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Preface

The recent rapid progress in multiscale computations has been facilitated by
modern computer processing capability and encouraged by the urgent need to
accurately model multiscale processes in many applications. For further progress,
a better understanding of numerical multiscale computations is necessary. This
understanding must be based on both theoretical analysis of the algorithms and
specific features of the different applications.

We are pleased to present 16 papers in these proceedings of the workshop
on Numerical Analysis and Multiscale Computations at the Banff International
Research Station for Mathematical Innovation and Discovery, December 6-11,
2009. The papers represent the majority of the presentations and discussions that
took place at the workshop. The goal of the workshop was to bring together
researchers in numerical analysis and applied mathematics with those focusing on
different applications of computational science. Another goal was to summarize
recent achievements and to explore research directions for the future. We feel
that this proceeding lives up to that spirit with studies of different mathematical
and numerical topics, such as fast multipole methods, homogenization, Monte
Carlo techniques, oscillatory solutions to dynamical systems, stochastic differential
equations as well as applications in dielectric permittivity of crystals, lattice
systems, molecular dynamics, option pricing in finance and wave propagation.

Austin and Stockholm Bjorn Engquist
Olof Runborg
Yen-Hsi Richard Tsai
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Explicit Methods for Stiff Stochastic Differential
Equations

Assyr Abdulle

Abstract Multiscale differential equations arise in the modeling of many
important problems in the science and engineering. Numerical solvers for such
problems have been extensively studied in the deterministic case. Here, we discuss
numerical methods for (mean-square stable) stiff stochastic differential equations.
Standard explicit methods, as for example the Euler-Maruyama method, face severe
stepsize restriction when applied to stiff problems. Fully implicit methods are
usually not appropriate for stochastic problems and semi-implicit methods (implicit
in the deterministic part) involve the solution of possibly large linear systems
at each time-step. In this paper, we present a recent generalization of explicit
stabilized methods, known as Chebyshev methods, to stochastic problems. These
methods have much better (mean-square) stability properties than standard explicit
methods. We discuss the construction of this new class of methods and illustrate
their performance on various problems involving stochastic ordinary and partial
differential equations.

1 Introduction

The growing need to include uncertainty in many problems in engineering and the
science has triggered in recent year the development of computational methods for
stochastic systems. In this paper we discuss numerical methods for stiff stochastic
differential equations (SDEs). Such equations are used to model many important
applications from biological and medical sciences to chemistry or financial engi-
neering [16,32,39]. A main issue for practical application is the problem of stiffness.
Various definitions of stiff systems for ordinary differential equations (ODEs) are
proposed in the literature [19] (see also [26, Chap.9.8] for a discussion in the
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2 A. Abdulle

stochastic case). Central to the characterization of stiff systems is the presence of
multiple time scales the fastest of which being stable. The usual remedy to the issue
of stiffness (in the deterministic case) is to use implicit methods. This comes at the
cost of solving (possibly large and badly conditioned) linear systems. For classes of
problems (dissipative problems), explicit methods with extended stability domains,
called Chebyshev or stabilized methods, can be efficient [2, 3, 24, 27] and have
proved successful in applications (see for example [4, 14, 18,21] to mention but a
few). In this paper we review the recent extensions [5—8] of Chebyshev methods to
mean-square stable stochastic problems with multiple scales.

We close this introduction by mentioning that the stability concept considered
in this paper, namely the mean-square stability, does not cover some classes of
interesting multiscale stochastic systems. Indeed, adding noise to a deterministic
stiff system (where Chebyshev or implicit methods are efficient) may lead to
stochastic problems for which the aforementioned methods are not accurate. Adding
for example a suitably scaled noise (€ ~'/2d W(t)) to the fast system of the following
singular perturbed problem

dx = f(x,y)dt, x(t9) = xo, (1)
1
dy = —g(x.y)dt, y(to) = o, 2

where € > 0 is a small parameter, can lead to a fast system with a non-trivial invariant
measure. To capture numerically the effective slow variable, requires to correctly
compute the invariant measure of the fast system. This might not be possible for
implicit! or Chebyshev methods, if one uses large stepsize for the fast process. Even
though such problems are not mean-square stable, the stability properties of implicit
or Chebyshev methods still allow to compute trajectories which remain bounded.
But the damping of these methods may prevent the capture of the right variance of
the invariant distribution (see [7,28] for examples and details). In such a situation
one should use methods relying on averaging theorems as proposed in [37] and [15].

The paper is organized as follows. In Sect. 2 we discuss stiff stochastic systems
and review the mean-square stability concept for the exact and the numerical
solution of an SDE. Next, in Sect.3 we introduce the Chebyshev methods for
stiff ODEs. The extension of such methods to SDEs (called the S-ROCK meth-
ods) are presented in Sect.4. In Sect.5, we study the stability properties of the
S-ROCK methods. Numerical comparison illustrating the performance of the
S-ROCK methods and comparison with several standard explicit methods for SDEs
are given in Sect. 6.

! There is one exception, namely the implicit midpoint rule, which works well for (1)-(2) when the
fast process is linear in y. This is due to the lack of damping at infinity [28].
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2 Stiff Stochastic Systems and Stability

As an illustrative example, consider the following stochastic partial differential
equation (SPDE), the heat equation with noise (see [6]):

2
Wy = D ey W (@), te0.T]. xe[o.].  G)
ot 0x2

where we choose the initial conditions u(0, x) = 1, and mixed boundary conditions
u(t,0) =5, %lle =0and D = 1. Here W (¢) denotes a white noise in time.>
To solve numerically the above system, we follow the method of lines (MOL) and
discretize first the space variable

Y, *! —2Yi Y

to obtain (a large) system of N SDEs, where N = &'(1/ h) (Fig. 1).

v +uY/ dw;,, i=1,....N, “)

Remark 1. Notice that we used finite differences (FDs) to perform the spatial
discretization. We emphasize that finite element methods (FEMs) could have been
used as well. In a first step one would obtain a system MY’ = ..., where M is
the mass matrix. For low order FEs a cheap procedure, called mass lumping, allows
to transform M into a diagonal matrix without loss of accuracy for the numerical
method [36].

i .L:'.

iy

WO = N w A OO N®

Fig. 1 One realisation of the system (4) with the Euler-Maruyama method (left figure); average
over 100 realizations (right figure). Parameters values: D = k = 1,N = 50, At = 2714,
t €[0,3]

We first write the system (4) in the form dY = (AY + B(Y))dt + GYd W;, where
A is a tridiagonal matrix (approximation of the second order partial differential

2 We will not discuss the precise meaning of (3), whose rigorous definition involves an integral
equation [13,38].
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operator), B(Y) is a vector accounting for the boundary conditions, and G is a
(diagonal) matrix accounting for the multiplicative noise. When then obtain after
(simultaneous) diagonalization, the system of SDEs (with appropriate boundary
conditions omitted here) reads

Ay} =Yl dt +pY] dW,,  i=1,...,N, )

where A; € [-0(N?),0] (see [6] for details). As for (3), the rigorous interpretation
of (5) is an integral form involving a stochastic integral for which various “calculus”
can be used, most often the It6 or the Stratonovich calculus [9]. The numerical
methods described in this paper have been derived for both calculus. For the time
being, we will consider 1td6 form. The simplest numerical scheme to solve (5)
(assuming It6 form) is the Euler-Maruyama method, a generalization of the Euler
scheme for ordinary differential equations (ODEs) introduced in [30]

Yot =Yn+AIAYn+InPLYna (6)

where I, = W(t,+1) — W(t,) are independent normal .4 (0, At) random variables.

