figure 2). The CMTC makes use
of four distinct metamodels and four distinct transformation contracts (top of Figure 5).
As a transformation contract specifies a model transformation, it refers to the metamod-
els specifying the domain of the model transformation chain. An incoming arrow to a
transformation contract originates from a metamodel specifying the input domain, an
outgoing arrow connects to a metamodel specifying the output domain.

On the composition level, the distinct metamodel BPMN is applied twice, yield-
ing the two applied metamodels BPMN1 and BPMN2. Similarly, the applied transfor-
mation contracts BPMN2WFG1 and BPMN2WFG2 have the transformation contract
BPMN2WFG as type. During execution, each applied metamodel is instantiated once,
each applied transformation contract is evaluated once. For the sake of clarity, we omit
some of the dashed lines describing the has type and instance of relations in Figure 5.

We denote by MTCtype = {M1, .., Mk, TC1, .., TCl} the set of distinct metamodels
and transformation contracts of the model transformation chain MTC. With MTCcomp
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= {M1, ..., Mn, TC1, ..., TCm} we denote the specification on composition level. We
denote by MTCt

exec = {m1, ..., mn, tc1, ..., tcm} all models and contract results that
are created and used during the execution of test case t. We refer by S(M) to all
the possible models of an applied metamodel M ∈ MTCcomp. Similarly, we refer by
S(TC) to all possible evaluations (contract results) of the applied transformation con-
tract TC ∈ MTCcomp.

To derive test requirements, we use each applied transformation contract and applied
metamodel separately. For each applied metamodel M ∈ MTCcomp, we can make use
of different equivalence partitionings for attributes and associations, as well as features
defined in the context of the applied metamodel. Each test requirement that is derived
from any applied metamodel M ∈ MTCcomp is unique, although the applied metamodels
can have the same distinct metamodel as a type. Similarly, each test requirement derived
from any applied transformation contract TC ∈ MTCcomp is unique. We use the notation
RX to describe all the test requirements resulting from the coverage artifact X.

3.3 Coverage Analysis

Coverage analysis aims at analyzing which test requirements are covered and which
not by a given test suite. In the context of the combined coverage approach, so-called
coverage counters determine the coverage of these test requirements. In addition to
measuring whether the test requirement is satisfied, a coverage counter determines how
often the test requirement is covered.

Definition 1 (Coverage Counter). Let MTC be a model transformation chain. Let
MTCcomp = {M1, ..., Mn, TC1, ..., TCm} be the set of applied metamodels and applied
transformation contracts for MTC. Let RMTC be the set of test requirements derived from
MTCcomp. Let r ∈ RMTC be a test requirement derived from X ∈ MTCcomp. A coverage
counter cr, which measures the coverage of test requirement r, is a function that deter-
mines a coverage count for the test requirement r using x ∈ S(X). cr is defined as follows:

– cr : S(M)→ N for applied metamodel M ∈ MTCcomp, from which r is derived.
– cr : S(TC)→ N for applied transformation contract TC ∈ MTCcomp, from which r

is derived.

We say that cr accepts a model m ∈ S(M), M ∈ MTCcomp, if r is derived from M. We
say cr accepts tc ∈ S(TC), TC ∈ MTCcomp, if r is derived from TC.

As an example, consider the class Activity in the applied metamodel BPMN1 that
has the type BPMN (cf. Figure 1 and Figure 5). The coverage of the resulting test
requirement r is measured by a coverage counter cr which counts how often the class
Activity is instantiated by a model bpmn1. For the test case t1, the resulting coverage
count is 1 because the test case only contains one instance of type Activity.

Aggregating all coverage counts for all test requirements during the execution of a
test case yields the footprint of a test case, which is the central concept representing
coverage information in the context of the combined coverage approach. The footprint
ft for a test case t characterizes t in terms of coverage counts for test requirements.
By this, the footprint ft contains information about the parts of the applied metamodels
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Table 1. Footprints for Test Cases shown in Figure 3

Model Test Requirement t1 t2

bpmn1 Activity 1 1
Subprocess 0 0
Gateway 2 0
ParallelGateway 0 0
ExclusiveGateway 2 0
({true}, {{true}, {false}}, Subprocess.transaction) 0 0
({false}, {{true}, {false}}, Subprocess.transaction) 0 0
({0}, {{0}, {n | n ∈ N ∧ n �= 0}}, Subprocess.flowElements) 0 0
({n | n ∈ N ∧ n �= 0}, {{0}, {n | n ∈ N ∧ n �= 0}}, Subprocess.flowElements) 0 0
Each Activity without outgoing edges is transformed to a node that is connected to the end of the WFG 0 0

bpmn2 Activity 2 1
Subprocess 1 1
Gateway 0 0
ParallelGateway 0 0
ExclusiveGateway 0 0
({true}, {{true}, {false}}, Subprocess.transaction) 1 0
({false}, {{true}, {false}}, Subprocess.transaction) 0 1
({0}, {{0}, {n | n ∈ N ∧ n �= 0}}, Subprocess.flowElements) 1 1
({n | n ∈ N ∧ n �= 0}, {{0}, {n | n ∈ N ∧ n �= 0}}, Subprocess.flowElements) 0 0
Each Activity without outgoing edges is transformed to a node that is connected to the end of the WFG 2 0

and applied transformation contracts that are covered by the test case t. The test re-
quirements and their coverage counts describe the behavior of the test case during the
execution of the model transformation chain. Formally, we define:

Definition 2 (Footprint). Let a model transformation chain MTC be given. Let RMTC

be the set of test requirements derived from MTCcomp. Let t ∈ T be a test case of the
test suite T. Let MTCt

exec = {m1, ..., mn, tc1, ..., tcm} be the set of models and contract
results used or created during the execution of t in MTC. A footprint ft for the test
case t is a function ft : RMTC → N that maps each r ∈ RMTC to its coverage count:
ft(r) = cr(x), with x ∈ MTCt

exec and cr accepts x.

For evaluating the coverage of the test requirement r ∈ RX derived from X ∈ MTCcomp

only exactly one x ∈ MTCt
exec, with x ∈ S(X), exists. This results from the construction

of the composition level specification. For example, for an applied metamodel M ∈
MTCcomp only exactly one model m ∈ MTCt

exec, with m ∈ S(M), exists that can cover
r ∈ RM . As a consequence, only one model/contract result x ∈ MTCt

exec is used by the
coverage counter for computing the coverage of a test requirement r.

An extract of footprints for the test cases t1 and t2 shown in Figure 3 is presented
in Table 1. We use triples for describing the block of an equivalence partitioning for
an association or attribute. The first element of the triple describes the block, the
second element the equivalence partitioning, and the third element addresses the at-
tribute/association. As an example, for both t1 and t2 the coverage count for the test
requirement derived from Subprocess is 0 for bpmn1 which shows that both do not
contain subprocesses.

During coverage analysis of a given test suite, a footprint is created for each test case.
This coverage information is used afterwards for measuring the quality of the test suite
which we will describe in the following.
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4 Ensuring Test Suite Quality

Test suite quality targets the adequacy and minimality of a test suite. Test suite adequacy
is concerned with determining which parts of the model transformation chain are tested
by the test suite and which parts remain untested. In contrast to this, analyzing the
minimality of a test suite involves identifying redundant test cases that do not yield any
new insights for finding faults in the model transformation chain and removing these
unnecessary test cases.

4.1 Test Suite Adequacy

To determine the adequacy of a test suite, the information represented by the footprint of
each test case is used. One footprint contains information about the parts of the model
transformation chain that are executed by one test case–in terms of test requirements
derived from applied metamodels and applied transformation contracts and their cover-
age counts. Combining the footprints of the test cases belonging to the test suite yields
information about the parts of the model transformation chain that are tested by the test
suite. Untested parts are identified by test requirements, for which the coverage counts
are 0 for all test cases of the test suite:

Definition 3 (Unsatisfied Test Requirement). Let a model transformation chain MTC
be given. Let RMTC be the set of test requirements derived from MTCcomp. Let T =
{t1, ..., tm} be a test suite for MTC. Let ft1 , ..., ftm be the footprints of t1, ..., tm. A test
requirement r ∈ RMTC is called unsatisfied if and only if ∀ ti ∈ T : fti (r) = 0.

As test requirements are derived from applied metamodels and applied transformation
contracts, testers of model transformation chains receive feedback from unsatisfied test
requirements that is close to the terms and concepts used in the domain of model trans-
formation chains. Accordingly, test cases that are currently missing in the test suite can
be easily created by the tester of model transformation chains.

As an example, assume a test suite consisting of the test cases shown in Figure 3.
The resulting footprints are shown in Table 1. The table shows several unsatisfied test
requirements that we describe in the following:

– The first BPMN models of the two test cases do not contain any Subprocesses,
yielding the unsatisfied test requirements derived from the class Subprocess
and its attributes and associations which belong to the applied metamodel BPMN1.
Due to this, test cases with a model bpmn1 should be created that contain
Subprocesses in order to increase coverage.

– The BPMN models do not contain parallel gateways and lead to unsatisfied test
requirements for the element ParallelGateway. Here, new test cases which
contain parallel gateways should be created.

Based on these observations, a tester can now create a new test case in order to increase
the coverage level. Figure 6 shows a possible new test case where the previous deficits
have been removed.
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Fig. 6. Test Case t3

In general, if the unsatisfied test requirement is de-
rived from one of the source metamodels, a model from
the input language of the model transformation chain
can be used to satisfy the test requirement. For satisfy-
ing an unsatisfied test requirement that is derived from
one of the target metamodels, a model has to be created
which is transformed into a target model that covers the
test requirement. This can in some cases be difficult as it
requires a detailed knowledge of the model transforma-
tion chain itself.

In the context of increasing coverage systematically, the concept of a composition
level (which makes use of applied metamodels and applied transformation contracts)
has several important advantages:

– For endogenous model transformations, unsatisfied test requirements can be
mapped to the source or the target metamodel of the endogenous model transfor-
mation.

– The concept of applied metamodels also has advantages for defining features and
equivalence partitionings: For example, for the model transformation that trans-
forms WFG models to PST models, we use different features for the source and the
target metamodel (which has the same metamodel as type). One feature, for exam-
ple, requires PST models with exclusive fragments to exist which is meaningless
for the same metamodel for WFG models. The reason for this is that WFG mod-
els do not make use of combinations of model elements that represent exclusive
gateways.

In spite of the support achieved by our approach to systematically increase coverage,
it is important to note that the adequacy of a test suite depends on equivalence par-
titionings for attributes and associations, as well as features defined in the context of
applied metamodels. Since the equivalence partitionings and features are defined by
the tester/developer of the model transformation chain, the knowledge of these actors
influences the adequacy of the test suite.

4.2 Test Suite Minimality

For determining the minimality of the test suite as well as for reducing the test suite,
the information provided by footprints of test cases is used. Finding unnecessary test
cases that do not yield any insights for finding faults in the model transformation chain
is based on comparing the footprints of test cases. If footprints are seen as vectors, the
distance between footprints can be used as an indicator for their similarity. We use the
Manhattan distance between these vectors to define the distance between footprints:

Definition 4 (Distance Between Footprints). Let a model transformation chain MTC
be given. Let RMTC be the set of test requirements derived from MTCcomp. Let t1, t2 ∈ T
be two test cases belonging to the test suite T. Let ft1 , ft2 be the footprints of the test
cases t1, t2. Then the distance dft1 ,ft2

between the footprints ft1 and ft2 is defined as
dft1 ,ft2

=
∑

r∈RMTC | ft1(r)− ft2(r) |.
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In the case when the distance between footprints of two test cases is zero, the test cases
yield the same coverage counts for all test requirements. As a consequence it is very
likely that they behave similarly during the execution of the model transformation chain.
Nonetheless, only the tester of the model transformation chain can approve the complete
similarity and unnecessity of such test cases. We call these test cases redundant since
they test the same functionality of the model transformation chain. An example for a
pair of redundant test cases for the CMTC is the test case t2 shown in Figure 3 and
the test case t4 shown in Figure 7. These test cases have the same footprints for the
CMTC (distance between footprints: 0) because the difference detection is based on the
structure of the graph and not on the names of the activities.

Fig. 7. Test Case t4

One test case of a pair of redundant test cases can be re-
moved from the test suite without affecting the fault detection
effectiveness of the test suite. Extending this idea to partition
the test suite into partitions of mutually redundant test cases and
using one test case out of each partition yields the redundancy
reduction algorithm.

The pseudo code for this algorithm is given in Algorithm 1.
The input of the redundancy reduction is a test suite T and the set of footprints F, which
contains a footprint ft for each test case t ∈ T. The result of the algorithm is the reduced
test suite T ′, which does not contain any redundant test cases. The for each loop in
lines 4-10 creates partitions of mutually redundant test cases p ∈ P. All test cases that
are redundant to each other belong to one partition p. Observe that the for each loop
iterates over each pair of footprints fti and ftj with a distance of 0. This also holds true
for any single footprint fti ∈ F. Thus, in the case when ti is not redundant to any other
test case tj, this yields a partition p = {fti}.

The problem of reducing the size of the test suite while maintaining the satisfied test
requirements is called the test suite reduction problem [12]. The solution to this problem
is a so-called smallest reduced test suite that covers the same test requirements as the
whole test suite. Compared to the known test suite reduction heuristics our redundancy
reduction has two advantages:

First of all, by retaining redundant test cases that do not yield any new insights for
finding faults in the model transformation chain, the fault detection effectiveness of the
test suite should usually not be affected. This is different for the fault detection effec-
tiveness of the reduced test suites that are computed by test suite reduction heuristics
(e.g. [21,13]).

Secondly, redundancy reduction does not favor large test cases, which subsume other
test cases. For example, it does not favor test cases whose footprints have higher cov-
erage counts for each test requirement compared to other footprints. Keeping large test
cases in the reduced test suite is usually a property of the test suite reduction heuristics,
as large test cases tend to subsume small test cases in terms of covered test require-
ments. Accordingly, the reduced test suite resulting from the redundancy reduction does
not necessarily consist of test cases consisting of large models which are usually poorly
maintainable.
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Algorithm 1. Redundancy Reduction
Input : T = {t1, ..., tn} test suite
Input : F = {ft1 , ..., ftn} footprints of test cases T = {t1, ..., tn}
Output: T ′ ⊆ T reduced test suite
redundancyReduction(T ,F)1

T ′ ← ∅;2

P← ∅;3

foreach fti , ftj ∈ F with dfti ,ftj
= 0 do4

if ∃ p ∈ P : ∃ f ∈ p : df ,fti
= 0 then5

add fti , ftj to p6

else7

P← P ∪ {{fti , ftj}}8

end9

end10

foreach p ∈ P do11

t ← ti ∈ T for exactly one fti ∈ p ;12

T ′ ← T ′ ∪ t;13

end14

return T ′;15

end16

5 Tool Support and Validation

For supporting the combined coverage approach, we have created the Test Suite Ana-
lyzer for model transformation chains, which consists of a set of Eclipse plug-ins. The
Test Suite Analyzer supports obtaining coverage information as well as investigating
the coverage information. Figure 8 shows a screenshot and illustrates the obtained cov-
erage information (bottom of figure) and one particular footprint (top of figure). The
supported use cases are shown in Table 2.

Table 2. Summary of Applications of the Combined Coverage Approach

Use Case Description

Coverage Analysis
Adjustment of coverage analysis For performing the coverage analysis, the user is provided with functionality to

express equivalence partitionings for attributes and associations, define features
in the context of applied metamodels, and specify transformation contracts for
transformation definitions.

Performing coverage analysis During performing coverage analysis, the actual calculation of the coverage
information in terms of footprints for test cases is created and persisted. An
overview of the results is shown in the view at the bottom of Figure 8.

Investigation of coverage information
Display/Compare Footprints Different views are provided for the analysis of separate footprints as well as

for the comparison of different footprints.
Redundancy Computation Computation of pairs of redundant test cases.
Reduction of Test Suite Application of the redundancy reduction algorithm. Removal of redundant test

cases.
Identification of unsatisfied test
requirements

The information about unsatisfied test requirements is shown to the user.
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Fig. 8. Test Suite Analyzer for model transformation chains

Applying the combined coverage approach to the model transformation chain CMTC
had the following results: Analyzing the adequacy of the test suite provided informa-
tion about several unsatisfied test requirements. For example, nested subprocesses were
identified as missing. The subsequent creation of test cases containing nested subpro-
cesses uncovered some faults in the model transformation chain. Concerning the mini-
mality of the test suite, 27 pairs of redundant test cases have been identified. The main
reason for such a high number is the creation of the test suite by different people and the
lack of maintenance of the test suite throughout the years. The redundancy reduction
algorithm allowed us to remove 19 test cases from the overall 188 test cases. A manual
investigation showed that only those test cases that behaved similarly to other test cases
were removed. Accordingly, the fault detection effectiveness of the reduced test suite
should be comparable to the fault detection effectiveness of the whole test suite. The
Test Suite Analyzer has already been successfully used when evolving the CMTC for
supporting another input language for the process models.

6 Related Work

In the domain of software testing, several coverage criteria exist to determine the ade-
quacy of test suites. McQuillan et al. [17] introduces a code-based coverage criterion
for model transformations to derive test requirements from transformation definitions
composed in ATLAS Transformation Language (ATL). In contrast to their work, we
focus on specification-based coverage analysis as this facilitates the derivation of test
cases for increasing coverage.

Specification-based coverage analysis has been studied by Andrews et al. [3]. They
define coverage criteria for models composed in Unified Modeling Language (UML),
including coverage criteria for UML class diagrams. Andrews et al. define three coverage
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criteria, which are called association-end multiplicity criterion, generalization criterion,
and class attribute criterion. Fleurey et al. [9] adapt the approach of Andrews et al. for
deriving test requirements from the source metamodel of a model transformation. In our
approach, we extend metamodel coverage to applied metamodels that are used at any
position of the model transformation chain. Furthermore, we introduce transformation
contract coverage which allows us to analyse coverage also for the transformation logic.

To determine similarity between test cases, the domain of software profiling makes use
of execution profiles for test cases. Leon et al. [16] as well as Yan et al. [23] detect similar
test cases by defining metrics for computing the distance between execution profiles. Yan
et al. [23] use the euclidean distance between execution profiles for this computation. In
contrast to using euclidean distance, we make use of the Manhattan distance, although
both possibilities yield the same results for finding redundant test cases.

Reducing the size of the test suite based on coverage information is a common prob-
lem in software testing–the test suite reduction problem [12]. Solving this problem re-
quires finding the smallest possible subset of test cases which satisfies the same test
requirements as the whole test suite. Harrold et al. [12] formulate this problem mathe-
matically and show that finding such a subset is NP-hard. They present the first heuris-
tic to solve this problem. In recent years, several different test suite reduction heuristics
have been published (see e.g. [20]). A drawback of such heuristics is the potentially
decreased fault detection effectiveness of the reduced test suite. Empirical experiments
(see e.g. [21]) yield the conclusion that the simple reduction of the test suite, based
on the test suite reduction problem and the test suite reduction heuristics, decreases the
fault detection effectiveness of the test suite significantly. In contrast to these reductions,
we make use of redundant test cases to reduce the test suite, which does not decrease the
fault detection effectiveness of the test suite. In addition, other than test suite reduction
heuristics, our approach does not tend to retain large test cases in the test suite which
are difficult to understand and maintain.

7 Conclusion

Coverage analysis achieved by test cases for a model transformation chain is important
for ensuring the quality of the test suite. In particular, such coverage analysis must al-
low the software engineer to discover missing and redundant test cases. In this paper,
we have introduced the combined coverage approach for measuring the quality of a test
suite. Our approach is independent of a specific model transformation language and
computes a so-called footprint of a test case. This footprint allows a detailed analysis
and is also used for identification of missing and redundant test cases. We have vali-
dated our approach on a large model transformation chain where it has been used for
discovering several missing and redundant test cases.

Future work includes the automatic generation of missing test cases based on the
result of coverage analysis. Another direction of future work is a detailed investigation
of how results from our coverage analysis approach relate to traditional code coverage
analysis approaches.
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Abstract. Reusability is an important software engineering concept ac-
tively advocated for the last forty years. While reusability has been ad-
dressed for systems implemented using the same programming language,
it does not usually handle interoperability with different programming
languages. This paper presents a solution for the reuse of Java code
within Eiffel programs based on a source-to-source translation from Java
to Eiffel. The paper focuses on the critical aspects of the translation
and illustrates them by formal means. The translation is implemented
in the freely available tool J2Eif; it provides Eiffel replacements for the
components of the Java runtime environment, including Java Native In-
terface services and reflection mechanisms. Our experiments demonstrate
the practical usability of the translation scheme and its implementation,
and record the performance slow-down compared to custom-made Eiffel
applications: automatic translations of java.util data structures, java.io
services, and SWT applications can be re-used as Eiffel programs, with
the same functionalities as their original Java implementations.

1 Introduction

Code reuse has been actively advocated for the past forty years [12], has become
a cornerstone principle of software engineering, and has bred the development
of serviceable mechanisms such as modules, libraries, objects, and components.
These mechanisms are typically language-specific: they make code reuse practi-
cal within the boundaries of the same language, but the reuse of “foreign” code
written in a specific language within a program written in a different “host” lan-
guage is a problem still lacking universally satisfactory solutions. The reuse of
foreign code is especially valuable for languages with a small development com-
munity: some programmers may prefer the “host” language because its design
and approach are more suitable for their application domain, but if only a small
community uses this languages, they also have to wait for reliable implementa-
tions of new services and libraries unless there is a way to reuse the products
available, sooner and in better form, for a more popular “foreign” language. For
example, the first Eiffel library offering encryption1 was released in 2008 and still
1 http://code.google.com/p/eiffel-encryption-library/

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 20–35, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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is in alpha status, while Java has offered encryption services in the java.security
standard package since 2002.

A straightforward approach to reuse foreign code is to wrap it into compo-
nents and access it natively through a bridge library which provides the necessary
binding. This solution is available, for example, in Eiffel to call external C/C++
code—with the C-Eiffel Call-In Library (CECIL)—and Java code—with the
Eiffel2Java Library; the Scala language achieves interoperability with Java us-
ing similar mechanisms. Such bridged solutions execute the foreign code in its
native environment which is not under direct control of the host’s; this intro-
duces potential vulnerabilities as guarantees of the host environment (provided,
for example, by its static type system) may be violated by the uncontrolled for-
eign component. More practically, controlling the foreign components through
the interface provided by the bridge is often cumbersome and results in code
difficult to maintain. For example, creating an object wrapping an instance of
java.util.LinkedList and adding an element to it requires six instructions with
Eiffel2Java, some mentioning Java API’s signatures encoded as strings such as
method id := list.method id (”add”, ”(Ljava/lang/Object;)Z”).

A source-to-source translation of the foreign code into the host does not incur
the problems of the bridged solutions because it builds a functionally equivalent
implementation in another language. The present paper describes a translation
of Java source into Eiffel and its implementation in the tool J2Eif [8]. While
Eiffel and Java are both object-oriented languages, the translation of one into
the other is tricky because superficially similar constructs, such as those for
exception handling, often have very different semantics. In fact, correctness is
arguably the main challenge of source-to-source translation: Section 3 formalizes
the most delicate aspects of the translation to describe how they have been
tackled and to give confidence in the correctness of the translation.

As shown by experiments in Section 4, J2Eif can translate non-trivial Java
applications into functionally equivalent Eiffel ones; the system also provides
replicas of Java’s runtime environment and a precompiled JDK standard library.
The usage of the translated code is, in most cases, straightforward for Eiffel pro-
grammers; for example, creating an instance l of java.util.LinkedList and adding
an element e to it becomes the mundane (at least for Eiffel programmers):

create l.make JAVA UTIL LINKEDLIST ; r := l.method add from object (e)

Since Eiffel compiles to native code, a valuable by-product of J2Eif is the
possibility of compiling Java applications to native code. The experiments in
Section 4 show that Java applications automatically translated into Eiffel with
J2Eif incur in a noticeable slow-down—especially those making an intense use
of translated data-structure implementations. The slow-down is unsurprising, as
a generic, automated translation scheme is no substitute for a carefully designed
re-engineering that makes use of Eiffel’s peculiarities. Using J2Eif, however, en-
ables the fast reuse of new Java libraries in Eiffel applications—a valuable service
to access Java’s huge codebase in a form congenial to Eiffel programmers. Per-
formance enhancement belongs to future work.
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Section 2 gives an overview of the architecture of J2Eif; Section 3 describes
the translation in detail; Section 4 evaluates the implementation with four ex-
periments and points out its major limitations; Section 5 discusses related work;
Section 6 concludes.

2 Design Principles

J2Eif [8] is a stand-alone compiler with graphical user interface that translates
Java programs to Eiffel programs. The translation is a complete Eiffel application
which replicates the functionalities of the Java source application by including
replacements of the Java runtime environment (most notably, the Java Native
Interface and reflection mechanisms). J2Eif is implemented in Java.

Java 
Program 
Source 
Code

Eiffel 
Program 
Source 
Code

Java 
Libraries 
Source 
Code

JRE
Library
 Source 
Code

Native 
Libraries

Eiffel 
Compiler .exe

Helper
Classes

J2Eif

T1 T2 Tn

Fig. 1. High-level view of J2Eif

High-level view. Figure 1 shows the high-level usage of J2Eif. To translate
a Java program, the user provides the source code of the program, its Java
dependencies, as well as any external native libraries referenced by the program.
J2Eif produces Eiffel source code that can be compiled by an Eiffel compiler
such as EiffelStudio. Native libraries called by native methods in Java are then
directly called from Eiffel. While J2Eif can compile the complete code of the
Java Runtime Environment (JRE) library source, it comes with a precompiled
version which drastically reduces the overall compilation time.

Translation. J2Eif implements the mapping T : Java→ Eiffel of Java code into
Eiffel code. Both languages follow the object-oriented paradigm and hence share
several notions such as objects, classes, methods, and exceptions. Nonetheless,
the semantics of the same notion in the two languages are often quite different.
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Section 3 describes all the aspects taken into account by the translation and
focuses on its particularly delicate features by formalizing them.

J2Eif implements the translation T as a series T1, . . . , Tn of successive incre-
mental transformations on the Abstract Syntax Tree. Every transformation Ti

takes care of exactly one language construct that needs adaptation and produces
a program in an intermediate language Li which is a mixture of Java and Eiffel
constructs: the code progressively morphs from Java to Eiffel code.

T ≡ Tn ◦ · · · ◦ T1, where

⎧⎪⎪⎨⎪⎪⎩
T1 : Java → L1

T2 : L1 → L2

· · ·
Tn : Ln−1 → Eiffel

The current implementation uses 35 such transformations (i.e., n = 35).
Combining small transformations has some advantages: several of the individual
transformations are straightforward to implement and all are simple to maintain;
it facilitates reuse when building other translations (for example into a language
other than Eiffel); the intermediate programs generated are readable and easily
reviewable by programmers familiar with Java and Eiffel.

3 Translating Java to Eiffel

This section describes the salient features of the translation T from Java to Eiffel,
grouped by topic. Eiffel and Java often use different names for comparable object-
oriented concepts; to avoid ambiguities, the present paper matches the terms in
the presentation, whenever possible without affecting readability, and uses only
the appropriate one when discussing language-specific aspects. Table 1 lists the
Java and Eiffel names of fundamental object-oriented concepts.

Table 1. Object-oriented terminology in Java and Eiffel

Java Eiffel

class class
abstract/interface deferred

concrete effective
exception exception

Java Eiffel

member feature
field attribute

method routine
constructor creation procedure

3.1 Language Features

We formalize some components of T by breaking it down into simpler functions
denoted by ∇; these functions are a convenient way to formalize T and, in
general, different than the transformations Ti discussed in Section 2; the end
of the present section sketches an example of differences between ∇’s and Ti’s.
The following presentation ignores the renaming scheme, discussed separately
(Section 3.4), and occasionally overlooks inessential syntactic details. The syntax
of Eiffel’s exception handling adheres to the working draft 20.1 of the ECMA
Standard 367; adapting it to work with the syntax currently supported is trivial.
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Classes and interfaces. A Java program is defined by a collection of classes;
the function ∇C maps a single Java class or interface into an Eiffel class or
deferred (abstract) class.

T (C1, ..., Cn) = ∇C(C1), . . . ,∇C(Cn)
∇C(class name extend { body }) = class name ∇I (extend) ∇B(body) end
∇D(interface name extend { body }) = deferred class name ∇I (extend) ∇iB(body) end
where name is a class name; extend is a Java inheritance clause; and body a Java class body.

∇I translates Java inheritance clauses (extends and implements) into Eiffel
inherit clauses. The translation relies on two helper classes:

JAVA PARENT is ancestor to every translated class, to which it provides helper
routines for various services such as access to the native interface, exceptions,
integer arithmetic (integer division, modulo, and shifting have different se-
mantics in Java and Eiffel), strings. The rest of this section describes some
of these services in more detail.

JAVA INTERFACE PARENT is ancestor to every translated interface.

Java generic classes and interfaces may have complex constraints which cannot
be translated directly into Eiffel constraints on generics. T handles usages of
genericity with the same approach used by the Java compiler: it erases the generic
constraints in the translation but enforces the intended semantics with explicit
type casts added where needed.

Members (features). ∇B and ∇iB respectively translate Java class and in-
terface bodies into Eiffel code. The basic idea is to translate Java fields and
(abstract) methods respectively into Eiffel attributes and (deferred) routines.
A few features of Java, however, have no clear Eiffel counterpart and require a
more sophisticated approach:

Anonymous classes are given an automatically generated name.
Arguments and attributes can be assigned to by default in Java, unlike in

Eiffel where arguments are read-only and modifying attributes requires set-
ter methods. To handle these differences, the translation T introduces a
helper generic class JAVA VARIABLE [G]. Instances of this class replace
Java variables; assignments to arguments and attributes in Java are trans-
lated to suitable calls to the routines in the helper class.

Constructor chaining is made explicit with calls to super.
Field hiding is rendered by the naming scheme introduced by T (Section 3.4).
Field initializations and initializers are added explicitly to every constructor.
Inner classes are extracted into stand-alone classes, which can access the same

outer members (features) as the original inner classes.
JavaDoc comments are ignored.
Static members. Eiffel’s once routines can be invoked only if they belong

to effective (not deferred) classes; this falls short of Java’s semantics for
static members of abstract classes. For each Java class C, the translation T
introduces a class C STATIC which contains all of C ’s static members and
is inherited by the translation of C; multiple inheritance accommodates such
helper classes. C STATIC is always declared as effective (not deferred), so
that static members are always accessible in the translation as once routines.
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Varargs arguments are replaced by arguments of type array.
Visibility. Eiffel’s visibility model is different than Java’s, as it requires, in

particular, to list all names of classes that can access a non-public mem-
ber. T avoids this issue by translating every member into a public Eiffel
feature.

Instructions. ∇M maps Java method bodies to Eiffel routine bodies. As ex-
pected, ∇M is compositional: ∇M (inst1 ; inst2) = ∇M (inst1) ; ∇M (inst2),
hence it is sufficient to describe how ∇M translates Java instructions into Eiffel.
The translation of many standard instructions is straightforward; for example,
the Java conditional if (cond){doThen} else {doElse} becomes the Eiffel condi-
tional if ∇E(cond) then ∇M (doThen) else ∇M (doElse) end, where ∇E maps
Java expressions to equivalent Eiffel expressions. The following presents the
translation of the constructs which differ the most in the two languages.

Loops. The translation of loops is tricky because Java allows control-flow break-
ing instructions such as break. Correspondingly, the translation of while loops
relies on an auxiliary function∇W : JavaInstruction×{�,⊥} → EiffelInstruction
which replicates the semantics in presence of break (with t ∈ {�,⊥}):

∇M (while (stayIn) {body}) = from breakFlag := False
until not ∇E(stayIn) or breakFlag
loop ∇W (body, ⊥) end

∇W (break, t) = breakFlag := True

∇W (inst1 ; inst2, t) =

{
∇W (inst1, t) ; ∇W (inst2, 	) if inst1 contains break

∇W (inst1, t) ; ∇W (inst2, t) if inst1 doesn’t contain break

∇W (atomicInst, 	) = if not breakFlag then ∇M (atomicInst) end
∇W (atomicInst, ⊥) = ∇M (atomicInst)

The break instruction becomes, in Eiffel, an assignment of True to a fresh
boolean flag breakFlag, specific to each loop. Every instruction within the loop
body which follows a break is then guarded by the condition not breakFlag
and the loop is exited when the flag is set to True. Other types of loops (for,
do..while, foreach) and control-flow breaking instructions (continue, return)
are translated similarly.

Exceptions. Both Java and Eiffel offer exceptions, but with very different se-
mantics and usage. The major differences are:

– Exception handlers are associated to whole routines in Eiffel (rescue block)
but to arbitrary (possibly nested) blocks in Java (try..catch blocks).

– The usage of control-flow breaking instructions (e.g., break) in Java’s try..
finally blocks complicates the propagation mechanism of exceptions [15].

The function ∇M translates Java’s try..catch blocks into Eiffel’s agents (similar
to closures, function objects, or delegates) with rescue blocks, so that exception
handling is block-specific and can be nested in Eiffel as it is in Java:
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∇M (try {doTry} catch (t e) {doCatch}) = skipFlag := False
(agent (args) do

if not skipFlag then∇M (doTry) end
rescue

if e.conforms to (∇T (t)) then
∇M (doCatch) ;Retry := True ; skipFlag := True
else Retry := False end

end).call
∇M (throw (exp)) = (create {EXCEPTION}).raise (∇E(exp))

The agent’s body contains the translation of Java’s try block. If executing it
raises an exception, the invocation of raise on a fresh exception object transfers
control to the rescue block. The rescue’s body executes the translation of the
catch block only if the type of the exception raised matches that declared in the
catch (∇T translates Java types to appropriate Eiffel types, see Section 3.2).
Executing the catch block may raise another exception; then, another invoca-
tion of raise would transfer control to the appropriate outer rescue block: the
propagation of exceptions works similarly in Eiffel and Java. On the contrary, the
semantics of Eiffel and Java diverge when the rescue/catch block terminates
without exceptions. Java’s semantics prescribes that the computation continues
normally, while, in Eiffel, the computation propagates the exception (if Retry is
False) or transfers control back to the beginning of the agent’s body (if Retry
is True). The translation ∇M sets Retry to False if catch’s exception type is
incompatible with the exception raised, thus propagating the exception. Other-
wise, the rescue block sets Retry and the fresh boolean flag skipFlag to True:
control is transferred back to the agent’s body, which is however just skipped
because skipFlag = True, so that the computation continues normally after the
agent without propagating any exception.

An exception raised in a try..finally block is normally propagated after ex-
ecuting the finally; the presence of control-flow breaking instructions in the
finally block, however, cancels the propagation. For example, the code block:

b=2; while(true){try{throw new Exception();}finally{b++; break;}}
b++;

terminates normally (without exception) with a value of 4 for the variable b.
The translation ∇M renders such behaviors with a technique similar to the

Java compiler: it duplicates the instructions in the finally block, once for normal
termination and once for exceptional termination:

∇M (try {doTry} finally {doFinally}) = skipFlag := False
(agent (args) do

if not skipFlag then∇M (doTry ; doFinally) end
rescue ∇M (doFinally)

if breakFlag then
Retry := True ; skipFlag := True

end
end).call

A break sets breakFlag and, at the end of the rescue block, Retry and skipFlag;
as a result, the computation continues without exception propagation. Other
control-flow breaking instructions are translated similarly.
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Other instructions. The translation of a few other constructs is worth discussing.

Assertions. Java’s assert exp raises an exception if exp evaluates to false,
whereas a failed check exp end in Eiffel sends a signal to the runtime which
terminates execution or invokes the debugger. Java’s assertions are therefore
translated as if not exp then ∇M (throw (new AssertionError ())) end.

Block locals are moved to the beginning of the current method; the naming
scheme (Section 3.4) prevents name clashes.

Calls to parent’s methods. Eiffel’s Precursor can only invoke the parent’s
version of the overridden routine currently executed, not any feature of the
parent. The translation T augments every method with an extra boolean
argument predecessor and calls Precursor when invoked with predecessor
set to True; this accommodates any usage of super:

∇B(type method (args) { body }) = method (args ; predecessor: BOOLEAN): ∇T (type) do
if predecessor then Precursor (args, False)
else ∇M (body) end

end
∇E(method(exp)) = method (∇E(exp), False)
∇E(super.method(exp)) = method (∇E(exp), True)

Casting and type conversions are adapted to Eiffel with the services pro-
vided by the helper class JAVA TYPE HELPER.

Expressions used as instructions are wrapped into the helper routine
dev null (a: ANY): ∇M (exp) = dev null (∇E (exp)).

Switch statements become if..elseif..else blocks in Eiffel, nested within a
loop to support fall-through.

How J2Eif implements T . As a single example of how the implementa-
tion of T deviates from the formal presentation, consider J2Eif’s translation of
exception-handling blocks try{doTry} catch(t e){doCatch} finally{doFinally}:

skipFlag := False ; rethrowFlag := False
(agent (args) do

if not skipFlag then ∇M (doTry)
else if e.conforms to (∇T (t)) then ∇M (doCatch) else rethrowFlag := True end end
skipFlag := True ; ∇M (doFinally)
if rethrowFlag and not breakFlag then (create {EXCEPTION}).raise end

rescue if not skipFlag then skipFlag := True ; Retry := True end
end).call

This translation applies uniformly to all exception-handling code and avoids
duplication of the finally block, hence the agent’s body structure is more similar
to the Java source. The formalization ∇M above, however, allows for a more
focused presentation and lends itself to easier formal reasoning (see Section 4.1).
A correctness proof of the implementation could then establish that ∇M and
the implementation J2Eif describe translations with the same semantics.

3.2 Types and Structures

The naming scheme (Section 3.4) handles references to classes and interfaces as
types; primitive types and some other type constructors are discussed here.
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Primitive types with the same machine size are available in both Java and
Eiffel: Java’s boolean, char, byte, short, int, long, float, and double ex-
actly correspond to Eiffel’s BOOLEAN, CHARACTER 32, INTEGER 8,
INTEGER 16, INTEGER 32, INTEGER 64, REAL 32, and REAL 64.

Arrays in Java become instances of Eiffel’s helper JAVA ARRAY class, which
inherits from the standard EiffelBase ARRAY class and adds all missing
Java functionalities to it.

Enumerations and annotations are syntactic sugar for classes and interfaces
respectively extending java.lang.Enum and java.lang.annotation.Annotation.

3.3 Runtime and Native Interface

This section describes how J2Eif replicates, in Eiffel, JRE’s functionalities.

Reflection. Compared to Java, Eiffel has only limited support for reflection
and dynamic loading. The translation T ignores dynamic loading and includes
all classes required by the system for compilation. The translation itself also
generates reflection data about every class translated and adds it to the produced
Eiffel classes; the data includes information about the parent class, fields, and
methods, and is stored as objects of the helper JAVA CLASS class. For example,
T generates the routine get class for JAVA LANG STRING STATIC, the Eiffel
counterpart to the static component of java.lang.String, as follows:

get class: JAVA CLASS once (”PROCESS”)
create Result.make (”java.lang.String”)
Result.set superclass (create {JAVA LANG OBJECT STATIC})
Result.fields.extend ([”count” field data])
Result.fields.extend ([”value” field data])
...
Result.methods.extend ([”equals” method data]))
...

end

Concurrency. J2Eif includes a modified translation of java.lang.Thread which
inherits from the Eiffel THREAD class and maps Java threads’ functionalities
to Eiffel threads; for example, the method start() becomes a call to the routine
launch of class THREAD. java.lang.Thread is the only JRE library class which
required a slightly ad hoc translation; all other classes follow the general scheme
presented in the present paper.

Java’s synchronized methods work on the implicit monitor associated with
the current object. The translation to Eiffel adds a mutex attribute to every class
which requires synchronization, and explicit locks and unlocks at the entrance
and exit of every translated synchronized method:
∇B(synchronized type method(args){body}) = method (args): ∇T (type)

do mutex.lock ; ∇M (body) ; mutex.unlock end

Native interface. Java Native Interface (JNI) supports calls to and from pre-
compiled libraries from Java applications. JNI is completely independent of the
rest of the Java runtime: a C struct includes, as function pointers, all references
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to native methods available through the JNI. Since Eiffel includes an extensive
support to call external C code through the CECIL library, replicating JNI’s
functionalities in J2Eif is straightforward. The helper class JAVA PARENT—
accessible in every translated class—offers access to a struct JNIEnv, which
contains function pointers to suitable functions wrapping the native code with
CECIL constructs. This way, the Eiffel compiler is able to link the native imple-
mentations to the rest of the generated binary.

This mechanism works for all native JRE libraries except for the Java Virtual
Machine (jvm.dll or jvm.so), which is specific to the implementation (OpenJDK
in our case) and had to be partially re-implemented for usage within J2Eif. The
current version includes new implementations of most JVM-specific services,
such as JVM FindPrimitiveClass to support reflection or JVM ArrayCopy to
duplicate array data structures, and verbatim replicates the original implementa-
tion of all native methods which are not JVM-specific (such as
JVM CurrentTimeMillis which reads the system clock). The experiments in
Section 4 demonstrate that the current JVM support in J2Eif is extensive and
sufficient to translate correctly many Java applications.

Garbage collector. The Eiffel garbage collector is used without modifications;
the marshalling mechanism can also collect JNI-maintained instances.

3.4 Naming

The goal of the renaming scheme introduced in the translation T is three-fold:
to conform to Eiffel’s naming rules, to make the translation as readable as pos-
sible (i.e., to avoid cumbersome names), and to ensure that there are no name
clashes due to different conventions in the two languages (for example, Eiffel is
completely case-insensitive and does not allow in-class method overload).

To formalize the naming scheme, consider the functions η, φ, and λ:

– η normalizes a name by successively (1) replacing all “ ” with “ 1”, (2)
replacing all “.” with “ ”, and (3) changing all characters to uppercase—for
example, η(java.lang.String) is JAVA LANG STRING;

– φ(n) denotes the fully-qualified name of the item n—for example, φ(String)
is, in most contexts, java.lang.String;

– λ(v)is an integer denoting the nesting depth of the block wherev is declared—
for example, in the method void foo(int a){int b; for(int c=0;...)...}, it is
λ(a) = 0, λ(b) = 1, λ(c) = 2.

Then, the functions ΔC , ΔF , ΔM , ΔL respectively define the renaming scheme
for class/interface, field, method, and local name; they are defined as follows,
where ⊕ denotes string concatenation, “className” refers to the name of the
class of the current entity, and ε is the empty string.
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ΔC(className) = η(φ(className))
ΔF (fieldName) = “field” ⊕ λ(fieldName) ⊕ “ ” ⊕ fieldName ⊕ “ ” ⊕ ΔC(className)
ΔL(localName) = “local” ⊕ λ(localName) ⊕ “ ” ⊕ localName
ΔM (className(args)) = “make ” ⊕ ΔA(args) ⊕ ΔC(className)
ΔM (methodName(args)) = “method ” ⊕ methodName ⊕ ΔA(args)

ΔA(t1 n1, . . . , tm nm) =

{
ε if m = 0

“from ” ⊕ δ(t1) ⊕ . . . ⊕ δ(tm) if m > 0

δ(t) =

{
“p” ⊕ t if t is a primitive type

t otherwise

The naming scheme renames classes to include their fully qualified name. It
labels fields and appends to their name their nesting depth (higher than one
for nested classes) and the class they belong to; similarly, it labels locals and
includes their nesting depth in the name. It pre-pends “make” to constructors—
whose name in Java coincides with the class name—and “method” to other
methods. To translate overloaded methods, it includes a textual description of
the method’s argument types to the renamed name, according to function ΔA;
an extra p distinguishes primitive types from their boxed counterparts (e.g.,
int and java.lang.Integer). Such naming scheme for methods does not use the
fully qualified name of argument types. This favors the readability of the names
translated over certainty of avoiding name clashes: a class may still overload a
method with arguments of different type but sharing the same unqualified name
(e.g., java.util.List and org.eclipse.Swt.Widgets.List). This, however, is extremely
unlikely to occur in practice, hence the chosen trade-off is reasonable.

4 Evaluation

This section briefly discusses the correctness of the translation T (Section 4.1);
evaluates the usability of its implementation J2Eif with four case studies (Sec-
tion 4.2); and concludes with a discussion of open issues (Section 4.3).

4.1 Correctness of the Translation

While the formalization of T in the previous sections is not complete and over-
looks some details, it is useful to present the translation clearly, and it even
helped the authors find a few errors in the implementation when its results did
not match the formal model. Assuming an operational semantics for Java and
Eiffel (see [17]), one can also reason about the components of T formalized in
Section 3 and increase the confidence in the correctness of the translation. This
section gives an idea of how to do it; a more accurate analysis would leverage a
proof assistant to ensure that all details are taken care of appropriately.

The operational semantics defines the effect of every instruction I on the
program state: σ

I−→ σ′ denotes that executing I on a state σ transforms the
state to σ′. The states σ, σ′ may also include information about exceptions and
non-terminating computations. While a Java and an Eiffel state are in general
different, because they refer to distinct execution models, it is possible to de-
fine an equivalence relation � that holds for states sharing the same “abstract”
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values [17], which can be directly compared. With these conventions, it is pos-
sible to prove correctness of the formalized translation: the effect of executing a
translated Eiffel instruction on the Eiffel state replicates the effect of executing
the original Java instruction on the corresponding Java state. Formally, the cor-
rectness of the translation of a Java instruction I is stated as: “For every Java

state σJ and Eiffel state σE such that σJ � σE , if σJ
I−→ σ′

J and σE
∇M (I)−−−−→ σ′

E

then σ′
J � σ′

E .”
The proof for the the Java block B: try {doTry} catch (t e){doCatch}, trans-

lated to ∇M (B) as shown on page 26, is now sketched. A state σ is split into
two components σ = 〈v, e〉, where e is ! when an exception is pending and �
otherwise. The proof works by structural induction on B; all numeric references
are to Nordio’s operational semantics [17, Chap. 3]; for brevity, consider only
one inductive case.

doTry raises an exception handled by doCatch. 〈vJ , �〉 doTry−−−−→ 〈v′J , !〉, the

type τ of the exception raised conforms to t, and 〈v′J , !〉 doCatch−−−−−→ 〈v′′J , e〉, hence

〈vJ , �〉 B−→ 〈v′′J , e〉 by (3.12.4). Then, both 〈vE , �〉 ∇M (doTry)−−−−−−−→ 〈v′E , !〉 and

〈v′E , !〉 ∇M (doCatch)−−−−−−−−−→ 〈v′′E , e′〉 hold by induction hypothesis, for some v′E � v′J ,
v′′E � v′′J , and e′ � e. Also, e.conforms to (∇T (t)) evaluates to false on the

state v′E . In all, 〈vE , �〉 ∇M (B)−−−−−→〈v′′E , e′〉 by (3.10) and the rule for if..then.

4.2 Experiments

Table 2 shows the results of four experiments run with J2Eif on a Windows
Vista machine with a 2.66 GHz Intel dual-core CPU and 4 GB of memory. Each
experiment consists in the translation of a system (stand-alone application or
library). Table 2 reports: (1) the size in lines of code of the source (J for Java)
and transformed system (E for Eiffel); (2) the size in number of classes; (3) the
source-to-source compilation time (in seconds) spent to generate the translation
(T , which does not include the compilation from Eiffel source to binary); (4) the
size (in MBytes) of the standard (s) and optimized (o) binaries generated by
EiffelStudio; (5) the number of dependent classes needed for the compilation
(the SWT snippet entry also reports the number of SWT classes in parentheses).
The rest of the section discusses the experiments in more detail.

Table 2. Experimental results

Size #Classes Compilation Binary Size #Required
(locs) (sec.) (MB) Classes

J E J E T s o
HelloWorld 5 92 1 2 1 254 65 1208
SWT snippet 34 313 1 6 47 318 88 1208 (317)
java.util.� 51,745 91,162 49 426 7 254 65 1175
java.io tests 11,509 28,052 123 302 6 255 65 1225
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HelloWorld. The HelloWorld example is useful to estimate the minimal number
of dependencies included in a stand-alone application; the size of 254 MB (65
MB optimized) is the smallest footprint of any application generated with J2Eif.

SWT snippet. The SWT snippet generates a window with a browsable calen-
dar and a clock. While simple, the example demonstrates that J2Eif correctly
translates GUI applications and replicates their behavior: this enables Eiffel pro-
grammers to include in their programs services from libraries such as SWT.

java.util.� classes. Table 3 reports the results of performance experiments on
some of the translated version of the 49 data structure classes in java.util. For
each Java class with an equivalent data structure in EiffelBase, we performed
tests which add 100 elements to the data structure and then perform 10000
removals of an element which is immediately re-inserted. Table 3 compares the
time (in ms) to run the test using the translated Java classes (column 2) to the
performance with the native EiffelBase classes (column 4).

Table 3. Performance of translated java.util classes

Java class Java time Eiffel class Eiffel time Slowdown

ArrayList 582 ARRAYED LIST 139 4.2
Vector 620 ARRAYED LIST 139 4.5
HashMap 1,740 HASH TABLE 58 30
Hashtable 1,402 HASH TABLE 58 24.2
LinkedList 560 LINKED LIST 94 6
Stack 543 ARRAYED STACK 26 20.9

The overhead introduced by some features of the translation adds up in the
tests and generates the significant overall slow-down shown in Table 3. The fea-
tures that most slowed down the translated code are: (1) the indirect access
to fields via the JAVA VARIABLE class; (2) the more structured (and slower)
translation of control-flow breaking instructions; (3) the handling of exceptions
with agents (whose usage is as expensive as method call). Applications that do
not heavily exercise data structures (such as GUI applications) are not signifi-
cantly affected and do not incur a nearly as high overhead.

java.io test suite. The part of the Mauve test suite [11] focusing on testing
input/output services consists of 102 classes defining 812 tests. The tests with
J2Eif excluded 10 of these classes (and the corresponding 33 tests) because they
relied on unsupported features (see Section 4.3). The functional behavior of the
tests is identical in Java and in the Eiffel translation: both runs fail 25 tests and
pass 754. Table 4 compares the performance of the test suite with Java against
its Eiffel translation; the two-fold slowdown achieved with optimizations is, in
all, usable and reasonable—at least in a first implementation of J2Eif.
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Table 4. Performance in the java.io test suite

Overall Average time Slowdown
time (s) per test (ms)

Java 4 5 1
Eiffel standard 21 27 5.4
Eiffel optimized 9 11 2.2

4.3 Limitations

There is a limited number of features which J2Eif does not handle adequately;
ameliorating them belongs to future work.

Unicode strings. J2Eif only supports the ASCII character set; Unicode sup-
port in Eiffel is quite recent.

Serialization mechanisms are not mapped adequately to Eiffel’s.
Dynamic loading mechanisms are not rendered in Eiffel; this restricts the ap-

plicability of J2Eif for applications heavily depending on this mechanism,
such as J2Eif itself which builds on the Eclipse framework.

Soft, weak, and phantom references are not supported, because similar no-
tions are currently not available in the Eiffel language.

Readability. While the naming scheme tries to strike a good balance between
readability and correctness, the generated code may still be less pleasant to
read than in a standard Eiffel implementation.

Size of compiled code. The generated binaries are generally large. A finer-
grained analysis of the dependencies may reduce the JRE components that
need to be included in the compilation.

5 Related Work

There are two main approaches to reuse implementations written in a “foreign”
language within another “host” language: using wrappers for the components
written in the “foreign” language and bridging them to the rest of the application
written in the “host” language; and translating the “foreign” source code into
functionally equivalent “host” code.

Wrapping foreign code. A wrapper enables the reuse a foreign implementation
through the API provided by a bridge library [5,4,19,13]. This approach does
not change the foreign code, hence there is no risk of corrupting it or of in-
troducing inconsistencies; on the other hand, it is usually restrictive in terms
of the type of data that can be retrieved through the bridging API (for exam-
ple, primitive types only). J2Eif uses the wrapping approach for Java’s native
libraries (Section 3.3): the original Java wrappers are replaced by customized
Eiffel wrappers.
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Translating foreign code. Industrial practices have long encompassed the manual,
systematic translation of legacy code to new languages. More recently, researchers
proposed semi-automated translation for widely-used legacy programming lan-
guages such as COBOL [2,14], Fortran-77 [1,21], and C [23]. Other progress in
this line has come from integrating domain-specific knowledge [6], and testing
and visualization techniques [18] to help develop the translations.

Other related efforts target the transformation of code into an exten-
sion (superset) of the original language. Typical examples are the adaptation
of legacy code to object-oriented extensions, such as from COBOL to OO-
COBOL [16,20,22], from Ada to Ada95 [10], and from C to C++ [9,24]. Some
of such efforts try to go beyond the mere execution of the original code by refac-
toring it to be more conforming to the object-oriented paradigm; however, such
refactorings are usually limited to restructuring modules into classes.

As far as fully automated translations are concerned, compilation from a high-
level language to a low-level language (such as assembly or byte-code) is of
course a widespread technology. The translation of a high-level language into
another high-level language with different features—such as the one performed
by J2Eif—is much less common; the closest results have been in the rewriting of
domain-specific languages, such as TXL [3], into general-purpose languages.

Google web toolkit [7] (GWT) includes a project involving translation of Java
into JavaScript code. The translation supports running Java on top of JavaScript,
but its primary aims do not include readability and modifiability of the code gen-
erated, unlike the present paper’s translation. Another relevant difference is that
GWT’s translation lacks any formalization and even the informal documentation
does not detail which features are not perfectly replicated by the translation. The
documentation warns the users that “subtle differences” may exist,2 but only
recommends testing as a way to discover them.

6 Conclusions

This paper presented a translation T of Java programs into Eiffel, and its im-
plementation in the freely available tool J2Eif [8]. The formalization of T built
confidence in its correctness; a set of four experiments of varying complexity
tested the usability of the implementation J2Eif.

Future work includes more tests with applications from different domains; the
extension of the translation to include the few aspects currently unsupported (in
particular, Unicode strings and serialization); and the development of optimiza-
tions for the translation, to make the code generated closer to original Eiffel
implementations.

Acknowledgements. Thanks to Mike Hicks and Bertrand Meyer for their support
and advice, and to Louis Rose for comments on a draft of this paper.

2 http://code.google.com/webtoolkit/doc/latest/tutorial/JUnit.html
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Abstract. In this paper we discuss, and provide a generic solution to
the problem referred to as model co-evolution: How to evolve models in
case their metamodels evolve?

We solve this problem by extending a traditional three-step approach.
In the first step, differences between an original and an evolved meta-
model are determined. Unlike traditional approaches, we treat meta-
models as models conforming to a special metamodel, thus the same
difference representation and calculation mechanisms for metamodels as
for models are used in our approach. In the second step, metamodel dif-
ferences are classified into four groups based on their possible influence
on co-evolving models, and the possibilities of handling them automat-
ically. We adopt two of these groups (non-breaking and breaking and
resolvable differences) from the existing co-evolution approaches, and we
introduce two new groups (breaking and semi-resolvable and breaking and
human-resolvable differences). In the third step, based on the determined
metamodel differences, a generic co-evolution transformation is invoked.
This transformation takes the metamodel differences, and a model as
arguments, and returns an adapted model.

We validated our approach by incorporating our method into a pro-
totype tool for generic model co-evolution, and by testing this tool on a
large set of metamodels and models.

1 Introduction

Model evolution is a frequent research topic in the context of model-driven engi-
neering. Modelers often need to determine the extent and the nature of changes
between different versions of the same model. To understand the evolution of a
model, modelers compare two versions of that model, and visualize the resulting
differences.

Traditionally, models are described as instances of metamodels that, in turn,
are instances of a selected metametamodel. Without exception, metametamodels
(e.g. MOF [20] or Ecore [9]) allow for the representation of models as hierarchi-
cal labeled attributed graphs, i.e. each model can be represented as a tree1.
1 Model elements are nodes of the tree, and edges of the tree are aggregation relations

between model elements.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 36–51, 2011.
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The model differences are also considered as trees in [4,18,15,10,1], and the
comparison of models [17,1] is based on tree comparison techniques [3].

There are two conceptually different types of approaches to the representation
and calculation of model differences. In the state-based approaches, the model
differences are calculated between two states of a model, i.e. between two ver-
sions of a model. In the operation-based (also called change-based) approaches,
the model differences are represented by a set of operations which when applied
to the initial model produce the final model. Thus, in the operation-based ap-
proaches, all the tools used to develop models must supply the operations in a
predefined form, while in the state-based approaches this is not necessary. Visu-
alization of the model differences is usually accomplished by superimposing the
model differences on the old version of a model, and by using different colors to
denote different types of differences (e.g. green for added, red for deleted, and
blue for changed model elements) [24,2].

Often, the metamodels also evolve in the modeling process, either during de-
velopment or during maintenance2. This raises the question of co-evolution of
models3: how to adapt models conforming to the original version of a meta-
model such that they conform to the target (evolved) version of that meta-
model? Since metamodels in model-based engineering correspond to languages
in language-based engineering, model co-evolution can be compared to the sit-
uation in language-based engineering, where a new version of a programming
language requires adaptation of the source code written in the old version of a
language. Similar problems also exist in database schema evolution, where evolu-
tion of a database schema (which corresponds to a metamodel of the underlying
data) induces evolution of the related database content.

The basic idea of existing approaches to model co-evolution, which we also
adopt here, is: first calculate the differences between an evolved metamodel and
an original version of the same metamodel, and then, based on those differences,
(semi-)automatically generate model differences. The schematic of our approach
is depicted in Figure 1.

In this paper we consider model co-evolution in the context of model configu-
ration management systems. Therefore, we have specified a set of requirements
that a co-evolution process should satisfy in order to be efficiently usable in such
systems, and we have defined our co-evolution process to satisfy these require-
ments:

1. The co-evolved models are syntactically correct, i.e., conforming to the new
metamodel.

2. The difference between the old model and the new (co-evolved) model is
minimal, i.e., only ‘necessary’ changes are carried through.

3. The co-evolution process allows for (user-defined) extensions to preserve se-
mantic correctness.

2 Similarly to model difference, a metamodel difference denotes the change set between
an old and a new version of a metamodel.

3 Also called coupled evolution of models or coupled evolution of metamodels and mod-
els.
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Calculate
Metamodel
Differences

New (Co-evolved) Model

Model Differences
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3

Generate
Model Differences

Calculate
Resulting Model

Fig. 1. The schematic of our approach to co-evolution of models

4. The co-evolution process itself maximizes automation, i.e., minimizes human
intervention, and where intervention is unavoidable it should be well-defined.

In order to satisfy the first requirement our process of co-evolution is guided
by syntax. We decided to focus on syntax because in co-evolution approaches
which deal with state-based (meta)model differences, it is very hard to correctly
infer the intention of a developer in case of complex changes. Thus, in the state-
based co-evolution approaches it is much harder to reason about the influence
of metamodel changes on models, than in the co-evolution approaches that deal
with operation-based model differences, where the intent of the model developer
is discernible from the nature and the order of the operations supplied by tools.
Therefore, in our approach we consider only the syntactic structure and the
static semantics of models as a basis of the automated part of the co-evolution
process, and do not take into account dynamic semantics of models. By dynamic
semantics we mean a formal system of rules (e.g. Structured Operational Se-
mantics), that allows reasoning about the behavior of systems represented by
models. Thus, in contrast to approaches to database schema evolution, which
are geared towards automatic resolution of semantic issues (i.e. retaining the
relations between data items), but are constrained only to schema evolution, we
loosen the requirement of automatic resolution of semantic issues, in order to
be more generic and to support arbitrary metamodels. Hence, our approach can
support the co-evolution of databases, ontologies, state machines, petri-nets, etc.
Nonetheless, as specified in the third requirement, it is possible to define user
extensions to ensure the semantic correctness of the co-evolved models. This
means that advanced algorithms for schema evolution or petri-net evolution can
be applied as extensions to our approach.

The second requirement states that the co-evolved model should be changed
as little as possible to conform to the new metamodel, thus allowing efficient
implementation of our approach in configuration management systems.
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The fourth requirement states that the co-evolution process should be as au-
tomatic as possible, and that the reasons for, and extent of, human interventions
should be well-specified and minimized. In this regard, existing approaches to
model co-evolution [13,11,6,23,8,14] classify metamodel differences based on how
they affect both the co-evolving models and the possibility to automate the co-
evolution process. Three groups can be distinguished: non-breaking differences,
breaking but resolvable differences, and breaking but non-resolvable differences.
Non-breaking differences (NBD) to a metamodel do not require any change in
the models. Breaking but resolvable differences (BRD) require a transformation
of the model, which can be automated. Breaking but non-resolvable differences
(BNRD) require user intervention and are almost impossible to automate. Next,
the existing approaches define, depending on which metametamodel is used (e.g.
MOF or Ecore), all possible metamodel differences, and relate these differences to
the three defined groups. Furthermore, the non-breaking differences, and break-
ing but resolvable differences, are used to automatically generate model differ-
ences, and the breaking but non-resolvable differences are resolved with the help
of a human.

We split the possible differences into four groups based on their influence
on the syntactic structure of co-evolving models and based on the possible au-
tomation of the co-evolution process. In particular the group of breaking but
non-resolvable differences is split into two groups: breaking and semi-resolvable
differences (BSRD) and breaking and human-resolvable differences (BHRD).
Breaking and semi-resolvable differences are differences which can be automat-
ically resolved by configuring the co-evolution process. These differences also
encompass the semantic differences which can be resolved by taking into ac-
count the semantics of the models. Breaking and human-resolvable differences
can only be resolved by a user in a differences-resolution environment and can-
not be fully automated. For example, if a reference, which has a lower bound
of 1, is added to a metamodel, in order to obtain the correct resulting models,
concerning the intention of a metamodel developer, a user needs to connect the
correct objects in models.

As already mentioned, although our approach is not geared towards automatic
resolution of semantic problems, the specified tool architecture is extensible and
can be extended to deal with the semantic issues. For example, a logic-based
conflict resolver such as Aleph used in [7], a generic model transformation method
like Viatra [22], or, in case of database schemas, a database schema matching
algorithm like Cupid [19] can be used to resolve possible semantic problems.

The outline of the rest of the paper is as follows. In Section 2, we discuss some
preliminaries necessary to understand our approach. Then, in Section 3, we dis-
cuss the evolution of metamodels. Next, in Section 4 we discuss the process of
co-evolution of models. Furthermore, we describe the tool we built that faith-
fully implements our approach, and we describe an experiment we performed
to validate our approach. Finally, in Section 6, we conclude the paper and give
some directions for further research.
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2 Preliminaries

In this section we give some preliminaries necessary for understanding our method
for model co-evolution. We first describe a special domain-specific metametamodel
which we use in describing our method. This metametamodel is simple, but allows
formal reasoning on metamodels, models, and their relation. Next, we describe a
generic differences metamodel, which is based on the described metametamodel.
This differences metamodel is used to capture the differences between two models,
and, in our approach, also the differences between two metamodels4.

2.1 Domain-Specific Metametamodel

We approached the problem of generic model differences by designing a domain-
specific metametamodel, that exposes not only the details of metamodels, but
also the details of models, and the relations between metamodels and models.
Metamodels are obtained by instantiating the Metamodel element (non colored
elements in Figure 2), and models are obtained by instantiating the Model ele-
ment (grey elements in Figure 2). Each metamodel can contain a set of named
elements. Each of these elements can contain named and typed attributes, and
labeled references to other metamodel elements. Each model can contain a set
of model elements, that must be related to a conforming metamodel elements.
Moreover, each model element can contain attribute instances (containing val-
ues), and reference instances (referencing other model elements). Unlike in tra-
ditional metametamodeling approaches (e.g. MOF or Ecore), in our approach
models are not considered instances of metamodels, but models only conform-to
metamodels. However, both models, metamodels, and their relationships, are in-
stances of the introduced metametamodel. Notice that although our metameta-
model is designed for a specific domain of model differences, it allows for de-
scription of labeled attributed graphs, and thus is quite generic (i.e. it allows for
description of all graph-based systems)5. The architecture of the metametamodel
allows the specification of a metamodel-independent differences metamodel [1],
which is discussed in the following section.

2.2 Model Differences

Our approach to the representation of model differences satisfies all of the re-
quirements specified in [5], These requirements allow model differences to be
seamlessly used in model configuration management systems. The differences
between two models are represented by a differences model that conforms to a dif-
ferences metamodel. The differences metamodel is an extension of the metameta-
model introduced in the previous section and is depicted in Figure 3. Differences

4 The details of both metametamodel and the differences model can be found in [1].
5 For example, we have developed transformations from metamodels conforming to

Ecore, and models conforming to those metamodels, to our formalism. This makes
it possible to use our co-evolution approach with the Ecore-based metamodels and
models.
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Fig. 2. Metametamodel

models are instances of the DifferencesModel element. The building blocks of the
differences models are instances of ChangedElement, DeletedElement, AddedEle-
ment, and MovedElement. Assuming that the differences model represents the
differences between models A and B, then the instances of the AddedElement are
elements that are in model B and not in model A, the instances of the DeletedEle-
ment are elements that are in model A but not in model B, and the instances
of the ChangedElement are elements that represent the same entities in both
models but are not structurally identical. Since a differences model contains
only references to models, this differences metamodel is generic (metamodel-
independent).

3 Metamodel Evolution

Traditional approaches to metamodel evolution define special mechanisms for
representing, calculating and visualizing metamodel differences. These meth-
ods are usually based on techniques for representing, calculating and visualizing
model differences, but there is a clear separation between metamodels and mod-
els, and thus also between metamodel differences and model differences.

In our approach, the techniques for representing, calculating and visualizing
model differences are applied directly to metamodel differences. Our key idea
is to represent metamodels as models conforming to a special metamodel. In
this way, all the techniques for model comparison can be directly applied to
metamodel comparison.

In order to represent metamodels as models, we define a special metamodel for
metamodels (MMfMM). The metamodels can now be interpreted as (i.e. trans-
formed to) the models conforming to the MMfMM. Consequently, the differences
between metamodels are obtained by transforming metamodels to models, and
by calculating the differences between the resulting models. This approach is
particulary useful in the context of a model configuration management systems,
because it allows a unified treatment of models and metamodels.
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ElementDifference

AddedElement DeletedElement MovedElement

AttributeDifference

ReferenceDifference

AddedReference

DeletedReference

ChangedReference

1

DifferencesModel

final parent

MElement

MAttribute

value:String

Model

name:String
version:String

0..*

0..1

1
1

0..1

0..*

0..*

0..*

has

MReference

contains

1

refers to

ChangedElement
11

1

1

1

0..*

0..*

0..*

0..1

0..*

0..*

1

1
1
1

1

0..*

0..1 0..1

contains

final model

initial model

new ref

0..*

0..*

1

1

initial parent

new attr

old ref

old attr

Fig. 3. Differences metamodel

In the next section we describe our metamodel for metamodels (MMfMM).
By consulting this metamodel, it is possible to specify all the possible types
of metamodel differences, and their influence on co-evolving models, which is
discussed in Section 3.2.

3.1 Metamodel for Metamodels - MMfMM

In this section we discuss a metamodel for metamodels (MMfMM), depicted in
Figure 4. Since MMfMM is a metamodel, it is an instance of the Metamodel el-
ement from our domain-specific metametamodel (depicted in Figure 2). Models
that conform to the MMfMM represent metamodels. Thus, each metamodel has
two representations: its natural representation (instance of the Metamodel ele-
ment), and a transformed representation (instance of the Model element that
conforms to the MMfMM)6. However, we designed MMfMM in such a way
that a transformation from a natural representation of a metamodel to a trans-
formed representation is trivial. For example, a MMfMM element named MMEle-
ment represents metamodel elements. Elements in models that are instances of
MMfMM, and that conform to MMfMM element named MMElement represent
metamodel elements.

6 In EMF terminology, MMfMM corresponds to a metamodel Ecore.ecore. Ecore.ecore
is an Ecore-based metamodel that allows for the creation of Ecore-based models such
that there is a bijection between any of those models and an Ecore-based metamodel.
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type="String"

:MMAttribute

name="type"
type="String"

:MMAttribute

name="label"
type="String"

:MMAttribute

name="cardinalityUB"
type="String"

:MMAttribute

name="cardinalityLB"
type="String"

:MMReference

label="contains"
cardinality
cardinality

UB="*"
LB="0"

:MMReference

label="references"
cardinalityUB="*"

LB="0"cardinality

Fig. 4. A metamodel for metamodels - MMfMM

A natural representation of an example metamodel, and a transformed rep-
resentation of the same metamodel, are depicted in Figure 5.

A natural representation of a metamodel (top left part of the Figure 5) is
named example, and has two metamodel elements named State and Transition.
Both the State element, and the Transition element, have an attribute Name
of type String. Moreover, a Transition element has a reference that has a label
Connects. In the transformed (i.e. model) representation of a metamodel (lower

METAMODEL

MMfMM

OUR DOMAIN-SPECIFIC METAMETAMODEL

instance-of <Model> element

"Natural"
Representation

conforms-to

:MMElement

name="State"

:Metamodel

URI="example"

:MMAttribute

name="Name"
type="String"

:MMElement

Name="Transition"

:MMAttribute

name="Name"
type="String"

:MMReference

label="Connects"
cardinalityLB="1"

UB="*"cardinality

MMfMM:Model

name="example"
version="1"

MMAttribute:MElementMMElement:MElement

type:MAttribute

value="String"

value="Transition"

name:MAttribute

value="Name"

MMElement:MElement

name:MAttribute

value="State"

name:MAttribute

MMAttribute:MElement

type:MAttribute

value="String"

name:MAttribute

value="Name"

MMReference:MElement
cardinalityUB:MAttribute

value="*"

label:MAttribute

value="Connects"

cardinalityLB:MAttribute

value="1"

references:MReference

instance-of <Metamodel> element

instance-of <Metamodel> element

MetamodelRepresentation

ModelRepresentation

"Transformed"
Representation

Fig. 5. Example metamodel represented both as an instance of a Metamodel element
and as an instance of a Model element conforming to the MMfMM
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right part of the Figure 5), the rectangles represent instances of model elements
conforming to specific MMfMM elements. The labels of those rectangles can be
split into two parts, before and after the token ”:”. The first part denotes the
MMfMM element that the element represented by the rectangle conforms to. The
second part represents the type of the model element (MElement, MAttribute
or MReference). For example, a metamodel element named State is represented
with one model element, and with one attribute of that model element that has
a value State (dark grey part of Figure 5). The attribute Name of a metamodel
element named State is also represented with one model element. However, this
element has two attributes having values Name and String, representing the
name and type of the Name attribute.

3.2 Metamodel Differences

As already mentioned, in this paper we focus on automatic processing of syn-
tactic changes (differences) to metamodels. The list of all detectable metamodel
differences, and the consequences of these differences are given in Appendix A.
In some cases we mention the relation of differences to the (static) semantic
of models, and these relations guided our reasoning in many cases. However,
since we did not choose any semantic formalism for interpreting the behavior of
models conforming to a certain metamodel, we did not formally reason about
semantics.

4 Model Co-evolution

In this section we present a method for calculating model differences, based on
metamodel differences.

In order to obtain the model differences from the metamodel differences, a
necessary prerequisite is the existence of formal methods for the representation
of metamodels, models and model differences, as well as a method for the cal-
culation of model differences. As mentioned before, without loss of generality
we use the metametamodel depicted in Figure 2 for the representation of meta-
models and models, and a metamodel for the representation of model differences
depicted in Figure 3.

Next, we assume that the differences between the evolved and original meta-
model have been calculated and are presented as a differences model labeled
differences. Then, for each model M that conforms to the original metamodel,
the algorithm described in the following section can be used to calculate the
differences model DM , that can be used to patch model M to obtain a new
(evolved) model M ′ that conforms to the evolved metamodel.

