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Preface

This volume contains revised versions of the papers presented at the seventh edi-
tion of the International Workshop on Argumentation in Multi-Agent Systems,
(ArgMAS 2010), held in Toronto, Canada, in association with the 9th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2010) in May 2010. Previous ArgMAS workshops have been held in New York
City, USA (2004), Utrecht, The Netherlands (2005), Hakodate, Japan (2006),
Honolulu, USA (2007), Estoril, Portugal (2008) and Budapest, Hungary (2009).
The event is now a regular feature on the international calendar for researchers
in computational argument and dialectics in multi-agent systems. Toronto will
be remembered by many as the ash-cloud workshop, as travel plans for many
people were disrupted by ash from the Icelandic volcano, Eyjafjallajökull.

A brief word to explain these topics is in order. Different agents within a
multi-agent system (MAS) potentially have differential access to information
and different capabilities, different beliefs, different preferences and desires, and
different goals. A key aspect of the scientific and engineering study of multi-
agent systems therefore has been the development of methods and procedures for
identifying, assessing, reconciling, arbitrating between, managing, and mitigat-
ing such differences. Market mechanisms and voting procedures are two methods
for dealing with these differences. Argumentation is another. Argumentation can
be understood as the formal interaction of different arguments for and against
some conclusion (e.g., a proposition, an action intention, a preference, etc.). An
agent may use argumentation techniques to perform individual reasoning for it-
self alone, in order to resolve conflicting evidence or to decide between conflicting
goals it may have. Two or more agents may also jointly use dialectical argumen-
tation to identify, express and reconcile differences between themselves, by means
of interactions such as negotiation, persuasion, inquiry and joint deliberation.

In recent years, formal theories of argument and argument interaction have
been proposed and studied, and this has led to the study of computational mod-
els of argument. The ArgMAS series of workshops has focused on computational
argumentation within the context of agent reasoning and multi-agent systems.
The ArgMAS workshops are of interest to anyone studying or applying: default
reasoning in autonomous agents; single-agent reasoning and planning under un-
certainty; strategic single-agent reasoning in the context of potential competitor
actions; and the rational resolution of the different beliefs and intentions of multi-
ple agents within multi-agent systems. There are close links between these topics
and other topics within the discipline of autonomous agents and multi-agent sys-
tems, particularly: agent communications languages and protocols; game theory;
AI planning; logic programming; and human–agent interaction.

The papers in this volume were selected for inclusion in the ArgMAS 2010
workshop following a peer-review process undertaken by anonymous reviewers,
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resulting in 14 papers being selected for inclusion in the workshop. We thank
all authors who made submissions to ArgMAS 2010, and we thank the mem-
bers of the Program Committee listed here for their efforts in reviewing the
papers submitted. We also thank the two reviewers of the paper submitted by
two of the co-editors who undertook their reviews anonymously through a pro-
cess of indirection, arranged and decided by the third co-editor. As for the 2009
workshop, we tasked official pre-chosen respondents to provide short, prepared
critiques to a number of the papers presented at the workshop. This innovation
was borrowed from conferences in philosophy, where it is standard, and we found
that it works very well. The comments of respondents, who each knew of their
assignment ahead of time and so could make a careful reading of their assigned
paper, better focused the discussions at the workshop, and led to improvements
in the quality of the revised papers later published here. This volume also con-
tains a paper from the invited keynote speaker at the workshop, prominent
argumentation-theorist and philosopher David Hitchcock of McMaster Univer-
sity, Hamilton, Ontario, Canada. His talk explored some of the philosophical
issues behind decisions over actions, and led to a lively debate at the workshop.
We were honored by Professor Hitchcock’s participation, and we thank him for
giving the keynote address.

As in collections of papers at previous ArgMAS workshops, we have also
invited several papers from the main AAMAS Conference of relevance to argu-
mentation in multi-agent systems. There are three invited papers here: a paper
by David Grossi entitled “Argumentation in the View of Modal Logic”; a paper
by Nabila Hadidi, Yannis Dimopoulos, and Pavlos Moraitis, entitled “Argumen-
tative Alternating Offers”; and a paper by Matthias Thimm and Alejandro J.
Garćıa entitled, “On Strategic Argument Selection in Structured Argumentation
Systems.” Apart from Professor Hitchcok’s invited paper, papers in this volume
are listed alphabetically by first author within three topic areas: Practical Rea-
soning and Reasoning About Action; Applications; and Theoretical Aspects of
Argumentation.

We hope that you enjoy reading this collection.

February 2011 Peter McBurney
Iyad Rahwan

Simon Parsons
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Instrumental Rationality

David Hitchcock

Department of Philosophy, McMaster University, Hamilton, Ontario, Canada L8S 4K1
hitchckd@mcmaster.ca

Abstract. Comprehensive reasoning from end to means requires an initiating in-
tention to bring about some goal, along with five premisses: a specified means
would immediately contribute to realization of the goal, the goal is achievable,
the means is permissible, no alternative means is preferable, and the side effects
do not outweigh the benefits of achieving the goal. Its conclusion is a decision
to bring about the means. The scheme can be reiterated until an implementable
means is reached. In a particular context, resource limitations may warrant trun-
cation of the reasoning.

ACM Category: I.2.11 Multiagent systems. General terms: Theory.

Keywords: rationality, instrumental rationality, means-end reasoning, reasoning
schemes.

1 Introduction

Instrumental rationality is rationality in the selection of means, or instruments, for
achieving a definite goal. The goal is some state of affairs to be brought about at some
future time through the agency of some person or group of persons, who need not be
identical with the person or persons reasoning from end to means. A presupposition of
such reasoning is that the intended end does not already obtain, and will not come about
without some effort on the part of one or more agents to realize it. The means selected
may be a single action by a single person, such as leaving one’s home at a certain time
in order to keep an appointment. But it may also be a plan, more or less completely
specified at first, such as the plan of the declarer in a game of contract bridge to draw
trumps first in an attempt to make the contract. Or it may be a policy, such as a policy
of working out on a regular basis in order to maintain one’s fitness. The goal may be a
personal goal of the agent, as in the examples just mentioned. It may also be a broad
social goal, like the initial target proposed by James Hansen et al. [1] of reducing the
concentration of carbon dioxide in the Earth’s atmosphere to at most 350 parts per mil-
lion. The goal may be difficult to realize, with severe restrictions on available means
and unreliable or incomplete information available to the reasoner or reasoners about
the relevant initial conditions and causal relationships.

As pointed out in [2], reasoning from a goal in mind to a chosen means is just one
form of reasoning about what is to be done, a genus often called “practical reasoning”.
Means-end reasoning should be distinguished, for example, from deciding to act in a
certain way on the basis that the action has in itself a certain character, apart from its

P. McBurney, I. Rahwan, and S. Parsons (Eds.): ArgMAS 2010, LNAI 6614, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 D. Hitchcock

consequences, as when someone notices that a store clerk has neglected to charge them
for an item and decides to bring the omission to the clerk’s attention, on the ground that
doing so is the honourable thing to do in the situation. Here mentioning the omission
is not a means to behaving honourably, but is an instance of such behaviour in concrete
circumstances. The distinction between such reasoning and means-end reasoning may
be difficult to draw, since as Anscombe [3] has pointed out one and the same action can
have a variety of descriptions, some of which may incorporate the (expected or actual)
achievement of a goal; means-end reasoning is however distinctive in involving refer-
ence to a causal chain from the selected means to the intended goal. Another form of
practical reasoning is reasoning from general prescriptions or proscriptions to a con-
clusion about what must or cannot be done in some particular situation, as when one
decides to keep silent about confidential information that one’s audience has no right to
know. Still other forms of practical reasoning concern the determination of what goal
is to be pursued. In some cases, the goal is an intermediate goal, itself reached by a
process of means-end reasoning, as in the proposal to reduce atmospheric carbon diox-
ide to at most 350 parts per million: “If humanity wishes to preserve a planet similar to
that on which civilization developed and to which life on Earth is adapted, paleoclimate
evidence and ongoing climate change suggest that CO2 will need to be reduced from
its current 385 ppm to at most 350 ppm, but likely less than that.” [1] In other cases, the
goal may be a final goal, not a means to achieving some further end; Richardson [4] has
argued persuasively that it is possible to reason in various ways about such final ends.
Another form of practical reasoning is deciding what to do on the basis of a number
of relevant but separately inconclusive considerations, as when one chooses whether
to spend a free evening watching a movie or reading a novel or going out for a drink
with some friends. So-called “pragmatic argumentation” for or against some policy on
the basis of its consequences [5] involves yet another form of practical reasoning. Still
another form of practical reasoning is that envisaged by standard causal decision theory
[6], in which one calculates the expected utility of one’s options with a view to choosing
the one with the highest expected utility.

Any decision-making about what is to be done may need to take into account a
variety of types of factors: goals, prescriptions, prohibitions, valuable and “disvaluable”
features, likes and dislikes, and so forth. Hence there may be considerable overlap, and
even identity, between the sets of “critical questions” associated with reasoning schemes
or argumentation schemes for two different types of practical reasoning. Nevertheless,
it is useful to consider means-end reasoning separately from other forms of practical
reasoning, because of its specific characteristic of starting from an intention to pursue a
definite goal.

It is often taken to be obvious what instrumental rationality is. Habermas [7, p.
9] remarks simply that from the perspective of “cognitive-instrumental rationality”
goal-directed actions are rational to the extent that their claims to effectiveness can be
defended against criticism. Larry Laudan, advocating an instrumental conception of
scientific rationality, writes: “The theory of instrumental rationality simply insists that,
once one has settled on one’s ... desired ends, then the issue of the appropriate methods
of appraisal to use depends on what strategies conduce to the realization of the selected
end” [8, p. 318].
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Effectiveness of the means in securing the selected end is however often a difficult
matter to determine in advance. Further, an agent may be simultaneously pursuing sev-
eral goals at once, for example in conversational interaction [9]. Further, effectiveness
is not always the only factor that needs to be kept in mind. As Perelman and Olbrechts-
Tyteca point out [10, p. 278], everyday reasoning can rarely eliminate all considerations
of value other than those that relate to the end in view. Hence there is more than Haber-
mas and Laudan acknowledge to be said about instrumental rationality.

In what follows, I review the factors that may need to be taken into account when
someone reasons from a concrete end in view to a means adopted with a view to achiev-
ing it, and as a result of that review propose a comprehensive scheme for means-end
reasoning, whose implementation in particular domains or circumstances may be trun-
cated, for example because of resource constraints. I focus on solo reasoning by a single
agent, on the ground that such reasoning is simpler than that involved in a deliberation
dialogue where two or more agents seek to arrive at an agreement on what is to be
done in the pursuit of one or more antecedently agreed goals. Solo means-end reason-
ing is also simpler than justification of one’s choice of means to a rational critic. One
can of course represent solo means-end reasoning as a kind of dialogue with oneself,
in which one alternately takes the role of a proponent and of a rational critic. But this
representation only occasionally corresponds to the way in which solo means-end rea-
soning actually proceeds, and there seems to be no theoretical gain from shoe-horning
solo means-end reasoning into an implicitly dialogical format. In fact, there is a theoret-
ical risk in this approach of taking recognition that some means will achieve an agent’s
intended goal as establishing a presumption that the agent should perform it (cf. [11,
p. 12]) — an assumption that Christian Kock [12] has cogently refuted.

2 Selection of the Goal

Means-end reasoning begins with the adoption as one’s aim of one or more concrete
ends in view. The standard belief-desire model of how reasoning issues in action, a
model that comes from Aristotle (Nicomachean Ethics III.3 [13]) and Hume (Treatise
II.3.3 [14]), treats the mental state of having a goal in mind as a desire. So does the
more sophisticated belief-desire-intention (BDI) model due to Bratman [15]. Certainly
one wants to achieve whatever one has decided to pursue as a goal. But there is more to
having something as one’s goal than wanting it to come about, as Searle has noted [16].
One can want something that one recognizes to be impossible, such as personal immor-
tality on Earth, so that one makes no effort to pursue it as a goal, while nevertheless still
wishing that it might come about. One can quite rationally have two desires that one
recognizes cannot both be satisfied, such as the proverbial desire to have one’s cake and
eat it too, but one cannot rationally pursue as a goal the satisfaction of both desires once
one has recognized that both cannot be satisfied. The starting-point of solo means-end
reasoning might better be described as an intention to bring about an end, rather than a
desire. It is not a judgment that one has the end as one’s goal, and its verbal expression
(to oneself or someone else) is not a statement that one has the end as one’s goal. The
speech act corresponding to the intention that initiates means-end reasoning would be
some sort of directive, expressible linguistically by a first-person-singular imperative of
the sort grammaticalized in some languages, for example classical Greek.
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This proposed alternative to belief-desire and belief-desire-intention models of
means-end reasoning was articulated independently of the belief-goal model proposed
by Castelfranchi and Paglieri [17], to which it is similar in some respects. Castel-
franchi and Paglieri conceive of a goal as “an anticipatory internal representation of
a state of the world that has the potential for and the function of (eventually) constrain-
ing/governing the behaviour of an agent towards its realization” [17, p. 239] (italics
in original). This conception is broader than the conception of a goal assumed in the
present paper, in that for them a goal is not necessarily actively adopted as a constraint
on action; it may merely have the potential for such constraint. In the present paper,
a goal is conceived as something adopted as a concrete end in view and as actually
constraining at least the agent’s thinking about what is to be done.

Intentions to pursue something as a goal are subject to rational criticism. The goal
may be unattainable, so that attempts to pursue it are a waste of time and resources.
Once achieved, it may turn out to be quite different than one imagined it to be, or just
much less to one’s liking than one had supposed-an eventuality warned against in the
saying, “Be careful what you wish for, ’cause you just might get it”, echoed in the title
of cautionary lyrics by the American rapper Eminem [18]. If the goal is an intermediate
goal, it can be criticized on the ground that it is ineffective for its intended purpose.
It can also be criticized because it does not in fact realize the values that motivate its
pursuit. Atkinson and Bench-Capon [19] have proposed to distinguish the goal pursued
from the values realized by its implementation, as a way of providing for multi-agent
agreement on a course of action despite differences in value preferences. Values in
their approach are prized features of states of affairs, as opposed to concrete states
of affairs like the examples in [17]: marrying a certain person, cooking liver Venetian
style, becoming a Catholic priest, completing a dissertation, submitting an article to a
journal. A distinction between goals and values is useful in solo means-end reasoning,
as a way of opening up a mental space for reformulation of the goal if it seems difficult
to achieve, by adopting a different goal that realizes the same value. In fact, a goal
can be pursued in order to realize simultaneously a number of values. For instance,
in the repressive regime in the Soviet Union from late 1982 to early 1984, a young
university student was determined to lose his virginity before marriage as a form of
resistance to the regime’s ideological pressures (in this case, pressure to have sex only
within marriage), as well as of gaining self-respect and respect in the eyes of his peers
(and sexual satisfaction); achievement of the goal would thus realize simultaneously, in
his view, political, psychological and social values. Objections that achieving the goal
would not in fact realize one or other of these values would count as a criticism of the
intention to pursue the goal, a criticism that could be countered by taking realization of
the remaining values as sufficient grounds.

The fact that adopted goals are subject to rational criticism opens up the question of
the ultimate touchstone of practical reasoning, including means-end reasoning. In rea-
soning and argument about what is the case, the ultimate touchstone, if one adopts an
epistemological rather than a purely dialectical or rhetorical perspective, is what is the
case. Ideally, one’s reasons should be known to be true, and each conclusion in one’s
chain of reasoning should be known to follow from the reasons offered in its immediate
support, where following means that it is impossible for the reasons to be true while



Instrumental Rationality 5

the conclusion is untrue. Less stringent epistemic criteria of premiss adequacy and in-
ference adequacy get their rationale from their aptness at tracking what is the case; for
example, justified beliefs or beliefs acquired by a generally reliable process are likely
to be true, and instances of inductively strong or ceteris paribus forms of argument tend
to have a true conclusion if they have true premisses.

Is there an analogous touchstone for reasoning about what is to be done? From a
purely dialectical perspective, the touchstone is acceptance by one’s interlocutor of
whatever starting-points and rules of inference are used to generate a conclusion about
what is to be done. From a purely rhetorical perspective, the touchstone is adherence
by one’s intended audience to the starting-points and rules of inference. An epistemo-
logical perspective looks for some factor other than agreement or adherence. A plau-
sible candidate is what Pollock [20] calls a “situation-liking”, a feeling produced by
an agent’s situation as the agent believes it to be, of which humans are introspectively
aware, and from which Pollock proposes to construct a cardinal measure of how much
an agent likes a token situation. This cardinal measure, which has some similarities to
measures of a person’s utilities on the basis of their qualified preferences, can be fed
into standard decision-theoretic calculations of the sort described by Weirich [6]. Pol-
lock’s proposal for the architecture of a rational agent, complex as it is, suffers from
being solipsistic, asocial and amoral [21]. It might profitably be supplemented by the
account of the common morality of humanity developed by Bernard Gert [22]. Gert
construes morality as an informal institution for reducing the harm that human beings
suffer. He defines an evil or harm as something that all rational persons avoid unless
they have an adequate reason not to, and a good or benefit as something that no ratio-
nal person will give up or avoid without an adequate reason [22, p. 91]. On this basis,
and taking into account the types of treatment that count as punishment and the types
of conditions that count as maladies for medical purposes, the basic personal evils or
harms are death, pain, disability, loss of freedom and loss of pleasure; and the basic
personal goods are consciousness, ability, freedom and pleasure [22, p. 108]. Gert’s list
of basic personal harms and basic personal benefits can be regarded as common inputs
for rational human beings to the situation-likings (and situation-dislikings) that Pollock
takes as fundamental to practical reasoning.

3 Consideration of Possible Means

However the adoption as a goal of some concrete end in view is to be critiqued or justi-
fied, and whatever the ultimate touchstone for any such critique or justification, the goal
is just the starting-point of means-end reasoning. The next stage is the consideration of
possible means of achieving the goal (or goals, if the reasoner aims to pursue more than
one goal at once).

Two constraints on the search for effective means ought to be noted at the outset.
First, the search takes time and resources, which must be weighed against the ben-

efits of finding some theoretically optimal path to one’s goal, as compared to other
desirable results from using the time and resources in a different way. Aristotle tells us
that, “if it [the end–DH] seems to be produced by several means, they [those who de-
liberate] consider by which it is most easily and best produced” (Nicomachean Ethics
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III.3.1112b16-17 [13]). His description has the merit of recognizing more than one cri-
terion for choosing among possible sufficient means, not just ease or efficiency but what
we might translate as “fineness”. But the cost of discovering the most efficient and finest
path to one’s goal may be greater than the payoff in extra efficiency or beauty, as is com-
monly recognized in work on agent reasoning in computer science. As Perelman and
Olbrechts Tyteca point out, “If the value of the means is to be enhanced by the end, the
means must obviously be effective; but this does not mean that it has to be the best. The
determination of the best means is a technical problem, which requires various data to
be brought into play and all kinds of argumentation to be used” [10, p. 277].

Second, there are often ethical, legal or institutional constraints on acceptable means.
For example, researchers designing a study to determine the effectiveness of an educa-
tional or therapeutic intervention must make sure that the design respects ethical guide-
lines for research using human subjects. The declarer in a game of contract bridge who
works out a strategy that maximizes the chance of making the contract does so within
the framework of the rules of the game, such as the rule that each player must follow
suit if possible. And so on. Constraints of these sorts usually operate in the background
of a person’s thinking, in the sense that the person considers only means of achieving
the goal that are allowed by the constraints. Nevertheless, their operation should be
acknowledged in a comprehensive account of instrumental rationality.

Perhaps the simplest case of selecting a means for achieving a goal is the case where
exactly one means is required. This case seems to be the only type of means-end rea-
soning where something akin to the strictness of formal deductive validity comes into
play. Kant expresses the underlying principle as follows: “Whoever wills the end, also
wills (insofar as reason has decisive influence on his actions) the means that are indis-
pensably necessary to it that are in his control” [23, p. 34, Ak4:417]. Kant maintains
that this principle is an analytic necessary truth, that there is a kind of volitional in-
consistency in the combination of setting out to achieve some goal, recognizing that
some action in one’s power is required for the achievement of that goal, but neverthe-
less not proceeding to perform the required action. John Searle, despite his claim that
“there is no plausible logic of practical reason” [16, p. 246], concedes that in one spe-
cial sense Kant’s claim is correct: ”If I intend an end E, and I know that in order to
achieve E I must intentionally do M, then I am committed to intending to do M” [16,
p. 266]. Searle’s formulation qualifies Kant’s claim in three ways, each needed to block
counter-examples. The agent does not merely desire the end but intends it. The means
is not just necessary for achieving the end but is known by the agent to be necessary.
And for achievement of the end it is necessary that the agent intends to bring M about,
not just that M occur.

The scope of Kant’s principle is however rather narrow, since we rarely know that we
must intend to do something in order to achieve some intended goal. And the principle
is a two-edged sword. One can use it either to justify implementing the necessary means
or to justify abandoning or modifying one’s goal. In general, as Perelman and Olbrechts-
Tyteca note, the end justifies the means only sometimes: “the use of the means may be
blameworthy in itself or have disastrous consequences outweighing the end one wishes
to secure” [10, p. 276]. In the case of a necessary means, it may also turn out that the
goal will not be achieved even if one implements the means, because of other factors
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beyond one’s control; in that case, the reasonable thing to do is to abandon or modify
the goal rather than to implement the means (unless there is some independent reason
for implementing it).

If one determines that a means to one’s goal is not only necessary but sufficient, that
the means is achievable and permissible, that it is not in itself undesirable, that it brings
with it no overriding unwelcome side-effects, and that it does not impede the pursuit
of one’s other goals, then one’s course is clear: One should adopt the means as one’s
intermediate goal, and as a plan of action if one can implement it directly.

A slightly more complicated situation arises when achievement of the goal requires
implementation of one of a number of means, which might for example be specifica-
tions of some generic means. Here consideration of the ease of achieving each means,
its permissibility or impermissibility, its intrinsically desirable or undesirable features,
the desirability or undesirability of its side-effects, and its effect on the possibility of
achieving one’s other goals may come into play in selecting among these disjunctively
necessary means. It seems difficult to propose an algorithm or quasi-algorithm for tak-
ing such considerations into account. Walton’s selection premiss in his necessary con-
dition schema for practical reasoning is perhaps the best one can do by way of a general
statement: “I have selected one member Bi [of the set of means, at least one of which is
necessary for achieving my goal–DH] as an acceptable, or the most acceptable, neces-
sary condition for A [my goal–DH].” [24, p. 323]; cf. [25].

A different situation arises when there are several ways of achieving the goal, each
of them sufficient. It is this situation that Aristotle envisages when he describes a de-
liberator as selecting the easiest and best means. As indicated by previous remarks in
this paper, however, it is not necessarily rational to select the easiest and best of a num-
ber of means that are each sufficient to achieve one’s goal. The easiest and finest way to
bring about an intended end might have foreseeable consequences whose disadvantages
outweigh the benefits of achieving the goal. Or all the available means might violate a
moral, legal or institutional constraint. The time and resources required to achieve the
goal might not be worth it. Again, perhaps the best one can do in the way of a gen-
eral statement about how to select among a number of sufficient means for achieving
one’s goal is Walton’s selection premiss in his sufficient condition schema for practical
reasoning: “I have selected one member Bi [of the set of means, each of which is by
itself sufficient for achieving my goal–DH] as an acceptable, or the most acceptable,
sufficient condition for A [my goal–DH].” [24, p. 323]; cf. [25].

In many cases, the information available does not permit identification of either a
necessary or a sufficient means for achieving one’s goal. One may know only the prob-
able consequences of the options open to us, especially if those consequences depend
on the actions and reactions of other agents. Perhaps less importantly, one’s informa-
tion about causal connections or initial conditions may be incomplete, inaccurate or
even inconsistent. One may have to settle for an action that only makes it probable that
one will achieve one’s goal. Indeed, in some situations the most rational decision is to
do something that has only a slim chance of achieving it, if it is the only possible way.

Whether a means under consideration is a necessary, sufficient, probable or even
merely possible way of achieving one’s goal, a number of considerations can make
one hesitate before proceeding to bring about the means in question: conflicting goals,
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alternative means, practical difficulties, side-effects. These considerations are well cap-
tured in the premisses and critical questions of Walton’s necessary condition and suffi-
cient condition schemata for practical reasoning [24, pp. 323-324].

Provision needs to be made, however, for the sort of backwards chaining that Aris-
totle describes, from an ultimate goal through intermediate means to a means that is in
one’s power (or in the power of an agent on whose behalf one is reasoning): “ . . . if it [the
end–DH] is achieved by one <means–DH> only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, which
in the order of discovery is last . . . ” (Nicomachean Ethics III.3.1112b17-19 [13]).

The conclusion of means-end reasoning is not a judgment that something is the case,
or even a judgment that something ought to be brought about. It is a decision to bring
something about, as Aristotle already recognized, or a recommendation that someone
else bring it about. Its verbal expression would be some sort of directive rather than an
assertive.

4 Conclusion

If we put together the considerations raised in the preceding discussion, we get the fol-
lowing rather complicated scheme for solo reasoning from a goal in mind to a selected
means:

Initiating intention of an agent A: to bring about some goal G (where G is described as
some future state of affairs, possibly but not necessarily including a reference to A)

Immediate means premiss: Means M1 would immediately contribute to bringing about
goal G (where M1 is describable as a present or future state of affairs and may or may
not be an action of A).

Achievability premiss: M1 is achievable as the result of a causal sequence initiated by
some policy P of some agent (where the agent may or may not be A) in the present cir-
cumstances C (where achievability may be a matter of possibility or probability rather
than something guaranteed).

Permissibility premiss: M1 violates no applicable moral, legal or institutional rule with-
out adequate justification for the violation.

Alternative means premiss: No other permissible means that would immediately con-
tribute to bringing about goal G is preferable to M1 in the light of the sum total of
considerations relevant to choosing a means of bringing about an end, such as the prob-
ability in the circumstances that the means will bring about the end, the economy of
time and resources involved in producing the means, the value on balance of the side
effects of the means, and the intrinsic merits and demerits of the means.

Side effects premiss: The side effects of M1, including its effect on the achievement of
other goals of A, do not outweigh the expected benefit of achieving G (where the ex-
pected benefit is a function of the values promoted by G, the degree to which achieving
G will promote each of those values, and the probability that G will occur as the result
of M1).

Concluding decision: to bring about M1.
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If M1 is not a policy that an agent can immediately implement in circumstances C,
then the scheme would need to be applied again, with M1 as the new goal and M2 as
the hoped-for new means. Application of the scheme should continue until a means is
selected that is within the power of the relevant agent.

The alternative means premiss is schematic, and would need to be fleshed out for a
given practical context in a given domain. In a situation where neither of two mutually
exclusive means that would contribute to achievement of the goal is preferable to the
other, there is no basis for choosing one means over the other. It would be equally
rational to choose either.

The scheme needs supplementation with a scheme for selection of goals, including
refinement or replacement of a goal that turns out to be unachievable in an acceptable
way. Castelfranchi and Paglieri [17] make some helpful suggestions in this direction,
with a general characterization of belief-based goal selection, a characterization that
could serve as inspiration for critical questions in various form of practical reasoning.
The approach of Atkinson and Bench-Capon [19] of distinguishing goals from the val-
ues they promote could also be useful in this context.

There is also a need to supplement the generic scheme for means-end reasoning with
a general framework for updating one’s plans in the light of new information, as for
example when the play of cards in a game of contract bridge reveals more information
to the declarer about the opponents’ hands.

It may not make sense to deploy the full scheme in a given situation where one has
a goal in mind and needs to work out a means of achieving it. The cost of deploying
the full scheme may not be worth any extra benefits so obtained. But, as pointed out
by Fabio Paglieri in his review of an earlier version of this paper, such cost-benefit
considerations do not diminish the analytical value of the scheme, since even simpli-
fied heuristics for decision making can be seen as abridged or modified versions of it.
For instance, focusing one’s attention only on a few options simply means applying
the alternative means premiss to a limited sub-set of potential means or considerations
relevant to the choice of such means. Adopting a satisficing perspective, as proposed
by Herbert Simon [26], requires a modified version of the alternative means premiss:
that no other satisficing means has been discovered that is preferable to the satisficing
means M1. More generally, economies in decision making would likely involve neglect-
ing or simplifying the alternative means premiss and/or the side effects premiss, since
these are the most costly premisses in this scheme. In particular contexts, it may make
sense to treat the issues of alternative means and side effects as the subject of critical
questions, answers to which might overturn a presumption in favour of some means of
achieving one’s goal but would not be required to establish the presumption in the first
place. These possible changes suggest some continuity between the present proposal of
a general and idealized scheme for means-end reasoning and various bounded rational-
ity models of the same phenomenon. Unfortunately, the present author is constrained
by resource limitations to leave to others the work of exploring this continuity and the
implications of the proposed scheme for work in computer science.

An abstract and high-level reasoning scheme for solo means-end reasoning
like the one just proposed is perhaps not of much direct use as a guide to real-life
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decision-making. It may be of most use as a guide for the formulation of lower-level
domain-specific reasoning schemes. And no doubt it is subject to counter-examples that
can be an occasion for further refinement.

Acknowledgements

I would like to acknowledge helpful comments on my presentation of earlier versions
of this paper at the Seventh International Workshop on Argumentation in Multi-Agent
Systems (ArgMAS 2010) and at the Seventh Conference on Argumentation of the In-
ternational Society for the Study of Argumentation (ISSA). At the latter conference,
comments by Michael Gilbert, Hanns Hohmann, Erik Krabbe, Alain Létourneau and
Christoph Lumer were particularly helpful. I would also like to acknowledge helpful
reviews of the paper by Fabio Paglieri for ISSA and by two anonymous reviewers for
ArgMAS 2010.

References

1. Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V.,
Pagani, M., Raymo, M., Royer, D.L., Zachos, J.C.: Target atomspheric CO2: Where
should humanity aim? The Open Atmosphere. Science Journal 2, 217–231 (2008);
doi:10.2174/1874282300802010217

2. Girle, R., Hitchcock, D., McBurney, P., Verheij, B.: Decision support for Practical Reasoning.
In: Reed, C., Norman, T.J. (eds.) Argumentation Machines: New Frontiers in Argumentation
and Computation, vol. 9, pp. 55–83. Kluwer Academic Publishers, Dordrecht (2004)

3. Anscombe, E.: Intention, 2nd edn. Blackwell, Oxford (1963)
4. Richardson, H.S.: Practical Reasoning about Final Ends. Cambridge University Press, Cam-

bridge (1994)
5. Ihnen, C.: Evaluating pragmatic argumentation: A pragma-dialectical perspective. In: Van

Eemeren, F.H., Garssen, B., Godden, D., Mitchell, G. (eds.) Proceedings of the 7th Interna-
tional Conference on Argumentation of the International Society for the Study of Argumen-
tation, SICSAT, Amsterdam, The Netherlands (forthcoming)

6. Weirich, P.: Causal decision theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy (Fall 2010), http://plato.stanford.edu/archives/fall2010/
entries/decision-causal/

7. Habermas, J.: The Theory of Communicative Action, vol. 1: Reason and the Rationaliza-
tion of Society, Heinemann, London, UK (1984); Translation by T. McCarthy of: Theorie
des Kommunikativen Handelns, Band I, Handlungsrationalität und gesellschaftliche Ratio-
nalisierung, Suhrkamp, Frankfurt, Germany (1981)

8. Laudan, L.: Aim-less epistemology? Studies in the History and Philosophy of Science 21,
315–322 (1990)

9. Tracy, K., Coupland, N.: Multiple goals in discourse: an overview of issues. Journal of Lan-
guage and Social Psychology 9, 1–13 (1990)

10. Perelman, C., Olbrechts-Tyteca, L.: The New Rhetoric: A Treatise on Argumentation. Uni-
versity of Notre Dame Press, Notre Dame (1969); Translation of la Nouvelle Rhétorique.
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Abstract. When deliberating about what to do, an autonomous agent must gen-
erate and consider the relative pros and cons of the different options. The situation
becomes even more complicated when an agent is involved in a joint deliberation,
as each agent will have its own preferred outcome which may change as new
information is received from the other agents involved in the deliberation. We
present an argumentation-based dialogue system that allows agents to come to an
agreement on how to act in order to achieve a joint goal. The dialogue strategy
that we define ensures that any agreement reached is acceptable to each agent,
but does not necessarily demand that the agents resolve or share their differing
preferences. We give properties of our system and discuss possible extensions.

ACM Category: I.2.11 Multiagent systems. General terms: Theory.

Keywords: dialogue, argumentation, agreement, strategy, deliberation, action.

1 Introduction

When agents engage in dialogues their behaviour is influenced by a number of factors
including the type of dialogue taking place (e.g. negotiation or inquiry), the agents’
own interests within the dialogue, and the other parties participating in the dialogue.
Some of these aspects have been recognised in Walton and Krabbe’s characterisation
of dialogue types [1]. Some types of dialogue are more adversarial than others. For
example, in a persuasion dialogue an agent may try to force its opponent to contradict
itself, thus weakening the opponent’s position. In a deliberation dialogue, however, the
agents are more co-operative as they each share the same goal to establish agreement,
although individually they may wish to influence the outcome in their own favour.

We present a dialogue system for deliberation that allows agents to reason and argue
about what to do to achieve some joint goal but does not require them to pool their
knowledge, nor does it require them to aggregate their preferences. Few existing dia-
logue systems address the problem of deliberation ([2,3] are notable exceptions). Ours
is the first system for deliberation that provides a dialogue strategy that allows agents
to come to an agreement about how to act that each is happy with, despite the fact that
they may have different preferences and thus may each be agreeing for different rea-
sons; it couples a dialectical setting with formal methods for argument evaluation and
allows strategic manoeuvring in order to influence the dialogue outcome. We present an
analysis of when agreement can and cannot be reached with our system; this provides
an essential foundation to allow us to explore mechanisms that allow agents to come to
an agreement in situations where the system presented here may fail.

P. McBurney, I. Rahwan, and S. Parsons (Eds.): ArgMAS 2010, LNAI 6614, pp. 12–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We assume that agents are co-operative in that they do not mislead one another and
will come to an agreement wherever possible; however, each agent aims to satisfy its
own preferences. For the sake of simplicity, here we present a two party dialogue; how-
ever, the assumed co-operative setting means that many of the difficult issues which
normally arise with multi party dialogues (e.g. [4]) are avoided here. We believe it to
be straightforward to extend the system to allow multiple participants, for example fol-
lowing the approach taken in [5].

We describe the setting envisaged through a characteristic scenario. Consider a situ-
ation where a group of colleagues is attending a conference and they would all like to
go out for dinner together. Inevitably, a deliberation takes place where options are pro-
posed and critiqued and each individual will have his own preferences that he wishes
to be satisfied by the group’s decision. It is likely that there will be a range of differ-
ent options proposed that are based on criteria such as: the type of cuisine desired; the
proximity of the restaurant; the expense involved; the restaurant’s capacity; etc.

To start the dialogue one party may put forward a particular proposal, reflecting his
own preferences, say going to a French restaurant in the town centre. Such an argument
may be attacked on numerous grounds, such as it being a taxi ride away, or it being
expensive. If expense is a particular consideration for some members of the party, then
alternative options would have to be proposed, each of which may have its own merits
and disadvantages, and may need to consider the preferences already expressed. We can
see that in such a scenario the agents , whilst each having their own preferred options,
are committed to finding an outcome that everyone can agree to.

We present a formal argumentation-based dialogue system to handle joint delibera-
tion. In section 2 we present the reasoning mechanism through which agents can con-
struct and propose arguments about action. In section 3 we define the dialogue system
and give an example dialogue. In section 4 we present an analysis of our system and in
section 5 we discuss important extensions. In section 6 we discuss related work, and we
conclude the paper in section 7.

2 Practical Arguments

We now describe the model of argumentation that we use to allow agents to reason about
how to act. Our account is based upon a popular approach to argument characterisation,
whereby argumentation schemes and critical questions are used as presumptive justifi-
cation for generating arguments and attacks between them [6]. Arguments are generated
by an agent instantiating a scheme for practical reasoning which makes explicit the fol-
lowing elements: the initial circumstances where action is required; the action to be
taken; the new circumstances that arise through acting; the goal to be achieved; and the
social value promoted by realising the goal in this way. The scheme is associated with
a set of characteristic critical questions (CQs) that can be used to identify challenges
to proposals for action that instantiate the scheme. An unfavourable answer to a CQ
will identify a potential flaw in the argument. Since the scheme makes use of what are
termed as ‘values’, this caters for arguments based on subjective preferences as well
as more objective facts. Such values represent qualitative social interests that an agent
wishes (or does not wish) to uphold by realising the goal stated [7].
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To enable the practical argument scheme and critical questions approach to be pre-
cisely formalised for use in automated systems, in [8] it was defined in terms of an
Action-based Alternating Transition System (AATS) [9], which is a structure for mod-
elling game-like multi-agent systems where the agents can perform actions in order to
attempt to control the system in some way. Whilst the formalisms given in [8,9] are
intended to represent the overall behaviour of a multi-agent system and the effects of
joint actions performed by the agents, we are interested in representing the knowledge
of individual agents within a system. Hence, we use an adaptation of their formalisms
(first presented in [5]) to define a Value-based Transition System (VATS) as follows.

Definition 1. A Value-based Transition System (VATS), for an agent x, denoted Sx,
is a 9-tuple 〈Qx, qx

0 , Acx, Avx, ρx, τx, Φx, πx, δx〉 s.t.:
Qx is a finite set of states;
qx
0 ∈ Qx is the designated initial state;

Acx is a finite set of actions;
Avx is a finite set of values;
ρx : Acx �→ 2Qx

is an action precondition function, which for each action a ∈ Acx

defines the set of states ρ(a) from which a may be executed;
τx : Qx × Acx �→ Qx is a partial system transition function, which defines the state
τx(q, a) that would result by the performance of a from state q—n.b. as this function is
partial, not all actions are possible in all states (cf. the precondition function above);
Φx is a finite set of atomic propositions;
πx : Qx �→ 2Φx

is an interpretation function, which gives the set of primitive proposi-
tions satisfied in each state: if p ∈ πx(q), then this means that the propositional variable
p is satisfied (equivalently, true) in state q; and
δx : Qx × Qx × Avx �→ {+,−, =} is a valuation function, which defines the status
(promoted (+), demoted (−), or neutral (=)) of a value v ∈ Avx ascribed by the agent
to the transition between two states: δx(q, q′, v) labels the transition between q and q′

with respect to the value v ∈ Avx.
Note, Qx = ∅ ↔ Acx = ∅ ↔ Avx = ∅ ↔ Φx = ∅.

Given its VATS, an agent can now instantiate the practical reasoning argument
scheme in order to construct arguments for (or against) actions to achieve a particu-
lar goal because they promote (or demote) a particular value.

Definition 2. An argument constructed by an agent x from its VATS Sx is a 4-tuple
A = 〈a, p, v, s〉 s.t.: qx = qx

0 ; a ∈ Acx; τx(qx, a) = qy; p ∈ πx(qy); v ∈ Avx;
δx(qx, qy, v) = s where s ∈ {+,−}.
We define the functions: Act(A) = a; Goal(A) = p; Val(A) = v; Sign(A) = s.
If Sign(A) = +(−resp.), then we say A is an argument for (against resp.) action a.
We denote the set of all arguments an agent x can construct from Sx as Argsx; we
let Argsx

p = {A ∈ Argsx | Goal(A) = p}.
The set of values for a set of arguments X is defined as Vals(X ) = {v | A ∈
X and Val(A) = v}.

If we take a particular argument for an action, it is possible to generate attacks on that
argument by posing the various CQs related to the practical reasoning argument scheme.
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In [8], details are given of how the reasoning with the argument scheme and posing CQs
is split into three stages: problem formulation, where the agents decide on the facts
and values relevant to the particular situation under consideration; epistemic reasoning,
where the agents determine the current situation with respect to the structure formed
at the previous stage; and action selection, where the agents develop, and evaluate,
arguments and counter arguments about what to do. Here, we assume that the agents’
problem formulation and epistemic reasoning are sound and that there is no dispute
between them relating to these stages; hence, we do not consider the CQs that arise in
these stages. That leaves CQ5-CQ11 for consideration (as numbered in [8]):

CQ5: Are there alternative ways of realising the same consequences?
CQ6: Are there alternative ways of realising the same goal?
CQ7: Are there alternative ways of promoting the same value?
CQ8: Does doing the action have a side effect which demotes the value?
CQ9: Does doing the action have a side effect which demotes some other value?
CQ10: Does doing the action promote some other value?
CQ11: Does doing the action preclude some other action which would promote some
other value?

We do not consider CQ5 or CQ11 further, as the focus of the dialogue is to agree to an
action that achieves the goal; hence, the incidental consequences (CQ5) and other po-
tentially precluded actions (CQ11) are of no interest. We focus instead on CQ6-CQ10;
agents participating in a deliberation dialogue use these CQs to identify attacks on pro-
posed arguments for action. These CQs generate a set of arguments for and against
different actions to achieve a particular goal, where each argument is associated with
a motivating value. To evaluate the status of these arguments we use a Value Based
Argumentation Framework (VAF), introduced in [7]. A VAF is an extension of the ar-
gumentation frameworks (AF) of Dung [10]. In an AF an argument is admissible with
respect to a set of arguments S if all of its attackers are attacked by some argument in
S, and no argument in S attacks an argument in S. In a VAF an argument succeeds in
defeating an argument it attacks only if its value is ranked as high, or higher, than the
value of the argument attacked; a particular ordering of the values is characterised as
an audience. Arguments in a VAF are admissible with respect to an audience A and
a set of arguments S if they are admissible with respect to S in the AF which results
from removing all the attacks which are unsuccessful given the audience A. A maximal
admissible set of a VAF is known as a preferred extension.

Although VAFs are commonly defined abstractly, here we give an instantiation in
which we define the attack relation between the arguments. Condition 1 of the follow-
ing attack relation allows for CQ8 and CQ9; condition 2 allows for CQ10; condition 3
allows for CQ6 and CQ7. Note that attacks generated by condition 1 are not symmetri-
cal, whilst those generated by conditions 2 and 3 are.

Definition 3. An instantiated value-based argumentation framework (iVAF) is de-
fined by a tuple 〈X ,A〉 s.t. X is a finite set of arguments and A ⊂ X ×X is the attack
relation. A pair (Ai, Aj) ∈ A is referred to as “Ai attacks Aj” or “Aj is attacked by
Ai”. For two arguments Ai = 〈a, p, v, s〉, Aj = 〈a′, p′, v′, s′〉 ∈ X , (Ai, Aj) ∈ A iff
p = p′ and either:
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1. a = a′, s = − and s′ = +; or
2. a = a′, v 
= v′ and s = s′ = +; or
3. a 
= a′ and s = s′ = +.

An audience for an agent x over the values V is a binary relation Rx ⊂ V × V that
defines a total order over V . We say that an argument Ai is preferred to the argument
Aj in the audience Rx, denoted Ai �x Aj , iff (Val(Ai), (Val(Aj)) ∈ Rx. If Rx is an
audience over the values V for the iVAF 〈X ,A〉, then Vals(X ) ⊆ V .

We use the term audience here to be consistent with the literature, it does not refer to
the preference of a set of agents; rather, we define it to represent a particular agent’s
preference over a set of values.

Given an iVAF and a particular agent’s audience, we can determine acceptability of
an argument as follows. Note that if an attack is symmetric, then an attack only succeeds
in defeat if the attacker is more preferred than the argument being attacked; however,
as in [7], if an attack is asymmetric, then an attack succeeds in defeat if the attacker is
at least as preferred as the argument being attacked.

Definition 4. Let Rx be an audience and let 〈X ,A〉 be an iVAF.

For (Ai, Aj) ∈ A s.t. (Aj , Ai) 
∈ A, Ai defeats Aj under Rx if Aj 
�x Ai.
For (Ai, Aj) ∈ A s.t. (Aj , Ai) ∈ A, Ai defeats Aj under Rx if Ai �x Aj .
An argument Ai ∈ X is acceptable w.r.t S under Rx (S ⊆ X ) if: for every Aj ∈ X
that defeats Ai under Rx, there is some Ak ∈ S that defeats Aj under Rx.
A subset S of X is conflict-free under Rx if no argument Ai ∈ S defeats another
argument Aj ∈ S under Rx.
A subset S of X is admissible under Rx if: S is conflict-free in Rx and every A ∈ S is
acceptable w.r.t S under Rx.
A subset S of X is a preferred extension under Rx if it is a maximal admissible set
under Rx.

An argument A is acceptable in the iVAF 〈X ,A〉 under audience Rx if there is some
preferred extension containing it.

We have now defined a mechanism with which an agent can determine attacks between
arguments for and against actions, and can then use an ordering over the values that
motivate such arguments (its audience) in order to determine their acceptability. In the
next section we define our dialogue system.

3 Dialogue System

The communicative acts in a dialogue are called moves. We assume that there are always
exactly two agents (participants) taking part in a dialogue, each with its own identifier
taken from the set I = {1, 2}. Each participant takes it in turn to make a move to the
other participant. We refer to participants using the variables x and x such that: x is 1
if and only if x is 2; x is 2 if and only if x is 1.

A move in our system is of the form 〈Agent, Act, Content〉. Agent is the identifier
of the agent generating the move, Act is the type of move, and the Content gives
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Table 1. Format for moves used in deliberation dialogues: γ is a goal; a is an action; A is an
argument; x ∈ {1, 2} is an agent identifier

Move Format
open 〈x, open, γ〉
assert 〈x, assert, A〉
agree 〈x, agree, a〉
close 〈x, close, γ〉

the details of the move. The format for moves used in deliberation dialogues is shown
in Table 1, and the set of all moves meeting the format defined in Table 1 is denoted
M. Note that the system allows for other types of dialogues to be generated and these
might require the addition of extra moves. Also, Sender : M �→ I is a function such
that Sender(〈Agent, Act, Content〉) = Agent.

We now informally explain the different types of move: an open move 〈x, open, γ〉
opens a dialogue to agree on an action to achieve the goal γ; an assert move 〈x, assert, A〉
asserts an argument A for or against an action to achieve a goal that is the topic of the
dialogue; an agree move 〈x, agree, a〉 indicates that x agrees to performing action a to
achieve the topic; a close move 〈x, close, γ〉 indicates that x wishes to end the dialogue.

A dialogue is simply a sequence of moves, each of which is made from one par-
ticipant to the other. As a dialogue progresses over time, we denote each timepoint by
a natural number. Each move is indexed by the timepoint when the move was made.
Exactly one move is made at each timepoint.

Definition 5. A dialogue, denoted Dt, is a sequence of moves [m1, . . . , mt] involving
two participants in I = {1, 2}, where t ∈ N and the following conditions hold:

1. m1 is a move of the form 〈x, open, γ〉 where x ∈ I
2. Sender(ms) ∈ I for 1 ≤ s ≤ t
3. Sender(ms) 
= Sender(ms+1) for 1 ≤ s < t

The topic of the dialogue Dt is returned by Topic(Dt) = γ. The set of all dialogues is
denoted D.

The first move of a dialogue Dt must always be an open move (condition 1 of the pre-
vious definition), every move of the dialogue must be made by a participant (condition
2), and the agents take it in turns to send moves (condition 3). In order to terminate a
dialogue, either: two close moves must appear one immediately after the other in the
sequence (a matched-close); or two moves agreeing to the same action must appear one
immediately after the other in the sequence (an agreed-close).

Definition 6. Let Dt be a dialogue s.t. Topic(Dt) = γ. We say that ms (1 < s ≤ t), is

• a matched-close for Dt iff ms−1 = 〈x, close, γ〉 and ms = 〈x, close, γ〉.
• an agreed-close for Dt iff ms−1 = 〈x, agree, a〉 and ms = 〈x, agree, a〉.

We say Dt has a failed outcome iff mt is a matched-close, whereas we say Dt has a
successful outcome of a iff mt = 〈x, agree, a〉 is an agreed-close.

So a matched-close or an agreed-close will terminate a dialogue Dt but only if Dt has
not already terminated.
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Definition 7. Let Dt be a dialogue. Dt terminates at t iff mt is a matched-close or an
agreed-close for Dt and ¬∃s s.t. s < t, Dt extends Ds (i.e. the first s moves of Dt are
the same as the sequence Ds) and Ds terminates at s.

We shortly give the particular protocol and strategy functions that allow agents to gener-
ate deliberation dialogues. First, we introduce some subsidiary definitions. At any point
in a dialogue, an agent x can construct an iVAF from the union of the arguments it can
construct from its VATS and the arguments that have been asserted by the other agent;
we call this x’s dialogue iVAF.

Definition 8. A dialogue iVAF for an agent x participating in a dialogue Dt is denoted
dVAF(x, Dt). If Dt is the sequence of moves = [m1, . . . , mt], then dVAF(x, Dt) is the
iVAF 〈X ,A〉 where X = Argsx

Topic(Dt) ∪ {A | ∃mk = 〈x, assert, A〉(1 ≤ k ≤ t)}.

An action is agreeable to an agent x if and only if there is some argument for that action
that is acceptable in x’s dialogue iVAF under the audience that represents x’s preference
over values. Note that the set of actions that are agreeable to an agent may change over
the course of the dialogue.

Definition 9. An action a is agreeable in the iVAF 〈X ,A〉 under the audience Rx iff
∃A = 〈a, γ, v, +〉 ∈ X s.t. A is acceptable in 〈X ,A〉 under Rx. We denote the set
of all actions that are agreeable to an agent x participating in a dialogue Dt as
AgActs(x, Dt), s.t. a ∈ AgActs(x, Dt) iff a is agreeable in dVAF(x, Dt) under Rx.

A protocol is a function that returns the set of moves that are permissible for an agent to
make at each point in a particular type of dialogue. Here we give a deliberation protocol.
It takes the dialogue that the agents are participating in and the identifier of the agent
whose turn it is to move, and returns the set of permissible moves.

Definition 10. The deliberation protocol for agent x is a function Protocolx : D �→
℘(M). Let Dt be a dialogue (1 ≤ t) with participants {1, 2} s.t. Sender(mt) = x and
Topic(Dt) = γ.

Protocolx(Dt) = P ass
x (Dt) ∪ P ag

x (Dt) ∪ {〈x, close, γ〉}
where the following are sets of moves and x′ ∈ {1, 2}.

P ass
x (Dt) = {〈x, assert, A〉 | Goal(A) = γ

and
¬∃mt′ = 〈x′, assert, A〉(1 < t′ ≤ t)

P ag
x (Dt) = {〈x, agree, a〉 | either

(1)mt = 〈x, agree, a〉}
else
(2)(∃mt′ = 〈x, assert, 〈a, γ, v, +〉〉(1 < t′ ≤ t)

and
( if ∃mt′′ = 〈x, agree, a〉)
then ∃A, mt′′′ = 〈x, assert, A〉

(t′′ < t′′′ ≤ t)))}
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Strategyx(Dt) =

⎧⎪⎪⎨⎪⎪⎩
Pick(Sag

x )(Dt) iff Sag
x (Dt) �= ∅

Pick(Sprop
x )(Dt) iff Sag

x (Dt) = ∅ and Sprop
x (Dt) �= ∅

Pick(Satt
x )(Dt) iff Sag

x (Dt) = Sprop
x (Dt) = ∅ and Satt

x (Dt) �= ∅
〈x, close, Topic(Dt)〉 iff Sag

x (Dt) = Sprop
x (Dt) = Satt

x (Dt) = ∅

where the choices for the moves are given by the following subsidiary functions (x′ ∈
{x, x}, Topic(Dt) = γ):

Sag
x (Dt) = {〈x, agree, a〉 ∈ P ag

x (Dt) | a ∈ AgActs(x,Dt)}
Sprop

x (Dt) = {〈x, assert, A〉 ∈ P ass
x (Dt) | A ∈ Argsx

γ , Act(A) = a,Sign(A) = + and
a ∈ AgActs(x,Dt)}

Satt
x (Dt) = {〈x, assert, A〉 ∈ P ass

x (Dt) | A ∈ Argsx
γ , Act(A) = a,Sign(A) = −,

a �∈ AgActs(x,Dt) and ∃mt′ = 〈x′, assert, A′〉
(1 ≤ t′ ≤ t) s.t. Act(A′) = a and Sign(A′) = +}

Fig. 1. The strategy function uniquely selects a move according to the following preference or-
dering (starting with the most preferred): an agree move (ag), a proposing assert move (prop), an
attacking assert move (att), a close move (close)

The protocol states that it is permissible to assert an argument as long as that argument
has not previously been asserted in the dialogue. An agent can agree to an action that
has been agreed to by the other agent in the preceding move (condition 1 of P ag

x ); oth-
erwise an agent x can agree to an action that has been proposed by the other participant
(condition 2 of P ag

x ) as long as if x has previously agreed to that action, then x has since
then asserted some new argument. This is because we want to avoid the situation where
an agent keeps repeatedly agreeing to an action that the other agent will not agree to: if
an agent makes a move agreeing to an action and the other agent does not wish to also
agree to that action, then the first agent must introduce some new argument that may
convince the second agent to agree before being able to repeat its agree move. Agents
may always make a close move. Note, it is straightforward to check conformance with
the protocol as it only refers to public elements of the dialogue.

We now define a basic deliberation strategy. It takes the dialogue Dt and returns
exactly one of the permissible moves. Note, this strategy makes use of a function Pick :
℘(M) �→ M. We do not define Pick here but leave it as a parameter of our strategy
(in its simplest form Pick may return an arbitrary move from the input set); hence
our system could generate more than one dialogue depending on the definition of the
Pick function. In future work, we plan to design particular Pick functions; for example,
taking into account an agent’s perception of the other participant (more in section 5).

Definition 11. The basic strategy for an agent x is a function Strategyx : D �→ M
given in Figure 1.

A well-formed deliberation dialogue is a dialogue that has been generated by two agents
each following the basic strategy.

Definition 12. A well-formed deliberation dialogue is a dialogue Dt s.t. ∀t′ (1 ≤ t′ ≤
t), Sender(mt′) = x iff Strategyx(Dt′−1) = mt′
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We now present a simple example. There are two participating agents ({1, 2}) who
have the joint goal to go out for dinner together (din). Ac1 ∪ Ac2 = {it, ch} (it: go to
an Italian restaurant; ch: go to a Chinese restaurant) and Av1 ∪ Av2 = {d, e1, e2, c}
(d: distance to travel; e1: agent 1’s enjoyment; e2: agent 2’s enjoyment; c: cost). The
agents’ audiences are as follows.

d �1 e1 �1 c �1 e2
c �2 e2 �2 e1 �2 d

Agent 1 starts the dialogue.

m1 = 〈1, open, din〉

The agents’ dialogue iVAFs at this opening stage in the dialogue can be seen in Figs. 2
and 3, where the nodes represent arguments and are labelled with the action that they
are for (or the negation of the action that they are against) and the value that they are
motivated by. The arcs represent the attack relation between arguments, and a double
circle round a node means that the argument it represents is acceptable to that agent.

itit e1
c

it
d

¬ch
e1

Fig. 2. Agent 1’s dialogue iVAF at t = 1, dVAF(1,D1)

e2

c ch

¬it
ch

e2

Fig. 3. Agent 2’s dialogue iVAF at t = 1, dVAF(2,D1)

At this point in the dialogue, there is only one argument for an action that is ac-
ceptable to 2 (〈ch, din, c, +〉), hence ch is the only action that is agreeable to 2. 2
must therefore assert an argument that it can construct for going to the Chinese restau-
rant. There are two such arguments that the Pick function could select (〈ch, din, c, +〉,
〈ch, din, e2, +〉). Let us assume that 〈ch, din, c, +〉 is selected.

m2 = 〈2, assert, 〈ch, din, c, +〉〉

This new argument is added to 1’s dialogue iVAF, to give dVAF(1, D2) (Fig. 4).
Although agent 2 has proposed going to the Chinese restaurant, this action is not

agreeable to agent 1 at this point in the dialogue (as there is no argument for this
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itit

it

c

d

e1

¬ch e1

ch

c

Fig. 4. Agent 1’s dialogue iVAF at t = 2, dVAF(1,D2)

action that is acceptable in Fig. 4). There is, however, an argument for the action it
(〈it, din, d, +〉) that is acceptable in 1’s dialogue iVAF (Fig. 4), and so going to the
Italian restaurant is agreeable to 1. Hence, 1 must make an assert move proposing
an argument for the action it, and there are three such arguments that the Pick func-
tion can select from (〈it, din, d, +〉, 〈it, din, c, +〉, 〈it, din, e1, +〉). Let us assume that
〈it, din, c, +〉 is selected.

m3 = 〈1, assert, 〈it, din, c, +〉〉

This new argument is added to 2’s dialogue iVAF, to give dVAF(2, D3) (Fig. 5).

e2

¬it
ch

it

e2

c

chc

Fig. 5. Agent 2’s dialogue iVAF at t = 3, dVAF(2,D3)

Going to the Italian restaurant is now agreeable to agent 2 since the new argument
introduced promotes the value ranked most highly for agent 2, i.e. cost, and so this
argument is acceptable. So, 2 agrees to this action.

m4 = 〈2, agree, it〉

Going to the Italian restaurant is also agreeable to agent 1 (as the argument 〈it, din, d, +〉
is acceptable in its dialogue iVAF, which is still the same as that shown in Fig. 4 as 2
has not asserted any new arguments), hence 1 also agrees to this action.

m5 = 〈1, agree, it〉

Note that the dialogue has terminated successfully and the agents are each happy to
agree to go to the Italian restaurant; however, this action is agreeable to each agent for a
different reason. Agent 1 is happy to go to the Italian restaurant as it promotes the value
of distance to travel (the Italian restaurant is close by), whereas agent 2 is happy to go
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to the Italian restaurant as it will promote the value of cost (as it is a cheap restaurant).
The agents need not be aware of one another’s audience in order to reach an agreement.