As for ODEs, two important issues arise when deriving numerical methods for
SDEs, namely the accuracy and the stability of the approximation procedure.
Accuracy. Consider

M
dY = f(t.Y)dt+Y g (t.Y)dW(1).  Y(0)=Yo. 7
=1

where Y (¢) is a random variable with values in R?, f :[0,T] x R¢ — R is the
drift term, g : [0,7] x R — R? is the diffusion term and W;(¢) are independent
Wiener processes. Assuming that f and g are continuous, have a linear growth and
are uniform Lipschitz continuous with respect to the variable Y, that Yy has finite
second order moment and is independent of the Wiener processes, one can show the
existence and uniqueness of a (mean-square bounded) strong solution of (7) (see for
example [31, Chap.5.2] for details). Consider for the numerical approximation of
(7) the one-step method of the form

Yor1 = PYn. At Iy, ... Iny,). 8)

where 1, = Wj(tn41) — W(t,) are independent Wiener increments drawn from the
normal distributions with zero mean and variance At = t,4+1 — t,. The numerical
method (8) is said to have a strong order p, respectively weak order of p, if there
exists a constant C such that

E(|Y,—Y(v)]) < C(At)prespectively|E(G(Yn)) —E(G(Y(r)))| <C(An*, (9)

for any fixed T = nAt € [0, T] (At sufficiently small) and for all functions G : R¢ —
R that are 2(p + 1) times continuously differentiable with partial derivatives having
polynomial growth.
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Remark 2. In general, for numerical methods depending only on the first Wiener
increment Wj (¢, +1) — W (¢,) the highest strong and weak order that can be obtained
are 1/2 and 1, respectively. Strong order one can be obtained for 1-dimensional
problems or if commutativity conditions hold for the diffusion functions g;
[12,26,34].

Stability. We have to investigate for what Az does a numerical method Y,4+; =
DYy, At Iy, ..., 1n,,) applied to (7) share the stability properties of the exact
solution Y;. Widely used measures of stability for SDEs are mean-square stability,
which measures the stability of moments, and asymptotic stability (in the large),
which measures the overall behavior of sample functions [20]. We will focus here
on mean-square stability. For linear autonomous system of SDEs, this concept of
stability is stronger than asymptotic stability (see [9, Chap. 11]) or [20]). Consider
the SDE (7) with f(z,0) = g;(¢,0) = 0 and with a nonrandom initial value Yy. The
steady solution Y = 0 of (7) is said to be mean-square stable if there exists §o such
that

lim E(|Y(1)[*) =0, forall [Yy| <. (10)

t—>00

In order to analyze the stability of numerical methods one has to restrict the class of
problems considered. Inspired by (5) and following [22,35] we consider the scalar
linear test equation

dY =AYdt+pYdW(t), Y(0) =Y, (11)
where A, € C. For &t = 0 one recovers the Dahlquist test equation, which is instru-
mental in developing the linear A-stability theory for ODEs [19, Chaps. 4.2, 4.3].

Remark 3. We note that for SDEs, it is at first not clear to which extend the study
of a scalar linear test problem is relevant to systems of linear equations or fully
nonlinear equations. Recent work, however, suggest that stability analysis for the
scalar test equation is relevant for more general systems [10].

The test equation (11) can be solved analytically and the solution reads

Y(t) =Y, o (O= )40 W (1) 1td), Y(t) = Yo e TV®) (Stratonovich), (12)
and we have for the mean-square stability
{(A.p) € C2 MA+ 3 pf? <0} (It),

{(A, ) € C?; ML+ (Mp)? < 0} (Stratonovich).
(13)

. 2\
tl_l)nc;loE(|Y(l)| )=0 <

If we apply the Euler-Maruyama method (6) to (11) we obtain
E(|Yar1]?) = (11 + pI* +¢)E(Yal*), (14)

where p = AtA,q = +/ At and thus, the method is mean-square stable if and only
if |1 + p|? +¢? < 1. More generally, if we apply the numerical scheme (8) to the
test problem (11), square the result and take the expectation, we obtain
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E(|Yn+11%) = R(p.q)E(|Y,]?), (15)

where p = AtA,q = ~/ Atp and where R(p,q) is a function in 0 (p), I(p), R(q),
J(g) (a polynomial in these variables if the method is explicit). We say that a
numerical method is mean-square stable for the test problem (11) if and only if

lim E(|Yx*) =0 < (AtA,VAtp) € = {p,q € C; R(p,q) <1}. (16)

Fig. 2 Stability domain of the Euler-Maruyama method (black disk) for A, € R. The dashed
curve represent the boundary of the exact stability domain (the left part of the curve lies in the
stability domain)

In order to be able to visualize the stability region, we restrict ourself to the case
A, i € R. We see in Fig. 2 that the stability domain of the Euler-Maruyama method
is a disk of radius 1 centered at p = —1, while the stability domain of the exact
test problem is the unbounded region on the left of the dashed curve. The Euler-
Maruyama has thus a restricted stability region. For the problem (3) (see also (5))
this explicit method will thus face a severe time step restriction due to stability
constraint (see Fig.7 in Sect.6). One could use semi-implicit methods (implicit
method in the drift term) to obtain method with much better stability properties.
This comes however with the cost of solving nonlinear equations at each stepsize.
This can be numerically expensive for large systems (see e.g. (4)), specially if one
needs to simulate many realizations. We will explain in the next section how mean-
square stability can be improved without giving up the explicitness of the numerical
method.
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3 Chebyshev Methods

Chebyshev methods are a class of explicit one-step methods with extended stability
domains along the negative real axis. The basic idea for such methods goes back to
the 1960s with Saul’ev, Franklin and Guillou and Lago (see [19, Sect.IV.2] and the
references therein). It can be summarized as follows: consider a sequence of forward
Euler methods ¥, ,...,¥,, with a corresponding sequence of timesteps /1,..., A,
and define a one-step method as the composition W, = (W, ©...0 ¥y, )(yo) with
stepsize At = hy + ...+ hy,. Next, given m, optimize the sequence {/; }7*_,, so that

i=1
" h,-x
l—[ (1 + E)

i=1

| Rm (x)| = <1 forxe[-ly,,0]

with [, > 0 as large as possible. The resulting numerical method will thus be a
m-stage method. The solution of the above optimization problem is given by shifted
Chebyshev polynomials

Ru(x) = Tn(1 +x/m?) =14+ x +ax*> 4+ -+ apx™,
where {7 (x)} ;>0 are the Chebyshev polynomials given recursively by
To(x) =1, Th(x) =,
and
Tj(x) =2xTj—1(x) —Tj—2(x), j=2.