4.1 Model Differences Calculation Algorithm

The calculation algorithm is an implementation of the causal relations between
metamodel differences and model differences described in Appendix A. The al-
gorithm traverses the graph representation of a model (actually a tree represen-
tation, where the edges are instances of the containment relation, is traversed),
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and for each model element checks if the metamodel element that that element
conforms to has changed. If this was the case, then, based on the changes to
the metamodel element, the model differences for that particular element are
generated, otherwise nothing happens.

For solving breaking and human-resolvable differences we introduced two spe-
cial functions in the algorithm. The first of these functions is warningrequest(name,
id). This function first checks for the presence of conflicts (breaking and human-
resolvable differences) of the specified name in all model elements that conform
to the metamodel element of the specified id. If there are no conflicts then the
function terminates, and if there are conflicts, an environment for manual con-
flict resolution is started. This function is used in case of possible conflicts, for
example if the references bounds change, this function checks if the model is in
a conflicting state, and starts an environment for manual conflict resolution if
this is the case. The second function is conflictrequest(name, id). This function
denotes that there is a conflict, having a name as specified in the argument of
the function, and that it is necessary to start an environment for manual con-
flict resolution, for all model elements that conform to the metamodel element
identified by the specified id argument. This function is used in case of affirmed
conflicts, for example if the type of a reference changes.

4.2 Validation

In order to validate our co-evolution method we built a tool that faithfully
implements our method, and we systematically tested this tool with a large set
of metamodels and models.

The tool consists of two parts. The first part is responsible for the completely
automatic transformation of models by considering non-breaking differences, or
the breaking differences which are resolvable by providing a configuration file.
The second part is a graphical application, that allows manual resolution in case
of breaking changes which are not resolvable automatically. The tool is extensi-
ble, and thus users can define additional (e.g. metamodel specific) transforma-
tions in order to solve semantic issues that may arise during the co-evolution
process. The tool can be configured to call the user-defined transformation func-
tions before, during, or after the part of the co-evolution process that is fully
automated.

Our goals in testing the tool were:

– Assessing the capability of a tool in detecting metamodel differences;
– Assessing the functional correctness of a tool in cases of both automatic and

semi-automatic processing of differences;
– Assessing the extent of user involvement in adaptation of a larger set of

co-evolved models.
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For the testing we selected 10 metamodels, and for each metamodel 10 con-
forming models, giving rise to one hundred models altogether7. In order to make
our experiment transparent, we decided to co-evolve the selected models by us-
ing the co-evolution scenarios specified in previous research in this area. For this
reason, we selected 9 operations from the set of 61 co-evolution operations de-
fined in [16], and we applied each operation to each metamodel, thus obtaining
90 co-evolved metamodels. These operations were selected such that they ensure
coverage of all cases of possible resolution scenarios as specified in Section 3.2.
Next, we applied our co-evolution tool to each evolved metamodel, co-evolving
models accordingly.

For each operation we measured: the number of metamodels for which the tool
correctly detected the co-evolution operation, the number of fully automatically
co-evolved models, the number of semi-automatically co-evolved models, the
number of models that need to be manually co-evolved, and the number of
models that did not need to change. The results are given in Table 1.

Table 1.

Operation Correctly Detected Automatically Semi-automatically Manually Unaffected Total
in Metamodels adapted models adapted models adapted models models models

Create Class 10 0 0 0 100 100
Create Attribute 10 0 80 0 20 100
Create Reference 10 0 0 100 0 100
Delete Reference 10 100 0 0 0 100
Rename Attribute 10 0 0 0 100 100

Make Reference Composite 10 0 100 0 0 100
Change Attribute Type 10 0 90 0 10 100

Move Feature Over Reference 10 0 73 0 27 100
Reference To Class 10 0 74 0 26 100

TOTALS 100 100 417 100 283 900

The interpretation of the results is as follows: Create Class and Rename At-
tribute operations are completely automated, and the models do not need adap-
tation. Delete Reference operation is also completely automated, but models
are affected. Create Reference operation requires user intervention in specifying
possible instances of the created reference. Create Attribute operation is semi-
automated by defining the configuration entry specifying the default value of the
created attribute. Change Attribute Type operation is semi-automated by defin-
ing the configuration entry specifying a function for transforming the values of
attributes of the original type, to attributes of the new type. Make Reference
Composite, Move Feature Over Reference and Reference To Class operations
are semi-automated by specifying specific model transformations that deal with
semantic issues of these operations. In particular, these operations are built up
of many atomic metamodel differences, thus detecting these operations requires
pattern matching on model differences8. Furthermore, the resolution of these
operations requires more complex algorithms than those provided by a tool.
7 The metamodels used in the tests are generated by using a metamodel-generator

tool that we developed, and models used in the tests are generated by using a
model-generator tool that we developed. The output metamodels and models are
Ecore-based, but are transformed to our metamodeling formalism for the purpose of
this validation study.

8 In a state-based approach to model differences, which is employed by us.
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Our conclusion is that while most models require some form of interven-
tion, this intervention can usually be specified on a per-operation, or on a per-
metamodel basis, and not on a per-model basis.

The developed tool, as well as the test metamodels and models, are available
online [21]9.

5 Related work

Our approach is applicable in case of a state-based representation and calculation
of model differences [1]. In contrast to approaches that deal with operation-based
representation and calculation of model differences, such as COPE [15], our
approach can also be used for modeling tools that have as output only complete
(meta)models and not the set of operations10.

In our approach, we represent metamodels as models conforming to a meta-
model specifically designed for this purpose11. The first advantage of our ap-
proach with respect to the existing approaches featuring state-based model
co-evolution is that we do not need to invent a special representation mecha-
nism for metamodel differences, but we represent the metamodel differences as
model differences. This allows us to use generic techniques for the representation
and calculation of model differences as described in [1], to represent and calcu-
late metamodel differences. For example in [4,7], for each metamodel a custom
differences metamodel must be specified, whereas in our approach only one dif-
ferences metamodel is used. Furthermore, our differences metamodel provides
a more detailed representation of model differences than, for example, the ones
used in [4,7] (for details see [1]).

Another advantage of our approach is that, since our technique for repre-
senting (and calculating) differences is state-based, it does not require special
modeling-tool support like operation-based approaches [14,13], but can be used
also with the tools that provide this support.

Furthermore, most existing co-evolution approaches [12,11], use a single heuris-
tic algorithm for metamodel comparison, where we reuse a generic declarative
model-differences calculation algorithm, which is based on tree-comparison tech-
niques, and can be configured such that it does not use heuristics at all [1]. There-
fore, in our approach it is possible to easily configure the comparison algorithm,
such that it suits the needs of the users.

Finally, we introduce a metametamodel which involves only two metamodeling
levels. Because of this we do not require the use of higher-order model transforma-
tions for calculating co-evolved model differences [11,4,7], but the differences are
obtained by an ordinary, first-order model transformation. The advantage of this
is that the tool based on our co-evolution approach is easy to build and maintain.
9 http://www.win.tue.nl/˜zprotic/coevol.html

10 Thus, our approach is most useful if a company uses multiple tools for managing its
models. However, if a company uses only one tool for managing all its models, and if
that tool can provide operations, an operation-based approach would be preferred.

11 Thus, metamodels need to be transformed to equivalent models in order to be used
in this manner.
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6 Conclusion

In this paper we define a method to support the co-evolution of models as induced
by the evolution of metamodels. Our main contributions are:

– We show that by representing metamodels as models conforming to a spe-
cial metamodel, existing techniques for representing and calculating model
differences can be directly applied to calculation of metamodel differences;

– We show that the group of breaking and non-resolvable metamodel differences
can be further split into two sub-groups based on further possibilities for
automation of the resolution process;

– We show that it is possible to have only one, generic, transformation for co-
evolving models, which is an improvement to the previous approaches where
higher-order transformations were employed;

– We execute a large validation study, showing that it is possible to automate
most of the co-evolution process, and that for only a small percentage of
changes to metamodels, the co-evolution requires manual intervention.

Our method ensures syntactic correctness of the resulting models. Ensuring se-
mantic correctness of the co-evolved models is supported by providing an ex-
tension mechanism for user-defined transformation functions. An example of a
semantic issue that can be solved by a user-defined transformation is the intro-
duction of an attribute in a metamodel element whose value in the corresponding
model element is to be obtained by combining multiple values of attributes in
other model elements.

Since our method uses a state-based approach to representation and calcula-
tion of model differences, and since it is independent of a specific framework and
(meta)metamodel, it is directly applicable in an industrial context for companies
that use a variety of tools and that would like to co-evolve models developed
with those tools. The stand-alone tool that we developed supports this claim.

Future work includes conducting an even larger and more thorough case study
based on an industrial case. Furthermore, it would be interesting to adapt our
approach to more popular metamodeling formalisms like MOF [20] or EMF [9].
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23. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Bateni, M.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

24. Wenzel, S.: Scalable visualization of model differences. In: Proceedings of the 2008
international workshop on Comparison and versioning of software models, pp. 41–
46. ACM, New York (2008)

A Possible Metamodel Differences

In this Appendix we describe all the possible types of atomic metamodel differences
and (separated by→ symbol) the possible impact of those differences to the co-evolving
models. This set of atomic differences is sound and complete. Notice that each type of
metamodel difference is related to one group of metamodel differences introduced in
Section 1. This relation is denoted by an abbreviation of a group (BRD, NBD, BSRD
or BHRD).

1. In the new metamodel, an element was deleted (BRD)→ The conforming model
elements should be deleted from all the models.

2. In the new metamodel, an element was added (NBD) → Nothing should change
in co-evolving models.

3. In the new metamodel, the name of an element was changed (NBD) → This
change does not have any influence on the conforming models.

4. In the new metamodel, an attribute of an element was deleted (BRD)→ The in-
stance of that attribute should also be deleted from all model elements conforming
to that metamodel element.

5. In the new metamodel, an attribute was added to an element (BSRD) → The
instance of added attribute should be added to all the model elements conforming
to the changed metamodel element. However, a default value should be provided
for all added attributes. This value can be provided in a static (per-metamodel)
configuration file, making this Breaking and semi-resolvable difference.

6. In the new metamodel, an attribute of an element was changed; the following
options are possible:
(a) In the new metamodel, the name of the attribute was changed (NBD) →

Nothing should be changed in the models, because models do not reference
attributes by name.

(b) In the new metamodel, the type of the attribute was changed (BSRD) →
The values of that attribute in models might not be valid anymore. Thus, a
transformation function that transforms the old values of the attributes to the
new values of the new type should be provided in a configuration file.

7. In the new metamodel, a reference of an element was deleted (BRD) → All
instances of it should also be deleted from all of the model elements conforming to
the changed metamodel element.

8. In the new metamodel, a reference was added to an element (BHRD) → The
changes to model elements depend on the lower bound of the added reference. If
the lower bound of the reference is zero (0), then, syntactically, the models are
correct without any change. If the lower bound on the reference is not zero, then
the appropriate instances of the reference should be added by a user.

9. In the new metamodel, a reference of an element was changed:
(a) In the new metamodel, the label of the reference was changed (NBD) →

Nothing should change in models.
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(b) In the new metamodel, the bounds of the reference were changed (BHRD)
→ A syntactic check should be invoked in the target model and appropriate
warnings/errors should be issued in case the new bounds of the references are
not respected in the model elements conforming to the changed metamodel
element.

(c) In the new metamodel, the reference was changed to refer to a different
element (BHRD) → The reference instances do not point to the right type of
elements, and a user should resolve the conflict.

10. In the new metamodel, a contained element was deleted (BRD) → All in-
stances of the deleted subelement should be deleted from the instances of the
model elements conforming to the changed metamodel element.

11. In the new metamodel, a contained element was added (NBD) → Nothing
should change in models.

If in the new metamodel the contained element has been changed, then for each changed
subelement the defined differences should be processed recursively.
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Abstract. Domain-Specific Modeling Languages (DSMLs) are getting
more and more attention as a key element of Model Driven Engineering.
As any other software artefact, DSMLs should continuously evolve to
adapt to the changing needs of the domain they represent. Unfortunately,
right now evolution of DSMLs is a costly process that requires changing
its metamodel and re-creating the complete modeling environment.

In this paper we advocate for the use of EMF Profiles, an adaptation
of the UML profile concept to DSMLs. Profiles have been a key enabler
for the success of UML by providing a lightweight language-inherent ex-
tension mechanism which is expressive enough to cover an important
subset of adaptation scenarios. We believe a similar concept for DSMLs
would provide an easier extension mechanism which has been so far ne-
glected by current metamodeling tools. Apart from direct metamodel
profiles, we also propose reusable profile definition mechanisms whereby
profiles are defined independently of any DSML and, later on, coupled
with all DSMLs that can benefit from these profiles. Our approach has
been implemented in a prototype integrated in the EMF environment.

Keywords: language extensions, UML profiles, language engineering.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) have gained much attention in
the last decade [7]. They considerably helped to raise the level of abstraction in
software development by providing designers with modeling languages tailored
to their application domain. However, as any other software artifact, DSMLs are
continuously subjected to evolution in order to be adapted to the changing needs
of the domain they represent. Currently, evolving DSMLs is a time-consuming
and tedious task because not only its abstract and concrete syntax but also
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all related artifacts as well as all DSML-specific components of the modeling
environment have to be re-created or adapted.

UML has avoided these problems by promoting the use of profiles. Indeed,
the profile mechanism has been a key enabler for the success and widespread
use of UML by providing a lightweight, language-inherent extension mecha-
nism [14]. Many UML tools allow the specification and usage of user-defined
profiles and are often shipped with various pre-defined UML Profiles. Induced
by their widespread adoption, several UML Profiles have even been standardized
by the OMG1.

In the last decade, many debates2 on pros and cons of creating new modeling
languages either by defining metamodels from scratch (with the additional bur-
dens of creating a specific modeling environment and handling their evolution)
or by extending the UML metamodel with UML Profiles (which provide only a
limited language adaptation mechanism) have been going on.

However, in this paper we propose a different solution to combine the best of
both breeds. We advocate for adapting the UML Profiles concept as an anno-
tation mechanism for existing DSMLs. We believe the usage of profiles in the
realm of DSMLs brings several benefits:
(1) Lightweight language extension. One of the major advantages of UML Pro-
files is the ability to systematically introduce further language elements without
having to re-create the whole modeling environment such as editors, transfor-
mations, and model APIs.
(2) Dynamic model extension. In contrast to direct metamodel extensions, also
already existing models may be dynamically extended by additional profile in-
formation without recreating the extended model elements. One model element
may further be annotated with several stereotypes (even contained in different
profiles) at the same time which is equivalent to the model element having mul-
tiple types [2]. Furthermore, the additional information introduced by the profile
application is kept separated from the model and, therefore, does not pollute the
actual model instances.
(3) Preventing metamodel pollution. Information not coming from the modeling
domain, can be represented by additional profiles without polluting the actual
domain metamodels. Consider for instance annotating the results of a model
review (as known from code reviewing) which shall be attached to the reviewed
domain models. Metaclasses concerning model reviews do not particularly relate
to the domain and, therefore, should not be introduced in the domain meta-
models. Using specific profiles instead helps to separate such concerns from the
domain metamodel and keeps the metamodel concise and consequently, the lan-
guage complexity small.
(4) Model-based representation. Additional information, introduced to the mod-
els by profile applications, is accessible and processable like ordinary model in-
formation. Consequently, model engineers may reuse familiar model engineering

1 http://www.omg.org/technology/documents/profile_catalog.htm
2 Consider for instance the panel discussion “A DSL or UML Profile. Which would you

use?” at MoDELS’05 (http://www.cs.colostate.edu/models05/panels.html)

http://www.omg.org/technology/documents/profile_catalog.htm
http://www.cs.colostate.edu/models05/panels.html
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technologies to process profile applications. Due to their model-based represen-
tation, profile applications may also be validated against the profile definition
to ensure their consistency as it is known from metamodel/model conformance.

Until now, the notion of profiles has not been adopted in current metamodeling
tools. Thus, the contribution of this paper is to adapt the notion of UML profiles
to arbitrary modeling languages residing in the Eclipse Modeling Framework3

(EMF) which is currently one of the most popular metamodeling frameworks.
Thanks to this, existing modeling languages may easily be extended by profiles
in the same way as it is known from UML tools. Besides this, we propose two
novel techniques to enable the systematic reuse of profile definitions across dif-
ferent modeling languages. First, we introduce generic profiles which are created
independently of the modeling language in the first place and may be bound later
to several modeling languages. Second, we propose meta profiles for immediately
reusing them for all modeling languages. Finally, we present how our prototype
called EMF Profiles is integrated in EMF.

2 From UML Profiles to EMF Profiles

In this section, we present the standard profile mechanism (as known from UML)
for EMF. Firstly, we disclose our design principles. Secondly, we discuss how
the profile mechanism may be integrated in EMF in a way that profiles can
seamlessly be used within EMF following the previous design principles. Finally,
we show how profiles as well as their applications are represented based on an
example.

2.1 Design Principles

With EMF Profiles we aim at realizing the following five design principles. Firstly,
annotating a model should be as lightweight as possible, hence, no adaptation of
existing metamodels should be required. Secondly, we aim at avoiding to pollute
existing metamodels with concerns not directly related to the modeling domain.
Thirdly, we aim at separating annotations from the base model to allow importing
only those annotations which are of current interest for a particular modeler
in a particular situation. Fourthly, the annotations shall be conforming to a
formal and well-known specification such as it is known from metamodel/model
conformance. Finally, users should be enabled to intuitively attach annotations
using environments and editors they are familiar with. Consequently, annotations
shall be created either on top of the concrete (graphical) syntax of a model or
on top of the abstract syntax using e.g., generic tree-based editors.

2.2 Integrating Profiles in the EMF Metalevel Architecture

The profile concept is foreseen as an integral part of the UML specification.
Therefore, the UML package Profiles, which constitutes the language for

3 http://www.eclipse.org/modeling/emf

http://www.eclipse.org/modeling/emf
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specifying UML Profiles, resides, in terms
of the metamodeling stack [9], at the meta-
metalevel M3 [13] as depicted in Fig. 1. A
specific profile (aProfile), as an instance of
the meta-metapackage Profile, is located at
the metalevel M2 and, therefore, resides on
the same level as the UML metamodel itself.
Thus, modelers may create profile applica-
tions (aProfileApplication on M1) by instan-
tiating aProfile just like any other concept in
the UML metamodel.

To embed the profile mechanism into EMF,
a language (equivalent to the package Profiles
in Fig. 1) for specifying profiles is needed as a first ingredient. This is easily
achieved by creating an Ecore-based metamodel which is referred to as Profile
MM (cf. column Profile Definition in Fig. 2). Specific profiles, containing stereo-
types and tagged values, may now be modeled by creating instances, referred to
as aProfile, of this profile metamodel. Once a specific profile is at hand, users
should now be enabled to apply this profile to arbitrary models by creating
stereotype applications containing concrete values for tagged values defined in
the stereotypes. As already mentioned, in UML, a stereotype application is an
instance—residing on M1—of a stereotype specification in M2 (cf. Fig. 1).

Unfortunately, in contrast to the UML architecture, in EMF no profile sup-
port exists in M3. The level M3 in EMF is constituted only by the metamodeling
language Ecore (an implementation of MOF [12]) which has no foreseen profile
support. Extending Ecore on level M3 to achieve the same instantiation capabil-
ities for profiles as in UML is not a desirable option, because this would demand
for an extensive intervention with the current implementation of the standard
EMF framework. Therefore, in EMF, our profile metamodel (ProfileMM in col-
umn Profile Definition of Fig. 2) is defined at level M2 and the user-defined
profiles (aProfile) reside on M1. As an unfortunate result, a defined stereotype
in aProfile cannot be instantiated for representing stereotype applications (as in
UML), because aProfile is already located on M1 and EMF does not allow for
instantiating an instance of a metamodel, i.e., EMF does not directly support
multilevel modeling [1].

Therefore, more sophisticated techniques have to be found for representing
stereotype applications in EMF. In particular, we identified two strategies for
lifting aProfile from M1 to M2 in order to make it instantiable and directly
applicable to EMF models.

(1) Metalevel Lifting By Transformation. The first strategy is to apply
a model-to-model transformation which generates a metamodel on M2, corre-
sponding to the specified profile on M1. The generated metamodel, denoted as
aProfile as MM in the first column of Fig. 2, is established by implementing
a mapping from Profile concepts to Ecore concepts. In particular, the trans-
formation generates for each Stereotype a corresponding EClass and for each
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TaggedValue a corresponding EStructuralFeature. The resulting metamodel
is a direct instance of Ecore residing on M2 and therefore, it can be instantiated
to represent profile applications.
(2) Metalevel Lifting By Inheritance. The second strategy allows to directly
instantiate profiles by inheriting instantiation capabilities (cf. �inheritsFrom� in
the right column of Fig. 2). In EMF, only instances of the meta-metaclass EClass
residing on M3 (e.g., the metaclass Stereotype) are instantiable to obtain an
object on M1 (e.g., a specific stereotype). Consequently, to allow for the di-
rect instantiation of a defined stereotype on M1, we specified the metaclass
Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereo-
type application may be represented by a direct instance of a specific stereotype.
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We decided to apply the second strategy, because of the advantage of using
only one artifact for both, (1) defining the profile and (2) for its instantiation.
This is possible because by this strategy, a profile is now a dual-faceted entity
regarding the metalevels which is especially obvious when considering the hori-
zontal �instanceOf � relationship between aProfile and aProfileApplication (cf.
Fig. 2). On the one hand, a profile is located on M1 when considering it as
an instance of the profile metamodel (ProfileMM on M2)). On the other hand,
the stereotypes contained in the profile are indirect instances of EClass and are
therefore instantiable which means that a profile may also be situated on M2.
Especially, when taking the latter view-point, the horizontal �instanceOf � re-
lationship between profile and profile application shown in Fig. 2 will become
the expected vertical relationship as in the UML metalevel architecture.

2.3 The EMF Profile Metamodel

The metamodel of the profile definition language is illustrated in package Stan-
dard EMF Profile of Fig. 3. As a positive side effect of choosing the met-
alevel lifting strategy 2, the class Stereotype may contain, as an EClass, also
EAttributes and EReferences which are reused to represent tagged values.
Thus, no dedicated metaclasses have to be introduced to represent the concept
of tagged values. Please note that stereotype applications also require to have
a reference to the model elements to which they are applied. Therefore, we in-
troduced an additional metamodel package, namely ProfileApplication in Fig. 3.
This metamodel package contains a class StereotypeApplication with a ref-
erence to arbitrary EObjects named appliedTo. Whenever, a profile (instance
of the Profile package) is saved, we automatically add StereotypeApplication
as a superclass to each specified stereotype. To recall, this is possible because
each Stereotype is an EClass which may have superclasses. Being a subclass
of StereotypeApplication, stereotypes inherit the reference appliedTo auto-
matically. In the following subsection, we further elaborate on the EMF Profile
metamodel by providing a concrete example. Please note that the so far un-
mentioned packages Generic Profile and Meta Profile in Fig. 3 are discussed in
Section 3.

2.4 Applying the EMF Profile Metamodel

To clarify how profiles and profile applications are represented from a techni-
cal point of view, we make use of a small example. In particular, a simplified
version of the well-known EJB profile is applied to an Entity-Relationship (ER)
model [4]. Fig. 4(a) depicts an excerpt of the ER metamodel and the EJB profile.
The EJB profile contains the stereotypes SessionBean and EntityBean, which
both extend the metaclass Entity of the ER metamodel. Besides, the profile
introduces the stereotype IDAttribute extending the metaclass Attribute to
indicate the ID of an Entity.

As already mentioned in the previous subsection, internally, we use the Pro-
fileApplication metamodel (cf. Fig. 4(b)) to weave the necessary concepts for
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a profile’s application into a profile model. In particular, the class Profile-
Application acts as root element for all StereotypeApplications in a profile
application model. Furthermore, all Stereotypes inherit the reference appliedTo
from StereotypeApplication. When instantiating (i.e., applying) the EJB
profile, a root element of the type ProfileApplication is created which may
contain stereotype applications as depicted in Fig. 4(c). For determining the ap-
plicability of a stereotype s to a particular model element m, it is checked whether
the model element’s metaclass (m.eClass()) is included in the list of metaclasses
that are extended by the stereotype (s.getBase()). If so, the stereotype s is
applicable to model element m. Each stereotype application is represented as
a direct instance of the respective stereotype (e.g., �EntityBean�) and refers
to the model element in the BaseModel to which it is applied by the reference
appliedTo (inherited from the class StereotypeApplication). Please note that
the EJB profile application resides in a separated model file and not in the orig-
inal ER model denoted with BaseModel in Fig. 4.
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3 Going Beyond UML Profiles

Originally, the profile mechanism has been specifically developed for UML. Hence,
profiles may only extend the UML metamodel. In the previous section, we showed
how this lightweight extension mechanism is ported to the realm of DSMLs.
However, in this realm a whole pantheon of different DSMLs exists which are
often concurrently employed in a single project. As a result, the need arises to
reuse existing profiles and apply them to several DSMLs. Thus, we introduce
two dedicated reuse mechanisms for two different scenarios:
(1) Metamodel-aware Profile Reuse. The first use case scenario is when
users aim to apply a profile to a specific set of DSMLs. Being aware of these
specific DSMLs’ metamodels, the user wants to take control of the applicability
of stereotypes to a manually selected set of metaclasses.
(2) Metamodel-agnostic Profile Reuse. In the second use case scenario,
users intend to use a profile for all DSMLs without the need for further con-
straining the applicability of stereotypes. Therefore, a stereotype shall—agnostic
of the DSMLs’ metamodels—be applicable to every existing model element.

To tackle scenario (1), we introduce generic profiles allowing to specify stereo-
types that extend so-called generic types. These generic types are independent of
a concrete metamodel and may be bound to specific metaclasses in order to reuse
the generic profile for several metamodels. For tackling scenario (2), we propose
meta profiles which may immediately be applied to all DSMLs implemented by
an Ecore-based metamodels.

3.1 Generic Profiles

The goal behind generic profiles is to reuse a profile specification for several
“user-selected” DSMLs. Therefore, a profile should not depend on a specific
metamodel. Inspired by the concepts of generic programming [10], we use the no-
tion of so-called generic types instead. In particular, stereotypes within a generic
profile do not extend concrete metaclasses as presented in the previous section,
they extend generic types instead. These generic types act as placeholders for
concrete metaclasses in the future. Once, a user decides to use a generic profile
for a specific DSML, a binding is created which connects generic types to cor-
responding concrete metaclasses contained in the DSML’s metamodel. For one
generic profile there might exist an arbitrary number of such bindings. Conse-
quently, this allows to reuse one generic profile for several DSMLs at the same
time. Furthermore, it enables users to first focus on the development of the
profile and reason about the relationship to arbitrary DSMLs in a second step.

As example, consider the same EJB profile which has been specified in terms
of a concrete profile in Section 2. Now, we aim at specifying the same profile
in a generic way to enable its use also for other DSMLs. In particular, we show
how the EJB profile may first be specified generically and we subsequently illus-
trate the binding of this generic profile again for ER models. We get the same
modeling expressiveness as before but now in a way that allows us to reuse the
EJB profile when using other data modeling languages. The original EJB pro-
file for ER extends two metaclasses, namely the stereotypes SessionBean and
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EntityBean extend the metaclass Entity and the stereotype IDAttribute ex-
tends Attributes (cf. Fig. 4). To turn this concrete profile into a generic one, we
now use two generic types, named Container and Property in Fig. 5, instead
of the two concrete types Entity and Attribute.

Before we describe how generic profiles may be bound to concrete DSMLs, we
first discuss conditions constraining such a binding. When developing a concrete
profile, the extended DSML is known and consequently only suitable metaclasses
are selected to be extended by the respective stereotypes. For instance, in the
concrete EJB profile for ER, Entities can be annotated with the stereotype
EntityBean. For marking the Entity’s ID attribute, the EJB profile introduces
the stereotype IDAttribute which extends Attributes. This is reasonable, be-
cause we are aware of the fact that Entities contain Attributes in the ER
metamodel, otherwise it obviously would not make any sense to extend the meta-
class Attribute in this matter. However, generic profiles are developed without
a concrete DSML in mind. Hence, profile designers possibly need to specify con-
ditions enforcing certain characteristics to be fulfilled by the (up to this time)
unknown metaclasses to which a generic type might be bound in future.

Therefore, EMF Profiles allows to attach conditions to generic profiles. Such
conditions are specified by simply adding references or attributes to generic
types. This is possible because, as a subclass of EClass, generic types may con-
tain EReferences and EAttributes. By adding such a reference or attribute
in a generic type, a profile designer states that there must be a corresponding
reference or attribute in the metaclass which is bound to the generic type. Inter-
nally, these references and attributes are translated to OCL constraints which
are evaluated in the context of the metaclass a user intends to bind. Furthermore,
the profile designer must specify which meta-features, such as the cardinality of
the reference or attribute in a generic type, shall be enforced. In our example in
Fig. 5, the profile designer specified a reference from the generic type Container
to Property as well as an attribute name in Property. To enforce this, the OCL
constraints in Listing 1.1 are generated. These constraints must be satisfied by
each metamodel on which we want to apply this profile on.
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Listing 1.1. OCL Constraints generated for Container and Property

1 context Container inv :
2 s e l f . eRe fe rences−>e x i s t s ( r | r . eType = Property )}
3 context Property inv :
4 s e l f . eAttr ibute s−>e x i s t s ( a | a . name = ”name” and a . eType = EString )

Once the stereotypes and generic types are created, the profile is ready to be
bound to concrete DSMLs. This is simply achieved by selecting suitable meta-
classes of a DSML for each generic type. In our example depicted in Fig. 5, the
generic types Container and Property are bound to the metaclasses in the ER
metamodel Entity and Attribute, respectively, in order to allow the applica-
tion of the generic EJB profile to ER models. When the binding is established, it
can be persisted in two different ways. The first option is to generate a concrete
profile out of the generic profile for a specific binding. This concrete profile may
then be applied like a normal EMF profile as discussed in Section 2. Although
this seem to be the most straightforward approach, the explicit trace between
the original generic profile and the generated concrete profile is lost. Therefore,
the second option is to persist the binding directly in the generic profile defini-
tion. Whenever a user intends to apply a generic profile to a concrete DSML, the
EMF Profile framework searches for a persisted binding for the concrete DSML’s
metaclasses within the profile definition. If a binding exists, the user may start
to apply the profile using this persisted binding. Otherwise, the user is requested
to specify a new binding.

To support generic profiles, we extended the EMF Profile metamodel by the
class GenericType (cf. Fig 3). Generic types inherit from EClass and may con-
tain Conditions representing more complex constraints going beyond the afore-
mentioned enforced references and attributes for bound metaclasses.

3.2 Meta Profiles

With meta profiles we tackle a second use case for reusing profiles for more than
one DSML. Instead of supporting only a manually selected number of DSMLs,
with meta profiles we aim at reusing a profile for all DSMLs without the need
of defining an explicit extension for each DSML. This is particularly practical
for profiles enabling general annotations which are suitable for every DSML. In
other words, stereotypes within a meta profile must be agnostic of a specific
metamodel and shall be applicable to every model element irrespectively of its
metaclass, i.e., its type.

In EMF, every model element is an instance of a metaclass. Each metaclass
is again an instance of Ecore’s EClass. Therefore, meta-stereotypes in a meta
profile do not extend metaclasses directly. Instead, they are configured to be
applicable to all instances of instances of EClass and, consequently, to every
model element (as an instance of an instance of EClass). This approach is in-
spired by the concept of potency known from multilevel metamodeling [1]. Using
the notion of potency, one may control on which metamodeling level a model
element may be instantiated. By default, the potency is 1 which indicates that
a model element may be instantiated in the next lower metamodeling level. By



62 P. Langer et al.

t fil M d lR i

<<meta-stereotype>>

ReviewDecision

reviewer: EStringfi
le

<<meta-profile>> ModelReview

<<meta-metaclass>>

EClass
g

reviewDate. EDate

M
e

ta
p

ro
f

<<meta-stereotype>>

D li d
<<meta-stereotype>>

A d
<<meta-stereotype>>

R k Declined

reason: EString

Approved Rework

assignedTo: EString

reason: EString

Application to a simplified Event-driven Process Chain Model

: Approved

reviewer : "Homer"

: Rework

reviewer : "Homer" 

reviewDate : 23/06 assignedTo: "Bart"

reason : "Change to XOR"
appliedTo

appliedTo

BaseModel

: Event

name : "order received"

: Function

name : "check order"

: LogicalConnector

type : OR

Application to a simplified Use Case Diagram

: Approved

reviewer : "Homer"

: Declined

reviewer : "Homer"reviewer : Homer

reviewDate : 23/06

reviewer : Homer

reason : "Dough! Every order gets canceled?"

appliedTo appliedTo

BaseModel

: UseCase

name : "Order Goods"

: Include : UseCase

name : "Cancel Order"

Fig. 6. Meta profile Example: The Model Review Profile

a potency p ≥ 1 on a metamodeling level n, a model element may also be con-
figured to be instantiable on the level n − p instead of the next lower level. In
terms of this notion of potency, a meta-stereotype has a potency of p = 2.

Meta profiles are created just like normal profiles. However, a new attribute,
namely isMeta, is introduced to the profile metamodel for indicating whether a
stereotype is a meta-stereotype (cf. Fig. 3). The Boolean value of this attribute
is regarded by EMF Profiles when evaluating the applicability of stereotypes. In
particular, if isMeta is true, a stereotype is always considered to be applicable
to every model element, irrespectively of its metaclass.

Our example for presenting metaprofiles is a model review profile (cf. Fig. 6).
The goal of this profile is to allow for annotating the results of a systematic
examination of a model. Since every model irrespectively of its metamodel can
be subject to a review, this profile is suitable for every DSML. For simplicity, we
just introduce three stereotypes in the review profile, namely Approved, Rework,
and Declined, which shall be applicable to every kind of element in every DSML.
Therefore, these three stereotypes extend the class EClass and are marked as
meta-stereotypes (indicated by �meta-stereotype� in Fig. 6). By this, the ap-
plicability of these stereotypes is checked by comparing the meta-metatypes of
model elements with the metaclasses extended by the stereotypes. As a result,
the metaprofile in our example is applicable to every element in every DSML.
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In the example shown in Fig. 6, we depicted the Object Diagram of two sepa-
rate applications of the same metaprofile to two models conforming to different
metamodels. In the first Object Diagram, an Event and one LogicalConnector
within an Event-driven Process Chain (EPC) model have been annotated with
the meta-stereotype �Approve� and �Rework�, respectively. This is possible
because both instances in the EPC model are an instance of a metaclass which
is again an instance of EClass. The same metaprofile can also be applied to any
other modeling language. Of course, also UML itself is supported by EMF Pro-
files. Therefore, the model review profile may also be applied to, for example, a
UML Use Case Diagram (cf. Fig. 6). In this figure, the stereotype �Approve� has
been assigned to the UseCase named “Order Goods” and the stereotype �De-
clined� is applied to the Includes relationship.

3.3 Summary

Both techniques for enabling the reuse of profiles for several DSMLs have their
advantages and disadvantages depending on the intended use case. Meta pro-
files are immediately applicable to all DSMLs without further user intervention.
However, with meta profiles no means for restricting the use of such profiles for
concrete DSMLs exist. If this is required, generic profiles are the better choice.
When specifying generic profiles, explicit conditions may be used to control a
profile’s usage for concrete DSMLs. On the downside, this can only be done
with additional efforts for specifying such conditions in the generic profile and
creating manual bindings from generic profiles to concrete DSMLs.

4 A Tour on EMF Profiles

In this section, we present our prototypical implementation of EMF Profiles which
is realized as Eclipse plug-in on top of the Eclipse Modeling Framework and
Graphical Modeling Framework4 (GMF). Please note that we refrained from
modifying any artifact residing in EMF or GMF. EMF Profiles only uses well-
defined extension points provided by these frameworks for realizing profile sup-
port within the EMF ecosystem. For a screencast of EMF Profiles, we kindly
refer to our project homepage5.
Profile Definition. To define a profile, modelers may apply either the tree
editor automatically generated from the Profile Metamodel or our graphical
EMF Profiles Editor which is realized with GMF (cf. Fig. 7 for a screenshot). The
graphical notation used in this editor takes its cue from the UML Profiles syntax.
With these editors, modelers may easily create stereotypes containing tagged
values and set up inheritance relationships between stereotypes and extension
relationships to metaclasses of arbitrary DSML’s metamodels. Metaclasses may
be imported by a custom popup menu entries when right-clicking the canvas of
the editor and are visualized using the graphical notation from Ecore.

4 http://www.eclipse.org/gmf
5 http://www.modelversioning.org/emf-profiles

http://www.eclipse.org/gmf
http://www.modelversioning.org/emf-profiles
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Fig. 7. EJB Profile Defined with Graphical EMF Profiles Editor

Fig. 8. Screenshot of Applied EJB Profile to an Ecore Diagram

Profile Application. Defined profiles may also be applied using any EMF-
generated tree-based editor or any GMF-based diagramm editor. The screenshot
depicted in Fig. 8, shows the afore presented EJB profile applied to an example
Ecore diagram. To apply profiles, our plugin contributes a popup menu entry
(cf. Fig. 8 (1)) which appears whenever a model element is right-clicked. By this
menu, users may apply defined profiles (i.e., creating new profile application) or
import already existing profile applications. Once a profile application is created
or imported, stereotypes may be applied using the same popup menu. When a
stereotype is applied, the defined stereotype icon is attached to the model el-
ement (cf. Fig. 8 (2)). For this purpose we used the GMF Decoration Service,
which allows to annotate any existing shapes by adding an image at a pre-defined
location. Furthermore, we created a Profile Applications view, which shows all ap-
plied stereotypes of the currently selected model element (cf. Fig. 8 (3)). The
currently selected model element is retrieved using the ISelectionProvider in-
terface which is implemented by every EMF or GMF-based editor. For assigning
the tagged values of an applied stereotype, we leverage the PropertyView (cf.
Fig. 8 (4)) which generically derives all defined tagged values from the loaded
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profile‘s metamodel. The separate file resource which contains the profile appli-
cations is added to the EditingDomain of the modeling editor. Hence, as soon
as the model is saved, all profile applications are saved as well. Finally, pro-
file applications can be unloaded and reloaded at any time without loosing the
application information.

5 Related Work

One alternative to profiles as an annotation mechanism is to use weaving models
(e.g., by using Modelink6 or the Atlas Model Weaver7 [6]). Model weaving en-
ables to compose different separated models, and thus, could be used to compose
a core model with a concern-specific information model in a non-invasive man-
ner. However, although weaving models are a powerful mechanism, annotating
models with weaving models is counter-intuitive. Since this is not the intended
purpose of weaving models, users cannot annotate models using their familiar
environment such as a diagramming editor which graphically visualizes the core
model. Current approaches only allow to create weaving models with specific
tree-based editors in which there is no different visualization of the core model
and the annotated information. Not least because of this, weaving models may
quickly become very complex and challenging to manage.

Recently, Kolovos et al. presented an approach called Model Decorations [8]
tackling a very similar goal as EMF Profiles. Kolovos et al. proposed to attach
(or “decorate”) the additional information in terms of text fragments in GMF’s
diagram notes. To extract or inject the decorations from or into a model, hand-
crafted model transformations are employed which translate the text fragments
in the notes into a separate model and vice versa. Although their approach is
very related to ours, there also are major differences. First, for enabling the
decoration of a model, an extractor and injector transformation has to be man-
ually developed which is not necessary with EMF Profiles. Second, since Kolovos
et al. exploit GMF notes, only decorating GMF-based diagrams is possible. In
contrast to our approach, models for which no GMF editor is available cannot
be annotated. Third, the annotations are encoded in a textual format within
the GMF notes. Consequently, typos or errors in these textual annotations can-
not be automatically identified and reported while they are created by the user.
Furthermore, users must be familiar with the textual syntax as well as the dec-
oration’s target metamodel (to which the extractor translates the decorations)
to correctly annotate a model. In EMF Profiles, stereotypes may only be applied
if they are actually applicable according to the profile definition and editing the
tagged values is guided by a form-based property sheet. Consequently, invalid
stereotype applications and tagged values can be largely avoided.

EMF Facet8, a spin-off of the MoDisco subproject [3] of Eclipse, is another
approach for non-intrusive extensions of Ecore-based metamodels. In particular,
6 http://www.eclipse.org/gmt/epsilon/doc/modelink
7 http://www.eclipse.org/gmt/amw
8 http://www.eclipse.org/modeling/emft/facet

http://www.eclipse.org/gmt/epsilon/doc/modelink
http://www.eclipse.org/gmt/amw
http://www.eclipse.org/modeling/emft/facet
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EMF Facet allows to define additional derived classes and features which are com-
puted from already existing model elements by model queries expressed, e.g., in
Java or OCL. Compared to EMF Profiles, EMF Facet targets on complementary
extension direction, namely the dynamic extension of models with additional tran-
sient information derived from queries. In contrast, EMF Profiles allow to add new
(not only derived) information and is able to persist this additional information in
separate files. Nevertheless, the combination of both complementary approaches
seems to be a subject for future work. For example, this would allow to automat-
ically extend or complete models based on EMF Facet queries and persist this
information with EMF Profiles.

The concept of meta-packages has been proposed in [5] for the lightweight
extension of the structural modeling language XCore which is based on packages,
classes, and attributes. New modeling concepts are defined by extending the
base elements of XCore and can be instantly used in the standard XCore editor.
Compared to meta-packages, EMF Profiles are more generic, because not only one
modeling language may be extended, but any Ecore-based modeling language.

6 Conclusions and Future Work

In this paper, we adapted the notion of UML Profiles to the realm of DSMLs
residing in the Eclipse Modeling Framework. Using our prototype EMF Profiles,
DSMLs may be easily extended in a non-invasive manner by defining profiles in
the same way as done in UML tools. Moreover, we introduced two novel mech-
anisms, namely Generic Profiles and Meta Profiles, for reusing defined profiles
with several DSMLs. Although, the presented approach has been presented based
on EMF, the general procedure is also applicable for other metamodeling frame-
works which comprise a similar metalevel architecture as EMF. Furthermore, the
presented metalevel lifting strategies may also be adopted for other scenarios in
which model elements on M1 need to be instantiated.

We successfully applied EMF Profiles for instance in the context of our model
versioning system AMOR9. In AMOR we created and applied a change pro-
file for annotating changes performed on models. Moreover, we also used EMF
Profiles for marking conflicts caused by concurrent changes of the same model ar-
tifact using a conflict profile. Both profiles have been defined as meta profiles to
build change detection and conflict detection components which are generically
applicable, i.e., independent of the used modeling languages.

In the future, we plan to elaborate on more sophisticated restriction mecha-
nisms to allow constraining the application of stereotypes (e.g. with OCL condi-
tions) and composing several independent profiles which are not mutually com-
plementary in one profile application as proposed by [11]. A consistent mix of
several profiles requires a mechanism to specify conditions constraining applica-
bility across more than one profile. For instance, one may need to specify that
a stereotype of profile A may only be applied after a stereotype of profile B,
holding a specific tagged value, has been applied. Next, we plan to derive an
9 http://www.modelversioning.org

http://www.modelversioning.org
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easy-to-use API for programmatically creating, modifying, and accessing profile
applications. Finally, we aim at integrating EMF Profiles into the EMF Facet
project to combine their complementary features. By this, a synergy of the ex-
tension mechanism of EMF Profiles for additional persisted information and of
EMF Facet‘s for derived information can be accomplished.

References

1. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In: Gogolla,
M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

2. Atkinson, C., Kühne, T.: A Tour of Language Customization Concepts. Advances
in Computers 70, 105–161 (2007)

3. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and ex-
tensible framework for model driven reverse engineering. In: Automated Software
Engineering (ASE 2010), pp. 173–174. ACM Press, New York (2010)

4. Chen, P.P.-S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9–36 (1976)

5. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling, A Founda-
tion for Language Driven Development (2004), http://www.ceteva.com
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Abstract. Domain-specific languages and models are increasingly used
within general-purpose host languages. While traditional profiling tools
perform well on host language code itself, they often fail to provide mean-
ingful results if the developers start to build and use abstractions on top
of the host language. In this paper we motivate the need for dedicated
profiling tools with three different case studies. Furthermore, we present
an infrastructure that enables developers to quickly prototype new pro-
filers for their domain-specific languages and models.

1 Introduction

Recent advances in domain-specific languages and models reveal a drastic change
in the way software is being built. The software engineering community has
seen a rapid emergence of domain-specific tools, ranging from tools to easily
build domain-specific languages [18], to transform models [17], to check source
code [11], and to integrate development tools [13].

While research on domain-specific languages has made consistent progress in
language specification [5], implementation [4], evolution [6] and verification [8],
little has been done to support profiling. We consider profiling to be the ac-
tivity of recording and analyzing program execution. Profiling is essential for
analyzing transient run-time data that otherwise would be difficult to harvest
and compare. Code profilers commonly employ execution sampling as the way to
obtain dynamic run-time information. Unfortunately, information extracted by
regularly sampling the call stack cannot be meaningfully used to profile a high-
level domain built on top of the standard language infrastructure. Specialized
domains need specialized profilers.

Let us consider the example of the Mondrian visualization engine (details
follow in Section 2.1). Mondrian models visualizations as graphs, i.e., in terms
of nodes and edges. One of the important performance issues we recently faced
is the refresh frequency: nodes and edges were unnecessarily refreshed too often.
Standard code profilers did not help us to localize the source of the problem
since they are just able to report the share of time the CPU spends in the
method displayOn: of the classes MONode and MOEdge. The problem was finally
resolved by developing a custom profiler that could identify which nodes and
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� Springer-Verlag Berlin Heidelberg 2011
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edges were indeed refreshed too often. This domain-specific profiler was able
to exploit knowledge of Mondrian’s domain concepts to gather and present the
needed information.

We argue that there is a need for a general approach to easily develop spe-
cialized profilers for domain-specific languages and tools. A general approach
must offer means to (i) specify the domain concepts of interest, (ii) capture the
relevant information from the run-time execution, and (iii) present the results
to the developer.

In this paper we introduce MetaSpy, an event-based approach for domain-
specific profiling. With MetaSpy, a developer specifies the events of interest for
a given domain. A profiler captures domain information either by subscribing to
existing application events, or by using a reflective layer to transparently inject
event emitters into the domain code. The collected events are presented using
graph-based visualizations.

The contributions of this paper are: (1) the identification of the need for
domain-specific profilers, (2) the presentation of three real-world case-studies
where domain-specific profilers helped to significantly improve performance and
correctness of domain-specific code, and (3) the presentation of an infrastructure
for prototyping domain-specific profilers.

Outline. The remainder of this paper is structured as follows: Section 2 illus-
trates the problems of using a general-purpose profiler on code that is built on
top of a domain-specific language. Section 3 introduces our approach to domain-
specific profiling. Section 4 demonstrates how our approach solves the require-
ments of domain-specific profilers with three use cases. Section 5 presents our
infrastructure to implement domain-specific profilers. Section 6 presents an anal-
ysis on the performance impact of MetaSpy. Section 7 summarizes the paper and
discusses future work.

2 Shortcomings of Standard Profilers

Current application profilers are useful to gather runtime data (e.g., method
invocations, method coverage, call trees, code coverage, memory consumption)
from the static code model offered by the programming language (e.g., packages,
classes, methods, statements). This is an effective approach when the low-level
source code has to be profiled.

However, traditional profilers are far less useful for a domain different than
the code model. In modern software there is a significant gap between the model
offered by the execution platform and the model of the actually running applica-
tion. The proliferation of meta-models and domain-specific languages brings new
abstractions that map to the underlying execution platform in non-trivial ways.
Traditional profiling tools fail to display relevant information in the presence of
such abstractions.
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2.1 Difficulty of Profiling a Specific Domain

This section illustrates two shortcomings of traditional profiling techniques when
applied to a specific domain.

CPU time profiling

Mondrian [10] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [7], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:

54.8% {11501ms} MORoot(MONode)>>displayOn:

30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:

...

| 8.4% {1763ms} MOEdge>>displayOn:

| | 8.0% {1679ms} MOStraightLineShape>>display:on:

| | 2.6% {546ms} FormCanvas>>line:to:width:color:

...

23.4% {4911ms} MOEdge>>displayOn:

...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of the
execution stack and completely ignore the identity of the object that received the
method call and its arguments. As a consequence, it is hard to track down which
objects cause the slowdown. For the example above, the traditional profiler says
that we spent 30.9% in MONode>>displayOn: without saying which nodes were
actually refreshed too often.
1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
2 http://www.pharo-project.org/

http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
http://www.pharo-project.org/
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Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [12].

A number of grammars have been implemented with PetitParser, including
Java, Smalltalk, XML and SQL. It would be useful to establish how much of the
grammar is actually exercised by a set of test files to identify untested produc-
tions. The if statement parsing rule is defined as follows3:

�����������	

������
�
��

^ (�if� asParser token , conditionalExpression , statement) ,

(�else� asParser token , statement) optional

Coverage tools assess the coverage of the application source code by listing the
methods involved in an execution. Some tools can even detect the coverage inside
methods. Let us consider a Java grammar in PetitParser which is defined in 210
host language methods. These methods build a graph of objects describing the
grammar. Traditional coverage tools focus on the source code artifacts instead
of domain-specific data. In the example this means that all methods are covered
to build the grammar, but some parts of the resulting graph are not used. This
is why we are unable to analyze the parsing and production coverage of this
grammar with traditional tools.

2.2 Requirements for Domain-Specific Profilers

The two examples given above are representative. They illustrate the gap be-
tween a particular domain and the source code model. We argue that to efficiently
profile an arbitrary domain, the following requirements need to be fulfilled:

– Specifying the domain. Being able to effectively designate the objects rele-
vant for the profiling is essential. Since we are concerned with what makes
up a visualization in Mondrian, we are interested in the different nodes and
the invocation of the displayOn: methods, rather than focusing on the imple-
mentation classes. Grammars in PetitParser are represented as an executable
graph of primitive parser objects, each with its own execution behavior.

– Capturing domain related events. Relevant events generated by the domain
have to be monitored and recorded to be analyzed during or after the ex-
ecution. An event represents a particular change or action triggered by the
domain being profiled. Whereas the class MOGraphElement and its subclasses

3 Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples aloud and interpret them as normal sentences: An invocation to a method
named method:with:, using two arguments looks like: receiver method: arg1

with: arg2. Other syntactic elements of Smalltalk are: the dot to separate state-
ments: statement1. statement2; square brackets to denote code blocks or anony-
mous functions: [ statements ]; and single quotes to delimit strings: �a string�.
The caret ^ returns the result of the following expression.

http://www.squeaksource.com/PetitJava.html
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total more than 263 methods, only fewer than 10 methods are related to
displaying and computing shape dimensions.

– Effectively and concisely presenting the necessary information. The informa-
tion collected by traditional profilers is textual and targets method invoca-
tion. A method that invokes another will be located below it and indented.
Moreover, each method frame represented has a class name and a method
name, which completely ignores the identity of the object and arguments
that are part of the call. Collected information has to be presented in such a
way as to bring the important metrics and domain object composition into
the foreground.

Common code profilers employ execution sampling as the way to cheaply ob-
tain dynamic information. Unfortunately, information extracted when regularly
sampling the method call stack cannot be used to profile a domain other than
the source code model.

3 MetaSpy in a Nutshell

In this section we will present MetaSpy, a framework to easily build domain-
specific profilers. The key idea behind MetaSpy is to provide domain-specific
events that can later be used by different profilers with different objectives.

MetaInstrumenter

install
setUp
tearDown
uninstall

handler

install
uninstall

announcer

Announcement
Instrumenter

doesNotUnderstand:
run:with:in:
install
setUp
tearDown
uninstall

theClass
selector
methdo

MethodInstrumenter

install
uninstall

parser
grammar
replacement

ParserInstrumenter

Profiler

observeClass:do:
observeClass:selector:do
observePackage:do:
observePackagesMatching:do:
observeParser:in:do:
install
setUp
tearDown
uninstall

model
strategies

setUp
visualize

MondrianProfiler
setUp
visualize

OmniBrowserProfiler
setUp
visualize

PetitParserProfiler

Instrumentation strategies Profilers

User provided classes

Fig. 1. The architecture of the MetaSpy profiler framework

Figure 1 shows a class diagram of MetaSpy. There are two main abstractions:
the instrumentation strategies and the domain-specific profilers.

An instrumentation strategy is responsible for adapting a domain-specific
model and triggering specific actions in the profiler when certain events occur.
A profiler models a domain-specific profiling requirement by composing multiple
instrumentation strategies.
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Some instrumentation strategies work by registering to existing events of the
application domain. Other instrumentation strategies intercept the system by
meta-programming, i.e., conventional instrumentation. Installing an instrumen-
tation strategy activates it and its associated events, while uninstalling deacti-
vates them.

Some of the instrumentation strategies provided by MetaSpy are:

– Announcement Instrumenter dispatches events satisfying a particular con-
dition from the announcement framework to the external profiler.

– Method Instrumenter triggers an event whenever a specific method is invoked
on any instance of a specified class.

– Object Instrumenter triggers an event whenever a specific method is invoked
on a particular object. This is called object-specific profiling.

– Parser Instrumenter triggers an event whenever a specific grammar pro-
duction is activated. This is a very specific instrumentation strategy only
working with PetitParser productions.

Other dedicated instrumentation strategies can be implemented by adhering to
the same interface.

Profilers are responsible for modeling the domain-specific behavior to profile
the main abstractions in each domain. The abstract Profiler class models the
behavior of a general profiler. Subclasses are instantiated with a domain-specific
model and implement the set-up and tear-down of one or more instrumenta-
tion strategies into the model. Furthermore, they define how and what data
is collected when the instrumented model is exercised. To actually instrument
the model and start collecting events the method install is used. Similarly, to
remove all instrumentation from the model, uninstall is used. Both methods dis-
patch the requests to the respective instrumentation strategies using the current
model.

Each profiler is responsible for presenting the collected data in the method
open. Depending on the nature of the data, this method typically contains a
Mondrian [10] or Glamour [3] script, or a combination of both. Mondrian is a
visualization engine to depict graphs of objects in configurable ways. Glamour
is a browser framework to script user interfaces for exploratory data discovery.

Next, we will show real-world examples of domain-specific profilers.

4 Validation

In this section we will analyze three case studies from three different domains. We
will show how MetaSpy is useful for expressing the different profiling require-
ments in terms of events. We will also demonstrate how MetaSpy fulfills the
domain-specific profiling requirements, namely specifying, capturing and pre-
senting domain-specific information.

For each case study we show the complete code for specifying and capturing
events. We do not show the code for visualizing the results, which typically
consists of 20–50 lines of Mondrian or Glamour scripts.
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4.1 Case Study: Displaying Invocations

A Mondrian visualization may comprise a great number of graphical elements. A
refresh of the visualization is triggered by the operating system, resulting from
user actions such as a mouse movement or a keystroke. Refreshing the Mondrian
canvas iterates over all the nodes and edges and triggers a new rendering. Ele-
ments that are outside the window or for which their nesting node has an active
bitmap in the cache should not be rendered.

A graphical element is rendered when the method display:on: is invoked.
Monitoring when these invocations occur is key to having a global view of what
should be refreshed.

Capturing the events

The MetaSpy framework is instantiated to create the MondrianProfiler profiler.

Profiler subclass: #MondrianProfiler

instanceVariableNames: �actualCounter previousCounter�

MondrianProfiler defines two instance variables to monitor the evolution of
the number of emitted events: actualCounter keeps track of the current number
of triggered events per event type, and previousCounter the number of event
types that were recorded before the previous visualization step.

��������������
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super initialize.

actualCounter := IdentityDictionary new.

previousCounter := IdentityDictionary new

The installation and instrumentation of Mondrian by MetaSpy is realized by
the setUp method:

��������������
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���

self model root allNodes do: [ :node |

self

observeObject: node

selector: #displayOn:

do: [ :receiver :selector :arguments |

actualCounter

at: receiver

put: ((actualCounter at: receiver ifAbsent: [ 0 ]) + 1) ] ]

All the nodes obtained from the root of the model object are “observed” by
the framework. At each invocation of the displayOn: method, the block given
as parameter to do: is executed with the object receiver on which displayOn: is
invoked, the selector name and the argument. This block updates the number of
displays for each node of the visualization.
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Specifying the domain

The instrumentation described in the setUp method is only applied to the model
specified in the profiler. This model is an object which models the domain to
be profiled, in this case a Mondrian visualization. The instrumentation is only
applied to all nodes in this visualization. Only when these nodes receive the
the message displayOn: will increment the actual counter. This object-specific
behavior is possible due to the use of a reflection framework called Bifröst [14].

Presenting the results

The profiling of Mondrian is visualized using Mondrian itself. The visualizeOn:

method generates the visualization given in Figure 2.

Fig. 2. Profiling (left) the System Complexity visualization (right)

One important point of visualizeOn: is to regularly update the visualization
to be able to see the evolution of the domain events over time. The profiler is
uninstalled when the profiler Mondrian visualization is closed.

Figure 2 gives a screenshot of a visualization and the profiler. The right-hand
side is an example of the System Complexity visualization [9] of the collection
class hierarchy in Pharo. The left-hand side shows the profiler applied to the
visualization. The horizontal bar indicates the number of times the corresponding
node has been displayed.

The profiling monitors each node of the profiled visualization. Each node is
associated to a progress bar that widens upon node refresh. The profiled vi-
sualization remains interactive. Clicking and drag-and-dropping nodes refreshes
the visualization, thus increasing the progress bar of the corresponding nodes.
This profile helps identifying unnecessary rendering. We identified a situation in
which nodes were refreshing without receiving user actions. This was perceived
by the user with a sluggish rendering. Edges were constantly refreshed, even
without being apparent. This problem is addressed in version 2.30 of Mondrian.
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4.2 Case Study: Events in OmniBrowser

OmniBrowser [2] is a framework to define and compose new browsers, i.e., graph-
ical list-oriented tools to navigate and edit elements from an arbitrary domain.
In the OmniBrowser framework, a browser is described by a domain model spec-
ifying the domain elements that can be navigated and edited, and a metagraph
specifying the navigation between these domain elements. Nodes in the meta-
graph describe states the browser is in, while edges express navigation possi-
bilities between those states. The OmniBrowser framework then dynamically
composes widgets such as list menus and text panes to build an interactive
browser that follows the navigation described in the metagraph.

OmniBrowser uses announcements for modeling the interaction events of the
user with the IDE. A very common problem is to have certain announcements be
triggered too many times for certain scenarios. This behavior impacts negatively
the performance of the IDE. Moreover, in some cases odd display problems are
produced which are very hard to track down.

Capturing the events

To profile this domain-specific case we implemented the class OmniBrowserProfiler:

Profiler subclass: #OmniBrowserProfiler

instanceVariableNames: �actualCounter previousCounter�

The instrumentation in the setUp method counts how many times each an-
nouncement was triggered.
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self

observeAnnouncer: self model announcer

do: [ :ann |

actualCounter

at: ann class

put: (actualCounter at: ann class ifAbsent: [ 0 ]) + 1 ]

Specifying the domain

We specify the entities we are interested in profiling by defining the model in
the profiler. For example, we could define OBSystemBrowser browsing a specific
class. All OmniBrowser instances have an internal collaborator named announcer
which is responsible for the signaling of announcements. This is the object used
by the profiler to catch the announcement events.

Presenting the results

A Mondrian visualization was implemented to list the type and the number of
announcements triggered (Figure 3).
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Fig. 3. Profiling (left) an OmniBrowser instance (right)

4.3 Case Study: Parsing framework with PetitParser

Rigorous test suites try to ensure that each part of the grammar is covered by
tests and is well-specified according to the respective language standards. Vali-
dating that each production of the grammar is covered by the tests is a difficult
activity. As mentioned previously, the traditional tools of the host language work
at the method and statement level and thus cannot produce meaningful results in
the context of PetitParser where the grammar is modeled as a graph of objects.

Capturing the events

With MetaSpy we can implement the grammar coverage with a few lines of code.
The instrumentation happens at the level of the primitive parser objects. The
method observeParser:in: wraps the parser object with a handler block that is
called for each activation of the parser.

1 �
�������
�������
�

�
���

2 self model allParsers do: [ :parser |

3 self observeParser: parser in: self grammar do: [

4 counter

5 at: parser

6 put: (counter at: parser ifAbsent: [ 0 ]) + 1 ] ]

Line 2 iterates over all primitive parser objects in the grammar. Line 3 attaches
the event handler on Lines 4–6 to each parser in the model. The handler then
counts the activations of each parser object when we run the test suite of the
grammar.

Specifying the domain

The domain in this case is an instance of the grammar that we want to analyze.
Such a grammar may be defined using hundreds of interconnected parser objects.
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Fig. 4. Visualization of the production coverage of an XML grammar with uncovered
productions highlighted in black (left); and the same XML grammar with updated test
coverage and complete production coverage (right). The size of the nodes is proportional
to the number of activations when running the test suite on the grammar.

Presenting the results

This provides us with the necessary information to display the grammar coverage
in a visualization such as that shown in Figure 4.

5 Implementing Instrumentation Strategies

MetaSpy has two ways of implementing an instrumentation strategies: listen-
ing to pre-existing event-based systems, or using the meta-level programming
techniques of the host language to define a meta-event the strategy is interested
in.

Let us consider the class AnnouncementInstrumenter, whose responsibility is to
observe the generation of specific announcements.
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self announcer

on: Announcement

send: #value:

to: self handler

The install method installs an instrumentation strategy object on the domain
specified in the install method. In this snippet of code we can see that the
strategy is hooked into the announcement system by evaluating the strategy’s
handler when an announcement is triggered.

However, not all profiling activities can rely on a preexisting mechanism for
registering to events. In some cases, a profiler may be hooked into the base code
using an existing event mechanism, for example the OmniBrowser profiler. In
other cases, extending the base code with an appropriate event mechanism is
simply too expensive. Because of this, we need to rely on the meta-programming
facilities of the host language. These facilities are not always uniform and require
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ad hoc code to hook in behavior. To avoid this drawback we decided to use a
framework that provides uniform meta-programming abstractions. Bifröst [14]
offers a model of fined-grained unanticipated dynamic structural and behavioral
adaptation. Instead of providing reflective capabilities as an external mechanism,
Bifröst integrates them deeply into the environment. Bifröst is a reflective system
based on explicit meta-objects to improve meta-level engineering.

Bifröst has been designed as an evolution of partial behavioral reflection
for Smalltalk [15], which in turn was conceived as an extension of the Reflex
model [16]. Bifröst’s meta-objects provide a structural view and a behavioral
view. In the context of MetaSpy we were mainly interested in behavioral reifica-
tions. A behavioral meta-object reifying message sends was used for the message
send instrumenter. A Message Received event is also provided by the behavioral
meta-object. State read and write are also supported thus MetaSpy can pro-
file these dynamic events. Bifröst meta-objects when attached to a single object
are object-specific in nature, thus fulfilling an important domain-specific profiler
design requirement.

Let us consider the Message Received Instrumenter, whose responsibility is to
instrument when a specific object receives a specific message.
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�������

self observerMetaObject bind: self object

�
����
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��
��������
��
�

�
���

profilingMetaObject := BehaviorMetaObject new

when: self selector

isReceivedDo: self handler

The method install binds a meta-object to the object to be observed. The
method setUp initializes the profiling meta-object with a behavioral meta-object.
This meta-object evaluates the handler when a specific message is received by
the profiled object. This mechanism is termed object-specific instrumentation.

Object-specific instrumentation is not trivial to achieve in class-based lan-
guages like Smalltalk and Java. Classes are deeply rooted in the language inter-
preter or virtual machine and performance is tweaked to rely heavily on these
constructs. Moreover, most languages provide a good level of structural reflection
to deal with structural elements like classes, method, statements, etc. Most lan-
guages, however, do not provide a standard mechanism to reflect on the dynamic
abstractions of the language. There are typically no abstractions to intercept
meta-events such as a message send, a message receive, a state read, etc.

In our implementation, the profiled application, the profiler, and the visual-
ization engine are all written in the same language, Pharo, and run on the same
virtual machine. Nothing in our approach prevent from decoupling these com-
ponents and having them written in a different language or running remotely.
This is actually what often happen with the profilers and debuggers running on
the Java virtual machine (e.g., Java debugging interface4).

4 http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html

http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html
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6 Micro-Benchmark

Profiling always impacts the performance of the application being analyzed. We
have performed a micro-benchmark to assess the maximal performance impact
of MetaSpy. We assume that the behavior required to fulfill the profiling require-
ments is constant to any instrumentation strategy.

We analyze the impact of MetaSpy on both profiling uses cases. All bench-
marks were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in
Pharo 1.1.1 with the jitted Cog VM.

Registering instrumentation strategies to a preexisting event-based system
depends heavily on the the system used and how it is used.

Using meta-level programming techniques on a runtime system can have a
significant performance impact. Consider a benchmark in which a test method
is being invoked one million times from within a loop. We measure the execution
time of the benchmark with Bifröst reifying the 106 method activations of the
test method. This shows that in the reflective case the code runs about 35 times
slower than in the reified one. However, for a real-world application with only few
reifications the performance impact is significantly lower. Bifröst’s meta-objects
provide a way of adapting selected objects thus allowing reflection to be applied
within a fine-grained scope only. This provides a natural way of controlling the
performance impact of reflective changes.

Let us consider the Mondrian use case presented in Section 2.1. The main
source of performance degradation is from the execution of the method displayOn:

and thus whenever a node gets redisplayed. We developed a benchmark where
the user interaction with the Mondrian easel is simulated to avoid human delay
pollution in the exercise. In this benchmark we redraw one thousand times the
nodes in the Mondrian visualization. This implies that the method displayOn:

is called extensively. The results showed that the profiler-oriented instrumenta-
tion produces on average a 20% performance impact. The user of this Mondrian
visualization can hardly detect the delay in the drawing process. Note that our
implementation has not been aggressively optimized. It has been shown [1] that
combining instrumentation and sampling profiling leaded to accurate profiles
(93–98% overlap with a perfect profile) with low overhead (3–6%). The profil-
ers we presented in this paper are likely to benefit from such instrumentation
sampling.

7 Conclusions and Future Work

Our contributions are the following:

1. We demonstrated the need for domain-specific profilers. We argued that
traditional profilers are concerned with source code only and are inadequate
for profiling domain-specific concerns. We demonstrated this drawback with
two use cases.

2. We formulated the requirements domain-specific profilers must fulfill: speci-
fying the domain, capturing domain related events and presenting the nec-
essary information.
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3. We presented MetaSpy, a framework for defining domain-specific profilers.
We also presented three real-world case-studies showing how MetaSpy fulfills
the domain-specific profiler requirements.

As future work we plan to:

– Provide ready-made and pluggable visualizations that can be used by new
domain-specific profilers. We plan to use Glamour to build these visualiza-
tions.

– Apply MetaSpy in the context of large meta-models, such as the FAMIX
meta-model in Moose and the Magritte meta-model in Pier.

– Provide additional ready-made event types that enhance the expressibility
of new profilers.

– Profiler scoping is of key importance to obtain adequate information. We
plan to enhance the scoping mechanism to be able to dynamically attach
events to groups of objects.
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Abstract. Cumbia is our platform to develop applications based on
multiple, coordinated executable models which can be described using
different languages. The coordination of models is achieved by describ-
ing how their elements should interact, and mapping those descriptions
into low level coordination primitives. Moreover, the description of the
coordination is described externally: it does not have an impact either
on the metamodels or on the models, and this results in lower coupling
and increased flexibility. This approach, which is appropriate when the
metamodels are highly independent, has limitations when it comes to de-
scribing dependencies that are inherent to the concerns. In those cases,
it makes sense to incorporate those dependencies into the metamodels
descriptions. The goal of this paper is thus to discuss two alternative
ways to establish those dependencies, and illustrate their usage, benefits,
and drawbacks in a concrete example.

Keywords: Metamodel relations, Model relations, Executable models,
Model composition, Cumbia.

1 Introduction

Cumbia is a platform to develop applications based on model driven engineering
(MDE) and using multiple concern specific languages. For each language sup-
ported in Cumbia, a metamodel has to be defined whose goals are to describe
the abstract syntax and the semantics of the language. This is achieved by using
metamodels based on open objects [1].

Open Objects are an abstraction that we developed to describe all the elements
that belong in a Cumbia metamodel, and therefore all the elements of a concern
specific language. Open objects are composed by three elements: an entity, a
state machine associated with the entity, and a set of actions. Entities are plain
old Java objects with properties and methods. State machines are abstractions
of the associated entity life cycle and stay in sync with the entity state. State
machines are formed by states and transitions, and each of the latter has to
be marked with the type of the events that can trigger it. Actions represent
behavior associated with the transitions of the state machine.

The execution of a set of open objects is coordinated by means of event pass-
ing and by means of method invocations. Open objects generate events in two
situations: when methods of the entity are executed, or when the state machine

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 83–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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follows a transition and switches its current state. Events are distributed among
open objects, and they are locally processed. The state machine of each open
object that received an event is updated based on the type of the event, and
in turn this generates more events. Furthermore, actions, implemented as Java
classes and associated to transitions, are executed when these transitions occur.
The coordination based on method invocation is more straightforward: any open
object can invoke methods of another one at any given moment, and these in-
vocations can be found in methods implementations, or in actions associated to
the state machine [1].

Open objects are used to describe and structure the elements that belong in a
metamodel. Afterwards, models conformant to these metamodels are executed by
a component called Cumbia Kernel. This kernel, which is an engine to execute
open objects’ based models, is generic and is reused for every Cumbia based
application and language. In fact, the essence of this kernel is managing event
distribution and processing, which includes updating the state machines, but
does so independently of the languages or metamodels used.

A common issue in the design of modeling languages is to balance their ex-
pressiveness and generality, and their size and complexity. If a language is very
expressive and general, then it is likely to be big or complex, and thus difficult to
implement, to support, and to use. On the other hand, if the language is small
or simple, then it is likely to be less expressive and thus insufficient to solve
certain problems. The Small DSLs approach addresses this by grouping multiple
languages that are very expressive but that have a relatively small scope [2]. This
approach is followed in Cumbia, where we can have multiple and complementary
concern specific languages. By doing so, each language can be designed to focus
on a particular concern, and focus on offering very expressive constructs for it.
From a technical point of view, this is achieved by offering means to coordinate
the execution of models, regardless of the languages used to describe each one
of them.

Previously, we have explored two different mechanisms to describe the coordi-
nation of the models. In [3], we presented the means to describe the coordination
at the model level, and externally to the models themselves. This description is
used, at run time, to synchronize the execution of the models. The second mech-
anism to describe coordination does so at a higher level of abstraction (the meta-
model level) and externally to the metamodels themselves [4]. This is done via
a language called M2CL, which describes the relations that can be established
between elements from different metamodels. This second strategy is built on
top of the elements provided by the first one, and both of them have in common
that they maintain the independence of the metamodels or the languages. They
are always oblivious one of the other, and as a result, they can be easily replaced,
removed, or modified. Also, new languages and concerns can be added as they
become necessary.

Nevertheless, these two types of mechanisms are not always adequate. There
are cases where some concerns have strong dependencies towards other concerns,
which may or may not be known. To address this, metamodels should be designed
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from the beginning to be composed with those other metamodels. Therefore, in
those cases it is desirable to include inter-metamodel dependencies, and include
those within the metamodels’ definitions. That implies higher coupling and lower
flexibility, but it reflects better the dependencies between the concerns.

The goal of this paper is to present two strategies that we implemented in
Cumbia to describe relationships between metamodels. The first one of these
strategies is based on the definition of explicit dependencies between concrete
metamodels. The second one, is based on the description of contracts for entities
of the metamodels, and deferring the specification of the concrete bindings. These
strategies are useful in different cases, and provide different degrees of flexibility.
Furthermore, this paper illustrates the usage of these strategies with a concrete
application: a simulator that uses four domain specific languages to describe
complementary aspects of a traffic simulation scenario.