It is worth mentioning that, as we have left the Pick function unspecified, our strategy
could have generated a longer dialogue if, for example, agent 1 had instead chosen
to assert the argument 〈it, din, d, +〉 at the move m3. This illustrates how an agent’s
perception of the other participant may be useful: in the previous example agent 1 may
make the assumption that, as agent 2 has previously asserted an argument that promotes
cost, cost is something that agent 2 values; or an agent may use its perception of another
agent’s personality to guide argument selection [11].

Another point to note concerns the arguments generated by CQ10. Such arguments
do not dispute that the action should be performed, but do dispute the reasons as to
why, and so they are modelled as attacks despite being for the same action. Pinpointing
this distinction here is important for two main reasons. Firstly, an advantage of the
argumentation approach is that agents make explicit the reasons as to why they agree
and disagree about the acceptability of arguments, and the acceptability may well turn
on such reasons. Where there are two arguments proposed for the same action but each
is based upon different values, an agent may only accept the argument based on one of
the values. Hence such arguments are seen to be in conflict. Secondly, by participating
in dialogues agents reveal what their value orderings are, as pointed out in [12]. If
an agent will accept an argument for action based upon one particular value but not
another, then this is potentially useful information for future dialogue interactions; if
agreement is not reached about a particular action proposal, then dialogue participants
will know the values an opposing agent cares about and this can guide the selection of
further actions to propose, as we discuss later on in section 5.

A final related issue to note is that of accrual of arguments. If there are multiple
arguments for an action and the values promoted are acceptable to the agents then some
form of accrual might seem desirable. However, the complex issue of how best to accrue
such arguments has not been fully resolved and this is not the focus here.

4 Properties

Certainly (assuming the cooperative agents do not abandon the dialogue for some rea-
son), all dialogues generated by our system terminate. This is clear as we assume that
the sets of actions and values available to an agent are finite, hence the set of arguments
that an agent can construct is also finite. As the protocol does not allow the agents
to keep asserting the same argument, or to keep agreeing to the same action unless a
new argument has been asserted, either the dialogue will terminate successfully else the
agents will run out of legal assert and agree moves and so each will make a close move.

Proposition 1. If Dt is a well-formed deliberation dialogue, then ∃t′ (t ≤ t′) s.t. Dt′ is
a well-formed deliberation dialogue that terminates at t′ and Dt′ extends Dt.

It is also the clear from the definition of the strategy (which only allows an action to be
agreed to if that action is agreeable to the agent) that if the dialogue terminates with a
successful outcome of action a, then a is agreeable to both agents.
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a

v1

v2
v3

a
v4

a

¬a

action a agreeable toaction a agreeable to
   agent 2 due to v2 agent 1 due to v3

Fig. 6. The joint iVAF

Proposition 2. If Dt is a well-formed deliberation dialogue that terminates successfully
at t with outcome a, then a ∈ AgActs(x, Dt) and a ∈ AgActs(x, Dt).

Similarly, we can show that if there is an action that is agreeable to both agents when
the dialogue terminates, then the dialogue will terminate successfully. In order to show
this, however, we need a subsidiary lemma that states: if an agent makes a close move,
then any arguments that it can construct that are for actions that it finds agreeable must
have been asserted by one of the agents during the dialogue. This follows from the
definition of the strategy, which only allows agents to make a close move once they
have exhausted all possible assert moves.

Lemma 1. Let Dt be a well-formed deliberation dialogue with Topic(Dt) = γ, s.t.
mt = 〈x, close, γ〉 and dVAF(x, Dt) = 〈X ,A〉. If A = 〈a, γ, v, +〉 ∈ X and a ∈
AgActs(x, Dt), then ∃mt′ = 〈x′, assert, A, 〉 (1 < t′ ≤ t, x′ ∈ {x, x}).

Now we show that if there is an action that is agreeable to both agents when the dialogue
terminates, then the dialogue will have a successful outcome.

Proposition 3. Let Dt be a well-formed deliberation dialogue that terminates at t. If
a ∈ AgActs(x, Dt) and a ∈ AgActs(x, Dt), then Dt terminates successfully.

Proof: Assume that Dt terminates unsuccessfully at t and that Sender(mt) = x. From
Lemma 1, there is at least one argument A for a that has been asserted by one of the
agents. There are two cases. Case 1: x asserted A. Case 2: x asserted A.
Case 1: x asserted A. Hence (from the protocol) it would have been legal for x to
make the move mt = 〈x, agree, a〉 (in which case x would have had to replied with
an agree, giving successful termination), unless x had previously made a move mt′ =
〈x, agree, a〉 but had not made a move mt′′ = 〈x, assert, A〉 with t′ < t′′ < t. How-
ever, if this were the case, then we would have AgActs(x, Dt′) = AgActs(x, Dt)
(because no new arguments have been put forward by x to change x’s dialogue iVAF),
hence x would have had to respond to the move mt′ with an agree, terminating the
dialogue successfully. Hence contradiction.
Case 2: works equivalently to case 1. Hence, Dt terminates successfully. �

We have shown then: all dialogues terminate; if a dialogue terminates successfully, then
the outcome will be agreeable to both participants; if a dialogue terminates and there
is some action that is agreeable to both agents, then the dialogue will have a successful
outcome.
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It would be desirable to show that if there is some action that is agreeable in the
joint iVAF, which is the iVAF that can be constructed from the union of the agents’
arguments (i.e. the iVAF 〈X ,A〉, where X = Argsx

γ ∪ Argsx
γ and γ is the topic of the

dialogue), then the dialogue will terminate successfully. However, there are some cases
where there is an action that is agreeable in the joint iVAF to each of the participants
and yet still they may not reach an agreement. Consider the following example in which
there is an action a that is agreeable to both the agents given the joint iVAF (see Fig.6)
and yet the dialogue generated here terminates unsuccessfully.

The participants ({1, 2}) have the following audiences.

v3 �1 v1 �1 v4 �1 v2
v2 �2 v1 �2 v4 �2 v3

Agent 1 starts the dialogue.

m1 = 〈1, open, p〉

The agents’ dialogue iVAFs at this stage in the dialogue can be seen in Figs. 7 and 8.

v2
a ¬a

v1

Fig. 7. Agent 1’s dialogue iVAF at t = 1, dVAF(1,D1)

a
v3

a
v4

Fig. 8. Agent 2’s dialogue iVAF at t = 1, dVAF(2,D1)

At this point in the dialogue, there is one action that is agreeable to agent 2 (a,
as there is an argument for a that is acceptable in Fig. 8); hence (following the basic
dialogue strategy), agent 2 must assert one of the arguments that it can construct for
a (either 〈a, p, v3, +〉 or 〈a, p, v4, +〉). Recall, we have not specified the Pick function
that has to choose between these two possible proposing assert moves. Let us assume
that the Pick function makes an arbitrary choice to assert 〈a, p, v4, +〉.

m2 = 〈2, assert, 〈a, p, v4, +〉〉

This new argument is added to agent 1’s dialogue iVAF, to give dVAF(1, D2) (Fig. 9).
From Fig. 9, we see that the only argument that is now acceptable to agent 1 is the

argument against a (〈a, p, v1,−〉), hence there are no actions that are agreeable to agent
1. Thus agent 1 must make an attacking assert move.

m3 = 〈1, assert, 〈a, p, v1,−〉〉
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a
v2

a v4

¬a
v1

Fig. 9. Agent 1’s dialogue iVAF at t = 2, dVAF(1,D2)

v1
a

v4¬a

a
v3

Fig. 10. Agent 2’s dialogue iVAF at t = 3, dVAF(2, D3)

This new argument is added to agent 2’s dialogue iVAF, to give dVAF(2, D3)
(Fig. 10).

We see from Fig. 10 that the only argument that is now acceptable to agent 2 is the
argument against a that 1 has just asserted (〈a, p, v1,−〉); hence, a is now no longer
an agreeable action for agent 2. As there are now no actions that are agreeable to agent
2, it cannot make any proposing assert moves. It also cannot make any attacking assert
moves, as the only argument that it can construct against an action has already been
asserted by agent 1. Hence, agent 2 makes a close move.

m4 = 〈2, close, p〉

Thus, the dialogue iVAF for 1 is still the same as that which appears in Fig. 9. As there
are no actions that are agreeable to agent 1, it cannot make any proposing assert moves.
It cannot make any attacking assert moves, as the only argument that it can construct
against an action has already been asserted. Hence, agent 1 also makes a close move.

m5 = 〈1, close, p〉

The dialogue has thus terminated unsuccessfully and the agents have not managed to
reach an agreement as to how to achieve the goal p. However, we can see that if the Pick
function instead selected the argument 〈a, p, v3, +〉 for agent 2 to assert for the move
m2, then the resulting dialogue would have led to a successful outcome.

This example then illustrates a particular problem: the arguments exist that will en-
able the agents to reach an agreement (we can see this in the joint iVAF, Fig. 6, in which
each agent finds a agreeable) and yet the particular arguments selected by the Pick
function may not allow agreement to be reached. The choice of moves made in a delib-
eration dialogue affects the dialogue outcome; hence, strategic manoeuvring within the
dialogue is possible in order to try to influence the dialogue outcome.

This evaluation helps us to understand the complex issues and difficulties involved
in allowing agents with different preferences to agree how to act. We discuss possible
responses to some of these difficulties in the next section.
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5 Proposed Extensions

One way in which we could aim to avoid the problem illustrated in the previous example
is by allowing agents to develop a model of which values they believe are important to
the other participant. This model can then be used by the Pick function in order to select
arguments that are more likely to lead to agreement (i.e. those that the agent believes
promote or demote values that are highly preferred by the other participant). Consider
the above example, if agent 2 believed that value v3 was more preferred to agent 1
than value v4, then 2 would have instead asserted 〈a, p, v3, +〉 for the move m2, which
would have led to a successful outcome.

Therefore, the first extension that we plan to investigate is to design a particular Pick
function that takes into account what values the agent believes are important to the other
participant. We also plan to develop a mechanism which allows the agent to build up
its model of the other participant, based on the other participant’s dialogue behaviour;
for example, if an agent x asserts an argument for an action a because it promotes a
particular value v, and the other participant x does not then agree to a, agent x may
have reason to believe that x does not highly rank the value v.

Another problem that may be faced with our dialogue system is when it is not pos-
sible for the agents to come to an agreement no matter which arguments they choose
to assert. The simplest example of this is when each agent can only construct one argu-
ment to achieve the topic p: agent 1 can construct 〈a1, p, v1, +〉; agent 2 can construct
〈a2, p, v2, +〉. Now if agent 1’s audience is such that it prefers v1 to v2 and agent 2’s
audience is such that it prefers v2 to v1, then the agents will not be able to reach an
agreement with the dialogue system that we have proposed here; this is despite the fact
that both agents do share the goal of coming to some agreement on how to act to achieve
p. The agents in this case have reached an impasse, where there is no way of finding
an action that is agreeable to both agents given their individual preferences over the
values.

The second extension that we propose to investigate aims to overcome such an im-
passe when agreement is nevertheless necessary. We plan to define a new type of di-
alogue (which could be embedded within the deliberation dialogue we have defined
here) that allows the agents to discuss their preferences over the values and to suggest
and agree to compromises that allow them to arrive at an agreement in the deliberation
dialogue. For example, if agent 1’s audience is v1 �1 v2 �1 v3 and agent 2’s audience
is v3 �2 v2 �2 v1, then they may both be willing to switch their first and second most
preferred values if this were to lead to an agreement (i.e. giving v2 �1 v1 �1 v3 and
v2 �2 v3 �2 v1).

We would also like to extend our system to deal with the situation in which the
other stages of practical reasoning (problem formulation and epistemic reasoning) may
be flawed. In [5], an approach to dealing with epistemic reasoning was presented, that
allowed an embedded inquiry subdialogue with which agents could jointly reason epis-
temically about the state of the world. Thus, the third extension that we propose is
to develop a new type of dialogue that will allow agents to jointly reason about the
elements of a VATS in order to consider possible flaws in the problem formulation
stage.
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6 Related Work

There is existing work in the literature on argumentation that bears some relation to
what we have presented here, though the aims and contributions of these approaches
are markedly different.

Our proposal follows the approach in [5,13] but the types of moves are different,
and the protocol and strategy functions are substantially altered from those presented
in either [5] or [13]. This alteration is necessary as neither of [5,13] allow agents to
participate in deliberation dialogues. In [13], a dialogue system is presented for epis-
temic inquiry dialogues; it allows agents to jointly construct argument graphs (where
the arguments refer only to beliefs) and to use a shared defeat relation to determine the
acceptability of particular arguments.

The proposal of [5] is closer to that presented here, as both are concerned with how
to act. However, the dialogue system in [5] does not allow deliberation dialogues as
the outcome of any dialogue that it generates is predetermined by the union of the
participating agents’ knowledge. Rather, the dialogues of [5] are better categorised as a
joint inference; they ensure that the agents assert all arguments that may be relevant to
the question of how to act, after which a universal value ordering is applied to determine
the outcome. As a shared universal value ordering is used in [5], there is an objective
view of the “best” outcome (being that which you would get if you pooled the agents’
knowledge and applied the shared ordering); this is in contrast to the dialogue system we
present here, where the “best” outcome is subjective and depends on the point of view
of a particular agent. As the agents presented here each have their own distinct audience,
they must come to an explicit agreement about how to act (hence the introduction of
an agree move) despite the fact that their internal views of argument acceptability may
conflict. Also, here we define the attack relation (in the iVAF), which takes account of
the relevant CQs, whilst in [5] the attack relation is only informally discussed.

Deliberation dialogues have only been considered in detail by the authors of [2,3].
Unlike in our work, in [2] the evaluation of arguments is not done in terms of argumen-
tation frameworks, and strategies for reaching agreement are not considered; and in [3]
the focus is on goal selection and planning.

In [12] issues concerning audiences in argumentation frameworks are addressed
where the concern is to find particular audiences (if they exist) for which some ar-
guments are acceptable and others are not. Also considered is how preferences over
values emerge through a dialogue; this is demonstrated by considering how two agents
can make moves within a dialogue where both are dealing with the same joint graph.
However, the graph can be seen as a static structure within which agents are playing
moves, i.e. putting forward acceptable arguments, rather than constructing a graph that
is not complete at the outset, as in the approach we have presented.

There is also some work that considers how Dungian argumentation frameworks as-
sociated with individual agents can be merged together [14]. The merging is done not
through taking the union of the individual frameworks, but through the application of
criteria that determine when arguments and attacks between them can be merged into a
larger graph. The main goal of the work is to characterise the sets of arguments accept-
able by the whole group of agents using notions of joint acceptability, which include
voting methods. In our work we are not interested in merging individual agent’s graphs
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per se; rather, an agent develops its own individual graph and uses this to determine if
it finds an action agreeable. In [14] no dialogical interactions are considered, and it is
also explicitly noted that consideration has not been given to how the merging approach
can be applied to value-based argument systems.

Prakken [15] considers how agents can come to a public agreement despite their
internal views of argument acceptability conflicting, allowing them to make explicit
attack and surrender moves. However, Prakken does not explicitly consider value-based
arguments, nor does he discuss particular strategies.

Strategic argumentation has been considered in other work. For example, in [16] a
dialogue game for persuasion is presented that is based upon one originally proposed
in [1] but makes use of Dungian argumentation frameworks. Scope is provided for
three strategic considerations which concern: revealing inconsistencies between an op-
ponent’s commitments and his beliefs; exploiting the opponent’s reasoning so as to
create such inconsistencies; and revealing blunders to be avoided in expanding the op-
ponent’s knowledge base. These strategies all concern reasoning about an opponent’s
beliefs, as opposed to reasoning about action proposals with subjective preferences, as
done in our work, and the game in [16] is of an adversarial nature, whereas our setting
is more co-operative.

One account that does consider strategies when reasoning with value-based argu-
ments is given in [7], where the objective is to create obligations on the opponent to ac-
cept some argument based on his previously expressed preferences. The starting point
for such an interaction is a fixed joint VAF, shared by the dialogue participants. In our
approach the information is not centralised in this manner, the argument graphs are built
up as the dialogue proceeds, we do not assume perfect knowledge of the other agent’s
graph and preferences, and our dialogues have a more co-operative nature.

A related new area that is starting to receive attention is the application of game
theory to argumentation (e.g. [17]). This work has investigated situations under which
rational agents will not have any incentive to lie about or hide arguments; although this
is concerned mainly with protocol design, it appears likely that such work will have
implications for strategy design.

A few works do explicitly consider the selection of dialogue targets, that is the selec-
tion of a particular previous move to respond to. In [15] a move is defined as relevant
if its target would (if attacked) cause the status of the original move to change; proper-
ties of dialogues are considered where agents are restricted to making relevant moves. In
[18] this is built on to consider other classes of move relevance and the space that agents
then have for strategic manoeuvring. However, these works only investigate properties
of the dialogue protocols; they do not consider particular strategies for such dialogues
as we do here.

7 Concluding Remarks

We have presented a dialogue system for joint deliberation where the agents involved
in the decision making may each have different preferences yet all want an agreement
to be reached. We defined how arguments and critiques are generated and evaluated,
and how this is done within the context of a dialogue. A key aspect concerns how
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agents’ individual reasoning fits within a more global context, without the requirement
to completely merge all knowledge. We presented some properties of our system that
show when agreement can be guaranteed, and have explored why an agreement may
not be reached. Identifying such situations is crucial for conflict resolution and we have
discussed how particular steps can be taken to try to reach agreement when this occurs.
In future work we intend to give a fuller account of such resolution steps whereby
reasoning about other agents’ preferences is central.

Ours is the first work to provide a dialogue strategy that allows agents with different
preferences to come to an agreement as to how to act. The system allows strategi-
cal manoeuvring in order to influence the dialogue outcome, thus laying the important
foundations needed to understand how strategy design affects dialogue outcome when
the preferences involved are subjective.
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Abstract. Agents engage in deliberation dialogues to collectively decide
on a course of action. To solve conflicts of opinion that arise, they can
question claims and supply arguments. Existing models fail to capture
the interplay between the provided arguments as well as successively
selecting a winner from the proposals. This paper introduces a general
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1 Introduction

In multi-agent systems the agents need to work together in order to achieve their
personal and mutual goals. Working together means communication and often
these dialogues will be on finding consensus over some belief, action or goal. In
the last decade frameworks and protocols for such dialogues have been designed
using argumentation theory. Walton and Krabbe [14] give a classification of dia-
logues types based on their initial situation, main goals and participant aims. In
a persuasion dialogue agents need to find resolution for some conflicting point
of view. They will try to persuade the others by forwarding arguments. In nego-
tiation, there is not a conflict on some claim, but rather a potential conflict on
the division of resources. A deal needs to be made in which each agent tries to
get their most preferred resource allocation. Deliberation dialogues in contrast,
have a significant cooperative aspect. There is a need for action and the agents
need to mutually reach a decision. Although agreement is pursued, individual
interests also play part.

The literature on argumentation in multi-agent systems has mainly focused
on persuasion and negotiation type dialogues. Few systems for deliberation have
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so far been proposed. The most sophisticated work is that of McBurney et al.
[5] To accommodate deliberating agents, a language and protocol are given that
allow for forwarding and discussing of proposals for action. The protocol that
they use is liberal in the sense that very few restrictions are imposed on the
agents. The modelling of conflicts on beliefs and interests of the agents is limited
to the assessment of commitments. It is stated that a voting phase can be used
to derive a winner.

It seems that the inquisitive nature of the deliberation process has been well
captured in the existing literature. However, the conflicts that arise are left more
or less indeterminate. In persuasion, on the other hand, dealing with conflicts is
explicitly modelled. Frameworks for these dialogues allow to determine whether
given arguments are justified and consequently point out a winner. Such conflicts
can be modelled this way for deliberation as well. This can be used to control the
deliberation process by maintaining focus on the topic and support the selection
of a winning proposal.

For persuasion dialogues, Prakken [10] has proposed a framework that uses
an explicit reply structure to capture the relation between arguments. This in
turn is used to ensure coherent dialogues as well as to determine the dialogical
status of the initial claim. Our framework will be based on this work, adjusting
it for use with deliberation dialogues. This will give several advantages. First,
proposals can be assigned a status, which can be used to ensure coherent dia-
logues. Second, the proposed actions can be classified to guide in the selection of
a winner. Moreover, the framework will be general to allow for domain specific
instantiations and to capture existing protocols in it.

2 The Deliberation Dialogue

A deliberation dialogue commences when the need for action arises. In other
words, it needs to be decided upon what action should be taken. A group of
people may need to decide where to go for dinner or some automotive company
needs to plan what type of car to develop. Agents will need to conceive novel
proposals for action and move them in the dialogue. These proposed actions can
then be reasoned upon by the agents. If a proposal is unfavourable to the agent
it can question it, while it can support the proposal if it seems advantageous.
Agents can even express preferences on the proposals. All this is done to influence
the dialogue outcome.

In a multi-agent system, deliberation dialogues are only a part of the full
communication system. Other types of dialogue, such as argument-based mutual
planning [12] or persuasion, can also be part of the system. Deliberation dialogues
are thus part of a context. In particular, it commences when in the context the
agents belief they mutually need to decide on some action to realize a common
goal. Both the goal and need for action can originate from various sources in
the context, such as an authority or an earlier dialogue. When the deliberation
dialogue starts, agents have, at least in our framework, already agreed on them
and can start generating and evaluating proposals.
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Agents will have different personal interests and beliefs, because of which con-
flicts of opinion will come to light during the dialogue. These conflicts can be
solved by embedding persuasion-style dialogues. Agents move arguments and
question claims to convince other agents. A decision on the winning proposal
may be reached through agreement, a voting system or through some author-
ity. Depending on the domain however, both the supplied arguments and the
expressed preferences can still be used.

While persuasion is always competitive, deliberation is partially a cooperative
process as well. This is expressed in a mutual goal that every agent needs to
respect once they accept to engage in deliberation. Support for their proposals
needs to show how the action will achieve this common goal. Agents thus need
to mediate between their personal opinions and the mutual objective.

As an example, consider a dialogue between three agents that need to find a
place for dinner where they will all enjoy the food. They all have an incentive
to work towards an agreement on the restaurant, but as the dialogue progresses,
differences on beliefs will also need to be resolved.

– a1: We should go to the local pizzeria.
– a2: Why should we go there? I propose we go to the nearby bistro.
– a1: Well, the pizzeria serves tasty pizza’s. Why should we go to the bistro?
– a2: The toppings at the pizzeria are very dull, while the bistro has the best

steaks in town.
– a3: I agree on going to the bistro, because the seafood there is great.
– a1: The bistro doesn’t even server steaks any more.
– a3: What makes you think the pizza toppings are so dull?
– a2: Because the menu hasn’t been changed for a very long time. We could

also just go to pub.
– a1: No, I don’t want to go there.

3 A Formal Deliberation Framework

As explained, our framework will build on the argumentation framework for
persuasion dialogues of Prakken, altering and extending it for use with deliber-
ation dialogues. It models persuasion as a dialogue game in which agents make
utterances in a communication language while being restricted by a protocol.
The utterances, or moves, are targeted at earlier moves. Every reply is either
an attacker surrender, forming an explicit dialogue reply structure. The moves
contain claims and arguments in the topic language with an argumentation logic.
Since it is a framework it allows for various instantiations of the languages and
protocol. In the most basic form the protocol is very liberal, only disallowing
agents to speak at the same time and requiring that moves are replies to earlier
moves. The dialogue terminates when one of the agents cannot make a legal
move. The protocol is defined such that there are no legal moves when there is
agreement on the original claim.

The explicit reply structure is utilized in two ways. First, moves have a dialec-
tic status. The idea is that a dialogue move is in if it is surrendered or else all
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its attackers are out, and that it is out if it has an attacker that is in. Now the
outcome of the persuasion dialogue can be determined based on the dialogical
status of the original claim, viz. if at termination this claim is in the proponent
is the winner. Second, the protocol may be extended with a relevance rule. This
compels the agents to stay focussed on the dialogue topic, giving rise to more
coherent dialogues.

To make the framework suitable for deliberation dialogues, several modifica-
tions are needed. First, multiple agents need to be supported, while the persua-
sion framework only covers one proponent and one opponent. Several notions,
such as relevance, and protocol rules, such as for termination, need to be revised
accordingly. Second, there are multiple proposals instead of a single claim to
discuss. The communication language needs support for forwarding, rejecting
and questioning them. Multiple proposals also means there are multiple dialog-
ical trees to which the agents may contribute. Third, the dialogue outcome is
no longer a direct result of the moves. A winning function is needed to select a
single action from all actions that are proposed, or possible none if there is no
acceptable option.

Now the formal specification for deliberation systems in our framework is
introduced. This definition is taken from [10], with the appropriate additions
and revisions.

Definition 1 (Deliberation system). A dialogue system for deliberation di-
alogues is defined by:

– A topic language Lt is a logical language closed under classical negation.
– An argumentation logic L as defined in [11]. It is an instance of the Dung [4]

argumentation model in which arguments can be formed using inference trees
of strict and defeasible rules. Here, an argument will be written as A ⇒ p
where A is a set of premises and sub-arguments, ⇒ is the top inference rule
and p is the conclusion of the argument. Such an argument can be attacked
by rebutting the conclusion or a sub-argument, by undermining some premise
it uses or by undercutting one of the used inference rules.

– A communication language Lc, which is a set of locutions S and two binary
relations Ra and Rs of attacking and surrendering reply on S. Every s ∈ S
is of the form p(l) where p is a performative and l ∈ Lt, l ⊆ Lt or l is an
argument in L. Ra and Rs are disjunct and irreflexive. Locutions cannot
attack one locution and surrender to another. Finally, every surrendering
locution has an attacking counterpart, which is an attacking locution in Lc.

– The set A of agents.
– The set of moves M defined as IN × A × Lc × IN where each element of a

move m respectively is denoted by:
• id(m), the move identifier,
• player(m), the agent that played the move,
• content(m), the speech act, or content, of the move,
• target(m), the move target.

– The set of dialogues M≤∞ is the set of all sequences m1, . . . , mi, . . . from
M , where each ith element in the sequence has identifier i and for each mi
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in the sequence it holds if target(mi) 
= 0 then target(mi) = j for some
mj preceding mi in d. The set of finite dialogues M<∞ is the set of all those
dialogues that are finite, where one such dialogue is denoted by d.

– A dialogue purpose to reach a decision on a single course of action, which is
a P ∈ Lt. P is a proposition stating that some action should be done.

– A deliberation context consisting of the mutual goal gd ∈ Lt.
– A protocol P that specifies the legal moves at each point in the dialogue.

Formally a protocol on M is a function that works on a non-empty set of
legal finite dialogues D ⊆ M<∞ and the mutual goal such that P : D×Lt −→
Pow(M). The elements of P(d) are called the legal moves after d. P must
satisfy the condition that for all legal finite dialogue d and moves m it holds
that d ∈ D and m ∈ P(d) iff d, m ∈ D.

– A turntaking function T : D −→ A mapping a legal finite deliberation
dialogue to a single agent.

– A deliberation outcome specified by a function O : D × Lt −→ Lt, mapping
all legal finite dialogues and the mutual goal gd to a single course of action α.

This deliberation system specification gives rise to a dialogue game with an ex-
plicit reply structure. The types of locutions of Lc that are available to the agents
are enumerated in Table 1, each with the appropriate attacking and surrender-
ing replies. The attacking counterpart for each surrendering locution is displayed
in the same row. The locutions that deal with proposals (propose, reject, why-
propose and prefer) are taken from McBurney et al. while the ones dealing with
persuasion (argue, why, retract, concede) are adopted from Prakken’s framework.
Below the term proposal move is used when the content(m) = propose(P ), ar-
gue move is used when the content(m) = argue(A ⇒ p), etc.

Table 1. The available speech acts in the communication language Lc

speech act attacks surrenders

propose(P ) why-propose(P )
reject(P )

reject(P ) why-reject(P )

why-propose(P ) argue(A ⇒ p) drop-propose(P )

why-reject(P ) argue(A ⇒ ¬p) drop-reject (P )

drop-propose(P )

drop-reject (P )

prefer(P, Q)

prefer-equal (P, Q)

skip

argue(A ⇒ p) argue(B ⇒ q) where concede(p)
B ⇒ q defeats A ⇒ p

why(q) where q ∈ A concede(q) where q ∈ A

why(p) argue(A ⇒ p) retract (p)

concede(p)

retract (p)
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Argue moves have a well-formed argument in L as content. If it attacks some
other argue move it should defeat the argument contained in that targeted move
following the defeat relation of L. All other speech acts have some well-formed
formula in Lt as content. Note that for every move m where content = propose ,
prefer or prefer-equal it holds that target(m) = 0 and for all other locutions
target 
= 0. Specific instantiations of our framework may use a different com-
munication language with different speech acts, as long as the reply relation is
defined.

Series of moves that agents make are called turns.

Definition 2 (Turn). A turn T in a deliberation dialogue is a maximal se-
quence of moves 〈mi, . . . , mj〉 where the same player is to move. A complete de-
liberation dialogue d can be split up in the sequence of turns 〈T1, . . . , Tk, . . . , Tn〉
where k ∈ IN is the turn identifier. A turn thus only has moves from a single
player, defined by player(T ).

A deliberation dialogue may be represented a set of ordered directed trees.

Definition 3 (Proposal tree). For each proposal move mi in dialogue d a
proposal tree P is defined as follows:

1. The root of P is mi.
2. For each move mj that is a node in P , its children are all moves mk in d

such that target(mk) = mj .

This is a tree since every move in d has a single target. Now, for any move m in
proposal tree P we write proposal(m) = mi.

An example proposal tree is displayed in Fig. 1, which represents a dialogue
between three agents. A proposal is moved, questioned and being supported with
an argument that in turn had several replies. For each move mi the number i
is its identifier in the dialogue and between brackets the playing agent is noted.
Moves in a dotted box are out, those in a solid box are in.

m1(a1) : propose(D(c))

m2(a2) : why-propose(D(c))

m3(a1) : argue(G(gd), p, (c ∧ p � gd) ⇒ D(c))

m4(a2) : why(p)

m5(a3) : retract (p)

m6(a2) : argue(G(gd), (c �� gd) ⇒ ¬D(c))

Fig. 1. A small example proposal tree
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4 Dialogical Status of a Move

At every point in time, the dialogical status of a move can be evaluated. The
use for this is twofold. First, it helps making dialogues coherent through the
notion of move relevance. Secondly, the status of proposal moves can later be
used during the selection of the final dialogue outcome.

Every move in a proposal tree is always either in or out. The distinction
between attacking and surrendering replies is used here to make the status of
moves concrete.

Definition 4 (Move status). A move m in a dialogue d is in, also called
warranted, iff:

1. m is surrendered in d by every agent a ∈ A; or else,
2. m has no attacking replies in d that are in.

Otherwise it is out.

Although this definition is directly taken from [10], special attention here is
required to the surrendering attacks. A move is not yet out until it is surrendered
by every agent in the dialogue, not only by the agent that originally made the
attacked move. Take for example the dialogue of Fig. 1. Although agent a3 moved
a retract(p) in response to a2’s why(p) this targeted move was still in. It is not
until agent a1 replied with a retract(p) as well that the why(p) move is in again.
A surrendering move is more a statement of no commitment. This idea is made
concrete in the following definition of a surrendered move.

Definition 5 (Surrendered move). A move m is surrendered in a dialogue d
by some agent a iff:

1. m is an argue move A ⇒ p and a has made a reply m′ to m that has
content(m′) = concede(p); or else

2. a has made a surrendering reply to m in d.

Otherwise it is out.

The notion of relevance can now be formalised.

Definition 6 (Relevance). An attacking move m in a dialogue d is relevant
iff it changes the move status of proposal(m). A surrendering move is relevant
iff its attacking counterpart is.

Depending on the domain a different notion of surrendered move or relevance
may be useful. Prakken describes a notion of weak relevance that may be adopted.
It is weaker in the sense that an agent can contribute multiple ways to change
the proposal tree root and still be relevant. This is achieved by only requiring a
move to create an additional way to change the status of a proposal. A proto-
col with weak relevance allows an agent to make multiple attacks per turn in a
proposal tree as opposed to a single one if the earlier notion is used, which we
below use the term strong relevance for.
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Definition 7 (Weak relevance). An attacking move m in a dialogue d is
weakly relevant iff it creates a new or removes an existing winning part in the pro-
posal tree P associated with proposal(m) in d. A surrendering move is weakly
relevant iff its attacking counterpart is. If the proposal(m) is in, a winning part
wP for this tree P is defined as follows:

1. First include the root of P ;
2. For each m of even depth, if m is surrendered by every agent a ∈ A, include

all its surrendering replies, otherwise include all its attacking replies;
3. For each m of even depth, include one attacking reply m′ that is in in d;

The idea of a winning part is that it is ’a reason’ why the proposal is in at that
moment. Since this is not unique, there may be alternative attacking replies, a
move is already weakly relevant if it succeeds to create an additional winning part
or removes a winning part. Take for example the dialogue of Fig. 1 again. After
argue(G(gd), (c � gd) ⇒ D(c)) was moved by agent a1 there are no more strongly
relevant moves in this proposal tree, while there exists new weakly relevant
moves, for example argue(s ⇒ gd). This results in a more liberal deliberation
process.

5 Turntaking and Termination

We have still not made concrete how agents take turns and when the dialogue
terminates.

Definition 8 (Turntaking). Agents take turns in sequence and end their turns
explicitly with a skip move. Formally, for a dialogue d = 〈m1, . . . , mn〉 T (d) =
player(mn) unless content(mn) = skip in which case T (d) = player(mn) + 1.

Clearly, when there are no more legal moves besides the skip move, that is
P(d) = {skip}, the turn switches. Now, the dialogue terminates if all agents no
longer make other moves than directly skipping.

Definition 9 (Termination). A dialogue d terminates on |A| + 1 consecutive
skip moves.

The rationale behind the termination rule is that each agent should have the
opportunity to make new moves when it stills want to. However, to prevent
agents from endlessly skipping until some other agent makes a beneficial move
or even a mistake, the number of skip moves is limited.

6 Protocol Rules

Now various protocol rules are discussed. Depending on the domain some might
or might not be desirable. First, some rules that prevent agents from playing
incoherent moves are added. More precisely, these rules require the agents to be
relevant, not to overflow the dialogue.
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1. Agents can only reply to moves of others. Formally, for every attacking or
surrendering move m in a dialogue player(m) 
= player(target(m)).

2. Every attacking and surrendering move must be relevant.
3. A turn can contain at most one proposal move.
4. A proposal must be unique in the dialogue. Formally, for every proposal move

m in d it holds that content(m) /∈ {p|p = content(n) of some proposal move
n ∈ d}.

The first rule may be dropped for domains where a more liberal deliberation
process is appropriate. This would allow agents to attack their own proposals
as well. The relevance of the second rule may be strong or weak relevance. Note
that in case of strong relevance there can be at most one attacking move per
proposal tree.

Not only the dialogue should be coherent. The same holds for the agents’
preference statements on the proposals. A protocol rule is added to ensure that
an agent is consistent in his ordering.

5. An agent may only make a prefer move if the resulting option ordering
maintains transitivity and antisymmetry. This is further explained below.

The last rules are used to ensure that arguments for (and against) a proposal
explain how it (fails to) achieve the mutual goal.

6. Every argue move m with target(m) = m′ and content(m′)
= why-propose(D(P )) will contain an argument in L with gd as one of its
premises and D(P ) as conclusion.

7. Every argue move m with target(m) = m′ and content(m′)
= why-reject(D(P )) will contain an argument in L with ¬gd as one of its
premises and ¬D(P ) as conclusion.

The arguments that these protocol rules require are used to make sure that a
proposal for action P will indeed (fail to) achieve the mutual goal gd. Put dif-
ferently, the proposed action needs to be appropriate in relation to our dialogue
topic. The topic language and used logic therefore need support to express this.
One option, used below, is to include an inference rule for the practical syllogism
in our logic L. Similar to [2] a practical reasoning rule will then be used that
says ‘if gd is a goal and P will achieve gd then P is an appropriate proposal for
action’. Such arguments, below written as G(gd), P � gd ⇒ D(P ), can then be
moved.

7 Dialogue Outcome

At any moment in time the outcome of the deliberation dialogue can be deter-
mined. As the outcome function dictates, this is a single course of action, or
no action at all when there is a structural disagreement. To establish this, the
options, which are the moved proposals, are first specified and then classified
based on their status. This set of proposals is then considered over the agent
preferences to determine a winner.
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Definition 10 (Options). The dialogue options are defined by a function O :
D −→ Pow(Lt) mapping all legal dialogues to a subset of proposals. For any
dialogue d the set of options is O(d) = {o|o = content(m) for each proposal
move m ∈ d} (below written simply as O). In reverse, move(o) is used to refer
to the move in which the option o was proposed.

The proposal moves that introduced the various options have a move status,
which will be used to classify the options. Such a classification is any-time and
can thus not only be used in selecting the dialogue outcome, but also during the
dialogue by agent strategies.

Definition 11 (Option status). An option o ∈ O(d) for any dialogue d is:

– justifiable iff move(o) is in,
– invalid iff player(move(o)) played a move m such that target(m) = move(o)

and content(m) = drop-propose(o),
– otherwise it is defensible.

Justifiable options are proposals that were questioned but were successfully de-
fended. None of the agents was able to build a warranted case against the pro-
posal. Defensible options are proposals that were attacked by some move that is
still warranted. These are thus options that might be reasonable alternatives al-
beit not being properly supported. Invalid options are those that were retracted
by the proposing agent. From the perspective of the multi-agent system, the
status of each option hints at its acceptability as dialogue outcome. To settle on
one of the options they are first ordered according to some preference.

Definition 12 (Option preference). An option preference relation � is a
partial order of O. This is defined as oi ≺ oj (strictly preferred) if oi � oj but
oj 
� oi and we have oi ≈ oj (equally preferred) if oi � oj and oj � oi.

A preliminary ordering on the options can be made. This captures the idea of
preferring justifiable options over non-justifiable ones. This may be used during
the selection of a dialogue outcome.

Definition 13 (Preliminary ordering). Using the set of all options a parti-
tion O = Oj ∪ Oi ∪ Od is created such that

– Oj = {o|o ∈ O where o is justifiable },
– Od = {o|o ∈ O where o is defensible },
– Oi = {o|o ∈ O where o is invalid }.

Now �p is the total preliminary ordering over O such that:

– for every two options ok, ol ∈ Oj , Od or Oi it holds that ok ≈p ol,
– for every oj ∈ Oj and od ∈ Od it holds that oj ≺p od,
– for every od ∈ Od and oi ∈ Oi it holds that od ≺p oi.



A Formal Argumentation Framework for Deliberation Dialogues 41

Justifiable proposals are in principle preferred as dialogue outcome over defensi-
ble proposals, which in turn are preferred over invalid ones. However, justifiable
options should not always be selected as winner over defensible ones. For one,
the preferences as moved by the agents using prefer and prefer-equal moves may
be taken into account.

Definition 14 (Agent option ordering). Every agent a has a partial agent
option ordering �a over O such that for any two options oi, oj ∈ O:

– oi ≺a oj if the agent played some move m where content(m)
= prefer (oj , oi),

– oi ≈a oj if the agent played some move m where content(m)
= prefer-equal(oj , oi).

The protocol forces an agent to be consistent in its preference utterances with
relation to the strict ordering of options.

When the dialogue terminates, the deliberation dialogue outcome should be
selected from the set of options. How this final selection is achieved is totally
dependent on the domain and the purpose of the system. For example, there
may be an agent authority that gets to choose the winner, an additional phase
may be introduced in which agents vote on the outcome or a function may be
used to aggregate all (preliminary and agent-specific) preference orderings. In
any case we need to leave open the option for mutual disagreement [5].

Preference aggregation is extensively studied in the field of social choice theory
and is out of the scope of the present paper. [9] It is interesting to note, though,
that when maximum social welfare is desirable it may be good to incorporate
the notion of our option status in the winner selection. The valuable information
obtained during the deliberation dialogue can be used with a public calculus.
This would decide on the outcome in a way similar to the use of public semantics
and would not need to rely on agents considering these notions in their voting
strategies. For single agents, this is already studied in [1]. How to make use of
this is left as future research.

8 An Example

To further explain how the different notions work together, consider an example
of three agents A = {a1, a2, a3} participating in a deliberation dialogue with
mutual goal gd. We will use all the protocol rules discussed above and adopt a
weak form of move relevance. The turns are as follows:

– T1 by a1

m1 : propose(D(z)) where z = goToP izzeria
– T2 by a2

m2 : why-propose(D(z))
m3 : propose(D(b)) where b = goToBistro

– T3 by a3

m4 : skip
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– T4 by a1

m5 : argue(P ⇒ D(z)) where
P={G(enjoyFood), tastyP izza, goToP izzaria∧tastyP izza �enjoyFood}
m6 : why-propose(D(b))

– T5 by a2

m7 : argue(T ⇒ ¬D(z)) where

T = {G(enjoyFood), dullT opping, goToP izzaria ∧ dullT opping �¬enjoyFood}
m8 : argue(S ⇒ D(b)) where
S = {G(enjoyFood), bestSteaks, goToBistro∧ bestSteaks � enjoyFood}

– T6 by a3

m9 : argue(D ⇒ D(b)) where

D = {G(enjoyFood), greatSeafood, goToBistro∧ greatSeafood �enjoyFood}
– T7 by a1

m10 : argue(¬m ⇒ ¬s) where m = steakOnMenu
– T8 by a2

m11 : skip
– T9 by a3

m12 : why(d) where d = dullT opping
– T10 by a1

m13 : skip
– T11 by a2

m14 : argue(n ⇒ d) where m = menuNeverChanged}
m15 : propose(D(p)) where b = goToPub
m16 : prefer (b, p) m17 : prefer (p, z)

– T12 by a3

m18 : prefer (b, p)
– T13 by a1

m19 : reject(p)
m20 : prefer (z, b)
m21 : prefer-equal (b, p)

– T14 by a2

m22 : skip
– T15 by a3

m23 : skip
– T16 by a1

m24 : skip
– T17 by a2

m25 : skip

At that point, the proposal trees of the dialogue will look as represented Fig. 2.
To see how the dialogical status and protocol rules affected the agents, consider
turn T5, in which agent a2 tries to refute the proposal for do(goToP izzeria) as
made by agent a1 and support its own proposal for do(goToBistro).

To somehow attack proposal D(goToP izzeria) the agent needs to find a
point of attack, which should always be a relevant move. Within this proposal
branch, the only points of attack are to attack m5 or to move another reply
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m1(a1) : propose(D(z)) m3(a2) : propose(D(b)) m15(a2) : propose(D(p))

m2(a2) : why-propose(D(z))

m5(a1) : argue(P ⇒ D(z))

m7(a2) : argue(T ⇒ ¬D(z))

m12(a3) : why(d)

m14(a2) : argue(n ⇒ d)

m6(a1) : why-propose(D(b))

m8(a2) : argue(S ⇒ D(b))

m10(a1) : argue(¬m ⇒ ¬s)

m9(a3) : argue(D ⇒ D(b))

m19(a1) : reject(D(p))

Fig. 2. The proposal trees of the example

to m1. A relevant move to m5 can be both an argue (rebuttal, undercutter or
underminer) or a why move. Since the proposal move m1 was already ques-
tioned with a why-propose the only remaining valid reply there is to move a
reject(D(goToP izzeria)). The agent chooses to rebut the conclusion of m5 with
some argument T ⇒ ¬D(goToP izzeria).

Within the same turn, the agent also decides to give support to its own pro-
posal D(goToBistro). To make this proposal in, it will have to find a relevant
attack move. In this case the only legal attacking move is to forward an argu-
ment with conclusion D(goToBistro) in reply to m6, which it does in the form
S ⇒ D(goToBistro).

Weak relevance is displayed in turn T6 where agent a3 make the move
argue(D ⇒ D(goToBistro)). Although at that point a winning part for the pro-
posal tree of D(goToBistro) already existed, specifically {m3, m6, m8}, a new
winning part {m3, m6, m9} is created. If instead strong relevance is used, then
move m9 is not relevant and thus illegal. In turn, the move m10 by agent a1 is
only weakly relevant because it removed one winning part in the proposal tree
without changing the status of proposal(m8).

The dialogue terminates after turn T25, when agent a2 was the first to skip twice
in a continuous series of skips. The proposal moves of goToP izzeria and goToPub
are out so those options are defensible. The proposal move of goToBistro on
the other hand is in and so this option is justifiable. Partitioning the options
set O according to the option status results in Oj = {goToBistro} and Od =
{goToP izzeria, goToPub}. This gives a preliminary ordering goToP izzeria ≈p

goToPub ≺p goToBistro. The agent orderings follow directly from the pre-
fer moves they made. The agent option ordering for a1 is goToBistro ≈a1

goToPub ≺a1 goToP izzeria, while that of a2 is goToP izzeria ≺a2 goToPub ≺a2

goToBistro and the ordering of a3 is goToBistro ≺a3 goToPub.
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9 Basic Fairness and Efficiency Requirements

McBurney et al. [6] have proposed a set of 13 desiderata for argumentation
protocols. These are criteria which dialogue game protocols need to adhere for
basic fairness and efficiency. Each of the desiderata can be verified against our
deliberation framework and protocol.

1. Stated Dialogue Purpose. The protocol is explicitly designed to decide
on a course of action.

2. Diversity of individual purpose. Agents are allowed to have personal
goals that possibly conflict with the stated mutual goal.

3. Inclusiveness. Many agents can join the deliberation dialogue and no roles
are enforced upon them.

4. Transparency. The rules of our framework are fully explained, but it is
up to an implementation to make sure every agents knows these rules and
knows how to play the game.

5. Fairness. Every agent has equal rights in the dialogue and the framework
allows for fair winner selection methods. Since an agent may always choose
not to move (any more) at all, it is never forced to adopt or drop some belief
or goal.

6. Clarity of Argumentation Theory. The reply structure and notion of
relevance in our framework are not hidden implicitly in a protocol, but made
explicit. Moreover, the structure of arguments is formalised in an explicitly
defined argumentation logic and topic language.

7. Separation of Syntax and Semantics. The communication language is
separately defined from the protocol. Also, dialogues in the framework are
independent of the agent specification while their public behaviour can still
be monitored.

8. Rule Consistency. We have not studied the rule consistency in detail, but
the protocol will never lead to deadlocks; agents can always skip their turn
or make a new proposal and within a proposal tree there is always a way to
make a new contribution, as long as the top argue move was not conceded.

9. Encouragement of Resolution. Agents are encouraged to stay focussed
on the dialogue topic through the notion of relevance. If agents still have
something to say, there is always the opportunity to do so.

10. Discouragement of Disruption. Disruption is discouraged through the
definition of legal speech acts, which are separated in attacks and replies.
This restricts the available moves, for example agents cannot attack their
own moves. However, it is still possible for aggressive agents to question
everything that is claimed and no agent is compelled to accept any claim.

11. Enablement of Self-Transformation. Agents are allowed to adjust their
beliefs or goals depending on the arguments that are moved and preferences
that are expressed. Moreover, they are allowed to drop proposals and to
retract or concede claims.

12. System Simplicity. Simplicity of the system is hard to prove or disprove.
However, it is highly modular; communication and topic languages are sep-
arated and various alternative protocol rules may be adopted or dropped.
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The winner function is left unspecified, but this may range from a dictator
agent to a social welfare-based function.

13. Computational Simplicity. The computational implications of our frame-
work have not yet been studied. However, the separation of agent and frame-
work designs is at least one step towards simplifying the complexity.

Conforming to these guidelines does not yet mean that every dialogue will be
fair and effective. A better understanding is needed of what fair and efficient
deliberation dialogues are. Indeed, future work will need to assess how the delib-
eration process and outcome can be evaluated in relation to the initial situation.
In contrast to beliefs, actions will never have an actual truth value but are rather
more or less applicable in a specific situation. [5]

New research will also focus on more complete fairness and effectiveness re-
sults. For example it is interesting to see how agent attitudes [8] are influential
in deliberation dialogues. Moreover, additional formal properties are interest-
ing to study such as the correspondence between the dialogue outcome and the
underlying logic of [10].

10 Related Work

The literature on argumentation theory for multi-agent systems includes sev-
eral attempts at designing systems for deliberation dialogues. Earlier we already
briefly discussed the most important work on argumentation in deliberation, i.e.
that of McBurney et al. [5] They propose a very liberal protocol for agents to
discuss proposals restricted by the advancement of a series of dialogue stages.
The used speech acts are very similar to that of our framework, although no
explicit logic is used to construct and evaluate arguments. Proposals can be for-
warded or rejected, claims and arguments are made, questioned or retracted and
preferences are expressed. The resulting commitments of agents are determined,
but as in our model they are not used to restrict the legal moves.

Specific support is built into their system for discussion of different perspec-
tives about the problem at hand. Perspectives are influential factors such as
moral implications and costs. These perspectives can be integrated in our frame-
work as well though the adopted topic language and logic. One model that could
be adopted is proposed in [15].

Agents in the framework of McBureny et al. are constrained in their utter-
ances only by preconditions of the different speech acts. For example, they may
not state a preference on two actions before they are asserted. Our model ac-
complishes this through the explicit reply structure of moves rather than using
preconditions. Moreover, our model can enforce dialogical coherence through the
notion of move relevance.

To decide on a winning proposal agents need to unanimously accept some pro-
posal or a voting system may be used. This way any knowledge of the arguments
on proposals is discarded. In contrast, our model may utilise this knowledge on
the multi-agent level to decide on a fair winner without the need for a consensus.
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A dialogue protocol on proposals for action is introduced in the work of Atkin-
son et al. [2] They list all the possible ways to attack a proposal for action,
including the circumstances, the goal it achieves and the values it promotes.
In our framework, both the goal and action itself are explicitly stated, while
the circumstances appear within the arguments that are moved in our delibera-
tion dialogues. As explained earlier, support for values, which are similar to the
perspectives of McBurney et al. [5], will be added later.

Many locutions are available to attack proposals, like ’deny goal exists’ or ’ask
circumstances’. These are needed because no explicit reply structure is present.
This also means that no direct relation between the attacks and the resolution
of conflicting statements can be made. It is assumed that agents eventually
agree on the subject at hand, agree to disagree or use a separate argumentation
framework to establish the validity of the proposal. Moreover, the complete work
only covers dialogues on a single proposal for action, which makes it persuasion
rather than deliberation, albeit being about actions instead of beliefs.

A practical application of multi-agent deliberation dialogues was developed
by Tolchinsky et al. [13] A model for discussion on proposals is coupled to a
dialogue game. In the model, agents are proponents or opponents of some pro-
posal for action, while a mediator agent determines the legal moves and evaluates
moved arguments to see if they are appropriate and how they support or criti-
cize the proposal for action. Although the paper focusses on the translation and
application of argument schemes, it is interesting to see how their work can be
modelled inside our framework. The number of proposals is limited to a single
action, namely to transplant some organ to some recipient, with a mutual goal
to find the best organ donor. A dialogue has to start with propose, reject and
why-reject moves after which agents can play argue moves. Whether the proposal
is also the winner is determined an the authoritative mediator agent.

11 Conclusions

In this paper a framework for multi-agent deliberation dialogues has been pro-
posed. The contribution is twofold.

The general framework for persuasion-type dialogues of Prakken [10] has been
altered to provide support for multi-party deliberation dialogues. Consequently,
non-trivial modifications have been made to the framework. First, support for
moving, criticizing and preferring proposals for action was added. By reusing the
explicit reply structure we represent deliberation dialogues as directed multiple
trees. Second, the notions of dialogical status and relevance have been adapted
for multiple agents. In particular, surrendering replies in a multi-agent context
are studied and how strong and weak relevance can still be maintained.

Our framework also improves on the existing work on deliberation dialogues.
In contrast with McBurney et al. [5], conflicts of interest are handled through
a persuasion-style explicit move status. This allows for varying ways to im-
pose coherence on the deliberating agents. Moreover, the status of proposals is
used to define a classification so a preliminary ordering on them can be made.
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This, together with the agents’ explicit preferences, may be used to select a
winning proposal.

The framework was checked against the desiderata for multi-agent argumen-
tation protocols. Deliberation systems in our framework will adhere to those
basic standards for efficiency and effectiveness. A more rigid study on formal
properties of the framework will be valuable here as well as a study on how
different agent strategies can affect fairness and effectiveness.

As an extension of our framework, we could allow agents to discuss not only
beliefs but also goals, values and preferences. For example, attacking of prefer
moves could be allowed, by which a new argument tree is started. A preference-
based argumentation framework [7] may be used to in turn evaluate the effect
on the dialogical status of proposals. To support discussion on values the topic
and communication languages can be extended. One option is to incorporate
the work of Black and Atkinson [3], who explicitly allow discussion on promoted
values.
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Abstract. This paper presents an approach that integrates notions and
techniques from two distinct fields of study —namely inductive learning
and argumentation in multiagent systems (MAS). We will first discuss
inductive learning and the role argumentation plays in multiagent induc-
tive learning. Then we focus on how inductive learning can be used to
realize argumentation in MAS based on empirical grounds. We present
a MAS framework for empirical argumentation, A-MAIL, and then we
show how this is applied to a particular task where two agents argue in
order to reach agreement on a particular topic. Finally, an experimen-
tal evaluation of the approach is presented evaluating the quality of the
agreements achieved by the empirical argumentation process.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence —
Multiagent systems, Intelligent Agents.
I.2.6 [Artificial Intelligence]: Learning.
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1 Introduction

This paper presents an approach that integrates notions and techniques from
two distinct fields of study —namely inductive learning and argumentation in
multiagent systems (MAS). We will first discuss inductive learning and the role
argumentation may play in multiagent inductive learning, and later how induc-
tive learning can be used to realize argumentation in MAS based on empirical
grounds.

Multiagent inductive learning (MAIL) is the study of multiagent systems
where individual agents have the ability to perform inductive learning, i.e. where
agents are able to learn general descriptions from particular examples. Induction
is a form of empirical-based inference, where what is true (or what is believed by
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the agent) is derived from the experience of that agent in a particular domain
(such experience is usually represented with “cases” or “examples”). Notice that
inductive inference is not deductive, and specifically it is not truth-preserving1,
and therefore it captures a form of empirical knowledge that can be called into
question by new empirical data and thus needs to be revised.

The challenge of multiagent inductive learning is that several agents will induc-
tively infer empirical knowledge that in principle may not be the same, since that
knowledge is dependent on each individual in twoways: the concrete empirical data
an agent has encountered and the specific inductive method an agent employs.

Communication among agents is necessary in order to reach shared and
agreed-upon empirical knowledge that is based on, and consistent with, all the
empirical data available to a collection of agents. Agents could simply communi-
cate all the data to the other agents, and then each agent could just use induction
individually. However, data redistribution might have a high cost, or might not
even be feasible in some domains due to organizational or privacy issues. In this
paper we propose an argumentation-based communication process where agents
can propose, compare and challenge the empirical knowledge of other agents,
with the goal of achieving a more accurate, shared, and agreed-upon body of
empirical knowledge without having to share all of their empirical data.

From the point of view of argumentation in MAS, inductive learning provides
a basis for automating, in empirical domains, a collection of activities necessary
for implementing artificial agents that support argumentation: how to generate
arguments, how to attack and defend arguments, and how to change an agent’s
beliefs as a result of the arguments exchanged. Logic-based approaches to ar-
gumentation like DeLP [2] amend classical deductive logic to support defeasible
reasoning. Our approach takes a different path, assuming agents that learn their
knowledge (by using induction over empirical data) instead of assuming agents
have been programmed (by giving them a rule-based knowledge base). Therefore,
we need to specify empirical methods that are able to perform the required activ-
ities of argumentation (generating arguments and attacks, comparing arguments
and revising an agent’s beliefs).

This paper presents a MAS framework for empirical argumentation called A-
MAIL, which implements those activities on the basis of the inductive inference
techniques developed in the field of machine learning. The main idea behind A-
MAIL is the following: given two agents with inductive learning capabilities, they
can use induction to generate hypotheses from examples. These hypotheses can
be used as arguments in a computational argumentation framework. Argumen-
tation helps the agents reach an agreement over the induced knowledge, thus
reaching hypotheses that are consistent with the data known to both agents.
Effectively, A-MAIL integrates inductive learning and computational argumen-
tation to let groups of agents perform multiagent induction. This means that
agents can reach hypotheses consistent with the data known to a set of agents
without having to share all this data.

1 Inductive inference is not truth-preserving, since new and unseen examples may
contradict past generalizations, albeit it is falsity-preserving.
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The structure of the paper starts by introducing the needed notions of induc-
tive learning (Section 2). Then, Section 3 presents our empirical argumentation
framework, A-MAIL, while Section 4 shows the utility of the framework in the
task of concept convergence (in which two agents argue with the goal of achieving
an agreement on a particular topic); an experimental evaluation of the approach
is presented evaluating the quality of the agreements achieved by argumentation.
The paper closes with sections on related work and conclusions.