We see that the optimal sequence of {h;}L is given by h; = (—1/x;) At, where x;
are the zeros of R, (x) and the maximal stability domain on the negative real axis
increases quadratically with the number of stages m and is given by I, = 2m?.
The property R,;(z) = 1+ x + O(x?) ensure the first order convergence of the
numerical method. Besides the stability of the “super stepsize” At, one has also
to care about the internal stability (accumulation of errors within one step) of the
method as m can be large. This can be achieved either by a proper ordering of
the Euler steps &; [27] or by exploiting the three-term recurrence relation of the
orthogonal polynomials [24]. Following the second strategy we consider a m-stage
numerical method given by

ko 1= yo A
t
ki :=yo+ Wf(ko)
241 a7
kj = Wf(kj—l)-l-ij_l—kj_z, 2<j<m
1= km.
Applied to the test problem y’ = Ay, this method gives for the internal stages

k_isz(l+AtA/m2)y07 j=0,...,m, (18)
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and produces after one step y; = R, (At1)yo, where Ry, (x) = T (1 4 x/m?), is
the shifted Chebyshev polynomial of degree m (x = AtA).

These methods have been originally developed for deterministic problems with
eigenvalues along the negative real axis. A typical (deterministic) stability domain
Zm of a Chebyshev method is sketched in Fig. 3 (left figure), where

Im:={z2€C;|Rn(2)| < 1}.

Recall that for the linear stability of deterministic ODE solvers, one considers (11)
with u = 0 [19, Chaps.4.2, 4.3]. It can be seen in Fig. 3 that the boundary of the

—20 -20
_15 -15
~10 -10
-5 -5
y(im) o y(m) o
5 5
10 10
15 15

2 300 -150 -100 -50 [ 2 560 -150 -100 -50 [

x (Re) x (Re)

Fig. 3 Stability domain of first order Chebyshev method (degree m = 10) with variable damping
n = 0 (left figure), n = 0.1 (right figure)

stability domain along the negative real axis is 200, for m = 10. However, there
are regions in [0,200], precisely when T'(1 4 x/m?) = 1, with no stability in the
direction of the imaginary axis.

To overcome the aforementioned issue, it has been suggested by Guillou and
Lago [17] to replace the requirement |R,,(x)|<1 in [—[;,0] by |Rn(x)|<n <
1 in [~]},—€], where € is a small positive number. The number 7 is called
the damping parameter or sometimes just the “damping”. This can done for the
polynomials 7, (1 + x/m?) by a division with T, (wp) > 1, where wg = 1+ n/m?>.
To obtain the right order of accuracy with this modified stability function, one
does a change of variables and obtains Ry, »(x) = Tpn(wo + w1x)/Tim(wo), where
w1 = Tm(wo)/T,,(wo) (see [19, Sect. IV.2]). By increasing the parameter 7 the strip
around the negative real axis included in the stability domain can be enlarged as can
be seen in Fig. 3 (notice that this reduces the value of [, as I, < I,,, for n > 0). The
formula (18) can be modified appropriately to incorporate damping.

Higher order quasi-optimal Chebyshev methods: the ROCK methods. Higher
order methods, called ROCK, for orthogonal Runge-Kutta Chebyshev methods,
based on orthogonal polynomials have been developed in [2, 3]. The stability
functions are given by polynomials R, (x) = 1+x +... +x?/p!+ O(xP*1) of
order p (i.e., Ry(x) —e* = O(xPT1)) and degree m with quasi optimal stability
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domains along the negative real axis. These polynomials can be decomposed as [1]
Rin(x) = wp(x) Pm—p(x),

where P,,_,(x) is a member of a family of polynomials {P;(x)} ;>0 orthogonal
with respect to the weight function (1 —x2)~"/2w,(x)2. (The function w,(x) is
a polynomial of degree p with only complex zeros when p is even and with only
one real zero when p is odd.?) The idea for the construction of a numerical method
is then as follows: the 3-term recurrence relation of the orthogonal polynomials
{Pj(x)}j>0

Pi(x) = (ajx—=B;)Pj—1(x)—y; Pj—2(x),

is used to define the internal stages of the method
Kj=Ata; f(Kj—1)=B;jKj-1—vjKj—,  j=2,....m—p.

This ensures the good stability properties of the method. A p-stage finishing
procedure with the polynomial w,(z) as underlying stability function ensures the
right order of accuracy of the method.

Gain in efficiency. Assume that At is the stepsize corresponding to the desired
accuracy to solve an initial value problem y’ = f(¢, y) in the interval [0, T]. Let p
be the spectral radius of the Jacobian d, f. A standard explicit method, as the Euler
method, must satisfy §t = C/p (for stability) and thus needs Atp/C function eval-
uations in each interval Az. For a Chebyshev method, we can select a stage number
m = /Atp/C. As the number of function evaluations is equal to the stage number
of the Chebyshev method* only the square root of the function evaluations needed
for standard explicit method are required for each stepsize (notice that the constant
C can be different for the two methods but is in both cases of moderate size).

4 The S-ROCK Methods

We now present the Stratonovich and the It6 stochastic ROCK (S-ROCK) methods
derived in [5-7]. When modeling physical systems with SDEs, the question of
the choice of the stochastic integral arises. SDEs with Stratonovich integrals are
stable with respect to changes in random terms and are often used for systems
where the noise is “added” as fluctuation of a deterministic system. SDEs with
It integrals are preferred for systems with internal noise where the fluctuation is
due to the systems itself as for example in chemical reactions due to the property
of “not looking into the future” of the It integral (i.e., the martingale property)

3 The ROCK methods have been developed for p even (p = 2,4). They could be obtained for p
odd provided a proper treatment of the real zero of w,, (x).

4 Strictly speaking this is true for first order Chebyshev methods. For higher order methods, as the
ROCK methods, the number of function evaluations is not equal but still close to the stage number
m (see [2,3]).
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[26, 31]. Of course, there are conversion rules from one calculus to the other.
However, these rules involve the differentiation of the diffusion term which can
be cumbersome and costly. It is thus preferable to derive genuine formulas for both
calculus. Furthermore, it is sometimes desirable to have stabilized explicit methods
for discrete noise. This has been considered in [8], where the 7-ROCK methods have
been developed and we briefly comment on these methods as well in what follows.