This paper is structured as follows: in section 2 we introduce the traffic sim-
ulation application, and we describe the concerns and languages involved in it.
While doing so, we also introduce some additional background on the Cumbia
platform. Then, in section 3, we present the strategies proposed to establish and
maintain relations between metamodels. Finally, sections 4 and 5 present related
work and conclude the paper.

2 An Application for Traffic Simulation

In this section we describe a traffic simulation tool based on the Cumbia platform.
There are several reasons that make this an interesting application to illustrate
Cumbia. In the first place, this is an application intended to be used by domain
experts (traffic experts), and it would thus be desirable to offer high level, do-
main specific languages for the definition of simulation scenarios. Secondly, each
simulation scenario needs to include many details, which can be of different na-
tures. Therefore, it makes sense to modularize scenario definitions, for instance
by separating concerns. This decision makes it possible to have concern specific
languages and facilitates the reuse of scenarios. Finally, the concerns that we can
identify for a traffic simulation application are not totally crosscutting: there are
relations and interactions between them, and we can even identify a few elements
that appear in multiple concerns.

For the traffic simulation that we are about to present, we have identified
the four concerns shown in figure 1. For each one of these, we have defined
a concern specific language, and built the elements to run models described
using those languages. Furthermore, we have analyzed the interactions between
these concerns, and we have created the artifacts to coordinate their execution.
The rest of this section presents more details about each concern, about their
implementation on top of Cumbia, and about the coordination of their execution.

2.1 Crossroads Structure

This is the central concern in the scenario, and it describes roads, lanes and
routes for cars in the simulation to travel. This concern also handles the location
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Fig. 1. Concerns and relations in the traffic simulation scenario

and state of pedestrian and traffic lights. The Crossroads concern is limited to
describing structural aspects of the simulation: without further inputs from other
concerns, a simulation of this concern would be static.

We have designed a graphical notation to describe crossroads models, and
implemented an editor for domain experts to use. Besides serving to create dia-
grams like the one shown in figure 2, this editor also hides the complexity of the
XML-based syntax that Cumbia uses to describe models.

Fig. 2. Crossroads diagram

The diagram in figure 2 presents five roads, labeled from 1 to 5. Each road
contains at least one lane. For example, road 3 has two lanes, named E and
F. The arrows drawn over the lanes indicates the orientation of the lane and
also represent the available routes. For example, cars traveling on lane F can
continue to lanes A, I or G, but not H.

This syntax also describes pedestrian lights and traffic lights. The former are
represented by solid lines drawn over the roads. Figure 2 shows three pedestrian
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lights, located on roads 1, 4 and 5. Traffic lights are more complex than pedes-
trian lights because it is necessary to specify which routes they control. These
lights are represented by small circles located in front of the lanes, connected to
boxes that provide additional information about one or several traffic lights and
the routes they control. In our example we place two traffic lights, L1 and L9,
in front of lane J. Traffic light L1 controls the cars coming from lane J that are
going to take lanes D and E, while L9 controls the cars coming from lane J that
are going to take lane A.

2.2 Lights Control

During the simulation, policies control the traffic lights, determining when each
one has to show its green light. Each policy is defined as a sequence of states, and
each state has a set of traffic lights that are supposed to show green when the
state is active. A policy also indicates for how long each state has to be active
and their order of activation. The language designed for this concern is textual,
as shown in the following snippet:

Policy Normal

St1 := {L2,L3,L5};

St2 := {L1,L9,L4};

St3 := {L7};

St4 := {L8};

St5 := {L2,L6,L3};

Sequence {(St1,100) (St2,80) (St3,20) (St4,20) (St5,20)};

In this description, a policy called Normal is defined. The policy has five
states, St1 to St5. The sequence indicates that the first state is St1 and has to
be activated for 100 seconds. During those 100 seconds, only the lights L2, L3,
and L5 in a simulation scenario have to show a green light. The last state of the
sequence is St5 and it has to be activated for 20 seconds. Afterwards, the cycle
has to restart by reactivating state St1.

2.3 Policies Management

After defining the policies available to control the traffic lights in the simulation,
it is necessary to specify the conditions to apply each policy. For this application,
we use a simple mechanism which associates policies to time intervals in a day.
The language to describe this is illustrated in the next snippet:

TimeBased ("6:30 - 9:00") => RushHour

TimeBased ("9:01 - 16:29") => Normal

TimeBased ("16:30 - 20:30") => RushHour

The example presents three time intervals and the policies that have to be
applied for each one. During rush hours (6:30 to 9:00 and 16:30 to 20:30) the
RushHour policy is applied. From 9:01 to 16:29 the Normal policy controls the
traffic lights. This language can be extended to include new types of conditions
besides time-based, with minimal impact to the rest of the concerns.
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2.4 Traffic Generation

The previous concerns would not be interesting without simulated cars traveling
the routes and being controlled by traffic lights. In our simulator, the traffic is
modeled using probability distributions of car arrivals to the routes and lanes
of a crossroads model. The language developed to model traffic is textual and is
illustrated in the following example:

Route "B-G"

Poisson 3

Route "C-G"

Poisson 4

Poisson 7

This snippet shows that routes are represented by a source lane and a target
lane. The snippet also shows that it is possible to assign multiple probability
distributions to a single route.

2.5 Implementing the Concerns in Cumbia

To build the traffic simulator on top of Cumbia, for each of the previously de-
scribed concerns, a metamodel had to be created. Figure 3 shows the structure
of the four metamodels, but because of space restrictions we cannot present in
detail each one of them. Nevertheless, it has to be highlighted that each element
in those metamodels is an open object, and that each metamodel reflects the
abstract syntax of one of the concern specific languages previously shown. Given
this context, creating a simulation scenario involves the creation of four models,
each one conformant to one of the metamodels.

From the descriptions of the concerns, it should be clear that they have several
points of contact. Therefore, to execute a complete simulation scenario it is not
enough to independently execute the four models that compose it: they have
to be executed in a coordinated way and information has to be shared between
them. For instance, the element Generator in the Traffic model has an indirect
responsibility in creating Cars in the Crossroads model.

This kind of coordination is achieved by means of CCL, M2CL, and M1CL
(see figure 4) [4]. CCL (Cumbia Coordination Language) is a low level language
that provides primitives, based on event passing and methods invocations, to de-
scribe how to coordinate model instances. CCL is useful to describe coordination
between model instances, but does not offer mechanisms to describe coordination
at higher levels, i.e, between metamodels and models. To solve this we developed
a language called M2CL, that serves to encapsulate coordination rules between
metamodel elements (M2 level). The entities that encapsulate this information
are called composites, and they include the structural and behavioral aspects
of the coordination. Finally, there is M1CL, the language to describe instances
of those composites, which depend on the selection of elements from particular
models. With the information available in the M2CL and M1CL descriptions,
CCL code is generated automatically and is used, at run time, to ensure the
coordination of the model instances.
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Fig. 3. Metamodels created for the traffic simulation scenario

Fig. 4. Coordinating the execution with external descriptions

This coordination mechanism describes the coordination rules and restric-
tions externally to the coordinated elements themselves. This means that nei-
ther model definitions, nor metamodel definitions are impacted by the presence
of coordination. As a result, the coupling between languages and metamodels is
low, and languages can be replaced or modified with relative ease.

The downside of this approach is that the strict dependencies between the
metamodels are not materialized. For example, with the means available it is not
possible to say that the Lights Control element in the Lights Control model
should be the same Lights Control element in the Policies Management model.
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Instead, we are forced to first duplicate the elements in the two metamodels, and
then to keep their instances in sync while executing. To solve these issues, the
next section presents new composition and coordination concepts that we are
introducing into Cumbia.

3 Dependencies between Metamodels

The mechanism currently offered by Cumbia to establish relations between meta-
models, models and model instances does not properly support the representa-
tion of strict dependencies between Cumbia metamodels. To address this, we
now propose a set of extensions to Cumbia that have an impact on the way open
objects and metamodels are defined, as well as on M2CL, M1CL, and CCL. We
have categorized these extensions according to the kind of dependencies that
they aim to support: on the one hand, we have direct dependencies, which have
the highest impact on coupling and flexibility; on the other hand, we have behav-
ioral dependencies, which are not as rigid and do not eliminate all the flexibility
that we gain from the usage of externalized coordination descriptions.

3.1 Direct Dependencies

The first mechanism we propose is to enable the specification of explicit de-
pendencies between metamodels. This means that we are enabling the usage of
elements in metamodels where they were not initially defined. Besides impacting
the definition of the metamodels where these elements are used, this also has an
impact on the definition of models, and on model instances (see figure 5). In
the original open objects model, the elements used in a model definition had to
be completely defined in the metamodel used to describe the model. With this
extension, it is no longer necessary to duplicate open objects across metamodels.

Fig. 5. Direct dependencies in two metamodels
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Fig. 6. Direct dependencies between metamodels in the traffic simulation scenario

Figure 6 shows how the metamodels in the traffic simulator can be redefined
using direct dependencies, in order to better convey the dependencies that exist
between them. In particular, we are defining two direct dependencies. The first
one states that the element Traffic Light in the Lights Control metamodel is
now going to be the element Traffic Light in the Crossroads metamodel. The
second one states that the element Lights Control of the Policies Management
metamodel is going to be the element Lights Control of the Lights Control
metamodel. We are now going to show how the first dependency affects the
metamodels and models definition.

<metamodel name=" LightsControl" version ="1.1" >
<dependencies >

<metamodel - dependency name="crossroads" version ="1.1"
metamodel=" Crossroads" />

</dependencies >

<external -type with=" crossroads" externalTypeName=" TrafficLight"
typeName =" Traffic Light"/>

...
</metamodel >

Prog. 1. Metamodel definition: direct dependency description

In the first place, we have to modify the definition of the metamodel. Pro-
gram 1 shows the relevant parts of the metamodel description that define that a
type in a given metamodel is defined in another metamodel. For this, a general
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dependency towards the Crossroads metamodel is first defined, and then specific
dependencies are described. This is achieved with the tag external-type, which
creates a local reference to the type defined in the other metamodel. In the sample
case, we declare an external type called Traffic Light, which depends on the
element with the same name in the Crossroads metamodel.

Models conformant to metamodels with dependencies must explicitly state
which models satisfy which dependencies. They also have to explicitly “im-
port” the necessary elements defined in the other models. Program 2 is a frag-
ment of a model definition that shows how this is done in a sample scenario.
The description of the model starts with a declaration of a dependency to-
wards another model, which satisfies a dependency declared at the metamodel
level. Then, the structure of the model explicitly states which elements are
going to be “imported” from the other model. For this, it is only necessary
to specify in which model the element sought is located, and its name. The
Cumbia platform is now capable of verifying the consistency of those “imports”,
with respect to the types of the elements and the structure of the
metamodels.

<definition metamodel=" LightsControl" version ="1.1"
modelName=" LightsSample">

<dependencies >
<model -dependency name=" crSample "

model=" CrossroadsSample"
mmDependencyName=" crossroads"/>

</dependencies >

<model -structure >
<elements >

<external -element externalName="tl1" dependency=" crSample " />
...

</elements >
...

</model -structure >
</definition >

Prog. 2. Model definition: direct dependencies usage

The final step is to use CCL to properly establish the references between
elements in the model instances. Program 3 shows how this is achieved, using
the new instruction fixReference. The usage of this instruction used in the
sample CCL program can be translated as follows: “In the instance l instance
of the LightsSample model, resolve the declared dependency crSample using
the elements found in the instance c instance of the CrossroadsSample model”.
Given these directions, the Cumbia Weaver (the component that executes CCL
programs) is capable of replacing placeholder elements in the instance of the
LightsSample model with references to elements in concrete instances of the
CrossroadsSample model.
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assembly {
load (LightsControl:LightsSample l_model , Crossroads:CrossroadsSample

c_model );

on:Init {
c_instance = new c_model;
l_instance = new l_model;
fixReference(l_instance , "crSample ", c_instance);

}
}

Prog. 3. CCL: resolving direct dependencies at model instance level

3.2 Behavioral Dependencies

Defining dependencies directly and explicitly in the metamodel and model def-
initions is a simple and effective approach, but it results in high coupling. To
alleviate this, we propose an alternative which replaces explicit dependencies
with dependencies based on behavioral contracts. By doing so, it will still be
possible to have dependencies between metamodels, but they will not be com-
pletely known beforehand. This new strategy involves extensions to the meta-
model specification language, to M2CL, to M1CL, and to CCL. Figure 7 shows
the elements involved in this strategy.

Fig. 7. Behavioral dependencies using virtual open objects

To describe behavioral contracts and dependencies in metamodel definitions,
we introduced a new type of open object called virtual open object. Virtual open
objects have some similarities to normal open objects [1]: they have a state ma-
chine, they generate events, and they have a public interface that announces the
set of methods understood by each open object. However, virtual open objects
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are not executable, because they do not implement the methods declared on the
interface, and because they cannot autonomously generate events. In the rest
of the section we will revise the case study used in section 3.1, but we will use
behavioral dependencies instead of direct ones. Program 4 presents the definition
of a virtual open object called TrafficLight in the Lights Control metamodel.

<metamodel name=" LightsControl" version ="1.0" >

<state -machine -reference name="tlight" file="light.xml" />

<virtual -type name=" TrafficLight"
interface=" simulator. lights.ITrafficLight"

state -machine -name="light">
<event name=" becameGreen"/>
<event name=" becameRed"/>

</virtual -type >
</metamodel >

Prog. 4. Metamodel definition: virtual open objects defined

To execute an instance of a model conforming to a metamodel that includes
virtual open objects, it is necessary to bind the virtual open objects with regular
open objects. This means that, at run time, each virtual open object needs to
be bound to a concrete open object.

These bindings have to be defined at the model level, using M1CL. Further-
more, at the metamodel level it is necessary to characterize the types of valid
bindings. This is achieved in M2CL, using descriptions similar to the one shown
in program 5. In that snippet, we have established that instances of the virtual
type added to the Lights Control metamodel can be bound to instances of the
TrafficLight type in the Crossroads metamodel. Furthermore, we had to de-
scribe a mapping between the two types: this mapping relates 1) methods in the
interface of the virtual open object with methods implemented in the concrete
open object; 2) and events emitted by the concrete open object with events that
the virtual open object should emit.

Once the types of bindings have been defined using M2CL, it is possible to
use M1CL to establish concrete bindings between model elements. Program 6
shows how this is done: an instance of the binding type is defined, and it specifies
which pair of elements are going to be bound together. Note that exactly one of
these elements has to be a virtual open object.

Finally, to create the concrete bindings between elements in model instances,
some CCL code is required. This code is generated from the M2CL and the
M1CL descriptions and in particular from the mapping defined for events and
methods. Program 7 shows a fragment of the code generated in the sample case
studied. It illustrates the new instructions added to CCL, namely bindEvent
and bindMethod. Using the former, an instance of a virtual open object, which
operates as a proxy, is configured to re-emit certain events produced by the
concrete element. The latter instruction serves to configure which methods of
the concrete element to invoke when a method is invoked in the virtual element.
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binding TrafficLightBinding
use Crossroads.TrafficLight cLight
use LightsControl.TrafficLight vLight

bind cLight:isOn to vLight: becameGreen
bind cLight:isOff to vLight: becameRed

bind vLight.reset to cLight.setOff
end

Prog. 5. M2CL: definition of a binding

TrafficLightBinding L2_to_Ll2
cLight : CrossroadsModel.L2
vLight : LightsControlModel.L2

end

Prog. 6. M1CL: binding of elements in models

4 Related Work

Meta case tools, such as MetaEdit+[5], GME[6], the Eclipse GMF1, or the Mi-
crosoft DSL Tools2 have been used to define and use DSMLs in industrial settings
[7,8,9]. These tools are based on metamodeling, and one of their main strengths
is the capability of automatically generating the tools that the DSMLsâĂŹ users
require (editors). Up to this point, we have not used any of these tools to de-
scribe Cumbia models. Instead, we have developed ad-hoc editors for each of our
DSMLs. However, we plan on using one of the available open tools with Cumbia
soon.

Because of the importance of establishing and maintaining relationships be-
tween modelsâĂŹ elements, there are many proposals to manage these relation-
ships. In [10], BrÃd’uer and Lochmann identify four of those strategies. The first
strategy is based on model weaving, such as in the Motorola WEAVR [11] and
in AMW [12,13]. A second strategy is based on model mappings and model-to-
model transformations, which are also used on [12]. The third strategy is based
on named-based references between model elements, and it is used in SMART
[9] and NAOMI [14]. SmartEMF [15] is a tool to represent, check, and main-
tain constraints in multimodels that use these kinds of references. The Cumbia
framework can be partially classified in this strategy, although the semantic rela-
tionships are stronger than just a name: with open objects, the notion of element
type also exists. Finally, the strategy presented in [10] is based on an upper on-
tology, and on connectors that establish semantic links between languages. This
approach also has similarities to Cumbia (the open objects structure can be

1 Eclipse Graphical Modeling Framework, http://www.eclipse.org/modeling/gmf/
2 Microsoft: Domain-Specific Language Tools, http://msdn.microsoft.com/en-

us/library/bb126235(VS.80).aspx
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load (LightsControl:LightsSample l_model ,
Crossroads:CrossroadsSample c_model );

...
c_instance = new c_model ;
l_instance = new l_model ;
...
c_L2 = findByName(c_instance ,"L2");
l_L2 = findByName(l_instance ,"L2");

bindEvent(l_L2 , "becameGreen", c_L2 , "isOn");
bindEvent(l_L2 , "becameRed", c_L2 , "isOff");

bindMethod(l_L2 , "reset", c_L2 , "setOff ");

Prog. 7. CCL: binding of methods and events

likened to an upper ontology), but, since it is much more general, it is not exe-
cutable, i.e. for each upper ontology an implementation has to be created.

Executability is the primer goal of some modeling frameworks, although the
meaning of the term execution, and the reasons to achieve execution, vary from
tool to tool. According to [16], executing a model involves the computation of
a sequence of states in the model, in response to input data. This definition is
consistent with their overall reason for using models, which is to define, validate,
simulate, and generate the code of a system. Although it is less formal, Ptolemy
II [17] follows a similar perspective on execution, and, in particular, it aims to
generate code for embedded systems. In NAOMI [14], model execution has a
slightly different meaning and intent: NAOMIs models are executed by taking
some inputs from a repository, running the models to obtain outputs, and writing
the outputs back into the repository. The execution of NAOMIs multimodels is
achieved by executing each model while following an execution plan based on
model dependencies.

5 Conclusions

In this paper we have presented two strategies to define dependencies between
metamodels. The first one, which we call direct dependencies, results in highly
coupled metamodels. In spite of the negative effect on flexibility, this strategy is
useful because of its simplicity and because it removes the need to duplicate ele-
ments or coordinate several elements between several metamodels. Furthermore,
this approach enables the static validation of dependencies, while metamodels
are designed, instead of doing it dynamically when models are executed.

To reduce the coupling introduced with the first strategy, we proposed a sec-
ond one that introduces a level of indirection in the definition of the dependen-
cies. This indirection materializes in the definition of contracts which specify the
name of methods and events used to bound elements. This strategy depends on
external information available outside the metamodels and models to resolve the
dependencies at run time, which is provided using M2CL and M1CL.

Moreover, the two strategies proposed do not replace the coordination mech-
anisms that were already present in Cumbia. They complement them, and they
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are intended to be used when the characteristics of a domain require a tighter
coupling between the metamodels.

The strategies presented in this paper are our first attempt to implement
new types of relations between metamodels, models and model instances in the
Cumbia platform. Because of that, they have some evident limitations that we
expect to remove in the future. For example, currently behavioral dependencies
only support the binding of methods that do not receive parameters and one-to-
one event mappings. In the future, we expect to remove this kind of limitations
by supporting the definition of more complex mappings. In particular, we want
to support methods with more detailed signatures, and also complex events
mapping.
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2005 (2005)

14. Denton, T., Jones, E., Srinivasan, S., Owens, K., Buskens, R.W.: NAOMI – an
experimental platform for multi–modeling. In: Busch, C., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 143–157. Springer,
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-87875-9_10

15. Hessellund, A., Busch, C., W ↪asowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

16. Hardebolle, C., Boulanger, F., Marcadet, D., Vidal-Naquet, G.: A generic execution
framework for models of computation. In: MOMPES 2007: Proceedings of the
Fourth International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, pp. 45–54. IEEE Computer Society, Washington DC, USA
(2007)

17. Brooks, C., Hong Cheng, C., Feng, T.H., Lee, E.A., Hanxleden, R.V.: Model
engineering using multimodeling. In: 1st International Workshop on Model Co-
Evolution and Consistency Management, MCCM 2008 (2008)

http://dx.doi.org/10.1007/978-3-540-87875-9_10


KlaperSuite: An Integrated Model-Driven

Environment for Reliability and Performance
Analysis of Component-Based Systems

Andrea Ciancone1, Antonio Filieri1, Mauro Luigi Drago1, Raffaela Mirandola1,
and Vincenzo Grassi2

1 Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
andrea.ciancone@mail.polimi.it, {filieri,drago,mirandola}@elet.polimi.it
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Abstract. Automatic prediction tools play a key role in enabling the ap-
plication of non-functional requirements analysis to selection and assem-
bly of components for Component-Based Systems, reducing the need for
strong mathematical skills to software designers. Exploiting the paradigm
of Model Driven Engineering (MDE), it is possible to automate trans-
formations from design models to analytical models, enabling for formal
property verification. MDE is the core paradigm of KlaperSuite presented
in this paper, which exploits the KLAPER pivot language to fill the gap
between Design and Analysis of Component-Based Systems for reliability
and performance properties. KlaperSuite is a family of tools empower-
ing designers with the ability to capture and analyze QoS views of their
systems by building a one-click bridge towards a number of established
verification instruments.

1 Introduction

Discovering late during the development process that a software system does
not meet certain non-functional requirements can be harmful. The impact of
changes — if applied when a complete implementation of a system exists —
on development costs and on failure risks may be non negligible. Indeed, it
has been already pointed out that anticipating the analysis of non-functional
properties — such as performance and reliability — at design time can mitigate
these issues [1,2,3]. The work we present in this paper goes in this direction, by
supporting early analysis of non-functional attributes for software systems built
with a Component-Based (CB) development paradigm.

Component-based software systems are essentially assemblies of preexisting,
independently developed components. The focus of the development process
shifts from custom design and implementation to selection, composition and
coordination [4,5]. In a component based setting, analysis must be carried out
before assembling and this can lead to early discovery potential problems related
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to non-functional attributes. Which components are selected, how they are com-
posed, and how they are coordinated should in turn depend on the results of
analyses, as pointed out by Crnkovic in [4].

However, existing techniques for non-functional analysis rely on very specific
performance-related formalisms — such as Queueing Networks (QNs), Petri Nets
(PNs), or Markovian models — but software systems are rarely represented in
these terms. Designers, who usually lack sufficient experience in performance en-
gineering, prefer design-oriented formalisms such as UML [6] which reflect more
the modeling intent. Although both design-oriented models and performance-
related models carry the same pieces of information required for the analysis of
non-functional properties, the way such information is captured, i.e., the syntax,
makes the difference from a user perspective.

To cope with this mismatch between representations, tools have been recently
proposed in literature. The idea is leverage Model Driven Engineering (MDE)
[7] techniques to automatically derive, by means of model transformations, per-
formance models from design-oriented models of the system (augmented with
additional information related to the non-functional attributes of interest). Ex-
isting analysis methodologies [2,8,9,10] may be in turn applied as is.

However, defining this kind of transformations could be quite difficult. The
large semantic gap between the source and the target meta-models of the trans-
formation, the heterogeneous design notations that could be used by different
component providers, and the different target analysis formalisms are all ex-
amples of barriers for transformations development. The usage of intermediate
modeling languages, which capture relevant information for QoS analyses, has
been proposed to mitigate these problems. Intermediate languages in fact bridge
design-oriented and analysis-oriented notations, and help in distilling the in-
formation needed by performance analysis tools [11,12,9]. Instead of directly
transforming design models to performance models, a two-step transformation
from the source model to the intermediate model, and from the intermediate
model to the target model is proposed.

In this paper we describe KlaperSuite, an integrated environment for the
performance and reliability analysis leveraging KLAPER (Kernel LAnguage for
PErformance and Reliability analysis) [11]. KLAPER is an intermediate lan-
guage supporting the generation of stochastic models, to predict performance
and reliability, from design-level models of component-based software systems.
Transformations from design models to analytical models are completely auto-
mated in a one-click way. Designers are indeed empowered with the ability to
analyze their systems, with established verification instruments, in a seamless
and integrated environment.

The remainder of this paper is organized as follows. Section 2 outlines the
KLAPER language and its main characteristics. In section 3 we present the
different types of analysis included in KlaperSuite, spanning from reliability,
to performance, and to generation of simulation prototypes. Sections 5 and 6
describe existing literature related to our work and future research directions,
respectively.
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2 KLAPER

In this section we first present the key points of our MDE-based approach to
the generation of a performance/reliability model for a CB system (Section 2.1).
Then we present the meta-model of the intermediate language that we use to
support this approach (Section 2.2).

2.1 The Basic Methodology

The central element of our framework is the usage of KLAPER [11] whose goal
is to split the complex task of deriving an analysis model (e.g. a queueing net-
work) from a high level design model (expressed using UML or other component-
oriented notations) into two separate and presumably simpler tasks:

- extracting from the design model only the information that is relevant for the
analysis of some QoS attribute and expressing it in terms of the key concepts
provided by the intermediate language;

- generating an analysis model based on the information expressed in the in-
termediate language.

These two tasks may be solved independently of each other. Moreover, as a
positive side effect of this two-step approach, we mitigate the “n-by-m” problem
of translating n heterogeneous design notations (that could be used by different
component providers) into m analysis notations (that support different kinds of
analysis), reducing it to a less complex task of defining n + m transformations:
n from different design notations to the intermediate language, and m from it
to different analysis notations.

The KLAPER goal is to capture in a lightweight and compact model only
the relevant information for the stochastic performance and reliability analysis
of CB systems, while abstracting away irrelevant details.

To integrate this kernel language into an MDE framework, leveraging the
current state of the art in the field of model transformation methodologies,
KLAPER is defined as a Meta-Object Facility (MOF) meta-model [13]. Accord-
ing to MOF, a (meta)model is basically a constrained directed labeled graph,
and a meta-model defines the syntactic and semantic rules to build legal models.

Hence, we can use the MOF facilities to devise transformations to/from
KLAPER models, provided that a MOF meta-model exists for the corresponding
source/target model. According to the MDE perspective, these transformations
can be defined as a set of rules that map elements of the source meta-model onto
elements of the target meta-model.

2.2 The KLAPER Meta-Model

Figure 1 shows the structure of the KLAPER meta-model[11]. To support the
distillation from the design models of a CB system of the relevant information for
stochastic performance/reliability analysis, KLAPER is built around an abstract
representation of such a system, modeled (including the underlying platform) as
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an assembly of interacting Resources. Each Resource offers (and possibly re-
quires) one or more Services. A KLAPER Resource is thus an abstract modeling
concept that can be used to represent both software components and physical
resources like processors and communication links.

A scheduling policy and a multiplicity (number of concurrent requests that
can be served in parallel) can be associated with a resource to possibly model
access control policies for the services offered by that resource[11]. Each service
offered by a resource is characterized by its formal parameters that can be in-
stantiated with actual values by other resources requiring that service. We point
out that both the formal parameters and their corresponding actual parameters
are intended to represent a suitable abstraction (for the analysis purposes) of
the real service parameters. For example, a real list parameter for some list pro-
cessing software component could be abstractly represented as an integer valued
random variable, where the integer value represents the list size, and its proba-
bility distribution provides information about the likelihood of different sizes in
a given analysis scenario. We explicitly introduce service parameters to better
support compositional and parametric analysis [11].

To bring performance/reliability related information within such an abstract
model, each activity in the system is modeled as the execution of a Step that
may take time to be completed, and/or may fail before its completion: the in-
ternalExecTime, internalFailTime and internalFailProb attributes of each step
may be used to give a probabilistic characterization of these aspects of a step
execution.

Steps are grouped in Behaviors (directed graphs of nodes) that may be asso-
ciated either with the Services offered by Resources (reactive behavior), or with
a Workload modeling the demand injected into the system by external entities
like the system users (proactive behavior). Control steps can be used to regulate
the flow of control from step to step, according to a probabilistic setting.

A ServiceCall step is a special kind of Step that models the relationship
between required and offered services. Each ServiceCall specifies the name of
the requested service and the type of resource that should provide it.

The relationship between a ServiceCall and the actual recipient of the call
is represented separately by means of instances of the Binding metaclass. This
allows a clear separation between the models of the components (by means of
Resources/Services) and the model of their composition. In fact a set of bindings
can be regarded as a self-contained specification of an assembly. Similarly, since
the service call concept is also used at the KLAPER level to model the access
of software components to platform level services, a suitable set of bindings can
model as well the deployment of the application components on the underlying
platform.

Finally, we point out that the performance/reliability attributes associated
with a behavior step concern only the internal characteristics of the behavior;
they do not take into account possible delays or failures caused by the use of
other required services, that are needed to complete that step. In this respect,
we remark that when we build a KLAPER model (first task outlined above) our
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goal is mainly “descriptive”. The Bindings included in the model help to identify
which external services may cause additional delays or failure possibilities. How
to properly mix this “external” information with the internal information to get
an overall picture of the service performance or reliability must be solved during
the generation and solution of an analysis model derived from a KLAPER model.

Fig. 1. The KLAPER MOF meta-model

3 The KlaperSuite Analysis Tools

The main purpose of the KLAPER-based analysis is to provide a set of tools
that support early verification of non-functional requirements. Such an analysis,
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Fig. 2. Menu for the launches of the KlaperSuite tools

applied at early stages of design, allows identifying possible issues while the
development team has the largest decision scope.

KlaperSuite aims at providing a family of KLAPER-based tools which can
execute a number of analysis tasks on KLAPER models. All the tools in the
KlaperSuite are fully automated and require at most a few configuration param-
eters to be set. The entire environment is integrated in the Eclipse IDE [14], in
order to provide a unified interface and a familiar environment for both academic
and industrial developers.

Most of the tools are able to automatically transform KLAPER models into
appropriate inputs for each of the external tools involved in the analysis process,
and then capture analysis results and store them in text files, which are human
readable. It is then easy to extend the suite by adding specific parsers in order
to put back results into any computer readable form.

The KlaperSuite’s purpose is to fill the gap from KLAPER to non-functional
verification tools. A consolidated development process may possibly benefit from
the implementation of automatic model transformations from already established
design metamodels to KLAPER. This single time investment can enable design-
ers to take advantage of the entire family of analysis tools.

Analysis plugins can also store intermediate files (i.e. third parties tools input
files) that can be further analyzed for different purposes or by external experts.
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Fig. 3. High level view of KlaperSuite

Download instructions for the KlaperSuite can be found at http://home.dei.
polimi.it/filieri/tools2011. In the same location is also available an exam-
ple workspace, which has not been described in this paper because of the lack
of space. A snapshot of the KlaperSuite is shown in Fig. 2

In the following of this section we present the set of verification features cur-
rently supported by KlaperSuite and illustrated in Fig. 3. They will be grouped in
three subsets depending on the purpose of their inclusion. More specifically, Sec-
tion 3.1 will present analysis features concerning reliability estimation, Section
3.2 concerns performance prediction, while Section 3.3 will present a simulation-
based analysis tool which provides verification of both reliability and perfor-
mance properties, as well as a lightweight prototype of the system to be.

3.1 Reliability

Reliability is the first non functional aspect we focus on. There are a number of
tools that allow the evaluation of various facets of reliability [15]. A KLAPER
model can be automatically mapped in a Markov Chain, that is a stochastic
characterization of the system under design able to capture various information
affecting software reliability.

Reliability is one of the so-called user-centered property [16], in the sense that
the reliability of a system strictly depends on its usage. While a failure prob-
ability is associated with each system component, the actual usage determines
which parts of the systems are more stressed by clients and thus can have an
higher perceived impact. The usage profile of a system is embedded in two parts
of a KLAPER model, namely workload and branch annotations. Workload is
directly related to the intended usage of the system by its clients, that is, which
functionalities they invoke. Branch probabilities are instead more related to the
distribution of inputs inserted by the clients.

http://home.dei.
polimi.it/filieri/tools2011
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PRISM Model-Checking. Mapping a KLAPER model into a corresponding
Discrete Time Markov Chain (DTMC) is straightforward. A DTMC can be
roughly seen as finite state-transition automata where each state si has a certain
probability pij to reach state sj . As for Probability theory, for each state si it
holds that

∑
j pij = 1. States of a DTMC are used to represent relevant states

of the execution of a software system. For example a state may represent an
internal action or the invocation of a service. In DTMC-based reliability analysis,
it is common to enhance the model of the system with a set of states that
represents meta-condition of the execution, that is, they do not correspond to
neither internal actions nor external invocations, but rather to failures or success.
These meta-states are typically related to permanent conditions of the system,
and thus their counterpart in the domain of DTMCs are absorbing states. Any
state si such that pii = 1 is said to be absorbing, with the immediate meaning
that state si, once reached, cannot be left.

Reliability can be defined as the probability of reaching any absorbing state
corresponding to a success condition from the state corresponding to the execu-
tion’s start. But a designer may be interested also in more complex properties
related to reliability, such as the probability that the system fails given that it
reached a certain execution state, or that a certain kind of failure arises. In order
to specify those properties, given a DTMC model of the system under design,
it is possible to use special purpose logic languages, such as PCTL [17] and its
extension, PCTL* [18]. Such logics allow the formal description of a set of paths
through a DTMC. Then a Probabilistic Model-Checker is able to compute the
probability for the execution to follow exactly those paths.

For example, assuming that there is a single absorbing success state ss, we
are interested in considering all the possible paths which will eventually reach
ss. Such a path property can be easily formalized in PCTL(*) as �s = ss, which
literally means that eventually (�) the current state of execution (s) will be equal
to the success state (ss). The eventually operator assumes that the execution of
the system always begin from its defined initial state (which corresponds to a
start step of a KLAPER workflow) and that can reach ss in any finite number
of state transitions.

This preamble is to justify the idea to include in our suite a transformation
toward a DTMC+PCTL* model. In order to be able to exploit available model
checkers, transformation must finally provide input files for one of them. The
two mostly established are PRISM [19,20] and MRMC [21]. The former exploits
symbolic manipulation of PCTL properties in order to verify them on a compact
representation of the state space; so it might be beneficial in case of complex
formulae. The latter uses an explicit state-space representation that makes it
possibly require more memory, but makes the verification quite fast, at least for
simple formulae such as reachability. The reader interested in more details about
Probabilistic Model Checking could refer to [22].

KlaperSuite is able to automatically transform a KLAPER model into a
PRISM input, that is, a DTMC and a PCTL represented in PRISM’s textual
syntax. Our tool is able to extract the global reliability and to put it in a text
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file. But the produced PRISM models are completely consistent with all the in-
formation in the KLAPER source, and can thus be further analyzed by means
of the other PRISM’s advanced features [20], viable also through its graphical
interfaces. Also PRISM can itself convert models and properties in MRMC’s
syntax, thus enabling a second way of analysis.

The transformation from KLAPER to PRISM is realized in two steps. The
first is a model-to-model transformation from KLAPER to an intermediate meta-
model which reproduce the structure of a PRISM model. This transformation is
implemented in QVT-Operational, the imperative model-to-model transforma-
tion language standardized by the OMG [23]. The second step is a model-to-text
transformation implemented in Xpand2 [24], that generates the textual repre-
sentation of the PRISM model to be analyzed. Both QVTO and Xpand2 are
natively supported by Eclipse.

The most critical issue in analyzing KLAPER models for reliability through
PRISM is that KLAPER model supports the specification of (possibly recursive)
function calls. Such a feature is not naturally captured by Discrete Time Markov
Chains, which are instead successfully adopted in many research works [25]. The
reason is that software’s control flow is hard to be flattened in a finite sequence of
function calls without loosing precision (remember that highly reliable software
may require estimation’s precision up to 10−7). In order to properly analyze
our models through PRISM, we need to enhance DTMC models with some
Process Algebra constructs in order to stochastically simulate function calls.
This formalization allows PRISM to obtain results with arbitrary accuracy. By
default KlaperSuite requires results with maximum error magnitude of 10−12.
This value can be increased or decreased at will.

The problem with the combination of DTMCs and Process Algebra lies in the
exponential state-space explosion. Hence even small KLAPER models can lead
to untreatable PRISM analyses, in presence of recursive invocations. This issue
introduce the need for a more efficient way to deal with recursiveness, namely
Recursive Markov Chains, that will be presented in the next section.

Recursive Markov Chains. A Recursive Markov Chain can be seen as a
collection of finite-state Markov Chains with the ability to invoke each other,
possibly in a recursive way. They have been introduced in [26] and come with
a strong mathematical support. RMCs can be analyzed (by means of equation
systems) in a very efficient way in order to evaluate reachability properties.
Reliability, intended as the probability of successfully accomplish the assigned
task, as well as the probability of failure given that the execution has reached a
certain execution state, can be formalized as reachability properties, as well as
a number of other interesting requirements.

Also, by construction KLAPER behaviors are 1-exit control flows, that is they
only have a single end step. This allow us to verify any reachability property
in P-time. In practice RMC analysis of KLAPER models has been successfully
applied in the european project Q-Impress [27] and proved to be really efficient
on real-world industrial models.
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The first step of the transformation from KLAPER to RMC is the same
model-to-model transformation used for the PRISM based analysis. From the
intermediate PRISM-tailored model, KlaperSuite extrapolates a system of equa-
tions that is directly solved by our Java implementation, without any need for
external tools.

Reliability estimation is then reported in the result file, while an extensive log
file contains a textual representation of the equations system and the complete
solution, that is, the probability, from each modeled execution state to reach the
successful completion of the execution.

With respect to PRISM, RMC-based analysis can handle very large models
with recursive invocations. On the other hand it does only support verification of
reachability properties over Markov chains. The accuracy of results is arbitrary
also for RMC analysis and set by default to 10−12.

3.2 Performance

Early evaluation of performance can be obtained by either analytical modeling
or simulation. In this Section we focus on modeling, while in Section 3.3 we will
briefly discuss simulation facilities of the KlaperSuite.

The two most basic, though general-purpose, measurable properties for per-
formance are response-time and throughput. One of the most widely accepted
mathematical models to estimate those properties are Layered Queuing Networks
(LQNs) [9,28]. LQNs introduce new modeling concepts to represent software
systems. Systems are represented as a layered hierarchy of LQN tasks (each one
corresponding to a KLAPER Resource) which interact, and generate demands
for underlying physical resources. Each task may offer different kinds of services,
called entries. An entry corresponds to a KLAPER service and can be described
either as a phase or as an activity. Phases allow for description of simple sequen-
tial behaviors; activities allow for description of more complex behaviors, e.g.,
with control structures such as forks, joins, and loops.

An LQN model can be analyzed by means of special purpose mathematical
softwares. In the KlaperSuite we make use of the LQN Solver from Carleton Uni-
versity1. In order to produce input files for that solver we designed a two step
model transformation. The first step is a QVTO model-to-model transformation
from KLAPER to an intermediate meta-model which is an abstract representa-
tion of the analytical model. Then, the abstract representation is transformed
into an input file for the LQN solver by means of an Xpand model-to-text trans-
formation.

The obtained LQN models can then be solved. Examples of the kind of anal-
ysis results that can be derived applying the LQN solver to the obtained LQN
model are task utilization, throughput and response time. Different configura-
tions can be easily analyzed by a simple change in the LQN parameters. The
analysis of the obtained performance results can help in the identification of
critical components, such as bottlenecks, which can prevent the fulfillment of
performance requirements.
1 http://www.layeredqueues.org

http://www.layeredqueues.org
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3.3 Simulation

The simulation engine of the KlaperSuite was initially designed with the only
purpose to validate the previous analysis tools, but can be used to simulate any
KLAPER model, tough it was not designed to deal with scalability issues.

The simulator is based on the SimJava library for the simulation of discrete
event systems2. Upon SimJava, KlaperSuite builds a lightweight prototype of the
system in which each service is simulated through a SimJava Entity. Each entity
runs in its own thread and is connected to the others by ports which allow com-
munications consisting of sending and receiving events. Communications among
entities are defined consistently with the corresponding KLAPER behavior to
be simulated. A central control thread monitors the execution of the prototype
and records execution times and failure occurrences of each Entity, as they are
inferred from the trace of events. The control thread’s log is then analyzed in
order to derive statistical estimation for performance and reliability properties.

In order to produce the Java code of the prototype another two steps model
transformation is in place. The first step transforms the KLAPER model into an
intermediate meta-model corresponding to the structure of the prototype3 and
is implemented in QVTO. The second step is a model-to-text transformation
implemented in Xpand which generates the Java code.

The previous tools have been validated through simulation [29]. Notice that
for intrinsic reasons simulation is computationally expensive with respect to
mathematical analysis to verify the set of reliability and performance properties
discussed in this paper. Nevertheless, the use of an established tool such as
SimJava allows for further enhancement of the Java prototypes, that can, for
example, be instrumented with a larger set of monitors or with special purpose
features.

4 Tools Integration Status

Table 1 shows the current development status of the KlaperSuite. Some of the
tools have been developed in the past as standalone and their integration is still
ongoing. All the single tools are hosted on Sourceforge4.

5 Related Work

In the last years, it has been widely recognized the need of including early quality
prediction in the software development process. In particular, there has been an
increasing interest in model transformation methodologies for the generation of
analysis-oriented target models (including performance and reliability models)
starting from design-oriented source models, possibly augmented with suitable

2 http://www.dcs.ed.ac.uk/home/hase/simjava/
3 The meta-model can be found in the Sourceforge repository.
4 http://sourceforge.net/projects/klaper/

http://www.dcs.ed.ac.uk/home/hase/simjava/
http://sourceforge.net/projects/klaper/
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Table 1. Tools integration status

Tool Purpose Features
Integration
Status

Klaper2Prism Reliability

– System mapped to DTMC model.
– Reliability properties expressed in

PCTL*.
– Efficient on complex formulae.
– Does not scale on recursive service

invocations.

Fully integrated

Klaper2RMC Reliability

– System mapped to RMC model.
– State reachability properties only.
– Efficient for recursive service invo-

cations.
– Highly scalable on large systems.

Fully integrated

Klaper2LQN Performance

– System mapped to LQN model.
– Response time, throughput, state

residence time.
– Does not scale on large systems

Still standalone

Klaper2
SimJava

Simulation

– System mapped to SimJava appli-
cation.

– Reliability and performance esti-
mation.

– Extensible via SimJava features.

Partially inte-
grated

annotations. Several proposals have been presented concerning the direct gen-
eration of performance analysis models. Each of these proposals focuses on a
particular type of source design-oriented model and a particular type of target
analysis-oriented model, with the former including, for example, UML, Message
Sequence Chart, Use Case Maps, formal or ADL languages and the latter includ-
ing Petri nets, queueing networks, layered queueing network, stochastic process
algebras, Markov processes (see [2,3]. To have an overview the topic, see for
example the WOSP conference series [10].

The gap between design-oriented models and analysis-oriented ones is often
long. Nevertheless, most of the proposals we are aware of start from UML mod-
els with proper annotations, and directly generate reliability models such as
fault trees, state diagrams, Markov processes, hazard analysis techniques and
Bayesian models. (e.g. [30,31]). Another tool specialized to the prediction of
QoS is Palladio tool suite [8]. It provides its own meta-model called PCM (Pal-
ladio Component Model), able to describe component-based software architec-
ture with support for parametric QoS contacts[8]. Currently, it allows to design
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PCM models with its own graphical editor and analyze them for performance
and reliability via simulation.

A different way to deal with transformation complexity is to pass through an
intermediate model (the ”kernel”) by pruning the information from the design
model that is not needed to execute the desired analyses, but still retaining
needed one.

Among the transformation approaches that make use of intermediate mod-
els, Petriu et al. [32] proposed the CSM (Core Scenario Model). CSM is a MOF
compliant kernel metamodel, specifically related to performance analysis. Trans-
formation from UML to CSM and from it to different performance models are
provided. PUMA [9] adopts CSM as intermediate language to predict perfor-
mance via layered queueing networks, an analysis model that extends queueing
networks and stochastic Petri nets. Gu et al. [12] proposed, in a similar way,
their own intermediate metamodel to transform UML model with performance
annotations to performance modeling formalisms.

With respect to the kernel languages of [12,9,32], KLAPER is intended to
serve also for reliability and, possibly trade-off analysis between performance and
reliability. KLAPER and is specifically targeted to component-based systems. It
has been applied for the analysis of performance and reliability using queuing
networks and Markov models [11] and experienced with the CoCoME case study
[33,34]. Extensions of KLAPER has also been proposed to analyze self-adaptive
[35] and reactive [36] systems. In these works the KLAPER models have been
designed manually, without using any automated transformation tool.

Recently, KLAPER has been used within the European project Q-ImPrESS
[27]. Q-ImPrESS aims at building a framework for service orientation of critical
systems. The framework provides a tool suite for the modeling and the predic-
tion of QoS. Q-ImPreSS models can be manually created and extracted from
software source code thought reverse engineering tools. Once, the model is com-
pleted, several tools are exploitable for the analysis of reliability, performance,
and maintainability. Such a framework is deeply founded on model transfor-
mations, which allow to automatically fill the gap between design and analysis
models. In Q-ImPreSS, KLAPER facilities have been exploited for the construc-
tion of the reliability features in the Q-ImPrESS tool chain, and validated on
industrial cases.

With respect to previous works, we presented in this paper KlaperSuite a fully
automated and integrated environment including a family of tools empowering
designers with the ability to capture and analyze the performance and reliability
figures of their systems. The possibility of using different verification tools to-
gether with a simulation-based analysis tool could make KlaperSuite a valuable
instrument for predicting the software qualities during the development process.

6 Conclusions

In this paper we presented KlaperSuite, an integrated environment for per-
formance and reliability analysis leveraging KLAPER intermediate language.
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KlaperSuite allows the automatic generation of stochastic models to verify and
predict performance and reliability properties of component-based software sys-
tems. Analyses can be applied on high level design models, in order to provide
support for early properties evaluation. By using this tool, designers are em-
powered with the ability to analyze their systems, with established verification
instruments, in a seamless and integrated environment.

As future extension of the KlaperSuite, we are planning to implement model
transformations from higher level design models (first of all UML) to KLAPER.
In this way KlaperSuite will be easier to integrate in established development
cycles. On a longer perspective, we also plan to explore the possibility of extract-
ing KLAPER model directly from annotated code, which will encourage the use
of analytical models by programmers.

Finally, only part of the tools have been evaluate on real industrial models
inside the Q-Impress project. We are currently working on the experimentation
of this environment on different testbeds, to assess its effectiveness through a
more comprehensive set of real experiments.
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Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

35. Grassi, V., Mirandola, R., Randazzo, E.: Model-driven assessment of qoS-aware
self-adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
201–222. Springer, Heidelberg (2009)

36. Perez-Palacin, D., Mirandola, R., Merseguer, J., Grassi, V.: Qos-based model
driven assessment of adaptive reactive systems. In: Proceedings of the 2010 Third
International Conference on Software Testing, Verification, and Validation Work-
shops,ICSTW 2010, pp. 299–308. IEEE Computer Society Press, Washington, DC,
USA (2010)



Unifying Subjectivity

Daniel Langone, Jorge Ressia, and Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Subjective behavior is essential for applications that must
adapt their behavior to changing circumstances. Many different solu-
tions have been proposed in the past, based, for example, on perspectives,
roles, contextual layers, and “force trees”. Although these approaches are
somehow equally expressive, each imposes a particular world view which
may not be appropriate for all applications. We propose a unification of
these approaches, called Subjectopia, which makes explicit the underly-
ing abstractions needed to support subjective behavior, namely subjects,
contextual elements and decision strategies. We demonstrate how Subjec-
topia subsumes existing approaches, provides a more general foundation
for modeling subjective behavior, and offers a means to alter subjective
behavior in a running system.

1 Introduction

We, as humans, generally strive to be objective, that is we try to behave in a
unique and consistent way, independent of personal feelings or external influ-
ences. In practice, however, we are often required to behave subjectively, that is,
we must adapt our behavior depending on circumstances.

In fact, real world entities are subjective. We have learned, for example, in the
20th century that physical measurements are relative to the frame of reference
used by the observer. As a consequence, real-world problem domains that we
model in software applications are also subjective. The various elements that
collaborate to achieve a common goal may need to adapt their behavior when
specific events or conditions are met.

Object-oriented languages follow the objective approach. An object behaves
always the same way when receiving the same stimulus. To faithfully model the
real-world domains we need mechanisms to model subjectivity. We can charac-
terize the key approaches that have previously been proposed as follows:

Perspectives. Smith and Ungar proposed adding multiple perspectives to an
object, where each perspective implements different behavior for that ob-
ject [12]. When an object sends a message through a perspective the receiver
behaves differently depending on this perspective. Therefore, an object be-
haves subjectively depending on the perspective through which other objects
see it.

Roles. Kristensen introduced the concept of roles to model subjective behav-
ior [6]. People behave differently depending on the role they are playing. For
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� Springer-Verlag Berlin Heidelberg 2011
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example, the same person may behave differently as a father, an employee
or a shopper. A role is attached to an object to specify additional or mod-
ified behavior. Kristensen explicitly models subjects — objects with roles
— whose behavior depends on the role they are playing for the sender of a
message.

COP. Context-oriented programming (COP) was introduced by Costanza et al.
[1]. The behavior of an object is split into layers that define the object’s
subjective behavior. Layers can be activated and deactivated to represent
the actual contextual state. When a message is sent, the active context de-
termines the behavior of the object receiving the message.

SMB. Darderes and Prieto proposed subjective message behavior [2]. The dif-
ferent behaviors for a message are split into a set of independent methods
and combined with a tree-based decision mechanism, called a force tree.

Although formally the approaches are equivalent in expressive power, they are
not equally suitable in all circumstances. Each of these approaches imposes a
particular modeling paradigm which may be appropriate for certain problem
domains, but not for others. Consider the use case where a user wants to send
an email using a mobile device [2]. If the network is available the email should be
sent immediately, otherwise the email should be saved and sent when possible.
Modeling the network with either roles or perspectives does not make sense. This
subjective problem is not about roles of networks or emails, or about perspec-
tives through which they may be seen, but rather about whether the network
is available in the current context. Whereas COP or SMB might be more ap-
propriate for modeling subjectivity in this domain, perspectives or roles would
be more suitable to model behavior that varies with respect to the sender of a
message.

Furthermore, the responsibility of determining which subjective behavior should
be selected may lie varyingly with the sender of a message, the receiver, or even
the context. For example, in the perspective- and role-based approaches it is
the sender of the message which determines the perspective or role to be used.
Consider communicating with a person who might be at work or on holidays,
thus triggering completely different responses. In such a case it would make more
sense for the receiver and not the sender to determine the subjective behavior.

Our approach. To alleviate the problem of having a fixed subjectivity model,
we propose a framework, called Subjectopia, which unifies and generalizes the
earlier approaches. Subjectopia reifies three key abstractions that are only im-
plicit in the other approaches. A subject is an object that behaves subjectively.
Any object may be turned into a subject. Subjective behavior is modeled by
a decision strategy. A decision strategy determines the appropriate subjective
behavior based on the value of a set of contextual elements. Decision strategies
can be configured to model roles, perspectives, force trees or layers, thus sub-
suming the earlier approaches. Furthermore, they can be dynamically adapted
at runtime, which is important for adapting long-lived software systems.

section 2 presents a review of previous approaches to modeling subjective be-
havior. In section 3 we explain how Subjectopia models the subjective behavior
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of objects and discuss our implementation. section 4 validates our approach by
showing the drawbacks of previous approaches in solving subjective problems
and demonstrates how Subjectopia circumvents these shortcomings. In section 5
we summarize the paper and discuss future work.

2 State of the Art

Subject-oriented programming was first introduced by Harrison and Ossher [4].
They advocated the use of subjective views to model variation, thus avoiding the
proliferation of inheritance relations. Up to that point subjective behavior was
modeled in an ad hoc fashion using idioms such as self-delegation and multiple
dispatch. Various researchers subsequently proposed dedicated approaches to
model subjective behavior in a more disciplined way. We briefly survey the key
approaches and discuss their limitations.

2.1 Perspectives

Smith and Ungar [12] proposed to model subjective behavior through a set of
possible views of an object. These views are called perspectives and are composed
of zero or more hierarchically ordered layers. Each layer is composed of pieces
modeling one behavior for one message and one object. For the approach to
be deterministic a layer should never have two or more pieces corresponding
to the same message and one object. An object sending a message selects the
perspective through which it views the subject. Smith and Ungar developed a
prototype called US on top of the Self [14] programming system.

The approach forces the developer to translate a given problem in terms of
perspectives, which may not always suit the problem domain. Consider again the
use case in which a user wants to send an email using a mobile device [2]. (If the
network is available the email should be sent immediately, otherwise the email
should be saved and sent when possible.) Network availability is a property of
the current context of the user, not a “perspective” through which sending of
email can be viewed.

A further difficulty is that the object initiating an interaction is responsible
for selecting the current perspective. By contrast, in this use case it would be
more appropriate for the mobile device to decide how to behave.

A general problem of this approach is that there is no way to overrule the
process that decides the subjective behavior to be executed for a method. This
decision is hardcoded in the internals of the approach.

2.2 Roles

Kristensen [6] stressed the importance of roles in the subjective behavior of en-
tities: “we think and express ourselves in term of roles” when dealing with
the real world. The notion of a role can be deduced from psychology as a set
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of connected behaviors, rights and obligations as conceptualized by actors in a
social situation.

A role object is attached to a regular object, called an intrinsic object, and
adds, removes or redefines the latter’s original behavior. An intrinsic object to-
gether with its role is called a subject. Roles have no responsibilities of their own,
i.e., they only have meaning when attached to an intrinsic object. The is-part-of
relationship of the role to its intrinsic object refers to the location of part objects
introduced by Madsen and Møller-Pedersen [10]. An object sending a message
selects the role through which it knows the subject. There are implementations
of role-based programming relying on BETA [7] and Smalltalk [7].

Role-based programming forces the developer to model domain entities as
playing various roles. Let us consider the group programming example [12] of a
system for registering changes on source code of an object-oriented application.
In the original implementation changes were modeled as perspectives, allowing
us to have different views of the source-code. However, modeling changes as roles
does not reflect reality. The source code does not play a particular role but rather
is viewed differently by different developers.

As with perspectives, it is the sender of a message that decides which role
the subject plays in an interaction. Scenarios in which the subjective behavior
should be selected by the subject cannot be modeled directly.

2.3 Context-Oriented Programming

Context-Oriented Programming (COP) refers to programming language mecha-
nisms and techniques that support dynamic adaptation to context [5]. COP was
first introduced by Costanza and Hirschfeld [1]. The behavior of an object in
COP is split into several layers (not to be confused with the layers introduced
by perspectives). Each layer models the behavior associated to a particular con-
text. Every definition not explicitly placed in a user-defined layer belongs to a
default root layer. When an object receives a message, its behavior depends on
the active layer, representing the current context.

ContextL [5] extends CommonLisp with layers and PyContext [9] does the
same for Python. Implementations also exist for Java, JavaScript, Smalltalk and
Scheme1.

With COP the developer is required to model subjective behavior in terms
of contextual layers. Consider again the use case where a user wants to send
an email using a mobile device [2]. If the receiver of the email is in the same
room as the sender then the email is sent with high priority. The mail deliverer
is responsible for delivering the emails with a given priority. With layers, we will
have two implementations for the send mail responsibility, one with high priority
and the other without. The default layer activation of COP, using explicit layer
activation, does not allow us to faithfully model this problem domain. We require
a mechanism from the sender to activate the appropriate layer before sending
the message. Thus a perspective approach would model this problem better.

1 http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html

http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html
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2.4 Subjective Message Behavior

Darderes and Prieto [2] proposed to represent subjective behavior by modeling
the forces that might influence an object to behave subjectively. There are four
types of forces: (i) the sender force is the object sending the message, (ii) the self
force is the receiver of the message, i.e., the subject, (iii) the collaborator force
is any object collaborating with the subject, and (iv) the acquaintance force is
any other object influencing the message.

Subjective Message Behavior proposes to split all possible behaviors for one
message into a set of behaviors. The decision process is realized by a dispatch
mechanism called a force-tree, consisting of determinant nodes, each consisting of
a condition to be fulfilled and corresponding behavior. The method determinant
node models one possible behavior for a given message of the object. The force
determinant node models a boolean condition based on one force to decide which
determinant has to be evaluated next. When an object receives a message, the
root determinant of the force tree corresponding to that message is evaluated.
The force tree has to be complete, acyclic and free of simultaneously active
determinants in order for its evaluation to result in a unique possible behavior
for a given message in a particular invocation context. Leaf nodes should always
be method determinant.

Subjective Message Behavior requires the developer to model subjective be-
havior using a force tree, which may be overly complex for certain domains:
Consider again the group programming example [12] of a system for registering
changes to source code of an object-oriented application. Perspectives naturally
model the behavior of a developer who wants to see his version of the source code.
Casting this use case in terms of forces and force trees introduces unnecessary
complexity.

3 Modeling Subjective Behavior

In this section we introduce Subjectopia2 Both Subjectopia and the examples
presented in this paper are implemented in Pharo Smalltalk3. Objects with sub-
jective behavior are explicitly modeled as subjects, emphasizing the difference
to common objects. A subject needs to select its correct behavior from a set of
possible behaviors. We use decision strategies to explicitly model the way subjec-
tive decisions are taken. Finally, contextual elements model context-dependent
information, which can influence the behavior of a subject. Our model allows us
to change the subjective behavior of a subject by changing its decision strategy.
Decision strategies and contextual elements allow us to model perspectives, roles,
context-oriented programming, subjective message behavior and other subjec-
tivity models. Hence, Subjectopia does not force the developer to use a fixed
modeling paradigm.

2 http://scg.unibe.ch/research/subjectopia/
3 http://www.pharo-project.org/

http://scg.unibe.ch/research/subjectopia/
http://www.pharo-project.org/
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To explain the Subjectopia model we use the bank account example from
the perspective approach [12]. The use case consists of users transferring money
through bank accounts. The user object sends the message transfer:to: to its
bank account indicating as arguments the amount of money and the bank ac-
count the money should be transferred to. The bank account object changes its
balance by the amount of money transferred and sends the message addAndRecord:
to the bank account receiving the money. However, a user should not be able

to directly send the message addAndRecord: to a bank account to guarantee that
only bank accounts can trigger a transfer and maintain the balance invariant of
the banking application. As a consequence the message addAndRecord: has two
different behaviors for a bank account, depending on whether a user or a bank
account object sends the message.

The following subsections introduce the concepts of subject, decision strategy
and contextual element and describe how they can be used to model the example

3.1 Subjects

A subject is an object that behaves differently under different contextual circum-
stances. A subject may be fully subjective or only present subjective behavior for
certain responsibilities. To transform a regular object into a subject we send the
message becomeSubject to the object. For example, we can tell the bank account
object aBankAccount to become a subject:

aBankAccount becomeSubject.

The transformation of aBankAccount into a subject adds the necessary behavior
to enable it to behave subjectively for certain messages. The bank account object
can also directly inherit from Subject, which will have the same effect. The
bank account subject will only change its balance if the sender of the message
addAndRecord: is a bank account. We therefore define the message addAndRecord:

in the aBankAccount subject as being subjective:

aBankAccount register: aDecisionStrategy for: #addAndRecord:.

The original behavior of the aBankAccount subject for the message addAnd-

Record: is replaced by a decision strategy which models the subjective decision
process. Modeling subjects explicitly has the advantage that the subjective parts
of an application can be detected and thus reflected upon accordingly. Otherwise,
this information would be encoded in the application source code and we would
have to use ad hoc mechanisms to detect the subjects.

3.2 Decision Strategies

A decision strategy models the process of deciding how a subject has to behave
when it receives a specific message. Because we use explicit decision strategies
3 Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-

amples aloud and interpret them as normal sentences: An invocation to a method
named method:with:, using two arguments looks like: receiver method: arg1

with: arg2.
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aUser

addAndRecord: 200
aContextualElement

aBankAccount

aDecisionStrategy

Decision strategy 
for addAndRecord:

aDecisionStrategy

aDecisionStrategy

Fig. 1. The object aUser sends message addAndRecord: with argument 200 to
aBankAccount. The subject performs a lookup and finds the subjective method. The
method evaluates the decision strategy selecting the appropriate behavior for the cur-
rent context.

we can define our own or reuse existing decision models such as those that
express perspectives, roles, context-oriented programming or subjective message
behavior. We can also directly implement behavior in a decision strategy.

Figure 1 shows the process of the subject aBankAccount receiving the message
addAndRecord: from aUser. The subject performs a traditional method-lookup.
Since addAndRecord: was defined as a subjective method, the method’s behavior
is adapted to evaluate the decision strategy:

aBankAccount>>addAndRecord: aNumber

| message |

message := self generateCommunicationInformation.

^(self findDecisionStrategyFor: #addAndRecord: evaluate: message)

The subjective method uses two steps to make the subject behave subjectively.
The first step consists in the subject creating a contextual element representing
the meta-information of the message. In Figure 1 this message object contains
the following information:

– The message selector #addAndRecord:

– The argument 200.
– The sender of the message, the aUser object.
– The receiver of the message, the aBankAccount subject.

The second step consists in evaluating the decision strategy with the contextual
information provided by the message object. The decision strategy determines
which information provided by the message object is used. The evaluation of a
decision strategy may be resolved as:

– Delegating to another decision strategy for further evaluation, allowing us
to model decision hierarchies.
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– Executing behavior, if the decision strategy directly models behavior.
– Sending a message to the subject, if we model all possible behaviors in the

subject.

In Figure 1 the user object aUser wants to change the balance of the bank ac-
count aBankAccount, increasing it by 200 Fr. The decision strategy examines the
message object and denies the request to change the balance because the sender
is a user object.

Decision strategies can be replaced, in case the paradigm for modeling subjec-
tive behavior needs to be adapted over time. It is even possible to use multiple
decision strategies within a single subject, thus allowing, say, role-based and
perspective-based approaches to be combined, if the problem domain demands
it.

3.3 Contextual Elements

Contextual elements model information available to a decision strategy for se-
lecting subjective behavior. We have already seen the example above where a
message object reifies the meta-information of a communication, to be used by
the decision strategy.

Other examples of contextual elements are perspectives, roles or context lay-
ers. These abstractions are contextual objects that can affect the decision strat-
egy depending on the subjective model we are in. We can also directly implement
behavior in a contextual element, for example to simulate roles. A contextual
element can be passed to a decision strategy in two ways: either the decision
strategy has direct access or it is sent together with the message.

aUser

addAndRecord: 200
aMessageContextualElement

aBankAccount

aDecisionStrategy

Contextual element 
influences decision 

or behavior aDecisionStrategy

aDecisionStrategy
aContextualElement

Fig. 2. Two ways of using contextual elements
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Figure 2 describes the process of how a decision strategy uses a contextual
element to model subjective behavior. We can use contextual elements to model
the bank account using perspectives. Bank account subjects send the message
addAndRecord: through the perspective, modeled as aMessageContextualElement.
Since addAndRecord: was defined as a subjective method, the method behavior
is adapted to allow the use of contextual elements:

aBankAccount>>addAndRecord: aNumber through: aContextualElement

| message |

message := self generateCommunicationInformation.

^(self findDecisionStrategyFor: #addAndRecord: evaluate: message

with: aContextualElement)

Because the decision strategy is modeled explicitly we can change the way the
decision is taken. For example we can let the decision strategy automatically
determine, using the message object, which perspective has to be used. In this
way we do not have to send the contextual element together with the message.
In Figure 2 this corresponds to the green contextual element, modeling the per-
spective, which is directly accessed by the decision strategy.

Sometimes we need composed contextual elements, for example when mod-
eling perspectives. One contextual element models one layer of the perspective.
The layers as contextual elements are hierarchically composed to one perspec-
tive. The evaluation order of the composed contextual elements is determined
by the decision strategy.

3.4 Implementation

The proof-of-concept implementation of Subjectopia is written in Smalltalk, due
to its advanced support for run-time reflection. At present, a subject must di-
rectly inherit from the class Subject to be able register subjective behavior. We
transform existing objects to subjects by sending the message becomeSubject

which adds the necessary behavior to the object receiving the message.
Each subject has a special decision strategy, called decision meta-object, which

maps subjective message names to decision strategies. Registering a subjective
method by sending register:for: to the subject consists of two steps. First,
it creates an entry in the decision meta-object with the message as key and
the decision strategy as value. Second, it adapts the behavior of the registered
method. Instead of performing the original behavior, the method collaborates
with the subject’s decision meta-object to evaluate the corresponding decision
strategy.

For example, to model subjective behavior on the bank account subject for
the message addAndRecord: we send the message register: aDecisionStrategy

for: #addAndRecord:. First, the subject creates an entry with key addAndRecord:

and value aDecisionStrategy in its decision meta-object. Second, the subject
generates the following method automatically:

aBankAccount>>addAndRecord: aNumber



124 D. Langone, J. Ressia, and O. Nierstrasz

*

1

Fig. 3. Class diagram of Subjectopia

^self findDecisionStrategyFor: #addAndRecord: evaluate: thisContext

.

The object thisContext represents the communication context, which is auto-
matically generated in Smalltalk. If an object sends the message addAndRecord:

to a bank account subject, it evaluates the decision strategy corresponding to
the message addAndRecord:.

Prior to the evaluation of the decision strategy, the subject generates an
object representing the meta-information of the message with the help of the
thisContext object. Next, the subject sends the message decideOn: to the deci-
sion strategy with the meta-information object as argument, which triggers the
evaluation. Currently Subjectopia models decision strategies for perspectives,
roles and subjective message behavior.

Subjectopia allows the sender of any subjective message to add through:

to send a contextual element together with it. Since we are in the context of
Smalltalk we solved this by overriding doesNotUnderstand: in the Subject class.
The doesNotUnderstand: method will look for the decision strategy correspond-
ing to the message without through:. Then it evaluates the decision strategy
sending the contextual element together with the message send information. It
is possible to implement a solution in other languages as well, even if it requires
modifications to the virtual machine or the compiler.

Consider an object that sends the message addAndRecord: 200 through:

aBankAccountPerspective to a bank account subject. Since this message is not
defined for the subject the doesNotUnderstand: method of the class Subject will
be evaluated. The subject performs a decision lookup to get the decision strategy
for the message addAndRecord: from the decision meta-object. The contextual el-
ement aBankAccountPerspective will be included in the object representing the
meta-information of the message. The decision strategy can take the contex-
tual element aBankAccountPerspective into consideration available through the
meta-information object.
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4 Validation

Subjectopia does not force the developer to use a fixed subjectivity model. Be-
cause we can choose among different subjectivity models we can model where
the subjective decision is taken, whether it is the sender or receiver of the mes-
sage. In this section we demonstrate this flexibility through four use cases. Two
of them were used by previous approaches as examples of subjective behavior.
The other two use cases are subjectivity requirements taken from the Moose
platform for software and data analysis4.

4.1 Mobile Mail Application

Let us consider the mobile mail application introduced by Darderes and Pri-
eto [2]. The use case is about having users sending emails from their mobile
device. A user can only send emails from his own device. The user collaborates
with a mail deliverer which can only send the email if the the device is connected
to a network. Otherwise, the mail deliverer retains the email until a connection
is established.

The mail deliverer behaves subjectively for the message deliver: aMail, as
users may only send emails from their own device. The original implementation
models the subjective behavior for the message deliver: as a force tree associated
to the mail deliverer. Our implementation follows the original approach since
Subjectopia can model subjective message behavior.

Modeling the deliver: message’s subjective behavior with perspectives del-
egates the decision to the sender. However, in reality the user does not choose
through which perspective he sees the mail deliverer, but the mail deliverer
chooses how to react to the message depending on the context. Modeling this
problem domain with perspectives is not natural.

Perspectives are not suitable to model the mail deliverer problem due to the
sender-oriented context definition. However, since Subjectopia models the deci-
sion taking process explicitly, we can modify it. We can make the mail deliverer
responsible for deciding through which perspectives other objects send their mes-
sages. The mail deliverer has two perspectives: delivery and deny delivery, which
model the acceptance and denial of the mails being sent by users.

4.2 Group Programming

The group programming application is introduced by Smith and Ungar to explain
perspectives [12]. In this use case a system keeps track of all the changes to the
source code of an object-oriented application. We can either see the changes
performed by a single developer or the merged changes of several developers.

For this particular example we consider objects to be containers of meth-
ods. When a developer needs to see an object’s method source code he collab-
orates with its MethodContainer. A MethodContainer models a container for the
4 http://www.moosetechnology.org . A ready-made image with Subjectopia and

Moose can be found at: http://scg.unibe.ch/research/subjectopia/

http://www.moosetechnology.org
http://scg.unibe.ch/research/subjectopia/
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source code of one object. To obtain the textual representation for a particu-
lar method the developers send the message getSourceCodeFor: aMethodName to
the MethodContainer. The MethodContainer reacts subjectively to the message
getSourceCodeFor: depending on the contextual view of the developer. To model
the different views of the object we use perspectives thus we install a perspec-
tive decision strategy for the message getSourceCodeFor:. A single perspective
defines the changes that a developer performs to the system. The changes of the
source code for a particular method are modeled as contextual elements which
represent layers. The perspectives are modeled as composed contextual elements
which are sent by the developer together with the message getSourceCodeFor:

. The textual representation of the source code is different depending on the
chosen perspective.

The group programming use case can be modeled by using a perspective
decision strategy with Subjectopia. Other approaches are not well suited for
naturally solving this problem domain. For example, Subjective Message Be-
havior would model changes to the source code as forces. This is not natural
because forces influence the behavior of objects and we need to have multiple
views on an object. Additionally, force trees are not supposed to change, i.e.,
add or remove determinants, at runtime. If we want to have dynamic force trees
we need to check after each change that the force tree is still complete, acyclic,
free of simultaneously active determinants and that all leaf nodes are method
determinants.

4.3 Subjective Behavior Regarding Types of Objects in Moose

Moose is a platform for software and data analysis providing facilities to model,
query, visualize and interact with data [3,11]. For analyzing software systems,
Moose represents the source code in a model described by the FAMIX languages-
independent meta-model [13]. For example, the model of the software system con-
sists of entities representing various software artifacts such as methods (through
instances of FAMIXMethod) or classes (through instances of FAMIXClass).

Each type of entity offers a set of dedicated analysis actions. For example,
a FAMIXClass offers the possibility of visualizing its internal structure, and a
FAMIXMethod presents the ability of browsing the source code. These actions are
renderable as a contextual menu.

A group of entities is modeled through a MooseGroup, and is also an entity.
Like any other entity, groups can support specific actions as well. For example,
a group of FAMIXClass can be visualized using a System Complexity View [8], a
visualization that highlights the number of attributes, methods and lines of code
of classes within a class hierarchy.

We want to solve the problem of offering different behavior depending on
the type of the collected entities. As an example we take the subjective behav-
ior for the System Complexity View. When a MooseGroup receives the message
viewSystemComplexity it should only display the contained entities that are of
the type FAMIXClass. Thus, ideally, we should offer the possibility of viewing the
system complexity only if all contained entities are classes.
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Our solution models a MooseGroup as a subject that behaves subjectively when
receiving of the message viewSystemComplexity. We separately model the deci-
sion, called decideAvailableActions, and the behavior, called systemComplexity,
as decision strategies. The decideAvailableActions strategy determines whether
the MooseGroup has a behavior for viewSystemComplexity or not. If a MooseGroup

contains only FamixClass entities, the decideAvailableActions strategy attaches
the systemComplexity strategy. Each time the list of entities is manipulated the
decision strategy decideAvailableActions recalculates subjectively which actions
are available.