2 Concept Induction

Inductive learning, and in particular concept learning, is the process by which
given an extensional definition of a concept C (a collection of examples of C and
a collection of examples that are not C) an intensional definition (or generaliza-
tion) of a concept C can be found. Formally, an induction domain is characterized
as pair 〈E ,G〉 where E is the language describing examples or instances and G is
the language for describing generalizations; usually E ⊂ G is assumed, but this
is not necessary. A language is understood as the set of well formed formulas
built from a domain vocabulary or ontology O. The relation between languages
E and G is established by the subsumption relation (�); we say a generalization
g ∈ G subsumes (or covers) an example e ∈ E , g � e, whenever e satisfies the
properties described by g [8]. Different approaches to induction work with differ-
ent languages, from propositional languages (attribute value vectors) to subsets
of predicate logic (like Inductive Logic Programming that uses a sublanguage of
Horn logic).

Given a collection of examples E = {e1, ..., eM} described in a language E ,
an extensional definition of a concept C is a function C : E −→ {+,−}, that
determines the subset E+ of (positive) examples of C, and the subset E− of
counterexamples (or negative examples) of C. An inductive concept learning
method is a function I : P(E)×C −→ G such that, given a collection of examples
and a target concept C, yields an intensional definition h ∈ G; generally one
single formula in G is not sufficient to describe an intensional definition so it is
usually described as a disjunction of generalizations C = h1 ∨ ... ∨ hn.

Definition 1. An intensional definition C of a concept C is a disjunct C =
h1 ∨ ... ∨ hn, such that ∀ej ∈ E+∃hi : hi � ej and ∀ej ∈ E−∀hi : hi 
� ej

That is to say, that each positive example of C is subsumed by at least one
generalization hi, and no counterexample of C is subsumed by any hi.

For simplicity, we will shorten the previous expression as follows: C � E+ ∧
C 
� E−. Moreover, in the remainder of this paper we will refer to each hi as a
generalization or as a hypothesis.

2.1 Inductive Agents with Empirical Beliefs

In this paper we will focus on argumentation between two agents (say A1 and
A2) that are interested in learning an intensional definition for a particular con-
cept based on the experience of both agents. Each agent will have certain beliefs
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C CC1 C2

E+
1 E+

2

Fig. 1. Schema for two agents where a concept name (C) is shared while intensional
descriptions are, in general, not equivalent (C1 �∼= C2)

according to what they have learnt. Thus, we will now explore how differences
between these two agents relate to induction and argumentation. First, we will
assume each agent has its own set of examples from which they may learn by
induction (say E1 and E2) and they are both in principle unrelated although
expressed in the same language E . Furthermore, each agent may use, in princi-
ple, different induction techniques but they obtain generalizations in the same
language G. Thus, for any particular concept C two agents will have intensional
descriptions C1 and C2 that are, in general, not equal or equivalent. Figure 1
depicts these relationships between two agents beliefs (C1 and C2) about what
C is based on their empirical data E1 and E2.

Finally, since Definition 1 is too restrictive for practical purposes, machine
learning approaches allow the intensional definitions to subsume less than 100%
of positive examples by defining a confidence measure. The goal of induction is
then, given as a target the function C : E −→ {+,−}, to find a new function
C, which is a good approximation of C, in the sense of yielding a small error in
determining when an example is a positive or negative example of C.

In the remainder of this paper we will use a confidence measure that assesses
the confidence of each individual hypothesis h in an intensional definition.

Definition 2. The individual confidence of a hypothesis h for an agent Ai:

Bi(h) =
|{e ∈ E+

i |h � e}| + 1
|{e ∈ Ei|h � e}| + 2

Bi(h) is the ratio of positive examples correctly covered by h over the total
number examples covered by h; moreover, we add 1 to the numerator and 2 to
the denominator following the Laplace probability estimation procedure (which
prevents estimations too close to 0 or 1 when very few examples are covered).
Other confidence measures could be used, our framework only requires that the
confidence measure reflects how much the set of examples known to an agent
endorses a hypothesis h.

Finally, a threshold τ is established, and only hypotheses with confidence
Bi(h) > τ are accepted as valid outcomes of the inductive process.
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Definition 3. A hypothesis h is τ-acceptable for an agent Ai if Bi(h) ≥ τ ,
where 0 ≤ τ ≤ 1.

Thus, intensional definitions (C1 and C2) consist of a disjunction of hypotheses,
each of them being τ -acceptable. In the rest of this paper we will say that a
hypothesis is consistent with a set of examples, if the hypothesis is τ -acceptable
with respect to that set of examples.

3 An Empirical Approach to MAS Argumentation

This section will focus on how to integrate argumentation with inductive agents
in scenarios where the goal is to achieve an agreement between two agents on
the basis of their empirical knowledge. Here the empirical adjective refers to
the observations of the real world that each agent has had access to and that is
embodied in the set of examples E1 and E2 represented using a language E .

Argumentation in Multiagent Inductive Learning (A-MAIL) is a framework
where argumentation is used as a communication mechanism for agents that
want to perform collaborative inductive tasks such as concept convergence (see
Section 4). We do not claim, however, that A-MAIL is a new “argumentation
framework” in the sense of Dung [6], it is intended as a framework to that
integrates argumentation processes and inductive processes in MAS.

According to Dung, an argumentation framework AF = 〈A, R〉 is composed
by a set of arguments A and an attack relation R among the arguments. A-MAIL
is not a general logic framework and, although certainly we will define what
we mean as arguments and attack relations, we take an empirical approach
to argumentation. Thus, the main difference from Dung’s framework is that,
since arguments are generated from examples, our approach necessarily defines
a specific relation between arguments and examples, which is not part of the
usual interpretations of Dung’s framework2.

3.1 The A-MAIL Framework

A-MAIL is a framework that allows groups of agents to perform collaborative
induction tasks. A typical collaborative induction task is multiagent induction,
where a group of agents wants to find an intensional definition of a concept and
where each agents has a different set of positive and negative examples of that
concept. A simple way to solve this problem is by sharing all the examples and
then just using induction in a centralized way. However, that solution might not
be feasible in some scenarios. Imagine, for instance, that a group of physicians
needed to share the data concerning all of their patients to a centralized location
in order to draw inductive inferences from that data. Another approach could be
2 Some approaches may consider “counter-examples” as a kind of arguments. This is

certainly true, but in our approach there is a constitutive relation between examples
and arguments (the “empirical” approach) that is different from merely accepting
counter-examples as arguments.
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use ensemble learning [5] techniques, where each agent would learn a local inten-
sional definition, and then those definitions can be combined at problem solving
time using some sort of voting mechanism. A-MAIL is an alternative approach
where agents first use induction individually, and then use computational argu-
mentation to argue about the individually induced hypothesis. Nevertheless, in
this paper we focus on scenarios with only two agents; extending A-MAIL for
more than two agents is part of our future work.

The main idea behind A-MAIL is that the arguments to be used in an argumen-
tation process can be generated from examples by inductive learning methods.
Agents using A-MAIL use induction to generate an initial set of hypotheses ex-
plaining the data known to them, and then communicate those hypotheses to
other agents, starting an argumentation process where arguments and counter-
arguments (also generated by induction) are exchanged until an agreement is
reached. While sharing arguments and counterarguments, the agents learn new
information from the data known to the other agents, and may need to revise
their beliefs accordingly; once the argumentation process is over, the agents will
have agreed on a set of hypotheses that are consistent with the data known to
each other (including the exchanged in the process).

Summarily, there are three main processes in the A-MAIL framework: 1) gen-
eration of arguments from examples using inductive learning, 2) computational
argumentation using the previously generated arguments, and 3) belief revision,
for revising the hypotheses generated by induction in front of new arguments
received from other agents. Let us address each one of them in turn.

3.2 Arguments and Counterarguments

We first define the kinds of arguments employed in A-MAIL and their attack
relation. There are two kinds of arguments in A-MAIL:

Example Argument: α = 〈e, C〉 is a pair where an example e ∈ E is related
to a concept C ∈ {C,¬C}, where C = C if e is a positive example of C, and
C = ¬C otherwise.

Hypothesis Argument: α = 〈h, C〉 is a pair where h is a τ -acceptable hy-
pothesis and C ∈ {C,¬C}. An argument 〈h, C〉 states that h is a hypothesis
of C, while 〈h,¬C〉 states that h is a hypothesis of ¬C, i.e. that examples
covered by h do not belong to C.

Since hypotheses in arguments are generated by induction, they have an associ-
ated degree of confidence for an individual agent:

Definition 4. The confidence of a hypothesis argument α = 〈h, C〉 for an agent
Ai is:

Bi(α) =

⎧⎪⎨⎪⎩
|{e∈E+

i |h�e}|+1

|{e∈Ei|h�e}|+2 if C = C

|{e∈E−
i |h�e}|+1

|{e∈Ei|h�e}|+2 if C = ¬C
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+ --++

h1

h2

e3 e4

α2 � α1

α1 = 〈h1, C〉
α2 = 〈h2,¬C〉

ε4 � α1

ε3 � α2
ε3 = 〈e3, C〉

Bi(α1) =
3 + 1
5 + 2

= 0.57 Bi(α2) =
2 + 1
3 + 2

= 0.60

ε4 = 〈e4,¬C〉

Fig. 2. An illustration of the different argument types, their confidences and attacks

Consequently, we can use the threshold τ to impose that only arguments with a
strong confidence are acceptable in the argumentation process.

Definition 5. An argument α generated by an agent Ai is τ -acceptable iff α is
a hypothesis argument and Bi(α) > τ , or if α is an example argument.

From now on, only τ -acceptable arguments will be considered within the A-MAIL
framework. Moreover, notice that we require arguments to be τ -acceptable for
the agent who generates them. An argument generated by one agents might not
be τ -acceptable for another agent.

Next we define the attack relation between arguments:

Definition 6. An attack relation (α � β) between two τ-acceptable arguments
α, β holds when:

1. 〈h1, Ĉ〉 � 〈h2, C〉 ⇐⇒ Ĉ = ¬C ∧ h2 � h1, or
2. 〈e, C〉 � 〈h, Ĉ〉 ⇐⇒ C = ¬Ĉ ∧ h � e

where C, Ĉ ∈ {C,¬C}.

Notice that a hypothesis argument α = 〈h1, Ĉ〉 only attacks another argument
β = 〈h2, C〉 if h2 � h1, i.e. when α is (strictly) more specific than β. This is
required since it implies that all the examples covered by α are also covered by
β, and thus if one supports C and the other ¬C, they must be in conflict.

Figure 2 shows some examples of arguments and attacks. Positive examples
of the concept C are marked with a positive sign, whereas negative examples are
marked with a negative sign. Hypothesis arguments are represented as triangles
covering examples; when an argument α1 subsumes another argument α2, we
draw α2 inside of the triangle representing α1. Argument α1 has a hypothesis h1

supporting C, which covers 3 positive examples and 2 negative examples, and



56 S. Ontañón and E. Plaza

+ -++

h1

h2

+ --+

h1

h2

PROPONENT
OPONENT

+ +

Bj(α1) =
5 + 1
6 + 2

= 0.75

Bj(α2) =
1 + 1
3 + 2

= 0.40

-

Bi(α1) =
2 + 1
5 + 2

= 0.43

Bi(α2) =
3 + 1
3 + 2

= 0.8

Fig. 3. An comparison of two individual viewpoints on arguments, attacks, and ac-
ceptability

thus has confidence 0.57, while argument α2 has a hypothesis h2 supporting ¬C
with confidence 0.60, since h2 covers 2 negative examples and only one positive
example. Now, the attack α2 � α1 holds because α2 supports ¬C, α1 supports
C and h1 � h2. Moreover, ε3 � α2, since e3 is a positive example of C while α2

supports ¬C and covers this example (h2 � e3).
Notice that the viewpoint on the (empirical) acceptability of an argument

or of an attack depends on each individual agent, as shown in Fig 3, where
two agents Ai and Aj compare arguments α1 and α2 for hypotheses h1 and h2,
assuming τ = 0.6. From the point of view of agent Ai (the Opponent), proposing
argument α2 as an attack against argument α1 of agent Aj (the Proponent) is a
sound decision, since for Ai, α1 is not τ -acceptable, while α2 is. However, from
the point of view of the Proponent of α1, α2 is not τ -acceptable. Thus, Aj does
not accept α2 and will proceed by attacking it.

Next we will define when arguments defeat other arguments, based on the
notion of argumentation lines [2].

Definition 7. An Argumentation Line αn � αn−1 � ... � α1 is a sequence of
τ-acceptable arguments where αi attacks αi−1, and α1 is called the root.

Notice that odd-numbered arguments are generated by the agent whose hypoth-
esis is under attack (the Proponent of the root argument α1) and the even-
numbered arguments are generated by the Opponent agent attacking α1. More-
over, since hypothesis arguments can only attack other hypothesis arguments,
and example arguments can only attack hypothesis arguments, example argu-
ments can only appear as the left-most argument (e.g. αn) in an argumentation
line.
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α1

α3 α7

β2 β6

e4 e5

α7 � β6 � α1

e5 � α3 � β2 � α1

e4 � α3 � β2 � α1

Fig. 4. Multiple argumentation lines rooted in the same argument α1 can be composed
into an argumentation tree

Definition 8. An α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. The example-free argumentation tree T f corresponding to T is a tree rooted in
α that contains the same hypothesis arguments of T and no example argument.

Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments can only appear as leafs in any argumentation tree.

Figure 4 illustrates this idea, where three different argumentation lines rooted
in the same α1 are shown with their corresponding argumentation tree. The αi

arguments are provided by the Proponent agent (the one proposing the root
argument) while βi arguments are provided by the Opponent trying to attack
the Proponent’s arguments.

Definition 9. Let T be an α-rooted argumentation tree, where argument α be-
longs to an agent Ai, and let T f be the example-free argumentation tree corre-
sponding to T . Then the root argument α is warranted (or undefeated) iff all
the leaves of T f are arguments belonging to Ai; otherwise α is defeated.

In A-MAIL agents will exchange arguments and counterarguments following some
interaction protocol. The protocol might be different depending on the task the
agents are trying to achieve (be it concept convergence, multiagent induction,
or any other). Nevertheless, independently of the protocol being used, we can
define the state of the argumentation two agents Ai and Aj at an instant t as
the tuple 〈Rt

i, R
t
j , G

t〉, consisting of:

– Rt
i = {〈h, C〉|h ∈ {h1, ..., hn}}, the set of arguments defending the current

intensional definition Ct
i = h1 ∨ ... ∨ hn of agent Ai;

– Rt
j is the same for Aj .

– Gt contains the collection of arguments generated before t by either agent,
and belonging to one argumentation tree rooted in an argument in Rt

i ∪Rt
j .

3.3 Argument Generation through Induction

Agents need two kinds of argument generation capabilities: generating an inten-
sional definition from the individual examples known to an agent, and generating
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arguments that attack arguments provided by other agents; notice that a defense
argument is simply α′ � β � α, i.e. an attack on the argument attacking a pre-
vious argument. Thus, defense need not be considered separately.

An agent Ai can generate an intensional definition of C by using any inductive
learning algorithm capable of learning concepts as a disjunction of hypothesis,
e.g. learning algorithms such as CN2[3] or FOIL[13].

Attack arguments, however, require a more sophisticated form of induction.
When an agent Ai wants to generate an argument β = 〈h2, C〉 to attach another
argument α = 〈h1, Ĉ〉, i.e. β � α, Ai has to find an inductive hypothesis h2 for
β that satisfies four conditions:

1. h2 should support the opposite concept than α: namely C = ¬Ĉ,
2. β should have a high confidence Bi(β) (at least being τ -acceptable),
3. h2 should satisfy h1 � h2, and
4. β should not be attacked by any undefeated argument in Gt.

Currently existing inductive learning techniques cannot be applied out of the
box, mainly because they do not satisfy the last two conditions.

In previous work, we developed the Argumentation-based Bottom-up Induc-
tion (ABUI) algorithm, capable of performing such task [12]; this is the inductive
algorithm used in our experiments in Section 4.2. However, any algorithm which
can search the space of hypotheses looking for a hypothesis which satisfies the
four previous conditions would work in our framework.

Let L be the inductive algorithm used by an agent Ai; when the goal is to
attack an argument α = 〈h1, Ĉ〉 then L has to generate an argument β = 〈h2, C〉
such that β � α. The uses L trying to find such a hypothesis h2:

– If L returns an individually τ -acceptable h2, then β is the attacking argument
to be used.

– If L fails to find a suitable h2, then Ai looks for examples in Ei that attack
α. If any exist, then one such example e is randomly chosen to be used as
an attacking argument β = 〈e, C〉.

Otherwise, Ai is unable to generate any argument attacking α.
If a hypothesis or example argument is not enough to defeat another argument,

additional arguments or examples could be sent in subsequent rounds of the
interaction protocol (as long as the protocol allows it).

3.4 Empirical Belief Revision

During argumentation, agents exchange arguments which contain new hypothe-
ses and examples. These exchanges contain empirical knowledge that agents will
integrate with their previous empirical beliefs. Consequently, their beliefs will
change in such a way that their hypotheses are consistent with the accrued
empirical evidence: we call this process empirical belief revision.

The belief revision process of an agent Ai at an instant t, with an argumen-
tation state 〈Rt

i , R
t
j , G

t〉 starts whenever Ai receives an argument from another
agent:
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1. If it is an example argument ε = 〈e, Ĉ〉 then e is added as a new example
into Ei, i.e. Ai expands its extensional definition of C.

2. Whether the received argument is an example or an hypothesis, the agent
re-evaluates the confidence of the arguments in Rt

i and Gt: if any of these
arguments becomes no longer τ -acceptable for Ai they removed from Rt+1

i

or Gt+1.
3. If any argument α = 〈h, Ĉ〉 in Rt

i became defeated, and Ai is not able to
expand the argumentation tree rooted in α to defend it, then the hypothesis
h will be removed from Ci. This means that some positive examples in Ei

will not be covered by Ci any longer. The inductive learning algorithm is
called again to generate new hypotheses h′ for the now uncovered examples.

We would like to remark that, as shown in Figure 5, all aspects of the argu-
mentation process (generating arguments and attacks, accepting arguments, de-
termining defeat, and revising beliefs) are supported on an empirical basis and,
from the point of view of MAS, implemented by autonomous decision making of
artificial agents. The activities in Figure 5 permit the MAS to be self-sufficient
in a domain of empirical enquiry, since individual agents are autonomous and
every decision is based on the empirical knowledge available to them.

The next section presents an application of this MAS framework to reach
agreements in MAS.

Generating 
Arguments

Accepting 
Arguments

Generating 
Attacks

Revising 
Beliefs

Determining 
Defeat

Fig. 5. The closed loop of empirically based activities used in argumentation

4 Concept Convergence

We have developed A-MAIL as part of our research line on deliberative agree-
ment3, in which 2 or more artificial agents use argumentation to reach different
3 This is part the project Agreement Technologies: http://www.

agreement-technologies.org/

http://www.agreement-technologies.org/
http://www.agreement-technologies.org/
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forms of agreement. In this section we will present a particular task of delibera-
tive agreement called concept convergence. The task of Concept Convergence is
defined as follows: Given two or more individuals which have individually learned
non-equivalent meanings of a concept C from their individual experience, find a
shared, equivalent, agreed-upon meaning of C.

Definition 10. Concept Convergence (between 2 agents) is the task defined as
follows:

Given two agents (Ai and Aj) with individually different intensional (Ci 
∼= Ci)
and extensional definitions (E+

i 
= E+
j ) of a concept C,

Find a convergent, shared and agreed-upon intensional description (C′
i
∼= C′

j)
for C that is consistent with the extensional descriptions (E+

i and E+
j ) of

each individual.

For example, in the experiments reported in this paper, we used the domain of
marine sponge identification. The two agents need to agree on the definition of
the target concept C = Hadromerida, among others. While in ontology align-
ment the focus is on establishing a mapping between the ontologies of the two
agents, here we assume that the ontology is shared, i.e. both agents share the
concept name Hadromerida. Each agent may have experience in a different area
(say, one in the Atlantic, and the other in the Mediterranean), so they have
collected different samples of Hadromerida sponges, those samples constitute
their extensional definitions (which are different, since each agent has collected
sponges on their own). Now, they would like to agree on an intensional definition
C, which describes such sponges and is consistent with their individual experi-
ence. In our experiments, one such intensional definition reached by one of the
agents is: C = “all those sponges which do not have gemmules in their external
features, whose megascleres had a tylostyle smooth form and that do not have
a uniform length in their spikulate skeleton”.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj , as follows:

Definition 11. The individual degree of convergence among two intensional
definitions Ci and Cj for an agent Ai is:

Ki(Ci, Cj) =
|{e ∈ Ei|Ci � e ∧ Cj � e}|
|{e ∈ Ei|Ci � e ∨ Cj � e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 12. The joint degree of convergence of two intensional definitions
Ci and Cj is:

K(Ci, Cj) = min(Ki(Ci, Cj), Kj(Cj , Ci))
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Concept convergence is defined as follows:

Definition 13. Two intensional definitions are convergent (Ci
∼=ε Cj) if

K(Ci, Cj) ≥ ε, where 0 ≤ ε ≤ 1 is a the degree of convergence required.

The next section describes the protocol to achieve concept convergence.

4.1 Argumentation Protocol for Concept Convergence

The concept convergence (CC) argumentation process follows an iteration pro-
tocol composed of a series of rounds, during which two agents will argue about
the individual hypotheses that compose their intensional definitions of a concept
C. At each round t of the protocol, each agent Ai holds a particular intensional
definition Ct

i, and only one agent will hold a token. The holder of the token can
assert new arguments and then the token will be passed on to the other agent.
This cycle will continue until Ci

∼= Cj .
The protocol starts at round t = 0 with a value set for ε and works as follows:

1. Each agent Ai communicates to the other their current intensional definition
by sharing R0

i . The token is given to one agent at random, and the protocol
moves to 2.

2. The agents share Ki(Ci, Cj) and Kj(Cj , Ci), their individual convergence
degrees. If Ci

∼=ε Cj the protocol ends with success; if no agent has produced
a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. the agent with the token, Ai, checks if belief revision has modified Ct
i, and

if so sends a message communicating its current intensional definition Rt
i.

Then, the protocol moves to 4.
4. If any argument α ∈ Rt

i is defeated, and Ai can generate an argument α′

to defend α, the argument α′ will be sent to the other agent. Also, if any
of the undefeated arguments β ∈ Rt

j is not individually τ -acceptable for Ai,
and Ai can find an argument β′ to extend any argumentation line rooted in
β, in order to attack it, then β′ is sent to the other agent. If at least one of
these arguments was sent, a new round t+1 starts; the token is given to the
other agent, and the protocol moves back to 2. Otherwise, if none of these
arguments could be found, the protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ct

j 
� e (i.e. a positive example not
covered by the definition of Aj), Ai will send e to the other agent, stating
that the intentional definition of Aj does not cover e. A new round t + 1
starts, the token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no argument is allowed to be sent
twice by the same agent. A-MAIL ensures that the joint degree of convergence of
the resulting concepts is at least τ if (1) the number of examples is finite, (2) the
number of hypotheses that can be generated is finite. Joint convergence degrees
higher of than τ cannot be ensured, since 100×(1−τ)% of the examples covered
by a τ -acceptable hypothesis might be negative, causing divergence. Therefore,
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Fig. 6. A description of one of the sponges of the Axinellida order used in our
experiments

when ε > τ , we cannot theoretically ensure convergence. However, as we will
show in our experiments, in practical scenarios, convergence is almost always
reached. Notice that increasing τ too much in order to ensure convergence could
be detrimental, since that would impose a too strong restriction on the inductive
learning algorithms. And, although convergence would be reached, the concept
definitions might cover only a small subset of the positive examples.

Termination is assured even when both agents use different inductive algo-
rithms because of the following reason. By assumption, agents use the same
finite generalization space, and thus there is no hypothesis τ -acceptable by one
agent that could not be τ -acceptable by the other agent when both use the
same acceptability condition over the same collection of examples. Thus, in the
extreme, if the agents reach the point when they have exchanged all their exam-
ples, their τ -acceptability criteria will be identical, and thus all rules acceptable
to one are also acceptable to the other.

4.2 Experimental Evaluation

In order to empirically evaluate A-MAIL with the purpose of concept conver-
gence we used the marine sponge identification problem. Sponge classification
is interesting because the difficulties arise from the morphological plasticity of
the species, and from the incomplete knowledge of many of their biological and
cytological features. Moreover, benthology specialists are distributed around the
world and they have experience in different benthos that spawn species with
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Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using A-MAILversus those obtained using

Centralized Individual A-MAIL
C P R P R K P R K

Axinellida 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89

Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97

Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

different characteristics due to the local habitat conditions. The specific prob-
lem we target in these experiments is that of agreeing upon a shared description
of the features that distinguish one order of sponges from the others.

To have an idea of the complexity of this problem, Figure 6 shows a descrip-
tion of one of the sponges collected from the Mediterranean sea used in our
experiments. As Figure 6 shows, a sponge is defined by five groups of attributes:
ecological features, external features, anatomy, features of its spikulate skele-
ton, and features of its tracts skeleton. Specifically, we used a collection of 280
sponges belonging to three different orders of the demospongiae family: axinell-
ida, Hadromerida and astrophorida. Such sponges were collected from both the
Mediterranean sea and Atlantic ocean. In order to evaluate A-MAIL, we used
each of the three orders as target concepts for concept convergence —namely
Axinellida, Hadromerida and Astrophorida. In an experimental run, we split the
280 sponges randomly among the two agents and, given as target concept one
of the orders, the goal of the agents is to reach a convergent definition of such
concept. The experiments model the process that two human experts undertake
when they to discuss over which features determine whether a sponge belongs
to a particular order.

We compared the results of A-MAIL with respect to agents which do not
perform argumentation (Individual), and to the result of centralizing all the ex-
amples and performing centralized induction (Centralized). Thus, the difference
between the results of individual agents and agents using A-MAIL should provide
a measure of the benefits of A-MAIL for concept convergence, where as compar-
ing with Centralized gives a measure of the quality of the outcome. All the results
are the average of 10 executions, with ε = 0.95 and τ = 0.75.

Table 1 shows one row for each of the 3 concepts we used in our evaluation:
Axinellida, Hadromerida and Astrophorida, and setting we show for them three
values: precision (P), recall (R), and convergence degree (K). Precision mea-
sures how many of the examples covered by the definition are actually positive
examples; recall measures how many of the total number of positive examples
in the data set are covered by the definition; and convergence degree is as in
Definition 12. The first thing we see in Table 1 is that A-MAIL is able to increase
convergence from the initial value appearing in the Individual setting. For two
concepts (the exception is Axinellida) the convergence was higher than ε = 0.95.
Total convergence was not reached for because in our experiments τ = 0.75,
allowing hypotheses to cover some negative examples and preventing overfitting.
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Fig. 7. Set of rules forming the definition of Axinellida and obtained by one of the
agents using A-MAIL in our experiments

This means that acceptable hypotheses can cover some negative examples, and
thus generate some divergence. Increasing τ could improve convergence but it
would make finding hypotheses by induction more difficult, and thus recall might
suffer. Moreover, both precision and recall are maintained or improve thanks to
argumentation, reaching values close to the ones in a Centralized setting.

Moreover, during argumentation, agents exchanged an average of 10.7 examples
to argue about Axinellida, 18.5 for Hadromerida and only 4.1 for Astrophorida.
Thus, compared to a centralized approach where all the examples would have to
be exchanged, i.e. 280, only a very small fraction of examples are exchanged.

Figure 7 shows the set of rules that one of the agents using A-MAIL obtained in
our experiments as the definition of the concept Axinellida. For instance, the first
rule states that “all the sponges with an erect and line-form growing, and with
megascleres in the spikulate skeleton which had style smooth form and smooth
ornamentation belong to the Axinellida order”. By looking at those rules, we
can clearly see that both the growing external features and the characteristics
of the megascleres are the distinctive features of the Axinellida order.

In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence by integrating argumentation and inductive learning, while maintainig
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or improving the quality of the intensional definition (precision and recall). This
is achieved by exchanging only a small percentage of the examples the agents
know (as opposed to the Centralized setting where all the examples are given to
a single agent, which might not be feasible in some applications).

5 Related Work

Concerning argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument
selection and c) argument interpretation, a recent overview can be found at [14].

The idea that argumentation might be useful for machine learning was dis-
cussed in [7], but no concrete proposal has followed, since the authors goal was
propose that a defeasible logic approach to argumentation could provide a sound
formalization for both expressing and reasoning with uncertain and incomplete
information as appears in machine learning. Since the possible hypotheses can
be induced from data could be considered an argument, and then by defining
a proper attack and defeat relation, a sound hypotheses can be found. How-
ever, they did not develop the idea, or attempted the actual integration of an
argumentation framework with any particular machine learning technique. Am-
goud and Serrurier [1] elaborated on the same idea, proposing an argumentation
framework for classification. Their focus is on classifying examples based on all
the possible classification rules (in the form of arguments) rather than on a single
one learned by a machine learning method.

A related idea is that of argument-based machine learning [9], where some ex-
amples are augmented with a justification or “supporting argument”. The idea
is that those supporting arguments are then used to constrain the search in the
hypotheses space: only those hypotheses which classify examples following the
provided justification are considered. Notice that in this approach, arguments
are used to augment the information contained in an example. A-MAIL uses ar-
guments in a different way. A-MAIL does not require examples to be augmented
with such supporting arguments; in A-MAIL the inductive process itself gener-
ates arguments. Notice, however, that both approaches could be merged, and
that A-MAIL could also be designed to exploit extra information in the form of
examples augmented with justifications. Moreover, A-MAIL is a model for mul-
tiagent induction, whereas argument-based machine learning is a framework for
centralized induction which exploits additional annotations in the examples in
the form of arguments.

The idea of using argumentation with case-based reasoning in multiagent sys-
tems has been explored by [11] in the AMAL framework. Compared to A-MAIL,
AMAL focuses on lazy learning techniques where the goal is to argue about
the classification of particular examples, whereas A-MAIL, although uses case
bases, allows agents to argue about rules generated through inductive learning
techniques. Moreover, the AMAL framework explored a related idea to A-MAIL,
namely learning from communication [10]. An approach similar to AMAL is
PADUA [15], an argumentation framework that allows agents to use examples
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to argue about the classification of particular problems, but they generate asso-
ciation rules and do not perform concept learning.

6 Conclusions

The two main contributions of this paper are the definition of an argumentation
framework for agents with inductive learning capabilities, and the introduction
of the concept convergence task. Since our argumentation framework is based
on reasoning from examples, we introduced the idea of argument acceptability,
which measures how much empirical support an argument has, which is used to
define an attack relation among arguments. A main contribution of the paper has
been to show the feasibility of a completely automatic and autonomous approach
to argumentation in empirical tasks. All necessary processes are autonomously
performed by artificial agents: generating arguments from their experience, gen-
erating attacks to defeat or defend, changing their beliefs as a result of the
argumentation process — they are all empirically based and autonomously un-
dertook by individual agents.

The A-MAIL framework has been applied in this paper to the concept conver-
gence task. However, it can also be seen as a multi-agent induction technique to
share inductive inferences [4]. As part of our future work, we want to extend our
framework to deal with more complex inductive tasks, such achieving conver-
gence on a collection of interrelated concepts, as well as scenarios with more than
2 agents. Additionally, we would like to explore the use of argumentation frame-
works which support weights or strengths in the arguments, in order to take into
account the confidence of each agent during the argumentation process.

Our long term goal is to study the relation and integration of inductive in-
ference and communication processes among groups of intelligent agents into a
coherent unified MAS framework.
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7. Gómez, S.A., Chesñevar, C.I.: Integrating defeasible argumentation and machine
learning techniques. In: CoRR, cs.AI/0402057 (2004)

8. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
9. Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial

Intelligence 171(10-15), 922–937 (2007)
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Abstract. Complex decisions involve many aspects that need to be con-
sidered, which complicates determining what decision has the most pre-
ferred outcome. Artificial agents may be required to justify and discuss
their decisions to others. Designers must communicate their wishes to
artificial agents. Research in argumentation theory has examined how
agents can argue about what decision is best using goals and values.
Decisions can be justified with the goals they achieve, and goals can
be justified by the values they promote. Agents may agree on having a
value, but disagree about what constitutes that value. In existing work,
however, it is not possible to discuss what constitutes a specific value,
whether a goal promotes a value, why an agent has a value and why
an agent has specific priorities over goals. This paper introduces several
argument schemes, formalised in an argumentation system, to overcome
these problems. The techniques presented in this paper are inspired by
multi attribute decision theory.
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and Methods.
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1 Introduction

In complex situations, decisions involve many aspects that need to be consid-
ered. These aspects are typically different in nature and therefore difficult to
compare. This complicates determining what outcome is the most preferable.
Throughout the paper, we will use buying a house as an example, which in-
volves many different aspects. For example, an agent may care about the costs
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of a house, but also about how fun, comfortable, close to shops, and how beau-
tiful a house is. Artificial agents are expected to act in the designer’s or user’s
best interest. This requires designers or users to communicate their wishes to
the agent and the agent to explain and discuss why a certain decision was made.
A significant amount of research has been concerned with using argumentation
theory for decision-making and practical reasoning to determine which decisions
are defensible from a given motivation, see for example [7, 2, 1].

A possible argumentation framework for decision-making for this purpose
is the one proposed in [1]. Several decision principles are formalised to select
the best decision using arguments in favour and against the available decisions.
Agents are assumed to have a set of prioritised goals, which are used to construct
argument in favour and against decisions. For example, agent α has the goal to
live in a house that is downtown and the less important goal to live in a house
bigger than 60m2. In complex situations it is useful to argue about what goals
should be pursued. Why have the goal to live downtown and why not in a village?
Why is living downtown more important than living in a bigger house? However,
justifying and attacking goals is not possible using the framework of [1].

In order to solve this problem, we could use the framework described in [2],
where goals can be justified and attacked using the values they promote and
demote. People use their values as standards or criteria to guide selection and
evaluation of actions [10, 12]. The values of agents reflect their preferences. For
example, agent α has the value of fun and of comfort. The goal to live downtown
promotes the value of fun and the goal to live in a bigger house promotes the
value of comfort. In [2] an argument scheme is proposed for practical reasoning in
which goals and actions can be justified and attacked by the values they promote
and demote. What constitutes a specific value like fun, comfort, justice, or health
often is disputable and therefore it is also disputable whether goals and actions
promote values. Namely, another agent may find that living downtown demotes
the value of fun because of the noise and lack of parking space. However, in [2] it
is not possible to explain or discuss what constitutes a value and consequently it
is also not possible to justify or attack that a goal or action promotes or demotes
a value.

This paper presents an argumentation approach to discuss what constitutes
a specific value and its effects on agent’s goals and preferences over outcomes.
To argue about decisions, an argumentation system is described in Section 2.
Since the subject of argumentation is making decisions, some basic notions of
decision theory are also described in Section 2. Next, we propose a model to
specify the meaning of values and their relation to preferences in Section 3. This
model is based on previous work [15] and inspired by techniques from decision
theory to find an appropriate multi-attribute utility function [8, 9]. A value is
seen as an aspect over which an agent has preferences and can be decomposed
into the aspects it contains. Given the meaning of a value, several argument
schemes are proposed in Section 4 to justify that goals promote or demote values.
The introduced formalism is demonstrated with an example of buying houses in
Section 5. The paper is concluded with some discussion and conclusions.
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2 Background

In Section 2.1, an argumentation system is described that will be used to ar-
gue about what decision is best. Outcomes describe the effects of decisions and
attributes describe properties of outcomes. Attributes of outcomes can be used
to describe what constitutes a value and to justify goals. To argue about what
decision is best, the notions of outcomes and attributes from decision theory are
introduced in our argumentation system in Section 2.2.

2.1 Argumentation

Argument schemes are stereotypical patterns of defeasible reasoning [14]. An
argument scheme consists of a set of premises, a conclusion, and is associated to
a set of critical questions that can be used to critically evaluate the inference.
In later sections, argument schemes are proposed to reason about what decision
is best.

We introduce an argumentation system to reason defeasibly and in which
argument schemes can be expressed. For the largest part, this argumentation
system is based on [5]. We will use both defeasible and strict inference rules.
The informal reading of a strict inference rule is that if its antecedent holds,
then its conclusion holds without exception. The informal reading of a defeasible
inference rule is that if its antecedent holds, then its conclusion tends to hold.

Definition 1 (Argumentation System). An argumentation system is a tuple
AS = (L,R) with L the language of first-order logic and R a set of strict and
defeasible inference rules.

We will use φ and ψ as typical elements of L and say that φ and ¬φ are each
other’s complements. In the meta-language, ∼φ denotes the complement of any
formula φ, positive or negative. Furthermore, → denotes the material implica-
tion.

Definition 2 (Strict and defeasible rules). A strict rule is an expression of
the form s(x1, . . . , xn) : φ1, . . . , φm ⇒ φ and a defeasible rule is an expression of
the form d(x1, . . . , xn) : φ1, . . . , φm � φ, with m ≥ 0 and x1, . . . , xn all variables
in φ1, . . . , φm, φ.

We call φ1, . . . , φm the antecedent, φ the conclusion, and both s(x1, . . . , xn) and
d(x1, . . . , xn) the identifier of a rule.

Arguments are inference trees constructed from a knowledge-base K ⊂ L. If
an argument A was constructed using no defeasible inference rules, then A is
called a strict argument, otherwise A is called a defeasible argument.

Example 1. Let AS = (L,R) be an argumentation system such that L =
{φ1, φ2, φ3} and R = {s() : φ1 ⇒ φ2; d() : φ1, φ2 � φ3}. From the knowledge-
base K = {φ1}, we can construct 3 arguments. Argument A1 has conclusion
φ1, no premises, and no last applied inference rule. Argument A2 is constructed
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by applying s(). Consequently, A2 has premise A1, conclusion φ2, and last ap-
plied inference rule s(). Argument A3 can then be constructed using d() and has
premises A1 and A2, conclusion φ3, and last applied rule d(). Arguments A1 and
A2 are strict arguments and argument A3 is a defeasible argument. A3 can be
visualised as follows:

φ1

φ1

φ2
s()

φ3
d()

All arguments can be attacked by rebutting one of their premises. Defeasible
arguments can also be attacked by attacking the application of a defeasible rule.
For example, let d(c1, . . . , cn) : φ1, . . . , φm � φ be a defeasible inference rule
that was applied in argument A. We can attack A in three ways: by rebutting
a premise of A, by rebutting A’s conclusion, and by undercutting a defeasible
inference rule that was applied in A. The application of a defeasible inference rule
can be undercut when there is an exception to the rule. An argument concluding
∼d(c1, . . . , cn) undercuts A.

Following [4], argument schemes are formalised as defeasible inference rules.
Critical questions point to counterarguments that either rebut the scheme’s
premises or undercut the scheme.

Argumentation Frameworks (AF) were introduced by [6] and provide a formal
means to determine what arguments are justified given a set of arguments and
a set of attack relations between them.

Definition 3. An Argumentation Framework (AF) is a tuple (Args, R) with
Args a set of arguments and R ⊆ Args × Args an attack relation.

Definition 4 (Conflict-free, Defense). Let (Args, R) be an AF and S ⊆ Args.

– S is called conflict-free iff there are no A, B ∈ S s.t. (A, B) ∈ R.
– S is defends argument A iff for all B ∈ Args s.t. (B, A) ∈ R, there is a

C ∈ S s.t. (C, B) ∈ R.

Definition 5 (Acceptability). Let (Args, R) be an AF, S ⊆ Args conflict-free
and F : 2Args → 2Args a function s.t. F (S) = {A | S defends A}. Then:

– S is admissible if S ⊆ F (S).
– S is a complete extension iff S = F (S).
– S is a grounded extension iff S is the smallest (w.r.t. set inclusion) complete

extension,
– S is a preferred extension iff S is a maximal (w.r.t. set inclusion) complete

extension.
– S is a stable extension iff S is a preferred extension that attacks all argu-

ments in Args \ S.

2.2 Outcomes and Attributes

The notion of outcomes is one of the main notions in decision theory [8, 11]
and is used to represent the possible consequences of an agent’s decisions. The
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set Ω of possible outcomes should distinguish all consequences that matter to
the agent and are possibly affected by its actions. Agents have preferences over
outcomes and decision theory postulates that a rational agent should make the
decision that leads to the most preferred expected outcome.

The notion of attribute is used to denote a feature, characteristic or property
of an outcome. For example, when buying a house, relevant attributes could be
price, neighbourhood in which it is located, size, or type of house. An attribute
has a domain of ‘attribute-values’ outcomes can have. Every outcome has exactly
one attribute-value of each attribute. It cannot be that an outcome has two
attribute-values of the same attribute.

Example 2 (Buying a house). There are 2 houses on the market and buying one
of them results in one of the two outcomes Ω = {ω1, ω2}. Consider the attributes
‘price’, ‘size’, ‘neighbourhood’, and whether there is a garden. Price is expressed
in dollar and size in m2. The neighbourhood can either be ‘downtown’ or ‘suburb’
and ‘yes’ represents there is a garden and ‘no’ that there is not.

Outcome ω1 has the following attribute-values: price is 150.000, size is 50,
neighbourhood is ‘suburb’ and garden is ‘yes’. On the other, outcome ω2’s price
is 200.000, size is also 50, neighbourhood is ‘downtown’ and garden is ‘no’.

Each attribute is a term in L and we use A to denote the set containing all
attributes. If x is an attribute, we will also say x-values instead of the attribute
values of attribute x. We define several functions concerning attributes and out-
comes.

– The function domain(x) returns a set of attribute-values that the attribute
x can have. For example, let attribute nbhd denote the neighbourhood of a
house, then domain(nbhd) = {downtown, suburb} or for the attribute price,
domain(price) = R

+.
– For each attribute x, the function x : Ω → domain(x) gives the attribute-

value of the given outcome for the attribute x. For example, price(ω1) =
150.000.

Example 3. Suppose that Ω = {ω1, ω2} is true, x is an attribute and domain(x) =
{1, 2, 3}. In that case, the function x returns the following: x(ω1) = 3 and
x(ω2) = 1.

3 Justification of Preferences over Outcomes

Preferences can be expressed in terms of outcomes, e.g. outcome A is preferred
to outcome B. The more aspects are involved, the more difficult it becomes to
directly express preferences over outcomes. Luckily, it is also natural to express
preferences in terms of attributes of outcomes. For example, maximising the
attribute profit is preferred. From such statements, preferences over outcomes
can be justified, e.g. outcome A is preferred to outcome B because the A’s profit
is higher. Typically, outcomes have many attributes, yet agents care only about
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a subset. What set of attributes an agent cares about determines the preferences
over outcomes. Using argumentation, agents can discuss why certain attributes
should and others should not be used.

Justification for a preference statement like “agent α prefers living downtown
to living in a suburb”, is useful to better understand α’s preferences. Namely,
α could argue that the centrality of a house positively influences the amount of
fun of a house and that α wants to maximise fun. If it is better understood why
α prefers something, then one could disagree (centrality is not fun because it is
very noisy) and give alternatives perspectives (living near nature is also fun and
do you not also care about quietness).

In complex situations, the preferences of agents depend on multiple attributes.
By decomposing an agent’s preferences into the different aspects it involves, the
number of attributes an aspect depends on becomes smaller. By recursively
decomposing preferences, we will arrive at aspects that depend on a single at-
tribute. For example, an agent α decomposes its preferences concerning houses
into the aspects costs and comfort. The perspective of costs is determined by
the attribute acquisition price. Comfort however, depends on multiple aspects.
Therefore, comfort is decomposed into location and size. Location is then con-
nected to the attribute neighbourhood and size to the surface area of the house.
One may argue that α forgets that other aspects also influence costs, e.g. main-
tenance, taxes, heating costs, and so on. On the other hand, another agent may
decompose comfort differently. For example, for agent β comfort is influenced
by the closeness to highway and whether there is central heating.

In Section 3.1 we will introduce perspectives to represent preferences and
aspects of preferences, after which we introduce perspectives on attribute values
in Section 3.2. In Section 3.3 we introduce influence between perspective to
denote that one perspective is an aspect of another. Finally in Section 3.4, we
slightly adapt Value-based Argumentation Frameworks, see [3], to determine
what conclusions are justified to make.

3.1 Perspectives

An ordering over outcomes can represent an agent’s preferences. In that case,
if an outcome is higher in the order, the agent prefers that outcome. Similarly,
outcomes can be ordered according to some criterion. For example, outcomes
can be ordered by how fun they are, or how fair they are. To talk about these
different orderings, we introduce the notion of perspective. With buying houses,
an outcome may be better than another from the perspective of costs, worse from
the perspective of its centrality, indifferent from the perspective of comfort, and
perhaps incomparable from the perspective of fun.

Definition 6 (Perspective). A perspective p is associated with a preorder, ≤p

over outcomes Ω. The set P denotes the set of all perspectives.

In other words, a perspective p is associated to a binary relation ≤p⊆ Ω×Ω that
is transitive and reflexive. If ω1≤p ω2 is true, we say that ω2 is weakly preferred



74 T.L. van der Weide et al.

to ω1 from perspective p. Strong preference from perspective p is denoted as
ω1 <p ω2 and stands for ω1≤p ω2 and ω2 
≤p ω1. Equivalence from perspective p
is denoted as ω1≈p ω2 and stands for ω1≤p ω2 and ω2≤p ω1.

Each agent α is associated with a perspective α̂ representing α’s preferences
over outcomes. If ω1 <α̂ ω2 is true, then we either say that ω2 is preferred to ω1

from agent α’s perspective, or we say that α prefers ω2 to ω1. Since perspectives
are the main notion in this paper, α̂ is abbreviated to α, so that α denotes a
perspective.

Not only the preferences of agents can be represented with perspectives, we
will also use perspectives to represent aspects of outcomes and the values of
agents. For example, the value of ‘safety’ is represented with a perspective that
orders outcomes according to how safe they are or the aspect of comfort is
represented with a perspective that orders outcomes by the amount of comfort.

Example 4. Agent α wants to buy a new house and wants to minimise costs,
maximise fun and maximise comfort. In Figure 1a, we sketch how the preferences
of agent α can be decomposed and how attributes of outcomes can be assigned.
Costs are determined by the attribute acquisition price. Fun is influenced by the
centrality of the house, i.e. the more central the neighbourhood, the more fun it
is. Comfort is influenced by how quiet it is and the size of the house. Again, the
attribute neighbourhood is ordered but now by how quiet the neighbourhood is.
The size is determined by the surface area of the house.

Agent β just won the lottery and does not care about costs. To β fun is being
close to nature, which is completely different from α’s idea about fun. Also, be-
cause β has a car and α does not, β cares about whether there is enough parking
space in the area. Figure 1b sketches the decomposition of β’s preferences.

3.2 Attributes Determine Perspectives

Attributes can be used to determine how outcomes should be ordered from a
perspective. For example, if you want to order houses from the perspective of
size, then the attribute ‘surface area of the house’ is an appropriate attribute.

(a) α’s preferences

Agent alpha

costs

acquisition 
price

fun

centrality

neighbour
hood

comfort

quietness size

surface 
area

(b) β’s preferences

Agent beta

fun

closeness 
to nature

neighbour
hood

comfort

quietness size
parking 
space

surface 
area

Fig. 1. Different Perspectives Using Different Attributes
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In that case, if house A has a higher surface area than house B, then A is
preferred to B from the perspective of size. To use an attribute x to determine
a perspective, x’s attribute values need to be ordered.

Definition 7 (Attribute Perspective). An attribute perspective px is a per-
spective that is associated with a partial preorder �p

x over the domain of at-
tribute x.

Note that there can be different attribute perspectives on the same attribute.

Example 5. Let the attribute nbhd denote the neighbourhood of the house with
domain(nbhd) = {dwntwn, vllg, sbrb}. Furthermore, let socialnbhd and quietnbhd

be attribute perspectives denoting the sociableness and the quietness of the
neighbourhood respectively. The different neighbourhoods are preferred from
each attribute perspective as follows:

sbrb ≺social
nbhd vllg ≺social

nbhd dwntwn dwntwn ≺quiet
nbhd sbrb ≺quiet

nbhd vllg

If an attribute value is preferred to another attribute value from px, then out-
comes with the preferred attribute value are be preferred from px. This order
between outcomes from an attribute perspective px can be inferred with the
following strict inference rule.

sap(px, ω1, ω2) : x(ω1) ≺p
x x(ω2) ⇒ ω1 <px ω2

Example 6. Consider the attributes and attributes perspectives from the previ-
ous example. Let there be two outcomes ω1 and ω2 such that nbhd(ω1) = dwntwn
and nbhd(ω2) = vllg. To determine the order between ω1 from perspective
socialnbhd and from perspective quietnbhd, the following two arguments can be
constructed.

nbhd(ω2) ≺social
nbhd nbhd(ω1)

ω2 <socialnbhd
ω1

sap
nbhd(ω1) ≺quiet

nbhd nbhd(ω2)
ω1 <quietnbhd

ω2
sap

3.3 Influence between Perspectives

Some perspectives involve different aspects such that not one attribute can be
assigned. For example, the perspective comfort of a house may involve size, loca-
tion, the type of heating, and so on. In general, the more abstract a perspective
is, the more aspects it has. Furthermore, the more abstract a perspective, the
more disputable it may be. Thus it becomes important to specify all the different
aspects so that one can communicate clearly.

By decomposing an abstract perspective into several more concrete perspec-
tives, one makes explicit what an abstract perspective means and makes it easier
to assign attributes to. For example, although α may not be able to express its
preferences over houses, α does want to minimise costs, maximise comfort, and
maximise fun. These perspectives may be decomposed further, e.g. fun means
maximising the centrality of the house, until an attribute can be assigned.

To decompose a perspective into other perspectives, we introduce two relations
between perspectives in L to denote ‘influence’ between perspectives:
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– the binary relation ↑⊆ P ×P is written as p↑q and denotes that perspective
p positively influences perspective q.

– the binary relation ↓⊆ P ×P is written as p↓q and denotes that perspective
p negatively influences perspective q.

If perspective p positively influences perspective q, then outcomes that are bet-
ter from perspective p tend to be better from perspective q. In other words, if
an outcome is better from p and p positively influences q, then this is a rea-
son to believe that the outcome is better from q. For example, the size of a
house positively influences the comfort of the house, i.e. the more size, the more
comfort.

The following argument scheme reasons with influence: outcome ω2 is pre-
ferred to ω1 from p and p positively influences q, therefore ω2 is preferred to
ω1 from q. In other words, if a perspective p positively influences perspective q,
then an outcome being preferred from p is a reason to believe that that outcome
is also preferred from q. We formalise this argument scheme with the following
defeasible inference rule:

d<,↑(p, q, ω1, ω2) : ω1 <p ω2, p↑q � ω1 <q ω2

The argument scheme to propagate negative influence is similar, except that
if a perspective p negatively influences perspective q, then outcomes that are
better from perspective p tend to be worse from perspective q. For example, costs
negatively influences agent α’s preferences, i.e. the more costs, the less preferable
for α. This argument scheme is formalised with the following defeasible inference
rule:

d<,↓(p, q, ω1, ω2) : ω1 <p ω2, p↓q � ω2 <q ω1

Using these inference rules, arguments can be constructed to justify prefer-
ences over outcomes using both positive influence and negative influence between
perspectives.

Example 7. Agent α wants to buy a new house and to minimise costs, i.e. costs↓
α is true. There are two outcomes, ω1 and ω2, such that the acquisition price,
denoted attribute acq, of ω1 is $200k and of ω2 $150k. The acquisition price of
a house positively influences the costs, so costsacq ↑costs is true.

A =
costs↓α

costsacq ↑costs

acq(ω2) ≺costs
acq acq(ω1)

ω2 <costsacq ω1
sap

ω2 <costs ω1
d<,↑

ω1 <α ω2
d<,↓

The relation ↑ is irreflexive and transitive, meaning that p↑p is never true and
that if p↑q and q↑r are true, then p↑r is true. If p↑p would be true and for any
two outcomes ω1 <p ω2 is true, then we can defeasibly infer that ω1 <p ω2 is
true using inference rule d<,↑. Such an argument concludes one of its premises,
which is useless. Furthermore, if p ↑ p can be true, then this may cause infinite
loops in implementations. For this reason, the relation ↑ is irreflexive.
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The relation ↑ should be transitive. Firstly, this is intuitive. For example, let
the location of a house positively influence the fun of that house and let the fun
of a house positively influence agent α’s preferences. Then we can also say that
the location of a house positively influences α’s preferences. Secondly, this leads
to inferences we could already infer. Namely, if p↑q, q↑r and ω1 <p ω2 are true,
then we can defeasibly infer that ω1 <q ω2 is true. Similarly, ω1 <r ω2 can be
defeasibly inferred from q ↑ r and ω1 <q ω2. If ↑ is transitive, then p ↑ r is also
true. From p↑r and ω1 <p ω2 we can defeasibly infer that ω1 <r ω2 is true.

The relation ↓ is irreflexive and antitransitive, meaning that p↓p is not allowed
and that if p↓q and q ↓r are true, then p↓r is not true. If for some perspective
p it would be true that p ↓ p and for any two outcomes ω1 <p ω2 is true, then
the following argument A can be constructed.

A =
p↓p ω1 <p ω2

ω2 <p ω1
d<,↓

The conclusion of A conflicts with A’s premise ω1 <p ω2. Consequently, A attacks
itself. Allowing p ↓ p to be true adds nothing useful and can only result in
contradictions. Therefore, the relation ↓ is irreflexive.

The relation ↓ should be antitransitive. Firstly, this is intuitive. For example,
the amount of discount on a house negatively influences the costs of that house
(the more discount the less costs) and the costs of a house negatively influences
agent α’s preferences. Then we can also say that the amount of discount does
not negatively influence α’s preferences. Secondly, if ↓ could be transitive, then
this could lead to false inferences. Let p ↓ q, q ↓ r and ω1 <p ω2 be true. From
p ↓ q and ω1 <p ω2 we can infer that ω2 <q ω1 is true and from ω2 <q ω1 and
q ↓ r we can infer that ω1 <r ω2 is true. If p ↓ r would be true, then we could
infer that ω2 <r ω1 is true, which conflicts with ω1 <r ω2.

3.4 Acceptability of Arguments

In Section 2.1 different acceptability semantics are given for argumentation
frameworks. Like agents have preferences over values in [3], it is natural to as-
sume that agents have preferences over perspectives. The preferences over per-
spectives should determine whether attacks between arguments based on those
perspectives should be successful. For this reason, this section introduces a defeat
relation based on agent’s preferences between sets of perspectives.

Let the function η : Args → 2P map an argument to the set of perspectives
that are used in that argument. For example, η(A) = {costsacq, costs, α} in Ex-
ample 7. Using what perspectives an argument uses and an agent’s preferences
over sets of perspectives, we will now define a defeat relation between arguments
with respect to an agent.

Definition 8 (Defeat). Let Args be a set of arguments and �α ⊆ 2P×2P agent
α’s preferences over sets of perspectives. Argument A ∈ Args α-defeats argument
B ∈ Args iff A undercuts B or A rebuts B on B′ and not η(A) �α η(B′).
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Let AF = (Args, R) be an argumentation framework. If the arguments in Args
are constructed using the set of perspectives P and the argumentation system
as introduced in this section, then AF is said to be based on perspectives P .
Furthermore, if AF is based on P , α an agent and R the α-defeat relation as
defined in Definition 8, then we say that AF corresponds to agent α. In that
case, AF can be used to determine what arguments α finds acceptable.

Note that because different agents care differently about perspectives, they
have different preference orderings over sets of perspectives. Since the defeat
relation is built using an agent’s preferences over sets of perspectives, the defeat
relation R therefore is subjective. What argument is acceptable is thus also
subjective.

4 Justification of Goals

In this section, we propose how an agent α can justify having a goal given α’s
preferences. In [13], Simon views goals as threshold aspiration levels that signal
satisfactory of utility. A goal thus does not have to be optimal. Following [16], we
see goals as expressions of the desirability of attribute values of a single attribute
signaling that these attribute values are ‘satisfactory’. For example, an agent may
have the goal to live in a house that is located downtown. This expresses that
the attribute value ‘downtown’ of the attribute ‘location’ is satisfactory to that
agent. Another attribute value, e.g. ‘suburb’, does not achieve that goal and is
thus not satisfactory.

The predicate goal(α, x, G) is introduced in L and denotes that agent α should
have the goal to achieve an outcome that has an x-value in G ⊂ domain(x). If
agent α has the goal to achieve an x-value in G (i.e. goal(α, x, G) is true) and
outcome ω1 has an x-value in G, i.e. x(ω1) ∈ G is true, then we say that goal
goal(α, x, G) is achieved in outcome ω1. Consequently, a subset of Ω achieves a
goal and the other outcomes in Ω do not achieve that goal.

Justification Is Subjective. What justification for a goal an agent accepts,
depends on the type of agent. For example, a very ambitious but realistic agent
only accepts goals that aim for the best achievable x-value, whereas a less am-
bitious agent may accept goals that just improves the current situation or does
better than doing nothing. Another agent may set its standard on a value that
is realistic and challenging, i.e. not too easy and not too difficult.

We introduce two argument schemes to distinguish between satisficing goals
and optimising goals. The following argument scheme justifies the goal to achieve
an x-value that is the best possible. The basis for this justification is that agents
should aim to achieve their maximal potential.

Agent α wants to maximise attribute x-values from perspective px,
v is most preferred x-value from px that is achievable,
therefore, α pursues the goal to achieve x-values of v or better from px

If the predicates max(α, px, v) and min(α, px, v) denote that v is the maximal /
minimal x-value from px that α can achieve, then the optimistic goal argument
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scheme can be modelled with the following defeasible inference rules:

doptm,↑(α, px, v) : px ↑α, max(α, v, px)� goal(α, x, {g ∈ domain(x) | v �p
x g})

doptm,↓(α, px, v) : px ↓α, min(α, v, px)� goal(α, x, {g ∈ domain(x) | g �p
x v})

A possible undercutter of the optimistic argument scheme is that achieving the
goal is too unlikely. Therefore, the agent should adopt the goal to achieve an
easier x-value. Another undercutter would be that achieving v is too costly and
that α does not care that much about px.