4.1 Construction of the S-ROCK Methods

Inspired by the ROCK methods, we consider methods based on:
e Deterministic Chebyshev-like internal stages to ensure good stability properties

(stages 1,2,...,m—1).

e A finishing stochastic procedure to incorporate the random process and obtain
the desired stochastic convergence properties.

As for deterministic methods, the use of damping plays a crucial role and allows
to enlarge the width of the stability domains in the direction of the “stochastic axis”
(e.g, the g axis in Fig. 2). This is discussed in Sect. 5.

Deterministic Chebyshev stages. Define the m — 1 stages of the S-ROCK method
by

KO = an
w1
K=Y, +At_f(K0)’
wo

Tj—l(wO)K‘ _Tja(wo)

Ti—1(wo) B s
Ti(wo) Ti(wo) 77

K;, =2Atw
’ ' T (wo)

S(Kj—1)+2wo

for j =2,...,m—1, where wg = 1 +n/m? and 0, = Tin(wo)/T,,(wo). Recall that
n is the damping parameter which will be optimized (see Sect. 5).

Stochastic stages. We have now to incorporate the noise in an appropriate way.
While the deterministic stages are the same for the various S-ROCK methods, the
finishing procedure will be different to take into account the various stochastic
calculus of the underlying SDE and the desired accuracy of the methods.

It6 S-ROCK methods (multi-dimensional SDEs). We define the finishing proce-
dure as

Tin—1(wo) Tin—1(wo) K . Tin—2(wo)

K, =2Atwo1 ——— f(K,;— 2w ———— _
" L gy Km=t) 20 Kt = o)

Km—2

M
+ Zlnlgl(Km—l)s
=1

Ynt1 = K. 19)
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It6 S-ROCK methods (commutative noise’ or one dimensional Wiener pro-
cess). In that special case, one can improve the strong convergence of the method
by considering the finishing procedure

M
K;:’l—l =Kmn-1+ Zgr(Km—l)Inra

r=1
K = Koy +VALg (Kme1), 1=1,2,..., M,

Tin—1(wo) Tin—1(wo) Tin—2(wo)

K,, =2Atw 1= _
" " Th(wo) Tw(wo) "' Tu(wo) "

S (Km—1)+ 2w 2

M M
1
+ 3 It Kn) + 5 D oy (81K = 81 (Kin)
I=1 =1

M
1 *k
=3 VA (K 1K),
=1
Ynir1 = K. 20)

Remark 4. For M = 1 the above formula can be further simplified and written as

m_1=Km—1+VAtg(Km-1).

Tim—1(wo) Tm—1(wo) Tin—2(wo)
R P R S T R
+1,8(Km—1)+ Inz A (g(K*—l) —g(Km-1)),
VYA
Yn+1 = Km- (21)

Stratonovich S-ROCK methods (multi-dimensional SDEs). We define the finish-
ing procedure as

Tw(@o)
g _ m®o) I Kim—s),
m—1 m 1+2w0Tm_1(wo)lZ=; nlgl( m—2)
Tn—1(wo) Tin—1(wo) Tin—2(wo)

Ky, =2Atw; ———— (K- 200———————K;y-1— ——K;,—

" O ) L ) 200 ey K T ) K2

M
@0 Trn—1(wo)
+m;Inl(gl(Km—l)_gl(Km—z)),

Yn+1 = Kn. (22)

Notice that this method has order one when solving SDEs with commutative noise
or with only one Wiener process [5].

5 Consider L! = Z;\{:I glkayik, [ =1,2,..., M. Commutative noise means that the condition
ngf = Lrg,k Vi,r=1,...,M; k=1,...,d holds for the diffusion functions [26].
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S-ROCK methods for discrete noise. The procedure explained above can be gen-
eralized to stochastic problems with other types of noise. In [8], the approximation
of SDE for chemical kinetic systems has been considered. The SDE is of the form®

M
dY, = v;P(a;(Y,-)d0),

Jj=1

where Y; is a N —dimensional state vector (corresponding to the N species of the
reaction) with components in N, v; is a state-change vector, a; is a propensity
function (the number of possible combination of reactant molecules involved in the
Jjth reaction, times a stochastic reaction rate constant) and &?(a; (Y;-)dt) is a state-
dependent Poisson noise. We now make the decomposition

M M
dY, =Y via;(Yo)di+ Y v, (gZ(aj(Y,_)dz) —aj(Y,_)dt)
J=1 j=1

= f(Y;-)dt +dQy, (23)

where f and Q are called the drift part and jump part, respectively (see [29]).
This form is similar with SDEs driven by Wiener processes, except for the different
noise. Similarly as for the Itd or the Stratonovich S-ROCK methods, the m — 1
deterministic Chebyshev stages can be applied to the drift part of (23), and the noise
term can be incorporated in the finishing procedure in an appropriate way to solve
(23) (we refer to [8] for details).

4.2 Accuracy of the S-ROCK Methods

Before considering the stability properties of our methods (the main motivation to
consider the formulas introduced in Sect. 4.1) we briefly discuss their accuracy. As
mentioned in Sect. 1, by considering numerical methods depending only on the first
Wiener increment, strong accuracy higher than p = 1/2 or weak accuracy higher
than p = 1 cannot be obtained. Only in the special case of commutative, diagonal or
one dimensional noise, strong order p = 1 is possible. The theorems below show that
the S-ROCK methods enjoy the highest possible accuracy for numerical methods
involving only the first Wiener increment.

Theorem 1 ([5-7]). For m > 2, the methods (19) (It6) and (22) (Stratonovich)
applied to (7) (with [ and g; sufficiently smooth) satisfy
E(lYw—Y(@0) < CAn'?,  [E(G(IYN)-EGY ()| <CAt  (24)

for any fixed Tt = NAt € [0,T] and At sufficiently small and for all functions G :
R? — R, 4 times continuously differentiable and for which all partial derivatives
have polynomial growth.

6 See [29] for a rigorous description of the problem.
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Theorem 2 ( [5-7]). Assume that (7) (with [ and g; sufficiently smooth) has
commutative noise or that M = 1. Then, for m > 2, the methods (20),(21) (It6)
and (22) (Stratonovich) applied to (7) (with f and g; sufficiently smooth) satisfy

E(|Yy—Y(7)|) = CAt (25)

for any fixed T = NAt € [0,T] and At sufficiently small.

For the proofs of these theorems we refer to [35, 6] (Stratonovich S-ROCK methods)
and [7] (Itd S-ROCK methods).

