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100 44 Stockholm
Sweden
olofr@nada.kth.se

ISSN 1439-7358
ISBN 978-3-642-21942-9 e-ISBN 978-3-642-21943-6
DOI 10.1007/978-3-642-21943-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938020

Mathematics Subject Classification (2010): 65Cxx, 65P99, 65Zxx, 35B27, 65R20, 70Hxx, 70Kxx,
70-08, 74-XX, 76S05, 76Txx

c� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover photo: By courtesy of Jon Häggblad
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Preface

The recent rapid progress in multiscale computations has been facilitated by
modern computer processing capability and encouraged by the urgent need to
accurately model multiscale processes in many applications. For further progress,
a better understanding of numerical multiscale computations is necessary. This
understanding must be based on both theoretical analysis of the algorithms and
specific features of the different applications.

We are pleased to present 16 papers in these proceedings of the workshop
on Numerical Analysis and Multiscale Computations at the Banff International
Research Station for Mathematical Innovation and Discovery, December 6–11,
2009. The papers represent the majority of the presentations and discussions that
took place at the workshop. The goal of the workshop was to bring together
researchers in numerical analysis and applied mathematics with those focusing on
different applications of computational science. Another goal was to summarize
recent achievements and to explore research directions for the future. We feel
that this proceeding lives up to that spirit with studies of different mathematical
and numerical topics, such as fast multipole methods, homogenization, Monte
Carlo techniques, oscillatory solutions to dynamical systems, stochastic differential
equations as well as applications in dielectric permittivity of crystals, lattice
systems, molecular dynamics, option pricing in finance and wave propagation.
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Explicit Methods for Stiff Stochastic Differential
Equations

Assyr Abdulle

Abstract Multiscale differential equations arise in the modeling of many
important problems in the science and engineering. Numerical solvers for such
problems have been extensively studied in the deterministic case. Here, we discuss
numerical methods for (mean-square stable) stiff stochastic differential equations.
Standard explicit methods, as for example the Euler-Maruyama method, face severe
stepsize restriction when applied to stiff problems. Fully implicit methods are
usually not appropriate for stochastic problems and semi-implicit methods (implicit
in the deterministic part) involve the solution of possibly large linear systems
at each time-step. In this paper, we present a recent generalization of explicit
stabilized methods, known as Chebyshev methods, to stochastic problems. These
methods have much better (mean-square) stability properties than standard explicit
methods. We discuss the construction of this new class of methods and illustrate
their performance on various problems involving stochastic ordinary and partial
differential equations.

1 Introduction

The growing need to include uncertainty in many problems in engineering and the
science has triggered in recent year the development of computational methods for
stochastic systems. In this paper we discuss numerical methods for stiff stochastic
differential equations (SDEs). Such equations are used to model many important
applications from biological and medical sciences to chemistry or financial engi-
neering [16,32,39]. A main issue for practical application is the problem of stiffness.
Various definitions of stiff systems for ordinary differential equations (ODEs) are
proposed in the literature [19] (see also [26, Chap. 9.8] for a discussion in the
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2 A. Abdulle

stochastic case). Central to the characterization of stiff systems is the presence of
multiple time scales the fastest of which being stable. The usual remedy to the issue
of stiffness (in the deterministic case) is to use implicit methods. This comes at the
cost of solving (possibly large and badly conditioned) linear systems. For classes of
problems (dissipative problems), explicit methods with extended stability domains,
called Chebyshev or stabilized methods, can be efficient [2, 3, 24, 27] and have
proved successful in applications (see for example [4, 14, 18, 21] to mention but a
few). In this paper we review the recent extensions [5–8] of Chebyshev methods to
mean-square stable stochastic problems with multiple scales.

We close this introduction by mentioning that the stability concept considered
in this paper, namely the mean-square stability, does not cover some classes of
interesting multiscale stochastic systems. Indeed, adding noise to a deterministic
stiff system (where Chebyshev or implicit methods are efficient) may lead to
stochastic problems for which the aforementioned methods are not accurate. Adding
for example a suitably scaled noise (��1=2dW.t/) to the fast system of the following
singular perturbed problem

dx D f .x;y/dt; x.t0/D x0; (1)

dy D 1

�
g.x;y/dt; y.t0/D y0; (2)

where � > 0 is a small parameter, can lead to a fast system with a non-trivial invariant
measure. To capture numerically the effective slow variable, requires to correctly
compute the invariant measure of the fast system. This might not be possible for
implicit1 or Chebyshev methods, if one uses large stepsize for the fast process. Even
though such problems are not mean-square stable, the stability properties of implicit
or Chebyshev methods still allow to compute trajectories which remain bounded.
But the damping of these methods may prevent the capture of the right variance of
the invariant distribution (see [7, 28] for examples and details). In such a situation
one should use methods relying on averaging theorems as proposed in [37] and [15].

The paper is organized as follows. In Sect. 2 we discuss stiff stochastic systems
and review the mean-square stability concept for the exact and the numerical
solution of an SDE. Next, in Sect. 3 we introduce the Chebyshev methods for
stiff ODEs. The extension of such methods to SDEs (called the S-ROCK meth-
ods) are presented in Sect. 4. In Sect. 5, we study the stability properties of the
S-ROCK methods. Numerical comparison illustrating the performance of the
S-ROCK methods and comparison with several standard explicit methods for SDEs
are given in Sect. 6.

1 There is one exception, namely the implicit midpoint rule, which works well for (1)-(2) when the
fast process is linear in y. This is due to the lack of damping at infinity [28].
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2 Stiff Stochastic Systems and Stability

As an illustrative example, consider the following stochastic partial differential
equation (SPDE), the heat equation with noise (see [6]):

@u

@t
.t;x/DD

@2u

@x2
.t;x/C�u.t;x/ PW .t/; t 2 Œ0;T �; x 2 Œ0;1�; (3)

where we choose the initial conditions u.0;x/D 1; and mixed boundary conditions
u.t;0/D 5; @u.t;x/

@x
jxD1 D 0 and D D 1. Here PW .t/ denotes a white noise in time.2

To solve numerically the above system, we follow the method of lines (MOL) and
discretize first the space variable

dY it D Y iC1t �2Y it CY i�1t

h2
C�Y it dWt ; i D 1; : : : ;N; (4)

to obtain (a large) system of N SDEs, where N D O.1=h/ (Fig. 1).

Remark 1. Notice that we used finite differences (FDs) to perform the spatial
discretization. We emphasize that finite element methods (FEMs) could have been
used as well. In a first step one would obtain a system MY 0 D : : : ; where M is
the mass matrix. For low order FEs a cheap procedure, called mass lumping, allows
to transform M into a diagonal matrix without loss of accuracy for the numerical
method [36].
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Fig. 1 One realisation of the system (4) with the Euler-Maruyama method (left figure); average
over 100 realizations (right figure). Parameters values: D D k D 1;N D 50;�t D 2�14,
t 2 Œ0;3�

We first write the system (4) in the form dY D .AY CB.Y //dtCGYdWt , where
A is a tridiagonal matrix (approximation of the second order partial differential

2 We will not discuss the precise meaning of (3), whose rigorous definition involves an integral
equation [13, 38].
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operator), B.Y / is a vector accounting for the boundary conditions, and G is a
(diagonal) matrix accounting for the multiplicative noise. When then obtain after
(simultaneous) diagonalization, the system of SDEs (with appropriate boundary
conditions omitted here) reads

dY it D �iY
i
t dtC�Y it dWt ; i D 1; : : : ;N; (5)

where �i 2 Œ�O.N 2/;0� (see [6] for details). As for (3), the rigorous interpretation
of (5) is an integral form involving a stochastic integral for which various “calculus”
can be used, most often the Itô or the Stratonovich calculus [9]. The numerical
methods described in this paper have been derived for both calculus. For the time
being, we will consider Itô form. The simplest numerical scheme to solve (5)
(assuming Itô form) is the Euler-Maruyama method, a generalization of the Euler
scheme for ordinary differential equations (ODEs) introduced in [30]

YnC1 D YnC�t�YnCIn�Yn; (6)

where In DW.tnC1/�W.tn/ are independent normal N .0;�t/ random variables.
As for ODEs, two important issues arise when deriving numerical methods for

SDEs, namely the accuracy and the stability of the approximation procedure.
Accuracy. Consider

dY D f .t;Y /dtC
MX

lD1
gl.t;Y /dWl.t/; Y.0/D Y0; (7)

where Y.t/ is a random variable with values in R
d ; f W Œ0;T ��R

d ! R
d is the

drift term, g W Œ0;T ��R
d ! R

d is the diffusion term and Wl.t/ are independent
Wiener processes. Assuming that f and g are continuous, have a linear growth and
are uniform Lipschitz continuous with respect to the variable Y , that Y0 has finite
second order moment and is independent of the Wiener processes, one can show the
existence and uniqueness of a (mean-square bounded) strong solution of (7) (see for
example [31, Chap. 5.2] for details). Consider for the numerical approximation of
(7) the one-step method of the form

YnC1 D˚.Yn;�t;In1
; : : : ;InM

/; (8)

where Inl
DWl.tnC1/�Wl.tn/ are independent Wiener increments drawn from the

normal distributions with zero mean and variance �t D tnC1 � tn. The numerical
method (8) is said to have a strong order �, respectively weak order of �, if there
exists a constant C such that

E.jYn�Y.�/j/� C.�t/�respectively
ˇ̌
E.G.Yn//�E.G.Y.�///

ˇ̌� C.�t/�; (9)

for any fixed � D n�t 2 Œ0;T � (�t sufficiently small) and for all functionsG WRd !
R that are 2.�C1/ times continuously differentiable with partial derivatives having
polynomial growth.
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Remark 2. In general, for numerical methods depending only on the first Wiener
incrementWl.tnC1/�Wl.tn/ the highest strong and weak order that can be obtained
are 1=2 and 1; respectively. Strong order one can be obtained for 1-dimensional
problems or if commutativity conditions hold for the diffusion functions gl
[12, 26, 34].

Stability. We have to investigate for what �t does a numerical method YnC1 D
˚.Yn;�t;In1

; : : : ;InM
/ applied to (7) share the stability properties of the exact

solution Yt . Widely used measures of stability for SDEs are mean-square stability,
which measures the stability of moments, and asymptotic stability (in the large),
which measures the overall behavior of sample functions [20]. We will focus here
on mean-square stability. For linear autonomous system of SDEs, this concept of
stability is stronger than asymptotic stability (see [9, Chap. 11]) or [20]). Consider
the SDE (7) with f .t;0/D gl .t;0/D 0 and with a nonrandom initial value Y0. The
steady solution Y D 0 of (7) is said to be mean-square stable if there exists ı0 such
that

lim
t!1E

�jY.t/j2�D 0; for all jY0j< ı0: (10)

In order to analyze the stability of numerical methods one has to restrict the class of
problems considered. Inspired by (5) and following [22, 35] we consider the scalar
linear test equation

dY D �YdtC�YdW.t/; Y.0/D Y0; (11)

where �;� 2C: For �D 0 one recovers the Dahlquist test equation, which is instru-
mental in developing the linear A-stability theory for ODEs [19, Chaps. 4.2, 4.3].

Remark 3. We note that for SDEs, it is at first not clear to which extend the study
of a scalar linear test problem is relevant to systems of linear equations or fully
nonlinear equations. Recent work, however, suggest that stability analysis for the
scalar test equation is relevant for more general systems [10].

The test equation (11) can be solved analytically and the solution reads

Y.t/D Y0 e
..���2

2
/tC�W.t// (Itô); Y.t/D Y0 e

.�tC�W.t// (Stratonovich), (12)

and we have for the mean-square stability

lim
t!1E

�jY.t/j2�D 0 ”
� f.�;�/ 2 C

2I <�C 1
2
j�j2 < 0g (Itô),

f.�;�/ 2 C
2I <�C .<�/2 < 0g (Stratonovich).

(13)
If we apply the Euler-Maruyama method (6) to (11) we obtain

E.jYnC1j2/D .j1Cpj2Cq2/E.jYnj2/; (14)

where p D�t�;q D p
�t� and thus, the method is mean-square stable if and only

if j1Cpj2 C q2 < 1. More generally, if we apply the numerical scheme (8) to the
test problem (11), square the result and take the expectation, we obtain
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E.jYnC1j2/DR.p;q/E.jYnj2/; (15)

where p D�t�;q D p
�t� and where R.p;q/ is a function in <.p/, =.p/, <.q/,

=.q/ (a polynomial in these variables if the method is explicit). We say that a
numerical method is mean-square stable for the test problem (11) if and only if

lim
n!1E

�jYnj2�D 0 ” .�t�;
p
�t�/ 2 S WD fp;q 2 CI R.p;q/ < 1g: (16)

Fig. 2 Stability domain of the Euler-Maruyama method (black disk) for �;� 2 R. The dashed
curve represent the boundary of the exact stability domain (the left part of the curve lies in the
stability domain)

In order to be able to visualize the stability region, we restrict ourself to the case
�;� 2 R. We see in Fig. 2 that the stability domain of the Euler-Maruyama method
is a disk of radius 1 centered at p D �1, while the stability domain of the exact
test problem is the unbounded region on the left of the dashed curve. The Euler-
Maruyama has thus a restricted stability region. For the problem (3) (see also (5))
this explicit method will thus face a severe time step restriction due to stability
constraint (see Fig. 7 in Sect. 6). One could use semi-implicit methods (implicit
method in the drift term) to obtain method with much better stability properties.
This comes however with the cost of solving nonlinear equations at each stepsize.
This can be numerically expensive for large systems (see e.g. (4)), specially if one
needs to simulate many realizations. We will explain in the next section how mean-
square stability can be improved without giving up the explicitness of the numerical
method.
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3 Chebyshev Methods

Chebyshev methods are a class of explicit one-step methods with extended stability
domains along the negative real axis. The basic idea for such methods goes back to
the 1960s with Saul’ev, Franklin and Guillou and Lago (see [19, Sect. IV.2] and the
references therein). It can be summarized as follows: consider a sequence of forward
Euler methods	h1

; : : : ;	hm
with a corresponding sequence of timesteps h1; : : : ;hm

and define a one-step method as the composition 	�t D .	hm
ı : : : ı	h1

/.y0/ with
stepsize�t D h1C : : :Chm: Next, givenm; optimize the sequence fhi gmiD1, so that

jRm.x/j D
ˇ̌
ˇ̌
ˇ

mY

iD1

�
1C hix

�t

�ˇ̌
ˇ̌
ˇ � 1 for x 2 Œ�lm;0�;

with lm > 0 as large as possible. The resulting numerical method will thus be a
m-stage method. The solution of the above optimization problem is given by shifted
Chebyshev polynomials

Rm.x/D Tm.1Cx=m2/D 1CxCa2x
2C�� �Camx

m;

where fTj .x/gj�0 are the Chebyshev polynomials given recursively by

T0.x/D 1; T1.x/D x;

and
Tj .x/D 2xTj�1.x/�Tj�2.x/; j � 2:

We see that the optimal sequence of fhigmiD1 is given by hi D .�1=xi /�t , where xi
are the zeros of Rm.x/ and the maximal stability domain on the negative real axis
increases quadratically with the number of stages m and is given by lm D 2m2.
The property Rm.´/ D 1C xC O.x2/ ensure the first order convergence of the
numerical method. Besides the stability of the “super stepsize” �t , one has also
to care about the internal stability (accumulation of errors within one step) of the
method as m can be large. This can be achieved either by a proper ordering of
the Euler steps hi [27] or by exploiting the three-term recurrence relation of the
orthogonal polynomials [24]. Following the second strategy we consider a m-stage
numerical method given by

k0 WD y0

k1 WD y0C �t

m2
f .k0/

kj WD 2�t

m2
f .kj�1/C2kj�1�kj�2; 2� j �m

y1 WD km:

(17)

Applied to the test problem y0 D �y, this method gives for the internal stages

kj D Tj
�
1C�t�=m2

�
y0; j D 0; : : : ;m; (18)
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and produces after one step y1 D Rm.�t�/y0; where Rm.x/D Tm.1Cx=m2/; is
the shifted Chebyshev polynomial of degreem (x D�t�).

These methods have been originally developed for deterministic problems with
eigenvalues along the negative real axis. A typical (deterministic) stability domain
Sm of a Chebyshev method is sketched in Fig. 3 (left figure), where

Sm WD f´ 2 CI jRm.´/j< 1g:
Recall that for the linear stability of deterministic ODE solvers, one considers (11)
with � D 0 [19, Chaps. 4.2, 4.3]. It can be seen in Fig. 3 that the boundary of the

Fig. 3 Stability domain of first order Chebyshev method (degree mD 10) with variable damping
�D 0 (left figure), �D 0:1 (right figure)

stability domain along the negative real axis is 200, for m D 10. However, there
are regions in Œ0;200�, precisely when T .1Cx=m2/ D 1; with no stability in the
direction of the imaginary axis.

To overcome the aforementioned issue, it has been suggested by Guillou and
Lago [17] to replace the requirement jRm.x/j�1 in Œ�lm;0� by jRm.x/j�
 <
1 in Œ�l�m;���; where � is a small positive number. The number 
 is called
the damping parameter or sometimes just the “damping”. This can done for the
polynomials Tm.1Cx=m2/ by a division with Tm.!0/ > 1, where !0 D 1C
=m2.
To obtain the right order of accuracy with this modified stability function, one
does a change of variables and obtains Rm;�.x/ D Tm.!0C!1x/=Tm.!0/; where
!1 D Tm.!0/=T

0
m.!0/ (see [19, Sect. IV.2]). By increasing the parameter 
 the strip

around the negative real axis included in the stability domain can be enlarged as can
be seen in Fig. 3 (notice that this reduces the value of lm as l�m < lm for 
 > 0). The
formula (18) can be modified appropriately to incorporate damping.

Higher order quasi-optimal Chebyshev methods: the ROCK methods. Higher
order methods, called ROCK, for orthogonal Runge-Kutta Chebyshev methods,
based on orthogonal polynomials have been developed in [2, 3]. The stability
functions are given by polynomials Rm.x/ D 1CxC : : :C xp=pŠC O.xpC1/ of
order p (i.e., Rm.x/� ex D O.xpC1/) and degree m with quasi optimal stability
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domains along the negative real axis. These polynomials can be decomposed as [1]

Rm.x/Dwp.x/Pm�p.x/;

where Pm�p.x/ is a member of a family of polynomials fPj .x/gj�0 orthogonal
with respect to the weight function .1� x2/�1=2wp.x/2. (The function wp.x/ is
a polynomial of degree p with only complex zeros when p is even and with only
one real zero when p is odd.3) The idea for the construction of a numerical method
is then as follows: the 3-term recurrence relation of the orthogonal polynomials
fPj .x/gj�0

Pj .x/D .˛j x�ˇj /Pj�1.x/��jPj�2.x/;
is used to define the internal stages of the method

Kj D �t˛jf .Kj�1/�ˇjKj�1��jKj�2; j D 2; : : : ;m�p:
This ensures the good stability properties of the method. A p-stage finishing
procedure with the polynomial wp.´/ as underlying stability function ensures the
right order of accuracy of the method.
Gain in efficiency. Assume that �t is the stepsize corresponding to the desired
accuracy to solve an initial value problem y0 D f .t;y/ in the interval Œ0;T �. Let �
be the spectral radius of the Jacobian @yf . A standard explicit method, as the Euler
method, must satisfy ıt D C=� (for stability) and thus needs�t�=C function eval-
uations in each interval�t . For a Chebyshev method, we can select a stage number
mDp

�t�=C : As the number of function evaluations is equal to the stage number
of the Chebyshev method4 only the square root of the function evaluations needed
for standard explicit method are required for each stepsize (notice that the constant
C can be different for the two methods but is in both cases of moderate size).

4 The S-ROCK Methods

We now present the Stratonovich and the Itô stochastic ROCK (S-ROCK) methods
derived in [5–7]. When modeling physical systems with SDEs, the question of
the choice of the stochastic integral arises. SDEs with Stratonovich integrals are
stable with respect to changes in random terms and are often used for systems
where the noise is “added” as fluctuation of a deterministic system. SDEs with
Itô integrals are preferred for systems with internal noise where the fluctuation is
due to the systems itself as for example in chemical reactions due to the property
of “not looking into the future” of the Itô integral (i.e., the martingale property)

3 The ROCK methods have been developed for p even (p D 2;4). They could be obtained for p
odd provided a proper treatment of the real zero ofwp.x/.
4 Strictly speaking this is true for first order Chebyshev methods. For higher order methods, as the
ROCK methods, the number of function evaluations is not equal but still close to the stage number
m (see [2, 3]).
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[26, 31]. Of course, there are conversion rules from one calculus to the other.
However, these rules involve the differentiation of the diffusion term which can
be cumbersome and costly. It is thus preferable to derive genuine formulas for both
calculus. Furthermore, it is sometimes desirable to have stabilized explicit methods
for discrete noise. This has been considered in [8], where the �-ROCK methods have
been developed and we briefly comment on these methods as well in what follows.

4.1 Construction of the S-ROCK Methods

Inspired by the ROCK methods, we consider methods based on:
� Deterministic Chebyshev-like internal stages to ensure good stability properties

(stages 1;2; : : : ;m�1).
� A finishing stochastic procedure to incorporate the random process and obtain

the desired stochastic convergence properties.
As for deterministic methods, the use of damping plays a crucial role and allows

to enlarge the width of the stability domains in the direction of the “stochastic axis”
(e.g, the q axis in Fig. 2). This is discussed in Sect. 5.
Deterministic Chebyshev stages. Define the m�1 stages of the S-ROCK method
by

K0 D Yn;

K1 D YnC�t
!1

!0
f .K0/;

Kj D 2�t!1
Tj�1.!0/
Tj .!0/

f .Kj�1/C2!0
Tj�1.!0/
Tj .!0/

Kj�1� Tj�2.!0/
Tj .!0/

Kj�2;

for j D 2; : : : ;m�1; where !0 D 1C
=m2 and !1 D Tm.!0/=T
0
m.!0/. Recall that


 is the damping parameter which will be optimized (see Sect. 5).

Stochastic stages. We have now to incorporate the noise in an appropriate way.
While the deterministic stages are the same for the various S-ROCK methods, the
finishing procedure will be different to take into account the various stochastic
calculus of the underlying SDE and the desired accuracy of the methods.
Itô S-ROCK methods (multi-dimensional SDEs). We define the finishing proce-
dure as

Km D 2�t!1
Tm�1.!0/
Tm.!0/

f .Km�1/C2!0
Tm�1.!0/
Tm.!0/

Km�1� Tm�2.!0/
Tm.!0/

Km�2

C
MX

lD1
Inl
gl .Km�1/;

YnC1 DKm: (19)
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Itô S-ROCK methods (commutative noise5 or one dimensional Wiener pro-
cess). In that special case, one can improve the strong convergence of the method
by considering the finishing procedure

K�m�1 DKm�1C
MX

rD1
gr .Km�1/Inr

;

K
��;l
m�1 DKm�1Cp

�tgl .Km�1/; l D 1;2; : : : ;M;

Km D 2�t!1
Tm�1.!0/
Tm.!0/

f .Km�1/C2!0
Tm�1.!0/
Tm.!0/

Km�1� Tm�2.!0/
Tm.!0/

Km�2

C
MX

lD1
Inl
gl .Km�1/C 1

2

MX

lD1
Inl

�
gl .K

�
m�1/�gl.Km�1/

�

� 1

2

MX

lD1

p
�t
�
gl .K

��;l
m�1/�gl.Km�1/

�
;

YnC1 DKm: (20)

Remark 4. For M D 1 the above formula can be further simplified and written as

K�m�1 DKm�1Cp
�tg.Km�1/;

Km D 2�t!1
Tm�1.!0/
Tm.!0/

f .Km�1/C2!0
Tm�1.!0/
Tm.!0/

Km�1� Tm�2.!0/
Tm.!0/

Km�2

CIng.Km�1/C I 2n ��t
2
p
�t

.g.K�m�1/�g.Km�1//;
YnC1 DKm: (21)

Stratonovich S-ROCK methods (multi-dimensional SDEs). We define the finish-
ing procedure as

K�m�1 DKm�1C Tm.!0/

2!0Tm�1.!0/

MX

lD1
Inl
gl.Km�2/;

Km D 2�t!1
Tm�1.!0/
Tm.!0/

f .Km�1/C2!0
Tm�1.!0/
Tm.!0/

Km�1� Tm�2.!0/
Tm.!0/

Km�2

C !0Tm�1.!0/
Tm.!0/

MX

lD1
Inl
.gl .Km�1/�gl.Km�2//;

YnC1 DKm: (22)

Notice that this method has order one when solving SDEs with commutative noise
or with only one Wiener process [5].

5 Consider Ll DPd
kD1g

k
l

@

@yk ; l D 1;2; : : :;M: Commutative noise means that the condition

Llgk
r DLrgk

l
8l;r D 1; : : :;M I kD 1; : : :;d holds for the diffusion functions [26].
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S-ROCK methods for discrete noise. The procedure explained above can be gen-
eralized to stochastic problems with other types of noise. In [8], the approximation
of SDE for chemical kinetic systems has been considered. The SDE is of the form6

dYt D
MX

jD1
�jP.aj .Yt�/dt/;

where Yt is a N�dimensional state vector (corresponding to the N species of the
reaction) with components in N, �j is a state-change vector, aj is a propensity
function (the number of possible combination of reactant molecules involved in the
j th reaction, times a stochastic reaction rate constant) and P.aj .Yt�/dt/ is a state-
dependent Poisson noise. We now make the decomposition

dYt D
MX

jD1
�jaj .Yt�/dtC

MX

jD1
�j

�
P.aj .Yt�/dt/�aj .Yt�/dt

�

D f .Yt�/dtCdQt ; (23)

where f and Q are called the drift part and jump part, respectively (see [29]).
This form is similar with SDEs driven by Wiener processes, except for the different
noise. Similarly as for the Itô or the Stratonovich S-ROCK methods, the m� 1
deterministic Chebyshev stages can be applied to the drift part of (23), and the noise
term can be incorporated in the finishing procedure in an appropriate way to solve
(23) (we refer to [8] for details).

4.2 Accuracy of the S-ROCK Methods

Before considering the stability properties of our methods (the main motivation to
consider the formulas introduced in Sect. 4.1) we briefly discuss their accuracy. As
mentioned in Sect. 1, by considering numerical methods depending only on the first
Wiener increment, strong accuracy higher than � D 1=2 or weak accuracy higher
than �D 1 cannot be obtained. Only in the special case of commutative, diagonal or
one dimensional noise, strong order �D 1 is possible. The theorems below show that
the S-ROCK methods enjoy the highest possible accuracy for numerical methods
involving only the first Wiener increment.

Theorem 1 ( [5–7]). For m � 2, the methods (19) (Itô) and (22) (Stratonovich)
applied to (7) (with f and gl sufficiently smooth) satisfy

E.jYN �Y.�/j/� C.�t/1=2; jE.G.YN //�E.G.Y.�//j � C�t (24)

for any fixed � D N�t 2 Œ0;T � and �t sufficiently small and for all functions G W
R
d ! R; 4 times continuously differentiable and for which all partial derivatives

have polynomial growth.

6 See [29] for a rigorous description of the problem.
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Theorem 2 ( [5–7]). Assume that (7) (with f and gl sufficiently smooth) has
commutative noise or that M D 1. Then, for m � 2, the methods (20),(21) (Itô)
and (22) (Stratonovich) applied to (7) (with f and gl sufficiently smooth) satisfy

E.jYN �Y.�/j/� C�t (25)

for any fixed � DN�t 2 Œ0;T � and�t sufficiently small.

For the proofs of these theorems we refer to [5,6] (Stratonovich S-ROCK methods)
and [7] (Itô S-ROCK methods).

5 Extended Mean-Square Stability and Damping

We study here the mean-square stability property of the S-ROCK methods. By
applying any of the methods (19),(20),(21) or (22) to the scalar test problem (11),
squaring the results and taking the expectation we obtain the mean-square stability
function (see (15))

Rm.p;q/D T 2m.!0C!1p/

T 2m.!0/
CQm�1;r.p;q/; (26)

where Qm�1;r.p;q/ is a polynomial of degree 2.m� 1/ in p and of degree 2r
in q. The precise form of Qm�1;r.p;q/ depends on the specific numerical method

considered. Define j D Tj .!0C!1p/

Tj .!0/
. For the method (19) we have r D 1 and

Qm�1;1.p;q/D q2m�1:

For the method (21) r D 2 and

Qm�1;2.p;q/D q2m�1C q4

2
m�1:

Finally, r D 2 for the method (22) and

Qm�1;2.p;q/D q2

 
mm�2C

h
m�2

�
!1

!0
pC1

�

C!0
Tm�1.!0/
Tm.!0/

.m�1�m�2/
i2
!

C 3

4
q42m�2:

In Fig. 4, we plot the mean-square stability domains for the method (19) with various
values of damping for mD 5. We observe that without damping, the stability along
thep axis (the “deterministic axis”) is optimal (i.e., 2 �52). But there are points (close
to the p axis) with no stability in the direction of the q axis (see Fig. 4, (left)). As
Qm�1;r.p;0/D these points are exactly the points where T 2m.1Cp=m2/D 1. For
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Fig. 4 Mean-square stability regions for the method (19) with various values of damping (mD5).
Left figure (no damping, � D 0), middle figure (optimal damping, �D 4:7), right figure (infinite
damping)

infinite (or very large) damping the mean-square stability domain covers a portion
of the stability domain of the test equation (11), but the stability domain along the
p axis becomes linear in m (i.e., 2 �5, see Fig. 4 (right)). The mean-square stability
domain for what will be called the optimal damping value covers a “large” portion
of the stability domain of the test equation (see Fig. 4, (middle)). In order to quantify
these observations we define a “portion” of the stability domain (13) by

SSDE;s D f.p;q/ 2 Œ�s;0��RI jqj � p�pg (Stratonovich); (27)

or
SSDE;s D f.p;q/ 2 Œ�s;0��RI jqj �p�2pg (Itô); (28)

where s > 0. We then consider two parameters l and d related to a numerical
stability domain S by

l D maxfjpjIp < 0; Œp;0�� S g; d D maxfr > 0ISSDE;s � S g: (29)

Clearly, d � l; and for mean-square stability, it is the parameter d which has to be
optimized. For the S-ROCK methods, as can be seen in Fig. 4, l and d depend on
the stage numberm and the value of the damping parameter 
. We thus denote these
parameters by lm.
/ and dm.
/: The following lemmas give important information
on the value of lm.
/ and a bound of the possible values for dm.
/; the parameter
which characterizes the stability domains of our methods.

Lemma 1 ( [6, 7]). Let 
 � 0. For all m � 2, the m-stage numerical method (22)
has a mean-square stability region S �

m with lm.
/ � c.
/m2; where c.
/ depends
only on 
.

Lemma 2 ( [6, 7]). For all m� 2

lm.
/! 2m for 
! 1: (30)

In view of the above two lemmas we make the following important observation:
for any fixed 
, the stability domain along the p axis increases quadratically
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(Lemma 1), but for a given method, i.e., a fixed m, increasing the damping 

to infinity reduces the quadratic growth along the p axis into a linear growth
(Lemma 2). Since dm.
/ � lm.
/ there is no computational saving compared to
classical explicit methods for this limit case.

Optimized methods. Our goal is now for a given method to find the value of 
,
denoted 
� which maximize dm.
/, i.e.,


� D argmaxfdm.
/I
 2 Œ0;1/g: (31)

The corresponding optimal values dm.
�/ form� 200 have been computed numer-
ically and are reported in Fig. 5 for the Itô S-ROCK methods (19) and in Fig. 6
for the Stratonovich S-ROCK methods (22). We also report in the same figures the
values of lm.
�/ and 
�. We see that for 
 D 
�, dm.
�/ ' lm.


�/. The dashed
and the dash-dotted lines in the plots reporting the values of dm.
�/; represent a
quadratic and a linear slope, respectively. We clearly see that the portion of the true

Fig. 5 Values of ��; l�
�

;d��

as a function of m and the ratio d��

m =m (stability versus work)
for the Itô S-ROCK methods (19). The dashed and the dash-dotted lines in the upper-right figure
represent a quadratic and a linear slope, respectively
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stability domain included in the stability domain of our numerical methods grows
super-linearly (close to quadratically) for both the Itô and the Stratonovich S-ROCK
methods. Finally we study the efficiency of the methods by reporting the quantity
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Fig. 6 Values of ��; l�
�

;d��

as a function of m and the ratio d��

m =m (stability versus work) for
the Stratonovich S-ROCK methods (22). The dashed and the dash-dotted lines in the upper-right
figure represent a quadratic and a linear slope, respectively

dm.

�/=m (stability versus work). For standard methods this value is small (close

to zero for the Euler-Maruyama methods as can be seen in Fig. 2 and about 1=2 for
the Platen method (see (33) in Sect. 5)). Another method will be considered in the
numerical experiments, namely the RS method [11, p. 187] developed with the aim
of improving the mean-square stability of the Platen method. This method has a
larger l value than the Platen method but a smaller d value and the efficiency of this
method (as measured here) is about 0:3. We see that S-ROCK methods are orders
of magnitude more efficient (for the aforementioned criterion of efficiency related
to stability) than standard explicit methods for SDEs.
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6 Numerical Illustrations

In this section we illustrate the efficiency of the S-ROCK methods. As mentioned in
the beginning of Sect. 4, different applications require different stochastic integrals
and we will consider both Itô and Stratonovich SDEs in the following examples. The
first example is the heat equation with noise mentioned in the introduction. For this
problem we consider the Stratonovich S-ROCK methods. The second example is
a chemical reaction modeled by the chemical Langevin equation. The Itô S-ROCK
methods will be used for this latter problem. For both examples, we compare the
S-ROCK methods with standard explicit methods.

Example 1: heat equation with noise. We consider the SPDE (3), where we
choose this time the Stratonovich modeling for the noise. We follow the procedure
explained in Sect. 2 and transform the SPDE in a large system of SDEs

dY it D Y iC1t �2Y it CY i�1t

h2
C�Y it ıdWt ; i D 1; : : : ;N; (32)

where the symbol ı denotes the Stratonovich form for the stochastic integral. In our
numerical experiments, we compare the Stratonovich S-ROCK methods (22) with
two other methods, the method introduced by Platen [33] (denoted PL) given by the
two-stage scheme

Kn D YnC�tf .Yn/CIng.Yn/;

YnC1 D YnC�tf .Yn/CIn
1

2
.g.Yn/Cg.Kn//; (33)

and the RS method, introduced by P.M. Burrage [11, p. 187]. This is a 2-stage
method constructed with the aim of improving the mean-square stability properties
of the Platen method and is given by

Kn D YnC 4

9
�tf .Yn/C 2

3
Jng.Yn/;

YnC1 D YnC �t

2
.f .Yn/Cf .Kn/C 1

4
.g.Yn/Cg.Kn//Jn: (34)

Both methods have strong order 1 for one-dimensional systems or systems with
commutative noise as (4). This is also the case for the Stratonovich S-ROCK
methods (22). We have seen, at the end of Sect. 5, that the stability domains of
both methods, PL and RS, cover only a small portion of the stability domain
corresponding to the stochastic test equation and this is in contrast with the S-ROCK
methods. In Fig. 7 we monitor the number of function evaluations (cost)7 needed by
the various methods to produce stable integrations when increasing the value of N ,

7 By number of function evaluations we mean here the total number of drift and diffusion
evaluations.
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i.e., the stiffness of the problem. For the S-ROCK methods we vary the number of
stages to meet the stability requirement (this value is indicated in Fig. 7).

Fig. 7 Function evaluations and stepsize as a function ofN . For PL and RS, we choose the largest
stepsize to have a stable integration of (32) (strong error < 10�1). For the S-ROCK methods, we
can vary the stage number m to meet the stability requirement (we fixed the highest stage number
atmD 320)

We see that the S-ROCK method reduces the computational cost by several
orders of magnitude as the stiffness increases. In the same figure we see the value
of the stepsize needed for the different methods, again as a function of N . As
expected, the standard explicit methods, as PL or RS face severe stepsize restriction
as the stiffness increases. This example demonstrates that for classes of SPDEs
there is a real advantage in using explicit stabilized methods such as S-ROCK
methods. We notice that the stepsize is reduced for the highest value of N for the
S-ROCK methods (see Fig. 7 (right)). We could have kept the same stepsize but the
stage number would then have become quite large. It is well-known for Chebyshev
methods that in order to control the internal stability of the method one should avoid
computation with a very high stage number [3]. Here we fixed the highest stage
number at mD 320.

Example 2: a chemical reaction. We know illustrate the use of the Itô S-ROCK
methods. Following [7] we consider a stiff system of chemical reactions given by
the Chemical Langevin Equation (CLE). We study the Michaelis-Menten system,
describing the kinetics of many enzymes. This system has been studied in [23]
with various stochastic simulation techniques. The reactions involve four species:
S1 (a substrate), S2 (an enzyme), S3 (an enzyme substrate complex), and S4 (a
product) and can be described as follows: the enzyme binds to the substrate to form
an enzyme-substrate complex which is then transformed into the product, i.e.,
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S1CS2
c1�! S3 (35)

S3
c2�! S1CS2 (36)

S3
c3�! S2CS4: (37)

The mathematical description of this kinetic process can be found in [25]. For the
simulation of this set of reactions we use the CLE model

dY.t/D
3X

jD1
�jaj .Y.t//dtC

3X

jD1
�j

q
aj .Y.t//dWj .t/; (38)

where Y.t/ is a 4 dimensional vector describing the state of each species S1; : : : ;S4.
The Itô form used in (38). The functions aj .Y.t//, called the propensity functions,
give the number of possible combinations of molecules involved in each reaction j .
For the above system they are given by

a1.Y.t//D c1Y1Y2; a2.Y.t//D c2Y3; a3.Y.t//D c3Y3:

The vectors �j ; called the state-change vectors, describe the change in the number of
molecules in the system when a reaction fires. They are given for the three reactions
of the above system by �1 D .�1;�1;1;0/T ; �2 D .1;1;�1;0/T ;�3 D .0;1;�1;1/T .
We set the initial amount of species as (the parameters are borrowed from [39,
Sect. 7.3])

Y1.0/D Œ5�10�7nAvol�; Y2.0/D Œ5�10�7nAvol�; Y3.0/D 0; Y4.0/D 0;

Fig. 8 One trajectory of the Michaelis-Menten system solved with the Euler-Maruyama method
(left figure) and the S-ROCK method (right figure) for c1D 1:66�10�3;c2D 10�4;c3D 0:10
(the stepsize is �t D 0:25 and the same Brownian path is used for both methods; mD 3 for the
S-ROCK method)
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Fig. 9 Numerical solution of (38) with the Euler-Maruyama and the S-ROCK methods. Number
of function evaluations as a function of c3 for both methods (left figure). Size of the timestep �t
as a function of c3 (Euler-Maruyama); �t D 0:25 for the S-ROCK method and the stage number
m is adapted to the stiffness (right figure)

where Œ � � denotes the rounding to the next integer and nA D 6:023� 1023 is the
Avagadro’s constant (number of molecules per mole) and vol is the volume of the
system.

In the following numerical experiments, we solve numerically the SDE (38) with
the Itô S-ROCK methods and the Euler-Maruyama method (6). This latter method is
often used for solving the CLE. As the CLE has multidimensional Wiener processes,
we use the S-ROCK methods (19). We first compare the solutions along time for the
two methods (t 2 Œ0;50�), with parameters leading to a non-stiff system for (38). As
expected, we observe in Fig. 8 a very similar behavior of the two methods.

We next increase the rate of the third reaction in (35)–(37), c3 D 102;103;104

corresponding to an increasingly fast production. The resulting CLE becomes stiff
and the Euler-Maruyama method is inefficient. In Fig. 9 we report the stepsizes
and the number of function evaluations needed for the Euler-Maruyama and
the S-ROCK methods. The stepsize is chosen as �t D 0:25 for the S-ROCK
methods. For the Euler-Maruyama method we select for each value of c3 the largest
stepsize which leads to a stable integration. Thus, for the Euler-Maruyama method,
stability is achieved by reducing the stepsize while for the S-ROCK method, it is
achieved by increasing the stage number (m D 3;7;28;81). Notice that for both
methods, one evaluation of “g.Y /dW.t/” is needed per stepsize. Thus, by keeping
a fixed stepsize, the number of generated random variables remains constant as the
stiffness increases for the S-ROCK methods, while this number increases linearly
(proportional to the stepsize reduction) for the Euler-Maruyama method. Taking
advantage of the quadratic growth of the stability domains, we see that the number
of function evaluations is reduced by several orders of magnitude when using the
S-ROCK methods instead of the Euler-Maruyama method.
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Oscillatory Systems with Three Separated Time
Scales: Analysis and Computation

Gil Ariel, Björn Engquist, and Yen-Hsi Richard Tsai

Abstract We study a few interesting issues that occur in multiscale modeling
and computation for oscillatory dynamical systems that involve three or more sep-
arated scales. A new type of slow variables which do not formally have bounded
derivatives emerge from averaging in the fastest time scale. We present a few sys-
tems which have such new slow variables and discuss their characterization. The
examples motivate a numerical multiscale algorithm that uses nested tiers of
integrators which numerically solve the oscillatory system on different time scales.
The communication between the scales follows the framework of the Heterogeneous
Multiscale Method. The method’s accuracy and efficiency are evaluated and its
applicability is demonstrated by examples.

1 Introduction

In this paper we study a few interesting phenomena occurring in oscillatory
dynamical systems involving three or more separated time scales. In the typical
setting, the fastest time scale is characterized by oscillations whose periods are of the
order of a small parameter �. Classical averaging and multiscale methods consider
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the effective dynamics of such systems on a time scales which is independent
of �. However, under this scaling, many interesting phenomena, e.g. the nontrivial
energy transfer among the linear springs in a Fermi-Pasta-Ulam (FPU) lattice, occur
at the O.1=�/ or even longer time scales. These kind of interesting phenomena
motivates our interest in ordinary differential equations (ODEs) with three or more
well separated time scales.

A good amount of development in numerical methods for long time simulations
has been centered around the preservation of (approximate) invariances. In the past
few years, many numerical algorithms operating on two separated scales have been
proposed, see e.g. [1–3, 8, 9, 12–14, 16, 17, 19, 30–34]. To our knowledge, very few
algorithms were developed considering directly three or more scales.

For our purpose, it is convenient to rescale time so the slowest time scale of
interest is independent of the small parameter �. Accordingly, the basic assumption
underling our discussion is that solutions are oscillatory with periods that are of the
order of some powers in �: �0;�1; : : : ;�m: We will study the few issues arising from
multiscale modeling and computations for ODEs in the form

Px D
mX

iD0
��ifi .x/; x.0/D x0; (1)

where 0 < � � �0, x D .x1; : : : ;xd / 2 R
d . We further assume that the solution of (1)

remains in a domain D0 � R
d which is bounded independent of � for all t 2 Œ0;T �.

For fixed � and initial condition x0, the solution of (1) is denoted x.t I�;x0/. For
brevity we will write x.t/ when the dependence on � and x0 is not directly relevant
to the discussion.

We will focus only on a few model problems involving three time scales. Our
goal is to compute the effective dynamics of such a system in a constant, finite time
interval Œ0;T �, for the case 0< �� �0 � 1. We will characterize the effective dynam-
ics by some suitable smooth functions x that change slowly along the trajectories of
the solutions, albeit possibly having some fast oscillations with amplitudes that are
of the order of �p ;p � 1. Naturally, the invariances of the system will be of interest.

As a simple example, consider the following linear system
(

Px1 D 1
�
x2Cx1;

Px2 D �1
�
x1Cx2;

(2)

with initial conditions .x1.0/;x2.0// D .0;1/. The solution is readily given by
.x1.t/;x2.t// D .et sin t

�
;et cos t

�
/. Taking I D x21 C x22 , we notice that I has a

bounded derivative, i.e., that PI WD .d=dt/I.x1.t/;x2.t//D 2I is independent of �.
For this particular example one can easily solve for I , I.t/D I.0/e2t . In fact, the
uniform bound on PI indicates the “slow” nature of I.x1.t/;x2.t// when compared
to the fast oscillations in .x1.t/;x2.t//. This type of characterization of the effective
dynamics in a highly oscillation system is commonly used in the literatures. See for
example [1, 2, 14, 18, 23–25]. Other approaches to finding slow variables includes,
e.g. [5, 6]. We formalize this notion with the following definition.
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Definition 1. We say that the function � W x 2 D0 7! R has a bounded derivative to
order �k for 0 < � � �0 along the flow x.t/ in D0 if

sup
x2D0;�2Œ0;�0�

jr�.x/ � Pxj � C��k ; (3)

where D0 � R
d is an open connected set and C is a constant, both independent of �.

For brevity, we will say that � has a bounded derivative along x.t/ if (3) holds with
k D 0. Such functions are commonly referred to as slow variables of the system.

When only two separated time scales are considered, the effective behavior
of a highly oscillatory system, x.t/, may be described by a suitably chosen set
of variables whose derivatives along x.t/ are bounded. In the literature the time
dependent function x1 D sin.t/ with j Px1j D O.1/ is naturally regarded as slow and
x2 D sin.t=�/ with j Px2j D O.��1/ is fast. Similarly x3 D sin.t/C� sin.t=�/ is slow.

When more than two time scales are involved, we also need to consider x4 D
sin.t/C � sin.t=�2/ as slow even if j Px4j D O.��1/. It will be regarded as slow
because jx4 � sin t j D O.�/ and sin.t/ is slow. As a further example, consider the
linear system (

Px1 D 1
�2 x2C 1

�
Cx1; x1.0/D x10;

Px2 D � 1
�2 x1Cx2; x2.0/D x20;

(4)

The solution is

�
x1.t/

x2.t/

�
D
 
Aet sin

�
��2tC�

�� �3

1C�4

Aet cos
�
��2tC�

�� �
1C�4

!
; (5)

where A and � are determined by the initial conditions AD x210Cx220 and tan� D
x10=x20. As above, we look at the square amplitude I D x21Cx22 . Its time derivative
is bounded to order �1 since

PI D 2��1x1C2I: (6)

However, using (5) we find that I.t/ D A2e2t CO.�/. Hence, even though the
derivative of I.t/ is not bounded for 0 < � < �0, I.t/ consist of a slowly changing
part and a small �-scale perturbation. This example demonstrates that the bounded
derivative characterization is not necessary for determining this type of effective
property.

Accordingly, Sect. 2 gives a definition for the time scale on which a certain
variable �.x/ evolves under the dynamics of ODEs in the form (1). These ideas are
further generalized to describe local coordinate systems. In Sect. 3, the dynamics
of the variables is analyzed using the operator formalism for homogenization
of differential equations, see for example [29]. We focus the discussion to a
few example systems in which the singular part of the dynamics is linear. Our
observations are discussed in the settings of integrable Hamiltonian systems that
can be written in terms of action-angle variables [4].
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The effective behavior for certain class of dynamical systems in the long time
scale may be modeled by a limiting stochastic process [21, 29, 34]. This approach
has been applied, for example, in climate modeling [26]. However, rigorous
analysis of such models has only been established in a few particular cases, for
example, discrete rapidly mixing maps [7, 20] and the Lorentz attractor [22, 27].
The operator formalism for homogenization is a useful tool in the determination
of stochasticity. In this formalism, by matching the multiscale expansions of the
differential operator and a probability density function defined in the phase space,
one derives a Fokker-Planck equation (or alternatively the backward equation) in
the phase space of the given dynamical system. If the leading order terms in the
multiscale expansion contain a diffusion term, then one says that the effective
behavior of the given oscillatory dynamical system is “stochastic”. Thus the
effective behavior is approximated in average. In this paper, we consider systems
in which no “stochastic” behavior appear in the effective equations.

Section 4 presents a numerical method that uses nested tiers of integrators
which numerically solve the oscillatory system on different time scales. The
communication between the scales follows the framework of the Heterogeneous
Multiscale Method (HMM) [10, 11]. Section 5 presents a few numerical examples.
We conclude in Sect. 6.

2 Effective Behavior Across Different Time Scales

In this section we discuss some of the mathematical notions which we use to study
systems containing several well-separated time scales.

2.1 Slowly Changing Quantities

Definition 2. A smooth time dependent function ˛ W Œ0;T � 7! R
n is said to evolve

on the �k time scale in Œ0;T � for some integer k and for 0 < � � �0, if there exists a
smooth function ˇ W Œ0;T � 7! R

n and constants C0 and C1 such that

sup
t2Œ0;T �

ˇ̌
ˇ̌ d
dt
ˇ.t/

ˇ̌
ˇ̌ � C0�

�k ;

and
sup
t2Œ0;T �

j˛.t/�ˇ.t/j � C1�:

This motivates the following definition for a variable, ˛.x/, that evolves on the �k

time scale along the solutions of (1).
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Definition 3. A function �.x/ is said to evolve on the �k time scale along the
trajectories of (1) in Œ0;T � and in an open set D0 if, for all initial conditions x0 2 D0,
the time dependent function �.x.t I�;x0// evolves on the �k time scale in Œ0;T �. For
brevity, we will refer to quantities and variables that evolve on the �0 time scale as
slow.

In particular, the above definition suggests that if �0 evolves on the �k time scale,
then the limit

�0.sIx0/D lim
�!0�.x.�

ksI�;x0// (7)

exists for all s 2 Œ0;T � and x0 2 D0. For instance, in both examples (2) and (4),
the square amplitude I D x21 C x22 evolve on the �0 time scale. The difference is
that (according to Definition 3), I has a bounded derivative of order 0 along the
flow of (2) but not along the flow of (5). More generally, considering ˛.t/ to be the
image of �.x.t//, Definitions (2) and (3) allows the inclusion of functions such
as ˛.t/ D � sin.��2t/C sin.t/ (with unbounded derivatives) to be characterized
as slowly evolving. In the Appendix, we presents an algorithm to identify slow
variables based on (7).

Next, in order to understand what algebraic structure in the ODEs may lead to
slow variables such as (6), we consider the following slightly more general system

dx

dt
D i

�2
xCfI .x;y; t/; (8)

dy

dt
D 1

�
g.x/yCfII .x;y; t/: (9)

Introducing a new variable ´D exp.�i t=�2/x, we obtain

d´

dt
D exp

�
� it

�2

�
fI

�
exp

�
it

�2

�
´;y; t

�
; (10)

dy

dt
D 1

�
g

�
exp

�
it

�2

�
´

�
yCfII

�
exp

�
it

�2

�
´;y; t

�
: (11)

Assuming that jy.t/j is O.1/ and ´.t/ is of the form ´0CO.�2/, then the first term
on the right hand side in (11) would be bounded if

ˆ t

0

g.x.s//ds D O.�/; t > 0:

This is possible since the oscillations in x occur on a time scale that is much faster
than the �-scale, and they may induce an O.�/ time averaging in g.x.t//. Thus, if
g.x� Nx0/ is an odd function for

Nx0 WD lim
�!0C

ˆ t

0

x.sIx0/ds;
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then for fixed values of ´, the singular term in (11) “averages out” and would
produce only fast oscillations of O.�/ amplitude in the trajectories of y. In this
case, y.t/ is a slowly changing quantity along the trajectory, i.e, it evolves on the �0

scale. Alternatively, if g.x� Nx0/ is even then y evolves on the � time scale.
This observation suggests that in determining whether y changes slowly in time,

we may test if g is odd around a neighborhood of the averages of x. If so, one can
simply ignore the term containing g in solving for y.

We may generalize the observation above to test potential slow variables. Let x
be a quasi-periodic solution of a highly oscillatory system with O.��2/ frequencies,
and assume that x has an average Nx0 as � ! 0. Consider ˛.t/ WD �.x.t// with

d

dt
˛.t/D 1

�
r.x.t//:

Then ˛ may be slow if r.x� Nx0/ is an odd function.
Finally, we point out that the emergence of a slow variable with unbounded

time derivative along the oscillatory trajectories may come from a multiscale series
expansion of parts of the solution. Consider again (8) and (9). The leading order
term comes out naturally when y has an expansion of the form

y.t/D y0.t/C �h.x.t//C�� � :
Hence, we expect that the homogenization approach described in the following
section should capture such type of effective behavior of a dynamical system.

2.2 Multiscale Charts

Given an oscillatory dynamical system in R
d , functions such as the slow variables

in our previous definitions may be used to analyze the structure of the dynamics. For
example, the action and angle variables for a given Hamiltonian system provide a
coordinate system in the phase space such that the resulting Hamiltonian dynamics
is separated into evolutions on certain invariant tori (oscillations) as described by the
angle variables, and non-oscillatory evolutions described by the action variables [4].
For example, the function I defined for (2) together with arctan.x2=x1/ corresponds
to such a situation in which I is non-oscillatory along the dynamics and provides
a coordinate perpendicular to the trajectories. In previous work, we propose the use
of a similar strategy for a different class of dynamical systems [1, 2].

Consider the oscillatory dynamical system (1), and a family of trajectories
x.t I�;x0/ in a open set D0 � R

d . Let˚ W D0 � R
d !U � R

d be a diffeomorphism
that is independent of �. Thus ˚ is a local coordinate system (chart) for D0�R

d .
We denote the vector ˚.x/ by .�1.x/;�2.x/; : : : ;�d .x//, where �i .x/ is a real
valued function defined in R

d . We shall refer to �i as the i th coordinate. Let
n.˚;kIx. � I�;x0// denote the number of coordinates in ˚ that evolve along
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x.t I�;x0/ on time scales that are smaller or equal to �k . We have the following
definition:

Definition 4. A chart ˚ is said to be maximally slow if for any other chart Q̊
defined on D0, n.˚;kIx. � I�;x0//� n. Q̊ ;kIx. � I�;x0// for all k.

Loosely speaking, the coordinates of˚ are as slow as possible. A numerical method
for identifying a maximally slow chart for the case in which the singular parts of the
dynamics is linear is describes in the appendix.

Let ˚ denote a maximally slow chart with k time scales, i.e.,

˚ D .�0; : : : ;�k/;

where �i 2 R
di are the variables evolving on the i th time scale, i D 0; : : : ;k andP

di D d . Using the principle of averaging iteratively for each scale, effective
equations for each time scale can be constructed and the solutions that approximate
the exact dynamics of the coordinates �i in the corresponding time scale. To obtain
these equations, faster time scale components are averaged while keeping the slower
ones fixed. Formally, we write

P�i D ��iF i .�i I�0; : : : ;�i�1/CO.�/;

with appropriate initial conditions. The effective equations hold for a time scale
which is of the order of �i . Furthermore,F i can be obtained iteratively by averaging
over the effective dynamics of the faster �iC1 scale. Accordingly, we say that the
chart ˚ is effectively closed.

3 A Homogenization Approach

The multiscale structure of a system can be analyzed using the operator formalism as
presented in [29], which in turn, formally generalizes the work of Papanicolaou [28].
Motivated by perturbed integrable systems, in which the dynamics can be written
in terms of action-angle variables, we concentrate on example systems in which
the singular part of the dynamics is linear. To make our setting more concrete, we
consider the linear operators in the vector space C1.Rd /, and with the usual notion
of inner product. We shall denote L� as the adjoint operator for L.

The analysis motivates a numerical multiscale algorithm along the lines of the
HMM framework [1, 10, 13]. The algorithm does not assume that the system is
given in the convenient action-angle coordinates, but only that such a transformation
exists.

Consider a general ODE system whose right hand side depends on �

dx

dt
D f�.x/:

The associated Liouville equation takes the form
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@tu
�.t;x/Cf� � @xu�.t;x/D 0; (12)

with an initial condition u�.0;x/ D  .x/. Here, @x denotes partial differentiation
with respect to x and similarly for t . This is a linear equation whose characteristics
coincide with solutions of the ODE. We begin by matching powers of � in the
multiscale expansion of the operator L� WD f� � @x and that of the solution u� .
Formally, we write

L� D 1

�2
L2C 1

�
L1CL0; (13)

and
u� D u0C �u1C �2u2C : : : (14)

Substituting the above expansions into (12) yields

@tu0 D 1

�2
L2uC 1

�
.L2u1CL1u0/C .L2u2CL1u1CL0u0/CO.�/:

Comparing orders of �, we have

1

�2
W L2u0 D 0; (15)

1

�
W L2u1 D �L1u0; (16)

1 W @tu0 D L2u2CL1u1CL0u0: (17)

We see that a closed effective equation for u0 can be derived if both L2u2 and
L1u1 can be approximated by operations on u0 only. This closure is typically done
by averaging over some invariant manifolds. In the following subsections, we apply
this procedure to some model problems.

3.1 A Two Scales Example

For completeness, we recall the application of the operator formalism in a simple
two-scale highly-oscillatory ODE system. Let

(
Px D 1

�
yCf .x;y/;

Py D �1
�
xCg.x;y/;

(18)

with some non-zero initial condition. Changing into polar coordinates .r;�/ 2 R�
S1 yields (

Pr D .xf .x;y/Cyg.x;y// =r;

P� D �1
�

C .xg.x;y/�yf .x;y// =r2:
It is clear that the amplitude r is a slow variable while the phase � is fast. Hence,
we can naively average the right hand side of the equation for r with respect to the
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fast phase. This yields an effective equation for the amplitude

Pr D F.r/;

F.r/D 1

r

ˆ
S1

Œx.r;�/f .x.r;�/;y.r;�//Cy.r;�/g.x.r;�/;y.r;�//� d�:
(19)

Alternatively, using (12) and (13), we derive the following relations:

L� D 1

�
L1CL0;

L1 D y@x �x@y ;
L0 D f .x;y/@x Cg.x;y/@y :

(20)

Taking L2 D 0, (15) is trivially satisfied. Noting that L1 D @	 and that L1 D �L�1 ,
we see that the Null space of L1 is identical to that of L�1 and constitutes

Null L1 D Null L�1 D f�.x2Cy2/ W � 2 C1.R/g; (21)

where L�1 denotes the dual of the operator L1. Let P denote projection onto
Null L1 obtained by averaging over the fast angle � , P Œ � � D ´

S1 Œ � �d� WD h � i.
It is a projection in the sense that P 2 D P . Substituting the asymptotic expan-
sion for u, (14), into the backwards equation (21) yields (compare with (16)–
(17)) (

L1u0 D 0;

L1u1 D @tu0�L0u0:
The equation for u0 implies that u0 2 Null L1, i.e., u0 D u0.t;r/. Formally, we
write

Pu0 D u0: (22)

The solvability condition for u1 is

Œ@t �L0�u0 ? Null L�1 :

Substituting (22) yields
P Œ@t �L0�Pu0 D 0:

This gives the effective equation for u0

@tu0 D PL0Pu0;

where we used the fact that u0 does not depend on � , and can therefore be taken out
of the averaging. This can be rewritten as

@tu0 D hf .x;y/@xu0Cg.x;y/@yu0i:
Using the chain rule yields



32 G. Ariel et al.

@tu0 D 1

r
hxf .x;y/Cyg.x;y/i@ru0;

which is nothing but the Liouville equation associated with the effective ODE
(19).

3.2 Three Scales: Example 1

Consider the following three-scale system which involves slow variables whose
derivatives are not bounded.

d

dt

�
x1
x2

�
;D 1

�2

�
x2

�x1
�

Cf .x1;x2;y/;

dy

dt
D 1

�
x1CfIII .x1;x2;y/;

(23)

where f D .f I ;f II /T . To get some intuition, consider the unperturbed case fI D
fII D fIII D 0 with initial conditions .x1;x2;y/D .1;0;1/. The solution is

x1.t/D �cos.��2t/;
x2.t/D sin.��2t/;
y.t/D 1� � sin.��2t/:

Hence, we can see that the system has two variables which evolve on the O.1/ time
scale: I D x21 Cx22 and y. In the unperturbed case, both variables are constants.

From (12) and (13), we derive the following relations:

L� D 1

�2
L2C 1

�
L1CL0;

L2 D x2@x1
�x1@x2

;

L1 D x1@y ;

L0 D fI @x1
CfII@x2

CfIII @y :

The Null space of L2 is

Null L2 D Null L�2 D f� D �.r;y/g;
where r2 D x21 Cx22 . Let P denote projection on Null L2, which can be performed
by averaging over the fast phase � D arctanx2=x1. Let P denote projection on
Null L2. As before, averaging over the fast phase � is denoted by h � i.

Arranging terms with the same order of � prefactors, we have (15)–(17) which
are analyzed below.
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Leading order equation:

The equation for u0 implies that u0 2 Null L2, i.e., u0 D u0.t;r;y/. Formally, we
write

Pu0 D u0: (24)

Order 1=� equation:

The solvability condition for u1 in (16) implies

L1u0 ? Null L�2; (25)

which is equivalent to
PL1u0 D 0:

This holds since

PL1u0 D P
	
x1@y



u0.x

2
1 Cx22 ;y/D hx1@yu0.x21 Cx22 ;y/i D

D hx1i@yu0.x21 Cx22 ;y/D 0:

Hence, we formally write
u1 D �L�12 L1u0: (26)

Order 1 equation:

The solvability condition for u2 in (17) is

Œ@t �L1u1�L0u0�? Null L�2 :

Substituting in the formal solution (26) yields

P
	
@t CL1L

�1
2 L1�L0



Pu0 D 0:

For the example at hand, we have

u1 D �L�12 x1@yu0:

Furthermore, @yu0 has the form g.x21 Cx22 ;y/, which implies that @yu0 2 Null L�2 .
Also, L2x2 D �x1. Hence,

L�12 L1u0 D �u1 D x2@yu0:

We conclude that

L1L
�1
2 L1u0 D x1@yx2@yu0 D x1x2@yyu0:

This yields the effective equation for u0
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@tu0 D �hx1x2@yyu0i ChfI@x1
u0i ChfII@x2

u0i ChfIII@yu0i: (27)

As before, @yyu0 2 Null L2 and

hx1x2@yyu0i D hx1x2i@yyu0 D 0:

The effective equation (27) becomes

@tu0 D hfI@x1
u0i ChfII@x2

u0i ChfIII@yu0i;
which can be rewritten as

@tu0 D 1

r
hx1fI Cx2fII i@u0

@r
ChfIII i@yu0:

This equation can be identified as the Liouville equation associated with the

ODE (
Pr D hx1fI Cx2fII i=r;
Py D hfIII i: (28)

We conclude that, to leading order in �, u0, and hence r and y, evolve on the O.1/
time scale and are deterministic.

3.3 Three Scales: Example 2

We consider a simple system involving three time scales

d

dt

�
x

y

�
D 1

�2

��y
x

�
Cf .x;y;w;´/;

d

dt

�
w

´

�
D 1

�

��´
w

�
Cg.x;y;w;´/;

where f D .f I ;f II /T and g D .gI ;gII /T . If f D g D 0, then .x;y/ and .w;´/
are decoupled harmonic oscillators with frequencies 2�=�2 and 2�=�, respectively.
From (12) and (13), we have the following operators:

L2 D �y@x Cx@y ;

L1 D �´@w Cw@´;

L0 D f I@x Cf II@y CgI @w CgII @´:

(29)

Changing variables into polar coordinates: .x;y/ 7! .r;�/ and .w;´/ 7! .�;�/, we
have that L2 D @	 and L1 D @
 . These are also the action-angle variables of this
system.
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Leading order equation:

Following (15), we have L2u0 D 0, which implies that u0 must be constant in
�.x;y/. Thus u0 depends only on .r;w;´/; i.e. u0 D u0.r;w;´/. As before, let
P denote projection onto Null L�2 defined by averaging with respect to � ; i.e. and
PuD hui.

Order 1=� equation:

The equation takes the form
@	u1 D �@
u0:

The solvability condition is h�@
u0i D 0. However, since u0 does not depend on � ,
the solvability condition implies that @
u0 D 0. Thus, u0 must be a function of only
r and �.

We conclude that r and � are the only slow variables (evolve on the �0 time
scale). Both variables have a bounded derivative (of order 0). Furthermore, the first
order perturbation, u1, vanishes.

Order 1 equation:

Substituting u1 D 0 in (17), the equation for u2 is formally

@	u2 D �@tu0CL0u0:

We notice that in the example at hand, the dynamics of the two angle variables,
� and � , are decoupled and the invariant measure for both variables (with r and �
fixed) is uniform over a 2D torus T 2. This occurrence is not incidental, but holds for
the class of near integrable systems in which the angle variable in systems which are
given in action-angle coordinates undergo uniform rotations on a torus [4]. Earlier,
we have concluded that u0 does not depend on the angle variables � and �. However,
the coefficients of L0 may depend on the angle variables. Therefore, the solvability
condition for (3.3) is

@tu0 D
ˆ
T 2

L0u0 d�d�: (30)

Note that the numerical algorithm presented in Sect. 4 does not assume that the
system is written in terms of action-angle variables. A more general case in which
the � and �2 time scales cannot be decoupled in an appropriate coordinate system is
beyond the scope of this manuscript and will be presented in a future publication.

3.4 Observations

Following this methodology, we have the following observations:
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� Slow variables that have bounded derivatives lie in the Null space of both L2
and L1.

� Functions which evolves on the �0 time scale, see Definition 3, need only lie in
the Null space of L2.

� The homogenization approach picks out the new type of slow variables as defined
in Definitions 2 and 3 with k D 0. See, for example, (28) which is derived from
the system defined in (23).

� The effective slow dynamics in all the examples presented in this manuscript
is found to be deterministic. However, for a large class of equations involving
chaotic solutions [29], the effective PDEs are diffusive. This means that the
effective behaviors of the original dynamical systems could be approximated
weakly by solutions of the corresponding stochastic differential equations.

4 Numerical Algorithms

In this section, we discuss an approach which invokes our previous two-scale
HMM algorithms [1–3] to multiple (> 2) timescale systems. This is achieved by
considering a hierarchy of problems, each involving more than two time scales.
Consequently, the numerical integrator is constructed as tiers of two-scale HMM
solvers. We consider the time scales O.�2/, O.�/, and O.1/.

Suppose we obtain a maximal slow chart, for example, using the method
described in the Appendix for identifying polynomial variables evolving on different
time scales. We denote this system of coordinates � D .�1;�2;�3/, where �i D
.�i1; : : : ;�

i
di
/ are the variables evolving on the i th time scale.

The HMM to be constructed should evaluate the rate of change of � along
the flow of the original oscillatory system. This typically involves numerically
averaging over the fast oscillations in the system. For three-scale problems this
requires averaging over the O.�2/ scale oscillations as well as the O.�/ scale
oscillations, thus obtaining a numerical approximation for the effective equation
for the slow variables �0. The method is schematically illustrated in Fig. 1.

Our goal is to numerically integrate the effective equation for �0, which is not
known. Following HMM, this equation is approximated by averaging the dynamics
of the system over a short-time calculation of the slower, O.�/ scale. Hence,
whenever the algorithm needs to take a coarse, O.1/ step, we call an auxiliary
function whose role is to calculate the dynamics on that time scale. This requires
approximating the dynamics of �1 for a time segment of order O.�/. However,
with three scales the dynamics of �1 is given by an effective equation which
is itself not known, but can nonetheless be approximated with a second tier of
HMM integrator. This second tier approximates the effective dynamics of �1 by
numerically averaging the dynamics on the O.�2/ scale, namely �2. Note that this is
possible because we only require to solve �1 on a time segment of order �. Longer
time scales of order 1 are not accessible as the error of using the effective averaged
equation rather than the full one becomes large.



Oscillatory Systems with Three Time Scales 37

In [1], the two-scale HMM solver integrates an approximate averaged equation.
The averaged equation, which is not known, is approximated by convoluting the
solution of the faster time scale with a smoothing kernel. See [1, 13] for details.

O ( 2)

O ( )

O ( 2)ŒŒ

Œ

Fig. 1 An illustration of a three scale algorithm

4.1 Accuracy and Efficiency

Consider a three-scale ODE system of the form (1) with a maximally slow chart
.�0;�1;�2/ in which �i 2 R

di evolve on the �i time scale. The system is to be
integrated using the three-tier HMM algorithm described above. We will refer to
the solver integrating the �i scale as the i ’th tier. The step-size, length of integration
and order of accuracy of the integrators at the i ’th tier are denoted hi , 
i and mi ,
respectively. For example, on the slowest O.1/ time scale we utilize an m0’th order
explicit integrator with step size h0 and approximate �0 in the range Œ0;
0 D T �. The
global error in each run of the i ’th tier is denotedEi . The computational cost of each
run of the i ’th tier is denoted Ci . The goal is to approximate �0 on a time segment
Œ0;T � with an optimal efficiency C0 while meeting a prescribed accuracy E0 ��.

The numerical analysis is a generalization of the two-scale analysis described
in [1]. Recall that in general, the local truncation error in approximating an ODE
Px D f .x/ using an m’th order explicit method with step size h is of the order of
MmC1hmC1, where MmC1 is a bound on the mC 1 time derivative of f .x.t// in
the domain of interest. Accordingly, for stiff equations of the form Px D !f .x/, the
mC1 time derivative of f .x.t// is of the order of !mC1.

� Tier 2: The local error in each O.�2/ step of the 2nd tier integrator if of the
order of hm2

2 ��2.m2C1/. Integrating to time 
2, the truncation error of a single
run of the 2nd tier integrator is 
2h

m2

2 ��2.m2C1/. Next, the error in approximating
the averaged equation using convolution of the approximate numerical solution
with a kernel that has q continuous derivatives is [1, 13] �2q
�q�12 . In order to
obtain optimal efficiency the two sources of errors need to be the same. Setting
�2 D �2q


�q�1
2 D 
2h

m2

2 ��2.m2C1/ yields the optimal scaling of 
2 and h2 with
� and�2.
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� Tier 1: The error in each evaluation of P�1,�2, accumulates by taking 
1=h1 steps
of order � to �2
1=h1. This error needs to be comparable to the truncation error
of the tier 1 solver, 
1h

m1

1 ��m1�1 and the averaging error �q
�q�11 . Equating all
terms to equal�1 yields the scaling of 
1, h1 and �2, and hence 
2 and h2 with
� and�1.

� Tier 0: The error in each evaluation of P�0,�1, accumulates by taking 
0=h0 steps
of order 1 to �1
0=h0. This error needs to be comparable to the truncation error
of the 0th tier solver, 
0h

m0

0 . Equating all terms to equal � yields the scaling of
all parameters h0—h2 and 
0;
1 with � and �.

We conclude that the overall computational cost

C D 
0

h0


1

h1


2

h2
;

depends on �, the required accuracy� and the orders of the solversm0, m1 andm2
through

C D�

�
1� .m0C1/.m1C1/.m2C1/

m0m1m2

��
qC2
qC1

�

�
� .m2C1/.2C4m1CqC3m1q/

m1m2.1Cq/2 ; (31)

where, for simplicity we took 
0 D T D 1. In particular, for a smooth (infinitely
differentiable) kernel one may take the limit q ! 1 and the computational cost
reduces to

C D�

�
1� .m0C1/.m1C1/.m2C1/

m0m1m2

�

: (32)

We see that for a smooth kernel the cost is independent of �.

5 Examples

In this section we demonstrate the new multi-tier HMM algorithm in a few
examples.

5.1 Harmonic Oscillators

Consider the following system describing two coupled harmonic oscillators in
resonance 8

ˆ̂̂
<̂

ˆ̂̂
:̂

Px1 D � 1
�2 y1C 1

�
y22 �3x1x22 ;

Py1 D 1
�2 x1C 1

2
y1;

Px2 D �
�
1
�2 C 1

�

�
y2�x2;

Py2 D
�
1
�2 C 1

�

�
x2�y2C2x21y2:

(33)

As depicted in Fig. 2, all four state variables oscillate with a period which is of the
order of �2. Hence, x1, y1, x2 and y2 evolve on the �2 time scale.
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In order to find a maximally slow coordinate system, we change to polar
coordinates .xi ;yt / 7! .Ii ;'i /, i D 1;2 and introduce a polynomial variable � that
describes the 1:1 resonance between the oscillators

I1 D x21 Cy21 ;

I2 D x22 Cy22 ;

� D x1x2Cy1y2;

cos'1 D x1=
p
I1:

(34)

The corresponding time derivatives are

PI1 D 2

�
x1y

2
2 �6x21x22 Cy21 ;

PI2 D �2I2C4x21y
2
2 ;

P� D 1

�
.x2y

2
2 Cy1x2�x1y2/C .�y1y2=2�x1x2�3x1x32 C2x21y1y2/;

P'1 D 1

�2
:

(35)

It appears as if .I1;I2;�;'1/ is a chart in which '1 evolves of the �2 time scale, I1
and � evolve on the � time scale while I2, which has a bounded derivative, evolves
on the O.1/ scale. The dynamics of the three slow variables I1, I2 and � on the O.�/
scale is depicted in Fig. 3. The figure suggests that both I1 and I2 are practically
constant on the � scale. Indeed, it can be shown that the average of x1y22 on any
segment of length O.�/ and larger is of order �2. Therefore, the averaged PI1 is
bounded independent of � and I1 evolves on the O.1/ time scale, rather than the
expected O.�/. The time evolution of I1 and I2 on the slowest O.1/ time scale is
depicted in Fig. 4. In addition, the figure shows the results of the three-tier HMM
integrator described in Sect. 4. The HMM algorithm approximates the slow O.1/
dynamics using macroscopic steps which are independent of �. The integration is
done using a fourth order method (in the macroscopic step size) and its efficiency is
essentially independent of �.

5.2 An Example Motivated by the Fermi-Pasta-Ulam (FPU)
Problem

The following example, which consists of three coupled oscillators, is motivated by
a version of the FPU˛ model [15] with periodic boundary conditions. The system
is described by the Hamiltonian

H D 1

2

3X

iD1
p2i C

3X

iD1

�
1

2
.qiC1�qi /2C �

3
.qiC1�qi /3

�
; (36)
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Fig. 2 The dynamics of (33) on the �2 time scale. �D 10�3
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Fig. 3 The dynamics of (33) on the �1 time scale. �D 10�3

where q0 D q3 and q4 D q1. The purpose of this example is to demonstrate the
advantages of the HMM multiscale method for Hamiltonian systems compared to
the standard Verlet method. From this case study, one may see the advantage of the
proposed HMM over other standard reversible and symplectic integrators.

Rescaling time, s D �2t , and denoting Œ � �0 D .d=ds/, the dynamics is given by

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

q01 D 1
�2p1;

p01 D � 1
�2 .2q1�q3�q2/� 1

�
.q2�q3/.2q1�q3�q2/;

q02 D 1
�2p2;

p02 D � 1
�2 .2q2�q1�q3/� 1

�
.q3�q1/.2q2�q1�q3/;

q03 D 1
�2p3;

p03 D � 1
�2 .2q3�q2�q1/� 1

�
.q1�q2/.2q3�q2�q1/:

(37)

Due to the periodic boundaries the total momentum is preserved. Hence, without
loss of generality we pick initial conditions such that the center of mass is fixed
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Fig. 4 The dynamics of (33) on the �0 time scale. � D 10�3. Plus signs are results of a 3-tier
HMM with fourth order RK on all scales. HMM parameters are H D 1/3, �j D 70:1�j ; hj D
�j =10; j D 1;2:

at the origin, ptot D p1 C p2 C p3 D 0 and qcm D q1 C q2 C q3 D 0. Using the
algorithm detailed in Appendix, we identify the following five variables evolving
on the �0 time scale:

ptot D p1Cp2Cp3;

qcm D q1Cq2Cq3;

I1 D 3q22 Cp22;

I2 D 3q23 Cp23;

� D 3q2q3Cp2p3:

(38)

Differentiating with respect to the rescaled time and using the fixed center of mass
assumption yields

p0tot D 0;

q0cm D 0;

I 01 D �6
�
p2q2.2q3Cq2/;

I 02 D �6
�
p3q3.2q1Cq3/;

� 0 D �3
�
.q3p2.2q1Cq3/Cp3q2.2q3Cq2//:

(39)

We emphasize here that even I 01;I 02; and � 0 are formally unbounded as � ! 0 for
fixed values of p1;p2;p3;q1;q2; and q3, I1;I2; and � all evolve on the �0 time
scale!

Figure 5 compares the results computed by the proposed HMM with those
by Verlet using the initial conditions .q1;q2;q3/ D .�0:65;0:35;0:3/ and .p1;p2;
p3/D .0:3;�0:4;0:1/. Taking � D 10�4, parameters are chosen to give an error of
about 1%. HMM parameters are H D 2, 
1 D 18:77�1, h1 D �1=10, 
2 D 75:1�2,
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h2 D �2=20. The tier 2 solver is Verlet. The tier 1 and 0 solvers are the midpoint rules
and the kernel is exponential [13]. Solving the system using Verlet with � D 10�4 is
practically impossible. However, in order to achieve the desired accuracy the values
of � can be increased artificially [35]. Since we require a relative error of order
0.01, we take � D 0:01 and decrease step size until the energy drift is of the same
order. This requires hD �2=100. With these parameters HMM runs over 2,000 time
faster. It is interesting to note that the efficiency of both methods is independent
of �. Hence, the gain in efficiency does not depend on � as long as it is small enough.
Lastly, the energy drift with HMM is small in this case, but it may increase in longer
time intervals. The time reversible schemes, developed in [3], may be advantageous.
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Fig. 5 Left: evolution of the slow variables. Solid curves are computed by Verlet with an adjusted
value of �. The values computed by the proposed HMM are shown by the plus signs. Right: energy
drift. With simulation parameters tuned to give comparable errors in the total energy, HMM runs
over 2,000 times faster

6 Summary

In this paper, we investigate several issues related to the design of multiscale
algorithms for computing the effective behavior of highly oscillatory dynamical
systems involving more than two separated scales. We discuss a type of effective
behavior (slowly changing quantities) which do not have bounded derivatives.
Homogenization technique based on multiscale expansions seem to be able to pick
out such quantities which are one of the state variables in the given equations. We
further demonstrate that this type of effective behavior cannot be ignored in our
numerical examples.
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Appendix: Finding Polynomial Slow Variables

In many highly oscillatory physical systems the leading order oscillations are har-
monic. It can then be shown [1,4] that slow variables can be polynomials. In [1] we
suggest a variational method to automatically identify the polynomials making up
maximally slow charts using the bounded derivative concept. As was demonstrated
in this paper, with three or more well-separated scales, the bounded derivative
concept is not sufficient to determine the time scale on which a variable evolves.
Hence, it cannot be used to construct maximally slow charts. Accordingly, the
purpose of this appendix is to modify the variational method of [1] to use the new
concept of slow variable, Definition 3. The main idea is to compare two trajectories
with different values of � and find a polynomial that takes similar values on both
trajectories.

Let p.x/ denote a polynomial in R
d . Following Definition 3, p.x/ evolves on

the �k time scale if, for all m� i � k � 0, the limit

lim
�!0p.x.�

i sI�;x0// (40)

exists for all s 2 Œ0;S� and x0 2 D0, a connected open set. Both D0 and S are
independent of �. Changing variables � D ��k t , the general ODE (1) becomes

d

d�
x D

m�kX

iD0
��ifiCk.x/CO.�/: (41)

Let x0 2 D0 and consider two solutions of (41) with the same initial condition
x0 but different �. Using the notations of Sect. 1, the first solution, obtained with a
small parameter � is denoted by x.� I�;x0/. The second solution, obtained with a
small parameter 2�, is denoted by x.� I2�;x0/. Furthermore, let x�1; : : : ;x

�
j ; : : : ;x

�
N

denote a numerical solution of x.� I�;x0/ at times �j D Hj that are computed by
some integrator with constant step size less than �m�kH . Here, H is a constant
which is independent of �. Similarly, let x2�1 ; : : : ;x

2�
j ; : : : ;x

2�
N denote a numerical

solution that approximate x.� I2�;x0/ at times sj D Hj . Then, if p.x/ is slow of
order �k we have that

jp.x�j /�p.x2�j /j D o.1/ (42)

for all j D 1; : : : ;N with N independent of �.
Consider,
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Q.p/D
NX

jD1

	
p.x�j /�p.x2�j /


2
: (43)

Then, a polynomial p.x/ that minimizes Q.p/ is a good candidate for a variable
that evolves on the �k scale. Since Q.p/ is quadratic in the coefficients of p, the
minimizer can be found using least squares.

Finally, the process described above can be repeated, starting with the slowest
order �0 and gradually moving to faster time scales. Each time a slow variables is
identified, one can add a penalty that forces subsequent minimizers to be orthogonal
to it in the space of polynomial coefficients. The method is described in [1].
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Variance Reduction in Stochastic
Homogenization: The Technique
of Antithetic Variables

Xavier Blanc, Ronan Costaouec, Claude Le Bris, and Frédéric Legoll

Abstract This work is a follow up to previous articles of the same authors (Cost-
aouec, Le Bris, and Legoll, Boletin Soc. Esp. Mat. Apl. 50:9–27, 2010; Blanc,
Costaouec, Le Bris, and Legoll, Markov Processes and Related Fields, in press).
It has been shown there, both numerically and theoretically, that the technique of
antithetic variables successfully applies to stochastic homogenization of divergence-
form linear elliptic problems and allows to reduce variance in computations.
In (Costaouec, Le Bris, and Legoll, Boletin Soc. Esp. Mat. Apl. 50:9–27, 2010),
variance reduction was assessed numerically for the diagonal terms of the homog-
enized matrix, in the case when the random field, that models uncertainty on some
physical property at microscale, has a simple form. The numerical experiments have
been complemented in Blanc, Costaouec, Le Bris, and Legoll (Markov Processes
and Related Fields, in press) by a theoretical study. The main objective of this work
is to proceed with some numerical experiments in a broader set of cases. We show
the efficiency of the approach in each of the settings considered.

1 Introduction

Several settings in homogenization require the solution of corrector problems posed
on the entire space R

d . In practice, truncations of these problems over bounded
domains are considered and the homogenized coefficients are obtained in the
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limit of large domains. The question arises as to accelerate such computations.
In the random case, the main difficulty is related to the intrinsic noise present in
the simulation. Although very well investigated in other application fields such as
financial mathematics, variance reduction techniques seem to have not been applied
to the context of stochastic homogenization. In a previous article (see [9]), we
have presented a first attempt to reduce the variance in stochastic homogenization
using antithetic random variables. For this purpose, we have considered a simple
situation. In particular, the equation under consideration was an elliptic equation in
divergence form, with a scalar coefficient. In addition, the coefficient was assumed
to consist of independent, identically distributed random variables set on a simple
mesh (see (8) below). Though a bit restrictive, this situation pointed out that using
antithetic variables results practically in diminishing the variance for the diagonal
terms of the approximated homogenized matrix. We thus obtained an effective gain
in computational time at fixed accuracy. Beyond this practical validation, we have
also demonstrated, on a theoretical level and for some sufficiently simple situations,
that the technique does reduce variance. The theoretical arguments of [3] not only
apply to the examples of scalar random fields that we previously considered in [9]
but they extend to a wider range of random fields. We present here some numerical
tests that show that the technique still efficiently reduces variance in the presence
of correlations and for matrices more general than those considered in our previous
contributions. We also investigate variance reduction for eigenproblems.

For convenience of the reader and consistency, we devote the rest of the present
section to a brief introductory exposition of random homogenization, the related
numerical challenges, and the technique of antithetic variables. We turn in Sect. 2 to
homogenization problems for materials that have correlations or that are anisotropic.
Section 3 discusses variance reduction for eigenproblems.

More comprehensive tests that are not included here will be presented in [8].
Likewise, other variance reduction techniques, such as techniques based on control
variates, will be the subject of future investigations and will be reported on
elsewhere.

1.1 Homogenization Theoretical Setting

To begin with, we introduce the basic setting of stochastic homogenization we
will employ. We refer to [10] for a general, numerically oriented presentation, and
to [2,7,11] for classical textbooks. We also refer to [4,5] or [13] for a presentation
of our particular setting. Throughout this article, .˝;F ;P/ is a probability space
and we denote by E.X/ D ´

˝
X.!/dP.!/ the expectation value of any random

variable X 2 L1.˝;dP/. We next fix d 2 N
� (the ambient physical dimension),

and assume that the group .Zd ;C/ acts on ˝ . We denote by .�k/k2Zd this action,
and assume that it preserves the measure P, that is, for all k 2 Z

d and all A 2 F ,
P.�kA/DP.A/. We assume that the action � is ergodic, that is, ifA2 F is such that
�kAD A for any k 2 Z

d , then P.A/D 0 or 1. In addition, we define the following
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notion of stationarity (see [5]): any F 2 L1loc

�
R
d ;L1.˝/

�
is said to be stationary

if, for all k 2 Z
d ,

F.xCk;!/D F.x;�k!/; (1)

almost everywhere in x and almost surely. In this setting, the ergodic theorem
[12, 15] can be stated as follows: Let F 2 L1 �Rd ;L1.˝/� be a stationary random
variable in the above sense. For kD .k1;k2; : : : ;kd /2Z

d , we set jkj1D sup
1�i�d

jki j.
Then

1

.2N C1/d

X

jkj
1

�N
F.x;�k!/ �!

N!1E.F.x; �// in L1.Rd /; almost surely:

This implies that (denoting by Q the unit cube in R
d )

F
�x
�
;!
� ��*
�!0E

�ˆ
Q

F.x; �/dx
�

in L1.Rd /; almost surely:

Besides technicalities, the purpose of the above setting is simply to formalize
that, even though realizations may vary, the function F at point x 2 R

d and the
function F at point xCk, k 2 Z

d , share the same law. In the homogenization
context we now turn to, this means that the local, microscopic environment (encoded
in the matrix A) is everywhere the same on average. From this, homogenized,
macroscopic properties will follow. In addition, and this is evident reading the above
setting, the microscopic environment considered has a relation to an underlying
periodic structure (thus the integer shifts k in (1)).

We now consider the elliptic boundary value problem
8
<

:
�div

�
A
�x
�
;!
�

ru�
�

D f in D ;

u� D 0 on @D ;
(2)

set on an open, regular, bounded domain D � R
d . The right-hand side is an L2

function f on D . The random symmetric matrix A is assumed stationary in the
sense (1) defined above. We also assume that A is bounded and that, in the sense of
quadratic forms,A is positive and almost surely bounded away from zero. The math-
ematical theory of homogenization states that when � goes to zero, u� converges to
a deterministic function u? that is solution of the so-called homogenized problem

( �div
�
A?ru?� D f in D ;

u? D 0 on @D :
(3)

In contrast to problem (2), problem (3) is deterministic and does not involve the
small scale �. It is hence easier to solve. Yet, the practical computation of the
homogenized matrix A?, necessary for solving (3), is challenging. In our specific
setting, this matrix reads
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A?ij D
ˆ
Q

E

h
.rwej

.x; �/C ej /
T A.x; �/ .rwei

.x; �/C ei /
i
dx;

where, for any vector p 2 R
d , the corrector wp is the solution (unique up to the

addition of a random constant) in
˚
w2L2loc.R

d ;L2.˝//;rw2L2unif.R
d ;L2.˝//


to

8
ˆ̂̂
<

ˆ̂̂
:

�div
	
A.rwp Cp/


D 0 in R
d a.s.;

rwp is stationary in the sense of (1),ˆ
Q

E.rwp/D 0:

(4)

We have used the notation L2unif for the uniform L2 space, that is the space of
functions for which, say, the L2 norm on a ball of unit size is bounded above
independently from the center of the ball.

The major practical difficulty of random homogenization lies in the fact that the
above problem (4), necessary for determining the homogenized matrix A?, is posed
on the entire space Rd .

1.2 Numerical Approach

In practice, the corrector problem (4), posed on the whole space Rd , is approximated
by the truncated corrector problem

(
�div

�
A.�;!/�pCrwNp .�;!/

��D 0 in R
d ;

wNp .�;!/ is QN -periodic;

posed on the cube QN D .�N � 1=2;N C 1=2/d , centered at the origin. Corre-
spondingly, the matrix A? is then approximated by the random matrix

	
A?N



ij
.!/D 1

jQN j
ˆ
QN

�
ei CrwNei

.y;!/
�T
A.y;!/

�
ej CrwNej

.y;!/
�
dy:

Although A? itself is a deterministic object, its practical approximation A?N is
random. It is only in the limit of infinitely large domainsQN that the deterministic
value is attained [6].

Besides the homogenized matrix A? itself, other related quantities, such as the
eigenelements of the matrix A?, the solution u? of the homogenized problem (3),
and the eigenelements of the operator LA? D �div .A?r�/, are of major interest.
They all reflect some property of the homogenized material. As is the case for A?,
only random approximations of those quantities are accessible. We formalize this by
saying that all these quantities, denoted by F .A?/, are approximated by the corre-
sponding random variables F

�
A?N .!/

�
obtained by truncation and approximation

(using a Monte Carlo method). For simplicity, we will suppose throughout this
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article that F is scalar valued. Let .Am.x;!//1�m�M denote M independent and
identically distributed underlying random fields. We define a family

�
A
?;m
N

�
1�m�M

of i.i.d. homogenized matrices by, for any 1� i;j � d ,

	
A
?;m
N



ij
.!/D 1

jQN j
ˆ
QN

�
ei CrwN;mei

.�;!/
�T
Am.�;!/

�
ej CrwN;mej

.�;!/
�
;

where wN;mej
is the solution of the truncated corrector problem associated to Am.

Then we define for each quantity F
�
A?N

�
the empirical mean and variance

�M
�
F
�
A?N

�� D 1

M

MX

mD1
F
�
A
?;m
N

�
;

�M
�
F
�
A?N

�� D 1

M �1
MX

mD1

�
F
�
A
?;m
N

���M
�
F
�
A?N

���2
:

(5)

Since the matrices A?;mN are i.i.d. the strong law of large numbers applies:

�M
�
F
�
A?N

��
.!/ �!

M!C1E
�
F
�
A?N

��
almost surely:

The central limit theorem then yields

p
M
�
�M

�
F
�
A?N

���E
�
F
�
A?N

��� L�!
M!C1

q
Var
�
F
�
A?N

��
N .0;1/;

where the convergence holds in law, and N .0;1/ denotes the standard Gaussian
law. Introducing its 95 percent quantile, it is standard to consider that the exact
mean E

�
F
�
A?N

��
lies in the interval

2

64�M
�
F
�
A?N

���1:96
q
�M

�
F
�
A?N

��

p
M

;�M
�
F
�
A?N

��C1:96
q
�M

�
F
�
A?N

��

p
M

3

75:

(6)
The value �M

�
F
�
A?N

��
is thus, for both M and N sufficiently large, adopted as

the approximation of the exact value F .A?/.
Our aim is to design a numerical technique that, for finiteN , allows to compute a

better approximation of E
�
F
�
A?N

��
, e.g. an approximation with smaller variance.

1.3 The Technique of Antithetic Variables

The application of variance reduction using the antithetic variable technique, a
classical variance reduction technique ubiquitous in many applied fields, to the
specific framework of stochastic homogenization was first performed in [9]. For
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the sake of completeness we outline here the basic steps of the approach in our
specific context. For an elementary introduction to the technique, we refer to [14].

Fix M D 2M and suppose that we give ourselves M i.i.d. copies
�
Am.x;

!/
�
1�m�M

of A.x;!/. Construct next M i.i.d. antithetic random fields

Bm.x;!/D T .Am.x;!// ; 1� m � M ;

from the .Am.x;!//1�m�M . The map T transforms the random field Am into
another, so-called antithetic, field Bm. Given the random field A.x;!/, there
is a large variety of possible choices for the antithetic field B . However, the
transformation is to be performed in such a way that, for each m, Bm has the same
law as Am. Besides this constraint, only practice dictates appropriate choices. We
are providing examples below, see e.g. (22)–(23). Somewhat vaguely stated, if the
coefficient was obtained in a coin tossing game (using a fair coin), then the antithetic
coefficient would be head each time the original coefficient is tail and vice versa.
Then, for each 1 � m � M , we solve two corrector problems. One is associated
to the original Am, the other one is associated to the antithetic field Bm. Using its
solution vN;mp , we define the antithetic homogenized matrix B?;mN , the entries of
which read, for 1� i;j � d ,

	
B
?;m
N



ij
.!/D 1

jQN j
ˆ
QN

�
ei CrvN;mei

.�;!/
�T
Bm.�;!/

�
ej CrvN;mej

.�;!/
�
:

And finally we set, for any 1� m � M ,

eA?;mN .!/ WD 1

2

�
A
?;m
N .!/CB

?;m
N .!/

�
:

Since Am and Bm are identically distributed, so are A?;mN and B?;mN . Thus, eA?;mN is
unbiased (that is, E

� QA?;mN
�D E

�
A
?;m
N

�
). In addition, it satisfies:

eA?;mN �!
N!C1A

? almost surely;

because B is ergodic. The matrix eA?N is thus an alternative random variable that
converges almost surely to A? when N ! 1. In addition, for any N , the mean of
eA?N is equal to that of A?N . Consequently,eA?N can be used to define new estimators.

In order to compute an approximation of E
�
F .A?N /

�
, we use the antithetic

variable defined above, and define

�M

�eF
�
A?N

�� D 1

M

MX

mD1
eF
�
A
?;m
N

�D 1

M

MX

mD1

F
�
A
?;m
N

�CF
�
B
?;m
N

�

2
;

�M

�eF
�
A?N

�� D 1

M �1
MX

mD1

�eF
�
A
?;m
N

���M

�eF
�
A?N

���2
;
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which require 2M resolutions of corrector problems, i.e. as many as the classical
estimators (5). Our new random variable has variance

Var
�eF

�
A?N

��D 1

2
Var

�
F
�
A?N

��C 1

2
Cov

�
F
�
A?N

�
;F

�
B?N

��
: (7)

Applying the central limit theorem to eF
�
A?N

�
, we obtain

p
M
�
�M

�eF
�
A?N

���E
�eF

�
A?N

��� L�!
M!C1

q
Var

�eF
�
A?N

��
N .0;1/:

Similarly to (6), we deduce a confidence interval from this convergence. The exact
mean E

�eF
�
A?N

��
is equal to �M

�eF
�
A?N

��
within a typical margin of error

1:96

q
Var

�eF
�
A?N

��

p
M

:

We see on (7) that, when

Cov
�
F
�
A?N

�
;F

�
B?N

��� 0;

the width of the interval of confidence has been reduced by the approach, and, con-
sequently, the quality of approximation at given computational cost has improved.

1.4 A Brief Summary of Our Former Results

We have considered in [9] the case of an isotropic random field

A.x;!/D
X

k2Zd

1QCk.x/ak.!/Id D
X

k2Zd

1QCk.x/f .Xk.!// Id (8)

where .Xk.!//k2Zd is a family of independent uniform random variables and f
is a monotone function. For well-posedness, we assume that there exist ˛ > 0 and
ˇ < 1 such that, for all k, 0 < ˛ � ak � ˇ < C1 almost surely. Consequently,
A is uniformly coercive and bounded. The quantity we mainly considered in [9] is
F
�
A?N

�D 	
A?N



i i

, an approximation of a diagonal entry of the matrixA?. We have
demonstrated numerically the efficiency of the approach. We have also discussed in
the same reference how the approach affects (and indeed reduces) the variance of
other outputs, such as the solution u? to (3).