The following argument scheme justifies a goal in a satisficing manner. This
scheme’s underlying motivation is that agents should adopt goals that achieve
outcomes that are satisfactory rather than the best outcome.

Agent α wants to maximise attribute x-values from perspective px,
v is a satisfactory and achievable x-value for α,
therefore, α pursues the goal to achieve x-values of v or better from px

A possible undercutter for the satisficing argument scheme is that it is too easy
and that the agent should adopt a more challenging goal. Another undercutter
could be that the perspective px is important to α and therefore α should set a
higher goal.

Let the predicate satisf(α, x, v) denote that x-value v is satisfactory for agent
α. Then this argument scheme can be modelled with the following defeasible
inference rule.

dsatisf,↑(α, px, v) : px ↑α, satisf(α, x, v)� goal(α, x, {g ∈ domain(x) | v �p
x g})

dsatisf,↓(α, px, v) : px ↓α, satisf(α, x, v)� goal(α, x, {g ∈ domain(x) | g �p
x v})

This only solves part of the problem because how can an agent justify that
an attribute value is satisfactory? We can think of several justifications of a
satisfaction level: anything better than the current situation is satisfactory, it is
better than some standard action such as ‘do nothing’, it is better than what
other agents achieve, or the agent is obliged to achieve at least v. This is however
still an open issue that is left for future work.

Priorities Of Goals. As explained in Section 3.4, agents have preferences
over sets of perspectives. This information can be used to give goals priorities.
Namely suppose agent α has goal G because there is an ‘influence-path’ between
px, p1, . . . , pn, α (i.e. px influences p1, p1 influences p2, and so on) and agent
α has goal H because of an influence path between qx, q1, . . . , qm, α. If agent
α prefers the set of perspectives {px, p1, . . . , pn, α} to the set of perspectives
{qx, q1, . . . , qm, α}, then α should give a higher priority to goal G than to goal H .

Goals are created using an attribute perspective that influences an agent. For
the same attribute perspective, optimistic goals are stricter than satisficer goals
since they do not include satisfactory attribute values upon which the agent
can improve. For this reason, achieving an optimistic goal should have a higher
priority than achieving a satisficer goal for the same attribute perspective.
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5 Buying a House

Agent α, who lives in a suburb, recently got a raise in income and wants to buy
a new house to live in. The broker shows two houses that are for sale, one in a
village and one downtown, represented with outcomes ωv and ωd respectively.
Of course, α has the possibility not to buy a new house and stay in its current
house. This is represented with outcome ω0. Consequently, Ω = {ω0, ωd, ωv}.
Except for its own house, α is unfamiliar with these houses and can therefore
not express whether it prefers one of the new houses to its own house.

The broker includes the following attributes of each house: the neighbourhood,
the size, and the acquisition price. The attribute nbhd denotes the neighbourhood
of the house and domain(nbhd) = {dwntwn, sbrb, vllg}. The attribute area denotes
how big the house is in square meters. Consequently, domain(area) = R

+. The
attribute acq denotes the price of the acquisition of the house and domain(acq) =
R

+. The set of all attributes is the following: A = {nbhd, area, acq}. The attribute
values for each outcome can be found in Table 1.

Table 1. Attribute Values Of Outcomes

Attribute Domain ω0 ωd ωv

nbhd {dwntwn, sbrb, vllg} sbrb dwntwn vllg
area R+ in m2 60 50 100
acq R+ in $1000 0 220 190

5.1 Decomposing Perspectives

Agent α starts reasoning about its preferences over Ω by expressing what aspects
it finds important. Namely, α wants to minimise costs, maximise fun and max-
imise comfort. By doing so, α’s perspective is decomposed into other perspectives
that are more concrete. Because α wants to minimise costs, the perspective costs
negatively influences the perspective of α, i.e. costs↓α is true. Also, α wants to
maximise fun and comfort, so fun↑α and comfort↑α are true.

Agent α figures that the acquisition price attribute is appropriate to determine
the perspective of costs such that the higher the acquisition price, the higher
the costs. The attribute perspective costsacq prefers an acq-value if it is higher.
Therefore, costsacq ↑costs is true.

For α fun means having people around him. The centrality of a house posi-
tively influences fun since α is more likely to out for dinner or drinks with his
friends. Therefore, α decomposes the perspective fun into the perspective of the
centrality of the neighbourhood, denoted with the attribute perspective cntrlnbhd

on the attribute nbhd. Consequently, cntrlnbhd ↑ fun is true.
There is however no attribute that α finds adequate to determine the per-

spective of comfort. Therefore, comfort is decomposed into the quietness around
the house and its size. Size is measured by the attribute perspective sizearea



Arguing about Preferences and Decisions 81

that orders the attribute area (denoting the surface area in m2) according to
size. The attribute perspective quietnbhd orders neighbourhoods by their quiet-
ness. Both attributes positively influence comfort, i.e. sizearea ↑ comfort and
quietnbhd ↑comfort are true.

The attribute perspectives cntrlnbhd and quietnbhd both order the attribute
values of the attribute ‘neighbourhood’ and are as follows:

sbrb ≺cntrl
nbhd vllg ≺cntrl

nbhd dwntwn dwntwn ≺quiet
nbhd sbrb ≺quiet

nbhd vllg

5.2 Arguments about Preference

Now, α starts constructing arguments concerning its preferences over houses.
The following argument concludes that α should prefer staying in its house,
outcome ω0, to buying the house downtown, ωd, because the costs of not buying
are lower.

Acosts =
costs↓α

acq(ω0) ≺costs
acq acq(ωd)

ω0 <costsacq ωd
sap

ωd <α ω0
d↓,<

However, the following argument concludes that α should prefer ωd, which con-
flicts with Acosts’s conclusion, because ωd is more fun since it is located in a more
central neighbourhood.

Afun =
fun↑α

cntrlnbhd ↑ fun

nbhd(ω0) ≺cntrl
nbhd nbhd(ωd)

ω0 <cntrlnbhd
ωd

sap

ω0 <fun ωd
d↑,<

ω0 <α ωd
d↑,<

Agent α keeps thinking and comes up with the following argument that concludes
that its current house is actually more comfortable since it is in a neighbourhood
that is more quiet.

Acomfort =
comfort↑α

quietnbhd ↑comfort

nbhd(ωd) ≺quiet
nbhd nbhd(ω0)

ωd <quietnbhd
ω0

sap

ωd <comfort ω0
d↑,<

ωd <α ω0
d↑,<

Given these three arguments, we want to determine what conclusions are justi-
fied. For this we construct the PerspAF 〈H(Args, R),P , η〉, with:

Args = {Acosts, Afun, Acomfort}
R = {(Acosts, Afun), (Afun, Acosts), (Acomfort, Afun), (Afun, Acomfort)}
P = {α, fun, comfort, costs, quietnbhd, cntrlnbhd, costsacq, sizearea}

and function η, that maps an argument to the perspectives it contains, is as
follows.

η(Acosts) = {α, costs, costsacq}
η(Afun) = {α, fun, cntrlnbhd}

η(Acomfort) = {α, comfort, quietnbhd}
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Let α find fun more important than comfort and costs more important than fun,
i.e. comfort �α fun and fun �α costs are true. Then Afun α-defeats Acomfort and
Acosts α-defeats Afun. Then the set {Acomfort, Acosts} is the preferred extension,
so the conclusion that α prefers staying in its current house to buying a house
downtown is justified.

5.3 Goals

If α will also visit other brokers and thus considers more houses, it can be
computationally efficient for α to generate a number of goals that can easily be
checked when evaluating a new house. Given a number of goals, evaluating an
outcome involves checking whether its attribute values are in the goals. If no goals
are used, then evaluating an outcome involves constructing arguments for all
relevant perspectives to check whether it is better than some other outcome(s).

The current house of α is 60m2, i.e. area(ω0) = 60, and α finds this size
satisfactory. Since α does not feel very strongly about the size of its house, α
uses the satisfycing argument scheme to justify the following goal.

sizearea ↑α satisf(α, area, 60)
goal(α, area, {g ∈ domain(area) | g ≥ 60}) dsatisf

With its new job, α can maximally lend 200 thousand dollar for the acquisition
of a house and therefore α sets its aspiration level for the acquisition on 200.
Given this information, α justifies having the following goal:

costsacq ↓α satisf(α, acq, 200)
goal(α, acq, {g ∈ domain(acq) | g ≤ 200}) dsatisf

The current house of α is in a suburb and α wants to maximise neighbourhood
with respect to both centrality and quietness, i.e. cntrlnbhd ↑α and quietnbhd ↑α
are true. Agent α cares a lot about the centrality of its house and less about its
quietness. Therefore, α uses the optimising argument scheme to justify its goal
to live downtown:

cntrlnbhd ↑α max(α, dwntwn, cntrlnbhd)
goal(α, nbhd, {dwntwn})

doptim

About the quietness α cares less and therefore uses the satisfycing argument
scheme:

quietnbhd ↑α satisf(α, nbhd, sbrb)
goal(α, nbhd, {sbrb, vllg})

It is impossible for α to achieve both goals. However, α finds costs more impor-
tant than fun and fun more important than comfort. Consequently, α finds the
goal to live downtown more important than the goal to live in a quiet suburb.
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6 Discussion

Outcomes Compared To States. In [3, 2], states are used to reason about
decisions over actions, rather than outcomes. A state is a truth assignment to a
set of propositions. In a state r, an agent can perform an action a, which results
in another state s. If the agent performs a, there is a state transition from state
r to state s.

In decision theory, making a decision results in an outcome. Outcomes rep-
resent all possible consequences of a decision. Outcomes can represent the state
resulting from the action performed, effects in the far future, how pleasant the
action was, and possibly the history of all preceding states. An outcome is thus a
more general notion than a state, because outcomes can contain all information
in states and even more.

Values Versus Perspectives. In [2], there is a valuation function δ that takes
a state transition and a value and returns whether that state transition either
promotes, demotes, or is neutral towards that value. More specifically, δ : S ×
S × V → {+,−, 0} with S the set of states and V the set of values. Note
that a state transition either promotes, demotes, or is neutral towards a value
resembles Simon’s simple valuation function, which values an outcome either as
‘satisfactory’, ‘indifferent’ or ‘unsatisfactory’.

The valuation function must be specified for all state transitions and all values,
which can become time consuming when the number of states or values increases.
Namely, if there are n states and m values, then the valuation function must be
specified for m · n2 different inputs. Furthermore, if two agents disagree about
whether a state transition is promotes a value, e.g. whether performing an action
promotes the value of fun, then they can only explain that that is the outcome
of their valuation function. Since values typically are abstract, it is important to
explain and discuss what a value means. This is not possible in the approach of [2].

In our approach, a value is represented with a perspective, which is associated
with an ordering over outcomes. A perspective can be decomposed into other
perspectives and a perspective can be associated with an attribute of outcomes.
This allows agents to explain and argue why a transition or goal promotes one
of their values. For example, an agent can explain that its value of ‘fun’ means
maximising spending time with friends and minimising time at work. whereas
another agent can then explain that to him fun means spending time in nature
and accomplishing things at work.

Furthermore, decomposing an abstract perspective into more specific perspec-
tives for which an ordering is more easy to specify, makes it less demanding to
specify whether a transition promotes, demotes or is neutral towards a value.

If a perspective p represents a value, then its associated ordering ≤p can be
used to the define the valuation function δ for p in the following way

δ(q1, q2, v) =

⎧⎪⎨⎪⎩
+ if q1 <v q2

− if q2 <v q1

0 if q1 ≡v q2
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If ≤v is a total order, i.e. no elements are incomparable, then δ is a normal
function, otherwise δ is a partial function.

7 Conclusion

In this paper we have proposed several argument schemes to argue about what
decision is best for an agent based on its preferences over outcomes. An agent’s
preferences are expressed in terms of values and goals and we propose a model
to represent what a value means and how it affects an agent’s preferences. If the
meaning of a value is clear, goals can be justified or attacked by arguing that
they promote or demote a value.

We represent values as perspectives over outcomes. By recursively decompos-
ing the different aspects of a perspective into other perspectives until they are
decomposed in attribute perspectives, the meaning of a perspective and thus a
value is made explicit. In this way, an agent can explain what a value exactly
means to him, which allows other agents to argue that some aspect is wrong
or forgotten or that the wrong attribute is used. Agents can justify pursuing a
goal using the perspectives that are important to an agent and the attributes
that are associated to those perspectives. We have discussed a satisficing and
a optimistic argument scheme to justify a goal. Furthermore, priorities between
goals can be justified using the priorities agents have over perspectives.

In future work, the relation between values and goals may be explored further.
Different agent types and different situations may lead to pursuing different
goals. An optimistic goal may be undercut by stating that it is too hard to
achieve, but when is a goal too hard to achieve? Moreover, how can an agent
justify that an attribute value is satisfactory and how is that influenced by
circumstances?

When an agent finds costs more important than the centrality of the neigh-
bourhood, and a house in a suburb is $1 cheaper than a house downtown, then
the costs argument is stronger than the centrality argument. By extending the
formalism in this paper with ‘distances’ between attribute values, such weird
results might be solved.
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Abstract. An important and non-trivial factor for effectively develop-
ing and resourcing plans in a collaborative context is an understanding of
the policy and resource availability constraints under which others oper-
ate. We present an efficient approach for identifying, learning and model-
ing the policies of others during collaborative problem solving activities.
The mechanisms presented in this paper will enable agents to build more
effective argumentation strategies by keeping track of who might have,
and be willing to provide the resources required for the enactment of a
plan. We argue that agents can improve their argumentation strategies
by building accurate models of others’ policies regarding resource use,
information provision, etc. In a set of experiments, we demonstrate the
utility of this novel combination of techniques through empirical eval-
uation, in which we demonstrate that more accurate models of others’
policies (or norms) can be developed more rapidly using various forms
of evidence from argumentation-based dialogue.

Keywords: Argumentation, Machine learning, Policies, Norms, Evidence.

1 Introduction

Distributed problem solving activities often require the formation of a team of
collaborating agents. In such scenarios agents often operate under constraints
placed on them by the organisations or interests that they represent. Such con-
straints, typically, determine the behaviour of representatives of organisations.
When these constraints are part of the standard operating procedures of the
agents or the organisations in question, we refer to them as policies (also known
as norms). Members of the team agree to collaborate and perform joint activities
in a mutually acceptable fashion. Often, agents in the team represent different
organisations, and so there are different organisational constraints imposed on
them. Even within a single organisation, team members often represent sub-
organisations with different procedures and constraints. For example, the sales
department of an organisation may possess certain operating procedures, which
differ from those of the purchasing department. Furthermore, team members
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Example 1: Example 2:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: I can provide you with a hammer instead.

i: I accept a hammer.

Fig. 1. Dialogue between Collaborating Agents (Examples 1 and 2)

may possess individual interests and goals that they seek to satisfy, which are
not necessarily shared with other members of the team. These individual moti-
vations largely determine the way in which members carry-out tasks assigned to
them during joint activities.

In this paper, we focus on policy and resource availability constraints, and
define policies as explicit prohibitions that members of the team are required
to adhere to. Policy constraints may be team-wide or individual. We focus on
individual policies. These policies are often private to that individual member
or subset of the team, and are not necessarily shared with other members of
the team. In order to develop effective plans, an understanding of the policy
and resource availability constraints of other members in the team is beneficial.
However, tracking and reasoning about such information is non-trivial.

Our conjecture is that machine learning techniques may be employed to aid
decision making in this regard. Although this is not a new claim [7], it is novel to
combine it with evidence derived from argumentation-based dialogue, which we
call argumentation-derived evidence (ADE). We present a system where agents
learn from dialogue by automatically extracting useful information (evidence)
from the dialogue and using these to model the policies of others in order to
adapt their behaviour in the future. We describe an experimental framework and
present results of our evaluation in a resource provisioning scenario [4], which
show empirically: (1) that evidence derived from argumentation-based dialogue
can indeed be effectively exploited to learn better (more complete and correct)
models of the policy constraints that other agents operate within; and (2) that
through the use of appropriate machine learning techniques more accurate and
stable models of others’ policies can be derived more rapidly than with simple
memorisation of past experiences.

To illustrate the sorts of interaction between agents in this framework, con-
sider the following examples. Let i and j be two agents collaborating to hang a
picture [11].

Following from the interaction in example 1 (see Figure 1), there is very
little that we can learn from that encounter. It is unclear why agent j said no
to agent i’s request. It could be that there exists some policy that forbids agent
j from providing the screw-driver to agent i, or it could be that the screw-
driver is not available at the moment. On the other hand, suppose we have
an argumentation framework that allows agents to suggest alternatives as in
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Example 3: Example 4:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: No.
i: Why? i: Why?
j: I’m not permitted to release screw-driver. j: Screw-driver is not available.

Fig. 2. Dialogue between Collaborating Agents (Examples 3 and 4)

example 2 (see Figure 1) or ask for and receive explanations as in examples 3 and
4 (see Figure 2), then agent i can, potentially, gather more evidence regarding
the provision of the resources involved.

Considering examples 3 and 4 (see Figure 2 ), it is worth noting that without
the additional evidence, obtained by the information-seeking dialogue, the two
cases are indistinguishable. This means that the agent will effectively be guess-
ing which class these cases fall into. The additional evidence allows the agent
to learn the right classification for each of the cases. It should be noted here
that although in example 3, we now have an explanation that the resource is
not to be provided for policy reasons, the question remains: what are the impor-
tant characteristics of the prevailing circumstances that characterise this policy?
Additional evidence is beneficial, and could be used to identify the important
features that characterise an agent’s prevailing circumstance. Each piece of ev-
idence can be used to improve the model, hence, the quality of decisions made
in future episodes. Section 3 discusses how we do this.

In a domain where there are underlying constraints that could yield simi-
lar results, standard machine learning techniques will have limited efficacy. Us-
ing argumentation to gather additional evidence could improve the accuracy of
the information learned about the policies of others. We claim that significant
improvements can be achieved because argumentation can help clarify reasons
behind decisions made by others (e.g. the provider).

In the research presented in this paper, we intend to validate the following
hypotheses: (1) Allowing agents to exchange arguments during practical dialogue
(like negotiation) will mean that the proportion of correct policies learned during
interaction will increase faster than when there is no exchange of arguments; and
(2) Through the use of appropriate machine learning techniques more accurate
and stable models of others’ policies can be derived more rapidly than with
simple memorisation of past experiences.

The remainder of this paper is organised as follows: In section 2 we briefly
describe argumentation-based dialogue and introduce the protocol employed.
Learning policies is discussed in section 3 and section 4 describes our simulation
environment. Experimental results are reported in section 5. Section 6 discusses
related work and future direction, and the paper concludes in section 7.
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2 Argumentation-Based Dialogue

In this section we present the argumentation-based negotiation protocol which
will be used in guiding the negotiation process, and for obtaining additional
evidence from the interaction. This protocol uses information-seeking dialogue
[13,18] to probe for additional evidence.

2.1 The Negotiation Protocol

The negotiation for resources takes place in a turn-taking fashion, where the
seeker agent sends a request for resource to a provider agent. Figure 3 captures
the negotiation protocol in a AUML-like interaction diagram (www.fipa.org). If
the provider agent has the requested resource in its resource pool and it is in a
usable state then it checks whether there is any policy constraint that forbids
it from providing the resource to the seeker or not. If the provider agent needs
more information from the seeker in order to make a decision, the provider
agent would ask for more information to be provided. This is the information
gathering stage. The information gathering cycle will continue until the provider
has acquired enough information (necessary to make the decision), or the seeker
refuses to provide more information and the negotiation ends.

The provider agent releases the resource to the seeker agent if there is no
policy that prohibits the provider agent from doing so. Otherwise, the provider
agent offers an alternative resource (if there are no policies that forbid that
line of action and the alternative resource is available). When an alternative
resource is suggested by the provider agent, the seeker agent evaluates it. If it

Fig. 3. The negotiation protocol
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is acceptable, the seeker agent accepts it and the negotiation ends. Otherwise,
the seeker agent refuses the alternative (in principle, this cycle may be repeated
until an alternative is accepted or the negotiation ends). However, for simplicity
and brevity, only one suggest-refuse cycle is permitted per request.

From a learning point of view, the suggestion of alternative resources could be
a positive evidence that the provider agent does not have any policy that forbids
the provision of the alternative resource to the seeker. In addition, it provides
an evidence that the alternative resource is also available. This extra evidence,
we anticipate, may help to improve the performance of the learner in predicting
the policy constraints of provider agents in future encounters.

If there is a policy constraint that forbids the provision of the resource, or
the resource is not available then the provider agent will refuse to provide the
resource to the seeker agent. From the seeker ’s perspective, the refusal could
be as a result of policy constraint or because the resource is not available. In
order to disambiguate which of these constraints are responsible for the refusal,
the seeker agent switches to argumentation-based dialogue. The seeker agent
asks for explanations for the refusal so as to gather further evidence and thereby
identify the underlying constraints. The provider agent, therefore, responds with
some explanations and the negotiation ends. Three categories of explanations
are investigated in this framework: (1) Policy constraints (whereby the agent
attributes the refusal to policy constraints); (2) Resource not available (here,
the agent attributes the refusal to resource availability constraints); (3) Won’t
tell you (in this case, the agent refuses to give any explanation for the refusal).
These pieces of evidence will be explored further in Section 2.3.

2.2 Policies

In our model, policies are conditional entities (or rules) and so are relevant to an
agent under specific circumstances only. These circumstances are characterised
by a set of features. Some examples of features may include: (1) the height of a
tower; (2) the temperature of a room; (3) the manufacturer of a car, etc. In other
words, policies map feature vectors, F̄ , of agents to appropriate policy decisions.

In order to illustrate the way policies may be captured in this model, we
present the following examples (see Figure 4). Let F be the set of all features
that characterise an agent’s prevailing circumstance such that f1, f2, . . . ∈ F .
Assuming, f1 is resource, f2 is purpose, f3 is location, f4 is the affiliation of the

P1: You are permitted to release a ladder to an agent
if the ladder is required for the purpose of hanging a picture.

P2: You are prohibited from releasing a screw-driver to an agent
if the screw-driver is to be used for hanging a picture.

P3: You are permitted to release a hammer to an agent.
P4: You are permitted to release a nail to an agent.
P5: You are permitted to release a table to an agent.

Fig. 4. Sample Agent Policies
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Example A

i: request(i, j, screw-driver)
j: ask-infor(j, i, need(screw-driver, f2, f3, f5))
i: provide-infor(i, j, need(screw-driver, f2 = x, f3 = y, f5 = z))
j: refuse(j, i, screw-driver)
i: why(i, j, refuse(screw-driver))
j: inform(j, i, screw-driver, reason(policy-constraints))

Example B

i: request(i, j, nail)
j: refuse(j, i, nail)
i: why(i, j, refuse(nail))
j: inform(j, i, nail, reason(wont-tell-you))
i: request(i, j, table)
j: agree(j, i, table)

Fig. 5. Dialogue between agents i and j

agent, and f5 is the day the resource is required then an agent’s policies may be
captured as shown in Figure 4.

2.3 Argumentation-Derived Evidence

Following the argumentation-based negotiation protocol described earlier, the
agents could ask for more information (with respect to a request or the response
to a request), which indicates what constraints others may be operating within.
For instance, let us assume that a provider agent has a policy that forbids it from
providing a screw-driver to any seeker agent that intends to use it for hanging a
picture. Then, whenever a screw-driver is requested the provider agent will probe
for more information to ascertain that the purpose the seeker intends to use the
screw-driver for is not hanging a picture. This extra evidence could be useful.
Similarly, whenever a seeker agent’s request is refused then the seeker agent will
ask for explanations/justifications for the refusal. These additional evidence are
beneficial, and we expect them to improve the quality of the models of other
agents that can be inferred in future encounters.

Figure 5 shows two simple examples of the kind of dialogue that may occur
between two collaborating agents, i and j. For the purpose of the example, we
use need(R, f2, f3, f5) to denote that the seeker agent intends to use the
resource R for a purpose (captured by feature f2) at a location (represented by
f3) on a given day (captured by f5). Note that although this is presented as
a dialogue between two agents, in reality the initiator (agent i, the agent that
wishes to resource its plan) may engage in multiple instances of this dialogue
with other agents.

3 Learning Policies

In this section we discuss the machine learning techniques that we have explored
for learning policies through argumentation-derived evidence. These techniques
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include decision tree learning (C4.5), instance-based learning (k-Nearest Neigh-
bours, abbreviated as k-NN) and rule-based learning (Sequential Covering, ab-
breviated as SC).

Our approach seeks ways to combine argumentation analysis with already ex-
isting machine learning techniques with a view to improving the performance of
agents at predicting the policy constraints of others. We anticipate that this could
enable them to build more effective argumentation strategies. In other words, we
argue that evidence derived from argumentation-based dialogue can indeed be ef-
fectively exploited to learn better (more complete and correct) models of the pol-
icy constraints that other agents operate within. Also, we claim that through the
use of appropriate machine learning techniques more accurate and stable models
of others’ policies can be derived more rapidly than with simple memorisation of
past experiences. In future encounters, the seeker agent attempts to predict the
policies of provider agents based on the model it has built.

When an agent has a collection of experiences with other agents described
by feature vectors, we can make use of existing machine learning techniques for
learning associations between sets of discrete attributes (e.g. f1, f2, f3, f4, f5)
and policy decisions. The following sections discuss specifically, the three classes
of machine learning algorithms1 [8], namely: decision tree learning (using C4.5),
instance-based learning (using k-nearest neighbours), and rule-based learning
(using sequential covering).

We define a learning interval, φ, which determines the number of interactions2

an agent must engage in before building (or re-building) its policy model3. Once
an agent has had φ interactions, the policy learning process proceeds as follows.
For each interaction, which involves collaborating with provider j for the provi-
sion of a resource, we add the example (F̄j , grant) or (F̄j , deny) to the training
set, depending on the evidence obtained from the interaction. The model is then
constructed. In this way, an agent may build a model of the relationship between
observable features of agents and the policies they are operating under. Subse-
quently, when faced with resourcing a new task, the policy model can be used
to obtain a prediction of whether a particular provider has a policy that permits
him to provide the resource or not. This satisfies our requirement for a policy
learning mechanism.

3.1 Decision Tree Learning (C4.5)

C4.5 [14] builds decision trees from a set of training data, using the concept of
information entropy [8] (beyond the scope of this paper). Generally, the train-
ing data is a set S = s1, s2, ..., sn of already classified samples. Each sample
si = x1, x2, ..., xm is a vector where x1, x2, ..., xm represent attributes of the
1 We use the Weka [19] implementation of these algorithms. Weka is a popular open-

source machine learning toolkit written in Java.
2 By interaction, we mean, an entire plan resourcing episode.
3 This requirement relates, specifically, to C4.5 and sequential covering because they

are non-incremental learning algorithms. A detailed discussion of non-incremental
learning is covered in [19].



On the Benefits of Argumentation-Derived Evidence in Learning Policies 93

Algorithm 1. The C4.5 algorithm

1: Check for base cases
2: For each attribute D,

Find the normalised information gain from splitting on D
3: Let D best be the attribute with the highest normalised information gain
4: Create a decision node that splits on D best
5: Recurse on the sublists obtained by splitting on

D best, and add those nodes as children of the node

Fig. 6. The C4.5 algorithm

sample. The training data is augmented with a vector C = c1, c2, ..., cn where
c1, c2, ..., cn represent the class to which each sample belongs.

Integrating this algorithm into our system with the intention of learning poli-
cies is appropriate since the algorithm supports concept learning and policies can
be conceived as concepts/features of an agent. Agent policies are represented as
a vector of attributes (e.g. resource, purpose, location, etc.) and these attributes
are communicated back and forth during negotiation. The C4.5 algorithm is then
used to classify each set of attributes (policy instance) into a class. There are
two classes: grant and deny. Grant means that the provider agent will possi-
bly provide the resource that is requested while deny implies that the provider
agent will potentially refuse. The leaf nodes of a decision tree hold the class
labels of the instances while the non-leaf nodes hold the test attributes. In order
to classify a test instance, the C4.5 algorithm searches from the root node by
examining the value of test attributes until a leaf node is reached and the label
of that node becomes the class of the test instance. Figure 6 outlines the C4.5
algorithm in pseudo-code.

The C4.5 algorithm has three base cases.

– All the samples in the list belong to the same class. When this happens, it
simply creates a leaf node for the decision tree saying to choose that class.

– None of the features provide any information gain. In this case, C4.5 creates
a decision node higher up the tree using the expected value of the class.

– Instance of previously-unseen class encountered. Again, C4.5 creates a deci-
sion node higher up the tree using the expected value.

The problem with this algorithm is that it is not incremental, which means all
the training examples should exist before learning. To overcome this problem,
the system keeps track of the provider agent’s responses. After a number of in-
teractions, predefined by φ, the decision tree is rebuilt. Without doubt, there is
a computational drawback involved in periodically reconstructing the decision
tree. However, in practice, we have evaluated C4.5 to be fast and the reconstruc-
tion cost to be small. Our approach is similar to the incremental induction of
decision trees proposed in [17].

3.2 Instance-Based Learning (k-NN)

The k-nearest neighbours algorithm (k-NN) [3] is a type of instance-based learn-
ing, or lazy learning, where the function is only approximated locally and all
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computation is deferred until classification. The universal set of all the policies
an agent may be operating within could be conceived as a feature space (or a
grid) and the various policy instances represent points on the grid. Using k-NN,
a policy instance is classified by a majority vote of its neighbours, with the pol-
icy instance being assigned to the class most common amongst its k nearest
neighbours, where k is a positive integer, typically small. The k-NN algorithm
is incremental, which means all the training examples need not exist at the be-
ginning of the learning process. This is a good feature because the policy model
could be updated as new knowledge is learned.

The k-nearest neighbour algorithm is sensitive to the local structure of the
data and this, interestingly, makes k-NN a good candidate for learning policies
because slight changes in the variables/attributes of a policy could trigger dif-
ferent action. For example:

Policy1: You are permitted to release resource R to team member X if his affilia-
tion is O and R is to be deployed at location L for purpose P on day 1.

Policy2: You are prohibited from releasing resource R to team member X if his affil-
iation is O and R is to be deployed at location L for purpose P on day 2.

In order to identify neighbours, the policy instances are represented by position
vectors in a multidimensional feature space. In this approach, new policy in-
stances are classified based on the closest training examples in the feature space.
A policy instance is assigned to the class c if it is the most frequent class label
among the k nearest training samples. It is usual to use the Euclidean distance,
though other distance measures, such as the Manhattan distance, Hamming dis-
tance could in principle be used instead. The training phase of the algorithm
consists only of storing the feature vectors and class labels of the training sam-
ples. In the actual classification phase, the test sample is represented as a vector
in the feature space. Distances from the new vector to all stored vectors are
computed and k closest samples are selected.

A major drawback to using this technique to classify a new vector to a class is
that the classes with the more frequent examples tend to dominate the prediction
of the new vector, as they tend to come up in the k nearest neighbours when
the neighbours are computed due to their large number. The distance-weighted
k-NN algorithm, which weights the contribution of each of the k neighbours
according to their distance to the new vector, uses distance weights to minimise
the bias caused by the imbalance in the training examples by giving greater
weight to closer neighbours. In our work, the weight of a neighbour is computed
as the inverse of its distance from the new vector.

3.3 Rule-Based Learning (Sequential Covering)

Since policies guide the way entities within a community (or domain) act by pro-
viding rules for their behaviour it makes sense to learn policies as rules. Sequen-
tial covering algorithm [2,8] is a rule-based learning technique, which constructs
rules by sequentially covering the examples. The sequential covering algorithm,
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Algorithm 2. The Sequential Covering Algorithm

1: Input the training data (D) and the classes (C)
2: For each class c ∈ C
3: Initialise E to the instance set
4: Repeat
5: Create a rule R with an empty left-hand

side (LHS) that predicts class c:
6: Repeat
7: For each (Attribute, V alue) pair found in E
8: Consider adding the condition

Attribute = V alue to the LHS of R
9: Find Attribute = V alue that maximises p/t
10: (break ties by choosing the condition with

the largest p)
11: Add Attribute = V alue to R
12: Until R is perfect (or no more attributes to use)
13: Remove the instances covered by R from E
14: Until E contains no more instances that belong to c

Fig. 7. The Sequential Covering Algorithm

SC for short, is a method that induces one rule at a time (by selecting attribute-
value pairs that satisfy the rule), removes the data covered by the rule and then
iterates the process. SC generates rules for each class by looking at the training
data and adding rules that completely describe all tuples in that class. For each
class value, rule antecedents are initially empty sets, augmented gradually for
covering as many examples as possible. Figure 7 outlines the sequential covering
algorithm in pseudo-code.

In this study we used three different machine learning mechanisms: Deci-
sion tree learning, Instance-based learning and Rule-based learning. These three
mechanisms represent very different classes of machine learning algorithms. The
rationale for exploring a range of learning techniques is to demonstrate the util-
ity of argumentation-derived evidence regardless of the machine learning tech-
nique employed. Thus, we hypothesize that the use of evidence acquired through
argumentation significantly improves the performance of machine learning in
the development and refinement of models of other agents. Also, we claim that
through the use of appropriate machine learning techniques more accurate and
stable models of others’ policies can be derived more rapidly than with simple
memorisation of past experiences.

4 Simulation Environment

To test our hypotheses, we developed a simulation environment that combines
mechanisms for agents to engage in argumentative dialogue and to learn from
dialogical encounters with other agents. For the purpose of resourcing plans,
agents may act as resource seekers, which collaborate and communicate with



96 C.D. Emele et al.

Fig. 8. Architecture of the framework for learning policies in team-based activities
using dialogue

potential providers to perform joint actions. The enactment of both seeker and
provider roles are governed by individual policies that regulate their actions. A
seeker agent requires resources in order to carry out some assigned tasks. The
seeker agent generates requests in accordance with its policies and negotiates
with the provider agents based on these constraints. On the other hand, provider
agents have access to certain resources and may have policies that govern the
provision of such resources to other members of the team.

Although agents may have prior assumptions about the policies that constrain
the activities of others, these models are often incomplete and may be inaccurate.
Provider agents do not have an unlimited pool of resources and so some resources
may be temporarily unavailable. By a resource being available we mean that it is
not committed to another task (or agent) at the time requested and the resource
is in a usable state. Both seeker and provider agents have access to the team-
wide policies but not the individual policies of others. Agents in this domain
play the role of a seeker or a provider in different interactions.

4.1 Architecture

Figure 8 depicts our architecture. Each agent has two main layers, the commu-
nication layer and the reasoning layer. The communication layer embodies the
dialogue controller, which handles all communication with other agents in the
domain. The dialogue controller sends/receives messages to/from other agents,
and the reasoning layer reasons over the dialogue. If an agent is playing the role
of a seeker agent then the dialogue controller sends out the request for resources.
On the other hand, if the agent is a provider agent then the dialogue controller
receives a request and passes it on to the reasoning layer.
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The reasoning layer consists of two modules: the reasoner and the learner.
Upon receiving a message (e.g. a request), the reasoner evaluates the message and
determines the response of the agent. In most cases, the reasoner looks up policy
constraints from the knowledge-base and generates the appropriate response
for the agent. Policy and non-policy constraints are stored in the constraints
knowledge-base. Whenever the agent observes a new pattern of behaviour the
agent uses this experience as evidence for learning, and updates the model of the
other agent accordingly. The learner uses standard machine learning techniques
to learn policies based on the perceived actions of other agents. The learning
techniques are discussed in Section 3.

The knowledge store in Figure 8 acts as a repository where an agent stores
the constraints it has learned by interacting with other agents in the domain.
The information includes the features that an agent requires in order to make
a decision about providing a resource or not. For example, following from [11],
a provider agent j may need to know what the purpose for requesting a screw-
driver is before deciding whether to release the screw-driver or not. The seeker
agent stores such information about agent j in the knowledge store. Also, the
decision of j after the purpose has been revealed will also be learned for future
interactions.

To achieve this, we have developed a simple dialogue game4 involving seeker
agents and provider agents operating under different constraints. The players
take turns and the game starts with an agent, i, sending a request to another
agent, j, for the use of some resources needed to fulfill a plan. The other agent
(j) responds with an agree or refuse based on the prevailing context, e.g. policy
constraints. The requesting agent could ask for explanations and reasons for an
action, and so on until the game ends.

4.2 Implementation

We implemented a simulation environment for agent support in team-based prob-
lem solving and integrated our learning and argumentation mechanisms into the
framework. The policies are encoded as rules in a rule engine [6]. The applica-
tion programming interface in Weka [19] was used to integrate standard machine
learning algorithms into the framework. We note that, although these three learn-
ing algorithms were used, the framework is configured such that other machine
learning algorithms can be plugged in. As discussed in the previous section, we
evaluated the performance of a decision tree learner (C4.5), an Instance based
learner (k-Nearest Neighbour algorithm) and a rule based learner (Sequential
Covering) in learning policies through argumentation-derived evidence.

The simulation environment allows us to generate multiple providers with
randomised policies, seeker agents with randomised initial models of the policies
of providers in the simulation and randomised problems for the seeker to solve
(that is, random resource requirements). The seeker predicts (based on the model
of the provider) whether the provider has a policy that forbids/permits the
4 Dialogue games have proven extremely useful for modeling various forms of reasoning

in many domains [1].
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Assume seeker i requests resource R from provider j

IF ( is−available(R) ∧ NOT (forbid(release(R, i)) )
THEN

agree( release(R, i))
ELSE

refuse( release(R, i))

Fig. 9. Provider agents’ pseudo decision function

provision of such resource in that context. The seeker requests the required
resource from the provider agent and the provider uses a simple decision function
(See Figure 9) to decide whether to grant or deny the request.

If the decision of the provider agent deviates from the predictions of the
seeker agent then the seeker agent seeks additional evidence (through dialogue)
to disambiguate whether the deviation was as a result of policy or resource
availability constraints. The dialogue follows the protocol specified in Figure 3,
and at the end of the interaction the outcome is learned by the seeker and the
model of the provider is updated accordingly. This adaptive learning process
serves to improve the quality of the models of the other agents that can be
inferred from their observable actions in future interactions.

5 Experiments and Results

In a series of experiments, we show how learning techniques and argumentation
can support agents engaging in collaborative activities, increase their predictive
accuracy, avoid unnecessary policy conflicts, hence improve their performance.
The experiments show that agents can effectively and rapidly increase their
predictive accuracy of the learned model through the use of dialogue.

The scenario adopted in this research involves a team of five software agents
(one seeker and four provider agents) collaborating to complete a joint activity
in a region over a period of three days. The region is divided into five locations.
There are five resource types, and five purposes that a resource could be used to
fulfill. A task involves the seeker agent identifying resource needs for a plan and
collaborating with the provider agents to see how that plan can be resourced.

Argumentation-derived evidence (ADE) was incorporated into the learning
process of the three machine learning techniques (C4.5, k-NN, and SC) described
earlier, and their performances in learning the policy constraints of others were
evaluated. A simple lookup table (hereafter called, LT) was used as a control
condition and it serves as a structure for simple memorisation of outcomes from
past encounters.

5.1 Results

This section presents the results of the experiments carried out to validate this
work. Experiments were conducted with seeker agents initialised with random
models of the policies of provider agents. 100 runs were conducted for each
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Table 1. Average percentage of policies classified correctly and standard deviation

���������Approach
Tasks

1000 2000 3000 4000 5000 6000

LT-ADE 65.1±6.5 70.3±10.3 75.6±6.7 78.1±10.2 79.3±8.3 81.3±10.1

LT+ADE 66.3±6.0 79.3±9.3 83.6±8.2 81.7±11.2 81.4±7.8 84.7±9.1

C4.5-ADE 58.3±15.1 69.2±16.6 75.1±12.0 82.1±12.3 85.3±8.9 88.2±8.2

C4.5+ADE 60.3±14.4 75.0±12.6 83.6±6.5 89.9±5.2 93.0±3.4 95.6±5.1

k-NN-ADE 65.2±9.8 71.0±7.8 75.3±5.3 80.7±3.8 81.0±4.1 82.0±3.8

k-NN+ADE 71.1±9.0 85.9±7.3 92.0±4.6 96.8±3.1 97.3±3.6 98.4±1.7

SC-ADE 66.7±8.2 71.7±6.0 78.7±8.4 84.3±6.5 87.4±6.0 90.6±5.3

SC+ADE 67.7±7.7 87.1±6.4 94.1±4.2 96.6±4.1 97.5±2.6 99.2±1.0
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Fig. 10. Graph showing the effectiveness of allowing the exchange of arguments in
learning policies

case, and tasks were randomly created during each run from 375 possible
configurations.

Table 1 illustrates the effectiveness of identifying and learning policies through
argumentation-derived evidence using the three machine learning techniques de-
scribed earlier, and the control condition (lookup table). It shows the average
percentage of policies classified correctly and the standard deviations for each of
the approaches, namely: Lookup Table without the aid of argumentation-derived
evidence (LT-ADE), Lookup Table enhanced with argumentation-derived evi-
dence (LT+ADE), C4.5-ADE, C4.5+ADE, k-NN-ADE, k-NN+ADE, SC-ADE,
and SC+ADE. In each case, the model of others’ policies is recomputed after
each set of 1000 tasks. For all three machine learning techniques considered, the
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Fig. 11. Graph showing the effectiveness of learning policies with the aid of
argumentation-derived evidence using various techniques (LT+ADE, C4.5+ADE, k-
NN+ADE & SC+ADE)

percentage of policies predicted correctly as a result of exploiting evidence de-
rived from argumentation was consistently and significantly higher than those
predicted without such evidence. Figure 10 gives a graphical illustration of the
effectiveness of learning policies with the aid of argumentation-derived evidence
using rule-based learning technique, for instance. After 3000 tasks, the accuracy
of the approach with additional evidence had risen above 94% while the config-
uration without additional evidence was approaching 79%. It is easy to see that
the experiments where additional evidence was combined with machine learning
significantly and consistently outperformed those without additional evidence.
These results show that the exchange of arguments during practical dialogue
enabled agents to learn and build more accurate models of others’ policies much
faster than scenarios where there was no exchange of arguments.

Figure 11 captures the effectiveness of the three machine learning techniques
described earlier, and a simple memorisation technique (a lookup table) in learn-
ing policies. The result shows that both instance-based learning (k-NN+ADE)
and rule-based learning (SC+ADE) constantly and consistently outperform the
control condition (LT+ADE) throughout the experiment. It is interesting to see
that, with relatively small training set, the control condition performed bet-
ter than the decision tree learner (C4.5+ADE). This is, we believe, because
the model built by the decision tree learner overfit the data. The tree was
pruned after each set of 1000 tasks and after 3000 tasks the accuracy of the
C4.5+ADE model rose to about 83% to tie with the control condition and
from then the decision tree learner performed better than the control condition.
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The performance of the control condition dropped to about 81% after 4000 tasks.
After 6000 tasks the accuracy of the decision tree learner had risen above 95%
while that of the control condition was just over 84%.

Tests of statistical significance were applied to the results. The standard de-
viations of the results were analysed and the trend line plotted. (See Figure 12).
Using linear regression, the analysis of variance (ANOVA) shows that as the
number of tasks increases, each of the three machine learning techniques (with
or without argumentation-derived evidence) consistently converges with a 95%
confidence interval. Furthermore, for all the pairwise comparisons, the scenar-
ios where argumentation-derived evidence was combined with machine learning
techniques consistently yielded higher rates of convergence (p < 0.02) than those
without additional evidence. Specifically, the decision tree learner enhanced with
argumentation-derived evidence (C4.5+ADE) converges (y = 15.3944−0.0022x)
with a F value of 15.66 and significance p = 0.0167. The k-NN+ADE converges
(y = 9.7983− 0.0014x) with a F value of 38.58 and significance p = 0.0034, and
the SC+ADE (y = 8.819 − 0.0013x) converges with a F value of 136.45 and
significance p = 0.0003. On the other hand, with a significance p = 0.3957, there
is no statistical significance as to whether LT+ADE converges or not. These
results confirm our hypotheses.

6 Discussion and Related Work

The research presented in this paper represents the first model for using ev-
idence derived from argumentation to learn underlying social characteristics
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(e.g. policies/norms) of others. There is, however, some prior research in combin-
ing machine learning and argumentation, and in using argument structures for
machine learning. In that research, Možina et al. [9] propose a novel induction-
based machine learning mechanism using argumentation. The work implemented
an argument-based extension of CN2 rule learning (ABCN2) and showed that
ABCN2 out-performed CN2 in most tasks. However, the framework developed
in that research will struggle to disambiguate between constraints that may pro-
duce similar outcome/effect, which is the main issue we are addressing in our
work. Also, the authors assume that the agent knows and has access to the ar-
guments required to improve the prediction accuracy, but we argue that it is not
always the case. As a result, we employ information-seeking dialogue to tease
out evidence that could be used to improve performance.

In related research, Rovatsos et al. [15] use hierarchical reinforcement learn-
ing in modifying symbolic constructs (interaction frames) that regulate agent
conversation patterns, and argue that their approach could improve an agent’s
conversation strategy. In our work, we used information-seeking dialogue to ob-
tain evidence from the interaction and learned the entire sequence as against a
segment (frame) of the interaction [15]. We have demonstrated the effectiveness
of using argumentation-derived evidence to learn underlying social characteris-
tics (e.g. policies) without assuming that those underlying features are public
knowledge.

In recent research, Sycara et al. [16] investigate agent support for human
teams in which software agents aid the decision making of team members during
collaborative planning. One area of support that was identified as important in
this context is guidance in making policy-compliant decisions. This prior research
focuses on giving guidance to humans regarding their own policies. An impor-
tant and open question, however, is how can agents support human decision
makers in developing models of others’ policies and using these in guiding the
decision maker? Our work is aimed at bridging this gap (a preliminary version
was presented in [5]). We employ a novel combination of techniques in identi-
fying, learning and building accurate models of others’ policies, with a view to
exploiting these in supporting human decision making.

In our future work, we plan to develop strategies for advising human decision
makers on how a plan may be resourced and who to talk to on the basis of policy
and resource availability constraints learned [10]. Parsons et al. [12] investigated
the properties of argumentation-based dialogues and examined how different
classes of protocols can have different outcomes. Furthermore, we plan to explore
ideas from this work to see which class of protocol will yield the “best” result in
this kind of task. We are hoping that some of these ideas will drive the work on
developing strategies for choosing who to talk to.

7 Conclusions

In this paper, we have presented a technique that combines machine learning
and argumentation for learning policies in a team of collaborating agents en-
gaging in joint activities. We believe, to the best of our knowledge, that this is
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the first study into learning models of other agents using argumentation-derived
evidence. The results of our empirical investigations show that evidence derived
from argumentation can have a statistically significant positive impact on identi-
fying, learning and modeling others’ policies during collaborative activities. The
results also demonstrate that through the use of appropriate machine learning
techniques more accurate and stable models of others’ policies can be derived
more rapidly than with simple memorisation of past experiences. Accurate policy
models can inform strategies for advising human decision makers on how a plan
may be resourced and who to talk to [16], and may aid in the development of
more effective strategies for agents [10]. Our results demonstrate that significant
improvements can be achieved by combining machine learning techniques with
argumentation-derived evidence. Having shown that accurate models of others’
policies could be learned through argumentation-derived evidence, we conjecture
that one could, in principle, learn accurate models of other agents’ properties
(e.g. priorities, preferences, and so on).
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Abstract. This paper presents an argumentative version of the well
known alternating offers negotiation protocol. The negotiation mecha-
nism is based on an abstract preference based argumentation framework
where both epistemic and practical arguments are taken into consider-
ation in order to decide about different strategic issues. Such issues are
the offer that is proposed at each round, acceptance or refusal of an of-
fer, concession or withdrawal from the negotiation. The argumentation
framework shows clearly how offers are linked to practical arguments
that support them, as well as how the latter are influenced by epistemic
arguments. Moreover it illustrates how agents’ argumentative theories
evolution, due to the exchange of arguments, influences the negotiation
outcome. Finally, a generic algorithm that implements a concession based
negotiation strategy is presented.

Keywords: Argumentation, Negotiation.

1 Introduction

Negotiation is the process of looking for an agreement between two or several
agents on one or more issues. There exist three main approaches to negotiation,
namely game theory (see e.g. [11]), heuristics (see e.g. [6]) and argumentation
(see e.g. [10,13]).

In the last years there is a plethora of worksenglish on argumentation based
negotiation (see e.g. [1,2,7,8]), testifying the increasing importance that is at-
tached to the role of argumentation in negotiation. Although a precise and formal
account of the added value of argumentation in negotiation is still missing, it is
at least clear that exchanging arguments revealing (at least some of) the rea-
sons for which a negotiator is proposing an offer may release several blocked
situations. Such an example is a situation where the conflict is due to different
perceptions of the world, which may have further repercussions on the behavior
of a negotiator, including even parameters like his own preferences. Indeed, argu-
ments received by the opponent on some issue might provide a piece of missing
information to the proponent who could suddenly discover that the proposed of-
fer is not optimal for himself, or that there is an objective constraint that forbids
his opponent to accept his offer.
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It is, therefore, evident that trying to ”influence”, in one way or another, the
opponent’s beliefs about the world may be a meaningful way to defend or attack
an offer. This situation can be handled through the simultaneous consideration of
both practical and epistemic arguments in the reasoning process and by deciding
in which situation each type of argument must prevail. This may be part of the
strategy of the agent. We remind that practical arguments support offers while
epistemic arguments represent what the agent believes about the world.

The above intuitions define the perspective that is taken in this paper. To
capture these intuition, we propose an original adaptation of the well known
alternating offers protocol [12] in the argumentation context. Then, we adapt a
reasoning mechanism combining practical and epistemic arguments proposed in
[3] in the negotiation context and we exploit the possibilities that our argumen-
tative alternating offers protocol provides for alternating practical and epistemic
arguments depending on the evolution of the negotiation. Finally, we present a
generic algorithm, which, building on the above reasoning mechanism and the
possibilities that the argumentative alternating offers protocol provides, imple-
ments a parameterized concession based negotiation strategy. The algorithm is
generic in the sense it can operate regardless of whether there is a time constraint
or not (which is the case in this paper), or of the tactics (or heuristics) the agents
might use in several situations where a choice has to be made (e.g. accept or
reject an offer, choose the best offer to propose). Thus, it can be parameterized
to capture the previous issues without further modification.

To the best of our knowledge, it is the first time that the way that epistemic
arguments interfere with practical arguments in a negotiation process is pre-
sented along with a generic algorithm that incorporates this mechanism in the
service of strategic considerations. This seriously differentiates our work from
other important works in the domain such as [1,2,7,9], etc. A similar combina-
tion of epistemic and practical arguments is proposed in [4] but in a deliberation
dialogue.

2 Negotiation Framework

The negotiation framework we propose is based on the abstract preference-based
argumentation framework of [2].

We assume two agents, agi and agj , i �= j, that are involved in a bilateral
negotiation over a set of offers (options) O = {o1, o2, ..., on} which are identified
from a logical language L. We further assume that there is an option oD ∈ O
that represents disagreement. The options are mutually exclusive, which means
that each agent can choose only one of them at once.

2.1 Arguments

From the language L a set of arguments Args(L) are constructed. By argument
we mean a reason for believing or doing something. We assume that an agent is
aware of all the arguments of the set Args(L). It encodes the fact that when an
agent receives an argument from another agent, it can interpret it correctly and
it can also compare it with its own arguments.
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Types of Arguments. Unlike [2], we distinguish between epistemic and prac-
tical arguments, that are both taken into account, as in [3], in the reasoning
mechanism used by the agents. Thus, we have:

1. Practical arguments Ap support offers (or decisions) by trying to justify those
offers.

2. Epistemic arguments Ae represent what the agent believes about the world

In what follows, we are not interested in the construction of these arguments.
We make the following assumptions:

– Args(L)=Ae ∪Ap,
– Ae ∩Ap = ∅,
– Arguments structure is unknown.

Epistemic arguments are denoted by variables α1, α2,..., while practical argu-
ments by variables δ1, δ2,... When no distinction is necessary between arguments,
we use variables a, b, c...

Let F be a function that maps each option to the arguments that support
it, i.e., ∀o ∈ O, F (o) ⊆ Ap. Each argument can support only one option, thus
∀oy, oz ∈ O, oy �= oz, F (oy) ∩ F (oz) = ∅. When δ ∈ F (o), we say that o is the
conclusion of δ, noted Conc(δ)=o.

Comparison Between Arguments. As in [3], we assume three binary pref-
erence relations on arguments.

– 	e: Partial preorder on the set Ae,
– 	p: Partial preorder on the set Ap,
– 	m: defined on the sets Ae and Ap, such that ∀α ∈ Ae, ∀δ ∈ Ap, (α,δ) ∈
	m and (δ,α) /∈ 	m. That means that any epistemic argument is stronger
(preferred) than any practical argument (m stands for mixed relation).

In what follows 
x with x ∈ {e, p, m} denotes the strict relation associated
with 	x. It is defined as (a, b) ∈
x iff (a, b) ∈	x and (b, a) /∈	x. Moreover when
(a, b) ∈	x and (b, a) ∈ 	x we will say that the arguments a and b are indifferent,
denoted by a ∼ b.

Conflict Between Arguments. Conflicts between arguments in A = Ap ∪Ae

are captured by the binary relation R ([3]).

– Re: Represents the conflicts between arguments in Ae.
– Rp: Represents the conflict between practical arguments, such that Rp =
{(δ, δ′) | δ, δ′ ∈ Ap, δ �= δ′ and Conc(δ) �= Conc(δ′)}. This relation is sym-
metric.

– Rm: Represents the conflicts between epistemic and practical arguments s.t.
(α, δ) ∈ Rm, α ∈ Ae and δ ∈ Ap.

Thus we have R = Re ∪Rp ∪Rm.
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We assume that practical arguments supporting different offers are in conflict.
Thus for any two offers oy, oz, ∀a ∈ F (oy) and ∀a′ ∈ F (oz), it holds that (a, a′) ∈
Rp and (a′, a) ∈ Rp.

Attacks Between Arguments (Defeat). Each preference relation 	x (with
x ∈ {e, p, m}) is combined with the relation of conflict Rx (with x ∈ {e, p, m}),
to give a defeat relation between arguments, noted Defx (with x ∈ {e, p, m}).

Definition 1. (Defeat) Let A ⊆ Args(L) be a set of arguments and a, b ∈ A.
Then (a, b) ∈ Defx iff (a, b) ∈ Rx, and (b, a) /∈ 
x.

We have Defglobal = Defe∪Defp∪Defm. In the following sections we will need
two particular notions of defeat namely rebuttal and undercutting. For explaining
those notions we will consider here a particular structure of arguments based on
a propositional language L′ although our negotiation framework is independent
of the structure of the arguments. � stands for classical inference and ≡ for
logical equivalence.

Definition 2. (Argument Structure) An argument is a pair a = (S, q) where q
is a formula in L′ and S a set of formulae in L′ s.t.

– S is consistent
– S � q
– S is a minimal set of propositions that satisfies the two previous conditions

Here S is called the support of the argument a and it is written S = Support(a)
and q its conclusion and it is written q = Conclusion(a).

Definition 3. (Undercutting) Let a and b be two arguments. Argument a un-
dercuts b iff ∃ p ∈ Support(b) s.t. p ≡ ¬Conclusion(a).

Definition 4. (Rebuttal) Let a and b be two arguments. Argument a rebuts b
iff Conclusion(a) ≡ ¬Conclusion(b).

In the context of a negotiation, practical arguments rebut practical arguments,
epistemic arguments undercut practical arguments, whereas epistemic argu-
ments can both undercut and rebut other epistemic arguments. Recall that prac-
tical arguments cannot attack epistemic arguments.

2.2 Extensions of Arguments

In [5], different acceptability semantics have been introduced for computing the
status of arguments. These are based on two basic concepts, defence and conflict-
freeness, defined as follows:

Definition 5. (Defence/Conflict-free) Let T =< A, Def > be an argumenta-
tion system with A ⊆ Args(L). Let A′ ⊆ A.

– A′ is conflict free iff � a, b ∈ A′ s.t (a, b) ∈ Def .
– A′ defends a ∈ A iff ∀ b ∈ A, if(b, a) ∈ Def , then ∃ c ∈ A′ s.t (c, b) ∈ Def .
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Definition 6. (Acceptability semantics) Let T =< A, Def > be an argumenta-
tion system with A ⊆ Args(L) and A′ a conflict free set of arguments.

– A′ is an admissible extension iff A′ defends any element in A′.
– A′ is a preferred extension iff A′ is a maximal(w.r.t set ⊆) admissible set.
– A′ is a stable extension iff it is a preferred extension that defeats any argu-

ment in A \ A′.

Definition 7. (Argument status) Let T =< A, Def > be an argumentation sys-
tem with A ⊆ Args(L) and E1, E2, ..., En its extensions under a given semantics.
Let an argument a ∈ A.

– a is skeptically accepted iff ∀Eq, 1 ≤ q ≤ n, a ∈ Eq.
– a is credulously accepted iff ∃Eq, 1 ≤ q ≤ n, s.t a ∈ Eq and ∃Ew, 1 ≤ w ≤ n,

s.t a /∈ Ew.
– a is rejected iff �Eq, 1 ≤ q ≤ n, such that a ∈ Eq.