5 Extended Mean-Square Stability and Damping

We study here the mean-square stability property of the S-ROCK methods. By
applying any of the methods (19),(20),(21) or (22) to the scalar test problem (11),
squaring the results and taking the expectation we obtain the mean-square stability
function (see (15))

T2(wo + w1 p)
Rn(p.q) = g——
" T.2(wo)

+ Om-1,,(P.9), (26)
where Qm—1,-(p,q) is a polynomial of degree 2(m — 1) in p and of degree 2r
in g. The precise form of Q,,—1,,(p,q) depends on the specific numerical method

Tj@ot@1p) ‘Bor the method (19) we have r = 1 and

considered. Define ©; = ~——"==
' J

Qm—l,l(ps‘J) = q2@m—1-

For the method (21) r = 2 and

4
Om12(p.q) = *Om1+ L Op_.
2

Finally, r = 2 for the method (22) and

w
Om-12(p.q) = 4> <@m@m—z + [@m—z (;;p + 1)

Tin—1(wo)

+ w
O T (o)

2\ 3
(@m—l - @m—Z)] ) + Zq4@r2n—2'

In Fig. 4, we plot the mean-square stability domains for the method (19) with various
values of damping for m = 5. We observe that without damping, the stability along
the p axis (the “deterministic axis”) is optimal (i.e., 2-52). But there are points (close
to the p axis) with no stability in the direction of the ¢ axis (see Fig.4, (left)). As
Om—1,r(p,0) = these points are exactly the points where T,2(1 + p/m?) = 1. For
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-10,
-20 -15 -10 -5 0 -20 -15 -10 -5 0

p p

Fig. 4 Mean-square stability regions for the method (19) with various values of damping (m = 5).
Left figure (no damping, n = 0), middle figure (optimal damping, n = 4.7), right figure (infinite
damping)

infinite (or very large) damping the mean-square stability domain covers a portion
of the stability domain of the test equation (11), but the stability domain along the
p axis becomes linear in m (i.e., 2-5, see Fig. 4 (right)). The mean-square stability
domain for what will be called the optimal damping value covers a “large” portion
of the stability domain of the test equation (see Fig. 4, (middle)). In order to quantify
these observations we define a “portion” of the stability domain (13) by

“spe,s ={(p,q) € [-5,0] xR;|gq| < /—p} (Stratonovich), 27
or
FspE,s ={(p,q) € [—5,0] xR;[g| < v/=2p} (1t0), (28)

where s > 0. We then consider two parameters / and d related to a numerical
stability domain .% by

[ =max{|pl;p <0, [p,0] C .}, d = max{r > 0; Spg,s C 7} (29)

Clearly, d </, and for mean-square stability, it is the parameter ¢ which has to be
optimized. For the S-ROCK methods, as can be seen in Fig. 4, [ and d depend on
the stage number m and the value of the damping parameter 7. We thus denote these
parameters by /,,, (1) and dp, (7). The following lemmas give important information
on the value of /,,(n) and a bound of the possible values for d,,(n), the parameter
which characterizes the stability domains of our methods.

Lemma 1 ([6,7]). Let n > 0. For all m > 2, the m-stage numerical method (22)
has a mean-square stability region .7 with L, (n) > c(n)m?, where c(n) depends
only on 1.

Lemma 2 ([6,7]). Forallm > 2
Im(n) = 2m  for n— oo. 30)

In view of the above two lemmas we make the following important observation:
for any fixed n, the stability domain along the p axis increases quadratically
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(Lemma 1), but for a given method, i.e., a fixed m, increasing the damping n
to infinity reduces the quadratic growth along the p axis into a linear growth
(Lemma 2). Since d,,(n) < l,,(n) there is no computational saving compared to
classical explicit methods for this limit case.

Optimized methods. Our goal is now for a given method to find the value of 7,
denoted n* which maximize dn, (1), i.e.,

n* = argmax{dp, (n);n € [0,00)}. (31)

The corresponding optimal values d,, (n*) for m < 200 have been computed numer-
ically and are reported in Fig.5 for the 1td6 S-ROCK methods (19) and in Fig.6
for the Stratonovich S-ROCK methods (22). We also report in the same figures the
values of [,,(n*) and n*. We see that for n = n*, dm(n™) =~ Im(n*). The dashed
and the dash-dotted lines in the plots reporting the values of dn,(n*), represent a
quadratic and a linear slope, respectively. We clearly see that the portion of the true

10 10
10 10°
10° 10°
* !
(1) dp, (1)
10° 10°
10’ 10'
10° 10’ : :
10° 10' 10° 10° 10’ 10’ 10° 10’
m m
70 . . . 18
6 16
14
50
12
40 n
.
d,(n)m 10
30
8
20
6
10 s
0 ‘ ‘ ‘ ) ‘ ‘ ‘
0 50 100 150 200 0 50 100 150 200
m m

Fig. 5 Values of n*,I/"",d"" as a function of 7 and the ratio d,’]: /m (stability versus work)
for the It6 S-ROCK methods (19). The dashed and the dash-dotted lines in the upper-right figure
represent a quadratic and a linear slope, respectively



16 A. Abdulle

stability domain included in the stability domain of our numerical methods grows
super-linearly (close to quadratically) for both the It6 and the Stratonovich S-ROCK
methods. Finally we study the efficiency of the methods by reporting the quantity

10* : : 10*
N " ’
m m
102 10%
10° : : 10° ' '
10° 10' 10° 10° 10° 10' 10% 10°
m m
50 : : : 50
40 40
b 30 L 30
d' /m N
m
20 20
10 10
0 ' ' - 0 ' ' :
0 50 100 150 200 0 50 100 150 200
m m

Fig. 6 Values of n*,1"",d"" as a function of m and the ratio d,’]: /m (stability versus work) for
the Stratonovich S-ROCK methods (22). The dashed and the dash-dotted lines in the upper-right
figure represent a quadratic and a linear slope, respectively

dm(n*)/ m (stability versus work). For standard methods this value is small (close
to zero for the Euler-Maruyama methods as can be seen in Fig. 2 and about 1/2 for
the Platen method (see (33) in Sect. 5)). Another method will be considered in the
numerical experiments, namely the RS method [11, p. 187] developed with the aim
of improving the mean-square stability of the Platen method. This method has a
larger [ value than the Platen method but a smaller d value and the efficiency of this
method (as measured here) is about 0.3. We see that S-ROCK methods are orders
of magnitude more efficient (for the aforementioned criterion of efficiency related
to stability) than standard explicit methods for SDEs.
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6 Numerical Illustrations

In this section we illustrate the efficiency of the S-ROCK methods. As mentioned in
the beginning of Sect. 4, different applications require different stochastic integrals
and we will consider both It6 and Stratonovich SDEs in the following examples. The
first example is the heat equation with noise mentioned in the introduction. For this
problem we consider the Stratonovich S-ROCK methods. The second example is
a chemical reaction modeled by the chemical Langevin equation. The It6 S-ROCK
methods will be used for this latter problem. For both examples, we compare the
S-ROCK methods with standard explicit methods.