Another purpose of [9] was to investigate the approach theoretically. The one-
dimensional setting was addressed. The study has been complemented by a study in
higher dimensions in [3]. A particularly useful ingredient, theoretically, is, some-
what vaguely stated, the monotonicity of the homogenized objects in function of
the original random field. More precisely, we proved in [3] that variance is indeed
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reduced as long as the output F
�
A?N

�
we consider is monotone with respect to

each of the uniform random variables. The arguments given in [3] apply under the
following structure hypothesis on A: for any N , there exists an integer n (possibly
n D jQN j, but not necessarily) and a function A , defined on QN �R

n, such that
the tensor A.x;!/ writes

8x 2QN ; A.x;!/D A .x;X1.!/; : : : ;Xn.!// a.s.; (9)

where fXk.!/g1�k�n are independent scalar random variables, which are all
distributed according to the uniform law U Œ0;1�. Then the global monotonicity of
F
�
A?N

�
is related to the following composition scheme

fXk.!/g1�k�n
A�! A.x;!/

H�! A?N .!/
F�! F

�
A?N

�
;

where H denotes the application associated to periodic homogenization. Since
H is increasing in the sense of symmetric matrices, the global monotonicity only
depends on our way to model randomness A and the output F we are interested
in. In [3], we proved that variance is indeed reduced by the approach described in
Sect. 1.3 when A is non-decreasing with respect to each of its argument, and F is
monotone.

2 Variance Reduction for Problems Involving Correlations
or Anisotropy

Our theoretical results encourage us to apply the technique to more general cases
than the simple cases addressed in [9]. We will subsequently consider in this section
two specific situations:

� Correlated isotropic fields, that is matrices A in (2) of the form

A.x;!/D
X

k2Zd

1QCk.x/ak.!/Id D
X

k2Zd

1QCk.x/F
�˚
XkCj


jj j

1

�p .!/
�

Id;

(10)
where p is some fixed non-negative integer, fXk.!/gk2Zd is a family of
independent real-valued random variables and F is defined on R

2pC1 and real
valued;

� I.i.d. anisotropic fields, that is matrices A in (2) of the form

A.x;!/D
X

k2Zd

1QCk.x/Ak.!/D
X

k2Zd

1QCk.x/F.Xk.!//; (11)

where fXk.!/gk2Zd is a family of independentRNrv -valued random vectors, the
components of which are independent and identically distributed (we choose the
uniform law). The function F , defined on R

Nrv , is valued in the set of symmetric
matrices.
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Of course, we could combine the structure assumptions (10) and (11) to form
correlated anisotropic random fields, but we will not proceed in this direction here.

In the case of correlated fields, in line with the theoretical observations of [3]
recalled in the previous section, we assume that the function F is non-decreasing
with respect to each of its arguments. In the case of anisotropic fields, we will
first consider functions F that are non-decreasing. To check the robustness of the
approach, we will second consider functions F that are non monotone.

We will specifically investigate four questions.
First, considering the correlated isotropic case, we will try to understand how

correlation affects the efficiency of our variance reduction technique (see Sect. 2.1).
To this end, we consider variance reduction of the diagonal entries of the matrixA?,
first on the correlated case (10), second on an uncorrelated case, as we previously
did in [9]. Comparing the two cases will outline the influence of correlation. In this
context, the monotonicity assumptions are satisfied and we are thus proceeding on
a sound theoretical ground.

Second, we will use anisotropic fields generated using monotone functions A
in (9) (that is, monotone functions F in (11)), and that have homogenized matrices
with non trivial off-diagonal terms (see Sect. 2.2, Example 1). We will double-check
that variance is reduced on diagonal terms as was the case in our previous study. As
for off-diagonal terms, which are not monotone functions of the random fields, we
cannot rely on any theoretical guideline. As our experiments will show, we still
reduce variance, though.

Third, we will consider anisotropic fields that do not correspond to monotone
functions A (they are of the form (11) with a non-monotone F ). Absent any
theoretical analysis, we investigate numerically variance reduction on both diagonal
and off-diagonal terms (see Sect. 2.2, Examples 2 and 3).

Fourth, again using anisotropic fields, we will consider variance reduction of
eigenelements (see Sect. 3).

2.1 Correlated Cases

We consider a two dimensional situation and proceed computationally as explained
in Sect. 1. We restrict ourselves to considering the first diagonal entry

	
A?N



11

. In
order to investigate the role of correlation, we consider random fields of form (10)

A.x;!/D
X

k2Zd

1QCk.x/F
�˚
akCj


jj j

1

�p .!/
�

Id; (12)

with correlation length p. We begin with the case p D 1 and next consider some
larger values of p. In order to focus on the effect of correlation, we will not only
monitor the variance reduction for the homogenized matrix A? associated to the
above matrix A. We also consider a similar matrix, where the correlation is set
to zero, and apply the variance reduction technique for its homogenization. More
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precisely, we introduce

C.x;!/D
X

k2Zd

1QCk.x/F
�˚
ck;j


jj j

1

�1 .!/
�

Id; (13)

where
˚
.ck;j /jj j

1

�1

k2Zd denotes a family of i.i.d. random vectors, the compo-

nents of which are independent from one another and share the exact same law as
the ak (which we take here as the uniform law). The local behaviour (meaning,
the behaviour on a single unit cell) of the field C is similar to that of the field A.
However, when it comes to the global fields seen as functions on the entire space,
the behaviours differ, because correlation is turned off in the case of C . In the very
peculiar one-dimensional situation (where homogenization is a local, pointwise,
process), the homogenized matrices A? and C ? respectively obtained from A and
C are identical. The variance of the approximate matrices A?N and C ?N can be
different, though. Some elementary arguments, not included here and for which
we refer to [8], allow to prove that in both cases we reduce variance using the
technique of antithetic variable. In dimensions higher than or equal to 2, A? 6D C ?.
The matrix C ? serves as a useful reference to evaluate how correlation affects the
efficiency of our variance reduction technique.

In the numerical examples below, the random variables

fakgk2Zd and
˚
ck;j


k2Zd ;jj j

1

�1

are all uniformly distributed between ˛ D 3 and ˇ D 20.

2.1.1 Influence of Correlation: Identical Local Behaviour

We define the function F in (12) as

F
�˚
akCq


jqj�1

�
D 1

9

X

jqj�1
akCq : (14)

For comparison purposes, the field C of (13) is, as announced above, defined by

F
�˚
ck;l


jlj�1

�
D 1

9

X

jlj�1
ck;l : (15)

Our results for the variance reduction on
	
A?N



11

and
	
C ?N



11

are reported in
Tables 1 and 2, respectively. As mentioned in [9], because of isotropy and invariance
by rotation of angle �=2, the corresponding approximated homogenized matrix A?N
and C ?N are, like the exact homogenized matrices A? and C ?, isotropic. In each
table, the ratio of variance

R
�	
A?N



11

�D �100
�	
A?N



11

�

2�50
�	eA?N



11

� (16)
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Table 1 Correlated equidistributed case (12)–(14), p D 1: mean and standard deviation of	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 11.3791 0.0637 11.3824 0.0054 69.25
60 11.3794 0.0438 11.3818 0.0028 121.07
80 11.3765 0.0310 11.3821 0.0029 58.42
100 11.3794 0.0259 11.3818 0.0018 97.21

Table 2 Uncorrelated equidistributed case (13)–(15), p D 1: mean and standard deviation of	
C?

N



11

N �100

�	
C?

N



11

� p
�100

�	
C?

N



11

�
�50

�h
eC?

N

i

11

� p
�50

�h
eC?

N

i

11

�
R
�	
C?

N



11

�

40 11.3843 0.0226 11.3859 0.0021 55.64
60 11.3850 0.0153 11.3858 0.0017 40.95
80 11.3863 0.0111 11.3858 0.0012 40.53
100 11.3863 0.0091 11.3860 0.0009 51.00

measures the reduction of uncertainty on estimations of E
�
A?N

�
at fixed computa-

tional cost, that is, the efficiency of the variance reduction technique. It corresponds
to the ratio of the square of the widths of intervals of confidence. We will use a
similar ratio (with obvious definition and notation) for all the tables presented
throughout this article.

From the consideration of Tables 1 and 2 we conclude that correlation does not
affect the efficiency of the technique.

Note that we observe here a ratio R of the order of 40, better than in [9]. It owes
to the fact that we deliberately considered in [9] more challenging test cases in order
to prove that variance can be reduced in generic situations, even demanding ones in
terms of normalized variance. Here we are focusing on the effect of correlation only,
and our purpose, different in nature from that of [9], is to compare the correlated

and the uncorrelated situations. Indeed, denoting byAk.!/D F
�˚
akCq


jqj�1

�
and

Ck.!/ D F
�˚
ck;l


jlj�1

�
the local values of the correlated field (12)–(14) and of

the uncorrelated field (13)–(15) respectively, we see here that the corresponding
normalized variance reads

Var Ak
.E Ak/

2
D Var Ck
.E Ck/

2
D Var c0;0
9.E c0;0/

2
D .ˇ�˛/2
27.ˇC˛/2

	 0:0202:
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In contrast, in the test case (iii) of [9], the random field is

A.x;!/D
X

k2Zd

1QCk.x/ak.!/ Id; (17)

where fakgk2Zd is a family of i.i.d. variables uniformly distributed between ˛0 D 3

and ˇ0 D 20. The normalized variance of the local value of A.x;!/ hence reads

Var ak
.E ak/

2
D .ˇ0�˛0/2
3.ˇ0C˛0/2

	 0:182; (18)

and is indeed 9 times as large as the normalized local variance considered here.
Our formal considerations above are confirmed by the numerical results shown in
Table 3, where we consider the test case (17), this time with ˛0 D 3 and ˇ0 D 5, so
that the normalized local variance (which is now equal to 0.0208, in view of (18)) is
close to the one of the fields (12)–(14) and (13)–(15). We again obtain an efficiency
ratio close to 50. So, the normalized local variance of the fields (12)–(14), (13)–(15)
(with ˛ D 3 and ˇ D 20) and (17) (with ˛0 D 3 and ˇ0 D 5) are of the same order,
and we indeed observe an efficiency ratio R of the same order.

Table 3 Uncorrelated case (17), where ak 	 U Œ˛0;ˇ0�, with ˛0 D 3 and ˇ0 D 5: mean and
standard deviation of

	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 3.9597 0.0071 3.9595 0.00069 52.87
60 3.9591 0.0049 3.9595 0.00045 59.18
80 3.9589 0.0037 3.9594 0.00035 55.66
100 3.9590 0.0030 3.9594 0.00025 71.53

Remark 1. Consider, in the one-dimensional setting, the case

A.x;!/D
X

k2Z
1Œk;kC1/.x/ak.!/;

where fakgk2Z is a family of i.i.d. variables uniformly distributed between ˛0
and ˇ0. Then the efficiency ratio (16), which we write here as

RN D Var
�
A?N

�

2Var
�eA?N

� ;

is analytically computable. After tedious but straightforward computations (see [8]
for details), we obtain
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Fig. 1 Variance reduction efficiency R
1

defined by (19), as a function of x D ˇ0=˛0

lim
N!1RN DR1 D

�
1� g.x/ ln.x/

.x�1/Œ1=x� .ln.x/=.x�1//2�
��1

(19)

where x D ˇ0=˛0 > 1 and g.x/ D ln.x/=.x � 1/� 2=.1C x/. On Fig. 1, we plot
R1 as a function of x. For any x, we observe that R1 > 1, that is the variance
reduction technique is indeed efficient, and provides a more accurate estimation of
E
�
A?N

�
for an equal computational cost. We also observe that R1 is a decreasing

function of x, which tends to 1 as x tends to infinity. This one-dimensional study
also confirms our considerations above: the technique always allows to reduce the
variance, but is all the more efficient as the original normalized variance (here
intuitively measured by the quotient x, and above measured by the ratio (18)) is
small.

2.1.2 Centered vs Equidistributed Correlation Structure

We now compare two different correlation structures sharing the same correlation
length p D 1. The first structure is the equidistributed case (14). As for the second
structure, we consider

F
�˚
akCq


jqj�1

�
D 1

2
ak C 1

16

X

jqj�1Iq¤0
akCq ; (20)

where, as in (14), fakgk2Zd refers to a family of i.i.d. random variables uniformly
distributed between ˛ D 3 and ˇ D 20. From Tables 1 and 4, we see that the
correlation structure affects the efficiency of the method, but the reduction remains
significant.
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Table 4 Correlated centered case (12)–(20), pD 1: mean and standard deviation of
	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 11.1531 0.0655 11.1563 0.0083 31.17
60 11.1527 0.0448 11.1551 0.0050 39.89
80 11.1494 0.0319 11.1552 0.0045 25.43

100 11.1523 0.0267 11.1548 0.0028 45.52

2.1.3 Longer Correlation Lengths

We now let our parameter p modeling the correlation length increase, and con-
sider (12), with F defined by

F
�˚
akCq


jqj�p

�
D 1

.2pC1/2

X

jqj�p
akCq ; (21)

with values p D 2, p D 5 and p D 10 (the case p D 1 corresponds to (14)). Results
are reported in Tables 5–7. Comparing also with Table 1, we see that increasing
the correlation length indeed affects, in fact advantageously, the efficiency of the
variance reduction.

Table 5 Correlated equidistributed case (12)–(21), p D 2: mean and standard deviation of	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 11.4563 0.05697 11.4574 0.0033 145.75
60 11.4556 0.03641 11.4580 0.0023 121.15
80 11.4528 0.03053 11.4579 0.0017 169.72
100 11.4554 0.02641 11.4579 0.0013 214.58
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Table 6 Correlated equidistributed case (12)–(21), p D 5: mean and standard deviation of	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 11.4871 0.0592 11.4912 0.0014 886.83
60 11.4853 0.0413 11.4914 0.0010 873.11
80 11.4882 0.0313 11.4915 0.0007 994.81
100 11.4888 0.0246 11.4914 0.0005 1015.36

Table 7 Correlated equidistributed case (12)–(21), p D 10: mean and standard deviation of	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 11.4970 0.0596 11.4978 0.0007 3360.50
60 11.4940 0.0392 11.4977 0.0006 2473.20
80 11.4963 0.0301 11.4977 0.0003 3719.40
100 11.4937 0.0251 11.4977 0.0002 4640.11

2.2 Anisotropic Cases

2.2.1 Test Cases

To begin with, we introduce three test cases we will focus on in the remainder of this
section. They correspond to different deterministic functions A , that is, different
ways of constructing in (9) the field A.x;!/ from the random variables.

Example 1

We consider a random matrix

A1.x;!/D P

0

@
X

k2Z2

1QCk.x/
�
�1
k
.!/ 0

0 �2
k
.!/

�1

AP T with P D 1p
2

�
1 �1
1 1

�
;

(22)
where

˚
�1
k


k2Z2 and

˚
�2
k


k2Z2 are two independent families of independent random

variables uniformly distributed on Œ˛;ˇ� and Œı;�� respectively. We assume that

�1 D min.˛;ı/ > 0;
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so that, for all k 2 Z
2, �1

k
.!/ � �1 > 0 and �2

k
.!/ � �1 > 0 almost surely.

This case corresponds to the deterministic function

A1 .x;f.yk;´k/gk2Z2/D P

0

@
X

k2Z2

1QCk.x/
�
˛C .ˇ�˛/yk 0

0 ıC .� � ı/´k
�1

AP T ;

and to the choice

A1.x;!/D A1 .x;f.Yk.!/;Zk.!//gk2Z2/ ;

where Yk andZk are i.i.d. random variables with uniform law on Œ0;1�. Note that A1

is indeed non-decreasing with respect to any yk and ´k . The associated antithetic
field is

B1.x;!/D P

0

@
X

k2Z2

1QCk.x/
�
˛Cˇ��1

k
.!/ 0

0 ıC� ��2
k
.!/

�1

AP T : (23)

Parameters values are fixed at ˛ D 5, ˇ D 20, ı D 25 and � D 40.

Example 2

We choose

A2.x;!/D
X

k2Z2

1QCk.x/Ak.!/ with Ak.!/D
�
ak.!/ bk.!/

bk.!/ ak.!/

�
;

where fakgk2Z2 and fbkgk2Z2 are two independent families of i.i.d. random
variables uniformly distributed in Œ˛;ˇ� and Œı;�� respectively, with

˛ > 0:

The eigenvalues of Ak are �1
k
.!/ D ak.!/� bk.!/ and �2

k
.!/ D ak.!/C bk.!/.

We thus assume that there exists �2 > 0 such that

for all k 2 Z
2; ak.!/� jbk.!/j � �2 almost surely;

so that A2 is uniformly coercive. Note that the deterministic function A2 associated
to A2, which reads

A2 .x;f.yk;´k/gk2Z2/D
X

k2Z2

1QCk.x/
�
˛C .ˇ�˛/yk ıC .� � ı/´k
ıC .� � ı/´k ˛C .ˇ�˛/yk

�
;

is not monotone with respect to ´k . This case does not fall in the framework of [3].
The antithetic field we will consider is
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B2.x;!/D
X

k2Z2

1QCk.x/
�
˛Cˇ�ak.!/ �C ı�bk.!/
�C ı�bk.!/ ˛Cˇ�ak.!/

�
:

The numerical tests have been performed with the following parameters: ˛ D 25,
ˇ D 40, ı D 5 and � D 20.

Example 3

We define the random matrix

A3.x;!/D
X

k2Z2

1QCk.x/Ak.!/ with Ak.!/D
�
ak.!/ ck.!/

ck.!/ bk.!/

�
;

where fakgk2Z2 , fbkgk2Z2 and fckgk2Z2 are three independent families of indepen-
dent random variables, uniformly distributed in Œ˛;ˇ�, Œı;�� and Œ�;�� respectively,
with

˛ > 0; ı > 0 and � > 0: (24)

Uniform coercivity holds if and only if the two eigenvalues of Ak.!/ are positive
and uniformly bounded away from 0. A necessary condition is that the trace and the
determinant of Ak.!/ are positive and uniformly bounded away from 0, which is
guaranteed under the assumptions (24) and the existence of �3 > 0 such that

˛ı��2 � �3 > 0:

The lowest eigenvalue �1
k
.!/ of Ak.!/ then reads

�1k.!/D 2det Ak.!/

Tr Ak.!/C
q
.Tr Ak.!//

2�4det Ak.!/
;

which is bounded from below as det Ak is bounded from below by �3 >0 and Tr Ak
is bounded from above by ˇC� .

The corresponding antithetic field reads

B3.x;!/D
X

k2Zd

1QCk.x/
�
˛Cˇ�ak.!/ �C�� ck.!/
�C�� ck.!/ ıC� �bk.!/

�
:

The numerical tests have been performed with the following parameters: ˛ D 15,
ˇ D 30, ı D 20, � D 40, �D 5 and � D 15.

2.2.2 Numerical Results

We consider both a diagonal term, namely
	
A?N



11

and an off-diagonal term,
namely

	
A?N



12

. For the former, in the case when monotonicity holds, we expect
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the results to be qualitatively good, since we have a theoretical result ensuring
variance reduction. Our purpose is to evaluate the reduction quantitatively. When
monotonicity does not hold, because of the particular structure considered, then we
also test the reduction itself. We mention that the other diagonal entry

	
A?N



22

of
the matrix would yield results qualitatively similar to those for

	
A?N



11

.
Table 8 confirms that variance of the diagonal terms is reduced in our Example 1.

The gain is rather significant. We also observe on Table 9 the same computational
gain for the off-diagonal term, although our theoretical arguments in [3] do not
cover this case. The other Tables (Tables 10–13) show that variance reduction is
also obtained for our Examples 2 and 3, although no theoretical argument holds in
these non-monotone settings.

Table 8 Example 1: mean and standard deviation of the diagonal term
	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 22.0595 0.0362 22.0577 0.0066 14.88
60 22.0550 0.0240 22.0575 0.0036 21.80
80 22.0570 0.0161 22.0578 0.0020 32.96
100 22.0565 0.0166 22.0578 0.0025 21.74

Table 9 Example 1: mean and standard deviation of the off-diagonal term
	
A?

N



12

N �100

�	
A?

N



12

� p
�100

�	
A?

N



12

�
�50

�h
eA?

N

i

12

� p
�50

�h
eA?

N

i

12

�
R
�	
A?

N



12

�

40 �10.0897 0.0389 �10.0877 0.0043 41.32
60 �10.0902 0.0266 �10.0880 0.0024 63.93
80 �10.0899 0.0215 �10.0882 0.0022 48.82
100 �10.0892 0.0169 �10.0886 0.0019 39.10

3 Variance Reduction for Eigenproblems

As announced in the introduction, we now turn to the issue of variance reduction for
eigenproblems.
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Table 10 Example 2: mean and standard deviation of the diagonal term
	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

40 31.8828 0.0498 31.8783 0.0098 12.85
60 31.8768 0.0337 31.8765 0.0049 23.48
80 31.8761 0.0284 31.8779 0.0036 31.50
100 31.8776 0.0242 31.8781 0.0032 29.30

Table 11 Example 2: mean and standard deviation of the off-diagonal term
	
A?

N



12

N �100

�	
A?

N



12

� p
�100

�	
A?

N



12

�
�50

�h
eA?

N

i

12

� p
�50

�h
eA?

N

i

12

�
R
�	
A?

N



12

�

40 12.6126 0.0561 12.6118 0.0085 21.69
60 12.6083 0.0342 12.6125 0.0051 16.94
80 12.6071 0.0270 12.6127 0.0042 20.86
100 12.6106 0.0226 12.6123 0.0038 18.18

Table 12 Example 3: mean and standard deviation of the diagonal term
	
A?

N



11

N �100

�	
A?

N



11

� p
�100

�	
A?

N



11

�
�50

�h
eA?

N

i

11

� p
�50

�h
eA?

N

i

11

�
R
�	
A?

N



11

�

20 22.0121 0.1239 22.0116 0.0125 49.44
40 22.0105 0.0571 22.0086 0.0073 30.54
60 22.0050 0.0387 22.0086 0.0046 34.39
80 22.0073 0.0282 22.0079 0.0037 28.55

We respectively denote by
˚
�A
k
.!/


1�k�d and

˚
�B
k
.!/


1�k�d the eigenvalues of

the (approximate) homogenized matrixA?N .!/ and the (approximate) homogenized
matrixB?N .!/ obtained using the antithetic field B.x;!/. We sort these eigenvalues
in non-decreasing order.

Likewise, we denote by
�
�A
k
.!/;uA

k
.!/

�
k2N the eigenelements of the operator

LA D �div
	
A?N .!/r�
 with homogeneous Dirichlet boundary conditions, i.e.

�div
h
A?N .!/ruAk .!/

i
D�Ak .!/u

A
k .!/

with uA
k
.!/ 2H 1

0 .D/ and kuA
k
.!/kL2.D/ D 1. We proceed similarly for the matrix

obtained using the antithetic field B.x;!/ and consider the eigenelements of
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Table 13 Example 3: mean and standard deviation of the off-diagonal term
	
A?

N



12

N �100

�	
A?

N



12

� p
�100

�	
A?

N



12

�
�50

�h
eA?

N

i

12

� p
�50

�h
eA?

N

i

12

�
R
�	
A?

N



12

�

20 2.5031 0.0369 2.5024 0.0046 31.61
40 2.5017 0.0193 2.5021 0.0025 30.42
60 2.5012 0.0121 2.5028 0.0016 27.25
80 2.5012 0.0092 2.5012 0.0092 37.47

LB D �div
	
B?N .!/r�
:

�div
h
B?N .!/ruBk .!/

i
D�Bk .!/u

B
k .!/:

We also assume that, almost surely,�A
k
.!/ and�B

k
.!/ are sorted in non-decreasing

order.

Our purpose here is to reduce the variance on F
�
A?N

� D �A
k

or �A
k

for some
k 2 N. Note that this is a monotone function of the random field A.x;!/ (see [3]).
In the case when A is also monotone, the following result from [3] applies.

Proposition 1. Definee�k.!/ WD 1
2

	
�A
k
.!/C�B

k
.!/



: Then, for all 1� k � d ,

E

�
e�k
�

D E

�
�Ak

�
and Var

�
e�k
�

� 1

2
Var

�
�Ak

�
:

Define e�k.!/ WD 1
2

�
�A
k
.!/C�B

k
.!/

�
: Then, for all k 2 N,

E
�e�k

�D E

�
�Ak

�
and Var

�e�k
�� 1

2
Var

�
�Ak

�
:

This guarantees that the technique indeed reduces variance. We however need a
quantitative evaluation of the efficiency of variance reduction.

To begin with, we mention that in the one-dimensional setting, or in the case
of diagonal homogenized matrices, the question of variance reduction for eig-
enelements reduces to elementary questions already addressed. Indeed, in the one-
dimensional setting, the approximate homogenized operator reads

�a?N .!/
d 2

dx2

and thus its eigenfunctions are the deterministic eigenfunctions of the one-
dimensional Laplacian, and its eigenvalues are likewise the deterministic
eigenvalues of the one-dimensional Laplacian multiplied by the random quantity
a?N .!/. The variance reduction of the eigenelements comes down to that of a?N .!/.
Similarly, in the two-dimensional setting when the approximate homogenized
matrix is diagonal, namely
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A?N .!/D
�
a?N .!/ 0

0 b?N .!/

�
;

the eigenfunctions and eigenvalues may again be explicitly expressed in terms
of those (deterministic) of the Laplacian. All is a matter of scaling, and again the
question of variance reduction is elementary and already covered by that of reducing
the variance on A?N .!/.

Besides these oversimplified cases, additional numerical experiments are in
order. We consider the three examples defined in Sect. 2.2.1. For each of them, and
for the eigenvalues of the matrix A?N and the eigenvalues of the operator LA?

N
, we

study an effectivity ratio R similar to that defined in (16).

Tables 14–16 illustrate the efficiency of the technique for the computation of the
first eigenvalue for any structure of the random fields. Our results for the second
eigenvalue are displayed on Tables 17–19. These results show the good efficiency
of the approach, for all the test cases considered.

Tables 20–25 illustrate the variance reduction for the first two eigenvalues ofLA.
Again, the approach performs very well. We omit to present here our results for
higher eigenvalues of LA. They lead to similar qualitative conclusions on the good
efficiency of the approach.

Table 14 Example 1: mean and standard deviation of the first eigenvalue �A
1 of the homogenized

matrix

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

40 11.9703 0.0572 11.9702 0.0075 29.19
60 11.9650 0.0385 11.9696 0.0043 39.36
80 11.9670 0.0267 11.9696 0.0035 28.63
100 11.9672 0.0233 11.9692 0.0033 24.00

Table 15 Example 2: mean and standard deviation of the first eigenvalue �A
1 of the homogenized

matrix

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

40 19.2698 0.07870 19.2670 0.01353 16.91
60 19.2688 0.05414 19.2650 0.00799 22.96
80 19.2690 0.04196 19.2652 0.00593 25.02
100 19.2668 0.03411 19.2659 0.00557 18.70
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Table 16 Example 3: mean and standard deviation of the first eigenvalue �A
1 of the homogenized

matrix

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

20 16.2994 0.0465 16.2998 0.0051 41.59
40 16.3016 0.0235 16.2995 0.0029 32.82
60 16.3005 0.0148 16.2991 0.0016 44.61
80 16.3001 0.0115 16.2989 0.0011 50.42

Table 17 Example 1: mean and standard deviation of the second eigenvalue �A
2 of the homoge-

nized matrix

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

40 32.1496 0.0480 32.1456 0.0049 47.62
60 32.1454 0.0327 32.1455 0.0031 56.60
80 32.1467 0.0270 32.1459 0.0022 78.10
100 32.1456 0.0241 32.1463 0.0019 79.77

Table 18 Example 2: mean and standard deviation of the second eigenvalue �A
2 of the homoge-

nized matrix

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

40 44.4951 0.0704 44.4905 0.0079 39.31
60 44.4854 0.0471 44.4900 0.0052 41.47
80 44.4832 0.0365 44.4905 0.0040 41.93
100 44.4880 0.0326 44.4905 0.0035 42.98

Table 19 Example 3: mean and standard deviation of the second eigenvalue �A
2 of the homoge-

nized matrix

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

20 23.1095 0.1053 23.1079 0.0099 56.70
40 23.1069 0.0472 23.1052 0.0060 31.18
60 23.1018 0.0337 23.1057 0.0043 31.24
80 23.1035 0.0249 23.1051 0.0032 29.77
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Table 20 Example 1: mean and standard deviation of�A
1

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

40 842.9851 1.5576 842.9140 0.2084 27.94
60 842.7855 1.0364 842.8998 0.1284 32.60
80 842.8560 0.6882 842.9044 0.0900 29.21
100 842.8422 0.6977 842.9013 0.0891 30.67

Table 21 Example 1: mean and standard deviation of�A
2

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

40 1847.7161 4.4299 1847.5915 0.5976 27.47
60 1847.1983 2.9559 1847.5500 0.3593 33.86
80 1847.3861 1.9570 1847.5559 0.2678 29.45
100 1847.3705 1.8871 1847.5370 0.2614 26.05

Table 22 Example 2: mean and standard deviation of�A
1

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

40 611.2645 1.0533 611.1924 0.1631 27.87
60 611.1149 0.7222 611.1646 0.0985 26.86
80 611.1549 0.6078 611.1718 0.0657 42.82
100 611.1685 0.5140 611.1796 0.0639 32.33

Table 23 Example 2: mean and standard deviation of�A
2

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

40 1351.9939 2.9920 1351.8258 0.4960 19.95
60 1351.7016 2.0189 1351.7458 0.2958 23.29
80 1351.7995 1.6841 1351.7609 0.2063 33.31
100 1351.7827 1.3957 1351.7865 0.1986 24.69

Table 24 Example 3: mean and standard deviation of�A
1

N �100

�
�A

1

� p
�100

�
�A

1

�
�50

�
e�1

� p
�50

�
e�1

�
R
�
�A

1

�

20 389.7542 1.2979 389.7434 0.1258 53.26
40 389.7524 0.5981 389.7139 0.0774 29.86
60 389.6902 0.4072 389.7138 0.0467 38.06
80 389.7038 0.2967 389.7064 0.0375 31.37
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Table 25 Example 3: mean and standard deviation of�A
2

N �100

�
�A

2

� p
�100

�
�A

2

�
�50

�
e�2

� p
�50

�
e�2

�
R
�
�A

2

�

20 901.8832 2.1182 901.8619 0.1934 60.01
40 901.9316 0.9934 901.8325 0.1221 33.09
60 901.8420 0.6740 901.8300 0.0650 53.95
80 901.8335 0.5028 901.8193 0.0514 53.95
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A Stroboscopic Numerical Method for Highly
Oscillatory Problems

Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesús Marı́a Sanz-Serna

Abstract We suggest a method for the integration of highly oscillatory systems with
a single high frequency. The new method may be seen as a purely numerical way
of implementing the analytical technique of stroboscopic averaging. The technique
may be easily implemented in combination with standard software and may be
applied with variable step sizes. Numerical experiments show that the suggested
algorithms may be substantially more efficient than standard numerical integrators.

1 Introduction

We suggest a numerical method for the integration of highly oscillatory differential
equations dy=dt D f .y; t/ with a single high frequency 2�=�, � 
 1. The new
method may be seen as a purely numerical way of implementing the analytical
technique of stroboscopic averaging [13] which constructs an averaged differential
system dY=dt D F.Y / whose solutions Y (approximately) interpolate the sought
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highly oscillatory solution y at times t D t0 C 2��n, (n integer). In the spirit of
the heterogeneous multiscale methods (see [1, 5–8, 16], cf. [3, 14]), we integrate
numerically the averaged system without using the analytic expression of F ; all
information on F required by the algorithm is gathered on the fly by numerically
integrating the original system in small time windows. The technique may be
easily implemented in combination with standard software and may be applied with
variable step sizes.

Section 2, based on [4], presents the theoretical foundation of the algorithm.
Section 3 contains a description of the new method along with a brief discussion
of related literature. Examples of oscillatory systems that may be treated with our
approach are provided in Sect. 4 and the final section presents numerical examples.
It is found that the suggested algorithms may be substantially more efficient than
standard numerical integrators.

2 A Modified Equation Approach to Averaging

We wish to integrate numerically initial value problems for differential systems of
the form

d

dt
y D f

�
y;
t

�
I�
�
; (1)

where y is a D-dimensional real vector, � is a small parameter and the smooth
function f is assumed to depend 2�-periodically on the variable t=�. Our interest is
in situations where, as � ! 0, the solutions or some of their derivatives with respect
to t become unbounded; relevant examples will be presented in Sect. 4.

If we denote by 't0;t I� W RD ! RD the solution operator of (1), so that

y.t/D 't0;t I�.y0/

is the solution that satisfies the initial condition y.t0/ D y0, then the one-period
map 	t0I� D 't0;t0C2�I� depends on t0 in a 2��-periodic manner; this is proved by
noting that both 't0;t I�.y0/ and 't0C2�;tC2�I�.y0/ satisfy the same initial value
problem

d

dt
y.t/D f

�
y.t/;

t

�
I�
�

D f

�
y.t/;

tC2��

�
I�
�
; y.t0/D y0:

It follows that, at the stroboscopic times tn D t0C2��n, nD 0;˙1;˙2; : : : ,
y.tn/D 't0;tnI�.y0/D 'tn�1;tnI�.'t0;tn�1I�.y0//D 't0;t0C2�I�.'t0;tn�1I�.y0//

and, hence, we arrive at the fundamental formula:

y.tn/D .	t0I�/
n.y0/; nD 0;˙1;˙2; : : : (2)

For the problems we are interested in (see Sect. 4) there is an expansion
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	t0I�.y0/D y0C
1X

jD1
�jMj .y0/; (3)

with suitable smooth maps Mj W RD ! RD independent of �, and thus 	t0I� is a
smooth near-to-identity map. Standard results from the backward error analysis of
numerical integrators [9,15] show then the existence of an autonomous system (the
modified system of 	t0I�)

d

dt
Y D F.Y I�/D F1.Y /C �F2.Y /C �2F3.Y /C�� � (4)

whose (formal) solutions satisfy that Y.tn/D 	t0I�.Y.tn�1// for nD 0;˙1;˙2; : : :
so that

Y.tn/D .	t0I�/n.Y0/; nD 0;˙1;˙2; : : : (5)

(F and the Fj depend on t0 – because	t0I� does–, but this dependence has not been
incorporated to the notation.) We conclude from (2) and (5) that, if one chooses
Y.t0/ D y.t0/, then Y.t/ exactly coincides with y.t/ at the stroboscopic times
tn D t0C 2��n. In this way it is possible in principle to find y.tn/ by solving the
system (4), where all t-derivatives of Y remain bounded as � ! 0. Furthermore y
may be recovered from Y even at values of t that do not coincide with one of the
stroboscopic times. In fact,

y.t/D .'tn;t I� ı˚tn�t I�/.Y.t//; (6)

where tn is the largest stroboscopic time � t and ˚�I� denotes the flow of (4). In this
way, y is ‘enslaved’ to Y through the mapping 'tn;t I� ı˚tn�t I� whose dependence
on t is easily seen to be 2��-periodic.

For future reference we note that an alternative way of writing (5) is

	nt0I� � ˚2�nI�I (7)

after a whole number n of periods the solution operator 	nt0I� D 't0;t0C2�n of the
non-autonomous system (1) coincides with the flow of the autonomous (4).

It is well known that the series (4) does not converge in general, and in order to
get rigorous results one has to consider a truncated version (J � 1 is an arbitrarily
large integer)

d

dt
Y D F .J /.Y I�/D F1.Y /C �F2.Y /C �2F3.Y /C�� �C �J�1FJ .Y /; (8)

whose solutions satisfy that Y.tn/�	t0I�.Y.tn�1//D O.�JC1/. If Y solves (8) with
Y.t0/D y.t0/ then Y.tn/ and y.tn/ differ by an O.�J / amount, where the constant
implied in the O notation is uniform as the stroboscopic time tn ranges in a time
interval t0 � tn � t0CT with T D O.1/ as � ! 0.

The process of obtaining the autonomous system (4) (or (8)) from the original
system (1) is referred to in the averaging literature [13] as high-order stroboscopic
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averaging. As a rule, the amount of work required to find analytically the functions
Fj is formidable, even when the interest is limited to lowest values of j .

3 A Numerical Method

In this section we propose a purely numerical method that bypasses the need for
finding analytically the functions Fj . To simplify the exposition, we will ignore
hereafter the O.�J / remainder that arises from truncating (4), i.e. we will proceed
as if the series (4) were convergent. Since J may be chosen arbitrarily large, the
disregarded truncation errors are, as � ! 0, negligible when compared with other
errors present in the method to be described.

tY H

h

Fig. 1 Schematic view of the numerical integration. The t -axis above represents the macro-
integration of the averaged system with (large) macro-steps H . Whenever the macro-solver
requires information on the averaged system, the algorithm carries out a micro-integration of the
original problem in a small time-window. The micro-step size h is small with respect to �

In order to integrate the highly oscillatory system (1) with initial condi-
tion y.t0/ D y0, we (approximately) compute the corresponding smooth inter-
polant Y.t/, i.e. the solution of the initial value problem specified by the averaged
system (4) along with the initial condition Y.t0/ D y0. We integrate (4) by a
standard numerical method, the so-called macro-solver, with a macro-step H that
ideally should be substantially larger than the small period 2��. In the spirit of
heterogeneous multiscale methods, the information on F required by the macro-
solver is gathered on the fly by integrating, with a micro-step h, the original system
(1) in time-windows of length O.�/. These auxiliary integrations are also performed
by means of a standard numerical method, the micro-solver, see Fig. 1. (It is not
necessary that the choices of macro and micro-solver coincide.)

If the macro-solver is a linear multistep or Runge-Kutta method, then the only
information on the system (4) required by the solver are function values F.Y �I�/
at given values of the argument Y �. Since, by definition, ˚t I� is the flow of (4) we
may write
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F.Y �I�/D d

dt
˚t I�.Y �/

ˇ̌
ˇ̌
tD0

;

or, after approximating the time-derivative by central differences,

F.Y �I�/D 1

2ı
Œ˚ıI�.Y �/�˚�ıI�.Y �/�CO.ı2/:

We now set ı D 2�� and use the identity (7) to get

F.Y �I�/D 1

4��
Œ	t0I�.Y

�/�	�1t0I�.Y �/�CO.�2/; (9)

a formula that may be used to compute approximatelyF.Y �I�/ since 	t0I�.Y �/ and
	�1t0I�.Y

�/ may be found numerically through micro-integrations. In fact one has to
integrate (1) with initial condition y.t0/D Y �, first from t D t0 to t D t0C2�� and
then from t D t0 to t D t0�2��.

Some important remarks are in order. The initial condition for each micro-
integration is always prescribed at t D t0, regardless of the point of the time axis the
macro-solver may have reached when the micro-integration is performed. We have
tried to make this fact apparent in Fig. 1 by enclosing different micro-integrations in
boxes that are not connected by a common time-axis (cf. Fig. 1.1 in [8] or Fig. 2 in
[16]). All micro-integrations find solutions of (1) in the interval Œt0�2��; t0C2���.
With the terminology of [3] we may say that the algorithm suggested here is
asynchronous. Figure 2 may be of assistance in understanding the situation. This
figure should also make it clear that it is not at all necessary that the step-points used
by the macro-integrator be stroboscopic times; this is a particularly valuable feature
if the macro-solver employs variable steps. We also emphasize that if the macro-
solver outputs (an approximation to) the averaged solution Y at a stroboscopic
time tn, then the output is an approximation to y.tn/; if output occurs at a non-
stroboscopic value of t it is still possible to recover an approximation to y.t/ by
using (6).

Of course, other difference formulae may also be used instead of (9). For
instance, we may approximate F.Y �I�/ with an O.�4/ error by means of

1

24��

�
�˚4�I�.Y �/C8˚2�I�.Y �/�8˚�2�I�.Y �/C˚�4�I�.Y �/

�

D 1

24��

�
�	2t0I�.Y �/C8	t0I�.Y �/�8	�1t0I�.Y �/C	�2t0I�.Y

�/
�
: (10)

Now the integrations to be carried out to find 	2t0I�.Y
�/ D 't0;t0C4�I�.Y �/ and

	�2t0I�.Y
�/D 't0;t0�4�I�.Y �/ work in the intervals t0 � t � t0C4�� and t0 � t �

t0 � 4�� respectively. Difference formulae of arbitrarily high orders may also be
employed, but higher order implies a wider stencil and costlier micro-integrations.

The approach suggested here is related to methods called envelop-following or
multi-revolution (see [2, 12] and their references) that go back to the 1960s and
have been successfully used in a number of application areas, including celestial
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y0

y*

y
(1)

(t)

y(2)
(t)

Y
(1)

(t)

Y
(2)

(t)

t0 t1 t2 t*

Fig. 2 The wiggly solid lines represent the solutions y.1/.t/ and y.2/.t/ of the oscillatory
problem with initial conditions y.1/.t0/ D y0 and y.2/.t0/ D y�. We have also represented
the solutions of the averaged system with Y .1/.t0/ D y0 and Y .2/.t0/ D y�; the graphs of
Y .1/.t/ and Y .2/.t/ are translates along the time-axis of one another because the averaged
system is autonomous. At stroboscopic times each oscillatory solution y.i/.t/ coincides with the
corresponding averaged solution Y .i/.t/. Now assume that we are computing numerically Y .1/,
that the macro-solver has reached the point .t�;y�/ (t� is not a stroboscopic time) and that it
requires the value of the slope F.y�I�/. The correct procedure is based on the fact that the slope
of Y .1/.t/ at .t�;y�/ coincides with the slope of Y .2/.t/ at .t0;y�/; micro-integrations on the
intervals t0 � t � t0C2� and t0 � t � t0�2� (this is not shown in the figure) are performed
to find y.2/.t0˙2�/D Y .2/.t0˙2�/ and the values Y .2/.t0˙2�/ are then used to find
the slope by means of finite differences. Micro-integrating in the intervals t� � t � t�C2� and
t� � t � t��2� will not do: the averaged system depends on t0 – see Sect. 2 – and such micro-
integrations (discontinuous wiggly lines) would provide information on a solution (discontinuous
line without wiggles) of the wrong averaged system

mechanics and circuit theory. Note that, while in this paper both the macro- and
micro-integrators are standard ODE solvers, the multi-revolution technique requires
the construction of new special formulae. The closest relative of the algorithm
described above is perhaps the LIPS method of Kirchgraber [10] that, in lieu of
the finite difference formulae employed here, retrieves values of F.Y �I�/ through
Runge-Kutta like formulae. Again those formulae have to be build on purpose and
reference [10] provides coefficients for the orders O.�2/, O.�3/, O.�4/.1

1 The possibility of using finite-difference formulae to approximate modified equations – this is
essentially the problem solved by Kirchgraber’s formulae – was already pointed out in reference
[11], page 228.
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4 Examples

In order that a highly-oscillatory problem (1) may be integrated by the procedure
outlined above, it is necessary that the corresponding one-period map 	t0I� be a
smooth near-to-identity transformation as in (3). In this section we present families
of systems that satisfy this condition.

(i) If f in (1) is of the form

f .y;� I�/ D
1X

jD1
�j�1fj .y;�/: (11)

where the fj .y;�/ are smooth 2�-periodic functions of � , then f D O.1/
as � ! 0 and therefore y.t/�y.t0/ undergoes O.�/ changes in the interval
t0 � t � t0 C 2�� and (3) holds. Presented in [4] is a way of systematically
constructing with the help of rooted trees the functionsMj that feature in (3).
The format (11) is the standard starting point to perform analytically averaging
so that any system to be averaged has first to be brought to that format via
suitable changes of variables. We show next that those preliminary changes of
variables are not needed to implement the numerical method of Sect. 3.

(ii) Consider second order systems of the form

d2

dt2
q DG

�
q;
t

�
I�
�
; (12)

where q 2 Rd and the force G has an expansion

G.q;� I�/ D
1X

jD0
�j�1Gj .q;�/

(the Gj are 2�-periodic in �).
To treat this case, we begin by rewriting (12) as a first order system

d

dt
q D p;

d

dt
p DG

�
q;
t

�
I�
�

(13)

for the vector y D .q;p/ in RD , D D 2d . Note that here G D O.1=�/ and
the solution y will undergo O.1/ changes in the interval t0 � t � t0 C 2��.
However if the leading term .1=�/G0 ofG averages to zero over one period, i.e.

ˆ 2

0

G0.q;�/d� D 0; (14)

then (3) holds as proved in [4], a reference that presents a technique for
explicitly constructing the functions Mj . An alternative proof will be given
here. Consider the system
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d

dt
q D 0;

d

dt
p D 1

�
G0

�
q;
t

�

�
; (15)

denote byb't0;t I�.q0;p0/ the corresponding solution operator and introduce the
time-dependent change of variables

.q.t/;p.t//Db't0;t I�
�
bq.t/;bp.t/

�
:

Of course, this change reduces the system (15) to the trivial form .d=dt/bqD0
and .d=dt/bpD 0. When applied to the full (13), the change reduces the system
to the format (11) (i.e. the new right-hand side contains no O.1=�/ term). From
case (i) above we conclude that (3) holds after changing variables. However
the solution operator is explicitly given by

b't0;t I�.q0;p0/D
�
q0;p0C

ˆ t

t0

1

�
G0

�
q0;

t 0

�

�
dt 0
�

an expression that, in tandem with (14), shows that the associated one-period
map b't0;t0C2�I� is the identity. Therefore at stroboscopic times tn the values
of the new .bq;bp/ variables coincide with the values of the old variables .q;p/
and (3) also holds without changing variables. As a consequence the numerical
method works for the given system (13) without any need to previously perform
any analytic manipulations.
Note that the expression of the change of variables reveals that in the interval
t0 � t � t0 C 2��, the variations of the variable p.t/ are O.1/ and those in
q.t/ are O.�/. At the end of the interval, both q.t0C2��/ and p.t0C2��/ are
O.�/ away from their initial values q.t0/ and p.t0/ in view of (3).
A well known example of (12) is given by the vibrated inverted pendulum
equation

d2

dt2
q DG

�
q;
t

�
I�
�

D
�
1

�

vmax

`
cos

�
t

�
C�0

�
C g

`

�
sinq: (16)

(iii) The reader is referred to [10] and [4] for further examples (including perturbed
Kepler problems, perturbed harmonic oscillators, Fermi-Pasta-Ulam like
problems) of systems for which (3) holds because they may be brought to
the format (11) through a change of variables that coincides with the identity
map at stroboscopic times.

5 Numerical Experiments

Our aim in this section is to illustrate by means of simple examples the use of
the stroboscopic technique described in Sect. 3. For this reason we only report
on experiments performed when the macro-integrator is either the ‘classical’
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fourth-order, four stages Runge-Kutta (RK) method with constant step-sizes or
the variable-step code ode45 from MATLAB. Extensive numerical experiments,
including detailed comparisons with alternative techniques and wider choices of
macro- and micro-solvers, will be presented elsewhere.

As a test problem, we integrate in the interval t0 D 0 � t � � the inverted
(Kapitsa) pendulum equation (16) with parameter values vmax D 4, `D 0:2, �0 D 2,
g D 9:8, and initial conditions q.0/D 0:25, p.0/D 0. This equation has been used
as a test example in [16] to illustrate the power of the heterogeneous multiscale
approach (see also [3, 4, 14]). Unlike the algorithms described in this paper, those
analyzed in [16] require some preliminary analytical work to derive formulae that
relate macro- and micro-states.

5.1 Constant Step-Sizes

We first take the classical RK method with constant step-sizes as macro- and micro-
integrator. This is run, for different values of �, for combinations of macro- and
micro-steps .H;h/ of the form .2�2��=50;2��2��=4/, � D 0;1;2; : : : and with
either second- or fourth-order differences (see (9) or (10) respectively).2 The results
are summarized in Tables 1 and 2 respectively. In the former, the symbol *** means
that the corresponding run was not carried out: when H is smaller than 2�� the
stroboscopic algorithm does not make any sense.

Table 1 Errors in stroboscopic algorithm: 2nd-order finite differences

H Micro 1=�
evaluations

3,200 6,400 12,800 25,600

2=50 3,200 3.12(�1) 3.12(�1) 3.12(�1) 3.12(�1)
2=100 12,800 2.14(�2) 2.16(�2) 2.17(�2) 2.17(�2)
2=200 51,200 3.22(�3) 2.17(�3) 1.94(�3) 1.88(�3)
2=400 204,800 1.59(�3) 5.31(�4) 2.67(�4) 2.02(�4)
2=800 819,200 1.42(�3) 3.65(�4) 1.01(�4) 3.54(�5)
2=1,600 3,276,800 1.41(�3) 3.53(�4) 8.88(�5) 2.29(�5)
2=3,200 13,107,200 1.41(�3) 3.52(�4) 8.80(�5) 2.20(�5)
2=6,400 52,428,800 *** 3.52(�4) 8.79(�5) 2.20(�5)
2=12,800 209,715,200 *** *** 8.79(�5) 2.20(�5)
2=25,600 838,860,800 *** *** *** 2.20(�5)

2 Our experience indicates that standard central differences of order 6 are not competitive in terms
of efficiency with those of orders 2 or 4.
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Table 2 Errors in stroboscopic algorithm: 4th-order finite differences

H Micro 1=�
evaluations

3,200 6,400 12,800 25,600

2=50 6,400 3.12(�1) 3.12(�1) 3.12(�1) 3.12(�1)
2=100 25,600 2.18(�2) 2.17(�2) 2.17(�2) 2.17(�2)
2=200 102,400 1.87(�3) 1.86(�3) 1.86(�3) 1.86(�3)
2=400 409,600 1.81(�4) 1.81(�4) 1.80(�4) 1.80(�4)
2=800 1,638,400 1.36(�5) 1.35(�5) 1.34(�5) 1.34(�5)
2=1,600 6,553,600 1.05(�6) 9.18(�7) 9.09(�7) 9.04(�7)
2=3,200 26,214,400 2.01(�7) 6.74(�8) 5.89(�8) 5.45(�8)

Let us first discuss the computational cost. Since each micro-integration takes
place in an interval of width 4�� (or 8��) and, for givenH , the value of h is chosen
to be proportional to �, the cost of the algorithm is independent of �. Furthermore
when H is halved so is h and therefore the total number of micro-steps in a run is
multiplied by four (see the second column of the tables that display the total number
of function evaluations required by the micro-integrations).

We report errors measured as the maximum, over all macro-step-points, of
the (absolute value of the) difference between the q component of a very accu-
rate numerical approximation to the true solution of the oscillatory problem and the
solutionQ provided by the stroboscopic algorithm; errors in p behave in exactly the
same way as those in q. There are three sources of error (cf. [14]): (i) the recovery
of the right-hand side F of the averaged system by the finite-difference formula (9)
(or (10)), (ii) the replacement in (9) (or (10)) of the exact values of 	kt0I�.Y

�/ by
numerical approximations based on micro-integrations, (iii) the discretization error
introduced by the macro-integrator. We consider these sources in turn.

As H and h tend to 0, the errors arising from (ii) and (iii) vanish and only the
source (i) remains. At each evaluation of F the error from this source is O.�2/ (or
O.�4/) and, due to the stability of the macro-solver, these evaluation errors introduce
O.�2/ (or O.�4/) errors in the values of Q. This is apparent in Table 1, where the
errors at the bottom of the different columns, clearly behave as O.�2/. For fourth-
order differences Table 2 does not report results for very small H and h due to the
cost of obtaining a sufficiently accurate reference solution to measure errors.

To analyze the micro-integration errors, it is best to rewrite (16) in terms of the
fast, non-dimensional time � D t=�, i.e.

d

d�
q D �p;

d

d�
p D �G

�
q;
t

�
I�
�

D
�vmax

`
cos.�C�0/C �

g

`

�
sinq: (17)
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Now the force �G is bounded as � ! 0, the micro-integrations span intervals of
fixed length 4� (or 8�) and (because the micro-step h in the variable t is chosen
proportional to �) the step-length h=� in � is also independent of �. Therefore,
standard results show that the error in finding each value 	kt0I�.Y

�/ is O
�
.h=�

�4
/.

Furthermore it can be shown that the constant C implied in the O notation is
itself O.�/3; the extra factor in C makes up for the factor � that features in the
denominator of (9) (or (10)) and therefore, in each evaluation of F , the error due
to the micro-integrator is O

�
.h=�

�4
/, where the implied constant is �-independent.

Again the stability of the macro-solver entails that the corresponding effect in the
macro-solutionQ is itself O

�
.h=�

�4
/, or, with our choice ofH and h, O.H 4/. Since

the error due to discretizing the averaged equation is itself O.H 4/, we conclude that
the combined effect of sources (ii) and (iii) is O.H 4/, uniformly in �. In this way, the
overall algorithm yields approximations to the true q and p of sizes O.��CH 4/,
where the implied constant is independent of � and �D 2 or �D 4 for second and
fourth-order differences respectively. Thus, unless H is chosen to be so small that
the contribution of size �� manifests itself, the algorithm yields errors that behave
as O.H 4/ uniformly in � at a cost that is also independent of �. Once more this is
borne out by the tables, where the errors in the top rows are independent of � and of
the finite-difference formula and show a reduction by a factor of 	 16 when H is
halved.

Figures 3 and 4 are based on Tables 1 and 2 and compare the efficiency of
the stroboscopic algorithm with second or fourth-order differences with that of a
straightforward integration of the oscillatory problem with the classical RK method.
For errors of size 	 10�2, Fig. 3 reveals that for � D 1=3;200 the second-difference
algorithm needs an amount of work that is less than 1/5 of that required by the
classical method. For � D 1=25;600, we see in Fig. 4 that the same ratio is less
than 1/30. Also note that for the algorithm based on fourth-order differences, the
lines in Figs. 3 and 4 are virtually identical, indicating an �-independent behavior.
The line corresponding to the classical RK method undergoes a marked translation
to the right when � is decreased, indicating an efficiency loss. For the algorithm with
second-order differences, the lines in both figures coincide for larger values of the
errors (larger values of H ); however in Fig. 3 errors saturate at a larger value than
that in Fig. 4 in agreement with earlier discussions. Finally we point out that the

3 The proof of the estimate C D O.�/ is easy after noting that for �D 0 the RK micro-integrator
finds the solution of (17) at � D 2 without any error. (In fact finding the solution at � D 2
of (17) with � D 0 essentially requires the computation of the integral in (14); the RK numerical
solution may be written down in closed form as a trigonometric sum whose value vanishes.) The
key point here is that the micro-integrator is such that when applied to the system (15) it generates
a one-period map that exactly coincides with the identity, thus mimicking a key property of the
system being integrated. For micro-integrators that do not possess this property the error behavior
is not so favorable as for those considered here because estimates suffer from the factor � in the
denominator of the finite-difference formulae (cf. our analysis with that in [10]). Similarly, when
integrating perturbed Kepler problems, perturbed harmonic oscillators, etc. as in [10] or [4], it is
important that the micro-integration be performed in such a way that for the unperturbed problem
(�D 0) it results in a one-period map that coincides exactly with the identity. This may be achieved
by using splitting methods.
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lines of the stroboscopic algorithms possess a smaller slope than those of the RK
method: while to divide the error by a factor of 16 the classical method has to work
twice as hard, the new algorithms must toil four times as hard, as they require both
more macro-steps and more accurate micro-integrations.

103 104 105 106 107 108
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ε = 1/3200
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Fig. 3 Efficiency comparison: errors vs. number of evaluations of the micro-force. Constant step-
sizes, ‘larger’ �
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Fig. 4 Efficiency comparison: errors vs. number of evaluations of the micro-force. Constant step-
sizes, smaller �
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Fig. 5 Efficiency comparison: errors vs. number of evaluations of the micro-force. Variable-step
macro-solver, ‘larger’ �
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Fig. 6 Efficiency comparison: errors vs. number of evaluations of the micro-force. Variable-step
macro-solver, smaller �

5.2 Variable Step-Sizes

To illustrate the use of the stroboscopic algorithm with variable macro-step sizes
we ran the ode45 MATLAB as macro-integrator with absolute error tolerances Tol
from the sequence 10�2, 10�3, . . . , 10�8 (the relative error tolerance was taken to be
equal to the absolute tolerance). For reasons discussed in the preceding subsection
is important that the micro-integration is performed by a method that solves (17)
exactly at � D 2� for �D 0; we decided to micro-integrate, with constant step-sizes,
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by means of the fifth-order RK formula of the pair used by ode45.4 We took
h D .2��/=� where � is the smallest integer for which .2�=�/5 � 1000 � Tol ;
this equilibrates the accuracy of the macro- and micro-integrations in a way similar
to that analyzed in the preceding subsection. (The values of � for the seven values
of Tol turn out to be 4, 7, 10, 16, 26, 40, 63.) The variable-step macro-integrator
chooses step-points that of course do not coincide with stroboscopic times but,
as discussed in Sect. 3, this causes no problem to the stroboscopic algorithm. To
measure errors we took advantage of the dense output capabilities of ode45 and
generated output of the macro-integration at each stroboscopic time. Errors were
then measured as the maximum, over all stroboscopic times, of the (absolute value
of the) difference between the q component of the reference solution and the output
Q provided by the algorithms.

Figures 5 and 6 compare the efficiency of the stroboscopic algorithms with that
of a straightforward integration of the oscillatory problem with ode45. Again the
stroboscopic algorithm exhibits a behavior that, unless Tol is so small that errors
saturate, is �-independent. Clearly, for small values of �, this uniformity renders
them more efficient than the conventional integrator, whose performance is degraded
as � # 0.

Acknowledgements This research has been supported by ‘Acción Integrada entre España y
Francia’ HF2008-0105. M.P. Calvo and J.M. Sanz-Serna are also supported by project MTM2007-
63257 (Ministerio de Educación, España). A. Murua is also supported by projects MTM2007-
61572 (Ministerio de Educación, España) and EHU08/43 (Universidad del Paı́s Vasco/Euskal
Herriko Unibertsitatea).

References

1. Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary
differential equations with resonance. Math. Comput. 78, 929–956 (2009)

2. Calvo, M., Jay, L.O., Montijano, J.I., Rández, L.: Approximate compositions of a near identity
map by multi-revolution Runge-Kutta methods. Numer. Math. 97, 635–666 (2004)

3. Calvo, M.P., Sanz-Serna, J.M.: Heterogeneous Multiscale Methods for mechanical systems
with vibrations. SIAM J. Sci. Comput. 32, 2029–2046, (2010)

4. Chartier, Ph., Murua, A., Sanz-Serna, J.M.: Higher-order averaging, formal series and
numerical integration I: B-series. Found. Comput. Math 10, 695–727 (2010)

5. E., W.: Analysis of the heterogeneous multiscale method for ordinary differential equations.
Comm. Math. Sci. 1, 423–436 (2003)

6. E., W., Engquist, B.: The heterogeneous multiscale methods. Comm. Math. Sci. 1, 87–132
(2003)

7. E., W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods:
A review. Commun. Comput. Phys. 2, 367–450 (2007)

8. Engquist, B., Tsai, R.: Heterogeneous multiscale methods for stiff ordinary differential
equations. Math. Comput. 74, 1707–1742 (2005)

4 The use of the variable-step code ode45 as micro-integrator for (17) with �D 0 yields errors that,
after one period, are small but not exactly zero.



A Stroboscopic Numerical Method for Highly Oscillatory Problems 85

9. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, 2nd ed. Springer,
Berlin (2006)

10. Kirchgraber, U.: An Ode-solver based on the method of averaging. Numer. Math. 53, 621–652
(1988)

11. Murua, A.: Formal series and numerical integrators, Part I: Systems of ODEs and symplectic
integrators. Appl. Numer. Math. 29, 221–251 (1999)

12. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential
equations. Acta Numerica 6, 437–484 (1997)

13. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems,
2nd ed. Springer, New York (2007)

14. Sanz-Serna, J.M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA
J. Numer. Anal. 29, 595–605 (2009)

15. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London
(1994)

16. Sharp, R., Tsai, Y.-H., Engquist, B.: Multiple time scale numerical methods for the inverted
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The Microscopic Origin of the Macroscopic
Dielectric Permittivity of Crystals:
A Mathematical Viewpoint

Éric Cancès, Mathieu Lewin, and Gabriel Stoltz

Abstract The purpose of this paper is to provide a mathematical analysis of
the Adler-Wiser formula relating the macroscopic relative permittivity tensor to
the microscopic structure of the crystal at the atomic level. The technical level of the
presentation is kept at its minimum to emphasize the mathematical structure of
the results. We also briefly review some models describing the electronic structure
of finite systems, focusing on density operator based formulations, as well as the
Hartree model for perfect crystals or crystals with a defect.

1 Introduction

Insulating crystals are dielectric media. When an external electric field is applied,
such an insulating material polarizes, and this induced polarization in turn affects
the electric field. At the macroscopic level and in the time-independent setting, this
phenomenon is modeled by the constitutive law

D D �0�ME (1)

specifying the relation between the macroscopic displacement field D and the
macroscopic electric field E. The constant �0 is the dielectric permittivity of
the vacuum, and �M the macroscopic relative permittivity of the crystal, a 3� 3
symmetric tensor such that �M � 1 in the sense of symmetric matrices (kT �Mk � jkj2
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for all k 2 R
3). This tensor is proportional to the identity matrix for isotropic

crystals. Recall that D is related to the so-called free charge �f by the Gauss law
div.D/D �f and that the macroscopic electric field E is related to the macroscopic
potential V by E D �rV , yielding the macroscopic Poisson equation

� div.�MrV /D �f=�0: (2)

In the time-dependent setting, (1) becomes a time-convolution product:

D.r; t/D �0

ˆ C1
�1

�M.t � t 0/E.r; t 0/dt 0: (3)

Fourier transforming in time, we obtain

FD.r;!/D F�M.!/FE.r;!/;

where, as usual in Physics, we have used the following normalization convention
for the Fourier transform with respect to the time-variable:

Ff .r;!/D
ˆ C1
�1

f .r; t/ei!t dt

(note that there is no minus sign in the phase factor). The time-dependent tensor
�M in (1) can be seen as the zero-frequency limit of the frequency-dependent tensor
F�M.!/.

Of course, the constitutive laws (1) (time-independent case) and (3) (time-
dependent case) are only valid in the linear response regime. When strong dielectric
field are applied, the response can be strongly nonlinear.

The purpose of this paper is to provide a mathematical analysis of the Adler-
Wiser formula [1, 36] relating the macroscopic relative permittivity tensor �M (as
well as the frequency-dependent tensor F�M.!/) to the microscopic structure of the
crystal at the atomic level.

In Sect. 2, we discuss the modeling of the electronic structure of finite molecular
systems. We introduce in particular the Hartree model (also called reduced Hartree-
Fock model in the mathematical literature), which is the basis for our analysis of the
electronic structure of crystals. This model is an approximation of the electronicN -
body Schrödinger equation allowing to compute the ground state electronic density
of a molecular system containing M nuclei considered as classical particles (Born-
Oppenheimer approximation) and N quantum electrons, subjected to Coulomb
interactions. The only empirical parameters in this model are a few fundamental
constants of Physics (the reduced Planck constant h̄, the mass of the electron me,
the elementary charge e, and the dielectric permittivity of the vacuum �0) and the
masses and charges of the nuclei. In this respect, this is an ab initio, or first-principle,
model in the sense that it does not contain any empirical parameter specific to the
molecular system under consideration.
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We then show, in Sect. 3, how to extend the Hartree model for molecular
systems (finite number of particles) to crystals (infinite number of particles). We
first deal with perfect crystals (Sect. 3.2), then with crystals with local defects
(Sect. 3.3). The mathematical theory of the electronic structure of crystals with local
defects presented here (and originally published in [7]) has been strongly inspired
by previous works on the mathematical foundations of quantum electrodynamics
(QED) [18–20]. In some sense, a defect embedded in an insulating or semi-
conducting crystal behaves similarly as a nucleus embedded in the polarizable
vacuum of QED.

In Sect. 4, we study the dielectric response of a crystal. First, we focus on the
response to an effective time-independent potential V , and expand it in powers of V
(Sect. 4.1). The linear response term allows us to define the (microscopic) dielectric
operator � and its inverse ��1, the (microscopic) dielectric permittivity operator, and
also to define a notion of renormalized charge for defects in crystals (Sect. 4.2).
In Sect. 4.3, we derive the Adler-Wiser formula from the Hartree model, by means
of homogenization arguments. Loosely speaking, a defect in a crystal generates an
external field and thereby a dielectric response of the crystal. If a given local defect
is properly rescaled, it produces a macroscopic charge (corresponding to the free
charge �f in (2)) and the total Coulomb potential converges to the macroscopic
potential V solution to (2) where �M is the tensor provided by the Adler-Wiser
formula. A similar strategy can be used to obtain the frequency-dependent tensor
F�M.!/ (Sect. 4.4).

As trace-class and Hilbert-Schmidt operators play a central role in the mathemat-
ical theory of electronic structure, their definitions and some of their basic properties
are recalled in the Appendix for the reader’s convenience.

The mathematical results contained in this proceeding have been published
[7–9], or will be published very soon [10]. The proofs are omitted. A pedagogical
effort has been made to present this difficult material to non-specialists.

As usual in first-principle modeling, we adopt the system of atomic units,
obtained by setting

h̄D 1; me D 1; e D 1;
1

4��0
D 1;

so that (2) reads in this new system of units:

� div.�MrV /D 4��f: (4)

For simplicity, we omit the spin variable, but taking the spin into account does not
add any difficulty. It simply makes the mathematical formalism a little heavier.
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2 Electronic Structure Models for Finite Systems

Let H be a Hilbert space and h�j�i its inner product (bra-ket Dirac’s notation). Recall
that if A is a self-adjoint operator on H and � and  are inD.A/, the domain of A,
then h�jAj i WD h�jA i D hA�j i. If A is bounded from below, the bilinear form
.�; / 7! h�jAj i can be extended in a unique way to the form domain of A. For
instance, the operator A D �� with domain D.A/ D H 2.Rd / is self-adjoint on
L2.Rd /. Its form domain is H 1.Rd / and h�jAj i D ´

Rd r� � r . In the sequel,
we denote by S .H / the vector space of bounded self-adjoint operators on H .

For k D 0, 1 and 2, and with the conventionH 0.R3/D L2.R3/, we denote by

N̂

iD1
H k.R3/WD

n
	 2H k.R3N /

ˇ̌
ˇ	.rp.1/; : : : ;rp.N//D�.p/	.r1; : : : ;rN /;8p 2 SN

o

(where SN is the group of the permutations of f1; : : : ;N g and �.p/ the parity of p)
the antisymmetrized tensor product of N spaces H k.R3/. These spaces are used to
describe the electronic state of an N electron system. The antisymmetric constraint
originates from the fact that electrons are fermions.

2.1 The N -Body Schrödinger Model

Consider a molecular system with M nuclei of charges ´1; : : : ;´M . As we work in
atomic units, ´k is a positive integer. Within the Born-Oppenheimer approximation,
the nuclei are modeled as classical point-like particles. This approximation results
from a combination of an adiabatic limit (the small parameter being the square root
of the ratio between the mass of the electron and the mass of the lightest nucleus
present in the system), and a semi-classical limit. We refer to [2, 3] and references
therein for the mathematical aspects.

Usually, nuclei are represented by point-like particles. If theM nuclei are located
at points R1; : : : ;RM of R3, the nuclear charge distribution is modeled by

�nuc D
MX

kD1
´kıRk

;

where ıRk
is the Dirac measure at point Rk . The Coulomb potential generated by

the nuclei and seen by the electrons then reads

V nuc.r/ WD �
MX

kD1

´k

jr � Rkj

(the minus sign comes from the fact that the interaction between nuclei and electrons
is attractive). In order to avoid some technical difficulties due to the singularity of
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the potential generated by point-like nuclei, the latter are sometimes replaced with
smeared nuclei:

�nuc.r/D
MX

kD1
´k�.r � Rk/;

where � is a smooth approximation of the Dirac measure ı0, or more precisely a
non-negative smooth radial function such that

´
R3 �D 1, supported in a small ball

centered at 0. In this case,

V nuc.r/ WD �.�nuc ? j � j�1/.r/D �
ˆ
R3

�nuc.r0/
jr � r0j dr0

is a smooth function. We will sometimes denote this smooth function by V�nuc

in order to emphasize that the potential is generated by a non-singular charge
distribution.

The main quantity of interest in our study is the electrostatic potential generated
by the total charge, which is by definition the sum of the nuclear charge �nuc and the
electronic charge �el. According to the Born-Oppenheimer approximation, electrons
are in their ground state, and �el is the density associated with the ground state
wavefunction 	0. Let us make this definition more precise.

Any (pure) state of a system of N electrons is entirely described by a wavefunc-
tion	 2VN

iD1L2.R3/ satisfying the normalization condition k	kL2.R3N / D 1. The
density associated with 	 is the function �� defined by

�� .r/DN

ˆ
R3.N �1/

j	.r;r2; : : : ;rN /j2dr2 � � �drN : (5)

Clearly,

�� � 0; �� 2 L1.R3/; and
ˆ
R3

�� DN:

It can be checked that if 	 2VN
iD1H 1.R3/, then

p
� 2H 1.R3/, which implies in

particular that �� 2 L1.R3/\L3.R3/.
The ground state wavefunction	0 is the lowest energy, normalized eigenfunction

of the time-independent Schrödinger equation

HN	 D E	; 	 2
N̂

iD1
H 2.R3/; k	kL2.R3N / D 1; (6)

where HN is the electronic Hamiltonian. The latter operator is self-adjoint onVN
iD1L2.R3/, with domain

VN
iD1H 2.R3/ and form domain

VN
iD1H 1.R3/, and

is defined as

HN D �1
2

NX

iD1
�ri

C
NX

iD1
V nuc.ri /C

X

1�i<j�N

1

jri � rj j : (7)
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The first term in the right-hand side of (7) models the kinetic energy of the electrons,
the second term the Coulomb interaction between nuclei and electrons and the third
term the Coulomb interaction between electrons. For later purposes, we write

HN D T CVne CVee;

where

T D �1
2

NX

iD1
�ri

; Vne D
NX

iD1
V nuc.ri /; Vee D

X

1�i<j�N

1

jri � rj j :

It is proved in [37] that if the molecular system is neutral (
PM
kD1 ´k D N ) or

positively charged (
PM
kD1´k �N ), then the essential spectrum ofHN is an interval

of the form Œ˙N ;C1/ with ˙N � 0 and ˙N < 0 if N � 2, and its discrete
spectrum is an increasing infinite sequence of negative eigenvalues converging to
˙N . This guarantees the existence of 	0. IfE0, the lowest eigenvalue ofHN is non-
degenerate, 	0 is unique up to a global phase, and �el D ��0 is therefore uniquely
defined by (5). If E0 is degenerate, then the ground state electronic density is not
unique. As the usual Born-Oppenheimer approximation is no longer valid when E0
is degenerate, we will assume from now on that E0 is a simple eigenvalue.

Note that 	0 can also be defined variationally: It is the minimizer of

inf

(
h	 jHN j	 i; 	 2

N̂

iD1
H 1.R3/; k	kL2.R3N / D 1

)
: (8)

Otherwise stated, it is obtained by minimizing the energy h	 jHN j	 i over the set of
all normalized, antisymmetric wavefunctions 	 of finite energy.

Let us mention that, as in the absence of magnetic field, theN -body Hamiltonian
is real (in the sense that it transforms a real-valued function into a real-valued func-
tion), there is no loss of generality in working in the space of real-valued N -body
wavefunctions. Under the assumption thatE0 is non-degenerate, (8) has exactly two
minimizers, 	0 and �	0, both of them giving rise to the same electronic density.

2.2 The N -Body Schrödinger Model for Non-interacting Electrons

Neither the Schrödinger equation (6) nor the minimization problem (8) can be
solved with standard numerical techniques when N exceeds two or three. On the
other hand, these problems become pretty simple when the interaction between
electrons is neglected. In this case, the N -body Hamiltonian is separable and reads

H 0
N D T CVne D

NX

iD1
hri

where hri
D �1

2
�ri

CV nuc.ri /
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is a self-adjoint operator on L2.R3/ with domain H 2.R3/ and form domain
H 1.R3/, acting on functions of the variable ri . It is known that the essential
spectrum of h is Œ0;C1/ and that the discrete spectrum of h is an increasing
infinite sequence of negative eigenvalues converging to 0. Let us denote by �1 <�2 �
�3 � � � � the eigenvalues of h counted with their multiplicities (it can be shown that
�1 is simple) and let .�i /i�0 be an orthonormal family of associated eigenvectors:

h�i D �i�i ; �1 < �2 � �3 � � � � ; �i 2H 2.R3/; h�i j�j iL2.R3/ D ıij :

The eigenfunctions �i are called (molecular) orbitals and the eigenvalues �i are
called (one-particle) energy levels.

It is easy to check that if �N < �NC1, then

inf

(
h	 jH 0

N j	 i; 	 2
N̂

iD1
H 1.R3/; k	kL2.R3N / D 1

)
(9)

has a unique solution (up to a global phase) given by the Slater determinant

	0.r1; � � � ;rN /D 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�1.r1/ �1.r2/ � � � �1.rN /
�2.r1/ �2.r2/ � � � �2.rN /

� � � � � �
� � � � � �
� � � � � �

�N .r1/ �N .r2/ � � � �N .rN /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

; (10)

and that the ground state electronic density (5) takes the simple form

�el.r/D
NX

iD1
j�i .r/j2:

The above description of the electronic states of a set of N non-interacting
electrons in terms of orbitals cannot be easily extended to infinite systems such as
crystals (the number of orbitals becoming infinite). For this reason, we introduce
a new formulation based on the concept of one-particle density operator, here
abbreviated as density operator.

2.3 Density Operators

The (one-particle) density operator of a system of N electrons is an element of the
convex set

DN D ˚
� 2 S .L2.R3// j 0� � � 1; Tr.�/DN


:

Recall that if A andB are two bounded self-adjoint operators on a Hilbert space H ,
the notation A� B means that h jAj i � h jBj i for all  2 H .
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Any density operator � 2 DN is trace-class, hence compact (the basic properties
of trace-class operators are recalled in the Appendix). It can therefore be diagonal-
ized in an orthonormal basis:

� D
C1X

iD1
ni j�iih�i j with h�i j�j i D ıij : (11)

The eigenvalues ni are called occupation numbers; the eigenfunctions �i are called
natural orbitals. The conditions 0� � � 1 and Tr.�/DN are respectively equivalent
to

0� ni � 1 and
C1X

iD1
ni DN:

The fact that 0 � ni � 1 is a mathematical translation of the Pauli exclusion
principle, stipulating that each quantum state j�ii is occupied by at most one
electron. The sum of the occupation numbers is equal to N , the number of electrons
in the system. The density associated with � is defined by

�� .r/D
C1X

iD1
ni j�i .r/j2; (12)

this definition being independent of the choice of the orthonormal basis .�i /i�1
in (11) and satisfies

�� � 0; �� 2 L1.R3/; and
ˆ
R3

�� DN:

The kinetic energy of the density operator � is defined as

T .�/ WD 1

2
Tr.jrj� jrj/;

and can be finite or infinite. Recall that the operator jrj is the unbounded self-adjoint
operator on L2.R3/ with domainH 1.R3/ defined by

8� 2H 1.R3/; .F .jrj�//.k/D jkj.F .�//.k/

where F is the unitary Fourier transform

F�.k/Db�.k/D 1

.2�/3=2

ˆ
R3

�.r/e�ik�rdr:

The kinetic energy of a density operator � decomposed as (11) is finite if and only
if each �i is in H 1.R3/ and

PC1
iD1 nikr�ik2L2.R3/

<1, in which case

T .�/D 1

2

C1X

iD1
nikr�ik2L2.R3/

:
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As jrj is the square root of �� (i.e. jrj is self-adjoint, positive and jrj2 D ��),
the element Tr.jrj� jrj/ of RC[ fC1g is often denoted by Tr.���/. Using this
notation, we can define the convex set PN of the density operators of finite energy
as

PN D ˚
� 2 S .L2.R3// j 0� � � 1; Tr.�/DN; Tr.���/ <1

:

Lastly, it is sometimes useful to introduce the integral kernel of a density operator
� 2 PN , which is called a (one-particle) density matrix, and is usually also denoted
by � . It is by definition the function � 2L2.R3�R

3/ such that

8� 2 L2.R3/; .��/.r/D
ˆ
R3

�.r;r0/�.r0/dr0: (13)

The expression of the density matrix � in terms of natural orbitals and occupation
numbers thus reads

�.r;r0/D
C1X

iD1
ni�i .r/�i .r0/:

Formally �� .r/D �.r;r/ and this relation makes sense rigorously as soon as the den-
sity matrix � has a trace on the three-dimensional vector subspace

˚
.r;r/; r 2 R

3


of R3�R
3.

Let us now clarify the link between the description of electronic structures in
terms of wavefunctions and the one in terms of density operators.

The density matrix associated with a wavefunction 	 2 ^NiD1L2.R3/ such that
k	kL2.R3N / D 1 is the function of L2.R3�R

3/ defined as

�� .r;r0/DN

ˆ
R3.N �1/

	.r;r2; : : : ;rN /	.r0;r2; : : : ;rN /dr2 � � �drN (14)

(recall that we are dealing with real-valued wavefunctions), and the corresponding
density operator by

8� 2 L2.R3/; .���/.r/D
ˆ
R3

�� .r;r0/�.r0/dr0: (15)

It is easy to see that the density operator �� is in DN . Under the additional
assumption that 	 2 ^NiD1H 1.R3/, it is even in PN . Besides, the definition (5)
of the density associated with 	 agrees with the definition (12) of the density
associated with �� , i.e.

�� D ���
;

and the same holds with the definition of the kinetic energy if 	 2 ^NiD1H 1.R3/:

h	 jT j	 i D T .�� /:
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Remark 1. The maps
n
	 2VN

iD1L2.R3/
ˇ̌
ˇ jk	kL2.R3N / D 1

o
3 	 7! �� 2 DN

and
n
	 2VN

iD1H 2.R3/
ˇ̌
ˇ jk	kL2.R3N / D 1

o
3 	 7! �� 2 PN are not surjective.

This means that an element of DN (resp. of PN ) is not necessarily the density
operator associated with some pure state. However any � 2 DN (resp. any � 2 PN )
is the (one-particle) density operator associated with some mixed state (represented
by some N -particle density operator). This property is referred to as the N -
representability property of density operators.

We can now reformulate the electronic structure problem for a system of N non-
interacting electrons, in terms of density operators:

1. The energy of a wavefunction 	 2 ^NiD1H 1.R3/ is a linear form with respect to
the density operator �� :

h	 jH 0
N j	 i D E0�nuc.�� / where E0�nuc.�/D Tr

�
�1
2
��

�
C
ˆ
R3

��V
nuc:

2. The ground state density matrix, that is the density operator associated with the
ground state wavefunction 	0 defined by (9), is the orthogonal projector (for the
L2 inner product) on the space Span.�1; : : : ;�N /:

��0 D
NX

iD1
j�iih�i j:

3. The ground state energy and the ground state density operators are obtained by
solving the minimization problem

inf
˚
E0�nuc.�/; � 2 S .L2.R3//; 0� � � 1; Tr.�/DN; Tr.���/ <1

: (16)

The advantages of the density operator formulation, which are not obvious for finite
systems, will clearly appear in Sect. 3, where we deal with crystals.

2.4 The Hartree Model and Other Density Operator Models
of Electronic Structures

Let us now reintroduce the Coulomb interaction between electrons, taking as
a starting point the non-interacting system introduced in Sect. 2.2. The models
presented in this section are density operator models in the sense that the ground
state energy and density are obtained by minimizing some explicit functional
E�nuc.�/ over the set of N -representable density operators PN .

All these models share the same mathematical structure. They read:

inf
˚
E�nuc.�/; � 2 S .L2.R3//; 0� � � 1; Tr.�/DN; Tr.���/ <1

; (17)
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with

E�nuc.�/D Tr

�
�1
2
��

�
C
ˆ
R3

��V�nuc C 1

2
D.�� ;�� /CeE.�/;

where

D.f;g/D
ˆ
R3

ˆ
R3

f .r/g.r0/
jr � r0j drdr0 (18)

is the classical Coulomb interaction and eE.�/ some correction term. Note that
D.f;g/ is well defined for f and g in L6=5.R3/, see for instance [30, Sect. IX.4].
Recall also that for each � 2 PN , �� 2L1.R3/\L3.R3/ ,! L6=5.R3/.

The Hartree model, on which we will focus in this proceeding, corresponds to
eE.�/D 0:

EHartree
�nuc .�/D Tr

�
�1
2
��

�
C
ˆ
R3

��V�nuc C 1

2
D.�� ;�� /:

The reason why we study this model is that it has much nicer mathematical
properties than other models with eE.�/ 6D 0 (see below).

The Kohn-Sham models [24] originate from the Density Functional Theory
(DFT) [13]. In this kind of models, eE.�/ is an explicit functional of the density
�� , called the exchange-correlation functional:

EKS
�nuc.�/D Tr

�
�1
2
��

�
C
ˆ
R3

V�nuc�� C 1

2
D.�� ;�� /CExc.�� /: (19)

If follows from the Hohenberg-Kohn theorem [21] (see [27] for a more mathemat-
ical presentation of this result) that there exists some functional Exc.�/ depending
only on the density �, such that minimizing (17) with E�nuc D EKS

�nuc provides the
exact ground state energy and density, whatever the nuclear charge distribution
�nuc. Note however, that the Kohn-Sham ground state density operator obtained by
minimizing (17) is not the ground state density operator corresponding to the ground
state wavefunction 	0. Unfortunately, the exact exchange-correlation functional
is not known. Many approximate functionals have been proposed, and new ones
come up on a regular basis. For the sake of illustration, the simplest approximate
exchange-correlation functional (but clearly not the best one) is the so-called X˛
functional

Exc
X˛.�/D �CX˛

ˆ
R3

�4=3;

where CX˛ is a positive constant.
Lastly, the models issued from the Density-Matrix Functional Theory (DMFT)

involve functionals eE.�/ depending explicitly on the density operator � , but not
only on the density �� . Similar to DFT, there exists an exact (but unknown)
functional eE.�/ for which minimizing (17) gives the exact ground state energy
and density, whatever the nuclear charge distribution �nuc. However, unlike the
exact DFT functional, the exact DMFT functional also provides the exact ground
state density operator. Several approximate DMFT functionals have been proposed.
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Note that the Hartree-Fock model, which is usually defined as the variational
approximation of (8) obtained by restricting the minimization set to the set of finite
energy Slater determinants, can also be seen as a DMFT functional

EHF
�nuc.�/D Tr

�
�1
2
��

�
C
ˆ
R3

��V�nuc C 1

2
D.�� ;�� /� 1

2

ˆ
R3

ˆ
R3

j�.r;r0/j2
jr � r0j drdr0;

where, as above, �.r;r0/ denotes the integral kernel of � .
The existence of a solution to (17) for a neutral or positively charged system is

established in [34] for the Hartree model (Exc D 0), in [26] for the Hartree-Fock
model, in [4] for the X˛ and the standard LDA model, and in [15] for the Müller
DMFT functional.

The key-property allowing for a comprehensive mathematical analysis of the
bulk limit for the Hartree model is that the ground state density is unique (which
is not the case for the other models presented in this section). This means that in the
Hartree framework, all the minimizers to (17) share the same density. This follows
from the fact that the ground state Hartree density solves the variational problem

inf

�
E .�/; � � 0;

p
� 2H 1.R3/;

ˆ
R3

�DN

�
; (20)

where

E .�/D F.�/C
ˆ
R3

�V�nuc C 1

2
D.�;�/

and

F.�/D inf

�
Tr

�
�1
2
��

�
; � 2 S .L2.R3//;

0� � � 1; Tr.�/DN; Tr.���/ <1; �� D �

�
:

As the functional E .�/ is strictly convex on the convex set
�
� � 0;

p
� 2H 1.R3/;

ˆ
R3

� DN

�
;

uniqueness follows.
The Euler equation for the Hartree model reads



The Microscopic Origin of the Macroscopic Dielectric Permittivity of Crystals 99

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�0 D
C1X

iD1
ni j�iih�i j; �0.r/D ��0.r/D

C1X

iD1
ni j�i .r/j2;

H 0�i D �i�i ; h�i j�j i D ıij ;

ni D 1 if �i < �F; 0� ni � 1 if �i D �F; ni D 0 if �i > �F;

C1X

iD1
ni DN;

H 0 D �1
2
�CV 0;

��V 0 D 4�.�0��nuc/:

(21)

It can be proved that the essential spectrum of the self-adjoint operatorH 0 is equal
toRC and that, for a neutral or positively charged system,H 0 has at leastN negative
eigenvalues. The scalar �F, called the Fermi level, can be interpreted as the Lagrange
multiplier of the constraint Tr.�0/DN .

Assuming that �N < �NC1, the ground state density operator �0 of the Hartree
model is unique: It is the orthogonal projector

�0 D
NX

iD1
j�i ih�i j:

In this case, (21) can be rewritten under the more compact form

8
<̂

:̂

�0 D 1.�1;�F�.H
0/; �0 D ��0 ;

H 0 D �1
2
�CV 0;

��V 0 D 4�.�0��nuc/;

(22)

for any �N < �F < �NC1. In this equation, the notation 1.�1;�F �.H
0/ is used for the

spectral projector of H 0 corresponding to the spectrum in the interval .�1;�F �.
Lastly, we remark that if smeared nuclei are used, then D.�nuc

per ;�
nuc
per / is well

defined (and finite). This allows us to reformulate the Hartree ground state problem
as

inf
˚eEHartree

�nuc .�/; � 2 S .L2.R3//; 0� � � 1; Tr.�/DN; Tr.���/ <1
;

(23)
where

eEHartree
�nuc .�/D Tr

�
�1
2
��

�
C 1

2
D.�nuc ��� ;�nuc ��� /:

The main interest of this new formulation of the Hartree problem is that the
functional eEHartree

�nuc is the sum of two non-negative contributions: the kinetic energy
and the Coulomb energy of the total charge distribution �nuc ��� . The presence of
the unphysical terms corresponding to the self-interaction of nuclei in D.�nuc

per ;�
nuc
per /

is not a problem for our purpose.
The time-dependent version of the Hartree model formally reads
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i
d�

dt
.t/D

�
�1
2
�C .��.t/��nuc.t// ? j � j�1;�.t/

�
;

where ŒA;B�DAB�BA denotes the commutator of the operatorsA andB . We are
not going to elaborate further on the precise mathematical meaning of this formal
equation for finite systems, but refer the reader to [5] and references therein (see in
particular [12, Sect. XVII.B.5]) for further precisions on the mathematical meaning
of the above equation. We will define and study a mild version of it in the case of
crystals with defects in Sect. 4.4.

3 The Hartree Model for Crystals

The Hartree model presented in the previous section describes a finite system of N
electrons in the electrostatic potential created by a nuclear density of charge �nuc.
Our goal is to describe an infinite crystalline material obtained in the bulk limit.
In fact we shall consider two such systems. The first one is the periodic crystal
obtained when, in the bulk limit, the nuclear density approaches the periodic nuclear
distribution of the perfect crystal:

�nuc ! �nuc
per ; (24)

�nuc
per being a R-periodic distribution. The set R is a periodic lattice of R3:

R D Za1CZa2CZa3; (25)

where .a1;a2;a3/ is a given triplet of linearly independent vectors ofR3. The second
system is the previous crystal in the presence of a local defect:

�nuc ! �nuc
per Cm; (26)

m representing the nuclear charge of the defect. The functional spaces in which �nuc
per

andm are chosen are made precise below.

3.1 Basics of Fourier and Bloch-Floquet Theories

A perfect crystal is characterized by a lattice R of R3 and a R-periodic nuclear
charge distribution �nuc

per . Not surprisingly, Fourier and Bloch-Floquet theories, which
allow to conveniently exploit the periodicity of the problem, play essential roles in
the mathematical description of the electronic structure of crystals.

Let R� be the reciprocal lattice of the lattice R defined in (25) (also called dual
lattice):

R� D Za�1 CZa�2 CZa�3; where ai � a�j D 2�ıij :
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Denote by � a unit cell of R. Recall that a unit cell is a semi-open bounded polytope
of R3 such that the cells � CR D f.r C R/; r 2 � g for R 2 R form a tessellation of
the space R

3 (i.e. .� C R/\ .� C R0/ D 0 if R ¤ R0 and [R2R.� C R/ D R
3).

A possible choice for � is fx1a1Cx2a2Cx3a3; �1=2 < xi � 1=2g. Another
choice is the Wigner-Seitz cell of R, which is by definition the semi-open Voronoi
cell of the origin for the lattice R. Lastly, we denote by � � the first Brillouin zone,
that is the Wigner-Seitz cell of the dual lattice. Let us illustrate these concepts on
the simplest example, the cubic lattice, for which R D aZ3 (for some a > 0). In
this particular case, R� D 2

a
Z
3, the Wigner-Seitz cell is � D .�a=2;a=2�3 and

� � D .��=a;�=a�3.
For each K 2 R�, we denote by eK.r/ D j� j�1=2eiK�r the Fourier mode

with wavevector K. According to the theory of Fourier series, each R-periodic
distribution v can be expanded in Fourier series as

v D
X

K2R�

cK.v/eK; (27)

where cK.v/ is the Kth Fourier coefficient of v, the convergence of the series holding
in the distributional sense. We introduce the usual R-periodicLp spaces defined by

Lpper.� / WD ˚
v 2Lploc.R

3/
ˇ̌
v R-periodic


;

and endow them with the norms

kvkLp
per.� /

WD
�ˆ

�

jvjp
�1=p

for 1� p <1 and kvkL1

per .� /
WD ess-sup jvj:

In particular,

kvkL2
per.� /

D .v;v/
1=2

L2
per.� /

where .v;w/L2
per.� /

WD
ˆ
�

vw:

Any function v 2 L2per.� / can be expanded in Fourier modes according to (27), the
Fourier coefficients being given by the simple formula

cK.v/D 1

j� j1=2
ˆ
�

v.r/e�iK�rdr;

and the convergence of the series (27) also holds in L2per.� /. Besides,

8.v;w/ 2L2per.� /�L2per.� /; .v;w/L2
per.� /

D
X

K2R�

cK.v/cK.w/:

For each s 2 R, the R-periodic Sobolev space of index s is defined as

H s
per.� / WD

(
v D

X

K2R�

cK.v/eK

ˇ̌
ˇ̌
ˇ
X

K2R�

.1CjKj2/sjcK.v/j2 <1
)
;
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and endowed with the inner product

.v;w/H s
per.� /

WD
X

K2R�

.1CjKj2/scK.v/cK.w/:

The Bloch-Floquet theory was introduced by Floquet for periodic differential
equations and generalized by Bloch to periodic partial differential equations. We
just recall the basic results of this theory used in this proceeding and refer the reader
to [31] for further precisions.

Any function f 2 L2.R3/ can be decomposed by the Bloch-Floquet transform
as

f .r/D
 
� �

fq.r/eiq�rdq;

where
ffl
� �

is a notation for j� �j�1 ´
� �

and where the functions fq are defined by

fq.r/D
X

R2R
f .r C R/e�iq�.rCR/ D .2�/3=2

j� j
X

K2R�

bf .q C K/eiK�r: (28)

For almost all q 2R
3, fq 2L2per.� /. Besides, fqCK.r/D fq.r/e�iK�r for all K 2 R�

and almost all q 2 R
3. Lastly,

kf k2
L2.R3/

D
 
� �

kfqk2
L2

per.� /
dq:

For R 2 R
3, we denote by �R the translation operator defined by

8v 2 L2.R3/; .�Rv/.r/D v.r � R/:

The main interest of the Bloch-Floquet transform (28) is that it provides a “block
diagonalization” of any R-periodic operator, that is of any operator on L2.R3/
which commutes with �R for all R 2 R. Consider first a bounded R-periodic
operator A on L2.R3/. Then there exists a family .Aq/q2� � of bounded operators
on L2per.� / such that

8v 2 L2.R3/; .Av/q D Aqvq for almost all q 2 � �: (29)

If, in addition, A is self-adjoint on L2.R3/, then Aq is self-adjoint on L2per.� / for
almost all q 2 � � and

�.A/D
[

q2� �

�.Aq/:

In particular, the translation operators .�R/R2R, which obviously commute with
each other, are homotheties in the Bloch-Floquet representation

8R 2 R; .�R/q D eiq�R1L2
per.� /

:
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As .eK/K2R� form an orthonormal basis ofL2per.� /, it follows from (29) that any
bounded R-periodic operator on L2.R3/ is completely characterized by the Bloch-
Floquet matrices ..ŒAK;K0.q/�/.K;K0/2R��R�/q2� � defined for almost all q 2 � � by

AK;K0.q/ WD heK;AqeK0iL2
per.� /

:

In particular, it holds

8v 2L2.R3/; b.Av/.q C K/D
X

K02R�

AK;K0.q/bv.q C K0/;

for all .K;K0/ 2 R��R� and almost all q 2 � �.
For unbounded operators, the situation is a little bit more intricate. Let us limit

ourselves to the case of R-periodic Schrödinger operators of the form

H D �1
2
�CVper

with Vper 2 L2per.� /. By the Kato-Rellich theorem and [31, Theorem XIII.96],
the operator H is self-adjoint on L2.R3/, with domain H 2.R3/. It can also be
decomposed as follows:

8v 2H 2.R3/; vq 2H 2
per.� / and .Hv/q DHqvq for almost all q 2 � �;

whereHq is the self-adjoint operator on L2per.� / with domainH 2
per.� /, defined by

Hq D �1
2
�� iq � r C jqj2

2
CVper:

It is easily seen that for each q 2 � �, Hq is bounded below and has a compact
resolvent. Consequently, there exists a sequence .�n;q/n�1 of real numbers going to
C1, and an orthonormal basis .un;q/n�1 of L2per.� / such that

Hq D
C1X

nD1
�n;qjun;qihun;qj:

As the mapping q 7! Hq is polynomial on R
3, it is possible to number the

eigenvalues �n;q in such a way that .�n;0/n�1 is non-decreasing and that for each
n� 1, the mapping q 7! �n;q is analytic in each direction. Then (see Fig. 1)

�.H/D
[

q2� �

�.Hq/D
[

n�1

	
˙�n ;˙Cn



;

with
˙�n D min

q2� �

�n;q; ˙Cn D max
q2� �

�n;q: (30)
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The interval
	
˙�n ;˙Cn



is called the nth band of the spectrum of H . It is possible to

prove that the spectrum of H is purely absolutely continuous [35]. In particular,H
has no eigenvalues.