2.3 Negotiating Agents Theories

As in [2], we assume that each agent involved in a negotiation has a negotiation
theory that contains arguments A that can be exchanged during the negotiation.
However, in our work we distinguish two types of arguments, i.e A = Ap ∪ Ae.
This, as it will become evident in the following, has several effects on the rea-
soning process of the agents and consequently the negotiation process. Formally,
a negotiation theory is defined as follows.

Definition 8. (Negotiation theory) Let O be a set of options, ag ∈ Ag an agent
and Ag the set of negotiating agents. The negotiation theory T ag of agent ag is
a tuple T ag =< Aag, F ag, Defag

global > where Defag
global = Defe ∪Defp ∪Defm

and Aag = Aag
p ∪Aag

e such that:

– Aag ⊆ Args(L). This set represents all the arguments that the agent can
built from his beliefs and all the arguments that support each option in O.

– F ag : O → 2Aag
p associates practical arguments to offers. We have⋃

1≤y≤n

F ag(oy)= Aag
p .

– Defag
global ⊆ Aag × Aag

2.4 Offer Status and Preferences between Offers

In [3], five statuses are defined for the options/offers. In this work, we use only
two of them. A skeptical offer which has a supporting argument that is skepti-
cally accepted, and a credulous offer which has a supporting argument that is
credulously accepted.
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The Effective Supporting Arguments of an offer, defined formally below, are
all arguments, either skeptically or credulously accepted, that support the offer.

Definition 9. (Effective Supporting Arguments-ESA) Let O be a set of offers,
E1, ..., En the extensions under a given semantics of the theory T =< A, F,
Defglobal > and oy ∈ O an offer. Then the set of effective supporting arguments
for offer oy is ESA(oy)={a|a ∈ F (oy) and a ∈ E1 ∪ ... ∪ En}.

In simple words, ESA(oy) is the set of arguments that support oy and are
included in at least one extension. The cardinalities of the ESA of the offers can
be used to define a preference relation on these offers.

Definition 10. Let O be a set of offers, T =< A, F, Defglobal > a negotiation
theory, and ox, oy ∈ O. Then ox � oy iff ∀a ∈ ESA(ox) and ∀b ∈ ESA(oy) it
holds that a ∼ b (i.e. they are indifferent) and | ESA(ox) | ≥ | ESA(oy) |.

Therefore, � favors options that are supported by more arguments. Although
this is a simple preference relation, and possibly more sophisticated methods for
ranking offers exist, it suffices for the purposes of this work.

3 Argumentation-Based Alternating Offers Protocol

In [12], Rubinstein introduced the Alternating Offers protocol for bargaining
between agents. It is a bilateral protocol between the proposer who initiates the
process, and the responder who replies to the proposal. The proposer starts the
negotiation process by presenting a proposal using a SubmitProposal message.
The responder can accept or reject the offer in its entirety by sending an Accept
or Reject message as a reply. The responder can also propose a counter-offer by
sending the Counter reply accompanied by the counter proposal. In this case,
the proposer has the same options and therefore can accept, reject or reply with
a counter proposal of its own. If one of the agents is satisfied with the current
iteration of the proposal, he can send an Accept message to the other. He
can also signal his dissatisfaction and abort the negotiation session by sending a
Reject message. To seal the agreement, the other agent has to send a Confirm
message and receive a Confirm-Acceptance message in reply.

The protocol, as described above, is generic, with no time limits and no central
coordinator to manage the negotiations, and either of the parties can leave the
process at any time.

In this work we adapt the classical alternating offers protocol to the case of
argumentation-based negotiation. To do so we extend the concept of round used
in the classical protocol to include, besides the classical propose, accept or reject
messages, the possibility to argue in order to defend or attack an offer. In addi-
tion, propose and argue are accompanied by supporting (practical or epistemic)
arguments.



Argumentative Alternating Offers 111

3.1 Moves

Arguments and offers are conveyed through dialogue moves (or simply moves).
A move is denoted by mr,g, whereas r ≥ 1 identifies the round (and therefore the
offer which is currently discussed), and g ≥ 1 the number (order) of the move in
that round. In the argumentative alternating offers protocol the following moves
are used. In all moves agi and agj are the participating agents and oy ∈ O.

– Propose(agi, agj, oy, δ), where δ ∈ F agi(oy). This move allows agent agi to
propose an offer oy to agent agj , along with a practical argument δ that
supports it.

– Argue(agi, agj , a, T arget), where a ∈ Aagi and Target is the move the ar-
gument of which is attacked by a or nil. This move allows agent agi to argue
by defending his own offer oy or to counter-attack an offer sent by agj. The
arguments used in this move satisfy the following conditions
• If Target =nil then a ∈ F agi(oy), i.e., a is a practical argument that

support the offer oy.
• If Target �=nil then a ∈ Aagi

e is an argument presented against the
argument of Target. Thus, an agent can’t present an argument against
his own arguments.

– Reject(agi, agj , oy). This move is sent by agi to inform agj that he has no
arguments to present and he does not accept agj’s offer.

– Nothing(agi, agj). This move notifies agj that agi has no arguments to
present and he either still considers his offer as a most preferred one for
him (when he is the proposer), or believes that he has better options that
the current offer (when he is the recipient of an offer sent by the other agent).

– Accept(agi, agj, oy). This move is used by agent agi to notify that he accepts
the offer oy made by agj.

– Agree(agi, agj). This move means that agi now believes that his current offer
is not optimal for himself and therefore accepts the arguments sent by agj .
Agent agj starts a new round.

– Withdraw(agi, agj). This move indicates that agent agi withdraws from ne-
gotiation.

– final(agi, agj). This is a shorthand for Propose(agi, agj, oy, ∅) and is used
during a final round of the negotiation. Its use and semantics will become
apparent in the following.

The following functions retrieve the parameters of the moves.

– Performative(mr,g) returns one of Propose, Argue, Nothing, Reject,
Accept,
Withdraw, Agree.

– Agent(mr,g) returns the agent who sent the move.
– Offer(mr,g) returns the offer sent in the round r.
– Argument(mr,g) returns the argument sent to the other agent.
– Targ(mr,g) returns the target of the move.
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Finally, the following hold.

– If Performative(mr,g)=Propose then Argument(mr,g) ∈ Aagi
p arguments

– If Performative(mr,g)=Argue then Argument(mr,g) ∈ Aagi
e ∪ Aagi

p

3.2 Round

A round takes place in alternating way between two agents P (the proposer of the
offer) and R (the recipient of the offer). The agent proposing an offer may send
moves with performative from {Propose, Argue, Agree, Nothing, Withdraw},
whereas the agent that receives an offer may send moves with performative from
{Argue, Reject, Accept, Nothing, Withdraw}. A round is defined formally as
follows.

Definition 11. (Round) A round r between two agents P and R is a non empty
sequence of moves mr,1, ..., mr,n, such that:

– ∀i, k, i �= k, ∀g, g′, g �= g′ Offer(mi,g) �= Offer(mk,g′ ).

– ∀r, Agent(mr,g) = P if Odd(g), and Agent(mr,g) = R if Even(g).

– ∀ mr,g, if Odd(g) then Performative(mr,g) ∈ {Propose, Argue, Agree,
Nothing, Withdraw}.

– ∀ mr,g, if Even(g) then Performative(mr,g) ∈ {Argue, Reject, Accept,
Nothing, Withdraw}.

– ∀r,Performative(mr,1) ∈ {Propose, Withdraw}.

– ∀r, if Performative(mr,g) = Performative(mr,g+1) = Withdraw then the
dialogue ends with a disagreement.

– ∀ mr,g, if Performative(mr,g)=Argue then:

• If Targ(mr,g) �= nil then Targ(mr,g)=mr,g′ with g′ < g, Argument(mr,g)
Def

Agent(mr,g)
global Argument(mr,g′) and Agent(mr,g) �= Agent(mr,g′). Here

the agent sends an argument which attacks one presented previously by
the other agent in the same round.

• Else Agent(mr,g)=Agent(mr,1) and Argument (mr,g) ∈
FAgent(mr,g)(Offer(mr,1)). Here the agent sends a new argument to sup-
port his offer.

– If Performative(mr,n) = Accept then Offer(mr,1) is the outcome of the
dialogue which terminates with agreement.
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– If Performative(mr,n) ∈ {Agree, Reject} then a new round r + 1 starts
with Agent(mr+1,1) �= Agent(mr,1) i.e. with the other agent as proposer.

– ∀ mr,g, if Performative(mr,g)=Nothing then Argument(mr,g) = ∅ and
Offer(mr,1) = ∅.

– ∀ mr,1, mr,g′ , g′ > 1 if Offer(mr,1) = Offer(mr,g′ ) then Agent(mr,1) =
Agent(mr,g′) and Argument(mr,1) �= Argument(mr,g′). In our protocol, un-
like [2], an agent can propose the same offer more than once during a round
provided that he supports it with an argument not used before.

Definition 12. (Argumentative alternating offers dialogue) An argumentative
alternating offers dialogue d between two agents P, R is a non-empty sequence of
rounds d={r1...rλ} between P and R.

In the alternating offers protocol ([12]), two outcomes are possible: (a) no agree-
ment (disagreement), or (b) an agreement in some round. In the argumentative
protocol the situation is similar.

Definition 13. (Outcome) Let d={r1, ..., rn} ∈ D be an argumentative alter-
nating offers dialogue where D is the set of all the dialogues built from the ar-
gumentative alternating offers protocol and rn = {mrn,1, ..., mrn,k} be the last
round of d. If Performative(mrn,k)=Accept then Outcome(d) = Offer(mrn,1)
(Agreement). Else Outcome(d) = nil (Disagreement).

4 Negotiation Strategy

In this section, we present a strategy that can be used by the two agents involved
in an argumentative alternating offers negotiation. The strategy is based on the
theory of the agent T , his preference on the set of offers �, and the alternating
offers protocol as defined in the previous section.

In order to improve presentation, some of the parameters of the messages of
the negotiation dialogue are omitted from the algorithms that follow. These are
mainly agent and target move names, and are easily derivable from context.

The main procedure of the strategy is described by procedure negotiate
(T, O, outcome), depicted in Algorithm 4. It accepts as parameters the agent
theory T , and the set of possible offers O, and returns an outcome that can be
either an offer, when an agreement is reached, or nil when the negotiation fails.
As noted before, the set O contains an option oD representing the possibility that
the agent leaves the negotiation without an agreement, and therefore remains
in the same state that he was initially. Therefore, offers that lead to situations
that are less desirable than his current state are less preferred by the agent. This
option oD corresponds to what in classical negotiation theory is referred to as
reservation value.
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Algorithm 1: Procedure compute-best(Tr,g, O, Obest)
begin

Compute the extensions E1, E2, . . . , En of Tr,g;
Compute Ocand = {o|o ∈ O s.t. ∃a ∈ ∪n

i=1Ei and a ∈ F (o)};
Compute Obest = {o|o ∈ Ocand, oD � �o, and ¬∃o′ ∈ Ocand s.t.
o′ � o};
return Obest;

end

Algorithm 2: Procedure proposal(Tr,g, O, o, a)
begin

Call compute-best(Tr,g, O, Obest);
if Obest = ∅ then

o = nil; a = nil;
else

Select an offer o from Obest and a ∈ F (o) such that
a belongs to some extension of Tr,g;

end
return o, a;

end

Algorithm 3: Procedure check(Tr,g, O, o, R, UA)
begin

Call compute-best(Tr,g, O, Obest);
if o ∈ Obest then

Send accept;
else

Compute Ebest = {E|E is an extension of Tr,g

s.t. ∃a ∈ E and a ∈ F(o) for o ∈ Obest};
if there is a ∈ E, E ∈ Ebest s.t. a is an epistemic
argument that attacks some argument b ∈ R,
and (a, b) �∈ UA then

Send argue(a);
UA = UA ∪ {(a, b)}; return UA;

else
Send nothing;

end
end
g = g + 1;

end
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Algorithm 4: Procedure negotiate(T, O, outcome)

begin

r = 1; g = 1; own = false; T1,1 = T;

Received = ∅; Offered = ∅; UsedAtt = ∅;
if Agent proposes first then

Call proposal(T1,1, O,ocur,acurr);

Send Propose(ocur, acur); own = true;

end

while true do

g = g + 1; Get mr,g;

Incorporate argument(mr,g) into Tr,g;

switch Performative(mr,g) do

case Argue

Add argument(mr,g) to Received;

if own then

Call defend(Tr,g , O, ocur , Received, UsedAtt);

else

Call check(Tr,g , O, ocur, Received, UsedAtt);

end

case Propose

Add argument(mr,g) to Received;

ocur = Offer(mr,g);

Add ocur to Offered;

r = r + 1; g = 1;

Call check(Tr,g , O, ocur, Received, UsedAtt);

case Agree

Call proposal(Tr,g, O,ocur,acurr );

if ocur = nil then

Send withdraw; g = g + 1;

else

Send Propose(ocur, acur);

Received = ∅; UsedAtt = ∅;
r = r + 1; g = 1;

o = ocur; own = true;

end

case Nothing

Call nothing-

reply(Tr,g , O, own, ocur, Received, UsedAtt);

case Reject

O = O − {ocur}; own = false;

Remove from Tr,g all arguments of F (ocur)

case Withdraw

Call withdrawal(Tr,g , O, Offered, outcome);

return outcome and exit;

case Accept

outcome = ocur;

return outcome and exit;

case F inal

outcome = Offer(mr,g);

return outcome and exit;

end

end

end
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One of the agents initiates the negotiation by sending a proposal via a propose
message. This proposal is selected by procedure proposal(Tr,g, O, o, a) (Algo-
rithm 2). This selection at some round r and step g, is based on the current
theory of the agent Tr,g, and the current set of offers O. The offer o that is
proposed must be supported by some argument a that belongs to some of the
extensions of Tr,g. Among several possible such offers, the best wrt � is selected.
Note that an agent never proposes, accepts or defends an offer that is worse wrt
� than oD, as any such deal is considered by the agent worse than no deal.

Algorithm 5: Procedure defend(Tr,g, O, o, R, UA)
begin

Call compute-best(Tr,g, O, Obest);
if o �∈ Obest then

Send agree;
else

Compute Ebest = {E|E is an extension of Tr,g

s.t. ∃a ∈ E and a ∈ F(o) for o ∈ Obest};
Compute Eo = {E|E ∈ Ebest and ∃a ∈ E s.t. a ∈ F (o)};
if there is a ∈ E, E ∈ Eo s.t. a is an epistemic
argument that attacks some argument b ∈ R,
and (a, b) �∈ UA then

Send argue(a);
UA = UA ∪ {(a, b)};
return UA;

else if there is a ∈ E, E ∈ Eo s.t. a is
a practical argument that has not been used before
and a ∈ F (ocur) then

Send argue(a);
else

Send nothing;
end
g = g + 1;

end

Upon receiving a proposal in a move mr,g, the agent incorporates the support-
ing argument in his theory, adds the argument to the set Received of arguments
that have been sent by the other agent, and runs procedure check(Tr,g, O, o,
Received, UsedAtt) (Algorithm 3). If the proposed offer is one of the best (wrt
�), he accepts the offer and the negotiation terminates. Otherwise, he attempts
to find an epistemic argument a that belongs to one of the extensions of Tr,g, and
counterattacks the argument supporting the offer. Note that a must not have
been used before to attack the supporting argument of the other agent in the
same round. This avoids loops in argumentation, and is achieved by recording
the counterattacks in UsedAtt. If he is successful, he sends argument a with an
argue to the other agent.
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If he is unsuccessful, he is confronted with a situation where on the one hand
he can not counterattack the proposal, but on the other hand there are offers
that are more desirable than the proposal. In such a case he sends a nothing
message to the other agent.

Therefore, the reply to a proposal can be any of accept, argue, or nothing. The
first case is straightforward. Whenever an agent receives an argue during a round
during which he is the proposer, he runs procedure defend(Tr,g, O, o, Received,
UsedAtt) (Algorithm 5). If in the light of the last argument sent by the other
agent his proposal is not one of the most preferred for himself, he replies with
agree. Otherwise, he tries to defend his proposal against the attack by attacking
one of the arguments sent by his counter-party during the current round. If no
such attack exists, another argument supporting his offer is sent in a argue mes-
sage. If no such argument exists, a nothing message is sent. This signifies that
the agent insists that his current offer is one of the most preferred for himself.
Upon receiving nothing the other agent sends a reject message, and becomes the
proposer in the new round. This task is carried out by the part of procedure
nothing-reply(Tr,g, O, own, o, Received, UsedAtt) (Algorithm 6), which runs when
parameter own is false, meaning that the offer currently discussed has been pro-
posed by the other agent.

Algorithm 6: Procedure nothing-reply(Tr,g, O, own, o, R, UA)
begin

if own then
Compute Eo = {E|E is an extension of Tr,g and
∃a ∈ E s.t. a ∈ F (o)};
if there is a ∈ E, E ∈ Eo, a ∈ F(o) and a has not
been used before then

Send argue(a);
else

Send nothing;
end
g = g + 1;

else
Send reject; g = g + 1;
Call Proposal(Tr,g, O,ocur,acurr);
if ocur = nil then

Send withdraw; g = g + 1;
else

Send Propose(ocur, acur);
R = ∅; UA = ∅;
r = r + 1; g = 1;
o = ocur; own = true;
return o, own, R, UA;

end
end

end
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If an agent receives a nothing message in a round where he is the proposer, he
is in a situation where he can not defend the argument that supports his offer.
Therefore, he needs to find some other argument to support it, which he sends
in an argue message. If no such argument exists, a nothing message is sent.

If at some point one of the agent has no offers, he sends a withdraw message,
signifying that he is willing to leave the negotiation. This triggers a final round of
negotiation that is carried out by procedure withdrawal(Tr,g, O, Offered, out)
(Algorithm 7) that selects one of the offers from the input set Offered. This set
contains all the offers proposed during the negotiation by the agent who wishes
to withdraw. The agent who receives the withdraw message, finds the best offer
contained in Offered. If this is better than disagreement, he sends it in a final
message. The negotiation terminates with agreement if this offer is still better
than oD for the other agent, otherwise it terminates with disagreement.

Algorithm 7: Procedure withdrawal(Tr,g, O, Of, out)
begin

if Performative(mr,g−2) = withdraw then
out = nil;

else
Select o ∈ Of s.t. o� oD and ¬∃o′ ∈ Of s.t. o′ � oD

and o′ � o;
if o exists then

Send final(o); out = o;
else

Send withdraw; out = nil;
end

end
return out;

end

It is worth noting that although the above algorithms implement a specific
negotiation strategy, the overall process they describe is generic in the sense that
it can easily adapted to accommodate other strategies. Consider for instance the
case where one of the agents receives a reject message to an offer he made in
some previous move. In the current version of procedure negotiate he removes his
offer and the other agent takes turn. Moreover, in the next round he will concede,
by sending his next best offer. All these are strategic decisions that can easily
modified without altering in any way the working of the overall algorithms, and
more importantly the role of argumentation in negotiation.

Moreover, the argumentive alternating offers protocol we propose has two
useful properties. The first property is soundness. This property guaranties that
any offer agreed by the two agents through the argumentative alternating offers
protocol is better for both agents than the offer that corresponds to disagreement
i.e. oD. More formally:
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Proposition 1. (Soundness) Let d = {r1, ..., rn} be an argumentative alternat-
ing offers dialogue between two agents α and β. If Outcome(d) = o, o �= nil then
o � oα

D and o� oβ
D.

Another interesting property of the argumentative alternating offers protocol is
that any negotiation dialogue produced through this protocol terminates.

Proposition 2. ∀d ∈ D where D is the set of all the dialogues built from the
alternating offers protocol, d terminates.

5 Example

For illustrating our negotiation algorithm we will use a simple scenario where a
buyer (agb) and a seller(ags) negotiate over the price of a product. The set of
options is O = {o1, o2, o3, oD}, where o1 = high, o2 = medium, o3 = low are
referring to the price of the product, and oD represents the options of not selling
(buying) for the seller (buyer).

Assume that the seller prefers a high price to a medium price to not selling to
a low price. Symmetrically, the buyer prefers a low price to a medium price to
not buying to a high price. We also assume that we are in a high-season period,
but the buyer agent is not aware of that before the negotiation. Both agents
represent their knowledge in some propositional language R.

Assume that the buyer has the following knowledge:
regular customer
regular customer→ discount
discount→ buy2, buy2→ o3.
high season→ o1

high season→ ¬discount
high season ∧ regular customer→ o2

From this knowledge base the agent can construct one practical argument δ1 =
({ regular customer, regular customer → discount, discount→ buy2, buy2→
o3}, o3) that supports o3. Two epistemic arguments can also be constructed: α1

= ({ regular customer, regular customer → discount}, discount), and α2 =
({ regular customer, regular customer → discount, discount→ buy2}, buy2).
We have therefore only one extension E = {δ1, α1, α2}. Thus, the option o3 is
skeptical and o2, o1 are rejected.

Assume now that the seller has the following knowledge:
high season
high season→ ¬discount, high season→ o1.
high season ∧ regular customer→ o2.
sales season ∧ regular customer→ o3.

The seller agent has one practical argument δ2 = ({high season,
high season→ o1}, o1) which supports o1. He has also one epistemic argument
α3 = ({high season, high season→ ¬discount},¬discount).



120 N. Hadidi, Y. Dimopoulos, and P. Moraitis

We have therefore only one extension E = {δ2, α3}. Thus, the offer o1 is
skeptical and o2, o3 are rejected.

Supposing that agb begins the negotiation, the dialogue between agb and ags

will be as follows:

m1,1:Propose(agb, ags, o3, δ1)
m1,2:Argue(ags, agb, α3, (m1,1))
m1,3:Agree(agb, ags)
m2,1:Propose(ags, agb, o1, δ2)
m2,2:Nothing(agb, ags)
m2,3:Nothing(ags, agb)
m2,4:Reject(agb, ags)
m3,1:Propose(agb, ags, o2, δ3)
m3,2:Accept(ags, agb, o2)

The buyer agent proposes first his optimal offer which is o3 with his supporting
argument δ1. The seller agent updates his theory which now contains the argu-
ments δ2, δ3=({ high season, regular customer,high season ∧
regular customer → o2 },o2), α3, δ1, α1 and α2. For the defeat relation of the
seller agent we have the following situation:

– (δ2, δ3), (δ2, δ1) (δ3, δ1) because the conclusions of δ2, δ3 and δ1 are not the
same (and therefore conflicting) and also because the preferences of the agent
are δ2 
p δ3, δ2 
p δ1 and δ3 
p δ1.

– (α3, δ1) because there is undercutting and α3 
m δ1.
– (α3, α2) and (α3, α1) because there is undercutting between α3 and α2, re-

buttal between α3, and α1 and the preferences of the agent are α3 
e α2

and α3 
e α1.

The theory of the seller agent has one extension, E = {α3, δ2}, and therefore the
seller tries to defeat with α3 the argument he received in the last move.

When the buyer receives move argue(α3), he first updates his theory. This
theory now contains the arguments α1, α2, α3, δ1, δ2, δ3, whereas the defeat
relation is as follows:

– (α3, α2) and (α3, α1) because there is undercutting between α3 and α2, re-
buttal between α3 and α1. The preferences of the agent in this context are
now α3 
e α2 and α3 
e α1.

– (δ1, δ2), (δ1, δ3) and (δ3, δ2) because the conclusions of δ2, δ3 and δ1 are not
the same and the preferences of the agent are δ1 
p δ2, δ1 
p δ3, δ3 
p δ2.

– (α3, δ1) because there is an undercutting attack and α3 
m δ1.

The theory of the buyer after m1,2 has one extension, E = {α3, δ3}, and therefore
o3 is not the best offer for him. Consequently, he agrees with the seller.

This initiates a new round, where the seller proposes the offer o1, which is a
skeptical conclusion of his theory. The buyer updates his theory with argument
δ2, but there is no change. The offer o2 remains the best, and thus he needs to
defeat the argument he received. But, none of the acceptable arguments defeats
δ2 and then he sends nothing to indicate that he does not accept the offer.
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When the seller agent receives the nothing message, he attempts to find an-
other argument which supports his offer o1. As this attempt fails, he sends a
nothing message to signify that he has not change his preference on offer o1 but
he has no other argument for supporting it. The buyer ends the round with a
reject and thus, a third round begins in which the buyer agent proposes his best
offer o2 with δ3 to support it. Here we assume that the seller agent is willing to
concede, and therefore he accepts o2 because this is an acceptable offer for him.
Thus the negotiation ends with an agreement.

6 Related Work and Conclusion

In the last years several works have appeared in the argumentation based ne-
gotiation literature. These works have focused on several aspects of negotiation
such as the problem of decision making (see e.g. [1,7]), the study of specific
types of negotiation such as interest based negotiation [9], whereas the work of
[2] proposed a general framework for argumentation based negotiation where
several interesting issues have been studied. These issues include the link be-
tween the status of the arguments and the offers they support, the definition
of important concepts such as the concession and its impact on the evolution
of the negotiation, etc. This work is the most relevant to ours. Nevertheless,
there are some important differences. One of them is that in our paper we make
a clear distinction between epistemic and practical arguments and, by adapt-
ing the work presented in [3], we show how epistemic arguments interfere with
practical arguments in the definition of the acceptable offers. Then, we show
how this reasoning mechanism can be used by the agents in the context of an
original adaptation of the well known alternating offers protocol [12]. Another
difference is that in our work we are interested in strategic issues. More precisely,
we propose a generic algorithm that implements a strategy that can be used by
both agents. This algorithm can be parameterized in different ways in order to
capture, for example, different conditions of concession, different methods for
ranking offers or different tactics for deciding whether withdrawing or making
a concession. Our future work will address several open issues. One such issue
is the study of several tactics for choosing the best offer to propose, especially
in the context of time constraint negotiations. Another issue is the investigation
of different methods for ranking the offers, whereas a third issue is that of the
formal properties of the argumentative alternating offers protocol, apart from
the ones of soundness and termination that we have already presented.
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Abstract. In this paper, we analyse the requirements that argumenta-
tion frameworks should take into account to be applied in agent societies.
Then, we propose a generic framework for the computational represen-
tation of argument information. It is able to represent different types
of complex arguments in open multi-agent societies, where agents have
social relations between them. In addition, we have formalised our frame-
work by defining an argumentation framework based on it.

ACM Categories: Coherence and Coordination, Multi-Agent Systems.

Keywords: Agreement Technologies, Argumentation.

1 Introduction

A recent trend in Multi-Agent Systems (MAS) research is to broaden the ap-
plications of the paradigm to open MAS [20], where heterogeneous agents could
enter into (or leave) the system, interact, form societies and adapt to changes in
the environment. This and other paradigms for computing, such as grid comput-
ing or peer-to-peer technologies, have given rise to a new approach of computing
as interaction [16]. This notion is used to define large complex systems in terms
of the services that their entities or agents can offer and consume and conse-
quently, in terms of the interactions between them. The high dynamism of these
systems requires them to have a way of harmonising knowledge inconsistencies
and reaching common agreements, for instance, when agents in an open MAS
are faced with the goal of collaborating and solving a problem together.

Argumentation is probably the most natural way of harmonising conflicts. It
provides a fruitful means of dealing with non-monotonic and defeasible reason-
ing. During the last decade, this important property has made many Artificial
Intelligence (AI) researchers to pay attention on argumentation theory. In addi-
tion, research on argumentation is also at its peak in the Multi-Agent Systems
(MAS) community, since it has been very successful to implement agents’ inter-
nal and practical reasoning and to manage multi-agent dialogues [24]. Nowadays,
argumentation is an active research area in AI and MAS [5].

P. McBurney, I. Rahwan, and S. Parsons (Eds.): ArgMAS 2010, LNAI 6614, pp. 123–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



124 S. Heras, V. Botti, and V. Julián

However, most argumentation systems consider abstract notions of argument
that are not intended for performing automated reasoning over them (automatic
argument generation, selection and evaluation). In fact, the proposed computa-
tional argumentation frameworks take a narrow view of the argument structure
[26]. On the other hand, most MAS whose agents have argumentation capabil-
ities use ad-hoc and domain-dependent representations for arguments [30][31].
Moreover, little work, if any, has been done to study the effect of the social
relations between agents in the way that they argue and manage arguments.
Commonly, the term agent society is used in the argumentation and AI liter-
ature as a synonym for an agent organisation [12] or a group of agents that
play specific roles, follow some established interaction patterns and collaborate
to reach global objectives [14][19]. Nevertheless, the social context of agent soci-
eties (the social dependencies between agents and the effects of their membership
to a group in the way that they can argue with other agents), is not analysed.

To our knowledge, no research is done to adapt argumentation frameworks
to represent and manage arguments in agent societies taking into account their
social context both in the representation of arguments and in the argument man-
agement process. Nevertheless, this social information plays an important role
in the way agents can argue and learn from argumentation experiences. Depend-
ing on their social relations with other agents, an agent can accept arguments
from a member of its society that it would never accept before acquiring social
dependencies with this member. For instance, in a company a subordinate must
sometimes accept arguments from his superior that go against his own ideas and
that he would never accept without this power relation. Also, despite having no
knowledge about an opponent agent, an agent could try to infer the potential
willingness of the opponent to accept an argument by taking into account its
social relation with the opponent, or even its social relation with similar agents
in the past. These are major considerations that should be studied to apply
argumentation techniques in real domains modelled by means of open MAS.

The purpose of this paper is twofold. On one hand, Section 2 analyses the
requirements for an argumentation framework for agent societies and proposes
a generic computational representation of arguments. This framework stresses
the importance of the social dependencies between agents and the effects of
their membership to a group in the way that they argue. On the other hand, in
Section 3 we formalise this proposal by defining a computational argumentation
framework (AF) for the design and implementation of argumentation dialogues
in MAS. Our notion of argument relies on technological standards for argument
and data interchange on the web. Hence, our argumentation framework can be
adapted to work in multiple domains and distributed environments.

2 A Computational Model for Argument Representation
in Agent Societies

In this section, we introduce the formal definition of the concepts that define our
approach for agent societies. Then, we analyse the issues that have been consid-
ered to choose a suitable argumentation framework for agent societies. Taking
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them into account, we propose a computational representation of arguments.
Finally, an example is provided.

2.1 Society Model

In this work, we follow the approach of [10] and [2], who define an agent society
in terms of a set of agents that play a set of roles, observe a set of norms and
a set of dependency relations between roles and use a communication language
to collaborate and reach the global objectives of the group. This definition is
generic enough to fit most types of agent societies, such as social networks of
agents or open agent organisations. Broadly speaking, it can be adapted to any
open MAS where there are norms that regulate the behaviour of agents, roles
that agents play, a common language that allow agents to interact defining a
set of permitted locutions and a formal semantics for each of these elements.
Moreover, the set of norms in open MAS define a normative context (covering
both the set of norms defined by the system itself as well as the norms derived
from agents’ interactions)[8].

However, we consider that the values that individual agents or groups want
to promote or demote and preference orders over them have also a crucial im-
portance in the definition of an argumentation framework for agent societies.
These values could explain the reasons that an agent has to give preference to
certain beliefs, objectives, actions, etc. Also, dependency relations between roles
could imply that an agent must change or violate its value preference order. For
instance, an agent of higher hierarchy could impose their values to a subordi-
nate or an agent could have to adopt a certain preference order over values to
be accepted in a group. Therefore, we endorse the view of [21], [28] and [3], who
stress the importance of the audience in determining whether an argument (e.g.
for accepting or rejecting someone else’s beliefs, objectives or action proposals)
is persuasive or not. Thus, we have included in the above definition of agent so-
ciety the notion of values and preference orders among them. Next, we provide
a formal definition for the model of society that we have adopted:

Definition 1 (Agent Society). An Agent society in a certain time t is defined
as a tuple St = < Ag, Rl, D, G, N, V, Roles, Dependency, Group, val, V alprefQ

> where:

– Ag = {ag1, ag2, ..., agI} is the set of I agents of St in a certain time t.
– Rl = {rl1, rl2, ..., rlJ} is the set of J roles that have been defined in St.
– D = {d1, d2, ..., dK} is the set of K possible dependency relations in St.
– G = {g1, g2, ..., gL} is the set of groups that the agents of St form, where

each gl = {a1, a2, ..., aM}, M ≤ I consist of a set of agents ai ∈ A of St.
– N is the defined set of norms that affect the roles that agents play in St.
– V = {v1, v2, ..., vP } is the set of P values predefined in St.
– Roles : Ag → 2Rl is a function that assigns an agent its roles in St.
– DependencySt :<St

D⊆ Rl×Rl defines a reflexive, transitive and asymmetric
partial order relation over roles.

– Group : Ag → 2G is a function that assigns an agent its groups in St.
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– val : Ag → V is a function that assigns an agent its set of values.
– V alprefQ ⊆ V × V , where Q = Ag ∨Q = G, defines a irreflexive, transitive

and asymmetric preference relation <St

Q over the values.

That is, ∀r1, r2, r3 ∈ R, r1 <St

d r2 <St

d r3 implies that r3 has the highest rank
with respect to the dependency relation d in St. Also, r1 <St

d r2 and r2 <St

d r1

implies that r1 and r2 have the same rank with respect to d in St. Finally,
∀v1, v2, v3 ∈ V, V alprefagi = v1 <St

agi
v2 <St

ag1
v3 implies that agent agi prefers

value v3 to v2 and value v2 to value v1 in St. Similarly, V alprefgj = v1 <St
gj

v2 <St
gj

v3 implies that group gj prefers value v3 to v2 and value v2 to value v1

in St.
Once the concepts that we use to define agent societies are specified, the next

section analyses the computational requirements for argument representation in
these societies. Then, our approach for agent societies and the analysed require-
ments are used to propose a new computational representation for arguments.

2.2 Computational Requirements for Arguments in Agent Societies

An argumentation process is conceived as a reasoning model with several steps:

1. Building arguments (supporting or attacking conclusions) from knowledge
bases.

2. Defining the strengths of those arguments by comparing them in conflict
situations.

3. Evaluating the acceptability of arguments in view of the other arguments
that are posed in the dialogue.

4. Defining the justified conclusions of the argumentation process.

The first step to design MAS whose agents are able to perform argumentation
processes is to decide how agents represent arguments. According to the interac-
tion problem defined in [7], “...representing knowledge for the purpose of solving
some problem is strongly affected by the nature of the problem and the infer-
ence strategy to be applied to the problem...”. Therefore the way in which agents
computationally represent arguments should ease the automatic performance of
argumentation processes.

Most research effort on the computational representation of arguments is per-
formed in the area of developing models for argument authoring and diagram-
ming [23][27](OVA1). However, these systems assume human users interacting
with the software tool and are not conceived for performing agents’ automatic
reasoning processes. Other research works where the computational modelling
of arguments has been studied are those on case-based argumentation. From
the first uses of argumentation in AI, arguments and cases are intertwined [29].
Case-based argumentation particularly reported successful applications in Amer-
ican common law [5], whose judicial standard orders that similar cases must be

1 OVA at ARG:dundee: www.arg.dundee.ac.uk
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resolved with similar verdicts. In [4] a model of legal reasoning with cases is pro-
posed. But, again, this model assumed human-computer interaction and cases
were not thought to be only acceded by software agents. Case-Based Reasoning
(CBR) systems [1] allow agents to learn from their experiences. In MAS, the
research in case-based argumentation is quite recent with just a few proposals to
date. These proposals are highly domain-specific or centralise the argumentation
functionality in a mediator agent that manages the dialogue between the agents
of the system [15].

As pointed out before, we focus on argumentation processes performed among
a set of agents that belong to an agent society and must reach an agreement to
solve a problem taking into account their social dependencies. Each agent builds
its individual position in view of the problem (a solution for it). At this level of
abstraction, we assume that this could be a generic problem of any type (e.g. a
resource allocation problem, an agreed classification, a joint prediction, etc.) that
could be characterised with a set of features. Thus, we assume that each agent
has its individual knowledge resources to generate a potential solution. Also,
agents have their own argumentation system to create arguments to support
their positions and defeat the ones of other agents.

Taking into account the above issues, there are a set of requirements that a
suitable framework to represent arguments in agent societies should met:

– be computationally tractable and designed to ease the performance of auto-
matic reasoning processes over it.

– be rich enough to represent general and context dependent knowledge about
the domain and social information about the agents’ dependency relations
or the agents’ group.

– be generic enough to represent different types of arguments.
– comply with the technological standards of data and argument interchange

on the web.

These requirements suggest that an argumentation framework for agent societies
should be easily interpreted by machines and have highly expressive formal se-
mantics to define complex concepts and relations over them. Thus, we propose
a Knowledge-Intensive (KI) case-based argumentation framework [9], which al-
lows automatic reasoning with semantic knowledge in addition to the syntactic
properties of cases. Reasoning with cases is specially suitable when there is a
weak (or even unknown) domain theory, but acquiring examples encountered in
practice is easy. Most argumentation systems produce arguments by applying
a set of inference rules. In open MAS the domain is highly dynamic and the
set of rules that model it is difficult to specify in advance. However, tracking
the arguments that agents put forward in argumentation processes could be rel-
atively simple. Other important problem with rule-based systems arises when
the knowledge-base of rules must be updated (e.g. adding a new rule). Updates
imply to check the knowledge-base for conflicting or redundant rules. Case-based
systems are in most cases easier to maintain than rule-based systems and hence,
more suitable for being applied in dynamic domains.
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In the following section, we present the framework proposed accordingly to
the above requirements. This framework is also conceived to allow agents to im-
prove their argumentation skills and be able to evaluate the persuasive power
of arguments for specific audiences in view of their previous argumentation
experiences.

2.3 Case-Based Model for Argument Representation

In open multi-agent argumentation systems the arguments that an agent gener-
ates to support its position can conflict with arguments of other agents and these
conflicts are solved by means of argumentation dialogues between them. To allow
agents to take the maximum profit from previous argumentation experiences, the
structure that agents use to store information related to their argumentation ex-
periences must be able to represent knowledge about individual arguments and
also about the argumentation dialogues where arguments were posed. There-
fore, agents that implement our argumentation framework have an individual
case-based argumentation system with the following knowledge resources:

– Domain-cases: a set of cases that store information about problems that
were solved in the past. The structure and concrete feature set of these
cases depends on the specific application domain, but at least, they have a
minimum set of features that represent the problem and the solution applied
to it.

– Argument-cases: a set of cases that store information about arguments that
the agent posed in the past and the results that were obtained by putting
forward them in a previous argumentation dialogue2.

– Dialogue graphs: a set of directed graphs that link argument-cases and rep-
resent previous argumentation dialogues. Nodes represent arguments and
arrows between nodes represent attack relations.

– Ontology of Argumentation Schemes: an ontology that encodes the set of
argumentation schemes that agents can use to produce arguments. These
schemes are stereotyped patterns of reasoning [32] that can be used to create
presumptive arguments from a set of premises that characterise the problem
to solve. In addition, argumentation schemes have a set of critical questions,
which represent attacks to the conclusion drawn from the scheme.

The argument-cases are the main structure that we use to implement our frame-
work and computationally represent arguments in agent societies. Argument-
cases have two main objectives: 1) they can be used by agents as knowledge
resource to generate new arguments in view of past argumentation experiences
and 2) they can be used to store new argumentation knowledge that agents gain
in each dialogue, improving the agents’ argumentation skills. Due to space re-
strictions, we focus here on explaining this knowledge resource. Table 1 shows an

2 Note that argument-cases and arguments are not the same, but the former are knowl-
edge structures that store information about previous arguments (and maybe rep-
resent a generalisation of several arguments).
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Table 1. Structure of an Argument Case

PROBLEM

Domain Context Premises = {Volume, Price, etc.}

Social Context

Proponent

ID = F2

Role = Farmer

Norms = NF2

V alPrefF 2 = [EC<SO]

Opponent

ID = BA

Role = Basin Administrator

Norms = NBA

V alPrefBA = ∅

Group

ID = RB

Norms = NRB

V alPrefRB = [SO<EC]

Dependency Relation = Power

SOLUTION

Argument Type = Inductive

Conclusion = F2tr (F2 wins the water-right transfer)

Acceptability State = Acceptable

Received Attacks

Critical Questions = ∅
Distinguish Case = ∅
Counter Examples = {C1}

JUSTIFICATION

Cases = {C2}
Schemes = ∅
Associated Dialogue Graph

example of the structure of a specific argument-case (explained in the example
of Section 2.4). As it is usual in CBR systems, the argument-cases have three
main parts: the description of the problem that the case represents, the solution
applied to this problem and the justification why this particular solution was
applied. An argument-case stores the information about a previous argument
that an agent posed in certain step of a dialogue with other agents.

Problem: The problem description stores the premises of the argument, which
represent the context of the domain where the argument was put forward. In
addition, if we want to store an argument and use it to generate a persuasive ar-
gument in the future, the features that characterise the audience of the previous
argument (the social context) must also be kept.

For the definition of the social context of arguments, we follow our model
of society presented in Section 2.1. Therefore, we store in the argument-case
the social information about the proponent of the argument, the opponent to
which the argument is addressed, the group to which both agents belong and
the dependency relation established between the roles that these agents play. For
the sake of simplicity, in what follows we assume that in each step of the dialogue,
one proponent agent generates an argument and sends it to one opponent agent
that belongs to its same group. However, either the proponent or the opponent’s
features could represent information about agents that act as representatives of
a group and any agent can belong to different groups at the same time.

Thus, the proponent and opponent’s features represent information about the
agent that generated the argument and the agent that received it respectively.
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Concretely, for each agent the argument-case stores a unique ID that identifies
it in the system and the role that the agent was playing when it sent or received
the argument (e.g. farmer and basin administrator, do not confuse with the role
of proponent and opponent from the argumentation perspective). In addition, a
reference to the set of norms that governed the behaviour of the agents at this
step of the dialogue is also stored, since the normative context of agents could
force or forbid them to accept certain facts and the arguments that support
them (e.g. a norm could invalidate a dependency relation or a value preference
order). Moreover, if known, we also store the preferences of each agent over the
pre-defined set of general values in the system (e.g. security, solidarity, economy,
etc.). As pointed out before, these preferences (V alPrefF2 and V alPrefBA)
affect the persuasive power of the proponent’s argument over the opponent’s
behaviour.

Regarding the group features, the argument-case stores the unique identifier
ID of the agents’ group, the set of norms that regulates the behaviour of the
group members at this moment, since changes can occur due to norm emergence,
and the preference order (V alPrefRB) about the social values3 of the group.
Finally, the dependency relation between the proponent’s and the opponent’s
roles is also stored. To date, we define the possible dependency relations between
roles as in [10]:

– Power : when an agent has to accept a request from other agent because of
some pre-defined domination relationship between them (e.g. in a society St

that manages the water of a river basin, Farmer <St

Power Basin
Administrator, since farmers must comply with the laws announced by the
basin administrator).

– Authorisation: when an agent has committed itself to other agent for a cer-
tain service and a request from the latter leads to an obligation when the
conditions are met (e.g. in the society St, Farmeri <St

Authorisation Farmerj ,
if Farmerj has contracted a service that offers Farmeri).

– Charity: when an agent is willing to answer a request from other agent with-
out being obliged to do so (e.g. in the society St, by default Farmeri <St

Charity

Farmerj and Farmerj <St

Charity Farmeri).

Solution: In the solution part, the argument type that defines the method by
which the conclusion of the argument was drawn and this conclusion itself are
stored. By default, we do not assume that agents have a pre-defined set of rules
to infer deductive arguments from premises, which is difficult to maintain in
open MAS. In our framework, agents have the following ways of generating new
arguments:

– Presumptive arguments: by using the premises that describe the problem to
solve and an argumentation scheme whose premises match them.

3 We use the term social values to refer to those values that are agreed by (or com-
manded to) the members of a society as the common values that this society should
promote (e.g. justice and solidarity in an ideal society) or demote.
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– Inductive arguments: by using similar argument-cases and/or domain-cases
stored in the case-bases of the system.

– Mixed arguments: by using premises, cases and argumentation schemes.

Moreover, the argument-case stores the information about the acceptability state
of the argument at the end of the dialogue. This feature shows if the argument
was deemed acceptable, unacceptable or undecided in view of the other arguments
that were put forward during the dialogue (see Section 3 for details). Regardless
of the final acceptability state of the argument, the argument-case also stores
the information about the possible attacks that the argument received. These
attacks could represent the justification for an argument to be deemed unac-
ceptable or else reinforce the persuasive power of an argument that, despite
being attacked, was finally accepted. Argument-cases can store different types
of attacks, depending on the type of argument that they represent:

– For presumptive arguments: critical questions associated with the scheme.
– For inductive arguments [4]: either
• Premises which value in the context where the argument was posed was

different (or non-existent) than the value that it took in the cases used
to generate the argument (distinguish the case) or
• Cases which premises also match the premises of the context where the

argument was posed, but which conclusion is different than the conclu-
sion of the case(s) used to generate the argument (counter-examples).

– For mixed arguments: any of the above attacks.

Justification: The justification part of the argument-case stores the informa-
tion about the knowledge resources that were used to generate the argument
represented by the argument-case (e.g. the set argumentation schemes in pre-
sumptive arguments, the set of cases in inductive arguments and both in mixed
arguments). In addition, each argument-case has associated a dialogue-graph
that represents the dialogue where the argument was posed. This graph can
be used later to develop dialogue strategies. The same dialogue graph can be
associated with several argument-cases.

Following a CBR methodology, the knowledge resources of the agents’ case-
based argumentation system allow them to automatically generate, select and
evaluate arguments. However, the complete argument management process (how
agents generate, select and evaluate arguments by using the knowledge resources
of their argumentation systems) is out of the scope of this paper. Also, the frame-
work presented is flexible enough to represent different types of arguments and
their associated information, but the value of some features on argument-cases
and domain-cases could remain unspecified in specific domains. For instance, in
some open MAS, the preferences over values of other agents could not be previ-
ously known. However, agents could try to infer the unknown features by using
CBR adaptation techniques [17].
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2.4 Example

To exemplify our framework, let us propose a simple scenario of an open MAS
that represents a water market [6], where agents are users of a river basin that
can buy or sell their water-rights to other agents. A water-right is a contract
with the basin administration organism that specifies the rights that a user has
over the water of the basin (e.g. the maximum volume that he can spend, the
price that he must pay for the water or the district where it is settled4). In this
setting, suppose that two agents that play the role of farmers, F1 and F2, are
arguing with a basin administrator, BA, to decide over a water-right transfer
agreement that will grant an offered water-right to a farmer. Then, the premises
of the domain context would store data about the water-right transfer offer and
other domain-dependent data about the current problem. All agents belong to
the same group (the river basin RB) whose behaviour is controlled by certain
set of norms NRB, its value preference order promotes economy over solidarity
(SO<EC) and commands a dependency relation of charity (C) between two
farmers and power relation (P) between a basin administrator and a farmer.
Also, F1 prefers economy over solidarity (SO<EC) and has a set of norms NF1,
F2 prefers solidarity over economy (EC<SO) and has a set of norms NF2 and
by default, BA has the value preference order of the basin (SO<EC) and a set
of norms NBA.

Suppose that F1 has a domain-case C1 that represents a previous water-right
transfer agreement that granted a similar water-right to a farmer whose land
was adjacent to the district associated with the current water-right offer. Thus,
F1 would put forward an argument to BA, generated by using C1.

A1: I should be the beneficiary of the transfer because my land is adjacent
to the owner’s land.

Here, we suppose that the closer the lands the cheaper the transfers between
them and then, this argument would promote economy. However, F2 has a
domain-case C2 that represents a previous water-right transfer agreement that
granted a similar water-right to a farmer whose land needed an urgent irrigation
to save the crop due to a drought. Thus, F2 would put forward the following
argument to BA, generated by using C2.

A2: I should be the beneficiary of the transfer because there is a drought
and my land is almost dry.

In this argument, we assume that crops are lost in dry lands and helping people
to avoid losing crops promotes solidarity. In addition, suppose that as basin
administrator, BA knows that there is a drought in the basin, which is a new
premise that should be considered. Also, its ontology of argumentation schemes
includes an Argument for An Exceptional Case scheme [32] S1 stating that the
value preference order of the basin can be waived in case of drought and changed
for EC<SO. Therefore, BA could generate an argument by using S1 and certain
4 Following the Spanish Water Law, a water-right is always associated to a district.
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domain-case C3 that granted a similar water-right transfer to a farmer whose
land was dry in a drought to promote solidarity.

A3: There is a drought in the basin and dry lands must be irrigated first.

Table 1 shows the argument-case that F2 could store for A2 at the end of the
dialogue, including the attacks received and the knowledge resources that sup-
port the argument. The dialogue graph of this argument-case would point to
the node that represents it in the whole dialogue (represented with several
argument-cases interlinked). Assuming that in our open MAS all agents can
receive the arguments posed by the agents of their group, A1 and A2 will at-
tack each other. In addition, A3 will attack A1, which do not takes into account
the exceptional case of drought in the basin. Also, assuming that in this soci-
ety S the administrator BA has a power dependency relation over any farmer
(Farmer <St

Power Basin Administrator), F1 would have to accept the attack
that defeats its argument A1 and withdraw it. If the dialogue ends here, the
water-right transfer would be granted to F2.

Recall that argument-cases store the social information about roles, values,
norms, etc. Therefore, agents can use this information when they are faced with
the task of selecting a case from a set of possible cases to support their arguments.
For instance, suppose that BA has also found a domain-case C4 that turned down
a similar water-right transfer to a farmer whose land was dry in a drought. To
decide which C3 or C4 is most suitable to draw a conclusion for the current
problem, BA can check its arguments case-base. Then, suppose that BA finds
the argument-case that represents the argument that ended the past dialogue
that motivated the creation of the domain-case C4 by turning down the transfer.
However, the social information about the group does not match with the current
one. Thus, BA could infer that in those situation, the farmer was member of a
different group where the irrigation of dry lands does not take priority in the
case of drought and hence, C4 could not be cited in the current situation.

Up to this point, we have specified our approach for agent societies, analysed
the requirements that a suitable argumentation framework for these type of
societies should met and proposed our framework. In next section, we formalise
this framework.

3 Case-Based Argumentation Framework for Agent
Societies

Following our case-based computational representation of arguments, we have
designed a formal AF as an instantiation of Dung’s AF [11]. The main advan-
tages that this framework contributes over other existent AFs are: 1) the ability
to represent social information in arguments; 2) the possibility of automatically
managing arguments in agent societies; 3) the improvement of the agents’ ar-
gumentation skills; and 4) the easy interoperability with other frameworks that
follow the argument and data interchange web standards. Next, the elements of
the AF (according to Prakken’s AF elements [22]) are specified.
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3.1 The Notion of Argument: Case-Based Arguments

We have adopted the Argument Interchange Format (AIF) [33] view of argu-
ments as a set of interlinked premiss-illative-conclusion sequences. The notion of
argument is determined by our KI case-based framework to represent arguments.
In our framework agents can generate arguments from previous cases (domain-
cases and argument-cases), from argumentation schemes or from both. However,
note that the fact that a proponent agent use one or several knowledge resources
to generate an argument does not imply that it has to show all this information
to its opponent. The argument-cases of the agents’ argumentation systems and
the structure of the actual arguments that are interchanged between agents is
not the same. Thus, arguments that agents interchange are tuples of the form:

Definition 2 (Argument). Arg = {φ, < S >}, where φ is the conclusion of
the argument and < S > is a set of elements that support it.

This support set can consist of different elements, depending on the argument
purpose. On one hand, if the argument provides a potential solution for a problem
(e.g. who should be the beneficiary of the transfer), the support set is the set
of features (premises) that describe the problem to solve and optionally, any
knowledge resource used by the proponent to generate the argument (domain-
cases, argument-cases, argumentation schemes or elements of them). On the
other hand, if the argument attacks the argument of an opponent, the support set
can also include any of the allowed attacks in our framework (critical questions,
distinguishing premises or counter-examples). Then, the support set consists of
the following tuple of sets of support elements5:

Definition 3 (Support Set). S =< {Premises}, {DomainCases},
{ArgumentCases}, {ArgumentationSchemes}, {CriticalQuestions},
{DistinguishingPremises}, {CounterExamples}>

For instance, assuming that ∼ stands for the logical negation and the set of n
premises is defined as Pre = {pre1, ..., pren}, in our example we have that:

A1 = {F1tr, < Pre, {C1}, ∅, ∅, ∅, ∅, ∅ >}
A2 = {F2tr, < Pre, {C2}, ∅, ∅, ∅, ∅, ∅ >}
A3 = {∼C1, < Pre ∪ {Drought}, ∅, ∅, {S1}, ∅, {Drought}, {C3}>}

where F1tr and F2tr mean that the transfer should be granted to the farmers
F1 or F2 respectively and ∼C1 means that this case cannot be applied in this
context, due to the new distinguishing premise {Drought} and the counter-
example C3.

3.2 The Logical Language

The logical language represents argumentation concepts and possible relations
among them. In our framework, these concepts are represented in the form of KI
5 This representation is only used for illustrative purposes and efficiency considerations

about the implementation are obviated.
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cases and argumentation schemes. Therefore, the logical language of the AF is
defined in terms of the vocabulary to represent these resources. In this section,
we focus on the definition of the logical language to represent cases. To represent
schemes, we use the AIF ontology proposed in [25].

The vocabulary of cases is defined by using an ontology inspired by the ap-
proach proposed in [9] and the AIF ontology. We have selected the Ontology
Web Language OWL-DL 6 as the formal logics to represent the vocabulary of
cases. This variant is based on Description Logics (DL) and guarantees compu-
tational completeness and decidability. Thus, it allows for automatic description
logic reasoning over argument-cases and domain-cases. In addition, it facilitates
the interoperability with other systems. Next, we provide a partial view of the
top levels of the ontology7 for the AF proposed.

In the top level of abstraction, the terminological part of the ontology dis-
tinguishes between three disjoint concepts: Case, which is the basic structure to
store the argumentation knowledge of agents; CaseComp, which represent the
usual parts that cases have in CBR systems; and CaseAtt, which are the specific
attributes that make up each component:

Case � Thing Case � ¬CaseComp
CaseComp � Thing CaseComp � ¬CaseAtt
CaseAtt � Thing CaseAtt � ¬Case

As pointed out before, there are two disjoint types of cases:
ArgumentCase � Case DomainCase � Case
ArgumentCase � ¬DomainCase

Both argument-cases and domain-cases have the three possible types of com-
ponents that usual cases of CBR systems have: the description of the state of
the world when the case was stored (Problem); the solution of the case (Con-
clusion); and the explanation of the process that gave rise to this conclusion
(Justification):

Problem � CaseComp Conclusion � CaseComp
Justification � CaseComp
Case � ∀hasProblem.Problem
Case � ∀hasConclusion.Conclusion
Case � ∀hasJustification.Justification

Case components are composed of one or more attributes:
CaseComp �≥ 1hasAttribute.CaseAtt

For instance, the attributes of the solution description of an argument-case are
presented below. The cardinality of the possible attacks that an argument-case
can receive is not specified, since the case could not have been attacked.

ArgumentType � CaseAtt
Solution �= 1hasArgumentType.ArgumentType
Conclusion � CaseAtt
Solution �= 1hasConclusion.Conclusion
AcceptabilityState � CaseAtt
Solution �= 1hasAcceptabilityState.AcceptabilityState
ReceivedAttacks � CaseAtt

6 http://www.w3.org/TR/owl-guide/
7 The complete specification of the ontology is out of the scope of this paper.
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CriticalQuestions � ReceivedAttacks
DistinguishingPremises � ReceivedAttacks
CounterExamples � ReceivedAttacks

In addition, some additional properties about the concepts of the ontology
can also be defined. For instance, instances of argument-cases can have a unique
identifier, a creation date or a date for the last time that the case was used,
which could be used to determine if a case is outdated and should be removed
from the case-base8. For simplicity, these elements are not shown in Table 1.

Case �= 1identifier
T � ∀identifier.ID T � ∀identifier−.Case
Case �= 1creationDate
T � ∀creationDate.Date T � ∀creationDate−.Case
Case �= 1lastUsed
T � ∀lastUsed.Date T � ∀lastUsed−.Case

3.3 The Concept of Conflict between Arguments

The concept of conflict between arguments defines in which way arguments can
attack each other. There are two typical attacks studied in argumentation: re-
but and undercut. In an abstract definition, rebuttals occur when two argu-
ments have contradictory conclusions. Similarly, an argument undercuts other
argument if its conclusion is inconsistent with one of the elements of the sup-
port set of the latter argument or its associated conclusion. This section shows
how our AF instantiates these two attacks. Taking into account the possible
elements of the support set, rebut and undercut attacks can be formally de-
fined as follows. Let Arg1 = {φ1, < S1 >} and Arg2 = {φ2, < S2 >} be two
different arguments, where S1 =< {Premises}1, ..., {CounterExamples}1 >,
S2 =< {Premises}2, ..., {CounterExamples}2 >, ∼ stands for the logical nega-
tion, ⇒ stands for the logical implication and conc(x) is a function that returns
the conclusion of the formula x. Then:

Definition 4 (Rebut). Arg1 rebuts Arg2 iff φ1 =∼φ2 and {Premises}1 ⊇
{Premises}2
That is, if Arg1 supports a different conclusions for a problem description that
includes the problem description of Arg2. Assuming F1tr =∼F2tr and vice-
versa, in our example, A1 and A2 rebut each other.