Up until now, subjective behavior in Moose is currently realized by sub-
classing MooseGroup (see Figure 4). For example a group of classes is of type
FAMIXClassGroup, while a group of methods is of type FAMIXMethodGroup. There-
fore, changes in the list of entities can result in a change of the runtime type
of the group. The decision which type to choose for a given group is currently
implicit and it is based on names. For example, we cannot easily introduce a de-
cision of defining actions for a mixed group containing both classes and methods.

Fig. 4. Current class hierarchy of Moose elements

Using our approach, we extend MooseGroup to implement subjective behavior,
without depending on the class hierarchy. We simply change the decideAvail-
ableActions strategy to decide the new case and model the new behavior as a
decision strategy.

Moose is a large system with many extensions defined on top. Thus, any
change to the core should limit the impact on the other parts. This would imply
significant effort with other subjectivity approaches. For example, using COP
would have implied to translate a large part of the system to layers which en-
tails a considerable engineering effort. The subjective behavior is influenced by
the elements contained in the MooseGroup, thus we would need to define an activa-
tion protocol for the layers. Splitting the contextual behavior of MooseGroup into
several layers also implies a high effort because of the shared behavior between
the different kinds of groups.
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4.4 Subjective Behavior Depending on the Moose Environment

Moose provides a generic graphical user interface to interact with the model
of the software system. In Figure 5 the MooseGroup entities of the model are
listed. A right click on a group opens the contextual menu listing the possible
actions. For example a group of FamixClass entities shows the action Visualize
→ System complexity. By selecting a menu entry a message is sent to the selected
group. For example, selecting Visualize → System complexity sends the message
viewSystemComplexity to the selected FAMIXClassGroup.

Fig. 5. User interface provided by Moose. Selecting the entry System Complexity re-
sults in sending the message viewSystemComplexity to the selected group of classes.

The problem is that some visualizations may require contextual information
not retrievable from the objects and subjects involved in the communication.
Let us consider that we select a group of classes and that we want to view
them as highlighted on the overall system complexity. This can be achieved by
sending the message viewAsSelectionOnSystemComplexity to the group. This be-
havior also requires all other FamixClass entities of the model to create this
visualization. However, in different analysis contexts we want to see only a sub-
set of all classes as a basis for the visualization. Thus, the simple action of
viewAsSelectionOnSystemComplexity requires both the receiving group and the
reference group. Moose currently uses model-wise global variables to store this
information. The problem is that each new instance of the graphical user inter-
face of Moose can override the value of that global variable and this results in
unwanted side effects.

Our solution uses contextual elements to model the additional, context-
sensitive information. The context influencing the behavior of the selected
FamixClass group is all FamixClass entities of that model. Therefore, each model
creates and maintains its own set of contextual elements holding all of its
FamixClass entities for each user interface. We use a decision strategy modeling
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the behavior for the message viewAsSelectionOnSystemComplexity. The decision
strategy has access to the contextual elements of its model, i.e., all FamixClass en-
tities of the model. The decision strategy determines, using the meta-information
of the message, which interface has sent the message and accordingly uses that
contextual element.

With the Subjectopia approach we can model context-dependent behavior
while other approaches cannot. For example, using roles would not suit this
problem domain, as roles model different behaviors and not a way of reflecting
on the context. The Moose groups behave subjectively depending on contextual
information which is not included in the default message object. Roles also as-
sume that the sender determines through which role it knows the MooseGroup,
whereas it is the MooseGroup that determines its roles.

5 Conclusion

In this paper we have presented Subjectopia, a unified approach to modeling
subjectivity. Specifically, our contributions are the following:

1. We surveyed prior work and identified a lack of generality when modeling
different problem domains.

2. We presented a novel approach to subjectivity that explicitly models sub-
jects, decision strategies and contextual elements. The reification of these ab-
stractions avoids the need to impose on the developer a particular paradigm
for modeling subjective behavior.

3. We developed a fully working prototype of the Subjectopia system and pre-
sented the implementation of non-trivial subjective use cases.

4. We demonstrated that our approach can model all other existing subjective
approaches as well as new, customized strategies. Moreover, we showed that
other approaches cannot model all use cases while our approach can adapt
and represent them all.

Introducing subjective behavior in legacy applications might have a consider-
able impact on the overall behavior of the application. Being able to scope the
subjective changes to specific objects helps in controlling this impact. We plan
to analyze reflection frameworks to allow Subjectopia to perform object-specific
subjective adaptations.
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Abstract. New programming languages that allow to reduce the com-
plexity of software solutions are frequently developed, often as extensions
of existing languages. Many implementations thus resort to transforming
the extension’s source code to the imperative intermediate representa-
tion of the parent language. But approaches like compiler frameworks
only allow for re-use of code transformations for syntactically-related
languages; they do not allow for re-use across language families. In this
paper, we present the ALIA4J approach to bring such re-use to language
families with advanced dispatching mechanisms like pointcut-advice or
predicate dispatching. ALIA4J introduces a meta-model of dispatching
as a rich, extensible intermediate language. By implementing language
constructs from four languages as refinements of this meta-model, we
show that a significant amount of them can be re-used across language
families. Another building block of ALIA4J is a framework for execution
environments that automatically derives an execution model of the pro-
gram’s dispatching from representations in our intermediate language.
This model enables different execution strategies for dispatching; we
have validated this by implementing three execution environments whose
strategies range from interpretation to optimizing code generation.

1 Introduction

A recent IBM whitepaper [23] identifies complexity as the most relevant factor
in the software development process: A reduction of complexity is directly pro-
portional to an improvement of the overall process. Accidental complexity, i.e.,
complexity not inherent to the problem solved by a program, is mainly caused by
the inability to accurately represent the conceptual solution in a given program-
ming language. Thus, research in programming languages produces many new
languages with mechanisms to structure a program in a way more suitable to
conceptual solutions. The key technique here is abstraction where one concrete
program module does not refer to another explicitly, but only abstractly specifies
the functionality or data to be used. The relevance of abstraction can be seen in
the continuous progress in the history of programming language research [24],

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 131–146, 2011.
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resulting in advanced abstraction mechanisms like multiple [10] and predicate
dispatching [15], pointcut-advice1 [20], or context-oriented programming [18].

Many new languages employing these mechanisms are extensions of Java:
MultiJava [11], JPred [21], AspectJ [19], CaesarJ [2], Compose*/Java [12], Con-
textJ [18], etc. Some of these are further extended by others; thus, languages
and their extensions can be arranged in a genealogical tree, with languages of
different paradigms being siblings, as exemplified below for a few languages.

Java

MultiJava

JPred

AspectJ

AspectJ + dflow Tracematches

JavaJJJJJJJJa aJJavaJa aJavaJavaJavaJavaJavaJava

MultiJavaM ltiJM ltiJM ltiJM ltiJM ltiJMultiJavaM ltiJMultiJavaMultiJavaMultiJavaMultiJavaMultiJavaMultiJavaMultiJavaMultiJavaMultiJavaMultiJava

JPredJP dJP dJP dJP dJP dJP dJP dJP dJP dJPredJP edJPredJPredJPredJPredJPredJPred

AspectJA tJA tJA tJA tJA tJA tJA tJAs ectJA tJAspectJAspectJAspectJAspectJAspectJAspectJAspectJAspectJ

AspectJ + dflowA tJ + dflAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflowAspectJ + dflow TracematchesT t hT t hT t hTracematchesT t hTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematchesTracematches

AspectJ

AspectJ + dflow Tracematches

1 Shape intersect(Shape s)
2 when s@Rectangle { ... }

1 after() : call(∗ Shape.intersect(..))
2 && args(Rectangle) { ... }

Language constructs provided by the individual languages are presented as
dots in different shades of gray in the figure. The black dot represents a con-
cept shared by all languages except Java, e.g., resolution of abstractions based
of argument values. Vertical and horizontal overlap of the languages with re-
gard to this construct is highlighted by the rounded boxes, hatched vertically
and horizontally, respectively. But as the two listings to the right show, lan-
guages like JPred (top) and AspectJ (bottom) express the same concept using
different notations: a predicate (s@Rectangle) respectively a pointcut designa-
tor (args(Rectangle)).

Dispatching is the mechanism that resolves abstractions and binds concrete
functionality to their usage, e.g., when invoking Shape.intersect above. Abstrac-
tions commonly found in programming languages influence the resolution of
method calls and field accesses. In the following, we use the term dispatch site
uniformly to refer to sites of both method calls and field accesses in a program.
A common example of dispatching is receiver-type polymorphism: Whenever a
virtual method is invoked, the runtime environment chooses from among differ-
ent functionalities (i.e., the overriding methods) and transfers control to the one
alternative applicable in the current program state (i.e., corresponding to the
dynamic receiver type). We call languages that go beyond classic receiver-type
polymorphism advanced-dispatching languages, as they compose functionality in
different, more powerful ways (e.g., before/after advice) and can act on addi-
tional runtime state (e.g., argument values/types).

The implementation of a programming language typically consists of
two parts, a front-end and a back-end, which are decoupled by means of an
intermediate language. The front-end processes source code and emits a code
representation conforming to the intermediate language. The back-end either

1 A particular flavor of aspect-oriented programming (AOP).
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executes this intermediate representation (IR) directly or further compiles it
into a machine-executable form. Typically, implementations of new languages
build on the back-ends of established languages; thus, their front-ends have to
emit IR in an intermediate language tailored to a different source language. For
the aforementioned source languages, e.g., only the parent (Java) provides its
own intermediate language (Java bytecode).

The resulting semantic gap between source and intermediate language, i.e., the
inability of the intermediate language to express the new mechanisms directly, re-
quires transforming the high-level language concepts to low-level imperative code.
Compiler frameworks support this task by means of code transformations [22,14,3].
They only support re-use along the vertical dimension as they require a language
to be a syntactic extension of another in order to re-use its implementation; hori-
zontal re-use is not possible. While code transformations defined on the common
intermediate language are shared among all language extensions, they cannot ex-
ploit knowledge about source language constructs, which is lost during the trans-
formation to the common intermediate language.

In this paper, we present the ALIA4J approach2 for implementing advanced-
dispatching languages. It offers a meta-model consisting of just a small number of
well-defined, language-independent abstractions commonly found in advanced-
dispatching languages. This meta-model can act as an intermediate language,
thereby closing the semantic gap that currently exists between these source lan-
guages and their parent’s intermediate language. Furthermore, re-using the im-
plementation of horizontally overlapping constructs becomes viable.

For executing code defined in the intermediate language, we provide several
back-ends, including platform-independent ones. These back-ends instantiate a
framework that can automatically derive an execution model from the advanced-
dispatch’s intermediate representation. As the execution model retains the IR’s
declarative nature, the back-end is free to chose from different execution strate-
gies, ranging from interpretation to optimizing code generation.

The goal of ALIA4J is to ease the burden of programming-language implemen-
tation resting upon both researchers of new abstraction concepts and designers
of domain-specific languages. It should be emphasized that our approach is con-
cerned with the execution semantics of the different languages. They may differ
greatly in the way language (sub-)constructs are used or combined. Based on this,
the languages can make different guarantees on the program behavior or perform
different semantic checks. For example, in the case of predicate dispatching, a
compiler ensures that there is always exactly one applicable predicate method
at runtime. Performing syntactic and semantic checks is the responsibility of a
language’s compiler and not covered by our approach.

The contributions of this work are threefold:

1. We introduce advanced-dispatching as an execution model.
2. We provide a meta-model for advanced dispatching. Its generality is shown

by refining it with (sub-)constructs of the languages AspectJ, Compose*,

2 See http://www.alia4j.org/.

http://www.alia4j.org/
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CaesarJ, JPred, ConSpec, and several domain-specific languages; the overlap
in refinements used by these languages shows their re-usability.

3. For executing the advanced-dispatch IR, we provide a framework that does
not impose any particular execution strategy on the back-end and demon-
strate this freedom of choice by providing three back-ends based on different
execution strategies: SteamloomALIA, SiRIn, and NOIRIn.

In the following section, we discuss approaches related to ours and their limita-
tions. The ALIA4J approach, including the meta-model and the framework, is
fully presented in Sect. 3 and evaluated in Sect. 4. Section 4.1 describes how to
map existing and new languages to our approach, thus demonstrating re-usability
of meta-model refinements. Section 4.2 outlines the different framework instan-
tiations, proving the independence of our execution model from a back-end’s
execution strategy. Finally, Sect. 5 concludes and discusses future work.

2 Related Work

Several approaches provide abstractions in the intermediate language that are
closer to the source-language constructs of aspect-oriented, context-oriented, or
similar languages than established intermediate languages. The immediate goals
of these approaches range from improving performance to providing a precise
operational semantics of the intermediate language. Nevertheless, they also fa-
cilitate horizontal re-use of the implementation of the constructs added to the
intermediate language. But as the granularity of the added abstractions is very
coarse, many re-use opportunities are still missed. Furthermore, intermediate
languages and the definition of their semantics are tied to a specific execution
strategy in all cases; this hinders moving to back-ends with different strategies.

The Nu project [13] extends Java bytecode with two instructions supporting
aspect-oriented programming: bind and remove. By means of these primitives,
dynamic deployment and undeployment of aspects can be realized. The bind
instruction expects two arguments: a Pattern object selecting relevant code lo-
cations by means of their syntactic and lexical properties and a Delegate object
specifying a method to execute as advice. It returns a BindHandle, which then
may be passed as argument to the remove primitive to undo a specific binding.
Nu requires an imperative definition of Delegates and other concepts like the
execution order of aspects; it only supports access to a limited set of context
values. Nu’s two primitives are implemented on top of the HotSpot Java virtual
machine, which has been modified to accept the extended IR.

The Reflex project [27] provides behavioral reflection implemented through
dynamic bytecode instrumentation. Hooksets are expressions over properties of
structural abstractions of the code, like classes or methods. Links associate hook-
sets and metaobjects which are Java classes that may be implicitly instantiated.
A link specifies which method of the metaobject is to be called and is config-
ured by link attributes. While some attributes are first-class entities in Reflex,
this model is not very fine-grained. As a consequence, their implementation can-
not be re-used in the implementation of language (sub-)constructs that partially
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map to existing activation conditions or parameterizations. Parameters as well
as scopes cannot be user-defined and extending the available parameters and
scopes requires a modification of the Reflex framework.

Schippers et al. [25] present a delegation-based execution model for the Multi-
Dimensional Separation of Concerns (delMDSOC). They define primitive op-
erations in their execution model and provide an operational semantics that
allows formal reasoning about language constructs. The model’s expressiveness
is shown by realizing Java-like, AspectJ-like, and context-oriented languages in
it. The delMDSOC model is not declarative in the definition of dynamic be-
havior; instead, language constructs are represented by imperative and often
program-specific code. A declarative model of context exposure is missing.

The Java Aspect Metamodel Interpreter (JAMI) [17] defines a meta-model to
capture the semantics of features in aspect-oriented languages. Due to JAMI’s
interpreter approach, meta-model refinements must resort to using reflection and
optimizing code generation cannot be realized.

3 The ALIA4J Architecture

In this section, we present the Advanced-dispatching Language-Implementation
Architecture for Java (ALIA4J) that facilitates both vertical and horizontal re-
use of implementations of all language (sub-)constructs governing dispatch. Pre-
decessors of ALIA4J have been the subject of earlier work [8,5]. ALIA4J has two
main components: The Language-Independent Advanced-dispatching Meta-model
(LIAM), a common meta-model for expressing advanced-dispatch declarations as
well as relations between them, and the Framework for Implementing Advanced-
dispatching Languages (FIAL), a framework for execution environments that
handle LIAM-based advanced-dispatch intermediate representations.

3.1 Components of ALIA4J

Figure 1 shows the architecture of our proposed approach. It is centered around
LIAM, a meta-model of primitive concepts participating in advanced dispatch.
When implementing a new language following the ALIA4J approach, the build-
ing blocks of the language’s semantics must be concretized by either re-using
existing meta-model refinements, implementing new refinements, or a mixture
of both; this yields a language-specific LIAM refinement. When compiling a
program in the new language, the compiler needs to separate the advanced dis-
patch declarations from those parts directly expressible in Java. From the former,
a program-specific advanced-dispatch IR conforming to the refined, language-
specific meta-model is created; the latter are turned directly into Java bytecode.

When executing a program, the FIAL framework (top right) derives an ex-
ecution model for each dispatch site—i.e., for each method call, field read or
write—from the program-specific advanced-dispatching IR. To this end, FIAL
processes the IR but only refers to it in terms of the language-independent LIAM
entities; thus, FIAL and its instantiations are de-coupled from the given source
language.
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Fig. 1. Overview of an ALIA4J-based language implementation

Since our targeted languages are based on the Java platform, we expect that
FIAL is instantiated as a plug-in or extension for an existing Java virtual ma-
chine (bottom right). By interacting with this JVM, the FIAL instantiation
implements dispatch as mandated by the provided execution model, e.g., by in-
terpretation or different code generation approaches (cf. Sect. 4.2). FIAL itself
handles services like dynamic class loading and dynamic deployment, i.e., to add
or remove intermediate representations of advanced-dispatch at runtime. FIAL
instantiations only need to implement a few well-defined interfaces and LIAM
refinements are not at all concerned with these services’ implementation.

FIAL offers four generic services required by any execution environment sup-
porting LIAM-based advanced-dispatch IR:

1. FIAL assists in deploying and undeploying such IR at runtime.
2. It handles dynamic class loading in the presence of dispatch IR already

deployed.
3. It can trigger an importer component which transforms advanced dispatch

declarations from the source language to the intermediate representation.
4. From the currently deployed advanced-dispatch IR it derives an execution

model for each dispatch site in the executed program.

To derive a dispatch site’s execution model, FIAL partially evaluates the LIAM-
based IR and constructs the dispatch function for the dispatch site combining
all individually declared dispatch predicates. In the ALIA4J approach, the re-
sult of a dispatch function can be composed of multiple actions; it is a Boolean
function f : B

n → B
m that characterizes which of the m actions should be

executed when the dispatch site is reached, depending on the evaluation of n
predicates. A detailed discussion of the construction of dispatch functions [26],
and of partially evaluating LIAM-based IR and resolving relations between
dispatch declarations [7, Sect. 5] is found elsewhere.
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3.2 The Meta-Model of Advanced Dispatching

Figure 2 shows a UML class diagram of LIAM’s meta-entities for the declaration
of advanced dispatch, termed an Attachment, and relations between such dec-
larations. An Attachment specifies which functionality should execute (Action)
at which join points3 (Specialization) and when it should execute relative to the
join point (Schedule Info), i.e., before, after, or around. The Specialization en-
tity is divided into entities specifying static (Pattern) and dynamic (Predicate)
properties of selected join points as well as a list of values (Context) which must
be exposed to the Action at selected join points. Hereby, a Pattern specifies
syntactic and lexical properties of instructions executing at a join point. These
instructions are generally connected to a member, e.g., the target method for an
invocation. Patterns are composed of multiple sub-patterns matching on the dif-
ferent elements of the member’s signature like the name or parameter types [4].
A Predicate is a Boolean expression of Atomic Predicate entities modeling con-
ditions on a join point’s dynamic state.
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CompositionRule
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Fig. 2. Entities of the Language-Independent Advanced-dispatching Meta-Model

As Fig. 2 shows, it is not only a Specialization that can refer to a Context
to specify that this context value is exposed to an Action; Atomic Predicate
and Context itself can also refer to Contexts. This means that the evaluation
of Atomic Predicates and Contexts, respectively, depends on the exposure of
further context values.4 For example, a refinement of Context that realizes the
reflective thisJoinPoint keyword of AspectJ declares its dependency on the indi-
vidual context values that it composes, like argument values passed to the join
point and whether the join point is a method call or field access.

Relations between Attachments are defined in terms of Precedence Rules and
Composition Rules. Both kinds of rules govern the execution of Actions jointly
applicable at the same join point. The former rules specify a partial order among
the Actions and the latter rules specify which Actions must or must not be
executed together. In all cases, a relation between Attachments carries over to the
Actions contributed by the Attachments. The entities printed in italics in Fig. 2,
3 The term, borrowed from AOP, refers to a specific execution of a dispatch site.
4 Circular dependencies must be ruled out by the front-end.
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i.e., Action, Atomic Predicate and Context, can be refined with the specific sub-
constructs of a language being implemented in the ALIA4J approach. All other
entities represent logical groupings of the refinable entities. They are fixed and
used by FIAL to partially evaluate LIAM-based IR.

The listing below shows an AspectJ aspect with one pointcut-advice. This
aspect will be compiled to a class with the name A and a method, say before 0(),
containing the body of the before advice. The aspect’s instantiation strategy is
to create a singleton instance of A and always invoke the method thereon.

1 aspect A issingleton() {
2 before() : call(∗ ∗.m(..)) { /∗ advice body ∗/ }
3 }

Figure 3 shows the LIAM-based IR for the pointcut-advice in this example.
This example is minimalistic on purpose and does not use all of LIAM’s features;
section 4.1 discusses creating our IR from advanced-dispatch declarations in dif-
ferent languages, including AspectJ, in detail. At the moment, just note that
AspectJ pointcuts are expressed by Specializations in LIAM. But Specializa-
tions also have additional purposes, for instance, they refer to a Context entity
that realizes the aspect’s instantiation strategy. In the example, PerTupleContext

realizes the issingleton strategy. The Action maps to the advice functionality and
the Schedule Info maps to the keyword before, after or around.
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Fig. 3. Example of a LIAM-based advanced-dispatching IR

3.3 FIAL and LIAM in Practice

The execution model of FIAL gives rise to both default compilation and inter-
pretation strategies for dispatch sites. Either can be pursued by a FIAL instan-
tiation. This facilitates a modular implementation of a LIAM entity’s semantics
in terms of a plain Java method, referred to as the entity’s “compute” method.

When using the default code generation, the execution model is traversed
depth-first until a LIAM entity is reached that does not depend on another one.
For such a leaf, code is generated to invoke the “compute” method. In case
of, e.g., a Context, this “compute” method returns the modeled value, which
can then be passed to the “compute” method of the entity depending on the
Context, and so forth. Glue code is generated to ensure the correct evaluation of
the dispatch function, depending on the result values of the Atomic Predicates.
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A variation to this default compilation strategy is to delegate bytecode gen-
eration to the LIAM entity itself rather than just generating a call to its “com-
pute” method. Because the bytecode-generation method is called individually
for each dispatch site, its static context can be considered and the bytecode can
be tailored to each site. Both strategies can be mixed freely; a LIAM entity must
simply implement a “compute” method or one that directly emits Java bytecode.

As an example of a LIAM entity, consider the JoinPointKindContext presented
below. It represents a string value describing the kind of the join point, accessible
via thisJoinPoint.getKind() in AspectJ. The entity passes a signature Context to
its super-constructor (line 3), thus stating that it depends on this Context, which
returns the signature of the member associated with the current join point. As
a consequence, a signature object is passed to the method getObjectValue,5 the
“compute” method, whenever the JoinPointKindContext is to be evaluated. In the
example, this method picks one of the constant values defined in the JoinPoint

class from the AspectJ runtime library appropriate to the signature (lines 6 ff.).

1 public class JoinPointKindContext extends Context {
2 public JoinPointKindContext() {
3 super(Collections.singletonList(ContextFactory.findOrCreateSignatureContext()));
4 }
5 public Object getObjectValue(Object liamSignature) { // ”compute” method
6 if (liamSignature instanceof FieldReadSignature)
7 return JoinPoint.FIELD GET;
8 else ...
9 } }

An alternative implementation declaring BytecodeSupport (line 1) is presented
below. Its method emitting bytecode for a specific dispatch site (lines 5–10)
inspects the signature of the associated member (line 6) and simply emits an
instruction fetching the appropriate constant (line 7 ff.). Because the generated
bytecode does not contain conditional control flow, it is more efficient than the
“compute” method. No required Contexts have to be declared (line 3) as evalu-
ation of this Context now does not depend on the signature Context.

1 public class JoinPointKindContext extends Context implements BytecodeSupport {
2 public JoinPointKindContext() {
3 super(Collections.<Context>emptySet());
4 }
5 public void build(BytecodeBuilder builder, GenericFunction site) {
6 if (site.getSignature() instanceof FieldReadSignature)
7 builder.appendGetstatic(JOIN POINT CLASS, ”FIELD GET”,
8 TypeDescriptorConstants.STRING CLASS);
9 else ...

10 } }

5 The name, parameters and return type of a “compute” method must follow naming
conventions that are ruled by methods not shown in this example.
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The generation of bytecode for a LIAM entity may also depend on the actual
execution strategy of the back-end. Therefore, ALIA4J uses Abstract Factories
to create LIAM entities. A FIAL-based execution environment can override the
factory methods for those entities for which back-end-specific bytecode can be
generated; this is completely transparent to the front-end.

4 Evaluation

We evaluate the ALIA4J approach on two levels: First, we investigate LIAM’s
ability to realize new as well as existing languages and the degree of re-use
facilitated by our approach. Second, we show the independence of both FIAL
and our execution model of a concrete environment’s execution strategy.

4.1 Evaluation of LIAM

To validate our approach, we have refined LIAM with the concrete language sub-
constructs found in several languages. In the following, we will briefly discuss
these refinements. For a full discussion of AspectJ, CaesarJ, Compose*, JPred,
MultiJava, and ConSpec as well as the necessary LIAM refinements, we refer to
our electronic appendix.6 For the languages AspectJ and ConSpec we provide
importers that automatically map source code to program-specific LIAM models.

AspectJ. The AspectJ compiler creates a class for each aspect, with a virtual
method for each advice. The aspect’s instantiation strategy, defined in the “per-
clause”, specifies whether a new instance of this class must be created at a join
point or an existing instance is to be used. In either case, the virtual methods
compiled from the advice are invoked on this instance. When mapped to LIAM,
an aspect’s instantiation strategy is represented by a Context: The pertarget,
perthis and issingleton strategies are mapped to a PerTupleContext, which asso-
ciates a tuple of input values with a lazily created instance of the aspect class;
for the former two a 1-ary tuple containing a CalleeContext or a CallerContext is
used, for the latter a 0-ary tuple. The percflow and percflowbelow strategies are
mapped to a PerCFlowContext and PerCFlowBelowContext, respectively. Each Spe-
cialization refers to the Context representing the instantiation strategy as its
first exposed Context. All pointcuts defined in an aspect are replaced by their
conjunction with the pointcut by which the aspect’s per-clause is parameterized.

For each pointcut-advice pair in the aspect body, one Attachment is created,
its Action being a MethodCallAction that refers to the method the compiler created
for the advice. The Schedule Info trivially mirrors the keyword before, after, or
around. Each pointcut is mapped to a set of Specializations. The mapping of
individual pointcut designators to LIAM is best illustrated by a representative
example: The args pointcut designator can be parameterized by an identifier
corresponding to a pointcut parameter. This imposes a dynamic constraint on an
argument’s type and exposes the argument’s value to the advice. The restriction
is mapped to an InstanceofPredicate with an associated ArgumentContext. For the
value exposition, an ArgumentContext is associated with the Specialization.
6 See http://www.alia4j.org/alia4j-languages/mappings.

http://www.alia4j.org/alia4j-languages/mappings
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When precedence is defined between aspects in terms of declare precedence,
for each pair of Attachments from the referred aspects one Precedence Rule is
created. Named pointcuts, abstract aspects and pointcuts, and inter-type mem-
ber declarations [16] can also be realized with the ALIA4J approach, but we
omit their discussion for the sake of brevity. Inter-type declarations that modify
the type hierarchy (declare parents) or emit errors and warnings during compila-
tion (declare error, declare warning) are naturally out of scope for ALIA4J.

CaesarJ. While CaesarJ’s pointcut-advice language features are the same as
AspectJ’s, a CaesarJ class can also be deployed and undeployed dynamically
using deploy, undeploy, or a dedicated API. In this case, the program specifies an
actual instance of the class which is to be deployed, i.e., an ObjectConstantContext

parameterized with this object is used as the first context of all Specializations.
Dynamic deployment also can add a scope, i.e., the class’s pointcut-advice may
be active only within in a single thread or while a specified object is execut-
ing. This scope is modeled as an Atomic Predicate and the Predicates of all
Specializations are replaced by a conjunction with this Atomic Predicate.

Compose*. In Compose*, filter modules are superimposed (deployed) on so-
called inner objects and contain filters that react upon methods invoked either
on (inputfilters) or by (outputfilters) the inner object. Data fields in a filter module
can be defined, e.g., as internals that have a distinct value for each inner object.

For each of a module’s filters, consisting of filter type, condition part, matching
part, and substitution part, an Attachment is created. Hereby, the filter type and
the substitution part are together mapped to an Action, the former determining
the kind of Action and the latter its parameterization. Filter types like the
Exception filter are predefined and are mapped to dedicated Action entities.
Filter types provide a specification of their effects: Whether they are active in
the calling or returning flow is captured by a Schedule Info entity; whether the
message flow continues after the Action or whether subsequent filters are skipped
is captured by Composition Rules. Conditions are implemented as methods in
Compose* and represented by LIAM’s MethodPredicate. Access to internal data
fields is represented as PerTupleContext configured with a 1-ary tuple exposing
the CalleeContext, when accessed from an input filter, or the CallerContext, when
accessed from an output filter.

Filter modules have to be explicitly superimposed; the corresponding Attach-
ments are not deployed by default. Superimposition acts on a set of classes on
whose instances a filter module is to be superimposed. This is modeled by a
conjunction of the affected Attachments’ Predicates with an ExactTypePredicate

Atomic Predicates (configured with either CalleeContext or CallerContext for in-
put and output filters, respectively). Further constraints between filter modules
specified in Compose* can be represented using LIAM’s Precedence Rules and
Composition Rules.

JPred. In JPred, methods may have a predicate in a when clause. A class can
contain multiple methods with the same name and formal parameters but with
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different when clauses. When the method is invoked, the implementation with the
most specific, satisfied predicate is executed; an implementation whose predicate
implies the predicate of another implementation overrides it. Methods defined
in a super-class are also overridden. The JPred compiler statically checks that
for each method-call site exactly one implementation will be applicable.

For all these predicate methods, the compiler generates a plain Java method
with a unique name. For each predicate method an Attachment is created with a
MethodCallAction configured to execute this method. The Pattern of the Attach-
ment selects invocations of the method according to the predicate-method name
and the Predicate corresponds to the predicate specified by the when clause. As
only a single predicate method must ever be executed, even if multiple predicates
may be satisfied, the overriding relations are mapped to Composition Rules.

ConSpec. Unlike the above languages, ConSpec [1] is not a general-purpose
language but used only to express security policies. Regardless, it shares a num-
ber of characteristics with aspect-oriented languages: Its notion of events and
guards is akin to AOP’s pointcuts whereas its notion of updates is akin to advice,
the key difference being a constrained set of possible actions; updates can only
affect a limited set of state variables in limited ways. These state variables can
moreover exist in several scopes, which allows them to be associated with par-
ticular objects (OBJECT) or persisted across program runs (MULTISESSION).
In either case, LIAM can express scopes using an appropriate PerTupleContext; in
the latter case, e.g., the lazily created instance is initialized with the persisted
state.

New, Domain-Specific Languages. The ALIA4J approach was used in the
course “Advanced Programming Concepts” (2009/10) taught at the University
of Twente to illustrate the execution semantics of advanced-dispatching lan-
guages and to perform practical assignments. During this course, groups of two
or three students developed prototypes of domain-specific languages (DSLs), cov-
ering domains as diverse as (1) the declarative definition of debugging activities,
(2) annotation-defined method-level transactions, (3) asynchronous Future-based
inter-thread communication, (4) runtime model checking, (5) authentication and
authorization, and (6) the automatic enforcement of the Decorator design pat-
tern. All language prototypes except the sixth could be implemented by re-using
the already existing LIAM entity implementations. This shows that our approach
is well suited for the implementation of domain-specific languages.

Summary and Lessons Learned. Table 1 shows the different concrete entities
we implemented while mapping the languages AspectJ, CaesarJ, JPred, Multi-
Java, Compose*, and ConSpec to LIAM, as well as their usage in the different
language mappings. CaesarJ shares the column with AspectJ, as the pointcut-
advice part of the language largely overlap with AspectJ; JPred and MultiJava
share a column because the former subsumes the latter.
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Table 1. Usage of LIAM entities in different languages. �: non-trivial entity directly
used in language mapping; �∗: trivial context adapting interface of value; (�): non-
trivial entity used indirectly.

AspectJ/ Com- JPred/ Con- AspectJ/ Com- JPred/ Con-

CaesarJ pose* MultiJava Spec CaesarJ pose* MultiJava Spec

Context Pattern

Argument � � � � Method � � � �
Callee � � � � Constructor � � �
Caller � � StaticInit. �
Result � � � FieldRead �
Arguments � � FieldWrite �
DebugInfo � AtomicPredicate

Signature � � Instanceof � � �
PerTuple � � � Method � � � �
PerCFlow � ExactType � � �
PerCFlowBelow � CFlow �
ObjectConstant � � CFlowBelow �
AspectJSignature �∗

Bin.Relation � � �
JoinPointKind �∗

Action

SourceLocation �∗
FieldRead (�) (�) (�) (�)

ThisJoinPoint �∗
FieldWrite (�) (�) (�) (�)

Thread �(CaesarJ) MethodCall � � � �
Constant � � CFlowEnter �
Field � � CFlowExit �
ArrayElement � � NoOp � �
BinaryOperation � � Throw � �
UnaryOperation � �
MethodResult � � �
ReifiedMessage �∗

4.2 Evaluation of FIAL

We have developed various FIAL-based back-ends (SteamloomALIA, SiRIn,
and NOIRIn) using different execution strategies reaching from interpretation
over bytecode generation to direct generation of machine code. Experiments have
shown that native machine-code generation for LIAM entities of simple language
concepts does not improve performance significantly. Thus, we will not discuss
the implementation of SteamloomALIA and its use of modularly implemented
machine-code generation strategies here. Nevertheless, this support is useful for
more complex VM-integrated optimizations, e.g., for cflow [6].

SiRIn. SiRIn, the Site-based Reference Implementation, wraps every dispatch
site into a special method and generates bytecode for these “reified” dispatch
sites using the ASM bytecode engineering library.7 Each wrapper method
7 See http://asm.ow2.org/

http://asm.ow2.org/
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contains code derived from the dispatch function. SiRIn may duplicate code
if several leaf nodes share an Action. This code-splitting approach opens up new
optimization opportunities for the JVM’s just-in-time compiler. SiRIn itself is a
Java 6 agent; it does not require a native component and is thus fully portable.

NOIRIn. NOIRIn, the Non-Optimizing Interpreter-based Reference Imple-
mentation, refrains from code generation and interprets the execution model
produced by FIAL. Based on NOIRIn, implementing generic IDE support for
debugging FIAL’s execution models is straight-forward [28,9]. Because NOIRIn
does not generate bytecode for dispatch sites, it can only handle LIAM entities
which implement a “compute” method. This is not a restriction because it can
be expected that for each LIAM refinement a “compute” method is implemented
at first, eventually supplanted by an optimizing bytecode generation. Like SiRIn,
NOIRIn integrates with any standard Java 6 VM.

Integration Testing. We provide an extensive suite of integration tests, which
use the FIAL framework to define and deploy LIAM-based dispatch represen-
tations, execute an affected dispatch site, and verify the correct execution. The
suite is independent of any concrete FIAL instantiation and, thus, also acts as
compatibility test. It contains one JUnit test case per provided LIAM entity
and several test cases for FIAL’s services like dynamic deployment or ordering
actions at shared join points. Each test case contains up to 512 tests using the
tested entity or service in different ways and executing dispatch sites with dif-
ferent characteristics. Nearly all of the 4,045 tests are systematically generated
to cover all relevant variations of dispatch sites: execution in a static or virtual
context; dispatch of a method call, field read or write; etc.

5 Conclusions and Future Work

In this paper, we have presented the ALIA4J approach to implementing lan-
guage extensions. Phrasing them in terms of advanced-dispatching enables us to
implement numerous languages, ranging from AspectJ to new, domain-specific
languages, using just a few core abstractions. With a fine-grained intermediate
representation close to the source-level abstractions, re-using the implementation
of language sub-constructs is possible even across language families.

The re-use of implementation facilitated by ALIA4J allows programming-
language researchers and designers of domain-specific languages to focus on their
immediate task: developing source languages for solving certain problems. Al-
ready established language sub-constructs do not have to be implemented anew.
ALIA4J’s back-end-independent execution model and the possibility to modu-
larly implement bytecode generation for language constructs make optimizations
developed in back-ends immediately available to all languages implemented with
our approach using the affected construct. We believe that this can improve the
quality of language prototypes, but this is subject to future studies.

Language extensions developed using ALIA4J all build on the same language-
independent meta-model: LIAM. This gives rise to the possibility of combining,
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e.g., AspectJ and JPred within a single program without unwanted interferences
caused by low-level code transformations. But such a detailed study of the high-
level interactions of different language implementations has yet to be done.

We also plan to re-implement several past research results uniformly within
the ALIA4J approach. An optimized implementation of control-flow-based
Atomic Predicates [6] in SteamloomALIA, e.g., will benefit everyone using this
platform-dependent back-end. As the LIAM-based intermediate representation
is independent of a specific execution strategy, the same code is still executable
on a less optimizing but platform-independent back-end. We also plan to map
additional languages to our approach to further strengthen our claim of its gen-
erality.

Research is currently going on in developing new optimizations of language
sub-constructs and making them available through the interface of LIAM. Fur-
thermore, we are investigating extensions to LIAM and FIAL to make them
more suitable to support tasks like debugging or profiling advanced-dispatching
programs [9,28]. Other research focuses on optimizing the generic service im-
plementations in FIAL like the evaluation of Patterns [4], which will benefit all
FIAL-based back-ends and thus all languages implemented in our approach.
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Abstract. The effect of an operation on an object network can be de-
scribed by the access paths along which the function reads or writes
object properties. Abstracted to access path permissions, the effect can
serve as part of the operation’s documentation, augmenting a type sig-
nature or a contract for the operation. Statically determining such an ef-
fect is a challenging problem, in particular in a dynamic language which
represents objects by hash tables like the current breed of scripting lan-
guages.

In this work, we propose an analysis that computes access permissions
describing the effect of an operation from a set of access paths obtained
by running the program. The main ingredient of the analysis is a novel
heuristic to abstract a set of access paths to a concise access permission.

Our analysis is implemented as part of JSConTest, a testing frame-
work for JavaScript. It has been applied to a range of examples with
encouraging results.

1 Introduction

For a program in an untyped scripting language like JavaScript, maintenance
and understanding can be a nightmare. Given a function or method, it is often
not clear which types of arguments are required to make the function work as
expected and which types of values are returned. A first step towards under-
standing such an operation is thus to find a type signature for it.

However, a type signature only describes the functional behavior of an opera-
tion, but its side effects are equally important. In most object-oriented languages
side effects are limited thanks to data encapsulation. The situation is different in
a scripting language like JavaScript: Objects lack any kind of encapsulation, so
that an operation can arbitrarily explore and modify the object graph starting
from any object in scope.

The goal of this work is thus to provide a concise description of the way that
an operation accesses and modifies the object graph. This information can be
vital for program understanding and program maintenance.

Our approach is to describe the effect of an operation on the object graph
by the set of access paths along which the function and its callees read or write
object properties. These paths can start from any object accessible to the oper-
ation, that is, it either has to be passed as an argument or it must be bound to a
global variable. Reads and writes in objects that are created within the operation
do not matter for the effect as they are not observable from the outside.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 147–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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As the set of access paths is potentially infinite, it cannot usefully serve as
a high-level description of an operation’s effect. Instead, we approximate sets
of access paths by concise access path permissions. Such a permission can be
attached to any variable in scope and can thus become part of the operation’s
documentation in addition to a type signature or a contract. Permissions are
easy to understand because they are structured like file paths with wildcards.

In a statically typed language, it would be feasible to compute the effect of
an operation statically. In a scripting language with dynamic types and where
objects also serve as hash tables and arrays, computing an access permission
statically would be much harder, if possible at all, because the description of a
permission may depend on particular values like strings and indexes. A manual
effect annotation is, of course, possible, but too time consuming.

The main contribution of this work is a heuristic analysis that learns access
path permissions from access paths sampled from running JavaScript programs.
This information can be used to enhance type-signature-based contracts as pro-
posed in our previous work [1]. Because a static analysis of the effects is not
feasible, we perform a dynamic analysis which collects access paths during runs
of the program. The heuristic extracts concise access path permissions from the
collected path sets. The extraction procedure is user configurable so that the
results can be refined interactively.

Our analysis is implemented and available as part of JSConTest,1 a testing
framework for JavaScript. It has been applied to a range of examples with en-
couraging results.

2 Testing Effects

Previous work of the authors [1] proposes a contract framework for JavaScript.
It permits the specification of contracts which are similar to type signatures
and provides the facilities to perform contract monitoring as well as contract-
based testing. This contract system is value-oriented in the sense that a contract
specifies restrictions on the values that are passed to a method and returned
from it. However, a value-oriented contract misses an important facet of the
semantics of a method because a type signature does not specify its side effects.

Subsequent work [2] extends the contract language with access permissions
that restrict the side effects that a method is allowed to perform. An access
permission explicitly states the set of paths (sequences of property accesses)
that a method may access from the objects in scope. Being able to state such
permissions is important in a language like JavaScript, where a side effect is
often the raison d’être of an operation. For such an operation, a value-oriented
contract is insufficient as the following example code shows:

function redirectTo (url) {
window.location = url;

}

1 http://proglang.informatik.uni-freiburg.de/jscontest/

http://proglang.informatik.uni-freiburg.de/jscontest/
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The type signature /∗c (string) → undefined ∗/ fully describes the functional be-
havior of redirectTo: its argument should be a string and it returns the value
undefined as there is no explicit return statement. However, the interesting infor-
mation about the function is that it changes the location property of the window
object, which has the further effect of redirecting the web browser to a new page.
To specify this effect, our extended contract language enables us to add an access
permission to the above contract:
... with [window.location]

This access permission lets the function access and modify the location property
of window but denies access to any other object. Contract monitoring for the
thus extended contract enforces the permission at run time. For example, if the
function’s implementation above were replaced by
function redirectTo (url) {

window.location = url;
myhistory.push (url);

}

while keeping the same type signature and access permission, then monitoring
would report a contract violation as soon as the function accesses myhistory.

The paper further reports two case studies to validate the significance of
access permission contracts. The results demonstrate that contracts with effects
can detect 6-13% more programming errors than contracts without effects.

While these results are encouraging, their preparation is tedious. Functional
contracts are mostly straightforward to write and can be finalized in a few it-
erations of testing with the framework, but careful manual scrutiny is required
to come up with concise and useful effect annotations. The main problem is the
dynamic nature of JavaScript, which permits non-obvious control flows (e.g.,
callback functions or method invocation through several levels of prototypes) as
well as non-obvious data accesses when object properties are addressed using the
array notation as in obj[prop]. Furthermore, from an interprocedural perspective,
it is not straightforwardly possible to compose effect annotations of callees to
the effect annotation of the caller.

For these reasons, we propose to record all access paths by running test cases
on the program after constructing the type-signature contracts. These access
paths are generated by our framework by setting all effect annotations to ∅ and
recording all access violations. From the collected access paths, we compute a set
of access permissions by abstracting the recorded paths to a restricted regular
expression.

This abstraction is guided by a heuristic because there is no easy way to
define a best abstraction of a finite language to a regular expression. As each
finite language is regular, there is always a (potentially huge) regular expression
specifying the language of observed access paths exactly. On the other hand,
every language is contained in the regular language .∗. As both extremes are
useless, the goal of the heuristic is to find a regular language that includes
the observed access paths but which also includes further likely access paths
exhibited by the same program.
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Fig. 1. Syntax of access paths and access permissions

p ∈ Prop property names
π ::= ε | p.π access paths
γ ::= R |W access classifiers
κ ::= γ(π) classified access path

P ⊆ Prop set of property names
b ::= ε | P.b | P∗ .b path permissions
a ::= ∅ | b | a + a access permissions
? = Prop, @ = ∅ ⊆ Prop

For that reason, our inference algorithm is based on the intuition2 that objects
have an fixed structure a few levels of properties deep, followed by a traversal
of a recursive structure (repeated list or tree links), and ending in objects with
fixed structure. Thus, we have chosen a particular result template for an access
permission. The inferred permissions are either concrete paths of small lengths or
they start with a few concrete path elements, followed by an arbitrary sequence
of path elements, and then finish with a few concrete path elements. The number
of concrete initial and final path elements are parameters of the algorithm, which
can be modified by the user to interactively find a satisfactory permission. The
underlying algorithm guarantees the soundness of the resulting permission.

The arbitrary list of path elements in the middle can be further refined to
enumerate the properties that can be repeated.

3 Inference Algorithm

This section first formally defines the syntax and semantics of access paths and
access permissions and states some of their properties. Then, it describes the
three phases of the inferences algorithm: trie building, extraction of access per-
missions, and simplification. Finally, it considers some special cases which are
covered by the implementation, but which are not reflected in the formal devel-
opment.

3.1 Access Paths and Access Permissions

Fig. 1 defines the syntax of access paths and access permissions. An access path
is a sequence of property names. It is classified with an access classifier γ as
either a read path or a write path yielding a classified access path κ.

A path permission extends an access path by admitting a set P of properties
in each step. A component in a path permission may also be P∗ to match any
sequence of property names in P . An access permission is either empty, a path
permission, or the union of two access permissions. We abbreviate the path
component ? ∗ to ∗.

While the definitions of path permissions and access paths inductively add
path elements only to the left ends, we also decompose permissions and paths
2 Which is supported by our examples, but not yet empirically validated.
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Fig. 2. Matching access permissions

W(ε) ≺ ε R(ε) ≺ b
γ(π) ≺ b p ∈ P

γ(p.π) ≺ P.b

γ(π) ≺ b

γ(π) ≺ P∗ .b

γ(π) ≺ P∗ .b p ∈ P

γ(p.π) ≺ P∗ .b

κ ≺ a1

κ ≺ a1 + a2

κ ≺ a2

κ ≺ a1 + a2

(∀κ ∈ K) κ ≺ a

K ≺ a

from the right as in π = π′.p or even consider the infix “.” as concatenation
operator as in the permission π. ∗ .π′. We write |π| for the length of a path and
say that π′ is a prefix of π if π = π′.π′′, for some π′′. Dually, π′ is a suffix of π if
π = π′′.π′, for some π′′. A set of paths Π is prefix-closed (suffix-closed) if π ∈ Π
implies that π′ ∈ Π , for each prefix (suffix) of π.

We define the semantics of access permissions using the inference rules in
Fig. 2. Let K be a set of classified access paths. A classified access path κ (or a
set K of those) matches an access permission a, if the judgment κ ≺ a (K ≺ a)
is derivable from the inference rules. Property names in the permission must be
matched exactly in the path, whereas ∗ components in the permission match any
sequence of property names. The component @ matches no property. When the
path is exhausted (π = ε), matching distinguishes read and write paths. While
a read path is accepted with any remaining permission, a write path requires
the permission to be exhausted, too. With this convention, a permission ending
in @ specifies a set of read paths without giving write permission. In summary,
write accesses W(π) must be matched entirely by a path permission whereas
read accesses R(π) just need to be extensible to a full match. Hence, the set of
read access paths is closed under prefixes.

Lemma 1. 1. If R(π.p) ≺ a, then R(π) ≺ a.
2. If W(π.p) ≺ a, then R(π) ≺ a.
3. W(π) �≺ b.@.

3.2 Algorithm

The task of the access path inference algorithm is thus to map a set of classified
access paths to a set of reasonable path permissions. This task is akin to the
problem of learning a (regular) language from a set of positive examples.3 The
problem of this task is that there is no best solution. For example, there are
always two trivial path permissions that match a given classified path set:

Lemma 2. Let K = {γi(πi) | i ∈ I}.

1. Let bi = πi considered as a path permission. Then K ≺
∑

i bi.
2. K ≺ ∗.
3 A negative example would be an impossible access path.
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Fig. 3. Example trie
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For that reason, we have devised an algorithm based on a heuristic that computes
reasonable results for a range of interesting examples.

Our algorithm has three phases. The first phase collects access paths in a trie
data structure. This data structure enables efficient operations during the second
phase. The second phase extracts access permissions from the trie. The third
phase simplifies the resulting access permissions. The first two phases keep read
and write paths separate because there are subtle differences in their handling
due to the prefix closure of read accesses.

Building the Trie. For our purposes, a trie [3] is a rooted, directed graph
where each node is labeled with an integer and each edge is labeled with a
property name. The trie T (Π) represents a set of access paths Π as follows. The
root node r is labeled with the number of paths |Π |. For each property p, let
p\Π = {π | p.π ∈ Π} be the set of path tails of paths that start with p. If p\Π
is non-empty, then the trie for Π includes T (p\Π) where there is an edge from
r to the root node of T (p\Π).

For example, the path set Πlist = {l, h, h.d, h.n, h.n.d, h.n.n, h.n.n.d} is rep-
resented by the trie in Fig. 3. The trie can also be considered a finite automaton
recognizing the set Π with final states indicated by the double circles in the
figure.

Extracting Access Permissions. The goal of the extraction algorithm is to
create access permissions of one of the forms π or π.P∗ .π′ where P ⊆ Prop and
π′ may be empty. The initial component π is determined by computing a set of
“interesting” prefixes from a set of paths Π , where π is a prefix of Π if there
exists some π′ ∈ Π such that π is a prefix of π′.

Given two integers l ≥ 0 and d ≥ 1, we consider a path as (l, d)-interesting
with respect to a path set Π if it is a prefix of Π and it is either shorter than
the base length l or it has a branching degree less than or equal to d above length
l. Here, the branching degree of a path BDegΠ(π) is the number of properties q
such that π.q is a prefix of some path in Π . The (l, d)-interesting prefixes of Π
are formalized by Prefixesl,d(Π), which is simple to compute from T (Π).
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BDegΠ(π) = |{q | (∃π′) π.q.π′ ∈ Π}|
Prefixesl,d(Π) = {p1 . . . pn |

(∃π) p1 . . . pn.π ∈ Π,
(∀j ∈ {l, . . . , n− 1}) BDegΠ(p1 . . . pj) ≤ d}

To continue the example from the preceding subsection,

Prefixes0,1(Πlist ) = {ε}
Prefixes1,1(Πlist ) = {ε, l, h}
Prefixes2,1(Πlist ) = {ε, l, h, h.d, h.n}
Prefixes0,2(Πlist ) = {ε, l, h, h.d, h.n, h.n.d, h.n.n, h.n.n.d}

= Prefixesk,2(Πlist ) (∀k)

At this point, we distinguish the treatment of read paths from the treatment
of write paths. As read paths are closed under taking the prefix, we may compute
the prefix reduct by removing all paths that are proper prefixes of other paths.

Reduct(Π) = {π ∈ Π | (∀π′) |π′| > 0⇒ π.π′ /∈ Π}

Continuing the example further:

Reduct(Prefixes0,1(Πlist )) = {ε}
Reduct(Prefixes1,1(Πlist )) = {l, h}
Reduct(Prefixes2,1(Πlist )) = {l, h.d, h.n}
Reduct(Prefixes0,2(Πlist )) = {l, h.d, h.n.d, h.n.n.d}

For write paths, a more conservative reduction must be applied. Only those
proper prefixes can be removed that are not members of the underlying original
set. Let Π be a set of prefixes of Π0.

ReductW(Π, Π0) = Reduct(Π) ∪ (Π ∩Π0)

Given an interesting prefix π of path set Π , we now construct the left quotient
of Π with respect to π, i.e., the set of suffixes

π\Π = {π′ | π.π′ ∈ Π}

Technically, we construct this set in time linear in the length of π by returning
the subtrie of the trie T (Π) obtained by following the path π.

If we continue the example with Reduct(Prefixes1,1(Πlist )) = {l, h}, we obtain
the following sets of suffixes:

l\Πlist = {ε}
h\Πlist = {ε, d, n, n.d, n.n, n.n.d}

For each of these sets, we now consider the set of interesting suffixes, where
“interesting” is defined in the same way as for prefixes. Technically, we just
reverse all path suffixes and apply the interesting-prefixes algorithm. That is,

Suffixesl,d(Σ) =
←−−−−−−−−−−
Prefixesl,d(

←−
Σ )
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Fig. 4. Reversed suffix trie
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where
←−
Σ = {←−π | π ∈ Σ} and ←−π is the reverse of a path π.

Going back to the example, Fig. 4 shows the trie containing the reversed
suffixes of h\Πlist . From this trie, it is easy to see that the (0, 1)-interesting
suffixes of h\Πlist are {ε, d, n}, whereas there is only one respective suffix of
l\Πlist , namely ε.

The final step of the algorithm considers for each pair of interesting prefix
and interesting suffix the remaining part in the middle. The right quotients of
the suffix language yield exactly this remaining part. The right quotient Π/π of
a language with respect to a path π is defined dually to the left quotient by

Π/π = {π′ | π′.π ∈ Π}

To abstract the resulting middle language, we restrict the algorithm to two
choices. Either ε, if the middle language is {ε}, or P∗ in all other cases.

In the example, we need to consider four cases, with the computation shown
left and the resulting access permission shown in the right column:

(l\Πlist)/ε = {ε} �→ l
(h\Πlist )/ε = h\Πlist �→ h.{n, d} ∗
(h\Πlist )/d = {ε, n, n.n} �→ h.n ∗ .d
(h\Πlist )/n = {ε, n} �→ h.n ∗ .n

This result is not entirely satisfactory because h.{n, d} ∗ clearly subsumes h.n ∗ .d
and h.n ∗ .n, but the latter two permissions are more informative and thus prefer-
able. Unfortunately, even together, they do not cover the access path h, which
is only covered by h. ∗.

The source of the problem is that the set {ε, d, n} is suffix-closed. For prefixes,
we apply the prefix reduction because the semantics of access paths is prefix-
closed. However, we cannot just apply suffix reduction as the example shows: If
the suffix (in this case ε) is actually an element of the underlying set h\Πlist ,
then dropping the suffix would be incorrect.

The solution is to treat the suffixes which would be removed by suffix reduction
but which are elements of the underlying set specially and drop the rest. The
special treatment is simple: we just declare their middle language to be {ε}.
With this treatment (specified in function BuildPermissions in Fig. 5), the
case (h\Πlist ) with suffix ε yields the access permission h. The function has
to be called for each interesting prefix with the corresponding suffix language
(function PermissionsFromPathSet).
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Fig. 5. Building access permissions
function BuildPermissions(π,Σ, sl, sd)

� π is a prefix, Σ corresponding suffix language, sl, sd suffix length and degree
R← ∅ � result set of access permissions
Σ0 ← Suffixessl,sd(Σ) � set of interesting suffixes of Σ
for all σ ∈ Σ0 do

if σ is proper suffix of an element of Σ0 then
if σ ∈ Σ then

R = R + π.σ

else
if Σ/σ = {ε} then � middle language is empty

R = R + π.σ
else

R = R + π.P∗ .σ � P is set of properties in Σ/σ

return R

function PermissionsFromPathSet(Π0, Π, sl, sd)
� Π0 set of prefixes of Π , sampled set of paths, sl, sd suffix length and degree

R← ∅ � result set of access permissions
for all π ∈ Π0 do

R = R + BuildPermissions(π, π\Π,sl, sd)
return R

The final result of this phase applied to the running example is the set of
access permissions {l, h, h.n ∗ .d, h.n ∗ .n}.

Simplifying Access Permissions. The result of the previous phase is not
as concise as it could be. It may still generate redundant access permissions.
Consider the result of the example {l, h, h. ∗ .d, h. ∗ .n}. As this set only contains
read permissions, which are closed under prefix, it follows that permissions h is
subsumed by h. ∗ .d and h. ∗ .n, so that the result is equivalent to (the simpler
set) {l, h. ∗ .d, h. ∗ .n}.

To perform this simplification, we first define a subsumption relation ⊆ on
path permissions.

� ε ⊆ b
� b ⊆ P ′∗ .b′ P ⊆ P ′

� P.b ⊆ P ′∗ .b′
� P.b ⊆ b′

� P.b ⊆ P ′∗ .b′

� b ⊆ b′ P ⊆ P ′

� P∗ .b ⊆ P ′∗ .b′

This relation is sound in the sense that it reflects the semantic subset relation
on sets of accepted access paths.

Lemma 3. If R(π) ≺ b and � b ⊆ b′, then R(π) ≺ b′.

Given this relation, simplification just removes all read path permissions that
are subsumed by other (read or write) path permissions as specified in Fig. 6.
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Fig. 6. Simplification
function Simplify(R, W ) � sets of path permissions, R for reading, W for writing

while (∃b, b′) b ∈ R ∧ (b′ ∈ R ∧ b �= b′ ∨ b′ ∈W )∧ � b ⊆ b′ do
R← R− b

return (R,W)

Fig. 7. Overall algorithm
function Main(Πr, Πw, pl = 1, pd = 1, sl = 0, sd = 1)

� Πr read paths, Πw write paths
� pl, pd prefix length and degree, sl, sd suffix length and degree

Πr
0 ← Prefixespl,pd(Πr) � interesting prefixes of Πr

Πw
0 ← Prefixespl,pd(Πw) � interesting prefixes of Πw

R← PermissionsFromPathSet(Reduct(Πr
0 ), Πr, sl, sd)

W ← PermissionsFromPathSet(ReductW(Πw
0 ), Πw, sl, sd)

(R,W )←Simplify(R,W )
return R.@ + W

In the example, clearly � h ⊆ h.n∗ .d, so that h can be removed from the read
path permissions.

Putting it Together. Fig. 7 summarizes the overall algorithm as explained
up to this point. The parameters that determine the length and degree for the
computation of interesting prefixes and suffixes have default values that yield
good results in our experiments. In addition, our implementation makes them
accessible through the user interface for experimentation, on a global as well as
on a per-function basis.

3.3 Special Cases

There are two special cases of property accesses that lead to extremely high
branching degrees. The first case is that an object is used as an array. The
symptom of this case is the presence of accesses to numeric properties. Our
implementation assumes that arrays contain homogeneous data and collapses
all numeric property names to a single pseudo property name �. This collapsing
already happens when the trie is constructed from the access paths.

Similarly, an object might be used as a hash table. This use leads to the
same high branching degrees as array accesses, but cannot be reliably detected
at trie construction time. Instead, the implementation makes a pre-pass over
the trie that detects nodes with a high number of successors (e.g., set with
the parameter HIGH_DEGREE which defaults to 20), merges these subtries, and
relabels the remaining edge to the merged successor trie with a wildcard pseudo
property name ?.

As the rest of the algorithm does not depend on the actual form of the property
names, the introduction of these pseudo property names is inconsequential.
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3.4 Soundness

To establish the soundness of the algorithm, we need to prove that each element
of the original path set is matched by the extracted access permission. The first
phase, building the trie, is trivially sound. The third simplification phase is sound
by Lemma 3. It remains to consider the second phase. We only examine the case
for read paths with write paths handled similarly.

Suppose π ∈ Π , the initial set of access paths. As Π0 =
Reduct(Prefixesl,d(Π)) is prefix free, there are two possibilities. Either, there
is exactly one element π0 ∈ Π0 such that π0 is a prefix of π, or there is at least
one element π′ ∈ Π0 such that π is a prefix of π′.

In the second case, π′ will be prefix of an access path π′.b with π ≺ π′.b.
In the first case, it remains to show that π0 is extended to an access path that

matches π = π0.π1. Let Σ0 be the set of interesting suffixes of Σ = π0\Π . By
construction, π1 ∈ Σ. We need to show that there is an element σ ∈ Σ0 where
either π1 = σ or π1 ≺ ∗ .σ.

For a contradiction, suppose that neither is the case and let σ be the maximal
suffix of π1 in Σ0 (such σ must exist). If σ is a proper suffix of an element of
Σ0 and σ ∈ Σ, then σ = π1, a contradiction. If Σ/σ = {ε}, then σ = π1, a
contradiction. If Σ/σ �= {ε}, then π1 ≺ ∗ .σ, a contradiction.

Hence, all cases are matched.

4 Implementation
Our effect inference algorithm is implemented as part of the JSConTest system
for contract-based testing of JavaScript programs. JSConTest supports a typical
workflow for unit testing, which starts with augmenting the unit under test with
a specification of the tests that should be performed. Then JSConTest generates
the test cases from the contracts and produces a test report from the outcomes.
The test report either contains concrete evidence that some part of the desired
behavior of the unit under test is incorrect or, if all tests pass, it increases the
confidence that the unit under test behaves according to its specification.

Figure 8 illustrates this workflow. First, the tester specifies the desired prop-
erties of the program under test by annotating functions with contracts. The
resulting annotated source file (Fig. 8, annotated linked−list.js) is passed to the
JSConTest compiler. The compiler generates an instrumented version of the
program (instr. linked−list.js). To test a JavaScript program inside a browser, a
HTML file is needed to start the JSConTest framework and include the nec-
essary files. The result of execution is a test report that documents which of
the contracts are fulfilled by the unit under test. Depending on the parameters
passed to the JSConTest compiler, the instrumented code does not only report
contract violations, but also collects run-time data, for instance, what proper-
ties are accessed during test execution. As the JSConTest run-time framework
is event-driven, it is possible to extend it to execute arbitrary algorithms on
the collected data and thus create comprehensive test reports instead of just
reporting raw data to the user.
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Fig. 8. Overview over JSConTest
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In this work we make use of this feature and let the JSConTest compiler
generate code that reports all property accesses and invokes a handler for doing
effect inference. As the effect inference is an interactive process, which depends
on a number of interactively modifiable parameters, the test report is not just
a static page with the test results, but a dynamic interface that interacts with
the inference algorithm.

5 Evaluation

To evaluate the inference algorithm, we applied it to a few examples and com-
pared the computed access permissions with manually constructed permissions.

The first example is a small third-party library (200 LOC) which implements
a singly-linked list data structure.4 Its interface comprises one constructor for
list nodes and six methods to operate on the list: add, remove, find, indexOf, size,
and toString.

The first step towards effect inference is to come up with contracts for each
of the functions. The result is a source file annotated as in this code snippet:

1 /∗c js:ll.(top) → undefined ∗/
2 function add(data) { ... }
3 /∗c js:ll.(top) → top ∗/
4 function item(index) { ... }
5 /∗c js:ll.(top) → top ∗/
6 function remove(index) { ... }

4 https://github.com/nzakas/computer-science-in-javascript

https://github.com/nzakas/computer-science-in-javascript
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In these contracts, js:ll describes the receiver object, the parenthesized phrase
the types of the arguments, and the phrase following the → the result type. In
particular, js:ll refers to JavaScript function that generates and checks a certain
kind of lists, top stands for any value, and undefined is the undefined value, which
is returned when no return value is given.

The JSConTest compiler picks up the contracts in the special comments, gen-
erates code for assertions derived from the contracts, and creates a test suite
for checking the contracts. This setup enables the tester to test the input/out-
put behavior of all functions using directed random testing as explained in our
previous work [1].

In the current version of JSConTest it is furthermore possible to infer the
effects of the functions as follows. To obtain a first impression what properties
are accessed by the different functions, it is sufficient to add the empty effect
to the contract as in the contract /∗c js:ll.(top) → undefined with [] ∗/ for the add
function. This augmented contract states that the function with this contract is
not allowed to change anything in the heap that already exists before invocation
of the function. Extending the remaining functions’ contracts in the same way
and applying the JSConTest compiler again results in instrumented code that
monitors all property accesses.

When the compiled code executes in a browser, it collects, as a side effect,
thousands of property accesses which violate the empty effect annotation. From
this raw data, our effect inference computes concise access permissions. The
syntax of these permissions is inspired by the syntax of file paths. For example,
the computed effect for add is

this._head, this._head.next∗, this._length

which means that add only accesses objects via its this pointer, it reads and writes
the _head and _length properties, and it reads and writes a next property that
is reachable via _head followed by a sequence of next properties as indicated by
next∗. All three path permissions are write permissions that implicitly permit
reading all prefixes of any path leading to a permitted write.

The computed effect for remove is also interesting:

this._head.next∗.data.@, this._head.next∗, this._length

The function remove deletes a given value from the list. To this end, it compares
this value with all data properties reachable via _head and a sequence of (all
next) properties, as indicates with the first access path. Its ending in @ indicates
a read-only path. Furthermore, remove changes next pointers and modifies the
_length property of this.

Full details of this example are available on the project homepage of JSCon-
Test.5 It presents the outcomes of four examples complete with the annotated
source code, the instrumented source code, and a web page to execute the ex-
ample locally.
5 http://proglang.informatik.uni-freiburg.de/jscontest/

http://proglang.informatik.uni-freiburg.de/jscontest/
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On the webpage, there is another similar example implementing binary search
trees. For these two examples the algorithm infers a precise effect annotation.

As a larger example, which is also detailed on the webpage, we consider the
Richards benchmark from the Google V8 benchmark suite. After annotating
its source code with contracts as outlined above, the effect inference algorithm
automatically obtains informative results albeit less precise than the manually
determined effects that we used in our previous work [2]. This example uncovered
a number of new points for our inference algorithm, in particular, that special
treatment for arrays and objects used as hash tables is required (see Sec. 3.3).
This treatment is also covered in a micro benchmark in the webpage.

6 Related Work

Effect analysis in programming languages has some history already. Initial efforts
by Gifford and Lucassen [4] perform a mere side-effect analysis which captures
allocation as well as reading from and writing to variables. Subsequent work
extends this approach to effects on memory regions which abstract sets of heap-
allocated objects [5,6]. Such an effect describes reading, writing, and allocation in
terms of regions. An important goal in these works is automatic effect inference
[7], because regions and effects are deemed as analysis results in a phase of a
compiler.

Path related properties are also investigated by Deutsch [8], but with the main
goal of analyzing aliasing. His framework is based on abstract interpretation and
offers unique abstract domains that provide very precise approximations of path
properties.

In object-oriented languages, the focus of work on regions and effects is much
more on documentation and controlling the scope of effects than on uncover-
ing optimization opportunities. Greenhouse and Boyland [9] transpose effects
to objects. One particular point of their effect system is that it preserves data
abstraction by not mentioning the particular field names that are involved in
an effect, but by instead declaring effect regions that encompass groups of fields
(even across classes) and by being able to have abstract regions. In contract, our
work is geared towards the scripting language JavaScript, which provides no data
abstraction facilities and where the actual paths are important documentation
of an operation that aids program understanding.

Skalka [10] also considers effects of object-oriented programs, but his effects
are traces of operations. The goal of his is to prove that all traces generated by
a program are safe with respect to some policy. Data access is not an issue in
this work.

The learning algorithm in Sec. 3.2 abstracts a set of access paths to a set
of access permissions, which are modeled after file paths with wildcards. The
more general problem is learning a language from positive examples, which has
been shown to be impossible, as soon as a class of languages contains all of the
finite languages and at least one infinite language [11,12]. Clearly, the class of
regular languages qualifies. Better results can be achieved by restricting the view
to “simple examples” [13] or to more restricted kinds of languages [14].
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Transformation of JavaScript programs is a well-studied topic in work on en-
forcing and analyzing security properties. For example, Maffeis and coworkers
[15] achieve isolation properties between mashed-up scripts using filters, rewrit-
ing, and wrapping. Chugh and coworkers [16] present (among others) a dynamic
information flow analysis based on wholesale rewriting. Yu and coworkers [17]
perform rewriting guided by a security policy. BrowserShield [18] relies on simi-
lar techniques to attain safety. As detailed in our submitted work [2], extensive
rewriting has a significant performance impact and gives rise to subtle semantic
problems. These problems are shared among all transformation-based tools.

7 Conclusion

The current version of JSConTest induces access path permissions from sam-
ple test runs. In many cases, the resulting permissions are as good as manually
determined ones. In the few remaining cases, interactive tweaking of the pa-
rameters is required to obtain good results. Thus, effect inference appears to be
a useful tool to analyze JavaScript programs and enhance their contracts with
effect information.

Effect inference or effect learning removes much of the tedium of declaring
effect annotations for a given program. However, it is important for then infer-
ence to run with tight contracts or/and a test suite with high coverage, since
the inference algorithm can only find a accurate effect annotation, if all aspects
of the code under test are explored.

Tightness of the contract is required because a loose contract essentially causes
the generation of entirely random test cases. It is unlikely that these random test
cases discover the access path pattern of a function. For that reason, some of
our examples rely on custom contracts that generate random values in the shape
expected by the function.

Similarly, if the coverage of a test session is low, then it is likely that some
paths through the input data are never traversed. Thus, high coverage increases
the probability that all access paths are exercised.

One way to circumvent these restrictions is to observe the program running in
the wild and collect and evaluate the resulting trace data. To be most effective
and efficient, this approach would require instrumenting a JavaScript engine
to collect the required access traces. Our evaluation back end and inference
algorithm, however, would remain the same.
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Abstract. Every new programming technique makes claims that software 
engineers want to hear. Such is the case with aspect-oriented programming 
(AOP). This paper describes a quasi-controlled experiment which compares the 
evolution of two functionally equivalent programs, developed in two different 
paradigms. The aim of the study is to explore the claims that software 
developed with aspect-oriented languages is easier to maintain and reuse than 
this developed with object-oriented languages. We have found no evidence to 
support these claims. 

Keywords: AOP, maintainability, reusability, separation of concerns. 

1   Introduction 

Object-oriented programming (OOP) aims to support software maintenance and reuse 
by introducing concepts like abstraction, encapsulation, aggregation, inheritance and 
polymorphism. However, years of experience have revealed that this support is not 
enough. Whenever a crosscutting concern needs to be changed, a developer has to 
make a lot of effort to localize the code that implements it. This may possibly require 
him to inspect many different modules, since the code may be scattered across several 
of them. 

An essential problem with traditional programming paradigms is the tyranny of the 
dominant decomposition [36]. No matter how well a software system is decomposed 
into modules, there will always be concerns (typically non-functional ones) whose 
code cuts across the chosen decomposition [25]. The implementation of these 
crosscutting concerns will spread across different modules, which has a negative 
impact on maintainability and reusability. 

The need to achieve better separation of concerns (SoC) gave rise to aspect-
oriented programming (AOP) [19]. The idea behind AOP was to implement 
secondary concerns as separate modules, called aspects. AOP has been proven to be 
effective in lexically separating different concerns of the system [33]. However, the 
influence of AOP on other quality attributes is still unclear.  



164 A. Przybyłek 

 

On the one hand, replacing code that is scattered across many modules by a single 
aspect can potentially reduce the number of changes during maintenance [27]. In 
addition, modules may be easier to reuse, since they implement single concerns and 
do not contain tangled code. 

On the other hand, constructs such as pointcuts and advices can make the ripple 
effects in aspect-oriented (AO) systems far more difficult to control than in OO 
systems. Current AO languages rely on referencing structural properties of the 
program such as naming conventions and package structure. These structural 
properties are used by pointcuts to define intended conceptual properties about the 
program. The obliviousness property of AspectJ implies that the underlying system 
does not have to prepare any hooks, or in any way depend on the intention to apply an 
aspect over it [18]. Thus, maintenance changes that conflict with the assumptions 
made by pointcuts introduce defects [27]. This phenomenon is called the pointcut 
fragility problem [20]. It occurs when a pointcut unintentionally captures or misses a 
given join point as a consequence of seemingly safe modifications to the base code 
[20], [27]. Kästner et al. [17] reported such silent changes during AO refactoring. 