Fig. 1 The spectrum of a periodic Schrödinger operator is a union of bands, as a consequence of
the Bloch-Floquet decomposition

3.2 Perfect Crystals

The purpose of this section is to formally construct, then justify with mathematical
arguments, a Hartree model for the electronic structure of perfect crystals.

As announced, we begin with a formal argument and consider a sequence of
finite nuclear distributions .�nuc

n /n2N converging to the periodic distribution �nuc
per of

the perfect crystal when n goes to infinity. For instance, we can take

�nuc
n D �nuc

per

0

@
X

R2R j jRj�n
1�CR

1

A

(we assume that the function describing the nuclear charge in the unit cell of the
perfect crystal is supported in some compact set included in the interior of � ). We
solve the Hartree problem for each �nuc

n with the constraint that the system remains
neutral for each n. Assuming that when n goes to infinity:

� The Hartree ground state density converges to some R-periodic density �0per 2
L1per.� /

� The Coulomb potential generated by the total charge converges to some R-
periodic potential V 0per

� The Hartree ground state density operator converges to some operator �0per
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� The Fermi level converges to some �0F 2 R

we obtain by formally passing to the limit in (22), the self-consistent equations
8
ˆ̂<

ˆ̂:

�0per D 1.�1;�0
F �
.H 0

per/; �0per D ��0
per
;

H 0
per D �1

2
�CV 0per;

��V 0per D 4�.�0per ��nuc
per /:

(31)

Let us comment on this system of equations. First, we notice that for the periodic
Coulomb equation ��V 0per D 4�.�0per ��nuc

per / to have a solution, each unit cell must
be neutral: ˆ

�

�0per D
ˆ
�

�nuc
per DZ; (32)

where Z is the number of electrons, and also the number of protons, per unit cell.
Second, as V 0per is R-periodic (and belongs to L2per.� / even for point-like nuclei),
we can apply the result of the previous section and write down the Bloch-Floquet
decomposition of H 0

per:

.H 0
per/q D �1

2
�� iq � r C jqj2

2
CV 0per D

C1X

nD1
�n;qjun;qihun;qj: (33)

The operator �0per D 1.�1;�0
F �
.H 0

per/ is then a bounded self-adjoint operator which
commutes with the translations .�R/R2R, and its Bloch-Floquet decomposition
reads

.�0per/q D
C1X

nD1
1�n;q��0

F
jun;qihun;qj:

Actually, the set
˚
q 2 � � j9n� 1 s.t. �n;q D �0F


is of measure zero (the spectrum

of H 0
per is purely continuous). It follows that �0per is always an orthogonal projector,

even if �0F belongs to the spectrum of H 0
per.

Using the Bloch decomposition of �0per, we can write the density �0per as

�0per.r/D
 
� �

C1X

nD1
1�n;q��0

F
jun;q.r/j2dq:

Integrating on � , and using (32) and the orthonormality of the functions .un;q/n�1
in L2per.� /, we obtain

Z D 1

j� �j
C1X

nD1

ˇ̌fq 2 � � j �n;q � �0F gˇ̌ : (34)

It is easy to see that if the periodic Coulomb potential is shifted by a uniform
constant C , and if �0F is replaced with �0F CC , then �0per and �0per remain unchanged.
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The formal bulk limit argument presented above has been rigorously founded by
Catto, Le Bris and Lions in [11], for �nuc

per DP
R2Z3 �.��R/ (smeared nuclei of unit

charge disposed on the cubic lattice Z
3). It is also possible to justify the periodic

Hartree model by passing to the limit on the supercell model with artificial periodic
boundary conditions (see [7]). The latter approach is less physical, but technically
much easier, and its extension to arbitrary crystalline structures (including point-like
nuclei) is straightforward. It results from these mathematical works that the Hartree
model for perfect crystals is well-defined. More precisely:

1. The Hartree ground state density operator �0per and density �0per of a crystal with
periodic nuclear density �nuc

per (composed of point-like or smeared nuclei) are
uniquely defined.

2. The ground state density �0per satisfies the neutrality charge constraint (32).
3. The periodic Coulomb potential V 0per is uniquely defined up to an additive

constant.
4. The ground state density operator �0per is an infinite rank orthogonal projector

satisfying the self-consistent equation (31).
5. �0per can be obtained by minimizing some periodic model set on the unit cell �

(see [11] for details).

In the remainder of the paper we assume that the system is an insulator (or a
semi-conductor) in the sense that the N th band is strictly below the .N C1/st band:

˙CN <˙
�
NC1;

where˙ṅ are defined in (30). In this case, one can choose for �0F any number in the
range .˙CN ;˙�NC1/. The electronic state of the perfect crystal is the same whatever
the value of �0F in the gap .˙CN ;˙�NC1/. On the other hand, as will be seen in the
next section, fixing the value of �0F may change the electronic state of the crystal in
the presence of a local defect.

In this paper however, we are only interested in the dielectric response of the
crystal, which corresponds to the limit of small defects (in a sense that will be made
precise later), and in this limit, the value of �0F does not play any role as long as it
remains inside the gap .˙CN ;˙

�
NC1/. For simplicity, we consider in the following

�0F D ˙CN C˙�NC1
2

:

Lastly, we denote by
g D˙�NC1�˙CN > 0 (35)

the band gap.
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3.3 Crystals with Local Defects

We now describe the results of [7] dealing with the modeling of local defects in
crystals in the framework of the Hartree model. The main idea is to seek the ground
state density operator of a crystal with a local defect characterized by the nuclear
charge distribution (26) under the form

�m;�0
F

D �0per CQm;�0
F
:

In this formalism, the defect is seen as a quasi-molecule with nuclear charge
distributionm and electronic ground state density operatorQm;�0

F
(and ground state

electronic density �Q
m;�0

F
), embedded in the perfect crystal. Here, the charge of the

defect is controlled by the Fermi level (the chemical potential). The dual approach,
in which the charge of the defect is imposed, is also dealt with in [7]. It should be
noticed that neitherm nor �Q

m;�0
F

are a priori non-negative. For instance, the nuclear

distribution of a defect corresponding to the replacement of a nucleus of charge ´
located at point R 2 R

3 with a nucleus of charge ´0 ismD .´0�´/ıR and can there-
fore be positively or negatively charged depending on the value of ´0�´. Regarding
the electronic state, the constraints .�m;�0

F
/� D �m;�0

F
, 0� �m;�0

F
� 1 and ��

m;�0
F

� 0,

respectively read .Qm;�0
F
/�DQm;�0

F
, ��0per �Qm;�0

F
� 1��0per and �Q

m;�0
F

� ��0per.

The next step is to exhibit a variational model allowing to compute Qm;�0
F

from

m, �0F and the ground state of the perfect crystal.
First, we perform the following formal calculation of the difference between the

Hartree free energy of some trial density operator � D �0per CQ subjected to the
nuclear potential generated by �nuc

per Cm, and the Hartree free energy of the perfect
crystal:
�
eEHartree
�nuc

perCm.�
0
per CQ/� �0FTr.�0per CQ/

�
�
�
eEHartree
�nuc

per
.�0per/� �0FTr.�0per/

�

formalD Tr

�
�1
2
�Q

�
C
ˆ
R3

�QV
0

per �
ˆ
R3

�QVmC 1

2
D.�Q;�Q/� �0FTr.Q/

�
ˆ
R3

mV 0per C 1

2
D.m;m/: (36)

The last two terms are constants that we can discard. Of course, the left-hand side of
(36) does not have any mathematical sense since it is the difference of two energies
both equal to plus infinity. On the other hand, we are going to see that it is possible
to give a mathematical meaning to the sum of the first five terms of the right-hand
side whenQ belongs to some functional space Q defined below, and to characterize
the ground state density operator Qm;�0

F
of the quasi-molecule, by minimizing the

so-defined energy functional on a closed convex subset K of Q.
For this purpose, we first need to extend the definition (18) of the Coulomb

interaction to the Coulomb space C defined as
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C WD
(
f 2 S 0.R3/

ˇ̌
ˇ̌
ˇ
bf 2 L1loc.R

3/; D.f;f / WD 4�

ˆ
R3

j Of .k/j2
jkj2 dk

)
;

where S 0.R3/ is the space of tempered distributions on R
3. Endowed with its

natural inner product

hf;giC WDD.f;g/ WD 4�

ˆ
R3

Of .k/ Og.k/
jkj2 dk; (37)

C is a Hilbert space. It can be proved that L6=5.R3/ ,! C and that for any .f;g/ 2
L6=5.R3/�L6=5.R3/, it holds

4�

ˆ
R3

Of .k/ Og.k/
jkj2 dk D

ˆ
R3

ˆ
R3

f .r/g.r0/
jr � r0j drdr0:

Hence, the definition (37) ofD.�; �/ on C is consistent with the usual definition (18)
of the Coulomb interaction when the latter makes sense. The Coulomb space C
therefore is the set of charge distributions of finite Coulomb energy.

Second, we introduce, for an operator A on L2.R3/, the notation

A�� WD �0perA�
0
per; A�C WD �0perA.1��0per/;

AC� WD .1��0per/A�
0
per; ACC WD .1��0per/A.1��0per/;

and note that the constraintsQDQ� and ��0per �Q � 1��0per are equivalent to

Q� DQ; Q2 �QCC�Q��: (38)

From the second inequality we deduce that it then holds Q�� � 0 and QCC � 0.
Using the fact that Tr.V 0perQ/D ´

R3 �QV
0

per, we formally obtain

Tr

�
�1
2
�Q

�
C
ˆ
R3

�QV
0

per � �0F Tr.Q/D Tr..H 0
per � �0F /Q/

D Tr..H 0
per � �0F/CCQCC/C Tr..H 0

per � �0F/��Q��/:

We now remark that, by definition of �0per, .H
0
per ��0F /CC � 0 and .H 0

per ��0F /�� � 0,
so that the right-hand term of the above expression can be rewritten as

Tr.jH 0
per � �0F j1=2.QCC�Q��/jH 0

per � �0F j1=2/: (39)

The above expression is well defined in RC [ fC1g for all Q satisfying the
constraints (38). It takes a finite value if Q is chosen in the vector space

Q D ˚
Q 2 S2 jQ� DQ; Q�� 2 S1; Q

CC 2 S1; (40)

jrjQ 2 S2; jrjQ��jrj 2 S1; jrjQCCjrj 2 S1


;
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where S1 and S2 respectively denote the spaces of trace-class and Hilbert-Schmidt
operators on L2.R3/ (see Appendix for details). Endowed with its natural norm, or
with any equivalent norm such as

kQkQDk.1Cjrj/QkS2
Ck.1Cjrj/QCC.1Cjrj/kS1

Ck.1Cjrj/Q��.1Cjrj/kS1
;

Q is a Banach space.
Before proceeding further, let us comment on the definition of Q. As the

trial density operators Q must satisfy the constraints (38), it is natural to impose
Q� D Q. Since jH 0

per � �0F j1=2.1C jrj/�1 is a bounded operator with bounded
inverse (see [7]), the four conditionsQ�� 2 S1,QCC 2 S1, jrjQ��jrj 2 S1 and
jrjQCCjrj 2 S1 are necessary and sufficient conditions for the expression (39)
with Q satisfying (38) being finite. The other constraints imposed to the elements
of Q (that is,Q 2S2 and jrjQ 2S2) follow from the fact that for anyQ satisfying
(38)

�
Q�� 2 S1; Q

CC 2 S1

� ) �
Q2 2 S1

�
�jrjQ��jrj 2 S1; jrjQCCjrj 2 S1

� ) �jrjQ2jrj 2 S1

�
:

In order to simplify the notation, we set for Q 2 Q,

Tr0.Q/ WD Tr.QCCCQ��/;
Tr0..H 0

per � �0F /Q/ WD Tr.jH 0
per � �0F j1=2.QCC�Q��/jH 0

per � �0F j1=2/:
An important result is that the linear mapping Q 7! �Q originally defined on the
dense subset Q \S1 of Q can be extended in a unique way to a continuous linear
mapping

Q ! L2.R3/\C

Q 7! �Q:

Note that the density associated with a generic element of Q is not necessarily an
integrable function. On the other hand, its Coulomb energy is always finite.

Let m be such that Vm D .m? j � j�1/ 2 C 0. Here and in the sequel

C 0 WD ˚
V 2L6.R3/ ˇ̌rV 2 .L2.R3//3 

denotes the dual space of C , endowed with the inner product

hV1;V2iC 0 WD 1

4�

ˆ
R3

rV1 � rV2 D 1

4�

ˆ
R3

jkj2 OV1.k/ OV2.k/dk:

It follows from the above arguments that the energy functional



110 É. Cancès et al.

Em;�
0
F .Q/D Tr0..H

0
per � �0F /Q/�

ˆ
R3

�QVmC 1

2
D.�Q;�Q/

is well defined on Q and that a good candidate for a variational model allowing to
compute the ground state density operatorQm;�0

F
is

inf
n
Em;�

0
F .Q/; Q 2 K

o
(41)

where
K D ˚

Q 2 Q j ��0per �Q � 1��0per


: (42)

Note that K is a closed convex subset of Q.
The above formal construction of the model (41) is justified in [7] by means of

rigorous bulk limit arguments. To summarize the situation, the Hartree ground state
density operator of the crystal with nuclear charge density �nuc

per Cm (the charge of
the defect being controlled by the Fermi level) is given by

� D �0per CQm;�0
F

whereQm;�0
F

is obtained by solving (41).
The existence of a Hartree ground state density operator for a crystal with a

local defect, as well as the uniqueness of the corresponding density and some other
important properties, are granted by the following theorem which gathers several
results from [7] and [9].

Theorem 1. Let m such that .m? j � j�1/ 2L2.R3/CC 0. Then:

1. (41) has at least one minimizer Qm;�0
F
, and all the minimizers of (41) share the

same density �m;�0
F
.

2. Qm;�0
F

is solution to the self-consistent equation

Qm;�0
F

D 1.�1;�0
F /

�
H 0

per C .�m;�0
F

�m/? j � j�1
�

�1.�1;�0
F �

�
H 0

per

�
C ı; (43)

where ı is a finite-rank self-adjoint operator on L2.R3/ such that 0� ı � 1 and

Ran.ı/� Ker
�
H 0

per C .�m;�0
F

�m/? j � j�1� �0F
�

.

The interpretation of the Euler equation (43), which also reads

�0per CQm;�0
F

D 1.�1;�0
F �
.H 0

m;�0
F
/C ı

with

H 0

m;�0
F

DH 0
per C .�m;�0

F
�m/? j � j�1; 0� ı � 1; Ran.ı/� Ker.H 0

m;�0
F

� �0F /;

is the following. The mean-field Hamiltonian H 0

m;�0
F

is uniquely defined, since all

the minimizers of (41) share the same density �m;�0
F
. Besides, the operator .�m;�0

F
�
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m/? j � j�1 being a relatively compact perturbation of H 0
per, it results from the Weyl

theorem (see [31, Sect. XIII.4]) that the HamiltoniansH 0
per andH 0

m;�0
F

have the same

essential spectra. On the other hand, whileH 0
per has no eigenvalues,H 0

m;�0
F

may have

a countable number of isolated eigenvalues of finite multiplicities in the gaps as
well as below the bottom of the essential spectrum. The only possible accumulation
points of these eigenvalues are the edges of the bands.

If �0F … �.H 0

m;�0
F
/, then ı D 0 and the ground state density operator of the crystal

in the presence of the defect is the orthogonal projector �0per CQm;�0
F
: All the energy

levels lower than the Fermi level are fully occupied while the other ones are empty
(see Fig. 2). In this case,Qm;�0

F
is both a Hilbert-Schmidt operator and the difference

of two projectors. It therefore follows from [18, Lemma 2] that

Tr0.Qm;�0
F
/ 2 N: (44)

Assuming that m 2L1.R3/ and
´
R3 m 2 N, the integer

ˆ
R3

m� Tr0.Qm;�0
F
/

can be interpreted as the bare charge of the defect (in contrast with the screened or
renormalized charge to be defined later).

If �0F 2 �.H 0

m;�0
F
/, then the energy levels with energy �0F may be fully or partially

occupied, and it may a priori happen that (41) has several minimizers, differing from
one another by a finite rank self-adjoint operator with range in Ker.H 0

m;�0
F
��0F /.

Fig. 2 General form of the spectrum of the self-consistent operator H0

m;�0
F

, in the presence of a

defect and for a fixed chemical potential �0
F

4 Dielectric Response of a Crystal

In this section, we study the response of the electronic ground state of a crystal to a
small, effective potential. In Sect. 4.1, we consider a time-independent perturbation
V 2 L2.R3/CC 0, with kV kL2CC 0

< ˛ (for some ˛ > 0 small enough). It can be
proved (see [9, Lemma 5]) that there exists ˇ > 0 such that
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�km? j � j�1kL2CC 0
< ˇ

� )
�
k.�m;�0

F
�m/? j � j�1kL2CC 0

< ˛
�
: (45)

The results of Sect. 4.1 therefore directly apply to the case of a crystal with a local
defect with nuclear charge distribution m, provided the defect is small enough (in
the sense that km? j � j�1kL2CC 0

< ˇ).
In Sect. 4.4, we consider a time-dependent perturbation

v.t;r/D .�.t; �/ ? j � j�1/.r/ with � 2 L1loc.R;L
2.R3/\C /: (46)

4.1 Series Expansion of the Time-Independent Response

For V 2 L2.R3/C C 0, the spectrum of H 0
per CV depends continuously on V . In

particular (see [9, Lemma 2]), there exists some ˛ > 0, such that if C is a smooth
curve in the complex plane enclosing the whole spectrum ofH 0

per below �0F , crossing
the real line at �0F and at some c < inf�.H 0

per/ and such that

d.�.H 0
per/;�/D g

4
where �D

n
´ 2 C

ˇ̌
ˇ d.´;C/� g

4

o
;

d denoting the Euclidean distance in the complex plane and g the band gap (35)
(see Fig. 3), then �.H 0

per CV /\ .�1;�0F � is contained in the interior of C for all
V 2 L2.R3/CC 0 such that kV kL2CC 0

< ˛.

Fig. 3 Graphical representation of a contour C 
 C enclosing �.H0
per/\ .�1;�0

F � and of the
compact set�

As a consequence, we obtain that for all V 2 L2.R3/ C C 0 such that
kV kL2CC 0

< ˛,

QV D 1.�1;�0
F /

�
H 0

per CV
�

�1.�1;�0
F �

�
H 0

per

�

D 1

2i�

˛
C

��
´�H 0

per �V
��1�

�
´�H 0

per

��1�
d´; (47)

where we have used the fact that �0F … �.H 0
per CV / to establish the first equality, and

the Cauchy formula to derive the second one.
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Expanding (47) in powers of V , we obtain

QV D
NX

nD1
Qn;V C eQNC1;V ; (48)

where we have gathered the terms involving powers of V larger than N in a
remainder eQNC1;V . The linear contribution is given by

Q1;V D 1

2i�

˛
C

�
´�H 0

per

��1
V
�
´�H 0

per

��1
d´: (49)

The higher order contributions and the remainder are respectively given by

Qn;V D 1

2i�

˛
C

�
´�H 0

per

��1�
V
�
´�H 0

per

��1�n
d´

and

eQNC1;V D 1

2i�

˛
C

�
´�H 0

per �V
��1�

V
�
´�H 0

per

��1�NC1
d´:

Proposition 1. The terms of the perturbation expansion (48) enjoy the following
properties.

1. The k-linear application

.V1; : : : ;Vn/ 7! 1

2i�

˛
C

�
´�H 0

per

��1
V1

�
´�H 0

per

��1 � � �Vn
�
´�H 0

per

��1
d´

is well-defined and continuous from .L2.R3/CC 0/n to Q for all n� 1, and from
.L2.R3/C C 0/n to S1 for all n � 6. In particular, for all V 2 L2.R3/C C 0,
Qn;V 2 Q for all n � 1 and Qn;V 2 S1 for all n � 6. Besides, for all V 2
L2.R3/CC 0, Tr0.Qn;V /D 0 for all n� 1 and Tr.Qn;V /D 0 for all n� 6.

2. If V 2 L1.R3/, Qn;V is in S1 for each n� 1 and Tr.Qn;V /D 0.
3. For each V 2 L2.R3/C C 0 such that kV kL2CC 0

< ˛, the operator eQNC1;V
is in Q for all N � 0 with Tr0.eQNC1;V / D 0, and in S1 for all N � 5, with
Tr.eQNC1;V /D Tr0.eQNC1;V /D 0.

We are now in position to define some operators which play an important role in
the sequel:

� The Coulomb operator vc, which defines a bijective isometry between C and C 0:

vc.�/ WD �? j � j�1:
� The independent particle polarization operator �0 defined by

�0.V / WD �Q1;V
;

which provides the first order response of the electronic density of the crystal to
a time-independent modification of the effective potential. The operator �0 is a
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continuous linear application from L1.R3/ to L1.R3/ and from L2.R3/CC 0 to
L2.R3/\C .

� The linear operator L defined by

L WD ��0vc;

which is a bounded nonnegative self-adjoint operator on C . As a consequence,
.1CL /�1 is a well-defined bounded self-adjoint operator on C .

� The dielectric operator � D vc.1CL /v�1c , and its inverse, the dielectric permit-
tivity operator

��1 D vc.1CL /�1v�1c ;

both being continuous linear operators on C 0. Note that the hermitian dielectric
operator, defined as Q�D v

�1=2
c �v

1=2
c is a self-adjoint, invertible, bounded operator

on L2.R3/ and is for this reason conveniently used in mathematical proofs.

We now focus our attention on the total Coulomb potential

Vm D .m��m;�0
F
/ ? j � j�1 D vc.m��m;�0

F
/;

generated by some charge distribution m such that km? j � j�1kL2CC 0
< ˇ, and on

the response �m;�0
F

of the Fermi sea. In view of (45), we can apply the above results
and deduce from (48) that

�m;�0
F

D �Q
�Vm

D �Q1;�Vm
C�eQ2;�Vm

D ��0VmC�eQ2;�Vm

D L .m��m;�0
F
/C�eQ2;�Vm

: (50)

The above relation, which also reads

.m��m;�0
F
/D .1CL /�1m� .1CL /�1.�eQ2;�Vm

/ (51)

or
Vm D vc.1CL /�1m�vc.1CL /�1.�eQ2;�Vm

/; (52)

is fundamental since it allows to split the quantities of interest (the total charge
.m� �m;�0

F
/ or the total Coulomb potential Vm generated by the defect) into two

components:

� A linear contribution in m, very singular, and responsible for charge renormal-
ization at the microscopic level, and for the dielectric properties of the crystal at
the macroscopic level.

� A nonlinear contribution which, in the regime under study (km? j � j�1kL2CC 0
<

ˇ), is regular at the microscopic level and vanishes in the macroscopic limit.
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4.2 Properties of Qm;�0
F

and �m;�0
F

for Small Amplitude Defects

The relation (50), combined with the properties of the operator L stated in
Proposition 2 below, allows us to derive some interesting properties of Qm;�0

F
and

�m;�0
F

and to propose a definition of the renormalized charge of the defect.

Proposition 2. Let � 2 L1.R3/. Then, L .�/ 2 L2.R3/\ C , 1L .�/ is continuous
on R

3 nR�, and for all � 2 S2 (the unit sphere of R3),

lim
�!0C

1L .�/.
�/D .�TL�/b�.0/; (53)

where L 2 R
3�3 is the non-negative symmetric matrix defined by

8k 2 R
3; kTLk D 8�

j� j
NX

nD1

C1X

n0DNC1

 
� �

ˇ̌
ˇh.k � rr/un;q;un0;q/iL2

per.� /

ˇ̌
ˇ
2

�
�n0;q � �n;q

�3 dq; (54)

where the �n;q’s and the un;q’s are the eigenvalues and eigenvectors arising in the
spectral decomposition (33) of .H 0

per/q. Additionally,

L0 D 1

3
Tr.L/ > 0: (55)

Notice that the convergence of the series (54) is granted by the fact that
�n0;q � �n;q � ˙�n0

�˙Cn � g for all n � N < n0 and all q 2 � � (where g > 0 is
the band gap), and the existence of C 2 RC such that kun;qkH2

per.� /
� C for all

1 � n � N and all q 2 � �. Actually, the convergence of the series is rather fast
since ˙�n0

�
n0!1

Cn02=3 (this estimate is obtained by comparing the eigenvalues of

H 0
per with those of the Laplace operator on L2per.� /).
We do not reproduce here the quite technical proof of Proposition 2. Let us

however emphasize the essential role played by the long range character of the
Coulomb potential. If j � j�1 is replaced by a potential vr 2 L1.R3/, then for all
� 2 L1.R3/, � ?vr 2 L1.R3/, hence L .�/ 2 L1.R3/ and L D 0. More precisely,
the Bloch-Floquet decomposition of the Coulomb kernel reads

.j � j/q.r/D 4�

j� j

0

@ 1

jqj2 C
X

K2R�nf0g

eiK�r

jq C Kj2

1

A ;

and only the singular component 4
j� j jqj2 , which originates from the long-range of

the Coulomb potential, gives a nonzero contribution to L.
We can deduce from (50) and Proposition 2 that, in general, the minimizerQm;�0

F

to (41) is not trace-class and that the density �m;�0
F

is not an integrable function if
the host crystal is anisotropic. Let us detail this point.
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Consider some m 2 L1.R3/\L2.R3/ such that
´
R3 m¤0 and km? j � j�1

kL2CC 0
< ˇ. In view of (45) and Proposition 1, it holds

Tr0.Qm;�0
F
/D Tr0.Q1;�Vm

C eQ2;�Vm
/D 0: (56)

Assume that �m;�0
F

is in L1.R3/. Then a technical lemma (see [9, Lemma 4]) shows
that the Fourier transform of the density �eQ2;�Vm

, corresponding to the nonlinear
response terms, is continuous and vanishes at zero. This means that, although it is
not known whether �eQ2;�Vm

is in L1.R3/, this density of charge behaves in the
Fourier space as if it was integrable with an integral equal to zero. It follows from
(50) and Proposition 1 that for each � 2 S2,

b�m;�0
F
.0/D lim

�!0C

�
FL .�m;�0

F
�m/

�
.
�/D .�TL�/.b�m;�0

F
.0/�bm.0//: (57)

As by assumption bm.0/¤ 0 (since
´
R3m¤ 0), we reach a contradiction unless the

matrix L is proportional to the identity matrix. Defining here an isotropic crystal as
a crystal for which L¤ L01, this proves that, in general, �m;�0

F
is not an integrable

function for anisotropic crystals (and this a fortiori implies that Qm;�0
F

is not trace-
class).

Let us now consider an isotropic crystal. If Qm;�0
F

were trace-class, then �m;�0
F

would be in L1.R3/, and we would deduce from (56) that

.2�/3=2b�m;�0
F
.0/D

ˆ
R3

�m;�0
F

D Tr.Qm;�0
F
/D Tr0.Qm;�0

F
/D 0:

Again, except in the very special case when L D 1, this contradicts (57) since
bm¤ 0 by assumption. Thus, in general, Qm;�0

F
is not trace-class, even for isotropic

crystals. We do not know whether the electronic density �m;�0
F

generated by some

m2L1.R3/\L2.R3/ (this assumption impliesm2L6=5.R3/ ,! C ) in an isotropic
crystal is integrable or not. If it is, it follows from (57) that, still under the
assumption that km? j � j�1kL2CC 0

< ˇ,

ˆ
R3

m�
ˆ
R3

�m;�0
F

D
´
R3m

1CL0
:

This quantity can be interpreted as the renormalized charge of the defect, which
differs from the bare charge

´
R3 m� Tr0.Qm;�0

F
/ D ´

R3 m by a screening factor
1

1CL0
. This is formally similar to the charge renormalization phenomenon observed

in QED (see [17] for a mathematical analysis).
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4.3 Dielectric Operator and Macroscopic Dielectric Permittivity

In this section, we focus again on the total potential

Vm D .m��m;�0
F
/ ? j � j�1 (58)

generated by the total charge of the defect, but we study it in a certain macroscopic
limit.

For this purpose, we fix some m 2L1.R3/\L2.R3/ and introduce for all 
 > 0
the rescaled density

m�.r/ WD 
3m.
r/:

We then denote by V �m the total potential generated by m� and the corresponding
electronic polarization, i.e.

V �m WD .m� ��m�;�
0
F
/ ? j � j�1; (59)

and define the rescaled potential

W �
m.r/ WD 
�1V �m

�

�1r

�
: (60)

The scaling parameters have been chosen in a way such that in the absence of
dielectric response (i.e. for L D 0 and e�Q

2;�V
�
m

D 0), it holds W �
m D vc.m/ D

m? j � j�1 for all 
 > 0. To obtain a macroscopic limit, we let 
 go to zero.
As k.m� ? j � j�1/kC 0 D km�kC D 
1=2kmkC , we can apply the results of the

previous sections as soon as 
 is small enough. Introducing the family of scaling
operators .U�/�>0 defined by .U�f /.r/ D 
3=2f .
r/ (each U� is a bijective
isometry of L2.R3/), the equation linking the density of charge m to the rescaled
potentialW �

m reads

W �
m D v1=2c U �� Q��1U�v1=2c mCew�m; (61)

where the nonlinear contribution ew�m is such that there exists C 2 RC such that for

 small enough, kew�mkC 0 �C
. The macroscopic limit ofW �

m therefore is governed
by the linear response term, and is obtained as the limit when 
 goes to zero of the
family .U ��e��1U�/�>0 of bounded self-adjoint operators on L2.R3/.

If Q��1 was translation invariant, that is, if it was commuting with all the
translations �R for R 2R

3, it would be a multiplication operator in the Fourier space

(i.e. such that for all f 2 L2.R3/, 2.Q��1f /.k/ D N��1.k/bf .k/ for some function
R
3 3 k 7! N��1.k/ 2 C). Using the fact that the operator v1=2c is the multiplication

operator by .4�/1=2=jkj in the Fourier space, we would obtain in the limit

lim
�!0C

� jkj2
N��1.
k/

�
bW m.k/D 4�bm.k/:
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As the operator Q��1 actually commutes only with the translations of the lattice R,
the above argument cannot be applied. On the other hand, it can be proved, using
Bloch-Floquet decomposition, that W �

m has a limit Wm when 
 goes to zero, and
that this limits satisfies

lim
�!0C

� jkj2
ŒQ��1�00.
k/

�
bW m.k/D 4�bm.k/; (62)

where ŒQ��1�00.q/ is the entry of the Bloch matrix of the R-periodic operator Q��1
corresponding to K D K0 D 0. Besides,

lim
�!0C

� jkj2
ŒQ��1�00.
k/

�
D kT �Mk; (63)

where �M is a 3� 3 symmetric, positive definite matrix. Transforming back (62) in
the physical space, we obtain the macroscopic Poisson equation (4). Let us formalize
this central result in a theorem.

Theorem 2. There exists a 3� 3 symmetric matrix �M � 1 such that for all m 2
L1.R3/\L2.R3/, the rescaled potential W �

m defined by (60) converges to Wm
weakly in C 0 when 
 goes to zero, where Wm is the unique solution in C 0 to the
elliptic equation

�div.�MrWm/D 4�m:

The matrix �M is proportional to the identity matrix if the host crystal has the
symmetry of the cube.

From a physical viewpoint, the matrix �M is the electronic contribution to the
macroscopic dielectric tensor of the host crystal. Note that the other contribution,
originating from the displacements of the nuclei [29], is not taken into account in
this study.

The matrix �M can be computed from the Bloch-Floquet decomposition of H 0
per

as follows. The operator Q�D v
�1=2
c �v

1=2
c being R-periodic, it can be represented by

the Bloch matrices .ŒQ�KK0 .q/�K;K02R�/q2� � . It is proven in [9] that each entry of the
Bloch matrix Q�K;K0.
�/ has a limit when 
 goes to 0C for all fixed � 2 S2. Indeed,

lim
�!0C

Q�0;0.
�/D 1C�TL�

where L is the 3�3 non-negative symmetric matrix defined in (54). When K;K0 ¤
0, Q�K;K0.
�/ has a limit at 
D 0, which is independent of � and which we simply
denote by Q�K;K0.0/. When K D 0 but K0 ¤ 0, the limit is a linear function of � : for
all K0 2 R� n f0g,

lim
�!0C

Q�0;K0.
�/D ˇK0 ��;

for some ˇK0 2 C
3. Both Q�KK0 .0/ (K;K0 ¤ 0) and ˇK can be computed from the

eigenvalues �n;q and eigenvectors un;q of the Bloch-Floquet decomposition of H 0
per
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by formulae similar to (54). As already mentioned, the electronic contribution to the
macroscopic dielectric permittivity is the 3�3 symmetric tensor defined as [6]

8k 2 R
3; kT �Mk D lim

�!0C

jkj2
ŒQ��1�00.
k/

: (64)

By the Schur complement formula, it holds

1

ŒQ��1�00.
k/
D Q�00.
k/�

X

K;K0¤0
Q�0;K.
k/ŒC.
k/�1�K;K0 Q�K0;0.
k/

where C.
k/�1 is the inverse of the matrix C.
k/ D ŒQ�KK0.
k/�K;K02R�nf0g. This
leads to

lim
�!0C

jkj2
ŒQ��1�00.
k/

D jkj2C kTLk �
X

K;K02R�nf0g
.ˇK � k/ŒC.0/�1�K;K0.ˇK0 � k/

where C.0/�1 is the inverse of the matrix C.0/D ŒQ�KK0 .0/�K;K02R�nf0g. Therefore,

�M D 1CL�
X

K;K02R�nf0g
ˇKŒC.0/

�1�K;K0ˇ�K0

: (65)

As already noticed in [6], it holds

1� �M � 1CL:

Formula (65) has been used in numerical simulations for estimating the macro-
scopic dielectric permittivity of real insulators and semiconductors [6,14,16,22,23].
Direct methods for evaluating �M, bypassing the inversion of the matrix C.0/, have
also been proposed [25, 32].

4.4 Time-Dependent Response

We study in this section the variation of the electronic state of the crystal when the
mean-field HamiltonianH 0

per of the perfect crystal is perturbed by a time-dependent
effective potential v.t;r/ of the form (46). The mathematical proofs of the results
announced in this section will be given in [10].

Let

Hv.t/DH 0
per Cv.t; �/D �1

2
�CVper Cv.t; �/:

Under the assumption that �nuc
per 2L2per.� / (smeared nuclei), the mean-field potential

Vper is R-periodic and in C 0.R3/\L1.R3/. Besides, there exists a constant C > 0
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such that k� ? j � j�1kL1 � Ck�kL2\C for all � 2 L2.R3/\ C , so that the time-
dependent perturbation v belongs to L1loc.R;L

1.R3//.
Let us now define the propagator .Uv.t;s//.s;t/2R�R associated with the time-

dependent HamiltonianHv.t/ following [30, Sect. X.12]. To this end, consider first

the propagator U0.t/D e�i tH0
per associated with the time-independent Hamiltonian

H 0
per, and the perturbation in the so-called interaction picture:

vint.t/D U0.t/
�v.t/U0.t/:

Standard techniques (see for instance [28, Sect. 5.1]) allow us to show the existence
and uniqueness of the family of unitary propagators .Uint.t;s//.s;t/2R�R associated
with the bounded operators .vint.t//t2R, with

Uint.t; t0/D 1� i
ˆ t

t0

vint.s/Uint.s; t0/ds:

Therefore, Uv.t;s/D U0.t/Uint.t;s/U0.s/
� satisfies the integral equation

Uv.t; t0/D U0.t � t0/� i
ˆ t

t0

U0.t � s/v.s/Uv.s; t0/ds: (66)

Denoting by �0 the density operator of the crystal at time t D 0, the dynamics of
the system is governed by the evolution equation

�.t/D Uv.t;0/�
0Uv.t;0/

�: (67)

Note that the conditions �0 2 S .L2.R3// and 0 � �0 � 1 are automatically
propagated by (67).

Considering v.t/ as a perturbation of the time-independent Hamiltonian H 0
per,

and �.t/ as a perturbation of the ground state density operator �0per, it is natural to
follow the same strategy as in the time-independent setting and introduce

Q.t/D �.t/��0per:

Using (66), (67), and the fact that �0per is a steady state of the system in the absence of
perturbation (U0.t/�0perU0.t/

� D �0per), an easy calculation shows thatQ.t/ satisfies
the integral equation

Q.t/D U0.t/Q.0/U0.t/
�� i

ˆ t

0

U0.t � s/Œv.s/;�0per CQ.s/�U0.t � s/� ds: (68)

We now assume that �0 D �0per, i.e. Q.0/ D 0, and write (formally for the
moment)Q.t/ as the series expansion

Q.t/D
C1X

nD1
Qn;v.t/; (69)
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where the operators Qn;v.t/ are obtained, as in the time-independent case, by
identifying terms involving n occurrences of the potential v. In particular, the linear
response is given by

Q1;v.t/D �i
ˆ t

0

U0.t � s/
h
v.s/;�0per

i
U0.t � s/�ds; (70)

and the following recursion relation holds true

8n� 2; Qn;v.t/D �i
ˆ t

0

U0.t � s/ Œv.s/;Qn�1;v.s/�U0.t � s/� ds: (71)

It is proved in [10] that for any n� 1 and any t � 0, the operatorQn;v.t/ in (69)
belongs to Q and satisfies

8 2 L2.R3/; h jQn;v.t/j iL2 D 0:

In particular, Tr0.Qn;v.t//D 0. Besides, there exists b 2 RC such that for all t � 0

kQn;v.t/kQ � bn
ˆ t

0

ˆ t1

0

: : :

ˆ tn�1

0

k�.t1/kL2\C : : :k�.tn/kL2\C dtn : : : dt1;

and there exists T > 0 such that the series expansion (69) converges in Q uni-
formly on any compact subset of Œ0;T /. Lastly, TDC1 if �2L1.RC;L2.R3/\C /.

As in the time-independent setting, the frequency-dependent dielectric properties
of the crystal can be obtained from the linear response (70), by defining the time-
dependent independent-particle polarization operator

�0 W L1.R;vc.L
2.R3/\C // ! L1.R;L2.R3/\C /

v 7! �Q1;v

(72)

and the time-dependent operators L D ��0vc, �Dvc.1C L /v�1c , ��1 D vc.1C
L /�1v�1c , and Q� D v

�1=2
c �v

1=2
c . Due to the invariance of the linear response with

respect to translation in time, all these operators are convolutions in time. In addition
they are R-periodic in space. They can therefore be represented by frequency-
dependent Bloch matrices ŒTK;K0.!;q/�, with K, K0 in R�, q 2 � � and ! 2 R.
The Adler-Wiser formula states that the (electronic contribution of the) frequency-
dependent macroscopic dielectric permittivity is given by the formula

8k 2 R
3; kTF�M.!/k D lim

�!0C

� jkj2
ŒQ��1�00.!;
k/

�
:

The mathematical study of this formula and of its possible derivation from rigorous
homogenization arguments, is work in progress.

We finally consider the self-consistent Hartree dynamics defined by
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Q.t/DU0.t/Q0U0.t/
��i

ˆ t

0

U0.t�s/
h
v.s/Cvc.�Q.s//;�

0
per CQ.s/

i
U0.t�s/�ds;

(73)
for an initial condition Q0 2 K , and for an external potential v.t/ D vc.m.t//,
where m.t/ 2 L2.R3/\ C for all t . The solution Q.t/ of (73) is such that �.t/D
�0per CQ.t/ satisfies, formally, the time-dependent Hartree equation

i
d�

dt
.t/D

�
�1
2
�C .��.t/��nuc

per �m.t//? j � j�1;�.t/
�
:

The following result [10] shows the well-posedness of the nonlinear Hartree
dynamics.

Theorem 3. Let m 2 L1loc.RC;L2.R3//\W 1;1
loc .RC;C /. Then, for any Q0 2 K ,

the time-dependent Hartree equation (73) has a unique solution in C 0.RC;Q/.
Besides, for all t � 0, Q.t/ 2 K and Tr0.Q.t//D Tr0.Q0/.

Appendix: Trace-Class and Self-Adjoint Operators

It is well-known that any compact self-adjoint operator A on a separable Hilbert
space H can be diagonalized in an orthonormal basis set:

AD
C1X

iD1
�i j�i ih�i j; (74)

where h�i j�j i D ıij , and where the sequence .�i /i�1 of the (real) eigenvalues of A,
counted with their multiplicities, converges to zero. We have formulated (74) using
again Dirac’s bra-ket notation. The conventional mathematical formulation for (74)
reads

8� 2 H ; A� D
C1X

iD1
�i h�i j�i�i :

A compact self-adjoint operator A is called trace-class if

C1X

iD1
j�i j<1:

The trace of A is then defined as

Tr.A/ WD
C1X

iD1
�i D

C1X

iD1
hei jAjeii;

the right-hand side being independent of the choice of the orthonormal basis .ei /i�1.
Note that ifA is a non-negative self-adjoint operator, the sum

PC1
iD1hei jAjeii makes
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sense in RC[fC1g and its values is independent of the choice of the orthonormal
basis .ei /i�1. We can therefore give a sense to Tr.A/ for any non-negative self-
adjoint operator A, and this number is finite if and only if A is trace-class.

The notion of trace-class operators can be extended to non-self-adjoint operators
[31, 33], but we do not need to consider this generalization here.

By definition, a compact operator A is Hilbert-Schmidt if A�A is trace-class.
A compact self-adjoint operator A on H decomposed according to (74) is Hilbert-
Schmidt if and only if X

i�1
j�i j2 <1:

Obviously any trace-class self-adjoint operator is Hilbert-Schmidt, but the converse
is not true.

In this contribution, we respectively denote by S1 and S2 the spaces of
trace-class and Hilbert-Schmidt operators acting on L2.R3/. We also denote by
S .L2.R3// the vector space of the bounded self-adjoint operators on L2.R3/.

A classical result states that if A is a Hilbert-Schmidt operator on L2.R3/, then
it is an integral operator with kernel in L2.R3�R

3/. This means that there exists a
unique function in L2.R3�R

3/, also denoted by A for convenience, such that

8� 2 L2.R3/; .A�/.r/D
ˆ
R3

A.r;r0/�.r0/dr0: (75)

Conversely, if A is an operator on L2.R3/ for which there exists a function A 2
L2.R3�R

3/ such that (75) holds, then A is Hilbert-Schmidt.
If A is a self-adjoint Hilbert-Schmidt operator onL2.R3/ decomposed according

to (74), then its kernel is given by

A.r;r0/D
X

i�1
�i �i .r/�i .r0/:

If, in addition A is trace-class, then the density �A, defined as

�A.r/D
C1X

iD1
�i j�i .r/j2;

is a function of L1.R3/ and it holds

Tr.A/D
C1X

iD1
�i D

ˆ
R3

�A.r/dr:

For convenience, we use the abuse of notation which consists in writing �A.r/ D
A.r;r/ even when the kernel of A is not continuous on the diagonal fr D r0g � R

6.
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16. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties

in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)
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Fast Multipole Method Using the Cauchy
Integral Formula

Cristopher Cecka, Pierre-David Létourneau, and Eric Darve

Abstract The fast multipole method (FMM) is a technique allowing the fast
calculation of long-range interactions between N points in O.N/ or O.N lnN/
steps with some prescribed error tolerance. The FMM has found many applications
in the field of integral equations and boundary element methods, in particular by
accelerating the solution of dense linear systems arising from such formulations.
Standard FMMs are derived from analytic expansions of the kernel, for example
using spherical harmonics or Taylor expansions. In recent years, the range of
applicability and the ease of use of FMMs has been extended by the introduction
of black box (Fong and Darve, Journal of Computational Physics 228:8712–
8725, 2009) or kernel independent techniques (Ying, Biros and Zorin, Journal
of Computational Physics 196:591–626, 2004). In these approaches, the user
only provides a subroutine to numerically calculate the interaction kernel. This
allows changing the definition of the kernel with minimal change to the computer
program. This paper presents a novel kernel independent FMM, which leads to
diagonal multipole-to-local operators. This results in a significant reduction in the
computational cost (Fong and Darve, Journal of Computational Physics 228:8712–
8725, 2009), in particular when high accuracy is needed. The approach is based
on Cauchy’s integral formula and the Laplace transform. We will present a short
numerical analysis of the convergence and some preliminary numerical results in
the case of a single level one dimensional FMM.
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1 Introduction

The fast multipole method (FMM) is a general class of methods to reduce the cost
of computing:

�i D
NX

jD1
K.ri ; rj /�j ; 1� i �N; (1)

when N is large. The basic approximation strategy in the FMM is a low-rank
approximation of the kernel of the type:

K.r;r�/D
pX

mD1

pX

qD1
um.r/ Tmq vq.r

�/C �:

With a low-rank approximation of this type one can construct an O.N/ or
O.N lnN/ method to calculate the sum in (1).

Fast multipole methods have been derived for many different types of kernels,
including the electrostatic kernel 1=r and Helmholtz kernel eikr=r . Efforts have
been made to extend the method to more general kernels [9]. The authors for
example have developed a fast technique applicable to any smooth kernels, i.e.,
non-oscillatory (see [7]).

In this paper, we consider the creation of an FMM with two goals in mind:

1. The method should be applicable to a wide class of kernels.
2. The multipole-to-local (M2L) operator Tmq should be diagonal.

Even though requirement (1) is satisfied by the method in [7], requirement (2) is
not. The second requirement allows in principle reducing the computational cost of
the method by reducing the number of operations involved in the multiplication of
vq by Tmq . This has the potential to significantly reduce the cost of these general
FMM schemes to improve their applicability and efficiency.

Some of the applications we have in mind include the use of radial basis functions
such as r , rn (n odd), rn logr (n even), exp.�cr2/, p

r2C c2, 1=
p
r2C c2,

1=.r2 C c2/; : : : ; for interpolation schemes. These are popular schemes for mesh
deformation [5] and graphics applications [1]. Interpolation using these functions
requires generalized FMMs capable of handling a wide class of functions.

The method we are proposing is based on Cauchy’s integral formula for analytic
functions. This is the class of kernels that is covered by this new scheme. In this
paper, we are only presenting an outline of the method. Additional details will be
presented in future publications. Contrary to some of the other approaches, this
technique proposes a general framework to construct FMMs. Depending on the
specific nature of the kernel, various optimizations and modifications can be made
to this general scheme to improve its efficiency.
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2 Cauchy’s Integral Formula and Low-Rank Approximations

For simplicity, let us assume that K.r;r�/ is translationally invariant so it can be
expressed as K.r � r�/. In addition we will start with the one dimensional (1D)
case. In this paper we will not discuss in details the extensions to two and three
dimensions (2D/3D). However, at the end of this section, we will briefly explain
how this can be done.

We consider a kernel K.x/, x 2 R, and assume that, in some region ˝ � C

around the point x, it is an analytic (holomorphic) function. That is, the function
K.´/, ´ 2 C, is complex differentiable at every point ´ 2 ˝ . Then, by Cauchy’s
integral formula:

K.x/D 1

2�i

˛
�

K.´/

´�x d´:

The curve � D @˝ is closed and contains x.
Assume that Re.´�x/ > 0 (Re is the real part of a complex number) then:

1

´�x D
ˆ 1
0

e�s.´�x/ds:

The reason why we want to use this formula is that after approximating these
integrals using a numerical quadrature, we will obtain a low rank approximation
of the kernel, and later on a fast method.

Since � encloses x it is not always the case that Re.´� x/ > 0. However, by
applying rotations in the complex plane we get:

1

´�x D �
ˆ 1
0

es.´�x/ ds; if Re.´�x/ < 0; (2)

1

´�x D �i
ˆ 1
0

eis.´�x/ ds; if Im.´�x/ > 0; (3)

1

´�x D i

ˆ 1
0

e�is.´�x/ ds; if Im.´�x/ < 0: (4)

Let us decompose � into four curves such that on �1, Re.´�x/ > 0; on �2, Im.´�
x/ > 0; on �3, Re.´�x/ < 0; and on �4, Im.´�x/ < 0. Then:

K.x/D C 1

2�i

ˆ
�1

K.´/

ˆ 1
0

e�s.´�x/dsd´

� 1

2�

ˆ
�2

K.´/

ˆ 1
0

eis.´�x/ dsdz

� 1

2�i

ˆ
�3

K.´/

ˆ 1
0

es.´�x/ dsdz

C 1

2�

ˆ
�4

K.´/

ˆ 1
0

e�is.´�x/ dsdz:

(5)
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This is illustrated in Fig. 1.

Re

Im

x

G4

G1

G2

G3

Fig. 1 Schematic of the four contour curves around x

How can we use this formula to construct a fast O.N/ method? We need to
approximate K.x � y/ using a low rank decomposition. Let us consider the first
integral along �1. The variable x is now replaced by x �y. We assume we have
obtained a quadrature along s, with weightswq and points sq , that approximates the
integral along s. Then the contribution from �1 toK.x�y/ can be approximated as:

X

q

h wq
2�i

ˆ
�1

K.´/e�sq´d´
i
esqx e�sqy :

Denote:

uq.x/D esqx; Tqq D wq

2�i

ˆ
�1

K.´/e�sq´d´; vq.y/D e�sqy ;

and we see that this approximation is a low-rank approximation of the type (1). The
M2L operator Tqq is diagonal. We immediately point out that this is not sufficient to
construct an FMM scheme since we have not provided a method to gather multipole
expansions from leaf nodes and propagate them up the tree, and a method to scatter
local expansions from the root of the tree down to the leaves. However this formula
provides the starting point for our analysis.

Extension to two and three dimensions. This extension relies on using a tensor
product construction. For example, in 3D, the Cauchy formula reads:

K.u;v;w/D 1

.2�i/3

•

�

K.´1;´2;´3/

.´1�u/.´2�v/.´3�w/ d´1d´2d´3;

where � is now a three dimensional domain in C
3. Then each term 1=.´1�u/, . . . ,

1=.´3 �w/ is transformed into an integral with exponential functions. The final
expression is rather long but the approximation of K.r � r0/ with r D .u;v;w/,
r0 D .u0;v0;w0/ involves terms like:

X

q1;q2;q3

Kq1;q2;q3
esq1

u e�sq1
u0

esq2
v e�sq2

v0

esq3
w e�sq3

w 0

;

Kq1;q2;q3
D wq1

wq2
wq3

.2�i/3

•

�1

K.´1;´2;´3/ e
�sq1

´1 e�sq2
´2 e�sq3

´3 d´1d´2d´3:
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The 1D construction can then be extended to the 2D and 3D cases. In the rest of the
paper, we will focus on the analysis of the one dimensional case.

3 Connection with Fourier and Laplace Transforms

The formula (5) can be viewed as an extension of the Fourier and Laplace
transforms. Specifically, when the kernel satisfies some additional conditions at
infinity, (5) can be related to Fourier and Laplace transforms. To understand the
connection, let us assume that the paths �i are straight segments:

K.x/D C 1

2�

ˆ a

�a
K.cC it/

ˆ 1
0

e�iste�s.c�x/ dsdt

C 1

2�

ˆ c

b

K.tC ia/
ˆ 1
0

eiste�isx�sa dsdt

C 1

2�

ˆ a

�a
K.bC it/

ˆ 1
0

eistes.b�x/dsdt

C 1

2�

ˆ c

b

K.t � ia/
ˆ 1
0

e�isteisx�sa dsdt:

(6)

See Fig. 2 for the notations.

x

(c;−a)

(c;a)

(b;−a)

(b;a)

Fig. 2 Notations for straight segment contours

The Fourier or Laplace transforms can be recognized provided the kernel K
satisfies some additional assumptions. If K.t C ia/ is in L1.R/ with respect to t ,
then we can choose b D �1 and c D 1:

K.x/D 1

2�

�ˆ 1
�1

K.tC ia/
ˆ 1
0

eiste�isx�sa dsdt

C
ˆ 1
�1

K.t � ia/
ˆ 1
0

e�isteisx�sa dsdt
�

D 1

2�

�ˆ 1
0

e�isx�sa
ˆ 1
�1

K.tC ia/eist dt ds

C
ˆ 1
0

eisx�sa
ˆ 1
�1

K.t � ia/e�ist dt ds
�
:
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After taking the limit a ! 0 and doing a change of variable s ! 2�s, we get:

K.x/D
ˆ 0

�1
e2isx

ˆ 1
�1

K.t/e�2 ist dt dsC
ˆ 1
0

e2 isx
ˆ 1
�1

K.t/e�2 ist dt ds

D
ˆ 1
�1

e2 isx
ˆ 1
�1

K.t/e�2 ist dt ds:

This is the formula for the Fourier transform and its inverse transform. See an
illustration on Fig. 3.

Similarly let us assume that jK.´/j < Aj´j�� when j´j ! 1, Re.´/ � b, � > 0.
In that case we can choose a ! 1 and c 2 .a/ (bounded above and below by a,
i.e., c and a go to infinity at the same rate). Then:

lim
a!1
c!1

1

2�

ˆ a

�a
K.cC it/

ˆ 1
0

e�iste�s.c�x/ dsdt D 0;

and similarly for the second and fourth integral in (6). We are only left with the third
integral:

K.x/D 1

2�

ˆ 1
�1

K.bC it/
ˆ 1
0

eistes.b�x/ dsdt:

If we change the order of integration, assume thatK.bCi t/ is in L1.R/with respect
to t , and do the change of variable ´D bC i t , then:

K.x/D 1

2�i

ˆ 1
0

e�sx
ˆ bCi1

b�i1
K.´/esz dzds:

We recognize the Laplace transform and its inverse, expressed using the Bromwich
integral. See Fig. 3.

No pole at origin Pole at origin

Fourier (L1 along the real axis) Laplace (decay at infinity)C

Fig. 3 This figure illustrates the different contours of integration that can be used depending on
the properties of the kernel. We briefly recall for each contour the corresponding property of the
kernel
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4 Construction of Fast Methods

The problems of moving information up and down the tree in the fast multipole
method and finding a suitable quadrature .sk ;wk/ are related. There are many ways
to approach this question. We chose to use a spectral decomposition. As we will use
Fourier analysis as our main tool, the functions esx are not suitable without making
an appropriate change of variable. Assume for example that we have a cluster C of
particles xj with intensities �j . Then the multipole coefficients are of the form:

Mq.C /D
X

j; xj2C
e�sq.C/xj �j ;

where sq.C / denotes a quadrature adapted to cluster C . Let us assume thatD is the
parent cluster of C in the traditional FMM tree decomposition. Then we need to be
able to calculate the contribution to Mq.D/ of particles in C that is:

X

j; xj2C
e�sq.D/xj �j :

However the quadrature points sq.D/ are different from sq.C /. A procedure to
gather multipole expansions up the tree is therefore needed. Similarly we need a
procedure to scatter down the tree local expansions.

These procedures can be developed if we use Gaussian functions instead of
exponentials. Let us perform the change of variable s ! s2 in �1 for example

ˆ 1
0

h s
�i

ˆ
�1

K.´/e�s2´d´
i
es

2.x�y/ ds:

The functions es
2x are still not suitable. Depending on the sign of x they may be

bounded or not. We need to enforce that the Gaussian functions decay. To reduce
the number of symbols, we now assume that the clusters containing x and y have
the same size. We add one more parameter l given by:

l D min
´2�1

Re.´/

2
: (7)

With this parameter:
ˆ 1
0

h s
�i

ˆ
�1

K.´/e�s2.´�2l/ d´
i
e�s2.l�x/e�s2.lCy/ ds:

From now on (except in the next section) we assume that x is the displacement of a
particle from the center of cluster C and similarly for y in clusterE, whereC andE
are two clusters that are well separated (according to the usual FMM prescription).
Let us denote R the radius of each cluster. Since we must have, by definition of �1,
Re.´/ > x�y for all x and y, we have Re.´/ > 2R. Consequently, it is possible
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to choose �1 such that, from (7), l > R. This implies that l �x > 0 and lCy > 0.
The two Gaussian functions e�s2.l�x/ and e�s2.lCy/ therefore decay as s ! 1.
In addition these Gaussian functions have a spectrum in Fourier space that decays
rapidly. This will be essential to construct the interpolation and anterpolation, and
in the error analysis.

5 Interpolation and Anterpolation

We now propose an approach for interpolating multipole data up the tree and
anterpolating local data down the tree. Consider multipole coefficients of the form:

MC .sq/D
X

j; xj2C
e�sq.C/2.lC�xjCcC /�j :

We want to approximate the multipole coefficients for the parent cluster D:

MD.sq/D
X

j; xj2C
e�sq.D/2.lD�xjCcD/�j :

In this section only, we explicitly use the center of the clusters, cC and cD . In general
since the radius of D is twice that of C , the Gaussian function decays much faster,
and therefore the quadrature points sq.D/ tend to cluster near 0 when compared to
the quadrature points sq.C /.

Let us assume that the quadrature points sq.C / have a spacing �s.C / while
those for D have a spacing�s.D/. In that case, we need to interpolate the function
MC .sq/ and calculate its values at points with a spacing of�s.D/. In general terms,
this can be done by performing a fast Fourier transform of MC .sq/, padding with
zeros, and performing an inverse transform. The coefficientsMq.D/ are obtained by
keeping those samples in the desired interval: Œ�L.D/;L.D/� (using the notations
of Sect. 6). The process is completed by a multiplication with

e�sq.D/2.lDCcD�lC�cC /:

The coefficient lDCcD� lC �cC is positive if we assume that lD�RD > lC �RC .
This holds because:

lD C cD � lC � cC > lD � lC �RC D lD�RD � lC CRC > 0;

sinceRD D 2RC . This procedure can be used to gather multipole coefficients going
up the tree in the fast multipole method.

When going down, we need to scatter local coefficients from the root of the
tree down to the leaves. The procedure is similar. However, the justification is
more involved and requires a detailed numerical analysis. Additional justification
is provided in the next two sections. We briefly outline the main argument. We have
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functions with high frequency components in s corresponding to a fast decay at
infinity, for large clusters. However the final integration is against:

e�s2.lCy/

whose Fourier spectrum decays rapidly (since this is a Gaussian in s space that
decays slowly). Therefore the high frequencies in the local multipole expansions
can be removed when moving down the tree. This is done in a manner similar to the
steps during the gathering (upward) phase of the FMM. First the local coefficients
are multiplied by:

e�sq.D/2.lD�cD�lCCcC /

if againD is the parent cluster ofC . With the analysis above, we have that lD�cD�
lC CcC > 0. Then the local expansion is padded with zeros to change its interval of
definition from Œ�L.D/;L.D/� to Œ�L.C /;L.C /�. Finally since we only need the
low-frequency components, we Fourier transform the coefficients, remove the high
frequencies that do not make significant contribution, and inverse Fourier transform
the coefficients.

6 Error Analysis

We now discuss the error analysis and the construction of the scheme. Let us
consider as an example the kernel

p
.xCx0/2C c2 which is representative of a

commonly found radial basis function. Let us assume that c 2R. This kernel has two
branch cuts starting at �x0˙ ic on the imaginary axis. The contours of integration
�i must therefore avoid those branch cuts. This kernel does not have a Fourier or
Laplace transform as described previously. Therefore we must resort to a contour
curve formed by the four pieces �1 through �4.

The error analysis relies on a Fourier series approximation of the Gaussian
functions g.s/D e�s2.l�x/ and e�s2.lCy/. In this section, we outline the main points
of the analysis. The error analysis requires an integration from �1 to 1 (instead of
0 to 1) for s, otherwise g.s/ is effectively “discontinuous” and its Fourier spectrum
decays slowly. We therefore modify the M2L operator and consider:

ˆ 1
�1

h jsj
2�i

ˆ
�1

K.´/e�s2.´�2l/ d´
i
e�s2.l�x/e�s2.lCy/ ds:

The Fourier spectrum of g.s/ decays rapidly. For example let us consider some
tolerance � and a bound L such that, when jsj > L, the function g.s/ is smaller
than �. On Œ�L;L�, we can expand g.s/ using a Fourier series. The Fourier series
itself decays like a Gaussian function (up to � terms). There is an integer P0 such
that all the Fourier coefficients of g.s/ beyond P0 are smaller than �: j Ogk j < � for
jkj> P0. Let us now denote:

T .s/D jsj
2�i

ˆ
�1

K.´/e�s2.´�2l/ d´;



136 C. Cecka et al.

and OTk its kth Fourier coefficient. As a consequence of Parseval’s theorem, the
function

T lb.s/D
2P0X

kD�2P0

OTk e2iks=2L;

is such that:

ˆ 1
�1

T .s/ e�s2.l�x/e�s2.lCy/ ds D
ˆ 1
�1

T lb.s/ e�s2.l�x/e�s2.lCy/ dsCO.�/:

(8)

The key property of this change from T to T lb is that the integral
ˆ 1
�1

T lb.s/ e�s2.l�x/e�s2.lCy/ ds

can be computed accurately, with error �, using a trapezoidal rule with 4P0 C 1

points only. In addition, since the Gaussian functions are even, we can “fold” the
M2L function and we really only need 2P0 C 1 points. This number is essential.
This is the number of quadrature points sq mentioned in Sect. 4. It drives the
computational cost of the FMM.

Let us now try to understand the parameters that determineP0. The function g.s/
is given again by:

g.s/D e�s2.l�x/:

The coefficient after s2, l �x, is bounded by:

l �R � l �x � lCR:

When s2.l � x/ � s2.l �R/, this corresponds to a slow decay and L needs to be
large. When s2.l �x/ � s2.lCR/, the Fourier spectrum decays slowly leading to
a large bandwidth. This means that the spacing between quadrature points needs
to be small. To achieve the desired accuracy, we need to satisfy both criteria:
sufficiently large interval and sufficiently dense quadrature. After some analysis,
the total number of quadrature points can be shown to be of order (l > R):

ln.j�1j max
�1

jK.´/j=�/
r
lCR

l �R ; (9)

where j�1j is the length of the segment. Therefore we should try to make l as large as
possible. This means the path �1 should be moved to the right as much as possible.
The path �3 is similar. The Gaussian function is e�s2.l3Cx/ with

l3 D �max
´

Re.´/

2
:
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(Note that along �3, Re.´/ < �2R and is therefore negative.) The number of
quadrature points is of order:

ln.j�3j max
�3

jK.´/j=�/
s
l3CR

l3�R ; (10)

so that the path �3 should be moved to the left. Finally the path �2 has e�s2.l2Cix/
with

l2 D min
´

Im.´/

2
:

The number of quadrature points is of order:

ln.j�2j max
�2

jK.´/j=�/
s

1C
�R
l2

�2
; (11)

so that the path �2 should be moved up (large l2). For kernelKs that are real valued
the path �4 is the complex conjugate of �2 so the same analysis applies. Note an
interesting consequence. If K grows exponentially fast when Im.´/ increases (to
C1 or �1) we cannot increase l2. This is true for oscillatory kernel. Take for
example ei´. In that case as R becomes large, the number of quadrature points must
grow like O.R/ which is consistent with the behavior of known FMMs [2].

As a conclusion all paths must be essentially moved away from the origin. Note
that we assumed that x and y are displacements from the center of a cluster so that
we have already made the problem translationally “invariant.” A constraint is that
the poles �x0 ˙ ic cannot be enclosed by the path. It is not essential to find the
optimal path with great accuracy since the cost and accuracy of the scheme only
weakly depend on picking the optimal path. Any reasonable choice away from the
branch and from the origin is typically sufficient.

The choice of optimal contour does depend on the kernel. The method is very
flexible and allows for many different types of optimizations. For example if we
choose 1=

p
.xCx0/2C c2, the kernel has branch cuts starting at �x0˙ ic, and is

unbounded at those points. However since 1=
p
.´Cx0/2C c2 decays as j´j ! 1,

the contours �1, �2 and �4 can be moved to infinity as explain in Sect. 3 for the
Laplace transform. The optimal choice in this case is �3 extending from b� i1 to
bC i1, b > �x0. The number of quadrature points is then of order:

ln.j�3j max
�3

jK.´/j=�/
s
x0C2R

x0�2R :

This implies that x0 > 2R. This condition is equivalent to saying that the two
clusters need to be well separated (R is their radius).

In summary the basic procedure to choose the parameters in the method are as
follows:
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� Pick the optimal contour in the complex plane. This is done by moving the
contour away from the Œ�2R W 2R� interval on the real axis. The contour in
general can be shaped like a rectangle. Examples are shown on Fig. 4.

� Poles in the kernel K cannot be included in the region. In addition, the extrema
maxi max�i

jK.´/j of jKj across all paths should not become large relative to the
values in the Œ�2R W 2R� interval. Some possible cases are illustrated in Fig. 4.

� Once the contour has been obtained, for each segment, we can obtain L by
considering the decay in s space of the Gaussian functions associated with the
segment.

� Finally given the interval Œ�L W L� for a segment, we obtain the number of
quadrature pointsp by considering the decay of the Gaussian functions in Fourier
space [see (9), (10), and (11)].

Kernel K(r) =
√

(r +3)2 +1

−3− i

−3+ i

(−1;0) (1;0)

Kernel K(r) = 1/
√

(r +3)2 +1

−3− i

−3+ i

(−1;0) (1;0)

Kernel K(r) = exp(40r i)

(−1;0) (1;0)

Fig. 4 Schematic of optimal contours for three different kernels in the complex plane. In all cases,
we assume that �1 � r � 1. The poles of the kernel are shown using solid circles. The contour
itself is shown with a dashed line – –. Top figure: this is the contour used for kernels that grow at
infinity. Middle figure: this kernel decays sufficiently rapidly and a contour similar to the inverse
Laplace transform can be used. Bottom figure: the kernel grows exponentially fast when moving
away from the real axis. As a result the contour has to stay close to the real axis, resulting in a
growth of the number of quadrature points with the size R of the clusters. This is consistent with
the behavior of other FMMs
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7 Detailed Error Analysis

A more detailed error analysis is useful to optimize the parameters in the method.
Having sharp but easy to compute error bounds allows quickly varying the
parameters to find optimal values. In additions, it guarantees a strict upper bound
on the error. Although the final formula is complex we highlight the main points of
the derivation and the final result.

The rotations in the complex plane in (2)–(4) can all be written as a multiplication
by a complex number �. Since we have in general up to four segments in our
contour, we use a sum over an index k and express the kernel using:

K.x�y/D
nsegX

kD1

ˆ 1
�1

e�s2.`kC�ky/
h�k jsj
2�i

ˆ
�k

K.´/e�s2.�k´�2`k /d´
i
e�s2.`k��kx/ds:

(12)
Two main approximations are required to obtain a low-rank approximation from the
above formulation:

1. Reduce the infinite domain of the outer integral to a finite interval
2. Approximate the ensuing definite integral through an adequate quadrature

The symbol WD will denote the definition of a new symbol.
In the first step, we introduce a parameter Lk > 0 for each path and approximate

the outer integral through the expression by restricting the integration from �Lk
to Lk . Along each path, the error incurred in L1 norm is given by

1

�

ˇ̌
ˇ̌
ˆ 1
Lk

ˆ
�k

K.´/s e�s2.�k.´�xCy// d´ds
ˇ̌
ˇ̌ : (13)

The above expression can be bounded by

� e�L2
k
�k j�kj

2� 
k
max
´2�k

jK.´/j WD Bk0 ; (14)

where 
k D Re.�k.´�xCy// > 0.
The second major step involves an efficient quadrature of the integral over s. In

this case, it is advantageous to apply Fourier analysis since we are using Gaussian
functions in s. We will obtain the quadrature we are after once we can approximate
the Gaussian functions by a truncated Fourier series:

e�s2.`k��kx/ 	
PkX

lD�Pk

bkl e
ils=Lk :

The process to find this approximation is to start by approximating the Gaussians
by a smooth periodic function of period 2Lk:

e�s2.`k��kx/ 	
X

n2Z
e�.sC2nLk/

2.`k��kx/; s 2 Œ�Lk ;Lk �: (15)
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The difference between these two functions can be bounded by:
ˇ̌
ˇ̌
ˇe
�s2.`k��kx/�

X

n2Z
e�.sC2nLk/

2.`k��kx/

ˇ̌
ˇ̌
ˇ� Ak e

�L2
k

Re.�k/ WD Bk1 ; (16)

where �k D `k ��kx, and Ak is a numerical constant close to 2. Since the Fourier
transform of a Gaussian is analytically known (it is also a Gaussian), we can choose:

bkl D 1

2Lk

r
�

�k
e

��2l2

4�kL2
k : (17)

With this choice:
ˇ̌
ˇ̌
ˇ̌
X

n2Z
e�.sC2nLk/

2.`k��kx/�
PkX

lD�Pk

bkl e
isl=Lk

ˇ̌
ˇ̌
ˇ̌D

ˇ̌
ˇ̌
ˇ̌
X

jlj>Pk

bkl e
isl=Lk

ˇ̌
ˇ̌
ˇ̌ ;

which can be bounded by

�
s

j�kj
Re.�k/

erfc

�
Pk�

2Lkj�kj
p

Re.�k/

�
WD Bk2 :

As was explained earlier [see (8)], we should only use the low band part of

Tk.s/ WD �k

2�i
jsj

ˆ
�k

K.´/e�s2.�k´�2`k /d´: (18)

This is required to reduce the number of quadrature points. Since the Gaussian
functions can be accurately represented using only 2Pk C 1 frequencies in Fourier
space, the use of T lb instead of T does not incur a large error [see (8)]. We denote akn
the nth Fourier series coefficient of the function of s in (18). The transfer function
T lb used in the FMM uses only those coefficients akn with jnj � 2Pk .

Putting everything together, the total error accounting for all these approxima-
tions can be estimated using:

FMM error �
nsegX

kD1

�
Bk3 .B

k
1 CBk2 /CBk0

�
;

with Bk3 WD 4

r
�

Re.�k/
max

s2Œ�Lk ILk �
jTk.s/j:

By further simplifying those expressions, we can recover the approximate formulas
of Sect. 6.
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8 Preliminary Numerical Results

We tested the method using different kernels that have different properties. Some
of these results are preliminary as we do not yet have implemented an optimization
scheme for the contours in the complex plane. We show only results corresponding
to the one level method. Those numerical results serve to demonstrate the conver-
gence of the method, and to establish that the Cauchy FMM approach is a rapidly
converging scheme. Convergence to arbitrarily small errors (within the limits of
the arithmetic precision) can be achieved. These results are consistent with the
theoretical analysis of the previous sections.

We start with the inverse multiquadrics 1=
p
´2C1. In this case, the optimal

choice is the inverse Laplace transform formula (see Fig. 3). In the figures below,
R is the half-length of the cluster containing the points. We considered an interval
of size 8R split into four clusters of size 2R. The FMM expansion is applied to
all clusters that are well separated. The other interactions are computed in a direct
manner without the use of any accelerated scheme (Fig. 5).

4 6 8 10 12 14 16 18 20
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R = 0:05
R = 0:5
R = 5

Fig. 5 Inverse multiquadrics 1=
p
´2C1 using the Laplace transform version of the Cauchy FMM

For comparison, we also used the contour associated with the Fourier transform
case (horizontal infinite line) (Fig. 6). This case is sub-optimal since the poles at ˙i
prevent l2 from growing. As as result, we observe a scaling of the order likeR when
R is large compared to 1. This is consistent with (11).

We then considered a kernel that requires four contours: the multiquadricsp
´2C1. This kernel grows as j´j goes to 1. These are preliminary results as the

contour was not optimized. However we picked a contour that is “reasonable” so
that these numerical results are meaningful. Results are shown on Fig. 7.

Finally we demonstrate the method with an oscillatory kernel, the Helmholtz
kernel e2i´=´ using a closed contour with four segments. As was explained earlier,
oscillatory kernels grow exponentially when Im.´/ increases (take for example ei´).
As a consequence, the contour needs to stay close to the x axis. As a result of (11),
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Fig. 6 Inverse multiquadrics 1=
p
´2C1 using the Fourier transform version of the Cauchy FMM.

The scaling of the order withR is consistent with (11)

10 20 30 40 50 60 70

10−9

10−7

10−5

10−3

Expansion order

L
E

rr
or

R = 0:05
R = 0:5
R = 5

Fig. 7 Multiquadrics
p
´2C1 using a full contour with four segments. The method is less

efficient in this case since the four contours lead in general to more quadrature points compared
to the Laplace version of the method. However we observe that the expansion order is largely
independent of the cluster size which shows that the method is practical

the expansion order grows linearly with R in the high frequency regime. This is
consistent with the results shown on Fig. 8. As a consequence, in 3D, the number
of terms in the expansion grows like R3. This is problematic when the points are
distributed on a 2D manifold, which is typical for boundary element methods. In that
case, the total number of points on the boundary surface, N , grows like the square
of the object size and consequently the cost of the FMM grows like N 3=2, which is
suboptimal. If the points are distributed in a volume the cost is constant at each level
of the FMM leading to a complexity of O.N lnN/. The cost of the FMM can be
reduced to N lnN in both cases by using a variant of the Cauchy FMM presented
in this paper. This variant uses the Cauchy FMM scheme along with the directional
decomposition of Engquist et al. [6]. The details of this method will be described in
a future publication.
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Fig. 8 Helmholtz kernel e2i´=´. In that case, the number of expansion terms is roughly constant
in the low frequency regime and grows linearly with the problem size in the high frequency regime

9 Conclusion

We have presented a framework to develop generalized fast multipole methods,
in particular methods that are applicable to radial basis functions for interpolation
schemes. This new approach has the potential to greatly speed up traditional FMMs
since the multipole-to-local operators are diagonal. We have developed a numerical
analysis of the error and schemes to select the optimal parameters in the method.
The contour of integration in the complex plane needs to be optimized depending
on the kernel and the size of the clusters. Numerical algorithms can be used for
this optimization. This algorithm shares similarities with previously published
methods [3, 4, 8]. The type of kernels that can be treated by the new approach has
been extended significantly compared to [3, 4, 8]. It is probably the case that most
kernels found in practical applications, including kernels known only numerically,
can be treated by this method. An interesting aspect of this method is the fact that a
diagonal multipole-to-local operator allows treating oscillatory kernels as well, for
example of the type of exp.ikr/=r . This is not the case for many black box or kernel
independent FMMs.
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Tools for Multiscale Simulation of Liquids
Using Open Molecular Dynamics

Rafael Delgado-Buscalioni

Abstract This work presents a review of recent tools for multiscale simulations
of liquids, ranging from simple Newtonian fluids to polymer melts. Particular
attention is given to the problem of imposing the desired macro state into open
microscopic systems, allowing for mass, momentum and energy exchanges with the
environmental state, usually provided by a continuum fluid dynamics (CFD) solver.
This review intends to highlight that most of the different methods developed so far
in the literature can be joined together in a general tool, which I call OPEN MD. The
development of OPEN MD should be seen as an ongoing research program. A link
between the micro and macro methods is the imposition of the external conditions
prescribed by the macro-solver at or across the boundaries of a microscopic domain.
The common methodology is the use of external particle forces within the so
called particle buffer. Under this frame, OPEN MD requires minor modifications to
perform state-coupling (i.e. imposing velocity and/or temperature) or flux exchange,
or even any clever combination of both. This tool can be used either in molecular or
mesoscopic-based research or in CFD based problems, which focus on mean flow
effects arising from the underlying molecular nature. In this latter case an important
goal is to allow for a general description of Non-Newtonian liquids, involving not
only transfer of momentum in incompressible situations, but also mass and energy
transfers between the micro and macro models.

1 Introduction

During this last decade the prefix multi has spread over many different disciplines,
ranging from sociology to physics. In part, this is a consequence of dealing with new
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problems resulting from non-trivial interactions between entities of quite different
nature. A natural approach to tackle these problems has been to design new methods
from combinations of well-established theories. In this scenario multiscale has
emerged as a new theoretical and computational paradigm in natural sciences. In
particular, this work presents some tools for multiscale treatment of the liquid
state. The general purpose is to connect the (classical) dynamics of an atomistic
description of the liquid state (microscale) with other less involved descriptions,
like the so called coarse-grained level, based on effective molecules (mesoscale)
and with hydrodynamic and thermodynamic descriptions (macroscale). One can
understand the different types of multiscale methods for fluids and soft condensed
matter by dissecting the very term multiscale. First (abusing the latin root “multus”)
multi means at least two models which, might be solved concurrently (at the same
time) or in a sequential (hierarchical) fashion (i.e. solve the fine description to
extract information for the coarser level). The hierarchical strategy is in fact part of
the coarse-graining methodology, which has usually been based on reproducing the
essential microscopic structural (static) information. A recent challenge of coarse-
graining is to incorporate dynamical information from the microscopic level [30].
On the other hand, concurrent coupling schemes deserve to qualify as hybrids. These
hybrids can be divided in two types depending on how the space is decomposed. One
can let the coupled models evolve in the same spatial domain or within different
sub-domains. The first option is usually designed to treat solute-solvent flows: the
solute (polymer, colloid, etc.) is solved with a particle approach while the solvent is
treated using any preferred scheme (lattice Boltzmann [54], finite volume [9, 27],
multiparticle collision dynamics [33], etc.). Depending on the flow regime, the
solute-solvent coupling might be based on the Stokes friction force (low Reynolds
number) or using more involved boundary conditions. By contrast, hybrids based
on domain decomposition are required for many other types of problems which
could depend on the interaction between a microscopic region and the outside
hydrodynamic (or thermodynamic) state, or on how the stress is released by a
microscopic model in a macroscopic flow (examples will be given later). Several
types of domain decomposition strategies can be designed depending on the aspects
of the multiscale research under study. In brief, there are two important issues
(or categories) to be considered: first, the research might be focused either on the
micro-dynamics or on the macroscopic level and second, the ratio of time scales
for the evolution of the relevant micro and macroscopic process might be large
�mic=�mac � O.1/ or small �mic=�mac 
 1. I highlight “evolution” to warn about
the fact that in a steady state �mac ! 1, so in practical terms, steady states can be
grouped in the category of problems with separation of time scales. In liquids, the
first category mentioned above separates continuum fluid dynamics (CFD) problems
(such as polymeric fluid flow [5, 20, 38, 41, 56] or mean flow effects of singularities
or defects in boundaries of micro or nano-fluidics [20,29,43]) from molecular based
research (external flow effects on single molecules [2, 57], on membranes, melting
or condensation [53] processes, wetting or sound-soft matter interaction [7, 11]).
Logically, any macro-scale based research should be concerned about any possible
gain in computational time from the separation of time and length scales, while if
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the molecular dynamics are the main concern this separation is irrelevant and the
time-gap can only be reduced by molecular coarse-graining [30].

Most of the multiscale tools in this article originally come from molecular
research but they can be quite useful in multiscale CFD programs because both
share an important problem: how to impose the desired macro state on the micro
domain. To frame this statement, let me briefly review some recent advances in CFD
based multiscale research. An important class of domain decomposition hybrids
is based on performing non-equilibrium microscopic simulations (using stochastic
models, Brownian dynamics, molecular dynamics) at every (or some selected) nodes
of a continuum solver grid. The local velocity gradient is imposed at each micro-
solver box in order to measure the local stress used then to update the velocity
field in the macro-solver. In the field of polymeric fluids this idea was probably
introduced by Laso and Öttinger’s CONFESSIT approach [38] and in recent years
it has been continuously reappearing in the literature under many different flavours
[5,41,52,56]. Two groups have set this multiscale approach in general mathematical
frameworks, leading to the heterogeneous multiscale modeling (HMM) [21] or
equation free models [34]. The HMM or equation-free formalism exploits time scale
separation between micro and macro processes and gain computational time by
sampling the micro-solver boxes over short temporal windows. However, the micro
and macro clocks are the same so, after the macro solver is updated in time, the new
dynamical state has to be imposed in the microscopic box. This operation (usually
called lifting or reconstruction) might be a challenge in molecular simulation of
liquids (see [39]). A clever asynchronous (multi-time) alternative, which avoids
lifting, was recently proposed by E et al. [20] but indeed it also exploits time
scale separation. Unfortunately, the interesting phenomena in complex liquids arise
when the ratio �mic=�mac (i.e., Weissemberg or Deborah number, etc.) exceeds one.
So in practise, gain in time can only be expected for flows of Newtonian liquids
or probably to reach the steady state of a complex liquid flow at a faster pace.
Spatio-temporal memory effects are essential in complex fluid dynamics, a relevant
example being flow of polymer melts. Recent works have shown that the macro-
solver is able to transmit spatial correlations between (otherwise independent) MD
boxes [5,56] (i.e. gain in length) but, indeed, one needs to synchronize the micro and
macro time updates (i.e. no gain in time). In polymers, local ordering effects induced
by the trajectory of fluid packages can be important and difficult to implement.
A possible solution is to use a Lagrangian-CFD solver [41] to feed the local state
(velocity gradient) at each MD node.

A common feature of all these methods is that the microscopic domain is an open
system which receives/send information from/to the outside world. Most of the CFD
multiscale research have dealt with incompressible flows and thus the MD domains
only need to receive momentum through their boundaries. However density and
energy variations might be important in many kind of problems (e.g. thermal effects
in sheared polymers) and as mentioned in recent works on the subject, some general
and flexible formalism for “grand-canonical” molecular dynamics would be of great
value [41]. In the same way, slip-stick motion at physical boundaries can only be
described at molecular level and the tools described hereby could be deployed in a
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multiscale CFD scheme to solve this task (for instance, in unsteady polymeric flow
under oscillatory walls [56]).

In what follows I will first describe a general formalism called OPEN MD, which
enables to open up a molecular dynamic (MD) box so that it might exchange
mass, momentum and energy with the outside world. Section 3 describes an
adaptive resolution scheme acting as a coarse-grained particle interface model
around the (atomistic) MD domain. This mesoscale interface makes feasible mass
and momentum transfer in simulations of liquids made of large molecules. Section 4
discusses how to connect the molecular box with a continuum dynamics solver,
including thermal fluctuations. Conclusions and perspectives are given in Sect. 5.

2 OPEN MD: Molecular Dynamics for Open Systems

The most delicate part of any hybrid scheme is the transmission of the state of
the coarser description into the fine resolution model. The reason being that, in
doing so, one needs to reconstruct microscopic degrees of freedom which should be
consistent with the prescribed macroscopic state imposed. This task is sometimes
called one-way coupling, lifting or reconstructing in the HMM and Equation-Free
communities. The state of a solid is essentially given by the imposed stresses
(forces) because the average velocity of a solid molecule is zero. By contrast, the
thermo-hydrodynamic state of a gas require control over molecules velocity, as
interaction forces are absent. An inherent complication in liquids is that their energy
contains equal amount of kinetic and potential contributions and thus, control over
both stresses and velocities is required. Of course, the stress and velocity fields are
not independent and two strategies are possible: one can either choose to impose the
average state variables (mean velocity, temperature) [40] or the fluxes of conserved
variables (pressure tensor, energy flux) [7, 24]. In any case one is restricted to play
with the set of microscopic mechanical quantities, namely, velocities and forces of
the individual molecules of the system. As an aside, there are several popular meth-
ods to impose shear in closed MD boxes with periodic boundary conditions (BC),
such as Lee-Edwards type BC or SLLOD dynamics used by many CFD multiscale
works [20, 56]. Although they shall be not be reviewed here, a recent comparison
between SLLOD and the type of boundary-driven imposition described hereby [31]
showed some problems in SLLOD temperature homogenisation under shear. Also,
alternatives based on Monte Carlo steps might also be possible [42], although the
Metropolis algorithm does not preserves the system’s dynamics and these will be
not considered here either. Another relevant feature of liquids (and gases) is that
they can be compressed, or when working with mixtures, vary in concentration.
Compression effects may indeed arise from many different sources, such as sound
transmission, or even shear rate pressure dependence in Non-Newtonian liquids.
This means that, in general, one needs to devise some way to work with open
molecular systems, i.e., with a variable number of molecules. A solution to this
computational problem was proposed by Flekkøy el al. [24] some years ago and
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the idea, which I call OPEN MD, is still being generalised [17, 18]. In the original
formulation of the OPEN MD scheme it is possible to impose the exact amount
of work and heat into an open (variable density) molecular domain. OPEN MD has
been used as the core of several particle-continuum hydrodynamic hybrids [7,18,37]
but its range of applications is wider. In fact, by controlling the amount of work
and heat introduced into an open system, one can study processes with different
kinds of thermodynamic constraints. This makes OPEN MD a flexible method for
many different fields ranging from confined systems [23] (where thermodynamic
forces are driven by chemical potential gradients) to the rheology of Non-Newtonian
liquids (where the normal pressure is known to depend on the imposed shear and
constant volume measurements are not equivalent to constant pressure measures).

2.1 Open MD Setup

Figure 1 depicts a simple set-up of OPEN MD. A molecular system resolved by MD
is extended with a buffer domain B, where the state of the outer domain is imposed.
Particles are free to cross the hybrid interface but once inside B they will feel a
certain external force Fi which should be prescribed to carry the desired information
of the outside domain into the MD system. The objective of the original OPEN MD
formulation [24] is to impose the desired momentum and heat flux (P and Je) across
the so called hybrid interface H, i.e., it is based on flux-exchange. However the
computational setup can be easily modified so as to impose the desired (external)
velocity field V via constraint dynamics [43, 44] and in this paper I will unify both
(flux and state coupling) approaches in the same framework.

The OPEN MD scheme can be divided in two main tasks:

1. Imposition of the desired macro-state via external forces and,
2. Control of mass and density profile at the buffer region.

H
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e
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open MD
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Fi

Je

PWORK 
pressure tensor

HEAT  FLUX

particles are free to cross H
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interface of area A 

Fig. 1 Open molecular dynamics (OPEN MD) setup. A molecular dynamics box is extended using
a buffer domain B where the state of the outer domain is imposed. In the flux-based scheme
the external forces Fext

i
imposed to the buffer particles are prescribed so as to yield the desired

momentum flux (stress tensor) P and heat flux Je across the system interface H
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2.2 Imposition of the Macro-State

As stated above the information prescribed at the buffer might either be a set of state
variables (i.e. velocity, temperature) or the fluxes of conserved variables across H.
A type of scheme based on variable coupling introduced by Patera and Hadjicon-
stantinou [28] use Maxwell daemons to modify the velocities of the buffer particles
according to the local equilibrium distribution. This method is usually implemented
in hybrids based on the Schwartz method, which alternatively imposes the local
velocity of the adjacent domain at the overlapping layer until the steady state is
reached. This is a good way to drive the (total particle+continuum) system towards
a steady state (probably faster than its natural convergence rate) but it significantly
alters the local dynamics (molecule diffusion, velocity time correlations) and it
is restricted to closed systems (constant number of particles). Starting from the
pioneer work of Thompson and O’Connell [44] several alternatives based on the
imposition of external forces [12, 24, 43] were then developed. It is important to
stress that external force imposition at the buffer allows for the implementation of
either state and flux coupling. We shall now briefly discuss both approaches.

2.2.1 State-Coupling Based on Constrained Dynamics

The state-coupling approach comes from the continuum fluid dynamics community
whose priority is to ensure that the external flow and convective forces are imposed
into the molecular region. In this sense, the philosophy behind state-coupling is
to treat the coarse (hydrodynamic) exterior domain as the master model and the
microscopic dynamics as slaved one. Let us begin with the momentum transfer,
which is carried out by imposing the desired (external) average velocity V at the
particle buffer, i.e.

1

NB

X

i2B
vi D V: (1)

This might be seen as a constraint in the particle equations of motion Rri D fi=m,1

which can be written in terms of an external force Fi added to fi . An example is the
Langevin type force used by O’Connell and Thompson [44] Fi D �� .vi � V/C QF,
with h QF.t/ QF.0/i D 2kBT �ı.t/. Nie et al. modified this approach and proposed the
following constrained dynamics at the buffer,

Rri D 1

m
.fi � hfi/� � .hvi � V/; (2)

where I have introduced the local microscopic average hfi D PNB

i fi=NB and the
relaxation parameter � which, in principle, can be freely tuned. The idea underlying
this approach is to substitute (at each time step) the average microscopic force hfi at

1 In what follows upper case letters indicate externally imposed quantities ( V;F/ while lower case
(vi ; fi ) stands for microscopic variables.
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the coupling domain for its macroscopic counterpart MDV=Dt . In other words, by
summing (2) over i 2B one gets the total external force at the buffer �M .V � hvi/,
whereM DmNB is the buffer mass. Thus, by choosing � D 1

�tMD
, as Nie et al [43]

did, it is easy to show that the average microscopic velocity instantaneous relaxes to
the imposed value, i.e., hvi.t C�tMD/ D V.t C�tMD/. Instantaneous relaxation
destroys the microscopic dynamics (altering the velocity time correlation) and this
can be alleviated by increasing � (as originally proposed in [44]). If the imposed
velocity changes (fast) in time, the price to pay is some lag (time delay) between the
input V.t/ and output hvi.t/ values.

Mass and energy transfer

In state-coupling methods the mass flux arising from the microscopic dynamics is in
fact destroyed once the average local velocity at the system boundaries is imposed.
In other to ensure mass continuity at the interface one thus needs to take the infor-
mation from the coarser level (usually the Navier-Stokes equation), and modify the
number of particles on the molecular system to an amount given by the continuum
expression for the mass flow across H, A�V �n�t=m. Energy transfer might also be
introduced in a state-coupling fashion by imposing the local temperature gradient
at the buffer domain [12]. Particle-continuum hybrids can also impose heat transfer
via temperature coupling by using a larger buffer (overlapping domain) with two
parts: the local “continuum” temperature is imposed at the microscopic buffer,
while the local microscopic temperature is imposed at the (adjacent) boundary of
the continuum macro-solver [40]. In general, the use of unphysical artifacts (such
as pure velocity rescaling [40] to impose a local temperature) introduces several
drawbacks: for instance, transport coefficients (viscosity, thermal conductivity) need
to be finely calibrated to control the amount of heat transferred via velocity and
temperature gradients. Also, the length of the buffer (or the overlapping domain)
will need to be increased so as to avoid error propagation into the MD domain, thus
paying a larger computational price for the hybrid coupling.

2.2.2 The Flux-Based Scheme

The flux-coupling approach tries to reduce the number of unphysical artifacts
at the buffer by retaining all possible information from the microscopic domain
(e.g. fluctuations). In fact, hybrid models using flux exchange consider the coarse
(hydrodynamic exterior) domain as the slave model while the microscopic dynamics
stand the master model (see e.g. [1]). This approach permits, for instance, coupling
of molecular dynamics and fluctuating hydrodynamics (FH) [7]. It should be the
preferred one when dealing with problems where thermal fluctuations or molecular
transport are relevant and they usually are at these nanoscopic scales and low or
moderate Reynold numbers. The flux boundary conditions imposed at the buffer
domain are specified by the normal component of the energy flux j� D Je � n and
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the normal component of the momentum flux jp D P � n, where P is the pressure
tensor and n the unit normal shown in Fig. 1. Both fluxes will in general include
advective terms. In an open system, energy and momentum enters into the particle
system both through the force Fi and via particle addition/removal. The prescribed
momentum and energy fluxes need to take into account both effects i.e.

jpAdt D
X

i

FidtC
X

i 0

�.mvi 0/; (3)

j�Adt D
X

i

Fi � vidtC
X

i 0

��i 0 ; (4)

where i 0 runs only over the particles that have been added or removed during the
last time step dt , and A is the buffer–bulk interface area. The momentum change is
�.mvi 0/D ˙mvi 0 , where (C) corresponds to inserted particles and (-) to removed
ones (similarly for the energy change��i 0). The sums

P
i Fidt and

P
i Fi �vidt are

the momentum and energy inputs due to Fi during the time dt . In order to simplify
(3) and (4) it is useful to define Qjp and Qj� through the relations

AdtQjp D Adtjp �
X

i 0

�.mvi 0/D
X

i

Fidt ; (5)

Adt Qj� D Adtj� �
X

i 0

��i 0 D
X

i

Fi � vidt : (6)

Provided that the force Fi satisfies these conditions the correct energy and momen-
tum fluxes into the particle system will result. To solve these set of equations the
external force is decomposed into its average and fluctuating parts, Fi D hFi C F0i .
Momentum is introduced by the average component of Fi and thus,

hFi D A

NB
Qjp ; (7)

where NB.t/ is the total number of particles receiving the external force at a given
time t and A is the area of the interface H. On the other hand, the fluctuating part of
the external force (

P
i F0i D 0) introduces the desired heat via dissipation, i.e.,

F0i D Av0iPNB

iD1v02
i

h Qj� � Qjp � hvi
i
; (8)

where we have used the fact that the total energy input by external forces is
PNB

iD1Fi �
vi DNBF � hvi CPNB

iD1F0i � v0i .
As shown in [24], by exactly controlling the amount of work and heat introduced

into the particle system, one can implement several sorts of thermodynamic
constraints. For instance, constant chemical potential (grand canonical ensemble),
constant enthalpy, constant pressure. Also, steady (or unsteady) non-equilibrium
states, such as constant heat flux or shear stress can be imposed. An interesting
aspect of this OPEN MD method is that all these constraints occur at the particle
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boundaries (in fact, as it happens in any real system), so the dynamics of the
molecular core are not unphysically modified whatsoever.

Mass flux

In the OPEN MD flux-based scheme, the mass flux across H naturally arises as
a consequence of the pressure (or chemical potential) differences between the
inner and outer domains. In other words, mass flux is not imposed. In a hybrid
configuration, the microscopic domain will dictate the mass flux across H, which
can be simply measured by counting the number of particles crossing the interface.
Indeed, many problems crucially depends on the molecular transport (such as
confined systems driven by the chemical potential difference between the interior
and exterior) and the natural approach of the flux-based scheme permits one to retain
this sort of microscopic information (e.g. fluctuations).

2.3 Mass and Density Profile at the Buffer

In a molecular simulation of an open fluid system one necessarily needs to decide
what to do at the edges of the simulation box. The essential problem is to control the
density profile normal to the interface H. Thus, two variables needs to be monitored:
i) the shape of the density profile and ii) the total number of particles at the buffer.

2.3.1 Distribution of the External Force

The density profile depends on how the external force F is distributed at the buffer.
For an interface of area A, pointing in the negative x direction, n D �i (see Fig. 1),
the force along the ˛ direction on a buffer particle can, in general, be set as,

Fi;˛ D g˛.xi /P
i2B g˛.xi /

APx˛ ˛ D fx;y;´g; (9)

where Px˛ is the x˛ component of the pressure tensor (or any other total external
force such as the one used in state-coupling). Although, most of the works done
so far use a single distribution g.x/ for all directions, one is free to use different
distributions g˛.x/. In fact, depending on the problem, it might be useful to choose
different shapes of g for tangent (shear) and normal forces (pressure).