Example 1: heat equation with noise. We consider the SPDE (3), where we
choose this time the Stratonovich modeling for the noise. We follow the procedure
explained in Sect. 2 and transform the SPDE in a large system of SDEs

Yti+1 —2Y] 4+ Y/

dy; +uY} odW,, i=1,...,N, (32)
where the symbol o denotes the Stratonovich form for the stochastic integral. In our
numerical experiments, we compare the Stratonovich S-ROCK methods (22) with
two other methods, the method introduced by Platen [33] (denoted PL) given by the
two-stage scheme

Ky = Yn+ Atf(Yn) + Ing(Yn),
1
Yor1 = Ya+Atf(Yy) + Inz(g(Yn) +g(Kn)), (33)

and the RS method, introduced by P.M. Burrage [11, p. 187]. This is a 2-stage
method constructed with the aim of improving the mean-square stability properties
of the Platen method and is given by

4 2
Ky =Y, + §Alf(Yn)+ ang(Yn)v

A 1
Vot = Yot S 00) + FK) + @0 + (K)o (B

Both methods have strong order 1 for one-dimensional systems or systems with
commutative noise as (4). This is also the case for the Stratonovich S-ROCK
methods (22). We have seen, at the end of Sect.5, that the stability domains of
both methods, PL and RS, cover only a small portion of the stability domain
corresponding to the stochastic test equation and this is in contrast with the S-ROCK
methods. In Fig. 7 we monitor the number of function evaluations (cost)’ needed by
the various methods to produce stable integrations when increasing the value of N,

7 By number of function evaluations we mean here the total number of drift and diffusion
evaluations.
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i.e., the stiffness of the problem. For the S-ROCK methods we vary the number of
stages to meet the stability requirement (this value is indicated in Fig. 7).

10 . 10
——S-ROCK, m=42,114,320 —\
——PL
10} |-=—Rs 10
—+—S-ROCK m=42,114,320|
10° 10° ——PL
fon At
10° 10
10* 10°
3 -6
10 . 10 :
10’ 10° 10° 10’ 10° 10°
N N

Fig. 7 Function evaluations and stepsize as a function of N . For PL and RS, we choose the largest
stepsize to have a stable integration of (32) (strong error < 10~1). For the S-ROCK methods, we
can vary the stage number m to meet the stability requirement (we fixed the highest stage number
atm = 320)

We see that the S-ROCK method reduces the computational cost by several
orders of magnitude as the stiffness increases. In the same figure we see the value
of the stepsize needed for the different methods, again as a function of N. As
expected, the standard explicit methods, as PL or RS face severe stepsize restriction
as the stiffness increases. This example demonstrates that for classes of SPDEs
there is a real advantage in using explicit stabilized methods such as S-ROCK
methods. We notice that the stepsize is reduced for the highest value of N for the
S-ROCK methods (see Fig. 7 (right)). We could have kept the same stepsize but the
stage number would then have become quite large. It is well-known for Chebyshev
methods that in order to control the internal stability of the method one should avoid
computation with a very high stage number [3]. Here we fixed the highest stage
number at m = 320.

Example 2: a chemical reaction. We know illustrate the use of the Itd S-ROCK
methods. Following [7] we consider a stiff system of chemical reactions given by
the Chemical Langevin Equation (CLE). We study the Michaelis-Menten system,
describing the kinetics of many enzymes. This system has been studied in [23]
with various stochastic simulation techniques. The reactions involve four species:
S1 (a substrate), S, (an enzyme), S3 (an enzyme substrate complex), and S (a
product) and can be described as follows: the enzyme binds to the substrate to form
an enzyme-substrate complex which is then transformed into the product, i.e.,
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Si+8, =85 (35)
S3 <2 8,45, (36)
S3 i) S> + S4. (37)

The mathematical description of this kinetic process can be found in [25]. For the
simulation of this set of reactions we use the CLE model

3 3
dY(r)="Y via;(Y()dt+ Y vj\Ja;(Y()dW; @), (38)
j=1 j=1

where Y (¢) is a 4 dimensional vector describing the state of each species S1,..., S4.
The Itd form used in (38). The functions a; (Y (¢)), called the propensity functions,
give the number of possible combinations of molecules involved in each reaction j .
For the above system they are given by

ar(Y(t)) =c1Y1Y2, ax(Y(t)) =c2Y3, a3(Y(1)) =c3Y3.

The vectors v, called the state-change vectors, describe the change in the number of
molecules in the system when a reaction fires. They are given for the three reactions
of the above system by vy = (—=1,—1,1,007 , v, =(1,1,—1,0)T,v3 = (0,1,—1, 1) 7.
We set the initial amount of species as (the parameters are borrowed from [39,
Sect.7.3])

Y1(0) = [5x 107 nqvol], Y2(0) =[5x10""nqvol], Y3(0)=0, Y4(0)=0,

Euler-Maruyama S$-ROCK (m=3)
300 : : ; : : 300 : : ;

250 250

Product Product

200 200

100 100 |

50 Substrate Substrate

0 10 20 30 40 50 0 10 20 30 40 50
t t

Fig. 8 One trajectory of the Michaelis-Menten system solved with the Euler-Maruyama method
(left figure) and the S-ROCK method (right figure) for c; = 1.66 x 1073,c0 = 10™%,c3 = 0.10
(the stepsize is At = 0.25 and the same Brownian path is used for both methods; m = 3 for the
S-ROCK method)
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10 10
—%— S-ROCK m=3,7,28,81
—%—EM o «
107 ——EM
—%— S-ROCK|
At
107°
107°
-4
10 10
10’ 10° 10° 10" 10' 10° 10° 10
Stifness (Cy) Stiffness (Cy)

Fig. 9 Numerical solution of (38) with the Euler-Maruyama and the S-ROCK methods. Number
of function evaluations as a function of ¢3 for both methods (left figure). Size of the timestep At
as a function of ¢3 (Euler-Maruyama); At = 0.25 for the S-ROCK method and the stage number
m is adapted to the stiffness (right figure)

where [ - | denotes the rounding to the next integer and n4 = 6.023 x 10?3 is the
Avagadro’s constant (number of molecules per mole) and vol is the volume of the
system.

In the following numerical experiments, we solve numerically the SDE (38) with
the Itd S-ROCK methods and the Euler-Maruyama method (6). This latter method is
often used for solving the CLE. As the CLE has multidimensional Wiener processes,
we use the S-ROCK methods (19). We first compare the solutions along time for the
two methods (¢ € [0, 50]), with parameters leading to a non-stiff system for (38). As
expected, we observe in Fig. 8 a very similar behavior of the two methods.