Definition 5 (Undercut). Arg1 undercuts Arg2 if
1)φ1 =∼conc(ask)/
∃cq ∈ {CriticalQuestions}1 ∧ ∃ask ∈ {ArgumentationSchemes}2∧
cq ⇒∼conc(ask), or

2)φ1 = dp/
(∃dp ∈ {DistinguishingPremises}1 ∧ ∃prek ∈ {Premises}2 ∧ dp =∼prek)∨
(dp �∈ {Premises}2), or

3)φ1 = ce/

8 In DL, the range of a property C is specified as T � ∀R.C and its domain as
T � ∀R−.C.
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(∃ce ∈ {CounterExamples}1 ∧ ∃dck ∈ {DomainCases}2
∧ conc(ce) =∼conc(dck))∨
(∃ce ∈ {CounterExamples}1∧
∃ack ∈ {ArgumentCases}2 ∧ conc(ce) =∼conc(ack))

That is, if the conclusion drawn from Arg1 makes one of the elements of the
support set of Arg2 or its conclusion non-applicable in the current context of the
argumentation dialogue. In our example, A3 undercuts A1, since its conclusion
makes C1 non-applicable due to the counter-example C3 and the distinguishing
premise {Drought}, which is not considered in the premises that describe the
previous problem that is represented by C1 and made F1 to infer A1 from it.

3.4 The Notion of Defeat between Arguments

Once possible conflicts between argument have been defined, the next step in the
formal specification of an AF is to define the defeat relation between a pair of
arguments. This comparison must not be misunderstood as a strategical function
to determine with which argument an argumentation dialogue can be won [22].
A function like this must also consider other factors, such as other arguments put
forward in the dialogue or agents’ profiles. Therefore, it only tells us something
about the relation between two arguments. Hence, the relation of defeat between
two arguments is defined in our AF as follows. Let Arg1 = {φ1, < S1 >} and
Arg2 = {φ2, < S2 >} be two conflicting arguments. Then:

Definition 6 (Defeat). Arg1 defeats Arg2 if Arg1 rebuts Arg2 and Arg2 does
not undercut Arg1, or else Arg1 undercuts Arg2

The fist type of defeat poses a stronger attack on an argument, directly attacking
its conclusion. In addition, an argument can strictly defeat other argument.

Definition 7 (Strict Defeat). Arg1 strictly defeats Arg2 if Arg1 defeats Arg2

and Arg2 does not defeat Arg1

In our example, A1 and A2 defeat each other and A3 strictly defeats A1.

3.5 The Acceptability State of Arguments

The acceptability state of arguments determines their status on the basis of
their interaction. Only comparing pairs of arguments is not enough to decide if
their conclusions are acceptable, since defeating arguments can also be defeated
by other arguments. Taking into account the underlying domain theory of a
dialectical system, arguments can be considered acceptable, unacceptable and
undecided [11]. However, the acquisition of new information in further steps of
the dialogue could change the acceptability state of arguments.

Therefore, to decide the acceptability state of arguments a proof theory that
takes into account the dialogical nature of the argumentation process is neces-
sary. To evaluate the acceptability of arguments by using a dialogue game is a
common approach. Dialogue games are interactions between two or more play-
ers, where each one moves by posing statements in accordance with a set or
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predefined rules [18]. In our AF, the acceptability state of arguments could be
decided by using a dialogue game and storing in the argument-case associated
to each argument its acceptability state when the dialogue ends. However, the
definition of this game is out of the scope of this paper.

4 Discussion

In this paper, we have presented a computational framework to represent argu-
ments in agent societies. This framework takes into account the social depen-
dencies between agents and the effects of their membership to a group in the
way that they can argue. However, although the framework is flexible enough
to store complex knowledge about arguments and dialogues, the value of some
case features could not be specified or known in some domains. For instance, the
proponent of an argument obviously knows its own preferences over its set of
values, probably knows the preferences of its group but, in a real open MAS, we
cannot assume that it also knows the value preferences of its opponent. However,
the proponent can know the value preferences of the opponent’s group (if both
belong to the same) or have some previous knowledge about the value prefer-
ences of similar agents playing the same role that the opponent is playing now.
The same could happen when agents belong to different groups. Thus, the group
features could be unknown, but the proponent could try to use its experience
with other agents of the opponent’s group and infer these features.

In addition, the argumentation framework was inspired by the standard for
argument interchange on the web and hence, an argumentation system based
on it can interact with other systems that comply with the standard. Elements
of cases are specified by using an ontologic case representation language. This
means that agents that implement our case-based framework for argument repre-
sentation and management could argue with agents with other models of reason-
ing. Each element of the knowledge structures of the argumentation framework
proposed can be translated to a concept of the AIF ontology [23] or an ontology
for CBR systems based on [9]. For instance, domain premises can be translated
into AIF Premise Descriptions Forms and premise values into Premise I-Nodes,
value preferences can instantiate Preference-Application-Nodes S-Nodes and ar-
gument types Presumptive Rule-of-Inference Schemes. Even temporal propo-
sitions, agents, roles and norms can be described with OWL ontologies, as
proposed in [13]. Although agents in open MAS are heterogeneous, by sharing
these ontologies they can understand the arguments interchanged in the system.

Moreover, a formal argumentation framework has been presented. This frame-
work is aimed at providing agents with the ability of having argumentation di-
alogues with other agents in agent societies, with a weak or unknown domain
theory. Moreover, the KI case-based approach used for representing argumenta-
tion related information allows agents to apply CBR techniques to learn from the
experience and improve their argumentation skills. Current work is focused on
the development of the necessary CBR algorithms to generate, select and evalu-
ate arguments from domain-cases, argument-cases and argumentation schemes.
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Abstract. The use of virtual agents to intelligently interface with online
customers of e-commerce businesses is remarkably increasing. Most of
these virtual agents are designed to assist online customers while search-
ing for information related to a specific product or service, while few
agents are intended for promoting and selling a product or a service.
Within the later type, our aim is to provide proactive agents that rec-
ommend a specific item and justify this recommendation to a customer
based on his purchases history and his needs. In this paper, we propose
a dialectical argumentation approach that would allow virtual agents
that have sales goals to trigger persuasions with e-commerce’s customers.
Then, we illustrate the proposed idea through its integration with an ex-
ample from real-life.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence:] Intelligent Agents.

General Terms: Algorithms.

Keywords: Argumentation, E-commerce, Agents, Language Processors.

1 Introduction

Within the last twelve years, precisely from 1998 wherein the dot-coms’ boom
first made an impact, e-commerce has succeeded to pursue a massive number of
shoppers to change their idea of buying [1]. Several existing businesses have taken
an advantage of this boom by adding a virtual presence to their physical one
by means of an e-commerce website, these companies are now called brick and
mortar businesses (e.g., Barnes & Noble). Additionally, new companies that exist
only through the web, called bricks and clicks businesses, have also appeared
(e.g., Amazon). Although the online presence of companies is cost-efficient, yet
the lack of a persuading salesman affects the transformation ratio (sales vs.
visits).

Apart from the Business ’s reaction to the boom, in Computer Science, several
research efforts were made to study, analyze, and better shape the processes of
assisting customers while being present in an e-commerce space [2,3]. In Artificial
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Intelligence, a considerable amount of the research conducted in the area of
Software Agents [4] focus on the enhancement and the proper provision of online
Embodied Conversational Agents (ECAs) [5].

Whether these agents sell, assist, or just recommend, it is now clear that such
autonomous agents are capable of engaging in verbal and non-verbal dialogues
with e-commerce’s customers. However, the ability of these agents to transform
an ordinary visitor of an e-commerce who needs assistance to an actual buyer is
yet of no notable weight. For an overview of the issues encountering the devel-
opment of virtual sales agents refer to [6].

Since most of the currently available ECAs for e-commerce are designed to
ask questions and wait for answers, one of the major challenges of concerned
scholars is related to the reversibility of the current dialogue schemas. Meaning,
to reach a proper ECA proactivity / sales attitude, the questions an agent should
ask to collect sales data should be placed in nowadays agents’ answers, and
the vice-versa. Consequently, for the ECAs of existing literature; the current
design approach of agents’ answers generation mechanism must be adjusted for
a conversational agent who is in the process of asking questions too (proactive)
and not just giving answers.

In this paper, we propose the use of dialectical argumentation technologies as a
step on the way to increase the sales-oriented negotiation skills of software agents
in the business-to-consumer (B2C) segment of e-commerce. For this purpose, we
suggest the exploitation of existing argumentation tools, such as those found in
[7,8,9]. Using these tools we intend to build a sales-driven dialogue system that
is capable of leading a virtual seller agent to influence the decision of a potential
buyer in an e-commerce setting. Then, we illustrate the proposed idea through
its integration with an example from real-life.

This paper is organized as follows. In section 2 we give an overview of the
existing dialogue systems while pointing out their limitations. In section 3 we
adopt a different approach for dialogue management based upon argumentation.
Section 4 illustrates this approach using an intuitive scenario. Section 5 briefly
describes the CSO language processor on which our dialogue system is based. The
rest of the paper overviews the dialectical argumentation technology we consider.
Section 6 outlines the dialogue-game protocol we use. Section 7 presents our
realization of the dialogue strategy. We then conclude this paper by discussing
some of the related work and, providing a summary of our future work.

2 Dialogue Systems

A dialogue system is a computer system that is capable of interacting with
humans using the language they understand - natural language. Similar to that
we can find TRAINS-93 [10], Collagen [11] and Artemis Agent Technology [12],
which are mixed-initiative dialogue systems for collaborative problem solving.
These dialogue systems can respond to initiatives made by users and, they also
take initiatives themselves, which is required to support a selling process.

TRAINS-93 [10], Collagen [11] and Artemis Agent Technology [12] are adopt-
ing the same approach of focusing on the dialogue modelling itself besides the
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dialogue management that is based on intentions recognition. For example, out
of the following utterance of a user, ”I want to purchase a quilt”, there can be
three possible interpretations:

1. It can be a direct report of a need;
2. It can be a statement of a goal that a user is pursuing independently;
3. It can be a proposal to adopt this joint goal.

Particularly, the discourse structure considered by Collagen in [11] is based
on a comprehensive axiomatization of SharedPlans [13], while TRAINS-93 and
Artemis Agent Technology are based upon a BDI approach [14]. The semantics
of utterances is specified with the help of a first order modal logic language using
operators as Beliefs, Desires and Intentions. The notions of persistent goal is a
composite mental attitude which is defined from the previous operators in order
to formalize the intention expressed by utterances. According to the semantic
language of FIPA-ACL [15] adopted by the Artemis Agent Technology, an agent
i has p as a persistent goal, if i has p as a goal and is self-committed toward this
goal until i comes to believe that the goal is achieved or, this goal is unachiev-
able. Here, an intention is defined as a persistent goal imposing the agent to act,
which accordingly generates a planning process.

The process of inferring intentions from actions is needed to constraint and
reduce the amount of communications exchanged. Also, it is worth noticing here
that it is hard to incorporate this process into practical computer systems due to
the complexities encountered while facilitating natural intractability. Therefore,
it is then required to develop a heuristic mechanism for software agents in a
collaborative setting.

For this purpose, dialogue systems are required to recognize the intention of
the user and reason about it. The implementation of this theory is problem-
atic due to its computational complexity [16]. Moreover, the specification of the
semantics for the speech acts in terms of mental states is not adapted for re-
solving the conflicts which can appear during a selling process. For instance, an
information that is received by a virtual seller agent must be adopted even if
this information is contradictory with its beliefs. Those are the reasons why we
consider an alternative approach based upon dialectical argumentation.

3 Dialectical Approach

Our approach for dialogue modelling considers the exchange of utterances as an
argumentation process regulated by some normative rules that we call dialogue-
game protocol. Our approach is inspired by the notion of dialectical system that
Charles L. Hamblin introduced in [17]. A dialectical system is a family of reg-
ulated dialogue, (i.e., a system through which a set of participants communicate
in accordance with some rules).

From this perspective, Walton and Krabbe in [18] define a dialogue as a
coherent and structured sequence of utterances aiming at moving from an initial
state to reach the goals of the participants. These are the dialogue’s goals that
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Table 1. Systemic overview of dialogue categories

Initial situation → Conflict Open problem Ignorance of
Goal ↓ a participant

Stable agreement persuasion enquiry information
i.e., Resolution seeking

Practical settlement negotiation deliberation ∅
i.e., Decision

can be shared by the participants or they can be also each of the participants’
individual goals. Based on this definition, Walton and Krabbe have distinguished
between five main categories of dialogues depending on the initial situation and
goals. These categories are: information seeking, persuasion, negotiation, enquiry
and deliberation [18].

Table 1 represents the analysis grid for dialogues proposed by Walton and
Krabbe. An information seeking appears when a participant aims at catching
knowledge from its interlocutor. The goal is to spread knowledge. In a persua-
sion dialogue, the initial situation is disagreement, (i.e., a conflict of opinion).
The goal consists of solving the conflict by verbal means. In a negotiation
dialogue, the initial situation is a conflict of interest mixed with a need for
collaboration. The goal consists of a deal, i.e. an agreement attracting all partic-
ipants to maximizing their gains. An enquiry dialogue aims at establishing (or
demonstrating) the truth of a predicate. This one must answer to an open ques-
tion and a stable agreement emerges. Each participant aims at extending their
knowledge. A deliberation, as an enquiry, begins with an open problem rather
than a conflict. The discussion is about the means and ends of a future action.
It is worth noticing that, in real world, the nature of dialogues can be mixed. A
dialogue can be composed of different sub-dialogues with different natures as we
will see in our scenario.

4 Dialogue: Phases and Purposes

In this section, we explain the different phases of the overall online sales process
that we are attempting to tackle in our research. Within these phases, we expect
our virtual agent to rely on a specific language processor - explained further
ahead - to handle online one-to-one conversations, related misspelling, and the
use of diverse languages. Since the existing language processor is already capable
of handling what is known to us as After-Sales, (i.e., assisting online users while
searching for problems’ answers), we then became extra interested to increase
the salesability of this agent.

• BEFORE-SALE: in this phase we distinguish between two different pro-
cesses that are possibly interleaved: a) the process of needs identification
and, b) the process of product selection.
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The Needs Identification can be performed with the help of an infor-
mation seeking dialogue shifting from an initial asymmetric situation to a
final one where both of the players share the user requirements.

The Product Selection allows the participants to constraint and to
reduce the amount of communication by considering only relevant products
later in the selling process. This task, in overall, also supports the information
seeking dialogue where the virtual seller agent asks discriminatory questions
in order to narrow its focus into a single product.

Both of these dialogues can be interleaved. The aim of the virtual seller
agent here is to spread information about the products, while the aim of the
user is expected to be the spreading of information about his needs.

• SALE: here, the aim for all dialogues’ parties is to bargain over their inter-
ests and, eventually, ”make a deal”. For this purpose, the participants play
a role in a negotiation dialogue. The simplest dialogue is: the virtual seller
agent makes an offer and the user accepts or refuses this proposal.

If there is no single product corresponding to the user needs, then the
participants attempt to maximize their benefits by conceding some aspects
while insisting on others. If no product is matching user’s needs, the user’s
high-ranked features of the products, (i.e., top priority conditions), are then
altered to a lower ranked ones. On the other hand, if more than one product
is corresponding to user’s needs, the virtual seller agent picks the ones with
the highest gross margin.

Later to that, the virtual seller agent can suggest - after a single sale -
additional sub-items or an offer which invokes more of the user needs. These
later approaches are well-known marketing techniques, (i.e., cross-selling and
up-selling). In both cases, the new items aim at persuading the customer.

• AFTER-SALE: The initial condition of this phase is not coming out of a
sales conflict, however, it comes out of the user’s unawareness of the problem
related to the concerned product. Therefore, participants here aim at extend-
ing their knowledge about each foreseen encounter and, eventually, decide
about their subsequent action, (e.g., product replacement). As a result, users
here play in an enquiry dialogue or a deliberation fashion.

The dialogue in Fig 1 consists of a specific case run which embraces the before-
sale and sale phases between a user and a virtual seller agent (VSA). While the
utterances #3 and #5 are related to the Needs Identification, the utterances
#1,#6 and #8 are of the Product Selection. The rest of utterances are directly
related to the sales process. The utterance #9 is a single-sale offer, the utterance
#11 captures an up-selling offer and the utterance #13 is a cross-selling proposal.

It is also worth highlighting here that relying on argumentation will make the
virtual seller agent more credible and, then, persuasive, since its appearance or
involvement will yield from the fulfillment of a set of predefined conditions, (e.g.,
user X is wandering in the quilt section).

The After-Sale phase, (i.e., assistance), is out of the scope of this paper since
the existing query answering systems, such as the CSO Language Processor we
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1. VSA: Your moves through our website indicates that you might be interested in
Quilts, do you need help to select one?

2. User: Nice.
3. VSA: Are you allergic?
4. User: Yes.
5. VSA: Do you sweat?
6. User: Sure. Is there any organic quilts ?
7. VSA: Definitely, but which dimensions are you looking for?
8. User: 200x200. Is there any one within a budget of e 350?
9. VSA: Yes, it cost e 239 since the dimensions are 200x200, it is nonallergenic and

organic.
10. User: I buy it.
11. VSA: Since it is still within your budget, I may also suggest you to buy a “four

seasons” one that cost e 279?
12. User: Good idea.
13. VSA: What about a quilt cover that cost e 99 only? still in your budget.
14. User: No, thanks.

Fig. 1. Virtual Seller Agent Vs. User: Before-Sale & Sale scenarios

present in the next section, have been practically proven to be efficient for such
tasks.

5 CSO Language Processor

The CSO Language Processor [9] is the technology upon which our dialogue
system is built.

The CSO Language Processor provided by Artificial Solutions1 allows to pro-
duce virtual dialogue assistants such as Anna2 and numerous other systems in
more than 20 different languages. Elbot, which has won the Loebner Prize3 in
2008, is built upon this technology.

This technology manages users’ sessions, handles misspellings and it also con-
tains a language dependent preprocessing feature. In accordance with the dia-
logue state, it selects and carries out the best dialogue move. Additionally, this
technology is able to interact with a back-end system, (e.g., databases), to hand
out answer document for requesting application/front end and to write log files
for analysis.

The inputs of the language processor are the user queries, (i.e., the user’s
identity and his text inputs). After the identification of the session, the inputs
are divided in sentences and words and the spelling is corrected. Another phase
is carried out wherein an interpretation of the inputs is made: an answer retrieval
for each sentences of the user’s inputs based on some interaction rules in a
knowledge base. Finally, the answer is selected and generated by replacing
some template variables.
1 http://www.artificial-solutions.com
2 http://www.ikea.com
3 http://www.loebner.net/Prizef/loebner-prize.html
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The interaction rules combine the meaning of the user’s inputs and the dia-
logue state to define the conditions under which a dialogue move may be uttered.
A given move can only be performed if the conditions are completely fulfilled.

However, the core of the CSO Language Processor is an inference engine
that implements forward-chaining and so reactionary. Therefore, the language
processor only makes it possible to respond to a user’s queries and not to initiate
or lead a sales-driven conversations. consequently, in order for us to make CSO
proactive and enable it to go through sales-driven encounters, we introduce in the
next section a formal framework for possible sale-driven dialogue management
that can be adapted by virtual agents.

6 Dialectical System

A dialogue is a social interaction amongst self-interested parties intended to
reach a common goal. In this section, we present how our game-based social
model [8] handles the forseen conversation between a user and a virtual seller
agent (VSA).

A dialectical system is a formal system that regulate persuasion dialogue,
(See [19] for an overview). According to the game metaphor for social interac-
tions, the parties are players which utter moves according to social rules.

Definition 1 (Dialectical system). Let us consider L a common object lan-
guage and ACL a common agent communication language. A dialectical sys-
tem is a tuple DS=〈P, ΩM , H, T, proto, Z〉 where:

– P is a set of participants called players;
– ΩM ⊆ ACL is a set of well-formed moves;
– H is a set of histories, the sequences of well-formed moves s.t. the speaker

of a move is determined at each stage by the turn-taking function T and the
moves agree with the dialogue-game protocol proto;

– T: H→ P is the turn-taking function;
– proto: H → 2ΩM is the function determining the legal moves which are

allowed to expand an history;
– Z is the set of dialogues, i.e. the terminal histories.

Here, DS reflects the formalization of social interactions between players uttering
moves during a dialogue. Each dialogue is a maximally long sequence of moves.
Later to that, we specify informally the elements of DS for bilateral negotiation
and information-seeking.

In our scenario, there are two players: the initiator init and, the responder
resp, which utter moves each in turn. Since we address a proactive dialogue
system, we consider the initiator to be a VSA. The syntax of moves is in con-
formance with a common agent communication language, ACL. A move at
time t: has an identifier, mvt; is uttered by a speaker (spt ∈ P) and the speech
act is composed of a locution loct and a content contentt.

The possible locutions are: question, assert, unknow, introduce, request,
accept and reject. The content consists of all instances of the following
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1. VSA: question(is(product, quilt) because search(user, product)).
2. User: assert(is(product, quilt)).
3. VSA: question(is(user, allergic)).
4. User: assert(is(user, allergic)).
5. VSA: question(is(user, sweat)).
6. User: assert(is(user, sweat)).

question(is(product, organic)).
7. VSA: assert(is(product, organic)).

question(dimension(product, 200, 200)).
8. User: assert(dimension(product, 200, 200)).

question(budget(product, 350)).
9. VSA: introduce(is(product, quilt) because budget(product, 239) and

is(product, nonallergenic)) and is(product, organic)).
10. User: accept(is(product, quilt).
11. VSA: introduce(is(product, quilt) because budget(product, 279) and

is(product, nonallergenic)) and is(product, fourseasons)).
12. User: accept(is(product, quilt).
13. VSA: introduce(is(product, quilt)) and is(product, quiltcovers) because

budget(product, 333.90) and is(product, nonallergenic)) and
is(product, fourseasons)).

14. User: reject(is(product, quiltcovers).

Fig. 2. A Possible Scenario Formalization

schemata ”S (because S′)” where S (eventually S′) is a set of sentences in
the common object language, L. Actually, natural language utterances are inter-
preted/generated by the language dependent preprocessing of CSO (See
Section 5). A move is an abstract representation of natural language utterances.

The dialogue in Fig 2 depicts a possible formalization of the natural language
dialogue of Fig 1. It is worth noticing here that each utterance can contain more
than one move.

In Fig. 3, we present our dialogue-game protocols by means of a deterministic
finite-state automaton. An information-seeking dialogue begins with a question.
The legal responding speech acts are assert and unknow. Two possible cases can
occur: i) the dialogue is a failure if it is closed by an unknow; ii) the dialogue is a
success if it is closed by an assert. A negotiation dialogue either begins with an
offer from the VSA through the speech act introduce or the offer is suggested
by the user through the speech act request. The legal responding speech acts
are accept and reject. Here, the possibly occurring cases are: i) the dialogue
is a failure if it is closed by a reject; ii) the dialogue is a success if it is closed
by an accept.

The strategy interfaces with the dialogue-game protocol through the condi-
tion mechanism of utterances for a move. For example, at a certain point in the
dialogue the VSA is able to send introduce or question. The choice of which
locution and which content to send is depending on the VSA’s strategy. For in-
stance, the VSA is benevolent in the dialogue represented in Fig 2 since he first
attempts to identify the dialogue’s party needs, he continues with the product
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assert unknow

question
introducerequest

rejectaccept

Fig. 3. Dialogue-game protocol for information-seeking (on the left), and negotiation
(on the right)

selection phase and then it terminates with the sale dialogue. An aggressive
agent would consider the sale prior to anything whether the before-sale tasks
have been performed or not.

7 Arguing over Utterances

In this section, we present how our computational model of argumentation for
decision making [7] handles the dialogue strategy in order to generate and eval-
uate utterances.

In our framework, the knowledge is represented by a logical theory built upon
an underlying logic-based language. In this language we distinguish between
several different categories of predicate symbols. We use goals to represent the
possible objectives of the decision making process (e.g. the dialogue to perform),
decisions an agent can adopt (e.g. the move to utter) and a set of predicate
symbols for beliefs (e.g. the previous utterance).

Assumptions here are required to carry on the reasoning process with incom-
plete knowledge, (e.g. some information about user’s needs are missing), and
we need to express preferences between different goals (e.g. some dialogues are
prior depending on the agent’s strategy). Finally, we allow the representation of
explicit incompatibilities between goals, decisions and beliefs.

Definition 2 (Decision framework). A decision framework is a tuple
DF = 〈DL,Asm, I , T ,P〉, where:

– DL = G ∪D∪B is a set of predicate symbols called the decision language,
where we distinguish between goals (G), decisions (D) and beliefs (B);
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– Asm is a set of atomic formulae built upon predicates in DL called assump-
tions;

– I is the incompatibility relation, i.e. a binary relation over atomic
formulae in G, B or D. We require I to be asymmetric;

– T is a logic theory built upon DL; statements in T are clauses, each of them
has a distinguished name;

– P ⊆ G × G is the priority relation, namely a transitive, irreflexive and
asymmetric relation over atomic formulae in G.

In our framework, we consider multiple objectives which may or not be fulfilled
by a set of decisions under certain circumstances. Additionally, we explicitly dis-
tinguish assumable (respectively non-assumable) literals which can (respectively
cannot) be assumed to hold, as long as there is no evidence to the contrary. De-
cisions as well as some beliefs can be assumed. In this way, DF can model the
incompleteness of knowledge.

The most natural way to represent conflicts in our object language is through-
out some forms of logical negation. We consider two types of negation, as usual,
(e.g., in extended logic programming), namely strong negation ¬ (also called ex-
plicit or classical negation), and weak negation ∼, also called negation as failure.
As a consequence we will distinguish between strong literals, i.e. atomic formula
possibly preceded by strong negation, and weak literals, i.e. literals of the form
∼ L, where L is a strong literal. The intuitive meaning of a strong literal ¬L is
”L is definitely not the case”, while ∼ L intuitively means “There is no evidence
that L is the case”. The set I of incompatibilities contains some default incom-
patibilities related to negation on the one hand, and to the nature of decision
predicates on the other hand. Indeed, given an atom A, we have A I ¬A as
well as ¬A I A. Moreover, L I ∼ L, whatever L is, representing the intuition
that L is evidence to the contrary of ∼ L. Notice, however, that we do not have
∼ L I L, as in the spirit of weak negation.

Other default incompatibilities are related to decisions, since different alterna-
tives for the same decision predicate are incompatible with one another. Hence,
D(a1) I D(a2) and D(a2) I D(a1), D being a decision predicate in D, and a1

and a2 being different constants representing different4 alternatives for D. De-
pending on the particular decision problem being represented by the framework,
I may contain further non-default incompatibilities. For instance, we may have
g I g′, where g, g′ are different goals.

To summarize, the incompatibility relation captures the conflicts, either de-
fault or domain dependent, amongst decisions, beliefs and goals. The incompat-
ibility relation can be easily lifted to set of sentences. We say that two sets of
sentences Φ1 and Φ2 are incompatible (still denoted by Φ1 I Φ2) if there is a
sentence φ1 in Φ1 and a sentence φ2 in Φ2 such that φ1 I φ2.

A theory gathers the statements about the decision problem.

Definition 3 (Theory). A theory T is an extended logic program, i.e a finite
set of rules R: L0 ← L1, . . . , Lj ,∼ Lj+1, . . . ,∼ Ln with n ≥ 0, each Li (with

4 Notice that in general a decision can be addressed by more than two alternatives.
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i ≥ 0) being a strong literal in L. R, called the unique name of the rule, is an
atomic formula of L. All variables occurring in a rule are implicitly universally
quantified over the whole rule. A rule with variables is a scheme standing for all
its ground instances.

To simplify, we assume that names of rules are neither in the bodies nor in
the head of the rules thus avoiding self-reference problems. We assume that the
elements in the body of rules are independent. Besides, we suppose the decisions
do not influence the beliefs and the decisions have no side effects.

In order to evaluate the relative importance of goals, we consider the priority
relation P over the goals in G, which is transitive, irreflexive and asymmetric.
G1PG2 can be read ”G1 has priority over G2”. There is no priority between G1

and G2, either because G1 and G2 are ex æquo (denoted G1 � G2), or because
G1 and G2 are not comparable.

We consider the dialogue formalized in Section 6. The generation and the
evaluation of utterances by the VSA are captured by a decision framework DF =
〈DL,Asm , I , T ,P〉 where:

– the decision language DL distinguishes,
• a set of goals G. This set of literals identifies various motivations for

driving the possible dialogues, negotiation (negotiating(product)) and
information-seeking ones for product selection (infoseeking(product))
or need identification (infoseeking(user)),
• a set of decisions D. This set of literals identifies the possible utterances

(e.g. send(question(is(user, allergic)))),
• a set of beliefs, i.e. a set of literals identifying various situations identi-

fying the possible queries of the user,
(e.g. receive(question(is(product, nonallergenic))), behavior
through the website (e.g. search(user, quilt)) or the knowledge about
the product/needs information (e.g. is(user, allergic));

– the set of assumptions Asm contains the possible decisions and the missing
information about the user, (e.g. ∼ is(user, allergic)), or the product,
(e.g. ∼ is(product, nonallergenic));

– the incompatibility relation I is trivially defined. For instance,
send(x ) I send(y), with x �= y
infoseeking(topic1) I infoseeking(topic2), with topic1 �= topic2

negotiating(topic1) I infoseeking(topic2)whatever topic1 and topic2 are
– the theory T contains the rules in Table 2;
– If the VSA is benevolent, then the priority is defined such that:

infoseeking(user)Pinfoseeking(product) and
infoseeking(product)Pnegotiating(product).
If the VSA is aggressive, then the priority is defined such that:
negotiating(product)Pinfoseeking(product) and
infoseeking(product)Pinfoseeking(user).

Our formalization allows to capture the incomplete representation of a decision
problem with assumable beliefs. It provides a knowledge base on top of which
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Table 2. The rules of a Virtual Seller Agent (VSA)

r11 : infoseeking(user) ← send(question(is(user, allergic))),
∼ is(user, allergic), is(product, quilt),∼ receive(x )

r12 : infoseeking(user) ← send(question(is(user, sweat))),
∼ is(user, sweat), is(product, quilt),∼ receive(x)

r21 : infoseeking(product) ← send(question(is(product, quilt))),
search(user, quilt),∼ is(product, quilt)

r22 : infoseeking(product) ← send(question(is(product, nonallergenic))),
∼ is(product, nonallergenic),∼ receive(x)

r23 : infoseeking(product) ← send(question(is(product, organic))),
∼ is(product, organic),∼ receive(x)]

r24 : infoseeking(product) ← send(question(dimension(product, x , y))),
∼ dimension(product, x , y),∼ receive(z )

r25 : infoseeking(product) ← send(question(budget(product, x))),
∼ budget(product, x ),∼ receive(y)

r26 : infoseeking(product) ← send(assert(is(x , y)), receive(question(is(x , y))), is(x , y)
r27 : infoseeking(product) ← send(assert(¬is(x , y)), receive(question(is(x , y))),¬is(x , y)
r28 : infoseeking(product) ← send(unknow(is(x , y)), receive(question(is(x , y))),∼ is(x , y)
r29 : negotiating(product) ← send(introduce(product)), budget(product, y)
r31 : budget(product, 350) ← is(product, nonallergenic),

is(product, organic), dimension(product, 200, 200)
r32 : is(product, nonallergenic) ← is(user, allergic)
r33 : is(product, organic) ← is(user, sweat)

arguments are built in order to reach decisions. We adopt here a tree-like struc-
ture for arguments.

Definition 4 (Argument). Let DF = 〈DL,Asm, I , T ,P ,RV〉 be a decision
framework. An argument ā deducing the conclusion c ∈ DL (denoted conc(ā))
supported by a set of assumptions A in Asm (denoted asm(ā)) is a tree where
the root is c and each node is a sentence of DL. For each node :

– if the node is a leaf, then it is either an assumption in A or �5;
– if the node is not a leaf and it is α ∈ DL, then there is an inference rule

α← α1, . . . , αn in T and,
• either n = 0 and � is its only child,
• or n > 0 and the node has n children, α1, . . . , αn.

The sentences of ā (denoted sent(ā)) is the set of literals of DL in the bod-
ies/heads of the rules including the assumptions of ā. We write ā : A � α to
denote an argument ā such that conc(ā) = α and asm(ā) = A. The set of argu-
ments built upon DF is denoted by A(DF).

Arguments are built by reasoning backwards. Additionally, arguments interact
with one another, and consequently, we reach to define the following attack
relation.

Definition 5 (Attack relation). Let DF = 〈DL,Asm, I , T ,P〉 be a decision
framework, and ā, b̄ ∈ A(DF) be two arguments. ā attacks b̄ iff sent(ā) I sent(b̄).
5  denotes the unconditionally true statement.
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This relation encompasses both the direct (often called rebuttal) attack due to
the incompatibility of the conclusions, and the indirect (often called undermin-
ing) attack, (i.e., directed to a ”subconclusion”).

Since the goals promoted by arguments have different priorities, the arguments
interact with one another. For this purpose, we define the strength relation
between concurrent arguments. Arguments are concurrent if their conclusions
are identical or incompatible.

Definition 6 (Strength relation). Let DF = 〈DL,Asm, I , T ,P〉 be a deci-
sion framework and ā1, ā2 ∈ A(DF) be two arguments which are concurrent. ā1

is stronger than ā2 (denoted ā1P ā2) iff conc(ā1) = g1 ∈ G, conc(ā2) = g2 ∈ G
and g1Pg2.

Due to the definition of P over T , the relation P is transitive, irreflexive and
asymmetric over A(DF).

The attack relation and the strength relation can be combined to adopt Dung’s
calculus of opposition as in [20]. We distinguish between one argument attacking
another, and that attack succeeding due to the strength of arguments.

Definition 7 (Defeat relation). Let DF = 〈DL,Asm, I , T ,P〉 be a decision
framework and ā and b̄ be two structured arguments. ā defeats b̄ iff:

1. ā attacks b̄;
2. and it is not the case that b̄P ā.

Similarly, we say that a set S of structured arguments defeats a structured argu-
ment ā if ā is defeated by one argument in S.

Let us consider this example:

Example 1 (Defeat relation). Let us consider the situation after the second move
in the dialogue represented in Fig. 1.

The arguments ā concludes infoseeking(user) since the VSA can ask to the
user if he is allergic, (i.e. question(is(user, allergic))), the VSA is not yet
aware about it, (i.e. ∼ is(user, allergic)), the user is looking for a quilt,(i.e.
is(product, quilt)), and the user did not query the VSA, (i.e. ∼ receive(x )).
The argument b̄ concludes infoseeking(product) since the VSA can ask to the
user if the product must be nonallergenic,
(i.e. send(question(is(product, nonallergenic)))), the VSA is not yet aware
about it (i.e. ∼ is(product, nonallergenic)) and the user did not query the
VSA (∼ receive(x )) . While ā is built upon r11, b̄ is built upon r22. Since these
arguments suppose different decisions, they attack each others. If the VSA is
benevolent, it is not the case that infoseeking(product)Pinfoseeking(user)
and so ā defeats b̄. If the VSA is aggressive, it is not the case that
infoseeking(user)Pinfoseeking(product) and so ā defeats b̄.

In our argumentation-based approach for dialogue strategy, arguments moti-
vate decisions and they can also be defeated by other arguments. Formally, our
argumentation framework (AF for short) is defined as follows.
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Definition 8 (AF). Let DF = 〈DL,Asm, I , T ,P〉 be a decision framework.
The argumentation framework for decision making built upon DF is a pair AF =
〈A(DF), defeats 〉 where A(DF) is the finite set of arguments built upon DF as
defined in Definition 8, and defeats ⊆ A(DF) × A(DF) is the binary relation
over A(DF) as defined in Definition 7.

We adapt Dung’s extension-based semantics in order to analyze whenever a set of
arguments can be considered as subjectively justified with respect to the agent’s
priority.

Definition 9 (Semantics). Let DF = 〈DL,Asm, I , T ,P〉 be a decision frame-
work and AF = 〈A(DF), defeats 〉 be our argumentation framework for decision
making. For S ⊆ A(DF) a set of arguments, we say that:

– S is conflict-free iff ∀ā, b̄ ∈ S it is not the case that ā defeats b̄;
– S is admissible iff S is conflict-free and S defeats every argument ā such that

ā defeats some argument in S;

Here, we only consider admissibility but other Dung’s extension-based seman-
tics [21] can easily be adapted.

Formally, given an argument ā, let

dec(ā) = {D(a) ∈ asm(ā) | D is a decision predicate}

be the set of decisions supported by the argument ā.
The decisions are suggested to reach a goal if they are supported by an argu-

ment concluding this goal and this argument is a member of an admissible set
of arguments.

Definition 10 (Credulous decisions). Let DF = 〈DL,Asm, I , T ,P〉 be a
decision framework, g ∈ G be a goal and D ⊆ D be a set of decisions. The deci-
sions D credulously argue for g iff there exists an argument ā in an admissible
set of arguments such that conc(ā) = g and dec(ā) = D. We denote valc(D) the
set of goals in G for which the set of decisions D credulously argues.

It is worth noticing here that the decisions that credulously argue for a goal
cannot contain mutual exclusive alternatives for the same decision predicate.
This is due to the fact that an admissible set of arguments is conflict-free.

If we consider the arguments ā and b̄ supporting the decisions D(a) and
D(b) respectively where a and b are mutually exclusive alternatives, we have
D(a) I D(b) and D(a) I D(b) and so, either ā defeats b̄ or b̄ defeats ā or
both of them depending on the strength of these arguments.

Proposition 1 (Mutual exclusive alternatives). Let DF = 〈DL,Asm, I , T ,
P〉 be a decision framework, g ∈ G be a goal and AF = 〈A(DF), defeats 〉 be the
argumentation framework for decision making built upon DF. If S be an admissi-
ble set of arguments such that, for some ā ∈ S, g = conc(ā) and D(a) ∈ asm(ā),
then D(b) ∈ asm(ā) iff a = b.
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However, it is worth highlighting here the fact that mutual exclusive decisions
can be suggested for the same goal through different admissible set of arguments.
This case reflects the credulous nature of our semantics.

Definition 11 (Skeptical decisions). Let DF = 〈DL,Psm, I , T ,P ,RV〉 be
a decision framework, g ∈ G be a goal and D ⊆ D be a set of decisions. The
decisions D skeptically argue for g iff for all admissible set of arguments S

such that for some arguments ā in S conc(ā) = g, then dec(ā) = D. We denote
vals(D) the set of goals in G for which the set of decisions D skeptically argues.

Due to the uncertainties, some decisions satisfy goals for sure if they skeptically
argue for them, or some decisions can possibly satisfy goals if they credulously
argue for them. While the first case is required for convincing a risk-averse agent,
the second case is enough to convince a risk-taking agent. Since some ultimate
choices amongst various justified sets of alternatives are not always possible, we
will consider in this paper only risk-taking agents.

Since agents can consider multiple objectives which may not be fulfilled all
together by a set of non-conflicting decisions, high-ranked goals must be preferred
to low-ranked goals.

Definition 12 (Preferences). Let DF = 〈DL,Asm, I , T ,P ,RV〉 be a decision
framework. We consider G, G′ two set of goals in G and D, D′ two set of decisions
in D. G is preferred to G (denoted GPG′) iff

1. G ⊇ G′, and
2. ∀g ∈ G \ G′ there is no g′ ∈ G′ such that g′Pg.

D is preferred to D′ (denoted DPD′) iff valc(D)Pvalc(D′).

Formally, let
AD = {D | D ⊆ D such that ∀D′ ⊆ D it is not the case that valc(D′) P valc(D)}
be the decisions which can be accepted by the agent. Additionally, let
AG = {G | G ⊆ G such that G = valc(D) }
be the goals which can be reached by the agent.

Let us consider now the VSA’s decision problem after the second move.

Example 2 (Semantics). The argument ā (respectively b̄) (described in Exam-
ple 1), concludes infoseeking(user) (respectively infoseeking(product)). Ac-
tually, the decisions {send(question(is(user, allergic)} credulously argue for
infoseeking(user) and the decisions
{send(question(is(product, nonallergenic)} credulously argue for
infoseeking(product). If the VSA is benevolent, then
{send(question(is(user, allergic)} is an acceptable set of decisions. If the
VSA is aggressive, then {send(question(is(product, nonallergenic)} is an
acceptable set of decisions.
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8 Related Works

Amgoud & Prade in [22] are presenting a general and abstract argumenta-
tion framework for multi criteria decision making. This framework captures the
mental states (goals, beliefs and preferences) of the decision makers. There-
fore, in their framework the arguments are prescribing actions to reach goals if
theses actions are feasible while certain circumstances are true. These arguments
- that eventually conflict - are balanced according to their strengths. The argu-
mentation framework we proposed earlier in this paper is conforming with this
approach while being more specific and concrete.

The argumentation-based decision making process envisaged in [22] is divided
into different steps where the arguments are successively constructed, weighted,
confronted and evaluated. However, the computations we proposed earlier in
this paper go through the construction of arguments, the construction of coun-
terarguments, the evaluation of the generated arguments and the relaxation of
preferences for making concessions. It is also worth noticing here that: a) the
model we propose is unique in making it finally possible to concede, b) our
argumentation-based decision process suggest some decisions even if low-ranked
goals cannot be reached.

Bench-Capon & Prakken formalize in [23] defeasible argumentation for practi-
cal reasoning. As in [22], they select the best course of actions by confronting and
evaluating arguments. Bench-Capon & Prakken focus on the abductive nature
of practical reasoning which is directly modelled within in our framework.

Kakas & Moraits propose in [24] an argumentation-based framework for de-
cision making of autonomous agents. For this purpose, the knowledge of the
agent is split and localized in different modules representing different capabil-
ities. Whereas [24] is committed to one argumentation semantics, we can still
deploy our framework for a number of such semantics by relying on assumption-
based argumentation.

Finally, to the best of our knowledge, few implementation of argumentation
over actions exist. CaSAPI6 [25] and DeLP7 [26] are restricted to the theoretical
reasoning. GORGIAS8 [27] implements an argumentation-based framework to
support the decision making of an agent within a modular architecture.

9 Conclusions

In this paper, we have presented a dialogue management system that applies
argumentation for generating and evaluating utterances. The agent start the
conversation with the prior task which can consist of the need identification,
the product selection or the negotiation depending on its strategy. During the
dialogue, a proactive agent can query the user. Additionally, it can introduce a

6 http://www.doc.ic.ac.uk/∼dg00/casapi.html
7 http://lidia.cs.uns.edu.ar/DeLP
8 http://www.cs.ucy.ac.cy/∼nkd/gorgias/



Towards a Dialectical Approach for Conversational Agents 157

product to sell and justify this choice depending on the information collected in
the previous steps.

In order for us to implement an agent’s reasoning method we are considering
MARGO9 (A Multiattribute ARGumentation framework for Opinion explana-
tion), which is an argumentation-based mechanism for decision-making [7]. We
are currently rewritting MARGO in Java so that issues related to improving its
performance, (i.e., the response time), and its scalability, (i.e., the number of
rules which can be managed), are better tackled. This work is required to pro-
vide an industrial application rather than a research prototype. Besides, we need
to interface this argumentation-based engine with the CSO Artificial Solutions’
Language Processor in order to build conversational agents which are proactive
in different selling situations.

Although the negotiation dialogue model we proposed allows single-sellings
through the exchange of proposals and counter-proposals. However, we are cur-
rently working on an extension that will address cross-selling and up-selling.
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Abstract. Trust is a mechanism for managing the uncertainty about autonomous
entities and the information they store, and so can play an important role in any
decentralized system. As a result, trust has been widely studied in multiagent sys-
tems and related fields such as the semantic web. Managing information about
trust involves inference with uncertain information, decision making, and dealing
with commitments and the provenance of information, all areas to which systems
of argumentation have been applied. Here we discuss the application of argu-
mentation to reasoning about trust, identifying some of the components that an
argumentation-based system for reasoning about trust would need to contain and
sketching the work that would be required to provide such a system.

1 Introduction

Trust is a mechanism for managing the uncertainty about autonomous entities and the
information they store. As a result trust can play an important role in any decentral-
ized system. As computer systems have become increasingly distributed, and control
in those systems has become more decentralized, trust has steadily become more im-
portant in computer science. Trust is an especially important issue from the perspective
of autonomous agents and multiagent systems. The premise behind the multiagent sys-
tems field is that of developing software agents that will work in the interests of their
owners, carrying out their owners’ wishes while interacting with other entities. In such
interactions, agents will have to reason about the amount that they should trust those
other entities, whether they are trusting those entities to carry out some task, or whether
they are trusting those entities to not misuse crucial information.

This paper argues that systems of argumentation have an important role to play in
reasoning about trust. We start in Section 2 by briefly reviewing work that defines im-
portant aspects of trust and giving an extended example which illustrates some of these
aspects. Section 3 then briefly reviews some of the work on reasoning about trust and
identifies some of the characteristics of any effective system for dealing with trust in-
formation. Building on this discussion, Section 4 then argues that systems of argumen-
tation can handle trust and sketches a specific system of argumentation for doing this.
Section 5 concludes.
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2 Trust

As a number of authors have pointed out, trust is a concept that is both complex and
rather difficult to pin down precisely. As a result, there are a number of different defi-
nitions in the literature. To pick a few specific examples, Sztompka [27] (cited in [7])
suggests that:

Trust is a bet about the future contingent actions of others.

while Mcknight and Chervany [21], drawing on a range of existing definitions, define
trust as:

Trust is the extent to which one party is willing to depend on something or
somebody in a given situation with a feeling of relative security, even though
negative consequences are possible.

and Gambetta [4] states:

Trust is the subjective probability by which an individual, A, expects that an-
other individual, B, performs a given action on which its welfare depends.

While these definitions differ, there are clearly some common elements. There is a
degree of uncertainty associated with trust — whether expressed as a subjective proba-
bility, as a bet (which, of course, can be expressed as a subjective probability [11]), or
as a “feeling of security”. Trust is tied up with the relationships between individuals.
Trust is related to the actions of individuals and how those actions affect others.

It is also pointed out in a number of places that there are different kinds of trust, what
Jøsang et al. [12] call “trust scopes”. For example, [9] identifies the following types of
trust:

1. Provision trust: the trust that exists between the user of a service or resource, and
the provider of that resource.

2. Access trust: the trust that exists between the owner of a resource and those that are
accessing those resources.

3. Delegation trust: the trust that exists between an individual who delegates responsi-
bility for some action or decision and the individual to which that action or decision
is delegated.

4. Identity trust: trust that an individual is who they claim to be.
5. Context trust: trust that an individual has in the existence of sufficient infrastructure

to support whatever activities that individual is engaged in.

We illustrate some of these different types of trust with the following example.

Alice is planning a picnic for a group of friends. She asks around amongst
some of her aquaintances for ideas about where to hold the picnic. Bob suggests
a park a little way outside of the city where he goes quite regularly (provision
trust, relating to information) — he says it is quiet and easy to get to. Carol says
she has never been to the park herself, but has heard that the bugs are terrible
(provision trust, relating to information).
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Alice decides that the picnic will be a potluck1. Alice asks David to bring
potato salad (delegation trust) and Eric says he will bring bread from the bak-
ery near his house (provision trust, relating to a good). Fran offers to bake a
cake (provision trust, relating to a good). Carol says she will make her famous
barbeque chicken, cooking it on the public barbeques that Alice believes are
provided by the park (context trust).

The picnic is scheduled for midday. George arranges to pick up Alice from
her house at 10am in order to drive her to the park (Alice doesn’t have a car).
Harry, who can borrow a minivan (access trust), offers to collect several people
from their homes and stop on the way to buy a case of beer. Iain, who is going
to ride with George, says he’ll bring a soccer ball so they can all play after
lunch. John asks if he can bring a friend of a friend, Keith, whom John has
never met, but whom John knows will be visiting the city and is unoccupied
that day (identity trust).

As Alice makes the arrangements, she is obviously trusting a lot of people to make sure
that the plan comes together in ways that are rather distinct.

Bob and Carol are providing information. To decide whether to go to the park, Alice
has to factor in the trustworthiness of that information. She has to take into account how
reliable Bob and Carol are as information providers, not least because the information
that they have given here is contradictory. Alice might judge that what she knows about
Bob (that he goes to the park often) makes him more trustworthy than Carol in this
regard (though in other contexts, such as when deciding what film to see, she might
value Carol’s opinion more), and the fact that Carol is relying on information from
yet another person might strengthen this feeling (or, equally, make Alice value Carol’s
opinion about the park less).

The trust involved in handling the information from Bob and Carol seems to be some
what different to the handling of trust when considering the makeup of the meal. Here
Alice has to balance not the reliability of the information that people provide, but the
commitments they are making, the extent to which Carol, David, Eric, Fran, George,
Harry and Iain will do what they say they will do. Carol may be a terribly unreliable
source of information about parks, and thus untrustworthy in that regard, but a superb
provider of barbequed chicken, and one who has never failed to bring that chicken to a
potluck when she says that she will. In contrast, Alice may know that Fran saying she
will bake a cake means very little. She is just as likely to bake cookies, or realise late
the night before the picnic that she has no flour and will have to bring a green salad
instead (thus ruining the meal). David, on the other hand, is quite likely not to make
potato salad; but if he doesn’t, he can be relied upon to subsitute it with some close
approximation, a pasta salad for example.

In other words, an individual can be an untrustworthy source of information, but a
trustworthy provider of services, or indeed an untrustworthy provider of services but a
very reliable information source (it is perfectly possible that Fran only ever provides
correct information despite her food-related flakiness) — there are different dimen-
sions of trust for different services that are provided (here, information and food items).

1 “Pot luck” means that all the guests are expected to bring something that will contribute to the
meal, typically an item of food or a beverage.
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We distinguish this by talking of the context of trust. Similarly, the failure of an indi-
vidual to fulfill their commitments is not necessarily binary — how they fail can be
important.

There are also other aspects to the failure of a commitment. Actions have time and
location components. If George is a few minutes late picking Alice up, it may not affect
the picnic. If he is an hour late, that might be catastrophic. If he has the wrong address,
then even if he arrives at that (wrong) location at 10am, the success of the picnic is
in danger. And if Harry can’t find his way to the park, there won’t be any soccer after
lunch even if he successfully collected everyone and bought the beer just as he said he
would. However, as long as he arrives while the picnic is going on, then his passengers
have a chance to enjoy themselves, though the later he arrives, the less chance that they
will have a good time.

3 Reasoning about Trust

As discussed above, a key aspect of trust is that it stems from the relationship between
individuals or groups of individuals. This means that it is a relative notion — Alice and
Bob may have different views about Carol’s trustworthiness — and thus that provenance
is important in reasoning about trust [6]. A situation that often arises is one where it is
necessary to combine different people’s information about trust and when this is done,
it is important to know where information about trust is coming from.

In this context, Jøsang et al. [12] distinguish between functional trust, the trust in an
individual to carry out some task, and referral trust, the trust in an individual’s recom-
mendation. Thus, in our example, Alice’s reasoning about George’s offer of a lift, and
Carol’s offer to bring chicken are functional trust — Alice is thinking about George’s
reliability as a provider of lifts and Carol’s reliability as a provider of chicken. However,
if Alice were to ask Carol for a recommendation for a good butcher, then Alice would
base her assessment of Carol’s answer on her (Alice’s) assesssment of Carol’s ability to
make good recommendations, an instance of referral trust, while what Carol expresses
about her butcher is another instance of functional trust.

As [12] points out (in terms of our example), the fact that Carol trusts her butcher to
supply good meat is not necessarily a reason for Alice to do the same, and it certainly
isn’t a reason for Alice to trust the butcher in any more general context (to do a good job
of painting Alice’s house, for example). However, under certain circumstances — and
in particular when the trust context is the same, as it is when Alice is considering the
use of Carol’s butcher as a provider of meat [14]2 — it is reasonable to consider trust to
be transitive. Thus Alice can consider combining her direct assessment of Carol’s refer-
ral trustworhiness in the food domain, with Carol’s direct assessment of her butcher’s
functional trustworthiness to derive an indirect functional assessment of the butcher.

Given this transitivity, the notion of a trust network then makes sense. If Alice can
estimate the referral trustworthiness of her friends, and they can do the same for their
friends, then Alice can make judgements about recommendations she receives not just

2 Depending on the butcher, of course, even this might be too broad a trust context — perhaps
the butcher provides excellent chicken and beef, but can only supply indifferent pork and his
game is never hung for long enough.
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from her friends, but also from the friends of her friends, and their friends and so on.
The question is, what is a reasonable way to represent this computationally, taking into
account that each of these friends trusts their friends to different degrees.

At the moment there is no definitive answer to the question3. As the definitions of
trust cited above suggest, one way to model trust is to use some form of subjective
probability — Alice’s degree of trust in Bob’s park recommendation is a measure of her
belief that she will like the park since Bob says that he likes the park. Eigentrust [15]
is a mechanism, derived for use in peer-to-peer networks, for establishing a global trust
rating that estimates how much any individual should trust another. While such a global
rating, based as it is on performance, is reasonable for peer-to-peer systems, it has been
argued [6] that in the kind of social networks we are discussing here, it is necessary to
capture the fact that, for example, Alice and Bob can have very different estimations of
Carol’s trustworthiness (and, as we have argued, that they will have different ratings for
Carol’s trustworthiness in different contexts).

Subjective logic [13] is a formalism for capturing exactly this aspect of trust, and for
inferring the degree of trust existing between two nodes in a trust network. Based on the
Dempster-Shafer theory of evidence [26] it computes a measure that is a generalisation
of probability, distinguishing belief in the reliability of an individual, disbelief in the
reliability, and the potential belief that has not yet been determined one way or another
(termed the “uncertainty”). Singh and colleagues [10,28] provide extensions of the ap-
proach, the former looking at how best to update the measure of trust one individual has
in another depending on their experience of interactions. Thus Alice may have her high
regard for Carol’s food-related recommendations damaged by a bad experience with a
supplier that Carol recommends. Subjective logic is not the only approach to handling
this problem. For example, Katz and Golbeck [16] describe an algorithm called Tidal-
Trust for establishing the trust between a source node (representing the individual doing
the trusting) and a sink mode (representing the individual being trusted). Later work by
Kuter and Golbeck provides the SUNNY algorithm [18] which is reported to outperform
TidalTrust on a benchmark database of trust information.

4 Argumentation and Trust

The Trust field, including sample literature discussd above, gives us methodologies for
computing trust, while the Argumentation field can give us methodologies for reason-
ing about trust. In short, we believe that argumentation can provide a mechanism for
handling many of the aspects that we need to capture about trust, as we discuss at some
length in this section.

4.1 Argumentation in General

As we have discussed above, there are two major aspects that need to be handled by any
representation of trust — we need to handle measures of trust, and we need to handle

3 Indeed, there is not even complete agreement on the question of what patterns of inference of
new trust relations are reasonable.
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the provenance of trust information. Both of these are provided by several existing
argumentation systems.

Some approaches to argumentation, for example abstract approaches such as that of
Dung [3] and its derivatives, treat arguments as atomic objects. As a result, they say
little or nothing about the internal structure of the argument and have no mechanism to
represent the source of the information from which the argument is constructed. Such
systems can represent the relationship between arguments (“a attacks b”, and “b attacks
c”), but cannot represent why this is the case. As a result, such systems cannot capture
the fact that a attacks b because b is based on information from source s, and there is
evidence that source s is not trustworthy.

There are, however, a number of existing systems that extend [3] with more detailed
information about the argument. One system system is that of Amgoud [1], where an
argument is taken to be a pair (H, h), h being a formula, the conclusion of the argu-
ment, and H being a set of formulae known as the grounds or support of the argument.
Conclusion and support are related. In particular, [1] requires that H be a minimal con-
sistent set of formulae such that H � h in the language in which h and H are expressed.
This means of representing the support is rather restricted. It presents the support as a
bag of formulae with no indication as to how they are used in the construction of the ar-
gument, and without recording any of the intermediate steps. It is easy enough to see if
another argument rebuts (H, h), meaning that the conclusion of this second argument is
the negation of h, and it is also quite simple to establish if the conclusion of the second
argument contradicts any of the grounds in H (which in some systems of argumentation
is known as undercutting). However, other forms of relationship are harder to establish.
For example, in some cases it is interesting to know if an argument contradicts any of
the intermediate steps in the chain of inferences between H and h.

Since the information about the steps in the argument can be useful, some systems
of argumentation, for example [5] and [23], record more detail about the proof of h
from H as part of the grounds. Some, including the system [20] which we will discuss
in more detail below, go as far as to record the proof rules used in deriving h from H ,
permitting the notion of “attack” to include not only the intermediate conclusions but
also the means by which they were derived.

Another problem with Dung’s argumentation system from the perspective of reason-
ing about trust is that it has no explicit means to represent degrees of trust. In [3] the
important question is whether, given all the arguments that are known, a specific argu-
ment should be considered to hold. While one could construct a system for reasoning
about trust in this way — the critical point, after all, is often whether someone’s ar-
gument is trustworthy or not — the prevelance of numerical measures of trust in the
literature leads us to want to represent these.

Systems like that of Amgoud [1] provide one means of handling such measures, al-
lowing formulae to have preference values attached to them. The values propagate to
arguments and are taken into consideration when reasoning about the relationship be-
tween arguments (roughly speaking, strong arguments shrug off the attacks of weaker
arguments). This approach seems a little too restrictive for dealing with trust, but there
are systems that are more flexible. One example is the work of Oren et al. [22], which
allows formulae and arguments to be weighted with the belief values used by Jøsang’s
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subjective logic [13]. A more abstract approach is that of Fox [17] where values to
represent belief in formulae are picked from some suitable dictionary of values, and
propagated in a suitable way through the proof rules that are used to construct argu-
ments. Arguments are then triples of conclusion, support, and value, and such systems
are close to the notion of a labelled deductive system [2] (though they pre-date labelled
deductive systems by some years).

4.2 A Suitable Argumentation System

Having given a high level description of how argumentation can help in handling a
number of the aspects of reasoning about trust, we give a more detailed example of
using a specific system of argumentation. The system we describe is the system TL
that we introduced in [20], notable because it explicitly represents the rules of inference
employed in constructing arguments in the support of the argument (which then makes
it possible to dispute the application of those rules).