Most of the concern in the literature on this subject logically corresponds to the
shape of gx (normal to the interface) because it directly determines the shape of the
density profile �.x/. Figure 2 shows a qualitative picture on the relationship between
g.x/.D gx.x// and �.x/.
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Several values of gi have been proposed in the literature. For instance, Flekkøy
et al. [25] initially proposed a distribution g.x/ which tends to zero at H and
diverges at the end of the particle buffer thus preventing particle to leave the
system. Werder and Koutmoutsakos [55], showed that an evaluation of g.x/
from a previous calculation of the particle distribution function in the normal x
coordinate, enables to maintain a constant density profile across the whole buffer
(a comparison between several choices of gi was also provided). Recently the
group of Koutmousakos [36] introduced a feedback (relaxation) procedure to self-
adapt a binned distribution according to the local density gradients, in such way
that the fixed solution were the constant density profile. In some situations, such
as the state-coupling approach, it is important to have a constant density profile at
the buffer [36]. However, in flux-based schemes the most important aspect is to
have a flat profile locally across the interface H [14] to avoid any spurious current.

Energy transfer and g.x/

It is important to note that flux based schemes implement the energy transfer via the
power dissipated by the external force

P
i2B Fi � vi . Therefore, in this case, one is

not free to choose g.x/ because heat will be produced in an uncontrolled way, at a
rate

P
˛

P
i g˛.xi /Px˛vi;˛=

P
˛

P
i g˛.xi /. In fact when using any g.x/ with sharp

gradients, strong thermostatting will be required to remove all this spurious heat.
This is probably be the case of the state-coupling schemes based on temperature

Fig. 2 Qualitative diagrams
illustrating some types of
external force distribution
g.x/ used in open molecular
dynamics (top) and the
resulting density profile at
the buffer (bottom)
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imposition [40]. In order to keep control of the average energy dissipated by the
external force, a pioneer work on energy transfer in hybrids [12] used g.x/D 1 and
placed a couple of adjacent thermostats to transfer heat. The need of thermostats
was finally avoided by the flux boundary condition method of [24], leading to (7)
and (8) above. Note that (7) uses g.x/D 1 (or at least a step function, see Fig. 2) to
distribute the mean external force. In this way the energy contribution of the mean
external force is precisely the rate of reversible work done by the external forces
Pxxhvxi, plus the rate of heat dissipation by shear forces

P
˛Px˛hv˛i, with ˛ ¤ x.

The entropic heat production is separately furnished by the fluctuating part of the
external force.

2.3.2 The Buffer Mass: Particle Insertion and Deletion

The buffer domain can be understood as a reservoir which represents the outside
world. This means that the number of particles at the buffer should be large enough
to avoid important momentum and temperature fluctuations, which will certainly
lead to numerical instabilities. In a typical flux-based method this means that,
in average, the buffer should contain at least hNBi � O.102/ particles; which is
not much considering that a typical MD simulation may contain O.10Œ4�5�/ or
more. A simple way to keep the average hNBi under control is to use a relaxation
equation

PNB D 1

�B
.hNBi �NB/ ; (10)

where �B � 102�tMD . As times goes on a number N D INTŒ�NB � of particle
insertions (or deletions) should be performed as soon as �NB DP

i
PNB.ti /�tMD

becomes a positive (or negative) number with absolute value larger than one. Basic
bookkeeping should then be performed to update NB accordingly. Several possible
tricks might be done with those particles reaching the buffer-end: one can just delete
them randomize or reverse their velocity. In a conservative (flux-based) scheme the
resulting momentum exchange should be accounted for in (3) (e.g. the later case
would yield �2�mv0i � n per reversed particle). To minimise perturbations, particle
deletions and insertions are usually done at the dilute region of the buffer (see
Fig. 2), whenever it exists. A particularly delicate issue when dealing with open MD
simulations of dense liquids is to avoid overlapping upon insertion (which results
in extremely high energy jumps). In a pioneer work on open MD simulations we
introduced a fast and efficient particle insertion method called USHER, now used
in many hybrid particle-continuum simulations [35, 37]. It was initially designed
for spherical (Lennard-Jones) particles [13] and then extended to polar molecules,
such as water [8]. USHER is based on a Newton-Raphson algorithm with adaptable
length step, which search some location within the complex multiparticle energy
landscape where potential energy of the inserted particle equals the desired value.
USHER solves this problem in a very efficient way (partly because it reboots any
search once some increase in potential energy is performed) and can also explore
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low energy domains in the search for (however biased) chemical potential evaluation
[49]. In open MD simulations it usually represents less than 5% of the computational
task. The main limitation of USHER is that it is not suitable to insert big (or I should
rather say complex) molecules. Typical examples could be star polymers in a melt.
This limitation was sorted out recently [18] by introducing an adaptive coarse-
grained layer at the buffer, whereby a coarse-grained version of the molecule is
gradually and nicely decorated with its atomistic complexity as it enters into the MD
core from the buffer corner, and vice versa. Implemented in a particle-continuum
hybrid, this suggestive idea permits a macro-meso-micro zoom along the spatial
coordinates, and has been called triple-scale method. Let us now comment on this
approach.

3 Using Adaptive Resolution: The Mesoscopic Interface

The adaptive resolution scheme (AdResS) proposed by Praprotnik et al. [47, 48] is
a type of domain decomposition based on coupling particle sub-domains with dif-
ferent resolution: from coarse-grained cg to explicit (i.e. atomistic) ex description.
Figure 3 illustrates this idea in an open MD setup. The number of degrees of freedom
of a molecules is modified (reduced/increased) as it crosses the “transition” layer,
where a hybrid model (hyb) is deployed. In particular, the force f˛ˇ acting between
centres of mass of molecules ˛ and ˇ is expressed as,

f˛ˇ D w.x˛/w.xˇ /f
ex
˛ˇ C Œ1�w.x˛/w.xˇ /�fcg˛ˇ ; (11)

where x˛ and xˇ are the molecule’s position along he coupling coordinate. Pairwise
atomic forces are fij and fex

˛ˇ
D P

i2˛;j2ˇ fij is the sum of all atomic interactions

between molecules ˛ and ˇ. Finally fcg
˛ˇ

D �r˛ˇU cg results from the coarse-
grained intermolecular potential. These interactions are weighted by a function
w.x/ which switches from w D 1 at the ex region to w D 0 at the cg layer.
Intermediate values 0 < w < 1 might be understood as hybrid (hyb) model. With
a few restrictions, one is rather free to choose the explicit form of w.x/, see e.g.
[17,47]. The great benefit of this sort of on-the-fly transition from coarse-grained to
atomistic models is that molecule insertions can be quite easily performed at the cg
end of the buffer because there, intermolecular interactions are soft. The whole set
of hard-core atomic potentials is thus avoided in the open MD setup.

The key ingredient of AdResS is that (11) conserves momentum. Thus, it can be
used in combination with any momentum conserving (flux-based) scheme [17, 18],
and of course, it could be also combined in any state-coupling method. However,
energy is not conserved by (11) and in fact, as a molecule moves towards the coarse-
grained layer it looses all the kinetic energy associated with its internal degrees of
freedom (sum of squared velocities w.r.t. centre-of-mass). This energy is lost forever
and to maintain an equilibrium state (a flat free energy profile [46,48]) it needs to be
furnished by a thermostat, which usually is set to act along the whole simulation box
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(or at least within the buffer). A modification of AdResS solving this problem would
certainly be an important contribution. Meanwhile, it might be still possible to allow
for (averaged) energy exchange with the MD core, using some thermostatting tricks,
although this idea is not still published.

Other issues which deserved some attention in the literature [17, 32] are related
to how the change in resolution introduces differences in mass diffusion coefficient
and viscosity in the cg, hyb and ex fluid models. This is a problem in a “pure” (i.e.
closed) AdResS simulation and also if, for some reason, one is interested in placing
the hybrid interface H of the open MD setup within the cg layer (note that Fig. 3
places H within the ex domain). In these cases one needs to take care to calibrate
all the cg, hyb and ex viscosities and diffusion coefficients. This is, in general, not
possible: in fact, either diffusivities or viscosities can possibly be matched at once
[17] using either position dependent Langevin thermostats or DPD thermostat with
variable tangential friction [32]. Liquid equilibrium structures (radial distribution
functions g.r/) of the cg model can also be tuned to fit the ex one, using the
standard tools [50]. This adds an extra pre-computational price to pay. However,
as shown in [18] all this calibration burden (which needs to be repeated each time
the thermodynamic state is changed) can be greatly alleviated by using the sort of
setup illustrated in Fig. 3. In summary, variations in transport coefficient and fluid
structure of the different fluid models within the buffer do not affect the proper
transfer of momentum across H (which is guaranteed by fulfillment of the third
Newton Law across all layers).
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Fig. 3 Schematic setup of the adaptive resolution scheme (AdResS) being used within the buffer
domain of an open MD simulation of a tetrahedral liquid. Molecules gradually transform from a
coarse-grained cg to an explicit ex (atomistic) representation, as they cross the transition layer,
hyb. The pairwise forces between atoms fij and molecules centre-of-mass fcg

˛ˇ are weighted by
w.x/

4 HybridMD: Particle-Continuum Hybrid Scheme

This section discusses the most important details about the implementation of a
particle-continuum hybrid based on domain decomposition. For a more complete
view of each different method the reader is referred to the original papers cited
hereby and references therein. There are (at least) three types of approaches to this
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problem: state coupling [43,44], flux coupling [14,25] and velocity-stress coupling
[52, 56]. How to couple time marching algorithms of macro and micro solvers is a
common problem for all kind of hybrids. The following is a brief discussion on this
subject (see [20] for recent developments).

4.1 Time Coupling

In general, the time steps of the micro and macro solver (respectively ıt and �t)
satisfy ıt � �t . However, the ratio of both quantities depends on the type of
models to be coupled. For instance in hybrids of deterministic CFD and MD one
can choose �t  ıt but, solving fluctuating hydrodynamics (FH) requires much
smaller time steps and �t is only few time larger than ıt [7]. On the other hand,
communications between models occur after a certain time coupling interval �tc ,
which in general�tc ��t (an example of�tc >�t is discussed in [14]). Figure 4
illustrates some time coupling protocols. Concurrent algorithms (Fig. 4a) permit
parallelization (tasks 1a and 1b) and might be quite useful if the computational
load of micro and macro solvers is balanced by the implemented architecture (for
instance use a fast GPU solver [6] for the MD domain and a slow CPU solver for a
vast CFD region). Indeed, parallelization is most easily achieved if the need for
performing averages in the micro domain are completely or substantially avoided.
Examples are FH-MD hybrids [7] where the exchanged quantities are the actual MD
and FH fluctuating variables at each coupling time (see Fig. 4a). Another example
is the asynchronous time coupling devised by Weinman et al. which (if the signal-
to-noise ratio is large enough) can work without explicit averaging because it is
indirectly implemented in the deterministic macro-solver updates. Fluctuations are
usually considered a nuisance in mean flow CFD problems [20,39] and microscopic
averages might become necessary. Deterministic CFD-MD hybrids thus need to
consider time synchronisation errors arising from performing MD averages lagging
behind the coupling time (see Fig. 4b). These are O.�tc/ errors which might be
significant if�tc is large compared with some relevant microscopic relaxation time.
A possible solution, shown in Fig. 4c, consists on shifting the discretised time mesh
of both models. The scheme of Fig.4d is an example of the synchronous coupling
used in HMM-type schemes where the micro-solver is sampled during small time
intervals, compared with the coupling time, and then lifted or reconstructed towards
the updated state. This lifting operation might be a problem in MD of liquids
so the new recent seamless multiscale asynchronous scheme, which avoids the
MD reconstruction step [20], is particularly suited for solving flows where time
separation applies, �mic 
 �mac .
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4.2 Hybrids Based on State Coupling

State coupling relies on Dirichlet boundary conditions. This statement is valid either
for hybrids based on the Schwartz scheme [28, 37] or for constraint dynamics
[43]. I will focus on the constraint dynamics approach, whose typical setup is
shown in Fig. 5a. The MD and CFD (finite differences in Fig. 5a) domains are
connected in an overlapping region, sometimes called handshaking domain. The
state variables of each model are mutually imposed at two different cells P �C
and C �P . At the P �C cells the local average microscopic velocity hvPC i is
imposed to the continuum as a Dirichlet BC, while at the C �P cell the continuum
velocity VCP is imposed to the particle system, using the scheme explained in
Sect. 2.2.1. The same strategy is for the imposition of local temperatures, so as
to simulate an energy exchange between both models (see [40] for details). It is
important to note that the P �C and C �P cells are some cells apart in order
to let the particle system relax from all the dynamic constraints imposed at the
C �P cell (instantaneous velocity jumps of (2) and rescaling of peculiar velocity
towards the desired temperature [40]). As an example in [40] the (linear) length
of the overlapping domain is 4 cells of �x D 6:25� , thus a total of 25� (where �
is the particle radius). When dealing with two or three dimensional flows, this is a
relatively large computational load for the handshaking region. Molecular dynamics
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Fig. 4 Some possible (synchronous) time coupling schemes in hybrids. Horizontal arrows indicate
time axis of each model (here molecular and continuum fluid dynamics, MD and CFD) and
vertical lines their time steps. A dashed square means a time average operation and dashed arrows
communications between models. Tasks are numbered in chronological order. (a) Concurrent
coupling allowing parallelization. (b) Sequential coupling. (c) Sequential scheme avoiding time
lag in MD averages. (d) HMM-type sequential coupling with a lifting step (4) to set the advanced
state into the MD system
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is by far the most expensive part of the hybrid algorithm and being able to reduce
the length of the overlapping domain is a benefit one should take into account.

4.3 Hybrids Based on Flux Exchange

If our hybrid is going to be based on flux exchange, the most natural choice for
continuum solver is one based on an integral conservative scheme, such as the
finite volume method (see Patankar for an excellent textbook [45]). From the
continuum solver perspective communications between continuum and molecular
cells are essentially the same as those among continuum cells; i.e. there are only
little modifications to do. Following the standard procedure of the finite volume
method, the whole domain is divided into computational cells (see Fig 5c) which
could be either w Dboundary cells (walls) or f Dfluid cells. The hybrid scheme
introduces two more cell types, the m D molecular cells and the C cells. A
conservative scheme simply calculates and sum up the amount of any conserved
variable crossing the interface between every pair of adjacent cells. In particular
�˚H is the amount of˚ crossing the hybrid interface H over the coupling time�tc .
The interface H separates cells C and the border molecular cells, sometimes called
P (see Fig. 5b). If the flux across H is JH D JH �n then�˚H DAJH�tc . Thus the
central quantity is JH : it will be imposed at the particle buffer following Sect. 2.2.2
and used to update the C cell, in the standard finite volume fashion. The interface
flux JH might be evaluated in different ways: one can perform a linear piecewise
interpolation JH D .JC C JP /=2 and evaluate JP from microscopic expressions
(Irving-Kirwood) or pass via the fluid constitutive relations using the hydrodynamic
variables at the surrounding (fluid and molecular) cells into the selected type of
discretised gradient.

Molecular-continuum hybrids are explicit in time and the time marching protocol
is usually simple. Typically (Fig. 4a) the macro-solver updates all types of cells
during a numbernFH�tc=�t of time steps2 and at each coupling time it receives the
hydrodynamic variables at the molecular m cells. The only modifications required
on a standard code are set to ensure the mass conservation and momentum continuity
at the C cells . The continuum solver structure is,

�˚i D�tNS
	˚
˚j

C ıf C��

MD; (12)

where ˚ are the set of conserved variables (mass, momenta and energy), NS is a
discretised Navier-Stokes operator (which may include hydrodynamic fluctuations
[9, 19]) and the delta Kronecker ıfC symbol is used to input the molecular flux
corrections��MD into the C cells, as explained below.

2 This number should not be large 1� nFH <O.10/ [14].
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4.4 Mass Transfer and Continuity in Flux Based Schemes

As stated above, the flux scheme permits one to minimise the number of unphysical
artifacts imposed on the particle system by using the molecular system as the
fundamental (or master) model which determines the mass flux and velocity at the
interface. This philosophy was first proposed by Garcia et al. in an elegant hybrid
model for gases [26]. Mass conservation is ensured by evaluating the molecular
mass flux across H, �MMD

H and releasing this mass to the C cell. A relaxation
equation can be used for this sake, providing the following mass correction which
needs to be added at C, according to (12),

�MMD D �tc

�M

�
�MMD

H ��M NS
H

�
: (13)

C-P P-Ca

b

MD

B2

B3

B4

B5

B6

B1

d

FH

w C mf f f f m m m

H

c

MDFD

Fig. 5 (a) Typical setup used in state-coupling hybrids with a molecular dynamics (MD) and
a deterministic Navier-Stokes finite difference (FD) solver domain. The overlapping domain
contains C �P cells where the local FD velocity is imposed to MD and P �C cells where
the average particle velocity is used as Dirichlet B.C. for the FD scheme. (b) Set-up of a flux
based coupling MD (water wetting a lipid monolayer) and finite volume fluctuating hydrodynamics
(FH). Exchange of fluxes between cells P2MD and C2FH are made through their interface H (no
overlapping domain). (c) Arrangement of finite volume cells in a hybrid flux scheme (see text) (d)
A possible 2D MD-FH flux-based coupling in an hexagonal lattice. Local pressure tensors and heat
fluxes at each neighbour FH cell are imposed to MD from each sub-buffer Bi , flux exchange take
place across each Hi interface
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Here, �M is a relaxation time which usually can be set equal to the C-solver time step
(instantaneous mass transfer and exact conservation) and�M NS

H D �A�HVH �n�t
is the mass crossing towards C according to the local hydrodynamic prediction (the
NS solver).

On the other hand, a pure flux scheme does not impose velocity continuity and
it has been shown to suffer from numerical instability, leading to velocity jumps at
the interface [16,51]. A simple solution to this problem, proposed in [16], is to add
an extra relaxation term MC�VC into the C cell momentum equation, where

�VMD D �tc

�v

�hvMD
C iŒıt;��� hVC iŒ�t;��

�
: (14)

The relaxation time can usually be set to be rather fast �v � O.100/ fs and vMD
C is

obtained from linear extrapolation of adjacent m cells (i.e. not from the buffer).
Note that (14) is essentially the same idea used in the constrained molecular
dynamics of the state-coupling hybrid, but here, it is the continuum velocity at the
boundary C cells which is “constrained” to follow the molecular counterpart. A
comparative study of continuity in several hybrids performed by Ren [51] confirmed
the robustness of this approach. The averages used in (14) take into account the
possibility of coupling two models with intrinsic fluctuations (such as FH and MD).
I have defined h�iŒıt;�� as a time average over � sampling each ıt steps. In a FH-MD
hybrid � is usually the coupling time�tc while�t and ıt are FH and MD time steps.

Exact momentum conservation

From the standpoint of momentum conservation, it is important to note that the
particle buffer B is not part of the system. According to the OPEN MD procedure
of Sect. 2.2.2, imposing the pressure tensor PH at the buffer B will inject AP � n�tc
momentum into MDCB, but one does not know how much of it will be transferred
into MD across H. This source of momentum error is bounded by the mass of B
(and was shown to be quite small in 1D coupling geometries [7]); however a slight
modification of the scheme allows for exact momentum conservation. This might
be necessary when dealing with two and three dimensional geometries (see e.g.
Fig. 4d). The idea is to adjust the transfer towards each C cell so as to ensure global
conservation along the interface contour. Consider Fig. 4b, the MD model is the first
to move so ��MD D �MD.t1/��MD.t0/ is known before the FH field is updated (in
the concurrent scheme of Fig. 4a, the MD correction will be just transferred at the
next time step). Local conservation means that ���MD crosses towards the C cell.
In a general setup (see e.g. Fig. 5d), the interface H is divided in h D f1; : : : ;NH g
surface portions, each one h, facing a different Ch cell. We require conservation
over the whole contour of the hybrid interface,

X

h2H
�˚h D ���MD; (15)
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where �˚h is the amount crossing the portion h of the interface H towards the
corresponding Ch cell. The corresponding hydrodynamic prediction is �˚pred

h
D

�AhJh � n�tc where Jh the local flux, n points outwards C and Ah is the area of the
h portion of H. The overall disagreement with respect to the molecular value is just,

EŒ˚pred�D
"
.���MD/�

X

h2H
�˚

pred
h

#
; (16)

and in order to fulfill the conservation constraint (15) the transfer across each portion
h of the H interface is corrected with,

�˚h D�˚
pred
h

C 1

NH
EŒ˚pred�: (17)

5 Conclusions and Perspectives

In writing this review I realised that the number of papers including the prefix multi
has boomed in recent years. It might well be that like in many other disciplines
(art is an example), the stamp “multi” is able to promote some works with no real
significance. For instance, in many processes continuum liquid hydrodynamics are
known to remain valid up to quite small length scales [10, 12], thus making useless
an hybrid particle-continuum, CFD based, approach (this is not the case for rarefied
gases [1]). However, after the initial phase of “topic heating” the main relevant ideas
and application fields will soon settle down. In my opinion, multiscale techniques
for molecular liquid modeling will become a standard tool in commercial or open
source packages (see [3] for recent work in this direction). The state of the art
will soon benefit from modern faster parallel computing in cheaper architectures,
which may also be grid-distributed [4]. To this end, the multiscale algorithms should
allow for maximum flexibility with minimum computing modifications. It is easy to
imagine that a farm of parallel MD simulations talking with a single macro-solver
in a velocity-stress coupling scheme will soon permit to solve unsteady flow of non-
Newtonian liquids with the desired molecular structure and (molecular) boundaries.
For certain applications these MD simulations will necessarily need to describe
open systems of nanoscopic size, evolving with the minimum amount of unphysical
artifacts. The present review intends to highlight that a single computing framework
should be able to allow for a flexible formulation of this sort of open molecular
dynamics, which for instance, can combine state and flux coupling in the same
hybrid scheme (see e.g. [19]).

This review is clearly not complete and some issues have been omitted for the
sake of space. Other recent reviews can be found in [35,37]. Some comments should
have been made on the tests required at each level of description [14,18] (molecular
structure, radial distributions transport coefficients, fluctuations, hydrodynamics
and thermodynamics) or how to couple fluctuations in hybrids of fluctuating
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hydrodynamic and MD [7,14] or variants of Direct Simulation Monte Carlo [19]. As
stated in the abstract, OPEN MD is an ongoing research program. Some interesting
research lines are the molecular implementation of the open boundary conditions
for fluctuating hydrodynamics [15], mass transfer involving multiple species [46] or
polymer melts flow under constant external pressure (i.e. in open domains) using an
OPEN MD-AdResS combined strategy [18]. Finally important challenges remain to
be solved, such as a first-principle generalisation of the adaptive resolution scheme
to allow for energy conservation (maybe based on the Mori-Zwanzig formalism
[22]) or the extension of OPEN MD to nematic or ionic liquids.
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Multiscale Methods for Wave Propagation
in Heterogeneous Media Over Long Time

Björn Engquist, Henrik Holst, and Olof Runborg

Abstract Multiscale wave propagation problems are computationally costly to
solve by traditional techniques because the smallest scales must be represented over
a domain determined by the largest scales of the problem. We have developed and
analyzed new numerical methods for multiscale wave propagation in the framework
of the heterogeneous multiscale method (HMM). The numerical methods couple
simulations on macro- and microscales for problems with rapidly oscillating
coefficients. The complexity of the new method is significantly lower than that
of traditional techniques with a computational cost that is essentially independent
of the smallest scale, when computing solutions at a fixed time and accuracy. We
show numerical examples of the HMM applied to long time integration of wave
propagation problems in both periodic and non-periodic medium. In both cases our
HMM accurately captures the dispersive effects that occur. We also give a stability
proof for the HMM, when it is applied to long time wave propagation problems.

1 Introduction

We consider the initial boundary value problem for the scalar wave equation,
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(
u�t t � r �A�ru� D 0; ˝ � Œ0;T �;
u�.x;0/D f .x/; u�t .x;0/D g.x/; 8x 2˝; (1)

on a smooth domain ˝ � R
N where A�.x/ is a symmetric, uniformly positive

definite matrix. The expression r �A�ru� should be interpreted as r � .A�ru�/.
For simplicity we assume that ˝ is a hypercube in R

N with periodic boundary
conditions. We assume that A� has oscillations on a scale proportional to � 
 1.
The solution of (1) will then be a sum of two parts: one coarse scale (macroscale)
part, which is independent of �, and an oscillatory (microscale) part which is
highly oscillating in both time and spatial directions on the scale �. These kinds of
multiscale problems are typically very computationally costly to solve by traditional
numerical techniques. The smallest scale must be well represented over a domain
which is determined by the largest scale of interest. However most often one is only
interested in the coarse scale part of the solution. The goal of our research here is to
find an efficient way to compute it.

Recently, new frameworks for numerical multiscale methods have been pro-
posed. These include the heterogeneous multiscale method (HMM) [5] and the
equation free approach [14]. They couple simulations on macro- and microscales
to compute the coarse scale solution efficiently. The HMM framework has been
applied to a number of multiscale problems, for example, ODEs with multiple time
scales [12], elliptic and parabolic equations with multiscale coefficients [1, 7, 17],
kinetic schemes [6] and large scale MD simulations of gas dynamics [15]. In this
paper we use HMM for the wave equation. Our method builds on [10] where we
described a HMM multiscale method which captured the coarse scale behavior of
(1) for finite time. See also [2]. The main aim here is to show that the HMM
methodology in [10] works also for long time, where new macroscale phenomena
occurs.

As an inspiration for designing our HMM we first consider the classical homoge-
nization theory, in which the coarse scale properties of partial differential equations
with rapidly oscillating coefficients, like (1), can be analyzed. For example, in
the setting of composite materials consisting of two or more mixed constituents
(i.e., thin laminated layers that are �-periodic), homogenization theory gives the
effective properties of the composite. It is an interesting remark that the effective
properties often are different than the average of the individual constituents that
makes up the composite [4]. The main homogenization result is that, under certain
conditions, when the period of the coefficients in the PDE goes to zero, the solution
approaches the solution to another PDE which has no oscillatory (microscale) part.
This homogenized PDE is very useful from a numerical perspective. It gives a
coarse scale solution and the coefficients in the PDE have no �-dependency. That
means that the homogenized PDE is inexpensive to solve with standard numerical
methods. At the same time the solution is a good approximation of the coarse scale
(macroscopic) part of the original equation. For our multiscale problem (1) with
A�.x/D A.x;x=�/ and where A.x;y/ is periodic in y, the homogenized PDE is of
the form,
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(
Nutt � r � NAr NuD 0; ˝ � Œ0;T �;
Nu.x;0/D f .x/; Nut .x;0/D g.x/; 8x 2˝; (2)

where NA.x/ is the homogenized or effective coefficient. We refer to [3,4,11,13,16,
18] for more details about homogenization.

Homogenization gives the limit PDE as � ! 0 for a constant T (independent
of �). The use of classical homogenization is limited by the fact that it does not
describe the dispersive effects in (1) that occur when T becomes very large. Santosa
and Symes [20] developed effective medium equations for wave propagation
problems with T D O.��2/. In the one-dimensional case, when A�.x/ D A.x=�/

and A periodic, this equation will be of the form

Qutt � NA Quxx �ˇ�2 Quxxxx D 0;

where NA is the same coefficient as in (2) and ˇ is a functional of A. The effective
medium solution Qu can be used as an approximation for longer time than the
homogenized solution Nu with an error of the form O.�/C O.�3t/. See [20] for
further details about this model.

We will now briefly describe the typical setting of HMM for multiscale problems
and how it can be applied to (1). We assume that there exists two models, a micro
model h.u�;d �/D 0 describing the full problem, where u� is the quantity of interest
and d � is the problem data (i.e. initial conditions, boundary conditions, . . . ), and a
coarse macro model H.u;d/D 0, with solution u and data d . The micro model is
accurate but is expensive to compute by traditional methods. In our case this model
is (1). The macro model gives a coarse scale solution u, assumed to be a good
approximation of the microscale solution u� and is less expensive to compute. The
model is however incomplete in some sense and requires additional data. In our case
we use

utt � r �F D 0;

with the flux F unknown. This is inspired by the form of the homogenized equation
(2). A key idea in the HMM is to provide the missing data in the macro model using
local solutions of the micro model. Here (1) is solved locally on a small domain
with size proportional to � and F is given as an average of the resulting microscopic
flux A�ru� . The initial data and boundary conditions (d �) for this computation is
constrained by the macroscale solution u.

It should be noted that even if our numerical methods use ideas from homog-
enization theory they do not solve any effective (e.g. homogenization or effective
medium) equation directly. The goal is to develop computational techniques that
can be used when there is no fully known macroscopic PDE.

The article is organized as follows: In Sect. 2 we describe our HMM for the
wave equation for finite time. In Sect. 3 we describe the modifications made to our
HMM for the long time problem and in Sect. 3.4 we describe the theory behind the
long time problem. We also treat problems which do not fit the theory. In Sect. 3.3
where we solve a non-periodic problem for long time. We end this paper with our
conclusions in the closing Sect. 4.
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2 HMM for the Wave Equation and Finite Time

We continue here with the description of our HMM method for the wave equation
(1) over finite time. By finite time we mean that the final time T is independent of �.
In the next section we will consider cases where T D T .�/! 1 as � ! 0.

The HMM method we suggest here is described in three separate steps. We
follow the same strategy as in [1] for parabolic equations and in [19] for the one-
dimensional advection equation. See [8], [10] and [2] for additional details and
proofs. In step one we give the macroscopic PDE (i.e. the form H.u;d/ D 0) and
a corresponding numerical discretization. In step two we describe the microscale
problem (microproblem). The initial data for the microproblem is based on local
macroscopic data. Finally, in step three we describe how we approximate F from
the computed microproblem by taking a weighted average of its solution.

We will assume that the domain ˝ D Y � R
d is a hypercube such that our

microscopic PDE is of the form,
(
u�tt � r �A�ru� D 0; Y � Œ0;T �;
u�.x;0/D f .x/; u�t .x;0/D g.x/; 8x 2 Y: (3)

and u�.x; t/ is Y -periodic in x.

Step 1: Macro model and discretization

We suppose there exists a macroscale PDE of the form,
8
<̂

:̂

utt � r �F.x;u;ru;: : : /D 0; Y � Œ0;T �;
u.x;0/D f .x/; ut .x;0/D g.x/; 8x 2 Y;
u is Y -periodic;

(4)

where F is a function of x, u and higher derivatives of u. We will use this
assumption throughout the whole paper. Another assumption is that u	 u� when �
is small. In the method we suppose that F DF.x;ru/. In the clean homogenization
case we would haveF D NAru, but we will not assume knowledge of a homogenized
equation.

We discretize (4) using central differences with time step K and spatial grid size
H in all directions,

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

U nC1m D 2U nm�U n�1m C K2

H

dX

iD1

�
eTi F

n

mC 1
2
ei

� eTi F nm� 1
2
ei

�
;

F n
m� 1

2 ek
D F.xm� 1

2
ek
;P n
m� 1

2 ek
/; k D 1; : : : ;d;

(Note that F n
m� 1

2
ek

is a vector.)

(5)
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where F n
m� 1

2
ek

is F evaluated at point xm� 1
2
ek

. The quantity P n
m� 1

2
ek

approximates

ru in the point xm� 1
2
ek

.

Step 2: Micro problem

The evaluation of F n
m� 1

2
ek

in each grid point is done by solving a micro problem to

evaluate the flux values in (5). Given the parameters xm� 1
2 ek

and P n
m� 1

2
ek

, we solve

8
<̂

:̂

u�t t � r �A�ru� D 0; Y � � Œ��;��;
u�.x;0/D .P n

m� 1
2
ek
/ �x; u�t .x;0/D 0; 8x 2 Y �;

u� �u�.x;0/ is Y �-periodic;

(6)

where x � xm� 1
2
ek

7! x and t � tn 7! t . The initial data u�.x;0/ is a linear
polynomial approximating the macroscopic solution locally, modulo a constant
term; since we only consider the derivative of u� when computing F below, the
constant term does not affect the result.

We keep the sides of the micro box Y � of order �. We note that the solution u�

is an even function with respect to t (i.e. u�.x;�t/ D u�.x; t/) due to the initial
condition u�t .x;0/D 0.

Step 3: Reconstruction step

After we have solved for u� for all Y � � Œ��;�� we approximate F n
m� 1

2
ek

by a

weighted average of f � D A�ru� over Œ�
;
�d � Œ��;�� where Œ�
;
�d � Y � . We
choose 
;� sufficiently small so that information will not propagate into the region
Œ�
;
�d from the boundary of the micro box Y � in Œ��;�� time. More precisely,
we consider averaging kernels K described in [12]: We let Kp;q denote the kernel
space of functionsK such that K 2 C qc .R/ with suppK D Œ�1;1� and

ˆ
K.t/trdt D

(
1; r D 0I
0; 1� r � p:

Furthermore we will denote K� as a scaling K�.x/ WD 
�1K .x=
/ with compact
support in Œ�
;
�. We then approximate

F n
m� 1

2
ek

	 QF .xm� 1
2 ek
;P n
m� 1

2
ek
/D

“
K� .t/K�.x1/ � � �K�.xd /f �k .x; t/dxdt; (7)

where f �.x; t/D A�.xCxm� 1
2
ek
/ru�.x; t/.

We proved in [10] that if we apply the HMM to the problem (1) with A�.x/ D
A.x=�/ where A is a Y -periodic symmetric positive matrix the HMM generates
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results close to a direct discretization of the homogenized equation (2). In particular,
we showed that

QF .x;y/D F.x;y/CO

 �
�




�qC2!
:

The function QF and F are defined in (7) and (4) respectively and we note that
here F.x;y/D NAy. The integer q depends on the smoothness of the kernel used to
compute the weighted average of f � in (7).

Theorem 1. Let QF .x0;y/ be defined by (7) where u� solves the micro problem (6)
exactly, A�.x/ D A.x=�/ and A is Y -periodic and C1. Moreover suppose K 2
K
p;q , f and g are C1 and � D 
. Then for y ¤ 0 and any dimension,

1

kyk
ˇ̌ QF .x0;y/�F.x0;y/

ˇ̌ � C

�
�




�qC2
;

where C is independent of � and 
. Furthermore, for the numerical approximation
given in (5) in one dimension, with H D n� for some integer n and smooth initial
data, we have the error estimate

jU nm� Nu.xm; tn/j � C.T /
�
H 2C .�=
/qC2

�
; 0� tn � T;

where Nu is the homogenized solution to (2).

Remark 1. The weighted integrals above are computed numerically with a simple
trapezoidal rule in time and a midpoint rule in space.

Remark 2. In our implementation, the micro problem (6) is solved by the same
numerical scheme as the macro problem (5).

Remark 3. We assume that our scheme for the microproblem can have a constant
number of grid points per � to maintain a fixed accuracy. This implies that a direct
solver for (3) on the full domain has a cost of order ��.dC1/. The total cost for
on-the-fly HMM is of the form .cost of micro problem/�Md where

Md � 1

K
� 1

Hd

is the number of micro problems needed to be solved. The macro PDE can be
discretized independently of � therefore Md does not depend on �. If we choose

 and � proportional to � the cost of a single micro problem .�=�/� .
=�/d is
also independent of �. In conclusion our HMM method has a computational cost
independent of �.

Remark 4. We can to reduce the computational cost of the HMM process even
further if the function QF in (7) is linear in some of its arguments. We can then
apply the HMM process to a smaller number of micro problems and form linear
combinations of those for any given QF computation. If QF depends on u or t it might
not be beneficial to precompute QF this way. See [10] for further details.
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Remark 5. The macro scheme suggested here is embarrassingly parallel in space.
This fact has been exploited by the authors in a Fortran 90 code with MPI
parallelization. We think that it would be possible to implement the same algorithm
in a general purpose GPU environment and see a good utilization of the hardware.

2.1 One Numerical Example

We consider the one-dimensional problem of the form (1),

8
<̂

:̂

u�t t �@xA�ux D 0; Œ0;1�� Œ0;1�;
u�.x;0/D exp.�100x2/C exp.�100.1�x///; ut .x;0/D 0; x 2 Œ0;1/;
u� is 1-periodic;

(8)
for A�.x/D A.x=�/ where A.y/D 1:1C sin2�y. The homogenized equation will

then have the form (2) with NAD
�´ 1
0

1
A.s/

ds
��1 D p

0:21. Since we have periodic

boundary conditions, the solution to the homogenized equation will be periodic in
time with period 1=

p NA	 1:47722. We show the solution after one full period. The
numerical parameters areH D 1:0 �10�2,KD 1:0 �10�3,
D � D 0:05, hD 1:5 �10�4
and k D 7:8 �10�5. We take � D 0:01. See Fig. 1 for a plot of the result. We refer to
[10] for further examples where HMM is applied to other finite time problems.
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Fig. 1 Results from solving (8) with a finite difference method, DNS (direct numerical simulation),
and the corresponding homogenized equation with highly accurate spectral method (circles),
compared to our HMM method (crosses). The fast O.�/ oscillations are visible as small
fluctuations in the DNS computation
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3 HMM for the Wave Equation over Long Time

Classical homogenization deals with constant T (i.e. independent of �) and finds
the limiting PDE as � ! 0. We demonstrated in the previous section that our HMM
captures the same solution as homogenization (when applicable). In this section we
will investigate how our HMM method, after some minor changes, handles the case
when T D O.��2/. The microscopic variations in the medium introduces dispersive
effects in the macroscopic behavior of the solution, after long time. Our goal is to
show that our HMM method can capture the dispersion with less computational cost
than just resolving the full equation.

Let us illustrate the dispersive effects by a numerical example. We consider
the same one-dimensional example (8) as above, but solve it for a long time
T D O.��2/. We compute the solutions after 1, 10 and 100 periods (	 1:47722)
of the homogenized equation. We see in Fig. 2 that after 100 periods there is an
O.1/ error between the true solution u� and the homogenized solution Nu which thus
fails to capture the dispersive behavior of the solution after long time.
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Fig. 2 Finite difference computation of (8) at T D 1:47722, T D 14:7722 and T D 147:722
(1, 10 and 100 periods of the homogenized solution) and the corresponding homogenized solution
(circles). As we can see the homogenized solution does not capture the dispersive effects that occur
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3.1 The HMM Algorithm for Long Time

We must make a few minor modifications to our original HMM algorithm in Sect. 2
in order to capture the dispersive effects seen in Fig. 2. We will now describe those
changes. They can all be seen as modifications to increase accuracy.

Step 1: Macro model and discretization

We assume the macroscopic PDE still is of the form ut t � r � F D 0 where F
depends on u and its derivatives but we will use a higher order scheme instead of
(5). The scheme below has better dispersive properties and hence allow us to better
avoid some of the numerical dispersion,

U nC1m D 2U nm�U n�1m C K2

24H

�
�F nmC3=2C27F nmC1=2�27F nm�1=2CF nm�3=2

�
;

where F n
m� 1

2

is computed in the same fashion as before in step 2 and 3, defined

below.

Step 2: Micro problem

The initial data for the micro problem for finite time (6) is modified to a cubic
polynomialQ.x/,

8
<̂

:̂

u�t t �@xA�u�x D 0; Y � � Œ��;��;
u�.x;0/DQ.x/; u�t .x;0/D 0; 8x 2 Y �;
u� is Y �-periodic;

The state of the macroscopic solution is then more accurately represented by the
initial data. The cubic polynomial is chosen as follows when computing the flux
FmC1=2. Let QQ.x/ interpolate the macroscopic solution in the four grid points
surrounding xmC1=2. Then use Q.x/ D QQ.x/� ��2 QQ00.x/. The small correction
is needed to get an initialization that is consistent with the macroscopic data QQ.x/
to high order in �. The factor � can be determined numerically, see Sect. 3.4.

Step 3: Reconstruction step

The average is computed as before but we need to use a sufficiently accurate kernel
K and take the average over a bit larger box, i.e. larger � and 
with respect to � such
that �;
� �1�˛ with ˛ > 0. We will delay the discussion about ˛ until Sect. 3.4.
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Fig. 3 A longtime DNS simulation (thin line) compared to an HMM solution (crosses) at T D
1:47722, T D 14:7722 and T D 147:722 (1, 10 and 100 periods of the homogenized solution)
for the example in Sect. 3.2. As we can see, the HMM method gives good agreement with the true
solution also after long time

3.2 A Long Time Computation with HMM

We solved the problem (8) using the HMM algorithm, with the improvements
described above. As before we computed the solution after 1, 10 and 100 periods
of the homogenized equation. In Fig. 3 we see that the HMM algorithm is able
to accurately approximate the solution also after long time, and thus captures the
correct dispersive effects.

The HMM solver uses H D 5:7 � 10�3, K D 5:7 � 10�4 and a kernel with � D

D 0:5 from K

9;9 which is a 9 times continuously differentiable compact function
with support Œ�1;1�. The micro solver and the DNS solver uses hD 7:8 �10�5 and
k D 3:9 � 10�5. We take � D 0:01. Note that since the integration time T is very
long we need to take H rather small to avoid dispersion errors in the macroscopic
integration.
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3.3 Non-periodic Material

We consider the problem (1) with a function A� which is not periodic on the
microscale,

A�.x/D A.rx=�;x=�/; and A.y1;y2/D 1:1C 1

2
.sin2�y1C sin2�y2/ ;

where r is an irrational number. We take r D p
2. To be precise we take r D 1:41

and � D 0:01 to ensure A� is periodic on the macroscopic scale. There is no cell
problem for this A� but it is well known that there is a homogenized equation of
the form (2) with NA D .

´ 1
0

1
A�.x/

dx/�1 D 0:744157 and thus the period length is

1=
p NAD 1:15922. The initial data is u.x;0/D exp.�100x2/Cexp .�100.1�x/2/

and ut .x;0/D 0.
We compare our HMM-results with an accurate DNS computation after 10 and

100 periods. We use 
D � D 0:5 and a kernelK 2 K
9;9. The numerical parameters

are H D 5:7 �10�3, K D 5:7 �10�4, hD 7:8 �10�5 and k D 3:9 �10�5. See Fig. 4.
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Fig. 4 Numerical result from the example in Sect. 3.3. A longtime DNS simulation (thin line)
compared to an HMM solution (crosses) at T D 11:5922 and T D 115:922 (10 and 100 periods
of the homogenized solution). The dispersion effects appearing after long time is captured by our
HMM method

3.4 Theory

We will now give a motivation to why our HMM method works also for long
time. In classical homogenization theory the homogenized solution Nu satisfies a
homogenized PDE. The solution u is a good approximation to the true solution
u� such that jju�.t; �/� Nu.t; �/jjL2 D O.�/, upto a fixed time T independent of �.
Santosa and Symes derived an equation for a similar quantity Qu which approximates
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u� with an error of the form O.�/CO.�3t/ for T D O.��2/. We will now describe
some of the theory presented in [20]. The theory thus extends the effective model
(2) with additional terms, from T D O.1/ up to time T D O.��2/.

Let us first give some definitions. Let !2m and  m be the eigenvalues and
eigenfunctions of the shifted cell (eigenvalue) problem [3, pp. 614],

(
� �@y C ik

�
A.y/

�
@y C ik

�
 .y;k/D !2.k/ .y;k/; Y �Y;

 .y;k/ is Y -periodic in y;

where Y D Œ0;1�d and k 2 R
d . Let vm.x;k/ be the scaled Bloch-waves,

vm.x;k/D  m.x=�;�k/exp .ik �x/;
which satisfies

�@x
�
a
�x
�

�
@xvm

�
D 1

�2
!2m.�k/vm:

The functions Um and Ofm are defined as the projection of u� and f on vm,

Um.k; t/D
ˆ
u�.x; t/v�m.x;k/dx; Ofm.k/D

ˆ
f .x/v�m.x;k/dx:

Throughout this section we assume that the initial data f .x/ is a bandlimited
function. The following theorem from [20] then states that if we expand the solution
to the wave equation in the basis given by fvmg, the terms with m� 1 are bounded
by O.�/ uniformly in time.

Theorem 2. Suppose u� solves (1) with g D 0 and expand

u�.x; t/D
ˆ
Y=�

U0.k; t/v0.x;k/dkC
1X

mD1

ˆ
Y=�

Um.k; t/vm.x;k/dk: (9)

Then ˆ
R3

ˇ̌
ˇ̌
ˇ

1X

mD1

ˆ
Y=�

Um.k; t/vm.x;k/dk

ˇ̌
ˇ̌
ˇ

2

dx � C�2:

Here C is independent of � and t but depends on the H 2-norm of the initial data f
and the L1-norm of a and ra.

See [20] for proof.
We denote the first term in (9) by u0 and note that Of0.k/ has compact support if

f .x/ is band limited, see [20]. Then, for some fixed L,

u0.x; t/D 1

2

ˆ
Y=�

Of0.k/v0.x;k/exp .˙i!0.�k/t=�/dk

D 1

2

ˆ L

�L
Of0.k/ 0.x=�;�k/exp .ikxC i!0.�k/t=�/dk:
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We now Taylor expand 0 in the second argument and use the fact that 0.x;0/� 1.
This gives

u0.x; t/D 1

2

ˆ L

�L
Of0.k/. 0.x=�;0/CO.�k//exp .ikxC i!0.�k/t=�/dk

D 1

2

ˆ L

�L
Of0.k/exp .ikxC i!0.�k/t=�/dkCO.�/:

Next we Taylor expand !0.�k/ around k D 0,

!0.�k/D !0.0/C �k!00.0/C
�2k2

2Š
!000 .0/C

�3k3

3Š
!
.3/
0 .0/CO.�4k4/

DW Q!0.�k/CO.�4k4/;

and plug this expansion into the expression for u0,

u0.x; t/D 1

2

ˆ L

�L
Of0.k/exp .ikxC i Œ Q!0.�k/CO.�4k4/�t=�/dkCO.�/

D 1

2

ˆ L

�L
Of0.k/exp .ikxC i Q!0.�k/t=�/dkCO.�3t/CO.�/

DW Qu0.x; t/CO.�3t/CO.�/:

Let us now differentiate the leading term Qu0.x; t/ twice with respect to t ,

@t t Qu0.x; t/D 1

2

ˆ L

�L
� 1

�2
. Q!0.�k//2 Of0.k/exp.ikxC i Q!0.�k/t=�/dk

and upon expanding the square of Q!0 under the integral we obtain

@t t Qu0.x; t/D� 1

2

ˆ L

�L

h
��2!0.0/22��1k!0.0/!00.0/

C 1

2
k2
�
2!0.0/!

00
0 .0/C2.!00.0//2

�

C 1

6
�k3

�
2!0.0/!

.3/
0 .0/C6!00.0/!000.0/

�

C 1

24
�2k4

�
8!00.0/!

.3/
0 .0/C6.!000.0//2

�

C 1

6
�3k5

�
!000 .0/!

.3/
0 .0/

�
C 1

36
�4k6.!

.3/
0 .0//2

i
�

Of0.k/exp.ikxC i Q!0.�k/t=�/dk:
We now use the facts that !0.0/ D 0 and that by symmetry all odd derivatives of
!20.k/ are zero when evaluated at k D 0. Then the expression for @t t Qu0 simplifies to
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@t t Qu0.x; t/D� 1

2Š

ˆ L

�L

h1
2
k2
@2!20 .k/

@k2

ˇ̌
ˇ̌
kD0

C 1

4Š
�2k4

@4!20.k/

@k4

ˇ̌
ˇ̌
kD0

C �3k5R1C �4k6R2

i Of0.k/exp .ikxC i Q!0.�k/t=�/dk

D 1

2Š

@2!20 .k/

@k2

ˇ̌
ˇ̌
kD0

@xx Qu0.x; t/� �2 1
4Š

@4!20.k/

@k4

ˇ̌
ˇ̌
kD0

@xxxx Qu0.x; t/
� i�3R1@xxxxx Qu0.x; t/� �4R2@xxxxxx Qu0.x; t/; (10)

where R1 and R2 are some real numbers. This is approximated in [20] with the
PDE

Qut t D NA Quxx Cˇ�2 Quxxxx; (11)

where

NAD 1

2Š

@2!20
@k2

ˇ̌
ˇ̌
kD0

; ˇ D � 1

4Š

@4!20
@k4

ˇ̌
ˇ̌
kD0

:

The remaining m � 1 terms in (9) are as we said uniformly bounded by O.�/ in
L2-norm, so that we can use Qu 	 Qu0 as an O.�/ approximation up to the time t D
O.��2/. We present a final comparison based on the example (8) in Fig. 5

We arrive at three conclusions from the analysis above:

1. The long time effective equation (11) is of the form

Qut t �@xF D 0; F D NA Qux Cˇ�2 Quxxx :
This fits into the assumed form of our macroscale PDE in (4) and we do not need
to change the HMM algorithm to reflect a different macro model.

2. The flux F contains a third derivative of the macroscopic solution. In order to
pass this information on to the micro simulation, the initial data must be at least
a third order polynomial. This explains why the linear initial data used in the
finite time HMM is not enough.

3. Since we need to accurately represent also the second term in the flux F , the
error in the flux computation must be smaller than O.�2/. The error term for
F in Theorem 1 is of the form .�=
/qC2. We thus need to chose q and 
 such
that .�=
/qC2 < �2, or 
 > �1�˛ with ˛ D 2

qC2 . Recalling that in the finite time
case we always take 
 � �, this hence explains why we need to have more
accurate kernels or bigger micro boxes in the long time case. We note that in
order to maintain a low computational cost we should have ˛ small, which can
be obtained by taking a large q, i.e. a very regular kernel.

We have left to discuss the correction to the initial data mentioned in Step 2 in
Sect. 2. It is well established in HMM that initial data for the microscopic simulation
should be consistent with the macroscopic data, in the sense that the reconstruction
of the coarse variables from the microscopic simulation, evaluated at its initial point,
should agree with actual macroscopic data at this point. In our setting we consider
the macroscopic variables as the local average of the microscopic solution,
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Fig. 5 Numerical result from example in Sect. 3.2: a long time DNS computation (thin line)
compared to a direct discretization of the long time effective equation (11) with a coarse grid
(squares) and our HMM method (crosses)

Qu.t;x/ �
“

K�.t
0/K�.x0/u�.tC t 0;xCx0/dt 0dx0:

The given macroscopic data is the polynomial QQ.x/, which interpolates the
macroscopic solution at the initial point. The initial data Q.x/ for the microscopic
simulation is therefore consistent if it generates a microscopic solution u�.t;x/ such
that

QQ.x/D
“

K�.t
0/K�.x0/u�.t 0;xCx0/dt 0dx0:

Using the tools from the Bloch wave analysis above one can show [9] that

“
K�.t

0/K�.x0/u�.t 0;xCx0/dt 0dx0 DQ.x/C �2�Q00.x/C h:o:t:

if a sufficiently high order kernel is used. The coefficient � can be computed
analytically in some cases, but in general one needs to find it numerically by probing
the dynamics once with the initial data Qprobe.x/D x2 and taking
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� D 2. Quprobe.0;x/�x2/=�2:

For the finite time case it is sufficient to take Q.x/ D QQ.x/, but in the long time
case the first correction term of size O.�2/ is important to include; recall that the
flux must be computed with an accuracy that is better thanO.�2/. Using QQ��2� QQ00
rather than QQ gives a higher order consistency.

3.5 Stability Analysis of the Macro Scheme for the Long Time
Effective Equation

A complicating factor in Sect. 3.4 is the stability of the long time effective equation
(11). In fact, (11) is ill-posed since ˇ > 0. Perturbations in initial data grow without
bounds as wave numbers become large. Since our HMM algorithm effectively
discretizes (11) one must be concerned about the method’s stability. In this section
we show that as long as the macroscopic discretization is coarse enough, it is indeed
stable.

Even though (11) is ill-posed, it can be used as an effective equation after
regularization. Since we are interested in low frequency solutions it should be
possible to use a regularized version of (11) where high frequencies are suppressed.
The equation could for instance be regularized with a low-pass filter Plow applied at
the macro level,

Qut t D Plow
� NA Quxx Cˇ�2 Quxxxx

�
;

or by adding a small 6th order term,

Qut t D NA Quxx Cˇ�2 Quxxxx C c�4 Quxxxxxx;
cf. (10) above. Another regularization technique is to use large time and space grid
sizes, which can be seen as a type of low-pass filtering. This is what we do in
our HMM. We show here that this approach is stable when the coarse grid size
H satisfies a standard CFL condition and in additionH �C�, for some constantC .
This explains why our HMM is stable. Moreover, even with such a coarse grid the
macroscopic solution can be computed accurately; In Fig. 5 we show an example
of a solution obtained through a direct discretization of (11) on a coarse grid.
The solution agrees very well with a direct numerical simulation of the full wave
equation.

We now apply standard von Neumann stability analysis [21] to show stability of
the macro scheme for periodic solutions,
8
<̂

:̂
unC1m D 2unm�un�1m C K2

24H

�
�f nmC3=2C27f nmC1=2�27f nm�1=2Cf nm�3=2

�
;

f nm D . NA@x Cˇ�2@xxx/p
n
m.x/

ˇ̌
xDxm

;

(12)
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used in the HMM algorithm for the 1D problem and long time. Here we denote
unm as the numerical approximation of u.xm; tn/ D u.mH;nK/ and K is the time
step and H is the grid size. The scheme (12) is fourth order accurate with respect
to K and second order with respect to H . We define the interpolation polynomial
pn
m�1=2 of degree three over four grid points unm�2;unm�1;unm and unmC1. We assume

a uniform grid and write down the polynomial pm�1=2,

pnm�1=2.x/D c1C c2.x�xm�2/C c3.x�xm�2/.x�xm�1/
C c4.x�xm�2/.x�xm�1/.x�xm/; (13)

where the coefficients ci are given by

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

c1 D unm�2;

c2 D unm�1�unm�2
H

;

c3 D unm�2unm�1Cunm�2
2H 2

;

c4 D unmC1�3unmC3unm�1�unm�2
6H 3

:

(14)

A numerical scheme is said to be stable if
X

j

.unj /
2 � C.T /

X

j

.u0j /
2 nD 1;2; : : : ;N; Nk D T;

for some constant C.T / independent of n. For the discretization (12) we can show
stability if the ratio H=� is large enough.

Theorem 3. The finite difference scheme (12) applied on the effective equation (11)
with 1-periodic boundary conditions, is stable for K andH satisfying

�

H
�
s
7 NA
24ˇ

; (15)

and

K

H
� 24p NA

s

h

�
24�2ˇ

H 2 NA
�
; (16)

where

h.x/D

8
ˆ̂<

ˆ̂:

1

784�112x ; 0� x <
21

5
;

x2�2xC1

128
�
2.x2�xC1/3=2�2x3C3x2C3x�2� ;

21

5
� x � 7:
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Proof. We plug in the value of interpolation polynomials (13) as replacements for
the numerical fluxes f n

m�1=2 and f n
mC1=2 which depend on unm�2;unm�1;unm and

unmC1. By doing so, we see that the finite difference scheme (12) will be of the form

unC1m D 2unm�un�1m

C c
�
unmC3�54unmC2C783unmC1�1460unmC783unm�1�54unm�2Cunm�3

�

C cd
��unmC3C30unmC2�111unmC1C164unm�111unm�1C30unm�2�unm�3

�
;

(17)

where c D K2 NA=.242H 2/ and d D 24�2ˇ=.H 2 NA/. We perform the standard von
Neumann stability analysis [21, Sect. 2.2] and replace unm D gn exp.imh�/ in the
scheme (17). After dividing with exp.imh�/, we get a recurrence relation for gn of
the form,

gnC1 D .2C cp.v//gn�gn�1; (18)

where p.v/ D Av3 CBv2 CCvCD is a polynomial in v D cos� (� D h�) and
where the coefficients A;B;C andD are affine functions in d ,

AD �8d C8; B D 120d �216; C D �216dC1560; D D 104d �1352:
The difference equation (18) is stable if the roots r1, r2 of its characteristic
polynomial r2�.2Ccp.v//rC1 satisfy jrj j � 1. It is well known that this happens
precisely when j2C cp.v/j � 2. Hence, the scheme (17) is stable if and only if
�4 � cp.v/ � 0. The domain of p.v/ is Œ�1;1� since v D cos� . We now continue
the proof to find conditions on c and d such that �4 � cp.v/ � 0 is fulfilled for
jvj � 1. We start by observing that,

p.v/D 8.v�1/.v�13/.v.1�d/�13Cd/;

p0.v/D 24
	
.1�d/v2C2.5d �9/vC65�9d 
 ; p00.v/D 48.v.1�d/C5d�9/;

(19)
and first consider the condition p.v/ � 0 for jvj � 1. Since p.1/D 0 and p0.1/D
1352 > 0 independent of d , we just need to make sure that the root .13�d/=.1�
d/ 62 Œ�1;1�. This happens when 0 � d � 7, which gives (15). Next, we need to
check that p.v/ � �4=c for jvj � 1. For this we use the derivatives of p.v/ in
(19). We start with the interval 0 � d � 21=5. This is chosen such that p0.�1/ D
96.21�5d/� 0. Moreover, p00.�1/D 48.6d �10/ � 0 for d � 5=3 and p00.1/D
48.4d � 8/ � 0 for d � 2. Therefore, recalling that p0.1/ D 1352, the derivative
p0.v/ must be positive when jvj � 1 for the d values considered. A necessary and
sufficient condition is then that

�4
c

� p.�1/D �448.7�d/ ) c � 1

112.7�d/:

This gives the 0 � x < 21=5 part of (16). By the same argument there is a point
v� 2 Œ�1;1� where p0.v�/D 0 when 21=5� d � 7. By solving p0.v/D 0 we obtain
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v� D 9�5d
1�d �

s�
9�5d
1�d

�2
C 65�9d

d �1 : (20)

As we showed above p.v�/ < 0 D p.1/. Therefore p.v�/ is a minimum and it
suffices to make sure that p.v�/ � �4=c for d 2 Œ21=5;7�. Plugging (20) into this
inequality gives the 21=5� x � 7 part of (16).

4 Conclusions

We have developed and analyzed numerical methods for multiscale wave equations
with oscillatory coefficients. The methods are based on the framework of the het-
erogeneous multiscale method (HMM) and have substantially lower computational
complexity than standard discretization algorithms. Convergence is proven in [10]
for finite time approximation in the case of periodic coefficients and for multiple
dimensions. The effective equation for long time is different from the finite time
homogenized equation. After long time, dispersive effects enter and the method has
to capture additional effects on the order of O.�2/ [20]. Numerical experiments
show that the new techniques accurately and efficiently captures the macroscopic
behavior for both finite and long time. It is emphasized that the HMM approach with
just minor modifications accurately captures these dispersive phenomena. We prove
that our method is stable if the spatial grid in the macro solver is sufficiently coarse.
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Numerical Homogenization via Approximation
of the Solution Operator

Adrianna Gillman, Patrick Young, and Per-Gunnar Martinsson

Abstract The paper describes techniques for constructing simplified models for
problems governed by elliptic partial differential equations involving heterogeneous
media. Examples of problems under consideration include electro-statics and linear
elasticity in composite materials, and flows in porous media. A common approach
to such problems is to either up-scale the governing differential equation and
then discretize the up-scaled equation, or to construct a discrete problem whose
solution approximates the solution to the original problem under some constraints
on the permissible loads. In contrast, the current paper suggests that it is in
many situations advantageous to directly approximate the solution operator to the
original differential equation. Such an approach has become feasible due to recent
advances in numerical analysis, and can in a natural way handle situations that are
challenging to existing techniques, such as those involving, e.g. concentrated loads,
boundary effects, and irregular micro-structures. The capabilities of the proposed
methodology are illustrated by numerical examples involving domains that are
loaded on the boundary only, in which case the solution operator is a boundary
integral operator such as, e.g., a Neumann-to–Dirichlet operator.

1 Introduction

1.1 Background

The purpose of this report is to draw attention to a number of recent developments
in computational harmonic analysis that may prove helpful to the construction of
simplified models for heterogeneous media. We consider problems modeled by
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elliptic PDEs such as electrostatics and linear elasticity in composite materials, and
Stokes’ flow in porous media.

Many different solution approaches have been proposed for the type of problems
under consideration. A classical technique that works relatively well in situations
where there is a clear separation of length-scales is to derive so called homogenized
equations which accurately model the macro-scale behavior of the constitutive equa-
tions without fully resolving the micro-structure. The homogenized equations can
sometimes be derived analytically, but they are typically obtained from numerically
solving a set of equations defined on a Representative Volume Element (RVE). An
unfortunate aspect of this approach is that its accuracy is held hostage to many
factors that are outside of the control of the modeler. Phenomena that tend to lead to
less accurate solutions include:

1. Concentrated loads.
2. Boundaries, in particular non-smooth boundaries.
3. Irregular micro-structures.

The accuracy cannot readily be improved using generic techniques, but a number
of strategies for developing coarse-grained models for specific situations have been
developed. A popular class of such methods consists of variations of finite element
methods in which a discretization on the macro-scale is constructed by solving a set
of local problems defined on a representative collection of patches of fully resolved
micro-structure [17, 20, 35].

We contend that it is in many situations advantageous to approximate the solution
operator, rather than the differential operator. For the elliptic problems under
consideration in this paper, the solution operator takes the form of an integral
operator with the Green’s function of the problem as its kernel. That such operators
should in principle allow compressed representations has been known for some
time (at least since [4]), but efficient techniques for actually computing them have
become available only recently.

To illustrate the viability of the proposed techniques, we demonstrate how they
apply to a couple of archetypical model problems. We first consider situations in
which the micro-structure needs to be fully resolved and a coarse-grained model
be constructed computationally. We show that this computation can be executed
efficiently, and that once it has been, the reduced model allows for very fast solves,
and is highly accurate even in situations that are challenging to existing coarse-
graining methods. We then show that the proposed methods can fully exploit the
simplifications possible when an accurate model of the material can be derived from
computations on an RVE.

1.2 Mathematical Problem Formulation

While the ideas described are applicable in a broad range of environments, we will
for expositional clarity focus on scalar elliptic boundary value problems defined on
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some regular domain˝ �R
2 with boundary� . Specifically, we consider Neumann

problems of the form
� �r � �a.x/ � r u.x/

�D 0; x 2˝;
un.x/D f .x/; x 2 �; (1)

where a W˝ !R
2�2 is a matrix-valued function that varies “rapidly” (on the length-

scale of the micro-structure), and where un.x/ denotes the normal derivative of
u at x 2 � . Our objective is to rapidly construct uj� , from a given boundary
function f . We are interested both in the situation where we are allowed a pre-
computation involving some given function a, and in the situation in which a is
specified probabilistically.

Some of our numerical work will focus on the special case where (1) represents
a two-phase material. To be precise, we suppose that ˝ can be partitioned into two
disjoint “phases,” N̋ D N̋

1[ N̋
2, and that there exist constants a1 and a2 such that

a.x/D
(
a1 I; x 2˝1;
a2 I; x 2˝2;

where I is the identity matrix. We further suppose that N̋
2 is wholly contained

inside˝ , and let �int denote the boundary between˝1 and˝2, see Fig. 1. Then (1)
can more clearly be written

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

�a1�u.x/D 0; x 2˝1;
�a2�u.x/D 0; x 2˝2;

Œu�.x/ D 0; x 2 �int;

Œaun�.x/D 0; x 2 �int;

un.x/D f .x/; x 2 �;

(2)

where for x 2 � , Œu�.x/ and Œaun�.x/ denote the jumps in the potential and in the
flow �a.x/ru.x/ in the normal direction, respectively.

G

Gint

W2

W2

W2

W1

Fig. 1 A two phase domain
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While the current paper concerns only situations modeled by equations of the
types (1) and (2), the methodology extends to more general elliptic differential
equations, see Sect. 5.

1.3 Coarse-Graining of the Differential Operator
(Homogenization)

A classical technique [2, 14] for handling a problem such as (1) with a rapidly
varying coefficient function a is to construct a function ahom that varies on the
macroscale only (or may even be constant) such that the solution u is in some sense
approximated by the solution uhom to

� �r � �ahom.x/� ruhom.x/
�D 0; x 2˝;

@nuhom.x/D f .x/; x 2 �: (3)

The derivation of an equation such as (3) typically relies on fairly strong
assumptions on separation of length-scales, rendering this technique problematic
in situations involving boundary effects, concentrated loads, multiple or undifferen-
tiated length-scales, etc. A common technique for ameliorating these difficulties is
to preserve a piece of the fully resolved micro-structure near the boundary, or the
concentrated load, and then to “glue” the two models together.

Another common approach is to forego the construction of a coarse-grained
continuum model and construct an equation involving a discretized differential
operator whose solution in some sense captures the macro-scale behavior of the
solution of (3), see e.g. [17]. The elements of the discretized matrix are typically
constructed via local computations on patches of micro-structure.

1.4 Coarse-Graining of the Solution Operator

The premise of our work is that it is possible, and often advantageous, to approx-
imate the solution operator of (1), rather than the differential operator itself. We
will demonstrate that with this approach, many of the difficulties encountered in
common coarse-graining strategies can be side-stepped entirely. To be precise, we
note that mathematically, the solution to (1) takes the form

u.x/D ŒK f �.x/D
ˆ
�

G.x;y/f .y/ds.y/; x 2 �; (4)

where G is a kernel function that depends both on the function a, and on the
domain ˝ . It is known analytically only in the most trivial cases (such as a being
constant, and ˝ being a square or a circle). However, it turns out that the solution
operator can be constructed numerically relatively cheaply, and that it admits very
data-sparse representations.
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Roughly speaking, our proposal is that instead of seeking an approximation of
the form (3) of (1), it is often advantageous to seek an approximation of the form

uhom.x/D ŒKhomf �.x/D
ˆ
�

Ghom.x;y/f .y/ds.y/; x 2 �:

of (4). The purpose of the manuscript is to demonstrate the basic viability and
desirability of this approach. Specifically, we seek to:

1. Demonstrate via numerical examples that the solution operators can to high
precision be approximated by “data-sparse” representations.

2. Illustrate a framework in which highly accurate reduced models can be con-
structed even for situations involving boundary effects, and concentrated loads.

3. Demonstrate that the reduced models can in many instances be computed
inexpensively from statistical experiments on RVEs.

4. Demonstrate that in situations where the full micro-structure needs to be res-
olved, there exist highly efficient techniques for doing so, and that the resulting
reduced models form natural building blocks in computational models.

Remark 1. In this paper, we focus on problems with no body load, such as (1).
However, the ideas set out can equally well be applied to problems such as

� �r � �a.x/� ru.x/�D h.x/; x 2˝;
un.x/D f .x/; x 2 �: (5)

The mathematical solution operator then contains two terms, one corresponding to
each of the two data functions f and h,

u.x/D
ˆ
�

G.x;y/f .y/ds.y/C
ˆ
˝

K.x;y/h.y/dA.y/; x 2˝: (6)

The second term in (6) is compressible in a manner very similar to that of the first.

Remark 2. A reason why approximation of the solution operator may prove
advantageous compared to approximating the differential operator is hinted at by
the spectral properties of the problem. For a bounded domain, an elliptic operator
A such as the one defined by (1) or (2) typically has a discrete spectrum .�n/

1
nD1,

where �n ! 1, and where eigenfunctions get more oscillatory the larger �n is. In
up-scaling A, we seek to construct an operator Ahom whose low eigenvalues and
eigenfunctions approximate those of A. Measuring success is tricky, however, since
the operator A�Ahom is in many ways dominated by the high eigenvalues. One
way of handling this is to consider multi-scale representations of the operators,
see, e.g., [1, 9, 16, 18, 19]. Another way is to try to approximate the inverse of the
operator. We observe that A�1 is typically compact, and its dominant eigenmodes
are precisely those that we seek to capture. Roughly speaking, we advocate the
numerical construction of a finite dimensional operator T such that jjA�1�T jj is
small.
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Remark 3. Our goal with this paper is not to set up a mathematical analysis of
the properties of kernels such as the function G in (4). However, to give a sense
of the type of questions that arise, let us consider a situation where the function
a in (1) represents a micro-structure with a characteristic length-scale �. We then
let d denote a cut-off parameter that separates the near-field from the far-field, say
d D 5�, and set

Gnear.x;y/D
�
G.x;y/; jx�yj � d;

0; jx�yj> d; Gfar.x;y/D
�
0; jx�yj � d;

G.x;y/; jx�yj> d;
and

unear.x/D
ˆ
�

Gnear.x;y/f .y/ds.y/; ufar.x/D
ˆ
�

Gfar.x;y/f .y/ds.y/:

The function y 7!Gnear.x;y/ depends strongly on the local micro-structure near x,
and cannot easily be compressed. This part of the operator must be resolved
sufficiently finely to fully represent the micro-structure. However, this is a local
interaction, and unear can be evaluated cheaply once Gnear has been determined.
In contrast, Gfar is compressible. If �1 and �2 are two non-touching pieces of the
boundary, then the integral operator

ŒT�1 �2
��.x/D

ˆ
�2

Gfar.x;y/�.y/ds.y/; x 2 �1;

is not only compact, but its singular values typically decay exponentially fast, with
the rate of decay depending on the sizes of �1 and �2, and on the distance between
them. More careful analysis of these issues in an appropriate multi-scale framework
can be found in [23].

2 Data-Sparse Matrices

A ubiquitous task in computational science is to rapidly perform linear algebraic
operations involving very large matrices. Such operations typically exploit special
structure in the matrix since the costs for methods capable of handling general
matrices tend to scale prohibitively fast with matrix size: For a general N �N
matrix, it costsO.N 2/ operations to perform a matrix-vector multiplication,O.N 3/

operations to perform Gaussian elimination or to invert the matrix, etc. A well-
known form of structure in a matrix is sparsity. When at most a few entries in
each row of the matrix are non-zero (as is the case, e.g., for matrices arising
upon the discretization of differential equations, or representing the link structure
of the World Wide Web) matrix-vector multiplications can be performed in O.N/
operations instead of O.N 2/. The description data-sparse applies to a matrix that
may be dense, but that shares the key characteristic of a sparse matrix that some
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linear algebraic operations, typically the matrix-vector multiplication, can to high
precision be executed in fewer thanO.N 2/ operations (often in close to linear time).

There are many different types of data-sparse representations of a matrix. In this
paper, we will utilize techniques for so called Hierarchically Semi-Separable (HSS)
matrices [11, 13, 33], which arise upon the discretization of many of the integral
operators of mathematical physics, in signal processing, in algorithms for inverting
certain finite element matrices, and in many other applications, see e.g. [12,29,33].
An HSS matrix is a dense matrix whose off-diagonal blocks are rank-deficient in
a certain sense. Without going into details, we for now simply note that an HSS
matrix A can be expressed via a recursive formula in L levels,

A.`/ D U.`/A.`�1/V.`/C B.`/; `D 2; 3; : : : ;L; (7)

where A D A.L/, and the sequence A.L/, A.L�1/, . . . , A.1/ consists of matrices that
are successively smaller (typically, A.`�1/ is roughly half the size of A.`/). In (7), the
matrices U.`/, V.`/ and B.`/ are all block-diagonal, so the formula directly leads to
a fast technique for evaluating a matrix-vector product. The HSS property is similar
to many other data-sparse representations in that it exploits rank-deficiencies in off-
diagonal blocks to allow matrix-vector products to be evaluated rapidly; the Fast
Multipole Method [24,25], Barnes-Hut [3], and panel clustering [26] are all similar
in this regard. The HSS property is different from these other formats in that it also
allows the rapid computation of a matrix inverse, of an LU factorization, etc, [10,11,
15, 30, 34]. The ability to perform algebraic operations other than the matrix-vector
multiplication is also characteristic of the H -matrix format of Hackbusch [28].

Remark 4. There currently is little consistency in terminology when it comes to
“data-sparse” matrices. The property that we refer to as the “HSS” property has
appeared under different names in, e.g., [30–32, 34]. It is closely related to the
“H 2-matrix” format [5–7,27] which is more restrictive than the H -matrix format,
and often admits O.N/ algorithms.

Remark 5. This remark describes in which sense the off-diagonal blocks of a matrix
that is compressible in the HSS-sense have low rank; it can safely be by-passed as
the material here is referenced only briefly in Sect. 3.3. Let A denote anN �N HSS
matrix A. Let I denote an index vector

I D ŒnC1; nC2; : : : ; nCm�;

where n and m are positive integers such that nCm �N . Then we define the HSS
row block RI as the m�N matrix

RI D

2

66664

anC1;1 anC1;2 � � � anC1;n 0 0 � � � 0 anC1;nCmC1 anC1;nCmC2 � � � anC1;N
anC2;1 anC2;2 � � � anC2;n 0 0 � � � 0 anC2;nCmC1 anC2;nCmC2 � � � anC2;N
:::

:::
:::

:::
:::

:::
:::

:::
:::

anCm;1 anCm;2 � � � anCm;n 0 0 � � � 0 anCm;nCmC1 anCm;nCmC2 � � � anCm;N

3

77775
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In other words, RI is an m�N sub-matrix of A corresponding to the rows marked
by the index vector I , but with the diagonal block corresponding to I replaced
by a zero matrix. The HSS column block CI is analogously defined as the N �m
matrix consisting ofm columns of A with the diagonal block excised. The principal
criterion for a matrix A to be compressible in the HSS sense is that its HSS blocks
should have numerically low rank.

3 Case Study: A Discrete Laplace Equation on a Square

In this section, we illustrate how the coarse-graining techniques outlined in Sect. 1.4
can be applied to a discrete equation closely related to (1). This discrete equation
can be viewed either as the result of discretizing (1) via a finite difference method, or
as an equation that in its own right models, for instance, electro-statics on a discrete
grid.

3.1 Problem Formulation

Given a positive integer Nside, we let ˝ denote the Nside �Nside square subset of Z2

given by

˝ D fmD .m1; m2/ 2 Z
2 W 1�m1 �Nside and 1�m2 �Nsideg: (8)

Figure 2a illustrates the definition. For a nodem 2˝ , we let Bm denote a list of of
all nodes in ˝ that directly connect to m. For instance, an interior node such as the
nodem shown in Fig. 2b would have the neighbor list

a b c

Fig. 2 Geometry of the lattice problem in Sect. 3.1. (a) The full lattice forNsideD 5. The boundary
nodes in˝b are white and the interior nodes in˝i are black. (b) The four neighbors of an interior
node m. (c) The three neighbors of a boundary node n
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Bm D fms; me; mn; mwg;
while a node on a “western” boundary like n in Fig. 2c would have the neighbor list

Bn D fns; ne; nng:
For each pair fm; ng of connected nodes, we let ˛m;n denote a parameter indicating
the conductivity of the link. For a function u D u.m/ where m 2 ˝ , the discrete
Laplace operator is then defined via

ŒAu�.m/D
X

n2Bm

˛m;n
	
u.m/�u.n/
: (9)

Example: For the case where ˛m;n D 1 for all connected nodes, we retrieve the
standard five-point stencil associated with discretization of the Laplace operator.
For instance, with column-wise ordering of the nodes in the lattice shown in Fig. 2a,
we obtain the 25�25matrix

AD

2

6664

C �I 0 0 0
�I D �I 0 0
0 �I D �I 0
0 0 �I D �I
0 0 0 �I C

3

7775; (10)

where I is the 5�5 identity matrix and

C D

2

664

2 �1 0 0 0
�1 3 �1 0 0
0 �1 3 �1 0
0 0 �1 3 �1
0 0 0 �1 2

3

775 ; D D

2

664

3 �1 0 0 0
�1 4 �1 0 0
0 �1 4 �1 0
0 0 �1 4 �1
0 0 0 �1 3

3

775:

We let ˝b denote the boundary nodes and we let ˝i denote the interior nodes
(cf. Fig. 2a). Partitioning the matrix A accordingly, the discrete analog of (1)
becomes �

Ab;b Ab;i

Ai;b Ai;i

� �
ub

ui

�
D
�
fb

0

�
: (11)

Solving for the boundary values of the potential, ub, we find that1

ub D �
Ab;b � Ab;i A

�1
i;i Ai;b

��1
fb:

In consequence, the discrete analog of the solution operator (in this case a discrete
analog of the Neumann-to-Dirichlet operator) is

1 Strictly speaking, the matrix Ab;b�Ab;i A
�1
i;i Ai;b has a one-dimensional null-space formed by the

constant functions and is not invertible. This is easily dealt with by a regularization that restricts
attention to functions summing to zero. In what follows, such regularization will be employed
where appropriate without further mention.
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T D �
Ab;b � Ab;i A

�1
i;i Ai;b

��1
: (12)

The operator T defined by (12) is dense, but turns out to be data-sparse in the sense
described in Sect. 2. We will in this section substantiate this claim via numerical
examples, and also outline strategies for rapidly constructing such an operator in
different environments.

3.2 Model Problems

The compressibility of the solution operator T defined by (12) was investigated in
the following five model environments:

Case A: Constant conductivities. In this model, all conductivities are identically
one,

˛m;n D 1 for each connected pair fm; ng: (13)

For Nside D 5, the resulting matrix A is the one given as an example in (10). Since
in this case the matrix A can be viewed as a discretization of the Laplace operator
�� on a square, the solution operator T can be viewed as a discrete analog of the
standard Neumann-to-Dirichlet operator associated with Laplace’s equation.

Case B: Smooth periodic conductivities. This case is a discrete analog of the
equation

� r � �b.x/ru.x/�D f .x/; x 2 Œ0; 1�2; (14)

where b is a periodic function defined by

b.x/D 1�0:9�cos.�Ncellsx1/
�2 �

cos.� Ncellsx2/
�2
; x D .x1; x2/ 2 Œ0; 1�2:

(15)
In other words, (14) models a medium whose conductivity repeats periodically
across Ncells �Ncells cells in the square Œ0; 1�2. Figure 3a illustrates the function
b for Ncells D 4. A discrete analog of (14) is now obtained by setting

˛m;n D b

�
mCn�2
2.Nside �1/

�
for each connected pair fm; ng:

In our experiments, we chose Ncell so that 25 nodes were used to resolve each
period,Ncell D .Nside �1/=25 (for clarity, Fig. 3 shows a solution with only 15 nodes
per period). In this case, the solutions are typically oscillatory on the boundary,
cf. Fig. 3b. This is a basic two-scale problem that should be amenable to traditional
homogenization techniques provided there is a sufficient separation of length-scales.

Case C: Random conductivities. The conductivities ˛m;n are for each connected
pair of nodes fm; ng drawn independently from a uniform probability distribution
on Œ1; 2�. In this case, there is no local regularity, but we would expect traditional
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Fig. 3 The periodic problem described as Case B in Sect. 3.2 with Ncells D 4 and Nside D 61.
(a) The function b D b.x/ defined by (15). (b) A solution to the Neumann problem (11) with a
constant inflow at x1 D 1 and a constant outflow at x1 D 0

homogenization to give accurate results whenever the length-scales are sufficiently
separated.

Case D: Sparsely distributed missing bars. In this model, all bars are assigned
conductivity 1 (as in Case A), but then a small percentage p of bars are completely
removed (in the examples reported, p D 4%). In other words,
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˛m;n D
8
<

:

1; with probability 1�p if fm; ng is a connected pair;
0; with probability p if fm; ng is a connected pair;
0; if fm; ng is not a connected pair:

As in Case C, there is no local regularity, but we would expect traditional
homogenization to give accurate results whenever the length-scales are sufficiently
separated.

Case E: A lattice with two long cracks. This model is similar to Case D in that
a small number of links have been cut, and all the remaining ones have unit
conductivity. However, we organized the cut links into two long cracks running
through the lattice. Figure 4a illustrates for a case where Nside D 50. In larger
lattices, the cracks have the same proportions, but the gap between the two cracks is
kept constant at four links. In this case, solutions may exhibit major discontinuities.
Figure 4b illustrate the electric field resulting from placing oppositely signed unit
sources at the locations marked source and sink in Fig. 4a. We would expect analytic
derivation of a simplified model to be very hard work in a situation such as
this.

3.3 Compressibility of the Solution Operator

While the operator T defined by (12) is dense, it is in many situations of interest
data-sparse in the sense described in Sect. 2. To illustrate this point, we computed
the matrix T by brute force for several different lattices, compressed it into the HSS
format to ten digits of accuracy (we enforced that local truncation errors be less
than 10�10), and looked at how much memory was required to store the result.
Tables 1 and 2 show our findings for each of the five different models described in
Sect. 3.2, and for differently sized lattices. To provide more detail, Table 3 reports
the average ranks of the so called “HSS blocks” (as defined in Remark 5) of a
6396�6396matrix T associated with a 1600�1600 square domain for each of the
five examples.

An interesting aspect of the reported data is that the matrix T associated with
the classical five-point stencil (represented by Case A) is highly compressible. To
store it to ten digits of accuracy, less than 100 floating point numbers are required
for each degree of freedom (see Table 2). This fact has been exploited in a series of
recent papers, including [12, 23, 29]. What is perhaps more remarkable is that the
compressibility property is extremely robust to small changes in the micro-structure.
As Tables 1–3 show, there is almost no discernible difference in compressibility
between the five models considered.
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Fig. 4 (a) The lattice with cracks described as Case E in Sect. 3.2 for Nside D 40. (b) A solution
to the Neumann problem (11) with a unit inflow at the location marked source in (a), and a unit
outflow at the location marked sink
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Table 1 Memory requirements in KB. The table shows the amount of memory (in KB) required
for storing the matrix T defined by (12) for different problem sizes Nsize. The first line gives
the memory required for storing a general dense matrix of size 4.Nside�1/�4.Nside�1/. The
following lines give the amount of memory required to store T in the “HSS” data-sparse format
described in Sect. 2 for each each of the five cases described in Sect. 3.2, to within precision 10�10

Nside D 100 200 400 800 1,600

General matrix 1.23e3 4.95e3 1.99e4 7.98e4 3.20e5
Case A (constant) 3.02e2 6.13e2 1.22e3 2.42e3 4.78e3
Case B (periodic) 2.97e2 6.06e2 1.21e3 2.38e3 4.69e3
Case C (random 1) 3.03e2 6.20e2 1.23e3 2.43e3 4.80e3
Case D (random 2) 2.96e2 6.06e2 1.20e3 2.38e3 4.70e3
Case E (cracks) 2.96e2 6.10e2 1.22e3 2.42e3 4.77e3

Table 2 Memory requirements in words per degree of freedom. The table shows the same data
given in Table 1, but now scaled to demonstrate that the memory requirement scales linearly with
problem size. To be precise, the entries given are the number of “words” (the memory required to
store a floating point number to double precision accuracy) required per node on the boundary

NsideD 100 200 400 800 1,600

General matrix 396 796 1,596 3,196 6,396
Case A (constant) 97.7 98.6 98.1 96.8 95.7
Case B (periodic) 95.9 97.4 96.7 95.4 93.9
Case C (random 1) 97.8 99.7 98.8 97.5 96.0
Case D (random 2) 95.5 97.5 96.6 95.4 94.1
Case E (cracks) 95.7 98.1 97.7 96.8 95.5

Table 3 HSS ranks of the Schur complements for a matrix of size 6;396� 6;396. The table
shows the HSS-ranks (as described in Remark 5) of blocks in the solution operator for the different
models. The reported rank was the average numerical rank (at precision 10�10) over all HSS
blocks of size Nblock that arise in the compressed representation

NblockD 50 100 200 400 800 1,600

General matrix 50 100 200 400 800 1,600
Case A (constant) 19.3 22.7 26.0 31.0 39.0 53.0
Case B (periodic) 18.8 21.6 24.8 29.3 37.0 50.0
Case C (random 1) 19.3 22.8 26.8 31.6 39.8 54.0
Case D (random 2) 18.7 21.9 25.5 30.8 38.8 52.5
Case E (cracks) 19.2 22.7 25.9 30.9 38.8 52.5
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Once the compressed solution operator has been computed, it can be applied to
a vector more or less instantaneously. For our simple implementation, we found the
following for the time tsolve (in seconds) required for a single solve:

Nside 200 400 800 1,600 3,200

tsolve (sec) 4.4e-3 8.7e-3 1.8e-2 3.4e-2 7.1e-2

These numbers refer to a reduced model that is precise to within ten digits, and we
would like to emphasize that the largest example reported, which requires 0:07 s for
one solve, involves a problem whose micro-structure was originally resolved using
3200�3200	 107 nodes.

The results reported in Tables 1–3 indicate that reduced models that are precise to
within ten digits of accuracy in principle exist, even in the presence of the following
complications:

� Solutions that are oscillatory on the boundary, even when the period of the
oscillation is not very much smaller than the size of the domain (as in Case B).

� Solutions that are highly irregular on the boundary (as in Cases C, D, and E).
� Boundary loads that exhibit no smoothness. (We observe that the solution

operator is constructed under no assumption on smoothness of the boundary
data.)

� Solutions that involve significant discontinuities (as shown in Fig. 4b).

In Sects. 3.4, 3.5, and 3.6, we will describe practical techniques for inexpensively
computing such reduced models.

3.4 Techniques for Computing the Solution Operator
That Fully Resolve the Micro-Structure

Given a realization of a lattice model, the operator T defined by (12) can of course be
computed with brute force. While Gaussian elimination has anO.N 6

side/ asymptotic
cost that quickly becomes prohibitive, substantially more efficient techniques exist.
Appendix describes a variation of the classical nested dissection method which
in the present environment requires O.N 3

side/ floating point operations (flops) and
O.N 2

side/ memory. This technique is exact up to rounding errors, and is very easy
to implement. It was used to calculate the numbers reported in Sect. 3.3 and is
sufficiently fast that the solution operator associated with an 800�800 lattice can be
determined in 40 s via a Matlab implementation running on a standard desktop PC.

More recently, techniques have been developed that compute an operator such as
T in O.N 2

side/ time (or possibly O.N 2
side.logNside/

�/ for a small integer �), which is
optimal since there areO.N 2

side/ links in the lattice [12,23,29]. These techniques are
highly efficient, and enable the brute force calculation of a reduced model in many
important environments in both two and three dimensions. For a brief introduction,
see Section “Accelerations” in Appendix.
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3.5 Techniques Accelerated by Collecting Statistics
from a Representative Volume Element

In situations where there is a good separation of length-scales, variations of classical
homogenization techniques can be used to dramatically accelerate the computation
of a compressed boundary operator. To illustrate, let us investigate Case C in
Sect. 3.2 (the case of random conductivities, drawn uniformly from the interval
Œ1; 2�). The most basic “homogenized equation” is in this case a lattice in which all
links have the same conductivity. Through experiments on an RVE, we determined
that this conductivity should be

c3 D 1:4718 � � �
We let Thom denote the solution operator (i.e. the lattice Neumann-to-Dirichlet
operator) for the homogenized lattice. We measured the discrepancy between the
homogenized operator Thom, and the operator associated with the original lattice T,
using the measures:

EN2D D jjThom � Tjj
jjTjj ; and ED2N D jjT�1hom � T�1jj

jjT�1jj : (16)

The first column of Table 4 gives the results for a particular realization of a 50�50
lattice. In addition to the discrepancies measured in operator norm, the table also
provides the errors

Esmooth D jj�Thom � T
�
fsmoothjj

jjTfsmoothjj ; and Erough D jj�Thom � T
�
froughjj

jjTfroughjj ; (17)

associated with two particular Neumann data vectors fsmooth and frough. The solu-
tions associated with these data vectors are shown in Fig. 5. These examples show
that as one would expect, the homogenized equation provides quite high accuracy
for a smooth solution, and very poor accuracy for a rough one. (Table 4 also reports
errors associated with improved “buffered” homogenization schemes, which will be
introduced in Sect. 3.6.)

We next repeated all experiments for Case D (as defined in Sect. 3.2). In this case,
numerical experiments indicated that the homogenized conductivity is

c4 D 1� 1

2
pCO.p2/:

The first column of Table 5 shows the errors associated with a realization of “Case
D” on a 50�50 grid, with p D 0:04, and c4 D 0:98.

Remark 6 (Computational cost). The solution operator Thom associated with a
constant coefficient lattice can be computed in time proportional to O.Nside/ (in
other words, in time proportional to the number of nodes on the boundary). This
means that very large lattices can be handled rapidly. It was demonstrated in [22]
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Fig. 5 Solutions for non-homogenized equation. (a) Solution resulting from the smooth boundary
data fsmooth. (b) Solution resulting from the rough boundary data frough
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Table 4 Errors in homogenized operator for “Case C”. Discrepancy between the solution operator
of an given lattice, and the homogenized solution operator. These numbers refer to the model
described as “Case C” in Sect. 3.2 (random conductivities). The errors ED2N, EN2D, Esmooth, and
Erough are defined in (16) and (17)

No buffer Homogenization with buffer of width b

bD 1 bD 2 b D 3 bD 4 bD 5 b D 10
ED2N 1.9e-01 5.4e-03 1.2e-03 3.9e-04 3.3e-04 1.3e-04 6.6e-05
EN2D 1.1e-02 7.5e-03 5.6e-03 5.7e-03 4.3e-03 4.9e-03 2.4e-03
Esmooth 7.3e-03 4.1e-03 4.1e-03 4.1e-03 2.8e-03 2.6e-03 1.4e-03
Erough 1.5e-01 2.1e-02 1.1e-02 2.2e-03 8.8e-04 3.5e-03 9.2e-04

Table 5 Errors in homogenized operator for “Case D”. Discrepancy between the solution operator
of an given lattice, and the homogenized solution operator. These numbers refer to the model
described as “Case D” in Sect. 3.2 (randomly cut bars). The errors ED2N, EN2D, Esmooth, and
Erough are defined in (16) and (17)

No buffer Homogenization with buffer of width b

bD 1 b D 2 bD 3 bD 4 b D 5 b D 10
ED2N 4.4e-01 1.5e-02 4.5e-03 1.7e-03 1.2e-03 7.6e-04 3.3e-04
EN2D 8.7e-02 6.1e-02 5.6e-02 5.2e-02 4.5e-02 4.4e-02 2.8e-02
Esmooth 7.4e-02 5.9e-02 5.4e-02 4.8e-02 4.2e-02 4.1e-02 2.7e-02
Erough 1.0e-01 7.0e-02 6.8e-02 6.2e-02 5.1e-02 5.0e-02 3.4e-02

that the solution operator associated with a lattice with 1010 nodes can be computed
in less than two minutes on a standard desktop PC. (Observe that only the 4 � 105
nodes on the boundary actually need to enter the calculation.)

3.6 Fusing a Homogenized Model to a Locally Fully
Resolved Region

In the environments under consideration here, domains are loaded only on the
border. This of course raises the possibility of improving the accuracy in the
homogenized model by preserving the actual micro-structure in a thin strip along
the boundary, and use the homogenized equations only in the interior. In the frame-
work proposed here, where the simplified model consists of a solution operator
rather than a differential operator (or in the present case, difference operator), it
is extra ordinarily simple to do so.
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b

a b c

Fig. 6 Construction of a highly accurate reduced model by fusing a homogenized region with
a region in which the micro-structure is fully resolved. (a) The blue links are within distance
b of the boundary, and maintain their original conductivity. The red links are all assigned the
“homogenized” conductivity. (b) All red links are eliminated from the model. This requires
the construction of the solution operator for a constant coefficient lattice at cost O.Nside/
(see Remark 6). (c) The few remaining links are eliminated to construct a highly approximate
approximation to the solution operator

To illustrate, suppose that we are given a realization of an Nside �Nside lattice
with heterogeneous conductivities. We fix a parameter b that indicates how broad
of a band of cells we preserve, and then replace all bars that are more than b cells
away from the boundary by bars with the homogenized conductivity, as illustrated in
Fig. 6a. Then use the techniques of Sect. 3.5 to compute the Neumann-to-Dirichlet
operator for the constant coefficient lattice of size .Nside�2b/� .Nside�2b/ in the
center. As observed in Remark 6, the cost is only O.Nside/, and the new reduced
model involves only O.Nside/ degrees of freedom. As Tables 4 and 5 demonstrate,
for our model problems (“Case C” and “Case D”) keeping only five layers of the
original lattice leads to a reduced model that is accurate to three or four digits.

Remark 7 (Accuracy of Neumann vs. Dirichlet problems). Tables 4 and 5 show
that when “unbuffered” homogenization is used, the resulting errorED2N associated
with Dirichlet problems is significantly larger than the error EN2D associated with
Neumann problems. The tables also show that the accuracy of Dirichlet problems
improve dramatically upon the introduction of even a very thin boundary layer. This
is as one would expect since the Dirichlet-to-Neumann operator is dominated by
short range interactions.

4 Case Study: Two-Phase Media

In this section, we briefly investigate the compressibility of the Neumann-to-
Dirichlet operator for a two-phase material modeled by (2). The two geometries
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we consider are shown in Fig. 7, with the conductivity of the inclusions set to zero.
In this case, the operator under consideration is a boundary integral operator T
supported on the square outer boundary. Using techniques described in Remark 8,
we constructed an 1;144�1;144matrix T that approximatedT . With this number of
nodes, any Neumann data generated by point sources up to a distance of 0.5% of the
side length of the square can be resolved to eight digits of accuracy. We compressed
the matrix T into the HSS format described in Sect. 2 to a relative precision of 10�10.
The resulting data required 1.19KB of memory to store for the geometry shown in
Fig. 7a, and 1.22KB of memory for the geometry shown in Fig. 7b. This corresponds
to about 135 words of storage per row in the matrix. The HSS-ranks (as defined in
Remark 5) are reported in Table 6. We make three observations:

� A compressed version of the boundary operator can in this case be stored using
about the same amount of memory (100 words per degree of freedom) as the
operators associated with the discrete problems described in Sect. 3.

� The two geometries shown in Fig. 7 require about the same amount of memory.
This is note-worthy since the one labeled (b) corresponds to an almost singular
geometry in which the domain is very close to being split in two halves. The
effect is illustrated the solution shown in Fig. 8b where steep gradients are seen
in middle of the piece. Standard assumptions used when homogenizing an elliptic
differential operator are violated in this case.

� In Table 6, the ranks of HSS-blocks of size 143 are larger than those of HSS-
blocks of size 286. We speculate that this unusual situation can be traced to the
fact that the larger blocks are larger than the inclusions, and largely do not “see”
the heterogeneities.

Table 6 Average ranks of HSS blocks for composite material example in Sect. 4. The average
HSS-ranks (as defined in Remark 5) for the blocks in a data-sparse representation of the Neumann-
to-Dirichlet operator for the geometries shown in Fig. 7

Nblock D 36 71 143 286

Geometry shown in Fig. 7a 18.2 27.0 39.5 25.8
Geometry shown in Fig. 7b 18.3 27.3 41.1 28.0

Remark 8 (Details of computation). To derive our approximation to the Neumann-
to-Dirichlet operator, we recast the Neumann Laplace equation (2) as a BIE defined
on the joint boundary � [�int. In the present case with non-conducting inclusions,
the boundary condition on all interior boundaries simplifies to a homogeneous
Neumann condition. We represented the solution as a single layer representation
supported on both the outer boundary � and the interior boundary �int. In other
words, we sought a solution of the form
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a

b

Fig. 7 Geometry for computations in Sect. 4. (a) A perforated material. (b) A perforated material
with a chain of holes that almost line up



208 A. Gillman et al.

Fig. 8 Solutions to the Laplace’s equation with Neumann boundary conditions on the geometries
(a) and (b) shown in Fig. 7. The boundary flux is set to be identically zero, except for two point
sources of strengths˙1
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u.x/D
ˆ
�

log jx�yj�.y/ds.y/C
ˆ
�int

log jx�yj �.y/ds.y/: (18)

The resulting BIE was discretized using a Nyström method combined with trape-
zoidal quadrature on the interior holes, and a Gaussian quadrature on the exterior
boundary supported on 44 panels with 26 nodes each. The quadrature rule was
locally modified as described in [8] to maintain eight digit accuracy in the presence
of corners. This resulted in a large linear system from which all degrees of
freedom associated with internal nodes (those associated with the density � in
(18)) were eliminated. The resulting Schur complement was multiplied by a matrix
representing evaluation of a single layer potential on the boundary to produce
the final discrete approximation T to the “true” analytic Neumann-to-Dirichlet
operator T .