We next increase the rate of the third reaction in (35)—(37), c3 = 10%,103,10*
corresponding to an increasingly fast production. The resulting CLE becomes stiff
and the Euler-Maruyama method is inefficient. In Fig.9 we report the stepsizes
and the number of function evaluations needed for the Euler-Maruyama and
the S-ROCK methods. The stepsize is chosen as At = 0.25 for the S-ROCK
methods. For the Euler-Maruyama method we select for each value of ¢ the largest
stepsize which leads to a stable integration. Thus, for the Euler-Maruyama method,
stability is achieved by reducing the stepsize while for the S-ROCK method, it is
achieved by increasing the stage number (m = 3,7,28,81). Notice that for both
methods, one evaluation of “g(Y)d W(t)” is needed per stepsize. Thus, by keeping
a fixed stepsize, the number of generated random variables remains constant as the
stiffness increases for the S-ROCK methods, while this number increases linearly
(proportional to the stepsize reduction) for the Euler-Maruyama method. Taking
advantage of the quadratic growth of the stability domains, we see that the number
of function evaluations is reduced by several orders of magnitude when using the
S-ROCK methods instead of the Euler-Maruyama method.
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Oscillatory Systems with Three Separated Time
Scales: Analysis and Computation

Gil Ariel, Bjorn Engquist, and Yen-Hsi Richard Tsai

Abstract We study a few interesting issues that occur in multiscale modeling
and computation for oscillatory dynamical systems that involve three or more sep-
arated scales. A new type of slow variables which do not formally have bounded
derivatives emerge from averaging in the fastest time scale. We present a few sys-
tems which have such new slow variables and discuss their characterization. The
examples motivate a numerical multiscale algorithm that uses nested tiers of
integrators which numerically solve the oscillatory system on different time scales.
The communication between the scales follows the framework of the Heterogeneous
Multiscale Method. The method’s accuracy and efficiency are evaluated and its
applicability is demonstrated by examples.

1 Introduction

In this paper we study a few interesting phenomena occurring in oscillatory
dynamical systems involving three or more separated time scales. In the typical
setting, the fastest time scale is characterized by oscillations whose periods are of the
order of a small parameter €. Classical averaging and multiscale methods consider
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the effective dynamics of such systems on a time scales which is independent
of €. However, under this scaling, many interesting phenomena, e.g. the nontrivial
energy transfer among the linear springs in a Fermi-Pasta-Ulam (FPU) lattice, occur
at the 0'(1/€) or even longer time scales. These kind of interesting phenomena
motivates our interest in ordinary differential equations (ODEs) with three or more
well separated time scales.

A good amount of development in numerical methods for long time simulations
has been centered around the preservation of (approximate) invariances. In the past
few years, many numerical algorithms operating on two separated scales have been
proposed, see e.g. [1-3,8,9,12-14,16,17,19,30-34]. To our knowledge, very few
algorithms were developed considering directly three or more scales.

For our purpose, it is convenient to rescale time so the slowest time scale of
interest is independent of the small parameter €. Accordingly, the basic assumption
underling our discussion is that solutions are oscillatory with periods that are of the
order of some powers in €: €2, ¢!, ... ™. We will study the few issues arising from
multiscale modeling and computations for ODEs in the form

m
X=Ze_iﬁ(x), x(0) = xo, (1)
i=0
where 0 < € < €9, x = (X1,...,X4) € R4 . We further assume that the solution of (1)

remains in a domain %y C R which is bounded independent of ¢ for all ¢ € [0, T].
For fixed € and initial condition X¢, the solution of (1) is denoted x(¢;¢,X¢). For
brevity we will write x(¢) when the dependence on € and X is not directly relevant
to the discussion.

We will focus only on a few model problems involving three time scales. Our
goal is to compute the effective dynamics of such a system in a constant, finite time
interval [0, T'], for the case 0 < € < €9 < 1. We will characterize the effective dynam-
ics by some suitable smooth functions x that change slowly along the trajectories of
the solutions, albeit possibly having some fast oscillations with amplitudes that are
of the order of €”, p > 1. Naturally, the invariances of the system will be of interest.

As a simple example, consider the following linear system

: 1
X1 = =Xx2+x1,
1 X2+ X1 )

. 1
X2 =—gX1+ X2,

with initial conditions (x1(0),x2(0)) = (0,1). The solution is readily given by
(x1(2).x2(1)) = (e’sinL e’ cost). Taking I = x{ + x3, we notice that / has a
bounded derivative, i.e., that [ := (d /dt)I(x1(t),x2(t)) = 21 is independent of €.
For this particular example one can easily solve for I, I(t) = 1(0)e?. In fact, the
uniform bound on / indicates the “slow” nature of (x;(¢),x2(¢)) when compared
to the fast oscillations in (x; (¢), x2(¢)). This type of characterization of the effective
dynamics in a highly oscillation system is commonly used in the literatures. See for
example [1,2, 14, 18,23-25]. Other approaches to finding slow variables includes,
e.g. [5,6]. We formalize this notion with the following definition.
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Definition 1. We say that the function & : x € %y > R has a bounded derivative to
order —k for 0 < € < €y along the flow x(t) in 9 if

sup  |VE(X)-X| < Ce¥, 3)

XE%,e€[0,€0]

where 2 C R is an open connected set and C is a constant, both independent of €.
For brevity, we will say that & has a bounded derivative along x(t) if (3) holds with
k = 0. Such functions are commonly referred to as slow variables of the system.

When only two separated time scales are considered, the effective behavior
of a highly oscillatory system, x(¢), may be described by a suitably chosen set
of variables whose derivatives along x(¢) are bounded. In the literature the time
dependent function x; = sin(¢) with |x;| = &'(1) is naturally regarded as slow and
X2 = sin(t /€) with |%,| = O(e7!) is fast. Similarly x3 = sin(¢) + e sin(z /€) is slow.

When more than two time scales are involved, we also need to consider x4 =
sin(¢) + esin(z/€?) as slow even if |x4] = O(e71). It will be regarded as slow
because |x4 —sint| = O(€) and sin(t) is slow. As a further example, consider the
linear system

X1=2%x+1+x, x1(0) =xi0, @
X2 = —%x1 4 x2, x2(0) = x20,
The solution is
20 _ [ Aesin(e721 +) - 1oy )
x2(1) Ae'cos (e %1+ ¢) — THet ’

where A and ¢ are determined by the initial conditions A = xlz0 + x%o and tan¢ =
X10/X20- As above, we look at the square amplitude / = xl2 + x%. Its time derivative
is bounded to order —1 since

[ =2¢1x, +21I. (6)

However, using (5) we find that 1(z) = A%e?" + O(e). Hence, even though the
derivative of (¢) is not bounded for 0 < € < €¢, I(¢) consist of a slowly changing
part and a small e-scale perturbation. This example demonstrates that the bounded
derivative characterization is not necessary for determining this type of effective
property.