Obliviousness also leads to programs that are unnecessarily hard to understand 
[14]. Since not all the dependencies between the modules in AO systems are explicit, 
an AO maintainer has to perform more effort to get a mental model of the source code 
[35]. Creating a good mental model is crucial to understand the structure of a system 
before attempting to modify it [24]. Studies of software maintainers have shown that 
30% to 50% of their time is spent in the process of understanding the code that they 
have to maintain [11], [34], [13].  

Moreover, incremental modifications and code reuse are not directly supported for 
the new language features of AspectJ [15]. In particular, concrete aspects cannot be 
extended, advice cannot be overridden, and concrete pointcuts cannot be overridden. 
Hanenberg & Unland proposed four rules of thumb [15], which allow one to build 
reusable and incrementally modifiable aspects. However, enormous complexity is the 
price that has to be paid for it. 

2   Motivations 

Many unsupported claims have been made about AOP. Here are a few examples: 

• AOP “can be seen as a way to overcome many of the problems related to software 
evolution” [25]. 

• AOP “produces code that is simpler and more maintainable, as well as increasing 
the flexibility, extensibility and re-usability of the separated concerns” [3]. 

• AO software “is supposed to be easy to maintain, reuse, and evolution” [41]. 
• AOP leads to “the production of software systems that are easier to maintain and 

reuse” [33]. 
• AOP “increases understandability and eases the maintenance burden, because 

modules tend to be more cohesive and less coupled” [22]. 

It is commonly acknowledged that designs with low coupling and high cohesion lead 
to software that is both, more reusable and more maintainable. Table 1 enumerates 
work that documented these relationships. Since in our previous study [30] we did not 
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find empirical evidence that AOP increases cohesion, but we found that AOP 
increases coupling, we doubt the claims about the positive impact of AOP on 
reusability and evolvability. However, we do not intend to reject these claims as 
invalid with indirect evidences. Therefore, we conduct a quasi-experiment. We 
assume that the reader has a basic knowledge of AspectJ programming. 

Table 1. Impact of coupling and cohesion on reusability and maintainability 

 reusability maintainability 
coupling [5], [16] [5], [16], [6], [8], [23]
cohesion [5], [4] [5], [29] 

3   Measurement System 

In order to identify the metrics to be collected during the study, we used the G-Q-M 
(Goal-Question-Metric) approach [2]. G-Q-M defines a measurement system on three 
levels (Fig. 1) starting with a goal. The goal is refined in questions that break down 
the issue into quantifiable components. Each question is associated with metrics that, 
when measured, will provide information to answer the question. 

GOAL

Purpose comparison

Issue software evolvability and reusability

Object
OO and AO implementations of a 
queue data structure, that undergoes
five functionality increments

Viewpoint software maintainers

How easy is it
to reuse

the existing code?

How easy is it
to evolve

the system?

Reuse
Level

Atomic
Changes

 

Fig. 1. GQM diagram of the study 

Our goal is to compare AO and OO systems with respect to software evolvability 
and reusability from the viewpoint of the developer. Evolvability and reusability are 
quality characteristics that we cannot measure directly. Instead, we can perform an 
experiment that involves maintenance tasks and then we can measure how much 
effort is required to evolve the system and how much of the existing code can be 
reused in the consecutive release. 

The amount of reuse is usually measured by comparing the number of reused 
"items" with the total number of "items" [12], where items depend on the granularity 
chosen, e.g. lines of code (LOC), function, or class. Since we are going to measure 
code reuse, we have chosen the granularity of LOC, yet we count only these reused 
lines that are part of the modules reused by applying the composition mechanisms of 
the underlying programming language. Thus, our reuse level metric is defined as: 
LOC_of_reused_modules / total_LOC_in_system. 
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The evolution metric we use is based on previous studies performed by Zhang et 
al. [40] and Ryder & Tip [32]. In their work, the difficulty of evolvability is defined in 
terms of atomic changes to the modules in a program. At the core of this approach is 
the ability to transform source code edits into a set of atomic changes, which captures 
the semantic differences between two releases of a program. Zhang et al. [40] 
presented a catalog of atomic changes for AspectJ programs. For the purpose of our 
study, we have slightly modified their catalog. Firstly, we consider deleting a non-
empty element as an atomic change. Secondly, we use the term “module” as a 
generalization of class, interface, and aspect. Our list of atomic changes is follows: 
add an empty module, delete a module, add a field, delete a field, add an empty 
method, delete a method, change body of method, add an empty advice, delete an 
advice, change an advice body, add a new pointcut, change a pointcut body, delete a 
pointcut, introduce a new field, delete an introduced field, change an introduced field 
initializer, introduce a new method, delete an introduced method, change an 
introduced method body, add a hierarchy declaration, delete a hierarchy declaration, 
add an aspect precedence, delete an aspect precedence, add a soften exception 
declaration, delete a soften exception declaration. 

4   Empirical Evaluation 

The difficulty of performing evolvability and reusability evaluation in AOP is that 
there are not yet industrial maintenance reports for AO software projects available for 
analyses. Thus, we have to simulate maintenance tasks in a laboratory experiment. 
We compare OOP with AOP on a classical producer-consumer problem. In a 
producer-consumer dilemma two processes (or threads), one known as the “producer”  
and the other called the “consumer”, run concurrently and share a fixed-size buffer. 
The producer generates items and places them in the buffer. The consumer removes 
items from the buffer and consumes them. However, the producer must not place an 
item into the buffer if the buffer is full, and the consumer cannot retrieve an item from 
the buffer if the buffer is empty. Nor may the two processes access the buffer at the 
same time to avoid race conditions. If the consumer needs to consume an item that the 
producer has not yet produced, then the consumer must wait until it is notified that  
the item has been produced. If the buffer is full, the producer will need to wait until 
the consumer consumes any item. 

We assume to have an implementation of a cyclic queue as shown in Fig. 2a. The 
put(..) method stores one object in the queue and get() removes the oldest one. The 
nextToRemove attribute indicates the location of the oldest object. The location of a 
new object can be computed using nextToRemove, numItems (number of items) and 
buf.length (queue capacity). We also have an implementation of a producer and a 
consumer. 

The experiment encompasses five maintenance scenarios which deal with the 
implementation of a new requirement. We have selected them because they naturally 
involve the modification of modules implementing several concerns. 
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4.1   Adding a Synchronization Concern 

To use Queue in a consumer-producer system an adaptation to a concurrent 
environment is required. A thread has to be blocked when it tries to put an element 
into a full buffer or when it tries to get an element from an empty queue. In addition, 
both put(..) and get() methods have to be executed in mutual exclusion. Thus, they 
have to be wrapped within synchronization code when using Java (Fig. 2b). Since the 
code supporting the secondary concern may throw an exception, there is also a 
technical concern of error handling. The core concern here is associated with adding 
and removing item from the buffer. The presented implementation tangles the code 
responsible for the core functionality with the code responsible for handling errors 
and for cooperating synchronization. Moreover, the implementation of both secondary 
concerns are scattered through the accessors methods. As a result, the put(Object) and 
get() methods contain similar fragments of code.  

 

Fig. 2. a) An initial implementation; b) A new class for Stage I 

Lexical separation of concerns can be achieved by using AO constructs (Fig. 3). 
The secondary concerns are implemented in ErrorHandler and SynchronizedQueue. 
SynchronizedQueue::waiting() is a hook method to introduce an explicit extension 
point. This joinpoint is used by ErrorHandler to wrap wait() invocation. Despite  
of lexical separation, SynchronizedQueue is explicitly tied to the Queue class,  
and so cannot be reused in other contexts. Moreover, Queue is oblivious of 
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Fig. 3. New aspects for Stage I 

SynchronizedQueue. This makes it difficult to know what changes to Queue will lead 
to undesired behavior. 

4.2   Adding a Timestamp Concern 

After implementing the buffer a new requirement has occurred – the buffer has to 
save current time associated with each stored item. Whenever an item is removed, the 
time how long it was stored should be printed to standard output. A Java programmer 
may use inheritance and composition as reuse techniques (Fig. 4a). The problem is 
that three different concerns are tangled within put/get and so these concerns cannot 
be composed separately. It means that e.g. if a programmer wants a queue with timing 
he cannot reuse the timing concern from TimeBuffer; he has to reimplement the 
timing concern in a new class that extends Queue. A slightly better solution seems to 
be using AOP and implementing the timing as an aspect (Fig. 4b). 

Unless explicitly prevented, an aspect can apply to itself and can therefore change 
its own behavior. To avoid such situations, the instantiation pointcut is guarded by 
!cflow(within(Timing)). Moreover, the instantiation pointcut in SynchronizedQueue 
has to be updated. It must be the same as in Timing. This can be done only 
destructively, because AspectJ does not allow for extending concrete aspects. 
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Fig. 4. a) The TimeBuffer class; b) The Timing aspect 

4.3   Adding a Logging Concern 

The buffer has to log its size after each transaction. The OO mechanisms like 
inheritance and overridden allow a programmer for reusing TimeBuffer (Fig. 5a). The 
only problem is that four concerns are tangled within the LogTimeBuffer class. A 
module that addresses one concern can generally be used in more contexts than one 
that combines multiple concerns.  

The AO solution is also noninvasive and it reuses the modules from the earlier 
stages. It just requires defining a new aspect (Fig. 5b). When advice declarations 
made in different aspects apply to the same join point, then by default the order of 
their execution is undefined. Thus, the declare precedence statement is used to force 
timing to happen before logging. The bufferChange pointcut enumerates, by their 
exact signature, all the methods that need to captured. Such pointcut definition is 
particularly fragile to accidental join point misses. An evolution of the buffer will 
require revising the pointcut definition to explicitly add all new accessor methods to 
it. 
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Fig. 5. a) A new class for Stage III; b)  The Logging aspect 

4.4   Adding a New Getter 

The buffer has to provide a method to get “N” next items. There is no efficient 
solution of this problem neither using Java nor AspectJ. In both cases, the condition 
for waiting on an item has to be reinforced by a lock flag. A lock flag is set when 
some thread initiates the “get N” transaction by getting the first item. The flag is unset 
after getting the last item. In Java (Fig. 6a), not only does the synchronization concern 
has to be reimplemented but also logging. The reason is that in LogTimeBuffer 
logging is tangled together with synchronization, so it cannot be reused separately. 
The duplicate implementation might be a nightmare for maintenance. 

 

Fig. 6. a) A new class for Stage IV; b) Modifications in the pointcuts 

In AspectJ, although synchronization is implemented in a separate module, it also 
cannot be reused in any way because an aspect cannot extend another concrete aspect. 
Thus, all code corresponding to the synchronization concerns has to be 
reimplemented (Fig. 7). A new method to get N items and locking mechanism are 
introduced to Queue by means of inter-type declaration. 
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Fig. 7. A new aspect for Stage IV 

In addition, destructive changes in the Logging::bufferChange() pointcut are required 
(Fig. 6b). Otherwise logs would be reported n times in response to the get(int n) 
method, instead of just once after completing the transaction. This is due to that 
get(int n) uses get() for retrieving every single item from the buffer. Furthermore, the 
ErrorsHandler::waiting() pointcut also needs adjusting to the new decomposition. 

4.5   Removing Logging and Timestamp 

A programmer needs the enhanced buffer from Stage IV, but without the logging and 
timing concerns. In Java, he once again has to reimplement the get(int) method and 
much of the synchronization concerns. All to do in the AO version is to remove 
Logging and Timing from the compilation list. 

5   Lessons Learned 

In an AO system, one cannot tell whether an extension to the base code is safe simply 
by examining the base program in isolation. All aspects referring to the base program 
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need to be examined as well. In addition, when writing a pointcut definition a 
programmer needs global knowledge about the structure of the application. E.g. when 
implementing the Timing aspect, a programmer has to know that the current 
implementation of the synchronization concern affects each Queue structure, while 
the timing concern requires a non-blocking Queue. 

Moreover, when a system includes multiple aspects, they can begin to affect each 
other. At Stage C, we have had to explicitly exclude logging the state of the queue 
that is used by the Timing aspect. Furthermore, we have observed the problem of 
managing interactions between aspects that are being composed. When advice 
declarations made in different aspects affect the same join point, it is important to 
consider the order in which they execute. Indeed, a wrong execution order can break 
the program. In our experiment, we have used precedence declarations to force timing 
to happen before logging and to force both of them to happen within the 
synchronization block. 

In most cases, aspects cannot be made generic, because pointcuts as well as 
advices encompass information specific to a particular use, such as the classes 
involved, in the concrete aspect. As a result, aspects are highly dependent on other 
modules and their reusability is decreased. E.g. at Stage I, the need to explicitly 
specify the Queue class and the two synchronization conditions means that no part of 
the SynchronizedQueue aspect can be made generic. In addition, we have confirmed 
that the reusability of aspects is also hampered in cases where “join points seem to 
dynamically jump around”, depending on the context certain code is called from [3]. 
Moreover, the variety of pointcut designators makes pointcut expressions 
cumbersome (see EnhancedSynchronizedQueue::call_get()). 

Some advocates of AOP believe that appropriate tools can deal with the problems 
of AOP we encountered. We think that they should reject AOP at all, since some 
research [31] “shows” that OOP with a tool support solves the problem of 
crosscutting concerns:) 

6   Empirical Results 

Table 2 presents the number of Atomic Changes and Reuse Level for both releases for 
every stage. The measures were collected manually. Lower values are better for 
Atomic Changes but worse for Reuse Level. AOP manifests superiority at Stage III 
and V, while OOP in the rest of the cases. At Stage III we have implemented a 
logging concern which is one of the flagship examples of AOP usage. At this Stage, 
the OO version requires significantly more atomic changes and new lines of code than 
its AO counterpart. At Stage V, the maintenance tasks are focused on detaching  some 
concerns instead of implementing new ones. The AO solution has turned out to be 
more pluggable. 
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Table 2.  Number of Atomic Changes and Reuse Level per stage 

 

7   Threats to Validity 

7.1   Construct Validity 

Construction threats lie in the way we define our metrics. Evolvability and reusability 
like other quality factors are difficult to measure. Our dependent variables are based 
on previous studies performed by Zhang et al. [40], Ryder & Tip [32] and Frakes 
[12]. It is possible that other metrics will be better fitted for the purpose of our study. 

7.2   Internal Validity 

Internal validity of our experiment concerns the question whether the effects were 
caused only by the programming paradigm involved, or by other factors. The 
experiment has been carried out by the author during his research for the achievement 
of a Doctor of Philosophy Degree. As the author does not have any interest in favour 
of one approach or the other, we do not expect it to be a large threat. Nevertheless, 
other programmers could have chosen the different strategies for implementing 
secondary concerns. 

7.3   External Validity 

Synchronization, logging, and timing present the typical characteristics of 
crosscutting concerns and as such they are likely to be generalizable to other 
concerns. Unfortunately, the limited number of maintenance tasks and size of the 
program make impossible the generalization of our results. However, the academic 
setting allows us to present the whole programs in detail and to put forward some 
advantages and limitations of AOP. 

8   Related Work 

Coady & Kiczales [9] compared the evolution of two versions (C and AspectC) of 
four crosscutting concerns in FreeBSD. They refactored the implementations of the 
following concerns in v2 code: page daemon activation, prefetching for mapped files, 
quotas for disk usage, and tracing blocked processes in device drivers. These 
implementations were then rolled forward into their subsequent incarnations in v3 and 
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v4 respectively. In each case they found that, with tool support, the AO 
implementation better facilitated independent development and localized change. In 
three cases, configuration changes mapped directly to modifications to pointcuts and 
makefile options. In one case, redundancy was significantly reduced. Finally, in one 
case, the implementation of a system-extension aligned with an aspect was itself 
better modularized.  

Bartsch & Harrison conducted an experiment [1] in which 11 students were asked 
to carry out maintenance tasks on one of two versions (Java and AspectJ) of an online 
shopping system. The results did seem to suggest a slight advantage for the subjects 
using the OO version since in general it took the subjects less time to perform 
maintenance tasks and it averagely required less line of code to implement a new 
requirement. However, the results did not show a statistically significant influence of 
AOP at the 5% level. 

Sant’Anna et al. [33] conducted a quasi-controlled experiment to compare the use 
of OOP and AOP to implement Portalware (about 60 modules and over 1 KLOC). 
Portalware is a multi-agent system (MAS) that supports the development and 
management of Internet portals. The experiment team (3 PhD candidates and 1 M.Sc. 
student) developed two versions of the Portalware system: an AO version and an OO 
version. Next, the same team simulated seven maintenance/reuse scenarios that are 
recurrent in large-scale MAS. For each scenario, the difficulty of maintainability and 
reusability was defined in terms of structural changes to the artifacts in the AO and 
OO systems. The total lines of code, that were added, changed, or copied to perform 
the maintenance tasks, equaled 540 for the OO approach and 482 for the AO 
approach. 

Kulesza et al. [21] present a quantitative study that assesses the positive and 
negative effects of AOP on typical maintenance activities of a Web information 
system.They compared the AO and OO implementations of a same web-based 
information system, called HealthWatcher (HW). The main purpose of the HW 
system is to improve the quality of services provided by the healthcare institution, 
allowing citizens to register complaints regarding health issues, and the healthcare 
institution to investigate and take the required actions. In the maintenance phase of 
their study, they changed both OO and AO architectures of the HW system to address 
a set of 8 new use cases. The functionalities introduced by these new use cases 
represent typical operations encountered in the maintenance of information systems. 
Although they claim that the AO design has exhibited superior reusability through the 
changes, there is no empirical evidence to support this claim. The collected metrics 
show only that aspects contributed to: (1) the decrease in the lines of code, number of 
attributes, and cohesion; (2) the increase in the vocabulary size and lexical separation 
of crosscutting concerns. They also tried to evaluate coupling, but in our earlier study 
[30] we argued why their coupling metric is invalid. An additional interesting 
observation from Kulesza’s study [21] is that more modules were needed to be 
modified in the AO version, because it requires changing both the classes along the 
layers to implement the use case functionality and the aspects implementing the 
crosscutting issues. 

Munoz et al. [28] showed that aspects offer efficient mechanisms to implement 
crosscutting concerns, but that aspects can also introduce complex errors in case of 
evolution. To illustrate these issues, they implemented and then evolved a chat 
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application. They found that it is very hard to reason about the aspects impact on the 
final application. 

Mortensen et al. [26] examined the benefits of refactoring three legacy applications 
developed by Hewlett-Packard. They followed the evolution of the applications across 
several revisions. The modifications needed to evolve these systems required changes 
to fewer software items in the refactored systems when compared to the original. The 
reduction of the average number of modules and files changed between revisions was 
4% and 3% respectively. 

Taveira et al. conducted two studies to check if AOP promotes greater reuse of 
exception handling code than a traditional, OO approach. In the first study [38], they 
assessed the suitability of AOP to reuse exception handling code within applications. 
They refactored three medium-size applications implemented originally in Java. 
Aspects were used to implement the exception handlers. Though AOP promoted a 
large amount of reuse of error handling code, the overall size of the refactored 
systems did not decrease due to the code overhead imposed by AspectJ. The number 
of handlers was sensibly lower in the refactored versions but the amount of error 
handling code was much higher. In the second study [37], they refactored seven 
medium-size systems to assess the extent to which AOP promotes inter-application 
reuse of exception handling code. They found out that reusing error handling across 
applications is not possible in most of the cases and requires some a priori planning. 
Only extremely simple handlers could be reused across applications. 

The experiment closest to ours is the one conducted by Figueiredo et al. [10] in 
which they quantitatively and qualitatively assess the positive and negative impacts of 
AOP on a number of changes applied to MobileMedia. MobileMedia is a software 
product line for applications with about 3 KLOC that manipulate photo, music, and 
video on mobile devices. The original release was available in both AspectJ and Java 
(the Java versions use conditional compilation as the variability mechanism). Then, a 
group of five post-graduate students was responsible for implementing the successive 
evolution scenarios of MobileMedia. Each new release was created by modifying the 
previous release of the respective version. A total of seven change scenarios were 
incorporated. The scenarios comprised different types of changes involving 
mandatory, optional, and alternative features, as well as non-functional concerns. 
Figueiredo et al. found that AOP usually does not cope with the introduction of 
mandatory features. The AO solution generally introduced more modules and 
operations. A direct result of more modules and operations is the increase in LOC. 
Moreover, depending on the evolution scenario, AspectJ pointcuts were more fragile 
than conditional compilation. In order to compare their and our results, we have 
derived the simplest form of Reuse Level and Atomic Changes (Table 3) from their 
measures. Atomic Changes has been limited to counting operations only, while Reuse 
Level has been calculated as: number_of_reused_LOC / LOC. In general, the 
measures demonstrate that there is no winner with respect to Reuse Level. The AO 
solution is significantly better only at Stage VII. With regard to Atomic Changes, the 
OO implementations are superior for every release. 
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Table 3. Atomic changes and Reuse Level in MobileMedia 

 

7   Summary 

In 2001 the editors of January/February “MIT Technology Review” announced AOP 
as a standard in the commercial production of software in the next 15 years. 
Nowadays, ten years later, AOP is still not widely adopted. We believe that, the 
transfer of AOP to the mainstream of the software development  depends on our 
ability to find its true benefits and to be aware of its potential pitfalls. In this paper, 
we have evolved a simple program in order to assess the potential of AOP to improve 
evolvability and reusability in the presence of crosscutting concerns. Although a 
definitely conclusion cannot be drawn from only the one discussed experiment, an 
important outcome has been achieved in that the advocates of AOP have to take a 
position on our results. By reviewing other research, we have shown that the claims 
presented in Section 2 are not backed up by any convincing evidence. In our study, 
the superiority of AOP has been observed only when detaching secondary concerns 
and when implementing logging, which is a flagship example of AOP usage. OOP has 
fared better in implementing secondary concerns in three out of four scenarios. 

The experience gathered during the maintenance tasks points out that (1) 
understanding the intricate dependencies existing between the modules of an AO system 
is an arduous task; (2) aspects are holding too much information (the crosscutting logic 
and target module information) to fully take advantage of lexical SoC. Thus, it seems 
that the abstractions that AOP has provided to solve some of the evolution problems 
with traditional software, actually introduce a series of new evolution problems. This 
phenomenon has been called the evolution paradox of AOP [39], [28].  
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Abstract. To support roles and similar notions involving multiple views
on an object, languages like Object Teams and CaesarJ include mecha-
nisms known as lifting and lowering. These mechanisms connect pairs of
objects of otherwise unrelated types, and enables programmers to con-
sider such a pair almost as a single object which has both types. In the
terminology of Object Teams this is called translation polymorphism. In
both Object Teams and CaesarJ the type system of the Java program-
ming language has been extended to support this through the use of
advanced language features. However, so far the soundness of transla-
tion polymorphism has not been proved.

This paper presents a simple model that extends Featherweight Java
with the core operations of translation polymorphism, provides a Coq
proof that its type system is sound, and shows that the ambiguity prob-
lem associated with the so-called smart lifting mechanism can be elimi-
nated by a very simple semantics for lifting.
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1 Introduction

In this paper we investigate the mechanisms lifting and lowering that provide
a means to connect pairs of objects of otherwise unrelated types; mechanisms
that have existed since 1998 [15,16,17], but have so far not been proved sound.
The Object Teams/Java language (OT/J) [11,9] calls them translation polymor-
phism [10].

OT/J is an extension of the Java programming language [8] that facilitates
non-invasive customisation through addition of code instead of modification.
This is done by introducing two new types of classes called teams and roles.
Roles solve many of the same problems as aspects [14,13], i.e. extension of ex-
isting code; teams provide the means of controlling which roles are active, along
with state that is shared between roles in the team. In other words teams pro-
vide the context for families of related roles, and in fact teams implement family
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polymorphism [5]. Furthermore teams can inherit and extend the roles of their
super class, a feature known as virtual classes [7]. Each role is connected to a
regular class, the base class, through a special playedBy relation, making these
two objects seem almost like a single object. The mechanisms lifting and low-
ering use the playedBy relation and provide the translation between roles and
base classes. In situations where a role is expected but a base class is given,
lifting translates the base class object into the appropriate role. Similarly if a
base class object is expected but a role is given, lowering translates the role
into the base class object. In both cases the role and the base are connected via
the playedBy relation, either through smart lifting (OT/J) or through a flexible
invariant on the playedBy relation (this calculus). In OT/J lifting works across
inheritance hierarchies on both the role side and the base side. Smart lifting is an
algorithm that lets the run-time system choose the most specific role for a base
class. We note that smart-lifting makes it possible to make old code produce
errors without modifying it, due to the fact that it tries to always provide the
most specific role when lifting. This calculus features a straightforward lifting
operation that is always safe. OT/J is defined in terms of its implementation
and a language specification document. A soundness proof for the extensions to
the Java programming language type system has not been presented so far. For
the full details on OT/J see [11].

The main contributions of this paper are: a minimal calculus of translation
polymorphism, along with a full soundness proof of this calculus; a resolution
of the ambiguity problems of smart lifting through a straightforward semantics
for the lifting operation; and a description of a safe language design space for
languages with translation polymorphism. The soundness proof is made using the
Coq proof assistant [2], on the basis of a Featherweight Java (FJ) [12] soundness
proof by De Fraine et al. [3].

Excluding comments and empty lines, the modifications to the FJ source code
amount to ∼550 changed lines of code and ∼400 new. To put these numbers into
context, the original FJ source code is ∼1000 lines of code. The introduction of
roles had a large impact in general, while lifting and lowering mainly resulted in
an increase in the number of cases for the safety properties.

The concepts described in this paper are not specific to OT/J, and thus no
previous knowledge of OT/J is required. However, we use some terminology
of OT/J which will be explained as it is introduced. The rest of this paper
is structured as follows. In section 2 we describe our choice of features for this
calculus, give an example program, and describe the way objects are represented.
Section 3 presents the calculus and gives the proof of standard type soundness.
Section 4 discusses the semantics of lifting in more detail. In section 5 related
and future work is discussed, and in section 6 the paper is concluded.

2 The Model

In this section we first argue why we do not model various features of OT/J. After
that an example of a program written in the calculus is provided. The example is
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used to highlight some problems with the lifting operation that demand careful
consideration, and we present our solution to these problems. Finally, because our
representation of objects is non-standard, we conclude this section by describing
objects.

We ignore all features of OT/J that are not at the core of translation poly-
morphism. Thus the following features are not part of the model: teams, team
activation, call-in bindings, and call-out bindings.

Teams are not in the model because the only part they play in relation to
translation polymorphism is to contain roles. Instead of being contained in teams
roles are top-level classes. It may seem surprising that our model omits teams,
because their semantics are at the core of the semantics of OT/J (just like classes
containing cclasses are at the core of CaesarJ). However, we do not need to
model the support for virtual classes in order to establish a universe which is
sufficiently rich to support a model of lifting and lowering with a semantics that
mirrors the behaviour of full-fledged languages. In fact, the connected pairs of
roles and base objects in OT/J can simply be modelled as a cloud of objects with
a label pointing to the currently active one. An object in our calculus is then
such a cloud, which is just a finite set of objects of which one is an instance of a
normal class (the base object), and the remaining objects are instances of role
classes: the set of roles which the base class is currently playing. Such an object
cloud works as the base object when its label points to the base object, and as a
role object when its label points to one of the role objects. Lowering just means
changing the label from one of the role objects to the base object, and lifting
means changing the label from the base object to one of the roles in the cloud.
In case the base object has not yet played the role which is requested in a lifting
operation, a fresh instance of that role is created and added to the cloud. This
semantics corresponds to a redistribution of the role objects in OT/J, where
each team is responsible for storing existing roles of that team in some internal
data structure managed by the language run-time. In this way, not modelling
teams is in some sense equivalent to restricting OT/J to a single global and
always active team, inside which every role is defined. Without teams there is no
need for modelling the team activation constructs. As our aim is to stay close to
the implementation of translation polymorphism in OT/J, in which a legal base
class is not a role of the same team [11], we do not allow roles to be playedBy
another role.

Call-in and call-out bindings provide the Aspect-Oriented Programming fea-
tures of OT/J, and are thus unrelated to the core of translation polymorphism.
Lifting and lowering do occur inside these bindings, but not in a way that is
different from regular method and constructor invocations.

To summarise, translation polymorphism is defined by roles and the opera-
tions lifting and lowering. Thus those are the concepts we add to FJ. Roles are
restricted in two ways: they cannot be part of an inheritance hierarchy, and
they cannot have state. Fields in roles are inessential because roles may still
add non-trivial behaviour to a base object by accessing its fields. Moreover, in a
calculus that does not support mutable state, role objects with fields would have
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to initialise their fields to values that could as well be computed when needed.
In other words, state could easily be added to roles, but it would be essentially
useless unless the calculus were extended with mutable state. This may be an
interesting extension in itself, but in line with FJ we claim that a calculus with-
out mutable state is capable of producing a useful analysis of the soundness of
an object-oriented language, and that is the approach we have taken here. The
main reason for disallowing role inheritance is that it simplifies the calculus, and
thus the soundness proof, yet still allows us to model the core semantics of lifting
and lowering.

2.1 Example

Let us demonstrate with an example what a program looks like in our calculus,
see figure 1. The class Point is a regular FJ class that describes a point in the

class Point extends Object {

int x;

int y;

Point(int x, int y) { this.x = x; this.y = y; }

}

class Location playedBy Point {

string getCountry() {

int x = lower(this).x;

int y = lower(this).y;

string country = "DK"; // placeholder for (possibly advanced)

// computation converting a point in

// the plane to the name of a country

return country;

}

}

lift(new Point(3,4), Location).getCountry();

Fig. 1. Example

plane. Location is a role class that is playedBy Point, and provides a view of
points in the plane as physical locations on a map of the world. A new instance
of Point is lifted to a Location, which makes it possible to call the method
getCountry on that object. getCountry shows how members of the base class
are accessed: using the lower keyword to retrieve the base class object.

As an example of the difference between our lifting operation and the smart
lifting operation of OT/J consider the following situation, where we assume
that role inheritance is part of our calculus and that playedBy is required to
be covariant (as in OT/J): we might have a class 3DPoint that extends Point,
and two classes SpaceLocation and SeaLocation that both extend Location
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and are playedBy 3DPoint. In OT/J this could lead to a run-time error due to
ambiguity [10], because the smart lifting algorithm would not know whether to
lift to SpaceLocation or SeaLocation, given an instance of 3DPoint and target
role Location. In our calculus we avoid this problem because lifting always
returns an instance of the requested role.

As mentioned in section 1, smart lifting introduces the possibility of making
old code fail without modifying it. This is due to the ambiguity mentioned above;
a piece of code that looks safe when viewed in isolation might years later become
the source of lifting errors because new code can extend old roles, thereby cre-
ating an inheritance hierarchy with similar structure as the previous example.
A compile-time warning can be given for the new code, but the old code is not
necessarily available so the warning cannot point out which part of the program
may fail. This requires a whole program analysis at compile time, which in turn
requires that all sources are available. A lifting operation in the old code is now
possibly passed a base class object from the new code that makes the lifting
operation fail at run-time.

As we have removed the ambiguity of lifting this problem does not exist in
our calculus. In general it is always safe to return a role R that is a subtype of
the statically required role R1, as long as R is a super type of the role Rn−1 after
which the hierarchy fans out. This is illustrated in figure 2. For Rn,1 and Rn,2,
an “ambiguous lifting” error must be raised at run-time unless a choice can be
made based on a separate user-defined priority system or something similar.

B1

...

Bn

R1
pB

...

Rn−1
pB

Rn,1

pB

Rn,2

pB

Fig. 2. When a lifting operation lifting to R1 is given a base class object of type Bn it
is always safe to return a role object between R1 and Rn−1 (inclusive)

2.2 Objects

This calculus uses objects with more structure than what is common among cal-
culi in the FJ family. As mentioned, what we think of as an object is represented
by a cloud of objects. In this section we explain in more detail what requirements
this cloud must satisfy, and why.
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These requirements are in fact influenced by the possible semantics of the
lifting operation. The lifting operation is capable of delivering a role whose
playedBy class is a strict supertype of the class of the base object of the cloud.
This means that we may obtain a Location role from a 3DPoint object, even
though Location specifies that it is playedBy a Point. The obvious alternative
would be to insist that the cloud contains only roles that directly specify the
class of the base object as its playedBy class. However, it is necessary in order
to preserve type soundness to allow for a flexible invariant. The two situations
are illustrated in Fig. 3.

B

R1

pB

R2

pB R3
pB

A

B

R1

pB

R2

pB

R3
pB

Fig. 3. Left: an object cloud containing only roles directly playedBy the base class.
Right: an object cloud containing roles playedBy super types (A) of the base class (B).

Assume we have a class 3DPoint that extends Point from the previous exam-
ple. The wrapper method for the lifting operation, shown in figure 4, illustrates
the problem. makeLocation might be called with a p that is an instance of

Location makeLocation(Point p) {

return lift(p, Location);

}

Fig. 4. Example

3DPoint at run-time. Thus if lifting is unable to lift to roles playedBy super
types this might get stuck at run-time. This is obviously also a problem for any
full-fledged language which contains our calculus as a sub language, because pro-
grams may choose to omit the use of inheritance for roles. Moreover, the use of
inheritance will not make the problem go away. Given that FJ is a sub language
of Java, our calculus is essentially a sub language of any language that supports
translation polymorphism; hence this property applies to them all.

In the Point and Location example we included a standard new expression
for the creation of an object. The formal calculus does not include such an
expression; instead it directly creates an object cloud containing a base object
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and a list of roles. It would be easy to define a surface language that includes
traditional new expressions and a preprocessing stage that transforms them to
cloud creation expressions with an empty role list. In this situation programs
would never create clouds with pre-existing roles, they would always come into
existence on demand during a lifting operation. However, we note that the actual
calculus is safe even without the restriction that all roles are created on demand.
We discuss this issue in more detail in section 4.

Before we give the formal definition of the calculus, figure 5 provides the
intuitive relation between the base class type hierarchy and the evaluation and
typing rules for lifting and lowering.

Evaluation & typing

Lifting

Typing

Evaluation

Lowering

Fig. 5. The relation between the base class hierarchy and lifting/lowering expressions.
Lifting both types and evaluates to roles of a super type. Lowering types to the roles’
base but evaluates to a subtype of it.

3 Formal Definition of Lifted Java

In this section we present the formal definition of the calculus. Staying in the
same style as FJ, we use a sequence notation similar to the one used in the
original article on FJ [12], i.e. writing e.g. C means C1 . . .Cn, for some n ≥ 0. This
also applies to binary arguments, such that C f means C1 f1 . . . Cn fn. We use • to
denote the empty list. In the following, the meta variables C and D range over class
names; R ranges over role names; G can be both class and role names; f ranges
over field names; m ranges over method names; x ranges over variable names; t
ranges over terms; v ranges over values; CL ranges over class declarations; RL
ranges over role declarations; and M ranges over method declarations.

Section 3.1 describes the syntax, section 3.2 the semantics, and section 3.3
gives the soundness proof of the calculus.

3.1 Syntax

As Lifted Java is an extension of FJ the basic syntax is the same, with the follow-
ing exceptions: a new class definition for roles has been added, called RL; a new
object creation term replaces the standard object creation term to accommodate
our objects with more structure; the value is replaced by the new object creation
term; and a term for each of the operations lifting and lowering has been added.
The complete syntax can be seen in figure 6.
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Terms and values

t ::= x | [new C(t), R, C] | t.f | t.m(t) | lift(t, R) | lower(t) terms
v ::= [new C(v), R, G] values

Member and top-level declarations

CL ::= class C extends D{C f; M} classes
RL ::= class R playedBy C {M} roles
M ::= G m(G x) { return t; } methods

Fig. 6. Syntax

In the new class definition RL the extends relation of regular classes is replaced
by the playedBy relation. Using this class definition results in defining a role
class that has the class given by the right-hand side of the playedBy relation
as its base class. Note that RL does not specify fields, a consequence of the fact
that roles cannot have state.

The new object creation term is used to instantiate classes. It is a record
that, when fully evaluated, describes an object. From left to right it consists of
a base class instance, a list of role instances, and a label set to the class name
of the currently active object. As long as roles do not have state, the list of role
instances in the tuple can in fact be simplified, and so we replace it by a list of
roles. As mentioned in section 2 this tuple can be viewed as a cloud containing
a base class and any number of roles floating around it. The list of role names is
only used in the evaluation rules for lifting; rules that may also modify the list
of role names if the object is lifted into a role not in the list.

The term lift(t, F) lifts the term t to the role F. Similarly the term lower(t)
lowers the term t to the base class instance in the object cloud.

For the programmer this syntax amounts to more work compared to that of
OT/J. We have chosen this approach in order to prioritise a simple calculus with
simple proofs rather than simple programs, as is common when working with
calculi. In particular we use explicit lifting and lowering operations; this differs
from OT/J where lifting and lowering is typically performed implicitly, with
the compiler inserting the appropriate method calls. Thus we assume that the
preprocessing step that inserts calls to the lifting and lowering operations has
been run. Furthermore, accessing members of a roles’ base class does not happen
through a base link, but rather by lowering the object first and accessing the
field on the resulting object; and lifting an already lifted object to a new role
can only be done by lowering the object first.

3.2 Semantics

Apart from the evaluation and typing rules for roles, lifting, and lowering, the
small-step semantics of Lifted Java consist of two new auxiliary functions defining
the behaviour of the playedBy relation. In the following we will first describe
these auxiliary functions, then the evaluation rules, and finally the typing rules.
The functions fields, mbody, mtype, and override, are the auxiliary functions from
FJ; they are standard, so we will omit the formal definition. For the same reason
we will omit the congruence rules for method invocation and field access.
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Before we proceed we give the definition of the flexible invariant on the types
of objects in a cloud. As presented in section 2.2 the cloud has the following
structure: the base object has a specific type C, and the role objects have role
types R1 . . .Rk that are playedBy classes C1 . . . Ck, respectively. The intuitively
simplest invariant would then be to require that Ci = C for all i or that Ci is the
most specific supertype of C that plays a role which is Ri, but we employ the
more flexible invariant where it is just required that Ci is a supertype of C.

Auxiliary functions. The auxiliary functions are defined in figure 7. The rule
PlayedBy is used to determine whether a role is playedBy a given base class, i.e.
playedBy(R, C) holds if and only if the playedBy relation in the role definition of
R mentions the class name C. Alone this rule is insufficient for a sound approach
to translation polymorphism, as discussed in section 2. Thus, we define the rule
PlayedByWide which is the formal definition of the flexible invariant on the
playedBy relation. It is similar to the PlayedBy rule except that it takes sub-
typing into account, i.e. playedByWide(R, C) holds if and only if the playedBy
relation of R mentions a super type of C.

PlayedBy

CT(R) = class R playedBy C {M}
playedBy(R, C)

PlayedByWide

C <: B
CT(R) = class R playedBy B {M}

playedByWide(R, C)

Fig. 7. The auxiliary functions for Lifted Java

Evaluation. Figure 8 shows the evaluation rules. The evaluation rules extend
those of FJ to include evaluation of the terms lift(t, R) and lower(t). Congru-
ence rules are added for these two terms as well, and the congruence rule for the
object creation term is updated.

Lifting of the value v to the role R is split into two rules: one for when R does
not occur in the cloud of v (E-Lift-New), and one for when it does (E-Lift-

Old). In both cases it is required that R is in fact a role and that R is playedBy
the currently active class object or a super type of it. Both facts are checked
by playedByWide. In the first case the role is added to the cloud of v, and the
name of the currently active instance is updated to R. In the second case only
the name of the currently active instance is updated.

Lowering the value v is taken care of by a single rule, E-Lower, that only
requires that the name of the currently active object of v is a role. It would
be straightforward to make it possible to lower a regular class to itself and still
maintain soundness, as long as the typing rule for lowering also allows typing
of a lower expression where the active object is the base object. However, to
maintain a simple calculus we have decided that lowering should not be smarter
than lifting.

The congruence rules, EC-Lift and EC-Lower, provide the necessary eval-
uation of the individual arguments to the lifting and lowering terms.



188 M.D. Ingesman and E. Ernst

E-Invk

mbody(m, G) = x.e0

[new C(e), R, G].m(d)
→ [d/x, [new C(e), R, G]/this]e0

E-Field

fields(C) = C f

[new C(e), R, C].fi → ei

E-Lift-Old

playedByWide(Ri, C)

lift([new C(e), R, C], Ri)
→ [new C(e), R, Ri]

E-Lift-New

playedByWide(R, C) R /∈ R

lift([new C(e), R, C], R)
→ [new C(e), R ++ R, R]

E-Lower

lower([new C(e), R, R])
→ [new C(e), R, C]

EC-Lower

e→ e’

lower(e)→ lower(e’)

EC-Lift

e→ e’

lift(e, R)→ lift(e’, R)

EC-New-Arg

ei → e’i

[new C(. . . , ei, . . .), R, G]
→ [new C(. . . , e’i, . . .), R, G]

Fig. 8. The evaluation rules for Lifted Java

Typing. The typing rules can be seen in figure 9. The FJ typing rules are
extended to include well-formedness for roles, typing of the lift(t, R) term, and
typing of the lower(t) term. Furthermore, the typing rule of the new object
creation term is updated.

The typing rule for object creation terms, T-New, states that the type of
an object is always the class corresponding to the active instance. This can be
either the base class C or one of the role classes Ri in the cloud. In order for the
rule to apply it is required that the arguments to the constructor of the base
class have the correct types, and that the currently active instance is either a
role playedBy a super type of C or that it is C.

The rule T-Lift is the typing rule for the lift(t, R) term. It states that a
lift expression has the type of the role lifted to. It is required that the type of
the first argument plays the role R, or is a subtype of a class that does.

The T-Lower rule describes the requirements for typing the lower(t) term.
It states that the lower expression has the type of the base class of the currently
active instance, and thus requires that the type of the argument is a role. Like
with the evaluation rule for the lower(t) term it would be straightforward to
allow the term to be typed when the argument has the type of a regular class
and still maintain soundness, as long as the evaluation rule is also updated to
allow evaluation of a lower expression with a value where the active object is
the base object.

The rule for role typing (T-Role) is similar to the rule for regular class typing
(T-Class), except for the fact that there are no fields and no constructor to
check. T-Meth is the rule for method typing.
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T-Var

Γ � x : Γ (x)

T-Field

Γ � e : C fields(C) = C f

Γ � e.fi : Ci

T-Invk

Γ � e : C mtype(m, C) = D→ D

Γ � e : C C <: D

Γ � e.m(e) : D

T-New

fields(C) = C f Γ � e : D
D <: C playedByWide(G, C) ∨ G = C

Γ � [new C(e), R, G] : G

T-Lift

Γ � e : C playedByWide(R, C)

Γ � lift(e, R) : R

T-Lower

Γ � e : R playedBy(R, C)

Γ � lower(e) : C

T-Meth

this : C � t0 : E0

E0 <: C0 CT(C) = class C extends D{C f; M} override(m, D, C→ C0)

C0 m(C x) { return t0; } OK in C

T-Class

M OK in C

class C extends D{C f; M} OK

T-Role

M OK in R

class R playedBy C {M} OK

Fig. 9. The typing rules for Lifted Java

3.3 Safety Properties

Under the assumption that all defined classes and roles are well-formed, the
following safety properties hold for the calculus presented in the previous section:

Theorem 1 (Preservation). If • � e : T and e → e′ then there exists some
T′ such that • � e′ : T′ and T′ <: T.

Theorem 2 (Progress). If • � e : T then e is either a value or e → e′ for
some e′.

Corollary 1 (Type soundness). If • � e : T and e →∗ e′ where e′ is a
normal form, then e′ is a value and • � e′ : T′, where T′ <: T.

Corollary 1 follows easily from the preservation and progress theorems, the proof
of which is implemented in the Coq proof assistant, following the pattern intro-
duced in [18]. We invite the reader to download the Coq source code for the
proof from [6] for the details.

Note that we have been able to simplify the proofs by assuming empty type en-
vironments. The resulting preservation property is still sufficient to prove Corol-
lary 1. Hence, the weaker preservation property is sufficient to show standard
type soundness, and consequently the extra work required to show preservation
with non-empty environments would be superfluous. This technique was used by
De Fraine et al. both in their implementation of the A Calculus [4] and in the
implementation of FJ [3] which we use as a basis.
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4 Discussion

In this section we will discuss three things: our choices with regard to the se-
mantics of lifting and lowering; the case of unrestricted roles in object creation
expressions as mentioned in section 2.2; and the flexible invariant.

Lifting. In OT/J lifting is smart, i.e. it will produce a role with the dynamically
most specific type rather than the statically known type. This can lead to ambi-
guity, the reason for which is that a base object might be lifted to a role that is
extended by two otherwise unrelated roles. If the object cloud of the base object
does not already contain a role of the requested type, such a role should now be
created. In this situation it is ambiguous which of the two unrelated roles is the
most specific, and thus which of them the smart lifting algorithm should select.
In OT/J this causes an exception at run-time, and it may happen in a piece of
code that was compiled without warnings or errors, possibly long before the two
unrelated roles were written.

We have chosen a simpler semantics for lifting whereby the statically known
role type is used, and our soundness proof shows that this semantics is sound.
However, the difference between our semantics and smart lifting is orthogonal
to soundness, because the role chosen at run-time is in any case a subtype of
the statically supplied role type, and it is always sound to modify the semantics
to yield a more specific value for any given expression. It should be noted that
OT/J roles support inheritance, and that the playedBy relation enforces covari-
ance (more specific base type means same or more specific role type), whereas
our lifting semantics removes the need for subtyping among role types. Hence,
our soundness proof shows that all the possible language designs where lifting
produces a subtype of the statically known role type are sound. There are many
sound ways to remove the ambiguity problem in this language design space:
the static approach taken in our calculus; approaches based on taking the most
specific type that does not cause ambiguities; or using programmer declared
precedence are among the possible choices. It is a main contribution of this work
to clarify that this ambiguity problem can be solved by choosing any language
design within this language design space.

Lifting and lowering is always explicit in our calculus, using the special func-
tions lift and lower, whereas they are generally added by the compiler in
OT/J. This means more work for programmers using our calculus, but since it
would be easy to add calls to these functions to the code in a preprocessing step
where needed, there is no need to have implicit lifting and lowering as part of the
calculus. In fact the OT/J compiler takes this approach, automatically inserting
calls to lifting and lowering methods.

Flexible invariant. An interesting property of our calculus is that it employs a
flexible invariant for the types of objects in a cloud, and the soundness proof
shows that this is a safe thing to do. We introduced a widePlayedByrelation
in the calculus in order to express this invariant. The important fact to note
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is that almost any choice of semantics for the lifting operation from the above-
mentioned language design space would require a more or less flexible invariant
in the sense defined here.

Objects. From the calculus syntax in section 3.1, it is clear that there is no
restriction on the role names that can be in the object cloud of an object creation
expression. Programmers could therefore write programs that contain object
creation expressions including roles that do not have a widePlayedByrelation to
the class of the base object, let us call them junk roles. Intuitively this creates
the problem that the cloud contains roles that are not playedBy the given base
object, not even via a superclass! Figure 10 illustrates this situation. It may seem
dangerous to allow programs to run when some objects contain junk roles, but
this is in fact benign. The undeniable argument is that the Coq soundness proof
works for a formalisation that allows junk roles to exist; the associated intuition
is that these junk roles are unreachable because roles can only come into play
when being selected by a lifting operation — this will never happen for a junk
role.

A

B

R1

pB

R2
pB

R3
pB

J J

J

Fig. 10. The cloud as implemented in the model. J marks junk role names.

5 Related and Future Work

The AspectJ language [13] was the first to introduce Aspect-Oriented Program-
ming [14] in a general purpose programming language. However, aspects are at
the other end of OT/Js features compared to our focus on translation polymor-
phism, and thus we will not treat them further.

CaesarJ [1] solves the same scenario as OT/J, non-invasive customisation
through addition instead of modification. The following are the similarities that
are relevant with respect to our work. Like in OT/J, virtual classes and fam-
ily polymorphism are added to the language. The equivalents to roles and base
classes are called wrappers and wrappees. To translate an object of a wrappee
type to an object of a type wrapping it (lifting), a wrapper constructor is called
with the wrappee object as an argument. The translation from wrapper to
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wrappee (lowering) is done using an explicit wrappee link. We will not go into
detail with CaesarJ, but simply note that the model and observations in this
paper apply to that language as well.

Adding role inheritance to our calculus would be an interesting direction to
explore in the future. For the calculus presented in this paper simplicity is a
major feature, because it isolates the core of translation polymorphism. A more
elaborate model would be interesting to explore in order to address the problems
with ambiguity in smart lifting directly, for instance demonstrating that a certain
class of priority mechanisms could enable lifting to produce a most specific role
in some sense, and remain free of run-time errors.

6 Conclusion

Translation polymorphism, also known as lifting and lowering, is a language
mechanism which enables multiple objects, organised into pairs of base and role
objects, to act almost as if they were single objects supporting multiple unrelated
interfaces. This paper demonstrates for the first time that the core semantics of
translation polymorphism is provably type sound, and that the thorny issues of
ambiguity associated with the mechanism known as smart lifting may be elimi-
nated through a very simple choice of semantics for lifting; namely the semantics
whereby a base object is lifted to a role via a statically selected base object type.
This extends to a smart lifting semantics without ambiguity, because it may be
based on the most specific dynamic type of the base object that does not give
rise to ambiguity, and in general it outlines a language design space containing
many different safe choices. The results in this paper were achieved by means
of a very simple formal calculus that models lifting and lowering independently
of the advanced features, such as virtual classes and family polymorphism, that
are typically present in languages supporting translation polymorphism. The
completeness and correctness of the soundness proof of this calculus has been
verified mechanically by means of the Coq proof assistant. Consequently, trans-
lation polymorphism can now be considered safe.
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Abstract. In distributed object-oriented systems, objects belong to dif-
ferent locations. For example, in Java RMI, objects can be distributed
over different JVM instances. Accessing a reference in RMI has crucial
different semantics depending on whether the referred object is local or
remote. Nevertheless, such references are not statically distinguished by
the type system.

This paper presents location types, which statically distinguish far
from near references. We present a formal type system for a minimal
core language. In addition, we present a type inference system that gives
optimal solutions. We implemented location types as a pluggable type
system for the ABS language, an object-oriented language with a concur-
rency model based on concurrent object groups. An important contribu-
tion of this paper is the combination of the type system with the flexible
inference system and a novel integration into an Eclipse-based IDE by
presenting the inference results as overlays. This drastically reduces the
annotation overhead while providing full static type information to the
user. The IDE integration is a general approach of its own and can be
applied to many other type system extensions.

1 Introduction

In distributed object-oriented systems, objects belong to different locations. A
location in this paper is regarded to be an abstract concept, but in practice it
may, for example, refer to a physical computation node, some process (like a JVM
instance in RMI [19]), or can even be a concept of a programming language. For
example, in object-languages with concurrency models based on communicating
groups of objects such as E [18], AmbientTalk/2 [24], JCoBox [22], or ABS [15],
the location of an object can be considered as the group it belongs to. In these
scenarios it often makes a difference whether a reference points to an object at
the current location, i.e., the location of the current executing object (in the
following called a near reference), or to an object at a different location (a far
reference). For example, in the E programming language [18], a far reference
can only be used for eventual sends, but not for immediate method calls. In
Java RMI accessing a remote reference may throw a RemoteException, where
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accessing a normal reference cannot throw such an exception. It is thus desirable
to be able to statically distinguish these two kinds of references. This is useful
for documentation purposes, to reason about the code, and to statically prevent
runtime errors.

We present location types which statically distinguish far from near references.
Location types can be considered as a lightweight form of ownership types [4,
21] with the following two characteristics. The first is that location types only
describe a flat set of locations instead of a hierarchy of ownership contexts.
The second is that ownership types typically define the ownership context of
an object in a precise way. Location types abstract from these precise locations
by only stating whether an object belongs to the current location or some other
location. These two simplifications make location types very lightweight and easy
to use, while still being expressive enough to guarantee their desired properties.
Location types are not used to enforce encapsulation, which is the main goal of
many ownership type systems.

As with any type system extension, writing down the extended types can
become tiresome for programmers. Furthermore, these annotations may clutter
up the code and reduce readability, especially when several of such pluggable
type systems [2, 9] are used together. This reduces the acceptance of pluggable
type systems in practice. The first issue can be solved by automatically inferring
the type annotations and inserting them into the code. But this results again
in cluttered code with potentially many annotations. Our solution is to lever-
age the power of an IDE and present the inferred types to the programmer by
using unobtrusive overlays. They give the programmer full static type informa-
tion without cluttering the code with annotations nor reducing readability. The
overlays can be turned on and off according to the programmer’s need. Type
annotations are only needed to make the type checking and inference modular,
where the degree of modularity just depends on the interfaces where type anno-
tations appear. This way of integrating type inference into the IDE drastically
simplifies the usage of the proposed type system and is applicable to similar type
system extensions.

Contributions. The three main contributions of this paper are the following. (1)
We give the formalization of a type system for location types in a core object-
oriented language. (2) We describe a type inference system that gives optimal
solutions and helpful error messages. (3) We present an implementation of the
type and inference system for the ABS language and show how to integrate
such a system into an IDE by using a novel way of visualizing inferred type
information.

Outline. The remainder of this paper is structured as follows. In Sect. 2 we
give an informal introduction to location types and illustrate their usage by
an example. Section 3 presents the formalization of location types for a core
object-oriented language and the inference system. In Sect. 4 we explain how
we implemented and integrated location types into an IDE, and provide a short
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evaluation. Section 5 discusses location types in the context of related work.
Section 6 concludes.

2 Location Types at Work

Location types statically distinguish far from near references. To do so, stan-
dard types are extended with additional type annotations, namely location types.
There are three different location types: Near, Far, and Somewhere. Location
types are always interpreted relatively to the current object. A variable typed as
Near means that it may only refer to objects that belong to the same location as
the current object. Accordingly, a Far typed variable may only refer to objects
that belong to a different location than the current object. Somewhere is the
super-type of Far and Near and means that the referred object may either be
Near or Far. Important to note is that only Near precisely describes a certain
location. A Far annotation only states that the location of the referred object is
not Near. This means that a Far typed variable may over time refer to different
locations which are not further defined, except that they are not the location
of the current object. What a location actually means is irrelevant to the type
system. So whether the location of an object refers to a JVM instance or has
some other form of object grouping does not matter. It is only important that
an object belongs to a unique location for its entire lifetime.

We illustrate the location type system by applying it to a small implemen-
tation of a chat application. For the description we use the abstract behavioral
specification language (ABS) [15], which we explain hand-in-hand with the ex-
ample.

ABS is an object-oriented language with a Java-like syntax. It has a con-
currency model that is based on so-called concurrent object groups (COGs).
COGs can be regarded as the unit of concurrency and distribution in ABS. Ev-
ery object in ABS belongs to exactly one unique COG for its entire lifetime.
This is similar to the Java RMI setting where objects belong to certain JVM
instances, which may run distributed on different machines. At creation time
of an object it is specified whether the object is created in the current COG
(using the standard new expression) or is created in a fresh COG (using the
new cog expression). Communication in ABS between different COGs happen
via asynchronous method calls which are indicated by an exclamation mark (!).
A reference in ABS is far when it targets an object of a different COG, otherwise
it is a near reference. Similar to the E programming language [18], ABS has the
restriction that synchronous method calls (indicated by the standard dot nota-
tion) are only allowed on near references. Using a far reference for a synchronous
method call results in a runtime exception. Our location type system can be
used to statically guarantee the absence of these runtime exceptions.

The chat application is a simple IRC-like application, which consists of a single
server and multiple clients. For simplicity, there is only a single chat room, so all
clients actually broadcast their messages to all other clients. The basic interfaces
of the chat application in the ABS language are given in Fig. 1. Note that only
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interface Server {

[Near] Session connect(

[Far] Client c, String name); }

interface Session {

Unit receive(ClientMsg m);

Unit close(); }

interface Client {

Unit connectTo([Far] Server s);

Unit receive(ServerMsg m); }

Fig. 1. The annotated interfaces
of the chat application

Client

Client

Server

Session

Session

COG object far reference near reference

Fig. 2. Runtime structure of the chat application

1 class ClientImpl(String name) implements Client {

2 [Far] Session session; ...

3 Unit connectTo([Far] Server server) {

4 Fut<[Far] Session> f = server!connect(this, name);

5 session = f.get; } }

Fig. 3. Fully annotated implementation of the ClientImpl class

Server, Client, and Session are actually reference types, the types Unit, ClientMsg,
and ServerMsg are data types and represent immutable data and not objects.

Figure 2 shows a possible runtime structure of the chat application. As the
clients and the server run independently of each other, they live in their own
COGs. This means that all references between clients and the server are far
references. The Session objects that handle the different connections with the
clients live in the same COG as the Server object. This means that references
between Session and Server are near references. In a typical scenario, the client
calls the connect method of the server and passes a reference to itself and a
user name as arguments. The server then returns a reference to a Session object,
which is used by the client to send messages to the server. The interfaces of
Fig. 1 are annotated accordingly, e.g., the connect method of the server returns
a reference to a Session object that is Near to the server.

Figure 3 shows the ClientImpl class, an implementation of the Client interface.
It has a field session which stores a reference to the Session object which is ob-
tained by the client when it connects to the server. Lines 3-5 show the connectTo
method. As specified in the interface, the Server parameter has type Far. In Line
4, the client asynchronously (using the ! operator) calls the connect method of
the server. The declared result type of the connect method is [Near] Session (see
Fig. 1). The crucial fact is that the type system now has to apply a viewpoint
adaptation [7]. As the target of the call (server) has location type Far, the return
type of connect (which is Near) is adapted to Far. Furthermore, as the call is
an asynchronous one, the value is not directly returned, but a future instead
(i.e. a placeholder for the value). In Line 5, the client waits for the future to be
resolved.
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1 class ServerImpl implements Server {

2 List<[Near] Session> sessions = Nil;
3 [Near] Session connect(

4 [Far] Client c, String name) {

5 [Near] Session s =

6 new SessionImpl(this, c, name);

7 sessions = Cons(s,sessions);

8 this.publish(Connected(name));

9 return s; }

10 Unit publish(ServerMsg m) {

11 List<[Near] Session> sess =

12 sessions;

13 while (~isEmpty(sess)) {

14 [Near] Session s = head(sess);

15 sess = tail(sess);

16 s.send(m);

17 } } ...

18 }

Fig. 4. Fully annotated implementation of the ServerImpl class

Figure 4 shows the ServerImpl class, an implementation of the Server interface.
It has an internal field sessions to hold the sessions of the connected clients.
List is a polymorphic data type in ABS whose type parameter is instantiated
with [Near] Session, which means that it holds a list of near references to Session
objects. When a client connects to the server using the connect method, the server
creates a new SessionImpl object in its current COG (using the standard new
expression), which means that it is statically clear that this object is Near. It then
stores the reference in its internal list, publishes that a new client has connected,
and returns a reference to the session object. In the publish method at Line 16,
the send method is synchronously called. As ABS requires that synchronous calls
are only done on near objects, the type system guarantees that s always refers
to a near object.

3 Formalization

This section presents the formalization of the location type system in a core
calculus called LocJ. We first present the abstract syntax of the language and its
dynamic semantics. In Sect. 3.1 we introduce the basic type system for location
types as-well-as its soundness properties. In Sect. 3.2 we improve the precision
of the basic type system by introducing named Far types. In Sect. 3.3 we present
the location type inference system.

Notations. We use the overbar notation x to denote a list. The empty list is
denoted by • and the concatenation of list x and y is denoted by x · y. Single
elements are implicitly treated as lists when needed. M[x �→ y] yields the map
M where the entry with key x is updated with the value y, or, if no such key
exists, the entry is added. The empty map is denoted by [] and dom(M) and
rng(M) denote the domain and range of the map M.

Abstract Syntax. LocJ models a core sequential object-oriented Java-like lan-
guage, formalized in a similar fashion to Welterweight Java [20]. The abstract
syntax is shown in Fig. 5. The main difference is that objects in LocJ can be
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P ::= C

C ::= class c { V M }
V ::= T x

M ::= T m(V ) { V S }
S ::= x← E | x.f ← y

E ::= new c in fresh

| new c in x | x
| x.m(y) | x.f

T ::= c

Fig. 5. Abstract syntax of LocJ. c ranges
over class names, m over method names and
x, y, z, f over field and variable names (in-
cluding this and result)

ζ ::= F ,H runtime config.
H ::= ι �→ (l, c,D) heap

F ::= (S,D)c,m stack frame
D ::= x �→ v variable-value map
v ::= ι | null value

Fig. 6. Runtime entities of LocJ. ι
ranges over object identifiers and l over
locations

created at different locations. For this, the new-expression has an additional ar-
gument, given by the in part, that specifies the target location. The target can
either be fresh to create the object in a new (fresh) location, or a variable x to
create the object in the same location as the object that is referenced by x1. We
do not introduce locations as first class citizens as they can be encoded using
objects, i.e., objects can be simply used to denote locations. To keep the pre-
sentation short, LocJ does not include inheritance and subtyping. However, the
formalization can be straightforwardly extended to support these features.

Dynamic Semantics. The dynamic semantics of our language is defined as a small-
step operational semantics. The main difference to standard object-oriented lan-
guages is that we explicitly model locations to partition the heap. The runtime
entities are shown in Fig. 6. Runtime configurations ζ consist of a stack, which is a
list of stack frames, and a heap. The heap maps object identifiers to object states
(l, c,D), consisting of a location l, a class name c, and a mapping from field names
to valuesD. A stack frame consists of a list of statements and a mapping from local
variable names to values. Furthermore the stack frame records with which class c
and method m it is associated, which we sometimes omit for brevity.

The reduction rules are shown in Fig. 7. They are of the form ζ� ζ′ and
reduce runtime configurations. The rules use the helper functions initO and initF
to initialize objects and stack frames. The function initO(l, c) creates a new
heap entry (l, c,D) where D = [][f �→ null] and f are the field names of class
c. Similarly, initF(m, c, ι, v) creates a new stack frame (S,D)c,m where S are
the statements in the method body of method m in class c and D = [][this �→
ι][result �→ null][x �→ v][y �→ null] and x are the variable names of the formal
parameters of method m in class c and y are the local variable names.

3.1 Basic Location Type System

In this subsection, we present the basic location type system and its soundness
properties. To incorporate location types into LocJ programs, we extend types

1 In ABS, new cog C() creates a new location (i.e., corresponds to ”new c in fresh” in
LocJ) whereas new C() creates a new object in the same location as the current
object (i.e., corresponds to ”new c in this” in LocJ).
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ι /∈ dom(H) l is fresh
H′ =H[ι �→ initO(l, c)] D′ = D[x �→ ι]

(x ← new c in fresh · S,D) ·F ,H� (S,D′) ·F ,H′

ι /∈ dom(H) (l, _, _) =H(D(y))
H′ =H[ι �→ initO(l, c)] D′ = D[x �→ ι]
(x ← new c in y · S,D) ·F ,H� (S,D′) ·F ,H′

ι = D(x) (l, c,D′) =H(ι)
D′′ = D′[ f �→ D(y)] H′ =H[ι �→ (l, c,D′′)]

(x . f ← y · S,D) ·F ,H� (S,D) ·F ,H′

(_, _,D′′) =H(D(y)) D′ = D[x �→ D′′( f )]
(x ← y. f · S,D) ·F ,H� (S,D′) ·F ,H

D′ = D[x �→ D(y)]
(x ← y · S,D) ·F ,H� (S,D′) ·F ,H

F = (x ← y.m(z) · S,D)
(_, c, _) =H(D(y))

F ′ = initF(c, m,D(y),D(z))
F ·F ,H� F ′ ·F ·F ,H

F = (x ← y.m(z) · S,D′)
D′′ = D′[x �→ D(result)]

(•,D) ·F ·F ,H� (S,D′′) ·F ,H

Fig. 7. Operational semantics of LocJ

T ::= · · · | L c annotated type
L ::= Near | Far | Somewhere location type

Fig. 8. Basic location types

T with location types L (see Fig. 8), where a location type can either be Near, Far,
or Somewhere. We assume that a given program is already well-typed using a
standard Java-like type system and we only provide the typing rules for typing
the location type extension. The typing rules are shown in Fig. 9. Statements
and expressions are typed under a type environment V , which defines the types
of local variables. The typing judgment for expressions is of the form V � e : L
to denote that expression e has location type L. The helper functions anno(c, f)
and anno(c, m, x) return the declared location type of field f or variable x of
method m in class c and params(c, m) returns the formal parameter variables of
method m in class c.

The crucial parts of the type system are the subtyping (L <: L′) and the
viewpoint adaptation (L�KL′) relations which are shown in Fig. 10. The location
types Near and Far are both subtypes of Somewhere but are unrelated otherwise.
Viewpoint adaption is always applied when a type is used in a different context.
There are two different directions (K ∈ {From, To}) to consider. (1) Adapting a
type L from another viewpoint L′ to the current viewpoint, written as L�From L′.
(2) Adapting a type L from the current viewpoint to another viewpoint L′,
written as L�To L′.2 In typing rule wf-FieldGet we adapt the type of the field
from the viewpoint of y to the current viewpoint, whereas in rule wf-FieldSet

we adapt the type of y from the current viewpoint to the viewpoint of x.

2 Whereas in other ownership type systems (e.g. [7]), only one direction is considered,
we chose to explicitly state the direction in order to achieve a simple and intuitive
encoding.
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As an example for the viewpoint adaptation, assume a method is called on
a Far target and the argument is of type Near. Then the adapted type is Far,
because the parameter is Near in relation to the caller, but from the perspective
of the callee, it is actually Far in that case. Important is also the case where
we pass a Far typed variable x to a Far target. In that case we have to take
Somewhere as the adapted type, because it is not statically clear whether the
object referred to by x is in a location that is different from the location of the
target object.

(wf-P)

P = C � Ci

� P

(wf-C)

c �Mi

� class c { V M }

(wf-M)

Near c this · T result · V · V ′ � Si

c � T m(V ) { V ′ S }

(wf-Assign)

V � E : L L′ x ∈ V L <: L′

V � x← E

(wf-FieldSet)

L c x ∈ V L′ = anno(c, f)

L′′ y ∈ V (L′′ �To L) <: L′

V � x.f ← y

(wf-NewFresh)

V � new c in fresh : Far

(wf-NewSame)

L x ∈ V

V � new c in x : L

(wf-Var)

L x ∈ V

V � x : L

(wf-FieldGet)

L c y ∈ V L′ = anno(c, f)

V � y.f : L′ �From L

(wf-Call)

L c y ∈ V

Li zi ∈ V x = params(c, m)
(Li �To L) <: anno(c, m, xi)

V � y.m(z) : anno(c, m, result) �From L

Fig. 9. Typing rules of LocJ. Note that indices are implicitly all-quantified

Type Soundness. The location type system guarantees that variables of type Near
only reference objects that are in the same location as the current
object and that variables of type Far only reference objects that are in a dif-
ferent location to the current object. We formalize this by defining a well-
formed runtime configuration. As helper functions, we define the location of
a heap entry as loc((l, c,D)) = l and the dynamically computed location type as
dtype(l, l′) = Near if l = l′, and Far otherwise.

Definition 1 (Well-formed runtime configuration). Let ζ = F ,H be a
runtime configuration. ζ is well-formed iff all heap entries (l, c,D) ∈ rng(H) and
all stack frames F ∈ F are well-formed under H and the configuration satisfies
all the standard conditions of a class-based language.

Definition 2 (Well-formed heap entry). (l, ,D) is well-formed under H iff
for all f with D(f) = ι and (l′, c, ) = H(ι), we have dtype(l, l′) <: anno(c, f).
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Somewhere

Near Far

Original �K Viewpoint = Adapted

L �K Near = L
Near �K Far = Far
Far �K Far = Somewhere
Somewhere �K Far = Somewhere
L �K Somewhere = Somewhere

Fig. 10. Subtyping and viewpoint adaptation (where K ∈ {From, To}). Note that the
direction K does not influence basic location types, but is important for our extension
in Sect. 3.2

1 [Far] Server server = new cog ServerImpl();
2 [Far] Client client1 = new cog ClientImpl(”Alice”);
3 [Far] Client client2 = new cog ClientImpl(”Bob”);
4 client1 ! connectTo(server);
5 client2 ! connectTo(server);

Fig. 11. The code of the main block of the chat application, annotated with location
types

Definition 3 (Well-formed stack frame). (S,D)c,m is well-formed under
H iff for all x with D(x) = ι, we have dtype(loc(H(D(this))), loc(H(ι))) <:
anno(c, m, x).

Theorem 1 (Preservation for location types). Let ζ be a well-formed run-
time configuration. If ζ� ζ′, then ζ′ is well-formed as well.

Proof. The proof proceeds by a standard case analysis on the reduction rule used
and is available in the accompanying report [25].

3.2 Named Far Location Types

The location type system so far can only distinguish near from far references.
The type system knows that a near reference always points to a different location
than a far reference. But whether two far references point to the same location
or different ones is not statically known. This makes the type system often too
weak in practice. As an example, let us consider the main block3 of the ABS
chat application in Fig. 11, annotated with location types. The server and both
clients are created by using the new cog expression. This means that all these
objects live in their own, fresh COG and thus they can be typed to Far, because
these locations are different to the current COG (the Main COG). However, for
the method call client1!connectTo(server) to successfully type-check, the formal
parameter of the connectTo method would need to be typed as Somewhere be-
cause the actual (adapted) parameter type is of type Somewhere (= Far �To Far).
This issue arises because the type system cannot distinguish that client1 and
server point to different locations. The example shows that in its basic form,
the location type system often has to conservatively use the Somewhere type to
3 A main block in ABS corresponds to a main method in Java.
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remain sound, which in fact means that the type system cannot say anything
about the location.

To improve the precision of the location type system we introduce named far
types:

L ::= · · · | Far(i)

A named far type is a far type parametrized with an arbitrary name4. Far types
with different names represent disjoint sets of far locations and are incompatible
to each other. The following typing rule wf-NewFreshP is added, which allows
new locations to be more precisely described.

(wf-NewFreshP)

V � new c in fresh : Far(i)

The subtyping and viewpoint adaptation relations are extended accordingly in
Fig. 12. Adapting a Far(i) to a Far(j) for i �= j yields a Far(i), as they denote
different sets of locations. Adapting a Far(i) to a Far(i) does not yield Near, how-
ever, as two variables with the same Far(i) type can refer to objects of different
locations.

In practice the user does not explicitly provide the names. Instead the infer-
ence system automatically infers them when possible. These refined far types
are then used to improve the viewpoint adaptation. In the chat example our
type system is now able to infer that the server and the client variables actually
refer to different far locations. This means that the argument of the connectTo
method call can be typed to Far instead of Somewhere.

Our experience with case studies shows that this extension is expressive enough
for our purposes (cf. Sect. 4). However, other extensions to improve the expres-
siveness and precision of the location type system are imaginable, e.g. location
type polymorphism similar to owner polymorphism in ownership type systems
[4, 3, 17].

Type Soundness. Similar as for Thm. 1, a proof of type soundness for the named
far location type system extension is available in the accompanying report [25].

3.3 Location Type Inference

The type system presented in the previous section requires the programmer to
annotate all type occurrences with location types. In this subsection we present
an inference system for location types. We first present a sound and complete
inference system, which makes it possible to use the location type system with-
out writing any type annotations and only use type annotations for achieving
modular type checking. The second part then presents an inference system that
can deal with type-incorrect programs and that finds not only some solution but
an optimal solution.