5 Generalizations

This report focused on problems modeled by simple Laplace-type problems in two
dimensions involving no body loads. However, the techniques can be extended to
much more general environments:

Other boundary conditions: While we focused on problems with Neumann bound-
ary conditions, the extension to Dirichlet or mixed boundary conditions is trivial.

Other elliptic equations: The methods described extend readily to other elliptic
equations whose kernels are non-oscillatory such as Stokes, elasticity, Yukawa,
etc. The extension to wave problems modeled by Helmholtz equation, or the
time-harmonic version of Maxwell, is more complicated for two reasons: (1) The
presence of resonances (both true ones corresponding to the actual physics, and
artificial ones present in the mathematical model only) must be dealt with. This
can be done, but requires careful attention. (2) As the wave-number increases, the
compressibility of the solution operator deteriorates, and eventually renders the
proposed approach wholly unaffordable.

Body loads: The extension to problems involving body loads is in principle straight-
forward (see Remark 1). However, the compressed solution operator becomes more
expensive to store.

Problems in three dimensions: In principle, the methodology proposed extends
straight-forwardly to problems in three dimensions. However, the construction of the
solution operator does become more expensive, and the method might be best suited
for environments where a pre-computation is possible, or where the construction
of the solution operator can be accelerated via the use of homogenized models in
parts of the domain (as illustrated in Sect. 3.6). Moreover, for problems in three
dimensions involving body loads, memory requirements may become prohibitive.
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6 Conclusions

The purpose of this report is to attempt to draw attention to recent developments
in numerical analysis that could be very useful in modeling heterogeneous media.
Specifically, it has become possible to inexpensively compute an approximation to
the solution operator associated with many elliptic PDEs, and to perform various
operations involving such solution operators: addition, multiplication, inversion,
merging operators for different sub-domains, etc. We argue that such solution
operators form excellent “reduced models” for many problems that have proven
difficult to handle using traditional homogenization techniques.

Constructing reduced models by approximating the solution operator is particu-
larly advantageous in the following environments:

Domains that are loaded on the boundary only: For problems that involve no
body load, the solution operator is defined on the boundary only. This reduction
in dimensionality means that once it is computed, it can be stored very efficiently,
and applied to vectors sufficiently fast that real time simulations become possible.
For some problems in this category, the actual construction of the solution operator
requires a large-scale (but very efficient) computation involving the entire micro-
structure, but as shown in Sect. 3.6, the solution operator can sometime be dramat-
ically accelerated by using a homogenized model in the interior of the domain.

Situations where a pre-computation is possible: When the entire micro-structure
needs to be resolved (as happens when the problem involves a body load, or a micro-
structure not suitable for homogenization methods), the initial construction of the
solution operator can become somewhat expensive, in particular for problems in
three dimensions. However, once it has been constructed, it can usually be applied
to a vector very rapidly. This raises the possibility of pre-computing a library of
compressed models which can then be used as building blocks in computational
simulations.

Problems in two dimensions (whether involving volume loads or not): Given
current trends in algorithmic and hardware development, we predict that for a
great many problems in two dimensions, it will soon become entirely affordable
to resolve the entire micro-structure, and computationally derive a reduced model
of the solution operator. The automatic nature of such a procedure would save much
human effort, and would be very robust in the sense that the computed model would
be guaranteed to be accurate to whichever tolerance was requested.

Appendix: Efficient computation of the Neumann-to-Dirichlet
operator

In this appendix, we describe an efficient technique for computing the Neumann-to-
Dirichlet operator T defined by (12). It is a variation of the classical nested dissection
techniques [21]. Throughout the appendix,˝ is a rectangular lattice, as defined by
(8), and A is an associated discrete Laplace operator, as defined by (9).
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To be precise, the technique we will describe does not compute the Neumann-to-
Dirichlet operator T, but rather the Schur complement S, defined via

S D Ab;b � Ab;i A
�1
i;i Ai;b: (19)

Comparing (12) and (19), we see that T D S�1.

Outline

The technique is a divide-and-conquer scheme in which the computational domain
˝ is first split into 2L � 2L roughly equisized small boxes. The parameter L is
chosen so that each of the small boxes is sufficiently small that its Schur complement
can be computed by evaluating (19) via brute force. (In practice, we found that
letting the smallest boxes be of size roughly 50�50, or L	 log2.Nside=50/, works
well.) Then it turns out to be possible to merge the Schur complements of two
small adjacent boxes to form the Schur complement of the larger box; the process
is described in Section “Merging of Two Schur Complements” in Appendix. The
scheme proceeds by continuing the merge process to form the Schur complements
of larger and larger boxes until eventually the entire box ˝ has been processed. To
illustrate, we describe the process graphically for a 24�24 domain that is originally
split into 4�4 boxes, each containing 6�6 nodes.

Step 1: Partition the box ˝ into 16 small boxes. For each box, identify the internal
nodes (marked in blue) and eliminate them using formula (19).

⇒
Step 1
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Step 2: Join the small boxes by pairs to form the Schur complements of boxes
holding twice the number of nodes via the process to be described in Section
“Merging of Two Schur Complements” in Appendix. The effect is to eliminate the
interior nodes (marked in blue) of the newly formed larger boxes.

⇒
Step 2

Step 3: Merge the boxes created in Step 2 in pairs, again via the process described
in Section “Merging of Two Schur Complements” in Appendix.

⇒
Step 3
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Step 4: Repeat the merge process once more.

⇒
Step 4

Step 5: Repeat the merge process one final time to obtain the Schur complement
associated with the top level box˝ .

⇒
Step 2

Merging of Two Schur Complements

Suppose that ˝ is a box consisting of the two smaller boxes˝w and˝e (as in west
and east):

Suppose further that we know the corresponding Schur complements Sw and Se

and seek the Schur complement S of ˝ . In effect, we need to remove the “interior”
points along the middle lines (marked in blue in the figure).
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First partition the nodes in �w into the subsets �1 and �3, and partition �e into
�2 and �4 as shown in the figure. The Schur complements Sw and Se are partitioned
accordingly,

Sw D
�

S11 S13
S31 S33

�
; and Se D

�
S22 S24
S42 S44

�
:

Since the interior edges are unloaded, the joint equilibrium equation for the two
boxes now reads

2
664

S11 A12 S13 0

A21 S22 0 S24
S31 0 S33 A34
0 S24 A43 S44

3
775

2
664

u1
u2
u3
u4

3
775D

2
664

f1
f2
0

0

3
775; (20)

where Aij are the relevant submatrices of the original discrete Laplacian A. To be
precise, with A denoting the global discrete Laplace operator, and with Ji denoting
an index vector marking the nodes in �i , we have Aij D A.Ji ;Jj /. We observe
that all matrices Aij are very sparse (indeed, A12 and A21 have only two non-zero
elements each). From (20), it is clear that the Schur complement of the large box is

S D
�

S11 A12
A21 S22

�
�
�

S13 0

0 S24

� �
S33 A34
A43 S44

��1 �S31 0

0 S42

�
: (21)

Accelerations

The scheme described in Sections “Outline” and “Merging of Two Schur Com-
plements” in Appendix requires O.N 3

side/ floating point operations, and O.N 2
side/

storage, just like the original nested dissection scheme. This cost is incurred by the
repeated evaluation of the formula (21) which involve matrices Sij that are dense.
However, as discussed at length in Sect. 3.3, these matrices have internal structure
that allows operations such as matrix inversion, and matrix-matrix multiplication,
to be evaluated in linear time. Incorporating such accelerated procedures reduces
the overall cost (both floating point operations and memory) of the scheme to
O.Nside.logNside/

�/. For recent work in this direction, see, e.g. [12, 23, 29].

Remark 9. The process described in Section “Outline” in Appendix requires all
Schur complements associated with one level to be kept in memory at one time. It
is straight-forward to change the order in which the boxes are processed so that at
most four Schur complements on each level must be kept in memory. When dense
linear algebra is used, either approach requires O.N 2

side/ memory, but when data-
sparse matrix formats are used, such an ordering reduces the memory requirement
fromO.N 2

side/ to O.Nside.logNside/
�/.
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Remark 10. Even without accelerations, the scheme described in Section “Outline”
in Appendix can handle moderate size problems quite efficiently. For a rudimentary
implementation in Matlab executed on a standard desktop (with an Intel i7 CPU
running at 2.67 GHz), the time t required to compute T was:

Nside 100 200 400 800 1,600 3,200

t (sec) 2.6e-1 1.2e0 6.4e0 4.5e1 5.0e2 6.7e3

Note that less than a minute is required to process a lattice involving 8002 D 640000

nodes.
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Adaptive Multilevel Monte Carlo Simulation

Håkon Hoel, Erik von Schwerin, Anders Szepessy, and Raúl Tempone

Abstract This work generalizes a multilevel forward Euler Monte Carlo method
introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.)
for the approximation of expected values depending on the solution to an Itô
stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607–
617, 2008.) proposed and analyzed a forward Euler multilevel Monte Carlo method
based on a hierarchy of uniform time discretizations and control variates to reduce
the computational effort required by a standard, single level, Forward Euler Monte
Carlo method. This work introduces an adaptive hierarchy of non uniform time
discretizations, generated by an adaptive algorithm introduced in (Anna Dzougoutov
et al. Raúl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In
Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput.
Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch.
Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm
for ordinary, stochastic and partial differential equations. In Recent advances
in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer.
Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates
stochastic, path dependent, time steps and is based on a posteriori error expansions
first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169–
1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings
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in the computational cost to achieve an accuracy of O .TOL/, from O
�
TOL�3

�

using a single level version of the adaptive algorithm to O
��

TOL�1 log .TOL/
�2�

.

1 Introduction

This work develops a multilevel version of an adaptive algorithm for weak
approximation of Itô stochastic differential equations (SDEs)

dX.t/D a.t;X.t//dtCb.t;X.t//dW.t/; 0 < t < T; (1)

where X.t I!/ is a stochastic process in R
d , with randomness generated by a

k-dimensional Wiener process with independent components, W.t I!/, on the
probability space .˝;F ;P /; see [4, 7]. The functions a.t;x/ 2 R

d and b.t;x/ 2
R
d�k are given drift and diffusion fluxes.
Our goal is to, for any given sufficiently well behaved function g W Rd ! R,

approximate the expected value EŒg.X.T //� by adaptive multilevel Monte Carlo
methods. A typical example of such an expected value is to compute option prices in
mathematical finance; see [5] and [12]. Other models based on stochastic dynamics
are used for example in molecular dynamics simulations at constant temperature
and for stochastic climate prediction; cf. [6] and [2].

The multilevel Monte Carlo method based on uniform time stepping was
introduced by Giles in [10]. He developed a clever control variate type variance
reduction technique for a numerical method, denoted here by X , that approximates
the solution of the SDE (1). The key to the variance reduction in [10] is to compute
approximate solutions, X`, on hierarchies of uniform time meshes with size

�t` D C�`�t0; C 2 f2;3; : : :g and ` 2 f0;1; : : : ;Lg; (2)

thereby generating sets of realizations on different mesh levels. After computing
numerical approximations on a mesh hierarchy, the expected value EŒg.X.T //� is
approximated by the multilevel Monte Carlo estimator

EfS`gL`D0

�
g.XL.T //

�D
M0X

iD1

g.X0.T I!i;0//
M0

C
LX

`D1

MX̀

iD1

g.X`.T I!i;`//�g.X`�1.T I!i;`//
M`

: (3)

Here fS`gL`D0 denotes mutually independent sample sets on the respective
meshes, each with M` independent samples. To reduce the variance in the above
estimator, the realization pairs X`.T I!i;`/ and X`�1.T I!i;`/ of the summands
g.X`.T I!i;`//�g.X `�1.T I!i;`// for each level ` > 0 are generated by the same
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Brownian path, Wt .!i /, but they are realized on different temporal grids with
uniform time steps, �t` and�t`�1, respectively. The efficiency of this computation
relies on an a priori known order of strong convergence for the numerical method
employed on each level of the hierarchy.

Let TOL > 0 be a desired accuracy in the approximation of EŒg.X.T //�. The
main result of Giles’ work [10] is that the computational cost needed to achieve the
Mean Square Error (MSE)

E

��
EfS`gL`D0

�
g.XL.T //

��EŒg.X.T //�
�2�D O

�
TOL2

�
; (4)

when using the Forward Euler method to create the approximate realizations
X`.T I!/, can be reduced to

O
�
.TOL�1 log.TOL�1//2

�
;

with Giles’ multilevel Monte Carlo method; the corresponding complexity using
the standard Monte Carlo method is O

�
TOL�3

�
since the Forward Euler method

has weak order of convergence 1 and the Monte Carlo sampling order 1=2 by the
Central Limit Theorem. Furthermore, whenever the function g is Lipschitz and for
scalar Itô stochastic differential equations, the computational cost can be further
reduced to O

�
TOL�2

�
using the first order strong convergence Milstein method. In

addition, the work [11] shows how to apply the Milstein method for several scalar
SDE cases where the Lipschitz condition is not fulfilled and still obtain the cost
O
�
TOL�2

�
.

In this work we use the Forward Euler method with non uniform time steps. Let
0 D t0 < t1 < � � � < tN D T denote a given time discretization, without reference
to its place in the hierarchies, and f0 D W.t0I!/;W.t1I!/; : : : ;W.tN I!/g denote
a generated sample of the Wiener process on that discretization. Then the Forward
Euler method computes an approximate solution of (1) by the scheme

X.t0I!/DX.0/;

X.tnC1I!/D a.X.tnI!/; tn/�tnCb.X.tnI!/; tn/�W.tnI!/; n� 0; (5)

where �tn D tnC1� tn and �W.tnI!/DW.tnC1I!/�W.tnI!/ are the time steps
and Wiener increments, respectively.

The contribution of the present paper to the multilevel Monte Carlo method is
the development of a novel algorithm with adaptive, non uniform time steps. The
algorithm uses adaptive mesh refinements to stochastically create a path dependent
mesh for each realization. The construction and analysis of the adaptive algorithm is
inspired by the work on single level adaptive algorithms for weak approximation of
ordinary stochastic differential equations [8], and uses the adjoint weighted global
error estimates first derived in [1]. The goal of the adaptive algorithm is to choose
the time steps and the number of realizations such that the event

ˇ̌
ˇEfS`gL`D0

�
g.XL.T //

��EŒg.X.T //�
ˇ̌
ˇ � TOL; (6)
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holds with probability close to one.
It should be noted that in the setting of adaptive mesh refinement there is no given

notion of mesh size, so a hierarchy of meshes can no longer be described as in the
constant time step case (2). Instead, we generate a hierarchy of meshes by succes-
sively increasing the accuracy in our computations: setting the tolerance levels

TOL` D TOL0
2`

; for ` 2 f0;1; : : : ;Lg; (7)

and (by adaptive refinements based on error indicators) finding corresponding
meshes so that for each level ` 2 f0;1; : : : ;Lg;

ˇ̌
EŒg.X.T //��EŒg.X`.T //�

ˇ̌
. TOL`

2
:

The efficiency and accuracy of the multilevel adaptive Monte Carlo algorithm is
illustrated by a numerical example, in the case of the stopped diffusion problems
used to test the single level version of the algorithm in [3]. For this example
multilevel Monte Carlo based on adaptive time steps requires a computational work
O
�
TOL�2 log.TOL�1/2

�
while a direct application of the multilevel Monte Carlo

method based on uniform time steps would be less efficient since the underlying
Euler–Maruyama method has reduced orders of weak and strong convergence for
the barrier problem.

The rest of this paper is organized as follows: Subsection 1.1 introduces the
notion of error density and error indicators, and recalls useful results for single level
adaptive forward Euler Monte Carlo methods. Section 2 describes the new adaptive
multilevel Monte Carlo algorithm. Section 3 presents results from the numerical
experiment.

1.1 A Single Level Posteriori Error Expansion

Here we recall previous single level results that are used for constructing the multi-
level algorithm in Sect. 2. In particular, we recall adjoint based error expansions
with computable leading order term. Assume that the processX satisfies (1) and its
approximation,X , is given by (5); then the error expansions in theorems 1.2 and 2.2
of [1] have the form

EŒg.X.T //�g.X.T //� D E

"
NX

nD1
�n�t

2
n

#
C higher order terms; (8)

where �n�t2n are computable error indicators, that is they provide information for
further improvement of the time mesh and �n measures the density of the global
error in (8). A typical adaptive algorithm does two things iteratively:
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1. If the error indicators satisfy an accuracy condition then it stops; otherwise
2. The algorithm chooses where to refine the mesh based on the error indicators and

then makes an iterative step to 1

In addition to estimating the global error EŒg.X.T //�g.X.T //� in the sense of
equation (8), the error indicators �n�t2n also give simple information on where to
refine to reach an optimal mesh, based on the almost sure convergence of the density
�n as we refine the discretization, see Sect. 4 in [9].

In the remaining part of this section we state in Theorem 1 a single level error
expansion from [1].

Given an initial time discretization �tŒ0�.t/ and, for the stochastic time steps
algorithm, refining until1

j�.t;!/j��t.t/�2 < constant; (9)

we construct a partition�t.t/ by repeated halving of intervals so that it satisfies

�t.t/D�tŒ0�.t/=2n for some natural number nD n.t;!/:

The criterion (9) uses an approximate error density function �, satisfying for t 2
Œ0;T � and all outcomes ! the uniform upper and lower bounds

�low.TOL/� j�.t;!/j � �up.TOL/: (10)

The positive functions �low and �up are chosen so that �up.TOL/ ! C1 as
TOL ! 0 while �low.TOL/! 0 such that TOL=�low.TOL/! 0. We further make
the assumption that for all s; t 2 Œ0;T � the sensitivity of the error density to values
of the Wiener process can be bounded,

j@W.t/�.s;!/j �D�up.TOL/; (11)

for some positive function D�up such that D�up.TOL/ ! C1 as TOL ! 0. For
each realization successive subdivisions of the steps yield the largest time steps
satisfying (9). The corresponding stochastic increments �W will have the correct
distribution, with the necessary independence, if the increments �W related to the
new steps are generated by Brownian bridges [7], that is the time steps are generated
by conditional expected values of the Wiener process.

We begin now by stating in the next lemma the regularity conditions to be used
in the analysis of the adaptive multilevel algorithms.

Lemma 1 (Regularity). (a) Assume that the following regularity conditions hold:

(1) The functions a.t;x/ and b.t;x/ are continuous in .t;x/ and are twice continu-
ously differentiable with respect to x.

(2) The partial derivatives of first and second order with respect to x of the functions
a and b are uniformly bounded.

1 The precise expression is given in (34) below.
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(3) The function g is twice continuously differentiable, and together with its partial
derivatives of first and second order it is uniformly bounded.

Then the cost to go function, defined by

u.t;x/D E
	
g.X.T // j X.t/D x



; (12)

satisfies the Kolmogorov equation

@tu.t;x/Cak@ku.t;x/Cdkn@knu.t;x/D 0; u.T; �/D g; (13)

where we have used Einstein summation convention2, and where dkn D 1
2
bl
k
bln.

(b) Furthermore, if the following regularity conditions are satisfied:

(1) The functions @ˇa.t; �/ and @ˇb.t; �/ are bounded uniformly in t for multi-indices
ˇ with 1� jˇj � 8;

(2) The functions a.�;x/, b.�;x/ have continuous and uniformly bounded first order
time derivatives;

(3) The function g has spatial derivatives @ˇg, with polynomial growth for jˇj � 8;

then the function u has continuous partial derivatives with respect to x up to the
order 8, satisfying the following polynomial growth condition: for all i 2 f0;1;2g
and ˛ 2 N

d with iCj˛j � 8 there exists p˛;i 2 N and C˛;i > 0 such that

max
0�t�T

ˇ̌
@it@˛u.t;x/

ˇ̌ � C˛;i
�
1Cjxjp˛;i

� 8x 2 R
d :

In what follows, Lemma 2 and Theorem 1 show that although the steps adaptively
generated to satisfy (9)–(11) are not adapted to the natural Wiener filtration, the
method indeed converges to the correct limit, which is the same as the limit of the
forward Euler method with adapted time steps.

Lemma 2 (Strong Convergence). ForX the solution of (1) suppose that a, b, and
g satisfy the assumptions in Lemma 1, that X is constructed by the forward Euler
method, based on the stochastic time stepping algorithm defined in Sect. 2, with step
sizes �tn satisfying (9)–(11), and that their corresponding �Wn are generated by
Brownian bridges. Then

sup
0�t�T

EŒjX.t/�X.t/j2�D O
�
�tsup

�D O

�
TOL

�low .TOL/

�
�! 0 (14)

as TOL ! 0, where �tsup � supn;!�tn.!/.

In Theorem 1 and the rest of this work, we will use Einstein summation
convention with respect to functional and spatial indices, but not with respect to
the temporal one (usually denoted tn).

2 When an index variable appears twice in a single term this means that a summation over all
possible values of the index takes place; for example ak@ku.t;x/DPd

kD1ak@ku.t;x/, where
d is the space dimension of the SDE (a;x 2 Rd ).
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Theorem 1 (Single level stochastic time steps error expansion). Given the
assumptions in Lemma 2 and a deterministic initial value X.0/; the time dis-
cretization error in (8) has the following expansion, based on both the drift and
diffusion fluxes and the discrete dual functions ', ' 0, and ' 00 given in (17)–(22),
with computable leading order terms:

EŒg.X.T //��EŒg.X.T //�DE

"
N�1X

nD0
Q�.tn;!/.�tn/2

#

CO

�� TOL

�low .TOL/

�1=2� �up.TOL/

�low.TOL/

���
E

"
N�1X

nD0
.�tn/

2

#
;

(15)

for any � > 0 and where

Q�.tn;!/� 1

2

��
@tak C@j akaj C@ijakdij

�
'k.tnC1/

C �
@tdkmC@jdkmaj C@ijdkmdij C2@jakdjm

�
' 0km.tnC1/

C �
2@jdkmdjr

�
' 00kmr .tnC1/

�
(16)

and the terms in the sum of (16) are evaluated at the a posteriori known points
.tn;X.tn//, i.e.,

@˛a � @˛a.tn;X.tn//; @˛b � @˛b.tn;X.tn//; @˛d � @˛d.tn;X.tn//:

Here ' 2 R
d is the solution of the discrete dual backward problem

'i .tn/D @icj .tn;X.tn//'j .tnC1/; tn < T;

'i .T /D @ig.X.T //;
(17)

with

ci .tn;x/� xi C�tnai .tn;x/C�W `
n b

`
i .tn;x/ (18)

and its first and second variation

' 0ij � @xj .tn/'i .tn/� @'i .tnIX.tn/D x/

@xj
; (19)

' 00ikm.tn/ � @xm.tn/'
0
ik.tn/� @' 0

ik
.tnIX.tn/D x/

@xm
; (20)

which satisfy

' 0
ik
.tn/ D @icj .tn;X.tn//@kcp.tn;X.tn//'

0
jp.tnC1/

C@ikcj .tn;X.tn//'j .tnC1/; tn < T;

' 0
ik
.T / D @ikg.X.T //;

(21)
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and

' 00
ikm

.tn/D @icj .tn;X.tn//@kcp.tn;X.tn//@mcr.tn;X.tn//'
00
jpr.tnC1/

C@imcj .tn;X.tn//@kcp.tn;X.tn//' 0jp.tnC1/
C@i cj .tn;X.tn//@kmcp.tn;X.tn//' 0jp.tnC1/
C@ikcj .tn;X.tn//@mcp.tn;X.tn//' 0jp.tnC1/
C@ikmcj .tn;X.tn//'j .tnC1/; tn < T;

' 00
ikm

.T /D @ikmg.X.T //;

(22)

respectively.
Observe that the constant in O that appears in (15) may not be uniform with
respect to the value �. Thus, in practice one chooses � D �.TOL/ to minimize the
contribution of the remainder term to the error expansion (15).

Let us now discuss how to modify the error density Q�.tn;!/ in (16) to satisfy
the bounds (10) and at the same time guarantee that �tsup ! 0 as TOL ! 0; see
Lemma 2.

Consider, for t 2 Œtn; tnC1/ and nD 1; : : : ;N; the piecewise constant function

�.t/� sign. Q�.tn//min
�

max.j Q�.tn/j;�low .TOL//;�max.TOL/
�
; (23)

where
�low .TOL/D TOL N�; 0 < N� < ˛

˛C2 ; 0 < ˛ <
1
2
;

�max.TOL/D TOL�r ; r > 0; (24)

and with the standard notation for the function sign, that is sign.x/ D 1 for x �
0 and �1 for x < 0. The function � defined by (23) measures the density of the
time discretization error; it is used in (33) and (34) to guide the mesh refinements.
From now on, with a slight abuse of notation, �.tn/ D �n denotes the modified
density (23).

Following the error expansion in Theorem 1, the time discretization error is
approximated by

jET j D jEŒg.X.T //�g.X.T //�j .E

"
NX

nD1
r.n/

#
; (25)

using the error indicator, r.n/, defined by

r.n/� j�.tn/j�t2n ; (26)

with the modified error density defined by (23). According to Corollary 4.3 and
Theorem 4.5 in [9], we have the almost sure convergence of the error density to a
limit density denoted by O�, �! O� as TOL ! 0.
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2 Adaptive Algorithms and Multilevel
Variance Reduction

In this section we describe the multilevel Monte Carlo algorithm with adaptive
stochastic time steps for approximatingEŒg.X.T //�.

Given a tolerance TOL> 0 for which we want the estimate (6) to be fulfilled, we
split the tolerance into a time discretization tolerance and a statistical error tolerance,

TOL D TOLT C TOLS:

The optimal way of choosing TOLT and TOLS in terms of minimizing the com-
putational work can be approximated by Lagrangian optimization. The basis of the
error control is to choose the number of samples large enough to make the estimated
statistical error smaller than TOLS and adaptively refining the time steps, for each
realization, until the estimated time discretization error is smaller than TOLT.

The stochastic time stepping algorithm uses criteria related to (9) with an
outer and an inner loop, described below. Given the value of M0, and mutually
independent sample sets fS`gL`D0 where each S` consists of

M` D
�
M0

�low.TOL0/TOL`
�low.TOL`/TOL0

�
(27)

independent realisations of the underlying Wiener process, the outer loop uses a
multilevel Monte Carlo technique to estimate EŒg.X.T //� and, if necessary, update
the valueM0. Recall that the lower bound for the error density, �low , was introduced
in (24). We use the enforced deterministic lower bound

M0 �M�1 D const � TOL�1: (28)

The sample set independence makes it possible to estimate EŒg.X.T //� by the sum
of sample averages

EfS`gL`D0

�
g.XL.T //

�D AS0

	
g.X0.T //


C
LX

`D1
AS`

	
g.X`.T //�g.X`�1.T //



;

AS`
Œf � WDM�1`

MX̀

!2S`

f .!/;

where the algorithm for constructing g.X`�1.T // must be identical on levels `
and `� 1 for the telescoping sum to work perfectly; this is described in detail
later in this section and explicitly in Algorithm 2.1. Approximate the variance of
EfS`gL`D0

�
g.XL.T //

�
by the sum of sample variances

�2 D VS0

	
g.X0.T //




M0

C
LX

`D1

VS`

	
g.X`.T //�g.X`�1.T //




M`

(29)
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and aim to control this variance by choosingM0 sufficiently large so that

� <
TOLS

CC
: (30)

If � > TOLS

CC
, the number of samples M0 is increased in the next batch; in the

numerical examples of Sect. 3 the size of the new sample set was set to
l
M0;old max

n
2;min

n
�2 .CC=TOLS/

2 ;MCH
oom

; (31)

with MCH D 10, but we may use the ruleM0;new D 2M0;old as well. The parameter
MCH should not be taken too close to one in order to avoid a large number of
iterations with similar M0 before convergence, yielding a total computational work
much larger than the computational work corresponding to the acceptedM0. On the
other hand, MCH should not be too large in order to avoid using an excessively
largeM0.

The inner loop, with iteration index ` representing a level in the adaptive mesh
hierarchy, generates M` realization pairs3, .X`�1.T /;X`.T //, of (5) approximat-
ing (1) to the accuracy tolerances TOL`�1 and TOL`. These pairs are constructed
by successive subdivision of an initial grid �t�1. First, the algorithm determines
the grid �t`�1 from the initial grid �t�1 by starting out with the tolerance
TOL0 D 2LTOLT for the time discretization error and successively halving that
tolerance until it becomes TOL`�1 D 2.L�`C1/TOLT while for each new tolerance
constructing the new grid by repeated adaptive subdivision of the previously
constructed mesh. This iterative procedure in Algorithm 2.1, with index Q̀ D
0; : : : ;`� 1, ensures that a grid �t`�1 on level ` is generated in the same way as
a grid �t`�1 on level `�1 and consequently that EŒX`.T /� when computed as the
coarser approximation in a pair .X`.T /;X`C1.T // is the same as when computed as
the finer approximation in a pair .X`�1.T /;X `.T //. The above mentioned property
is necessary for the telescopic expansion of the time discretization error introduced
by Giles in [10]. Second, the algorithm determines the grid �t` by successively
subdividing the recently determined �t`�1 according to the refinement criterion
(34) until the stopping criterion (33) is satisfied.

Due to the stochastic nature of SDEs, each realization pair of .X`�1.T /;X`.T //
may refine the initial grid �t�1 differently. In particular, grids corresponding to
different realizations on the same level ` may be different. To take this feature
into account in the grid refinement, we introduce some notation. Let N` and N `

denote the number of time steps and the approximate average number of time
steps for realizations at level `, respectively; see Algorithm 2.2 for details on the
approximation technique and its update through the iteration. Further, denote the
grid corresponding to one realization at level ` by

�t` D Œ�t`.0/; : : : ;�t`.N`�1/� ; (32)

3 Observe that for the level `D 0 only the realisation ofX0.T / is generated.
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and its corresponding Wiener increments by

�W` D Œ�W`.0/; : : : ;�W`.N`�1/� :
The refinement condition is based on the error indicator rŒ`�, defined in (26), and
uses similar refinements to those defined for the single level method. The stopping
condition for refinement of �t` is

max
1�n�N`

rŒ`�.n/ < CS
TOL`
N `

: (33)

When inequality (33) is violated, the nth time step of�t` is refined if

rŒ`�.n/� CR
TOL`
N `

: (34)

Normally, the value for CR would be around 2, and CS > CR following the theory
developed in [8, 9].

The inputs in Algorithm 2.1 are: TOLS, TOLT, initial number of sample reali-
sations M0, L, �t�1, initial guesses for the mean number of time steps .N `/

L
`D0

needed for fulfillment of (33), and the three parameters CR, CC, and CS used in the
refinement condition (34) and stopping conditions (30) and (33), respectively. In
this algorithm the mean number of initial time steps are chosen as N ` D cTOL�1` ,
for `D 0; : : : ;L and a small constant c.
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Algorithm 2.1: Multilevel Monte Carlo with stochastic time stepping

Input : TOLS, TOLT, M0, �t�1, fN `gL`D0, CR, CS, CC

Output: �	 E Œg.X.T //�

Set k D 0.
while k < 1 or (30) is violated do

ComputeM0 new realizations of g
�
X0.T /

�

and their corresponding number of time steps, fN0gM0

1 ,
by generating Wiener increments�W�1 on the mesh �t�1 (independently
for each realization) and calling Algorithm 2.3:
ATSSE.�t�1;�W�1;TOLT2

L;N 0/:

Set �D AS0

	
g
�
X0.T /

�

and �2 D VS0 Œg.X0.T //�

M0
.

Compute the average number of time steps AS0
ŒN0�.

for `D 1; : : : ;L do
Set M` as in (27)

ComputeM` new realizations of g
�
X`�1.T /

�
,

their corresponding number of time steps, fN`�1gM`

1 , and Wiener
increments,�W`�1, by generating Wiener steps �W�1 on the mesh
�t�1 (independently for each realization) and using the loop
for Ò D 0; : : : ;`�1 do

compute�t Ò and�W Ò by calling Algorithm 2.3:

ATSSE.�t Ò�1;�W Ò�1;TOLT 2L�
Ò
;N Ò/:

end

Compute the correspondingM` realizations of g
�
X`.T /

�

and their number of time steps, N`, by calling Algorithm 2.3:
ATSSE.�t`�1;�W`�1;TOLT 2L�`;N `/:

Set �D �CAS`

	
g
�
X`.T /

��g �X`�1.T /
�


and

�2 D �2C VS` Œg.X`.T //�g.X`�1.T //�
M`

.
Compute the average number of time steps AS`

ŒN`�1� and AS`
ŒN`�.

end

if � violates (30) then
Update the number of samples byl
M0max

n
2;min

n
�2 .CC=TOLS/

2 ;MCH
oom

:

Update the values of fN`gL`D0 by calling Algorithm 2.2:
UMNT .fM`gL`D0; fAS`

ŒN`�gL`D0; fAS`
ŒN`�1�gL`D1/.

end
Increase k by 1.

end
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Algorithm 2.2: Update for the mean number of time steps, (UMNT)

Input : fM`gL`D0; fAS`
ŒN`�gL`D0; fAS`

ŒN`�1�gL`D1
Output: fN`gL`D0
for `D 0;1; : : : ;L do

if ` < L then

Set N ` D M`AS`
ŒN`�CM`C1AS`C1

ŒN`�

M`CM`C1
.

else
Set N L D ASL

ŒNL�.
end

end

Algorithm 2.3: Adaptive Time Step Stochastic Euler (ATSSE)

Input : �tin;�Win, TOL, N in

Output: �tout ;�Wout , Nout , gout
Set mD 0, �tŒ0� D�tin, �WŒ0� D�Win, NŒ0� D number of steps in �tin
while m< 1 or .rŒm�1�I TOL;N in/ violates (33) do

Compute the Euler approximationX Œm� and the error indicators rŒm� on
�tŒm� with the known Wiener increments�WŒm�:
if .rŒm�I TOL;N in/ violates (33) then

Refine the grid �tŒm� by
forall intervals nD 1;2; : : : ;NŒm� do

if rŒm�.n/ satisfies (34) then
divide the interval n into two equal parts

end
end
and store the refined grid in �tŒmC1�.
Compute�WŒmC1� from�WŒm� using Brownian bridges on�tŒmC1�.
Set NŒmC1� D number of steps in �tŒmC1�.

end
Increasem by 1.

end
Set �tout D�tŒm�1�, �Wout D�WŒm�1�, NoutDNŒm�1�, gout D g.X Œm�1�/.
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3 A Stopped Diffusion Example

This section presents numerical results from an implementation of the algorithm of
Sect. 2. We apply the algorithm to a challenging problem where the computational
work of multilevel Monte Carlo based on uniform meshes is larger than the optimal
O
�
.TOL�1 log.TOL//2

�
, which is still attained by the adaptive multilevel Monte

Carlo algorithm. This motivates the use of stochastic time steps that are adaptively
refined for each sample path.

The additional difficulty of the problem is that we now wish to compute
approximations of an expected value

EŒg.X.�/;�/�; (35)

where X.t/ solves the SDE (1), but where the function g W D � Œ0;T � ! R is
evaluated at the first exit time

� WD infft > 0 W .X.t/; t/ 62D� .0;T /g

from a given open domainD�.0;T /�R
d �.0;T /. This kind of stopped (or killed)

diffusion problems arise for example in mathematical finance when pricing barrier
options and for boundary value problems in physics.

The main difficulty in the approximation of the stopped diffusion on the boundary
@D is that a continuous sample path may exit the given domain D even though
a discrete approximate solution does not cross the boundary of D. Due to this
hitting of the boundary the order of weak convergence of the Euler–Maruyama
method is reduced from 1 to 1=2, in terms of the step size of uniform meshes,
and the order of strong convergence is less than 1=2 so that the complexity
estimate in Theorem 1 of [10] for uniform multilevel simulations can not be
applied.

We combine the adaptive multilevel algorithm of Sect. 2 with an error estimate
derived in [3] that takes into account also the hitting error. The hitting error is
accounted for by an extra contribution to the error density in (23); this contribution
can be expressed in terms of exit probabilities for individual time steps, conditioned
on the computed path at the beginning and the end of the time steps, and of the
change in the goal function, g, when evaluated at a possible exit point within the
time step instead of the actually computed exit .X. N�/; N�/. The full expression of
the resulting error indicators is given in equation (50) of [3]. Since the differential
@ig.X.T /;T / in the discrete dual backward problem (17) does not exist if T is
replaced by N� < T this initial value must be alternatively defined; this can be done
using difference quotients with restarted computed trajectories as described, both
for the discrete dual and for its first and second variations, in (20)–(25) of [3]. Note
that for this modified error density the proof in [9] of almost sure convergence to a
limit density does not apply.

The results in this section are on the accuracy and cost of the adaptive multilevel
algorithm of Sect. 2, applied to (35)–(36), with the error estimate modified for the
barrier problem.
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Fig. 1 Experimental complexity for the barrier example. On top, the computational cost of the
multilevel adaptive algorithm is shown for varying tolerances using different initial states in
the pseudo random number algorithm. A least squares fit, in log2 – log2-scale, of the model
cost D c1

�
log.TOL0=TOL/=TOL

�c2 with equal weight on all observations results in c1 D 12
and c2 D 1:9. One realisation of the corresponding cost using a single level implementation of
the same adaptive Monte Carlo method is included for reference. At the bottom is shown the mean
computational cost over all observations where the values for large tolerances are based on more
observations than those for small tolerances. When the least square fit is performed on the average
values the resulting coefficients are c1 D 12 and c2 D 2:0

For the numerical example we consider the stopped diffusion problem

dX.t/D 11

36
X.t/ dtC 1

6
X.t/ dW.t/; for t 2 Œ0;2� and X.t/ 2 .�1;2/;

X.0/D 1:6:

(36)

For g.x; t/ D x3e�t with x 2 R, this problem has the exact solution EŒg.X� ;�/�D
u.X.0/;0/D X.0/3, where the solution, u, of the Kolmogorov backward equation
is u.x; t/ D x3e�t . We chose an example in one space dimension for simplicity,
although it is only in high dimension that Monte Carlo methods are more efficient
than deterministic finite difference or finite element methods to solve stopped
diffusion problems. The comparison here between the standard Monte Carlo and the
Multilevel Monte Carlo methods in the simple one dimensional example indicates
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Fig. 2 The multilevel adaptive Monte Carlo algorithm with stochastic time steps has been
tested on the barrier problem using a sequence of tolerances and different initial states in the
pseudo random number generator. For each tolerance and each sample the computational cost
is marked by an �; the maximal cost and the average cost for a given tolerance have been
chosen as representative measures. One realisation of the computational cost using a single level
implementation of the adaptive algorithm for a sequence of tolerances is included as a reference,
showing that the multilevel version is more efficient for small tolerances. A further comparison
can be made with a basic single level, constant time step, Monte Carlo algorithm. This algorithm
lacks error control; instead the statistical error was balanced against the time discretisation error in
two steps: first the statistical error was over killed to reveal the time discretisation error for each
time step size, and then the number of samples needed to make the statistical error the same size
as the time discretisation error was estimated using variance estimates from the computation. This
represents an ideal situation and it explains the very regular decay of the error with increasing cost
seen in the graph; the least square fit, shown as a dashed line, has the slope –0.26, consistent with
the O.

p
�t/ time discretisation error for the barrier problem, and a O.1=

p
N/ statistical error

that the Multilevel Monte Carlo method will also be more efficient in high dimen-
sional stopped diffusion problems, where a Monte Carlo method is a good choice.

In the simulations the tolerance levels were chosen as TOLS D TOL=2 and
TOLT D TOL=4. We used for the stopping and refinement constants the values
CS D 5 and CR D 2. The computations were performed in Matlab 7 using the
built in pseudo random number generator randn for simulating sampling from the
normal distribution.

In the numerical complexity results the cost is measured by counting the total
number of time steps in all batches and on all levels. The complexity study in Fig. 1
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is based on multiple simulations for each tolerance using different initial states in
the pseudo random number generator, with more data on the large tolerances than
on the smallest ones. A least squares fit of the model4

cost D c1

�
log

�
TOL0
TOL

�
1

TOL

�c2

(37)

in the log2-log2-scale of the graph using equal weights on all data points gives
c2 D 1:9 where the value 2 is predicted by theory. When the least squares fit is made
on the mean cost for each tolerance the parameter in the cost model is c2 D 2:0. The
corresponding cost using the single level adaptive algorithm with just one data point
per tolerance used grows faster than TOL3 in this example.

In Fig. 2 the data on cost versus tolerance of Fig. 1 is shown together with the
corresponding errors. The observed errors are scattered below the corresponding
tolerances showing that the algorithm achieves the prescribed accuracy. It was
already observed above that the multilevel version of the adaptive algorithm
improves on the convergence of the single level version; this figure also shows
that the error using a basic single level Monte Carlo method with uniform time steps
for the stopped diffusion problem decreases only like cost�0:26, which is worse than
the convergence rate of the single level version of the adaptive algorithm.

We remark that we present the error versus cost results for the basic Monte Carlo
algorithm in a way that slightly favours it over the adaptive methods. To explain this
we note that the adaptive algorithms aim to balance the contributions to the total
error made by the statistical and by time discretization errors; since the constant
time step algorithm was implemented without time discretization error estimates
this balancing could not be made in the computations. Instead, for each step size,
the cost and error pair displayed in the graph was obtained indirectly by first over-
killing the statistical error using a large number of samples and then by, knowing
that the resulting error was dominated by the time discretization error, using the
computed sample variance to get an estimate of the number of samples that would
have been sufficient for obtaining a statistical error of the same size as the time
discretization error. This procedure favours the constant time step method over the
adaptive methods in that it gives an ideal constant factor in the cost, but the order
of convergence is not affected. On the other hand the computational overhead in
the implementation of the adaptive time stepping algorithm is significantly greater
than in the naive Monte Carlo algorithm; again the order of convergence is not
changed.

In conclusion the observed convergence of the adaptive multilevel Monte Carlo
method applied to the barrier problem (36) is close to the predicted

cost D c1

�
log

�
TOL0
TOL

�
1

TOL

�2
:

4 The number of levels is 1CLD 1C log2

�
TOL0

TOLT

�
D log2

� TOL0

TOL

�
.
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This shows an improved convergence compared to the single level version of the
adaptive Monte Carlo algorithm where the cost grows approximately like TOL�3,
which in itself is a better order of weak convergence than the one obtained using a
single level Monte Carlo method with constant time steps where the cost grows like
error�4.
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Abstract We propose an efficient Markov Chain Monte Carlo method for sampling
equilibrium distributions for stochastic lattice models. The method is capable of
handling correctly and efficiently long and short-range particle interactions. The
proposed method is a Metropolis-type algorithm with the proposal probability
transition matrix based on the coarse-grained approximating measures introduced in
(Katsoulakis et al. Proc. Natl. Acad. Sci. 100(3):782–787, 2003; Katsoulakis et al.
ESAIM-Math. Model. Numer. Anal. 41(3):627–660, 2007). The proposed algorithm
reduces the computational cost due to energy differences and has comparable
mixing properties with the classical microscopic Metropolis algorithm, controlled
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by the level of coarsening and reconstruction procedure. The properties and
effectiveness of the algorithm are demonstrated with an exactly solvable example
of a one dimensional Ising-type model, comparing efficiency of the single spin-flip
Metropolis dynamics and the proposed coupled Metropolis algorithm.

1 Introduction

Microscopic, extended (many-particle) systems with complex interactions are ubiq-
uitous in science and engineering applications in a variety of physical and chemical
systems, exhibiting rich mesoscopic morphologies. For example, nano-pattern
formation via self-assembly, arises in surface processes e.g., in heteroepitaxy,
induced by competing short and long-range interactions [6]. Other examples include
macromolecular systems such as polymers, proteins and other soft matter systems,
quantum dots and micromagnetic materials. Scientific computing for this class of
systems can rely on molecular simulation methods such as Kinetic Monte Carlo
(KMC) or Molecular Dynamics (MD), however their extensivity, their inherently
complex interactions and stochastic nature, severely limit the spatio-temporal scales
that can be addressed by these direct numerical simulation methods.

One of our primary goals is to develop systematic mathematical and computa-
tional strategies for the speed-up of microscopic simulation methods by developing
coarse-grained (CG) approximations, thus reducing the extended system’s degrees
of freedom. To date coarse-graining methods have been a subject of intense
focus, mainly outside mathematics and primarily in the physics, applied sciences
and engineering literatures [10, 18, 26, 29, 31]. The existing approaches can give
unprecedented speed-up to molecular simulations and can work well in certain
parameter regimes, for instance, at high temperatures or low density. On the other
hand, in many parameter regimes, important macroscopic properties may not be
captured properly, e.g. [1, 31, 32]. Here we propose to, develop reliable CG
algorithms for stochastic lattice systems with complex, and often competing particle
interactions in equilibrium. Our proposed methodologies stem from the synergy of
stochastic processes, statistical mechanics and statistics sampling methods.

Monte Carlo algorithms provide a computational tool capable of estimating
observables defined on high-dimensional configuration spaces that are typical for
modeling of complex interacting particle systems at or out of equilibrium. Markov
Chain Monte Carlo (MCMC) simulation methods such as the Metropolis algorithm,
were first proposed in 1953 by Metropolis and his coauthors [30] for the numerical
calculation of the equation of state for a system of rigid spheres. It was generalized
in 1970 by Hastings [14] and it is commonly referred to as the Metropolis-Hastings
(MH) Monte Carlo method. This method belongs to the family of MCMC methods
which generate ergodic Markovian chains with the stationary distribution being the
desired sampled probability measure. Metropolis algorithm consists of two main
ingredients: (a) the probability transition kernel q; the proposal, that generates trial
states and (b) the acceptance probability ˛ according to which the proposed trial
is accepted or rejected. There are though some drawbacks of this method when
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applied to large systems, such as a small acceptance probability ˛, that leads to
costly calculations of a large number of samples that are discarded. A way to reduce
these costs is to predict efficient proposal measures such that the computational cost
of calculating a sample is lower and, if possible, increase the acceptance probability.
Convergence and ergodicity properties of Metropolis type algorithms are studied
extensively in a series of works [7, 8, 33]. The rate of convergence to stationarity is
strongly dependent on the proposal distribution and its relation to the stationary
measure [33, Chap. 7]. A quantity that measures the speed of convergence in
distribution to stationarity is the spectral gap. In order to improve an MCMC method
one has to increase its spectral gap by smartly constructing a good proposal.

In this work we propose the Coupled Coarse Graining Monte Carlo (Coupled
CGMC) method, a new method of constructing efficient proposal measures based on
coarse-graining properties of the sampling models. We prove that such approach is
suitable for models that include both short and long-range interactions between par-
ticles. Long-range interactions are well-approximated by coarse graining techniques
[18, 19, 21], and Coarse Graining Monte Carlo (CGMC) are adequate simulation
methods [20, 22]. Furthermore, models where only short-range interactions appear
are inexpensive to simulate, for example with a single spin-flip Metropolis method.
However, when both short and long-range interactions are present the classical
MH algorithm becomes prohibitively expensive due to the high cost of calculating
energy differences arising from the long-range interaction potential. In [16] we
extend our framework for coupled CGMC to the dynamics case, developing kinetic
Monte Carlo algorithms based on coarse-level rates.

Section 2 describes the classical Metropolis-Hastings algorithm and some known
mathematical theory for the convergence and the rate of convergence for MCMC
methods. In Sect. 3 we present the proposed Coupled CGMC method in a general
framework describing its mathematical properties. We state the main theorem that
compares the rate of convergence to equilibrium with the rate of the classical MH
method. In Sect. 4 we describe stochastic lattice systems and the coarse-graining
procedure in order to prepare for the application of the proposed method in Sect. 5
to a generic model of lattice systems in which both short and long-range interactions
are present.

2 MCMC Methods

Before describing the Metropolis-Hastings method we need to introduce some
necessary definitions and theoretical facts.

Let fXng be a Markov chain on space ˙ with transition kernel K .

Definition 1. A transition kernel K has the stationary measure � if

K �D �:

Definition 2. K is called reversible with respect to � if
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.g;K h/� D .K g;h/�; for all g;h 2 L2.�/ :

where .g;h/� D ´
˙
g.�/h.�/�.d�/ and K g.�/D ´

˙
K .�;d� 0/g.� 0/;8� 2˙ .

A sufficient condition for � being a stationary measure of K is the detailed
balance (DB) condition, that is often easy to check.

Definition 3. A Markov chain with transition kernel K satisfies the detailed
balance condition if there exists a function f satisfying

K .�;� 0/f .�/D K .� 0;�/f .� 0/ : (1)

Here we focus on the Metropolis-Hastings algorithm [33]. The algorithm
generates an ergodic Markov chain fXng in the state space ˙ , with stationary
measure �.d�/. Let f .�/ be the probability density corresponding to the measure
� and X0 D �0 be arbitrary. The n-th iteration of the algorithm consists of the
following steps

Algorithm 1 (Metropolis-Hastings algorithm)

Given Xn D �

Step 1 Generate Yn D � 0 � q.� 0;�/
Step 2 Accept-Reject

XnC1 D
�
Yn D � 0 with probability ˛.�;� 0/;
Xn D �n with probability 1�˛.�;� 0/;

where

˛.�;� 0/D min

�
1;
f .� 0/q.� 0;�/
f .�/q.�;� 0/

�
:

We denote q.� 0;�/ the proposal probability transition kernel, and ˛.�;� 0/ the
probability of accepting the proposed state � 0. The transition kernel associated to
MH algorithm is

Kc.�;�
0/D ˛.�;� 0/q.�;� 0/C

�
1�

ˆ
˛.�;� 0/q.�;� 0/d� 0

�
ı.� 0��/: (2)

where ı denotes the Dirac function.
Convergence and ergodicity properties of the chain fXng depend on the proposal

kernel q.�;� 0/, and they are studied extensively in [33]. Kc satisfies the DB
condition with f ensuring that it has stationary measure �. Kc is irreducible
and aperiodic, nonnegative definite, and reversible, thus the Markov chain with
transition kernel Kc converges in distribution to �.
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2.1 Mixing Times and Speed of Convergence

It is known [7] that for a discrete-time Markov chain fXng with the transition kernel
K and stationary distribution f , the rate of convergence to its stationarity can be
measured in terms of the kernel’s second largest eigenvalue, according to inequality

2jjK n.�; �/�f jjTV � 1

f .�/1=2
ˇn;

where jj � jjTV denotes the total variance norm and ˇ Dmaxfjˇminj;ˇ1g with �1 �
ˇmin � � � � � ˇ1 � ˇ0 D 1 are the real eigenvalues of K . The spectral gap of kernel
K is defined by

�.K /D min

�
E .h;h/

Var .h/
IVar .h/¤ 0

�
;

which for a self-adjoint, because of reversibility, kernel K is �.K /D 1�ˇ1. With
the Dirichlet form E and the variance defined by

E .h;h/D 1

2

X

�;� 0

jh.�/�h.� 0/j2K .�;� 0/f .�/ ;

Var.h/D 1

2

X

�;� 0

jh.�/�h.� 0/j2f .� 0/f .�/ :

Between two algorithms producing Markov chains with identical equilibrium
distributions better in terms of the speed of convergence is the one with the smaller
second eigenvalue in absolute value or equivalently with the larger spectral gap.

3 The Coupled CGMC Method

The proposed algorithm is designed to generate samples from the microscopic
probability measure � with density f on a space ˙ , coupling properly states of
the microscopic space ˙ with states on a coarse space Ṅ having less degrees
of freedom. A properly constructed coarse measure on Ṅ will be the basis for
constructing efficient proposal kernels for MH algorithms sampling large systems.

The coarsening procedure is based on the expansion of the target measure � to a
coarse and a finer part. Abstractly we write f .�/D f .
;�/ and˙ D Ṅ � Ṅ 0, where

 2 Ṅ represents the coarse variables.

We denote the projection operator on the coarse variables

T W˙ ! Ṅ ; T � D 
:

The exact coarse marginal is
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Nf .
/D
ˆ
Ṅ 0

f .
;�/d� :

To obtain an explicit formula of the coarse marginal is as difficult as sampling the
original target distribution since space Ṅ 0 remains high dimensional. Therefore use
of distributions approximating Nf becomes necessary. Such approximations have
been proposed in [18,22] for stochastic lattice systems and are abstractly described
in Sect. 4 and for complex macromolecular systems see [4, 11, 13, 36].

Denote Nf0 an approximation of Nf on Ṅ . This distribution, combined with
a reconstruction distribution fr .�j
/ corresponding to the finer variables �, will
construct a candidate for proposal distribution in MH algorithms performed in
order to sample from f at the original space ˙ . An example of a “good” proposal
distribution is f0.�/ WD Nf0.
/fr.�j
/. For notational simplicity we write fr .� j
/
instead of fr.�j
/. In terms of the Metropolis-Hastings algorithm this means that
q.�;� 0/ D f0.�

0/, or that f0 is the stationary measure of the proposal kernel
q.�;� 0/.

The coupled CGMC algorithm is composed of two coupled Metropolis iterations,
the first generating samples from the proposal distribution and the second samples
from the target measure. The first Metropolis step samples the coarse approximating
marginal Nf0.
/, using an arbitrary proposal transition kernel Nq0.
;
0/ to produce
trial samples 
0. The second step is performed if the coarse trial sample is accepted,
and consists of the reconstruction from the coarse trial state and a Metropolis accep-
tance criterion designed to ensure sampling from the correct microscopic density f .
If a trial coarse sample is rejected, then we go back to the first step to rebuild a new
coarse trial, so that the fine Metropolis step is not performed and no computational
time is wasted on checking fine trial samples that are most likely to be rejected.

In [9] Efendiev et al. propose the Preconditioning MCMC, a two stage ( coarse
and fine ) Metropolis MCMC method, applied to inverse problems of subsurface
characterization. The coarse and fine models are finite volume schemes of different
resolutions for a PDE two-phase flow model. Our algorithm shares the same idea
and structure with the Preconditioning MCMC of constructing a proposal density
based on meso/macro-scopic properties of the model studied and taking advantage
of the first stage rejections. In terms of the MC method “coarsening” corresponds to
enriching the range of the sampling measure based on coarse-scale models proposed
by multiscale finite volume methods. The major difference of the Preconditioning
MCMC and the proposed algorithm is that the latter alternates between different
state spaces during each MC iteration, the coarse and the finer, whether in the
former the state space remains the same since coarse and fine problems are solved
independently. Thus, at the end of a simulation we will have both fine-scale and
“compressed”, coarse-grained, data. The performance of the coarse proposals in our
case can be further estimated based on a systematic error analysis such as in (14).

The proposed procedure has also some common features with the modified
Configurational bias Monte Carlo (CBMS) where the trial density is built up sequen-
tially with stage-wise rejection decision, described in [28], applied effectively in
quantum mechanical systems [5]. There are also some similarities with simulated
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sintering and transdimensional MCMC, see [28] and references therein. However,
in our method, the construction of the variable dimensionality (and level of coarse-
graining) state spaces and the corresponding Gibbs measures relies on statistical
mechanics tools that allow a systematic control of the error from one level of coarse-
graining to the next, e.g. (14).

3.1 The Algorithm

We describe in detail the coupled CGMC Metropolis algorithm outlined above.

Algorithm 2 (Coupled CGMC algorithm)
Let X0 D �0 be arbitrary. For nD 0;1;2; : : :

given Xn D �

Step 1 Compute the coarse variable 
D T� .
Step 2 Generate a coarse sample 
0 � Nq0.
;
0/.
Step 3 Coarse Level Accept-Reject.

Accept 
0 with probability:

˛CG.
;

0/D min

(
1;

Nf0.
0/ Nq0.
0;
/
Nf0.
/ Nq0.
;
0/

)
:

If 
0 is accepted then proceed to Step 4
else generate a new coarse sample Step 2

Step 4 Reconstruct � 0 given the coarse trial 
0,

� 0 � fr .�j
0/ :
Step 5 Fine Level Accept-Reject.

Accept � 0 with probability

˛f .�;�
0/D min

(
1;
f .� 0/ Nf0.
/fr .� j
/
f .�/ Nf0.
0/fr.� 0j
0/

)
:

Steps 2 and 3 generate a Markov chain fZng in the coarse space Ṅ with the
transition kernel

Q.
;
0/D ˛CG.
;

0/ Nq0.
;
0/C

�
1�

ˆ
˛CG.
;´/ Nq0.
;´/

�
ı.
0�
/ :

The stationary measure of kernel Q is Nf0.
/. Combination of this kernel and Steps 1
and 4 constructs the desired proposal transition kernel q0.�;� 0/ on the fine level
space ˙ ,

q0.�;�
0/D Q.
;
0/fr.� 0j
0/ :
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According to the MH algorithm in order to sample from f , the fine level acceptance

probability should be ˛f .�;� 0/ D min
n
1; f.�

0/q0.�
0;�/

f .�/q0.�;�
0/

o
, but since Q satisfies the

detailed balance condition Q.
;
0/ Nf0.
/D Q.
0;
/ Nf0.
0/, ˛f is equal to

˛f .�;�
0/D min

�
1;
f .� 0/Q.
0;
/fr .� j
/
f .�/Q.
;
0/fr .� 0j
0/

�

D min

(
1;
f .� 0/ Nf0.
/fr .� j
/
f .�/ Nf0.
0/fr.� 0j
0/

)
:

Chain fXng generated by the Coupled CGMC algorithm is a Markov chain on
the fine space ˙ , with the transition kernel

KCG.�;�
0/D ˛f .�;�

0/q0.�;� 0/C
�
1�

ˆ
˛f .�;�

0/q0.�;� 0/d� 0
�
ı.� 0��/: (3)

The Markov chain fXng converges to the correct stationary distribution f and
is ergodic, which ensures that 1

n

Pn
jD1h.Xj / is a convergent approximation of the

averages
´
h.�/f .�/d� for any h 2 L1.f /. Ergodicity and reversibility properties

are satisfied ensuring that the algorithm generates samples from the correct mea-
sure.We state this fact as a separate theorem proof of which is given in detail in [15].

We denote E D f� 2˙ If .�/ > 0g, NE D f
 2 Ṅ I Nf0.
/ > 0g.

Theorem 1. For every conditional distribution Nq0, and fr such that the support of
q0fr includes E ,

(i) The transition kernel satisfies the detailed balance (DB) condition with f .

KCG.�;�
0/f .�/D KCG.�

0;�/f .� 0/:

(ii) f is a stationary distribution of the chain.
(iii) If q0.�;� 0/ > 0; 8�;� 0 2 E and E � supp.f0/ then fXng is f -irreducible.
(iv) fXng is aperiodic.

3.2 The Rate of Convergence

The calculation of the rate of convergence to stationarity is a hard problem since
it is model dependent. Here we can prove for the proposed method that its rate of
convergence is comparable to the classical Metropolis-Hastings algorithm described
in Algorithm 1. This fact is stated rigorously in the following theorem which we
prove in [15].

Let �.KCG/;�.Kc/ be the spectral gap corresponding to the coupled CGMC
KCG , (3), and the classical MH Kc , (2), transition kernels respectively.

Theorem 2. Let q.�;� 0/ be a symmetric proposal transition probability for the
classical MH algorithm and Nq0.
;
0/ a symmetric proposal transition probability on
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the coarse space Ṅ for the coupled CGMC algorithm, then for any reconstruction
conditional probability fr .� j
/
(i)

KCG.�;�
0/D A .�;� 0/B.�;� 0/Kc.�;�

0/; � ¤ � 0; (4)

B.�;� 0/D
8
<

:

Nq0.�;�
0/fr .�

0j�0/
q.�;� 0/

; if ˛f D 1;

Nq0.�
0;�/fr .� j�/
q.� 0;�/

; if ˛f < 1:

Furthermore we define the subsets

C1 D ˚
.�;� 0/ 2˙ �˙ W f˛ < 1;˛CG < 1;˛f < 1g or f˛ D 1;˛CG D 1;˛f D 1g ;

C2 D ˚
.�;� 0/ 2˙ �˙ W f˛ D 1;˛CG < 1;˛f D 1g or f˛ < 1;˛CG D 1;˛f < 1g ;

C3 D ˚
.�;� 0/ 2˙ �˙ W f˛ D 1;˛CG D 1;˛f < 1g or f˛ < 1;˛CG < 1;˛f D 1g ;

C4 D ˚
.�;� 0/ 2˙ �˙ W f˛ < 1;˛CG D 1;˛f D 1g or f˛ D 1;˛CG < 1;˛f < 1g ;

A .�;� 0/D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

1; if .�;� 0/ 2 C1;
minf Nf0.�

0/
Nf0.�/

;
Nf0.�/Nf0.�0/

g; if .�;� 0/ 2 C2;
minff.� 0/ Nf0.�/

f .�/ Nf0.�
0/
; f.�/

Nf0.�
0/

f .� 0/ Nf0.�/
g; if .�;� 0/ 2 C3;

minff.� 0/
f .�/

; f.�/
f .� 0/

g; if .�;� 0/ 2 C4:
(ii)

A ��.Kc/� �.KCG/ � N��.Kc/ (5)

where A D inf�;� 0 A .�;� 0/ and � > 0; N� > 0 such that � � B.�;� 0/ � N� :

4 Extended Lattice Systems

This class of stochastic processes is employed in the modeling of adsorption,
desorption, reaction and diffusion of chemical species in numerous applied science
areas such as catalysis, microporous materials, biological systems, etc. [3, 27].
To demonstrate the basic ideas, we consider an Ising-type system on a periodic
d -dimensional lattice�N withN Dnd lattice points. At each x 2�N we can define
an order parameter �.x/; for instance, when taking values 0 and 1, it can describe
vacant and occupied sites. The energy HN of the system, at the configuration
� D f�.x/ W x 2�N g is given by the Hamiltonian,

HN .�/D �1
2

X

x2�N

X

y 6Dx
ŒK.x�y/CJ.x�y/��.x/�.y/C

X
h�.x/ ; (6)



244 E. Kalligiannaki et al.

where h, is the external field and K , J are the inter-particle potentials. Equilibrium
states at the temperature � ˇ�1 are described by the (canonical) Gibbs probability
measure,

�N;ˇ .d�/DZ�1N exp
��ˇHN .�/

�
PN .d�/ ; (7)

and ZN is the normalizing constant (partition function). Furthermore, the product
Bernoulli distribution PN .�/ is the prior distribution on�N .

The inter-particle potentials K; J account for interactions between occupied
sites. We considerK corresponding to the short and J to the long-range interactions
discussed in detail in Sect. 4.2. General potentials with combined short and long-
range interactions are discussed here, while we can also address potentials with
suitable decay/growth conditions [2].

The prior PN .d�/ is typically a product measure, describing the system at
ˇ D 0, when interactions in HN are unimportant and thermal fluctuations-disorder-
associated with the product structure of PN .d�/ dominates. By contrast at zero
temperature, ˇ D 1, interactions and hence order, prevail. Finite temperatures, 0 <
ˇ < 1, describe intermediate states, including possible phase transitions between
ordered and disordered states. For both on-lattice or off-lattice particle systems, the
finite-volume equilibrium states of the system have the structure (7).

4.1 Coarse-Graining of Microscopic Systems

Coarse-graining (CG) of microscopic systems is essentially an approximation
theory and a numerical analysis question. However, the presence of stochastic
fluctuations on one hand, and the extensivity of the models (the system size scales
with the number of particles) on the other, create a new set of challenges. We discuss
all these issues next, in a general setting that applies to both on-lattice and off-lattice
systems.

First, we write the microscopic configuration � in terms of coarse variables 
 and
corresponding fine ones � so that � D .
;�/. We denote by T the coarse-graining
map T� D 
.

The CG system size is denoted by M , while the microscopic system size is
N DMq, where we refer to q as the level of coarse graining, and qD 1 corresponds
to no coarse graining. The exact CG Gibbs measure is given (with a slight abuse of
notation) by N�M;ˇ D �N;ˇ ı T �1 : In order to write N�M;ˇ in a more convenient
form we first define the CG prior NPM .d
/ D PN ı T �1. The conditional prior
PN .d� j
/ is the probability of having a microscopic configuration � , given a coarse
configuration 
. We now rewrite N�M;ˇ using the exact coarse-grained Hamiltonian:

e�ˇ NHM .�/ D EŒe�ˇHN j
�D
ˆ
e�ˇHN .�/PN .d� j
/; (8)

a procedure known as the renormalization group map, [12]; N�M;ˇ .d
/ is now
re-written using (8) as
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N�M;ˇ .d
/D 1

NZM
e�ˇ NHM .�/ NPM .d
/ : (9)

Although typically NPM .d
/ is easy to calculate, even for moderately small values
ofN , the exact computation of the coarse-grained Hamiltonian NHM .
/ given by (8)
is, in general, impossible.

We have shown in [22] that there is an expansion of NHM .
/ into a convergent
series

NHM .
/D NH .0/
M .
/C NH .1/

M .
/C NH .2/
M .
/C�� �C NH .p/

M .
/CN �O.�p/ ; (10)

by constructing a suitable first approximation NH .0/
M .
/ and identifying a suitable

small parameter � to control the higher order terms in the expansions. Truncations
including the first terms in (10) correspond to coarse-graining schemes of increasing
accuracy. In order to obtain this expansion we rewrite (8) as

NHM .
/D NH .0/
M .
/� 1

ˇ
logEŒe�ˇ.HN� NH .0/

M
.�//j
� : (11)

We need to show that the logarithm can be expanded into a convergent series,
yielding eventually (10), however, two interrelated difficulties emerge immediately:
first, the stochasticity of the system in the finite temperature case, yields the nonlin-
ear log expression which in turn will need to be expanded into a series. Second,
the extensivity of the microscopic system, i.e., typically the Hamiltonian scales
as HN D O.N/, does not allow the expansion of the logarithm and exponential
functions into a Taylor series. For these two reasons, one of the mathematical tools
we employed is the cluster expansion method, see [34] for an overview. Cluster
expansions allow us to identify uncorrelated components in the expected value

EŒe�ˇ.HN� NH .0/
M
.�//j
�; which in turn will permit us to factorize it, and subsequently

expand the logarithm.

The coarse-graining of systems with purely long- or intermediate-range interac-
tions of the form

J.x�y/D L�1V
�
.x�y/=L

�
; x ;y 2�N ; (12)

where V.r/ D V.�r/, V.r/ D 0; jr j > 1, was studied using cluster expansions in
[2, 21, 22]. The corresponding CG Hamiltonian is

NH 0.
/D� 1
2

X

l2 N�M

X

k2

N
M
k¤l

NJ .k; l/
.k/
.l/�
NJ .0;0/
2

X

l2 N�M


.l/
�

.l/�1�C

X

k2 N�M

Nh
.k/ ;

(13)

NJ .k; l/D 1

q2

X

x2Ck

X

y2Cl

J.x�y/; NJ .k;k/D 1

q.q�1/
X

x2Ck

X

y2Ck ;y¤x
J.x�y/:



246 E. Kalligiannaki et al.

One of the results therein is on deriving error estimates in terms of the
specific relative entropy R.�j�/ WD N�1

P
� log

˚
�.�/=�.�/


�.�/ between the

corresponding equilibrium Gibbs measures. Note that the scaling factor N�1 is
related to the extensivity of the system, hence the proper error quantity that needs to
be tracked is the loss of information per particle. Using this idea we can assess
the information compression for the same level of coarse graining in schemes
differentiated by the truncation level p in (10)

R
�

N�.p/
M;ˇ

j�N;ˇ ıT �1
�

D O
�
�pC1

�
; � � ˇkrV k1

� q
L

�
; (14)

where NH .0/
M .
/ in (10) is given by (13). The role of such higher order schemes was

demonstrated in nucleation, metastability and the resulting switching times between
phases, [2].

Although CGMC and other CG methods can provide a powerful computational
tool in molecular simulations, it has been observed that in some regimes, important
macroscopic properties may not be captured properly. For instance, (over-)coarse
graining in polymer systems may yield wrong predictions in the melt structure
[1]; similarly wrong predictions on crystallization were also observed in the CG of
complex fluids, [32]. In CGMC for lattice systems, hysteresis and critical behavior
may also not be captured properly for short and intermediate range potentials,
[20, 22]. Motivated by such observations, in our recent work we studied when CG
methods perform satisfactorily, and how to quantify the CG approximations from
a numerical analysis perspective, where error is assessed in view of a specified
tolerance. Next, we discuss systems with long range interactions, i.e.,L 1 in (12).
These systems can exhibit complex behavior such as phase transitions, nucleation,
etc., however, they are more tractable analytically. At the same time they pose a
serious challenge to conventional MC methods due to the large number of neighbors
involved in each MC step.

Here we adopt this general approach, however, the challenges when both short
and long-range interactions are present, require a new methodology. Short-range
interactions induce strong “sub-coarse grid” fine-scale correlations between coarse
cells, and need to be explicitly included in the initial approximation NH .0/

M .
/. For
this reason we introduced in [25] a multi-scale decomposition of the Gibbs state
(7), into fine and coarse variables, which in turn allows us to describe in an explicit
manner the communication across scales, for both short and long-range interactions.

4.2 Multiscale Decomposition and Splitting Methods for MCMC

We first focus on general lattice systems, and subsequently discuss related applica-
tions in later sections. We consider (6) where in addition to the long-range potential
(12), we add the short-range K.x�y/ D S�1U .N jx�yj=S/, where S 
 L and
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U has similar properties as V in (12); for S D 1 we have the usual nearest neighbor
interaction. The new Hamiltonian includes both long and short-range interactions:
HN DH l

N CH s
N :

The common theme is the observation that long-range interactions L 1 can be
handled very efficiently by CGMC, (14). On the other hand short-range interactions
are relatively inexpensive and one could simulate them with Direct Numerical
Simulation (DNS) provided there is a suitable splitting of the algorithm in short
and long-range parts, that can reproduce within a given tolerance equilibrium Gibbs
states and dynamics. We return to the general discussion in (10) and outline the
steps we need in order to construct the CG Hamiltonian for the combined short and
long-range interactions.

Step 1: Semi-analytical splitting schemes. Here we take advantage of CG approxi-
mations developed in (14) in order to decompose our calculation into analytical and
numerical components, the latter involving only short-range interactions:

�N;ˇ .d�/ � e�ˇHN
.�/PN .d�/

D e
�
�
ˇH l

N
.�/� NH l;0

M
.�/
�h
e�ˇH s

N
.�/PN .d� j
/

i
e� NH

l;0
M
.�/ NPM .
/ ;

where NH l;0
M is the analytical CG formula (13) constructed for the computationally

expensive, for conventional MC, long-range part; due to the estimates (14), the
first term has controlled error. Furthermore, the dependence of � on rV in these
estimates suggests a rearrangement of the overall combined short- and long-range
potential, into a new short-range interaction that includes possible singularities orig-
inally in the long-range component (12), e.g., the singular part in a Lennard-Jones
potential, and a locally integrable (or smooth) long-range decaying component that
can be analytically coarse-grained using (13), with a small error due to (14). This
breakdown allows us to isolate the short-range interactions (after a possible re-
arrangement!), and suggests the two alternative computational approaches: either
seek an approximation e�ˇ NH s

M
.�/ D ´

e�ˇH s
NPN .d� j
/, or use sampling methods

to account for the short-range “unresolved” terms.

4.3 Microscopic Reconstruction

The reverse procedure of coarse-graining, i.e., reproducing “atomistic” properties,
directly from CG simulations is an issue that arises extensively in the polymer
science literature, [31, 37]. The principal idea is that computationally inexpensive
CG simulations will reproduce the large scale structure and subsequently micro-
scopic information will be added through microscopic reconstruction, e.g., the
calculation of diffusion of penetrants through polymer melts, reconstructed from CG
simulation, [31]. In this direction, CGMC provides a simpler lattice framework to
mathematically formulate microscopic reconstruction and study related numerical
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and computational issues. Interestingly this issue arised also in the mathematical
error analysis in [19, 23].

The mathematical formulation for the reconstruction of the microscopic equilib-
rium follows trivially when we rewrite the Gibbs measure (7) in terms of the exact
CG measure corresponding to (8), defined in (9), [21]:

�N .d�/� e�ˇ.H.�/� NH.�//PN .d� j
/ N�M .d
/� �N .d� j
/ N�M .d
/ :
We can define the conditional probability �N .d� j
/ as the exact reconstruction
of �N .d�/ from the exact CG measure N�M .d
/. Although many fine-scale
configurations � correspond to a single CG configuration 
, the “reconstructed”
conditional probability �N .d� j
/ is uniquely defined, given the microscopic and
the coarse-grained measures �N .d�/ and N�M .d
/ respectively.

A coarse-graining scheme provides an approximation N�app
M .d
/ for N�M .d
/, at

the coarse level. The approximation N�app
M .d
/ could be, for instance, any of the

schemes discussed in Sect. 4.2. To provide a reconstruction we need to lift the
measure N�app

M .d
/ to a measure �app
N .d�/ on the microscopic configurations. That

is, we need to specify a conditional probability �N .d� j
/ and set �app
N .d�/ WD

�N .d� j
/ N�app
M .d
/ : In the spirit of our earlier discussion, it is natural to measure

the efficiency of the reconstruction by the relative entropy,

R
�
�

app
N j�N

� D R
� N�app
M j N�M

�C
ˆ

R .�N .�j
/ j�N .� j
// N�app
M .d
/ ; (15)

i.e., relative entropy splits the total error at the microscopic level into the sum of the
error at the coarse level and the error made during reconstruction, [21, 35].

The first term in (15) can be controlled via CG estimates, e.g., (14). However,
(15) suggests that in order to obtain a successful reconstruction we then need to
construct �N .d� j
/ such that (a) R .�N .d� j
/ j�N .d� j
// should be of the same
order as the first term in (15), and (b) it is easily computable and implementable.

The simplest example of reconstruction is obtained by considering a microscopic
system with intermediate/long-range interactions (12)

N�app
M .d
/ D N�.0/M .d
/ ; �N .d� j
/D PN .d� j
/ : (16)

Thus we first sample the CG variables 
 involved in N�.0/M , using a CGMC algorithm;
then we reconstruct the microscopic configuration � by distributing the particles
uniformly on the coarse cell, conditioned on the value of 
. Since PN .d� j
/ is
a product measure this can be done numerically in a very easy way, without
communication between coarse cells and only at the coarse cells where an update
has occurred in the CGMC algorithm. In this case the analysis in [24] yields the
estimates
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R
�

N�.0/M j N�M
�

DO.�2/ ;R .�N .� j
/jPN .� j
//D ˇ

N

� NH .0/.
/� NH.
/
�

DO.�2/ :

Hence the reconstruction is second order accurate and of the same order as the
coarse-graining given by (13).

5 Example: Short and Long-Range Interactions

Short and long-range interactions pose a formidable computational challenge. We
consider an example that has been explicitly solved by Kardar in [17]. The model
considered has state space ˙N D f0;1g�N , where �N is a 1-dimensional lattice
with N sites. The energy of the system at configuration � D f�.x/;x 2�N g is

ˇHN .�/ D �K
2

X

x

X

jx�yjD1
�.x/�.y/� J

2N

X

x

X

y¤x
�.x/�.y/�h

X
�.x/

� H s
N .�/CH l

N .�/CE.�/:

Hamiltonian HN .�/ consists of the short-range term H s
N , the long-range term

H l
N and an external field E. The interactions involved in H s

N are of the nearest-
neighbor type with strengthK , whileH l

N represents a mean-field approximation or
the Curie-Weiss model defined by the potential J averaged over all lattice sites. For
this generic model Kardar gave in [17] a closed form solution for magnetization
Mˇ .K;J;h/, for the state space f�1;1g

Mˇ .K;J;h/D argmin
m

�J
2
m2� log

h
eK cosh.hCJm/

C
q
e2K sin2.hCJm/Ce�2K

i�
;

a simple rescaling of which gives the exact average coverage mˇ .K;J;h/ for the
lattice-gas model considered here,

mˇ .K;J;h/D 1

2

�
Mˇ

�
1

4
K;
1

4
J;
1

2
h� 1

4
J � 1

4
K

�
C1

�
: (17)

We have constructed the classical single spin-flip MH algorithm and the coupled
MH CGMC for the single spin-flip algorithm, both generating samples from the
Gibbs measure

�N;ˇ D 1

ZN
e�ˇHN .�/PN .d�/ :

We denote �x the state that differs from � only at the site x, �x.y/ D �.y/;

y ¤ x, �x.x/D 1��.x/. The proposal transition kernel is q.� 0j�/D 1
N

P
x ı.�

0�
�x/, proposing a spin-flip at the site x with the probability 1

N
.

We apply the coupled CGMC method with coarse updating variable
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Fig. 1 Phase Diagram [17]. The points marked by (�) depict the choice of the parameters K , J
in the presented simulations. The curve J.K/ indicates the phase transition

Table 1 Operations count for evaluating energy differences for n iterations

Cost Metropolis Coupled CGMC Coupled CGMC
hastings q <N qDN

Coarse A-R – n�O.M/ n�O.1/
Fine A-R n�O.N/ n1�O.1/ n1�O.1/


 WD T� D f
.k/;k D 1; : : : ;M g;

.k/ WD P

x2Ck
�.x/; qM D N with a coarsening level q < N . For the maximum

coarsening q DN the coarse variable is total magnetization 
DP
x2�N

�.x/, this
can be thought as a coarsening procedure constructing a system consisting of one
big coarse cell M D 1 with q D N sites. Since we want to consider only single
spin-flip updates, for the sake of comparison to the classical Metropolis method, the
cell updating can take only the values ˙1. The reconstruction is chosen uniform in
each cell, in the sense described in example at Sect. 4.3, though for implementation
ease and to demonstrate the importance of the reconstruction procedure, a simplified
reconstruction is used in Figs. 1–3 and Tables 2, 3 while the exact reconstruction is
used in Fig. 4 and Table 4.

The simplified reconstruction is a linear search over the cell sites, picking the
first site that is appropriate for the adsorption/desorption avoiding the use of a
random number. This simplification introduces error dependent on the cell size q
as is evident in the numerical results.
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Table 2 N D 4096
CG level q Errorc CPU(min)

4 0.089 93.5
K D�2, J D 2

8 0.302 45.8

4 0.003 93.6
K D 1, J D 5

8 0.003 45.9

4 0.027 91.6
K D 1, J D 1

8 0.100 45.5

Table 1 gives a comparison of the classical single-site updating Metropolis
Hastings algorithm with the proposed coupled Metropolis CGMC algorithm, in
terms of computational complexity per iteration. By computational complexity here
we mean the cost of calculating energy differences involved at the acceptance
probabilities. Consider the case that both the microscopic single-site updating
Metropolis and the two-step CGMC are run n times. This is reasonable to consider
since as stated at Theorem 2 the two methods have comparable mixing times,
therefore the number of iterations needed to achieve stationarity are comparable. We
denote E.˛CG/ WD ´ ´

˛CG.
;

0/ Nq0.
;
0/ Nf0.
/d
d
0 the average acceptance rate

of the coarse proposal. The average number of accepted coarse samples is n1 WD
ŒE.˛CG/n�, for which n1 < n since E.˛CG/ < 1. This means that the reconstruction
and fine step acceptance criterion are performed in average only for n1 iterations.

Results of computational implementation are shown in Figs. 2–4 and Tables 2–
4. Fig. 2a represents the average coverage versus the external field h for the exact
solution mex , the classical MH result <mcl > and the coupled CGMC < m>, for
a choice of interaction parameters K D 1; J D 5 in the ferromagnetic region as is
stated at the phase diagram depicted in Fig. 1. The exact solution mex as is plotted
in Fig. 2a corresponds to the part of the full solution (17) up to the point it jumps.
Fig. 2b is a graph of the average acceptance rates for the classical MH algorithm and
the coupled CGMC algorithm, that verifies the theoretical proof of the fact that the
two algorithms have comparable mixing times since the acceptance rate is strongly
related to mixing times. In the same figure we also give the average acceptance rates
of the coarse and fine step of the coupled method, noting that the fine acceptance
rate is large proving that a relative high number of the trial samples entering the fine
step are accepted.

Table 2 reports the error between the exact solution and the average coverage
obtained from the coupled CGMC algorithm with the simplified reconstruction for
a lattice of size N D 4096. Error is measured in terms of the pointwise solutions as

Errorc D
 
X

i

.mex.hi /�<m> .hi //2
!1=2

;
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Fig. 2 N D 1024, q D 8,K D 1, J D 5: (a) Coverage ; (b) Average acceptance
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and

Errorcl D
 
X

i

.mex.hi /� <mcl > .hi //
2

!1=2
;

for the coupled and the classical method respectively, where hi are the different
external field parameters for which the average coverages are computed. CPU times
are compared for the coarse-graining levels q D 4 and q D 8. To demonstrate the
robustness of the algorithm we present simulations at three different points of the
phase diagram planeK�J : in the disordered ((KD �2;J D 2) and (KD 1;J D 1/)
and ferromagnetic (KD 1;J D 5) regions. In Table 3 we compare the error between
the coupled CGMC average coverage with the exact solution and the corresponding
CPU time for q D 4 and q D 8, in the ferromagnetic region (K D 1;J D 5) and
compare with the classical spin-flip MH results error and computational time for a
smaller lattice of size N D 1024.

These results demonstrate the efficiency of the coupled CGMC methods in terms
of computational time, the run time gain scales almost linearly with the coarsening
level. We should also mention that a large number of samples (105) were considered
ensuring the statistical error is small enough.

The example studied here demonstrates the effectiveness of the proposed algo-
rithm due to the splitting of the long and short range interactions into the coarse and
the fine space respectively. The error of approximating the long range interactions
Hamiltonian is not apparent, since the coarse grained Hamiltonian is exact in this
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Table 3 N D 1024, K D 1, J D 5, Errorcl D 0:003, Classical CPUD 94.5 min

CG level Errorc Coupled CPU(min)

qD 4 0.01 23.1
qD 8 0.04 12.1

case, that is NH l
M .
/DH l

N .�/. When NH l
N .
/ is not exact this approximating error is

controlled by the estimates given section in 4.1 and extensively studied in [20, 22],
if no correction terms are included in the reconstruction procedure as described in
Sect. 4.3. On the other hand if the reconstruction procedure is perfect, being the
exact marginal of the microscopic distribution, we expect that the method will be
independent of the coarse graining parameter.

The coarse graining parameter q dependent error appearing in Tables 2 and 3
is due to the simplification of the reconstruction procedure. Figure 4 and Table 4
shows a comparison of the average coverage for the method implemented with the
simplified and the exact reconstruction where we used a larger number of samples to
5�106 to reduce the statistical error. The computational time gain, with respect to
the traditional spin-flip MH, corresponding to the simplified reconstruction is small
compared to the overall gain, as the comparison in Table 4 shows, ensuring that for
the perfect reconstruction we indeed have an overall computational time reduction
of the order of the coarse graining level q.

The direct numerical simulation also yields an error comparable to the coupled
method with the perfect reconstruction, both errors depending on the finite lattice
size effect and statistical errors.

Table 4 L1 error Coupled – Exact: N D 1024, K D 1, J D 5, L1 error Classical – Exact D
4.0e-05

CG level Simple reconstruction Perfect reconstruction
q CPU timeD 21.5 min CPU timeD 23.9 min

2 3.55e-04 4.0e-05
4 3.62e-04 5.1e-05
8 4.23e-04 1.05e-04
16 2.93e-04 3.0e-05
32 5.08e-04 3.26e-04
64 7.15e-04 3.2e-05
128 1.18e-03 1.01e-04
256 1.89e-03 3.7e-05
512 1.60e-03 2.7e-05
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Fig. 4 N D 1024,K D 1, J D 5: Coverage

6 Conclusions

An advantage of the Coupled CGMC approach over the asymptotics methodology
discussed in Sect. 4.2 is that the trial distribution may even be order one away
from the target distribution, however, the method can still perform well. On the
other hand, the methods can complement each other; for example, for equilibrium
sampling considered in this work we use as a trial reconstructed distribution, the
conditional measure �.d� j
/ in the multiscale decomposition in [25], see also
Sect. 4.3. Such proposals based on careful statistical mechanics-based approxima-
tions provide better trial choices for the MH methods and more efficient sampling,
as is proved theoretically and numerically. The example illustrated makes clear
that the coupled CGMC method implements a splitting of the short and long-
range interaction terms, into the two Metropolis acceptance criteria involved. The
long-range part which is responsible for the expensive calculations at a fully
microscopic method, now enters only in the coarse approximation measure where
its computational cost is much lower.

Coupling of a coarse and fine step is also effective in the study of dynamic
processes of stochastic lattice systems with kinetic Monte Carlo methods, a topic
studied in detail in [16].
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23. Katsoulakis, M.A., Plecháč, P., Sopasakis, A.: Error analysis of coarse-graining for stochastic
lattice dynamics. SIAM J. Numer. Anal. 44(6), 2270–2296 (2006)
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Calibration of a Jump-Diffusion Process Using
Optimal Control

Jonas Kiessling

Abstract A method for calibrating a jump-diffusion model to observed option prices
is presented. The calibration problem is formulated as an optimal control problem,
with the model parameters as the control variable. It is well known that such
problems are ill-posed and need to be regularized. A Hamiltonian system, with non-
differentiable Hamiltonian, is obtained from the characteristics of the corresponding
Hamilton-Jacobi-Bellman equation. An explicit regularization of the Hamiltonian
is suggested, and the regularized Hamiltonian system is solved with a symplectic
Euler method. The paper is concluded with some numerical experiments on real
and artificial data.

1 Introduction

Jump-diffusion models are increasingly popular in financial mathematics. They
present many new and challenging problems, for instance the design of efficient
and stable calibration algorithms. One interesting aspect of such models are the
different scales present: To price a contingent claim when the underlying is driven
by a jump-diffusion process one needs to solve a partial-integral equation where the
integral kernel typically has non-compact support.

Consider a stock S D St priced in a market with risk-free interest rate r . Let
C D C.t;S IT;K/ denote the price of an ordinary European call option on S with
strike priceK and maturity T . Under certain assumptions (see any book on financial
mathematics, for instance [4, Chap. 9]) there is a probability measure Q, on the
set of all stock price trajectories, such that the price of the call option equals its
discounted expected future payoff,
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C.t;St IT;K/D e�r.T�t/EQŒmax.ST �K/jSt �: (1)

A priori not much is given about this pricing measure Q, except that e�rtSt is a
martingale under Q,

e�rtSt D e�rT EQŒST jSt �: (2)

Model calibration is the process of calibrating (that is, determine) Q from market
data. The purpose of this work is to explain how the calibration problem can be
solved using optimal control and the theory of Hamilton-Jacobi-Bellman equations.
The idea is as follows: By (1) there is a price function of call options corresponding
to each choice of measure Q, C D C.T;KIQ/. Regarding Q as the control, we try
to minimize ˆ OT

0

ˆ
R

C

.C.T;KIQ/�Cm.T;K//2dT dK; (3)

where Cm denotes the market price of call options.
As stated, the problem of calibrating Q is too ill-posed. There are simply too

many possible choices of pricing measures that would fit data accurately. The usual
approach is to parametrize the dynamics of St under Q, its risk-neutral dynamics.
Concretely, one assumes that the price process St solves a stochastic differential
equation, parametrized by some parameter. Calibration now amounts to choosing
the parameter resulting in the best fit to market data. One could for instance assume
that there is a number � such that

dSt
St

D rdtC�dBt : (4)

Here and for the rest of the paper we let Bt denote Brownian motion. This was the
approach taken by Black and Scholes in [3], and many others. The calibration prob-
lem is now reduced to determining one number � . This simple model is probably
still the most widely used model, especially in the day-to-day pricing and hedging
of vanilla options. The problem with this approach is its poor ability to reproduce
market prices. So poor, in fact, that different numbers � are needed for options on
the same underlying with different strikes, a clear violation of the original model.

There are many ways people have refined the model suggested by Black and
Scholes. One popular approach is to assume stochastic volatility, i.e. � is no longer
a number, but a stochastic process, see for instance [10] or [2].

Following Dupire in [7], a second approach is to assume that � is a deterministic
function of time and price, � D �.t;St /, the so-called “local volatility” function.
One nice feature of this model is that there is a closed formula for �.t;S/ in terms
of quoted option prices, see [7, p. 5].

Finally a popular approach is to introduce discontinuities (i.e. jumps) in the price
process. This was initiated with the work of Merton in 1976 in [9]. A good reference
for jump processes in finance is the book [4].

The model we choose to calibrate in this paper is a jump-diffusion model with
state and time dependent volatility and time dependent jump intensity. It should be
noted however that the techniques used in this paper are more widely applicable.
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Even after making restrictions on the pricing measure, model calibration faces
one major problem. It is typically ill-posed in the sense that the result is highly
sensitive to changes in the data. One reason that the standard Black and Scholes
pricing model is still so widely used is probably that a constant volatility is so
easy to determine. One benefit of the optimal control approach described in this
work, is that the ill-posedness is made explicit in terms of the non-smoothness of
the Hamiltonian, see (36). Well-posedness is obtained after a regularization.

The focus of this work is to develop a method, first introduced in [12],
for calibrating the pricing measure from quoted option prices. The method is
summarized in Algorithm 4.1. As can be seen in the final sections of the paper,
the method works in the sense that we can determine a measure Q, such that pricing
under Q results in prices in accordance with observed market prices. Of course, to
apply the method in a real life situation would require more work. One challenge is
to obtain a pricing measure that is exact enough to price exotic options. The work
[13] suggests that the sensitivity of certain exotic contracts to even small changes in
the pricing measure makes the procedure of calibrating on vanilla to price exotics
rather dangerous. Another important challenge is to obtain a pricing measure that,
not only gives reasonable prices, but also good values for the greeks. One can argue
that it is more important to obtain good values for the greeks than for the price, as
the greeks determine the hedging strategy whereas the market determines the price.

The outline for the rest of this paper is as follows: In the next section we
introduce in more detail the SDE we wish to calibrate. Following Dupire, we also
deduce a forward integro-partial differential equation satisfied by the call option
in the strike and maturity variables T and K . This makes the numerical solution
scheme much more efficient. In Sect. 3, we give a quick introduction to the theory
of optimal control. In the following section, we develop a scheme for calibrating the
local volatility and jump intensity. This is done by first formulating the problem
as an optimal control problem, and then solving the corresponding regularized
Hamiltonian system. We conclude the paper with some numerical experiments. We
first try the method on artificial data obtained by solving the forward problem (1)
with prescribed local volatility and jump intensity, thus obtaining a price function
C D C.T;K/. The local volatility and jump intensity are then reconstructed from
C.T;K/ using Algorithm 4.1. Finally we calibrate using data from the S&P 500-
market. To start the procedure we need information on the jump distribution. In
[1] this problem is solved by first calibrating a Lévy process to observed prices,
then refining the calibration by allowing the volatility (and in our case, the jump
intensity) to vary. We use their calibration of the jump distribution. The calibration
scheme results in a volatility surface that is roughly constant in time, but varying
in price with lower price implying higher volatility. The result is positive in the
sense that we had no problem of convergence, once the jump distribution had been
specified.
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2 The Forward Equation

We begin this section by introducing a model for the risk-neutral stock price dyn-
amics. Consider a stock S paying no dividend which is, under the pricing measure,
affected by two sources of randomness: ordinary Brownian motion B.t/, and a
compound Poisson process with deterministic time dependent jump intensity. These
assumptions leads to the following evolution of S :

dS.t/=S.t�/D
�
r ��.t/m.t/

�
dtC�.t;S.t�//dB.t/C

�
J.t/�1

�
d�.t/; (5)

where the relative jump-sizes fJ.t/gt>0 consists of a family of independent
stochastic variables with at most time-dependent densities f�.t/gt>0. Note that by
definition J.t/ > 0. The jump times are governed by a Poisson counting process
�.t/ with time dependent intensity �.t/. As usual � denotes the (state and time
dependent) volatility function and r denotes the risk-free interest rate. The drift
term is determined by the fact that e�rtS.t/ is a martingale, forcing m.t/ to be
m.t/D EŒJ.t/�1�. In (5), t� is the usual notation for the limit of t � j�j as � ! 0.

The price C D C
�
t;S.t/

�
of any European style contingent claim, written on S

and with payoff g.S/, equals its discounted future expected payoff,

C
�
t;S.t/

�D e�r.t�T /EQŒg
�
S.T /

�jS.t/�: (6)

Standard arguments (see for instance [4, Chap. 12]) show that C satisfies the
backward integro partial-differential equation

rC D Ct ��
�
C CmSCS C EŒC

�
t;J.t/S

�
�
�

C 1

2
�2.t;S/S2CSS

C rSCS ;

C.T;S/D g.S/;

(7)

where

EŒC.t;J.t/S/� D
ˆ

R
C

C.t;Sx/�.xI t/dx: (8)

We use the notation Ct , CS etc. to indicate the derivatives of C D C.t;S/ with
respect to its first and second variable.

As it stands, in order to calculate call option prices for different strikes and
maturities T and K , we need to solve the above equation once for each different
pair (K;T ). However, following Dupire ( [7]) one can show that, due to the specific
structure of the payoff function of a call option, C satisfies a similar forward
equation in the variables T andK . A similar result is obtained in [1].

Proposition 1. Assuming stock price dynamics given by (5), european call options
C.T;K/D C.0;S IK;T /, at fixed t D 0 and S , satisfy the equation:
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CT D �.T /
�
mKCK � .mC1/C CE

	
J.T /C

�
T;J.T /�1K

�
�

C1
2
�2K2CKK � rKCK;

(9)

where
E
	
J.T /C

�
T;J.T /�1K

�
 D ´
R

C

´C.T;K=´/�.´IT /d´
C.0;K/ D max.S �K;0/: (10)

Proof. Let f D f .t;x/ denote some function defined on RC �RC. We begin by
introducing the adjoint operators L� and L:

L�f .t;x/ D ft .t;x/��
�
f .t;x/Cmxfx.t;x/C

´
R

C

f .t;´x/�.´/d´
�

C1
2
�2x2fxx.t;x/C r

�
xfx.t;x/�f .t;x/

�
;

Lf .t;x/ D �ft .t;x/C�
�
f .t;x/�m@x.xf /C

´
R

C

´�1f .t;´�1x/�.´/d´
�

C1
2
�2x2fxx.t;x/� r

�
@x
�
xf .t;x/

�Cf
�
:

(11)
From (7) we see that in its first two variables C.t;S/D C.t;S IT;K/ satisfies

L�C.t;x/D 0: (12)

We let P D P.t;xIs;y/ denote the solution to

L.t;x/P.t;xIs;y/ D 0; t > s;

P.s;xIs;y/ D ı.x�y/: (13)

Where the subscript in L.t;x/ indicates that the operator is acting in the variables t
and x.