Accordingly, Sect.2 gives a definition for the time scale on which a certain
variable & (x) evolves under the dynamics of ODEs in the form (1). These ideas are
further generalized to describe local coordinate systems. In Sect. 3, the dynamics
of the variables is analyzed using the operator formalism for homogenization
of differential equations, see for example [29]. We focus the discussion to a
few example systems in which the singular part of the dynamics is linear. Our
observations are discussed in the settings of integrable Hamiltonian systems that
can be written in terms of action-angle variables [4].
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The effective behavior for certain class of dynamical systems in the long time
scale may be modeled by a limiting stochastic process [21,29,34]. This approach
has been applied, for example, in climate modeling [26]. However, rigorous
analysis of such models has only been established in a few particular cases, for
example, discrete rapidly mixing maps [7,20] and the Lorentz attractor [22,27].
The operator formalism for homogenization is a useful tool in the determination
of stochasticity. In this formalism, by matching the multiscale expansions of the
differential operator and a probability density function defined in the phase space,
one derives a Fokker-Planck equation (or alternatively the backward equation) in
the phase space of the given dynamical system. If the leading order terms in the
multiscale expansion contain a diffusion term, then one says that the effective
behavior of the given oscillatory dynamical system is “stochastic”. Thus the
effective behavior is approximated in average. In this paper, we consider systems
in which no “stochastic” behavior appear in the effective equations.

Section 4 presents a numerical method that uses nested tiers of integrators
which numerically solve the oscillatory system on different time scales. The
communication between the scales follows the framework of the Heterogeneous
Multiscale Method (HMM) [10, 11]. Section 5 presents a few numerical examples.
We conclude in Sect. 6.

2 Effective Behavior Across Different Time Scales

In this section we discuss some of the mathematical notions which we use to study
systems containing several well-separated time scales.

2.1 Slowly Changing Quantities

Definition 2. A smooth time dependent function « : [0, T] — R” is said to evolve
on the €* time scale in [0, T] for some integer k and for 0 < € < €, if there exists a
smooth function 8 : [0, T] — R” and constants Cy and C; such that

sup < Coe*,

t€l0,7T]

d
—B)

and

sup |a(r) = B(1)] = Cqe.
t€l0,T]

This motivates the following definition for a variable, «(x), that evolves on the ek
time scale along the solutions of (1).
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Definition 3. A function £(x) is said to evolve on the € time scale along the
trajectories of (1) in [0, T and in an open set 9 if, for all initial conditions X € %y,
the time dependent function & (x(¢;€,Xo)) evolves on the ¥ time scale in [0, 7']. For
brevity, we will refer to quantities and variables that evolve on the €° time scale as
slow.

In particular, the above definition suggests that if £ evolves on the €* time scale,
then the limit

£o(s1X0) = Eli_lg})é(X(éks;e,xO)) (7)

exists for all s € [0,7] and x¢ € %y. For instance, in both examples (2) and (4),
the square amplitude / = x7 + x3 evolve on the €° time scale. The difference is
that (according to Definition 3), / has a bounded derivative of order O along the
flow of (2) but not along the flow of (5). More generally, considering «(?) to be the
image of £(x(¢)), Definitions (2) and (3) allows the inclusion of functions such
as a(t) = esin(e2t) + sin(t) (with unbounded derivatives) to be characterized
as slowly evolving. In the Appendix, we presents an algorithm to identify slow
variables based on (7).

Next, in order to understand what algebraic structure in the ODEs may lead to
slow variables such as (6), we consider the following slightly more general system

e
-£=£ﬂ+ﬂ@%0, ®)
d 1

= gy fur(x.y.). ©)

Introducing a new variable z = exp(—if/€?)x, we obtain

dz it it

7 (—6—2) J1 (GXP(G—Z)Z,J’J), (10)
d 1 it it

= ( (G—Z)Z))”rfu (exp(e—z)z,y,t). (11)

dt
Assuming that |y(¢)| is (1) and z(¢) is of the form z¢ + €'(€?), then the first term
on the right hand side in (11) would be bounded if

Il
a
e
2]

|

|
0q
(]
X
S}

/}u@mmzﬁ@J>a
0

This is possible since the oscillations in x occur on a time scale that is much faster
than the e-scale, and they may induce an &'(¢) time averaging in g(x(¢)). Thus, if
g(x —Xp) is an odd function for

t

Xo := lim x(s;x0)ds,
e—>0+ 0
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then for fixed values of z, the singular term in (11) “averages out” and would
produce only fast oscillations of &'(¢) amplitude in the trajectories of y. In this
case, y(t) is a slowly changing quantity along the trajectory, i.e, it evolves on the €°
scale. Alternatively, if g(x — X¢) is even then y evolves on the € time scale.

This observation suggests that in determining whether y changes slowly in time,
we may test if g is odd around a neighborhood of the averages of x. If so, one can
simply ignore the term containing g in solving for y.

We may generalize the observation above to test potential slow variables. Let x
be a quasi-periodic solution of a highly oscillatory system with &'(¢~2) frequencies,
and assume that x has an average X¢ as € — 0. Consider «(¢) := £(x(¢)) with

d 1
Ea(” = EV(X(I))-

Then o may be slow if r(x — Xo) is an odd function.

Finally, we point out that the emergence of a slow variable with unbounded
time derivative along the oscillatory trajectories may come from a multiscale series
expansion of parts of the solution. Consider again (8) and (9). The leading order
term comes out naturally when y has an expansion of the form

y(t) = yolt) +eh(x(t)) + -

Hence, we expect that the homogenization approach described in the following
section should capture such type of effective behavior of a dynamical system.

2.2 Multiscale Charts

Given an oscillatory dynamical system in R¢, functions such as the slow variables
in our previous definitions may be used to analyze the structure of the dynamics. For
example, the action and angle variables for a given Hamiltonian system provide a
coordinate system in the phase space such that the resulting Hamiltonian dynamics
is separated into evolutions on certain invariant tori (oscillations) as described by the
angle variables, and non-oscillatory evolutions described by the action variables [4].
For example, the function / defined for (2) together with arctan(x;,/x1) corresponds
to such a situation in which I is non-oscillatory along the dynamics and provides
a coordinate perpendicular to the trajectories. In previous work, we propose the use
of a similar strategy for a different class of dynamical systems [1,2].

Consider the oscillatory dynamical system (1), and a family of trajectories
x(t;€,Xg) in a open set Yy C Re. Let®d:ZyCcRY ->UCR?bea diffeomorphism
that is independent of €. Thus @ is a local coordinate system (chart) for Zo CR?.
We de