4 Note that these are not object identifiers.
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Somewhere

Near Far

Far(i1) . . . Far(in)

Original �K Viewpoint = Adapted

. . . (extension of Fig. 10)
Near �To Far(i) = Far
Near �From Far(i) = Far(i)
Far �K Far(i) = Somewhere
Somewhere �K Far(i) = Somewhere
Far(i) �To Far(j) = Far(i) if i �= j
Far(i) �From Far(j) = Somewhere if i �= j
Far(i) �K Far(i) = Somewhere
Far(i) �K Far = Somewhere

Fig. 12. Subtyping and viewpoint adaptation for extended location types

Q ::= α �K β = γ adaptation constraint
| α <: β subtype constraint
| α = L | α �= L constant constraint

Fig. 13. Location type constraints

Sound and Complete Inference. The formal model for inferring location
types follows the formalization of other type system extensions [8]. The idea
is to introduce location type variables at places in the program where location
types occur in our typing rules. Type inference then consists of two steps. First,
generating constraints for the location type variables. Second, checking whether
a substitution for the location type variables exists such that all constraints are
satisfied.

To introduce location type variables into programs we extend the syntax of
location types accordingly:

L ::= · · · | α location type variables (also β, γ, and δ)

In the following we consider P as a program which is fully annotated with
pairwise distinct location type variables. The constraints which are generated
by the inference system are shown in Fig. 13. We use the judgment � P : Q,
defined in Fig. 14, to denote the generation of the constraints Q from program
P . Note that additional fresh location type variables are introduced during the
constraint generation.

Soundness and Completeness. Let σ be a mapping function from location type
variables to location types, i.e., α to {Near, Far, Somewhere, Far(i1), ..., Far(in)}.
Then σ � Q if the constraints Q are satisfiable under σ. We write σP to de-
note that all location type variables in P have been replaced by location types
according to the substitution function σ.

Conjecture 1 (Soundness and Completeness of the Inference). The inference is
sound and complete in the sense that every typing inferred can be successfully
type-checked and every typing which type-checks can also be inferred.
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P = C � Ci : Qi

� P : Q1 · . . . · Qn

c �Mi : Qi

� class c { V M } : Q1 · . . . · Qn

V � E : β,Q α x ∈ V

V � x← E : β <: α · Q

δ is fresh

V � new c in fresh : δ, δ �= Near

α y ∈ V

V � new c in y : α, •
α x ∈ V

V � x : α, •

δ c this · T result · V · V ′ � Si : Qi δ is fresh

c � T m(V ) { V ′ S } : δ = Near · Q1 · . . . · Qn

α c x ∈ V

β = anno(c, f) γ y ∈ V δ is fresh

V � x.f ← y : δ <: β · γ �To α = δ

α c y ∈ V β = anno(c, f) γ is fresh

V � y.f : γ, β �From α = γ

α c y ∈ V αi zi ∈ V x = params(c, m)
βi = anno(c, m, xi) β = anno(c, m, result)

Qi = αi �To α = γi · γi <: βi

γi is fresh γ is fresh

V � y.m(z) : γ, β �From α = γ · Q1 · . . . · Qn

Fig. 14. Constraint generation rules

– Soundness : If � P : Q and σ � Q , then � σP .
– Completeness : If � σP for some minimal σ, then ∃Q such that � P : Q and
∃σ′ such that σ′ is an extension of σ and σ � Q . Note that σ′ is an extension
of σ iff σ′(α) = σ(α) for all α ∈ dom(σ).

Optimal and Partial Inference. Whereas soundness and completeness is
important, it is not sufficient for an inference system to be usable in practice.
Two additional properties are required, namely:

1. If multiple inference solutions exist, an optimal solution should be taken.
This is important, because the user in general wants to have the most precise
solution, i.e., with the least amount of Somewhere annotations.

2. If no typable solution can be inferred, at least a partially typable solution
should be provided. It is otherwise nearly impossible to use the inference
system if one only gets a “No solution can be found” result. In addition, this
partially typable solution should lead to the least amount of type errors.

To support these two properties, we extend our formal model in the follow-
ing way. We introduce three constraint categories: must-have, should-have, and
nice-to-have. The must-have constraints must always be satisfied. These are for
example in Fig. 14 the adaptation constraints (α �K β = γ) and the constant
constraints (α = L, α �= L), characterizing the types of subexpressions. They
also encompass the constant constraints which result from user annotations (not
considered in the formalization of Fig. 14, but present in the implementation).
Note that there is always a solution to these constraints in our inference system
as they are based on freshly allocated location type variables. The should-have
constraints, e.g. the subtype constraints (α <: β) in Fig. 14, should always be
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satisfied in order to get a valid typing, but can be unsatisfied for partially correct
solutions. The nice-to-have constraints are those that give us a nice (optimal)
solution, i.e., with the least amount of Somewhere annotations or with Far types
at the places where the precision of Far(i) types is not needed.

Inferring an optimal solution consists of solving the following problem. First,
all must-have constraints, then the most amount of should-have constraints,
and finally the most amount of nice-to-have constraints should be satisfied. The
problem can be encoded as a partially weighted MaxSAT problem by assigning
appropriate weights to the constraints. This means that must-have constraints
are hard clauses (maximum weight) and should-have constraints correspond to
soft clauses whose weight is greater than the sum of all weighted nice-to-have
clauses. Solving such a problem can be efficiently done using specialized SAT
solvers.

As an example for partial inference, consider the ServerImpl class in Fig. 4.
Assume that there are no annotations on the signature and the body of the
connect method except for the return type which has been wrongly annotated
by the programmer as Far. The inference system then still gives a solution where
all constraints are satisfied except one should-have constraint, namely s <: result
which is generated at the last line of the connect method. The inference system
assigns the type Near to variable s because if it were to assign Far to s, more
should-have constraints would be unsatisfied (i.e. those resulting from lines 5
to 7).

4 Implementation and IDE Integration

We have implemented the type and inference system for location types, including
named far location types and optimal and partial inference, as an extension of
the ABS compiler suite. The type and inference system is integrated into an
Eclipse-based IDE, but can also be used from the command line.

Inference System. The inference system internally uses the Max-SAT solver
SAT4J [16] to solve the generated inference constraints. As the inference sys-
tem may return a solution that is not fully typable, we use the type checker for
location types to give user-friendly error messages.

The alias analysis for named Far locations (cf. Sect. 3.2) can be configured to
use scopes of different granularity: basic (no alias analysis), method-local, class-
local, module-local, and global analysis. This allows the user to choose the best
tradeoff between precision and modularity. For the inference, an upper bound
on the number of possible named Far(i) locations is needed. This is calculated
based on the number of new c in fresh expressions in the current scope.

IDE Integration. ABS features an Eclipse-based IDE5 for developing ABS
projects. The interesting part of the IDE for this paper is that we have in-
corporated visual overlays which display the location type inference results. For
5 http://tools.hats-project.eu/eclipseplugin/installation.html

http://tools.hats-project.eu/eclipseplugin/installation.html


Location Types for Safe Distributed Object-Oriented Programming 207

each location type there is a small overlay symbol, e.g., for Near and for Far,
which are shown as superscripts of the type name. For example, a Far Client
appears as Client . Whenever the user saves a changed program, the inference
is triggered and the overlays are updated. They give the user complete location
type information of all reference types, without cluttering the code. In addition,
the overlays can easily be toggled on or off. It is also possible to write the infer-
ence results back as annotations into the source code, with user-specified levels
of granularity, e.g., method signatures in interfaces.

Evaluation. We evaluated the location type system by applying it to three case
studies. The Trading System (1164 LOC, 150 types to annotate) and Replication
System (702 LOC, 62 types to annotate) case studies are ABS programs devel-
oped as parts of the case studies in the HATS project. The Chat Application
(251 LOC, 55 types to annotate) is an extended version of the one presented in
Sect. 2.

The evaluation results are presented in Fig. 15. They show how precise the
case studies can be typed and how fast the inference works. We also restricted the
alias analysis by various scopes to see the impact on performance and precision.
First of all, all case studies can be fully typed using our type system. The chart
on the left shows the precision (percentage of near and far annotations) of the
type inference. As can be seen, the basic type system already has a good precision
(> 60%) in all three case studies. As expected, the precision increased with a
broader analysis scope. Using a global aliasing analysis, the inference achieved
a precision of 100% in the Chat as well as the Trading System case studies. In
the Replication Server case study, the best precision was already achieved with
a method-local scope.

The chart on the right shows the performance results of the inference. It shows
that the performance of the inference is fast enough for the inference system
to be used interactively. It also shows that the performance depends on the
chosen scope for the aliasing analysis. Note that the examples where completely
unannotated, so that all types had to be inferred. In practice, programs are
often partially annotated, which additionally improves the performance of the
type inference. Our implementation of the inference focused more on correctness
than performance, which means that many improvements in the encoding, and
thus in the solving time are still possible.

5 Discussion and Related Work

Location types are a variant of ownership types that concentrate on flat own-
ership contexts. We presented the type system in the context of distributed
object-oriented systems, but it can be applied to any context where flat owner-
ship contexts are sufficient. Ownership types [4, 3, 17] and similar type systems
[1, 6] typically describe a hierarchical heap structure. On one hand this makes
these systems more general than location types, because ownership types could
be used for the same purpose as location types; on the other hand this makes
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Fig. 15. Precision and solving time of the location type inference for the three case
studies, using four different scopes for the aliasing analysis. The measurements where
done on a MacBook Pro laptop (Intel Core 2 Duo T7400 2.16GHz CPU, 2GB RAM,
Ubuntu 10.04, Sun JDK 1.6.16). We used the -Xms1024 parameter to avoid garbage
collection. As working in an IDE usually consists of an edit-compile-run cycle, we
provide the performance results (the mean of 20 complete runs) after warming up the
JVM with 5 dry runs. We measured the time that the SAT-solver required for finding
a solution using the System.nanoTime() method.

these systems more complex. An ownership type system which is close to loca-
tion types in nature is that by Clarke et al. [5], which applies ownership types to
active objects. In their system ownership contexts are also flat, but ownership is
used to ensure encapsulation of objects with support for a safe object transfer
using unique references and cloning. Haller and Odersky [13] use a capability-
based type system to restrict aliasing in concurrent programs and achieve full
encapsulation. As these systems are based on encapsulation they do not have
the concept of far references. Places [12] also partition the heap. However, the
set of places is fixed at the time the program is started. Similar, but less expres-
sive than our type system, is Loci [26], which only distinguishes references to be
either thread-local or shared. Loci only uses defaults to reduce the annotation
overhead. Loci is also realized as an Eclipse plug-in. Regions are also considered
in region-based memory management [23], but for another purpose. They give
the guarantee that objects inside a region do not refer to objects inside another
region to ensure safe deallocation.

Using a Max-SAT solver with weighted constraints was also used in [11] to
infer types that prevent data-races and in [8] to find good inference solutions for
universe types. A crucial aspect of our work is the integration of type inference
results into the IDE by using overlays. To the best of our knowledge there is
no comparable approach. A widely used type system extension is the non-null
type system [10]. For variations of this type system, there exist built-in inference
mechanisms in Eclipse6 and IntelliJ IDEA7 as well as additional plug-ins such as
[14]. None of these IDE integrations provide type information by using overlays,

6 http://wiki.eclipse.org/JDT_Core/Null_Analysis
7 http://www.jetbrains.com/idea/webhelp/inferring-nullity.html

http://wiki.eclipse.org/JDT_Core/Null_Analysis
http://www.jetbrains.com/idea/webhelp/inferring-nullity.html
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but only give warnings in cases of type errors, which makes it difficult for the
user to find the root of the problem.

6 Conclusion and Future Work

We have presented a type system for distributed object-oriented programming
languages to distinguish near from far references. We applied the type system to
the context of the ABS language to guarantee that far references are not used as
targets for synchronous method calls. A complete type inference implementation
allows the programmer to make use of the type system without making any anno-
tations. The type inference results are visualized as overlay annotations directly
in the development environment. Application of the type system to several case
studies shows that the type system is expressive enough to type realistic code.
The type inference implementation is fast enough to provide inference results
within fractions of a second, so that interactive use of the system is possible.

We see two directions for future work. First, the type system could be applied
to other settings where the location of an object is important, e.g., Java RMI
[19]. Second, it would be interesting to investigate the visual overlay technique
for other (pluggable) type systems, e.g., the nullness type system [14].
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Abstract. Dominance, the property that all paths to a given object
must go through another object, is at the heart of ownership type dis-
ciplines. While ownership types have received abundant attention, own-
ership inference remains an open problem, and crucial questions about
the practical impact of ownership remain unanswered. We argue that a
static program analysis that infers dominance is a crucial first step to
ownership types inference. This paper describes an algorithm for stati-
cally computing dominance relations and shows that it can be used as
part of an ownership inference algorithm.

1 Introduction

Dominance is at the heart of virtually every ownership discipline [3,2,5], and
therefore one would expect dominance inference should be a key part of own-
ership inference. While there are many ownership disciplines, and there is little
question about their benefits, practical adoption is lacking. This is due in part
to the lack of software tools that support ownership such as automatic inference
and refactoring tools incorporated in IDEs. Dominance inference is the founda-
tion of ownership inference: an algorithm that statically computes dominance
relations between objects, allows language designers to prototype ownership in-
ference with respect to different ownership disciplines. Dominance inference has
other applications as well. As it subsumes escape analysis, it can be used for
lock elimination and deadlock detection [12]. Dominance inference can enable
data-centric synchronization [18]. Additionally, dominance inference can be in-
tegrated into architecture extraction tools [8], and help enable reasoning about
encapsulation properties.

The problem of dominance inference is defined in terms of the notion of object
graph. Nodes in the graph are objects, and edges capture references between
those objects. An edge links object i to object j if i has a field that refers to j,
or a local variable in a method invoked on receiver i, refers to j. Fig. 1 shows a
program and two object graphs: (1) shows the concrete object graph that sum-
marizes the references between objects that arise as the program is evaluated,
and (2) shows an abstract object graph which is a static approximation of the
concrete graph obtained by program analysis. Static analysis entails a loss of
precision. In this example, allocation site e is executed twice, resulting in ob-
jects e1 and e2. A typical static analysis abstraction scheme maps every concrete
object to its allocation site, thus e1 and e2 map to the same abstract object e.
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c© Springer-Verlag Berlin Heidelberg 2011
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class Main {
X x;
Y y;
static void main(String[] arg) {

Main m = new Main(); m

m.meth();
}
void meth() {

this.x = new X(); x

x.m();
this.y = new Y(); y

y.m();
}

}
class X {

Contain c;
void m() {
this.c = new Contain(); c

c.put(0,1);
Iter i = c.iter();

}
}

class Y {
Contain d;
void m() {
this.d = new Contain(); d

d.put(1,1);
}

}
class Contain {

int[] e;
Contain() {

this.e = new int[10]; e

}
void put(int i, int j) { e[i] = j; }
Iter iter() {

Iter h = new Iter(e); f

return h;
} }
class Iter {

int[] f;
Iter(int[] f) { this.f = f; }

}
m
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Fig. 1. Concrete (1) and abstract (2) object graphs for the simple program

Every object in the concrete object graph has a dominance boundary, defined
as the maximal subgraph rooted at that object whose nodes are dominated by
the object. The problem of dominance inference is stated as follows: given an
abstract object graph Ĝ and an object i in Ĝ, find a subgraph with root i that
safely approximates the dominance boundary of all concrete objects mapped to i.
Dominance inference using dynamic analysis has been studied before [11,14,5,19].
The appeal of dynamic inference lies in its simplicity. During program execution
a concrete object graph is maintained by the implementation. However, like all
dynamic approaches the results are unsound; there is no guarantee that inferred
dominance won’t be broken by an unseen execution path. Additionally, scala-
bility and performance overheads limit the applicability of dynamic techniques.
Surprisingly, static dominance inference has received almost no attention. Tra-
ditional dominator algorithms [6] cannot be applied on an abstract object graph
as an abstract node corresponds to multiple nodes in the concrete object graph
and straight-forward application of dominator algorithms breaks both precision
and correctness. Consider Fig. 1. Clearly, d does not dominate e in the abstract
graph, thus the results of the dominator algorithm cannot be used to conclude
that concrete d dominates e2. As we shall see, our dominance inference algorithm
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determines precisely that the abstract dominance boundary of d includes e, and
therefore d does dominate e2.

2 Formal Account of Object Graphs

We explain our algorithm and, later, ownership types, in terms of core Java-like
calculus. Throughout the paper we will use the following notation for graphs.
A graph G is a pair (N, E) where N is a set of nodes ranged over by variables
i, j, k, l and E is a set of directed edges written i � j. We write G∪ i � j to denote
the addition of i and j to N and i � j to E.We write i ∈ G and i � j ∈ G to test,
respectively node and edge membership. For sets (of nodes, edges, etc.) we write
S += S′ to denote adding S′ to set S and S−= S′ for removing S′ from S.

2.1 Concrete Semantics

For brevity, we restrict our formal attention to a core calculus in the style of [18]
whose syntax appears in Fig. 2. The language models Java with a syntax in
A-normal form. Features not strictly necessary were omitted. The semantics
operates over configurations of the form S H G C where S is a stack, H is a heap,
G is an object graph and C is a creation graph. A stack is a sequence of frames
〈F s〉 consisting of a mapping F from variables to locations and a statement s.
An object o = C( i ) consists of a class C and values i for the object fields. A heap
is a mapping from indices, ranged over by meta-variables i, j, k, l, to objects. An
object graph G summarizes the references between objects that occur at any
time during program execution. A creation graph C records the creator of each
object. We write i to denote a sequence of indices, τ z for a sequence of local
variable declarations, etc. We write 0 to denote the null reference.

Fig. 3 shows the rules of the concrete semantics. Object creation (dnew)
instantiates a new object with all fields set to null and uses a fresh index j to
refer to the newly allocated object. The rule adds an edge from i, the receiver of
the current frame, to j the newly created object, to G. In addition, it records the
edge from i, the creator of j, to j, in creation graph C. Writing to an object field
(dwrite) updates the heap. The value of field f of object C(j′, jf , j′′) is jf . The
rule also adds edge from k to j to G. Reading a field into a local variable (dread)
has the expected semantics. The summary graph records the read by adding a
reference from the receiver (i.e. this) to the value of the field. Invoking a method

cd ::= class C extends D {fd md} class
fd ::= τ f field
md ::= τ m(τ x){τ z s; return y} method
s ::= s; s | x = new τ () | x = y.f statement
| x.f = y | x = y.m(z)

τ ::= C type

H ::= [] | H [i �→ o] heap
S ::= ε | 〈F s〉S stack
F ::= [] | F [y �→ i] frame
o ::= C(i) object

Fig. 2. Syntax
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(dnew)

o = C(0) j fresh F (this) = i G′ = G ∪ i � j C′ = C ∪ i � j

〈F x = new C(); s〉S H G C → 〈F [x �→ j] s〉S H [j �→ o] G′ C′

(dwrite)

F (x) = k H(k) = C(j′, jf , j′′) F (y) = j H ′ = H [k �→ C(j′, j, j′′)] G′ = G ∪ k � j

〈F x.f = y; s〉S H G C → 〈F s〉S H ′ G′ C

(dread)

F (y) = i H(i) = C(j′, jf , j′′) F (this) = k G′ = G ∪ k � jf

〈F x = y.f; s〉S H G C → 〈F [x �→ jf ] s〉S H G′ C

(dcall)

F (y) = k F (z) = j H(k) = C(. . .) mbody(C.m) = τx x′; τy y′; s′; return y′′

F ′ = [y′ �→ 0][x′ �→ j][this �→ k] G′ = G ∪ {k � j | j ∈ j}
〈F x = y.m(z); s〉S H G C → 〈F ′ s′; return y′′〉〈F x = y.m(z); s〉S H G′ C

(dret)

F (this) = k F ′(y) = j G′ = G ∪ k � j

〈F ′ return y〉〈F x = y′.m(z); s〉S H G C → 〈F [x �→ j] s〉S H G′ C

Fig. 3. Concrete semantics

(dcall) entails pushing a new frame on the stack with local variables initialized
to null and formal parameters set to corresponding actual arguments. Function
mbody(C.m) retrieves the formal parameters, local variables and method body
of the corresponding method. The summary graph records the edges from the
receiver of the call (i.e., F (y) = k) to all arguments.

Lemma 1. The object graph constructed by the above semantics is a superset
of the object graph as defined by Clarke et al. [3].

2.2 Abstract Semantics

We assume a may points-to analysis [15,7] that computes a safe approximation
of the heap Ĥ and stack Ŝ. The abstract semantics computes safe approxima-
tions of G and C, denoted Ĝ and Ĉ respectively. As Ĥ and Ŝ are conservative
approximations, the semantics operates on sets of abstract objects. Thus, F̂ (x)
evaluates to a set of abstract objects, not to a single object. Similarly, fields of
an object in Ĥ are sets of references (denoted I). We assume that all allocation
sites are labelled with an unique identifier.
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(anew)

Ĝ′ = Ĝ ∪ {i � j | i ∈ F̂ (this)} Ĉ′ = Ĉ ∪ {i � j | i ∈ F̂ (this)}
〈F̂ x = newj C(); s〉Ŝ Ĥ Ĝ Ĉ � 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ′

(awrite)

if x �= this then Ĝ′ = Ĝ ∪ {k � j |k ∈ F̂ (x) and j ∈ F̂ (y)} else Ĝ′ = Ĝ

〈F̂ x.f = y; s〉Ŝ Ĥ Ĝ Ĉ � 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ

(aread)

if y = this then Ĝ′ = Ĝ else

Ĝ′ = Ĝ ∪ {k � j |k ∈ F̂ (this) and i ∈ F̂ (y) and Ĥ(i) = C(. . . If . . .) and j ∈ If}
〈F̂ x = y.f; s〉Ŝ Ĥ Ĝ Ĉ � 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ

Fig. 4. Abstract Semantics. (Partial).

The abstraction function α is specific to our points-to analysis and is chosen
so that α(i) = i′ where i′ is the index of the allocation site that created i. α
acts on G in the obvious way: α(G) = (N, E) where N = {α(i) | i ∈ G} and
E = {α(i) � α(j) | i � j ∈ G}. As the points-to analysis is safe, the following two
conditions hold at every step. The first condition ensures the safety of variables,
and the second ensures the safety of fields.

F (x) = i ⇒ α(i) ∈ F̂ (x)
H(i) = C(. . . kf . . .) ⇒ Ĥ(α(i)) = C(. . . If . . .) and α(kf) ∈ If

Fig. 4 shows the rules of the semantics that deal with object creation and field
read/write. Rule (anew) adds new edges to Ĝ and Ĉ from every abstract receiver
i of current frame F̂ , to the abstract object j created at allocation site j. Rule
(awrite) adds new edges to Ĝ from every abstract object k in the points-to set
of x to every j in the points-to set of y. The only interesting aspect of this rule
is that the edges are added only when x �= this. The intuition is that when x is
this, the relevant edges are already in Ĝ and there is no need to add them again.

Lemma 2. Ĝ and Ĉ are safe. That is, α(G) ⊆ Ĝ and α(C) ⊆ Ĉ hold.

3 Dominance Inference Analysis

The dominance inference analysis uses the abstract object and creation graphs as
constructed by the above abstract semantics. It takes as input an abstract object
i, and computes an abstract dominance boundary, which safely approximates the
dominance boundaries of the concrete objects represented by i.
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3.1 Flow Triples

Let us consider how object references can be transferred. Assume that i has a
reference to j. We say that j flows to k from i if k acquires a reference to j from
i. This can happen in one of the following four ways:

1. (dwrite): Local variable y is assigned to a field of local variable x.
2. (dread): The field of local variable y is assigned to local variable x.
3. (dcall): Local variable z is passed as argument to a method of y.
4. (dret): The local variable y is returned to the receiver of the parent frame.

In each case, the operation adds an edge to the object graph as a side effect.
Consider (dwrite), x.f = y, and let F (this, x, y) = i, k, j. Since y holds j, there
has to be an edge i � j in the object graph. Similarly, as x holds k, and there
is an edge i � k in the graph. After the operation, k � j is added to the graph.
We refer to this pattern as a flow triple and denote it 〈i, k, j〉. Consider Fig. 1.
Expression i = c.iter() in method X.m causes the iterator object f to flow to x
from c. Before the call, c holds c and h in Contain.iter holds f , and thus, x � c
and c � f . After the call, a new edge, x � f is added to the graph. The pattern is
reflected by flow triple 〈x, c, f〉.

The analysis records flow triples while processing the rules of the abstract
semantics, namely (awrite), (aread), (acall) and (aret). We set relation
isTriple(〈i, j, k〉) to true whenever a flow triple is encountered. For example, for
(awrite), we set isTriple(〈i, k, j〉) to true for every i ∈ F̂ (this), k ∈ F̂ (x) and
j ∈ F̂ (y).

A flow triple captures transfer (i.e., exposure) of an object to another object,
and is crucial to our analysis. Consider edge d � e in the abstract graph in
Fig. 1. There is no triple that includes this edge, which means that the concrete
e referred by d, namely e2, is not transferred, and therefore it is not exposed
to any object but d; the analysis concludes that at runtime d dominates the
concrete e it refers to. On the other hand, edge c � e is part of triple 〈c, f, e〉
which captures that c’s concrete e, e1, is exposed to f (i.e., we have f �e1). Edge
c�f is part of triple 〈x, c, f〉 and thus f is exposed to x (i.e., x�f). The analysis
concludes that c does not dominate its run-time e, because said run-time e is
exposed to f , and f in turn is exposed to x (i.e., there is a path x � f � e1 that
does not go through c).

3.2 Analysis Description

We begin with several definitions. The root of a graph, is a node j, such that
there is a sequence of edges from j to any node i. We assume that G has root
root. A boundary of a node i is a graph Bi ⊆ G such that i is a root of Bi. A
node j dominates node j′ in boundary Bi if all paths from i to j′ go through j.
The dominance boundary of i in G is the maximal boundary Bi such that for all
nodes j ∈ Bi, i dominates j in G. We denote the dominance boundary of i in G
as Di. closure(G, i) computes the transitive closure of i inductively:

G′
0 = {i � j | i � j ∈ G} ... G′

n = G′
n−1 ∪ {j � k | j ∈ G′

n−1 and j � k ∈ G}
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Algorithm computeBoundary (i, Ĝ, Ĉ)

output B̂i

[1] Out = {j | isOutside(i, j)}
[2] In = closure(Ĉ, i)−Out

[3] W = {i � j | i � j ∈ Ĝ and j ∈ Out}, W + = W

[4] while W �= ∅
[5] W −= k � j

[6] if j ∈ closure(Ĉ, i)

[7] In −= closure(Ĉ, j)

[8] Out += closure(Ĉ, j)

[9] foreach k′ ∈ closure(Ĉ, j)

[10] foreach k′′ � k′ ∈ Ĉ and k′′ ∈ In
[11] if k′′ � k′ /∈ W + then W += k′′ � k′, W + += k′′ � k′

[12] foreach k′ ∈ Ĝ s.t. isTriple(〈k, j, k′〉)
[13] In −= k′, Out += k′

[14] if k � k′ /∈ W + then W += k � k′, W + += k � k′

[15] foreach k′ ∈ Ĝ s.t. isTriple(〈k, k′, j〉) and k′ ∈ In
[16] if k′ � j /∈W + then W += k′ � j, W + += k′ � j

[17] foreach k′ ∈ Ĝ s.t. isTriple(〈k′, k, j〉) and k′ ∈ In
[18] if k′ � j /∈W + then W += k′ � j, W + += k′ � j

[19] B̂i = {j � k | j ∈ In and k ∈ In and j � k ∈ Ĝ}
Fig. 5. computeBoundary returns B̂i

The analysis uses closure(G, i) on the abstract creation graph. closure(Ĉ, i) =
Ĉ′ returns the creation dependences from i. We overload the notation slightly,
and use closure(Ĉ, i) to refer to the nodes in Ĉ′, that is, the objects created by
i, directly or transitively.

The analysis uses a predicate isOutside:

isOutside(i, j) = ∃k . isTriple(〈k, i, j〉)

The predicate captures edges i � j that are part of a triple 〈k, i, j〉. Such a triple
indicates that there are paths from root to j through k that do not go through
i, and therefore, i does not dominate j.

The analysis is presented in Fig. 5. It takes as input an abstract object i and
uses Ĝ and Ĉ. It computes B̂i, a boundary of i in Ĝ. The analysis maintains sets
of abstract objects In and Out . Set In contains the current overapproximation
of the set of objects in every concrete dominance boundary. Set Out contains the
current underapproximation of the set of objects in the frontier of the dominance
boundary. The analysis starts with initial sets In, Out and tracks flow of objects
using isTriple . Eventually, all potentially exposed objects are removed from In.
The nodes remaining in In and the edges between them form boundary B̂i. The
correctness of the analysis is stated by the following theorem:

Theorem 1. Let G be any object graph and i be any object in G. Let B′
i be any

boundary of i in G. If α(B′
i) ⊆ B̂α(i) then B′

i ⊆ Di.
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The theorem states that the computed boundary B̂α(i) safely approximates the
dominance boundary of every i. That is, for any concrete boundary B′

i repre-
sented by B̂α(i), B′

i is included in Di; thus i dominates in G all of the nodes in
B′

i. In our running example, B̂d is the one-edge graph d � e. The theorem states
that concrete edge d � e2 is in the dominance boundary of d, or in other words,
d dominates e2.

4 Application: Ownership Type Inference

We present one application of the dominance inference analysis: ownership type
inference. We choose the owner-as-dominator type system of [3] restricted to one
ownership parameter. This restriction simplifies the problem; in future work we
plan to investigate empirically the necessity for multiple ownership parameters,
as well as extend the current analysis with handling of multiple parameters.

4.1 Type System

The type system of [3] assigns an ownership type 〈p|p′〉 to each local variable,
field and allocation site. The type annotation C〈p|p′〉 x (also written as p C〈p′〉 x),
has the following interpretation: p is the owner of the object i referred to by x,
and p′ is an ownership parameter passed to that object. p takes one of the
following three values: rep, own or p (for brevity, we rename owner to own and

(tnew)

E(x) = C t

E � x = new C t

(twrite)

x �= this E(x) = C tx typeof (C.f) = D tf
E(y) = D ty adapt(tf , tx) = ty

E � x.f = y

(twritethis)

E(this) = C t′ typeof (C.f) = D t
E(y) = D t

E � this.f = y

(tread)

y �= this E(y) = C ty typeof (C.f) = D tf
E(x) = D tx adapt(tf , ty) = tx

E � x = y.f

(treadthis)

E(this) = C t′ typeof (C.f) = D t
E(x) = D t

E � x = this.f

(tcall)

E(y) = C ty typeof (C.m) = D t → D′ t′

y �= this E(x) = D′ tx E(z) = D tz
adapt(t, ty) = tz adapt(t′, ty) = tx

E � x = y.m(z)

(tcallthis)

E(this) = C t′′

typeof (C.m) = D t → D′ t′

E(x) = D′ t′ E(z) = D t

E � x = this.m(z)

Fig. 6. Type rules
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omit discussion of norep [3]). rep denotes that object i is owned by this, own
denotes that i is owned by the owner of this, and p denotes that i’s owner is
passed from this as an ownership parameter. p′ takes the same values. rep is
the most precise value, followed by own, followed by p, or in other words, we
have rep < own < p. For this paper we impose the following restriction on
ownership types 〈p|p′〉 : p ≤ p′. Even though types where p > p′ (e.g., 〈p|rep〉)
are allowed in ownership types, the properties of the system entail that if the
program type checks with 〈p|p′〉, where p > p′, it will type check with 〈p′|p′〉
as well. Our analysis naturally restricts the inferred types to the following six
ownership types, ordered in order of decreasing precision:

〈rep|rep〉 < 〈rep|own〉 < 〈rep|p〉 < 〈own|own〉 < 〈own|p〉 < 〈p|p〉

Note that the above is an ordering relation over the set of types, not a subtyping
relation. The ordering relation is necessary to define an inference algorithm based
on fixpoint iteration.

The rules for the ownership type system are given in Fig. 6 (see [3] for ad-
ditional details). The system assigns types C t, where C is the class type and t
is the ownership type. For brevity, features not strictly necessary are omitted.
The viewpoint adaptation function adapt(t, t′), gives the view of ownership type
t from ownership type t′:

adapt(〈own|own〉, 〈p|p′〉) = 〈p|p〉
adapt(〈own|p〉, 〈p|p′〉) = 〈p|p′〉
adapt(〈p|p〉, 〈p|p′〉) = 〈p′|p′〉

Viewpoint adaptation originates from work on Universe types [4]. As it is ex-
plained in [4], the intuition behind adapt is the folowing: if object i sees object j
as having ownership type t′, and j sees k as having ownership type t, then i sees
k as having ownership type t′′ where t′′ = adapt (t, t′) (i.e., t′′ is the adapted t
from the point of view of t′). In [3] viewpoint adaptation is accomplished through
substitution function σ and its inverse ψ; we believe that adapt is more intuitive
and have taken the liberty to use adapt .

adapt is partially defined: no t that contains rep can be viewed from another
type t′, which accounts for static visibility.

4.2 Type Inference

Fig. 7 shows the ownership type annotations for our example program as inferred
by our analysis. The iterator object at allocation site f receives type 〈own|own〉
(written in the code as own Iter〈own〉). The owner is own which means that the
container’s owner, x for container c and y for container d, is the owner of the
iterator. The ownership parameter passed to the iterator is own as well, but it
remains unused, as the analysis infers that the iterator’s owner, x or y, owns
the corresponding array, e1 or e2 respectively. Our prototype reports types for
allocation sites and fields. It infers types for local variables as they appear in
the intermediate representation but does not map these to Java variables. This
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class Main {
rep X<rep> x; rep Y<rep> y;
static void main(String[] arg) {

Main m = new Main(); m

m.meth();
}
void meth() {

x = new rep X<rep>(); x

x.m();
y = new rep Y<rep>(); y

y.m();
}

}
class X<p> {

rep Contain<rep> c;
void m() {
this.c = new rep Contain<rep>(); c

c.put(0,1);
Iter i = c.iter();

}
}

class Y<p> {
rep Contain<rep> d;
void m() {
this.d = new rep Contain<rep>(); d

d.put(1,1);
}

}
class Contain<p> {

own int[] e;
Contain() { this.e = new own int[10]; } e

void put(int i, int j) { e[i] = j; }
Iter iter() {

Iter h = new own Iter<own>(e); f

return h;
}

}
class Iter<p> {

own int[] f;
Iter(int[] f) { this.f = f; }

}

Fig. 7. Ownership types for simple program

is an engineering issue that we plan to address. We stay faithful to the output
of our current prototype and show the types it infers.

We infer an ownership type on every edge of Ĝ. Subsequently, we join these
types to compute types for local variables, fields and allocation sites, and show
that the computed types type check in the above type system. Each edge i�j ∈ Ĝ
receives an ownership type T (i� j) = 〈p|p′〉. p is j’s owner from the point of view
of i: if p is rep, then i is the owner of j; otherwise, if p is own, then the owner of
i is also the owner of j, and finally, if p0 is p, then i’s ownership parameter is the
owner of j. Analogously, p′ is j’s ownership parameter from the point of view of
i. The problem at hand is a constraint problem. We seek type assignment T on
the edges of Ĝ such that every flow triple 〈i, j, k〉 in Ĝ is well-typed:

isTriple(〈i, j, k〉)⇒ adapt(T (j � k), T (i � j)) = T (i � k)

These constraints capture the type constraints in Sec. 4.1. Consider rule
(twrite) which types x. f = y. In the object graph we have flow triple 〈i, k, j〉
where this holds i, x holds k and y holds j. tx is the type of x from the point of
view of this, and T (i � k) is the type of k (x) from the point of view of i (this); tf
is the type of field f from the point of view of an object of class C, and T (k � j)
is the type of j from the point of view of k; finally, ty is the type of y from the
point of view of this and T (i � j) is the type of j from the point of view of i. Our
analysis makes tx = T (i � k), tf = T (k � j) and ty = T (i � j). The well-typedness
of flow triple 〈i, k, j〉 (i.e., adapt(T (k � j), T (i � k)) = T (i � j)) guarantees the
well-typedness of x. f=y (i.e, adapt(tf , tx) = ty).
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Clearly, there are many assignments that satisfy the adapt constraints. For
example, a trivial assignment would assign 〈p|p〉 to all edges in Ĝ except edges
root � i, to which it would assign 〈rep|rep〉. This assignment is bad however, as
it produces a flat (and useless) ownership tree where root is the owner of all
objects. A good assignment would assign a large number of rep types.

A triple typing is a triple of types 〈tij , tjk, tik〉. A well-typed triple typing is
a triple typing that meets the adapt constraint: adapt (tjk, tij) = tik. There are
18 well-typed triple typings: tjk ranges over 〈own|own〉, 〈own|p〉 and 〈p|p〉, and
tij ranges over 〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉 (recall that
adapt restricts the values of its first argument to account for static visibility).
We define an ordering over the set of well-typed triple typings:

〈〈rep|rep〉, 〈own|own〉, 〈rep|rep〉〉 < 〈〈rep|own〉, 〈own|own〉, 〈rep|rep〉〉 <
〈〈rep|p〉, 〈own|own〉, 〈rep|rep〉〉 < 〈〈rep|rep〉, 〈own|p〉, 〈rep|rep〉〉 <
〈〈rep|own〉, 〈own|p〉, 〈rep|own〉〉 < 〈〈rep|p〉, 〈own|p〉, 〈rep|p〉〉 <
〈〈rep|rep〉, 〈p|p〉, 〈rep|rep〉〉 < 〈〈rep|own〉, 〈p|p〉, 〈own|own〉〉 <
〈〈rep|p〉, 〈p|p〉, 〈p|p〉〉 < 〈〈own|own〉, 〈own|own〉, 〈own|own〉〉 <
〈〈own|p〉, 〈own|own〉, 〈own|own〉〉 < 〈〈own|own〉, 〈own|p〉, 〈own|own〉〉 <
〈〈own|p〉, 〈own|p〉, 〈own|p〉〉 < 〈〈own|own〉, 〈p|p〉, 〈own|own〉〉 <
〈〈own|p〉, 〈p|p〉, 〈p|p〉〉 < 〈〈p|p〉, 〈own|own〉, 〈p|p〉〉 <
〈〈p|p〉, 〈own|p〉, 〈p|p〉〉 < 〈〈p|p〉, 〈p|p〉, 〈p|p〉〉

Triple typings with two rep owners are most precise, followed by triple typings
with one rep owner, followed by triple typings with three own owners, etc. The
least precise typing is the one where all three edges have type 〈p|p〉. Function
raiseTriple takes a flow triple 〈i, j, k〉 as an argument and returns the smallest
(i.e., most precise) typing 〈tij , tjk, tik〉 in the above ordering, such that T (i�j) ≤
tij and T (j �k) ≤ tjk and T (i�k) ≤ tik. Intuitively, when the analysis encounters
a flow triple 〈i, j, k〉, which is not well-typed, it invokes raiseTriple to find the
most precise well-typed typing that is larger than the typing on 〈i, j, k〉. It then
raises the types on 〈i, j, k〉 to 〈tij , tjk, tik〉 to make 〈i, j, k〉 well-typed. Function
adjTriples takes an edge i�j as an argument and returns the set of all flow triples
adjacent to this edge: {〈i, j, k〉} ∪ {〈i, k′, j〉} ∪ {〈k′′, i, j〉}. If an edge changes its
type, the change affects all adjacent triples. The analysis is shown in Fig. 8.
It uses the dominance analysis from Sec. 3. Procedure assignEdgeTypes assigns
an initial type to every edge in Ĝ as follows: if the edge is in the dominance
boundary of its source, then its initial type is 〈rep|rep〉; otherwise, its type is
〈own|own〉 (lines 1-5). Unfortunately, not all flow triples will be well-typed under
this initial assignment. The analysis collects the triples that are not well-typed
(lines 6-8), and invokes resolve (line 9), which repeatedly raises types until it
reaches a fixpoint. Procedure assignTypes assigns types on locals and fields. For
each variable x, it joins the types of the edges in Ĝ that correspond to x (line
8); notation

∨
has the standard lattice-theoretic interpretation as the join of

all values — E(x) is assigned the largest T (i � j), i � j ∈ M , according to the
ordering of ownership types from Sec. 4.1. If one of the edges in M has a type
smaller than E(x), the analysis raises its type to E(x) and places its adjacent
triples on the conflict list (lines 5-8). The procedure repeats for fields.
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procedure assignEdgeTypes(Ĝ)
output T

[1] foreach i � j ∈ Ĝ

[2] if i � j ∈ B̂i

[3] T (i � j) = 〈rep|rep〉
[4] else
[5] T (i � j) = 〈own|own〉
[6] foreach 〈i, j, k〉 s.t. isTriple(〈i, j, k〉)
[7] if adapt(T (j � k), T (i � j)) �= T (i � k)
[8] K+= 〈i, j, k〉
[9] T = resolve(Ĝ,K , T )
[10]return T

procedure resolve(Ĝ,K , T )
output T
[1] W = K
[2] while W �= ∅
[3] W −= 〈i, j, k〉
[4] 〈tij , tjk, tik〉 = raiseTriple(〈i, j, k〉)
[5] if tij �= T (i � j)
[6] T (i � j) = tij

[7] W+= adjTriples(i � j)
[8] if tjk �= T (j � k)
[9] T (j � k) = tjk

[10] W+= adjTriples(j � k)
[11] if tik �= T (i � k)
[12] T (i � k) = tik

[13] W+= adjTriples(i � k)
[14]return T

procedure assignTypes(Ĝ, Ĥ, Ŝ, T )
output well-typed E, T
[1]change = true
[2] while change
[3] change = false,K = ∅
[4] foreach class C ∈ program P
[5] foreach method m ∈ C
[6] foreach variable x ∈ m

[7] M = {i � j | i � j ∈ Ĝ and

i ∈ F̂ (thism) and j ∈ F̂ (x)}
[8] E(x) =

∨
i�j∈M T (i � j)

[9] foreach i � j ∈M
[10] if E(x) �= T (i � j)
[11] T (i � j) = E(x)
[12] change = true
[13] K+= adjTriples(i � j)
[14] foreach field f ∈ C

[15] M = {i � j | i � j ∈ Ĝ and

Ĥ(i) = C(...If ...) and j ∈ If}
[16] E(C.f) =

∨
i�j∈M T (i � j)

[17] foreach i � j ∈M
[18] if E(C.f) �= T (i � j)
[19] T (i � j) = E(C.f)
[20] change = true
[21] K+= adjTriples(i � j)

[22] T = resolve(Ĝ,K , T )
[23] return E,T

Fig. 8. Type assignment

Theorem 2. Let E be the type assignment for program P computed by the anal-
ysis. P is well-typed in the system from Sec. 4.1.

Discussion. The above analysis, a fixpoint iteration, can be applied to any
initial type assignment. An optimistic initial assignment would assign a large
number of rep types, and a pessimistic assignment would assign less rep types
and more own and p types. An unwise initial assignment would affect scalability,
precision or both. If the assignment is overly optimistic, the majority of edges
would need to be lowered from rep (since most edges are not rep anyway), and this
would likely prohibit scaling the analysis beyond small programs. On the other
hand, if the assignment is overly pessimistic, the analysis will converge faster
to a fixpoint, but will lose precision. We conjecture that our initial assignment,
which makes use of dominance inference, is key to the scalability and precision of
ownership type inference. It would immediately filter out edges that cannot be
rep; as a result, very few edges would change type (predominantly from 〈own|own〉
to 〈p|p〉), and the analysis would scale well. Also, few edges that can be rep, would
not be assigned rep in the initial assignment.
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5 Implementation

The object graph analysis, dominance inference analysis and type inference anal-
ysis are implemented in Java using Soot 2.2.3 [17] and the Andersen-style points-
to analysis provided by Spark [7]. We performed whole-program analysis with
the Sun JDK 1.4.1 libraries. All experiments were done on a MacBook Pro with
4GB of RAM. The implementation, which includes Soot and Spark, was run
with a max heap size of 1400MB; however, all benchmarks ran within a memory
footprint of 800MB. Native methods are handled by utilizing the models pro-
vided by Soot. Reflection is handled by specifying the dynamically loaded classes
which Spark uses to appropriately resolve reflection calls.

Our benchmark suite is presented in Table 1. It includes 6 software compo-
nents (from gzip through number) which we have used in previous work and
are familiar with. Each component is transformed into a whole program by at-
taching an artificial main method to complete it which allows whole-program
analysis [16]. In addition, the suite includes 12 whole programs: jdepend, javad,
JATLite and undo, benchmarks soot and sablecc from the Ashes suite, polyglot ,
and antlr , bloat, jython, pmd and ps from the DaCapo benchmark suite version
beta051009. #Class gives the size of the benchmarks in classes; #Meth gives
the size of the benchmarks in methods (user and library) reachable by Spark.

5.1 Results

We report dominance inference results on allocation sites and instance fields
of reference type. Multicolumn Create in Table 1 shows the number of object
creation sites in user classes, excluding String and StringBuffer . Column dom
shows the number inferred as dominated by their creating object. Multicolumn
Fields shows analogous information for instance fields of reference type in user
classes, again excluding fields of type String and StringBuffer .

On average, for the 12 large benchmarks, roughly 50% of all creation sites
and 30% of all fields were reported as dom. This suggests that ownership occurs
frequently in real-world object-oriented programs. The high percentage of dom
creation sites is not surprising because programs typically create a large number
of temporary objects that remain method-local (roughly 30% according to one
study [15]). Our analysis captures method-local objects, as well as “object-local”
objects (i.e., objects assigned to fields, but remaining in the boundary of their
creating “owner” object). These results suggest that the dominance analysis will
fare well in another application: escape analysis. Column Pt shows the running
time for Spark’s points-to analysis, Dom shows the running time for dominance
inference. Except for polyglot , an outlier for all analyses, inference scales well,
completing in under 200 seconds.

Additionally, Table 2 shows type inference results for benchmark javad. javad,
4000LOC, was annotated manually and type-checked by a checker built on top of
the Checkers framework [13]. Table 2 lists 47 creation sites instead of 48 because
one site was static and annotated as norep (see [3]). Interestingly, the additional
constraints that ownership types impose on dominance, do not cause dom an-
notations to become own or p. All but one creation site, and all but one field
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Table 1. Information about benchmarks and dominance inference results

Program Description Size Create Fields Time
#Class #Meth #Create dom #Field dom Pt Dom

gzip GZIP IO streams 6 3819 35 31 7 4 25s 2s

zip ZIP IO streams 6 3844 29 21 10 5 25s 3s

checked streams/checksums 4 3766 9 8 2 0 96s 2s

collator text collation 15 3868 40 31 17 9 25s 3s

breaks iter. over text 13 3822 270 268 7 0 26s 3s

number number formatting 10 3880 124 119 3 1 25s 4s

jdepend Quality metrics 17 3962 84 66 29 19 26s 3s

javad Decompiler 41 3838 48 37 36 19 26s 2s

JATLite Agent system 45 6279 273 117 142 35 42s 20s

undo Undo functionality 237 5644 728 313 290 56 50s 31s

soot Analysis framework 579 6046 703 274 283 64 40s 179s

sablecc Parser generator 300 7970 1261 865 284 25 49s 34s

polyglot Compiler 267 7449 1180 278 431 52 141s 365s

antlr Parser generator 126 5102 596 434 152 38 39s 13s

bloat Bytecode optimizer 289 6402 1047 453 449 79 41s 95s

jython Python interpreter 163 5606 520 143 206 41 38s 122s

pmd Source analyzer 718 8653 374 163 114 46 67s 105s

ps Postscript engine 200 5396 424 113 19 7 38s 136s

Table 2. Type inference results for benchmark javad

Create Fields

rep|rep rep|own rep|p own|own own|p p|p rep|rep rep|own rep|p own|own own|p p|p
6 5 24 1 10 1 2 5 11 1 6 11

inferred as dom by dominance inference, stay rep after type inference. We do not
report inference results on the other programs, because we have not type checked
those programs; we are in the process of integrating the inference analysis with
the type checker, which will enable automatic inference and checking.

5.2 Precision

Addressing the issue of precision is highly non-trivial. To the best of our knowl-
edge, there are no large programs annotated with ownership types, that could be
used to objectively evaluate an ownership inference analysis. In order to evaluate
the precision of our analysis, we performed a study of absolute precision [16,8]
on a subset of the fields. Specifically, we considered all fields in components gzip
through number and all fields in javad. This accounted for 82 fields. Of these, 38
were reported as dom and 44 were reported as not dom.

To evaluate the precision of the dominance inference, we examined every field
f that was not reported as dom, and attempted to prove exposure. That is, we
attempted to show that there is an execution such that an object j stored in field
f of object i is exposed outside of i, or more formally, that i does not dominate j
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in the concrete object graph. In every case, we were able to prove such exposure.
In addition, we examined every dom field. Although the analysis is proven safe
and therefore, a dom field must be indeed dominated by its enclosing object, we
conducted the detailed examination in order to gain further confidence in the
functional correctness of the implementation. In every case, the dom field was
indeed dominated as expected. Therefore, for this set of 82 fields, the inference
analysis achieved very good precision.

6 Related Work

Despite significant effort on ownership types, ownership inference has received
much less attention. Work on dynamic ownership inference includes [14,11,5,19].
In their essence, these works take the same approach. They reason about domi-
nance (and hence ownership) on dynamic (i.e., concrete) object graphs by apply-
ing well-known dominator algorithms [6] on those graphs. They face challenges
such as large concrete object graphs [14,11] and runtime overhead [19], and they
are inherently unsafe since inferred dominance (i.e., ownership) holds only on
observed runs. Our dominance inference is fundamentally different: it performs
deep semantic analysis on the abstract object graph and avoids the problems
inherent in dynamic analysis. The empirical investigation suggests that it avoids
the usual pitfall of static analysis (i.e., imprecision), and presents a ”sweet spot”
in the spectrum: an inexpensive but precise analysis. Ma and Foster present
Uno [9], a static analysis-based tool for inference of encapsulation properties
in Java programs. Among other things, their analysis computes what fields are
owned. They report 16% of the fields across their benchmarks as owned, while
we report (roughly) 30% as owned. The difference can be explained by the dif-
ference in the inferred ownership. Uno infers exclusive ownership: that is, an
owned object must be accessed only by its owner. Our model is less-restrictive:
an owned object can be passed to other owned objects. We inferred exclusive
ownership in our framework and we found that 20% of all fields were exclusively
owned. This result is close to Uno’s 16%. It suggests that objects often flow to
other objects, while remaining encapsulated in their owner and therefore, exclu-
sive ownership may not be enough. We observed multiple such cases in our case
studies. Aldrich et al. [1] present an ownership type system which includes anno-
tations for uniqueness, ownership, sharing and parameters. They present a type
inference analysis and report preliminary results on small programs and Java
library classes. Their inference algorithm is conceptually different from ours; it
creates several kinds of constraints at the level of the source, namely equality
constraints, component constraints and instantiation constraints; subsequently,
it uses a worklist-based procedure to resolve the constraints. Our analysis solves
one kind of constraints, essentially equality constraints defined with adapt ; it
relies on dominance inference to start at a “good point” in the solution space,
which, we conjecture, speeds-up the resolution procedure. It is difficult to judge
which analysis is better because the analysis from [1] is never fully described; [1]
focuses on the type system and experience with type checking, not on type in-
ference as our work does. Aldrich has pointed out that reasoning about multiple
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ownership parameters presents significant difficulty. In this sense, we solve a
simpler problem, as for this paper we focus on a system with one ownership
parameter; we plan to address multiple ownership parameters in future work.
Finally, we contrast this work with our own previous work [8] and [10]. This
paper presents a substantial extension in that it computes abstract ownership
boundaries, while [8] reasoned about specific edges in the object graph. The work
in [10] presents a preliminary version of the dominance inference analysis.

7 Conclusion

We have presented a novel static dominance inference analysis. One direction of
future work is to build a framework for ownership inference. Different inference
analyses, each addressing a specific ownership discipline, can be coded easily on
top of dominance inference.
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Abstract. We compare the Visitor pattern with the Interpreter pattern, investi-
gating a single case in point for the Java language. We have produced and com-
pared two versions of an interpreter for a programming language. The first version
makes use of the Visitor pattern. The second version was obtained by using an
automated refactoring to transform uses of the Visitor pattern to uses of the In-
terpreter pattern. We compare these two nearly equivalent versions on their main-
tenance characteristics and execution efficiency. Using a tailored experimental
research method we can highlight differences and the causes thereof. The contri-
butions of this paper are that it isolates the choice between Visitor and Interpreter
in a realistic software project and makes the difference experimentally observable.

1 Introduction

Design patterns [7] provide reusable, named solutions for problems that arise when
designing object-oriented systems. While in some cases it is clear which pattern should
be used, in others multiple patterns could apply. When this happens, the designer has to
carefully weigh the pros and cons (“consequences” [7]) of each option as applied both
to the current design and to plans for future evolution of the system.

In this paper we describe one of these choices in the context of an interpreter for
the Rascal1 programming language [13], namely: the choice between structuring an
abstract syntax tree-based language interpreter according to either the Visitor or the
Interpreter pattern. While it seems clear (Section 3) that either pattern will do from a
functional point of view, it is unclear what the non-functional quality of the interpreter
will be in each case. In theory, the Interpreter pattern might have lower method call
overhead because it does not involve double dispatch, it should allow easier extension
with new language features, and it should be easier to add local state to AST nodes. In
theory, the Visitor pattern should allow easier extension with new kinds of operations on
AST nodes and should allow better encapsulation of state required by such operations.
These and other considerations are exemplified in what has become known as the “ex-
pression problem” [18,4]. In this paper we investigate how the assumptions embedded
in the expression problem manifest themselves in the context of a concrete case.

Our initial implementation of the Rascal interpreter was fully based on the Visitor
design pattern. This choice was motivated mainly by a general argument for modularity,
with each function (or algorithm) on the AST hierarchy separated into a single class.
To be able to experiment with the decision of whether to use Visitor or Interpreter,

1 http://www.rascal-mpl.org
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Fig. 1. Simplified build-time and run-time architecture of Rascal

we have used Rascal itself to automate an ad-hoc refactoring transforming the visitor-
based design to an interpreter-based design (the details of this refactoring are outside
the scope of the current paper, but we do explain the relevance of the existence of such
an automatic refactoring for our approach). This then allows us to conduct a compari-
son between two implementations varying only in the choice of design pattern. In this
comparison we focus on ease of maintenance and runtime performance. We show the
differences between using the Visitor and Interpreter patterns in the Rascal interpreter
by analysis of real maintenance scenarios and some initial performance measurements.
While the results cannot be directly generalized to other software systems, we expect
that other designers of tree-centric object-oriented software—compilers, interpreters,
XML processors, etc.—will benefit.

Roadmap. Section 2 describes the Rascal interpreter, including the transformation from
the Visitor to the Interpreter pattern, at a level of detail necessary to follow the remain-
der of the paper. Section 3 then explains the research methods we use to compare the
maintainability and performance between the two different versions. Following this,
Section 4 and Section 5 then apply these methods to analyze the differences in (respec-
tively) maintainability and performance. Finally, we conclude in Section 6.

2 Design Patterns in the Rascal Interpreter

Rascal is a domain-specific language for meta-programming: to analyze, transform or
generate other programs. While it has primitives for parsing, pattern matching, search,
template instantiation, etc., it is designed to look like well-known languages such as C
and Java. To facilitate integration into Eclipse2, Rascal is implemented in Java and itself.
Figure 1 depicts Rascal’s build-time and run-time architecture. Because Rascal source
code may contain both context-free grammars and concrete fragments of sentences for
these grammars, the run-time and the build-time stages depend on each other.

The interpreter’s core is based on classes representing abstract syntax trees (AST) of
Rascal programs. These classes implement the Composite pattern (Figure 2) and a part
of the Visitor pattern (Figure 3). Each syntactic category is represented by an abstract
class, such as Expression or Statement. These contain one or more nested classes
that extend the surrounding class for a particular language construct, such as If, While

2 http://www.eclipse.org

http://www.eclipse.org
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(both contained in and extending Statement), and Addition (contained in and
extending Expression). All AST classes also inherit, directly or indirectly, from
AbstractAST. AST classes provide access to children by way of getter methods,
e.g., If and While have a getConditional() method.

2.1 Creating and Processing Abstract Syntax Trees

Fig. 2. The Composite Pattern3

Rascal has many AST classes (about
140 abstract classes and 400 concrete
classes). To facilitate language evolution
the code for these classes, along with
the Rascal parser, is generated from the
Rascal grammar. The AST code gen-
erator also creates a Visitor interface
(IASTVisitor), containing methods
for all the node types in the hierarchy,
and a default visitor that returns null for
every node type (NullASTVisitor).
This class prevents us from having to im-
plement a visit method for all AST node
types, especially useful when certain algorithms focus on a small subset of nodes.
Naturally, each AST node implements the accept(IASTVisitor<T> visitor)
method by calling the appropriate visit method. For example, Statement.If
contains:

public <T> accept(IASTVisitor<T> v) {
return v.visitStatementIf(this);

}

Fig. 3. The Visitor Pattern4

The desire to generate this code played
a significant role in initially decid-
ing to use the Visitor pattern. We
wanted to avoid having to manually
edit generated code. Using the Visi-
tor pattern, all functionality that oper-
ates on the AST nodes can be sepa-
rated from the generated code. When
the Rascal grammar changes, the AST
hierarchy is regenerated. Many im-
plementations of IASTVisitor will
contain Java compiler errors and
warnings because the signature of visit
methods will have changed. This is very
helpful for locating the code that needs to be changed due to a language change. Most
of the visitor classes actually extend NullASTVisitor though, which is why it is

3 Image from http://en.wikipedia.org/wiki/Composite_pattern
4 Image from http://en.wikipedia.org/wiki/Visitor_pattern

http://en.wikipedia.org/wiki/Composite_pattern
http://en.wikipedia.org/wiki/Visitor_pattern
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important that each method they override is tagged with the @Override tag5. Note
that the class used to construct ASTs at runtime, ASTBuilder, uses reflection to map
parse tree nodes into the appropriate AST classes. Hence, this code does not have to
change when we change the grammar of the Rascal language.

2.2 A Comparison with the Interpreter Pattern

Component

Leaf

Composite

Fig. 4. The Interpreter Pattern with references to Compos-
ite (Figure 2).6

Considering that our design al-
ready employs the Composite
pattern, the difference in design
complexity between the Visitor
and Interpreter patterns is strik-
ing (Figure 4). The Composite
pattern contains all the elements
for the Interpreter pattern (ab-
stract classes that are instanti-
ated by concrete ones)—only an
interpret method needs to
be added to all relevant classes.
So rather than having to add new concepts, such as a Visitor interface, the accept
method and NullASTVisitor, the Interpreter pattern builds on the existing infras-
tructure of Composite and reuses it. Also, by adding more interpret methods (vary-
ing either the name or the static type) it is possible to reuse the Interpreter design pattern
again and again without having to add additional classes. However, as a consequence,
understanding each algorithm as a whole is now complicated by the fact that the meth-
ods implementing it are scattered over different AST classes. Additionally, there is the
risk that methods contributing to different algorithms get tangled because a single AST
class may have to manage the combined state required for all implemented algorithms.
The experiments discussed in Section 4 help make this tradeoff between separation of
concerns and complexity more concrete.

2.3 Refactoring from Visitor to Interpreter using Rascal

We constructed an automated refactoring tool for transforming Visitor classes to Inter-
preter methods. It is the key to our research method (see Figure 5). However, the details
of constructing the refactoring are out of the scope of the current paper. They can instead
be found online [11]. The benefits of an automated approach are:

Reproducible target code makes it easy to replay the refactoring during experimenta-
tion, while also allowing others to literally replicate the experiment;

Automated analysis checks that semantics are preserved and the transformation is
complete (i.e., no visitors are missed during the transformation);

5 If a method is tagged with @Override the Java compiler will warn if it does not override any
method anymore.

6 Image from http://en.wikipedia.org/wiki/Interpreter_pattern, created
by Jing Guo Yao and licensed under the Creative Commons Attribution-ShareAlike 3.0
License.

http://en.wikipedia.org/wiki/Interpreter_pattern
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One thing at a time automated refactoring does not suffer from the temptation during
a large manual refactoring to make other changes as well, which would confound
the analysis and hinder reproducibility.

The tool is implemented using a combination of Rascal and Java. The Java code is used
to access features of the Eclipse JDT7 used for fact extraction, source code cleanup, and
refactoring. The Rascal code is used to analyze and aggregate this information, to call
JDT refactorings with the right parameters and to generate the new code.

3 Comparing Design Patterns

The research strategy of this paper can be characterized as idiographic [1]: we seek to
understand a single phenomenon (i.e. Visitor vs. Interpreter) in a particular context (the
implementation of Rascal). The context for our study is further established by fixing
the following variables: programming language (Java), application area (programming
language interpreter), and the use of the Eclipse IDE. We assume that the AST classes
used in the interpreter are implemented using the Composite pattern. Finally, we require
all regression tests for the interpreter to run unchanged as we vary the system.

Within this context, the primary free variable is the choice between the patterns we
are comparing: Visitor and Interpreter. The two dependent variables we wish to mea-
sure are differences in maintainability and runtime performance between two versions
of the interpreter that use the two design patterns but are otherwise functionally equiv-
alent. The dependent variables are measured in a number of maintenance scenarios
categorized according to ISO 14764 [12]: perfective (speed optimization), corrective
(bug fixes), and adaptive (new features).

3.1 Measuring Differences in Runtime Performance

In Section 5 we measure differences in speed between the two versions of the inter-
preter, as well as showing the improvement in both versions from one of the mainte-
nance scenarios. We use a benchmark of running 4 different Rascal programs, designed
as representative workloads. In our experiments runtime performance is measured in
wall-clock time, averaged over multiple runs, with an initial run of each test to try to
minimize differences from just-in-time compilation during later runs.

3.2 Measuring Differences in Maintainability

Differences in maintainability are less straight-forward to measure. A large number of
metrics exist for measuring object-oriented systems [10], including metrics specifically
aimed at maintenance. One such metric, “Maintenance Complexity”8, is defined as an
aggregate sum of weighted occurrences of uses of programming language constructs.
While this may be used to get an indication of the complexity of maintaining a single
method, it is not clear how it could be used to compare the complexity of two systems
using different design patterns. In other efforts there have been attempts to quantify

7 Java Development Toolkit; http://www.eclipse.org/jdt
8 By Mark Miller (unpublished).

http://www.eclipse.org/jdt
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differences between systems using design patterns and those without, focusing either
on understandability [2], maintenance effort [17], or modularity [8].

Metrics such as the maintainability index (MI) [16,3] and the SIG maintainability
model (SMM) [9] also produce numerical results that help predict the long-term main-
tenance cost. The MI does not allow for cause analysis, while the SMM does. The
difference lies in the (ir)reversibility of aggregation formulas. Both metrics produce a
system-wide indicator of maintainability independent of the kind of changes that are
applied to it. This level of abstraction is useful for managers who wish to track the
evolution of a large software system, but is less useful for studying the effect of choos-
ing design patterns. In reality, any object-oriented system is more amenable for certain
kinds of changes than others.

Instead of the above metrics, we opt for a metric inspired by the concept of Evolution
Complexity [5,15] (EC). EC was devised by Mens and Eden to provide a foundation for
reasoning about the complexity of changes to software systems. EC is defined as the
computational complexity of a meta program that transforms a system to obtain a new
version. Each transformation is implied by a shift in requirements. As opposed to the
aforementioned system-wide metrics, this provides a means to reason about maintain-
ability, subject to specific evolution scenarios and specific parts of a system.

In the current paper we need a more precise measure that not only measures the
effort to transform the system, but also the effort to analyze it before applying any
transformations, the cost of which can govern the overall cost of maintenance [14]—
one first needs to know where and what to change before actually making any changes.
To account for this, we introduce the concept of a maintenance scenarios, which then
allows us to determine the complexity of maintenance.

Definition 1. A maintenance scenario S is a description of a required change to a
program P that implies a set of changes in its source code. Implicitly, all previous
requirements—unless contradicting the current change—need to be conserved.

Definition 2. The complexity of maintenance COM is the computational complexity of
a meta program (MS) that analyses and transforms the source code of program P to
implement a specific maintenance scenario S:

COM(P,MS) = COMPUTATIONALCOMPLEXITY(MS(P)).

This definition implies a detailed subjective model of maintainability that depends on
the design of the system, the maintenance scenario, the way the analysis and trans-
formation is executed, and the definition of computational complexity. With so many
subjective variables, it is impossible to use it to estimate maintainability of a specific
system. Such an absolute complexity metric would be too sensitive to differences in in-
terpretation. Instead, we use it as a comparative framework, specifically for comparing
two systems that are equal in all but one aspect: the choice between two design patterns.

Figure 5 describes our framework to compare the maintainability of two versions
n and m of a given system. Version m has been derived from version n by way of
an automated refactoring, i.e. a meta-program that preserves the functional behavior of
version n but may change some non-functional characteristics. In our case study, version
n is the Rascal interpreter based on the Visitor pattern and version m is the version of
the Rascal interpreter based on the Interpreter pattern. The details of this automated
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Meta Program B

System Version n System Version m

Meta Program A

System Version n + 1 System Version m + 1
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Fig. 5. Comparative framework for observing differences in maintainability

refactoring are not relevant for the present analysis, but it is important to note that
it is semantics preserving. The maintainability of both versions is now compared by
designing a number of maintenance scenarios and applying them to both versions. For
each maintenance scenario we do the following:

– Perform the maintenance scenario manually.
– Create an abstract description of this activity by expressing it as meta-program.
– Compare the computational complexity of the meta-programs needed to carry out

the maintenance scenario for versions n and m.

This allows us to objectively calculate the complexity of the scenarios as applied to the
two versions while at the same time pinpointing exact causes of the differences.

Results produced by this framework can be replicated by anybody given the source
code of the two versions, a precise description of the meta programs and the scenarios,
and a precise description of the complexity analysis. In Section 4.1 we define a “virtual
machine for maintenance” that provides the foundation for our current comparison.

3.3 Alternative Methods to Measure Maintainability

Our framework tries to abstract from the human programmer that actually carries out
the maintenance tasks. This makes it easier to replicate our results. Alternative ways of
studying maintenance do focus on human beings, like programmer observation (e.g., [6])
and using models of cognition (e.g., [19]).

Statistical observation of the efficiency of a group of programmers while doing main-
tenance tasks can be done to summarize the effects of differences between design pat-
terns. However, such an (expensive) study can not explain the causes of these effects,
while our method can. The use of cognitive modeling can also shed light on the causes
of complexity. With this method one explicitly constructs a representation of the knowl-
edge that a human being is using while analyzing and modifying source code. Com-
plexity measures for such representations exist as well and have been used to study
understandability of programming in different kinds of languages [19]. We have not
opted for this approach because such detailed cognitive models are difficult to construct
well by somebody not well versed in cognitive science (there are many ways to do it),
hard to reproduce and therefore hard to validate. Our current method, as inspired by
[15], is lightweight and easy to construct by software engineers and easy to replicate.
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Table 1. Atomic actions, categorized as (S)earch, (B)rowse or (E)dit actions

Cat Action Description Motivation
(S) a Save Java file Collect error messages by running the Java compiler.
(S) b Get type declaration Look up a type by name and jump to it.
(S) c Get type hierarchy Produces all classes and interfaces that implement or extend

a given type.
(B) d Jump to error Jump to the source code after having clicked on the error

message.
(E) e Cut or copy a block This is a basic action to perform removal and movement of

consecutive blocks of code. A block is considered to be no
longer than a single method.

(E) f Paste a block The dual of e.
(E) g Type a block We abstract from the difficulty of writing consecutive blocks

inside method bodies. Typing several method bodies, or parts
of method bodies, is counted as several steps, even if the
methods are consecutive.

(S) h Get implementations Produces all concrete methods that implement a certain ab-
stract/interface method.

(B) i Jump to declaration Jumps from a use site or other reference site to a declaration
site of any named entity.

(S) j Find regexp We abstract from the effort of creating a regular expression.
The action produces a list of locations of entities that match
the regexp.

(E) m Generate new class Make a new class with the given name and superclass, includ-
ing templates for methods to be implemented.

(E) n Delete a class Remove a type and its source file.

4 Maintainability

This section instantiates the comparative framework discussed in Section 3.2 to
compare the Visitor-based and Interpreted-based solutions. Section 4.1 defines how we
construct and measure the meta-programs representing the scenarios. Section 4.2 then
introduces the scenarios that will be measured, while Section 4.3 describes each sce-
nario in detail.

4.1 A Virtual Machine for Maintenance Scenarios

Recall from Section 3.2 that each maintenance scenario is performed manually and then
described by an abstract meta-program used to compute the complexity of the scenario.
To precisely define these meta-programs we encode them as the language of a “virtual
machine” for maintenance scenarios. This VM models the actions of a maintenance
programmer as she interacts with Eclipse to analyze and transform source code.

The atomic actions (steps) taken by this virtual machine are defined in Table 1. We
have Search (S) actions that produce lists of clickable items; Browse (B) actions that in-
volve following links; and Edit (E) actions that change source texts in specific locations.
From these atomic actions we may construct meta programs representing the various
maintenance scenarios according to the following definition.
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Definition 3. All maintenance programs P have the following syntax

P ::= A | PP | PI | (P),
where A is an atomic action from Table 1, juxtaposition denotes sequential composition,
and a superscript (a non-zero positive integer) denotes iteration. We may use brackets
to bind iteration to sequences of actions, otherwise iteration binds more strongly than
sequence. Parts of a program may be represented by a variable (represented by upper-
case letters in italics) and variables may optionally be indexed: Ai represents atomic
actions, Ni and Mi represent values in N1, and Pi represents programs.

Definition 4. The computational complexity of any maintenance program P is defined
recursively as:

COM(A) = 1, COM(P0P1) = COM(P0) + COM(P1),

COM((P)) = COM(P), COM(PN) = N × COM(P).

With these definitions we can now explain each maintenance scenario in detail. The
results are summarized in Table 2.

4.2 Maintenance Scenarios

We have picked several maintenance scenarios to cover most categories of maintenance
and to be fair to the theoretical (dis)advantages of either design pattern. We skip preven-
tative maintenance, which will appear instead in the discussions below as refactorings
that influence the comparison.

S1 (Adaptive). Add n≥ 2 new binary expression operators.
S2 (Perfective). Cache the lookup of (possibly) overloaded data-type constructors in

expressions to improve efficiency. This can be generalized to caching n static lan-
guage constructs.

S3 (Adaptive). Change the syntax and semantics of Rascal to allow arbitrary value
patterns in function signatures. This new feature allows functions to be extended
modularly, which is a big win for analyses and transformations that are constructed
for languages that have a modular structure.

S4 (Adaptive). Add an outline feature to the Rascal IDE — a basic IDE feature already
supported in IDEs for many different languages.

S5 (Corrective). Fix Bug #1020 — NullPointerException9

Note that at the time of writing, these are real maintenance scenarios. The interested
reader can replay the meta programs below by checking out the Visitor10 and Inter-
preter11 versions of the Rascal interpreter that are used in this paper.

4.3 Results — Maintenance Scenarios

In this section we list all programs for all scenarios. We motivate the actions of each
program, analyze the difference in complexity, and point to the possible causes. Table 2

9 http://bugs.meta-environment.org/show_bug.cgi?id=1020
10 http://svn.rascal-mpl.org/rascal/tags/pre-visitor-migration
11 http://svn.rascal-mpl.org/rascal/tags/post-visitor-migration

http://bugs.meta-environment.org/show_bug.cgi?id=1020
http://bugs.meta-environment.org/show_bug.cgi?id=1020
http://svn.rascal-mpl.org/rascal/tags/pre-visitor-migration
http://svn.rascal-mpl.org/rascal/tags/post-visitor-migration
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summarizes all the acquired data points. Some scenarios require common preparation
for both Visitor and Interpreter. This is discussed for completeness, but not included in
the comparison and not represented in Table 2.