Integration by parts yields:

0 D ´ T
s

´
R

�
L�C.t;x/

�
P.t;xIs;y/dxdt

D
h´

RC.t;x/P.t;xIs;y/dx
itDT
tDs C´ T

s

´
RC.t;x/

�
L.t;x/P.t;xIs;y/�dxdt

D ´
RC.T;x/P.T;xIs;y/dx� ´

RC.s;x/P.s;xIs;y/dx
D ´

RC.T;x/P.T;xIs;y/dx�C.s;y/:
(14)

This gives us the equality:

C.s;y/D
ˆ

R
C.T;x/P.T;xIs;y/dx: (15)

The payoff of a call option is C.T;x/D max.x�K;0/ so:

C.s;y/D
ˆ xD1

xDK
.x�K/P.T;xIs;y/dx: (16)

Fixing s and y and differentiating twice with respect to K yields:
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CKK.s;yIT;K/D P.T;KIs;y/; (17)

and consequently, using the fact that P satisfies (13):

L.T;K/CKK.t;S IT;K/D 0: (18)

We observe that KCKK.T;K/D @K
�
KCK.T;K/�C

�
and

CKK.T;´
�1K/D ´2@KKC.T;´

�1K/:

Recall our choice of notation: CKK.T;´�1K/ denotes the derivative of C.T;K/
with respect to its second variable evaluated at .T;´�1K/.

These observations and the above equation yield:

@KK

�
�CT C�.T /

�
m.T /KCK � .m.T /C1/C CE

	
J.T /C.T;J.T /�1K/


�

C1
2
�2.T;K/K2CKK � rKCK

�
D 0:

We integrate twice and observe that the left hand-side and its derivate with respect
to K goes to zero as K tends to infinity. This forces the integrating constants to be
zero and finishes the proof. ut

For ease of notation we assume from now on that, unless otherwise is explicitly
stated, the risk-free interest rate is zero, r D 0. Moreover we assume that the density
of the jump-size �.t/ is constant over time. For this reason we use only symbols �
and J to denote �t and J.t/ respectively.

We conclude this section with introducing the two operators  1,  2 and their
adjoints:

 1.C / D .mC1/C �mKCK CEŒJC.T;J�1K/�;
 2.C / D 1

2
K2CKK ;

 �1 .C / D .mC1/C Cm@K.KC/CEŒJ 2C.T;JK/�;

 �2 .C / D 1
2
@KK.K

2C/:

(19)

The forward equation satisfied by the call options can now be written as

CT D  1.C /C 2.C /;

C.0;K/ D max.S �K;0/: (20)

3 The Optimal Control Problem

Consider an open set ˝ � Rn and let V be some Hilbert space of functions on ˝ ,
considered as a subspace of L2.˝/ with its usual inner product. For a given cost
functional h W V �V ! R, the optimal control problem consists of finding
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inf� W˝�Œ0; OT�!R

ˆ OT
0

h.';�/dt; (21)

where ' W˝ � Œ0; OT�! R is the solution a differential equation

't D f .'I�/; (22)

with a given initial function '.�;0/D '0. We call f the flux. For each choice of � it is
a function f W V ! R. Recall that 't denotes the partial derivative with respect to t .

We refer to � as the control, and the minimizer of (21), if it exists, is called the
optimal control. We assume that � takes values in some compact set B � R.

There are different methods for solving optimal control type problems. In this
work we study the characteristics associated to the non-linear Hamilton-Jacobi-
Bellman equation. The first step is to introduce the value function U :

U.�;�/ D inf� W˝�Œ�;T �!B
n´ T
�
h.'
 ;�/dt W 't D f .'I�/ for � < t < T ,

'.�;�/D � 2 V
o
:

(23)

The associated non-linear Hamilton-Jacobi-Bellman equation becomes:
�
Ut CH.U
 ;�/ D 0;

U.�;T / D 0;
(24)

where H W V �V ! R is the Hamiltonian associated to the above optimal control
problem

H.�;'/D infaW˝!B
˚h�;f .';a/i Ch.';a/


: (25)

Here h � ; � i is the inner-product in the Hilbert space V .
Crandall’s, Evans and Lions proved that Hamilton-Jacobi-Bellman type equa-

tions often have well-posed viscosity solutions, see [5]. Constructing a viscosity
solution to (24) directly is however computationally very costly. We shall instead
construct a regularization of the characteristics of (24) and solve the corresponding
coupled system of differential equations.

The well known method of characteristics associated to (24) yields the Hamilto-
nian system:

't D H�.';�/;

�t D �H'.';�/;
'.�;0/ D '0;

�.�;T / D 0;

(26)

whereH� andH' denote the Gâteaux derivatives ofH w.r.t. � and ' respectively.
Recall that, by definition of the Gâteaux derivative,H'.';�/ satisfies

d

dt

ˇ̌
ˇ̌
tD0
H.'C tg;�/D

ˆ
˝

gH'.';�/dx; (27)

for all g 2 V , and similarly forH�.
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In the applications in this work, the HamiltonianH is not differentiable. In order
for (26) to make sense, we first need to regularizeH .

4 Reconstructing the Volatility Surface and Jump Intensity

4.1 The Hamiltonian System

Recall our model of the stock price and the corresponding integro-partial differential
equation for call options, (20). For now we assume that the density of the jump-size
is known, i.e.� D �.x/ is some given function. In Sect. 5 we indicate how � can
be determined in concrete examples. As will be clear later, we are forced to treat
the jump size density separately from the local volatility and jump intensity. We use
the explicit expression of the Hamiltonian, obtained in (36), to determine �2 and �.
There is no corresponding simple expression for the Hamiltonian if the jump density
is unknown.

The remaining unknown quantities in (20) are: the local volatility function � D
�.t;S/, and the jump intensity � D �.t/. The problem of calibrating these from
option prices can be formulated as an optimal control problem. Recall the operators
 1; 2 and their adjoints introduced in (19).

Suppose that Cm D Cm.T;K/ are call options priced in the market, for different
strikesK � 0 and maturities 0� T � OT. We wish to the determine the control .�2;�/
minimizing ˆ OT

0

ˆ
R

C

.C �Cm/2dT dK; (28)

given that C D C.T;K/ satisfies

CT D � 1.C /C�2 2.C /; (29)

with boundary conditions

C.K;0/ D max.S �K;0/;
C.0;T / D S:

(30)

We further assume that for all T and K , �2 2 Œ�2�;�2C� and � 2 Œ��;�C�, for
constants ��, �C, �� and �C.

The problem as stated here is typically ill-posed as the solution often is very
sensitive small changes in Cm.

A common way to impose well-posedness is to add a Tikhonov regularization
term to (28), e.g. for some ı > 0 one determines

arg min.�;�/

ˆ T

0

ˆ
R

C

.C �Cm/2dT dKC ı.k�2k2Ck�k2/; (31)
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with C subject to (29). Minimizing (31) under the constraint (29) leads to a C 2-
Hamiltonian

H ı .C;�;T / D min.�2;�/

n
�
�
ı�C´

R
C

� 1.C /dK
�

C´
R

C

�2
�
ı�2C� 2.C /

�
dKC´

R
C

.C �Cm.T;K//2dK
o
:

(32)

A rigorous study of Tikhonov regularization for calibration of the local volatility
can be found in the work of Crépey, see [6].

We take a different approach. Using the material presented in the previous
section, we construct an explicit regularization of the Hamiltonian associated with
(28) and (29), thus imposing well-posedness on the value function. As can be seen
in (32), Tikhonov regularization corresponds to a different choice of regularization
of the Hamiltonian. In this work we choose a slightly different regularization of
the Hamiltonian, see (38). The particular choice of regularization in (38) is out of
convenience.

The Hamiltonian associated with the optimal control problem (28) and (29)
becomes

H.C;�;T / D inf.�;�/

�
�
´

R
C

� 1.C /dK

C´
R

C

�2� 2.C /dKC´
R

C

.C �Cm.T;K//2dK
�
:

(33)

Only the sign of the terms
ˆ

R
C

� 1.C /dK and � 2.C / (34)

are important in solving the above optimization problem. This leads us to define the
function

sŒa;b�.x/D
�
ax if x < 0;
bx if x > 0.

(35)

We can express the Hamiltonian using the function s in the following way:

H.C;�;T / D sŒ�
�

;�
C

�

�´
R

C

� 1.C /dK

�

C´
R

C

sŒ�2
�

;�2
C

�

�
� 2.C /

�
dKC´

R
C

.C �Cm.T;K//2dK:

Recall that we assumed �D �.T / to be independent of K , whereas � D �.K;T /

is a function of both T and K . This explains the different positions of s and the
integral in the expression for H above.

It is clear from (36) and (35) that the Hamiltonian is not differentiable. We
proceed by constructing an explicit regularization of the HamiltonianH . A straight-
forward regularization of the Hamiltonian is to approximate s.x/ by
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sı;Œa;b�.x/D x
b�a
2

� bCa

2

ˆ x

0

tanh.y=ı/dy; (36)

for some ı > 0. The derivative of sı ,

s0ı;Œa;b�.x/D b�a
2

� bCa

2
tanh.x=ı/; (37)

approaches a step function as ı tends to zero, see Fig. 1.
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Fig. 1 Here a D 1 and b D 3. To the left: sı for ı D 1(dashed), 0.1 (dot-dashed) and 0.0001
(solid) respectively. To the right: s0

ı
for the same ı

We define the regularized HamiltonianH ı .C;�;T / by

H ı.C;�;T / D sı;Œ�
�

;�
C

�

�´
R

C

� 1.C /dK

�

C´
R

C

sı;Œ�2
�

;�2
C

�

�
� 2.C /

�
dKC´

R
C

.C �Cm.T;K//2dK:
(38)

The Hamiltonian system (26) associated to the regularized optimal control
problem is
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CT D s0
ı;Œ�

�

;�
C

�

�´
R

C

� 1.C /dK

�
 1.C /C s0

ı;Œ�2
�

;�2
C

�

�
� 2.C /

�
 2.C /;

��T D s0
ı;Œ�

�

;�
C

�

�´
R

C

� 1.C /dK

�
 �1 .�/

C �2
�
�s0
ı;Œ�2

�

;�2
C

�

�
 2.C /�

��
C2.C �Cm/;

C.K;0/ D max.S �K;0/;
C.0;T / D S;

�.K; OT/ D 0;

�.0;T / D 0;

�ı D s0
ı;Œ�

�

;�
C

�

�´
R

C

� 1.C /dK

�
;

�ı D s0
ı;Œ�2

�

;�2
C

�

�
� 2.C /

�
:

(39)

4.2 Discretization

We proceed by solving the Hamiltonian system (39). We suggest a discretization in
the time dimension based on an implicit symplectic Pontryagin scheme introduced
in [11]. The details are as follows:

We introduce a uniform partition of the time interval Œ0; OT� with �t D OT=N for
some integer N . We write C .j /.K/D C.K;j�T / and �.j /.K/D �.K;j�T / and
demand that they satisfy a symplectic implicit Euler scheme:

C .jC1/�C .j / D �TH ı
�
.C;�;T /.j /;

�.j /��.jC1/ D �TH ı
C .C;�;T /

.j /;
(40)

where H ı.C;�/.j / D H ı.C .j /;�.jC1/;j�t/. Notice that we evaluate the
Hamiltonian at different times for C and �.

Remark 1. Symplecticity here means that the gradient of the discrete value function
coincides with the discrete dual:

UC .C
.i/; t/D �.i/: (41)

Symplectic Euler is an example of a symplectic scheme. See chapter 6 in [8]
for more examples and a more thorough discussion of symplectic methods and their
use. An important property of the symplectic Euler method is that the numerical
solution is an exact solution of a perturbed Hamiltonian system. See [11] for a
detailed description of the perturbed Hamiltonian.

The main result of [12] (see Theorem 4.1) states that if the Hamiltonian is
Lipschitz, and if �.jC1/ has uniformly bounded variation with respect to C .j / for
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all j and �T , the optimal solution to the Pontryagin problem (40), .C .j /;�.j //,
satisfies the error estimate (for ı ��T )

jinf
ˆ OT
0

ˆ
R

C

.C �Cm/2dKdT ��T
X

j

ˆ
R

C

.C .j /�C .j /m /2dKj D O.�T /: (42)

We now turn to the strike variable K . We truncate for large values of K:
C.T;K/D 0 for K > OK, for some large OK, and introduce a uniform grid on Œ0; OK�,
�K D OK=M , for some integerM . We use the notation

C
.j /
i D C.i�K;j�T /;

�
.j /
i D �.i�K;j�T /:

(43)

The next step is to discretize the operators (19). We use the standard central
difference quotients to approximate the derivatives

DiC D CiC1�Ci�1
2�K

; D2
i C D CiC1�2Ci CCi�1

�K2
: (44)

The integral EŒJC.T;J�1K/� D ´
R

C

´�.´/C.T;´�1K/dx is calculated by first
truncating for large values of ´, say ´ > Ó , then using the trapezoidal rule:

E
	
JC.T;J�1K/


	E.C /i WD�´

PX

kD0

f .´k/C.T;i�K=´k/Cf .´kC1/C.T;i�K=´kC1/
2

;

where �´ D Ó=P , ´k D k�´ and f .´/ D ´�.´/. The value of C.T;i�K=´kC1/
is approximated using linear interpolation. Define the integers �.i;k/ by the rule
�.i;k/� i=´k < �.i;k/C1. It is then possible to estimate

C.T;i�K=´k/	 .C�.i;k/C1�C�.i;k//.i=´k��.i;k//CC�.i;k/: (45)

We treat
E�.C /i 	 EŒJ 2C.T;J i�K/� (46)

in the same way.
This yields the discretization

 1.C /i D m.i�K/DiC � .mC1/Ci C E.C /i ;
 2.C /i D 1

2
.i�K/2D2

i C;

 �.C /i D .mC1/Ci CmDi .KC/C E�i .C /;
 �.C /i D 1

2
D2
i .K

2C/:

(47)

We can now approximateH ı
�

and H ı
C by
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H ı
�
.C;�;T /

.j /
i D s0

ı;Œ�
�

;�
C

�

�
�K

P
k �

.jC1/
k

 1.C
.j //k

�
 1.C

.j //i

Cs0
ı;Œ�2

�

;�2
C

�

�
�
.jC1/
i  2.C

.j //i

�
 2.C

.j //i ;

H ı
C .C;�;T /

.j /
i D s0

ı;Œ�
�

;�
C

�

�´
R

C

� 1.C
.j //dK

�
 �1 .�/i

C �2
�
�s0
ı;Œ�2

�

;�2
C

�

�
 2.C

.j //�
��

i

C2.C .j /�C .j /m /i :

(48)

Finally we summarize the above and obtain the completely discretized
Hamiltonian system

C
.jC1/
i �C .j /i D�TH ı

�
.C;�/

.j /
i ;

�
.j /
i ��.jC1/i D�TH ı

C .C;�/
.j /
i ;

C
.0/
i D max.S � i�K;0/;

C
.j /
0 D S;

C
.j /
M D 0;

�
.N/
i D 0;

�
.j /
0 D 0;

�
.j /
M D 0;

�.j / D s0
ı;Œ�

�

;�
C

�

�
�K

P
k �

.jC1/
k

 1.C
.j //k

�
;

�
.j /
i D s0

ı;Œ�2
�

;�2
C

�

�
�
.jC1/
i  2.C

.j //i

�
:

(49)

Recall that � and � depend on the parameter ı.

4.3 The Newton Method

In order to solve the Hamiltonian system (49), one could use some fixed-point
scheme that in each iteration removed the coupling by solving the equations for
C and � separately. This method has the advantage of being easy to implement but
the major drawback of very slow (if any) convergence to the optimal solution.

We instead use information about the Hessian and solve (49) with the Newton
method. The details are as follows:

We let the functions F ı ;Gı W RMN ! RMN be given by

F ı .C;�/iCj�N D C
.jC1/
i �C .j /i ��TH ı

�;ij
;

Gı .C;�/iCj�N D C
.j /
i �C .jC1/i ��TH ı

C;ij :
(50)

We seek .C;�/ such that F ı .C;�/DGı .C;�/D 0.
Starting with some initial guess .C Œ0�;�Œ0�/, the Newton method gives
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�
C ŒkC1�

�ŒkC1�

�
D
�
C Œk�

�Œk�

�
�
�
XŒk�

Y Œk�

�
; (51)

where .XŒk�;Y Œk�/ is the solution to the following system of linear equations

Jk

�
XŒk�

Y Œk�

�
D
�
F.C Œk�;�Œk�/

G.C Œk�;�Œk�/

�
: (52)

We let Jk denote the Jacobian of .F;G/ W R2MN ! R2MN evaluated at
.C Œk�;�Œk�/.

As expected, the smaller the value of the regularizing parameter ı, the harder
for (51) to converge. In particular, a small ı requires a good initial guess. Since
ultimately we wish to solve the Hamiltonian system for very small ı, we are
led to a iterative Newton scheme that brings ı down successively. The scheme is
summarized in Algorithm 4.1.

Algorithm 4.1: Newton method

Input: Tolerance TOL, final regularization parameter ı0, observed prices Cm.
Output: � and � .

Let ı be not too small (usually ı 	 1 will do).
Let ˇ be some number 0 < ˇ < 1 (typically ˇ 	 0:7 will do).
Set C .j /i Œ0�D max.S � i�K;0/ and �.j /i Œ0�D 0.
while ı > ı0 do

Let k D 0.
while k.F.C Œk�;�Œk�/;G.C Œk�;�Œk�//k > TOL do

�
C ŒkC1�
�ŒkC1�

�
D
�
C Œk�

�Œk�

�
�
�
XŒk�

Y Œk�

�
.12:53/

k D kC1.
end while
Let .C Œ0�;�Œ0�/D .C Œk�;�Œk�/.
Put ı D ˇı.

end while
Define � and � by:

�.j / D s0ı;Œ�
�

;�
C

�

�
�K

X

k

�
.jC1/
k

 1.C
.j //k

�
;

.12:54/

�
.j /
i D s0

ı;Œ�2
�

;�2
C

�

�
�
.jC1/
i  2.C

.j //i

�
:
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5 Numerical Examples

5.1 Artificial Data No Jumps

As a first example we apply the method presented above, and summarized in
Algorithm 4.1, to solve the calibration problem (28) without jumps. That is, from a
set of solutions fCm.K;T /g we deduce �.K;T / by minimizing

ˆ OT
0

ˆ
R

C

.C �Cm/2dT dK; (55)

where C.T;K/ solves
CT D 1

2
�2CKK ;

C.K;0/ D max.S �K;0/: (56)

To test that the method does indeed converge to the correct solution, we assign a
value to �.S; t/, and by solving (56), we obtain a solution Cm.K;T /. Using this
solution, we reconstruct �.K;T / with Algorithm 4.1. The result is presented in
Fig. 2. As can be seen, away from the boundary, one can reconstruct �.T;K/ to a
very high degree of accuracy. It should also be noted that the regularizing parameter
ı can virtually be eliminated, thus obtaining a nearly perfect fit of calibrated prices
C.T;K/ to market prices Cm.T;K/.
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Fig. 2 Reconstruction of volatility �2
true.K;T /D 0:1C0:2TK=3 with ı D 10�9, �2

�

D 0:1
and �2

C

D 0:35 with no jump present. In this experiment S D 1, OK D 3 and OT D 1. We use the
grid size ofM DN D 50. The three plots shows, from left to right: 1. The true volatility�2

true used
to generate “quoted” option prices Cm, 2. The reconstructed volatility �2 for ı D 10�10 and, 3.
The L2-error in option prices as a function of the regularizing parameter ı : kC �CmkL2.ı/
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5.2 Artificial Data with Jumps

A more interesting example is obtained by generating option prices using the full
jump-diffusion model (5). We assume that the relative jump sizes J are log-normally
distributed with mean 0 and variance 1, i.e.

log J �N.0;1/: (57)

Option prices Cm are generated by solving (20) with prescribed functions � and �.
We then reconstruct � and � using Algorithm 4.1. The result is presented in Fig. 3
below. Again the quality of the reconstructed data is very good. The calibrated
volatility � and jump intensity � can be brought arbitrarily close to its “true”
prescribed values.

5.3 Real Data

We conclude this section and the paper with an example from the S&P - 500 market.
In order to compare the described calibration method with existing methods

we decided to re-calibrate the model calibrated in [1]. Andersen and Andreasen
collected a set of bid and ask prices for call options on the S&P-500 index in April
1999. At page 11 in [1] a table of bid and ask volatilities is presented. We will focus
only on data for options with maturities no more than 12 months.

The first step in the calibration is to determine the distribution of the jump sizes.
In [1] the authors assumes that the jumps are log-normally distributed with unknown
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Fig. 3 Reconstruction of volatility and jump intensity when �2
true.K;T /D 0:1C0:2TK=3 and

�D 0:2�0:4..t �0:5/2�0:25/. Here we show results for ı D 10�4, �2
�

D 0:1, �2
C

D 0:35,

�
�

D 0:2 and �
C

D 0:3. In this experiment S D 1, OK D 3 and OT D 1. We used a grid size
of M D 80 and N D 20. The six plots from top left to bottom right represent respectively: 1.
The true volatility �2

true. 2. True jump intensity. 3. Reconstructed volatility �2 for ı D 10�10 .
4. Reconstructed jump intensity. 5. The price surface obtained using reconstructed prices. 6. The
L2-error in option prices as a function of the regularizing parameter ı : kC �CmkL2.ı/
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mean ˛ and variance ˇ2. They determine ˛ and ˇ by assuming that also � and �
are constant. That is, they calibrate the Levy-process (q denotes the dividend yield)

dSt=St� D .r �q��m/dtC�dB.t/C .J �1/d�t : (58)

A best fit, in the least-square sense, of the above parameters, to mid-implied
volatilities, results in

� D 17:65%;
� D 8:90%;
˛ D �88:98%;
ˇ D 45:05%:

(59)

We assume that the above parameters determine the jump size distribution and
proceed by calibrating the state and time dependent volatility and time dependent
intensity using Algorithm 4.1. Note that the interest rate is non-zero and that there
is a dividend yield. It is straightforward to obtain the forward equation with a yield
term present, corresponding to (9) (see for instance Equation 4 in [1]).

As before, we let Cm D Cm.T;K/ denote the market price of options. The
optimal control problem consists of minimizing

ˆ OT
0

ˆ
R

C

w.T;K/.C �Cm/2dT dK; (60)

where we have introduced a weight function w to accommodate for the fact the Cm
is not known everywhere. The specific weight function used in the calibration is

w.T;K/D
X

.Ti ;Ki /2I
ı.T �Ti /ı.K�Ki /; (61)

with the sum taken over all values .Ti ;Ki / for which we have a market price.
We are now in a position to apply the technique explained in the previous section.

The jump intensity was found to be roughly constant over time and equal to

�.T /D 16:5%: (62)

The resulting local volatility � is plotted in Fig. 4. We used the constant values in
(59) as starting values of � and �. The method worked well in the sense that we
had no problems with convergence and the resulting volatility surface and intensity
function were reasonable. Using the calibrated measure we could reproduce the
option prices to within the bid-ask spread.

One drawback with the method presented in this work is that one needs an
explicit Hamiltonian, and preferably an explicit expression of the Hessian. Other-
wise, the method becomes more involved, and potentially more computationally
costly. This is the reason why we determine the jump distribution as described in
this section.
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Fig. 4 Local diffusion volatilities for the S&P500 index, April 1999. Local volatilities for jump-
diffusion model when fitted to S&P500 option prices. First axis is future spot relative current and
second axis is time in years. Jump parameters are ˛ D�88:89% and ˇ D 45:05%. The jump
intensity was calibrated to �.t/D 16:5%
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Some Remarks on Free Energy
and Coarse-Graining

Frédéric Legoll and Tony Lelièvre

Abstract We present recent results on coarse-graining techniques for thermody-
namic quantities (canonical averages) and dynamical quantities (averages of path
functionals over solutions of overdamped Langevin equations). The question is how
to obtain reduced models to compute such quantities, in the specific case when
the functional to be averaged only depends on a few degrees of freedom. We
mainly review, numerically illustrate and extend results from (Blanc et al. Journal
of Nonlinear Science 20(2):241–275, 2010; Legoll and Lelièvre Nonlinearity
23(9):2131–2163, 2010.), concerning the computation of the stress-strain relation
for one-dimensional chains of atoms, and the construction of an effective dynamics
for a scalar coarse-grained variable when the complete system evolves according to
the overdamped Langevin equation.

1 Motivation

In molecular simulation, two types of quantities are typically of interest: averages
with respect to the canonical ensemble (thermodynamic quantities, such as stress,
root-mean-square distance, . . . ), and averages of functionals over paths (dynamic
quantities, like viscosity, diffusion coefficients or rate constants). In both cases, the
question of coarse-graining is relevant, in the sense that the considered functionals
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Université Paris-Est, CERMICS, École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, 77455
Marne-La-Vallée Cedex 2, France and INRIA Rocquencourt, MICMAC Team-Project, Domaine
de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
e-mail: lelievre@cermics.enpc.fr

F. Legoll
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typically depend only on a few variables of the system (collective variables, or
reaction coordinates). Therefore, it is essential to understand how to obtain coarse-
grained models on these variables.

1.1 Coarse-Graining of Thermodynamic Quantities

Computing canonical averages is a standard task in molecular dynamics. For a
molecular system whose atom positions are described by a vector q 2 R

n, these
quantities read ˆ

Rn

˚.q/d�;

where ˚ W Rn ! R is the observable of interest and � is the Boltzmann-Gibbs
measure,

d�DZ�1 exp.�ˇV.q//dq; (1)

where V is the potential energy of the system, ˇ is proportional to the inverse of the
system temperature, and

Z D
ˆ
Rn

exp.�ˇV.q//dq

is a normalizing constant. Typically, q represents the position of N particles in
dimension d , hence q 2 R

n with nD dN .
As mentioned above, observables of interest are often functions of only part of

the variable q. For example, q denotes the positions of all the atoms of a protein and
of the solvent molecules around, and the quantity of interest is only a particular
angle between some atoms in the protein, because this angle characterizes the
conformation of the protein (and thus the potential energy well in which the system
is, is completely determined by the knowledge of this quantity of interest). Another
example is the case when q D .q1; : : : ;qn/ denotes the positions of all the atoms of
a one-dimensional chain, and quantities of interest are only a function of the total
length qn�q1 of the chain.

We thus introduce the so-called reaction coordinate

� W Rn ! R;

which contains all the information we are interested in. Throughout this article, we
assume that it is a smooth function such that jr�j is bounded from below by a
positive constant, so that the configurational space can be foliated by isosurfaces
associated to �. A simple case that will be considered below is �.q1; : : : ;qn/D qn.

To this function � is naturally associated an effective energy A, called the free
energy, such that

d.� ?�/D exp.�ˇA.´//d´;
where � ?� denotes the image of the measure � by �. In other words, for any test
function ˚ W R ! R,
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ˆ
Rn

˚.�.q// Z�1 exp.�ˇV.q//dq D
ˆ
R

˚.´/ exp.�ˇA.´//d´: (2)

Expressions of A and its derivative are given below (see Sect. 1.4).
The interpretation of (2) is that, when Q is a random variable distributed

according to the Boltzmann measure (1), then �.Q/ is distributed according to
the measure exp.�ˇA.´//d´. Hence, the free energy A is a relevant quantity for
computing thermodynamic quantities, namely canonical averages.

In conclusion, the question of coarse-graining thermodynamic quantities amo-
unts to computing the free energy, and there are several efficient methods to perform
such calculations (see for example [6, 20]). In the sequel of this article, we
address a particular case, motivated by materials science, where the system under
consideration is a one-dimensional chain of atoms, and �.q1; : : : ;qn/ D qn � q1
is the length of the chain (see Fig. 1 below). We are interested in the free energy
associated to this reaction coordinate, and its behaviour when the number n of
particles goes to C1. Standard algorithms to compute the free energy then become
prohibitively expensive, as the dimension of the system becomes larger and larger.
Alternative strategies are needed, and we investigate analytical methods, based on
large deviations principles, in Sect. 2.

1.2 Coarse-Graining of Dynamical Quantities

The second topic of this contribution is related to the dynamics of the system,
and how to coarse-grain it. In short, we will show how to design a dynamics that
approximates the path t 7! �.Qt /, where � is the above reaction coordinate.

To make this question precise, we first have to choose the full dynamics, which
will be the reference one. In the following, we consider the overdamped Langevin
dynamics on state space R

n:

dQt D �rV.Qt /dtC
p
2ˇ�1 dWt ; QtD0 DQ0; (3)

where Wt is a standard n-dimensional Brownian motion. Under suitable assump-
tions on V , this dynamics is ergodic with respect to the Boltzmann-Gibbs measure
(1) (see [5] and references therein). Hence, for �-almost all initial conditionsQ0,

lim
T!1

1

T

ˆ T

0

˚.Qt /dt D
ˆ
Rn

˚.q/d� (4)

almost surely. In practice, this convergence is often very slow, due to some
metastabilities in the dynamics: Qt samples a given well of the potential energy
for a long time, before hopping to some other well of V .

An important dynamical quantity we will consider below is the average residence
time, that is the mean time that the system spends in a given well, before hopping
to another one, when it follows the dynamics (3). Typically, the wells are fully
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described through � (q is in a given well if and only if �.q/ is in a given interval), so
that these times can be obtained from the knowledge of the time evolution of �.Qt /,
which is expensive to compute since it means simulating the full system.

In Sect. 3 below, we will first present a one-dimensional dynamics of the form

d
t D b.
t /dtC
p
2ˇ�1�.
t /dBt ; (5)

where Bt is a standard one-dimensional Brownian motion and b and � are scalar
functions, such that .
t /0�t�T is a good approximation (in a sense to be made
precise below) of .�.Qt //0�t�T . Hence, the dynamics (5) can be thought of as
a coarse-grained, or effective, dynamics for the quantity of interest. A natural
requirement is that (5) preserves equilibrium quantities, i.e. it is ergodic with respect
to exp.�ˇA.´//d´, the equilibrium measure of �.Qt / whenQt satisfies (3), but we
typically ask for more than that. For example, we would like to be able to recover
residence times in the wells from (5), hence bypassing the expensive simulation of
�.Qt /. We will show below that the effective dynamics we propose indeed fulfills
these two requirements.

As a matter of fact, the coarse-grained dynamics

d´t D �A0.´t /dtC
p
2ˇ�1 dBt (6)

is a one-dimensional dynamics that is ergodic with respect to exp.�ˇA.´//d´. It
can thus be thought of as a natural candidate for a dynamics approximating �.Qt /,
all the more so as practitioners often look at the free energy profile (i.e. the function
´ 7! A.´/) to get an idea of the dynamics of transition (typically the transition
time) between one region indexed by the reaction coordinate (say for example
fq 2 R

nI �.q/� ´0g) and another one (for example fq 2 R
nI �.q/ > ´0g). If �.Qt /

follows a dynamics which is close to (6), then the Transition State Theory says that
residence times are a function of the free energy barriers [17,18], and then it makes
sense to look at the free energy to compute some dynamical properties. It is thus
often assumed that there is some dynamical information in the free energy A.

In the sequel, we will compare the accuracy (with respect to the original full
dynamics) of both coarse-grained dynamics, an effective dynamics, an effective
dynamics of type (5) (namely dynamics (67) below) and the dynamics (6) driven
by the free energy. Their relation has been investigated from an analytical viewpoint
in [19, Sect. 2.3] (see also [11, Sect. 10 and (89)] and [21]).

1.3 Outline of the Article

In this contribution, we mainly review, numerically illustrate and extend results
from the two articles [3, 19]. Our aim is to present in a pedagogical and uni-
fied manner recent contributions on coarse-graining procedures concerning: (1)
a static case inspired by material sciences, namely the computation of stress-
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strain (namely force-elongation) relation for one-dimensional chains of atoms, in
the thermodynamic limit (Sect. 2) and (2) a dynamic case inspired by molecular
dynamics computations, namely the derivation of effective dynamics along the
reaction coordinate, for overdamped Langevin equations (Sect. 3). Compared to the
original articles [3, 19], we propose some extensions of the theoretical results (see
e.g. Sect. 2.2), some simpler proofs in more restricted settings (in Sect. 3.3) and new
numerical experiments (Sects. 2.2.4 and 3.4).

1.4 Notation

We gather here some useful notation and results. Let ˙´ be the submanifold of Rn

of positions at a fixed value of the reaction coordinate:

˙´ D fq 2 R
nI �.q/D ´g: (7)

Let us introduce �˙´
, which is the probability measure � conditioned at a fixed

value of the reaction coordinate:

d�˙´
D exp.�ˇV / jr�j�1 d�˙´ˆ

˙´

exp.�ˇV / jr�j�1 d�˙´

; (8)

where the measure �˙´
is the Lebesgue measure on ˙´ induced by the Lebesgue

measure in the ambient Euclidean space R
n � ˙´. By construction, if Q is

distributed according to the Gibbs measure (1), then the law of Q conditioned to
a fixed value ´ of �.Q/ is �˙´

. The measure jr�j�1d�˙´
is sometimes denoted by

ı�.q/�´.dq/ in the literature.
We recall the following expressions for the free energy A and its derivative A0,

also called the mean force (see [7]):

A.´/ D �ˇ�1 ln

�ˆ
˙´

Z�1 exp.�ˇV / jr�j�1 d�˙´

�
; (9)

A0.´/ D
ˆ
˙´

F d�˙´
; (10)

where F is the so-called local mean force:

F D rV � r�
jr�j2 �ˇ�1 div

� r�
jr�j2

�
: (11)

In the particular case when the reaction coordinate is just one of the cartesian
coordinate, say �.q/D qn, then
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A.´/D �ˇ�1 ln

�ˆ
Rn�1

Z�1 exp.�ˇV.q1; : : : ;qn�1;´//dq1 : : : dqn�1
�

and the local mean force is just F D @qnV , so that

A0.´/D
´
Rn�1 @qnV.q1; : : : ;qn�1;´/exp.�ˇV.q1; : : : ;qn�1;´//dq1 : : : dqn�1´

Rn�1 exp.�ˇV.q1; : : : ;qn�1;´//dq1 : : : dqn�1 :

2 Computing Macroscopic Stress-Strain Relations
for One-Dimensional Chains of Atoms

In this section, we wish to compute the stress-strain relation of a one-dimensional
chain of atoms, in the thermodynamic limit. More precisely, we consider a chain of
1CN atoms, with its left-end atom fixed, and either submit the right-end atom to a
force, and compute the average elongation, or prescribe the elongation, and compute
the force. We will show that, in the limit N ! 1, these two relations are identical,
and that they can be computed in an extremely efficient manner. In short, passing to
the limit N ! 1 makes tractable a computation that is, for finite and large N , very
expensive.

The relation between that question and the question of determining the free
energy of the system, when the reaction coordinate is the length of the system, will
also be discussed.

In the sequel, we first proceed with the nearest neighbour case (see Sect. 2.1).
We next address the next-to-nearest neighbour case in Sect. 2.2, which is technically
more involved.

2.1 The Nearest Neighbour (NN) Case

We consider a one-dimensional chain of atoms, with positions q0, q1 ; : : : ; qN .
In this section, we only consider nearest neighbour interaction. In addition to this
internal interaction, we assume that the atom at the right boundary of the chain is
submitted to an external force f , and that the atom at the left boundary is fixed:
q0 D 0. The energy of the chain thus reads

eEf
�
q1; : : : ;qN

�
D

NX

iD1
W
�
qi �qi�1��fqN :

In the sequel, we will consider the limit when the numberN of atoms goes to 1. We
wish to make sure that, even whenN ! 1, the system occupies, on average, a finite
length. To this aim, we introduce the rescaled positions ui D hqi , with h D 1=N .
The energy now reads
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Ef

�
u1; : : : ;uN

�
D

NX

iD1
W

�
ui �ui�1

h

�
�f u

N

h
; (12)

where again u0 D 0.
For any observable ˚ , depending on the variables u1; : : : ;uN , we define the

canonical average of ˚ by

h˚ifN DZ�1
ˆ
RN

˚
�
u1; : : : ;uN

�
exp

�
�ˇEf

�
u1; : : : ;uN

��
du1 : : : duN ; (13)

where the partition functionZ reads

Z D
ˆ
RN

exp
�
�ˇEf

�
u1; : : : ;uN

��
du1 : : : duN :

We assume in the sequel that W.r/ grows fast enough to 1 when jr j ! 1, so that
Z is well defined (it is for instance enough that W.r/�jrj!1 jr j˛ with ˛ > 1).

We will be interested in the limit of h˚ifN , when N ! 1, and when ˚ only
depends on uN : ˚.u1; : : : ;uN /D A.uN / for a given function A.

Remark 1. In (13), we let the variables ui vary on the whole real line. We do
not constrain them to obey ui�1 � ui , which would encode the fact that nearest
neighbours remain nearest neighbours. The argument provided here carries through
when this constraint is accounted for: we just need to replace the interaction
potentialW by

Wc.y/D
�
W.y/ when y � 0;

C1 otherwise.

2.1.1 Computing the Strain for a Given Stress

We first show a simple adaptation of [3, Theorem 1], which is useful to compute
averages of general observables, in the thermodynamic limit, for the canonical
ensemble at a fixed stress:

Lemma 1. Assume that A W R ! R is continuous, that for some p � 1, there exists
a constant C such that

8y 2 R; jA.y/j � C .1Cjyjp/ ;
and that ˆ

R

.1Cjyjp/exp.�ˇ ŒW.y/�fy�/dy <C1:

Then
lim
N!1hA.uN /ifN D A

�
y?.f /

�
;

with

y?.f /D
´
R
y exp.�ˇ ŒW.y/�fy�/dy´
R

exp.�ˇ ŒW.y/�fy�/dy : (14)
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Proof. We observe that

hAifN D Z�1
ˆ
RN

A
�
uN
�

exp
�
�ˇEf

�
u1; : : : ;uN

��
du1 : : : duN

D Z�1
ˆ
RN

A
�
uN
�

exp

 
�ˇ

NX

iD1
Wf

�
ui �ui�1

h

�!
du1 : : : duN ;

where Wf .x/DW.x/�f x. Introducing yi D ui �ui�1
h

, a change of variables in

the above integral yields

hAifN DZ�1
ˆ
RN

A

 
1

N

NX

iD1
yi

!
exp

 
�ˇ

NX

iD1
Wf

�
yi
�
!
dy1 : : : dyN ;

where, with a slight abuse of notation,

Z D
ˆ
RN

exp

 
�ˇ

NX

iD1
Wf

�
yi
�
!
dy1 : : : dyN :

Consider now a sequence
˚
Y i
N
iD1 of independent random variables, sharing the

same law ´�1 exp
��ˇWf .y/

�
dy with

´D
ˆ
R

exp
��ˇWf .y/

�
dy:

It is clear that

hAifN D E

"
A

 
1

N

NX

iD1
Y i

!#
:

The law of large numbers readily yields that 1
N

PN
iD1Y i converges almost surely to

y?.f / defined by (14).
We infer from [3, Theorem 1] that, for any force f , and for any observable A

sufficiently smooth, the limit when N ! 1 of hAifN is

lim
N!1hAifN D A.y?.f //:

Rates of convergence are also provided in the same theorem. ut
Numerical simulations illustrating this result are reported in [3, Sect. 2.3].

In the specific case of interest here, namely computing the stress-strain relation,
we take A.uN / D uN , thus �N .f / WD hAifN represents the average length of the
chain, for a prescribed force f . We infer from the previous result that

lim
N!1�N .f /D y?.f /:
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We hence have determined the macroscopic elongation, namely y?.f /, for a
prescribed microscopic force f in the chain.

Notice that, in this specific case, A is a linear function, so we actually have
�N .f / D y?.f / for any N . The result of Lemma 1 remains interesting for
computing standard deviation of the average length, for example.

Remark 2. The force between atoms j and j � 1 is W 0
�
uj�uj �1

h

�
. Its canonical

average, defined by (13), is

�
j
N D Z�1

ˆ
RN

W 0
�
uj �uj�1

h

�
exp

�
�ˇEf

�
u1; : : : ;uN

��
du1 : : : duN

D Z�1
ˆ
RN

W 0
�
yj
�

exp

 
�ˇ

NX

iD1

	
W
�
yi
��fyi


!
dy1 : : : dyN

D
´
R
W 0

�
yj
�

exp
��ˇ 	W �

yj
��fyj 
�dyj´

R
exp

��ˇ 	W �
yj
��fyj 
�dyj

D f C
´
R

	
W 0

�
yj
��f 
exp

��ˇ 	W �
yj
��fyj 
�dyj´

R
exp

��ˇ 	W �
yj
��fyj 
�dyj ;

where yj D uj �uj�1
h

. Integrating by parts, we see that the second term of the

last line vanishes. We hence obtain that the average force between two consecutive
atoms is independent of j (the stress is homogeneous in the material), and is equal
to its prescribed microscopic value f :

8j; 8N; �
j
N D f:

Imposing a force f on the right boundary atom hence implies that the average force
between any two consecutive atoms is equal to f . ˘

2.1.2 Computing the Stress for a Given Strain

In the previous section, we have prescribed a force, and computed an average
elongation. We now prescribe the length of the material, by imposing u0 D 0 and
uN D x (see Fig. 1).

x

0 N

Fig. 1 One-dimensional chain of 1CN atoms, where the total length of the system is prescribed
at the value x
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As we fix the position of atom N , the system is insensitive to any force f
imposed on that atom. We hence set f D 0. Our aim is to compute the force in the
chain,

TN .x/D

ˆ
RN �1

W 0
�
x�uN�1

h

�
exp

�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

ˆ
RN �1

exp
�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

;

(15)
or, more precisely, its limit when N ! 1. Note that, as all the .ui �ui�1/=h play

the same role in the above expression, we also have, for any 1� i �N �1,

TN .x/D

ˆ
RN �1

W 0
�
ui �ui�1

h

�
exp

�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

ˆ
RN �1

exp
�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

:

The force between atom N and N � 1 is thus equal to the force between any two
consecutive atoms.

We infer from (15) that TN .x/D F 0N .x/, where

FN .x/D � 1

ˇN
ln

�ˆ
RN �1

exp
�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

�
:

Hence NFN is the free energy of the material associated to the reaction coor-
dinate �.u1; : : : ;uN / D uN , and FN is a rescaled free energy (free energy per
integrated out particle). Using the variables yi D .ui �ui�1/=h, we also see that
exp.�ˇNFN .x//dx is (up to a normalizing multiplicative constant) the probability

distribution of the random variable 1
N

PN
iD1Y i , when

˚
Y i
N
iD1 is a sequence of

independent random variables, sharing the same law ´�1 exp.�ˇW.y//dy, with

´D
ˆ
R

exp.�ˇW.y//dy:

In the caseW.y/D .y�a/2=2, it is possible to analytically compute FN .x/, and
to observe that there exists a constant CN , independent of x, such that FN .x/CCN
has a finite limit when N ! 1. In the general case, the limit of FN is given by the
following result, which relies on a large deviations result for i.i.d. random variables:

Lemma 2 ( [3], Theorem 2). Assume that the potentialW satisfies

8� 2 R;

ˆ
R

exp.�y�ˇW.y//dy <C1;

and exp.�ˇW / 2H 1.R/. Then

lim
N!C1

�
FN .x/C 1

ˇ
ln
´

N

�
D F1.x/; (16)
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with

F1.x/ WD 1

ˇ
sup
�2R

�
�x� ln

�
´�1

ˆ
R

exp.�y�ˇW.y//dy
��

(17)

and

´D
ˆ
R

exp.�ˇW.y//dy:

This convergence holds pointwise in x, and also in Lploc, for any 1 � p <1. As a
consequence, F 0N converges to F 01 in W �1;ploc .

We hence obtain the macroscopic force F 01.x/ for a prescribed elongation x.
Numerical simulations that illustrate this result are reported in [3, Sect. 2.3].

Remark 3. The additive term ˇ�1 ln.´=N / in (16) can be seen as a normalizing
constant. Indeed, as mentioned above, NFN is a free energy, and the correct
normalization for exp.�ˇNFN / to be a probability density function is:

ˆ
R

exp

�
�ˇN

�
FN .x/C 1

ˇ
ln
´

N

��
dx D 1:

˘
Remark 4. FN is a challenging quantity to compute. One possible method is to
compute, for each x, its derivative F 0N .x/, and deduce FN (this is the so-called
thermodynamic integration method). Note that F 0N .x/D TN .x/ is given by (15): it
is a canonical average of some observable, in a space of dimension N � 1  1. In
contrast, F1 is easier to compute, since it only involves one-dimensional integrals
or optimization problems. ˘

2.1.3 Equivalence of Stress-Strain Relations in the Thermodynamic Limit

The function we maximize in (17) is concave, so there exists a unique maximizer
�.x/ in (17), that satisfies the Euler-Lagrange equation

x D
´
R
y exp.�.x/y�ˇW.y//dy´
R

exp.�.x/y�ˇW.y//dy : (18)

We observe that

F 01.x/D �.x/

ˇ
:

On the other hand, recall the definition (14) of y?.f /:

y?.f /D
´
R
y exp.�ˇ ŒW.y/�fy�/dy´
R

exp.�ˇ ŒW.y/�fy�/dy :
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Comparing (18) and (14), we see that y?.ˇ�1�.x// D y?.F 01.x// D x. The
function f 7! y?.f / is increasing (because its derivative is positive), thus it is
injective, and we also get the converse relation: F 01.y?.f //D f .

Otherwise stated, the relation f 7! y?.f / and x 7! F 01.x/ are inverse one to
each other. So, prescribing a microscopic force f and computing the macroscopic
elongation is equivalent to prescribing an elongation and computing the macro-
scopic force, in the thermodynamic limit (namely in the limit N ! 1).

2.2 The Next-to-Nearest Neighbour (NNN) Case

We now consider next-to-nearest neighbour interactions in the chain. Again, the first
atom is fixed: u0 D 0, whereas the last one is submitted to an external force f . The
(rescaled) energy reads

Ef

�
u1; : : : ;uN

�
D

NX

iD1
W1

�
ui �ui�1

h

�
C
N�1X

iD1
W2

�
uiC1�ui�1

h

�
�f u

N

h
: (19)

If W2 � 0, this energy reduces to (12). Averages of observables are again defined
by (13).

2.2.1 Computing the Strain for a Given Stress

Our aim, as in Sect. 2.1.1, is to compute the macroscopic strain, which is the average
length of the material, that is

�N .f /D huN ifN ;

where h � ifN is the average with respect to the canonical measure associated to Ef .
We introduce the notation

W1f .x/DW1.x/�f x;
which will be useful in the sequel. A simple adaptation of [3, Theorem 3] yields the
following general result:

Lemma 3. Assume that A W R 7! R is continuous, and that there exists p � 1 and
C > 0 such that

jA.x/j � C.1Cjxjp/:
Assume also that W1f and W2 both belong to L1loc.R/, that they are bounded from
below, and that, for any x 2 R, we have jW1f .x/j < 1 and jW2.x/j < 1. In
addition, we assume that e�ˇW1f and e�ˇW2 both belong to W 1;1

loc .R/, with
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ˆ
R

.1Cjxjp/ e�ˇW1f .x/dx <C1 and
ˆ
R

.1Cjxjp/ e�ˇW2.x/dx <C1:

Then
lim
N!1hA.uN /ifN D A.y?.f //; (20)

with

y?.f /D
ˆ
R

y  2f .y/dy; (21)

where  f solves the variational problem

�f D max
 2L2.R/

�ˆ
R2

 .y/  .´/ Kf .y;´/ dyd´I
ˆ
R

 2.y/dy D 1

�
; (22)

with

Kf .x;y/ WD exp

�
�ˇW2.xCy/� ˇ

2
W1f .x/� ˇ

2
W1f .y/

�
: (23)

We only provide here the main arguments to prove this result (see [3, Sec. 3.1.1
and Theorem 3] for details). They will be useful in the sequel. The observable
A.uN / only depends on uN , thus

hA.uN /ifN D Z�1
ˆ
RN

A
�
uN
�

exp
�
�ˇEf

�
u1; : : : ;uN

��
du1 : : : duN

D Z�1
ˆ
RN

A
�
uN
�

exp

 
�ˇ

NX

iD1
W1f

�
ui �ui�1

h

�

�ˇ
N�1X

iD1
W2

�
uiC1�ui�1

h

�!
du1 : : : duN :

Introducing again the variables yi D ui �ui�1
h

, we see that

hA.uN /ifNDZ�1̂
RN

A

 
1

N

NX

iD1
yi

!
exp

��ˇW1f
�
y1
�� NY

iD2
kf
�
yi�1;yi

�
dy1 : : : dyN ;

(24)
with

kf
�
yi�1;yi

�D exp
��ˇW1f

�
yi
��ˇW2

�
yi�1Cyi

��
:

Assume for a moment that
´
R
kf .a;b/db D 1. Then we see that

hA.uN /ifN D E

"
A

 
1

N

NX

iD1
Y i

!#
;

where
˚
Y i
N
iD1 is a realization of a Markov chain of transition kernel kf , and where

Y 1 has the initial law (up to a normalization constant) exp
��ˇW1f

�
y1
��
dy1.

A law of large numbers argument, now for Markov chains, yields the large N limit
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of hA.uN /ifN (recall that, in the case of the NN model considered in Sect. 2.1.1, this
limit is given by a law of large numbers argument for i.i.d. sequences).

In general, of course,
´
R
kf .a;b/db ¤ 1. There is thus a slight technical

difficulty in identifying a Markov chain structure in (24). It yet turns out that
the above argument can be made rigorous as follows. Consider the variational
problem (22), with Kf defined by (23). Under our assumptions, Kf 2 L2.R�R/.
Using standard tools of spectral theory of self-adjoint operators (see e.g. [10]),
one can prove that this problem has a maximizer (denoted  f ), and that, up to
changing  f in � f , the maximizer is unique. In addition, one can choose it such
that  f > 0. We can next define

gf .x;y/ WD  f .y/

�f  f .x/
Kf .x;y/; (25)

which satisfiesˆ
R

gf .y;´/d´D 1;

ˆ
R

 2f .y/ gf .y;´/dy D  2f .´/:

The average (24) now reads

hA.uN /ifN DZ�1g
ˆ
RN

A

 
1

N

NX

iD1
yi

!
 f .y

1/ e�
ˇ
2
W1f .y

1/

�gf .y1;y2/ : : :gf .yN�1;yN / e
�ˇ

2W1f .y
N /

 f .yN /
dy1 : : : dyN;

(26)
with

ZgD
ˆ
RN

 f .y
1/e�

ˇ
2 W1f .y1/gf .y

1;y2/ : : :gf .y
N �1;yN /

e�

ˇ
2 W1f .yN /

 f .yN /
dy1: : :dyN :

Thus

hA.uN /ifN D E

"
A

 
1

N

NX

iD1
Y i

!#
;

where .Y 1; : : : ;Y N /may now be seen as a realization of a normalized Markov chain
of kernel gf , with invariant probability measure  2

f
.

Under our assumptions, the Markov chain has a unique invariant measure, and
satisfies a law of large numbers with respect to it. This yields the convergence (20).
Numerical simulations illustrating this result are reported in [3, Sect. 3.1.3].

In the specific case of interest here, namely computing the stress-strain relation,
we take A.uN / D uN , thus �N .f / WD hAifN represents the average length of the
chain, for a prescribed force f . We infer from the previous result that
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lim
N!1�N .f /D y?.f /:

We hence have determined the macroscopic elongation, namely y?.f /, for a
prescribed microscopic force f in the chain.

We conclude this section by showing the following result, which will be useful
in the sequel.

Lemma 4. Under the assumptions of Lemma 3, introduce the asymptotic vari-
ance �2.f / defined by

�2.f /D
ˆ
R

.x�y?.f //2  2f .x/dxC2
X

i�2
E
�
.eY i �y?.f //.eY 1�y?.f //� ;

(27)
where

�eY i
�
i�1 is a Markov chain of transition kernel gf , and of initial law  2

f
, the

invariant measure.
Assume that �2.f / ¤ 0 almost everywhere. Then the function f 7! y?.f / is

increasing.

Note that the right-hand side of (27) is exactly the variance appearing in the Central
Limit Theorem for Markov chains [23, Theorem 17.0.1]. It is thus non-negative.
More precisely, we have that

lim
N!1N Var

 
1

N

NX

iD1
eY i

!
D �2.f /;

where
�eY i

�
i�1 is the Markov chain defined in the above lemma.

Proof. Let �N .f / WD huN ifN . An analytical computation shows that

DN .f / WD d�N

df
.f /DNˇ

�
h.uN /2ifN �

�
huN ifN

�2�
:

Thus the function f 7! �N .f / is non-decreasing. By Lemma 3, y?.f / is the
pointwise limit of �N .f /: it is thus non-decreasing. It remains to prove that it is
increasing.

Let us now compute the limit when N ! 1 of DN .f /. Using [3, Theorem 4],
we see that

lim
N!1DN .f /D ˇ�2.f /;

where �2.f / is defined by (27).
Let us now fix � and � � � . Since DN .f / � 0, we can use Fatou lemma, which

yields that

ˇ

ˆ �

�

�2.f /df D
ˆ �

�

liminfDN .f /df � liminf
ˆ �

�

DN .f /df D y?.�/�y?.�/:
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As �2.f / > 0 almost everywhere, we thus obtain that � 7! y?.�/ is an increasing
function. ut

2.2.2 Computing the Stress for a Given Strain

We now prescribe the length of the material, by imposing u0 D 0 and uN D x. Our
aim is to compute the average force in the chain,

TN .x/D

ˆ
RN �1

Ah

�
uN�1;uN�2Ix

�
exp

�
�ˇE0

�
u1; : : : ;uN�1;x

��
du1: : : duN�1

ˆ
RN �1

exp
�
�ˇE0

�
u1; : : : ;uN�1;x

��
du1 : : : duN�1

;

(28)
where E0 is the energy (19) with f D 0, and where the observable Ah is the force
at the end of the chain, which reads

Ah.u
N�1;uN�2Ix/DW 01

�
x�uN�1

h

�
CW 02

�
x�uN�2

h

�
:

More precisely, we are interested in lim
N!1TN .x/.

As in Sect. 2.1.2, we see that TN .x/D F 0N .x/, with

FN .x/D � 1

ˇN
ln

�ˆ
RN �1

exp
�
�ˇE0.u1; : : : ;uN�1;x/

�
du1 : : : duN�1

�
:

(29)

Again,NFN is the free energy associated to the reaction coordinate �.u1; : : : ;uN /D
uN , and FN is a rescaled free energy (free energy per integrated out particle). In the
NN case, we have computed the large N limit of FN .x/ using a large deviations
result for i.i.d. random variables. Comparing Sects. 2.1.1 and 2.2.1, we also see that
moving from a NN setting to a NNN setting implies moving from a framework
where random variables are i.i.d. to a framework where they are a realization of a
Markov chain. It is hence natural to try and use a large deviations result for Markov
chains to compute the large N limit of (29).

We now assume that the underlying Markov chain satisfies the following
pointwise large deviations result:

Assumption 1 Consider the Markov chain
˚
Y i

i�1 of kernel k 2 L2.R � R/.

Assume that, for any � 2 R, the function exp.�y/k.x;y/ 2 L2.R�R/.
Introduce the operator (on L2.R/)

.Q�'/.y/D
ˆ
R

'.x/ exp.�y/k.x;y/dx

and assume that it has a simple and isolated largest eigenvalue �.�/, and that
� 7! ln�.�/ is convex.
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Let exp.�NFN .x//dx be the law of the random variable
1

N

NX

iD1
Y i . We assume

the large deviations principle

lim
N!C1FN .x/D F1.x/; (30)

where
F1.x/ WD sup

�2R
.�x� ln�.�// : (31)

We moreover assume that the convergence (30) holds pointwise in x, and also in
L
p
loc, for any 1� p <1. As a consequence, F

0
N converges to F

0
1 in W �1;ploc .

Note that similar results in a finite state Markov chain setting are reviewed in [9,
pages 60–61] or [8, Sec. 3.1.1] (the continuous state case is addressed in e.g. [8,
Secs. 6.3 and 6.5]). In the discrete state case, one can prove that � 7! ln�.�/ is
convex (see [9, Exercise V.14]). We will numerically check in the sequel that this
assumption is indeed satisfied in the example we consider (see Fig. 2).

Remark 5. We have assumed that the operatorQ� has a simple and isolated largest
eigenvalue. This can be proved for many kernels k, using for instance Krein-Rutman
theorem [28]. In the case of interest in this contribution, we will use the specific
expression of the kernel to transform the operator Q� into a self-adjoint Hilbert-
Schmidt operator on L2.R/ (see Remark 7 below). We will thus be in position to
work with self-adjoint compact operators. ˘
Remark 6. In the NN case, when k.x;y/ D �.y/ D ´�1 exp.�ˇW.y//, the
sequence

˚
Y i

i�1 is a sequence of i.i.d. variables sharing the same law �.y/dy.

The operatorQ� has a unique eigenvalue

�.�/D
ˆ
R

exp.�y/�.y/dy:

We then recover the large deviations result of i.i.d. sequence given in Lemma 2 (see
also [12–14, 29]). ˘

We now wish to use Assumption 1 to compute the large N limit of (29). As
pointed out in Sect. 2.2.1, there is a slight technical difficulty in identifying a Markov
chain structure in the NNN setting, related to the normalization of the Markov chain
kernel. We thus cannot readily use Assumption 1. We now detail how to overcome
this difficulty.

Consider an observable A that depends only on uN . In view of (29) and (26), its
canonical average reads
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hAiN D Z�1
ˆ
RN

A
�
uN
�

exp
�
�ˇE0

�
u1; : : : ;uN�1;uN

��
du1 : : : duN�1 duN

D Z�1
ˆ
R

A.x/exp.�ˇNFN .x// dx

D Z�1g
ˆ
RN

A

 
1

N

NX

iD1
yi

!
 0.y

1/ e�
ˇ
2W1.y

1/

�g0.y1;y2/ : : : g0.yN�1;yN / e
�ˇ

2W1.y
N /

 0.yN /
dy1 : : : dyN ;

where g0 is defined by (25) and  0 is the maximizer in (22), when the body
force f D 0. Let P.y1; : : : ;yN / be the probability density of a Markov chain˚
Y i
N
iD1 of kernel g0, where the law of Y 1 is (up to a normalization constant)

 0.y
1/exp.�ˇW1.y1/=2/dy1. Then

ˆ
R

A.x/exp.�ˇNFN .x// dxDCN

ˆ
RN

A

 
1

N

NX

iD1

yi

!
P.y1; : : :;yN /r.yN /dy1 : : :dyN;

(32)
where CN is a constant that does not depend on the observable A, and

r.yN /D e�ˇ
2
W1.y

N /

 0.yN /
:

Let now ˛N .x;y
N /dxdyN be the law of the couple

 
1

N

NX

iD1
Y i ;Y N

!
. We recast

(32) as
ˆ
R

A.x/exp.�ˇNFN .x// dx D CN

ˆ
R2

A.x/ ˛N

�
x;yN

�
r
�
yN
�
dxdyN :

As this relation holds for any observable A, with a constant CN independent of A,
we obtain

exp.�ˇNFN .x//D CN

ˆ
R

˛N

�
x;yN

�
r
�
yN
�
dyN :

Assuming that r and 1=r are in L1.R/, we have

CN k1=rk�1
L1

ˆ
R

˛N

�
x;yN

�
dyN � exp.�ˇNFN .x//�CN krkL1

ˆ
R

˛N

�
x;yN

�
dyN :

As a consequence, since the function r is independent of N ,

lim
N!1.FN .x/CDN /D lim

N!1

�
� 1

ˇN
ln
ˆ
R

˛N

�
x;yN

�
dyN

�
; (33)
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whereDN D 1

ˇN
lnCN . Recall now that

�N .x/D
ˆ
R

˛N

�
x;yN

�
dyN

is the density of 1
N

PN
iD1Y i , where

˚
Y i
N
iD1 is a realization of the Markov chain of

kernel g0. The behaviour of �N when N ! 1 is given by Assumption 1:

lim
N!C1� 1

N
ln�N .x/D F1.x/; (34)

where F1 is given by (31). Collecting (33) and (34), we hence obtain that

lim
N!1.FN .x/CDN /D 1

ˇ
F1.x/:

We thus have the following result:

Lemma 5. Assume that W1 and W2 both belong to L1loc.R/, that they are bounded
from below, and that, for any x 2 R, we have jW1.x/j < 1 and jW2.x/j <1. In
addition, we assume that e�ˇW1 and e�ˇW2 both belong to W 1;1

loc .R/, with

ˆ
R

e�ˇW1.x/dx <C1 and
ˆ
R

e�ˇW2.x/dx <C1;

and that, for any � 2 R, we have exp.�x�ˇW1.x// 2 L1.R/.
Under Assumption 1 for the kernel g0 defined by (25), we have that

lim
N!C1.FN .x/CCN /D F1.x/; (35)

where FN is defined by (29), CN is a constant that does not depend on x, and F1
is given by the Legendre transform

F1.x/ WD 1

ˇ
sup
�2R

.�x� ln�.�// ; (36)

where �.�/ is the largest eigenvalue of the operator (defined on L2.R/)

.Q�'/.y/D
ˆ
R

'.x/ exp.�y/g0.x;y/dx: (37)

The convergence (35) holds pointwise in x, and also in Lploc, for any 1 � p < 1.
As a consequence, the macroscopic force in the chain TN .x/ D F 0N .x/ converges

to F 01 in W �1;ploc .

We hence obtain the macroscopic force F 01.x/ for a prescribed elongation x.
Note that, under our assumptions, in view of its definition (36), F1 is (up to the
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factor ˇ) the Legendre transform of some function. It is hence always a convex
function. Thus, as in the zero temperature case, we observe, in this one-dimensional
setting, that the macroscopic constitutive law x 7! F1.x/ is a convex function.

Remark 7. In view of the definitions (25) of g0 and (23) of K0, we see that

.Q�'/.y/

 0.y/
D 1

�0

ˆ
R

'.x/

 0.x/
exp.�y/K0.x;y/dx:

Thus�.�/ is also the largest eigenvalue of the operator

.eQ�'/.y/D 1

�0

ˆ
R

'.x/ exp.�y/K0.x;y/dx:

Furthermore, if � is an eigenvalue of eQ� , then

ˆ
R

'.x/ exp.�y/K0.x;y/dx D �0�'.y/;

where ' is an associated eigenfunction. Thus
ˆ
R

'.x/

exp.�x=2/
exp.�y=2/ exp.�x=2/K0.x;y/dx D �0�

'.y/

exp.�y=2/

and �0� is an eigenvalue of the operator

.Q�'/.y/D
ˆ
R

'.x/ exp.�y=2/ exp.�x=2/K0.x;y/dx:

The converse is also true. As �.�/ is the largest eigenvalue of the operator eQ� , we
have that �0�.�/ is the largest eigenvalue of the operatorQ� .

As W2 is bounded from below and exp.�x �ˇW1.x// 2 L1.R/ for any �, we
have that exp.�x=2/exp.�y=2/K0.x;y/ 2 L2.R�R/. Hence Q� is a self-adjoint
compact operator on L2.R/, which is thus easier to manipulate theoretically and
numerically than Q� . In particular, using standard tools of spectral theory of self-
adjoint operators (see e.g. [10]), one can prove that the largest eigenvalue of
Q� is simple, and that the associated eigenvector 	� (which is unique up to a
multiplicative constant) can be chosen such that 	� > 0. ˘

2.2.3 Equivalence of Stress-Strain Relations in the Thermodynamic Limit

In Sect. 2.2.1, we have identified the function f 7! y?.f /, that associates to a
prescribed force f the macroscopic elongation y?.f /. Next, in Sect. 2.2.2, we have
identified the function x 7! F 01.x/, that associates to a prescribed elongation x the
macroscopic force F 01.x/. We show now that these functions are reciprocal one to
each other.
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Consider the optimization problem (36). Since the function � 7! ln�.�/ is
convex (see Assumption 1), there exists a unique maximizer �.x/ in (36), which
satisfies the Euler-Lagrange equation

x D �0.�.x//
�.�.x//

: (38)

We also observe that

F 01.x/D �.x/

ˇ
:

We see from (38) that we need to compute�0.�/. Recall that �.�/ is the largest
eigenvalue of the operator (37). In view of Remark 7, �0�.�/ is also the largest
eigenvalue ofQ� . Denoting 	� the associated eigenfunction satisfying k	�kL2 D 1

and 	� > 0, we thus have

.Q�	�/.y/D
ˆ
R

	�.t/K
�
0.t;y/dt D �0�.�/	�.y/;

where
K
�
0.t;y/D exp.�y=2/ exp.�t=2/K0.t;y/: (39)

Multiplying by 	�.y/ and integrating, we obtain

ˆ
R2

	�.y/	�.t/K
�
0.t;y/dt dy D �0�.�/: (40)

We thus have, using that K�
0.t;y/DK

�
0.y; t/, that

�0�
0.�/ D

ˆ
R2

d	�

d�
.y/	�.t/K

�
0.t;y/dt dyC

ˆ
R2

	�.y/
d	�

d�
.t/K

�
0.t;y/dt dy

C
ˆ
R2

	�.y/	�.t/
dK

�
0

d�
.t;y/dt dy

D 2�0�.�/

ˆ
R

d	�

d�
.y/	�.y/dyC

ˆ
R2

	�.y/	�.t/
dK

�
0

d�
.t;y/dt dy:

In the above expression, the first term vanishes, since, for any �,
ˆ
R

	2� .y/dy D 1.

We thus obtain

�0�
0.�/D

ˆ
R2

	�.y/	�.t/
tCy

2
K
�
0.t;y/dt dy: (41)

Collecting (38), (40) and (41), we see that
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x D

ˆ
R2

	�.x/.y/	�.x/.t/
tCy

2
K
�.x/
0 .t;y/dt dy

ˆ
R2

	�.x/.y/	�.x/.t/K
�.x/
0 .t;y/dt dy

D

ˆ
R2

y 	�.x/.y/	�.x/.t/K
�.x/
0 .t;y/dt dy

ˆ
R2

	�.x/.y/	�.x/.t/K
�.x/
0 .t;y/dt dy

D

ˆ
R

y 	2�.x/.y/dyˆ
R

	2�.x/.y/dy

D
ˆ
R

y 	2�.x/.y/dy; (42)

where we have used, at the second line, that K�.x/
0 .t;y/DK

�.x/
0 .y; t/.

On the other hand, we have obtained that the macroscopic elongation y?.f /, for
a prescribed force f , is given by (21), namely

y?.f /D
ˆ
R

y  2f .y/dy; (43)

where  f is the maximizer of the variational problem (22). As Kf is symmetric,
the Euler-Lagrange equation of (22) reads

�f  f .y/ D
ˆ
R

 f .t/ Kf .t;y/ dt

D
ˆ
R

 f .t/ K0.t;y/exp

�
f̌
xCy

2

�
dt

D
ˆ
R

 f .t/ K
ˇf
0 .t;y/dt;

whereKˇf
0 is defined by (39). Thus  f is an eigenfunction associated to the largest

eigenvalue �f of the Hilbert-Schmidt operator Qˇf of kernel Kˇf
0 . By definition

of 	ˇf , and using the fact that the largest eigenvalue of Qˇf is simple, we obtain

	ˇf D ˙ f and �. f̌ /D �f

�0
:

We thus recast (43) as

y?.f /D
ˆ
R

y 	2ˇf .y/dy: (44)
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We deduce from the comparison of (42) and (44) that y?.ˇ�1�.x// D
y?.F 01.x//Dx. Recall now that the function f 7!y?.f / is increasing, as shown by
Lemma 4. It is thus injective, and we also get the converse relation F 01.y?.f //Df .

As a consequence, as in the NN setting considered in Sect. 2.1.3, the relation
f 7! y?.f / and x 7! F 01.x/ are inverse one to each other. Prescribing a micro-
scopic force f and computing the macroscopic elongation is equivalent to prescrib-
ing an elongation and computing the macroscopic force, in the thermodynamic limit.

2.2.4 Numerical Computation of F 01 and Comparison with the Zero
Temperature Model

For our numerical tests, we follow the choices made in [3], for the sake of
comparison. We thus take the pair interaction potentials

W1.x/D 1

2
.x�1/4C 1

2
x2 and W2.x/D 1

4
.x�2:1/4:

Note that these potentials satisfy all the assumptions that we have made above.
We are going to compare the free energy derivative TN .x/ D F 0N .x/ with

its thermodynamic limit approximation F 01.x/. The reference value F 0N .x/ is
computed as the ensemble average (28), which is in turn computed as a long-time
average along the lines of (3)–(4). To compute F 01.x/, we proceed as follows:

(i) We first compute the largest eigenvalue �.�/ of the operator (37), for all � in
some prescribed interval.

(ii) For any fixed x in a prescribed interval, we next consider the variational
problem (36), compute its maximizer �.x/, and obtain F 01.x/ using F 01.x/ D
�.x/=ˇ.

In practice, using Remark 7, we work with the operator Q� , which is easier to
manipulate since it is self-adjoint and we do not need to first solve (22). We thus
first compute the largest eigenvalue �0�.�/ of Q� , and next compute the Legendre
transform of the function � 7! ln.�0�.�//. The maximizer is the same as that for
F1.x/. On Fig. 2, we plot the function � 7! ln .�0�.�//, and observe that it is
convex, in agreement with Assumption 1.

We first study the convergence of F 0N .x/ to F 01.x/ as N increases, for a fixed
chain length x D 1:4 and a fixed temperature 1=ˇ D 1. Results are shown on Fig. 3.
We indeed observe that F 0N .x/! F 01.x/ when N ! C1.

We now compareF 0N .x/ with its approximationF 01.x/, forN D 100 and 1=ˇD
1. Results are shown on Fig. 4. We observe thatF 01.x/ is a very good approximation
of F 0N .x/, for any x in the considered interval.

For the sake of comparison, we now identify the zero temperature behaviour of
the system, in the thermodynamic limit. At zero temperature, for a finite N , we
model the system by minimizing the energyE0, with prescribed Dirichlet boundary
conditions (this corresponds to prescribing the elongation, and computing the force;
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Fig. 2 Plot of ln.�0�.�// as a function of � (temperature 1=ˇ D 1)

Fig. 3 Convergence ofF 0

N .x/ (shown with error bars computed from 40 independent realizations)
to F 0

1

.x/ asN increases (temperature 1=ˇ D 1, fixed chain length x D 1:4)
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alternatively, one could impose Neumann boundary conditions, i.e. prescribe a force
and compute an elongation):

JN .x/D 1

N
inf
n
E0

�
u0;u1; : : : ;uN�1;uN

�
; u0 D 0; uN D x

o
: (45)

We have the following result, which proof will be given below:

Lemma 6. Let us introduce � defined by

�.x/DW1.x/CW2.2x/: (46)

Assume that there exists ˛ > 0 such that

W1.x/ � ˛x2; (47)

and thatW1 and � are non-negative and strictly convex functions. Then we have the
pointwise convergence

lim
N!1JN .x/D �.x/:

Assume in addition that � 2 Lploc for some 1 � p < 1 and that W2 is non-
negative. Then the above convergence also holds in Lploc. As a consequence, J 0N .x/
converges to �0.x/ in W �1;ploc .

When the temperature is set to zero, the energy thus converges, in the thermody-
namic limit, to �.x/, and the force (i.e. the derivative of the energy with respect to
the prescribed Dirichlet boundary condition) converges to �0.x/. We plot on Fig. 4
the function x 7! �0.x/. We clearly observe the effect of temperature, as F 01.x/ for
ˇ D 1 significantly differs from �0.x/.

Proof (Lemma 6). Let

XN .x/D
n�
u0;u1; : : : ;uN�1;uN

�
2 R

1CN ; u0 D 0; uN D x
o

be the variational ensemble for the problem (45). The configuration ui D ix=N

clearly belongs to that ensemble. We thus obtain the upper-bound

JN .x/ �W1.x/C N �1
N

W2.2x/: (48)

In the sequel, we first show a lower-bound for JN .x/, and next study its behaviour
when N ! 1.

Let us first build a lower bound for JN .x/. Assuming for the sake of simplicity
that N is even, and using the short-hand notation yi D .ui �ui�1/=h, we have
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Fig. 4 We plot F 0

N .x/ and F 0

1

.x/ for the temperature 1=ˇ D 1 and N D 100. On the scale
of the figure, F 0

N .x/ and F 0

1

.x/ are on top of each other. We also plot the zero temperature
response 
0.x/

1

N

NX

iD1
W1

�
ui �ui�1

h

�
D 1

N

NX

iD1
W1

�
yi
�

D 1

2N
W1.y

1/C 1

2N
W1.y

N /

C 1

2N

N=2X

iD1

	
W1

�
y2i�1

�CW1
�
y2i

�


C 1

2N

N=2�1X

iD1

	
W1

�
y2i

�CW1
�
y2iC1

�

:

By convexity of W1, we obtain

1

N

NX

iD1
W1

�
ui �ui�1

h

�
� 1

2N
W1.y

1/C 1

2N
W1.y

N /

C 1

N

N=2X

iD1
W1

�
1

2

�
y2i�1Cy2i

��

C 1

N

N=2�1X

iD1
W1

�
1

2

�
y2i Cy2iC1

��
:

Taking into account the next-to-nearest interactions, we thus obtain that, for any�
u0;u1; : : : ;uN�1;uN

� 2 R
1CN ,
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1

N
E0

�
u0;u1; : : : ;uN�1;uN

�
� 1

2N
W1.y

1/C 1

2N
W1.y

N /

C 1

N

N=2X

iD1
�

�
1

2

�
y2i�1Cy2i

��

C 1

N

N=2�1X

iD1
�

�
1

2

�
y2i Cy2iC1

��
;

where � is defined by (46). As � is convex, we deduce that

1

N
E0 .u/ � 1

2N
W1.y

1/C 1

2N
W1.y

N /C 1

2
�

0

@ 1

N

N=2X

iD1

	
y2i�1Cy2i



1

A

CN �2
2N

�

0

@ 1

N �2
N=2�1X

iD1

	
y2i Cy2iC1



1

A

D 1

2N
W1.y

1/C 1

2N
W1.y

N /C 1

2
�
�
uN �u0

�

CN �2
2N

�

�
N

N �2
�
uN�1�u1

��
:

As a consequence, for any configuration u 2XN .x/, we have

1

N
E0

�
u0;u1; : : : ;uN�1;uN

�
�EN .u

1;uN�1Ix/; (49)

with

EN .u
1;uN�1Ix/ D 1

2N
W1.Nu

1/C 1

2N
W1.N.x�uN�1//C 1

2
�.x/

CN �2
2N

�

�
N

N �2
�
uN�1�u1

��
: (50)

We infer from (49) the lower bound

JN .x/ � JN .x/; (51)

with
JN .x/D inf

n
EN .u

1;uN�1Ix/I u1 2 R; uN�1 2 R

o
: (52)

We now study the auxiliary variational problem (52) to determine the limit of
JN .x/ when N ! 1. Since � is non-negative, and using (47), we have that

EN .u
1;uN�1Ix/ � ˛N

2

h
.u1/2C .x�uN�1/2

i
� 0:

As a consequence, JN .x/� 0, and any minimizing sequence is bounded (by a con-
stant possibly depending on N ). Up to extraction, it thus converges to a minimizer,
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that we denote
�
u1;uN�1

�
. AsW1 and � are strictly convex, it is easy to see that the

hessian matrix of EN is positive definite, hence EN is also strictly convex, hence
it has a unique minimizer. The problem (52) is thus well-posed. To underline the

dependency of its minimizer withN , we denote it
�
u1.N /;uN�1.N /

�
in the sequel.

The Euler-Lagrange equation associated to (52) reads

W 01.Nu1.N //D �0
�

N

N �2
�
uN�1.N /�u1.N /

��
DW 01.N.x�uN�1.N ///:

As W1 is strictly convex, this implies that
8
<̂

:̂

u1.N / D x�uN�1.N /;

Nu1.N / D �

�
N

N �2
�
x�2u1.N /�

�
;

(53)

where the function �D .W 01/�1 ı�0 is independent of N , and increasing.
Let us now show that u1.N / is bounded with respect to N . If this is not the

case, then, without loss of generality, it is possible to find a subsequence '.N / such
that limN!1u1.'.N //D C1. Passing to the limit in the second line of (53), one
obtains a contradiction. Thus u1.N / is bounded.

In view of the first line of (53), uN�1.N / is also bounded. Up to a subsequence
extraction, .u1.N /;uN�1.N // converges when N ! 1 to some .a;b/. We infer
from (53) that a D 0 and b D x, thus the limit is unique, and the whole sequence
converges:

lim
N!1u

1.N /D 0; lim
N!1u

N�1.N /D x: (54)

We next infer from the above limits and (53) that

lim
N!1Nu

1.N /D lim
N!1N.x�uN�1.N //D �.x/: (55)

By definition, we have

JN .x/D inf
n
EN .u

1;uN�1Ix/I u1 2 R; uN�1 2 R

o
DEN .u

1.N /;uN�1.N /Ix/:

In view of (50), (54) and (55), we obtain

lim
N!1JN .x/D lim

N!1EN .u
1.N /;uN�1.N /Ix/D �.x/: (56)

Collecting (48), (51) and (56), we obtain the claimed pointwise convergence of
JN .x/ to �.x/.

We now turn to the second assertion of Lemma 6. Under the additional
assumption thatW2 is non-negative, we deduce from (48) that, for anyN and any x,

0� JN .x/�W1.x/CW2.2x/D �.x/:

As � 2 Lploc, we obtain the convergence of JN to � in Lploc. ut
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3 A Coarse-Graining Procedure in the Dynamical Setting

In this section, we present a procedure for coarse-graining a dynamics. More
precisely, we consider Qt 2 R

n solution to the overdamped dynamics (3), and
a reaction coordinate � W Rn 7! R. Our aim is to find a closed one-dimensional
dynamics of type (5) on a process 
t , such that 
t is a good approximation of
�.Qt /. In Sects. 3.2 and 3.3, we build such a process (see (67) below), and present
an analytical estimation of its accuracy (the obtained estimate is an upper-bound
on the “distance” between the laws of �.Qt / and 
t at any time t). We will next
report on some numerical experiments that somewhat check the accuracy of 
t in a
stronger sense (Sect. 3.4).

3.1 Measuring Distances Between Probability Measures

We introduce here some tools that will be useful in the sequel, to measure how
close two probability measures are. Consider two probability measures �.dq/ and

.dq/. The distance between the two can be measured by the total variation norm

k� �
kTV, which amounts to the L1-norm
ˆ ˇ̌

 �.q/� �.q/
ˇ̌
dq in case � and 


have respectively the densities  � and  � with respect to the Lebesgue measure.
When studying the long-time behaviour of solutions to PDEs (such as long time

convergence of the solution of a Fokker-Planck equation to the stationary measure of
the corresponding SDE), the notion of relative entropy turns out to be more useful.
Under the assumption that � is absolutely continuous with respect to 
 (denoted
� 
 
 in the sequel), it is defined by

H .�j
/D
ˆ

ln

�
d�

d


�
d�:

The relative entropy provides an upper-bound on the total variation norm, by the
Csiszár-Kullback inequality [1]:

k��
kTV �
p
2H .�j
/:

In the sequel, we will also use the Wasserstein distance with quadratic cost, which
is another way to measure distances between probability measures. It is defined, for
any two probability measures � and 
with support on a Riemannian manifold˙ , by

W.�;
/D
s

inf
2˘.�;�/

ˆ
˙�˙

d˙ .x;y/2 �.dx;dy/: (57)

In the above expression, d˙ .x;y/ denotes the geodesic distance between x and y
on ˙ ,
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d˙ .x;y/D inf

8
<

:

sˆ 1

0

j P̨ .t/j2 dt I ˛ 2 C 1.Œ0;1�;˙/; ˛.0/D x; ˛.1/D y

9
=

;;

and ˘.�;
/ denotes the set of coupling probability measures, that is probability
measures � on˙ �˙ such that their marginals are � and 
: for any test function˚ ,
ˆ
˙�˙

˚.x/�.dx;dy/D
ˆ
˙

˚.x/�.dx/ and
ˆ
˙�˙

˚.y/�.dx;dy/D
ˆ
˙

˚.y/
.dy/:

In the sequel, we will need two functional inequalities, that we now recall [1]:

Definition 1. A probability measure 
 satisfies a logarithmic Sobolev inequality
with a constant � > 0 if, for any probability measure � such that � 
 
,

H.�j
/� 1

2�
I.�j
/;

where the Fisher information I.�j
/ is defined by

I.�j
/D
ˆ ˇ̌
ˇ̌r ln

�
d�

d


�ˇ̌
ˇ̌
2

d�:

Definition 2. A probability measure 
 satisfies a Talagrand inequality with a
constant � > 0 if, for any probability measure �,

W.�;
/ �
s
2

�
H.�j
/:

We will also need the following important result (see [24, Theorem 1] and [4]):

Lemma 7. If 
 satisfies a logarithmic Sobolev inequality with a constant � > 0,
then 
 satisfies a Talagrand inequality with the same constant � > 0.

The following standard result illustrates the usefulness of logarithmic Sobolev
inequalities (we refer to [1, 2, 30] for more details on this subject).

Theorem 1. Consider Qt solution to the overdamped Langevin equation (3),
and assume the stationary measure  1.q/dq D Z�1 exp.�ˇV.q//dq satisfies
a logarithmic Sobolev inequality with a constant � > 0. Then the probability
distribution  .t; �/ of Qt converges to  1 exponentially fast, in the sense:

8t � 0; H. .t; �/j 1/ �H. .0; �/j 1/exp.�2�ˇ�1t/: (58)

Conversely, if (58) holds for any initial condition  .0; �/, then the stationary
measure  1.q/dq satisfies a logarithmic Sobolev inequality with a constant � > 0.

Proof. The probability distribution function  .t;q/ of Qt satisfies the Fokker-
Planck equation
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@t D div. rV /Cˇ�1� : (59)

As r 1 D �ˇ 1rV , we recast the above equation as

@t D ˇ�1 div

�
 1r

�
 

 1

��
:

Note that this equation implies that
ˆ
Rn

 .t;q/dq is a constant. Introduce now the

relative entropy

E .t/DH. .t; �/j 1/D
ˆ
Rn

ln

�
 .t;q/

 1.q/

�
 .t;q/dq:

Then

dE

dt
D

ˆ
Rn

ln

�
 

 1

�
@t C  1

 

@t 

 1
 

D
ˆ
Rn

ln

�
 

 1

�
ˇ�1 div

�
 1r

�
 

 1

��

D �ˇ�1
ˆ
Rn

r
�

ln

�
 

 1

��
 1r

�
 

 1

�

D �ˇ�1
ˆ
Rn

ˇ̌
ˇ̌r
�

ln

�
 

 1

��ˇ̌
ˇ̌
2

 

D �ˇ�1I. .t; �/j 1/: (60)

As  1 satisfies a logarithmic Sobolev inequality with the constant � > 0, we have
that, for any time t � 0,

H. .t; �/j 1/� .2�/�1I. .t; �/j 1/: (61)

We infer from (60) and (61) that

dE

dt
� �2�ˇ�1E :

Using the Gronwall lemma, we obtain the claimed result.
Conversely, if

8t � 0; E .t/� E .0/exp.�2�ˇ�1t/;
we also have

8t > 0; E .t/�E .0/

t
� E .0/

exp.�2�ˇ�1t/�1
t

:

By letting t go to 0 and using (60), one obtains the logarithmic Sobolev inequality
I. .0; �/j 1/ � 2�H. .0; �/j 1/. ut
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3.2 Effective Dynamics

ConsiderQt that solves (3). By a simple Itô computation, we have

d�.Qt /D ��rV � r�Cˇ�1��
�
.Qt /dtC

p
2ˇ�1 jr�j.Qt /dBt ; (62)

where Bt is the one-dimensional Brownian motion

dBt D r�
jr�j .Qt / �dWt :

Of course, (62) is not closed. Following Gyöngy [16], a simple closing procedure
is to considere
t solution to

de
t Deb.t;e
t /dtC
p
2ˇ�1 e�.t;e
t /dBt ; (63)

where

eb.t;´/ D E
	��rV � r�Cˇ�1��

�
.Qt / j �.Qt /D ´



; (64)

e�2.t;´/ D E
	jr�j2.Qt / j �.Qt /D ´



: (65)

Note that eb and e� depend on t , since these are expected values conditioned on
the fact that �.Qt / D ´, and the probability distribution function of Qt of course
depends on t .

As shown in [16], this procedure is exact from the point of view of time
marginals: at any time t , the random variables e
t and �.Qt / have the same law.
This is stated in the following lemma.

Lemma 8 ( [19], Lemma 2.3). The probability distribution function  � of �.Qt /,
where Qt satisfies (3), satisfies the Fokker-Planck equation associated to (63):

@t 
� D @´

�
�eb  � Cˇ�1@´.e�2 �/

�
:

The problem with equation (63) is that the functionseb ande� are very complicated
to compute, since they involve the full knowledge of  . Therefore, one cannot
consider (63) as a reasonable closure. A natural simplification is to consider a time-
independent approximation of the functionseb ande� . Considering (64) and (65), we
introduce (E� denoting a mean with respect to the measure �)

b.´/ D E�

	��rV � r�Cˇ�1��
�
.Q/ j �.Q/D ´




D
ˆ
˙´

��rV � r�Cˇ�1��
�
d�˙´

; (66)

and

�2.´/D E�

�jr�j2.Q/ j �.Q/D ´
�D

ˆ
˙´

jr�j2 d�˙´
;
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where �˙´
is defined by (8). This amounts to replacing the measure  .t;x/ in (64)

(conditioned at the value �.x/D ´) by the equilibrium measure 1.x/ (conditioned
at the value �.x/ D ´), and likewise for (65). This simplification especially makes
sense if �.Qt / is a slow variable, that is if the characteristic evolution time of �.Qt /

is much larger than the characteristic time needed byQt to sample the manifold˙´.
This is quantified in the sequel.

In the spirit of (63), we next introduce the coarse-grained dynamics

d
t D b.
t /dtC
p
2ˇ�1 �.
t /dBt ; 
tD0 D �.Q0/: (67)

We have proved in [19] that the effective dynamics (67) is ergodic for the
equilibrium measure � ? �, that is exp.�ˇA.´//d´. In addition, this measure
satisfies a detailed balance condition. We have also proved the following error
bound, that quantifies the “distance” between the probability distribution function
of �.Qt / (at any given time t) and that of 
t .

Proposition 1 ( [19], Proposition 3.1). Assume that � is a smooth scalar function
such that

for all q 2 R
n; 0 < m� jr�.q/j �M <1; (68)

and that the conditioned probability measures �˙´
, defined by (8), satisfy a

logarithmic Sobolev inequality with a constant � uniform in ´: for any probability
measure � on ˙´ which is absolutely continuous with respect to the measure �˙´

,
we have

H.�j�˙´
/� 1

2�
I.�j�˙´

/: (69)

Let us also assume that the coupling is bounded in the following sense:

� D kr˙´
F kL1 <1; (70)

where F is the local mean force defined by (11).
Finally, let us assume that jr�j is close to a constant on the manifold ˙´ in the

following sense:

�D
����

jr�j2��2 ı �
�2 ı �

����
L1

<1: (71)

Assume that, at time t D 0, the distribution of the initial conditions of (3) and (67)
are consistent one with each other:  � .t D 0; �/ D �.t D 0; �/. Then we have the
following estimate: for any time t � 0,

E.t/ � M 2

4m2

�
�2C m2ˇ2�2

�2

�
.H. .0; �/j�/�H. .t; �/j�// ; (72)

where E.t/ is the relative entropy of the probability distribution function  � of
�.Qt /, where Qt follows (3), with respect to the probability distribution function �
of the solution 
t to (67):
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E.t/DH
�
 �.t; �/j�.t; �/

�
D
ˆ
R

ln

 
 �.t;´/

�.t;´/

!
 �.t;´/d´:

The above proposition thus yields a uniform-in-time bound on the relative
entropy between  � and �. In addition, we also know that the effective dynamics
is ergodic for exp.�ˇA.´//d´, which is the equilibrium measure of �.Qt /, in the
long-time limit. We thus expect the two probability densities to converge one to
each other, in the long-time limit. This is indeed the case, as it is shown in [19,
Corollary 3.1]: under some mild assumptions, the L1 distance between  �.t; �/ and
�.t; �/ vanishes at an exponential rate in the long-time limit.

The difficulty of the question we address stems from the fact that, in general, t !
�.Qt / is not a Markov process: this is a closure problem. If an appropriate time-scale
separation is present in the system (between �.Qt / and the complementary degrees
of freedom), then memory effects may be neglected, and �.Qt / be approximated by
a Markov process such as (67).

One interest of our approach is to get the error estimate (72), which is not an
asymptotic result, and holds for any coarse-grained variable. Of course, this error
estimate certainly yields a large error bound in some cases, in particular if � is
not well-chosen, or when no time-scale separation is present in the dynamics. If
bounds (69) and (70) encode a time-scale separation, namely if � 
 1 and �  1,
then the right-hand side of (72) is small, and 
t solution to (67) is indeed a good
approximation of �.Qt /.

We would like to emphasize that the effective dynamics (67) may also be
obtained using different arguments, such as the Mori-Zwanzig projection approach
[15]. In the case when a small parameter is present in the system, one can
alternatively use asymptotic expansions of the generator (see [11, 25, 26]).

3.3 The Proof in a Simple Two-Dimensional Case

For the purpose of illustration, we consider in this section an extremely simple
case: starting from the overdamped dynamics (3) in two dimensions (we write
q D .x;y/ 2 R

2), we want to derive an effective dynamics for the coarse-grained
variable �.q/D �.x;y/ D x. Although this case is over-simplified, it turns out that
the main arguments of our derivation, as well as the proof arguments, can be well
understood here.

In that context, the complete dynamics (3) reads

(
dXt D �@xV.Xt ;Yt /dtC

p
2ˇ�1 dW x

t ;

dYt D �@yV.Xt ;Yt /dtC
p
2ˇ�1 dW y

t ;
(73)

with the initial conditionQ0 D .X0;Y0/. The manifold˙´ defined by (7) is
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˙´ D f.´;y/I y 2 Rg
and the probability measure d�˙´

defined by (8) reads

d�˙´
D exp.�ˇV.´;y//dyˆ

R

exp.�ˇV.´;y//dy
D  1.´;y/dyˆ

R

 1.´;y/dy
: (74)

We focus on the dynamics of �.Xt ;Yt / D Xt . In that case, the equation (62) is
just the first line of (73), which is obviously not closed in Xt , since Yt appears. At
time t , Qt is distributed according to the measure  .t;q/. Hence, the probability
distribution function of Yt , conditioned to the fact that �.Qt /DXt D x, is given by

 xcond.t;y/D  .t;x;y/ˆ
R

 .t;x;y/dy

:

Following Gyöngy [16], we introduce the functioneb.t;x/ defined by (64), which
reads in the present context as

eb.t;x/D
ˆ
R

Œ�@xV.x;y/� xcond.t;y/dy D �

ˆ
R

@xV.x;y/ .t;x;y/dyˆ
R

 .t;x;y/dy

: (75)

The resulting dynamics (63) reads

deX t Deb.t;eX t /dtC
p
2ˇ�1 dW x

t : (76)

We now prove Lemma 8 in that specific context and show that, at any time t , the
probability distribution function of eX t is equal to that of �.Qt /DXt .

Proof (Lemma 8, case �.x;y/ D x). The probability density function  .t;x;y/ of
Qt D .Xt ;Yt / satisfies the Fokker-Planck (59):

@t D div. rV /Cˇ�1� 
D @x . @xV /C@y

�
 @yV

�Cˇ�1@xx Cˇ�1@yy : (77)

The probability distribution function of �.Qt /DXt is

 �.t;x/D
ˆ
R

 .t;x;y/dy:

Integrating (77) with respect to y, we obtain
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@t 
� D @x

�ˆ
 @xV dy

�
Cˇ�1@xx �

D �@x
�
 � eb

�
Cˇ�1@xx � ; (78)

whereeb.t;x/ is given by (75). We recognize the Fokker-Planck equation associated
to the (76). ut

As pointed out above, (63) (i.e. (76) here) cannot be considered as a reasonable
closure, since it involves the functioneb, which is defined using  .t;x;y/ (see (75)),
which in practice is hardly computable. We thus approximateeb by the function b
defined by (66), which amounts to replacing  .t;x;y/ in (75) by the equilibrium
measure  1.x;y/:

b.x/D �

ˆ
R

@xV.x;y/  1.x;y/dyˆ
R

 1.x;y/dy
:

In the spirit of (76), we thus introduce the effective dynamics

dX t D b.X t /dtC
p
2ˇ�1 dW x

t : (79)

We now prove Proposition 1 (error estimator on the effective dynamics), in the
specific case at hand here. The assumption (69) means that the measure (74)
satisfies, for any ´, a logarithmic Sobolev inequality with a constant � independent
of ´. The assumption (70) reads � D k@xyV kL1 <1, and the assumption (71) is
satisfied with �D 0 since r� D .1;0/T is a constant vector.