We start with a set of atomic propositions including� and ⊥, the ever true and ever
false propositions. The set of well-formed formulae (wff s), labeled L, is comprised of
the set of atomic propositions closed under the connectives {¬,→,∧,∨}. L may then
be used to create a database Δ whose elements are 4-tuples:

(θ : G : R : d̃)

in which each element θ is a formulae, G is the derivation of that formula, R is the
sequence of rules of inference used in the derivation, and d̃ is a suitable measure.

In more detail, θ is a wff from L, G = (θ0, θ1, . . . , θn−1) is an ordered sequence of
wff s, with n ≥ 1, and R = (�1,�2, . . . ,�n) is an ordered sequence of inference rules,
such that:

θ0 �1 θ1 �2 θ2 . . . θn−1 �n θ

In other words, each element θk ∈ G is derived from the preceding element θk−1 as a
result of the application of the k-th rule of inference, �k, (k = 1, . . . , n− 1). The rules
of inference in any such sequence may be non-distinct. Thus G and R together provide
an explicit representation of the way that θ was inferred.

The element d̃ = (d1, d2, . . . , dn) is an ordered sequence of elements from some
dictionary D. For reasoning about trust, these elements could be a numerical measure
of trust, or some linguistic term that indicates the trust in the relevant inference, for
example:

{very reliable, reliable, no opinion, somewhat unreliable, very unreliable}

We also permit wff s θ ∈ L to be elements of Δ, by including tuples of the form (θ : ∅ :
∅ : ∅), where each ∅ indicates a null term. (Such tuples represent information that has
not been derived — basic premises may take this form.) Note that the assignment of
labels may be context-dependent, i.e., the di assigned to �i may also depend on θi−1.
This is the case for statistical inference, where the p-value depends on characteristics of
the sample from which the inference is made, such as its size.

With this formal system, we can take a database Δ and use the consequence re-
lation �TCR defined in Figure 1 to build arguments for propositions of interest. This
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Ax
(θ : G : R : d̃) ∈ Δ

Δ �TCR (θ : G : R : d̃)

∧-I
Δ �TCR (θ : G : R : d̃) and Δ �TCR (φ : H : S : ẽ)

Δ �TCR (θ ∧ φ : G ⊗ H ⊗ (θ ∧ φ) : R ⊗ S ⊗ (�∧-I ) : d̃ ⊗ ẽ ⊗ (d∧-I ))

∧-E1
Δ �TCR (θ ∧ φ : G : R : d̃)

Δ �TCR (θ : G ⊗ (θ) : R ⊗ (�∧-E1 ) : d̃ ⊗ (d∧-E1 ))

∧-E2
Δ �TCR (θ ∧ φ : G : R : d̃)

Δ �TCR (φ : G ⊗ (φ) : R ⊗ (�∧-E2 ) : d̃ ⊗ (d∧-E2 ))

∨-I1
Δ �TCR (θ : G : R : d̃)

Δ �TCR (θ ∨ φ : G ⊗ (θ ∨ φ) : R ⊗ (�∨-I1 ) : d̃ ⊗ (d∨-I1 ))

∨-I2
Δ �TCR (φ : H : S : ẽ)

Δ �TCR (θ ∨ φ : H ⊗ (θ ∨ φ) : S ⊗ (�∨-I2 ) : ẽ ⊗ (e∨-I2 ))

∨-E

Δ �TCR (θ ∨ φ : G : R : d̃) and
Δ, (θ : ∅ : ∅ : ∅) �TCR (γ : H : S : ẽ) and Δ, (φ : ∅ : ∅ : ∅) �TCR (γ : J : T : f̃).

Δ �TCR (γ : G ⊗ H ⊗ J ⊗ (γ) : R ⊗ S ⊗ T ⊗ (�∨-E ) : d̃ ⊗ ẽ ⊗ f̃ ⊗ (d∨-E ))

¬-I
Δ, (θ : ∅ : ∅ : ∅) �TCR (⊥ : G : R : d̃)

Δ �TCR (¬θ : G ⊗ (¬θ) : R ⊗ (�¬-I ) : d̃ ⊗ (d¬-I ))

¬-E
Δ �TCR (θ : G : R : d̃) and Δ �TCR (¬θ : H : S : ẽ)

Δ �TCR (⊥ : G ⊗ H ⊗ (⊥) : R ⊗ S ⊗ (�¬-E ) : d̃ ⊗ ẽ ⊗ (d¬-E ))

¬¬-E
Δ �TCR (¬¬θ : G : R : d̃)

Δ �TCR (θ : G ⊗ (θ) : R ⊗ (�¬¬-E ) : d̃ ⊗ (d¬¬-E ))

→-I
Δ, (θ : ∅ : ∅ : ∅) �TCR (φ : G : R : d̃)

Δ �TCR (θ → φ : G ⊗ (θ → φ) : R ⊗ (�→-I ) : d̃ ⊗ (d→-I ))

→-E
Δ �TCR (θ : G : R : d̃) and Δ �TCR (θ → φ : H : S : ẽ)

Δ �TCR (φ : G ⊗ H ⊗ (φ) : R ⊗ S ⊗ (�→-E ) : d̃ ⊗ ẽ ⊗ (d→-E ))

Fig. 1. The TL Consequence Relation
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consequence relation is defined in terms of rules for building new arguments from old.
The rules are written in a style similar to standard Gentzen proof rules, with the an-
tecedents of the rule above the horizontal line and the consequent below. In Figure 1,
we use the notation G ⊗ H to refer to that ordered sequence created from appending
the elements of sequence H after the elements of sequence G, each in their respective
order. The rules are as follows:

Ax The rule Ax says that if the tuple (θ : G : R : d̃) is in the database, then it is
possible to build the argument (θ : G : R : d̃) from the database. The rule thus
allows the construction of arguments from database items.

∧-I The rule ∧-I says that if the arguments (θ : G : R : d̃) and (φ : H : S : ẽ) may
be built from the database, then an argument for θ∧φ may also be built. The rule
thus shows how to introduce arguments about conjunctions; using it requires an
inference of the form: θ, φ � (θ ∧ φ), which we denote

�∧-I

in Figure 1. This inference is then assigned a value of d∧-I .

∧-E The rule ∧-E1 says that if it is possible to build an argument for θ ∧ φ from
the database, then it is also possible to build an argument for θ. Thus the rule
allows the elimination of one conjunct from an argument, and its use requires
an inference of the form: θ ∧ φ � θ. ∧-E2 allows the elimination of the other
disjunct.

∨-I The rule ∨-I1 allows the introduction of a disjunction from the left disjunct and
the rule ∨-I2 allows the introduction of a disjunction from the right disjunct.

∨-E The rule ∨-E allows the elimination of a disjunction and its replacement by tuple
when that tuple is a TL-consequence of each disjunct.

¬-I The rule ¬-I allows the introduction of negation.
¬-E The rule ¬-E allows the derivation of ⊥, the ever-false proposition, from a con-

tradiction.
¬¬-E The rule ¬¬-E allows the elimination of a double negation, and thus permits the

assertion of the Law of the Excluded Middle (LEM).
→-I The rule→-I says that if on adding a tuple (θ : ∅ : ∅ : ∅) to a database, where

θ ∈ L, it is possible to conclude φ, then there is an argument for θ → φ. The rule
thus allows the introduction of→ into arguments.

→-E The rule→-E says that from an argument for θ and an argument for θ → φ it is
possible to build an argument for φ. The rule thus allows the elimination of →
from arguments and is analogous to MP in standard propositional logic.

This is an intentionally abstract formalism — syntactically complete, but without a
specified semantics. The idea is that to capture a specific domain, we have to identify
a suitable dictionary from which to construct the d̃ and that this set of values will de-
termine the mechanism by which we can compute an overall value from the sequence
of di. For example, if one wanted to use Jøsang’s subjective logic, then the mechanism
for combining the di’s would be taken from [13]. If one wanted to quantify trust using
probability, then the combination rules would be those dictated by probability theory
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(for example using [29]). If one wanted to use the dictionary mentioned above (“very
reliable” and so on) then it would be necessary to determine the right way to combine
these values across all the inference rules in Figure 1.

Even without specifying these mechanisms, it should be clear that whatever means
we use to quantify trust in combination with TL, the formalism can both capture trust
values and the precise source of information used. It is also possible to go further. The
fact that TL includes explicit reference to different forms of inference allows us to
capture the fact that inferences may differ depending on the source of the information
on which they are based — we might want to make different inferences depending
on whether the source was something we have direct experience of, or something that
comes from a trusted source, or, indeed, something that comes from an untrusted source.

4.3 Extensions

The previous sections have argued that systems of argumentation can provide the core
functionality required to reason about trust. Here we discuss how systems of argumen-
tation, especially the system TL sketched above, can provide additional mechanisms
that are important in dealing with trust.

First, argumentation systems explicitly allow the representation of different points
of view. The system TL we have sketched above provides us with the rules for con-
structing arguments, and it does not limit the number of arguments that one can con-
struct for a specific conclusion. Thus, the database Δ may contain information that
represents a number of different assessments of the trustworthiness of, for example, a
source of information. This might be done through the inclusion of a number of tuples
(θ : G : R : d̃) with different Gs, representing different views of the sources, and
different d̃s representing different assessments of trustworthiness. These pieces of in-
formation could then be used to make different inferences, with any potential choice
between conclusions being made on the basis of the relevant d̃ values.

That is one, fairly simple, way to represent different viewpoints. Another would be to
have different argumentation systems represent the views of different individuals, and
to use the mechanisms of argumentation-based dialogue (like those discussed in [25,8])
to explore the differences in the views of trust and to attempt to resolve them. In such
a combination, the individual argumentation systems can be constructed using TL, and
would then reason about trust based on a single viewpoint. The interaction between
different viewpoints is then captured by the dialogue mechanisms of [25,8], enabling a
rational discourse about trust issues.

Another important aspect of reasoning about trust, addressed in [10] for example, is
the need for an individual to be able to revise the trust they have in another based on
experience. Revision of beliefs is not a subject that has been widely considered within
the argumentation community, but [24] suggests some approaches to the subject. We
plan to examine how these can be implemented on top of TL giving us a means to
represent the case in which one individual revises its view of a source as a result of
considering information provided by another individual. In addition, [19] looks at how
to use statistics on past performance to build arguments about trust, and combining this
work with TL is a way to augment it with the ability to infer numerical degrees of trust.
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5 Conclusion

This paper has presented the case for using argumentation as a mechanism for reasoning
about trust. Starting from some of the many views of trust expressed in the literature,
we extracted the major features that need to be represented, discussed formalisms for
handling trust, and then suggested how argumentation could be used for reasoning about
trust. We sketched in some detail how a specific system of argumentation, TL, could be
used in this way and identified some additional argumentation-based mechanisms that
could be of use in dealing with trust.
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Abstract. In this paper we address the problem of obtaining a consoli-
dated view of the knowledge that a community of information agents pos-
sesses in the form of private, possibly large, databases. Each agent in the
community has independent sources of information and each database
could contain information that is potentially inconsistent and incom-
plete, both by itself and/or in conjunction with some of the others. These
characteristics make the consolidation difficult by traditional means. The
idea of obtaining a single view is to provide a way of querying the re-
sulting knowledge in a skeptical manner, i.e., receiving one answer that
reflects the perception of the information community.

Agents using the proposed system will be able to access multiple
sources of knowledge represented in the form of deductive databases as
if they were accessing a single one. One application of this schema is a
novel architecture for decision-support systems (DSS) that will combine
database technologies, specifically federated databases, which we will cast
as information agents, with an argumentation-based framework.

Categories and Subjects Descriptors: I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Representation
languages, Representations (procedural and rule-based); H.1.0 [Models
and Principles]: Systems and Information Theory—General systems the-
ory.

General Terms: Algorithms, Design, Performance.

Keywords: Argumentation, Knowledge representation, Design languages
for agent systems.

1 Introduction

Information systems, and the capability to obtain answers from them, play a key
role in our society. In particular, data intensive applications are in constant de-
mand and there is need for computing environmentswith much more intelligent ca-
pabilities than those present in today’s Data-base Management Systems (DBMS).
The expected requirements for these systems change every day: they constantly
become more complex and more advanced features are demanded from them.
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In this paper we address the problem of obtaining a consolidated view of the
knowledge that a community of information agents possess in the form of private,
possibly large, databases. Each agent in the community has independent sources
of information and each database could contain information that is potentially
inconsistent and incomplete, both by itself and/or in conjunction with some of
the others. These characteristics make the consolidation difficult by traditional
means. The idea of obtaining a single view is to provide a way of querying the
resulting knowledge in a skeptical manner, i.e., receiving one answer that reflects
the perception of the information community.

Agents using the proposed system will be able to access multiple sources
of knowledge represented in the form of deductive databases as if they were
accessing a single one. One application of this schema is a novel architecture
for decision-support systems (DSS) that will combine database technologies,
specifically federated databases, which we will cast as information agents, with
an argumentation-based framework.

Recently, there has been much progress in developing efficient techniques to
store and retrieve data, and many satisfactory solutions have been found for the
associated problems. However it remains an open problem how to understand and
interpret large amounts of information. To do this we need specific formalisms
that can perform complicated inferences, obtain the appropriate conclusions,
and justify their results. We claim that these formalisms should also be able to
access seamlessly databases distributed over a network.

In the field of deductive databases there has been a continued effort to pro-
duce an answer to this problem. Deductive databases store explicit and implicit
information; explicit information is stored in the manner of a relational database
and implicit information is recorded in the form of rules that enable inferences
based on the stored data. These systems combine techniques and tools from
relational databases with rule based formalisms. Hence, they are capable of han-
dling large amounts of information and perform some sort of reasoning based
on it. Nevertheless, these systems have certain limitations and shortcomings for
knowledge representation and modeling commonsense reasoning, especially for
managing incomplete and potentially contradictory information, as argued by
several authors [17,23,16].

Argumentation frameworks [9,19,14] are an excellent starting point for
building intelligent systems with interesting reasoning abilities. Research in ar-
gumentation has provided important results while striving to obtain tools for
commonsense reasoning, and this prompted a new set of argument-based ap-
plications in diverse areas where knowledge representation issues play a major
role [10,5,7].

We believe that deductive databases can be combined with argumentation for-
malisms to obtain interactive systems able to reason with large databases, even
in the presence of incomplete and potentially contradictory information. This can
be a significant advantage with respect to systems based on logic programming,
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such as datalog, that cannot deal with contradictory information.1 In particu-
lar, this could be useful in contexts where information is obtained from multiple
databases, and these databases may be contradictory among themselves.

The multi-agent system introduced here virtually integrates different databa-
ses into a common view; in that manner users of this system can query multiple
databases as if they were a single one. This schema can be applied to obtain
a novel system architecture for decision-support systems (DSS) that combines
database technologies, specifically federated databases [18], with an argumenta-
tion based framework.

In our proposal we consider that information is obtained from a number of dif-
ferent heterogeneous database systems, each represented by a particular agent.
The reasoning mechanisms, based on an argumentative engine, use this infor-
mation to construct a consolidated global view of the database. This task is
performed by the reasoning agent, that is based on a set of rules expressed in a
particular argumentation framework. This agent can deal with incomplete and
contradictory information and can also be personalized for any particular DSS
in a relatively simple way.

We have also considered that one of the design objectives of interactive sys-
tems is that they can respond in a timely manner to users’ queries. So far the
main objection to the use of argumentation in interactive systems is their compu-
tational complexity. In previous work [6] we have addressed the issue of optimiz-
ing argumentation systems, where the optimization technique consisted in using
a precompiled knowledge component as a tool to allow significant speed-ups in
the inference process. We also apply this technique in our reasoning agent.

To understand the advantages of the proposed reasoning mechanism used
in our multiagent system, consider a set of databases used by the employers
responsible of drug administration, sales, and delivery in a given hospital. These
databases contains information regarding drugs, patients, known allergies, and
addictions. Suppose a deductive database system in the style of datalog is used
to query this information to derive certain relations. In this setting, there is
a rule establishing that a drug should be given to a patient if the patient has
a prescription for this drug signed by a physician. There could also be a rule
saying that the drug should not be sold if the prescription is signed by the
patient. In this case, if Dr. Gregory House enters the clinic with a prescription
signed by himself to get Vicodin, the employers could query the system to see if
the drug should or should not be sold. If a traditional deductive database is used,
in the style of datalog or another logic programming based system, this would
give raise to a contradiction and the system would not be able to recommend a
course of action. Using our system, an argument can be built backing that the
medication should be sold, given that there is a prescription signed by a doctor
that warrants it. However, an argument for not selling the drug could also be
built considering that the doctor and the patient are the same person. Our

1 Some extensions of datalog handle negation using CWA (see [8]), but these ap-
proaches do not allow negation in the head of the rules in the style of extended logic
programming.
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argument-based framework can then compare both arguments, decide that the
second argument is preferred, and answer the query saying that the drug should
no be sold. In addition, it can also explain the reasons that back its answer. Note
that this kind of behavior cannot be obtained in Datalog-like systems.

The rest of this article is organized as follows. Section 2 sums up related
work, Section 3 contains our proposal for the system architecture, and section 4
formally describes the reasoning module, a key component of this architecture.
Section 5 presents a key optimization for the argumentation-based reasoning
process, and Section 6 shows a realistic example of the system’s mechanics.
Finally, Section 7 states the conclusions.

2 Integrating DBMS and Reasoning Systems

Previous work on the integration of databases and reasoning systems has al-
most been restricted to coupling Prolog interpreters and relational databases.
These approaches were motivated in the declarative nature of logic program-
ming languages and the data-handling capabilities of database systems. Several
researchers have built intelligent database systems coupling Prolog and a rela-
tional DBMS or extending Prolog with database facilities [8]. These works were
motivated by the fact that Prolog attracted attention in the 80’s for its ability
to support rapid development of complex applications. Besides, Prolog is based
on Horn Clauses that are close relatives of database query languages and its
language is more powerful than SQL [24].

Brodie and Jarke [4] envisioned several years ago that large scale data pro-
cessing would require more efficient and more intelligent access to databases.
He proposed the integration of logic programming and databases to meet future
requirements. First, he identified two different approaches for coupling a Prolog
interpreter and a Relational DBMS, which are usually called “tight coupling’ and
“loose coupling”. In the tight coupling approach the Prolog interpreter and the
Relational DBMS are strongly integrated. For example, the Prolog interpreter
can directly use low level functionalities of the DBMS, like relation management
in secondary memory, and relation access via indexes [12]. In contrast, in the
loose coupling approach, the Relational DBMS is called by the Prolog interpreter
at the top level, that acts like a standard user. It sends Relational queries to
the DBMS, and the corresponding answers are treated as ground clauses by the
interpreter.

Brodie and Jarke also identified four basic architectural frameworks for com-
bining Prolog and a database system:

– Loose coupling of an existing Prolog implementation to an existing relational
database system;

– Extending Prolog to include some facilities of the relational database system;
– Extending an existing relational database to include some features of Prolog;
– Tightly integrating logic programming techniques with those of relational

database systems.
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They recommend the fourth alternative (tight integration), based on the belief
that a special purposed language for large scale knowledge base systems would
best address issues regarding performance, knowledge representation and soft-
ware engineering. They also put forward a number of issues concerning the best
division of tasks between logic programming and a DBMS.

Zaniolo [25] proposed an approach to intelligent databases based on deduc-
tive databases. He advocates for elevating database programming to the more
abstract level of rules and knowledge base programming to create an environ-
ment more supportive of the new wave of database applications. To achieve
these goals the LDL/LDL+ project was developed. During the project a new
logic-based language was designed along with the definition of its formal seman-
tics, new implementation techniques were developed for the efficient support of
rule-based logic languages, and it was successfully used in a wide range of ap-
plication domains. The system supported an open architecture and SQL schema
from external databases could be incorporated into the LDL program seamlessly.

In the following section we present the system architecture for our proposal.
We believe that argumentation can offer a new perspective into the problem of
reasoning with large databases, giving more expressive power to the reasoning
component, making it able to decide even in the presence of uncertain and/or
contradictory information. This addresses a limitation that was present in each
of the deductive database systems considered in this section.

3 System Architecture

In this section we present an architectural pattern for our multiagent system that
can be applied to design information-based applications where a certain level of
intelligence is required. Such applications will be engineered for contexts where:
(1) information is uncertain and heterogeneous, (2) handling of great volume of
data flows is needed, and (3) data may be incomplete, vague, or contradictory.
These applications are also expected to integrate multiple information systems
such as databases, knowledge bases, source systems, etc.

Our system architecture is presented in Figure 1. The architecture is modular
and is independent of any particular domain or application. We have used a
layered architectural style, where every layer provides a series of services to the
one above. The first of our layers concerns data and knowledge acquisition. This
layer will receive heterogeneous sources of data and will extract and transform
this data into the formats required of the particular application. It can work with
diverse sources, such as laboratory data, different types of sensors, knowledge
bases, etc.

The received data will be formatted to comply with the relational models
provided by a group of federated databases that share a common export schema.
In our system, each one of the databases is represented by an agent. The common
export schema will be the result of a negotiation process among these agents.
The union of the views of these databases will generate a key element of our
framework, the extensional database that contains the information needed for the
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Fig. 1. Proposed architectural pattern

reasoning module. The extensional database also will provide the data elements
with a certainty degree that depends of the credibility of the data source from
where it was obtained.

We have chosen to use a multi-source perspective for the characterization of
data quality [3]. In this case, the quality of data can be evaluated by comparison
with the quality of other homologous data (i.e., data from different information
sources which represent the same reality but may have contradictory values).
The approaches usually adopted to reconcile heterogeneity between values of
data are: (1) to prefer the values of the most reliable sources, (2) to mention the
source ID for each value, or (3) to store quality meta-data with the data.

For our proposed architecture, we have used the second approach. In multi-
source databases, each attribute of a multiple source element has multiple values
with the ID of their source and their associated Quality of Expertise, which is
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represented as meta-data associated with each value, such as a given certainty
degree. This degree may be obtained weighting the plausibility of the data value,
its accuracy, the credibility of its source, and the freshness of the data.

The federated database layer provides the extensional database to the pre-
sentation layer. The extensional database can be computed on demand and is
not necessarily stored in a physical component. The presentation layer contains
the services related with the reasoning process and its optimization. This is the
core of our proposal and will be described later on in Sections 4 and 5. The
reasoning agent that generated the consolidated view is part of this layer. It
contains the set of rules that encode the specific knowledge of the application.
These rules will be used by the argumentation-based inference engine. The pre-
sentation layer also commands the generation of the extensional database, and
the selection if it is going to be done on demand (following a lazy approach) or
if it has to be computed completely. It can also generate a partial view of the
system according to these rules, resulting in an optimization mechanism. This
partial view depends only on the set of rules and must be changed accordingly if
changes on the rules are produced. Finally, the query services layer is composed
by an interactive agent that receives user queries, provides answers, and can also
explain the reasons backing these answers.

4 The DB DeLP Argumentation Framework

In this section we formally define the argumentation system that is used by
the reasoning agent in the Query Services Layer of the proposed system archi-
tecture. Here we detail the semantics and proof theory of the framework and
we also show some practical examples. A simplified view of our system would
describe it as a deductive database whose inference engine is based on a spe-
cialization of the DeLP language [15]. This particular framework will be known
as Database Defeasible Logic Programming (DB DeLP). Formally, DB DeLP is
a language for knowledge representation and reasoning that uses defeasible ar-
gumentation to decide between contradictory conclusions through a dialectical
analysis. DB DeLP also incorporates uncertainty management, taking elements
from Possibilistic Defeasible Logic Programming (P DeLP) [2,1], an extension of
DeLP in which the elements of the language have the form (φ, α), where φ is a
DeLP clause or fact and α expresses a lower bond for the certainty of φ in terms
of a necessity measure. Conceptually, our deductive database consists of an ex-
tensional database EDB, an intensional database IDB, and a set of integrity
constrains IC. In what follows, we formally define these elements.

The language of DB DeLP follows a logic programming style. Standard logic
programming concepts (such as signature, variables, functions, etc.) are defined
in the usual way. Literals are atoms that may be preceded by the symbol “∼”
denoting strict negation, as in extended logic programming.

Definition 1. [Literal–Weighted Literal] Let Σ be a signature, then every atom
A of Σ is a positive literal, while every negated atom ∼A is a negative literal. A
literal of Σ is a positive literal or a negative literal. A certainty weighted literal,
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or simply a weighted literal, is a pair (L, α) where L is a literal and α ∈ [0, 1]
expresses a lower bound for the certainty of L in terms of a necessity measure.

The extensional database EDB is composed by a set of certainty weighted lit-
erals, according to the export schema of the federated database that is part of
our architecture. Conceptually, it accounts for the union of the views of every
particular database that belongs to the federation [18]. When implementing the
system, this set of ground literals may not be physically stored in any place, and
may simply be obtained on demand when information about a particular literal
is needed.

The certainty degree associated with every literal is assigned by the federated
database layer that assigns a particular degree to every data source according to
its plausibility. The resulting extensional database is not necessarily consistent,
in the sense that a literal and its complement w.r.t. strong negation may both
be present, with different or the same certainty degrees. In this case, the system
decides according to a given criterion which fact will prevail and which one will
be removed from the view.

The intensional part of a DB DeLP database is formed by a set of defeasi-
ble rules and integrity constraints Defeasible rules provide a way of performing
tentative reasoning as in other argumentation formalisms [9,19,14].

Definition 2. [Defeasible Rule] A defeasible rule expresses a tentative, weighted,
relation between a literal L0 and a finite set of literals {L1, L2, . . . , Lk}. It has
the form (L0 –≺ L1, L2, . . . , Lk, α) where α ∈ [0, 1] expresses a lower bound for
the certainty of the rule in terms of a necessity measure.

In previously defined argumentation systems, the meaning of defeasible rules
L0 –≺ L1, L2, . . . , Lk was understood as “L1, L2, . . . , Lk provide tentative reasons
to believe in L0” [22], but these rules did not have an associated certainty degree.
In contrast, DB DeLP adds the certainty degree, that expresses how strong is the
connection between the premises and the conclusion. A defeasible rule with a
certainty degree 1 will model a strong rule. Figures 2 and 3 show an extensional
and an intensional database in our formalism.

Note that DB DeLP programs are range-restricted, a common condition for
deductive databases: a program is said to be range-restricted if and only if every
variable that appears in the head of the clause also appears in its body. This
implies that all the facts in the program must be ground (cannot contain vari-
ables). These programs can be interpreted more efficiently since full unification

species(X,Y)

(species(simba,lion), 0.6)
(species(mufasa,lion), 0.7)
(species(grace,lion), 0.6)
(species(grace,leopard), 0.4)
. . .

age(X,Y)

(age(simba,young), 0.65)
(age(mufasa,old), 0.7)
(age(grace,adult), 0.8)
(age(dumbo,baby), 0.8)
. . .

Fig. 2. An Extensional Database in DB DeLP
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(feline(X) –≺ species(X,lion),1)
(climbs tree(X) –≺ feline(X),0.65)
(∼climbs tree(X) –≺ species(X,lion),0.70)
(climbs tree(X) –≺ species(X,lion), age(X,young).,0.75)
(∼climbs tree(X) –≺ sick(X),0.45)

Fig. 3. An Intensional Database in DB DeLP

is not needed, only matching that is significantly more efficient. Nevertheless,
the reason for this decision comes from a semantic standpoint, given that a de-
feasible reason in which there is no connection between the head and the body
has no clear meaning; the range restriction ensures this connection.

Integrity constraints are rules of the form L← L0, L1, . . . , Ln where L is a lit-
eral, and L0, L1, . . . , Lk is a non-empty finite set of literals, These rules are used
to compute the derived negations as follows. For the extensional and intensional
databases regarding felines, consider that the set of integrity constraints is com-
posed by {∼leopard(X) ← lion(X), ∼lion(X) ← leopard(X)} and the negations
{ (∼species(grace,lion), 0.4), (∼species(grace,leopard), 0.6)} are then added
to the extensional database. The certainty degree of the added rule is calculated
as the minimum of the certainty degree of the literals that are present in the
body of the integrity constraint rule used to obtain it. Note that a conflict may
arise with information received from other knowledge bases, since we may want
to add a literal and its complement may be already present in the extensional
database. Then the system will decide according to a given criterion which fact
will prevail and which one will be removed from the view. A standard criterion
in this case would be using the plausibility of the source, the certainty degree of
the literals, or a combination of both. Databases in DB DeLP, for short called
defeasible databases, can also include built-in predicates as needed along with
their corresponding axioms.

The P DeLP language [11], which presented the novel idea of mixing argumen-
tation and possibilistic logic, is based on Possibilistic Gödel Logic or PGL [2,1],
which is able to model both uncertainty and fuzziness and allows for a partial
matching mechanism between fuzzy propositional variables. In DB DeLP, for
simplicity reasons, we will avoid fuzzy propositions, and hence it will be based
on the necessity-valued classical Possibilistic logic [13]. As a consequence, pos-
sibilistic models are defined by possibility distributions on the set of classical
interpretations, and the proof theory for our formulas, written |∼, is defined by
derivation based on the following instance of the Generalized Modus Ponens rule
(GMP): (L0 –≺ L1 ∧ · · · ∧Lk, γ), (L1, β1), . . . , (Lk, βk) � (L0, min(γ, β1, . . . , βk)),
which is a particular instance of the well-known possibilistic resolution rule, and
which provides the non-fuzzy fragment of DB DeLP with a complete calculus for
determining the maximum degree of possibilistic entailment for weighted literals.
Literals in the extensional database are the base case of the derivation sequence;
for every literal Q in EDB with a certainty degree α it holds that (Q, α) can be
derived from the corresponding program.



180 M. Capobianco and G.R. Simari

A query presented to a DB DeLP database is a a ground literal Q which must
be supported by an argument. Deduction in DB DeLP is argumentation-based,
thus a derivation is not enough to endorse a particular fact, and queries must
be supported by arguments. In the following definition instances(IDB) accounts
for any set of ground instances of the rules in IDB, replacing free variables for
ground literals in the usual way.

Definition 3. [Argument]–[Subargument] Let DB = (EDB, IDB, IC) be a de-
feasible database, A ⊆ instances(IDB) is an argument for a goal Q with neces-
sity degree α > 0, denoted as 〈A, Q, α〉, iff:

1. Ψ ∪ A |∼(Q, α),
2. Ψ ∪ A is non contradictory, and
3. there is no A1 ⊂ A such that Ψ ∪ A1 |∼(Q, β), β > 0.

An argument 〈A, Q, α〉 is a subargument of 〈B, R, β〉 iff A ⊆ B.

Arguments in DB DeLP can attack each other; this situation is captured by the
notion of counterargument. An argument 〈A1, Q1, α〉 counter-argues an argu-
ment 〈A2, Q2, β〉 at a literal Q if and only if there is a sub-argument 〈A, Q, γ〉
of 〈A2, Q2, β〉, (called disagreement subargument), such that Q1 and Q are com-
plementary literals. Defeat among arguments is defined combining the counter-
argument relation and a preference criterion “�”. This criterion is defined on
the basis of the necessity measures associated with arguments.

Definition 4. [Preference criterion 	][11] Let 〈A1, Q1, α1〉 be a counterargu-
ment for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉
(denoted 〈A1, Q1, α1〉 	 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case that α1 > α2,
then we will say that 〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉, de-
noted 〈A2, Q2, α2〉 
 〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say that both
arguments are equi-preferred, denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 5. [Defeat][11] Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments
built from a program P. Then 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 counter-
argues argument 〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2)
Either it is true that 〈A1, Q1, α1〉 
 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be
called a proper defeater for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which
case 〈A1, Q1, α1〉 will be called a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [9,20], DB DeLP relies on an exhaustive di-
alectical analysis which allows to determine if a given argument is ultimately
undefeated (or warranted) w.r.t. a program P . An argumentation line start-
ing with an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . . ] that can be thought of as an exchange of arguments between
two parties, a proponent (even-numbered arguments) and an opponent (odd-
numbered arguments).

Given a program P and an argument 〈A0, Q0, α0〉, the set of all acceptable
argumentation lines starting with 〈A0, Q0, α0〉 accounts for a whole dialectical
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analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogs rooted in〈A0, Q0, α0〉), formal-
ized as a dialectical tree and denoted T〈A0,Q0,α0〉. Nodes in a dialectical tree
T〈A0,Q0,α0〉 can be marked as undefeated or defeated nodes (U-nodes and D-
nodes, resp.). A dialectical tree will be marked as an and-or tree: all leaves in
T〈A0,Q0,α0〉 will be marked as U-nodes (as they have no defeaters), and every
inner node is to be marked as a D-node iff it has at least one U-node as a child,
and as a U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted as
valid (or warranted) iff the root of T〈A0,Q0,α0〉 is labeled as a U-node.

Definition 6. [Warrant][11] Given a database DB, and a literal Q, Q is war-
ranted w.r.t. DB iff there exists a warranted argument 〈A, Q, α〉 that can be built
from P.

Example 1. Suppose the system has to solve the query climbs(simba). Then ar-
gument

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}

must be built. This argument has a certainty degree of 0.6, taking into account
the certainty degree of the literals on which the deduction is founded.

Next, the system looks for the defeaters. The only defeater is:

〈A4,∼climbs(simba), 0.6〉,A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

But this argument is in turn defeated by 〈A3, climbs(simba), 0.6〉,

A3 = {(climbs(simba) –≺ species(simba,lion),age(simba,young), 0.75)}

Thus, climbs(simba) is warranted.

5 Optimization of DB DeLP’s Dialectical Process

To obtain faster query processing in the DB DeLP system we integrate pre-
compiled knowledge to avoid the construction of arguments which were already
computed. The approach follows the proposal presented in [6] where the pre-
compiled knowledge component is required to: (1) minimize the number of stored
arguments in the pre-compiled base of arguments (for instance, using one struc-
ture to represent the set of arguments that use the same defeasible rules); and
(2) maintain independence from the observations that may change with new
perception in order to avoid modifying also the pre-compiled knowledge when
new observations are incorporated.

Considering these requirements, we define a database structure called dialec-
tical graph, which will keep a record of all possible arguments in an DB DeLP

database DB (by means of a special structure named potential argument) as well
as the counterargument relation among them. Potential arguments, originally de-
fined in [6], contain non-grounded defeasible rules, thus depending only on the set
of rules in the IDB, i.e., they are independent from the extensional database.
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Fig. 4. Dialectical tree from Example 1

Potential arguments have been can be thought as schemata that sum up
arguments that are obtained using different instances of the same defeasible
rules. Recording every generated argument could result in storing many argu-
ments which are structurally identical, only differing on the constants being used
to build the corresponding derivations. Thus, a potential argument stands for
several arguments which use the same defeasible rules. Attack relations among
potential arguments can be also captured, and in some cases even defeat can
be pre-compiled. In what follows we introduce the formal definitions, adapted
from [6] to fit the DB DeLP system.

Definition 7. [Weighted Potential Argument] Let IDB be an intensional
database. A subset A of IDB is a potential argument for a literal Q with an
upper bound γ for its certainty degree, noted as 〈〈A,Q, γ〉〉 if there exists a non-
contradictory set of weighted literals Φ and an instance A that is obtained by find-
ing an instance for every rule in A, such that 〈A, Q, α〉 is an argument w.r.t. the
database with Φ as its extensional database and IDB as its intensional database
(α ≤ γ) and there is no instance 〈B, Q, β〉 of A such that β > γ.

Definition 7 does not specify how to obtain the set of potential arguments from a
given database. The interested reader may consult [6] for a constructive definition
and its associated algorithm. The calculation of the upper bound γ deserves
special mention, since the algorithm in [6] was devised for a different system,
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without uncertainty management. This element will be used later on to speedup
the extraction of the dialectical tree from the dialectical graph for a given query.
To calculate γ for a potential argument A we simply choose the lower certainty
degree of the defeasible rules present in A.

The nodes of the dialectical graph are the potential arguments. The arcs of
our graph are obtained by calculating the counterargument relation among the
nodes previously obtained. To do this, we extend the concept of counterargu-
ment for potential arguments. A potential argument 〈〈A1,Q1, α〉〉 counter-argues
〈〈A2,Q2, β〉〉 at a literal Q if and only if there is a non-empty potential sub-
argument 〈〈A,Q, γ〉〉 of 〈〈A2,Q2, β〉〉 such that Q1 and Q are contradictory lit-
erals.2 Note that potential counter-arguments may or may not result in a real
conflict between the instances (arguments) associated with the corresponding
potential arguments. In some cases instances of these arguments cannot co-exist
in any scenario (e.g., consider two potential arguments based on contradictory
observations). Now we can finally define the concept of dialectical graph:

Definition 8. [Dialectical Graph] Let DB = (EDB, IDB, IC) be a defeasible
database. The dialectical graph of IDB, denoted as GIDB, is a pair

(PotArgs(IDB), C)

such that:

1. PotArgs(IDB) is the set {〈〈A1,Q1, α1〉〉, . . . , 〈〈Ak,Qk, αk〉〉} of all the poten-
tial arguments that can be built from IDB;

2. C is the counterargument relation over the elements of PotArgs(IDB).

Example 2. Consider the feline database previously presented; its dialectical
graph is composed by:
(feline(X) –≺ species(X,lion),1)

(climbs tree(X) –≺ feline(X),0.65)

(∼climbs tree(X) –≺ species(X,lion),0.70)

(climbs tree(X) –≺ species(X,lion), age(X,young),0.75)

(∼climbs tree(X) –≺ sick(X),0.45)

– 〈〈A1, climbs(X), 0.65〉〉, A1 = {(climbs(X) –≺ feline(X), 0.65)}.
– 〈〈A2, climbs(X), 0.65〉〉, A2 = {(climbs(X) –≺ feline(X), 0.65),

(feline(X) –≺ species(X,lion), 1)}.
– 〈〈A3, climbs(X), 0.75〉〉,

A3 = {(climbs(X) –≺ species(X,lion), age(X,young), 0.75)}.
– 〈〈A4,∼climbs(X), 0.75〉〉, A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}.
– 〈〈A5,∼climbs(X), 0.45〉〉, A5 = {(∼climbs(X) –≺ sick(X), 0.45)}.
– 〈〈A6, feline(X), 1〉〉, A6 = {(feline(X) –≺ species(X,lion), 1)}.
– Dp = {(A2, A4), (A4, A3)}
– Db = {(A1, A4), (A4, A1), (A1, A5), (A5, A1), (A2, A5), (A5, A2), (A3, A5), (A5, A3)}.

2 Note that P (X) and ∼P (X) are contradictory literals even though they are non-
grounded. The same idea is applied to identify contradiction in potential arguments.



184 M. Capobianco and G.R. Simari

A4 A5 A6

A1 A2 A3

�
�

�
�

���

�

�

	











�

�	

��
�

�
�

���
�

Fig. 5. Dialectical graph corresponding to Example 2

The relations Db and Dp can be depicted as shown in Figure 2, where blocking
defeat is indicated with a double headed arrow.

Having defined the dialectical graph we can now use a specific graph traversing
algorithm to extract a particular dialectical tree rooted in a given potential
argument. The facts present in the EDB will be used as evidence to instantiate
the potential arguments in the dialectical graph that depend on the intensional
database IDB. This gives rise to the inference process of the system. This process
starts when a new query is formulated. Consider the dialectical graph in Example
2 and suppose the set of facts in Figure 2 is present in the extensional database.
Lets see how the system works when faced with the query climbs(simba).

First, the set of potential arguments in the dialectical graph is searched to
see if there exists an element whose conclusion can be instantiated to match the
query. It finds 〈〈A2, climbs(X), 0.65〉〉,

A2 = {(climbs(X) –≺ feline(X), 0.65), (feline(X) –≺ species(X,lion), 1)}

A2 can be instantiated to

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}

that has a certainty degree of 0.6 taking into account the certainty degree of the
literals on which the deduction is founded.

Now, to see if climbs(simba) is inferred by the system from the intensional and
the extensional database, we must check whether A2 can sustain its conclusion
when confronted with its counterarguments. Using the links in the dialectical
graph we find one defeater for A2, instantiating potential argument

A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}

to
A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

The argument 〈A4,∼climbs(simba), 0.6〉 is defeated by 〈A3, climbs(simba), 0.6〉
(an instantiation of 〈〈A3, climbs(X), 0.75〉〉). Thus, climbs(simba) is warranted and
we found the same dialectical tree that was found in example 1 with an opti-
mized inference mechanism. Note that the links for the defeaters present in the
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dialectical graph are used to find the conflicts. This makes it easier to recover
the tree from the dialectical graph of the framework.

The deductive database can be subject to constant changes as is the case with
every real world database. The only restriction is that it must not be changed
while a query is being solved. The dialectical graph is not affected by changes in
the extensional database.

We present now a classic example in traditional deductive database systems
based on logic programming, that usually causes problems with the semantics. In
our case the system follows a cautious semantics, not deriving either p(a) or q(a).

Example 3. Consider a deductive database composed by:

– EDB = {(r, 0.6), (s, 0.6)},
– IDB = {(p(X) –≺ ∼q(X), 0.8), (q(X) –≺ ∼p(X), 0.8)}

The dialectical graph GIDB is composed by the two potential arguments:

– 〈〈A1, p(X), , 〉〉 A1 = {(p(X) –≺ ∼q(X), 0.8)}.
– 〈〈A2, q(X), , 〉〉 A1 = {(q(X) –≺ ∼p(X), 0.8)}.

and the defeat relation Db = {(A1, A2), (A2, A1)}.
Suppose the system is faced with the query p(a). The dialectical tree for this

query is formed by argument 〈A1,∼q(a), 0.6〉, A1 = {(p(a) –≺ ∼q(a), 0.6)} that
is in turn defeated by 〈A2, q(a), 0.6〉, A1 = {(q(a) –≺ ∼p(a), 0.6)}.

The situation with query q(a) is analogous and therefore the system cannot
derive p(a) nor q(a).

Note that the DB DeLP system can seamlessly treat this example without se-
mantic or operational problems. Furthermore, there is no need for imposing addi-
tional restrictions, such as requiring predicate stratification. Traditional systems
would enter a loop jumping from one rule to the other. This is prevented in
DB DeLP by the circularity condition imposed on argumentation lines of dialec-
tical trees.3 This condition does not allow the re-introduction of A1 as a defeater
of A2 in the dialectical tree of the previous example.

6 A Worked Example

In this section we present an example to illustrate the practical uses of defeasible
databases. The example is based on a classical benchmark in deductive databases
concerning data on prescriptions, physicians and patients [21]. The system is a
DSS to help employees decide whether a given medication should be sold to
a patient. The relation prescription (pres) means that there is a prescription
for a given drug to be administered to a given patient. Allergic shows known
allergic reactions in patients, physician lists where physicians work, patient lists
insurance company and clinics to which a patient usually goes, and psychiatrist
(psy) establishes that a physician is also a psychiatrist (see Figure 6).
3 This condition was inherited from the original DeLP system, the interested reader

may consult [15].
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patients(patient id,clinic,insurance)

(patients(456,new line,hope), 0.6)
(patients(587,delta,hope), 0.6)
(patients(234,new line,trust), 0.6)
(patients(1211,delta,trust), 0.6)
(patients(254,star,trust), 0.6)
. . .

physicians(phy id,clinic)

(physicians(432,star), 0.7)
(physicians(54,delta), 0.7)
(physicians(672,new line), 0.7)
(physicians(432,delta), 0.7)
. . .

pres(note id,patient id,phy id,drug,text)

(pres(23445,587,432,pen,text1), 0.6)
(pres(23446,587,54,amoxicillin,text2), 0.6)
(pres(23447,587,54,vicodin,text3), 0.6)
(pres(23448,1211,54,morphine,text4), 0.6)
(pres(23449,234,672,diazepam,text5), 0.6)
. . .

allergic(patient id,drug)

(allergic(587,pen), 0.7)
(allergic(1211,pen), 0.6)
(allergic(1211,morphine), 0.6)
. . .

psy(phy id)

(psy(672), 0.8)
(psy(54), 0.8)
. . .

The intensional database is formed by the rules in Figure 6. The first rule
says that a medication should be sold if there is prescription for it. The second
rule says that it should not be sold if the physician is suspended and the third
says that it should not be sold if the patient is allergic. The fourth rule concerns
special drugs that have to be authorized before being sold and for that should
have been prescribed by a psychiatrist. The fifth rule establishes the drug is not
authorized when it is prescribed by a psychiatrist that has been suspended.

The dialectical graph contains arguments A, B, C, D, and E:

– 〈〈A, sell(Patient,Drug), 0.65〉〉,
A = {(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug), 0.65)}.

– 〈〈B, ∼sell(Patient,Drug), 0.75〉〉,
B = {(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),susp(Y), 0.75)}.

– 〈〈C, ∼sell(Patient,Drug), 0.95〉〉,
C = {(∼sell(Patient,Drug) –≺ allergic(Patient,Drug), 0.95)}.

– 〈〈D, authorize pres(Patient,Drug), 0.6〉〉,
D = {(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y), 0.6)}.

– 〈〈E, ∼authorize pres(Patient,Drug), 0.7〉〉,
E = {(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y),

susp(Y), 0.7)}.

(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),0.65)
(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),susp(Y),0.75)
(∼sell(Patient,Drug) –≺ allergic(Patient,Drug),0.95)
(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psychiatrist(Y),0.6)
(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psy(Y),susp(Y),0.7)
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Fig. 6. Dialectical graph for clinical database

Suppose the system is faced with a query for the fact sell(587,vicodin). It first
finds a potential argument that can be instantiated to support this fact, so it
selects A and instantiates it to:
A = {(sell(787,vicodin) –≺ pres(23447,587,54,vicodin,text3), 0.6)}. Using the
dialectical graph we can see that there are two links that connect A with its de-
featers, so we can explore to see if an instance of B or C can be built to attack
argument A. Since this is not the case argument A is the only argument in the
dialectical tree and the answer is yes.

Next, the system is faced with query sell(587,pen). The structure is similar to
the previous case, but in this situation potential argument A is instantiated to

A = {(sell(587,pen) –≺ pres(23445,587,432,pen,text1), 0.6)}

and following the links in the dialectical graph we find defeater B that can be
instantiated to:
B = {(∼sell(587,pen) –≺ allergic(587,pen), 0.7)}. No more defeaters can be
added to this dialectical tree so the answer to sell(587,pen) is no.

Now the query auth pres(234,diazepam) is performed. In this case potential ar-
gument D is instantiated to:
D = {auth pres(234,diazepam) –≺ pres(23449,234,672,diazepem,text5),

psy(672), 0.6)} and no defeater can be found for D thus the answer is yes.
Facts can be added to the database and also new tables can be created. Sup-

pose we add a new table that contains a list of doctors that have been suspended
due to legal issues. This table contains the fact (suspended(672), 0.8). If query
authorize pres(234,diazepam) is re-processed by the system the answer would now
be no, given that a new argument:
E = {(∼auth pres(234,diazepam) –≺ pres(23449,234,672,diazepam,text5),

psychiatrist(672),suspended(672), 0.7)}. can be built by instantiating E, result-
ing in a defeater for D. Thus, D is no longer warranted. Note how new tables and
new facts can be added to the system without rebuilding the dialectical graph.

7 Conclusions and Future Work

In this work, we have defined a multi-agent system which virtually integrates
different databases into a common view. We have also presented a layered ar-
chitectural model that we have designed to develop practical applications for
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reasoning with data from multiple sources. This model provides a novel system
architecture for decision-support systems (DSS) that combines database tech-
nologies with an argumentation based framework.

We have also defined an argumentation-based formalism that integrates un-
certainty management and is specifically tailored for database integration. This
formalism was also provided with an optimization mechanism based on pre-
compiled knowledge. Using this mechanism, the argumentation system can com-
ply with real time requirements needed to manage data and model reasoning
over this data in dynamic environments.

Future work may be done in different directions. First, many important and
interesting issues could be considered in the general framework of database the-
ory or information integration theory, such as how integrity constraints affect
this set-up, how our proposal relates to local/global views, or which connections
could be established with database repairs. Second, we will integrate DB DeLP

with a massive data component to obtain experimental results regarding the
system’s behavior in such trying environment.

A related research line could also be obtained by extending the language of
DB DeLP to use it in practical systems, particularly to implement argumentation-
based active databases and decision support systems backed by large repositories
of data.
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Abstract. The paper presents a study of abstract argumentation the-
ory from the point of view of modal logic. The key thesis upon which
the paper builds is that argumentation frameworks can be studied as
Kripke frames. This simple observation allows us to import a number of
techniques and results from modal logic to argumentation theory, and
opens up new interesting avenues for further research. The paper gives
a glimpse of the sort of techniques that can be imported, discussing
complete calculi for argumentation, adequate model-checking and bisim-
ulation games, and sketches an agenda for future research at the interface
of modal logic and argumentation theory.

Keywords: Argumentation theory, modal logic.

1 Introduction

The paper advocates a perspective on abstract argumentation theory based on
techniques and results borrowed from the field of formal logic and, in particular,
of modal logic [3]. First steps in this line of research have been moved in [12] and
[13]. The present paper recapitulates some of the results presented in those works
and sketches a number of theoretical problems arising at the interface of logic
and argumentation which constitute, in our view, an interesting and challanging
agenda for future research in both disciplines.

The key point of the paper is that standard results in argumentation theory
obtain elegant reformulations within well-investigated modal logics. Once this
link is established a number of techniques (e.g., calculi, logical games), as well as
results related to those techniques (e.g. completeness, adequacy), can be easily
imported from modal logic to argumentation theory.

The paper presupposes some familiarity with both modal logic and abstract
argumentation theory. Proofs are omitted for space reasons. The interested
reader is referred to [12,13].

Outline of the paper. Section 2 starts off by applying a well-known modal logic
to study a first set of notions of argumentation theory. This enables the possibil-
ity of using calculi to derive argumentation-theoretic results such as the Funda-
mental Lemma [7]. Along the same line, Section 3 tackles the formalization of the
notion of grounded extension within the modal μ-calculus. In Section 4 semantic
games are studied for the logic introduced in Section 2 which provide a version of
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Table 1. Basic notions of argumentation theory (X denotes a set of arguments)

cA is the characteristic function of A iff cA : 2A −→ 2A s.t.

cA(X) = {a | ∀b : [b � a ⇒ ∃c ∈ X : c � b]}

X is acceptable w.r.t. Y in A iff X ⊆ cA(Y )

X is conflict-free in A iff � ∃a, b ∈ X s.t. a � b

X is admissible in A iff X is conflict-free and X ⊆ cA(X)

iff X is a post-fixpoint of cA

X is a complete extension of A iff X is conflict-free and X = cA(X)

(X is a conflict-free fixpoint of cA)

X is a stable extension of A iff X is a complete extension of A

and ∀b �∈ X,∃a ∈ X : a � b

iff X = {a ∈ A |� ∃b ∈ X : b � a}

X is the grounded extension of A iff X is the minimal complete extension of A

iff X is the least fixpoint of cA

X is a preferred extension of A iff X is a maximal complete extension of A

games for argumentation by means of model-checking games. Section 5 tackles the
question—not yet addressed in the literature—of when two arguments, or two ar-
gumentation frameworks, are equivalent from the point of view of argumentation
theory. For this purpose the model-theoretic notion of bisimulation is introduced
and bisimulation games are presented as a procedural method to check the ‘be-
havioral equivalence’ of two argumentation frameworks. Section 6 sketches some
of the possible lines of research that we consider worth pursuing by applying logic-
based methods to abstract argumentation. Section 7 briefly concludes.

2 Arguments in Modal Disguise

The section moves the first steps towards looking at argumentation frameworks
as structures upon which to interpret modal languages.

2.1 Argumentation Frameworks

Let us start with the basic structures of argumentation theory [7].

Definition 1 (Argumentation frameworks). An argumentation framework
is a relational structure A = (A, �) where A is a non-empty set of arguments,
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and �⊆ A2 is a so-called ‘attack’ relation on A. A pointed argumentation frame-
work is a pair (A, a) with a ∈ A. The set of all argumentation frameworks is
called A.

The intuitive reading of “a � b” is that argument a attacks argument b. Doing
abstract argumentation theory means, essentially, to study specific properties
of subsets of the set of arguments A in a given A. For space reasons the paper
cannot introduce argumentation theory in an extensive way but, to make it as
most self-contained as possible, the main argumentation-theoretic notions from
[7] have been recapitulated in Table 1. As such notions are formalized along the
paper, their intuitive reading will also be provided.

The paper is based on the simple idea of viewing argumentation frameworks
as the structures known in modal logic as Kripke frames, that is, structures
(S, R) where S is taken to be a non-empty set of states, and R a binary relation
on elements of S [3] . In essence, the paper studies what modal logic can say
about argumentation frameworks when S is set to be A, i.e., the modal states
are taken to be arguments, and R is set to be the inverse of the attack relation,
that is, relation �

−1. The entire paper and all its results hinge on this simple
assumptions.

The reader might ask himself why R is taken to be the inverse �
−1 of the

attack relation instead of the attack relation � itself. This will become clear as
the paper develops. However, a simple inspection of Table 1 should already show
that all the key argumentation-theoretic notions can be defined in terms of the
characteristic function, and that the characteristic function is defined by taking,
for any argument a in the given input X , the set of attackers b of a—that is, the
set of arguments by which a is attacked—for which there always exists another
attacker c—that is, an argument by which the attacker of a is attacked. So,
the characteristic function looks, for any argument, at whether its attackers are
attacked. To put it in modal logic terms, the characteristic function is defined
by looking at the tree-unraveling of �

−1 at each point a, and not at the tree-
unraveling of �. We will come back to this issue in Section 3.1, now we proceed
to the use of argumentation frameworks in a modal logic setting.

2.2 Argumentation Models

If an argumentation framework can be viewed as a Kripke frame, then an ar-
gumentation framework plus a function assigning names from a set P to sets of
arguments can be viewed as a Kripke model [3].

Definition 2 (Argumentation models). Let P be a set of propositional atoms.
An argumentation model M = (A, I) is a structure such that: A = (A, �) is an
argumentation framework; I : P −→ 2A is an assignment from P to subsets of
A. The set of all argumentation models is called M. A pointed argumentation
model is a pair (M, a) where M is an argumentation model and a an argument
from A.

Argumentation models are nothing but argumentation frames together with a
way of ‘naming’ sets of arguments or, to put it otherwise, of ‘labeling’ arguments.
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The fact that an argument a belongs to I(p) in a given modelM, which in logical
notation reads (A, I), a |= p, can be interpreted as stating that “argument a has
property p” , or that “p is true of a”. By substituting p with a Boolean compound
ϕ (e.g., ϕ := p ∧ q) we can say that “a belongs to both the sets called p and q”,
and the same can be done for all other Boolean connectives.

This much as to Boolean properties of arguments. But what about statements
of the sort: “argument a is attacked by an argument in a set ϕ”; “argument a
is defended by the set ϕ”, or, “ϕ attacks an attacker of argument a”? These are
modal statements, and in order to express them, it suffices to introduce a ded-
icated modal operator 〈�〉 whose intuitive reading is “there exists an attacking
argument such that”. To this we turn in the next section.

2.3 Argumentation and Logic K∀

This section introduces logic K∀, an extension of the minimal modal logic K with
universal modality. The section shows how such a simple and standard modal
logic is already able of capturing quite a few argumentation-theoretic notions.

Language. The language of K∀ is a standard modal language with two modal-
ities: 〈�〉 and 〈∀〉, i.e., the universal modality. It is built on the set of atoms P
by the following BNF:

LK∀
: ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | 〈�〉ϕ | 〈∀〉ϕ

where p ranges over P. The other standard boolean {�,∨,→} and modal {[�
], [∀]} connectives are defined as usual.

Semantics

Definition 3 (Satisfaction). Let ϕ ∈ LK∀
. The satisfaction of ϕ by a pointed

argumentation model (M, a) is inductively defined as follows (Boolean clauses
are omitted):

M, a |= 〈�〉ϕ iff ∃b ∈ A : (a, b) ∈ �
−1 and M, b |= ϕ

M, a |= 〈∀〉ϕ iff ∃b ∈ A :M, b |= ϕ

As usual, ϕ is valid in an argumentation modelM iff it is satisfied in all pointed
models of M, i.e., M |= ϕ. The truth-set of a formula ϕ is denoted |ϕ|M.

Logic K∀ is therefore endowed with modal operators of the type “there exists an
argument attacking the current one such that”, i.e., 〈�〉, and “there exists an
argument such that”, i.e., 〈∀〉, together with their duals. Given an argumentation
modelM we can thereby express statements such as the ones adverted to above:
“a is attacked by an argument in a set called ϕ” corresponds to 〈�〉ϕ being true
in the pointed model (M, a) and “a is defended by the set ϕ” corresponds to
〈�〉〈�〉ϕ being true in the pointed model (M, a).

On the ground of this semantics, it becomes already clear that logic K∀ is
expressive enough to capture several basic notions of argumentation theory such
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as: conflict freeness, acceptability, admissibility, complete extensions, stable ex-
tensions.