Scenario S1 — Add Two New Expression Operators

To prepare, we edit the Ras-
cal grammar to add two
new production rules to the
definition of Expression.
Then we generate and com-
pile source code for the AST
hierarchy.

For Visitor we find out that
no new warnings or errors
have arisen. This is due to the
fact that all visitors extend
NullASTVisitor, which
is also generated from the
grammar. We have to find
all visitors now, and use the
Show Type Hierarchy feature
of Eclipse to find 11 of them
(c). We look up the source

code of each visitor to see
if expressions are evaluated
by it (i11). This is true for
just 2 of them, namely the
main Evaluator and the
DebuggingDecorator.
Both visitors need two extra
methods added ((g2a)2). We
run the Java compiler (part of
a, above) to ensure we did not
make mistakes, obtaining the
meta program: ci11(g2a)2.

For Interpreter we also
find out there are no new
warnings after AST gen-
eration. We now add two
concrete sub-classes to the
generated sub-classes of

ast.Expression(m2).
There appear to be four
methods to implement, three
of which we clone from
Expression.Add (se-
lected at random) because
they seem to be default
implementations (b(e f 2)3).
We then adapt the one
method (interpret) in
both classes that we must
change ((ga)2). The to-
tal meta-program is thus:
m2b(e f 2)3(ga)2.

A comparison of the com-
plexity (18 vs. 16) shows a
minimal difference in favor
of Interpreter.

Scenario S1(N) — Add N New Expression Operators

To generalize to N new op-
erators we can replace 2
by N in the two programs
for S1 to obtain new pro-
grams ci11(gNa)2 for Visitor
and mNb(e f N)3(ga)N for
Interpreter. Their complexity

breaks even at N = 5
2 . This in-

dicates that after adding 2 op-
erators further additions will
be easier in Visitor than in In-
terpreter. One cause may be
the cloning of the 3 methods
from Expression.Add

(See S1). It is a seemingly un-
related design flaw. If these
methods could be pulled up
into Expression, the Inter-
preter program would have
no need to clone the other
three methods.

Scenario S1’(N) & S1’(N,M) — Pulling Up Methods and Another Generalization

Pulling up the method clones
in Interpreter (see S1(N))
leads to a new program for
adding N new expression
operators, mN(ga)N . This
program has complexity 3n,
which breaks even with Vis-
itor at N = 14. Visitor wins
in this case, but only after
having added 14 operators.
The cause is that only 2 out

of 11 of Visitor classes ac-
tually need an extra pair of
methods. If there would be
more visitors to extend how-
ever, there would also be
more methods to implement
per class in the Interpreter
version. Abstracting the num-
ber of operations on each
operator to M (assuming the
new ones all need extension,

but 9 of the existing ones do
not), we get ci9+M(gNa)M

for Visitor and mN(ga)MN

for Interpreter. Break-even is
when N = 2M+10

M+1 . The con-
stant 10 increases with the
number of irrelevant visitors
and break even is harder to
reach for Visitor while M
increases.

In general we can conclude that for S1 Visitor wins in the long run, although it wins
more slowly in situations where there are a large number of visitor classes that do not
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need to be modified (but still need to be checked). Interpreter has a higher eventual
maintenance cost because of the additional classes that need to be created.

Scenario S2 — Cache Constructor Lookup in Expressions

Constructors in Rascal can
be defined at the top level
of any Rascal module. When
a constructor is used in a
program, the current mod-
ule, and all imported mod-
ules, are checked for defini-
tions of the constructor. Since
these definitions can only be
changed when a constructor
is (re)defined, it should be
possible to improve perfor-
mance by caching the lookup
result, with the cache cleared
at each redefinition.

For Visitor we first find the
main Evaluator visitor
to locate the visit method
that represents function and
constructor application (i2).
Reading the source code of
visitExpressionCall-
OrTree we learn that this
visit method evaluates the
name of the function or con-
structor to obtain an object
of type Result that has a
call method. We want to
cache this object for future
reference if it represents a
constructor. In order to do
this, a field must be added to
the current visitor (we could
instead add a field to the un-
derlying AST node class, but
since the AST classes are
generated this would require
changing the generator as

well). This field will refer-
ence a hash table that maps
the current AST node to the
result of the name lookup.
We need to add the field (g)
and add the two locations in
the code that cache and re-
trieve constructor values (gg).
To clear the cache we need to
find the method where con-
structors are declared. We use
the outline feature to jump to
visitDeclarationData
(i) and add some code to clear
the entire cache (g). The total
program is i2g3iga.

For Interpreter we lo-
cate the AST class
Expression.CallOrTree
and its interpret method
(i2). We add a field to the
AST class to store a cached
constructor and we surround
the lookup with the storage
and retrieval code for this
cached value (g3). To clear
this field when a module
is reloaded, we choose to
apply the Listener design
pattern [7]. When a con-
structor is cached a new
IConstructorDeclared
listener will be registered
with the current Evaluator
(g), which is passed as a pa-
rameter to the interpret
method. We now save the

current class (a). The Lis-
tener design pattern needs
to be completed by adding
a container for the listen-
ers, a register method
and a clear method to
Evaluator. For this we
jump to the class and add
the field and two methods
(ig3a). Then we find the
Declaration.Data class
to add the code to call the
clear method when a con-
structor is (re)declared, yield-
ing: i2g3gaig3aiga.

In summary, interpreter is
harder to maintain. An al-
ternative design choice for
Interpreter would be to use
a global hash-table, like we
did with Visitor. This re-
moves the need for introduc-
ing the listener design pat-
tern and thus gives the same
complexity. Having a field
instead of a hash-table is
important for speed though
(see Section 5). Alternatively,
for Visitor we could have
chosen not to use a hash-
table but instead add a field
to AbstractAST. However,
this would break the encap-
sulation gained through Visi-
tor and, as mentioned above,
would require modifying the
AST class generator as well.

The following change in requirements (S3) involves non-trivial and non-local changes
in the syntax and semantics of the language. Again, we assume the maintainer has full
understanding of the concepts and implications for the general architecture of the Ras-
cal interpreter. She does, however, need to locate and check the details of implementing
the necessary changes.
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Scenario S3 — Allow Patterns in Function Signatures

To prepare, we need to edit
the definition of formal pa-
rameters in the Rascal gram-
mar. There we replace the use
of Formal by Pattern.
The AST hierarchy is regen-
erated and the Java checker
and compiler are executed to
produce error messages and
warnings. We omit this com-
mon prefix in the following
discussion.

For Visitor the compiler pro-
duces 14 error message, each
about a reference to a miss-
ing class Formal. Uses of
Formal need to be replaced
with Expression and im-
ports of Formal need to
be deleted. This results in a
cascade of changes up the
call chain starting at these
14 error locations. Using the
JDT we adapt each location
one-by-one and save each
file after each change to
produce new error messages.
Just the first error leads to
dg5eg. Then we find a nested
visitor in TypeEvaluator
that dispatches over the differ-
ent kinds of type declarations.
We decide to extend it with
a type analysis of each pat-
tern kind. There are 15 differ-
ent kinds of patterns (known
from reading the type hierar-
chy of Expression) (cg15).
Two more substitutions com-
plete the changes to this file
(g2a).
These were the changes
rooted at the first error. We
now have 4 of 14 messages
left. These happen to point
to dead code that can be re-
moved: (eea)4.
Now we add a call to pat-
tern matching. Given we

are modifying function
call logic, we first jump to
visitExpressionCall-
OrTree in the main
Evaluator visitor (i2).
We find a call to the call
method of an abstract class
Result. All implemen-
tation of this method are
suspect. We use action h
to find all 9 of them. Af-
ter inspection, 3 of these
need additional functional-
ity: RascalFunction,
JavaFunction and
OverloadedFunction.
The others have names re-
lated to constructs that are
not related to function decla-
rations with formal parame-
ters.
Pattern matching both re-
turns true and binds variables
if the match succeeds. We
can replace the code that
binds actual to formal pa-
rameters by pattern match-
ing. We also need to add
backtracking logic, and de-
cide to do so with an ex-
ception mechanism. If the
pattern match fails, the func-
tion was not to be called and
we throw an (unchecked)
exception that can be
caught at a choice point in
OverloadedFunction.
The three call methods
are adjusted to do just that
((ga)3).
The total program for
Visitor is dg5egcg15g2a
(eea)4i2h(ga)3.

For interpreter the gener-
ation of the AST hierar-
chy produces 17 error mes-
sages. The first is located
in DynamicSemantics-
ASTFactory which

refers to a constructor that
does not exist anymore
(d). The constructor for
Formals.Default still
uses the old form of parame-
ter lists. We fix this first (ig).
The next error message is
in the interpret method
of Formals.Default that
evaluates ASTs of type liter-
als. We jump to it and find
a need to substitute Formal
(iga). This recursive method
maps ASTs of type literals
to internal type objects. This
method will also have to deal
with all kinds of patterns now.
We add an implementation of
it to every kind of pattern. We
look up the type hierarchy for
Expression to identify the
15 classes and add a method
to each of them ((iga)15).
Jumping to the location of
the next error, we end up
in JavaBridge. A num-
ber of similar substitutions
are needed and an import is
removed: (ig)3ga. Then we
trace a broken method call to
the class TypeEvaluator
(i). There we find some sub-
stitutions (ig2a). The last 3 er-
rors point to dead code that
can be removed, a dead class
and a dead import in a class
((igg)2aniga).
Now we may add pattern
matching, which is done
similarly to the Visitor im-
plementation. We jump to the
Expression.CallOrTree
class to find the semantics of
function calling; and use the
same strategy we used for
Visitor (ih(ga)3).
The total program for Inter-
preter is d(ig)2a(iga)15(ig)3

gai(ig2)a(igg)2anigaih(ga)3.
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Scenario S3’ — S3, but Saving Incrementally for Visitor

The cause of the significant
difference in complexity in
S3 (43 vs. 83) between the
Visitor and Interpreter pat-
terns is clearly the spread
of code over the different
classes. In Visitor there is
much less browsing between
classes and saving of classes,
leading to almost twice the
maintenance complexity for
Interpreter.

Note that browsing to a dif-
ferent class that needs edit-
ing always costs Interpreter a
Browse and a Search action if
something needs to be edited
(for saving and compiling the
file after editing), while Vis-
itor may delay the saving of
a file until all is done. It is
questionable whether in real-
ity one would delay saving
the file after so many edits

in a big visitor class. If we
add save actions to the Visi-
tor program after every edit,
we get d(ga)5egac(ga)15

(ga)2(eea)4i2h(ga)3, with
complexity 70. Visitor still
wins, but now it is only 16%
cheaper instead of the previ-
ous 48%.

Scenario S4 — Add Outline

To prepare, both versions
need similar code to register
an outline computation with
Eclipse.

For Visitor we simply add a
new visitor class. This class
needs methods for all AST
nodes that need to be tra-
versed to find the entries that

appear in the outline view.
There are 11 different nodes,
yielding mg11a.

For Interpreter we add
a new virtual method to
AbstractAST called
outline. It will be over-
ridden by 11 classes. The
method needs a parameter

to a TreeModelBuilder
interface to construct the out-
line object that Eclipse will
use. So this ties Abstract-
AST to an Eclipse interface.
The meta program reads
bga(bga)11.

Visitor clearly wins in this
case because of the improved
encapsulation of the solution.

The description of Bug #1020 in our Bugzilla database contains the claim that the
following Rascal statement produces a NullPointerException due to some issue in a reg-
ular expression: switch ("aabb") {case /aa*b$/:println("HIT");}

Scenario S5 — Fix Bug #1020 — NullPointerException

This issue indeed produces
stack traces for both versions,
and surprisingly the traces
are the same. The reason is
that a null reference to a re-
sult is passed all the way to
the top command-line shell.

We trace the flow of this ref-
erence down the call chain.

For Visitor. The outermost
expression is a switch, so
we jump to the evaluation
of the switch in the method
Evaluator.visitStat-

ementSwitch (bi). The
last statement of this method
returns ’null’ which needs to
be replaced by a ’void’ result
(ga).

The Interpreter case has one
fewer browse action (bga).

4.4 Discussion

On the one hand, even in scenarios where theoretically Interpreter would have better
encapsulation (e.g. S1 and S2), Visitor still has a lower cost of maintenance. This is
surprising. On the other hand, the scenarios that theoretically suit Visitor better indeed
show that it is superior. No counter indicators were found in the context of this realistic
case. At least in the context of the Rascal interpreter, our research method consistently
produces “Visitor is better”.

http://bugs.meta-environment.org/show_bug.cgi?id=1020
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Table 2. A comparison of all maintenance programs (see Table 1)

S Visitor (COM) Interpreter (COM) Vis.>Int.

S1 ci11(g2a)2) (18) m2b(e f 2)3(ga)2 (16) yes
S1(N) ci11(gNa)2) (14+ 2N) mNb(e f N)3(ga)N (4+ 6N) if N ≤ 2

S1’(N,2) ci11(gNa)2) (14+ 2N) mN(ga)N (3N) if N ≤ 14
S1’(N,M) ci9+M(gNa)M (10+ NM + 2M) mN(ga)MN (N + 2MN) if N ≤ 2M+10

M+1
S2 i2g3iga (8) i2g3gaig3aiga (14) no

S3 dg5egcg15g2a(eea)4i2h(ga)3 (43) d(ig)2a(iga)15(ig)3gai
(ig2)a(igg)2anigaih(ga)3 (83) no

S3’ d(ga)5egac(ga)15(ga)2

(eea)4i2h(ga)3 (70) d(ig)2a(iga)15(ig)3gai
(ig2)a(igg)2anigaih(ga)3 (83) no

S4 mg11a (13) bga(bga)11 (36) no
S5 biga (4) bga (3) yes

In terms of construct validity one may argue that the COM framework may not mea-
sure all relevant aspects of maintenance. The first aspect that is missing is the general
understanding that a programmer needs of the particular program, before she can decide
what to look for and what to change. We argue that this knowledge is equally needed
for Visitor and Interpreter. We do not use COM for predicting maintenance effort, but
for comparison. The second aspect is that we did not distinguish whether or not method
bodies are hard to understand. Fortunately, in the case of Visitor vs. Interpreter the
method bodies are practically equivalent in complexity on both sides.

We do not claim much about external validity. The current study is highly focused on
the Rascal case. We do expect that if the current study were replicated on different AST
processing software written in Java, with different maintenance scenarios, the results
would be comparable. This expectation is motivated by the fact that the scenarios above
do not refer to any intrinsic details of the syntax and semantics of Rascal.

We have assumed ample use of browsing, searching and editing features of Eclipse.
It is unknown what the effect of not having these tools would be on the case of the
Rascal interpreter.

Finally, if other quality attributes enter the scene, or other refactorings are applied,
our conclusions about maintainability and runtime performance may be invalidated.
The dimension of (parallel) collaborative development—as enabled by a modular
architecture—might have an unpredictable impact on our results.

In terms of internal validity, we hope to have provided enough detail for the reader
to be able to replicate the scenarios and their measurement. If shorter but otherwise
plausible meta programs are defined, this might invalidate our analysis. Naturally, our
interpretation of the causes of differences is also open to discussion.

5 Efficiency

We now focus on the effect on run-time efficiency of moving from Visitor to Interpreter.
The impact is measured using four programs, designed both to highlight different as-
pects of performance and to represent typical Rascal usage scenarios:
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Add finds the sum of the first 1000000 integers using a loop. It isolates the dispatch
overhead of the interpreter because the computation is so basic (i.e., does not involve
Rascal function calls or complex primitives like transitive closure computation).

Gen consists of running the parser generator (implemented in Rascal) on Rascal’s
grammar.

Resolve is the name resolution phase of the Rascal type checker, applied to one of the
parser generator modules. It exercises a wider range of AST classes then Gen.

Lambda is a parser and interpreter for the lambda calculus. The test involves parser
generation, parsing and execution of lambda reductions over arithmetic expressions
(Church numerals). It highlights the result of caching constructor names.

Each program is run using both the Interpreter and the Visitor versions, before and after
applying scenario S2 (cache constructor names).

Table 3. Interpreter performance figures (4 versions, all
times in seconds; tests run on Intel Core2 6420, 2.13 GHz, 2
GB RAM, Fedora linux 2.6.32.21-168.fc12.x86 64)

Visitor Interpreter
No Caching Caching No Caching Caching

Add 7.55 7.70 7.71 7.52
Gen 275.50 273.65 271.88 243.24

Resolve 35.21 35.67 34.32 32.44
Lambda 610.81 655.19 575.61 567.80

The results are shown in
Table 3. In the Add example
the Interpreter code is slightly
slower, while in the others
it is faster by 1.3% (Gen),
2.5% (Resolve), and 5.8%
(Lambda). Except perhaps for
Lambda, this means that the
performance difference is not
substantial in any of the cases
that do not include caching.
We found this surprising, since one of our assumptions was that we would see a per-
formance improvement based on a reduction in method call overhead. Also, the im-
provements from an optimization like name lookup caching are far more significant
than the improvements from changing from Visitor to Interpreter. While this means that
these types of optimizations may be a more fruitful target to pursue, this also means that
slow parts in the interpreter may be impacting performance enough that differences be-
tween the two patterns are harder to see. Additional performance testing, with a broader
suite of test programs, should help to get a clearer idea of the performance differences,
especially as additional optimizations are added to the Rascal runtime.

6 Conclusion

We have used quantitative methods to observe the consequences of choosing between
the Interpreter design pattern and the Visitor design pattern. The study focused on an
AST based interpreter for the Rascal programming language. Surprisingly, for the five
realistic maintenance scenarios we have studied, it appears that a solution using the
Visitor pattern is more maintainable than a solution using the Interpreter pattern. Only
in trivial scenarios is an Interpreter-based solution easier to maintain. Since this contra-
dicts common wisdom regarding the expression problem, it underlines the importance
of studying the consequences of choosing design patterns in realistic experiments.

With respect to performance, we have observed no significant differences between
unoptimized solutions using the two patterns. Any differences between the two
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solutions may be easier to see as the Rascal interpreter is further optimized, leaving
the call overhead in the Visitor implementation as a larger part of the total execution
time. It may also be possible to see more differences as additional performance tests are
selected beyond the four given in this paper.
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Abstract. Today’s applications are developed in a world where the exe-
cution context changes continuously. They have to adapt to these changes
at run-time if they want to offer their services without interruption. This
is particularly critical for distributed Web applications, whose compo-
nents run on different machines, often managed by different organiza-
tions. Designing these programs in an easy and effective way requires
choosing the right architectural style and the right run-time platform.
The former has to guarantee isolation among components, supporting
scalability, reliability, and dynamic changes. The latter has to offer mech-
anisms to update the applications’ code at run-time.

This work builds upon previous research about architectures and run-
time platforms. Its contribution is to put together a very promising archi-
tectural style – Computational REST – with a language (and run-time
environment) designed with dynamic, distributed applications in mind –
Erlang. We show how they fit together by developing a new framework,
which eases development of highly distributed Web applications capa-
ble of operating in dynamic environments. We also provide an initial
experimental assessment of the proposed approach.

Keywords: Computational REST, Erlang, OTP, architectural styles,
programming languages, mobile code, Internet.

1 Introduction

The technological evolution in networking has changed the way applications
are designed and developed: instead of having monolithic programs created for
desktop computers running in isolation, more and more often we have large-scale,
distributed Web applications, whose components run on many different devices,
from personal computers to smartphones, from mainframes to low-power sensors.
In the most challenging scenarios, these applications put together components
built and administered by different organizations, by invoking the services offered
by such components, managing the data that flow among them and using a
browser as the front-end.

To further complicate things, these Web applications are usually expected
to run for long time without interruption and failures: a challenging goal if
we consider that the devices and components they are built upon may change
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over time in a way that is often hard to forecast. Software Engineering is asked
to address this issue by developing ad-hoc programming frameworks to ease
the implementation of largely distributed Web applications capable of handling
changes (and failures) in the external services they invoke and in the devices
they access and run on, in a smooth and effective way.

Such programming frameworks should integrate an architectural style that
guarantees isolation among components, supporting scalability, reliability, and
dynamic changes, with a programming language (and run-time support environ-
ment) that offers mechanisms for dynamic update of functionalities.

Current research has proposed Computational REST (CREST) [14], as an
effective architectural style to build dynamic, Internet-wide distributed applica-
tions. CREST extends the REpresentational State Transfer (REST) style [16],
changing the focus from data to computations, while maintaining the REST
principles, which guarantee Internet-wide scalability. In a CREST application,
each component (called peer) is able to exchange computations, in the form of
continuations or closures, with other components, to dynamically install new
services on remote components and demand their execution to others. This idea
of managing computations as first-class elements comes from the research on
mobile code [17], and has proved to be an effective mechanism to easily support
dynamic changes for long-running applications.

While CREST is just an architectural style, their authors proposed a proto-
type programming framework that embeds the CREST principles in Scheme [12],
a well-known functional programming language. This choice was motivated by
the Scheme capabilities in dealing with continuations, which allow Scheme pro-
cesses to be easily suspended to be resumed later. On the other hand, Scheme
does not offer any native support to building distributed applications, a critical
aspect for a framework that has distributed applications as its main target.

Starting from this consideration we decided to see if other languages could
better fit the CREST principles. In this we were also motivated by the fact that
the original Scheme-based prototype was never made officially public, at least
not in a form that allow it to be used in practice for experiments.

In particular, we chose Erlang [5], a functional language that was designed
upfront to build long-running distributed applications. Indeed, Erlang and its
OTP [5] library natively support distributed programming, offering advanced
and easy-to-use mechanisms to remotely spawning components, letting them
communicate, and automatically managing failures. In addition, it offers mecha-
nisms to dynamically change the components’ code at run-time. These features
are embedded in a functional core that supports closures, a fundamental aspect
to satisfy the CREST requirements.

The rest of the paper describes the result of our experience. In particular,
Section 2 introduces Computational REST and Erlang. Section 3 describes the
new Erlang-based CREST framework and the facilities it provides to develop-
ers, while Section 4 compares it against the original CREST framework and a
pure REST (i.e., Web-based) implementation of the same application, in terms
of performance, functionalities offered, and cost to implement them. Finally
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Section 5 discusses related work and Section 6 draws some conclusions and sug-
gests possible future work in the area.

2 Background

In this section we briefly introduce the main topic areas upon which our work is
based, i.e., the REST and CREST architectural styles and the Erlang language.

2.1 The REST and CREST Styles

Defined by R.T. Fielding (one of the main authors of the HTTP protocol), the
REpresentational State Transfer (REST) style provides an a posteriori model of
the Web, the way Web application operates, and the technical reasons behind
the Web success.

Fielding’s Ph.D. thesis [16] defines the set of constraints that every REST ap-
plication should satisfy: the structure of the application has to be client-server,
communication has to be stateless, caching has to be possible, the interface of
servers has to be standard and generic, layering is encouraged, and each single
layer has to be independent from the others. An optional constraint suggests
using code-on-demand [17] approaches to dynamically extend the client’s capa-
bilities.

These constrains are coupled with a set of foundation principles :

– the key abstraction of information is a resource, named by a uniform resource
identification scheme (e.g., URLs);

– the representation of a resource is a sequence of bytes, plus representation
metadata to describe those bytes;

– all interactions are context-free;
– only a few primitive operations are available;
– idempotent operations and representation metadata are encouraged in sup-

port of caching;
– the presence of intermediaries is promoted.

While these principles allowed REST to be scalable and supported the current
Web dimensions, at the same time not all the Web applications followed these
design guidelines; for example, they might require stateful communications or
they might create problems to caching devices components.

The main limitation of REST is the generic interface constraint: it improves
independence of applications on specific services, because all the components
are able to handle any data, but at the same time it hampers the efficiency of
communication, since all data must be coded in a standard way to pass through
standard, application independent interfaces; something not easy to do especially
when there is more than pure “content” to be sent between peers.

The CREST authors identified this and other REST weaknesses in [13] and
decided to address them by moving the focus of the communication from data
to computations. If the former is the only subject of an interaction, then a client
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receiving a message through a generic interface could not be able to interpret it
correctly. The REST optional constraint of code-on-demand is too weak to solve
the issue, since the same client could not be able to use that code.

The result of this paradigm shift was the Computational REST (CREST) [14]
style, which let peers exchange computations as their primary message, usually
implementing them through continuations. These are instances of computations
suspended at a certain point and encapsulated in a single entity to be resumed
later. They are offered as a basic construct by some languages, usually functional
ones like Scheme, which also allow continuations to be serialized and transmitted
along a network connection to allow the computation to be resumed on a different
node.

Whenever a language does not offer the continuation mechanism, a closure can
be used instead: it is a function with free variables declared within its scope, and
since the extent of these variables is at least as long as the lifetime of the closure,
they can be used for saving a state between different calls of the function. Later,
in Section 3 we will explain why using this less powerful mechanism instead of
continuations does not influence the expressiveness of our framework.

Also notice that in the definitions above we used the term “peer” instead of
“client” or “server”. This is not by accident, since CREST does not distinguish
between clients and servers but rather between weak peers that support a min-
imal subset of the CREST operations and usually operate as initiators of the
interaction, and strong peers that support the whole set of CREST operations
and characteristics and may fully interact with other peers, be they strong or
weak.

CREST draws on the REST principles to define a new set of architectural
guidelines:

– a resource is a locus of computations, named by a URL;
– the representation of a computation is an expression plus metadata to de-

scribe the expression;
– all computations are context-free;
– the presence of intermediaries is promoted;
– only a few primitive operations are always available, but additional per-

resource and per-computation operations are also encouraged.

As for the last point, CREST defines two primitive operations: the spawn oper-
ation requires the creation of a process executing the computation; this process
is associated to a unique URL and when this URL is invoked the computation
itself is resumed and the results it produces are returned to the caller; thus, new
services can be installed in a (strong) peer and then accessed by any client. The
remote operation installs a computation and resumes it immediately, returning
any result to the caller and destroying it when it ends, so that it cannot be
accessed again.

In [13,19] the authors further detail the CREST principles:

– any computation has to be included into HTTP operations, so that the new
paradigm could be made compatible with the current Internet infrastructure.
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To keep up with such compatibility, the authors also distinguish between
machine URLs and human-readable URLs, where the former may contain
the computation itself, while the latter can be used by users;

– computations may produce different results, based on any received parame-
ter, server load or any other factor that changes during time; they can also
maintain a state between calls, for example for accumulating intermediate
results;

– computations have to support independency between different calls, and
avoid data corruption between parallel invocations using synchronization
mechanisms offered by the languages of choice;

– computations can be composed, creating mashups: a computation may re-
fer to other computations on the same peer or on different peers, and an
execution snapshot should include the whole state of the computation;

– intermediaries must be transparent to the users;
– peers should be able to distribute computations, to support scaling and low-

ering latency, also checking temporal intervals between executions of the
same computation and specifying some sort of expiration date when neces-
sary.

Finally, in [19] a new feature has been introduced: spawned processes should act
as so-called subpeers, with their own spawn and remote capabilities, inheriting
security policies by their ancestors in the process tree, where the root node is
the peer itself. This way a hierarchy of processes is created in a CREST peer,
where each node is limited by its ancestors and limits its successors.

Security concerns. An important issue with architectural styles for distributed
applications is security. Besides traditional security concerns, the CREST adop-
tion of mobile code technologies opens new problems; namely how to secure
the peer against the code it receives and how to secure the code against the
peer in which it is executed [29,30]. The CREST definition recognizes the issue
but provides few details on how to address it. In practice, the current CREST
framework, implemented using a Scheme interpreter running into a Java Vir-
tual Machine, leverages the sandbox mechanism of Java, using an ad-hoc Secu-
rity Manager that limits the resources accessible to the incoming computations.
Moreover, the authors suggest that the bytecode received by a peer should be
inspected and checked for instruction sets executing commands that are not al-
lowed by the (sub)peer security policy, while self-certifying URLs [23] could be
used for mutual authentication between peers.

2.2 Erlang

Erlang [3,4,5,6] is a programming language originally defined to implement par-
allel, distributed applications meant to run continuously for long periods1. It
provides a set of features that make it a perfect choice for a framework to build
CREST-compliant applications.
1 The definition of Erlang has been primarily motivated by the requirements of

telecommunications applications within Ericsson.



Computational REST Meets Erlang 249

In particular, its functional language core natively supports closures, which
– while not offering the full expressive power of continuations – are a step in
the right direction to implement the CREST idea of exchanging computations
among peers. Moreover, Erlang combines dynamic typing and the use of pattern-
matching as the main mechanism to access data and guide the computation,
supporting a form of declarative programming that allows programmers to focus
on what a computation is supposed to do instead of how to achieve it. This re-
sults in extremely compact code that is easy to develop and maintain. We found
these features fundamental to develop a programming framework that has to be
open to extensions by application programmers who wish to build their own,
CREST-compliant software.

In addition, Erlang enriches its functional core with ad-hoc language con-
structs to build parallel and distributed applications. In particular, Erlang uses
an actor-like concurrency model [22], which allows for easily and naturally or-
ganizing every Erlang computation as a (large) set of light processes, automat-
ically mapped by the Erlang runtime into system threads and hardware cores.
Since such processes cannot share memory and have to rely on message passing
(which is embedded into the language) to communicate, this approach also natu-
rally supports developing distributed applications, another fundamental feature
to ease the implementation of our CREST framework.

A further peculiarity of Erlang is the fact that its runtime support system
allows application code to be hot-swapped. This mechanism was introduced
to support long running applications, like those implemented into telephonic
switches, and can be used as a way to change the code of an application at
runtime without interrupting it. In particular, if a module function is executed
by calling its qualified name, then the runtime guarantees the execution of the
last version available of that function; that is, if the module bytecode is updated
while the application is running, then each new function invocation will use the
last version of the code, while any running instance will continue its execution
with the previous one. Notice however that only two versions of a module may
live together at the same time: if a third one is added, then the second one be-
comes the “old” one and the first one is dropped, and each computation using
it is automatically killed.

Finally, Erlang provides an extensive, standard library, called the Open Tele-
com Platform (OTP), which offers predefined modules for process linking and
monitoring. By using OTP, supervision trees of processes can be easily con-
structed so that each supervisor is able to monitor if a process crashes and
restart it or propagate the error. OTP also offers several modules, called be-
haviors, which implement the non-functional parts of a generic server so that
a developer can focus only on the functional ones. Altogether, these function-
alities greatly simplify the development of fault-tolerant applications, and we
leveraged them to reduce the effort needed in implementing our CREST frame-
work.
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Fig. 1. Server structure

3 CREST-Erlang

In this section we illustrate how the CREST style can be implemented in Er-
lang. The resulting framework is called CREST-Erlang, as opposed to CREST-
Scheme, which denotes the original framework presented in [13]. Figure 1 shows
the structure of a CREST peer written in Erlang. At the bottom are the com-
putations running into the peer, which have been installed there by invoking the
spawn or remote CREST primitives. They are managed by an ad-hoc compo-
nent, the CompMgr, which installs new computations, keeps a list of those running
inside the peer, and dispatches incoming invocations.

As we mentioned, one of the main reasons to choose Erlang was the support
offered by the language to let (distributed) processes communicate. On the other
hand, to be CREST compliant, the communication among peers has to use the
HTTP protocol. Accordingly, our peer embeds a Web server, which waits for
incoming HTTP requests, unmarshals them, and uses the standard Erlang com-
munication facilities to dispatch them to the CompMgr. More precisely, Figure 1
shows two Web servers, one answers HTTPS requests and is meant to handle
spawn and remote operations, which we choose to securely transfer on top of SSL
(more on this later). The other serves standard invocations and static pages, a
trivial but required functionality for a Web framework.

As for the adopted protocol we chose, it is worth mentioning here that we de-
cided to send computations using the HTTP POST operation, while the original
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CREST approach suggests embedding them into the URL of the spawn request.
This choice seems more in line with the expected usage of HTTP. Indeed, the
POST operation has been designed for those requests that are expected to alter
the internal state of the receiving server, and this is the case for the installa-
tion of a new service. Moreover, the POST payload may include a large body of
data, as it happens in the case of the state of a computation and the associated
bytecode.

As shown in Figure 1, our framework also includes the CRESTLib, which pro-
vides a set of facilities to invoke local and remote services without having to
bother with the underlying communication details. This is used by peer clients,
but it can also be used to implement the services themselves, when they have to
communicate with other peers.

Finally, to improve fault tolerance each peer is organized in a supervision tree,
with a high level supervisor (not shown in figure) in charge of all the fundamental
modules including the two Web servers and the CompMgr, and a low level one,
the CompSup, to which all the spawned computations are attached. The former is
able to monitor and restart each of its children, while the latter, at the current
state, just logs any error or exception happening to computations, unlinking
them from the CompMgr when this happens.

Listing 1.1. Service template

1 my serv ice ( State ) −>
2 receive
3 {Pid , [{”par1 ” , P1} , {”par2 ” , P2} , . . . ]} −>
4 %% Do your j ob acces s ing par1 , . . . parN
5 %% ev en t u a l l y c r ea t e a new s t a t e NewState
6
7 %% I f necessary , spawn myse l f on peer Hostname
8 invoke spawn ( Hostname , ?MODULE,

9 fun ( ) −> my serv ice ( NewState ) end) ,

10 %% Finish wi th a t a i l r ecurs i on ( or j u s t end t h i s
11 %% computation )
12 my serv ice ( NewState )
13 end .

Listing 1.1 shows the template of an Erlang service to be spawned or remotely
executed on a peer. It receives from the CompMgr the invocation parameters
originally coming from the client, uses them to perform its computation, and
finishes by invoking itself with the new state calculated during execution, using
the typical approach of functional programming based on tail recursion. Lines 8-9
show how the service may spawn a copy of itself (i.e., a copy of the computation)
on a different node, if necessary.

Notice that what is transferred to the other peer through the invoke spawn
primitive is the closure of the running service, not the continuation, as required
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by CREST. Indeed, as we mentioned in the previous section, this is the only
primitive offered by Erlang. On the other hand, the need to transfer compu-
tation while it is executing statements in the middle of the service’s code is
very uncommon. The typical service pattern is the one shown by our template,
which transfers the computation just before recursing. If this is the case, trans-
ferring the closure obtains the same result as transferring the continuation of
the computation.

Technologies involved and details about security. For the Web server
part, we analyzed several different platforms developed in the last few years for
handling HTTP communications in Erlang. Each has its pros and cons, and in
the end we chose MochiWeb [1], because of its support to JSON (which we used
to effectively serialize parameters and return values passed among peers and
clients) and RESTful services, and for its performance.

The MochiWeb library and the OTP modules together provide the main skele-
ton of our peer: the supervising system, the logging system (not shown in Fig-
ure 1), and the two Web servers. This allowed us to focus on developing the
functional parts of the framework.

As for security, Erlang does not offer many facilities. Indeed, it was born as a
language for handling telephony devices, a domain in which security is usually
guaranteed by directly controlling the network itself. Now that Erlang is being
used outside its target domain, this weakness has been identified and the first
security facilities are being added to the language. On the other hand, we are far
from having ad-hoc facilities to manage security in general and the security of
mobile code in particular. To address this issue we decided to adopt a strategy
based on mutual authentication among peers. This way we bypass the specific
problem of protecting the incoming computation from the peer and the peer from
the computation, building a trusted network on top of which computations may
roam freely. This is clearly a sub-optimal solution, which we plan to overcome
in future versions of our prototype.

4 An Assessment of CREST-Erlang vs. CREST-Scheme

In this section we discuss how our CREST framework, based on Erlang, can be
compared with the original CREST-Scheme solution. To perform the assessment,
we chose to focus on three main dimensions: whether the same functionalities
are offered by both, the cost in implementing them, and how they perform.

Functionalities. The original CREST-Scheme framework includes a case study
to show the potential of the new approach, namely a shared RSS reader. It in-
cludes an AJAX Web site as a front-end, with several widgets to show the news
(coming from a given RSS feed URL) using different visualization techniques.
Each widget type interacts with a different service (i.e., computation) on a sin-
gle CREST peer, while different instances of the same widget type (running on
different clients) share the same service. This way every client sees the same in-
formation about the feeds. A user may duplicate the whole application instance,
so that its changes will be separated from the original one.
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The drawback of this case study is that every CREST computation resides
on the same peer and when new computations are spawned (i.e., when a client
duplicates the application’s session) they are spawned into the same peer. In
other words there is no transmission of computations among peers.

Accordingly, we implemented an additional case study to evaluate our frame-
work: a distributed text mining application. A network of computers, each run-
ning a CREST-Erlang peer, share a set of documents to be analyzed. A front-end
Web application allows the user to choose the text mining function and the set
of peers to use. The former is sent as a spawned computation on the involved
peers, which perform their part of the job and return the results back.

Differently from the original one, this case study leverages all the CREST
mechanisms: spawn and remote operations, statefull and stateless computations,
and service composition. This allowed us to asses the correctness and ease of use
of the new framework.

The only point not covered by our CREST-Erlang framework is the concept
of subpeer, which has been described by the CREST authors in a subsequent
article [19], so it was not included in the current prototype.

Table 1. Line code comparison

Framework Framework source code Demo source code

CREST-Scheme 5938 817

CREST-Erlang 2957 768

Implementation effort. To compare the effort in implementing the two frame-
work, and so to indirectly compare the choice of the two languages used, i.e.,
Scheme vs. Erlang, we counted the lines of code of the main library and of the
implemented case studies, not counting the external dependencies. The results
are illustrated in Table 1 and show that our code is about a half of the original
one. This fact confirms our initial idea that Erlang more easily and naturally
supports the CREST mechanisms.

Performance measurement. To compare the two frameworks in terms of
performance, we re-built part of the implementation of the original case study,
in particular we used the same Web client application (with its graphical widgets)
and recreated some of the corresponding CREST services. We also implemented
this case study as a standard Web application using MochiWeb alone, to use
as a reference. This was possible since the original case study, unless the client
duplicates its session, does not exploit any advanced CREST functionality; all
computations are installed during system startup, and they are only invoked at
the demo.

To actually measure the performance of these three applications, we used a
dual core laptop with 4GB of RAM as a server, and we launched several simulated
users from a different computer, a 6 core desktop with 8GB of RAM. Notice that
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Fig. 2. CREST-Scheme demo

we choose the machine running the clients to be more powerful than the server
to be sure the values we measured were not influenced by some limitation on
the client side. The two machines are connected by a 100Mbit LAN. The whole
test is run by using a client application, written in Erlang, which measures the
average response time for each request and the throughput in term of KBytes
per second sent to the clients. We used a navigation sample recorded during a
browser session through the demo site to simulate the behavior of a standard
user. Through our script we simulated the arrival of one of such users every
second, each repeating the same session with a delay of one second at the end,
for 4 minutes in total.

Figure 2 shows the results we measured in terms of response time and through-
put. The CREST-Scheme framework has the worst performances, serving a very
low number of pages per second with a response time peaking at more than 30
seconds; Mochiweb performs better than CREST-Erlang in terms of response
time, because of the overhead introduced internally by the latter, and it is also
able to answer more requests per second in the last minute of the test, because
its usage of the server resources is lower than the CREST-Erlang one, especially
in terms of CPU usage.

To test the overhead introduced by using the spawn and remote CREST
operations, we compared our prototype against MochiWeb in running a Web
application based on a simple CREST service. Each client starts by asking a
front-end peer to spawn a new instance of this simple service on a different
peer, located on the same machine, and from then on it invokes this new service
repeatedly, with one second delay among each invocation; the MochiWeb version
has the same service pre-installed, which the client invokes repeatedly as before.
As in the previous case, we start one client every second for the 4 minutes of
the test. Figure 3 illustrates the results we gathered in terms of response time
and throughput. We notice that MochiWeb is able to answer more requests
per second, and this explains the higher throughput, while the response time is
similar and it remains almost constant while the number of clients increases.



Computational REST Meets Erlang 255

 0

 10

 20

 30

 40

 50

 0  50  100  150  200  250

R
es

po
ns

e 
tim

e 
(m

s)

Test time (s)

CREST-Erlang
MochiWeb

(a) Response time

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200  250

S
en

t d
at

a 
(k

B
yt

e/
s)

Test time (s)

CREST-Erlang
MochiWeb

(b) Throughput

Fig. 3. Test application

5 Related Work

The work we presented here is related with current research on evolvable and
dynamically adaptable software architectures and on programming languages
supporting dynamic adaptation. Seminal work on the identification of the criti-
cal architectural issues concerning run-time evolution is described in [25,28,26].
The CREST approach is largely motivated by this work. Several alternative
architectural styles exist to support dynamically evolvable distributed applica-
tions. Hereafter we briefly review the most relevant ones and we contrast them
with CREST.

Publish-subscribe (P/S) [15,9] is an event-based style where components are
not directly connected, but communicate through a common middleware sys-
tem, which takes any new event notification and dispatches it to any component
subscribed for that specific event. This structure is highly dynamic since nodes
may be added and removed while the system is running; communication is asyn-
chronous and components can operate independently of each other.

Map-reduce (M/R) [10] is a style used to parallelize a computation over a large
data set by distributing work over a collection of worker nodes. In the map phase
each node receives from a master node some amount of data and elaborates it,
returning key-value pairs to the master, while in the reduce phase the master
node takes the answers to all the sub-problems and combines them to produce
the output. Because worker nodes may be masters, a tree structure can be easily
obtained, increasing scalability. As in the P/S case, M/R nodes are completely
autonomous; they may join and leave dynamically as they do not share any data
or state directly, and perform their computation in isolation w.r.t. the others.

Similarly to CREST, P/S and M/R architectural styles are oriented to dy-
namic adaptation, but differently from CREST they are not specifically oriented
to supporting Web applications, probably the most important domain for dis-
tributed applications today and the one we target.

The two architectural styles that are today competing for becoming a stan-
dard in building Web applications are REST and the Service-Oriented archi-
tecture (SOA) [11]. We already discussed the differences between CREST and
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REST in Section 2.1. SOA models a Web application as a composition of dif-
ferent autonomous services, independently developed and existing in different
namespaces and execution contexts. Services may be dynamically discovered
and compositions may bind to them dynamically. Usually these services operate
over HTTP using Web Service protocols supporting standardized discovery and
service invocation. Unfortunately, these protocols violate REST principles, as we
already discussed in Section 2.1, and this can be a major problem, since REST
principles are those that guaranteed the success of the Web.

CREST not only follows the REST principles, but also promises to support
dynamic adaptation much better. Indeed, both REST and SOA focus on data
as the primary element exchanged among components and this makes it hard to
adapt the architecture of the application dynamically, since this usually requires
to introduce new components/services. Vice-versa, CREST adopts the compu-
tations themselves as the elements exchanged among nodes (i.e., peers) and this
makes it straightforward to change the architecture of the application at run
time, when required.

Besides architectural styles, another research direction related with the work
presented in this paper concerns programming languages. In particular, the iden-
tification of features or language constructs that may provide better support
to the specific requirement of run-time adaptation. This sometimes leads to
extensions of existing languages to support dynamic adaptation. For example,
context-oriented programming extensions have been proposed and implemented
for various languages [2], starting from initial work on LISP [8], up to the ini-
tial version of ContextErlang [18] developed by our research group. The features
supported by Aspect-Oriented programming languages [24], and in particular
Dynamic Aspect-Oriented languages [21], have also been proved to help in this
context.

Functional programming languages, and in particular the notions of continu-
ation and closure, have also been revamped in the context of Web programming.
A short summary of work upon which CREST-Scheme is rooted can be found
in [7], while examples of use of functional programming concepts in Web appli-
cations are provided in [20,27].

6 Conclusions

This article presented CREST-Erlang, a new implementation of a Web frame-
work supporting the CREST architectural style. CREST is a promising style,
which suggests to move from an Internet of data to an Internet of computations
to cope with the dynamism of distributed applications developed nowadays.

As its name suggests, the new framework adopts Erlang as its reference lan-
guage, while the original CREST framework adopted Scheme. This choice was
motivated by the fact that Erlang provides advanced mechanisms to develop
strongly concurrent, fault-tolerant, distributed applications in an easy and effec-
tive way. This intuition is confirmed by the experience reported in this paper.
Erlang required less effort than Scheme to develop the framework and the result-
ing prototype performs better than the original one. Also, as we found easier to
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develop the framework using Erlang than using Scheme, we argue that program-
mers using the framework to build CREST applications would benefit from a
language that eases development of efficient algorithms, by natively supporting
an effective form of concurrency (through the actor paradigm), which very well
fits current multi-core hardware.

The main drawback we found was the limited support offered by the language
and associated library to security, especially the peculiar form of security re-
quired when computations are expected to move among nodes. We provided an
initial solution to the problem, but more has to be done.

As for our experience in using CREST, we found it an effective architectural
style to build Web applications that could follow the somewhat natural evolution
from an Internet of data to an Internet of computations.

On the other hand, a few remarks emerge from this experience. The first
is about the protocol for CREST specific operations: is HTTP really the best
protocol for transmitting computations? HTTP was developed for accessing doc-
uments. Although it is now often used as a general-purpose protocol, this was
not its original purpose. Even in the case of Web Services, data had to be en-
coded in some document-like intermediate representation, such as XML, before
being moved to clients, with a certain overhead. The same happens when com-
putations, including state, function references, and code have to be transferred.

The second remark is about security. We already see in today’s Internet the
security issues induced by the code-on-demand features of Web 2.0 sites, with
malevolent Javascript code used for stealing users’ data. We can easily imagine
what could happen if computations are allowed to move around on the back-
web. Apart from citing the usual countermeasures, developed for mobile agent
platforms and never assessed in realistic, large scale, open environments, the
CREST definition does not provide any specific solution to this problem. We are
convinced that this could severely limit the adoption of the CREST style until
something new is developed.

As for our future plans, we want to continue developing our prototype, by
introducing a caching mechanism that may further increase performance. We
will also integrate the concept of subpeer, introduced in the latest CREST defi-
nition [19].
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Abstract. Many design guidelines state that a software system archi-
tecture should avoid cycles between its packages. Yet such cycles ap-
pear again and again in many programs. We believe that the existing
approaches for cycle detection are too coarse to assist the developers to
remove cycles from their programs. In this paper, we describe an efficient
algorithm that performs a fine-grained analysis of the cycles among the
packages of an application. In addition, we define a metric to rank cycles
by their level of undesirability, prioritizing the cycles that seems the more
undesired by the developers. Our approach is validated on two large and
mature software systems in Java and Smalltalk.

1 Introduction

Large object-oriented software projects are usually structured in packages (or
modules). A package is primarily used to group together related classes which
define a functionality of the system. Classes belonging to the same package should
be built, tested, versioned, and released together. Martin consequently proposed
to see the package as the software release unit [3]. Design guidelines state that
cyclic dependencies between packages should be avoided [6,3]. Indeed, packages
depending cyclically on each other are to be understood, tested, released, or
deployed together.

Several tools and approaches have been developed over the years [11,5,7,2] to
help the developers to detect cycles. Yet, an exhaustive experimental study [4]
shows that in a lot of programs, classes are involved in huge cyclic dependencies.
It seems therefore plausible that the way cycles are detected is not sufficient to
help the developer to remove them.

We claim that the existing approaches have two main issues. First, some focus
on cycles between classes, when cyclic dependencies at the package level should
have the priority. Indeed classes are not deployment units, and a lot of cycles
among classes are due to the associations, being thus totally expected. Second,
and most important, existing approaches are all based on the same algorithm by
Tarjan [9]. This algorithm finds the maximum sets of packages depending (di-
rectly or indirectly) on each other, called strongly connected components (SCC)
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in graph theory. Within a SCC, a package is in cycle with all other packages,
and there can be multiple cycles in one SCC. In our experience, we have seen
software systems with a single huge SCC containing dozens of packages. The
above algorithm becomes useless in such cases as it does not provide further
information to understand and remove the cycles.

A dependent problem which is not well addressed in current approaches is
ranking cycles so that the most “undesired” ones are given top priority for re-
moval. Indeed, not all cyclic dependencies have the same importance. In a hi-
erarchical system of packages (as in Java), a package such as ui.internal can
be in cyclic dependency with ui without much consequences, since they both
implement the same functionality. On the contrary, a cycle between ui and core
packages should be avoided as it hampers reuse and deployment of the system.
We further discuss this issues as well as the prevalence of packages cycles in four
Java programs in Sect. 2.

Our approach advocates the decomposition of a SCC in multiple short cycles
covering all dependencies of the SCC. Computed cycles usually involve two to
four packages. They are therefore easy to understand and to remove, if necessary.
Developers can iterate over a set of short cycles and assess them one by one
rather than dealing with the single large set of packages contained in the SCC.
Moreover, our approach is able to rank the extracted cycles, prioritizing the ones
that seems the more undesired.

In this paper, we present two major contributions to assist developers in
understanding and removing cyclic dependencies in software systems:

– First, we present an efficient algorithm that decomposes a SCC. This algo-
rithm retrieves a set of short cycles that covers all dependencies of the SCC.
It has a polynomial time and space complexity (Sect. 3.1).

– Second, we introduce a new metric that evaluates the level of undesirability
of a cycle. This metric, called diameter, is based upon the notion of distance
between packages involved in the cycle (Sect. 3.2).

Our approach is validated against two large and mature programs, in Java and
Smalltalk (see Sect. 4).

2 Motivation

This section presents a small study showing why the SCCs are not fine-grained
enough to assist developers in understanding and removing cycles in large pro-
grams (Sect. 2.1). Then, it explains using an example why some cycles among
packages of a software system can be desired by their developers (Sect. 2.2).

2.1 Limitation of the Main Cycle Detection Algorithm

Most of the approaches perform cycle detection by using an algorithm [9] that
is capable of finding the maximum sets of packages that depend (directly or in-
directly) on each others. Such a set of packages is called, in the graph theory, a
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Table 1. Measures among packages and package cycles on the Java programs. #P is
the number of packages, #LSCC the size of the largest SCC and LSCCR the ratio
of packages in the largest SCC.

Program #P #LSCC LSCCR

ArgoUML 0.28.1 79 38 48%
JEdit 4.3.1 29 18 62%
Choco 2.1.0 147 38 26%
AntLR 3.2 31 7 23%

strongly connected component (SCC). In a SCC, each package is in cycle with all
other packages, and cycles exists only among the packages of a same SCC. To
remove package cycles, it is therefore necessary to remove several dependencies
among the packages of a given SCC. We believe that the SCCs are not fine-
grained enough to help the developer to understand and remove the undesired
dependencies in their programs. Indeed, they indicate which packages are in-
volved in cyclic dependencies, but they can not explain how. Whenever a SCC
contains only a few packages, it remains possible to visualize the dependencies
between them and to remove the cycles. On the other hand, when a SCC con-
tains a lot of packages, it does not help the developer at all. Indeed, if it contains
dozens of packages, it becomes hard to understand how packages connect with
each other to create the SCC.

To show that mature and large programs can contain huge SCCs, we pro-
ceed to a small experiment. We select four mature and medium-sized Java pro-
grams: ArgoUML (http://argouml.tigris.org), JEdit (http://www.jedit.org), Choco
(http://www.emn.fr/z-info/choco-solver) and AntLR (http://www.antlr.org). On these
programs we compute: #P the number of packages, #LSCC the size of the
largest SCC and LSCCR: the ratio of packages in the largest SCC.

Tab. 1 shows that the programs we selected contains large SCCs. In ArgoUML
the largest SCC contains almost half of the packages (see the LSSCR measure).
Worse, in JEdit almost two third of the packages are in the largest SCC, whereas
the total number of packages is not too large. Apart from AntLR, the size of the
largest SCC in the programs of our corpus will make their understanding hard
(see the #LSCC measure).

2.2 Desired and Undesired Cycles

In the introduction, we stated that not every cycle should be removed. In fact,
we believe that a significant proportion of the cycles among the packages of
a program are desired by the developers. To show this, let us take the exam-
ple of the JFace (http://wiki.eclipse.org/index.php/JFace) main widget library used
in the Eclipse development environment. A great deal of attention has been
devoted to its design by several software design experts. We therefore assume
that the cycles present in JFace are not accidental. Package jface.text is ded-
icated to the text widgets. This package provides classes such as TextViewer.

http://argouml.tigris.org
http://www.jedit.org
http://www.emn.fr/z-info/choco-solver
http://www.antlr.org
http://wiki.eclipse.org/index.php/JFace
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Package jface.text.hyperlink is dedicated to the management of textual hyper-
links. In JFace, there is a cycle between jface.text and jface.text.hyperlink. The
TextViewer class is able to display texts containing hyperlinks and therefore
jface.text depends on jface.text.hyperlink. Also, jface.text.hyperlink uses a lot of
classes and interfaces defined in jface.text. For instance an hyperlink is able to
trigger text events and therefore depends on the TextEvent class, which is defined
in the jface.text package. Therefore jface.text.hyperlink depends on jface.text. In
this case, the complexity of the hyperlink motivates its isolation in package
jface.text.hyperlink. Yet it is not necessary to break the cycle with jface.text as
it would make no sense to release one without the other.

More generally, in several languages such as Java, a package can contain other
packages, leading to a package containment tree. It is usual that when a package
is too big (i.e. contains two many classes), it is split in several sub-packages. In
this case it is very likely that cycles exist between these sub-packages.

3 Our Approach

In this section, we present our two contributions:

– First, we present an efficient algorithm that decomposes a SCC. This algo-
rithm retrieves a set of short cycles that covers all dependencies of the SCC.
It has a polynomial time and space complexity (Sect. 3.1).

– Second, we introduce a new metric that evaluates the level of undesirability
of a cycle. This metric, called diameter, is based upon the notion of distance
between packages involved in the cycle (Sect. 3.2).

3.1 A New Cycle Retrieval Algorithm

Intuition of our algorithm. To explain better the intuition of our new algo-
rithm, let us first introduce a sample class diagram, shown in Fig. 1. From this
class diagram, we extract the directed graph shown in Fig. 1. This graph shows
the dependencies between the packages, therefore we call it a package dependency
graph. On this graph, the SCCs are rounded by dashed circles.

In the previous section, we stated that the algorithm that computes the SCCs
is not fine-grained enough to help the developers to understand and remove cy-
cles from their programs. Fortunately, another algorithm from the graph-theory
literature is able to perform a fine-grained analysis of cycles in a directed graph
[10]. It computes the set of elementary cycles. A cycle is elementary if no node
(here no package) appears more than once when enumerating the sequence of
nodes in the cycle. For instance, in our sample graph of Fig. 1, this algorithm
finds the six elementary cycles shown in Fig. 1. Figuring out if an elementary
cycle should be removed or not is straightforward, it only requires to decide if the
dependencies involved in the cycle are correct. Unfortunately, the number of ele-
mentary cycles in a directed graph can be exponential. Therefore, this algorithm
does not scale on programs composed of many packages.
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Fig. 1. A sample class diagram (left), the corresponding package dependency graph
(midde, the dashed lines round the SCC) and the elementary cycles for this graph(right)

We introduce a new algorithm that still computes elementary cycles in a
SCC but that retrieves only a polynomial number of them, reducing time and
space complexity. Indeed, some elementary cycles can be seen as redundant.
In Fig. 1, cycle C5 is not useful if we consider cycles C1 and C4. Indeed, the
dependencies covered by C5 have already been covered by the two other cycles.
We reduce the number of cycles by selecting only a subset of the elementary
cycles, ensuring that each dependency of the SCC is covered by at least a cycle.
Still, to get all dependencies covered in Fig. 1, it is possible to select cycles C2,
C3, C6, and either C1 and C4, or the longer cycle C5. We assume that a long cycle
is harder to understand than a short one because it requires the analysis of more
dependencies. Therefore our final solution is to select for each dependency one
of the shortest cycles going through the dependency.

Mathematical model. A package dependency graph G is a couple (P, D) with
P a set of nodes (the packages) and D a set of edges (dependencies between the
packages). An edge is a couple (s, t) ∈ P 2 where s is the source and t the target
package. There is an edge from a package s to a package t iff a class of s uses
a class of t. We define the function Γ+ : P → P(D) (with P(E) the power-set
of E) which has the following definition Γ+(x) = {(x, y) ∈ D}. This function
gives all the dependencies where a given package appears as source. Reversely,
Γ− : P → P(D) is Γ−(x) = {(z, x) ∈ D}. This function gives all the edges
where a given package appears as target. We denote a path in G by a sequence
of nodes, written this way: (a, b, c), where every node has an edge to its successor.
We denote a cycle by such a sequence of nodes : x→ y → z, the last node being
implicitly linked to the first one.

Details of our algorithm. To understand the algorithm, it is important to
notice that cycles exist only among the nodes of the same SCC. Also, the set of
SCCs of a directed graph is a partition of its nodes. Therefore as a preliminary
step to our algorithm, we retrieve the SCCs from the directed graph using the
algorithm of [9], remove the inter-SCCs edges, then run our algorithm on each
SCC containing more than two nodes (SCCs of size one cannot contain a cycle).
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The SCCs of size two contain only one cycle involving the two nodes. Therefore
on the graph of Fig. 1, only SCC 1 is considered by our algorithm, while SCC
2 is discarded and SCC 3 directly leads to the creation of the cycle PG → PH .
In the following, we therefore focus on what happens in a SCC of size greater
than two. To find shortest cycles, we use the well-known breadth-first search
(BFS) algorithm. This algorithm can be used to find the shortest path between
two nodes in a graph where the edges are unweighted. A SCC has the following
property: for each possible pair of nodes x, y of the SCC, there is a path from x
to y and from y to x. A simple algorithm to find a shortest cycle for every edge
of a strongly connected graph is therefore to perform for each edge (x, y) ∈ D a
BFS from target node y going back to source node x. Indeed since there is an
edge from x to y, this edge is already the shortest path from x to y. Since we
are in a SCC, it is mandatory that at least a path exists from y to x. A shortest
path from y to x (found by the BFS) concatenated with the edge (x, y) would
therefore be a shortest cycle in which this edge is involved.

The only problem of this simple algorithm is that it requires a BFS for each
edge of the graph. Since there are less nodes than edges in a strongly connected
graph, it would be better to perform a BFS only for each node of the graph.
The idea is therefore to gather the ancestors A = {y ∈ P |(y, x) ∈ Γ−

P (x)} of
a node x, and perform a BFS from x until all its ancestors y ∈ A are found.
This way, only one BFS is performed for each node. The pseudo code of this
optimized version is given in Algorithm 1. To avoid the retrieval of identical
cycles, we consider that two cycles are equals if the first is a cyclic permutation
of the second. For instance c → a → b = a → b → c. To have a fixed order
to represent the cycles and compare them efficiently, we always place the lowest
node (using the lexicographic order) at the beginning of the cycle. We call this
operation normalize. For instance normalize(c→ a→ b) = a→ b→ c.

Let see how this algorithm works on SCC 1, shown in Fig. 1. Remember that
the edge from PC to PF has been deleted because it is a inter-SCCs edge. The
set of nodes is P = {PA, PB , PC , PD, PE}. We start with an empty set of cycles:
C = {}. Here are the steps followed by our algorithm:

1. The first node being picked up is PA. Therefore, A = {PE}. The BFS starting
from PA will find PE by the following path: (PA, PB, PD, PE). Since C is
empty, the cycle C1 = PA → PB → PD → PE is added to C. C = {C1}.

2. The second node being picked up is PB. A = {PA, PD}.
– The BFS started from PB will find PA by the following path: (PB , PA).

This cycle is normalized in C2 = PA → PB and added to C. C = {C1, C2}.
– The BFS started from PB will find PD by the following path: (PB , PD).

The cycle C3 = PB → PD is added to C. C = {C1, C2, C3}.
3. The third node being picked up is PC . A = {PB}. The BFS starting from

PC will find PB by the following path: (PC , PD, PB). After normalization, it
becomes C4 = PB → PC → PD and it is added to C. C = {C1, C2, C3, C4}.

4. The fourth node being picked up is PD. A = {PB, PC}.
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Algorithm 1. Our cycle retrieval algorithm
Data: A strongly connected package dependencies graph G = (P, D)
Result: A set of shortest cycles C
begin
C ← {} ; // the set of cycles
for x ∈ P do

V← {} ; // the set of the visited nodes
A← {z ∈ P |(z, x) ∈ Γ−(x)} ; // the set of the x ancestors
x.bfs_ancestor← ∅ ; // the path followed by the BFS
Q← (x) ; // a queue, initialized with x
/* BFS from x that stops when every ancestor of x is found */
while size(A) > 0 do

p← pop(Q); // removes the first element of Q
for (p, y) ∈ Γ+(p) do

/* if y has not been visited or put on the stack yet */
if y �∈ V ∪Q then

y.bfs_ancestor ← p;
push(Q,y) ; // adds y at the end of Q

/* if an ancestor of x is reached */
if y ∈ A then

c← () ; // the list of the nodes of the cycle
i← y;
/* builds the cycle */
while i �= ∅ do

add(c, i);
i← i.bfs_ancestor;

/* adds the cycle to the set of cycles */
normalize(c);
if c �∈ C then C ← C ∪ {c};
remove(A, y) ; // removes y from A

V ← V ∪ {p} ; // p is now visited

– The BFS started from PD will find PB by the following path: (PD, PB).
This cycle is normalized in C3 and therefore is not added to C. C =
{C1, C2, C3, C4}.

– The BFS started from PD will find PC by the following path:
(PD, PB, PC). This cycle is normalized in C4 and therefore is not added
to C. C = {C1, C2, C3, C4}.

5. The fifth and last node picked-up is PE . A = {PD}. The BFS starting
from PE will find PD by the following path: (PE , PA, PB , PD). This cycle is
normalized in C1 and therefore is not added to C. C = {C1, C2, C3, C4}.

Finally, we have C = {C1, C2, C3, C4}. We can notice that in contrast to the
enumeration of all elementary cycles (see Fig. 1), the long cycle PA → PB →
PC → PD → PE is not retrieved by our algorithm.
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Complexity of Algorithm 1. Let n = |P | be the number of nodes and m =
|D| be the number of edges. In the worst case, we pick-up a different cycle
for every edge, the maximum number of cycles is therefore m. We split the
computation of the worst-case time complexity in three parts: worst time spent
in the pre-processing step (finding the SCCs), worst time spent in the BFSes,
and worst time spent to add the cycles in the cycle set. Since we work with
strongly connected graphs, we have m ≥ n.
1. The worst case time complexity of the algorithm that computes the SCCs

in the pre-processing step in O(n + m) [9].
2. The worst case time complexity of a BFS in a graph is O(n + m). Since

we perform a BFS for every node of the graph, it leads to a O(n(m + n))
complexity for the BFSes.

3. The addition of a cycle in the set of cycles can be done in O(n × log(n))
using appropriate data structures (like a self-balancing binary search tree).
In the worst case, we try to add the same cycle involving all packages for
each edge. Therefore the worst case time complexity for the additions is
O(m× n× log(n)).

Since m ≥ n, the overall complexity of our algorithm is O(m×n× log(n)). Since
the number of packages in a program cannot be too large (we consider 1, 000
packages as a fair upper-bound), this complexity is perfectly acceptable to be
applied at development-time (for an immediate feedback) as well as maintenance-
time (for an in-depth architecture assessment).

3.2 Our Distance-Based Metric to Detect Undesired Cycles

In the previous section, we showed how we efficiently retrieve cycles from a
package dependency graph. Unfortunately, there can be many cycles, especially
in a large and complex program. A developer is not going to inspect manually
all the cycles, because it is a tedious and time-consuming task. Moreover, a
significant amount of these cycles is probably desired, like we have seen in Sect. 2.
To assist in understanding and removing the cycles, it is critical to propose
in priority the cycles that seems the most undesired. This is the purpose of
our diameter metric. To define it, we assume that packages are located in a
containment tree. This is the case in many languages such as Java, C#, Ruby,
or PHP. Even when it is not the case as in Smalltalk, such a tree can often be
inferred from conventions and names given by the developers to the packages.

To better illustrate the phenomenon described in Sect. 2, let us imagine the
sample package containment tree shown in Fig. 2. In this package tree, a cycle
between ui.dialog.wizard and ui seems desired. It is common that a class in a
package uses classes of its parent packages. It is also possible that in the par-
ent package, several classes depend on the classes of the sub-packages (such as
factory classes). In our example, ui.dialog.wizard is likely to use several classes
defined in ui, like a Widget class. It is also likely that ui furnishes a factory
class to create wizards (such as WizardFactory), that uses the different wizards
defined ui.dialog.wizard. In this case this cycle would be totally desired since
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Fig. 2. A sample package containment tree, with the weight associated to the edges

the developer would neither use nor deploy ui without ui.dialog.wizard. On the
other hand a cycle between core and ui seems strongly undesired. Although the
dependence from ui to core seems normal, it is unlikely that a package such as
core requires ui to be used or deployed.

We do not want the developers to have the burden of inspecting all the desired
cycles. We prefer to show them the cycles that seem the most undesired first.
To do so, we use the package containment tree to define a distance between two
packages: for instance the number of edges required to go from a package to the
other package. We assume that the further away are the packages involved in a
cycle, the more undesired the cycle seems. Unfortunately, with this definition of
distance, the packages ui.dialog.wizard and ui are at the same distance from each
other as core and ui (two edges). To deal with this problem we add a second
assumption: the farther away the common ancestor between two packages is
from the root of the tree, the less the distance between them is significant. For
instance, the common ancestor between ui.dialog.wizard and ui is ui, while the
common ancestor between core and ui is root.

To deal with the two previously described assumptions, we define a weighting
function that assigns a high weight to the edges close to the root and a low weight
to the edges far from the root. The weight of an edge depends on its depth. For
an edge e at depth d, the weight w(e) = 1

2d . Fig. 2 shows a sample package
containment tree with weights associated to its edges. The distance between two
packages DP : P 2 → R

+ is then equal to the sum of the weights of the edges
that lead from the first package to the second one. For instance DP (core, ui) = 2,
DP (ui.widget, ui.dialog) = 1 and DP (ui.dialog.wizard, ui) = 0.75.

We can now define our metric that indicates the level of undesirability
of a cycle, called diameter (denoted by D). It is defined as the worst pos-
sible distance between two packages contained in the cycle. More formally,
let C be a cycle, and let PC be the set of packages contained in the cycle.
D(C) = max({DP (x, y)|{x, y} ∈ P 2

C , x �= y}). Let us imagine that there is
the following cycle: ui → ui.widget → core. The diameter of this cycle is
D(ui → ui.widget → core) = 2.5 because DP (core, ui) = 2, DP (ui, ui.widget) =
0.5 and DP (core, ui.widget) = 2.5. We also have: D(ui → ui.widget →
ui.dialog) = 1 because DP (ui, ui.widget) = 0.5, DP (ui, ui.dialog) = 0.5 and
DP (ui.dialog, ui.widget) = 1. As one can notice, the larger the diameter is, the
more undesired it seems to be.
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4 Validation

We validate our approach on two large programs with an experiment involving
their maintainers. Our approach can be used both at development-time and at
maintenance-time. Nevertheless, we believe that it is harder to understand and
remove a cycle at maintenance-time, because it is necessary to remember the
past design decisions that led to its creation.

To show that our approach is useful we take the use-case where a developer use
our tool, called Popsycle1 , on his software at maintenance-time. Popsycle uses
the algorithm described in Sect. 3.1 to extract the cycles. It ranks them using the
metric presented in Sect. 3.2 (cycles with a large diameter being ranked first).
If two cycles have an equal diameter, the number of packages contained in the
cycle is used to rank the cycles (the less packages it has, the better it is ranked).
If two cycles have an equal diameter and number of packages, they are ranked
using the lexicographic order. In addition, Popsycle provides a view that ease
the understanding of the cycles by showing the underlying dependencies between
the classes that create the cycle.

4.1 Preparation of the Data

We chose two different programs to perform our experiment.

RESYN-Assistant. RESYN-Assistant (http://www.lirmm.fr/~vismara/resyn), is
a Java program targeting the domain of organic chemistry. It includes sev-
eral algorithms for perceiving molecular graphs according to their topological,
functional and stereo-chemical features. The development of RESYN-Assistant
started in 1996 at the LIRMM institute. It received financial support from the
Sanofi-Aventis pharmaceutical company and the french Languedoc-Roussillon
region. The development team was composed of four persons: two researchers in
computer-science, one PhD student in computer science and one PhD student in
chemistry. Because of the turnover within the development team, and because it
has mostly been developed by students having different resaerch objectives, its
architecture has decayed since the initial version.

The characteristics of the RESYN-Assistant architecture are the following:

– 315 classes, 33 packages, 242 package dependencies
– one SCC (of size > 1) containing 29 packages and 221 dependencies

Pharo. Pharo (http://www.pharo-project.org) is an open-source Smalltalk envi-
ronment. It has been forked from Squeak, a re-implementation of the classic
Smalltalk-80 system. Squeak development was started by Alan Kay group in
1996 based on an original Smalltalk-80 implementation. It received financial
support from the Apple and Disney companies. There were about 15 active
developers and more than 100 committers involved in its development. Squeak

1http://popsycle.googlecode.com

http://www.lirmm.fr/~vismara/resyn
http://www.pharo-project.org
http://popsycle.googlecode.com
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contains two graphical frameworks, support for advanced sounds and multime-
dia presentations, kid authoring system, as well as support for networking and
web programming. Lot of experimental code was included in the system with-
out attention to the impact on the global architecture. Pharo forked the code
of Squeak in 2008. Its goal is to provide a clean and stable version targeting
professional companies as well as researchers. Pharo development team involves
about 10 active developers and about 50 committers. The system inherits from
more than 15 years of development in a monolithic system context.

The characteristics of the Pharo architecture are the following:

– 1800 classes, 102 packages, package dependencies
– one SCC (of size > 1) containing 61 packages and 790 dependencies

Extraction of the dependencies. To extract the dependencies in the Java
program, we use the Apache BCEL (http://jakarta.apache.org/bcel) library on the
byte-code of the program. With BCEL, we extract most of the dependencies
between the classes, but some of them can be missed. In particular when a
method is overloaded, the dependency extracted from the byte-code is always
the class that defines the method. Also it is possible that some types are erased
if they are used only internally in a method. For Smalltalk applications, we use
the MOOSE (http://www.moosetechnology.org) reverse-engineering platform. Since
Smalltalk is dynamically typed, type information is hard to extract. The Moose
environment deals with that situation by providing a type inference mechanism.
It is possible to select the level of fuzziness of the type inference. We selected
only the dependencies that can be statically resolved: only direct class references
are used to identify dependencies. In addition, Smalltalk does not provide a tree
structure for the packages. Nevertheless, the developers of Pharo we analyzed use
the names of the packages to simulate it (typical package names: Collections-
Stream or Collections-Strings). Therefore, we take advantage of this naming
convention to extract a tree from the package names.

4.2 Experiment

When using Popsycle to extract package cycles, one expects that the most un-
desired cycles will be ranked first and that the desired cycles will be ranked
last. He also expects that Popsycle will extract short cycles, which are easier to
understand than the long ones. To validate this, we set up the following exper-
iment. For each program, we compute and rank the cycles. First, we compute
the distribution of the cycle sizes, to ensure that short cycles are retrieved. We
then ask the maintainers of the programs to count how many cycles in the k
first ranked by Popsycle are undesired, and how many of the k last cycles are
desired. Using this information, we compute the precision over the k first cycles
FPk = |undesired cycles|

k . In our experiment, maintainers will compute FP10, FP20

and FP30. These measures will show if our ranking metric is able to rank high
undesired cycles. But it could be the case that there are only undesired cycles
in the programs of our experiment. In this case, any ranking algorithm would

http://jakarta.apache.org/bcel
http://www.moosetechnology.org
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Fig. 3. The distribution of the cycle sizes in RESYN-Assistant (left) and Pharo (right)

have a good precision. To ensure the fact that our ranking metric is able to rank
low the desired cycles, we will also compute the precision over the k last ranked
cycles LPk = |desired cycles|

k . In our experiment, the maintainers will compute
LP10, LP20 and LP30. If both FPk and LPk are close to 1, it means that our
ranking metric is useful. Lastly, maintainers has been asked to provide a short
explanation on why the first cycles were undesired and why the last cycles were
desired.