Proof (Proposition 1, case �.x;y/ D x). By definition (see (9)), the free energy A
associated to the reaction coordinate � satisfies

exp.�ˇA.x//D
ˆ
R

 1.x;y/dy DZ�1
ˆ
R

exp.�ˇV.x;y//dy;

hence

A0.x/D

ˆ
@xV.x;y/ 1.x;y/dyˆ

R

 1.x;y/dy
D �b.x/: (80)

The effective dynamics (79) thus reads

dX t D �A0.X t /dtC
p
2=ˇdW x

t :

Note that, in this specific context, the effective dynamics is of the form (6)
(see [19, Sect. 2.3] for a comprehensive discussion of the relation between the
effective dynamics and (6)). The probability distribution �.t;x/ of X t satisfies the
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Fokker-Planck equation associated to the above stochastic differential equation, that
reads

@t� D @x
�
� A0

�Cˇ�1@xx�: (81)

Consider now the relative entropy

E.t/DH. � j�/D
ˆ
R

ln

 
 �.t;x/

�.t;x/

!
 �.t;x/dx:

We compute, using (81) and (78), that

dE

dt
D

ˆ
R

ln

 
 �

�

!
@t 

� �
ˆ
R

 �

�
@t�

D
ˆ
R

ln

 
 �

�

!h
�@x

�
 � eb

�
Cˇ�1@xx �

i
�
ˆ
R

 �

�

	
@x
�
� A0

�Cˇ�1@xx�



D �ˇ�1
ˆ
R

@x

"
ln

 
 �

�

!#
@x 

� Cˇ�1
ˆ
R

@x

 
 �

�

!
@x�

C
ˆ
R

 � @x

 
ln
 �

�

!�
ebCA0

�

D �ˇ�1
ˆ
R

@x

"
ln

 
 �

�

!#"
@x 

� �  �@x�

�

#
C
ˆ
R

 � @x

 
ln
 �

�

!�
ebCA0

�

D �ˇ�1
ˆ
R

@x

"
ln

 
 �

�

!#
� @x

 
 �

�

!
C
ˆ
R

 � @x

 
ln
 �

�

!�
ebCA0

�

D �ˇ�1I. � j�/C
ˆ
R

 � @x

 
ln
 �

�

!�
ebCA0

�
:

Using a Young inequality with a parameter ˛ > 0 to be fixed later, we obtain

dE

dt
� �ˇ�1I. � j�/C 1

2˛

ˆ
R

 �

 
@x

 
ln
 �

�

!!2
C ˛

2

ˆ
R

 �
�
A0Ceb

�2

D
�
1

2˛
�ˇ�1

�
I. � j�/C ˛

2

ˆ
R

 �
�
A0Ceb

�2
: (82)

We now observe that, in view of (75) and (80), A0 and �eb are averages of the same
quantity with respect to different probability measures:

�eb.t;x/D
ˆ
R

@xV.x;y/�
t;x
1 .y/dy and A0.x/D

ˆ
R

@xV.x;y/�
x
2 .y/dy

with
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�
t;x
1 .y/D  .t;x;y/´

R
 .t;x;y/dy

and �x2 .y/D  1.x;y/´
R
 1.x;y/dy

: (83)

We write

A0.x/Ceb.t;x/ D
ˆ
R

@xV.x;y/�
x
2 .y/dy�

ˆ
R

@xV.x;y/�
t;x
1 .y/dy

D
ˆ
R2

.@xV.x;y1/�@xV.x;y2//kt;x.y1;y2/ dy1dy2

for any probability measure kt;x such that
ˆ
R

kt;x.y1;y2/ dy2 D �x2 .y1/ and
ˆ
R

kt;x.y1;y2/ dy1 D �
t;x
1 .y2/:

Hence,

ˇ̌
ˇA0.x/Ceb.t;x/

ˇ̌
ˇ � k@xyV kL1

ˆ
R2

jy1�y2jkt;x.y1;y2/ dy1dy2

� k@xyV kL1

�ˆ
R2

jy1�y2j2kt;x.y1;y2/ dy1dy2
�1=2

:

We now optimize on kt;x . Introducing the Wasserstein distanceW.�t;x1 ;�x2 / between
�
t;x
1 and �x2 (see (57)), we obtain

ˇ̌
ˇA0.x/Ceb.t;x/

ˇ̌
ˇ � k@xyV kL1 W.�

t;x
1 ;�x2 /:

As recalled above, assumption (69) means that �x2 satisfies a logarithmic Sobolev
inequality. Thus, it also satisfies a Talagrand inequality (see Lemma 7), hence

W.�
t;x
1 ;�x2 /�

s
2

�
H.�

t;x
1 j�x2 / � 1

�

q
I.�

t;x
1 j�x2 /:

As a consequence,

ˇ̌
ˇA0.x/Ceb.t;x/

ˇ̌
ˇ � k@xyV kL1

�

q
I.�

t;x
1 j�x2 /:

Using (83), we obtain



Some Remarks on Free Energy and Coarse-Graining 317

ˆ
R

 �
�
A0Ceb

�2

dx � k@xyV k2L1

�2

ˆ
R

 �.t;x/ I.�t;x
1 j�x

2 /dx

� k@xyV k2L1

�2

ˆ
R

 �.t;x/

"ˆ
R

ˇ̌
ˇ̌@y ln

 .t;x;y/

 
1

.x;y/

ˇ̌
ˇ̌
2
 .t;x;y/

 � .t;x/
dy

#
dx

� k@xyV k2L1

�2
I. j 

1

/:

Returning to (82), and using (60), we thus deduce that

dE

dt
�
�
1

2˛
�ˇ�1

�
I. � j�/C ˛

2

k@xyV k2L1

�2
I. j 1/

D
�
1

2˛
�ˇ�1

�
I. � j�/� ˛ˇk@xyV k2L1

2�2
@tH. j 1/:

We take 2˛ D ˇ, so that the first term vanishes, and we are left with

dE

dt
� �ˇ

2k@xyV k2L1

4�2
@tH. j 1/:

Integrating this inequality between the times 0 and t , and using that E.0/D 0, we
obtain

E.t/ � ˇ2k@xyV k2L1

4�2
.H. .t D 0/j 1/�H. .t; �/j 1// :

As recalled above, assumption (70) reads � D k@xyV kL1 <1. The above bound
is thus exactly the bound (72) in the present context. ut

3.4 Numerical Results

In this section, we check the accuracy of the effective dynamics (67) in terms of
residence times, and also compare this effective dynamics with the coarse-grained
dynamics (6) based on the free energy. We perform such comparison on two test-
cases, and evaluate the influence of the temperature on the results. We also provide
some analytical explanations for the observed numerical results.

In the following numerical tests, we focus on residence times. We have indeed
already underlined that the characteristic behaviour of the dynamics (3) is to sample
a given well of the potential energy, then suddenly jump to another basin, and start
over. Consequently, an important quantity is the residence time that the system
spends in the well, before going to another one.

For all the numerical tests reported in this section, the complete dynamics (3) has
been integrated with the Euler-Maruyama scheme

QjC1 DQj ��trV.Qj /C
p
2�t ˇ�1 Gj ;
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where, for any j , Gj is a n-dimensional vector, whose coordinates are independent
and identically distributed (i.i.d.) random variables, distributed according to a
normal Gaussian law.

For the simulation of the dynamics (67) and (6), we need to have an expression
for the free energy derivative A0 and the functions b and � . These have been
computed using the algorithm proposed in [7], on a regular grid of some bounded
interval. Values of the functions for points that do not belong to that grid were
obtained by linear interpolation. We have again used the Euler-Maruyama scheme
to numerically integrate the dynamics (67) and (6).

To compute residence times in a well, we have proceeded as follows (for the sake
of clarity, we assume in the following that there are only two wells in the test case at
hand). First, the left and the right wells are defined as the sets

˚
q 2 R

nI �.q/� � th
left



and
n
q 2 R

nI �.q/ � � th
right

o
respectively, with � th

right > � th
left. Next, we perform the

following computations:

1. We first generate a large number N of configurations fqi 2 R
ng1�i�N , dis-

tributed according to the measure� restricted to the right well: as a consequence,
�.qi / > �

th
right.

2. We next run the dynamics (3) from the initial condition qi , and monitor the
first time �i at which the system reaches a point q.�i / in the left well: �i D
inf
˚
t I �.qt / < � th

left


.

3. From these .�i /1�i�N , we compute an average residence time and a confidence
interval. These figures are the reference figures.

4. We next consider the initial conditions f�.qi / 2 Rg1�i�N for the effective
dynamics. By construction, these configurations are distributed according to the
equilibrium measure � ?� (that is exp.�ˇA.´//d´) restricted to the right well.

5. From these initial conditions, we run the dynamics (67) or (6) until the left well
is reached, and compute, as for the complete description, a residence time and its
confidence interval.

3.4.1 A Three Atom Molecule

Our aim in this section is to show that different reaction coordinates, although
similar at first sight, can lead to very different results. As explained in [19], the
error estimate (72) can then help discriminating between these reaction coordinates.

We consider here a molecule made of three two-dimensional particles, whose
positions are qA, qB and qC . The potential energy of the system is

V.q/D 1

2�

�
rAB � `eq

�2C 1

2�

�
rBC � `eq

�2CW3.�ABC /; (84)

where rAB D kqA � qBk is the distance between atoms A and B, `eq is an
equilibrium distance, �ABC is the angle formed by the three atoms, and W3.�/ is a
three-body potential, that we choose here to be a double-well potential:
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W3.�/D 1

2
k	 ..� ��saddle/

2� ı�2/2:

Wells ofW3 are located at � D �saddle ˙ı� . The potential (84) represents stiff bonds
between particles A and B on the one hand, and B and C on the other hand, with a
softer term depending on the angle �ABC . To remove rigid body motion invariance,
we set qB D 0 and qA � ey D 0. In the following, we work with the parameters
� D 10�3, k	 D 208, `eq D 1, �saddle D �=2 and ı� D �saddle �1:187. All dynamics
are integrated with the time step �t D 10�3.

We consider two reaction coordinates, that both indicate in which well the
system is:

� The angle formed by the three atoms:

�1 D �ABC :

In that case, wells are defined by
˚
q 2 R

nI �1.q/� � th
left D �saddle �0:15 andn

q 2 R
nI �1.q/� � th

right D �saddle C0:15
o
:

� The square of the distance between A and C :

�2 D kqA�qCk2:

In that case, wells are defined by
n
q 2 R

nI �2.q/� � th
left D 1:6`2eq

o
and

n
q 2 R

nI �2.q/� � th
right D 2:4`2eq

o
:

Note that there is a region of state space that does not belong to any well. This choice
allows to circumvent the so-called recrossing problem.

Remark 8. Note that (84) reads

V.q/D 1

2�

�
UAB.q/

2CUBC .q/
2
�CW3.�ABC /

with UAB.q/ D rAB � `eq and UBC .q/ D rBC � `eq. The two first terms in V are
much stiffer than the last one. We observe that r�ABC � rUAB Dr�ABC �
rUBC D0. Hence, the reaction coordinate �1 is orthogonal to the stiff terms of
the potential energy, in contrast to �2.

For potentials of the above type, we have shown in [19, Sect. 3.2] that the
coupling constant � defined by (70) is of the order of � when the reaction coordinate
is orthogonal to the stiff terms of the potential energy, and of order 1 otherwise. In
turn, the constant � defined by (69) typically remains bounded away from 0 when
� goes to zero. Ignoring the effect of the constant �, we hence see that the right-
hand side of the error bound (72) is much smaller (and so the effective dynamics is
more accurate) when the reaction coordinate is orthogonal to the stiff terms of the
potential energy.

Consequently, in the case at hand here, we expect to obtain accurate results with
�1, in contrast to �2. This is indeed the case, as shown in the sequel of this section. ˘
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We compute the residence time in a given well following the complete descrip-
tion, and compare it with the result given by a reduced description, based either
on (67) or (6). Results are gathered in Table 1, for the temperatures ˇ�1 D 1 and
ˇ�1 D 0:2. We observe that working with �1 (and either (67) or (6)) leads to very
accurate results, independently of the temperature. On the other hand, when working
with �2, the reaction coordinate is not orthogonal to the stiff terms of the potential,
and both coarse-grained dynamics turn out to be not accurate.

Remark 9. In the case at hand here, kr�1k2 D kr�ABC k2 D r�2BC . This quantity
is almost a constant, since the bond length potential is stiff and the temperature is
small. Hence, along the trajectory, we have that kr�1k2 	 `�2eq D 1. We pointed out
in [19, Sect. 2.3] that, when the reaction coordinate satisfies kr�k D 1, then both
coarse-grained dynamics (67) and (6) are identical. This explains why, in the present
case, when choosing the reaction coordinate �1, dynamics (67) and (6) give similar
results. ˘

Table 1 Three-atom molecule: residence times obtained from the complete description (third
column) and from the reduced descriptions (two last columns), for both reaction coordinates
(confidence intervals have been computed on the basis of N D 15;000 realizations)

Temperature Reaction Reference Residence time Residence time
coordinate residence time using (67) using (6)

ˇ�1 D 1 �1 D 	ABC 0.700˙ 0.011 0.704˙ 0.011 0.710˙ 0.011
ˇ�1 D 1 �2 D r2

AC 0.709˙ 0.015 0.219˙ 0.004 2.744˙ 0.056

ˇ�1 D 0:2 �1 D 	ABC 5784˙ 101 5836˙ 100 5752˙ 101
ˇ�1 D 0:2 �2 D r2

AC 5833˙ 88 1373˙ 20 2135˙ 319

We now study how results depend on temperature. Let us first consider the
reaction coordinate �1 D �ABC . Results are shown on Fig. 5. Both coarse-grained
dynamics provide extremely accurate results, independently of the temperature. We
also observe that we can fit the residence time �res according to the relation

�res 	 �0res exp.sˇ/ (85)

with �0res D 0:07521 and s D 2:25031.

By analytical considerations, we now explain why the residence times computed
from both coarse-grained dynamics (6) and (67) satisfy the relation (85), with the
numerical values of s and �0res reported above.

We first consider the coarse-grained dynamics (6) driven by the free energy. In
the case at hand here, it is possible to compute analytically the free energy. Using
the internal coordinates rAB , rBC and �ABC , we indeed infer from (2) that the free
energy A1 does not depend on the temperature and satisfies

A1.�ABC /DW3.�ABC /:
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Fig. 5 log10.residence time/ as a function of ˇ , for the reaction coordinate �1 D 	ABC

Thus A1 has two global minimizers, separated by a barrier

�A1 D 1

2
k	 .ı�/

4 	 2:25648:

The large deviations theory can be used to understand the behaviour of the
dynamics (6), in the low temperature regime. It yields the fact that, when ˇ  1,
residence times are given by

�LD
res 	 �0;LD

res exp.ˇ�A1/ with �0;LD
res D 2�

!SP!W
; (86)

where !2SP D �A001.�SP/ is the pulsation at the saddle-point �SP D �saddle, and !2W D
A001.�W/ is the pulsation at the local minimizer �W D �saddle ˙ı� (see also [17, (7.9)
and (7.10)]). In the present case, we compute that !SP 	 7:828 and !W 	 11:07,
thus �0;LD

res 	 0:0725, and we find that

s 	�A1 and �0res 	 �0;LD
res :

We thus obtain a good agreement between (85) and (86), as observed on Fig. 5. Note
that this agreement holds even up to temperature ˇ�1 D 1.

We now turn to the dynamics (67). We pointed out in Remark 9 that dynam-
ics (67) and (6) are identical in the limit of low temperature, for the reaction
coordinate �1. The functions b and � are plotted for the temperature ˇ�1D1
on Fig. 6. We observe that, even though the temperature is not very small, we
already have b 	 �W 03 D �A01 and � 	 1. The agreement is even better when the
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temperature is smaller. This thus explains why results given by both coarse-grained
dynamics (67) and (6) can be fitted by the same relation (85), on the whole range of
temperature.

Fig. 6 Plot of the functions b and � , for the reaction coordinate �1 D 	ABC , at the temperature
ˇ�1 D 1

We now consider the reaction coordinate �2 D r2AC . Residence times as a function
of the inverse temperature ˇ are shown on Fig. 7. We observe that neither the
dynamics (6) nor the dynamics (67) provide accurate results. More precisely, the
reference results, the results given by (67) and the results given by (6) can be fitted
by

� ref
res 	 �0;ref

res exp.sˇ/;

� eff
res 	 �0;eff

res exp.sˇ/; (87)

� free
res 	 �0;free

res exp.sˇ/; (88)

respectively, with the same parameter s D 2:21˙0:03 and

�0;ref
res 	 0:0768; �0;eff

res 	 0:0241; �0;free
res 	 0:293:

The dependency with respect to the temperature is thus accurately reproduced by
both coarse-grained dynamics. The inaccuracy comes from the fact that the prefactor
�0;ref is ill-approximated.

Again, these numerical observations are in agreement with analytical computa-
tions based on the large deviations theory. More precisely, we explain in the sequel
why the residence times computed from both coarse-grained dynamics (67) and (6)
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Fig. 7 log10.residence time/ as a function of ˇ , for the reaction coordinate �2 D r2
AC

satisfy (87) and (88), with the same s, and for the numerical values of s, �0;eff
res and

�0;free
res reported above.

The functions A02, b and � are plotted for two different temperatures on Fig. 8.
Although A2 a priori depends on ˇ (as expected), it turns out this dependency
becomes quite weak when ˇ � 1. It turns out that we can fit A02 by

A02.�/	 c5.x�2/5C c4.x�2/4C c3.x�2/3C c2.x�2/2C c1.x�2/;
with c1 D �16:4433; c2 D 3:87398; c3 D 34:2171; c4 D �6:36938 and c5 D
�7:89431. The free energy has thus two local minimizers, �W;r 	 2:73 and �W;l 	
1:25 and a saddle point, �SP 	 2, with

A2.�SP/	 0; A2.�W;r/	 �2:1; A2.�W;l/	 �2:37:
We introduce the barriers to go from the right well to the left well (r ! l) and

vice-versa:

�Ar!l
2 D A2.�SP/�A2.�W;r/ and �Al!r

2 DA2.�SP/�A2.�W;l/:

In the case of the dynamics (6) driven by the free energy, and under the assumption
that the temperature is low enough so that A2 becomes independent of ˇ, the large
deviations theory can again be used, and yields the fact that residence times are
given by

�
LD;r!l
res;free 	 2�

!SP!W;r
exp.ˇ�Ar!l

2 /; �
LD;l!r
res;free 	 2�

!SP!W;l
exp.ˇ�Al!r

2 /;
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Fig. 8 Plot of the functions b, � and A0

2, for the reaction coordinate �2 D r2
AC , at two different

temperatures

where !2SP, !2W;l and !2W;r are the pulsations at the saddle-point, the left well and the
right well, respectively. In the present case, we compute that !SP 	 p�c1 	 4:055,
!W;l 	 5:809 and !W;r 	 4:774.

The left well is deeper than the right well. Hence, in the low temperature limit,
the residence time in the left well is much larger than the residence time in the right
well, and the probability to be in the left well is higher than the probability to be in
the right well. Hence,

�LD
res;free 	 �

LD;l!r
res;free 	 �

0;LD;l!r
res;free exp.ˇ�Al!r

2 / with �
0;LD;l!r
res;free D 2�

!SP!W;l
:

(89)

With the parameters that we used, we compute �0;LD;l!r
res;free 	 0:267, hence
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s 	�Al!r
2 and �0;free

res 	 �
0;LD;l!r
res;free ;

and we obtain a good agreement between (88) and (89).

We now turn to the dynamics (67). The functions b and � plotted on Fig. 8 seem
to be almost independent of the temperature when ˇ � 1. Following [19, Sect. 2.3]
and [11, Sect. 10 and (89)], we introduce the one-to-one function

h.�/D
ˆ �

0

��1.y/dy

and the coordinate � D h.�2/. We next change of variable in the effective dynam-
ics (67) on the reaction coordinate � and recast it as

d�t D �eA0.�t /dtC
p
2ˇ�1 dBt ;

whereeA turns out to be the free energy associated to the reaction coordinate �.q/D
h.�2.q//. The residence time to exit the left well is hence given by

�
LD;l!r
res;eff 	 2�

e!SPe!W;l
exp.ˇ�eAl!r/:

In the regime of low temperature, the second term of (11) is negligible, and we
deduce from (10) that eA.h.�// D A2.�/, where A2 is the free energy associated
with the reaction coordinate �2. As a consequence,

�eAl!r D�Al!r; e!SP D !SP �.�SP/; e!W;l D !W;l�.�W;l/:

Hence,
�

LD;l!r
res;eff 	 �

0;LD;l!r
res;eff exp.ˇ�Al!r

2 /; (90)

with

�
0;LD;l!r
res;eff D 2�

!SP!W;l �.�SP/�.�W;l/
:

We thus recover that the dependency of the residence times with temperature is
identical between the residence times predicted by the effective dynamics (67) and
the residence times predicted by (6): this dependency is exponential, with the same
prefactor�Al!r

2 .
We also compute �.�SP/	 3:465 and �.�W;l/	 2:563, so �0;LD;l!r

res;eff 	 0:03. Thus

the values �0;eff
res and �0;LD;l!r

res;eff qualitatively agree, and we obtain a good agreement
between (87) and (90).

3.4.2 The Butane Molecule Case

We now consider a system in higher dimension, namely a butane molecule, in the
united atom model [22,27]. We hence only simulate four particles, whose positions
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are qi 2 R
3, for 1� i � 4. The potential energy reads

V.q/D
3X

iD1
Vbond

�kqiC1�qik�CVbond�angle.�1/CVbond�angle.�2/CVtorsion.�/;

where �1 is the angle formed by the three first particles, �2 is the angle formed by
the three last particles, and � is the dihedral angle, namely the angle between the
plane on which the three first particles lay and the plane on which the three last
particles lay, with the convention � 2 .��;�/. We work with

Vbond.`/D k2

2
.`� `eq/2; Vbond�angle.�/D k3

2
.� ��eq/2

and

Vtorsion.�/D c1.1� cos�/C2c2.1� cos2�/C c3.1C3cos��4cos3�/:

Rigid body motion invariance is removed by setting q2 D 0, q1 �e´ D 0 and q3 �ex D
q3 � e´ D 0.

In the system of units where the length unit is `0 D 1:53 �10�10 m and the energy
unit is such that kBT D 1 at T D 300K, the time unit is Nt D 364 fs, and the numerical
values of the parameters are `eq D 1, k3 D 208, �eq D 1:187, c1 D 1:18, c2 D �0:23,
and c3 D 2:64. We will work in the sequel with k2 D 1;000. We set the unit of mass
such that the mass of each particle is equal to 1.

For these values of the parameters ci , the function Vtorsion has a unique global
minimum (at � D 0) and two local non-global minima (see Fig. 9). It is hence
a metastable potential. We choose to work with the dihedral angle as reaction
coordinate:

�.q/D �:

We are interested in the residence time in the main well (around the global mini-
mizer �0 D 0) before hopping to any of the two wells around the local minimizers
�˙1 D ˙2�=3. For each minimizer �0, �1 and ��1, the associated well is defined
by
˚
qI j�.q/��i j � � th


, i D �1;0;1, with � th D 0:5.

Remark 10. We observe that

rVstiff � r� D 0;

where Vstiff.q/ D P3
iD1Vbond

�kqiC1�qik�C Vbond�angle.�1/C Vbond�angle.�2/. In
view of [19, Sect. 3.2], we hence expect to obtain accurate results with this choice
of reaction coordinate, as it is indeed the case. ˘

As in the previous section, we compute reference residence times by integrating
the complete dynamics, and we then consider both coarse-grained dynamics (67)
and (6). All computations have been done with the time step �t D 10�3. Results
are reported in Table 2. We observe that the effective dynamics (67) again yields
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Fig. 9 Torsion angle potential Vtorsion.
/

extremely accurate results. The results obtained by the dynamics (6), although
qualitatively correct, are less accurate. This conclusion holds for all the temperatures
we considered.

As in the previous section, residence times depend on the temperature following

�res 	 �0res exp.sˇ/:

For both coarse-grained dynamics, the values found for s and �0res agree with
predictions based on the large deviations theory. In the case at hand here, it turns
out that the free energy associated to the reaction coordinate �.q/ D � is simply
A.�/D Vtorsion.�/. On Fig. 10, we plot the functions b and � . We observe that they
are almost independent of the temperature (as soon as ˇ � 1), and that � is almost a
constant. Hence, up to the time rescaling trescale D �t , the effective dynamics reads
as the dynamics (6) governed by the free energy. As � D 1:086	 1 (see Fig. 10),
the dynamics (6) yields qualitatively correct results.

Table 2 Butane molecule: residence times obtained from the complete description (second
column) and from the reduced descriptions (two last columns), at different temperatures (confi-
dence intervals have been computed on the basis of N D 13;000 realizations)

Temperature Reference Residence time Residence time
residence time using (67) using (6)

ˇ�1 D 1 31.9˙ 0.56 32.0˙ 0.56 37.1˙ 0.64
ˇ�1 D 0:67 493˙ 8 490˙ 8 581˙ 9
ˇ�1 D 0:5 7624˙ 113 7794˙ 115 9046˙ 133
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Fig. 10 Plot of the functions b and � , for the reaction coordinate � D 
, at different temperatures
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Linear Stationary Iterative Methods
for the Force-Based
Quasicontinuum Approximation

Mitchell Luskin and Christoph Ortner

Abstract Force-based multiphysics coupling methods have become popular since
they provide a simple and efficient coupling mechanism, avoiding the difficulties
in formulating and implementing a consistent coupling energy. They are also the
only known pointwise consistent methods for coupling a general atomistic model
to a finite element continuum model. However, the development of efficient and
reliable iterative solution methods for the force-based approximation presents a
challenge due to the non-symmetric and indefinite structure of the linearized force-
based quasicontinuum approximation, as well as to its unusual stability properties.
In this paper, we present rigorous numerical analysis and computational experiments
to systematically study the stability and convergence rate for a variety of linear
stationary iterative methods.

1 Introduction

Low energy local minima of crystalline atomistic systems are characterized by
highly localized defects such as vacancies, interstitials, dislocations, cracks, and
grain boundaries separated by large regions where the atoms are slightly deformed
from a lattice structure. The goal of atomistic-to-continuum coupling methods
[1–4,15,16,22,26,28,32] is to approximate a fully atomistic model by maintaining
the accuracy of the atomistic model in a small neighborhood surrounding each
localized defect and using the efficiency of continuum coarse-grained models in
the vast regions that are only mildly deformed from a lattice structure.
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Force-based atomistic-to-continuum methods decompose a computational ref-
erence lattice into an atomistic region A and a continuum region C , and assign
forces to representative atoms according to the region they are located in. In the
quasicontinuum method, the representative atoms are all atoms in the atomistic
region and the nodes of a finite element approximation in the continuum region.
The force-based approximation is thus given by [5, 6, 10–12, 32]

F
qcf
j .y/ WD

(
F a
j .y/ if j 2 A ;

F c
j .y/ if j 2 C ;

(1)

where y denotes the positions of the representative atoms which are indexed by j;
F a
j .y/ denotes the atomistic force at representative atom j; and F c

j .y/ denotes a
continuum force at representative atom j:

The force-based quasicontinuum method (QCF) uses a Cauchy-Born strain
energy density for the continuum model to achieve a patch test consistent approx-
imation [6, 11, 24]. We recall that a patch test consistent atomistic-to-continuum
approximation exactly reproduces the zero net forces of uniformly strained lat-
tices [19, 24, 27]. However, the recently discovered unusual stability properties
of the linearized force-based quasicontinuum (QCF) approximation, especially its
indefiniteness, present a challenge to the development of efficient and reliable
iterative methods [12]. Energy-based quasicontinuum approximations have many
attractive features such as more reliable solution methods, but practical patch test
consistent, energy-based quasicontinuum approximations have yet to be developed
for most problems of physical interest, such as three-dimensional problems with
many-body interaction potentials [20, 21, 30].

Rather than attempt an analysis of linear stationary methods for the full nonlinear
system, in this paper we restrict our focus to the linearization of a one-dimensional
model problem about the uniform deformation, yFj D Fj�; where F > 0 is a
macroscopic strain, j 2 Z; and � is the reference interatomic spacing. We then
consider linear stationary methods of the form

P
�
u.nC1/�u.n/�D ˛r .n/; (2)

where P is a nonsingular preconditioning operator, the damping parameter ˛ > 0 is
fixed throughout the iteration (that is, stationary), and the residual is defined as

r .n/ WD f �Lqcf
F u

.n/;

where f denotes any applied forces and Lqcf
F denotes the linearization of the QCF

operator (1) about the uniform deformation yF :
We will see below that our analysis of this simple model problem already allows

us to observe many interesting and crucial features of the various methods. For
example, we can distinguish which iterative methods converge up to the critical
strain F� (see (9) for a discussion of the critical strain), and we obtain first results
on their convergence rates.
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We begin in Sects. 2 and 3 by introducing the most important quasicontinuum
approximations and outlining their stability properties, which are mostly straight-
forward generalizations of results from [9–11, 13]. In Sect. 4, we review the basic
properties of linear stationary iterative methods.

In Sect. 5, we give an analysis of the Richardson Iteration (P D I ) and prove a
contraction rate of order 1�O.N�2/ in the `p� norm (discrete Sobolev norms are
defined in Sect. 2.1), where N is the size of the atomistic system.

In Sect. 6, we consider the iterative solution with preconditionerP DL
qcl
F ;where

L
qcl
F is a standard second order elliptic operator, and show that the preconditioned

iteration with an appropriately chosen damping parameter ˛ is a contraction up to
the critical strain F� only in U 2;1 among the common discrete Sobolev spaces.
We show, however, that a rate of contraction in U 2;1 independent of N can be
achieved with the elliptic preconditioner Lqcl

F and an appropriate choice of the
damping parameter ˛:

In Sect. 7, we consider the popular ghost force correction iteration (GFC) which
is given by the preconditionerP DL

qce
F ; and we show that the GFC iteration ceases

to be a contraction for any norm at strains less than the critical strain. This result and
others presented in Sect. 7 imply that the GFC iteration might not always reliably
reproduce the stability of the atomistic system [9]. We did not find that the GFC
method predicted an instability at a reduced strain in our benchmark tests [18]
(see also [24]). To explain this, we note that our 1D analysis in this paper can
be considered a good model for cleavage fracture, but not for the slip instabilities
studied in [18,24]. We are currently attempting to develop a 2D benchmark test for
cleavage fracture to study the stability of the GFC method.

2 The QC Approximations and Their Stability

We give a review of the prototype QC approximations and their stability properties
in this section. The reader can find more details in [9, 10].

2.1 Function Spaces and Norms

We consider a one-dimensional atomistic chain whose 2N C 1 atoms have the
reference positions xj D j� for � D 1=N: The displacement of the boundary atoms
will be constrained, so the space of admissible displacements will be given by the
displacement space

U D ˚
u 2 R

2NC1 W u�N D uN D 0

:

We will use various norms on the space U which are discrete variants of the usual
Sobolev norms that arise naturally in the analysis of elliptic PDEs.
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For displacements v 2 U and 1� p � 1; we define the `p� norms,

kvk`p
�

WD
8
<

:

�
�
PN
`D�NC1 jv`jp

�1=p
; 1� p <1;

max`D�NC1;:::;N jv`j; p D 1;

and we denote by U 0;p the space U equipped with the `p� norm. The inner product
associated with the `2� norm is

hv;wi WD �

NX

`D�NC1
v`w` for v;w 2 U :

We will also use kf k`p
�

and hf;gi to denote the `p� -norm and `2� -inner product for
arbitrary vectors f;g which need not belong to U . In particular, we further define
the U 1;p norm

kvkU 1;p WD kv0k`p
�
;

where .v0/` D v0
`

D ��1.v`�v`�1/, `D �N C1; : : : ;N , and we let U 1;p denote the
space U equipped with the U 1;p norm. Similarly, we define the space U 2;p and its
associated U 2;p norm, based on the centered second difference v00

`
D ��2.v`C1�

2v`Cv`�1/ for `D �N C1; : : : ;N �1:
We have that v0 2R

2N for v 2 U has mean zero
PN
jD�NC1 v0j D 0:We can thus

obtain from [10, (9)] that

max
v2Ukv0k

`
q
� D1

hu0; v0i � max
�2R2N

k�k
`

q
�
D1

hu0; �i D kukU 1;p � 2 max
v2Ukv0k

`
q
� D1

hu0; v0i: (3)

We denote the space of linear functionals on U by U �: For g 2 U �, s D 0;1;

and 1� p � 1, we define the negative norms kgkU �s;p by

kgkU �s;p WD sup
v2UkvkU s;qD1

hg;vi;

where 1 � q � 1 satisfies 1
p

C 1
q

D 1: We let U �s;p denote the dual space U �
equipped with the U �s;p norm.

For a linear mapping A W U1 ! U2 where Ui are vector spaces equipped with
the norms k � kUi

; we denote the operator norm of A by

kAkL.U1 ; U2/ WD sup
v2U ;v¤0

kAvkU2

kvkU1

:

If U1 D U2, then we use the more concise notation

kAkU1
WD kAkL.U1 ; U1/:
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If A W U 0;2 ! U 0;2 is invertible, then we can define the condition number by

cond.A/D kAkU 0;2 � kA�1kU 0;2 :

When A is symmetric and positive definite, we have that

cond.A/D �A2N�1=�A1

where the eigenvalues of A are 0 < �A1 � � � � � �A2N�1: If a linear mapping A W
U ! U is symmetric and positive definite, then we define the A-inner product and
A-norm by

hv;wiA WD hAv;wi; kvk2A D hAv;vi:
The operator A W U1 ! U2 is operator stable if the operator norm

kA�1kL.U2; U1/ is finite, and a sequence of operators Aj W U1;j ! U2;j is
operator stable if the sequence k.Aj /�1kL.U2;j ; U1;j / is uniformly bounded. A
symmetric operator A W U 0;2 ! U 0;2 is called stable if it is positive definite, and
this implies operator stability. A sequence of positive definite, symmetric operators

Aj W U 0;2 ! U 0;2 is called stable if their smallest eigenvalues �
Aj

1 are uniformly
bounded away from zero.

2.2 The Atomistic Model

We now consider a one-dimensional atomistic chain whose 2N C3 atoms have the
reference positions xj D j� for � D 1=N; and interact only with their nearest and
next-nearest neighbors.

We denote the deformed positions by yj , j D �N � 1; : : : ;N C 1I and we con-
strain the boundary atoms and their next-nearest neighbors to match the uniformly
deformed state, yFj D Fj�; where F > 0 is a macroscopic strain, that is,

y�N�1 D �F.N C1/�; y�N D �FN�;
yN D FN�; yNC1 D F.N C1/�:

(4)

We introduced the two additional atoms with indices ˙.N C1/ so that y D yF is an
equilibrium of the atomistic model. The total energy of a deformation y 2 R

2NC3
is now given by

Ea.y/�
NX

jD�N
�fjyj ;

where

Ea.y/D
NC1X

jD�N
��
�yj �yj�1

�

�
D

NC1X

jD�N
��.y0j /C

NC1X

jD�NC1
��.y0j Cy0j�1/: (5)
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Here, � is a scaled two-body interatomic potential (for example, the normalized
Lennard-Jones potential, �.r/D r�12�2r�6), and fj , j D �N;: : : ;N; are external
forces. The equilibrium equations are given by the force balance conditions at the
unconstrained atoms,

�F a
j .y

a/D fj for j D �N C1; : : : ;N �1;
ya
j D Fj� for j D �N �1;�N; N; N C1;

(6)

where the atomistic force (per lattice spacing �) is given by

F a
j .y/ W D �1

�

@Ea.y/

@yj

D 1

�

n	
� 0.y0jC1/C�0.y0jC2Cy0jC1/


� 	�0.y0j /C�0.y0j Cy0j�1/

o
:

(7)

We linearize (7) by letting u 2 R
2NC3, u˙N D u˙.NC1/ D 0, be a “small”

displacement from the uniformly deformed state yFj D Fj�I that is, we define

uj D yj �yFj for j D �N �1; : : : ;N C1:

We then linearize the atomistic equilibrium (6) about the uniformly deformed state
yF and obtain a linear system for the displacement ua,

.La
F u

a/j D fj for j D �N C1; : : : ;N �1;
uaj D 0 for j D �N �1;�N; N; N C1;

where .La
F v/j is given by

.La
F v/j WD �00F

��vjC1C2vj �vj�1
�2

�
C�002F

��vjC2C2vj �vj�2
�2

�
:

Here and throughout we define

�00F WD �00.F / and �002F WD �00.2F /;

where � is the interatomic potential in (5). We will always assume that �00F > 0 and
�002F < 0;which holds for typical pair potentials such as the Lennard-Jones potential
under physically realistic deformations.

The stability properties of La
F can be understood by using a representation

derived in [9],

hLa
F u;ui D �AF

NX

`D�NC1
ju0`j2� �3�002F

NX

`D�N
ju00` j2 D AF ku0k2

`2
�

� �2�002F ku00k2
`2

�
;

(8)

where AF is the continuum elastic modulus



Linear Stationary Iterative Methods for Force-Based QCF 337

AF D �00F C4�002F :

We can obtain the following result from the argument in [9, Proposition 1] and [12].

Proposition 1. If �002F � 0, then

min
u2R2N C3nf0g

u
˙NDu˙.N C1/D0

hLa
F u;ui

ku0k2
`2

�

D AF � �2���002F ;

where

�� WD min
u2R2N C3nf0g

u
˙NDu˙.N C1/D0

ku00k2
`2

�

ku0k2
`2

�

satisfies 0 < �� � C for some universal constant C:

2.2.1 The Critical Strain F�

The previous result shows that La
F is positive definite, uniformly as N ! 1, if

and only if AF > 0. For realistic interaction potentials, La
F is positive definite in

a ground state F0 > 0. For simplicity, we assume that F0 D 1, and we ask how far
the system can be “stretched” by applying increasing macroscopic strains F until
it loses its stability. In the limit as N ! 1, this happens at the critical strain F�,
which is the smallest number larger than F0, solving the equation

AF
�

D �00.F�/C4�00.2F�/D 0: (9)

2.3 The Local QC Approximation (QCL)

The local quasicontinuum (QCL) approximation uses the Cauchy-Born approxima-
tion to approximate the nonlocal atomistic model by a local continuum model [5,23,
26]. For next-nearest neighbor interactions, the Cauchy-Born approximation reads

�
�
��1.y`C1�y`�1/

�	 1
2

	
�.2y0`/C�.2y0`C1/�;

and results in the QCL energy, for y 2 R
2NC3 satisfying the boundary condi-

tions (4),

Eqcl.y/D
NX

jD�NC1
�
	
�.y0j /C�.2y0j /




C �

�
�.y0�N /C

1

2
�.2y0�N /C�.y0NC1/C

1

2
�.2y0NC1/

�
:

(10)
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Imposing the artificial boundary conditions of zero displacement from the uniformly
deformed state, yFj D Fj�; we obtain the QCL equilibrium equations

�F
qcl
j .yqcl/D fj for j D �N C1; : : : ;N �1;

y
qcl
j D Fj� for j D �N; N;

where

F
qcl
j .y/ W D �1

�

@Eqcl.y/

@yj

D 1

�

n	
�0.y0jC1/C2�0.2y0jC1/


� 	�0.y0j /C2�0.2y0j /

o
:

(11)

We see from (11) that the QCL equilibrium equations are well-defined with only
a single constraint at each boundary, and we can restrict our consideration to
y 2 R

2NC1 with y�N D �F and yN D F as the boundary conditions.
Linearizing the QCL equilibrium (11) about yF results in the system

.L
qcl
F u

qcl/j D fj for j D �N C1; : : : ;N �1;
u

qcl
j D 0 for j D �N; N;

where
L

qcl
F D AFL

and L is the discrete Laplacian, for v 2 U , given by

.Lv/j WD �v00j D
��vjC1C2vj �vj�1

�2

�
; j D �N C1; : : : ;N �1: (12)

The QCL operator is a scaled discrete Laplace operator, so

hLqcl
F u;ui D AF ku0k2

`2
�

for all u 2 U :

In particular, it follows that Lqcl
F is stable if and only if AF > 0, that is, if and only

if F < F�; where F� is the critical strain defined in (9).

2.4 The Force-Based QC Approximation (QCF)

The force-based quasicontinuum (QCF) method combines the accuracy of the
atomistic model with the efficiency of the QCL approximation by decomposing the
computational reference lattice into an atomistic region A and a continuum region
C , and assigns forces to atoms according to the region they are located in. The QCF
operator is given by [5, 6]
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F
qcf
j .y/ WD

(
F a
j .y/ if j 2 A ;

F
qcl
j .y/ if j 2 C ;

(13)

and the QCF equilibrium equations are given by

�F
qcf
j .yqcf/D fj for j D �N C1; : : : ;N �1;

y
qcf
j D Fj� for j D �N; N:

We note that, since atoms near the boundary belong to C , only one boundary
condition is required at each end.

For simplicity, we specify the atomistic and continuum regions as follows. We
fix K 2 N, 1�K �N �2, and define

A D f�K;: : : ;Kg and C D f�N C1; : : : ;N �1g nA :

Linearizing (13) about yF , we obtain

.L
qcf
F u

qcf/j D fj for j D �N C1; : : : ;N �1;
u

qcf
j D 0 for j D �N; N; (14)

where the linearized force-based operator is given explicitly by

.L
qcf
F v/j WD

�
.L

qcl
F v/j ; for j 2 C ;

.La
F v/j ; for j 2 A :

The stability analysis of the QCF operator Lqcf
F is less straightforward [10, 11]; we

will therefore treat it separately and postpone it to Sect. 3.

2.5 The Original Energy-Based QC Approximation (QCE)

The original energy-based quasicontinuum (QCE) method [26] defines an energy
functional by assigning atomistic energy contributions in the atomistic region and
continuum energy contributions in the continuum region. For our model problem,
we obtain

Eqce.y/D �
X

`2A
Ea` .y/C �

X

`2C
Ec`.y/ for y 2 R

2NC1;

where

Ec`.y/D 1
2

�
�.2y0`/C�.y0`/C�.y0`C1/C�.2y0`C1/

�
; and

Ea` .y/D 1
2

�
�.y0`�1Cy0`/C�.y0`/C�.y0`C1/C�.y0`C1Cy0`C2/

�
:
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The QCE method is patch tests inconsistent [7,8,25,31], which can be seen from
the existence of “ghost forces” at the interface, that is, rEqce.yF /D gF ¤ 0. Hence,
the linearization of the QCE equilibrium equations about yF takes the form (see [8,
Sect. 2.4] and [7, Sect. 2.4] for more detail)

.L
qce
F uqce/j �gFj D fj for j D �N C1; : : : ;N �1;

u
qce
j D 0 for j D �N; N; (15)

where, for 0� j �N �1; we have

.L
qce
F v/j D �00F

�vjC1C2vj �vj�1
�2

C�002F

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

4
�vjC2C2vj �vj�2

4�2
; 0� j �K�2;

4
�vjC2C2vj �vj�2

4�2
C 1

�

vjC2�vj
2�

; j DK�1;

4
�vjC2C2vj �vj�2

4�2
� 2

�

vjC1�vj
�

C 1

�

vjC2�vj
2�

; j DK;

4
�vjC1C2vj �vj�1

�2
� 2

�

vj �vj�1
�

C 1

�

vj �vj�2
2�

; j DKC1;

4
�vjC1C2vj �vj�1

�2
C 1

�

vj �vj�2
2�

; j DKC2;

4
�vjC1C2vj �vj�1

�2
; KC3� j �N �1;

and where the vector of “ghost forces,” g, is defined by

gFj D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

0; 0� j �K�2;
� 1
2�
�02F ; j DK�1;

1
2�
�02F ; j DK;

1
2�
�02F ; j DKC1;

� 1
2�
�02F ; j DKC2;

0; KC3� j �N �1:
The equations for j D �N C1; : : : ;�1 follow from symmetry.

The following result is a new sharp stability estimate for the QCE operator Lqce
F .

Its somewhat technical proof is given in Appendix 7.

Theorem 1. If K � 1, N �KC2, and �002F � 0, then

inf
u2Uku0k

`2
�
D1

hLqce
F u;ui D AF C�K�

00
2F ;

where 1
2

� �K � 1. Asymptotically, as K ! 1, we have

�K � ��CO.e�cK/ where �� 	 0:6595 and c 	 1:5826:
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2.6 The Quasi-Nonlocal QC Approximation (QNL)

The QCF method is the simplest idea to circumvent the interface inconsistency
of the QCE method, but gives non-conservative equilibrium equations [5]. An
alternative energy-based approach was suggested in [14, 33], which is based on
a modification of the energy at the interface. The quasi-nonlocal approximation
(QNL) is given by the energy functional

Eqnl.y/ WD �

NX

`D�NC1
�.y0`/C �

X

`2A
�.y0`Cy0`C1/C �

X

`2C
1
2

	
�.2y0`/C�.2y0`C1/



;

where we set �.y0�N / D �.y0NC1/ D 0. The QNL approximation is patch test
consistent; that is, y D yF is an equilibrium of the QNL energy functional.

The linearization of the QNL equilibrium equations about yF is

.L
qnl
F u

qnl/j D fj for j D �N C1; : : : ;N �1;
u

qnl
j D 0 for j D �N; N;

where

.L
qnl
F v/j D �00F

�vjC1C2vj �vj�1
�2

C�002F

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

4
�vjC2C2vj �vj�2

4�2
; 0� j �K�1;

4
�vjC2C2vj �vj�2

4�2
� �vjC2C2vjC1�vj

�2
; j DK;

4
�vjC1C2vj �vj�1

�2
C �vj C2vj�1�vj�2

�2
; j DKC1;

4
�vjC1C2vj �vj�1

�2
; KC2� j �N �1:

(16)

We can repeat our stability analysis for the periodic QNL operator in [9, Sec. 3.3]
verbatim to obtain the following result.

Proposition 2. If K <N �1, and �2F � 0, then

inf
u2Uku0k

`2
�
D1

hLqnl
F u;ui D AF :

Remark 1. Since �002F D .AF � �00F /=4; the linearized operators .�00F /�1L
a
F ;

.�00F /�1L
qcl
F ; .�

00
F /
�1Lqcf

F ; .�
00
F /
�1Lqce

F ; and .�00F /�1L
qnl
F depend only on AF =�00F ,

N andK .



342 M. Luskin and C. Ortner

3 Stability and Spectrum of the QCF operator

In this section, we give various properties of the linearized QCF operator, most of
which are variants of our results in [10, 11]. We first give a result for the non-
coercivity of the QCF operator which lies at the heart of many of the difficulties one
encounters in analyzing the QCF method.

Theorem 2 (Theorem 1, [11]). If �00F > 0 and �002F 2 Rn f0g then, for sufficiently

largeN; the operatorLqcf
F is not positive-definite. More precisely, there existN0 2N

and C1 � C2 > 0 such that, for all N �N0 and 2�K �N=2,

�C1N 1=2 � inf
v2Ukv0k

`2
�
D1

˝
L

qcf
F v;v

˛ � �C2N 1=2:

The proof of Theorem 2 yields also the following asymptotic result on the
operator norm of Lqcf

F . Its proof is a straightforward extension of [11, Lemma 2],
which covers the case p D 2, and we therefore omit it.

Lemma 1. Let �002F ¤ 0, then there exists a constantC3>0 such that for sufficiently
large N , and for 2�K �N=2,

C�13 N 1=p � ��Lqcf
F

��
L.U 1;p ; U �1;p/

� C3N
1=p:

As a consequence of Theorem 2 and Lemma 1, we analyzed the stability of Lqcf
F

in alternative norms. By following the proof of [10, Theorem 3] verbatim (see also
[10, Remark 3]), we can obtain the following sharp stability result.

Proposition 3. If AF > 0 and �002F � 0, then Lqcf
F is invertible with

��.Lqcf
F /
�1��

L.U 0;1; U 2;1/
� 1=AF :

If AF D 0; then Lqcf
F is singular.

This result shows that Lqcf
F is operator stable up to the critical strain F� at which

the atomistic model loses its stability as well (cf. Sect. 2.2).

3.1 Spectral Properties of Lqcf
F in U 0;2 D `2�

The spectral properties of the Lqcf
F operator are fundamental for the analysis of the

performance of iterative methods in Hilbert spaces. The basis of our analysis of Lqcf
F

in the Hilbert space U 0;2 is the surprising observation that, even though Lqcf
F is

non-normal, it is nevertheless diagonalizable and its spectrum is identical to that of
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L
qnl
F . We first observed this numerically in [10, Sect. 4.4] for the case of periodic

boundary conditions. A proof has since been given in [13, Sect. 3], which translates
verbatim to the case of Dirichlet boundary conditions and yields the following result.

Lemma 2. For all N � 4; 1�K �N �2, we have the identity

L
qcf
F D L�1Lqnl

F L: (17)

In particular, the operatorLqcf
F is diagonalizable and its spectrum is identical to the

spectrum of Lqnl
F .

We denote the eigenvalues of Lqnl
F (and Lqcf

F ) by

0 < �
qnl
1 � � � � � �

qnl
`

� � � � � �
qnl
2N�1:

The following lemma gives a lower bound for �qnl
1 ; an upper bound for �qnl

2N�1; and

consequently an upper bound for cond.Lqnl
F /D �

qnl
2N�1=�

qnl
1 .

Lemma 3. If K <N �1 and �002F � 0, then

�
qnl
1 � 2AF ; �

qnl
2N�1 � �

AF �4�002F
�
��2 D �00F ��2; and

cond.Lqnl
F /D �

qnl
2N�1
�

qnl
1

�
�
�00F
2AF

�
��2:

For the analysis of iterative methods, we are also interested in the condition
number of a basis of eigenvectors of Lqcf

F as N tends to infinity. Employing Lemma

2, we can write Lqcf
F D L�1�qcfL where L is the discrete Laplacian operator and

�qcf is diagonal. The columns ofL�1 are poorly scaled; however, a simple rescaling
was found in [13, Theorem 3.3] for periodic boundary conditions. The construction
and proof translate again verbatim to the case of Dirichlet boundary conditions
and yield the following result (note, in particular, that the main technical step,
[13, Lemma 4.6] can be applied directly).

Lemma 4. Let AF > 0, then there exists a matrix V of eigenvectors for the force-
based QC operator Lqcf

F such that cond.V / is bounded above by a constant that is
independent of N .

3.2 Spectral Properties of Lqcf
F in U 1;2

In our analysis below, particularly in Sects. 6.1 and 6.2, we will see that the
preconditionerLqcl

F DAFL is a promising candidate for the efficient solution of the
QCF system. The operator L1=2 can be understood as a basis transformation to an
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orthonormal basis in U 1;2. Hence, it will be useful to study the spectral properties
of Lqcf

F in that space. The relevant (generalized) eigenvalue problem is

L
qcf
F v D �Lv; v 2 U ; (18)

which can, equivalently, be written as

L�1Lqcf
F v D �v; v 2 U ; (19)

or as
L�1=2Lqcf

F L
�1=2w D �w; w 2 U ; (20)

with the basis transform w D L1=2v, in either case reducing it to a standard
eigenvalue problem in `2� . SinceL andL1=2 commute, Lemma 2 immediately yields
the following result.

Lemma 5. For all N � 4; 1�K �N �2 the operator L�1Lqcf
F is diagonalizable

and its spectrum is identical to the spectrum of L�1Lqnl
F .

We gave a proof in [12] of the following lemma, which completely characterizes
the spectrum of L�1Lqnl

F , and thereby also the spectrum of L�1Lqcf
F . We denote the

spectrum of L�1Lqnl
F (and L�1Lqcf

F ) by f�qnl
j W j D 1; : : : ;2N �1g.

Lemma 6. Let K �N �2 and AF > 0, then the (unordered) spectrum of L�1Lqnl
F

(that is, the U 1;2-spectrum) is given by

�
qnl
j D

(
AF �4�002F sin2

�
j

4KC4
�
; j D 1; : : : ;2KC1;

AF ; j D 2KC2; : : : ;2N �1:

In particular, if �002F � 0; then

maxj �
qnl
j

minj �
qnl
j

D 1� 4�00
2F

AF
sin2

�
.2KC1/
4KC4

�
D �00

F

AF
C 4�00

2F

AF
sin2

�


4KC4
�

D �00
F

AF
CO.K�2/:

We conclude this study by stating a result on the condition number of the matrix
of eigenvectors for the eigenvalue problem (20). Letting QV be an orthogonal matrix
of eigenvectors of L�1=2Lqnl

F L
�1=2 and Q� the corresponding diagonal matrix, then

Lemma 2 yields

L�1=2Lqcf
F L

�1=2 D L�1
	
L�1=2Lqnl

F L
�1=2
L

D . QV TL/�1 Q�. QV TL/:

Clearly, cond. QV TL/DO.N 2/, which gives the following result.

Lemma 7. If AF > 0; then there exists a matrix eW of eigenvectors for the
preconditioned force-based QC operator L�1=2Lqcf

F L
�1=2, such that cond.eW / D

O.N 2/ as N ! 1.
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4 Linear Stationary Iterative Methods

In this section, we investigate linear stationary iterative methods for solving the
linearized QCF (14). These are iterations of the form

P
�
u.n/�u.n�1/�D ˛r .n�1/; (21)

where P is a nonsingular preconditioner, the step size parameter ˛ > 0 is constant
(that is, stationary), and the residual is defined as

r .n/ WD f �Lqcf
F u

.n/:

The iteration error
e.n/ WD uqcf �u.n/

satisfies the recursion
Pe.n/ D �

P �˛Lqcf
F

�
e.n�1/;

or equivalently,

e.n/ D �
I �˛P�1Lqcf

F

�
e.n�1/ DWGe.n�1/; (22)

where the operator G D I �˛P�1Lqcf
F W U ! U is called the iteration matrix. By

iterating (22), we obtain that

e.n/ D �
I �˛P�1Lqcf

F

�n
e.0/ DGne.0/: (23)

Before we investigate various preconditioners, we briefly review the classical
theory of linear stationary iterative methods [29]. We see from (23) that the iterative
method (21) converges for every initial guess u.0/ 2 U if and only if Gn ! 0 as
n! 1: For a given norm kvk, for v 2 U ; we can see from (23) that the reduction
in the error after n iterations is bounded above by

kGnk D sup
e.0/2U

ke.n/k
ke.0/k :

It can be shown [29] that the convergence of the iteration for every initial guess
u.0/ 2 U is equivalent to the condition �.G/ < 1; where �.G/ is the spectral radius
of G,

�.G/D maxfj�i j W �i is an eigenvalue of Gg :
In fact, the Spectral Radius Theorem [29] states that

lim
n!1kGnk1=n D �.G/

for any vector norm on U : However, if �.G/ < 1 and kGk � 1; the Spectral
Radius Theorem does not give any information about how large n must be to obtain
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kGnk � 1: On the other hand, if �.G/ < 1; then there exists a norm k � k such that
kGk < 1, so that G itself is a contraction [17]. In this case, we have the stronger
contraction property that

ke.n/k � kGkke.n�1/k � kGknke.0/k:
In the remainder of this section, we will analyze the norm of the iteration matrix,

kGk; for several preconditionersP; using appropriate norms in each case.

5 The Richardson Iteration (P D I )

The simplest example of a linear iterative method is the Richardson iteration, where
P D I . If follows from Lemma 4 that there exists a similarity transform S such that

L
qcf
F D S�1�qnlS; (24)

where cond.S/�C (where C is independent ofN ), and�qnl is the diagonal matrix
of U 0;2-eigenvalues .�qnl

j /
2N�1
jD1 of Lqcf

F . As an immediate consequence, we obtain
the identity

Gid.˛/D I �˛Lqcf
F D S�1

�
I �˛�qnl�S;

which yields

kGid.˛/k`2
�

� cond.S/kI �˛�qnlk`2
�

� C max
jD1;:::;2N�1

ˇ̌
1�˛�qnl

j

ˇ̌
: (25)

If AF > 0, then it follows from Proposition 2 that �qnl
j > 0 for all j , and hence that

the iteration matrix Gid.˛/ WD I �˛Lqcf
F is a contraction in the k � k`2

�
norm if and

only if 0 < ˛ < ˛id
max WD 2=�

qnl
2N�1: It follows from Lemma 3 that ˛id

max � .2�2/=�00F :
We can minimize the contraction constant for Gid.˛/ in the kvkST S norm by

choosing ˛ D ˛id
opt WD 2=.�

qnl
1 C�

qnl
2N�1/; and in this case we obtain from Lemma 3

that
��Gid

�
˛id

opt

���
`2

�
� C

�
qnl
2N�1��qnl

1

�
qnl
2N�1C�

qnl
1

� C

�
1� 2AF �

2

�00F

�
:

It thus follows that the contraction constant for Gid.˛/ in the k � k`2
�

norm is only

of the order 1� O.�2/; even with an optimal choice of ˛: This is the same generic
behavior that is typically observed for Richardson iterations for discretized second-
order elliptic differential operators.
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5.1 Numerical Example for the Richardson Iteration

In Fig. 1, we plot the error in the Richardson iteration against the iteration number.
As a typical example, we use the right-hand side

f .x/D h.x/cos.3�x/; where h.x/D
(
1; x � 0;

�1; x < 0;
(26)

which is smooth in the continuum region but has a discontinuity in the atomistic
region. We choose �00F D 1; AF D 0:5; and the optimal ˛ D ˛id

opt discussed above

(we note that Gid.˛
id
opt/ depends only on AF =�00F and N; but e.0/ depends on AF

and �00F independently) . We observe initially a much faster convergence rate than
the one predicted because the initial residual for (26) has a large component in the
eigenspaces corresponding to the intermediate eigenvalues �qnl

j for 1 < j < 2N �1:
However, after a few iterations the convergence behavior approximates the predicted
rate.

Fig. 1 Normalized `2
�-error of successive Richardson iterations for the linear QCF system with

N D 200;K D 8; 32, 
00

F D 1; AF D 0:5; optimal ˛D ˛id
opt; right-hand side (26), and starting

guess u.0/ D 0
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6 Preconditioning with QCL (P DL
qcl
F D AFL)

We have seen in Sect. 5 that the Richardson iteration with the trivial preconditioner
P D I converges slowly, and with a contraction rate of the order 1�O.�2/. The
goal of a (quasi-)optimal preconditioner for large systems is to obtain a performance
that is independent of the system size. We will show in the present section that the
preconditionerP DAFL (the system matrix for the QCL method) has this desirable
quality.

Of course, preconditioning with P D AFL comes at the cost of solving a large
linear system at each iteration. However, the QCL operator is a standard elliptic
operator for which efficient solution methods exist. For example, the preconditioner
P DAFL could be replaced by a small number of multigrid iterations, which would
lead to a solver with optimal complexity. Here, we will ignore these additional
complications and assume that P is inverted exactly.

Throughout the present section, the iteration matrix is given by

Gqcl.˛/ WD I �˛.Lqcl
F /
�1Lqcf

F D I �˛.AFL/�1Lqcf
F ; (27)

where ˛ > 0 and AF D �00F C 4�002F > 0. We will investigate whether, if U is
equipped with a suitable topology, Gqcl.˛/ becomes a contraction. To demonstrate
that this is a non-trivial question, we first show that in the spaces U 1;p, 1� p <1,
which are natural choices for elliptic operators, this result does not hold.

Proposition 4. If 2 �K � N=2; �002F ¤ 0; and p 2 Œ1;1/; then for any ˛ > 0 we
have ��Gqcl.˛/

��
U 1;p � N 1=p as N ! 1:

Proof. We have from (3) and q D p=.p�1/ the inequality

��L�1Lqcf
F

��
U 1;p D max

u2Uku0k
`

p
�
D1

���L�1Lqcf
F u

�0��
`

p
�

� 2 max
u;v2U

ku0k
`

p
�
D1; kv0k

`
q
�
D1

D�
L�1Lqcf

F u
�0
;v0
E

D 2 max
u;v2U

ku0k
`

p
�
D1; kv0k

`
q
�
D1

D
L
�
L�1Lqcf

F u
�
;v
E

D 2 max
u;v2U

ku0k
`

p
�
D1; kv0k

`
q
�
D1

˝
L

qcf
F u;v

˛

D 2
��Lqcf

F

��
L.U 1;p ; U �1;p/

;

as well as the reverse inequality

��Lqcf
F

��
L.U 1;p ; U �1;p/

� ��L�1Lqcf
F

��
U 1;p :
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The result now follows from the definition of Gqcl.˛/ in (27), Lemma 1, and the
fact that ˛ > 0 and AF > 0: ut

We will return to an analysis of the QCL preconditioner in the space U 1;2 in
Sect. 6.3, but will first attempt to prove convergence results in alternative norms.

6.1 Analysis of the QCL Preconditioner in U 2;1

We have found in our previous analyses of the QCF method [10, 11] that it has
superior properties in the function spaces U 1;1 and U 2;1. Hence, we will now
investigate whether ˛ can be chosen such that Gqcl.˛/ is a contraction, uniformly
as N ! 1. In [10], we have found that the analysis is easiest with the somewhat
unusual choice U 2;1. Hence we begin by analyzing Gqcl.˛/ in this space.

To begin, we formulate a lemma in which we compute the operator norm of
Gqcl.˛/ explicitly. Its proof is slightly technical and is therefore postponed to
Appendix 7.

Lemma 8. If N � 4, then

��Gqcl.˛/
��

U 2;1 D
ˇ̌
ˇ1�˛�1� 2
00

2F

AF

�ˇ̌
ˇC˛

ˇ̌
ˇ 2


00

2F

AF

ˇ̌
ˇ:

What is remarkable (though not necessarily surprising) about this result is that
the operator norm of Gqcl.˛/ is independent of N and K . This immediately puts us
into a position where we can obtain contraction properties of the iteration matrix
Gqcl.˛/, that are uniform in N and K . It is worth noting, though, that the optimal
contraction rate is not uniform as AF approaches zero; that is, the preconditioner
does not give uniform efficiency as the system approaches its stability limit.

Theorem 3. Suppose that N � 4, AF > 0; and �002F � 0, and define

˛
qcl;2;1
opt WD AF

AF C2j�002F j D 2AF

�00F CAF
and ˛qcl;2;1

max WD 2AF

�00F
:

Then Gqcl.˛/ is a contraction of U 2;1 if and only if 0 < ˛ < ˛qcl;2;1
max , and for any

such choice the contraction rate is independent of N and K . The optimal choice is
˛ D ˛

qcl;2;1
opt , which gives the contraction rate

��Gqcl
�
˛

qcl;2;1
opt

���
U 2;1 D

1�AF

�00

F

1CAF

�00

F

< 1:

Proof. Note that ˛qcl;2;1
opt D 1=

�
1� 2
00

2F

AF

�
. Hence, if we assume, first, that 0 < ˛ �

˛
qcl;2;1
opt ; then
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kGqcl.˛/kU 2;1 D 1�˛�1�2
00

2F

AF

��2˛ 
00

2F

AF
D 1�˛ DWm1.˛/:

The optimal choice is clearly ˛ D ˛
qcl;2;1
opt which gives the contraction rate

��Gqcl
�
˛

qcl;2;1
opt

���
U 2;1 D ˛

qcl;2;1
opt

ˇ̌
ˇ
2�002F
AF

ˇ̌
ˇD 2j�002F j

�00F C2�002F
D

1�AF

�00

F

1CAF

�00

F

:

Alternatively, if ˛ � ˛
qcl;2;1
opt ; then

��Gqcl.˛/
��

U 2;1 D ˛
�
1� 4
00

2F

AF

��1D ˛
�00F
AF

�1DWm2.˛/:

This value is strictly increasing with ˛, hence the optimal choice is again ˛ D
˛

qcl;2;1
opt .

Moreover, we have m2.˛/ < 1 if and only if

˛ <
2AF

�00F
D ˛qcl;2;1

max :

Since, for ˛ D ˛
qcl;2;1
opt we have m1.˛/ D m2.˛/ < 1; it follows that ˛qcl;2;1

max >

˛
qcl;2;1
opt (as a matter of fact, the condition ˛qcl;2;1

max > ˛
qcl;2;1
opt is equivalent to AF >

0). In conclusion, we have shown that kGqcl.˛/kU 2;1 is independent of N and K

and that it is strictly less than one if and only if ˛ < ˛qcl;2;1
max , with optimal value

˛ D ˛
qcl;2;1
opt . ut

As an immediate corollary, we obtain the following general convergence result.

Corollary 1. Suppose that N � 4, AF > 0; �002F � 0, and suppose that k � kX is a
norm defined on U such that

kukX � CkukU 2;1 8u 2 U :

Moreover, suppose that 0 < ˛ < ˛qcl;2;1
max . Then, for any u 2 U ,

��Gqcl.˛/
nu
��
X

� OqnCkukU 2;1 ! 0 as n! 1;

where Oq WD kGqcl.˛/kU 2;1 < 1.
In particular, the convergence is uniform among allN ,K and all possible initial

values u 2 U for which a uniform bound on kukU 2;1 holds.

Proof. We simply note that, according to Theorem 3, for 0 < ˛ < ˛qcl;2;1
max , we have

��Gqcl.˛/
n
��

U 2;1 � Oqn;
where Oq WD kGqcl.˛/kU 2;1 <1 is a number that is independent ofN andK . Hence,
we have
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��Gqcl.˛/
nu
��
X

� C
��Gqcl.˛/

nu
��

U 2;1 � C OqnkukU 2;1 : ut
Remark 2. Although we have seen in Theorem 3 and Corollary 1 that the linear
stationary method with preconditioner AFL and with sufficiently small step size ˛
is convergent, this convergence may still be quite slow if the initial data is “rough.”
Particularly in the context of defects, we may, for example, be interested in the
convergence properties of this iteration when the initial residual is small or moderate
in U 1;p , for some p 2 Œ1;1�, but possibly of order O.N/ in the U 2;1-norm. We
can see from the following Poincaré and inverse inequalities

kukU 1;1 � 1

2
kukU 2;1 and kukU 2;1 � 2N kukU 1;1 for all u 2 U I

that the application of Corollary 1 to the case X D U 1;1 gives the estimate
��Gqcl.˛/

nu
��

U 1;1 � OqnN kukU 1;1 for all u 2 U :

Similarly, with X D U 1;2, we obtain
��Gqcl.˛/

nu
��

U 1;2 � OqnN 3=2kukU 1;2 for all u 2 U : (28)

We have seen in Proposition 4 that a direct convergence analysis in U 1;p, p<1,
may be difficult with analytical methods, hence we focus in the next section on the
case U 1;1.

6.2 Analysis of the QCL Preconditioner in U 1;1

As before, we first compute the operator norm of the iteration matrix explicitly. The
proof of the following lemma is again postponed to the Appendix 7.

Lemma 9. If K � 3; N � max.9;KC3/, and �002F � 0, then

��Gqcl.˛/
��

U 1;1 D
8
<

:

ˇ̌
1�˛ˇ̌C˛4ˇ̌
00

2F

AF

ˇ̌
for 0� ˛ � ˛

qcl;1;1
opt ;

ˇ̌
1�˛�1�2
00

2F

AF

�ˇ̌C˛.6C2��4�K/ˇ̌
00

2F

AF

ˇ̌
for ˛qcl;1;1

opt � ˛;

where

˛
qcl;1;1
opt WD

h
1C .2C ��2�K/ˇ̌
00

2F

AF

ˇ̌i�1

satisfies ˛qcl;2;1
opt � ˛

qcl;1;1
opt � 1.

Again we note that the operator norm is independent, but now up to terms of
order O(�K), of the system size.

Theorem 4. Suppose that K � 3; N � max.9;K C 3/, and �002F < 0, then the
following statements are true:
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(i) If �00F C 8�002F � 0; then Gqcl.˛/ is not a contraction of U 1;1, for any value
of ˛.

(ii) If �00F C 8�002F > 0; then Gqcl.˛/ is a contraction for sufficiently small ˛. More
precisely, setting

˛qcl;1;1
max WD 2AF

AF C .8C2��4�K/j�002F j ;

we have that Gqcl.˛/ is a contraction of U 1;1 if and only if 0 < ˛ < ˛qcl;1;1
max .

The operator norm kGqcl.˛/kU 1;1 is minimized by choosing ˛ D ˛
qcl;1;1
opt (cf.

Lemma 9) and in this case

��Gqcl
�
˛

qcl;1;1
opt

���
U 1;1 D 1� �00F C8�002F

�00F C .2� �C2�K/�002F
< 1:

Proof. Suppose, first, that 0 < ˛ � ˛
qcl;1;1
opt . Since ˛qcl;1;1

opt � 1 it follows that

��Gqcl.˛/
��

U 1;1 D 1�˛�
00
F C8�002F
AF

;

and hence kGqcl.˛/kU 1;1 < 1 if and only if �00F C 8�002F > 0. In that case

kGqcl.˛/kU 1;1 is strictly decreasing in .0;˛qcl;1;1
opt �.

Since ˛qcl;1;1
opt � ˛

qcl;2;1
opt D .1� 2
00

2F

AF
/�1 we can see that kGqcl.˛/kU 1;1 is

always strictly increasing in Œ˛qcl;1;1
opt ;C1/ and hence if �00F C8�002F > 0, then ˛ D

˛
qcl;1;1
opt minimizes the operator norm kGqcl.˛/kU 1;1 . Moreover, straightforward

computations show that ˛qcl;1;1
max > ˛

qcl;1;1
opt and that kGqcl.˛/kU 1;1 < 1 if and only

if 0 < ˛ < ˛qcl;1;1
max .

We remark that the optimal value of ˛ in U 1;1, that is ˛ D ˛
qcl;1;1
opt , is not

the same as the optimal value, ˛qcl;2;1
opt ; in U 2;1. However, it is easy to see that

˛
qcl;1;1
opt D ˛

qcl;2;1
opt CO.�K/, and hence, even though ˛qcl;2;1

opt is not optimal in

U 1;1 it is still close to the optimal value. On the other hand, ˛qcl;1;1
max and ˛qcl;2;1

max

are not close, since, if 4�K�2� < 1; then

˛qcl;1;1
max � 2AF

�00F C3j�002F j <
2AF

�00F
D ˛qcl;2;1

max : ut

In summary, we have seen that the contraction property of Gqcl.˛/ in U 1;1 is
significantly more complicated than in U 2;1; and that, in fact, Gqcl.˛/ is not a
contraction for all macroscopic strains F up to the critical strain F�.
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6.3 Analysis of the QCL Preconditioner in U 1;2

Even though we were able to prove uniform contraction properties for the QCL-
preconditioned iterative method in U 2;1, we have argued above that these are not
entirely satisfactory in the presence of irregular solutions containing defects. Hence
we analyzed the iteration matrix Gqcl.˛/D I �˛.AFL/�1Lqcf

F in U 1;1, but there
we showed that it is not a contraction up to the critical load F�. To conclude our
results for the QCL preconditioner, we present a discussion of Gqcl.˛/ in the space
U 1;2:

We begin by noting that it follows from (22) that

P 1=2e.n/ D P 1=2Gqcl.˛/e
.n�1/ D P 1=2

�
I �˛P�1Lqcf

F

�
P�1=2

�
P 1=2e.n�1/

�

D
�
I �˛P�1=2Lqcf

F P
�1=2��P 1=2e.n�1/

�
DW eGqcl.˛/

�
P 1=2e.n�1/

�
:

Since kP 1=2vk`2
�

DA
1=2
F kvkU 1;2 for v 2 U , it follows thatGqcl.˛/ is a contraction

in U 1;2 if and only if eGqcl.˛/ is a contraction in `2� . Unfortunately, we have shown
in Proposition 4 that kGqcl.˛/kU 1;2 �N 1=2 as N ! 1. Hence, we will follow the
idea used in Sect. 5 and try to find an alternative norm with respect to which eGqcl.˛/

is a contraction.
From Lemma 5 we deduce that there exists a similarity transform QS such that

cond. QS/� N 2, and such that

L�1=2Lqcf
F L

�1=2 D QS�1e�qnl QS;

where e�qnl is the diagonal matrix of U 1;2-eigenvalues .�qnl
j /

2N�1
jD1 of Lqnl

F . As an
immediate consequence we obtain

eGqcl.˛/D QS�1�I � ˛
AF

e�qnl
� QS:

Proceeding as in Sect. 5, we would obtain that keGqcl.˛/k`2
�

� O.N 2/. Instead, we
observe that
��Gqcl.˛/u

�� QST QS D �� QSeGqcl.˛/u
��
`2

�
D ��.I � ˛

AF

e�qnl/ QSu��
`2

�

� ��I � ˛
AF

e�qnl
��
`2

�
k QSuk`2

�
D max
jD1;:::;2N�1

ˇ̌
1� ˛

AF
�

qnl
j

ˇ̌kuk QST QS ;

that is, ��eGqcl.˛/
�� QST QS � max

jD1;:::;2N�1
ˇ̌
1� ˛

AF
�

qnl
j

ˇ̌
: (29)

Thus, we can conclude that eGqcl.˛/ is a contraction in the k �k QST QS -norm if and only

if 0 < ˛ < ˛qcl;1;2
max WD 2AF =�

qnl
2N�1. Moreover, we obtain the error bound

ke.n/kU 1;2 � cond. QS/ Qqnke.0/kU 1;2 �N 2 Qqnke.0/kU 1;2 ;
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where Qq WD ��eGqcl.˛/
�� QST QS . This is slightly worse in fact, than (28), however, we

note that this large prefactor cannot be seen in the following numerical experiment.
Moreover, optimizing the contraction rate with respect to ˛ leads to the choice

˛
qcl;1;2
opt WD 2AF =.�

qnl
1 C�

qnl
2N�1/, and in this case we obtain from Lemma 6 that

Qq D Qqopt WD ��eGqcl
�
˛

qcl;1;2
opt

��� QST QS D �
qnl
2N�1��qnl

1

�
qnl
2N�1C�

qnl
1

�
1� AF


00

F

1C AF


00

F

;

where the upper bound is sharp in the limit K ! 1. It is particularly interesting to
note that the contraction rate obtained here is precisely the same as the one in U 2;1
(cf. Theorem 3). Moreover, it can be easily seen from Lemma 6 that ˛qcl;1;2

opt !
˛

qcl;2;1
opt as K ! 1, which is the optimal stepsize according to Theorem 3. We

further have that ˛qcl;1;2
max ! ˛

qcl;2;1
max as K ! 1:

6.4 Numerical Example for QCL-Preconditioning

We now apply the QCL-preconditioned stationary iterative method to the QCF
system with right-hand side (26), �00F D 1; AF D 0:2, and the optimal value

˛ D ˛
qcl;2;1
opt (we note that Gid.˛

qcl;2;1
opt / depends only on AF =�00F and N; but e.0/

depends on AF and �00F independently). The error for successive iterations in the
U 1;2, U 1;1 and U 2;1-norms are displayed in Fig. 2. Even though our theory, in
this case, predicts a perfect contractive behavior only in U 2;1 and (partially) in
U 1;2, we nevertheless observe perfect agreement with the optimal predicted rate
also in the U 1;1-norms. As a matter of fact, the parameters are chosen so that case
(1) of Theorem 4 holds, that is, Gqcl.˛/ is not a contraction of U 1;1. A possible
explanation why we still observe this perfect asymptotic behavior is that the norm of
Gqcl.˛/ is attained in a subspace that is never entered in this iterative process. This
is also supported by the fact that the exact solution is uniformly bounded in U 2;1
as N;K ! 1, which is a simple consequence of Proposition 3.

7 Preconditioning with QCE (P DL
qce
F ): Ghost-Force Correction

We have shown in [5, 12] that the popular ghost force correction method (GFC)
is equivalent to preconditioning the QCF equilibrium equations by the QCE
equilibrium equations. The ghost force correction method in a quasi-static loading
can thus be reduced to the question whether the iteration matrix

Gqce WD I � .Lqce
F /�1Lqcf

F
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Fig. 2 Error of the QCL-preconditioned linear stationary iterative method for the QCF system
withN D 800, K D 32, 
00

F D 1; AF D 0:2, optimal value ˛D ˛qcl;2;1
opt ; and right-hand side

(26). In this case, the iteration matrix Gqcl.˛/ is not a contraction of U 1;1. Even though our
theory predicts a perfect contractive behavior only in U 2;1, we observe perfect agreement with
the optimal predicted rate also in the U 1;2 and U 1;1-norms

is a contraction. Due to the typical usage of the preconditionerLqce
F in this case, we

do not consider a step size ˛ in this section. The purpose of the present section is (1)
to investigate whether there exist function spaces in whichGqce is a contraction; and
(2) to identify the range of the macroscopic strains F where Gqce is a contraction.

We begin by recalling the fundamental stability result for the Lqce
F operator,

Theorem 1:
inf
u2Uku0k

`2
�
D1

hLqce
F u;ui D AF C�K�

00
2F ;

where �K � �� CO.e�cK/ with �� 	 0:6595. This result shows that the GFC
iteration must necessarily run into instabilities before the deformation reaches the
critical strain F �c . This is made precise in the following corollary which states
that there is no norm with respect to which Gqce is a contraction up to the critical
strain F�.

Corollary 2. Fix N and K , and let k � kX be an arbitrary norm on the space U ,
then, upon understandingGqce as dependent on �00F and �002F , we have

kGqcekX ! C1 as AF C�K�
00
2F ! 0:

Despite this negative result, we may still be interested in the question of
whether the GFC iteration is a contraction in “very stable regimes,” that is, for
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macroscopic strains which are far away from the critical strain F�. Naturally, we
are particularly interested in the behavior as N ! 1, that is, we will investigate in
which function spaces the operator norm of Gqce remains bounded away from one

asN ! 1. Theorem 2 on the unboundedness of Lqcf
F immediately provides us with

the following negative answer.

Proposition 5. If 2�K �N=2, �002F ¤ 0, and AF C�K�
00
2F > 0, then

kGqcekU 1;2 �N 1=2; as N ! 1:

Proof. It is an easy exercise to show that, if AF C�K�
00
2F > 0, then the U 1;2-norm

is equivalent to the norm induced by Lqce
F , that is,

C�1kukU 1;2 � kukLqce
F

� CkukU 1;2 :

Hence, we have kGqcekU 1;2 	 kGqcekLqce
F

and by the same argument as in the proof
of Proposition 4, and using again the uniform norm-equivalence, we can deduce that

��Gqce

��
U 1;2 	 ��Lqcf

F

��
L.U 1;2; U �1;2/

˙1�N 1=2; as N ! 1: ut

Since the operator .Lqce
F /�1Lqcf

F is more complicated than that of .AFL/�1Lqcf
F ,

which we analyzed in the previous section, we continue to investigate the con-
traction properties of Gqce in various different norms in numerical experiments. In
Fig. 3, we plot the operator norm of Gqce, in the function spaces

U k;p ; k D 0;1;2; p D 1;2;1;

against the system size N (see Appendix 7 for a description of how we compute
kGqcekU k;p ). This experiment is performed for AF =�00F D 0:8 which is at some
distance from the singularity of Lqce

F (we note that Gqce depends only on AF =�00F
and N since both .�00F /�1L

qcf
F and .�00F /�1L

qce
F depend only on AF =�00F and N ).

The experiments suggests clearly that kGqcekU k;p ! 1 as N ! 1 for all norms
except for U 1;1 and U 2;1.

Hence, in a second experiment, we investigate how kGqcekU 1;1 and kGqcekU 2;1

behave, for fixed N and K , as AF C�K�
00
2F approaches zero. The results of this

experiment, which are displayed in Fig. 4, confirm the prediction of Corollary 2
that kGqcekU k;p ! 1 as AF C�K�

00
2F approaches zero. Indeed, they show that

kGqcekU k;p > 1 already much earlier, namely around a strain F where AF 	 0:52

and AF C�K�
00
2F 	 0:44.

Our conclusion based on these analytical results and numerical experiments is
that the GFC method is not universally reliable near the limit strain F�; that is,
under conditions near the formation or movement of a defect it can fail to converge
to a stable solution of the QCF equilibrium equations as the quasi-static loading
step tends to zero or the number of GFC iterations tends to infinity. Even though
the simple model problem that we investigated here cannot, of course, provide a
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Fig. 3 Graphs of the operator norm kGqcekU k;p , k D 0;1;2, p D 1;2;1, plotted against the

number of atoms,N , with atomistic region sizeKDdpNe�1, andAF =

00

F D 0:8. (The graph
for the U 1;p-norms, p D 1;1, are only estimates up to a factor of 1=2; cf. Appendix 7.) The
graphs clearly indicate that kGqcekU k;p !1 as N !1 in all spaces except for U 1;1 and
U 2;1

definite statement, it shows at the very least that further investigations for more
realistic model problems are required.

Conclusion

We proposed and studied linear stationary iterative solution methods for the QCF
method with the goal of identifying iterative schemes that are efficient and reliable
for all applied loads. We showed that, if the local QC operator is taken as the
preconditioner, then the iteration is guaranteed to converge to the solution of the
QCF system, up to the critical strain. What is interesting is that the choice of
function space plays a crucial role in the efficiency of the iterative method. In U 2;1,
the convergence is always uniform inN andK , however, in U 1;1 this is only true if
the macroscopic strain is at some distance from the critical strain. This indicates that,
in the presence of defects (that is, non-smooth solutions), the efficiency of a QCL-
preconditioned method may be reduced. Further investigations for more realistic
model problems are required to shed light on this issue.

We also showed that the popular GFC iteration must necessarily run into insta-
bilities before the deformation reaches the critical strain F �c . Even for macroscopic
strains that are far lower than the critical strain F�; we showed that kGqcekU 1;2
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� N 1=2: We then gave numerical experiments that suggest that kGqcekU k;p ! 1
as N ! 1 for all tested norms except for U 1;1 and U 2;1:

The results presented in this paper demonstrate the challenge for the development
of reliable and efficient iterative methods for force-based approximation methods.
Further analysis and numerical experiments for two and three dimensional problems
are needed to more fully assess the implications of the results in this paper for
realistic materials applications.
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Fig. 4 Graphs of the operator norm kGqcekU k;p , .k;p/ 2 f.1;1/; .2;1/g, for fixed N D
256;K D 15, 
00

F D 1, plotted against AF . For the case U 1;1 only estimates are available
and upper and lower bounds are shown instead (cf. Appendix 7). The graphs confirm the result of
Corollary 2 that kGqcekU k;p !1 as AF C�K


00

2F ! 0. Moreover, they clearly indicate that
kGqcekU k;p > 1 already for strains F in the region AF � 0:5, which are much lower than the
critical strain at which Lqce

F becomes singular
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Appendix

Proof of Theorem 1

The purpose of this appendix is to prove the sharp stability result for the operator
L

qce
F , formulated in Theorem 1. Using Formula (23) in [9] we obtain the following

representation of Lqce
F ,

˝
L

qce
F u;u

˛D
( �K�2X

`D�NC1
�AF ju0`j2C

NX

`DKC3
�AF ju0`j2

)

C
(

K�1X

`D�KC2
�
�
AF ju0`j2� �2�002F ju00` j2

�)

C �
n
.AF ��002F /.ju0�KC1j2Cju0K j2/CAF .ju0�K j2Cju0KC1j2/

C .AF C�002F /.ju0�K�1j2Cju0KC2j2/
� 1
2
�2�002F .ju00�K j2Cju00�K�1j2Cju00K j2Cju00KC1j2/

o
:

(30)

If �002F < 0; then we can see from this decomposition that there is a loss of
stability at the interaction between atoms �K � 2 and �K � 1 as well as between
atoms K C 1 and K C 2. It is therefore natural to test this expression with a
displacement Ou defined by

Ou0` D

8
<̂

:̂

1; `D �K�1;
�1; `DKC2;

0; otherwise:

From (30), we easily obtain
˝
L

qce
F Ou; Ou˛D AF C 1

2
�002F :

In particular, we see that, if AF C 1
2
�002F < 0; then Lqce

F is indefinite. On the other
hand, it was shown in [8] thatLqce

F is positive definite providedAF C�002F >0. (As a
matter of fact, the analysis in [8] is for periodic boundary conditions, however, since
the Dirichlet displacement space is contained in the periodic displacement space the
result is also valid for the present case.)

Thus, we have shown that

inf
u2Uku0k

`2
�
D1

˝
L

qce
F u;u

˛D AF C��002F ; where 1
2

� �� 1:

To conclude the proof of Theorem 1, we need to show that � depends only on K
and that the stated asymptotic result holds.

From (30) it follows that Lqce
F can be written in the form
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˝
L

qce
F u;u

˛D .u0/TH u0;

where we identify u0 with the vector u0 D .u0
`
/N
`D�NC1 and where H 2 R

2N�2N .
Writing H D �00FH1 C �002FH2; we can see that H1 D Id and that H2 has the
entries

H2 D

0

BBBBBBBBBBB@

: : :
: : :

: : :

1 2 1
1 2 1
1 3=2 1=2
1=2 3 1=2

1=2 9=2 0
0 4 0
0 4 0

: : :
: : :

: : :

1

CCCCCCCCCCCA

:

Here, the row with entries Œ1; 3=2; 1=2� denotes theKth row (in the coordinatesu0
k

).
This form can be verified, for example, by appealing to (30). Let �.A/ denote the
spectrum of a matrix A. Since, by assumption, �002F � 0, the smallest eigenvalue of
H is given by

min�.H /D �00F C�002F max�.H2/;

that is, we need to compute the largest eigenvalue N� of H2. Since H2ek D 4ek for
kDKC3; KC4; : : : and forK D �K�2; �K�3; : : : , and since eigenvectors are
orthogonal, we conclude that all other eigenvectors depend only on the submatrix
describing the atomistic region and the interface. In particular, N� depends only on
K but not on N . This proves the claim of Theorem 1 that �K depends indeed only
on K .

We thus consider the f�K�1; : : : ;KC2g-submatrix NH2, which has the form

NH2 D

0

BBBBBBBBBB@

9=2 1=2
1=2 3 1=2

1=2 3=2 1
1 2 1

: : :
: : :

: : :

1 2 1
1 3=2 1=2
1=2 3 1=2

1=2 9=2

1

CCCCCCCCCCA

:

Letting NH2 D � , then for `D �KC2; : : : ;K�1,

 `�1C2 `C `C1 D � `;

and hence,  has the general form

 ` D a´`Cb´�`; `D �KC1; : : : ;K;
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leaving ` undefined for ` 2 f�K;�K�1;KC1;KC2g for now, and where ´;1=´
are the two roots of the polynomial

´2C .2��/´C1D 0:

In particular, we have

´D .1
2
��1/C

q
.1
2
��1/2�1 > 1: (31)

To determine the remaining degrees of freedom, we could now insert this general
form into the eigenvalue equation and attempt to solve the resulting problem. This
leads to a complicated system which we will try to simplify.

We first note that, for any eigenvector  , the vector . K�`/ is also an eigenvec-
tor, and hence we can assume without loss of generality that  is skew-symmetric
about ` D 1=2. This implies that a D �b. Since the scaling is irrelevant for the
eigenvalue problem, we therefore make the ansatz  ` D ´`�´�`. Next, we notice
that for K sufficiently large the term ´�` is exponentially small and therefore does
not contribute to the eigenvalue equation near the right interface. We may safely
ignore it if we are only interested in the asymptotics of the eigenvalue N� asK ! 1.
Thus, letting O ` D ´`, `D 1; : : : ;K and O ` unknown, `DKC1;KC2, we obtain
the system

´K�1C 3
2
´K C 1

2
O KC1 D O�´K ;

1
2
´K C3 O KC1C 1

2
O KC2 D O� O KC1;

1
2

O KC1C 9
2

O KC2 D O� O KC2:
The free parameters O KC1; O KC2 can be easily determined from the first two
equations. From the final equation we can then compute O�. Upon recalling from
(31) that Ó can be expressed in terms of O�, and conversely that O�D . Ó2C1/= ÓC2,
we obtain a polynomial equation of degree five for Ó ,

q. Ó/ WD 4 Ó5�12 Ó4C9 Ó3�3 Ó2�4 Ó C2D 0:

Mathematica was unable to factorize q symbolically, hence we computed its roots
numerically to twenty digits precision. It turns out that q has three real roots and two
complex roots. The largest real root is at Ó 	 2:206272296which gives the value

O�D Ó2C1

Ó C2	 4:659525505897:

The relative errors that we had previously neglected are in fact of order Ó�2K , and
hence we obtain

�K D ��CO.e�cK/; where �� 	 0:6595 and c 	 1:5826:

This concludes the proof of Theorem 1. ut
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Proofs of Lemmas 8 and 9

In this appendix, we prove two technical lemmas from Sect. 6.1. Throughout, the
iteration matrix Gqcl.˛/ is given by

Gqcl.˛/ WD I �˛.AFL/�1Lqcf
F ;

where ˛ > 0 and AF D �00F C 4�002F > 0. We begin with the proof of Lemma 8,
which is more straightforward.

Proof (Proof of Lemma 8). Using the basic definition of the operator norm, and the
fact that L´D �´00, we obtain
��Gqcl.˛/

��
U 2;1 D max

u2Uku00k`1

�
D1

��.Gqcl.˛/u/
00��
`1

�
D max

u2Uku00k`1

�
D1

���LGqcl.˛/u
��
`1

�
:

We write the operator �LGqcl.˛/D �LC ˛
AF
L

qcf
F as follows:

	�LGqcl.˛/u


`

D
(
u00
`

� ˛
AF

�
AF u

00
`

�
; if ` 2 C ;

u00
`

� ˛
AF

�
�00F u00` C�002F .u00`�1C2u00

`
Cu00

`C1/
�
; if ` 2 A :

(32)
In the continuum region, we simply obtain

	�LGqcl.˛/u


`

D .1�˛/u00` for ` 2 C :

If ` 2 A , we manipulate (32), using the definition of AF D �00F C 4�002F , which
yields

	�LGqcl.˛/u


`

D
h
1� ˛

AF

�
�00F C2�002F

�i
u00` C

h
� ˛
AF
�002F

i
.u00`�1Cu00`C1/

D
h
1�˛�1� 2
00

2F

AF

�i
u00` C

h
�˛ 
00

2F

AF

i
.u00`�1Cu00`C1/:

In summary, we have obtained

	�LGqcl.˛/u


`

D
8
<

:
Œ1�˛�u00

`
; if ` 2 C ;

h
1�˛�1� 2
00

2F

AF

�i
u00
`

C
h

�˛ 
00

2F

AF

i
.u00
`�1Cu00

`C1/ if ` 2 A :

It is now easy to see that

kGqcl.˛/kL.U 2;1; U 2;1/ � max
nˇ̌
1�˛ˇ̌; ˇ̌1�˛�1� 2
00

2F

AF

�ˇ̌C˛
ˇ̌ 2
00

2F

AF

ˇ̌o
:

As a matter of fact, in view of the estimate

ˇ̌
1�˛�1� 2
00

2F

AF

�ˇ̌C˛
ˇ̌ 2
00

2F

AF

ˇ̌� j1�˛j �˛ˇ̌2
00

2F

AF

ˇ̌C˛
ˇ̌ 2
00

2F

AF

ˇ̌D j1�˛j;
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the upper bound can be reduced to

kGqcl.˛/kL.U 2;1; U 2;1/ � ˇ̌
1�˛�1� 2
00

2F

AF

�ˇ̌C˛
2j
00

2F
j

AF
: (33)

To show that the bound is attained, we construct a suitable test function. We
define u 2 U via

u00�1 D u001 D sign
h

�˛ 2
00

2F

AF

i
; u000 D sign

h
1�˛�1� 2
00

2F

AF

�i
;

(note that 0 2 A for any K � 0) and the remaining values of u00
`

in such a way thatPN
`D�NC1u00` D 0. If N � 4; then there exists at least one function u 2 U with

these properties and it attains the bound (33). Thus, the bound in (33) is an equality,
which concludes the proof of the lemma. ut

Before we prove Lemma 9, we recall an explicit representation of L�1Lqcf
F that

was useful in our analysis in [10]. The proof of the following result is completely
analogous to that of [10, Lemma 14] and is therefore sketched only briefly. It is also
convenient for the remainder of the section to define the following atomistic and
continuum regions for the strains:

A 0 D ˚�KC1; : : : ;K


and C 0 D ˚�N C1; : : : ;N
nA 0:

Lemma 10. Let u 2 U and ´D L�1Lqcf
F u, then

´0` D �.u0/`��.u0/C�002F
� Q̨�K.u0/h�K;`� Q̨K.u0/hK;`

�
;

where �.u0/; h˙K 2 R
2N and �.u0/; Q̨˙K.u0/ 2 R are defined as follows:

�.u0/` D
(
�00F u0`C�002F .u0`�1C2u0

`
Cu0

`C1/; ` 2 A 0;
.�00F C4�002F /u0`; ` 2 C 0;

�.u0/D 1

2N

NX

`D�NC1
�.u0/` D �

2
�002F

	
u0KC1�u0K �u0�KC1Cu0�K



;

Q̨�K.u0/D u0�KC1�2u0�K Cu0�K�1; Q̨K.u0/D u0KC2�2u0KC1Cu0K ; and

h˙K;` D
(
1
2
.1� �K/; `D �N C1; : : : ;˙K;
1
2
.�1� �K/; `D ˙KC1; : : : ;N:

Proof. In the notation introduced above, the variational representation of Lqcf
F from

[10, Sec. 3] reads

hLqcf
F u;vi D h�.u0/;v0i C�002F

	 Q̨�K.u0/v�K � Q̨K.u0/vK

 8u;v 2 U :

Using the fact that v˙N D 0 and
P
` v
0
`

D 0, it is easy to see that the discrete delta-
functions appearing in this representation can be rewritten as
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v˙K D hh˙K ;v0i:

Hence, we deduce that the function ´D L�1Lqcf
F is given by

h´0;v0i D hLqcf
F u;vi D ˝

�.u0/C�002F Œ Q̨�K .u0/h�K � Q̨K.u0/hK �;v0i 8v 2 U :

In particular, it follows that

´0 D �.u0/C�002F Œ Q̨�K .u0/h�K � Q̨K.u0/hK �CC;

where C is chosen so that
P
` ´
0
`

D 0. Since h˙K are constructed so thatP
`h˙K;` D 0, we only subtract the mean of �.u0/. Hence, C D ��.u0/, for

which the stated formula is quickly verified. ut
Proof (Proof of Lemma 9). Let u 2 U with ku0k`1

�
� 1. Setting ´DGqcl.˛/u, and

employing Lemma 10, we obtain

´0` D u0`� ˛
AF

h
�`.u

0/��.u0/C�002F . Q̨�K.u0/h�K;`� Q̨K.u0/hK;`/
i

D
h
u0`� ˛

AF
�`.u

0/
i

C˛

00

2F

AF

h
�
2
.u0KC1�u0K �u0�KC1Cu0�K/

� Q̨�K.u0/h�K;`C Q̨K.u0/hK;`
i

WD R`CS`:

We will estimate the terms R` and S` separately.
To estimate the first term, we distinguish whether ` 2 C 0 or ` 2 A 0. A quick

computation shows that R` D .1�˛/u0
`

for ` 2 C 0. On the other hand, for ` 2 A 0
we have

R` D
h
1� ˛

AF
.�00F C2�002F /

i
u0`�˛ 
00

2F

AF
.u0`�1Cu0`C1/

D
h
1�˛�1� 2
00

2F

AF

�i
u0`�˛ 
00

2F

AF
.u0`�1Cu0`C1/; 8` 2 A 0:

Since ku0k`1

�
� 1; we can thus obtain

jR`j �
( j1�˛j; ` 2 C 0;ˇ̌
ˇ1�˛�1� 2
00

2F

AF

�ˇ̌
ˇC˛

ˇ̌
ˇ2


00

2F

AF

ˇ̌
ˇ; ` 2 A 0:

(34)

As a matter of fact, these bounds can be attained for certain `, by choosing suitable
test functions. For example, by choosing u 2 U with u0N D sign.1�˛/ we obtain
RN D j1�˛j, that is, RN attains the bound (34). By choosing u 2 U such that

u00 D u02 D sign
�

� 
00

2F

AF

�
D 1 and u01 D sign

�
1�˛�1� 2
00

2F

AF

��
;

we obtain that R1 attains the bound (34). In both cases one needs to choose the
remaining free u0

`
so that ju0

`
j � 1 and

P
`u
0
`

D 0, which guarantees that such
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functions u 2 U really exist. This can be done under the conditions imposed on
N andK .

To estimate S`; we note that this term depends only on a small number of strains
around the interface. We can therefore expand it in terms of these strains and their
coefficients and then maximize over all possible interface contributions. Thus, we
rewrite S` as follows:

S` D ˛

00

2F

AF

n
u0�K�1Œ�h�K;`�Cu0�K Œ2h�K;`C �

2
�Cu0�KC1Œ�h�K;`� �

2
�

u0K ŒhK;`� �
2
�Cu0KC1Œ�2hK;`C �

2
�Cu0KC2ŒhK;`�

o
:

This expression is maximized by taking u0
`

to be the sign of the respective coefficient

(taking into account also the outer coefficient ˛

00

2F

AF
), which yields

jS`j � ˛
ˇ̌
00

2F

AF

ˇ̌njh�K;`j C j2h�K;`C �
2
j C jh�K;`C �

2
j C jhK;`� �

2
j

C j2hK;`� �
2
j C jhK;`j

o

D ˛
ˇ̌
00

2F

AF

ˇ̌nj4h�K;`C �j C j4hK;`� �j
o
:

The equality of the first and second line holds because the terms ˙ �
2

do not change
the signs of the terms inside the bars. Inserting the values for h˙K;`; we obtain the
bound

jS`j �
(
˛4
ˇ̌
00

2F

AF

ˇ̌
; ` 2 C 0;

˛.4C2��4�K/ˇ̌
00

2F

AF

ˇ̌
; ` 2 A 0;

and we note that this bound is attained if the values for u0
`
, `D �K�1;�K;�KC

1;K;KC1;KC2, are chosen as described above.
Combining the analyses of the terms R` and S`, it follows that

k´0k`1

�
� max

n
j1�˛j C˛4

ˇ̌
00

2F

AF

ˇ̌
;

ˇ̌
1�˛�1� 2
00

2F

AF

�ˇ̌C˛.6C2��4�K/ˇ̌
00

2F

AF

ˇ̌o
:

To see that this bound is attained, we note that, under the condition that K � 3 and
N �KC3, the constructions at the interface to maximize S` and the constructions
to maximize R` do not interfere. Moreover, under the additional condition N �
max.9;KC 3/, sufficiently many free strains u0

`
remain to ensure that

P
`u
0
`

D 0

for a test function u 2 U , ku0k`1

�
D 1, for which both R` and S` attain the stated

bound. That is, we have shown that

��Gqcl.˛/
��

U 1;1 D max
n
j1�˛j C˛4

j
00

2F
j

AF
;

ˇ̌
1�˛�1� 2
00

2F

AF

�ˇ̌C˛.6C2��4�K/ j
00

2F
j

AF

o

DW maxfmC .˛/;mA .˛/g:
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To conclude the proof, we need to evaluate this maximum explicitly. To this end

we first define ˛1 D .1� 2
00

2F

AF

��1
< 1. For 0� ˛ � ˛1, we have

mA .˛/D 1�˛C˛.4C2��4�K/ˇ̌
00

2F

AF

ˇ̌

� 1�˛C˛4
ˇ̌
00

2F

AF

ˇ̌DmC .˛/;

that is, kGqcl.˛/kU 1;1 DmC .˛/. Conversely, for ˛ � 1, we have

mA .˛/D ˛
�
1C .8C2��4�K/ j
00

2F
j

AF

�
�1

D mC .˛/C˛
�
4C2��4�K/ j
00

2F
j

AF

�
�mC .˛/;

that is, kGqcl.˛/kU 1;1 D mA .˛/. Since, in Œ˛1;1�, mC is strictly decreasing and
mA is strictly increasing, there exists a unique ˛2 2 Œ˛1;1� such that mC .˛2/ D
mA .˛2/ and such that the stated formula for kGqcl.˛/kU 1;1 holds. A straightfor-

ward computation yields the value for ˛2 D ˛
qcl;1;1
opt stated in the lemma. ut

Computation of kGqcekU k;p

We have computed kGqcekU k;p for k D 0;2;p D 1;2;1, from the standard
formulas for the operator norm [17, 29] of the matrix Gqce and LGqceL

�1 with
respect to `p� . For k D 1 and p D 2, the norm is also easy to obtain by solving a
generalized eigenvalue problem.

The cases k D 1 and p D 1;1 are more difficult. In these cases, the operator
norm of Gqce in U 1;p can be estimated in terms of the `p� -operator norm of the

conjugate operator bG D I � .bLqce
F /�1bLqcf

F W R2N ! R
2N (see Lemma 6 for an

analogous definition of the conjugate operatorbLqnl
F W R2N ! R

2N ). It is not difficult

to see that kGqcekU 1;p D keGk`p
� ;R

2N
�

for eG D I � .eLqce
F /�1eLqcf

F W R2N� ! R
2N�

where we recall that R2N� D f' 2 R
2N W P`'` D 0g (see Lemma 6 similarly for

an analogous definition of the restricted conjugate operator eLqnl
F W R2N� ! R

2N� ), it
follows from (3) that we have only computed kGqcekU 1;p for p D 1;1 up to a
factor of 1=2:More precisely,

kGqcekU 1;p � kbGk`p
�

� 2kGqcekU 1;p

Finally We note that we can obtain bLqcf
F from the representation given in

Lemma 10 and that bLqce
F can be directly obtained from (15).



Linear Stationary Iterative Methods for Force-Based QCF 367

References

1. P. Bauman, H. B. Dhia, N. Elkhodja, J. Oden, and S. Prudhomme. On the application of
the Arlequin method to the coupling of particle and continuum models. Computational
Mechanics, 42:511–530, 2008.

2. T. Belytschko and S. P. Xiao. A bridging domain method for coupling continua with molecular
dynamics. Computer Methods in Applied Mechanics and Engineering, 193:1645–1669, 2004.
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Analysis of an Averaging Operator
for Atomic-to-Continuum Coupling Methods
by the Arlequin Approach

Serge Prudhomme, Robin Bouclier, Ludovic Chamoin, Hachmi Ben Dhia,
and J. Tinsley Oden

Abstract A new coupling term for blending particle and continuum models with
the Arlequin framework is investigated in this work. The coupling term is based
on an integral operator defined on the overlap region that matches the continuum
and particle solutions in an average sense. The present exposition is essentially
the continuation of a previous work (Bauman et al., On the application of the
Arlequin method to the coupling of particle and continuum models, Computational
Mechanics, 42, 511–530, 2008) in which coupling was performed in terms of an
H 1-type norm. In that case, it was shown that the solution of the coupled problem
was mesh-dependent or, said in another way, that the solution of the continuous
coupled problem was not the intended solution. This new formulation is now
consistent with the problem of interest and is virtually mesh-independent when
considering a particle model consisting of a distribution of heterogeneous bonds.
The mathematical properties of the formulation are studied for a one-dimensional
model of harmonic springs, with varying stiffness parameters, coupled with a linear
elastic bar, whose modulus is determined by classical homogenization. Numerical
examples are presented for one-dimensional and two-dimensional model problems
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e-mail: hachmi.ben-dhia@ecp.fr

B. Engquist et al. (eds.), Numerical Analysis of Multiscale Computations, Lecture Notes
in Computational Science and Engineering 82, DOI 10.1007/978-3-642-21943-6 15,
c� Springer-Verlag Berlin Heidelberg 2012

369

serge@ices.utexas.edu
oden@ices.utexas.edu
bouclier@ices.utexas.edu
chamoin@lmt.ens-cachan.fr
hachmi.ben-dhia@ecp.fr


370 S. Prudhomme et al.

that illustrate the approximation properties of the new coupling term and the effect
of mesh size.

1 Introduction

Development of multiscale methods for the simulation of material responses is an
important research area in which one of the objectives is to combine models so as to
capture only the relevant scales in the prediction of complex phenomena. The goal
in this work is to develop a new multiscale method to predict the static response
of materials that can be described by particle models based on harmonic potentials.
Multiscale modeling is commonly classified into information passing modeling, in
which information computed at small scales is used in large-scale models, such as in
the Heterogeneous Multiscale method [20, 21], and concurrent modeling, in which
two or more models are concurrently used to capture the various scales inherent in a
given physical phenomenon, see e.g. [22, 23]. We are interested here in concurrent
modeling for the simulation of problems that involve both a particle model and a
continuum model. The major difficulty in this case is to consistently blend the two
models so as to provide accurate approximations of the solution to the full particle
model, viewed as the base model but often intractable for large simulation domains.
Several methods have been proposed over the years, such as the quasi-continuum
method [17–19,25,28], the handshake method [14], or the bridging scale approach
[29], to name a few. An alternative approach based on the Arlequin framework
[8, 9, 11–13] has recently been proposed in [5, 10, 26]. The Arlequin framework
involves an overlap region in which the energies of the two models are combined
by a partition of unity and where the two solutions are matched by introducing
Lagrange multipliers. The bridging domain method of Belytschko and Xiao [7]
is in many ways similar to the Arlequin method and was numerically investigated
in [30]. A related methodology has also been proposed in [2,3,24] in which forces,
rather than energies, are blended together. The method proposed in [5] was further
employed to develop an adaptive procedure based on goal-oriented error estimates
(see [4,6,27]) to control the position of the overlap region so as to deliver estimates
of quantities of interest within prescribed tolerances.

Well-posedness of the Arlequin problems for the continuous and finite element
formulations was investigated in detail in [5] in the case of a one-dimensional model
of harmonic springs, with periodically varying stiffness coefficients, coupled with
a linear elastic bar. Couplings of the displacement fields obtained from the particle
and continuum models were defined based on an L2-norm or an H 1-norm. It was
then proved that the continuous formulation and corresponding discretization of
the continuous formulation, by the finite element method for instance, yield well-
posed problems only in the H 1-norm case. However, it was recognized at that time
that the solution of the coupled problem was mesh-dependent in the sense that the
finite element approximation of the continuum model would lock on the particle
solution on the overlap region when elements for the Lagrange multiplier were
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Fig. 1 Solutions of the coupled problem based on the Arlequin framework as proposed in [5] using
either a coarse (left) or fine (right) finite element discretization of the continuum model. “Coarse”
and “fine” here are defined with respect to the equilibrium length between particles. The coupling
term is based on an H1-type norm. One observes that the continuum solution on the overlap
region locks onto the particle solution in the case of the fine mesh for the Lagrange multiplier and
FE solution and thus fails to reflect the large-scale behavior of the displacement field

chosen equal to or smaller than the distance between particles. This issue could
be circumscribed by selecting the mesh size for the Lagrange multiplier to be at
least larger than the size or a multiple of the size of the representative cell defined
to calibrate the parameter(s) of the continuum model, in which case the method
would produce satisfactory results. If elements were set too small for the Lagrange
multiplier, the continuum solution would fail to reproduce the large-scale behavior
of the displacement fields and would pollute the whole solution of the coupled
problem. These effects are illustrated in Fig. 1. We propose here a new formulation
of the coupling term based on an integral operator that matches the continuum and
particle solutions in an average sense. The advantage of this new formulation is that
it yields a mesh-independent displacement field. We show in this paper that this
new Arlequin formulation yields a well-posed coupled problem and illustrate its
efficiency via simple one-dimensional and two-dimensional problems.

The paper is organized as follows: in Sect. 2, we present the particle model
and the continuum model and show how the latter is derived from the former by
simple homogenization. We introduce the averaging operator and describe the new
coupling formulation based on the Arlequin framework in Sect. 3. We show that
the coupled problem is well-posed in Sect. 4 and describe the corresponding finite
element formulation in Sect. 5. One-dimensional and two-dimensional numerical
experiments are presented in Sect. 6 and are followed by conclusions in Sect. 7.
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2 Particle and Continuum Model Problems

2.1 Particle Model

We consider here a system of nC1 particles assembled in a one-dimensional chain
and connected by n covalent bonds modeled in terms of harmonic springs with
stiffness ki > 0 and equilibrium length li , i D 1; : : : ;n. The initial positions of the
particles are given by xi and the system undergoes displacements yi when subjected
to force f applied at xn (see Fig. 2). We also suppose that the particle on the left
end is fixed, i.e. y0 D 0. The potential energy of such a system is given by

Ed .y/D 1

2

nX

iD1
ki .yi �yi�1/2�fyn: (1)

Introducing the vector space W0 D f´ 2 R
nC1 W ´0 D 0g of vectors ´ D

Œ´0;´1; : : : ;´n�
T , the equilibrium state y 2 W0 of such a system is obtained as a

minimizer of the potential energy, i.e.

y D argmin´2W0
Ed .´/: (2)

In other words, the solution w of above minimization problem is a stationary point
of Ed .´/ and satisfies

lim
	!0

1

�
.Ed .yC�´/�Ed .y//D 0; 8´ 2W0:

It follows that Problem (2) can be recast in variational form as

Find y 2W0 such that B.y;´/D F.´/; 8´ 2W0; (3)

where the bilinear form B.�; �/ and linear form F.�/ are defined as:

8
<̂

:̂

B.y;´/D
nX

iD1
ki .yi �yi�1/.´i �´i�1/ ;

F .´/D f ´n:

(4)

In this paper, we are interested in materials in which the stiffness ki may vary
from one bond to the other. Nevertheless we suppose that the distribution of the
bonds are such that the large scales of the material response could be accurately
described by a continuum model over representative volume elements (RVE). For
instance, in the case of periodic distributions of the bond stiffness ki , the repre-
sentative volume element is simply chosen of the same length as one period of the
distribution. More complex distributions, for example random, could also be con-
sidered (see for example [15]) but the size of the RVE would be unknown a priori.
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Fig. 2 System of nC1 particles connected with n harmonic springs
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Fig. 3 Elastic bar of length L with modulus of elasticityE and subjected to traction T

For simplicity in the presentation, we will not present here cases where the energy
potentials involve next-nearest neighbors. This has been partially treated in [16].

2.2 Continuum Model

If one is interested in large-scale features of the response (in the sense that the scale
of those features would be much larger than the representative length-scale of the
particle system, e.g. maxi .li /), a possible approximation of the particle model can be
obtained by employing a linearly elastic continuum model. In this case, the system
of springs is replaced by an elastic bar with modulus E and of length L; see Fig. 3.
Moreover, the bar is subjected to traction T D f=A at the right end, A being the
cross-sectional area of the bar, and is kept fixed at x D 0. Displacement in the bar is
denoted by the field u. The total energy of the system is then given by

Ec D
ˆ L

0

A

2
�.u/�.u/ dx�AT .L/u.L/; (5)

where �.u/ and � denote the stress and strain in the bar. Here the material is
supposed to obey Hooke’s law, � D E�, with E constant. Using � D u0, we have

Ec D
ˆ L

0

AE

2

�
u0
�2
dx�AT .L/u.L/: (6)

As with the spring model, the equilibrium state for the continuum model is found
by minimizing the energy (6). This minimization yields the following problem:

Find u 2 V such that:
ˆ L

0

Eu0v0dx D T .L/v.L/ 8v 2 V; (7)

where V is the space of trial and test functions, i.e. V D fv 2H 1.0;L/ W v.0/D 0g.
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Fig. 4 Homogenization of spring model on a representative cell

2.3 Calibration of Continuum Model

Starting with the original particle model, it is possible to determine a compatible
continuum model by properly calibrating the elastic modulus. Following classical
homogenization approaches, the main idea here is to introduce a representative
volume element, that, if subjected to a given loading, should provide the same global
response at equilibrium, i.e. the same global displacement, when using either the
particle or continuum model.

To illustrate the concept, we consider here the simple case of a representative cell
consisting of a pair of springs with properties .k1; l1/ and .k2; l2/, as shown in Fig. 4.
We assume that the system is held fixed on the left-hand side and is subjected to the
force F to the right, such that the displacement in the first and second springs are
u1 and u2, respectively. Suppose now that we can replace the system of two springs
by a unique spring with properties .K;L/ such that LD l1C l2. If subjected to the
same loading conditions, we would observe the global displacement U D u1Cu2.
From constitutive laws, we also have the relations:

F DKU D k1u1 D k2u2; (8)

so that
F

K
D U D u1Cu2 D F

k1
C F

k2
; (9)
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which implies that:

1

K
D 1

k1
C 1

k2
; i.e. K D k1k2

k1Ck2
: (10)

Finally, replacing the spring model by linear elasticity, we would obtain the
following Young’s modulus:

EADKLD k1k2

k1Ck2
.l1C l2/; (11)

where A is the cross-sectional area of the equivalent bar. For simplicity, we take A
equal to unity.

Remark 1. The above relation can naturally be extended to the case of one RVE
made of N springs. In this case, we would have:

EAD
� NX

jD1
1=kj

��1 NX

iD1
li : (12)

It is then straightforward to show that:

EAD
NX

iD1

� NX

jD1
ki=kj

��1
ki li� min

1�i�N.ki li /
� NX

iD1
1=ki

�� NX

jD1
1=kj

��1
D min
1�i�N.ki li /:

(13)
In the same manner, we have:

EAD
NX

iD1

� NX

jD1
ki=kj

��1
ki li� max

1�i�N.ki li /
� NX

iD1
1=ki

�� NX

jD1
1=kj

��1
D max
1�i�N.ki li /:

(14)
In other words, with AD 1, one gets:

min
1�i�N.ki li / �E � max

1�i�N
.ki li /; (15)

i.e. the value of E is necessarily larger than the minimal value of ki li and smaller
than the maximal value of ki li .

Remark 2. Starting from the relation U D u1Cu2, we can write:

U

L
LD u1

l1
l1C u2

l2
l2: (16)

We recognize in above equation the strains N�D lU=L, �1Du1=l1, �2Du2=l2, which
are constant in each spring. Therefore, we can derive the following relationship:

ˆ
RVE

N�dx D
ˆ

RVE
�dx; (17)
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Fig. 5 Arlequin model that replaces the particle model with a combined particle and spring model

where � D �1 in the first spring and �D �2 in the second spring. This relation shows
that the averaged strain over the representative volume element is the same whether
it is computed from the particle model or the continuum model. This relationship
will motivate our new formulation of the coupling method based on an averaging
operator.

3 Coupling Method with Averaging Operator

We recall that our objective is to develop a coupling method to blend the particle
model with the continuum model in ˝ D .0;L/. We assume that the continuum
model is selected in region ˝c D .0;xb/ while the particle model is chosen in
domain ˝d D .xa;L/ such that ˝ D ˝c

S
˝d and ˝o D ˝c

T
˝d D .xa;xb/,

j˝oj ¤ 0. We will refer to ˝o as the overlap region. We denote by j˝cj, j˝d j, and
j˝oj, the length of domains˝c , ˝d , and ˝o, respectively. In doing so, the particle
model is reduced from nC1 to mC1 particles, supposedly with m
 n.

Remark 3. We assume in this work that there are mo C 1 particles lying in the
overlap region and that there is one particle located at xa and one at xb as shown in
Fig. 5. The restrictive assumption that is made here is that the overlap region exactly
coincides with a given set of complete springs. In other words, the domain˝o is not
allowed to only cover part of a spring. However, the domain˝o can be made of one
or several RVE’s.

3.1 Energy of the Coupled System

The Arlequin method is an energy-based method in which the energy contributions
from two models are blended together via the partition of unity:
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Fig. 6 Plot of different functions used for ˛c and ˛d

˛c.x/C˛d .x/D 1; 8x 2˝;
with

˛c.x/D
(
1; 8x 2˝c n˝o;
0; 8x 2˝d n˝o; ˛d .x/D

(
0; 8x 2˝c n˝o;
1; 8x 2˝d n˝o:

Weight coefficients with respect to each bond are also introduced as:

˛i D 1

li

ˆ xi

xi�1

˛d .x/ dx D 1� 1

li

ˆ xi

xi�1

˛c.x/ dx; i D 1; : : : ;m: (18)

In the overlap region˝o, the coefficient ˛c (and thus ˛d ) can be chosen in different
ways. Some intuitive and apparently attractive candidates are for example, the
constant, linear, or cubic functions, as shown in Fig. 6. For example, the cubic
function can be explicitly written as:

˛c.x/D
�
xb �x
xb �xa

�2�
1C2

.x �xa/

.xb�xa/
�
; 8x 2˝o: (19)

The total energy of the molecular system can now be replaced by:

OE .u;w/D OEc.u/C OEd .w/;
where

OEc.u/D 1

2

ˆ
˝c

˛c.x/E
�
u0
�2
dx;

OEd .w/D 1

2

mX

iD1
˛iki .wi �wi�1/2�f wm;

(20)

with f , once again, being the external force applied at L, i.e. to the particle indexed
by m.
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3.2 Averaging Coupling Operator

The objective being to properly couple the two models, the displacements u and w
need to be matched with respect to some appropriate measure. In order to be able
to compare u and w on ˝o, the displacement vector w needs first to be converted
into a function in H 1.˝o/. A possible approach is to introduce an interpolation
operator˘o WRmoC1 !H 1.˝o/, which associates with each displacement vectorw
(restricted to the particles in˝o) the piecewise linear interpolant˘ow on˝o. Other
interpolation schemes are imaginable, but for the sake of simplicity, we shall only
consider the linear interpolant in the present work. We also introduce the restriction
operator Ro WH 1.˝c/!H 1.˝o/ that restricts continuum displacements u to ˝o.

In our previous work [5], we realized that, when using the finite element method
for the discretization of the continuum model, matching the displacements Rou
and ˘ow or/and the associated strains .Rou/0 and .˘ow/0 at every point on the
overlap region yielded erroneous results as soon as the mesh size was chosen smaller
than the size of the representative volume element. In that case, the solution of the
continuum model would indeed lock itself to the solution of the particle model. Our
objective in this work is to define a formulation that is independent of the finite
element mesh size.

In view of homogenization, the continuum model is derived by matching strain
averages computed from the two models. An obvious choice is then to match
the average of .Rou/0 with the average of .˘ow/0 over a representative volume
element, and in order to constrain rigid body motions, to match the average of the
displacements Rou and ˘ow over the overlap ˝o. Definition of these averages
is straightforward except at the boundaries of ˝o. We thus propose to define the
averaging operators as follows, where the size of the RVE is denoted by � (see
Fig. 7). Let v 2H 1.˝o/, then

v�.x/D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1

�

ˆ xaC�

xa

v0dy D v.xa C �/�v.xa/
�

; 8x 2 Œxa;xa C �=2�;

1

�

ˆ xC�=2

x��=2
v0dy D v.xC�=2/�v.x��=2/

�
; 8x 2 .xa C �=2;xb � �=2/;

1

�

ˆ xb

xb��
v0dy D v.xb/�v.xb � �/

�
; 8x 2 Œxb � �=2;xb�:

(21)
We also introduce the average1 of a function v 2H 1.˝o/ on ˝o as:

v D 1

j˝oj
ˆ
˝o

vdx: (22)

1 In what follows, averages on˝o will always be denoted by a bar over the corresponding quantity.
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Notice that the averaging operators .�/� and .�/ are linear operators. As a result,
the mismatch on overlap ˝o between the solutions of the continuum and particle
models can be measured as:

M .Rou�˘ow/D ˇ0
ˇ̌
Rou�˘ow

ˇ̌2Cˇ1

ˆ
˝o

ˇ̌
.Rou/�� .˘ow/�

ˇ̌2
dx

D ˇ0
ˇ̌
.Rou�˘ow/

ˇ̌2Cˇ1

ˆ
˝o

ˇ̌
.Rou�˘ow/�

ˇ̌2
dx;

(23)

where .ˇ0;ˇ1/ are non-negative weight parameters chosen such that the terms in
above expression are of the same unit or dimensionless.

Remark 4. We readily observe that M defines a seminorm on H 1.˝o/ as it is
positive but not necessarily definite. Indeed, there exist non-vanishing functions
� 2 H 1.˝o/ such that M .�/ D 0. Such functions are simply those that satisfy
�D 0 and ��.x/D 0, 8x 2˝o. Let us introduce the subspaceM0 of H 1.˝o/ as:

M0 D f� 2H 1.˝o/ W �D 0 and ��.x/D 0; 8x 2˝og: (24)

Functions in M0 are those that are continuous with zero-mean and that are
�-periodic on ˝o. Let us restrict ourselves to the case where ˝o exactly covers
one RVE. Functions in H 1.˝o/ can be represented in terms of Fourier Series as:

�.x/D a0Ca1xC
1X

kD1
bk sink�

x�xa
�

; (25)

where a0, a1, and bk are real numbers. Note that the family of functions sink�.x�
xa/=� is linearly independent and complete inH 1

0 .˝o/ [1]. We then have two cases:

1. For k even, we observe that the functions �.x/D sink�.x�xa/=� have all zero
mean, are �-periodic, and satisfy �.xb/D �.xa/D 0.

2. For k odd, we can show that the functions:

�.x/D sin

�
k�

x�xa
�

�
� 2

k�
(26)

have zero mean and are �-periodic. However, these functions do not necessarily
vanish at the endpoints of ˝o.

Therefore, the functions �0 in M0 can be represented by linear combinations in the
form:

�0.x/D
1X

kD1
bk

�
sin

�
2k�

x�xa
�

��
C ck

�
sin

�
.2k�1/� x�xa

�

�
� 2=�

.2k�1/
�
:

(27)
It follows that any function in H 1.˝o/ can be expanded as:

�.x/D a0Ca1xC�0.x/; (28)
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Fig. 7 Domain for the definition of the averaging operator

where a0 and a1 are real numbers (that may take different values than those in (25))
and �0 is given by (27). Note that M now defines a norm on the quotient space
H 1.˝o/=M0.

3.3 Formulation of the Coupled Problem

Let Vc D ˚
v 2H 1.˝c/ W v.0/D 0


and Vd D ˚

´ 2 R
mC1 be the vector spaces of

test functions for the continuum and discrete models, respectively. The norms on Vc
and Vd are chosen as:

kvkVc
D
sˆ

˝c

Ejv0j2dx and k´kVd
D
q

j´j2Vd
C ıj´j2; (29)

where we have introduced the seminorm j � jVd
on Vd and average of ´ on ˝o as:

j´jVd
D
vuut

mX

iD1
ki .´i �´i�1/2 and ´D 1

j˝oj
moX

iD1
li
´i C´i�1

2
D˘o´;

(30)
with ı a dimensionally consistent weighting constant that we define below. The
vector space for the Lagrange multipliers and associated norm are given as M D
H 1.˝o/=M0 and:

k�kM D
s
ˇ0j�j2Cˇ1

ˆ
˝o

j��j2dx D
q
ˇ0j�j2Cˇ1k��k2L2.˝o/

; (31)

with associated inner product:
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.�;�/M D ˇ0��Cˇ1

ˆ
˝o

����dx: (32)

We also define the bilinear form b.�; �/ on M �X such that:

b.�;V /D .�;Rov�˘o´/M ; (33)

where, for the sake of simplicity in the notation, we have introduced the product
spaceX DVc�Vd with pairs ofX denoted, for example, asU D .u;w/, V D .v;´/,
and with norm:

kV kX D
q

kvk2Vc
Ck´k2Vd

: (34)

We now define the kernel space of b.�; �/ as the subspace of X such that:

X0 D fV 2X W b .�;V /D 0; 8� 2M g : (35)

The coupled problem consists in finding U 2X such that U minimizes the total
energy and satisfies the constraint kRou�˘owkM D 0, i.e.

OE .U /D OEc.u/C OEd .w/D min
V2XkRov�˘o´kMD0

� OEc.v/C OEd .´/
�
: (36)

The minimization problem (36) can be recast into the following saddle point
problem:

Find U 2X , � 2M such that L.U;�/D inf
V 2X sup

�2M
L.V;�/; (37)

where the Lagrangian reads:

L.V;�/D OEc.v/C OEd .´/C .�;Rov�˘o´/M D 1

2
a.V;V /� l.V /Cb .�;V / ;

(38)
with

a.U;V /D
ˆ
˝c

˛cEu
0v0dxC

mX

iD1
˛iki .wi �wi�1/.´i �´i�1/;

l.V /D f ´m:

(39)

The coupled problem can then be recast in mixed form as:

Find U 2X , � 2M such that:
a.U;V /Cb.�;V / D l.V /; 8V 2X;

b.�;U / D 0; 8� 2M:
(40)

We analyze below the mathematical properties of this coupled problem.
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4 Mathematical Analysis of the Coupling Method

The main objective of this section is to show that Problem (40) is well-posed for
ˇ0 > 0 and ˇ1 > 0. We present here a detailed proof and explicitly derive the
bounding constants associated with the problem. Proofs of continuity of the forms
a.�; �/ and l.�/ were shown in [5]. We show below that the coupling term b.�; �/
is continuous and satisfies the Babuška-Brezzi condition and that form a.�; �/ is
coercive. For simplicity of the proofs, we shall consider in this section that the
overlap region˝o exactly coincides with one RVE.

Lemma 1 (Continuity of b). Let b. � ; � / be as defined in (32). Then, for all �2M ,
V D .v;´/ 2X , there exists a constantMb > 0 such that:

jb.�;V /j �Mbk�kM kV kX ;
with

Mb D
s

ˇ0

� j˝c j2
2Ej˝oj C 1

ı

�
Cˇ1

�
1

E
C 1

mini ki li

�
; (41)

where mini means the minimum over all values indexed by i D 1;2; : : : ;mo.

Proof. Let�2M and V 2X , such that Rov 2M and˘o´2M . From the definition
of the bilinear form b.�; �/ (32) and by using Cauchy-Schwarz, we have:

jb .�;V /jD.�;Rov�˘o´/M�k�kM kRov�˘o´kM�k�kM .kRovkMCk˘o´kM /:
Now, by definition of the norm, we have

kRovk2M D ˇ0Rov
2Cˇ1k.Rov/�k2L2.˝o/

: (42)

Then, using Lemma A-2 in [5], the fact that j˝c j � j˝oj, and Poincaré inequality,
we get:

Rov
2 � 1

j˝oj kRovk2
L2.˝o/

� 1

j˝ojkvk2
L2.˝c/

� j˝cj2
2Ej˝oj kvk2Vc

: (43)

For the other term, since Rov 2M , Rov is linear on the RVE, and by assumption,
on˝o. Then .Rov/0 is constant on˝o and it implies that .Rov/�D .Rov/0, 8x 2˝o.
It follows that:

k.Rov/�k2L2.˝o/
D k.Rov/0k2L2.˝o/

D j.Rov/j2H1.˝o/
� jvj2

H1.˝c/
D 1

E
kvk2Vc

:

(44)

Then,

kRovkM � kvkVc

s
ˇ0j˝cj2
2Ej˝oj C ˇ1

E
: (45)

In the same way, since ˘o´ is linear, we have
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k˘o´k2M D ˇ0˘o´
2Cˇ1k.˘o´/�k2L2.˝o/

D ˇ0´
2Cˇ1k.˘o´/0k2L2.˝o/

; (46)

and

k.˘o´/0k2L2.˝o/
D
ˆ
˝o

.˘o´/
02dx D

moX

iD1
li

�
´i �´i�1

li

�2

D
moX

iD1

1

ki li
ki .´i �´i�1/2 � �

min
i
ki li

��1j´j2Vd
:

(47)

Therefore,

k˘o´k2M � ˇ0

ı
ı´2C ˇ1

min
i
ki li

j´j2Vd
�
�
ˇ0

ı
C ˇ1

min
i
ki li

�
k´k2Vd

: (48)

We combine above results and find

Mb D
s

ˇ0

� j˝c j2
2Ej˝oj C 1

ı

�
Cˇ1

�
1

E
C 1

mini ki li

�
; (49)

which completes the proof. ut
Lemma 2 (Inf-sup condition for b). Let ˇ1 > 0. Then, with above notation and
definitions, there exists a constant �b > 0 such that:

inf �2M sup
V 2X

jb .�;V / j
k�kM kV kX � �b;

with

�b D min

 r
ˇ0

2ı
;

s
2ˇ1

2EC ıj˝oj

!
:

Proof. Let � 2M �H 1.˝o/. It is sufficient to construct a pair OV 2X such that

sup
V 2X

jb.�;V /j
kV kX � jb.�; OV /j

k OV kX
� �bk�kM : (50)

Since M � H 1.˝o/, �.xa/ is well defined and denoted by �a. We introduce the
function O�.x/D�.x/��a onH 1.˝o/ and observe that O�.xa/D�.xa/��a D 0.
Let Ov 2 Vc such that Ov D O� on ˝o and Ov D 0 on ˝cn˝o and let Ó 2 Vd such that
Ó i D ��a, 8i D 1; : : : ;m. Thus, taking OV D . Ov; Ó/, we have:

jb.�; OV /j
k OV kX

D j.�;Ro Ov�˘o Ó /M j
k. Ov; Ó/kX D j.�;���a C�a/M j

k. Ov; Ó /kX D k�k2M
k. Ov; Ó/kX : (51)

It suffices to show that k�kM =k. Ov; Ó/kX is greater than a positive constant
independent of �. We have
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k. Ov; Ó /k2X D kOvk2Vc
CkÓk2Vd

D
ˆ
˝o

Ej Ov0j2dxCj Ój2Vd
C ıj Ó j2

D ı�2aC
ˆ
˝o

Ej�0j2dx D ı�2aC
ˆ
˝o

Ej��j2dx;
(52)

where we have used the fact that � is linear on ˝o, i.e. �0 is constant and �0 D ��.
Then, rewriting �D �0.x�xa/C�a and taking the average, we also have:

�a D N�� 1

2
j˝oj�0; (53)

and

�2a � 2�2C 1

2
j˝oj2.�0/2 D 2�2C 1

2
j˝oj

ˆ
˝o

j��j2dx: (54)

It follows that:

k. Ov; Ó/k2X � 2ı�2C
�
2EC ıj˝oj

2

�ˆ
˝o

j��j2dx

� max

�
2ı

ˇ0
;

�
2EC ıj˝oj

2ˇ1

��
k�k2M ;

(55)

and we conclude that

k�kM
k. Ov; Ó /kX � min

 r
ˇ0

2ı
;

s
2ˇ1

2EC ıj˝oj

!
; (56)

which completes the proof. ut
We now show the coercivity of a in the case where ˛c D ˛d D 1=2 on ˝o. We

believe that the result also holds when ˛c is a continuous piecewise linear function
but are not able to provide here a rigorous proof.

Lemma 3 (Coercivity of a). Let ˛c D ˛d D 1=2. Then, with above notation and
definitions, there exists a constant �a > 0 such that:

8
ˆ̂<

ˆ̂:

inf
U2X0

sup
V 2X0

ja.U;V // j
kU kXkV kX > �a;

sup
U2X0

a.U;V / > 0; 8V 2X0;V ¤ 0;
(57)

with

�a D 1

2
min
i

�
E

ki li

�
min
i

�
ki li

E

�
min

�
1

2
;
E

ı

j˝oj
j˝cj2

�
; (58)

where min
i

means the minimum over all values indexed by i D 1;2; : : : ;mo.

Proof. It suffices to show that a. � ; � / is coercive on X0. Let V D .v;´/ 2 X0. By
definition of the bilinear form, and the fact that ˛c D 1 on ˝cn˝o and ˛d D 1 on
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˝dn˝o, we have

a.V;V /D
ˆ
˝c

˛cEjv0j2 dxC
mX

iD1
˛iki .´i �´i�1/2

D
ˆ
˝cn˝o

Ejv0j2 dxC
mX

iDmoC1
ki .´i �´i�1/2

C
ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2:

(59)

We provide here a general approach to show the coercivity. We first decompose the
overlap terms in above equation into the following contributions:

ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2

D 1

2

 ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2

!

C 1

2

 ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2

!
:

(60)

Since V 2X0, the functions v and vectors ´ satisfy:

b.�;V /D .�;Rov�˘o´/M D 0; 8� 2M: (61)

In other words, Rov �˘o´ 2 Mo, meaning that Rov D ˘o´ and that v.xb/�
v.xa/ D ´mo

� ´o (where we appeal again to the fact that ˝o consists of just
one representative volume element). Let �o D Rov �˘o´ with �o D 0 and
�o.xa/ D �o.xb/. We also introduce the parameter � D mini .ki li /=E and recall
from Remark 1 that � � 1. We have:

1

2

ˆ
˝o

˛cEj.Rov/0j2dx � �

2

ˆ
˝o

˛cEj.Rov/0j2dx

� �

2

ˆ
˝o

˛cEj.˘o´/0C�0oj2dx

� �

2

ˆ
˝o

˛cEj.˘o´/0j2dxC �

2

ˆ
˝o

˛cEj�0oj2dxC�

ˆ
˝o

˛cE.˘o´/
0�0odx:

(62)
Using the fact that:

.˘o´/
0 D ´i �´i�1

li
; 8x 2 .xi�1;xi /; (63)

the first integral can be rewritten as:
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ˆ
˝o

˛cEj.˘o´/0j2dx D
moX

iD1

ˆ xi

xi�1
˛cE

�
´i �´i�1

li

�2
dx

D
moX

iD1

E

ki li
ki .´i �´i�1/2

�
1

li

ˆ xi

xi�1
˛cdx

�
;

(64)

and, using the definition of ˛i , we get:

ˆ
˝o

˛cEj.˘o´/0j2dx � min
i

�
E

ki li

� moX

iD1
.1�˛i /ki .´i �´i�1/2: (65)

It follows that

1

2

ˆ
˝o

˛cEj.Rov/0j2dx ��
2

min
i

�
E

ki li

� moX

iD1
.1�˛i/ki .´i �´i�1/2

C �

2

ˆ
˝o

˛cEj�0oj2dxC�

ˆ
˝o

˛cE.˘o´/
0�0odx:

(66)
In the same way, we have:

1

2

m0X

iD1
˛iki .´i �´i�1/2 � �

2

ˆ
˝o

.1�˛c/Ej.˘o´/0j2dx

� �

2

ˆ
˝o

.1�˛c/Ej.Rov/0��0oj2dx

� �

2

ˆ
˝o

.1�˛c/Ej.Rov/0j2dx

C �

2

ˆ
˝o

.1�˛c/Ej�0oj2dx��
ˆ
˝o

.1�˛c/E.Rov/0�0odx:
(67)

Using (66) and (67) in (60), we obtain:

ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2

� �

2

�ˆ
˝o

˛cEj.Rov/0j2dxC
ˆ
˝o

.1�˛c/Ej.Rov/0j2dx
�

C �

2

ˆ
˝o

.1�˛c/Ej�0oj2dx��
ˆ
˝o

.1�˛c/E.Rov/0�0odx

C �

2
min
i

�
E

ki li

�� moX

iD1
˛iki .´i �´i�1/2C

moX

iD1
.1�˛i/ki .´i �´i�1/2

�

C �

2

ˆ
˝o

˛cEj�0oj2dxC�

ˆ
˝o

˛cE.˘o´/
0�0odx:

(68)
Simplifying, we get:
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ˆ
˝o

˛cEj.Rov/0j2 dxC
moX

iD1
˛iki .´i �´i�1/2

� 1

2
min
i

�
E

ki li

�
min
i

�
ki li

E

�"ˆ
˝o

Ej.Rov/0j2 dxC
moX

iD1
ki .´i �´i�1/2

#

C �

2

ˆ
˝o

Ej�0oj2dx��
ˆ
˝o

.1�˛c/E.Rov/0�0odxC�

ˆ
˝o

˛cE.˘o´/
0�0odx:

(69)
We note that the last three terms, denoted by K , can be combined as follows:

K D �

2

ˆ
˝o

.2˛c �1/E 	2.Rov/0��0o


�0odx

D �

2

ˆ
˝o

.2˛c �1/E 	j.Rov/0j2� j.˘o´/0j2


dx:

(70)

The goal would be to show that K � 0 for all .v;´/ 2X0 for any admissible profile
of ˛c on ˝o. Unfortunately, we are only able to date to prove that K D 0 if ˛c D
1=2. It is not clear at this point whether the result would hold in the case where ˛c
is continuous piecewise linear.

Finally, setting ˛c D 1=2, we may proceed as follows:

a.V;V /�
ˆ
˝cn˝o

Ejv0j2 dxC
mX

iDmoC1
ki .´i �´i�1/2

C 1

2
min
i

�
E

ki li

�
min
i

�
ki li

E

�"ˆ
˝o

Ejv0j2 dxC
moX

iD1
ki .´i �´i�1/2

#

� 1

2
min
i

�
E

ki li

�
min
i

�
ki li

E

�"ˆ
˝c

Ejv0j2 dxC
mX

iD1
ki .´i �´i�1/2

#

� �
�
kvk2Vc

Cj´j2Vd

�
;

(71)
where we have introduced the constant � as:

� D 1

2
min
i

�
E

ki li

�
min
i

�
ki li

E

�
: (72)

Applying first the Poincaré inequality, i.e.

a.V;V /� �

�
1

2
kvk2Vc

C E

j˝cj2 kvk2
L2.˝c/

Cj´j2Vd

�
; (73)

and then Lemma A-2 in [5], as well as the fact that X0 consists of those functions v
and vectors ´ such that v D˘o´D ´ on ˝o, i.e.

kvk2
L2.˝c/

� kvk2
L2.˝o/

� v2j˝oj D ´2j˝oj; (74)
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we finally obtain:

a.V;V / � �

�
1

2
kvk2Vc

Cj´j2Vd
C E

ı

j˝oj
j˝c j2 ı´

2

�
� �min

�
1

2
;
E

ı

j˝oj
j˝cj2

�
kV k2X ;

(75)
which completes the proof. ut

From above lemmas, we may conclude that the Arlequin problem is well-posed
as long as ˇ0 > 0 and ˇ1 > 0 (and restriction that ˛c D 1=2 on overlap domain).

5 Finite Element Formulation

We introduce in this section the finite element formulation of the coupled problem.
Let V hc and M h be finite element subspaces of the vector spaces Vc and M ,
respectively, and let Xh be the product space Xh D V hc �Vd . The subspace V hc can
be constructed as the space spanned by the piecewise linear continuous functions
defined with respect to the set of nodes xi D ih, i D 0; : : : ;N e , where N e denotes
the number of elements in the mesh. In the case of M h, we are clearly faced with
several choices since the elements associated with V hc andM h do not have to match.
However, for the sake of simplicity, one possibility is to restrict ourselves to cases
where each node of the mesh associated withM h coincides either with a particle or
with a node of V hc or both. However,M h needs to be constructed in such a way that
the condition M h �M DH 1.˝o/nM0 be satisfied, that is, we need to make sure

that functions of M0 are excluded from M h. Let fM h
be the vector space spanned

by continuous piecewise linear functions defined on˝o and let hM be the mesh size

associated with fM h
(assume a uniform grid here). If the overlap region consists of

one RVE and if ns denotes the number of springs in one RVE, we have been able to

observe numerically that the number of modes in fM h\M0 is given by:

n0 D
8
<

:

nsli

hM
�1; if hM < �;

0; otherwise;
(76)

where � is the size of the RVE and li is the equilibrium length of each bond (assumed
constant here). It follows that a convenient way to construct the finite element space
M h is to consider continuous piecewise linear functions defined with respect to
elements of size hM D � (or a multiple of �).

Finally, we introduce the notation Uh D .uh;wh/ and Vh D .vh;´/. Then,
Problem (40) is approximated as follows:

Find Uh 2Xh, �h 2M h such that:
a.Uh;Vh/Cb.�h;Vh/ D l.Vh/; 8Vh 2Xh;

b.�h;Uh/ D 0; 8�h 2M h:

(77)
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We note that although Vd is a finite-dimensional space and, consequently does not
need to be discretized using finite elements, we will use the notation wh to denote
the solution of the particle model in (77) to emphasize that wh directly depends on
the choice of Vh andMh. We can show that above problem is also well-posed when
ˇ0 > 0, ˇ1 > 0, and ˛c D 1=2.

6 Numerical Results

6.1 One-Dimensional Numerical Results

In this section, we present some numerical experiments to illustrate our theoretical
study of a one-dimensional coupled problem, i.e. a model of harmonic springs,
with varying coefficients, coupled with a linear elastic bar, whose Young’s modulus
is determined by simple homogenization. Unless otherwise stated, we consider in
the following experiments the domain ˝ D .0;3/. The continuum model is used
in the subdomain ˝c D .0;2/ while the particle model is used in ˝d D .1;3/ and
the weight coefficients ˛c and ˛d are chosen linear in the overlap domain. Moreover,
the force f applied at x D 3 is chosen in such a way that the displacement at the
right end of the domain, when using the continuum model everywhere in˝ , is equal
to unity. We also restrict ourselves to the cases where the equilibrium lengths of the
springs are all equal. We also recall that the discrete problem is well-posed if the
mesh size used to discretize the Lagrange multiplier space is at least larger than (a
multiple of) the size of the repesentative cell. Hence, in the following, the size of the
elements used to define M h is always taken equal to the size of the representative
volume element.

6.1.1 Overlap Region Composed of One RVE

Let us start by studying the very simple case of an overlap domain composed
of only one RVE. As the objective is to propose a method that is well suited to
solve problems dealing with highly heterogeneous particle models, we study here
the particle case of a periodic distribution of springs with two spring stiffness
parameters for which it is straightforward to derive an equivalent continuum model.
Thus, the particle model is chosen to be composed of mD 4 springs in ˝d , i.e. five
particles, and that the values of the spring stiffness are k1 D 100 and k2 D 1. The
particle structure is then constructed, form even, as:

k2j�1 D k1; k2j D k2; 8j D 1; : : : ;m=2: (78)

The equilibrium length of each spring is chosen constant as l D li D 0:5 and the
corresponding Young’s modulusE is then given by:
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Fig. 8 Arlequin solution in case of one RVE in the overlap region for several mesh sizes

E D k1k2

k1Ck2
2l D 100

101
�2�0:5D 0:99010; (79)

using the expression derived in (11). In the following set of experiments, we study
the effect of the mesh size on the Arlequin solution. The Arlequin solutions for four
different mesh sizes, namely h D 2l , h D l=2, h D l=4, and h D l=32, where h
is the size of the elements for V hc , are shown in Fig. 8. As expected, the coupled
solution is independent of the mesh size as the displacement ´m of the right end
particle is equal for all cases to 1:08168. Notice however that ´m is different from
unity, as one might have expected from the choice of the loading force f applied
to particle m. This is simply due to the fact that the displacement of the particles
is averaged around the continuum solution on the overlap region. If we average the
particle solution in ˝d , we would then obtain a displacement equal to unity since
the slope of the continuum solution and that of the averaged particle solution are
identical.

6.1.2 Overlap Region Composed of Several RVE’s

We now repeat the same experiments in the case where the size of the overlap region
is equal to the size of several RVEs. We keep the same periodic distribution as
before, that is, the RVE is made of two springs with stiffness coefficients k1 D
100 and k2 D 1. We consider the case where the overlap region is composed of
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Fig. 9 Arlequin solution in case of two RVEs in the overlap region for two different mesh sizes

Fig. 10 Arlequin solution in case of four RVEs in the overlap region for two different mesh sizes

two RVEs and the particle structure is made of m D 8 springs (l D 0:25), and the
case of four RVEs in the overlap region and a particle model composed of m D
16 springs (l D 0:125). For both cases, we compute the solutions on two different
mesh sizes, namely h D 2l and h D l=2, as shown in Figs. 9 and 10. We can see
that the method produces the correct results as expected. The displacements at the
right end particle are ´m D 1:04084 and ´m D 1:02042 in the case of two RVEs
and four RVEs, respectively. These displacements get actually closer to unity since
the smaller the equilibrium lengths are, the closer the particle solution gets to the
continuum solution.

6.1.3 An Example with a Large Number of Particles

In more practical cases, we are interested in systems that are composed of many
particles. The objective is to use the particle model around a tiny zone to model the
small scale behavior of the material, and in the remaining zone, to use the continuum
model in order to reduce the cost of the simulation. We consider here the case of the
structure made of a chain of 1001 particles connected by 1000 springs in the domain
˝ D .0;1/, as shown in Fig. 11 . We define ˝c D .0;0:8/ and ˝d D .0:796;1/.
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Fig. 11 Implementation of the Arlequin method on a system of 1,001 particles

We assume for the particle model a periodic distribution of four springs with spring
constants k1 D 100, k2 D 1, k3 D 50, and k4 D 10, and equilibrium length l D 0:001,
for which we get the equivalent Young’s modulus E as:

E D
�

1

k�11 Ck�12 Ck�13 Ck�14

�
4l D

�
1

0:01C1:00C0:02C0:10

�
�4�0:001;

(80)
that is, E D 3:539823� 10�3. Notice that the definition of the geometry implies
that the overlap domain ˝o is made of just one representative cell. With the idea
of considering a critical and practical experiment, we discretize ˝c with a mesh
made of two elements. The first element covers the continuum region˝cn˝o while
the second element covers the whole overlap region ˝o. The Arlequin solution
is shown in Fig. 12. We observe that the large-scale displacement in the whole
structure is perfectly linear and that the displacement at x D 1 is again closer to
unity (´m D 0:99969) than in the previous results since the equilibrium length of
the springs is here reduced to l D 0:001. These results clearly demonstrate that we
can consider an extreme configuration of a continuum model discretized with only
two elements (one for the whole continuum region and one for the coupling zone) to
deliver accurate simulations. In other words, only one element is sufficient to model
the behavior of the material in ˝cn˝o (since the model is linear) and one element
to discretize the overlap region (composed of one RVE) is enough to couple the two
models.

6.1.4 Simulation of a Defect

The goal in using the proposed coupling method is to replace the particle model
by a continuum model in the region where only the large-scale contributions to
the values of quantities of interest are significant and where the continuum model
remains compatible with the particle model. The hope then is that the particle model
would only be required in a small region of the whole domain, around a defect or a
geometrical singularity for instance. We propose here to consider a one-dimensional
structure, fixed at both extremities and subjected to a point force applied at the
center particle (see Fig. 13), in which the stiffness coefficients in the middle bonds
are purposely weakened as follows:
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Fig. 12 Arlequin solution in case of a system with many particles using a mesh only composed of
two elements

k�i D ki

�
1

1C20e�5.x�L=2/2
�
; (81)

whereL is the length of the structure. The main objective here is to model a pseudo-
defect in the chain of particles around which the continuum model is no longer
compatible with the particle model. The domain is given by ˝ D .0:0;5:2/, i.e.
L D 5:2, and the particle model is kept only in the subdomain ˝d D .1:4;3:8/.
The equilibrium length of the bonds is set to l D 0:1. Furthermore, we assume
that the particle model is defined as a periodic distribution of two spring stiffness
parameters k1 D 100 and k2 D 30 along which the proposed defect is superimposed.
The Young’s modulus of the continuum model is computed by ignoring the defect
in the particle model, i.e. by considering the stiffness coefficients ki rather than k�i .
Using (79), its value is found to be E D 4:61538. In order to study the influence of
the position and size of the overlap region onto the Arlequin solution, we consider
four different configurations of the coupling zones defined by the overlap regions
˝o;1 D .1:4;1:4C 0:2j / and ˝o;2 D .3:8� 0:2j;3:8/, on the left and on the right
of the particle model, respectively, with j D 1; : : : ;4 (see Fig. 13). In other words,
the size of the region in which the particle model is used is enlarged as the overlap
regions are made of 4, 3, 2, and 1 RVE’s by varying j from 4 to 1. Finally, the length
of the elements is set to hD 2l in ˝c D˝c;1[˝c;2.

The results are shown in Fig. 14. The first solution is obtained using j D 4

and the last one using j D 1. The maximum displacement, which corresponds to
the displacement of the particle at the center, is reported for each configuration



394 S. Prudhomme et al.

Fig. 13 Definition of the coupled model for the simulation of a defect

in Table 1. We observe that the approximations of the displacement become more
accurate when the overlap regions are positioned away from the defect. This is due
to the fact that the continuum model is not compatible with the particle model in the
vicinity of the defect since the former is calibrated from the latter without taking the
defect into account. However, in the case of the configuration with j D 1, the models
become compatible with each other and the proposed coupling term provides an
accurate solution around the defect with respect to the solution of the full particle
model (not shown here).

Table 1 Maximum displacement for various values of the number of RVE’s, nRVE, in each overlap
region

nRVE Maximum displacement

4 1:05137
3 1:12014
2 1:13450
1 1:13670
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Fig. 14 Arlequin solutions obtained for different configurations of the coupling regions defined
by ˝o;1 D .1:4;1:4C0:2j / and ˝o;2 D .3:8�0:2j;3:8/, on the left and on the right of the
particle model, respectively, with j D 1; : : :;4

6.2 Two-Dimensional Numerical Results

In this section, we apply the Arlequin formulation using the new coupling operator
to the case of two-dimensional problems. In particular, we consider a uniform
lattice in which the interactions between particles are modeled in terms of harmonic
springs. The particles are supposed to interact only with their nearest neighbors: in
the x- and y-directions, the stiffness parameter for each bond is given by k while
in the diagonal direction, the stiffness coefficient is set to kd . The Representative
Volume Element is easily identified here as the cell defined by four lattice sites
since it represents the smallest substructure within the periodic structure. The RVE is
utilized to compute the material coefficients (Young’s modulus and Poisson’s ratio)
of the compatible linear elasticity model.

The system of interest is made of 11� 11 particles and is subjected to a point
force applied to the particle located at the center of the domain. For large values of
the force, displacements in the vicinity of the centered particle are expected to vary
rapidly, implying that the linear elasticity model would incorrectly predict the large
associated strains. In this simple example, we choose to employ the particle model in
the subdomain at the center of the domain, of size corresponding to four RVE’s, and
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Fig. 15 Arlequin configuration of the coupled problem using a coarse mesh (left) and a fine
mesh (right) for the discretization of the continuum model. The particle model is reduced to the
subdomain in the center and the overlap region consists of a layer around the particle region

to construct the overlap region as the layer around the particle region, of thickness
corresponding to the size of two RVE’s. The continuum model is selected in the
remainder of the domain and is discretized using quadrilateral bilinear elements
(see Fig. 15). Finally, the system is subjected to homogeneous Dirichlet boundary
conditions along the boundary @˝ .

In order to test the method, we consider in what follows a coarse mesh and a fine
mesh: on the coarse mesh, the finite elements have a mesh size equal to the size
of two RVE’s for the discretization of the continuum solution and of the Lagrange
multiplier as shown on the left of Fig. 15; on the fine mesh, the elements are half the
size of one RVE for the continuum solution and twice the size of one RVE for the
Lagrange multiplier as shown on the right of Fig. 15.

Finally, we compute two Arlequin solutions on each of the two meshes: in the
first Arlequin formulation, the coupling term is defined in terms of the H 1 norm as
described in [5] while in the second formulation, the coupling term is defined using
the proposed averaging operator. In both formulations, the weighting coefficients are
chosen constant on the overlap region and equal to one half. On the coarse mesh, the
two solutions are identical as expected (see Fig. 16). The fact that large elements are
used in the formulation is equivalent to an averaging over a representative volume
element. However, the two solutions are different on the fine mesh (see Fig. 17).
This is due to the locking phenomenon in the case of theH 1 norm coupling, that is,
the displacements of the continuum solution lock themselves to the displacements
of the particle solution on the overlap region. A better approximation, better in the
sense that the solution is closer to that of the full particle model, is therefore obtained
using the formulation involving the averaging operator.
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Fig. 16 Deformed configuration on coarse mesh using the Arlequin framework: (Left) the coupling
term is defined in terms of the H1 norm; (Right) the coupling term is defined in terms of the
proposed averaging operator. The two solutions are identical as expected

Fig. 17 Deformed configuration on fine mesh using the Arlequin framework: (Left) the coupling
term is defined in terms of the H1 norm; (Right) the coupling term is defined in terms of the
proposed averaging operator. The two solutions are now different

7 Conclusion

We have presented in this paper a new expression for the coupling term when
blending a particle model with a continuum model using the Arlequin framework.
The coupling method belongs to the family of concurrent methods for solving
multiscale problems. It constitutes an improved version of a previously proposed
coupling method, described in [5], which had the major drawback of being
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mesh-dependent in the sense that meshes had to be carefully selected in order
to obtain the intended solution of the problem. In particular, it was shown that
the method produced satisfactory results as long as the mesh size of the finite
elements used to discretize the Lagrange multiplier space was at least larger than (a
multiple of) the size of the representative cell defined to calibrate the parameter(s)
of the continuum model. In the new coupling method, the selection of meshes used
to discretize the continuum solution and the Lagrange multiplier is immediately
determined from the formulation of the continuous problem.

The new coupling term is constructed in terms of an averaging operator defined
on a representative cell. The cell size determines in some sense the scale at which
the continuum model and particle model can exchange information. Indeed, the
parameters of the continuum model are usually identified through homogenization
from the solution of the particle model computed on one representative cell. We
have shown here that the resulting coupled problem is mathematically well-posed
and that its discretization by the finite element method provides approximations
that converge to the exact solution of the problem as the mesh size goes to zero.
We have illustrated on one- and two-dimensional examples that the proposed
approach is well suited for problems in which the bonds between particles are
heterogeneously distributed. Systems in the present study were considered periodic
as compatible continuum models can straightforwardly be derived through classical
homogenization techniques.

The study of coupling methods based on the Arlequin framework for blending
particle and continuum models is by no means complete. This work only represents
one step in the development of general coupling methods. In particular, it would
be interesting to investigate the extension of this formulation to stochastic systems
for which the notion of representative volume element is not well defined. A pre-
liminary study on this subject is described in [15] based on the coupling method
proposed in [5]. Our objective in the near future would be to reconsider stochastic
particle systems using the new averaging operator for coupling the continuum and
particle models.
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Abstract Approximations of geometric optics type are commonly used in sim-
ulations of high frequency wave propagation. This form of technique fails when
there is strong local variation in the wave speed on the scale of the wavelength or
smaller. We propose a domain decomposition approach, coupling Gaussian beam
methods where the wave speed is smooth with finite difference methods for the
wave equations in domains with strong wave speed variation. In contrast to the
standard domain decomposition algorithms, our finite difference domains follow
the energy of the wave and change in time. A typical application in seismology
presents a great simulation challenge involving the presence of irregularly located
sharp inclusions on top of a smoothly varying background wave speed. These sharp
inclusions are small compared to the domain size. Due to the scattering nature of
the problem, these small inclusions will have a significant effect on the wave field.
We present examples in two dimensions, but extensions to higher dimensions are
straightforward.
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1 Introduction

In this paper, we consider the scalar wave equation,

�uD ut t � c2.x/4uD 0; .t;x/ 2 Œ0;T ��R
d ;

u.0;x/D f .x/; (1)

ut .0;x/D g.x/ ;

where d is the number of space dimensions. We will mainly focus on d D 2, though
the extension of the methods presented here to three or more spatial dimensions is
straight forward. The wave (1) is well-posed in the energy norm,

ku.t; �/k2E D
ˆ
Rd

� jut .t;x/j2
c2.x/

Cjru.t;x/j2
�
dx; (2)

and it is often useful to define the point-wise energy function,

EŒu�.t;x/ D jut .t;x/j2
c2.x/

Cjru.t;x/j2; (3)

and the energy inner product,

< u;v >E D
ˆ
Rd

�
ut .t;x/ Nvt .t;x/

c2.x/
Cru.t;x/ � r Nv.t;x/

�
dx:

High frequency solutions to the wave (1) are necessary in many scientific
applications. While the equation has no scale, “high frequency” in this case means
that there are many wave oscillations in the domain of interest and these oscillations
are introduced into the wave field from the initial conditions. In simulations of
high frequency wave propagation, direct discretization methods are notoriously
computationally costly and typically asymptotic methods such as geometric optics
[4], geometrical theory of diffraction [8], and Gaussian beams [2, 5–7] are used to
approximate the wave field. All of these methods rely on the underlying assumption
that the wave speed c.x/ does not significantly vary on the scale of the wave
oscillations. While there are many interesting examples in scientific applications that
satisfy this assumption, there are also many cases in which it is violated, for example
in seismic exploration, where inclusions in the subsurface composition of the earth
can cause the wave speed to vary smoothly on the scale of seismic wavelengths or
even smaller scales. In this paper, we are interested in designing coupled simulation
methods that are both fast and accurate for domains in which the wave speed is
rapidly varying in some subregions of the domain and slowly varying in the rest.

In typical domain decomposition algorithms, the given initial-boundary value
problem (IBVP) is solved using numerical solutions of many similar IBVPs on
smaller subdomains with fixed dimensions. The union of these smaller domains
constitutes the entire simulation domain. In our settings, there are two major
differences to the case above. First, the equations and numerical methods in the
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subdomains are different: we have subdomains in which the wave equation is solved
by a finite difference method while in other subdomains the ODEs defined by
the Gaussian beam method are solved. Second, we consider situations in which
the wave energy concentrates on small subregions of the given domain, so our
domain decomposition method requires subdomains which follow the wave energy
propagation and thus change size and location as a function of time. Since our
method couples two different models of wave propagation, we will refer to it as the
hybrid method. These types of methods are also often called heterogeneous domain
decomposition [11]. We will describe how information is exchanged among the
subdomains as well as how to change the subdomain size without creating instability
and undesired numerical effects.

Our strategy will be to use an asymptotic method in subregions of the domain
that satisfy the slowly varying sound speed assumption and a local direct method
based on standard centered differences in subregions that do not. This hybrid domain
decomposition approach includes three steps. The first is to translate a Gaussian
beam representation of the high frequency wave field to data for a full wave equation
finite difference simulation. Since a finite difference method needs the values of the
solution on two time levels, this coupling can be accomplished by simply evaluating
the Gaussian beam solution on the finite difference grid. The next step is to perform
the finite difference simulation of the wave equation in an efficient manner. For
this, we design a local finite difference method that simulates the wave equation
in a localized domain, which moves with the location of a wave energy. Since
this is a major issue, we have devote a section of this paper to its description and
provide some examples. The last step is to translate a general wave field from a finite
difference simulation to a superposition of Gaussian beams. To accomplish this, we
use the method described in [14] for decomposing a general high frequency wave
field .u;ut /D .f;g/ into a sum of Gaussian beams. The decomposition algorithm is
a greedy iterative method. At the .N C1/ decomposition step, a set of initial values
for the Gaussian beam ODE system is found such that the Gaussian beam wave field
given by these initial values will approximates the residual between the wave field
.f;g/ and the wave field generated by previous .N / Gaussian beams at a fixed time.
These new initial values are directly estimated from the residual wave field and are
then locally optimized in the energy norm using the Nelder-Mead method [10]. The
procedure is repeated until a desired tolerance or maximum number of beams is
reached.

Since Gaussian beam methods are not widely known, we begin with a condensed
description of Gaussian beams. After this presentation, we give two examples that
show the strengths and weaknesses of using Gaussian beams. We develop the local
finite difference method as a stand alone method for wave propagation. Finally, we
combine Gaussian beams and the local finite difference method to form the hybrid
domain decomposition method. We present two examples to show the strength of
the hybrid method.
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2 Gaussian Beams

Since Gaussian beams play a central role in the hybrid domain decomposition
method, we will briefly describe their construction. For a general construction and
analysis of Gaussian beams, we refer the reader to [9, 12, 13].

Gaussian beams are approximate high frequency solutions to linear PDEs which
are concentrated on a single ray through space–time. They are closely related to
geometric optics. In both approaches, the solution of the PDE is assumed to be of
the form a.t;x/eik
.t;x/, where k is the large high frequency parameter, a is the
amplitude of the solution, and � is the phase. Upon substituting this ansatz into
the PDE, we find the eikonal and transport equations that the phase and amplitude
functions have to satisfy, respectively. In geometric optics � is real valued, while in
Gaussian beams � is complex valued. To form a Gaussian beam solution, we first
pick a characteristic ray for the eikonal equation and solve a system of ODEs in t
along it to find the values of the phase, its first and second order derivatives and
amplitude on the ray. To define the phase and amplitude away from this ray to all
of space–time, we extend them using a Taylor polynomial. Heuristically speaking,
along each ray we propagate information about the phase and amplitude that allows
us to reconstruct them locally in a Gaussian envelope.

For the wave equation, the system of ODEs that define a Gaussian beam are

P�0.t/D 0 ;

Py.t/D �c.y.t//p.t/=jp.t/j ;
Pp.t/D jp.t/jrc.y.t// ;
PM.t/D �A.t/�M.t/B.t/�BT.t/M.t/�M.t/C.t/M.t/ ;
Pa0.t/D a0.t/

�
� p.t/

2jp.t/j � @c
@x
.y.t//� p.t/ �M.t/p.t/

2jp.t/j3 C c.y.t//TrŒM.t/�

2jp.t/j
�
;

where

A.t/D �jp.t/j @
2c

@x2
.y.t// ;

B.t/D � p.t/

jp.t/j ˝ @c

@x
.y.t// ;

C.t/D �c.y.t//jp.t/j
�
Idd�d � p.t/˝p.t/

jp.t/j2
�
:

The quantities �0.t/ and a0.t/ are scalar valued, y.t/ and p.t/ are in R
d , andM.t/,

A.t/, B.t/, and C.t/ are d � d matrices. Given initial values, the solution to this
system of ODEs will exists for t 2 Œ0;T �, provided that M.0/ is symmetric and its
imaginary part is positive definite. Furthermore, M.t/ will remain symmetric with
a positive definite imaginary part for t 2 Œ0;T �. For a proof, we refer the reader to
[12]. Under the restriction on M.0/, the ODEs allow us to define the phase and
amplitude for the Gaussian beam using:
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�.t;x/D �0.t/Cp.t/ � Œx�y.t/�C 1

2
Œx�y.t/� �M.t/Œx�y.t/�;

a.t;x/D a0.t/ : (4)

Furthermore, since P�0.t/ D 0, for fixed k, we can absorb this constant phase shift
into the amplitude and take �0.t/ D 0. Thus, the Gaussian beam solution is given
by

v.t;x/D a.t;x/eik
.t;x/ : (5)

We will assume that the initial values for these ODEs are given and that they satisfy
the conditions on M.0/. The initial values for the ODEs are tied directly to the
Gaussian beam wave field at t D 0, v.0;x/ and vt .0;x/. As can be easily seen,
the initial conditions for the Gaussian beam will not be of the general form of
the conditions for the wave equation given in (1). However, using a decomposition
method such as the methods described in [14] or [1], we can approximate the general
high frequency initial conditions for (1) as a superposition of individual Gaussian
beams. Thus, for the duration of this paper, we will assume that the initial conditions
for the wave (1) are the same as those for a single Gaussian beam:

u.0;x/D a.0;x/eik
.0;x/;

ut .0;x/D Œat .0;x/C ik�t .0;x/a.0;x/� e
ik
.0;x/ : (6)

Note that at .0;x/ and �t .0;x/ are directly determined by the Taylor polynomials
(4) and the ODEs above.

3 Motivating Examples

We begin with an example that shows the strengths of using Gaussian beams and,
with a small modification, the shortcomings. Suppose that we consider the wave
(1) in two dimension for .t;x1;x2/ 2 Œ0;2:5�� Œ�1:5;1:5�� Œ�3;0:5�, sound speed
c.x/D p

1�0:05x2, and the Gaussian beam initial conditions given in (6) with,

�.0;x/D .x2�1/C i.x1�0:45/2=2C i.x2�1/2=2 ;
a.0;x/D 1:

We take the high frequency parameter k D 100. To obtain a numerical solution to
the wave (1), we can use either a direct method or the Gaussian beam method. As
the direct method, we use the standard second order finite difference method based
on the centered difference formulas for both space and time:
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unC1
`;m

�2un
`;m

Cun�1
`;m

�t2
(7)

D c2`;m

"
un
`C1;m�2un

`;m
Cun

`�1;m
�x2

C un
`;mC1�2un

`;m
Cun

`;m�1
�y2

#
;

where n is the time level index, ` andm are the x and y spatial indices respectively.
Since we need to impose artificial boundaries for the numerical simulation

domain, we use first order absorbing boundary conditions (ABC) [3]. The first order
ABC amount to using the appropriate one-way wave equation,

ut D ˙c.x;y/ux or ut D ˙c.x;y/uy ; (8)

on each of the boundaries, so that waves are propagated out of the simulation domain
and not into it. For example, on the left boundary, x D �1:5, we use ut D cux with
upwind discretization,

unC1
`;m

�un
`;m

�t
D c`;m

"
un
`C1;m�un

`;m

�x

#
; (9)

for ` equal to its lowest value.
To resolve the oscillations, using 10 points per wavelength, for this particular

domain size and value for k, we need roughly 500 points in both the x1 and x2
directions. However, to maintain low numerical dispersion for the finite difference
solution, we need to use a finer the grid. The grid refinement will the given in terms
of the coarse, 10 points per wavelength, grid. For example, a grid with a refinement
factor of 3 will have 30 points per wavelength. Note that such grid refinement is
not necessary for the Gaussian beam solution. Thus, while we compute the finite
difference solution on the refined grid, we only use the refined solution values on
the coarser grid for comparisons. For determining the errors in each solution, we
compare with the “exact” solution computed using the finite difference method with
a high refinement factor of 10.

For this particular example, the sound speed, the finite difference solution and
Gaussian beam solution at the final time are shown in Fig. 1. In order to have a
meaningful comparison, the grid refinement for the finite difference solution was
chosen so that the errors in the finite difference solution are comparable to the ones
in the Gaussian beam solution. Both the accuracy and computation times are shown
in Table 1. The Gaussian beam solution was computed more than 3;500 times faster
than the finite difference solution and the total error for both the Gaussian beam
and the finite difference solution is 	10%. Near the center of the beam, where
the Gaussian beam envelope is greater than 0.25, the Gaussian beam solution is
slightly more accurate with a local error of 	7%. The Gaussian beam solution is
an asymptotic solution, thus its error decreases for larger values of k. In terms of
complexity analysis, as we are using a fixed number of points per wavelength to
represent the wave field, the Gaussian beam solution is computed in O.1/ steps
and evaluated on the grid in O.k2/. The finite difference solution is computed in
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O.k3/ steps. Additionally, for larger values of k, we would need to increase the grid
refinement for the finite difference solution in order to maintain the same level of
accuracy as in the Gaussian beam solution. Therefore, it is clear why the Gaussian
beam solution method is advantageous for high frequency wave propagation.

Table 1 Comparisons of the finite difference (FD) method and Gaussian beam (GB) method with
sound speed with no inclusion. Shown are the total error for each method in the energy norm as a
percent of the total energy at each time, the local error (Loc Err) as a percent of the local energy
at t D 2:5, and the total computational time (C Time) for obtaining the solution at each time. The
local error is computed near the beam center, where the Gaussian envelope is greater than 0:25.
The finite difference solution is computed with a refinement factor of 6

tD 0.625 tD 1.25 tD 1.875 tD 2.5, Loc Err C Time

FD 1.9% 3.8% 5.6% 7.3% 7.4% 7773.1
GB 2.4% 4.8% 7.2% 9.7% 7.0% 1.6

Now, suppose that we modify the sound speed to have an inclusion, so that the
sound speed changes on the same scale as the wave oscillations as shown in Fig. 1
and that we use the same initial conditions as before. The inclusion is positioned in
such a way, so that the ray mostly avoids the inclusion, while the wave field on the
left side of the ray interacts with the inclusion. Since all of the quantities that define
the Gaussian beam are computed on the ray, the Gaussian beam coefficients are
similar to the coefficients in the example without the inclusion. However, as can be
seen from the full finite difference calculation in Fig. 1, the wave field at t D 2:5 is
very different from the wave field at t D 2:5 for the sound speed with no inclusion
shown in the same figure. The solution errors shown in Table 2 demonstrate that,
while the Gaussian beam computation time is again more than 3;500 times faster,
the error renders the solution essentially useless. Thus, the Gaussian beam solution
is not a good approximation of the exact solution in this case. This, of course, is due
to the fact that the asymptotic assumption, that the sound speed is slowly varying, is
violated. Therefore, for a sound speed with an inclusion of this form, the Gaussian
beam method cannot be used and we have to compute the wave field using a method
that does not rely on this asymptotic assumption.

4 Local Finite Difference Method

By examining the example in the previous section, it is clear that a large portion of
the computational time for the finite difference solution is spent simulating the wave
equation where the solution is nearly zero. To exploit this property of the solution,
we propose to use finite differences to compute the solution only locally where the
wave energy is concentrated. Since the wave energy propagates in the domain, the
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Fig. 1 The first column shows the wave field for simulations with sound speed without an
inclusion: sound speed, the finite difference (FD) solution at the final time, and the Gaussian beam
(GB) solution at the final time. The second column shows the same graphs for simulations with
sound speed containing an inclusion. The line shows the ray for the Gaussian beam. At t D 0, the
Gaussian beam is centered at the beginning of the line and at t D 2:5, it is centered at the end of
the line. The dotted circle outlines the location of the inclusion in the sound speed. For each of the
wave fields, only the real part is shown



A Coupled FD – GB Method for High Frequency Wave Propagation 409

Table 2 Comparisons of the finite difference (FD) method and Gaussian beam (GB) method for
a sound speed with inclusion. Shown are the total error for each method in the energy norm as a
percent of the total energy at each time, the local error (Loc Err) as a percent of the local energy
at t D 2:5, and the total computational time (C Time) for obtaining the solution at each time. The
local error is computed near the beam center, where the Gaussian envelope is greater than 0:25.
The finite difference solution is computed with a refinement factor of 6

tD 0.625 tD 1.25 tD 1.875 tD 2.5 Loc Err C Time

FD 1.9% 3.9% 5.6% 7.0% 7.3% 7717.8
GB 6.1% 94.5% 91.2% 90.9% 43.9% 1.5

region in which we carry out the local wave equation simulation must also move
with the waves. We emphasize that we are not using Gaussian beams at this stage.

To be more precise, we propose to simulate the wave equation in a domain˝.t/,
that is a function of time and at every t , ˝.t/ contains most of the wave energy. For
computational ease, we select˝.t/ to be a rectangular region.The initial simulation
domain˝.0/ is selected from the initial data by thresholding the energy function (3)
to contain most of the wave energy. Since solutions of the wave (1) have finite speed
of propagation, the energy moves at the speed of wave propagation and thus the
boundaries of ˝.t/ do not move too rapidly. In terms of finite difference methods,
this means that if we ensure that the Courant-Friedrichs-Lewy (CFL) condition is
met, the boundaries of˝.t/ will not move by more than a spatial grid point between
discrete time levels t and tC�t . Whether ˝.t/ increases or decreases by one grid
point (or stays the same) at time level t C�t is determined by thresholding the
energy function (3) of u at time level t near the boundary of ˝.t/.

Using the standard second order finite difference method, we discretize the wave
(1) using a centered in time, centered in space finite difference approximation (7).
Since the solution is small near the boundary of ˝.t/, there are several different
boundary conditions that we could implement to obtain a solution. The easiest and
most straightforward approach is to simply use Dirichlet boundary conditions with
uD 0. Another approach is to use absorbing boundary conditions. We investigate the
case where absorbing boundary conditions are applied to a single layer of grid nodes
immediately neighboring the outer most grid nodes of ˝.t/ (single layer ABC)
and absorbing boundary conditions are applied again to the layer of grid nodes
immediately neighboring the first ABC layer (double layer ABC). For example,
for the depicted grid nodes in Fig. 2, unC1

`C1;m and unC1
`;m

are computed by

unC1
`C1;m D un`C1;mC c`C1;m

�t

�x

h
un`C2;m�un`C1;m

i
;

unC1
`;m

D un`;mC c`;m
�t

�x

h
un`C1;m�un`;m

i
:

For both Dirichlet and absorbing boundary conditions, when the domain ˝.t/ is
expanding, the finite difference stencils will need to use grid nodes that are outside
of ˝.t/ and the boundary layers. We artificially set the wave field to be equal
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to zero at such grid nodes and we will refer to them as “reclaimed grid nodes”.
Figure 2 shows the domain of influence of the reclaimed nodes for the Dirichlet
boundary conditions and the double layer ABC. In this figure, solid lines connect the
reclaimed nodes with nodes whose values are computed directly using the reclaimed
nodes. Dashed lines connect the reclaimed nodes with nodes whose values are
computed using the reclaimed nodes, but through the values of another node.
Finally, dotted lines indicate one more level in the effect of the reclaimed nodes.
The point of using double layer ABC is to minimize the influence of the reclaimed
nodes, as can be seen in Fig. 2. Note that there are no solid line connections between
the reclaimed nodes and the nodes in ˝.t/ for double layer ABC. Furthermore, the
artificial Dirichlet boundary conditions reflect energy back into the computational
domain˝.t/ which may make it larger compared to ˝.t/ for the solution obtained
by double layer ABC as shown in Fig. 3.

Fig. 2 A comparison between the domains of influence of the reclaimed grid nodes for Dirichlet
and double layer absorbing boundary conditions. The wave field is computed at the square grid
nodes using centered in time centered in space finite differences and at the circle grid nodes using
absorbing boundary conditions. The triangle grid nodes are the reclaimed grid nodes with artificial
zero wave field. The lines indicate how the finite differences propagate these artificially values
from the n-th time level to later time levels

Finally, we note that due to finite speed of wave propagation, we can design
boundary conditions that will not need reclaimed grid nodes. However, these
boundary conditions may have a finite difference stencil that spans many time
levels and this stencil may need to change depending on how ˝.t/ changes in
time. Numerically, we observed a large improvement when using double layer ABC
instead of Dirichlet boundary conditions. However, using triple or quadruple layer
ABC did not give a significant improvement over the double layer ABC. Thus,
for computational simplicity, we use the above double layer absorbing boundary
conditions for the simulations that follow.

Using the local finite difference method, we compute the solution to the wave (1)
as in the previous section for the example with a sound speed with inclusion, using
a refinement factor of 6. To determine ˝.0/, we threshold the energy function (3)
at 1=100 of its maximum. For computational time comparison, we also compute the
full finite difference solution, also with a refinement factor of 6. These parameters
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Fig. 3 A comparison between Dirichlet boundary conditions and double layer absorbing boundary
conditions for the local finite difference method. The absolute value of the difference between
each solution and the finite difference solution for the full domain is plotted at time t D 0:625.
The domain˝.0:625/ is outlined in white. Note that overall the double layer absorbing boundary
conditions solution is more accurate than the Dirichlet boundary condition solution. Also, note that
˝.0:625/ is smaller for the double layer absorbing boundary conditions

were chosen so that the final error is 	7% and comparable for both solutions. The
wave field, along with ˝.t/, are shown in Fig. 4 at t D f0;0:625;1:25;1:875;2:5g.
The comparisons of accuracy and computation time between the local and full finite
difference solutions are shown in Table 3. The error in both solutions is equivalent,
but the local finite difference solution in computed 5 times faster. Furthermore, if
the local finite difference method is used to simulate the wave field from a Gaussian
beam, we need O.k/ steps in time as in the full finite difference method, but the local
finite difference method requires O.k/ grid points in space as opposed to O.k2/ grid
points that the full finite difference method requires. This is because the energy from
a Gaussian beam is concentrated in a k�1=2 neighborhood of its center and this is a
two dimensional example.

Table 3 Comparisons of the full finite difference (FD) method and the local finite difference (LFD)
method with sound speed with inclusion. Shown are the total error for each method in the energy
norm in as a percent of the total energy and the total computational time (C Time) for obtaining
the solution at t D f0:625;1:25;1:875;2:5g

tD 0.625 tD 1.25 tD 1.875 tD 2.5 C Time

FD 1.9% 3.9% 5.6% 7.0% 7717.8
LFD 2.4% 4.4% 6.0% 7.3% 1535.5
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Local FD solution at t = 0
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Fig. 4 This figure shows the wave field computed using the local finite difference method for the
sound speed with inclusion. The black rectangle outlines the local computational domain, ˝.t/,
and the dotted circle outlines the location of the inclusion in the sound speed. Only the real part of
the wave fields is shown

Finally, we remark that if instead of finding one rectangle that contains the bulk
of the energy we found several, the solution in each of these rectangles can be
computed independently. On a parallel computer, this would give another advantage
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over full finite difference simulations, as there is no need for information exchange
between the computations on each rectangle, even if these rectangles overlap. The
linear nature of the wave equation allows for the global solution to be obtained
by simply adding the solutions from each of the separate local finite difference
simulations. Furthermore, the generalization to more than two dimensions is straight
forward and the computational gain is even greater in higher dimensions.

5 Hybrid Method

Upon further examination of the inclusion example in Sect. 3 and the wave field
simulations in Sect. 4, we note that the Gaussian beam solution has small error
for some time initially (see Table 2) and that after the wave energy has interacted
with the inclusion in the sound speed, it again appears to have Gaussian beam like
characteristics (see Fig. 4, t > 2). We can immediately see the effect of the large
variation of the sound speed on the wave field. The large gradient roughly splits
the wave field into two components, one that continues on nearly the same path as
before and one that is redirected to the side. This also shows why the Gaussian beam
solution is not a very good approximation. For a single Gaussian beam to represent
a wave field accurately, the wave field has to stay coherent; it cannot split into two or
more separate components. However, once the wave field has been split into several
components by the inclusion, it will propagate coherently until it reaches another
region of large sound speed variation. By following the propagation of wave energy
in time, while it is near a region of high sound speed variation, we employ the local
finite different method and the Gaussian beam method otherwise.

To be able to use such a hybrid method, we need to be able to couple the two
different simulation methods. Switching from a Gaussian beam description to a local
finite difference description is straightforward. The local finite difference requires
the wave field at a time t and t C�t , which can be obtained simply by evaluating
the Gaussian beam solution on the finite difference grid. The opposite, moving
from a local finite difference to a Gaussian beam description, is more difficult
to accomplish. For this step we use the decomposition algorithm given in [14].
As discussed in the introduction, this decomposition method is a greedy iterative
method. At each iteration the parameters for a single Gaussian beam are estimated
and then locally optimized using the Nelder-Mead algorithm [10]. The method is
then iterated over the residual wave field. The decomposition is complete when a
certain tolerance is met or a maximum number of Gaussian beams is reached. For
completeness, we give the algorithm of [14] below:
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1. With nD 1, let .un;unt / be the wave field at a fixed t and suppress t to simplify
the notation.

2. Find a candidate Gaussian beam:

� Estimate Gaussian beam center:
! Let Qyn D arg maxfEŒun�.y/g (see equation (3)).

� Estimate propagation direction:
! Let G.x/D exp.�kjx� Qynj2=2/.
! Let pn D arg maxfjF Œun.x/G.x/�j C jF Œunt .x/G.x/=k�jg, with F the

scaled Fourier transform, fx ! kpg.
! Let Q�nt D c.yn/j Qpnj.

� Let QM n D iI , with I the identity matrix.

3. Minimize the difference between the Gaussian beam and un in the energy norm
using the Nelder–Mead method with . Qyn; Q�nt ; Qpn; QM n/ as the initial Gaussian
beam parameters:

� Subject to the constraints, ImfM g is positive definite, entries of M are less
than

p
k in magnitude, 1=

p
k � jpj � p

k, and j�t j2 D c2.y/jpj2, let

.yn;�nt ;p
n;M n/D arg min

( ˇ̌
ˇ̌
ˇ̌
ˇ̌un� < un;B >E

jjBjj2E
B

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

E

)

where B be the Gaussian beam defined by the parameters .yn;�nt ;p
n;M n/

and amplitude 1 (see equations (4) and (5)).
� Let Bn.x; t/ be the Gaussian beam defined by the parameters .yn;�nt ;p

n;

M n/ and amplitude 1.
� Let an D <un;Bn>E

jjBn jj2
E

.

4. The n-th Gaussian beam is given by the parameters .yn;�nt ;p
n;M n;an/.

Subtract its wave field:

unC1 D un�anBn and unC1t D unt �anBnt :
5. Re-adjust the previous n�1 beams:

� For the j -th beam, let w D unC1 C ajBj and repeat step 3 with un D w,
nD j , and .yj ;�jt ;p

j ;M j / as the Gaussian beam parameters.
� Let unC1 D w�ajBj .

6. Re-adjust all beam amplitudes together

� Let � be the matrix of inner products �j` D< B`;Bj >E , and bj D< u1;
Bj >E .

� Solve �aD b and let unC1 D u1�Pn
jD1ajBj .

7. Repeat steps starting with step 2, until jjunC1jjE is small or until a prescribed
number of Gaussian beams is reached.
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The final step in designing the hybrid method is deciding when and where to
use which method. By looking at the magnitude of the gradient of the sound speed
and the value of k, we can decompose the simulation domain into two subdomains
DG and DL, which represent the Gaussian beam, small sound speed gradient,
subdomain and the local finite difference, large gradient, subdomain respectively.
When the Gaussian beam ray entersDL, we switch from the Gaussian beam method
to the local finite difference method. Deciding when to switch back to a Gaussian
beam description is again more complicated. One way is to monitor the energy
function (3) and when a substantial portion of it is supported in DG , we use the
decomposition method to convert that part of the energy into a superposition of
a few Gaussian beams. Since calculating the energy function is computationally
expensive, it should not be done at every time level of the local finite difference
simulation. From the sound speed and size of DL, we can estimate a maximum
speed of propagation for the wave energy, thus a minimum time to exit DL, and
use that as a guide for evaluating the energy function. Additionally, we can look at
the overlap between DG and the local finite difference simulation domain ˝.t/ as
a guide for checking the energy function. A more crude, but faster, approach is to
use the original ray to estimate the time that it takes for the wave energy to pass
through DL. We use this approach in the examples below. Furthermore, we note
that the linearity property of the wave equation allows us to have a joint Gaussian
beam and local finite difference description of the wave field. We can take the part
of the local finite difference wave field in DG and represent it as Gaussian beams.
If there is a significant amount of energy left in DL, we propagate the two wave
fields concurrently one using Gaussian beams and the other using the local finite
difference method. The total wave field is then the sum of the Gaussian beam and
local finite difference wave fields.

There are two advantages of the hybrid method over the full and local finite
difference methods. One is a decrease in simulation time. The other is due to the
particular application to seismic exploration. For seismic wave fields, the ray based
nature of Gaussian beams provides a connection between the energy on the initial
surface and its location at the final time. Furthermore, this energy is supported in
a tube in space–time and thus it only interacts with the sound speed inside this
tube. Unfortunately, for finite difference based methods there is only the domain
of dependence and this set can be quite large compared to the Gaussian beam
space–time tube. For example, if the sound speed model is modified locally, only
Gaussian beams that have space–time tubes that pass through the local sound speed
modifications will need to be re-computed to obtain the total wave field. In contrast,
a local sound speed modification requires that the entire finite difference solution be
re-computed. For the hybrid method, if we decompose the wave field in single beam
whenever we switch back to the Gaussian beam description then at any given time,
we will either have a Gaussian beam wave field or a local finite difference wave field.
After the simulation is complete we can interpolate the Gaussian beam coefficients
to times for which the wave field is given by the local finite difference. Note that
the resulting interpolated wave field will not satisfy the wave equation, however we
will once again have a space–time tube that follows the energy propagation. Thus,
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we are interested in using the hybrid method to obtain a one beam solution that
approximates the wave field better than the Gaussian beam method.

5.1 Example: Double Slit Experiment

In the simplest version of the Hybrid method, we consider an example in which we
first use the local finite difference method to solve the wave equation for a given
amount of time, then we switch to a Gaussian beam representation of the field.
For this example we are interested in simulating the wave field in a double slit
experiment, where coherent waves pass through two slits that are spaced closely
together and their width is O.k�1/, with k D 50. In the finite difference method,
the slits are implemented as Dirichlet boundary conditions. It is clear that due to the
diffraction phenomenon near the two slits, the Gaussian beam method alone will not
give an accurate representation of the wave field. The wave field simulated using the
hybrid method is shown in Fig. 5 and the error and computational time are shown in
Table 4. Note that with 14 Gaussian beams, the computational time for the hybrid
solution is still a factor of 3 faster than the full finite difference solution and a factor
of 2 faster than the local finite difference solution.

Table 4 Comparisons of the full finite difference (FD), the local finite difference (LFD) and the
hybrid (H) methods for the double slit experiment. Shown for each method are the total error in
the energy norm in terms of percent of total energy and the total computational time (C Time) for
obtaining the solution at t D f1:25;2:5;3:75;5g. The norms are computed only on y < 0, since
we are only interested in the wave field that propagates through the two slits

tD 1.25 tD 2.5 tD 3.75 tD 5 C Time

FD 5.91% 10.6% 14.8% 19.1% 470
LFD 6.13% 11% 15.8% 19.7% 270
H 6.13% 12.7% 24.2% 33.9% 150

5.2 Example: Sound Speed with Inclusion

Finally, to demonstrate the hybrid method, we apply it to computing the wave field
for the sound speed with inclusion and compare it to the previously discussed
methods. For these experiments k D 100. The wave field is first computed using
Gaussian beams until the beam is close to the inclusion at t D 0:5. Then, the solution
is propagated with the local finite difference method until most of the wave energy
has moved past the inclusion at t D 2. The resulting field is then decomposed into
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Fig. 5 The wave field obtained by the hybrid method for the double slit experiment. The first panel
shows the sound speed and the double slit Dirichlet boundary condition region. The local finite
difference domain is outlined by the black rectangle at t D f0;1:25g. At t D f2:5;3:75;5g, the
black lines indicate the ray for each of the Gaussian beams

one beam (the hybrid one-beam solution) or into two beams (the hybrid two-beam
solution) using the decomposition algorithm of [14]. The wave fields for the one
and two beam hybrid solutions are shown in Fig. 6. The errors and computation
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times for the methods discussed in this paper are shown in Table 5. The local finite
difference calculations are done with a refinement factor of 5 and ˝.t/ is obtained
by thresholding the energy function at 1=10 of its maximum. This thresholding was
chosen so that the final errors in the local finite difference solution are similar to
the error in the hybrid solution making the comparison of the computation times
meaningful. The errors for the one and two beam hybrid solutions are 	62% and
	37% respectively at t D 2:5. This may seem rather large, but we note that this is
a large improvement over the Gaussian beam solution which has an error of 	91%.
Furthermore, this is a single Gaussian beam approximation of the wave field locally
and this wave field is not necessarily of Gaussian beam form. Locally, near the beam
centers, the H1 and H2 solutions are more accurate. The computational time for the
H1 and H2 hybrid solutions is 2 times faster compared to the local finite difference
solution and 10 times faster than the full finite difference solution.

Table 5 Comparisons of the methods for a sound speed with inclusion. Shown for each method
are the total error in the energy norm in terms of percent of total energy at each time, the local
errors as a percent of the local energy near the beam center for the first beam (Loc Err 1) and
near the second beam center (Loc Err 2), and the total computational time (C Time) for obtaining
the solution at each time. The local error is computed near the beam center, where the Gaussian
envelope is greater than 0:25. Legend: GB – Gaussian beam, LFD – Local finite difference, H1 –
Hybrid method with one beam, H2 – hybrid method with two beams

tD 0.675 tD 1.25 tD 1.875 tD 2.5 Loc Err 1 Loc Err 2 C Time

FD 3.3% 6.6% 9.4% 11.8% 12.3% 10.8% 4446.1
GB 6.1% 94.5% 91.2% 90.9% 42.2% 99.9% 1.5
LFD 6.6% 9.6% 11.9% 14.4% 12.4% 10.8% 781.0
H1 3.9% 7.4% 10.2% 62.0% 12.7% 100.0% 401.5
H2 3.9% 7.4% 10.2% 36.7% 12.7% 25.9% 417.9

6 Conclusion

In this paper, we develop a new hybrid method for high frequency wave propagation.
We couple a Gaussian beam approximation of high frequency wave propagation to
a local finite difference method in parts of the domains that contain strong variations
in the wave speed. The coupling is accomplished either by translating the Gaussian
beam representation into a wave field representation on a finite difference grid or by
approximating the finite difference solution with a superposition of Gaussian beams.
The local finite difference computations are performed on a moving computational
domain with absorbing boundary conditions. This direct method is only used at
times when a significant portion of the wave field energy is traveling through parts
of the domain that contain large variations in the wave speed. The rest of the high
frequency wave propagation is accomplished by the Gaussian beam method.
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Hybrid solution at t = 0
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Hybrid solution at t = 0.625

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Hybrid solution at t = 1.25
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Hybrid solution at t = 1.875
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Hybrid 1−beam solution at t = 2.5
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Hybrid 2−beam solution at t = 2.5
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Fig. 6 The wave field for the hybrid H1 and H2 solution. The top two rows show the real part
of the wave field which is the same for both the 1–beam and 2–beam hybrid solutions at t D
f0;0:625;1:25;1:875g. Times t D f:625;1:25;1:875g are during the local finite difference
calculation and the black rectangle outline the local finite difference domain ˝.t/. The real part
of the wave field for the 1–beam and 2-beam hybrid solutions are shown in the last row at t D 2:5.
In each panel, the black lines indicate the ray for each of the Gaussian beams
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Two numerical test examples show that the hybrid technique can retain the
overall computational efficiency of the Gaussian beam method. At the same time
the accuracy of the Gaussian beam methods in domains with smooth wave speed
field is kept and the accuracy of the finite difference method in domains with strong
variation in the wave speed is achieved. Furthermore, the hybrid method maintains
the ability to follow the wave energy as it propagates from the initial surface through
the domain as in traditional Gaussian beam and other ray based methods.
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73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

For further information on these books please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/3527

www.springer.com/series/3527


Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 3rd Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python.

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing. 2nd Edition

8. B. Gustafsson, Fundamentals of Scientific Computing.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

www.springer.com/series/7417
www.springer.com/series/5151

	Numerical Analysis of Multiscale Computations
	Preface
	Acknowledgements
	Contents
	Explicit Methods for Stiff Stochastic Differential Equations
	Oscillatory Systems with Three Separated Time Scales:Analysis and Computation
	Variance Reduction in Stochastic Homogenization: The Technique of Antithetic Variables
	A Stroboscopic Numerical Method for HighlyOscillatory Problems
	The Microscopic Origin of the Macroscopic Dielectric Permittivity of Crystals: A Mathematical Viewpoint
	Fast Multipole Method Using the Cauchy Integral Formula
	Tools for Multiscale Simulation of Liquids Using Open Molecular Dynamics
	Multiscale Methods for Wave Propagation in Heterogeneous Media Over Long Time
	Numerical Homogenization via Approximation of the SolutionOperator
	Adaptive Multilevel Monte Carlo Simulation
	Coupled Coarse Graining and Markov Chain Monte Carlofor Lattice Systems
	Calibration of a Jump-Diffusion Process Using Optimal Control
	Some Remarks on Free Energy and Coarse-Graining
	Linear Stationary Iterative Methods for the Force-Based Quasicontinuum Approximation
	Analysis of an Averaging Operator for Atomic-to-ContinuumCoupling Methods by the Arlequin Approach
	A Coupled Finite Difference – Gaussian Beam Method for High Frequency Wave Propagation
	Editorial Policy
	Lecture Notes in Computational Science and Engineering
	Monographs in Computational Science and Engineering
	Texts in Computational Science and Engineering