4.3 Results

Size of the cycles. On RESYN-Assistant, our algorithm finds 171 cycles in 17
milli-seconds (mean time computed over 10 runs on a 2GHz Intel Core 2 Duo).
The distribution of the cycle sizes is shown in Fig. 3. The largest cycles are of size
6, which is manageable. The majority of the cycles are of size 2, 3 or 4, which are
size totally suited for an easy understanding of the cycles. In comparison with
the size of the unique SCC (that contains 27 packages), the size of the cycles
found by our algorithm is significantly smaller.

Our algorithm finds 619 cycles in Pharo in 40 milli-seconds (mean time com-
puted over 10 runs on a 2GHz Intel Core 2 Duo). The distribution of the cycle
sizes is shown in Fig. 3. The largest cycles are of size 5. Like in the previous
experiment, the majority of the cycles are of size 2, 3 or 4, even if the size
of the SCC is the double of the one in RESYN-Assistant. These sizes are still
significantly smaller than the size of the unique SCC of Pharo.

Precision. Tab. 2 shows the precision over the k first and last cycles. Precision
is good for the two programs, even with k = 30. It means that the first ranked
cycles were, as expected, undesired. The last ranked cycles were, as expected,
desired.
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Table 2. Precision over the k first and last ranked cycles

Program FP10 FP20 FP30 LP10 LP20 LP30

Pharo 0.9 0.9 0.87 1 1 0.97
RESYN-Assistant 1.0 1 1 1 1 1 1

4.4 Analyze of the Cycles

RESYN-Assistant

First cycles. We found several undesired cycles because the lack of a MVC
pattern, creating cycles between the GUI and the algorithms. These cycles have
not yet been fixed because they require a significant modification of the code.
Several cycles were due to the implementation of an unnecessary interface, and
have been corrected instantaneously. A cycle was due to a method that in fact
was never called, this cycle has therefore been corrected instantaneously.
Last cycles. Most of them are cycles between packages of the RESYN-Assistant
GUI. These cycles are desired since complex graphical components have been de-
veloped in the sub-packages and cycles exists between the main window (located
in the parent package) and these components. Several other cycles are related to
the implementation of an algorithm that was too complex to be implemented in
only one package and was therefore split in three packages. Lastly, several cycles
are between several packages defining a graph API.

Pharo

First cycles. Most of the first cycles were due to the existence of a multi-purpose
package (System-Support) that has become huge over the years and contains a
lot of misplaced classes. This package creates a lot of undesired dependencies
and cycles in the system. We also find several cycles involving the GUI package
(Morphic), because of the lack of use of an MVC pattern. Several other cycles
were due to misplaced methods. Most of the cycles have been corrected in the
new version of Pharo.

Last cycles. Most of them are cycles between the Collection package and its sub-
packages. Several cycles are between the Network package and its sub-packages.
There is also a cycles between the graphical widget package (named Morphic)
and its sub-packages.

4.5 Threats to Validity

The methods we use to extract the dependencies extract only a subset of them.
Therefore it is possible that at runtime several additional dependencies exist,
leading to more cycles. Nevertheless, it is unlikely that it would change the pre-
cision results. Another threat to validity is that when we compute the precision,
we analyze only a subset of the cycles (35% for RESYN-Assistant and 9.7% for
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Pharo). It is very likely that for greater values of k, the precisions LPk and FPk

will decrease. Lastly, we selected two softwares that have a lot of architectural
problems, leading to a lot of undesired cycles. In cleaner software systems, only
a few cycles are undesired. In this case, it is possible that they would be missed
by our ranking metric.

5 Related Work

Several tools and approaches have been introduced over the years to deal with
the problem of cyclic dependencies among packages and classes in a software
system. These approaches can be roughly classified using the following criterion:
1) approaches working at the package level, 2) approaches working at the class
level, 3) approaches using graph theory algorithms and 4) approaches based on
dependency matrix algorithms.

As a general rule, these approaches are concerned with detecting and report-
ing cycles using Tarjan SCC algorithm [9] or some simpler algorithms. Such
approaches do not scale to programs involving large SCCs because they do not
provide a deep analysis of how such SCCs arise and how to remove cycles in a
SCC. In contrast, we define an algorithm and an approach which computes the
information necessary to understand SCCs through subsets of elementary cycles,
and that is able to rank cycles by their level of undesirability.

Mudpie [11] is a reporting tool to detect cyclic dependencies between packages
in Smalltalk. The paper reports on a single case study performed on packages of
the Refactoring Browser in Smalltalk. Classycle (http://classycle.sourceforge.net)
is a reporting tool which detects SCC both at class level and package level.
Classycle proposes some metrics to characterize cycles but no formal definitions
are proposed and their goal is unclear. Both tools rely on Tarjan SCC algorithm
for detection of cycles, which make them impractical to analyze large SCCs.

PASTA [1] is a tool for analyzing the dependency graph of Java packages. It
focuses on detecting layers in the graph and consequently provides two heuristics
to deal with cycles. One views packages in the same SCC as a single package.
The other heuristic selectively ignores some dependencies until no more cycle is
detected. Thus, PASTA reports on these undesirable dependencies which should
be removed to break cycles. The paper reports on a case study analyzing the
Java core package with effective results. It would be interesting to compare the
heuristics for undesirable dependencies with our distance metric for undesired
cycles.

JooJ [5] is an approach to detect and remove cyclic dependencies between
classes. The principle of JooJ is to find statements creating cyclic dependencies
directly in the code editor, allowing the developer to solve the problem as it
appears. It computes the SCC using Tarjan to detect cycles among classes. It
also computes an approximation of the minimal set of edges to remove in order
to make the dependency graph totally acyclic. This NP-complete problem is
called minimum feedback arc set in the literature. It highlights therefore the
minimum number of statements that one needs to remove to supress all class

http://classycle.sourceforge.net
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cycles. However, no study is made to validate this approach : it is possible that
the selected dependencies are in fact not to be removed.

Byecycle (http://byecycle.sourceforge.net) is an eclipse plugin to visualize depen-
dencies at class level. It detects and colors in red dependencies involved in cycles.
By construction, set of red edges highlight SCC in the visualization. However,
the tool does not provide further help for cycle analysis.

JDepend (http://clarkware.com/software/JDepend.html) is a tool for Java which
check Martin’s principles [3] for package design. In particular, it checks that
the package dependency graph is acyclic. Contrary to other approaches, this
tool does not detect and retrieve packages in SCCs, but simply reports for each
package whether there is a cycle in its transitive dependency graph. For example,
with packages A and B in cycle and package C depending upon A, JDepend
reports that C depends on a cycle. It can become overwhelming if many packages
depends on the same cycle (as each will report separately the cycle) yet is not
exhaustive as the tool stops as soon as a cycle is detected (not reporting all
cycles in the dependency graph).

Dependency Finder (http://depfind.sourceforge.net) is a set of command line
tools to analyze compiled Java code with a focus on dependency graph. One
tool detects cycles but at class level only. The algorithm used is not described,
although it seems to report elementary cycles.

Dependency structural matrix [8] is an approach developed for process analy-
sis. It visualizes dependencies between some elements (tasks, processes, modules)
using the adjacency matrix representation. Several algorithms are defined on the
dependency matrices. The main step, called matrix partitioning, has a similar
output to SCC in a directed graph. Dependency matrices rely on visualization
to understand cycles. They make direct cycles easy to spot but indirect cycles
are hard to understand with this approach. Lattix [7] and eDSM [2] are two
adaptations of dependency matrix to the visualization of package dependencies.
They highlight cycles in SCC and can be used as a starting point to understand
the architecture of the system. However, due to their limitations in visualizing
indirect cycles, they do not benefit from our work which decomposes SCCs in
direct and indirect cycles. Instead, we view our work as complementary with
DSM as a high level tool and other tools for fine-grained analysis of cycles.

6 Conclusion and Future Work

In this article, we presented two contributions that assist the developers to un-
derstand and remove the cycles among packages of a large software system.

– First, we presented an efficient algorithm that decomposes a SCC. This al-
gorithm retrieves a set of short cycles that covers all dependencies of the
SCC. It has a polynomial time and space complexity.

– Second, we introduced a new metric that evaluates the level of undesirability
of a cycle. This metric, called diameter, is based upon the notion of distance
between packages involved in the cycle.

http://byecycle.sourceforge.net
http://clarkware.com/software/JDepend.html
http://depfind.sourceforge.net
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Since our algorithm has a low complexity, it can be applied at maintenance-time
as well as at development-time, preventing cycles to appear before it is too late.
We validate our approach on several case-studies on mature real-world programs
in Java and Smalltalk. It shows that our approach has a practical interest and
is easy to adapt to various object languages.

To improve our approach we plan to work on the following problems. First
we want to define other metrics on the cycles than our distance-based metric.
Second, we want to create a visualization that is not a list, but rather a global
view of the cycles of the software, it would allow the developers to have a more
global vision of the cycles in their programs. Finally we want to adapt and apply
our tool to legacy procedural languages like C or ADA, because we believe that
cycles are frequent in legacy code. An approach able to help the developers to
remove some of them would ease the maintenance effort spent on these systems.

References

1. Hautus, E.: Improving java software through package structure analysis. In:
IASTED International Conference Software Engineering and Applications (2002)

2. Laval, J., Denier, S., Ducasse, S., Bergel, A.: Identifying cycle causes with en-
riched dependency structural matrix. In: WCRE 2009: Proceedings of the 2009
16th Working Conference on Reverse Engineering. Lille, France (2009)

3. Martin, R.C.: Agile Software Development. Principles, Patterns, and Practices.
Prentice-Hall, Englewood Cliffs (2002)

4. Melton, H., Tempero, E.: An empirical study of cycles among classes in java. Em-
pirical Software Engineering 12(4), 389–415 (2007)

5. Melton, H., Tempero, E.D.: Jooj: Real-time support for avoiding cyclic depen-
dencies. In: 14th Asia-Pacific Software Engineering Conference, pp. 87–95. IEEE
Computer Society Press, Los Alamitos (2007)

6. Parnas, D.L.: Designing software for ease of extension and contraction. In: Inter-
national Conference on Software Engineering (ICSE 1978), pp. 264–277 (1978)

7. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to man-
age complex software architecture. In: Proceedings of OOPSLA 2005. pp. 167–176
(2005)

8. Steven, D., Eppinger, D.A.G.: Methods for analyzing design procedures. In: ASME
Conference on Design Theory and Methodology. pp. 227–233, miami (1991)

9. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

10. Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2(3), 211–216 (1973)

11. Vainsencher, D.: Mudpie: layers in the ball of mud. Computer Languages, Systems
& Structures 30(1-2), 5–19 (2004)
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Abstract. Unit testing is often made more difficult by the heavy use of
classes as namespaces and the proliferation of static methods to encapsu-
late configuration code. We have analyzed the use of 120 static methods
from 96 projects by categorizing them according to their responsibilities.
We find that most static methods support a hodgepodge of mixed re-
sponsibilities, held together only by their common need to be globally
visible. Tight coupling between instances and their classes breaks en-
capsulation, and, together with the global visibility of static methods,
complicates testing. By making dependency injection a feature of the
programming language, we can get rid of static methods altogether. We
employ the following semantic changes: (1) Replace every occurrence of a
global with an access to an instance variable; (2) Let that instance vari-
able be automatically injected into the object when it is instantiated.
We present Seuss, a prototype that implements this change of seman-
tics in Smalltalk. We show how Seuss eliminates the need to use class
methods for non-reflective purposes, reduces the need for creational de-
sign patterns such as Abstract Factory and simplifies configuration code,
particularly for unit tests.

1 Introduction

Class methods, which are statically associated to classes rather than instances,
are a popular mechanism in object-oriented design. Java and C#, for example,
provide static methods, and Smalltalk provides “class-side” methods, methods
understood by classes, rather than their instances. 9 of the 10 most popular
programming languages listed by TIOBE provide some form of static methods.1
In most of these languages, classes offer the key mechanism for defining names-
paces. For this reason, static methods offer a convenient mechanism for defining
globally visible services, such as instance creation methods. As a consequence,
static methods end up being used in practice wherever globally visible services
are needed.

Unfortunately this common practice leads callers of static methods to im-
plicitly depend on the classes that provide these static methods. The implicit
1 TIOBE Programming Community Index for January 2011, http://www.tiobe.com.

Those 10 languages are Java, C, C++, PHP, Python, C#, (Visual) Basic, Objective-
C, Perl, Ruby. The outlier is C, which does not have a class system.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 276–289, 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.tiobe.com
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dependency on static methods complicates testing. That is because many tests
require that application behavior be simulated by a fixed script representing a
predefined scenario. Such scripted behavior can hardly be plugged in from the
outside when static methods are accessed by global names, and thus hard-wired
into code. We therefore need to better understand the need for static methods
in the first place.

Classes are known to have both meta-level and base-level responsibilities [2].
To see what those are, we examined 120 static methods, chosen at random from
SqueakSource, a public repository of open source Smalltalk projects. We found
that while nearly all static methods inherited from the system are reflective in
nature, only few of the user-supplied methods are. Users never use static methods
to define reflective functionality.

Dependency injection is a design pattern that shifts the responsibility of re-
solving dependencies to a dedicated dependency injector that knows which de-
pendent objects to inject into application code [6,11]. Dependency injection offers
a partial solution to our problem, by offering an elegant way to plug in either the
new objects taking over the responsibilities of static methods, or others required
for testing purposes. Dependency injection however introduces syntactic clutter
that can make code harder to understand and maintain.

We propose to regain program modularity while maintaining code readability
by introducing dependency injection as a language feature. Seuss is a prototype
of our approach, implemented by adapting the semantics of the host language.
Seuss eliminates the need to abuse static methods by offering dependency injec-
tion as an alternative to using classes as namespaces for static services. Seuss
integrates dependency injection into an object-oriented language by introducing
the following two semantic changes:

1. Replace every occurrence of a global with an access to an instance variable;
2. Let that instance variable be automatically injected into the object at in-

stantiation time.

Seuss cleans up class responsibilities by reserving the use of static methods for
reflective purposes. Furthermore, Seuss simplifies code responsible for configura-
tion tasks. In particular, code that is hard to test (due to implicit dependencies)
becomes testable. Design patterns related to configuration, such as the Abstract
Factory pattern, which has been demonstrated to be detrimental to API usabil-
ity [5], become unnecessary.
Structure of the article. In section 2 we analyze the responsibilities of static
methods and establish the challenges for reassigning them to suitable objects. In
section 3 we demonstrate how Seuss leads to cleaner allocation of responsibilities
of static methods, while better supporting the development of tests. In section 4
we show how some creational design patterns in general and the Abstract Fac-
tory design in particular are better implemented using Seuss. In section 5 we go
into more details regarding the implementation of Seuss. In section 6 we discuss
the challenges for statically-typed languages, and we summarize issues of per-
formance and human factors. In section 7 we summarize the related work and
we conclude in section 8.
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2 Understanding Class Responsibilities

Static methods, by being associated to globally visible class names, hard-wire
services to application code in ways that interfere with the ability to write tests.
To determine whether these responsibilities can be shifted to objects, thus en-
abling their substitution at run-time, in subsection 2.1 we first analyze the re-
sponsibilities static methods bear in practice. Then in subsection 2.2 we pose
the challenges facing us for a better approach.

2.1 Identifying Responsibilities

We follow Wirfs-Brock and Wilkerson’s [4] suggestion and ask what the current
responsibilities of static methods are, for that will tell us what the new classes
should be.

We determine the responsibilities following a study design by Ko et al. [8].
Their study identifies six learning impediments by categorizing insurmountable
barriers encountered by test subjects. The authors of the paper independently
categorize the impediments and attain 94% agreement.

We examined 120 static methods and classified their responsibilities from a
user’s point of view. For example, a static method that provides access to a
tool bar icon would be categorized as providing access to a resource, regardless
of how it produced or obtained that image. We chose 95 projects uniformly at
random from SqueakSource2, the largest open source repository for Smalltalk
projects. We then selected uniformly at random one static method from the
latest version of each of these projects. To avoid biasing our analysis against
framework code, we then added 25 static methods selected uniformly at random
from the standard library of Pharo Smalltalk3, as shipped in the development
environment for developers.

Of the 120 methods selected, two were empty. We randomly chose another
two methods from SqueakSource to replace them. Two subjects then categorized
the 120 methods independently into the categories, achieving 83% agreement.
We then reviewed the methods that were not agreed upon. Most were due to
lack of knowledge of the exact inner workings of the API they were taken from.
After further review, we placed them into the most appropriate subcategory.

We identified the following three umbrella categories: Instance creation, Ser-
vice and Reflection, each further subdivided into subcategories. Whenever a
method did not fit into any of the subcategories, we marked it as “other”.

Instance creation. (28 of 120) Instance creation methods create new instances
of their own class. They are subdivided as follows.
Singleton. (4 of 28) These methods implement the singleton pattern [7] to

ensure that the instance is created only once.
Other. (24 of 28) Some methods provided default parameters, some simply

relayed the method parameters into setters of the newly created instance.
2 http://www.squeaksource.com/
3 http://pharo-project.org

http://www.squeaksource.com/
http://pharo-project.org
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Only 3 methods did anything more than setting a default value or relaying
parameters. These three methods each performed simple computations on
the input parameters, such as converting from minutes to seconds, each no
longer than a single line of code.

Services. (86 of 120) Service methods provide globally available functionality.
They often serve as entry points to an API. We have identified the following
sub-categories.

Install/uninstall a resource. (6 of 86) By resource, we mean a widely used
object that other parts of the system need to function. Examples of instal-
lable resources that we encountered are: packages of code; fonts; entries to
menus in the user interface.

Access a resource or setting. (41 of 86) These methods grant access to a
resource or a specific setting in a configuration. Complex settings resemble
resources, hence one cannot easily distinguish between the two. Examples
include: a status object for an application; the packet size of headers in
network traffic; default CSS classes for widgets; a sample XML file needed
to test a parser; the default lifetime of a connection; the color of a GUI
widget.

Display to/prompt user. (4 of 86) Examples: showing the recent changes in
a versioning system; opening a graphical editor.

Access network. (2 of 86) These methods grant access to the network. Exam-
ples: sending an HTTP put request; sending a DAV delete request.

System initialization. (11 of 86) These methods set the system status to be
ready for future interactions. Examples: setting operation codes; setting the
positions for figures; asking other system parts to commence initialization.

Class indirection. (5 of 86) These return a class, or a group of classes, to
provide some indirection for which class or classes to use.

Other. (17 of 86) Other responsibilities included: converting objects from one
class to another; taking a screenshot; sorting an array; granting access to
files; starting a process; mapping roles to privileges; signaling failure and
mailing all packages in a database.

Reflection. (6 of 120) Unlike methods that offer services, reflective methods
on a class are by their nature tightly coupled to instances of the class. We have
found the following sub-categories.

Class Annotations. (5 of 6) Class annotations specify the semantics of fields
of their class. All the examples we examined were annotations interpreted
by Magritte [12], a framework for adapting an applications model and meta-
model at run-time.

Other. (1 of 6) One method provided an example on how to use the API.
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2.2 Challenges

Out of the 120 static methods we have analyzed, only 6 belonged naturally
and directly to the instances of that class, namely the reflective ones. All other
responsibilities can be implemented in instance methods of objects tailored to
these responsibilities.

We conclude that static methods are defined in application code purely as a
matter of convenience to exploit the fact that class names are globally known.
Nothing prevents us from shifting the responsibilities of non-reflective static
methods to regular application objects, aside from the loss of this syntactic
convenience. In summary the challenges facing us are:

– to shift static methods to be instance responsibilities,
– while avoiding additional syntactic clutter, and
– enabling easy substitution of these new instances to support testing.

In the following we show how Seuss, our dependency injection framework
allows us to address these challenges.

3 Seuss: Moving Services to the Instance Side

We would like to turn misplaced static methods into regular instance methods,
while avoiding the syntactic clutter of creating, initializing and passing around
these instances. Dependency injection turns out to be a useful design pattern to
solve this problem, but introduces some syntactic clutter of its own. We therefore
propose to support dependency injection as a language feature, thus maintaining
the superficial simplicity of global variables but without the disadvantages. De-
pendency injection furthermore shifts the responsibility of injecting dependent
variables to a dedicated injector, thus enabling the injection of objects needed
for testing purposes. Let us illustrate dependency injection in an example.

In the active record design pattern [6, p. 160 ff], objects know how to store
themselves into the database. In the SandstoneDB implementation of active
record for Smalltalk [9] a Person object can save itself into the database as in
Figure 1.

The code of the save method is illustrated in Figure 2. (The actual method is
slightly more complicated due to the need to handle further special cases.)

The save method returns the result of evaluating a block of code in a critical
section (self critical: [ ...]). It first evaluates some “before” code, then either stores
or updates the state of the object in the database, depending on whether it has
previously been saved or not. Finally it evaluates the “after” code.

In the save method, the database must somehow be referenced. If the database
were an ordinary instance variable that has to be passed during instance creation,
the code for creating Person objects would become cluttered. The conventional
workaround is to introduce static methods storeObject: and updateObject: to
encapsulate the responsibility of connecting to the database, thus exploiting the
global nature of the Store class name, while abusing the mechanism of static
methods for non-reflective purposes.
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user := Person firstName: 'Ramon' lastName: 'Leon'.
user save.

Fig. 1. Using the active record pattern in SandstoneDB

save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [Store storeObject: self]
ifFalse: [Store updateObject: self].

self onAfterSave.
]

Fig. 2. The save method in SandstoneDB, without dependency injection

Unfortunately, testing the save method now becomes problematic because the
database to be used is hard-wired in static methods of the Store class. There is
no easy way to plug in a mock object [10] that simulates the behavior of the
database for testing purposes.

The dependency injection design pattern offers a way out by turning globals
into instance variables that are automatically assigned at the point of instan-
tiation. We add a method to Person that declares that Person is interested to
receive a Store as an instance variable during instance creation by the runtime
environment, rather than by the caller, as seen in Figure 3. Afterwards, instead
of accessing the global Store (in upper case), save is re-written to access instance
variable store (in lower case; see Figure 4).

store: anObject
<inject: #Store>
store := anObject

Fig. 3. Person declares that a Store should be injected upon creation

In the example in Figure 4, we also see that Person does not ask specifically for
an instance of a class Store. It only declares that it wants something injected that
is labelled #Store. This indirection is beneficial for testing. Method storeObject:
may pollute the database if called on a real database object. Provided that there
is a mock class TestStore, we can now inject instances of that class rather than
real database objects in the context of unit tests.

Avoiding cluttered code by language alteration. The dependency injection pat-
tern introduces a certain amount of clutter itself, since it requires classes to be
written in an idiomatic way to support injection. This clutter manifests itself in
terms of special constructors to accept injected objects, and factories responsi-
ble for creating the injected objects. Seuss avoids this clutter by incorporating
dependency injection as a language feature. As a consequence, the application
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save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [store storeObject: self]
ifFalse: [store updateObject: self].

self onAfterSave.
]

Fig. 4. The save method from SandstoneDB rewritten to use dependency injection
does not access the globally visible class name Store

developer may actually write the code as it is shown in Figure 2. The seman-
tics of the host language are altered so that the code is interpreted as shown in
Figure 4.

In Seuss, what is injected is defined in configuration objects, which are created
in code, rather than in external configuration files. Therefore, we can cheaply
provide configurations tailored for specific unit tests. Figure 5 illustrates how
a unit test can now test the save method without causing side effects. The
code implies that the storeObject: and updateObject: methods are defined on the
instance side of the TestStore class.

testing := Configuration bind: [ :conf | conf bind: #Store to: TestStore new].
user := (Injector forConfiguration: testing get: #User).

user firstName: 'Ramon' lastName: 'Leon'.
user save.

Fig. 5. Unit test using dependency injection. The injector interprets the configuration,
and fills all dependencies into user, including the TestStore

Typically, a developer using dependency injection has to explicitly call only
one injector per unit test, and only one for the rest of the application, even
though the injector is active during every object instantiation. Section 5 details
how the injector is implicitly made available.

4 Cleaning Up Instance Creation

The design patterns by Gamma et al. are often ways of addressing language lim-
itations. It is not surprising that by introducing a language change as powerful
as dependency injection some of the design patterns will become obsolete. A
special class of design patterns that we care about in this section are the cre-
ational ones, since we have seen in subsection 2.1 that a considerable percentage
of static methods are responsible for instance creation.

The abstract factory pattern has been shown to frequently dumbfound users
of APIs that make use of it [5]. Gamma defines the intent of the abstract factory
pattern as to “provide an interface for creating families of related or dependent
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objects without specifying their concrete classes” [7]. Gamma gives the example
of a user interface toolkit that supports multiple look and feel standards. The
abstract factory pattern then enables code to be written that creates a user
interface agnostic to the precise toolkit in use.

Let us suppose the existence of two frameworks A and B, each with implemen-
tations of an abstract class Window, named AWindow and BWindow, and the
same for buttons. Following the abstract factory pattern, this is how we could
create a window with a button that prints “World!” when pressed:

createWindow: aFactory
window := (aFactory make: #Window) size: 100 @ 50.
button := (aFactory make: #Button) title: 'Hello'.
button onClick: [Transcript show: 'World’]. window add: button.

Fig. 6. Object creation with Abstract Factory

Ellis et al. [5] show that using this pattern dumbfounds users. When presented
with the challenge of instantiating an instance that is provided by a factory, they
do not find the required factory. In Seuss, the following code snippet may gen-
erate a window either using framework A or B, depending on the configuration,
with no need to find (or even write) a factory:

createWindow
window := Window size: 100 @ 50.
button := Button title: 'Hello'.
button onClick: [Transcript show: 'World’].window add: button.

Fig. 7. Replacing object creation with Dependency Injection

Seuss allows writing natural code that still bears all the flexibility needed to
exchange the underlying framework. It can be used even on code that was not
written with the intention of allowing the change of the user interface framework.

5 Dependency Injection as a Language Feature

Normally, using dependency injection frameworks requires intrusively modifying
the way code is written. The developer needs to make the following modifications
to the code:

– Add the definition of an instance variable.
– Specify through an annotation which instance variable gets injected (the

inject annotation from Figure 3).
– Provide a method through which the dependency injection framework can

set the instance variable to the value of the injected object. This is a setter
method in Smalltalk (Figure 3) or a dedicated constructor in Java.
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To improve usability, in Seuss we completely remove the requirement of modi-
fying the code in any of the previously mentioned ways. As a result, the code in
in Figure 2 is interpreted just as if the code in Figure 4 and Figure 3 had been
written.

The feature that allows us to use dependency injection without the invasive
modification of source code is a slight change to the Smalltalk language: for
every global being accessed, the access is redirected to an instance variable. This
instance variable is annotated for injection, made accessible through setters, and
then is set by the framework when the object is created.

It is not enough to store an object representing the original class in an instance
variable. That is because the class usually is not aware of Seuss and thus does
not inject dependencies into objects it newly creates.

Store

/basicNew()
Store class

class

Metaclass
class

Overwrite

Anonymous

basicNew()
injector

C

Fig. 8. Instances of C mimic Store, but use the injector when creating instances

Instead, we inject an object that knows the injector and calls it during instance
creation. We achieve this by injecting an instantiator object. The class of the
instantiator is an anonymous subclass of the metaclass of the original method’s
class. For example, in Figure 3 the object that is injected into instance variable
store in is an instance of an anonymous metaclass C. As illustrated in Figure 8,
C overwrites method basicNew which is inherited from Store class4. It changes
basicNew so that it first invokes the injector, asking it to inject all dependencies
into the newly created object, and then resets the class of the newly created
object to be Store.

In order to change the semantics of a standard Pharo as described above, we
use Helvetia [13], a language workbench for Smalltalk. Helvetia lets us intercept
the compilation of every individual method. Helvetia requires us to specify our
language change as a Rule, which is really a transformation from one method
AST to another. When changing methods, we also modify the containing class
when needed. During the transformation, we also create and update a default
4 basicNew is a primitive that allocates memory for the new object. It is normally not

overridden.
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configuration, which lets the code run as before, if used. It can also be overridden
by the user in unit tests. Algorithm 1 details the transformation.

Algorithm 1. Transforming ordinary code into dependency injected
code.

1. Replace every occurrence of a global with an access to an instance variable. Add
that instance variable if necessary.

2. Generate a setter method for that variable and annotate it so that the dependency
injection framework can inject into that variable.

3. If the injected global is a class, act as follows. Generate an anonymous metaclass C
as described above, and make its instance known to the default configuration. As
described above, the instance should behave just like the original class, but should
additionally inject all dependencies into newly created instances of class C.

4. Make the default configuration aware of the referred to global.

Introducing dependency injection as a language feature brings two advantages:

1. Backwards compatibility. Dependency injection can be used for code that
was not written with dependency injection in mind. We were able to use the
unit test from Figure 5 without having to modify the SandstoneDB project,
which does not use dependency injection.

2. Less Effort. Other frameworks require that all dependencies be explicitly
declared through some boilerplate code for each dependency. In our case, by
automatically injecting needed dependencies where possible, the amount of
code to write was reduced.

6 Discussion

We briefly explore the challenges for implementing Seuss in statically-typed lan-
guages like Java, and we summarize issues of performance and human factors.

6.1 Challenges for Statically Typed Languages

In a language where classes are reified as first-class objects, such as Smalltalk,
classes can simply be injected as objects. In other languages, such as Java, a
proxy must be used.

Seuss works by replacing access to globals by access to instance variables.
In a statically typed language, the question arises what type injected instance
variables ought to be. To see if our small language change would be feasible in a
typed language, we ported part of Seuss to Java. In the following transformation
by JSeuss, our Java version of Seuss, the access to the global Store is replaced
by an instance variable store (note the lower case initial letter) of type ICStore.
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class Before {
void save() {

Store.storeObject(this);
}

}

is transformed into

class After {
@Inject
ICStore store;
void save() {

store.storeObject(this);
}

}

The interface ICStore is a generated interface. Our Java transformation gen-
erates two interfaces for every class, one for all static methods, and one for all
instance methods. The interfaces carry the same name as the class, except for
the prefixed upper-case letters IC, or I, respectively. During class load time,
all occurrences of type Store are then replaced by type ICStore, and so with all
classes. All new calls on Store return instances of type IStore. On the other hand,
existing interfaces are not touched.

The object of type ICStore serves as a proxy for the class ICStore. This is
necessary since classes are not first class in Java, and thus cannot be injected
directly. To avoid expensive recompilation, we use Javassist to modify all code
at the bytecode level, during class load time.

The current implementation of JSeuss enables unit testing of the save method
above, but is otherwise incomplete, thus currently prohibits meaningful bench-
marking. We nevertheless learned from the experience that while Seuss for Java
is complicated by the static type system of Java, it is still feasible.

6.2 Performance and Human Factors

Seuss impedes the performance of applications exclusively during object instan-
tiation when there is some performance penalty for injecting all dependencies.
In all other cases, a pointer to a global is replaced by a pointer to an instance
variable, which is not slower than accessing a global in many languages, although
it can prohibit inlining. Since every access to a global requires a new instance
variable to be added, the memory footprint can grow considerably. However,
space penalties can be ameliorated by introducing nested classes to a language,
as demonstrated in Newspeak [3]. This should also improve performance during
instantiation time, as dependencies can be moved to outer classes and thus need
to be injected fewer times.

One might also argue that the new level of indirection may lead to confusion
as to which object is being referred to, when an injected variable is referenced.
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However, we believe that proper tool support can bring sufficient clarity. An
IDE should be able to gather all configurations and use them to display which
literals are bound to what.

6.3 Using Seuss to Sandbox Code

If Object’s reflective methods are removed, then all objects can only find other
classes through their dependencies or method parameters. Thus, any piece of
code from within a configuration that does not include access to the File class
prevents that code from reading or writing files. This concept of security by
unreachability was described by Bracha [3].

7 Related Work

Dependency injection [6,11] is a design pattern that decouples highly depen-
dent objects. Using it involves avoiding built-in methods for object construction,
handing it off to framework code instead. It enables testing of components that
would ordinarily be hard to test due to side-effects that would be intolerable
in unit tests. There are other frameworks that support dependency injection
like Google Guice [14] and Spring, after which Seuss’s dependency injection ca-
pabilities are modeled. In contrast to Google Guice and Spring, Seuss turns
dependency injection into a language feature that works even on code that was
not written with dependency injection in mind. By superficially allowing the
use of standard language constructs for object creation while using dependency
injection under the hood, Seuss programs look in large parts like conventional
source code.

Achermann and Nierstrasz [1] note that inflexible namespaces can lead to
name clashes and inflexibilities. They propose making namespaces an explicit
feature of the language and present a language named Piccola. Piccola does not
get rid of using global namespace, but makes it a first-class entity. First-class
namespaces in Piccola enable a fine degree of control over the binding of names
to services, and in particular make it easy to run code within a sandbox. While
Seuss sets the namespace of an object at that object’s instantiation time, Piccola
allows it to be manipulated in the scope of an execution (dynamically) as well
as statically. Similarly, some mocking frameworks, such as PowerMock5, allow
re-writing of all accesses to global namespace to access a mock object. Piccola
and PowerMock do not attempt to clean up static method responsibilities, but
rather add flexibility to their lookup.

Bracha presents the Newspeak programming language [3], which sets the
namespace of an object at that object’s instantiation time, just like Seuss. How-
ever, while Seuss provides a framework that automatically injects individual de-
pendencies into the dependent object during instantiation time, Newspeak leaves
this to the developer. Bracha shows that by restricting a module to accessing the
set of objects that were passed in during instantiation time, untrusted software
5 http://code.google.com/p/powermock/

http://code.google.com/p/powermock/
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can be sandboxed reliably by not passing in the dependencies that it would need
to be harmful, such as file system access modules. The same argument holds for
Seuss so long as reflection is disabled. While the rewiring of dependencies is a
strong suit of dependency injection, and while Newspeak makes it technically
possible, the system’s design makes it costly in lines of code to run a unit test
in a new configuration. By manually searching for a module instantiation that
happens in a unit test, we could not find a single unit test in Newspeak that
makes use of Newspeak’s capabilities to change namespaces.

8 Conclusion

Static methods pose obstacles to the development of tests by hardwiring instance
creation. A study of 120 static methods in open-source Smalltalk code shows that
out of the 120 static methods, only 6 could not equally well be implemented as
instance methods, but were not, thus burdening their caller with the implicit
dependency on these static methods.

Dependency injection offers a partial solution to separating the responsibility
of instantiating application objects or test objects, but still entails tedious rewrit-
ing of application code and the use of boilerplate code to fulfill the dependency
injection design pattern. We have shown how introducing dependency injection
as a language feature can drastically simplify the task of migrating class respon-
sibilities to instance methods, while maintaining code readability and enabling
the development of tests. Moreover, a language with dependency injection as a
feature becomes more powerful and renders certain design patterns obsolete.

We have demonstrated the feasibility of the approach by presenting Seuss,
an implementation of dependency injection as a language feature in Smalltalk.
We have furthermore demonstrated the feasibility of our approach for statically-
typed languages by presenting JSeuss, a partial port of Seuss to Java.
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Abstract. The Object Constraint Language (OCL) substantially en-
riches modeling languages like UML, MOF or EMF with respect to for-
mulating meaningful model properties. In model-centric approaches, an
accurately defined model is a requisite for further use. During develop-
ment of a model, continuous validation of properties and feedback to
developers is required, since many design flaws can then be directly
discovered and corrected. For this purpose, lightweight validation ap-
proaches which allow developers to perform automatic model analysis are
particularly helpful. We provide a new method for efficiently searching for
model instances. The existence or non-existence of model instances with
certain properties allows significant conclusions about model properties.
Our approach is based on the translation of UML and OCL concepts into
relational logic and its realization with SAT solvers. We explain various
use cases of our proposal, for example, completion of partly defined model
instances so that particular properties hold in the completed model in-
stances. Our proposal is realized by integrating a model validator as a
plugin into the UML and OCL tool USE.

1 Introduction

Unlike traditional code-centric approaches, model-centric and model-driven
software and hardware development relies on comprehensive and in particular
flawless models. Modeling languages like UML, MOF or EMF are substantially
enriched by the Object Constraint Language (OCL) which allows precise def-
initions of model properties. However, complex models increase the need for
extensive validation and verification. Our work focuses on discovering implied
model qualities and properties early in the development cycle, i. e., properties
which follow from the given UML and OCL model constraints. During the de-
velopment, continuous validation of properties and feedback to the developers is
required, since many design flaws can then be directly discovered and corrected.
Lightweight validation approaches which allow developers to perform automatic
model analysis are thus particularly helpful (in contrast to strongly interactive
theorem proving approaches). In our work, we automatically confirm wanted and
find unwanted model properties (features and bugs) by examining the existence
or non-existence of specific model instances, i. e., snapshots representing concrete
states of the modeled system.
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For this purpose, we developed a method which we call OCL2Kodkod. By
translating UML and OCL concepts into the relational logic of Kodkod [23],
our method enables an efficient SAT-based search and generation of partial and
complete snapshots with user-specified properties. The user has not to deal with
any details of relational logic, but employs UML and OCL concepts only. We
integrated OCL2Kodkod as a plugin into our UML and OCL tool USE (UML-
based Specification Environment) [10] adding various new validation options.

In order to realize a modular architecture, the USE system was recently mod-
ified in order to support a flexible incorporation of new functionality via plugins.
The plugin architecture is well-suited for research and teaching projects like stu-
dent or PhD theses. The first plugin which realizes the method OCL2Kodkod is
called ‘model validator’.

The rest of the paper is structured as follows. Sect. 2 introduces the tools and
methods handled within the paper. In Sect. 3 we present the principles of the
USE plugin architecture and the particularities of the model validator plugin.
Section 4 discusses the principles of model validation wrt. the model validator
and explains the principles in the context of a concrete UML and OCL model.
Section 5 gives an overview of the translation from UML and OCL to Kodkod.
Related work is presented in Sect. 6. We conclude with Sect. 7.

2 Background: The Tools USE and Kodkod

In order to assist developers in model-driven techniques, our group puts forward
the tool USE [10]. USE is basically an interpreter for a subset of UML and MOF
and OCL. The main task of USE is to validate and verify specifications consisting
of class diagrams together with OCL invariants and pre- and postconditions.
USE further supports object diagrams and sequence diagrams. Commands for
atomic snapshot manipulation (object and link creation/deletion and attribute
modification) allow to construct states. Also part of the USE system is a so-
called snapshot generator based on ‘a snapshot sequence language’ (ASSL) [9].
We distinguish the built-in snapshot generator from the new model validator
plugin in Sect. 4.

Kodkod [23] implements relational logic [13] which is purely based on re-
lations, that is, sets of tuples. Independent from their nature, all values are
uniformly handled as relations. Atomic values like integer values are represented
by unary singleton relations (e. g., [(2)]). Sets of atomic values are relations with
possibly more than one unary tuple (e. g., [(a), (b), (c)]). Relationships between
atoms are specified with n-ary relations (e. g., a function [(a, 2), (b, 8), (c, 2)]).
The structure of a relation can be freely defined. Kodkod’s logic provides a
large set of operations for handling relations, including common set opera-
tions like union and subset. The most important means for extracting infor-
mation and merging different relations is the so called ‘join’ expressed by a dot
(e. g., [(a, 2), (b, 3)].[(2, c)] = [(a, c)]). Often, the join emulates a function call
(e. g., [(a)].[(a, 2), (b, 8), (c, 2)] = [(2)]). In order to perform calculations based
on integer values, the relational logic additionally includes the corresponding
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operations. Naturally, the relational logic brings boolean operations for build-
ing relational formulas which are evaluated in the context of concrete relation
instances.

Kodkod is designed as an API allowing developers of other tools to easily use
its features. Its most important feature is the possibility to efficiently find specific
instantiations of the underlying relations which fulfill the specified relational
formulas. This task is achieved by translating the formulas from the relational
logic into boolean logic. The resulting boolean formulas can in turn be explored
by proprietary solvers for boolean satisfiability (SAT). If the applied SAT solver
finds a solution, the solution is translated back into respective relation instances.

3 Integrating SAT Solving into the USE Tool

The USE tool provides a way to add new features to the USE system without
altering the internal USE sources. In the following subsection we dwell on the
principles of this plugin architecture. After that, we consider the new ‘model
validator’ plugin and its features.

3.1 The USE Plugin Architecture

Since the first release of USE, several extensions to the system were made. Some
of these extensions were the result of diploma theses supervised in our group. One
example of such an extension is the snapshot generator mentioned before. When
unexperienced developers are involved — which is the common and natural case
with students — it is hard to maintain several concurrent feature branches.
Students are normally not interested in the overall USE development road map,
nor do they care about system changes done during their diploma work. This
makes the (re)integration of their results a labor-intensive task. Therefore, we
enriched USE to support extensions to the system by plugins which allows us to
decouple the various extensions from the system core maintained by our group.
Also the users of our tool will benefit from the plugin architecture, once a greater
variety of USE plugins well be available. Users can then customize USE to their
needs focussing the functionality required to solve their specific tasks.

Several commonly used applications support extensions by plugins, AddOns
or AddIns, respectively. Eclipse may be seen as an application in which nearly
every feature is realized by a plugin whereas modern browsers provide more core
functionality but allow the user to customize and extend them via plugins. We
evaluated some popular plugin frameworks (Eclipse, NetBeans and Mozilla) to
possibly reuse them but came to the conclusion that many of their features are
unnecessary in the context of USE. Therefore, we newly designed a small and less
complex but sufficiently powerful framework. Like other frameworks, the USE
plugin framework provides so-called extension points which plugin developers can
use to add features to the system. The following extension points are available:

Action. This extension point allows a plugin to add new information and in-
teractive elements to the graphical user interface of USE, e. g., for providing
new menu commands to open windows or for executing functions offered by
a plugin.



Extensive Validation of OCL Models by Integrating SAT Solving into USE 293

Fig. 1. Translation process involving the USE model validator plugin

Shell. In USE, most of the tasks can be invoked by shell commands. The re-
spective extension point enables plugins to add new commands, for example,
with respect to validation tasks.

Model. In order to integrate new model elements into the model browser of
USE, this extension point can be used.

These extension points can be seen as controlled hooks to the system which
are automatically invoked at runtime to add new functionality and to allow the
plugins to execute calculations. This kind of controlled execution is often called
the Hollywood Principle (“don’t call us, we’ll call you” or applied to a framework
“don’t call the framework, the framework will call you”) which distinguishes the
plugin framework from a library which does not take care of any execution
process. USE plugins can rely on other plugins which is supported by services
a plugin may provide. The registration and initialization process of the plugins
at the system start up requires that each plugin provides a configuration file
with meta data about it. The latter includes information about the main class
of the plugin, the provided extensions to the described extension points and
information about the offered services. Whereas USE does not know anything
about the concrete plugins, a plugin itself can make use of all public features
of the USE system which are accessible in a specific context, e. g., the current
system state (snapshot) or a parent window.

3.2 The Model Validator Plugin

The model validator plugin connects the UML and OCL side with the world of
pure relations and the related logic. On the one hand, it includes Kodkod for the
relational part. On the other hand, it utilizes the USE plugin interface to access
the UML and OCL part as well as to extend the USE GUI. Generally speaking,
the plugin is used to find snapshots fitting the given UML class diagram and
fulfilling all further specified OCL constraints.

The resulting translation process is shown in Fig. 1. The plugin is first request-
ing the model information from USE. Then it maps the UML model including
the OCL constraints into relations and relational formulas. It also adds config-
uration information given by the user within the USE GUI. This information
determines the search space as it needs specific bounds. Kodkod performs the
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task of translating the given relations and relational formulas into boolean for-
mulas which are handled by a SAT solver. The concrete SAT solver to be used
can be determined via the plugin. A possibly returned SAT instance is trans-
lated into a set of relation instances which fulfill the relational formulas. The
plugin maps these relations to objects, attribute values and links, i. e., a snap-
shot which is forwarded to the USE system and in the end is displayed in form
of an object diagram. The UML and OCL concepts currently supported by the
model validator are shown in Tab. 1.

Table 1. UML and OCL features supported by the USE model validator

Language Concepts

UML classes and attributes (enumeration, object, integer, boolean, string type)
associations and association classes (binary, n-ary)
inheritance and abstract classes

OCL attribute access and navigation
sets, bags, sequences, ordered sets
Set, OclAny, Boolean, String and Integer operations

4 Automatic Validation with the USE Model Validator

Within this section we examine multiple alternatives for analyzing a UML and
OCL model with the aid of the USE tool and in particular the new USE model
validator which considerably enhances the existing USE validation scope.

4.1 Validation Principles

USE helps developers during design and analysis of their models. Common val-
idation purposes in the context of the USE system are the following:

1. Create and check positive model snapshots which are valid in the eyes of the
developer. If USE does not accept the given snapshot as valid system state
in the context of the OCL constraints, the model is too restrictive, i. e., the
constraints are too strong.

2. Create and check negative (i. e., invalid) snapshots. If USE accepts them as
valid model instances although the developer does not, the given constraints
are too weak.

3. Check model consistency in general. If there are conflicting constraints, it is
not possible to create a meaningful snapshot at all, i. e., all snapshots which
are valid in the developers’ eyes are forbidden by the UML and OCL model.

4. Check constraint independency, i. e., if each OCL constraint adds essential
information to the model and is not implied by other constraints (avoid
redundancy). When a constraint is independent from the others, there must
be at least one snapshot which fulfills all but the considered constraint.

5. Check user-defined properties of the model, i. e., if the model implies a user-
specified property given as an OCL expression.
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The built-in USE snapshot generator which executes user-defined ASSL proce-
dures adds further validation possibilities, since it allows to automatically gen-
erate new system states. It also helps to perform the aforementioned validation
aspects by searching system states with specific properties. In [9] we introduce
the ASSL language and the generator features. In [11] we apply the genera-
tor for checking model consistency, constraint independency and further model
properties (consequences).

An ASSL procedure must be manually defined. Through ‘try’ statements a
procedure can describe a complete set of snapshots, that is, a snapshot space.
Starting such a procedure with the USE generator, it creates one snapshot con-
forming to the procedure after another until a valid one was found (invoking
backtracking if the found snapshot was invalid). The main disadvantage of the
built-in generator is its enumerative nature, as it has to create and check each
snapshot if the procedure’s snapshot space does not include a snapshot fulfill-
ing all model constraints. As a consequence, larger snapshot spaces which for
instance comprise more than a few objects and attribute values or all possible
link constellations cannot be handled.

We remove this problem with the model validator which substitutes the enu-
merative search by an efficient SAT-based approach. In the context of the plugin,
a snapshot space to be searched is not determined by an ASSL procedure, but
by general bounds to the number of objects, links and attribute values, making
the configuration considerably less time-consuming. In the following, we present
the main features of the model validator.

Completion of partial snapshots. In many validation scenarios, a developer
has concrete situations of the modeled system and related properties in mind.
The model validator enables an automatic analysis based on concrete situa-
tions which are manually specified as partial model snapshots. Given a snap-
shot and an optional property to be checked explicitly (specified in form of
an OCL expression), the model validator can automatically complete the
snapshot so that all model constraints and the optionally examined prop-
erty are fulfilled (provided that the searched snapshot space includes a fitting
snapshot), while leaving the predefined snapshot elements unchanged.

Complete snapshot generation. The model validator also allows the users to
generate complete snapshots which do not base on a partial solution. This way,
the generated snapshots purely depend on the user-specified snapshot search
space, the model constraints and given OCL properties to be examined.

Search space configuration. The search space of the model validator needs
to be bounded with respect to the number of the snapshot elements. More
precisely speaking,
– the number of objects for each class,
– the number of links for each association, and
– the range of values for each class attribute

can be restricted through lower and upper bounds. Whereas all classes need
an explicit upper bound, the maximum number of links can be left open (in-
dicated by the value −1), since the number of all possible link combinations
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is restricted by the number of existing objects. If a partial snapshot is pre-
defined, the lower bounds are automatically adapted and existing attribute
values are kept. Furthermore, the existing OCL invariants can be individu-
ally activated, deactivated and negated before invoking the snapshot search.

4.2 Explanation of the Model Validator Features

Our following examinations base on a small but nontrivial UML model shown
in Fig. 2. We play the role of a developer who created the model with USE and
aims to validate the current version.

Fig. 2. Class diagram of the example UML model

Running Example. The model declaratively describes a model transformation.
The classes Person, Female and Male as well as the associations Parenthood and
Marriage represent the source side (source meta model) of the transformation.
Instances of the source side are to be transformed into instances of the target
meta model consisting of a family and family members who can take four dif-
ferent roles. The full name of a person (source side) is thereby split into a last
name (Family) and a first name (Member). Furthermore, the gender of a mem-
ber is given by an attribute in the target model. The third part of the UML
model is a ‘simple family tree’ (sft) class which observes the source and target
models and checks them with respect to the transformation’s correctness, i. e.,
it enforces the transformation contract. The class diagram is supplemented by
the following OCL invariants. The first constraint applies to the class Person of
the source meta model. We have already explained it in Sect. 2.
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context Person inv SMM_parentsFM:

parent->size()=2 implies

parent->select(oclIsTypeOf(Female))->size()=1 and

parent->select(oclIsTypeOf(Male))->size()=1

The second invariant constraints the target meta model. Mothers and fathers
must be female or male, respectively. This invariant has the same purpose as the
former invariant at the source model side.
context Family inv TMM_mumFemale_dadMale:

mother.gender=#female and father.gender=#male

The transformation contract class adds constraints regarding the transfor-
mation. A source model must have the following property. All full names must
consist of a first name and a last name separated by a blank character. The
invariant makes use of user-defined OCL query operations (sep, firstName and
lastName).
sep():String= ’ ’

firstName(p:Person):String=

p.fullName.substring(1,p.fullName.indexOf(sep())-1)

lastName(p:Person):String=

p.fullName.substring(p.fullName.indexOf(sep())+1,p.fullName.size)

inv SRC_fullName_EQ_firstSepLast:

Person.allInstances->forAll(p|

p.fullName=firstName(p).concat(sep()).concat(lastName(p)))

A further OCL query operation calculates a family member’s full name by
concatenating the family last name and the member’s first name (independent
from the member’s role in a family). This operation is used in the main invariant
which constraints the actual transformation from a source to a target model.
fullName(m:Member)=

let fam=

if m.famSon.isDefined() then m.famSon else

if m.famDaughter.isDefined() then m.famDaughter else

if m.famFather.isDefined() then m.famFather else m.famMother

endif endif endif in

m.firstName.concat(sep()).concat(fam.lastName)

Each person must have exactly one family member counterpart. The person’s
and respective member’s full name are identical. Their age and gender must
coincide. The number of children with respect to persons and members must
be equal. Children must be sons or daughters, respectively, at the target side.
Married persons imply members who are a mother or father, respectively.
inv SRC_TRG_forPersonOneMember:

Female.allInstances->forAll(p| Member.allInstances->one(m|

p.fullName=fullName(m) and p.age=m.age and m.gender=#female and

(p.child->notEmpty() implies (let fam=m.famMother in

p.child->size()=fam.daughter->union(fam.son)->size())) and

(p.parent->notEmpty() implies m.famDaughter.isDefined()) and

(p.oclAsType(Female).husband.isDefined() implies
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m.famMother.isDefined()) )) and

Male.allInstances->forAll(p| Member.allInstances->one(m|

p.fullName=fullName(m) and p.age=m.age and m.gender=#male and

(p.child->notEmpty() implies (let fam=m.famFather in

p.child->size()=fam.daughter->union(fam.son)->size())) and

(p.parent->notEmpty() implies m.famSon.isDefined()) and

(p.oclAsType(Male).wife.isDefined() implies

m.famFather.isDefined()) ))

Fig. 3. Manually defined source model (partial snapshot)

Validation Based on a Partial Snapshot. In order to check the main trans-
formation properties, we provide a concrete source model, i. e., an instance of
the source meta model, in form of a snapshot displayed in Fig. 3. To keep the
diagram clear, we hide the role names, since they follow from the family tree
structure. Instead of manually defining a fitting or non fitting family target
model, we order the model validator to automatically search a valid target side
which we can in turn contrast with our expectations.

Figure 4 depicts a screenshot of the USE GUI which contains configuration
windows provided through the model validator plugin. The screenshot shows
all information necessary for the first invocation of the validator including the
partial snapshot (shown in the USE screenshot with hidden attributes and roles).
Since we do not want the source model to be extended by further male and female
objects or links we equalize the corresponding classes’ and associations’ lower and
upper bounds. String type attributes are bounded by determining the minimum
and maximum string length. However, the settings for the attributes of class
Female and Male are not relevant in the current validation context because they
would only apply to newly generated Female and Male objects.

Finally, we activate all available invariants ordering the model validator to
respect them in the solving process. About ten seconds after starting the search
process (on an ordinary desktop pc), we obtain the target model shown in Fig. 5.
We hide the source model because it remained unchanged as well as the generated
sftTract object. The target model and with it the whole transformation represent
a valid system state, since all UML and OCL constraints are fulfilled. But we
immediately see several unwanted properties like members taking more than one
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Fig. 4. Graphical user interface of the OCL2Kodkod plugin within USE

role in one family indicating a too weak set of constraints. Thus, we extend the
model by the following invariant which forbids more than one link from one
member to a family object.

inv TMM_oneRoleInOneFamily:

Family.allInstances()->forAll(fam|

fam.mother<>fam.father and

fam.daughter->union(fam.son)->excludesAll(Set{fam.mother,fam.father})

and fam.daughter->intersection(fam.son)->isEmpty())

A second searching run with unchanged bounds yields a target which looks
fine at first view (Fig. 6). However, in the eyes of the developer this result should
be still invalid because Laura and Michelle switched their husbands during the
transformation. As a consequence, George’s child is Hillary instead of Ronald.
The transformation constraint SRC TRG forPersonOneMember accepts this sit-
uation because it just enforces the same number of children of a person (source)
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Fig. 5. Automatically generated target with unwanted properties

and the corresponding member. We strengthen the invariant by adding a further
restriction to the ‘same size’ requirement. The children of a person must have
the same full name at both transformation sides. Generating a new target based
on the adapted model yields the intended result, i. e., the same target as shown
in Fig. 6 but without switched husbands.
p.child->forAll(c| fam.daughter->union(fam.son)->one(mc|

fullName(mc)=c.fullName))

In the next step, it is reasonable to check consequences from the model’s
constraints. This way, the developers can check if their model implies the proper
properties or not imply unwanted properties. We exemplarily consider person
names, since names and their transformation present a main aspect in this model.
We would like to check if our model allows family trees with different last names.
At first, we change the full names of George and Michelle to ‘George Obama’
and ‘Michelle Obama’ in the predefined partial snapshot (Fig.3). These changes
lead to the fact that the model validator does not find any valid target model in
a search space with up to 10 members and 10 families, thus different last names
are in this context not allowed.

The validation by complete snapshot generation can be performed the same
way as described before except that no object diagram is given as a partial
solution. In [12] our example model is explained in greater detail, including a
discussion of validation of models and model transformations.

5 Translation from UML and OCL into Kodkod

In this section we sketch the translation of UML concepts (outlined in Tab. 2)
and OCL operations into relational structures and formulas. We illustrate se-
lected translations on the basis of the concrete UML elements Person (class),
age (attribute) and Parenthood (association).
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Fig. 6. Automatically generated target with switched husbands

Table 2. Overview of the mapping from UML concepts to relations and formulas

UML Relation Formula

class unary ([[object1 ], . . .]) no formula

enumeration unary ([[literal1 ], . . .]) no formula

n-ary association n-ary ([[obj11 , . . . , obj1n ], . . .]) typing, multiplicity

n-ary association class n+1-ary typing, multiplicity
([[assoc obj1 , obj11 , . . . , obj1n ], . . .])

attribute (basic, object, binary ([[obj1 , val1 ], . . .]) typing, multiplicity
enumeration and set type)

attribute (string type) ternary ([[obj1 , pos1 , char1 ], . . .]) typing, multiplicity

class inheritance (A < B) unary (B), unary (B − A) subset

Translated UML concepts result in relations whose tuples hold elements with
a specific meaning. The assumption that, for example, class relations consist of
objects, enumeration relations comprise enumeration literals, or integer type at-
tribute relations yield pairs of objects and integer values must be made explicit,
since the elements of a tuple are originally just plain atoms of the Kodkod uni-
verse. Bound declarations generally type the relations by assigning atoms to the
corresponding relations, e. g., relating Person objects (e. g., ada, bob and cyd)
to the Person relation, to the relation of the attribute age, and to the Parent-
hood association relation. A concrete Kodkod solution yields all elements of the
lower bounds and a subset of the upper bounds. The upper bounds comprise
all fitting atoms and all possible resulting tuples (i. e., the Cartesian product
of the atoms) if no concrete tuples are defined in the lower bounds. Thus, the
types and multiplicities of the association ends, as well as the attribute domains
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and values must be further constrained using formulas which apply to concrete
relation instances in a solution.
Bounds: (relation name, lower bound, upper bound)

Person: [[ada ]] [[ada ], [bob], [cyd ]]
ints: [ ] [[1], [2]]
age: [[ada , 1]] [[ada , 1], [bob,⊥], [bob, 1], [bob, 2], [cyd ,⊥], [cyd , 1], [cyd , 2]]
Parent [ ] [[ada , ada ], [ada, bob], [ada , cyd ], [bob, ada ], [bob, bob],
hood: [bob, cyd ], [cyd , ada ], [cyd , bob], [cyd , cyd ]]

Formulas:
age (domain/type): (age.univ) in Person & (univ .age) in (ints +⊥)

(multiplicity): all c : Person | one (c.age)
Parent (type) (Parenthood .univ) in Person &
hood: (univ .Parenthood) in Person

(multiplicity): all c2 : Person | #(Parenthood .c2 ) <= 2
The given example bounds determine that Ada must be included in a valid

solution, while the existence of Bob and Cyd is optional. There may be two in-
teger atoms representing the numbers 1 and 2. Ada must be one year old. Bob’s
and Cyd’s age is not constrained, it may be undefined (⊥). UML associations
are translated into Kodkod relations in which each association end takes one
position (cf. Tab. 2). The example bounds of the Parenthood relation allow all
parenthood constellations. As a consequence, a solution may yield the Parent-
hood tuple [ada, bob] (representing the UML link (parent : ada , child : bob) and
at the same time a Person relation which does not include the atom bob. This
type inconsistency is prevented by the shown formulas which demand that (1)
the tuples of the age relation yield Person objects at the first position and integer
atoms or the undefined value at the second position (the expression univ repre-
sents the relation including all atoms existing in the universe), (2) the relation
age connects each person object existing in a solution to exactly one (un)defined
value, (3) both positions of Parenthood tuples hold Person objects, and (4) the
Parenthood relation connects each Person object at the second position (child)
to at most two Person objects (parents).

The translation of OCL operations profit from the large collection of opera-
tions provided by Kodkod. Thus, many OCL operations (e. g., integer and set
operations) have a counterpart in the relational logic (e. g., the OCL expression
set->size<=2 can be expressed as #(set) <= 2 in Kodkod). However, some
OCL peculiarities like the undefined value which can occur in all OCL expres-
sions often result in more complex translations. In the following we present the
translation of an example navigation which is a central feature in OCL.

In OCL we navigate from a person p to her parents through the expression
p.parent. Analogously, her children are calculated with the expression p.child.
At the Kodkod side, we have no explicit role names. Thus, the association ends
are determined through the positions of the tuple elements, i. e., the first end
(parent) takes the first position, the second end (child) takes the second. Con-
sequently, the navigation from a person to the parents yields the relational
join Parenthood .p. The navigation to the children results in p.Parenthood . This
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straightforward translation is only applied in the case of binary associations.
However, the respective Java method implementing the navigation in Kodkod
must respect all kinds of associations (n-ary and association classes) and any
possible navigation from association end x to end y including the navigation
from and to association class objects.

6 Related Work

The relational language of Kodkod directly corresponds to the relational logic
of Alloy [13]. The Alloy language is implemented in the Alloy Analyzer which
currently bases upon the Kodkod tool. The UML2Alloy approach [1] translates
UML and OCL concepts into the Alloy language which is in turn translated
by the Alloy Analyzer into Kodkod structures. Our direct approach of translat-
ing UML and OCL into the Kodkod relations and formulas is not limited by
modeling restrictions of the Alloy language. Thus, we are able to handle several
concepts which are not realizable with Alloy like multiple inheritance or a proper
treatment of undefined values (e. g., OCL2Kodkod distinguishes between empty
sets, undefined sets and sets including an undefined value). UML2Alloy further
does not support concepts like n-ary associations and association classes, OCL
sequences and bags, or string and integer operations.

Approaches like [27] (specification of enterprise architecture models based on
ontologies) and [15] (definition of modeling languages and their formal seman-
tics) directly specify and analyze with Alloy. Kodkod has also been successfully
applied in different fields, e. g., for executing declarative specifications in case
of runtime exceptions in Java programs [21], reasoning about memory mod-
els [24], or generating counterexamples for Isabelle/HOL a proof assistant for
higher-order logic (Nitpick) [3]. Whereas Nitpick searches instances to disprove
given lemmas (e. g., through the assignment of free variables to concrete values),
the model validator is intended for finding snapshots which conform the UML
and OCL constraints, as well as snapshots violating constraints. Both kinds of
snapshots can help the developer to reveal specific model properties.

Other approaches do not employ Alloy or Kodkod for connecting SAT tech-
niques with UML and OCL. A direct mapping of UML and OCL concepts into
SAT has been addressed in [22]. However, while a direct translation is not limited
with respect to the peculiarities of an intermediate language, it cannot benefit
from existing translation mechanisms like the sophisticated symmetry detection
and breaking scheme which enables an efficient handling of partial solutions, or
the detection and exploitation of redundant structures in formulas which are
implemented in Kodkod [23]. Several other (non-SAT-based) techniques support
the analysis of UML and OCL models. A translation of specific UML and OCL
features into constraint satisfaction problems (CSP) is done in [5,25]. Further-
more, the constructive query containment (CQC) method [20], rewriting-based
techniques [7] or answer set programming (ASP) [19] is applied for analyzing
static and dynamic model aspects. In [2] the authors use description logic for
reasoning about UML class diagrams. An approach to explicitly checking prop-
erties of metamodels is presented in [18] . UMLAnT [26] allows for analyzing
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model behavior by animating object and sequence diagrams. Beside model ani-
mation and simulation Dresden OCL [8] supports constraint verification by code
generation and execution, but like the UML tools OCLE [6] and RoclET [14],
it does not support automated snapshot generation producing model instances
with user-defined properties. In the context of the Eclipse Modeling Framework
(EMF) the Epsilon Language [16] provides for model validation based on con-
straints similar to OCL. The named approaches differ from more interactive
approaches like [4] involving formal verification by theorem proving.

Our approach is unique with respect to the use of Kodkod as a conceptual
intermediate language for translating the source languages UML and OCL into
boolean formulas.

7 Conclusion and Future Work

With the method OCL2Kodkod and its realization as the USE model valida-
tor we presented an automatic SAT-based approach for efficiently finding snap-
shots in large search spaces, i. e., a lightweight way to validate UML and OCL
model properties resulting from complex constraints and their often intrans-
parent interdependencies. By immediately translating found SAT solutions back
into snapshots displayed in form of object diagrams the model developers receive
a detailed feedback on the UML and OCL modeling layer.

Future work comprises the enhancement of supported UML and OCL features
like qualified associations, subset relations between association ends as well as
OCL operations on sequences, bags, ordered sets and tuples. We will also further
optimize the translation into the relational logic as well as the model validator’s
GUI options allowing developers a more comfortable configuration. Larger case
studies are planned, in particular for model transformations employing the com-
pletion abilities of the model validator (both for the transformation source or
target). Beside analyzing static model properties, we aim to involve behavioral
features (operations) through transformation of UML and OCL application mod-
els into so-called snapshot models.

The flexible plugin architecture of USE is well-suited for further open-source
development in research institutes. USE plugins for various purposes are planned,
for example, with respect to special user-interfaces for particular diagrams (e. g.,
object histories in object diagrams or OCL assertions on lifelines in sequence di-
agrams), or the realization of domain-specific languages like an RBAC DSL [17].
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Schäfer, Jan 194
Schwarz, Niko 276
Sewe, Andreas 131
Sivieri, Alessandro 244

Thiemann, Peter 147
Tip, Frank 2
Trudel, Marco 20

van den Brand, Mark 36
van der Storm, Tijs 228
Verhoeff, Tom 36
Villalobos, Jorge 83
Vinju, Jurgen 228
Vismara, Philippe 260
Vitek, Jan 211

Welsch, Yannick 194
Wieland, Konrad 52
Wimmer, Manuel 52


	Title Page
	Preface
	Organization
	Table of Contents
	Synchronizing Models and Code (Invited Talk)
	inding and Fixing Bugs in Web Applications (Invited Talk)
	Test Suite Quality for Model Transformation Chains
	Introduction
	Background and Motivation
	A Combined Coverage Approach
	Coverage Criteria
	Test Requirements for Model Transformation Chains
	Coverage Analysis

	Ensuring Test Suite Quality
	Test Suite Adequacy
	Test Suite Minimality

	Tool Support and Validation
	Related Work
	Conclusion
	References

	Automated Translation of Java Source Code to Eiffel
	Introduction
	Design Principles
	Translating Java to Eiffel
	Language Features
	Types and Structures
	Runtime and Native Interface
	Naming

	Evaluation
	Correctness of the Translation
	Experiments
	Limitations

	Related Work
	Conclusions
	References

	A Generic Solution for Syntax-Driven Model Co-evolution
	Introduction
	Preliminaries
	Domain-Specific Metametamodel
	Model Differences

	Metamodel Evolution
	Metamodel for Metamodels - MMfMM
	Metamodel Differences

	Model Co-evolution
	Model Differences Calculation Algorithm
	Validation

	Related work
	Conclusion
	References

	From UML Profiles to EMF Profiles and Beyond
	Introduction
	From UML Profiles to EMF Profiles
	Design Principles
	Integrating Profiles in the EMF Metalevel Architecture
	The EMF Profile Metamodel
	Applying the EMF Profile Metamodel

	Going Beyond UML Profiles
	Generic Profiles
	Meta Profiles
	Summary

	A Tour on EMF Profiles
	Related Work
	Conclusions and Future Work
	References

	Domain-Specific Profiling
	Introduction
	Shortcomings of Standard Profilers
	Difficulty of Profiling a Specific Domain
	Requirements for Domain-Specific Profilers

	MetaSpy in a Nutshell
	Validation
	Case Study: Displaying Invocations
	Case Study: Events in OmniBrowser
	Case Study: Parsing framework with PetitParser

	Implementing Instrumentation Strategies
	Micro-Benchmark
	Conclusions and Future Work
	References

	Metamodel Dependencies for Executable Models
	Introduction
	An Application for Traffic Simulation
	Crossroads Structure
	Lights Control
	Policies Management
	Traffic Generation
	Implementing the Concerns in Cumbia

	Dependencies between Metamodels
	Direct Dependencies
	Behavioral Dependencies

	Related Work
	Conclusions
	References

	KlaperSuite: An Integrated Model-Driven Environment for Reliability and Performance Analysis of Component-Based Systems
	Introduction
	KLAPER
	The Basic Methodology
	The KLAPER Meta-Model

	The KlaperSuite Analysis Tools
	Reliability
	Performance
	Simulation

	Tools Integration Status
	Related Work
	Conclusions
	References

	Unifying Subjectivity
	Introduction
	State of the Art
	Perspectives
	Roles
	Context-Oriented Programming
	Subjective Message Behavior

	Modeling Subjective Behavior
	Subjects
	Decision Strategies
	Contextual Elements
	Implementation

	Validation
	Mobile Mail Application
	Group Programming
	Subjective Behavior Regarding Types of Objects in Moose
	Subjective Behavior Depending on the Moose Environment 

	Conclusion
	References

	An Overview of ALIA4J An Execution Model for Advanced-Dispatching Languages
	Introduction
	Related Work
	The ALIA4J Architecture
	Components of ALIA4J
	The Meta-Model of Advanced Dispatching
	FIAL and LIAM in Practice

	Evaluation
	Evaluation of LIAM
	Evaluation of FIAL

	Conclusions and Future Work
	References

	A Heuristic Approach for Computing Effects
	Introduction
	Testing Effects
	Inference Algorithm
	Access Paths and Access Permissions
	Algorithm
	Special Cases
	Soundness

	Implementation
	Evaluation
	Related Work
	Conclusion
	References

	Systems Evolution and Software Reuse in Object-Oriented Programming and Aspect-Oriented Programming
	Introduction
	Motivations
	Measurement System
	Empirical Evaluation
	Adding a Synchronization Concern
	Adding a Timestamp Concern
	Adding a Logging Concern
	Adding a New Getter
	Removing Logging and Timestamp

	Lessons Learned
	Empirical Results
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Summary
	References

	Lifted Java: A Minimal Calculus for Translation Polymorphism
	Introduction
	The Model
	Example
	Objects

	Formal Definition of Lifted Java
	Syntax
	Semantics
	Safety Properties

	Discussion
	Related and Future Work
	Conclusion
	References

	Location Types for Safe Distributed Object-Oriented Programming
	Introduction
	Location Types at Work
	Formalization
	Basic Location Type System
	Named Far Location Types
	Location Type Inference

	Implementation and IDE Integration
	Discussion and Related Work
	Conclusion and Future Work
	References

	Static Dominance Inference
	Introduction
	Formal Account of Object Graphs
	Concrete Semantics
	Abstract Semantics

	Dominance Inference Analysis
	Flow Triples
	Analysis Description

	Application: Ownership Type Inference
	Type System
	Type Inference

	Implementation
	Results
	Precision

	Related Work
	Conclusion
	References

	A Case of Visitor versus Interpreter Pattern
	Introduction
	Design Patterns in the Rascal Interpreter
	Creating and Processing Abstract Syntax Trees
	A Comparison with the Interpreter Pattern
	Refactoring from Visitor to Interpreter using Rascal

	Comparing Design Patterns
	Measuring Differences in Runtime Performance 
	Measuring Differences in Maintainability
	Alternative Methods to Measure Maintainability

	Maintainability
	A Virtual Machine for Maintenance Scenarios
	Maintenance Scenarios 
	Results — Maintenance Scenarios
	Discussion

	Efficiency
	Conclusion
	References

	Computational REST Meets Erlang
	Introduction
	Background
	The REST and CREST Styles
	Erlang

	CREST-Erlang
	An Assessment of CREST-Erlang vs. CREST-Scheme
	Related Work
	Conclusions
	References

	Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems
	Introduction
	Motivation
	Limitation of the Main Cycle Detection Algorithm
	Desired and Undesired Cycles

	Our Approach
	A New Cycle Retrieval Algorithm
	Our Distance-Based Metric to Detect Undesired Cycles

	Validation
	Preparation of the Data
	Experiment
	Results
	Analyze of the Cycles
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

	Seuss: Better Class Responsibilities through Language-Based Dependency Injection
	Introduction
	Understanding Class Responsibilities
	Identifying Responsibilities
	Challenges

	Seuss: Moving Services to the Instance Side
	Cleaning Up Instance Creation
	Dependency Injection as a Language Feature
	Discussion
	Challenges for Statically Typed Languages
	Performance and Human Factors
	Using Seuss to Sandbox Code

	Related Work
	Conclusion
	References

	Extensive Validation of OCL Models by Integrating SAT Solving into USE
	Introduction
	Background: The Tools USE and Kodkod
	Integrating SAT Solving into the USE Tool
	The USE Plugin Architecture
	The Model Validator Plugin

	Automatic Validation with the USE Model Validator
	Validation Principles
	Explanation of the Model Validator Features

	Translation from UML and OCL into Kodkod
	Related Work
	Conclusion and Future Work
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