Acc(ϕ, ψ) := [∀](ϕ→ [�]〈�〉ψ) (1)
CFree(ϕ) := [∀](ϕ→ [�]¬ϕ) (2)
Adm(ϕ) := [∀](ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ)) (3)

Compl(ϕ) := [∀]((ϕ→ [�]¬ϕ) ∧ (ϕ↔ [�]〈�〉ϕ)) (4)
Stable(ϕ) := [∀](ϕ↔ [�]¬ϕ) (5)

Intuitively, a set of arguments ϕ is acceptable with respect to the set of arguments
ψ if and only all ϕ-arguments are such that for all their attackers there exists
a defender in ψ (Formula 1). A set of arguments ϕ is conflict free if and only
if all ϕ-arguments are such that none of their attackers is in ϕ (Formula 2). A
set of arguments ϕ is admissible if and only if it is conflict free and acceptable
with respect to itself (Formula 3). A set ϕ is a complete extension if and only if
it is conflict free and it is equivalent to the set of arguments all the attackers of
which are attacked by some ϕ-argument (Formula 4). Finally, a set ϕ is a stable
extension if and only if it is equivalent to the set of arguments whose attackers
are not in ϕ (Formula 5). The adequacy of these definitions with respect to the
ones in Table 1 is easily checked.

Axiomatics. Logic K∀ is axiomatized as follows, where i ∈ {�, ∀}:

(Prop) propositional tautologies
(K) [i](ϕ1 → ϕ2)→ ([i]ϕ1 → [i]ϕ2)
(T) [∀]ϕ→ ϕ

(4) [∀]ϕ→ [∀][∀]ϕ
(5) ¬[∀]ϕ→ [∀]¬[∀]ϕ

(Incl) [∀]ϕ→ [i]ϕ
(Dual) 〈i〉ϕ↔ ¬[i]¬ϕ

The axiom system combines the axioms of logic K for the [�] operator, the
axioms of logic S5 for the universal operator [∀], and the interaction axiom Incl.
It can be proven that this axiomatics is sound and strongly complete for the
class A of argumentation frames [3, Ch. 7].

The fact that K∀ is axiomatized by the axioms and rules above gives us a
calculus by means of which we can prove theorems of abstract argumentation
theory in a purely formal manner. A notable example is the following generalized
version of the fundamental lemma from [7], which states that if ϕ is admissible
and both ψ and ξ are acceptable with respect to it, then also ψ ∨ ξ is admissible
and ξ is acceptable with respect to ϕ ∨ ψ.

Theorem 1 (Fundamental Lemma [7]). The following formula is a theorem
of K∀:

Adm(ϕ) ∧Acc(ψ ∨ ξ, ϕ)→ Adm(ϕ ∨ ψ) ∧ Acc(ξ, ϕ ∨ ψ) (6)
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The theorem could be proven semantically by then calling in completeness. How-
ever, to give a detailed example of an application of the above axiomatics, a
formal derivation of the theorem is provided in the appendix.

Other examples of theorems of [7] that could be casted in this logic are, for
instance: Stable(ϕ)→ Adm(ϕ) and Stable(ϕ)→ Compl(ϕ).

3 Modal Fixpoints

The present section shows what kind of modal machinery is needed to capture
the notion of grounded extension left aside in Section 2. In [7], the grounded
extension is defined as the smallest fixpoint of the characteristic function of an
argumentation framework (see Table 1).

3.1 Characteristic Functions in Modal Logic

Each argumentation framework A = (A, �) determines a characteristic function
cA : 2A −→ 2A such that for any set of arguments X , cA(X) yields the set of
arguments in A which are acceptable with respect to X , i.e., {a ∈ A | ∀b ∈ A :
[b � a ⇒ ∃c ∈ X : c � b]}. Does logic K∀ have a syntactic counterpart of the
characteristic function? The answer turns out to be yes.

Let L[�]〈�〉 be the language defined by the following BNF:

L[�]〈�〉 : ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | [�]〈�〉ϕ

where p belongs to the set of atoms P. Language L[�]〈�〉 is the fragment of
LK∀

containing only the compounded modal operator [�]〈�〉 or, also, simply the
fragment of LK (i.e., f LK∀

without universal modality) containing only the [�]〈�
〉-operator. Let A+ = (2A,∩,−, ∅, cA) be the power set algebra on 2A extended
with operator cA, and consider the term algebra terL[�]〈�〉 = (L[�]〈�〉,∧,¬,⊥, [�
]〈�〉). Finally, let I∗ : L[�]〈�〉 −→ 2A be the inductive extension of a valuation
function I : P −→ 2A according to the semantics given in Definition 3. We can
prove the following result.

Theorem 2 (cA vs. [�]〈�〉). Let M = (A, I) be an argumentation model.
Function I∗ is a homomorphism from terL[�]〈�〉 to A+.

In other words, Theorem 2 shows that the complex modal operator [�]〈�〉, under
the semantics provided in Definition 3, behaves exactly like the characteristic
function of the argumentation frameworks on which the argumentation models
are built. To put it yet otherwise, formulae of the form [�]〈�〉ϕ denote the value
of the characteristic function applied to the set ϕ of arguments. Notice also that
from Theorem 2 the adequacy of Formulae 1-5 with respect to the definitions in
Table 1 follows straightforwardly.

Characteristic functions are known to be monotonic [7] hence, by Theorem 2,
we get that [�]〈�〉 denotes a monotonic function and therefore, by the Knaster-
Tarski theorem1 we have that there always exist a greatest and a least [�]〈�〉-
fixpoint. From a logical point of view this means that, in order to be able to
1 We refer the interested reader to [5].
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express the grounded extension, it suffices to add to the K fragment of K∀ a
least fixpoint operator. This takes us to the realm of μ-calculi.

3.2 Argumentation and the μ-Calculus

Language. To add the least fixpoint operator μ to logic K we first define lan-
guage LKμ

via the following BNF:

LKμ

: ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | 〈�〉ϕ | μp.ϕ(p)

where p ranges over P and ϕ(p) indicates that p occurs free in ϕ (i.e., it is not
bounded by fixpoint operators) and under an even number of negations.2 In
general, the notation ϕ(ψ) stands for ψ occurs in ϕ. The usual definitions for
Boolean and modal operators can be applied. Intuitively, μp.ϕ(p) denotes the
smallest formula p such that p ↔ ϕ(p). This intuition is made precise in the
semantics of LKμ

.

Semantics

Definition 4 (Satisfaction). Let ϕ ∈ LKμ

. The satisfaction of ϕ by a pointed
model (M, a), with M = (A, I), is inductively defined as follows (Boolean
clauses, as well as the clause for 〈�〉, are as in Definition 3):

M, a |= μp.ϕ(p) iff a ∈
⋂
{X ∈ 2A | |ϕ|M[p:=X] ⊆ X}

where |ϕ|M[p:=X] denotes the truth-set of ϕ once I(p) is set to be X. As usual,
we say that: ϕ is valid in an argumentation model M iff it is satisfied in all
pointed models of M, i.e., M |= ϕ; ϕ is valid in a class M of argumentation
models iff it is valid in all its models, i.e., M |= ϕ.

We have now all the logical machinery in place to express the notion of grounded
extension. Set ϕ(p) := [�]〈�〉p, that is, take ϕ(p) to be the modal version [�]〈�〉
of the characteristic function, and apply it to formula p. What we obtain is a
modal formula expressing the least fixpoint of a characteristic function, that is,
the grounded extension:

Grounded := μp.[�]〈�〉p (7)

Notice that, unlike the notions formalized in Formulae 1-5, the grounded ex-
tension of a framework is always unique and does not depend on the particular
labeling of a given model.

We refrain here from providing a sound and complete axiomatization of μ-
calculus. The interested reader is referred to [19]. However, just like we did for
logic K∀ we give now a couple of examples of the kind of argumentation-theoretic
results formalizable in Kμ. Well-known theorems of argumentation theory are
provable formulae of the μ-calculus.
2 This syntactic restriction guarantees that every formula ϕ(p) defines a monotonic

set transformation.
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Theorem 3 (The grounded extension is conflict-free). The following for-
mula is a theorem of Kμ:

Grounded → [�]¬Grounded (8)

We can also study complexity results from this modal perspective and, unsur-
prisingly, the results are in accordance with complexity studies in argumentation
theory [8], although the proofs take different routes.

Theorem 4 (Model-checking grounded). Let A be an argumentation frame-
work. It can be decided in polynomial time whether an argument a belongs to the
grounded extension of A, that is, whether A, a |= Grounded.

4 Dialogue Games and Logic Games

The proof-theory of abstract argumentation is commonly given in terms of di-
alogue games [16]. The present section introduces a new game-theoretic proof
procedure for argumentation theory based on model-checking games. In model-
checking games, a proponent or verifier (∃ve) tries to prove that a given formula
ϕ holds in a point a of a model M, while an opponent or falsifier (∀dam) tries
to disprove it. The present section deals with the model-checking game for K∀.
For the Kμ-variant of this game we refer the reader to [18].

4.1 Model-Checking Game for K∀

A model-checking game is a graph game, that is, a game played by two agents
on a directed graph, where each node—called position—is labelled by the player
that is supposed to move next. The structure of the graph determines which are
the admissible moves at any given position. If a player has to move in a certain
position but there are no available moves, then it loses and its opponent wins.
In general, graph games might have infinite paths, but this is not the case in the
game we are going to introduce. A match of a graph game is then just the set
of positions visited during play, that is, a complete path through the graph.

Definition 5 (K∀-model-checking game). Let ϕ ∈ LK∀
, and M be an argu-

mentation model. The model-checking game C(ϕ,M) is defined by the following
items. Players: The set of players is {∃, ∀}. An element from {∃, ∀} will be
denoted P and its opponent P . Game form: The game form of C(ϕ,M) is
defined by the board game in Table 2. Winning conditions: Player P wins if
and only if P has to play in a position with no available moves. Instantiation:
The instance of C(ϕ,M) with starting point (ϕ, a) is denoted C(ϕ,M)@(ϕ, a).

The important thing to notice is that positions of the game are pairs of a formula
and an argument, and that the type of formula in the position determines which
player has to play: ∃ if the formula is a disjunction, a diamond, a false atom or
⊥, and ∀ in the remaining cases.3

We now define what it means to have a winning strategy and to be in a
winning position in this type of games.
3 Notice that positions use formulae in positive normal form.
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Table 2. Rules of the model-checking game for K∀

Position Turn Available moves

(ϕ1 ∨ ϕ2, a) ∃ {(ϕ1, a), (ϕ2, a)}

(ϕ1 ∧ ϕ2, a) ∀ {(ϕ1, a), (ϕ2, a)}

(〈�〉ϕ, a) ∃ {(ϕ, b) | (a, b) ∈�
−1}

([�]ϕ, a) ∀ {(ϕ, b) | (a, b) ∈�
−1}

(〈∀〉ϕ, a) ∃ {(ϕ, b) | b ∈ A}

([∀]ϕ, a) ∀ {(ϕ, b) | b ∈ A}

(⊥, a) ∃ ∅

(, a) ∀ ∅

(p, a) & a �∈ I(p) ∃ ∅

(p, a) & a ∈ I(p) ∀ ∅

(¬p, a) & a ∈ I(p) ∃ ∅

(¬p, a) & a �∈ I(p) ∀ ∅

Definition 6 (Winning strategies and positions). A strategy for player
P in C(ϕ,M)@(ϕ, a) is a function telling P what to do in any match played
from position (ϕ, a). Such a strategy is winning for P if and only if, in any
match played according to the strategy, P wins. A position (ϕ, a) in C(ϕ,M) is
winning for P if and only if P has a winning strategy in C(ϕ,M)@(ϕ, a). The
set of winning positions of C(ϕ,M) is denoted WinP (C(ϕ,M)).

By Definitions 4.2 and 6 it follows that the model-checking game is a two-players
zero-sum game with perfect information. It is known that such games are deter-
mined, that is, each match has a winner [20].

These games can be proven adequate. This means that if ∃ve has a winning
strategy then the formula defining the game is true at the point of instantiation
and, vice versa, that if a formula is true at a point in a model, then ∃ve has a
winning strategy in the corresponding game instantiated at that point.

Theorem 5 (Adequacy). Let ϕ ∈ LK∀
, and let M = (A, I) be an argumenta-

tion model. Then, for all a ∈ A:

(ϕ, a) ∈Win∃(C(ϕ,M))⇐⇒M, a |= ϕ.

4.2 Games for Model-Checking Extensions

The next example illustrates a model-checking game for stable extensions run
on the so-called Nixon diamond [16].
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∃ wins!

∀ wins!

∃ wins!

∀

∀

∃ wins!

∃ ∃

∀

∀

∀

a

b
∀ wins!

∃ wins!

∀

∀

∀

∃∃

∀

∀

Labeled 

Nixon Diamond

p

(p ∧ [∀](p ↔ ¬〈�〉p), a)

([∀](p ↔ ¬〈�〉p), a)

(p ↔ ¬〈�〉p, a) (p ↔ ¬〈�〉p, b)

(¬p ∨ ¬〈�〉p, a) (p ∨ 〈�〉p, a)

(¬〈�〉p, a) (¬p, a)

(p, a)

(p, b)

Fig. 1. Game for stable extensions in the 2-cycle with labeling (valuation) function

Example 1 (Model-checking the Nixon diamond). LetA = ({a, b}, {(a, b), (b, a)})
be an argumentation framework consisting of two arguments a and b attacking
each other (i.e., the Nixon diamond), and consider the labeling I assigning p to
a and ¬p to b (top right corner of Figure 1). We now want to run an evaluation
game for checking whether a belongs to a stable extension corresponding to
the truth-set of p. Such game is the game C(p ∧ Stable(p), (A, I)) initialized
at position (p ∧ Stable(p), a). That is, spelling out the definition of Stable(p):
C(p ∧ [∀](p ↔ ¬〈�〉p))@(p ∧ [∀](p ↔ ¬〈�〉p), a). Such a game, played according
to the rules in Definitions 4.2 and 6, gives rise to the tree in Figure 1.

In general, model-checking games provide a proof procedure for checking whether
an argument belongs to a certain extension given an argumentation model. What
must be noted is that the structure of such proof procedure is invariant, and the
different games are obtained simply by choosing the right formula to be checked
(Table 3).4 This feature confers a high systematic flavor to this sort of games.

Now the natural question arises of what the precise relationship is between
model-checking games and the sort of games studied in argumentation, some-
times called dialogue games [16,14]. The difference is as follows.

In model-checking games you are given a modelM = (A, I), a formula ϕ and
an argument a, and ∃ve is asked to prove that M, a |= ϕ. In dialogue games,
the check appointed to ∃ve is inherently more complex since the input consists
only of an argumentation framework A, a formula ϕ and an argument a. ∃ve is
then asked to prove one of the two following things:

– that there exists a labeling function I such that (A, I), a |= ϕ (the so-called
credulous semantics for ϕ);

– that for all the labeling functions I, (A, I), a |= ϕ (the so-called skeptical
semantics for ϕ).

4 Note that the game for checking grounded extensions is, obviously, the model-
checking game for Kμ [18].
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Table 3. Games for model-checking extensions in argumentation models

Adm : E(ϕ ∧ Adm(ϕ),M)@(ϕ ∧ Adm(ϕ), a)

Complete : E(ϕ ∧ Complete(ϕ),M)@(ϕ ∧ Complete(ϕ), a)

Stable : E(ϕ ∧ Stable(ϕ)),M)@(ϕ ∧ Stable(ϕ), a)

Grounded : E(Grounded ,M)@(Grounded , a)

These are not a model-checking problems, but satisfiability problems in a pointed
frame [3] which, in turn, are essentially model-checking problems in some frag-
ment of monadic second-order logic. That is the problem of checking, given a
frame A and an argument a, whether the following is the case:

A |= ∃p1, . . . , pnSTx(ϕ)[a]
A |= ∀p1, . . . , pnSTx(ϕ)[a]

where p1, . . . , pn are the atoms occurring in ϕ and STx(ϕ)[a] is the standard
translation of ϕ realized in state a.5

To conclude, we might say that the games defined in Section 4.1 provide a
proof procedure for a reasoning task which is computationally simpler than the
one tackled by standard dialogue games. It should be noted, however, that this
is no intrinsic limitation to the logic-based approach advocated in the present
paper. Model-checking games for monadic second-order logic (or rather for ap-
propriate fragments of it) would be able to perform the sort of tasks demanded
in dialogue games and do that in the same systematic manner of modal model-
checking games. We will come back to this issue in Section 6.

5 Equivalent Arguments

Since abstract argumentation neglects the internal structure of arguments, the
natural question arises of when two arguments can be said to be equivalent. Such
a notion of equivalence will necessarily be of a structural nature. The study of
a notion of equivalence for argumentation has not received attention yet by
the argumentation theory community, except for one recent notable exception
[15], which defines a notion of strong equivalence for argumentation frameworks,
borrowed from the analogous notion developed in logic programming.

Modal logic offers a readily available notion of structural equivalence, the
notion of bisimulation (with all its variants) [3,11]. This section sketches the use
of bisimulation for argumentation theoretic purposes. To illustrate the issue we
use a simple motivating example depicted in Figure 2. We have two labelled
argumentation frameworks which both contain an argument labeled p which is
attacked by some arguments labelled q. Now the question would be: are the two
p-arguments equivalent as far as abstract argumentation theory is concerned?
The answer is yes, and the next sections explain why.
5 For the definition of the standard translation we refer the reader to [3].
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M M′

p

q

p

q q

Fig. 2. Two (totally) bisimilar arguments (c and y) in two argumentation models

5.1 Bisimilar Arguments

t is well-known that logic Kμ is invariant under bisimulation [18]. In the present
section we will focus on the specific notion of bisimulation which is tailored to
K∀, also called total bisimulation.

Definition 7 (Bisimulation). Let M = (A, �, I) and M′ = (A′, �′, I ′) be
two argumentation models. A bisimulation between M and M′ is a non-empty
relation Z ⊆ A × A′ such that for any a, a′ s.t. aZa′: Atom: a and a′ are
propositionally equivalent; Zig: if a �

−1 b for some b ∈ A, then a′
�

−1 lb′ for
some b′ ∈ A′ and bZb′; Zag: if a′

�
−1 b′ for some b′ ∈ A then a �

−1 b for
some i

¯
nA and aZa′. A total bisimulation is a bisimulation Z ⊆ A × A′ such

that its left projection covers A and its right projection covers A′. When a total
bisimulation exists between M and M′ we write (M, a) � (M′, a′).

Now, since logic K∀ is invariant under total bisimulation [3] and logic Kμ under
bisimulation [11], we obtain a natural notion of equivalence of arguments, which
is weaker than the notion of isomorphism of argumentation frameworks. If two
arguments are equivalent in this perspective, then they are equivalent from the
point of view of argumentation theory, as far as the notions expressible in those
logics are concerned. In particular, we obtain the following simple theorem.

Theorem 6 (Bisimilar arguments). Let (M, a) and (M′, a′) be two pointed
models, and let Z be a total bisimulation between M and M′. It holds that:

M, a |= Adm(ϕ) ∧ ϕ⇐⇒M′, a′ |= Adm(ϕ) ∧ ϕ

M, a |= CFree(ϕ) ∧ ϕ⇐⇒M′, a′ |= CFree(ϕ) ∧ ϕ

M, a |= Compl (ϕ) ∧ ϕ⇐⇒M′, a′ |= Compl (ϕ) ∧ ϕ

M, a |= Stable(ϕ) ∧ ϕ⇐⇒M′, a′ |= Stable(ϕ) ∧ ϕ

M, a |= Grounded ⇐⇒M′, a′ |= Grounded

In other words, Theorem 6 states that if two arguments are totally bisimilar, then
they are indistinguishable from the point of view of abstract argumentation in
the sense that the first belongs to a given conflict-free, or admissible set ϕ if and
only if also the second does, and the first belongs to a given stable, complete
extension ϕ, or to the grounded extension, if and only if also the second does.
Arguments c and y in Figure 2 are totally bisimilar arguments.
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Table 4. Rules of the bisimulation game

Position Available moves

((M, a)(M′, a′)) {((M, a)(M′, b′)) | ∃b′ ∈ A′ : a′
� b′}

∪{((M, b)(M′, a′)) | ∃b ∈ A : a � b}

∪{((M, a)(M′, b′)) | ∃b′ ∈ A′}

∪{((M, b)(M′, a′)) | ∃b ∈ A}

5.2 Total Bisimulation Games

We can associate a game to Definition 7. Such game checks whether two given
pointed models (M, a) and (M′, a′) are bisimular or not. The game is played
by two players: Spoiler, which tries to show that the two given pointed models
are not bisimilar, and Duplicator which pursues the opposite goal. A match is
started by S, then D responds, and so on. If and only if D moves to a position
where the two pointed models are not propositionally equivalent, or if it cannot
move any more, S wins.

Definition 8 (Total bisimulation game). Take two pointed models M and
M′. The total bisimulation game B(M,M′) is defined by the following items.
Players: The set of players is {D,S}. An element from {D,S} will be denoted
P and its opponent P . Game form: The game form of B(M,M′) is defined
by Table 4. Turn function: If the round is even S plays, if it is odd D plays.
Winning conditions: S wins if and only if either D has moved to a position
((M, a)(M′, a′)) where a and a′ do not satisfy the same labels, or D has no
available moves. Otherwise D wins. Instantiation: The instance of B(M,M′)
with starting position ((M, a)(M′, a′)) is denoted B(M,M′)@(a, a′).

So, as we might expect, positions in a (total) bisimulation game are pairs of
pointed models, that is, the pointed models that D tries to show are bisimilar.
It might also be instructive to notice that such a game can have infinite matches,
which, according to Definition 8, are won by D.

From Definition 8 we obtain the following notions of winning strategies and
winning positions.

Definition 9 (Winning strategies and positions). A strategy for player P
in B(M,M′)@(a, a′) is a function telling P what to do in any match played
from position (a, a′). Such a strategy is winning for P if and only if, in any
match played according to the strategy, P wins. A position ((M, a)(M′, a′))
in B(M,M′) is winning for P if and only if P has a winning strategy in
B(M,M′)@(a, a′). The set of all winning positions of game B(M,M′) for P
is denoted by WinP (B(M,M′)).

We have the following adequacy theorem. The proof is standard and the reader
is referred to [11].
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(M, c)(M′, y)
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Fig. 3. Part of the total bisimulation game played on the models in Figure 2

Theorem 7 (Adequacy). Take (M, a) and (M′, a′) to be two argumentation
models. It holds that:

((M, a)(M′, a′)) ∈WinD(B(M,M′))⇐⇒ (M, a) � (M′, a′).

In words, D has a winning strategy in the game B(M,M′)@(a, a′) if and only
ifM, a and M′, a′ are totally bisimilar. An example of such a game follows.

Example 2 (A total bisimulation game). Let us play a total bisimulation game on
the two modelsM andM′ given in Figure 2. A total bisimulation connects c with
y, and a and b with x. Part of the extensive bisimulation game B(M,M′)@(c, y)
is depicted in Figure 3. Notice that D wins on those infinite paths where it can
always duplicate S’s moves. On the other hand, it looses for instance when it
replies to one of S’s moves ((M, b)(M′, x)) by moving in the second model to
argument y, which is labelled p while b is not.

6 A Research Agenda between Logic and Argumentation

By recapitulating results presented in [12,13], the paper has given a glimpse
of the sort of results that can be obtained about abstract argumentation the-
ory by resorting to quite standard methods and techniques of modal logic. The
present section proposes an agenda for this line of research which, in the author’s
view, is of definite interest for a deeper mathematical understanding of abstract
argumentation theory.
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6.1 Other Extension-Based Semantics in Modal Logic

The paper has left aside one key notion of argumentation: preferred extensions.
In [7], preferred extensions are defined as maximal, with respect to set-inclusion,
complete extensions. The natural question is whether the logics we have intro-
duced are expressive enough to capture also this notion.

Technically, this means looking for a formula ϕ(p) such that for any pointed
model M = ((A, I), a) M, a |= ϕ(p) iff a ∈ |p|M and |p|M is a preferred ex-
tension of A, where p ∈ P. It is easy to see that such ϕ(p) can be expressed in
monadic second-order logic with a Π1

1 quantification:

p ∧ STx(Compl (p)) ∧ ∀q(STx(Compl (q))→ ¬(p � q)) (9)

where STx(Compl (p)) denotes the standard translation [3] of the K∀ formula
for complete extensions (Formula 4) and q " p means just that |q|M ⊆ |p|M,
i.e., the truth set of q is included in the truth-set of p. The same question of
representability within (possibly extended) modal languages can be posed for
other types of extensions, such as the semi-stable one [4].

6.2 A Unified Game-Theoretic Proof-Theory for Argumentation

Section 4.2 has shown how model-checking games can be used to provide a form
of game-theoretic proof theory to check the membership of a given argument to
a given extension. Although Section 4.2 has then pointed out how these games
differ from the standard dialogue games studied in argumentation theory, it is our
thesis that a suitable extension of the expressivity of the modal languages used
in this paper can offer a unified game-theoretic proof-theory for argumentation.

For instance, the question whether there exists, given a pointed frame (A, a),
a stable extension of A containing a could be phrased as the model checking
of a formula of the extension of K∀ with second order quantification limited to
alternation depth 1:6

A, a |= ∃p.(Stable(p) ∧ p).

The prospect of an extension of this type is to provide each argumentation-
theoretic notion with a game-theoretic proof-theory (both for its skepical and
credulous versions) which would directly follow from the model-checking game of
the underlying logic. We would thereby obtain also games for extensions which
have not yet found a game-theoretic proof-theory in the literature on abstract
argumentation theory such as, for instance, skeptical and credulous stable ex-
tensions, or skeptical preferred extensions.

6.3 Equivalence in Argumentation

Another original application of modal logic which could open up new venues for
research is the study of invariance, or equivalence, in argumentation theory. Sec-
tion 5 has shown how to tackle the question of when two labelled argumentation
6 A well-known logical language for this purpose could be second order propositional

modal logic [9].
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frameworks can be considered equivalent, by looking at the existence of a (total)
bisimulation relation between them.

The key observation in this case is that, depending on the features we con-
sider relevant for the comparison of two argumentation frameworks, different
modal languages can be chosen, which come with their characteristic notion of
bisimulation, i.e., structural equivalence. For instance, if we were to compare
two argumentation frameworks by considering, as a relevant property for the
comparison, also the number of attackers, then the two arguments considered
equivalent in Figure 2 would cease to be such, as the first one has two attackers,
while the second has only one.

The modal language with the sort of expressivity necessary to ‘count’ the
number of attackers of a given argument is called graded modal logic [10]. In
such a language it becomes possible to say that:

A, a |= ♦2�

that is, a has at least two attackers. Going back to the example given in Figure
2, while argument c in the first framework satisfies ♦2�, argument y in the
second does not. In modal logic terms this implies that c and y are not bisimilar
with respect to the language of graded modal logic or, put it otherwise, they
are not graded bisimilar [17]. So, mapping all the relevant modal languages for
argumentation theory would automatically provide a whole landscape of different
equivalence notions which can be used to compare argumentation frameworks.

6.4 Argumentation Dynamics

The whole of abstract argumentation theory is built on structures—the argu-
mentation frameworks—which are essentially static. To date, no theory has yet
been systematically developed about how to modify argumentation frameworks
by operations of addition and deletion of arguments and links.

The link with modal logic could offer again a wealth of techniques, stemming
from dynamic logic [6,2], which might prove themselves useful for the develop-
ment of such a theory of argumentation dynamics. The possibly simplest example
in this line is sabotage modal logic [1], where formulae of the type:

(A, I), a |= 
ϕ

express, in an argumentation-theoretic reading, that after any possible removal
of an attack relation, argument a still belongs to the truth-set of ϕ.

7 Conclusions

The paper has shown how rather standard modal logics—the extensions of K
with universal modality and least fixpoint operator—can be applied to argu-
mentation theory in an almost direct way. Both these logics come equipped with
complete calculi, in which, therefore, theorems from argumentation theory can
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be formally derived, with model-checking games, which can be used to provide a
game-theoretic proof-theory on argumentation models, and with characteristic
notions of structural equivalence (bisimulation) which can be used to provide a
formalization of notions of equivalence for argumentation frameworks.

We have concluded by pointing at several directions for future work, ranging
from the problem of the formalization of preferred extensions, to second-order
model checking games, to the study of argumentation equivalence via bisimula-
tion, and to argumentation dynamics.
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Appendix: A Formal Proof of the Fundamental Lemma

1. ϕ → ϕ ∨ ψ Prop

2. 〈�〉ϕ → 〈�〉(ϕ ∨ ψ) 1, K − derived rule

3. [�]〈�〉ϕ → [�]〈�〉(ϕ ∨ ψ) 2, K − derived rule

4. (α ∨ β → γ) → (β → γ) Prop

5. (ψ ∨ ξ → [�]〈�〉ϕ) → (ξ → [�]〈�〉ϕ) 4, instance

6. (ψ ∨ ξ → [�]〈�〉ϕ) → (ξ → [�]〈�〉ϕ ∨ ψ) 5, 3, Prop,MP

7. [∀](ψ ∨ ξ → [�]〈�〉ϕ) → [∀](ξ → [�]〈�〉ϕ ∨ ψ) 6, K − derived rule

8. Acc(ψ ∨ ξ, ϕ) → Acc(ξ, ϕ ∨ ψ) 7, definition

9. (ψ ∨ ξ → [�]〈�〉ϕ) → (ψ → [�]〈�〉ϕ) 4, instance

10. [∀](ψ ∨ ξ → [�]〈�〉ϕ) → [∀](ψ → [�]〈�〉ϕ) 9, K − derived rule

11. Acc(ψ ∨ ξ, ϕ) → Acc(ψ, ϕ) 10, definition

12. ((α → γ) ∧ (β → γ)) → (α ∨ β → γ) Prop

13. ([∀](α → γ) ∧ [∀](β → γ)) → [∀](α ∨ β → γ) 12,N, K,MP

14. ([∀](ϕ → [�]〈�〉ϕ) ∧ [∀](ψ → [�]〈�〉ϕ)) → [∀](ϕ ∨ ψ → [�]〈�〉ϕ) 13, Instance

15. [�]〈�〉ϕ → [�]〈�〉(ϕ ∨ ψ) 14, Prop,K,N

16. ([∀](ϕ → [�]〈�〉ϕ) ∧ [∀](ψ → [�]〈�〉ϕ)) → [∀](ϕ ∨ ψ → [�]〈�〉ϕ ∨ ψ) 15, Prop,K,N

17. Acc(ϕ, ϕ) ∧ Acc(ψ, ϕ) → Acc(ϕ ∨ ψ, ϕ ∨ ψ) 16, definition

18. Acc(ϕ, ϕ) ∧ Acc(ψ ∨ ξ, ϕ) → Acc(ϕ ∨ ψ, ϕ ∨ ψ) 17, 9, Prop,MP

19. [∀](〈�〉ϕ → ¬ϕ) → [�](〈�〉ϕ → ¬ϕ) Incl
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20. [∀](〈�〉ϕ → ¬ϕ) → ([�]〈�〉ϕ → [�]¬ϕ) 19, Prop,MP

21. [∀][∀](〈�〉ϕ → ¬ϕ) → [∀]([�]〈�〉ϕ → [�]¬ϕ) 20, K − derived rule

22. [∀](〈�〉ϕ → ¬ϕ) → [∀]([�]〈�〉ϕ → [�]¬ϕ) 21, S5 − derived rule

23. [∀](〈�〉ϕ → ¬ϕ) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ)

→ [∀](ϕ ∨ ψ → [�]〈�〉ϕ) ∧ [∀]([�]〈�〉ϕ → [�]¬ϕ) 22, Prop,MP

24. [∀](〈�〉ϕ → ¬ϕ) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ) → [∀](ϕ ∨ ψ → [�]¬ϕ) 23, Prop,MP

25. [∀](〈�〉ϕ → ¬ϕ ∧ ¬ψ) → [�](〈�〉ϕ → ¬ϕ ∧ ¬ψ) Incl

26. [∀](〈�〉ϕ → ¬ϕ ∧ ¬ψ) → ([�]〈�〉ϕ → [�]¬ϕ ∧ ¬ψ) 25, K,Prop,MP

27. [∀](〈�〉ϕ → ¬ϕ ∧ ¬ψ) → [∀]([�]〈�〉ϕ → [�]¬ϕ ∧ ¬ψ) 26, S5 − derived rule

28. [∀](〈�〉ϕ → ¬ϕ) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ)

→ [∀]([�]〈�〉ϕ → [�]¬ϕ ∧ ¬ψ) 24, 27, Prop,MP

29. [∀](〈�〉ϕ → ¬ϕ) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ)

→ [∀](ϕ ∨ ψ → [�]〈�〉ϕ) ∧ [∀]([�]〈�〉ϕ → [�]¬ϕ ∧ ¬ψ) 28, Prop,MP

30. [∀](α → β) ∧ [∀](β → γ) → [∀](α → γ) S5 − theorem

31. [∀]([�]〈�〉ϕ → [�](¬ϕ ∧ ¬ψ)) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ)

→ [∀](ϕ ∨ ψ → [�](¬ϕ ∧ ¬ψ)) 30, instance

32. [∀](〈�〉ϕ → ¬ϕ) ∧ [∀](ϕ ∨ ψ → [�]〈�〉ϕ)

→ [∀](ϕ ∨ ψ → [�](¬ϕ ∧ ¬ψ)) 29, 31, Prop,MP

33. CFree(ϕ) ∧ Acc(ϕ ∨ ψ, ϕ) → CFree(ϕ ∨ ψ) 32, definition

34. Acc(ϕ, ϕ) ∧ Acc(ψ, ϕ) → Acc(ϕ ∨ ψ, ϕ) 14, definition

35. CFree(ϕ) ∧ Acc(ϕ, ϕ) ∧ Acc(ψ, ϕ) → CFree(ϕ ∨ ψ) 33, 34, Prop,MP

36. CFree(ϕ) ∧ Acc(ϕ, ϕ) ∧ Acc(ψ ∨ ξ, ϕ) → CFree(ϕ ∨ ψ) 35, 9, Prop,MP

37. CFree(ϕ) ∧ Acc(ϕ, ϕ) ∧ Acc(ψ ∨ ξ, ϕ)

→ CFree(ϕ ∨ ψ) ∧ Acc(ϕ ∨ ψ, ϕ ∨ ψ) 36, 18, Prop,MP

38. CFree(ϕ) ∧ Acc(ϕ, ϕ) ∧ Acc(ψ ∨ ξ, ϕ)

→ CFree(ϕ ∨ ψ) ∧ Acc(ϕ ∨ ψ, ϕ ∨ ψ) ∧ Acc(ξ, ϕ ∨ ψ) 37, 8, Prop,MP

39. Adm(ϕ) ∧ Acc(ψ ∨ ξ, ϕ) → Adm(ϕ ∨ ψ)Acc(ξ, ϕ ∨ ψ) 38, definition
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Abstract. To bring the level of current argumentation to the expressive
and flexible status expected by human agents, we introduce fuzzy reason-
ing on top of the classical Dung abstract argumentation framework. The
system is built around Fuzzy Description Logic and exploits the integra-
tion of ontologies with argumentation theory, attaining the advantage
of facilitating communication of domain knowledge between agents. The
formal properties of fuzzy relations are used to provide semantics to the
different types of conflicts and supporting roles in the argumentation.
The usefulness of the framework is illustrated in a supply chain scenario.

1 Introduction

Abstract argumentation frameworks lack high-level conveniences such as ease
of understanding, an aspect required by human agents. Many challenges still
exists in order to build intelligent systems based on abstract argumentation
frameworks [2].

On the one hand, humans manifest a lot of flexibility when they convey ar-
guments from supporting and attacking a claim. One can disagree, can provide
a counter example, can rebut or undercut a claim. Currently, these common
patterns of attacking relations are encapsulated as argumentation schemes [18].
This informal reasoning does not exploit the formal properties of the attacking
relations. The semantics of the support relation agree contains the transitivity
property: agree(a, b) and agree(b, c) implies that a agrees with c. Similarly, the
rebutting relation is symmetrical. That is, rebut(a,¬a) implies rebut(¬a, a). In
this paper, we advocate to use such properties when deciding on the status of
an argument. We provide software agents with description logic based reasoning
capabilities to exploit the formal properties of the attacking relations.

On the other hand, people do not express their arguments precisely in their
daily life. Such vague notions as: strongly, moderately, don’t fully agree, tend
to disagree are used during an argumentative dialog. Real arguments are also
a mixture of fuzzy linguistic variables and ontological knowledge. Arguments
conveyed by people are incomplete, normally enthymemes [11], where the oppo-
nent of the arguments assumes that his partner understands the missing part.
Thus, a common knowledge on the debate domain is assumed by the agents.
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Table 1. Operators in Fuzzy Logics

Operation Lukasiewicz Logic Gödel Logic

intersection α ⊗S β max{α + β − 1, 0} min{α, β}
union α ⊕S β min{α + β, 1} max{α, β}
negation �Sα 1 − α 1, if α = 0, 0, otherwise
implication α ⇒S β min{1, 1 − α + β} 1, if α � β, β, otherwise

We introduce Fuzzy Description Logic on top of the argumentation theory, as
the adequate technical instrumentation needed to model real-life debates.

2 Preliminaries

2.1 Fuzzy Sets and Relations

A fuzzy relation R between two set A and B has degree of membership whose
value lies in [0, 1]: μR : A × B → [0, 1]. μR(x , y) is interpreted as strength of
relation R between x and y. When μR(x , y) ≥ μR(x ′, y ′), (x , y) is more strongly
related than (x ′, y ′). A fuzzy relation R over X × X is called:

– transitive: ∀ a, b ∈ X ,R(a, c) ≥ supb∈X {⊗S(R(a, b),R(b, c))}
– reflexive: ∀ a ∈ X ,R(a, a) = 1
– irreflexive: ∃ a ∈ X ,R(a, a) �= 1
– antireflexive: ∀ a ∈ X ,R(a, a) �= 1
– symmetric: ∀ a, b ∈ X ,R(a, b) → R(b, a)
– antisymmetric: ∀ a, b ∈ X ,R(a, b) → ¬R(b, a)
– disjoint : ∀ a, b ∈ X ,⊗S(R(a, b),S (a, b)) = 0

The inverse of a fuzzy relation R ⊆ X×Y is a fuzzy relation R− ⊆ Y×X defined
as R−(b, a) = R(a, b). Given two fuzzy relations R1 ⊆ X ×Y and R2 ⊆ Y × Z
we define the composition as [R1 ◦ R2](a, c) = supb∈Y {⊗S(R(a, b),R(b, c))}
(table 1). The composition satisfies the following properties: (R1 ◦ R2) ◦ R3 =
R1 ◦(R2 ◦R3), and (R1 ◦R2)− = (R−

2 ◦R−
1 ). Due to the associativity property we

can extend the composition operation to any number of fuzzy relations: [R1 ◦t
R2 ◦t ... ◦t Rn ](a, b). If a relation is reflexive, antisymmetric, and transitive it is
called order relation.

2.2 Fuzzy Description Logic

In the following paragraphs the differences introduced by fuzzy reasoning on top
of classical description logic are presented. The complete formalization of the
fuzzy description logic can be found in [4]. The syntax of fuzzy SHIF concepts [4]
is as follows:

C ,D = � | ⊥ | A | C S D | C �S D | C �S D | ¬LC |
∀R.C | ∃R.C | ∀T .d | ∃T .d |≤ nR |≥ nR | m(C ) | {a1, ...an}

d = crisp(a, b) | triangular(a, b, c) | trapezoidal(a, b, c, d)
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⊥I (x) = 0 (∀R.C )I (x) = infy∈ΔI RI (x , y) ⇒S C I (y)
I (x) = 1 (∃R.C )I (x) = supy∈ΔI RI (x , y) ⊗S C I (y)
(¬C )I = �C I (x) (∀T .d)I (x) = infy∈ΔI RI (x , v) ⇒S d I (y)

(C �S D)I (x) = C I (x) ⊗S D I (x) (∃R.d)I (x) = supy∈ΔI RI (x , v) ⊗S d I (y)
(C �S D)I (x) = C I (x) ⊕S D I (x) (x : C )I = C I (x I )
(C →S D)I (x) = C I (x) ⇒S D I (x) ((x , y) : R)I = RI (x I , yI )

(m(C ))I (x) = fm(C I (x)) (C � D)I (x) = infx∈ΔI C I (x) ⇒S D I (x)

Fig. 1. Semantics of fuzzy concepts

where S={L, G, C}, L comes from Lukasiewicz semantics, G from Gödel se-
mantics, and C stands for classical logic (see table 1). The modifier m(C ) =
linear(a) | triangular(a, b, c) can be used to alter the membership functions
of the fuzzy concepts. Fuzzy modifiers such as very, more-or-less, slightly can
be applied to fuzzy sets to change their membership functions. They are de-
fined in terms of linear hedges. For instance, one can define very=linear (0.8). A
functional role S can always be obtained by means of the axiom � � (≤ 1S ).

Example 1. The definition of junk food is applied to some food which has little
nutritional value, or to products with nutritional value but which also have ingre-
dients considered unhealthy: JunkFood = Food  (∃ hasNutritionalValue.Little �
∃ hasIngredients .Unhealthy). In this definition, there are two roles which point to
the fuzzy concepts Little and Unhealthy, which could be represented as Little =
triangular(10, 20, 30), or Unhealthy = ∃ hasSalt . ≥ 2mg � hasAdditive. > 0.5mg.

The main idea of semantics of FDL is that concepts and roles are interpreted
as fuzzy subsets of an interpretation’s domain [4]. A fuzzy interpretation I =
(ΔI , •I ) consists of a non empty set ΔI (the domain) and a fuzzy interpreta-
tion function •I . The mapping •I is extended to roles and complex concepts as
specified in figure 1.

3 Fuzzy Argumentation Systems

3.1 Fuzzy Resolution Argumentation Base

An argumentation framework [7] consists of a set of arguments, some of which
attack each other. In our approach, the arguments represent instances of con-
cepts, while different types of attack relations are instantiations of roles defined
on these concepts. Both, the concepts and the roles can be fuzzy.

Definition 1. A fuzzy resolution argumentation base is a tuple FRA = 〈A, T, R〉,
consisting of a fuzzy Abox A, representing argument instances and their attacking
relations, a fuzzy Tbox T representing concepts, and a fuzzy Rbox R encapsulating
attack-like and support-like relations.

Definition 2. A fuzzy Abox A is a tuple ≺ Arg,Attacks �, where Arg of a
finite set of assertion axioms for fuzzy arguments {a1 : C1 �� α1, a2 : C2 ��
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α2, ..., an : Cn , �� αn}, and Attacks is a set of fuzzy roles ⊆ Arg × Arg of the
form {(ai , aj ) : Rk �� αl}, where αl ∈ [0, 1], Ci are concepts, Rk are attack and
support-like relations, and ��= {<,≤, >,≥}.

Example 2. Let A =≺ {funghi : CheapPizza ≥ 0.8}, {(funghi , vegetarian) :
Attack ≥ 0.7} � states that funghi is a CheapPizza with degree at least 0.8,
and it attacks the vegetarian argument with degree at least 0.7.

If α is omitted, the maximum degree of 1 is assumed. We use ��− as the reflection
of inequalities ≤−=≥ and <−=>.

Definition 3. A fuzzy Tbox T is a finite set of inclusion axioms {Ci �S Di ,≥
αi}, where αi ∈ [0, 1], Ci ,Di are concepts, and S specifies the implication func-
tion (Lukasiewicz, Gödel) to be used. The axioms state that the subsumption
degree between C and D is at least α.

Example 3. Let’s take the common example of pizza. Can it be categorized as
junk food or nutrition food? Associated with some food outlets, it is labeled as
”junk”, while in others it is seen as being acceptable and trendy. Rather, one
can consider that it belongs to both concepts with different degree of truth, let’s
say 0.7 for JunkFood and 0.5 to NutritionFood, encapsulated as T = {Pizza �L

JunkFood ≥ 0.7,Pizza �L NutritionalFood ≥ 0.5,FreshFruits �L Nutritional
Food ,CandyBar �L JunkFood}. Note the subconcept CandyBar is subsumed
by the concept JunkFood with a degree of 1.

Definition 4. The argumentation core Rk of the fuzzy Rbox R consists of two
relations Attack and Support (noted by Ā, respectively S̄), having the property
dis(Ā,S̄), meaning that ∀ a, b ∈ Arg,⊗S((a, b) :Ā, (a, b) :S̄) = 0. Formally, Rk =
{Ā, S̄, dis(Ā,S̄)}.

Under the Gödel semantics, the disjoint property of the Attack and Support
roles states that ⊗G((a, b) :Ā, (a, b) :S̄) = min((a, b) :Ā, (a, b) :S̄) = 0 ⇔ if
(a, b) :S̄≥ 0 then (a, b) :Ā≤ 0 and if (a, b) :Ā≥ 0 then (a, b) :S̄≤ 0. In other
words, if a attacks b there is no support relation from a to b, and similarly if
a supports b there is no attack relation from a to b. The Lukasiewicz seman-
tics leads to a more flexible interpretation, given by ⊗L((a, b) :Ā, (a, b) :S̄) =
max ((a, b) :Ā+(a, b) :S̄−1, 0) = 0 ⇔ (a, b) :Ā+(a, b) :S̄≤ 1. Thus, if a attacks
b to a certain degree α, there exists the possibility that also a supports b with
a maximum degree of 1 − α. While the Gödel interpretation fits perfectly to
the general case of argumentative debates, some special examples lay under the
Lukasiewicz semantics.

Example 4. Several government strategies focus on decreasing expenses with
personal in order to re-allocate funds to investments, hoping to support the
growth of the economy. Two relations of type support are used to express
this: (decreaseExpenses , largerInvestments) : S̄, respectively (largerInvestments,
growth) : S̄. A different chain of reasoning follows by the fact the decreasing
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salaries leads to lowering the consumption which threats the growth of the econ-
omy, formalised by a support role: (decreaseExpenses , smallerConsumption) :S̄
and an attack-like relation (smallerConsumption, growth) : threat , where is a
special type of attacking role (threat � Ā). Consequently, the strategy of de-
creasing salaries supports with a degree α, but also attacks with a degree β, the
objective of growing the economy. This is permitted in a Lukasiewicz setting, to
an inconsistency budget of α + β < 1.

Definition 5. The fuzzy Rbox R consists of i) the argumentation core Rk ; ii) an
hierarchy of disjoint attack and support-like relations R, defined by role inclusion
axioms: R � Attack, or R � Support; and iii) a set of role assertions of the form:
(fun R), (trans R), sym(R), (inv R R−), stating that the role R is functional,
transitive, symmetric, respectively its inverse relation is R−.

There are two types of relations in the set R: supporting roles (denoted by RS ),
opposite to attacking roles (denoted by RA), where RS ∩RA = ∅. We note that
a1 supports a2 by a1 → a2 and a1 attacks a2 by a1 � a2.

Example 5. Let R = Rk ∪ {Defeat ,Disagree,Agree,Defeat � Ā,Agree � S̄,
Disagree � Ā, tra(Agree), sym(Agree), ref (Agree)}. The two hierarchies are RA =
{Ā,Defeat ,Disagree}, respectively RS = {S̄,Agree}. Note that Support relation
is transitive, while Attack role is not a transitive one; Agree is a particular in-
stance of Support relation, while Disagree and Defeat relations are Attack -type
relations. The following properties hold:

Proposition 1. Attack and Support-like relations are not functional, i.e. the
same argument a can attack two different arguments b1 �= b2: (a, b1) : Attack
and (a, b2) : Attack.

Proposition 2. The inverse of the Attack relation is an attack-like relation
(inv Attack � Attack).

Proposition 3. An argument a agrees to itself (a, a) : Agree, given by the the
reflexivity property of the Agree relation.

Example 6. Consider FRA = 〈≺ {a : A, b : B , c : C}, {(a, b) : Agree ≥
0.9, (b, c) : Agree ≥ 0.8}, {A,B ,C}, Rk ∪ {Agree � S̄, tra(Agree)}. Agree be-
ing a transitive relation, the argument a also agrees to c with a degree of α ≥
supb∈Arg{⊗S ((a, b) : Agree, (b, c) : Agree)}, which gives max (0.9 + 0.8− 1, 0) =
0.7 under Lukasiewicz semantics and min(0.9, 0.8) = 0.8 in Gödel interpretation.

Proposition 4. The relation S is the complement of the relation R if (inv R S )
and (x , y) : R �� α → (y, x ) : S ��− (1 − α). Here, Agree and Disagree are
complement relations, (a, b) : Agree ≥ α implies (b, a) : Disagree ≤ 1 − α.
Informally, if a and b agree each other with at least α, the disagreement degree
between them should be less then 1− α.

Definition 6. (Argumentation Chain) An argument b is supported by the ar-
gument a if there is a finite path p = (a, x1) : R1, (x1, x2) : R2, ..., (xn−1, b) :
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Rn ,∀Ri ,Ri � Support. An argument b is attacked by the argument a if their
is a finite path p = (a, x1) : R1, (x1, x2) : R2, ..., (xn−1, b) : Rn ,∀Ri ,Ri �
Support � Attack, and the number of attack relations | RA | is odd.

Proposition 5. (Indirect Support) By composing an even number of attack rela-
tions, one gets an indirect support relation. Formally, R1 � Attack, R1 � Attack,
implies R1 ◦t R2 � Support. The norm used to compute the strength of the attack
is ◦t

Ā
= ⊗2

S , where the power 2 models the fact that an indirect attack should be
smaller than a direct one.

Example 7. Let FRA = 〈≺ {a : A, b : B , c : C}, {(a, b) : Undercut ≥ 0.9 (b, c) :
Attack ≥ 0.7} �, {A,B ,C}, Rk ∪ {Disagree,Undercut , Disagree � Attack ,
Undercut � Attack}. By applying complex role inclusion we obtain Attack ◦t
Disagree � Support . In other words, if the argument a attacks b and b dis-
agrees with c we say that there is a support-like relation between a and c:
(a, c) : R > 0,R ∈ RS . The degree of support is given under the Lukasiewicz
semantics as

Undercut ⊗2
L Disagree = (supb:B{max (0, 0.9 + 0.7− 1)})2 = (0.6)2 = 0.36

and under Gödel semantics:

Undercut ⊗2
G Disagree = (supb:B{min(0.9 + 0.7)})2 = 0.49

3.2 Aggregation of Arguments

Several issues are raised by merging description logic and fuzzy argumentation:
What happens when there is more than one attack-like relation between two
concepts? What happens when one argument belongs with different membership
functions to several concepts, which are linked by different attack-like relations
with the opposite argument? What happens when two independent arguments
attack the same argument? Should one take into consideration the strongest
argument, or both of them may contribute to the degree of truth of that concept?
Given an argumentation system, a semantic attaches a status to an argument.
Different semantics may lead to different outputs [13].

One advantage of fuzzy logic is that it provides technical instrumentation
(Lukasiewicz semantics, Gödel semantics) to handle all the above cases in an
argumentative debate. The interpretation of Gödel operators maps the weakest
link principle [16] in argumentation, which states that an argument supported
by a conjunction of antecedents α and β, is as good as the weakest premise
⊗G = min(α, β). The reason behind this principle is the fact that the opponent
of the argument will attack the weakest premise in order to defeat the entire
argumentation chain. When two reasons supporting the same consequent are
available, having the strength α and β, the strongest justification is chosen to
be conveyed in a debate, which can be modeled by the Gödel union operator
⊕Gmax{α, β}).
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The Lukasiewicz semantics fits better to the concept of accrual of arguments.
In some cases, independent reasons supporting the same consequent provide
stronger arguments in favor of that conclusion. Under the Lukasiewicz logic, the
strength of the premises (α,β) contributes to the confidence of the conclusion,
given by ⊕L = min{α + β, 0}. For instance, the testimony of two witnesses
is required in judicial cases. Similarly, several reasons against a statement act
as a form of collaborative defeat [16]. One issue related to applying Lukasiewicz
operators to argumentation regards the difficulty to identify independent reasons.
Thus, an argument presented in different forms contributes with all its avatars
to the alteration of the current degree of truth.

Thus, the description logic provides the technical instrumentation needed to
identify independent justifications, whilst the Lukasiewicz semantics offers a for-
mula to compute the accrual of arguments. The accrual of dependent arguments
is not necessarily useless. Changing the perspective, this case can be valuable in
persuasion dialogs, where an agent, by repeatedly posting the same argument in
different forms, will end in convincing his partner to accept it.

3.3 Resolution Schemes

The key limitation of conventional systems is that, even if they guarantee to
compute a solution for consistent sets, admissible or preferred extensions, it is
possible that the only answer to be the empty set.

Definition 7. The preference relation Pref ⊆ Arg × Arg is a fuzzy role having
the following properties: (ref P), (tran P), and (antysim P). The Rbox R extended
with preferences is given by RP = R ∪ {Pref }. An argument a is preferred to b
(a � b) based on the preference role Pref with a degree α if (a, b) : Pref �� α.

Example 8. Consider the task to classify a compound according to potential tox-
icity. In the guidelines of U.S. Environmental Protection Agency for the assess-
ment the health impacts of potential carcinogens, an argument for carcinogenic-
ity that is based on human epidemiological evidence is considered to outweigh
arguments against carcinogenicity that are based only on animal studies. The
corresponding FRA (figure 2) augmented with preferences is

FRAP = 〈≺ (h : HumanStudy , a : A, b : B , c : Carcinogenicity ,
d : AnimalStudy , (a, h) : BasedOn, (a, c) : For , (b, d) : BasedOn,
(b, c) : Against , (a, b) : Outweigh �,
{HumanStudy , AnimalStudy ,Carcinogenicity , A,B}, Rk∪
{For � Support , Against � Attack , (inv BasedOn � Support)}
∪{Outweigh � Pref }〉

Observe that if a is based on h then there exists a support-like relation from
h towards a. Formally (inv BasedOn � Support).

In the above example, the preference assertion Outweigh between the arguments
a and b was explicitly given, stating that a clearly outweighs b (α = 1). Note
that any preference role can be a fuzzy one. When this explicitness does not
exist, FDL offers the possibility to infer preference relations among arguments
based on various conflict resolution strategies, like the following ones.
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– Fuzzy membership value (M). The status of an argument is assessed by com-
paring the membership degrees of the arguments to their concepts. Prior
information is usually provided by an expert or knowledge engineer.

– Specificity (S). This heuristic can be applied both on concepts, in which case
the most specific argument dominates, and roles, where the most specific
relation in the hierarchy prevails (figure 3).

– Value based argumentation (V). The argument which promotes the high-
est value according to some strict partial ordering on values will defeat its
counter-argument. In a FRA, arguments can promote (or demote) values to
a given degree, so that if the arguments a and b promote the same value v ,
we consider that a successfully attacks b if it promotes v to a greater degree
than b. In the current framework, values can be used from an ontology of
values, providing a reasoning mechanism over values.

Example 9. (Specificity on concepts) Consider the FRA base
FRAP = 〈≺ (a : A, c : C , d : D ,A � B �,

{A,B ,C ,D}, Rk{(C ,B) : Attack , (D ,A) : Support}〉
So, a as an element of A � B is supported by d , and attacked by c (figure 3a).

In this case the specificity principles says that the support relation will prevail.

Example 10. Now consider the case in which (a, b) : Defeat , (b, c) : Attack and
Defeat � Attack (figure 3b). Based on the specificity heuristic on roles, the
Defeat relation is stronger (more specific) than Attack . Consequently, the only
admissible set is {a, c}.

The specificity preference is also illustrated by the following dialog in figure 4.
Here, the agent B accepts the argument Food , defined as Food � ∃ canEat and
supported by the argument hungry. Observe that the support is stronger from
the agent A, given by the fuzzy modifier very, and not so convincing as denoted
by the modifier little. However, the more specific argument pizza, which is a kind
of food (Pizza � JunkFood � Food) is rejected by the agent B . Similarly, the
argument fish conflicts with the argument expensive.

In many real life discussions, people have agreements at certain level of gen-
erality, while they manifest divergent opinions starting with a given level of

HumanStudy

h

A

a

B

b

Carcinogenicity

c

AnimalStudy

d

BasedOn Outweigh

For Against

BasedOn

Fig. 2. Explicit preference among arguments
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a) specificity on concepts
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c

A

a

B

b

Defeat Attack

b) specificity on roles

Fig. 3. Conflict Resolution Strategies

A: I am very hungry. Let’s go eat something.
B: I am a little hungry too. I agree.
A: I don’t have too much time. Let’s have a pizza.
B: It’s not healthy. I prefer something else. What about fish and wine.
A: It’s too expensive.

Fig. 4. Illustrating the specificity principle

specificity. Description logic is particularly useful to define the edge between
agreement and disagreement. In this particular case, the agreed concept would
be NutritionalFood  ∀ hasPrice.¬Expensive. The instance that belongs to this
concept with the highest degree will best satisfy the both agents. If such an
assertion does not exist, the agreement is reached by a preference relation over
the common constraints: healthy, not expensive, quick .

Note that preferences are fuzzy relations, meaning that linguistic scale can
be defined on them. Preferences like: just equal, weakly more important, fairly
strongly preferred, absolutely outweighed are accepted in a FRAP.

Proposition 6. By composing two preference relations we get a preference re-
lation. In order not to breach the transitivity property, the composition function
that we use is ◦tPref = ⊗1/2

S .

Example 11. Let (a, b) : Outweigh ≥ 0.9 and (b, c) : Pref ≥ 0.7. The preference
degree between a and c is given by Outweigh(a, b)◦tPref (b, c) = min(0.9, 0.7)1/2

= 0.83.

3.4 Semantic Inconsistency

An important aspect is that inconsistency is naturally accommodated in fuzzy
logic: the intersection between the fuzzy concept A and its negation is not 0
(A  ¬A �= 0). Similarly, the disjoint property of an attack A1 � Attack and
support S1 � Support relation ⊗S ((a, b) : A1 ≥ α, (a, b) : S1 ≥ β) = 0, under
the Lukasiewicz interpretation leads to an inconsistent argumentation base if
α + β > 1.

Consider the concept InternallyConsistentArguments (ICA) defined in FDL
as: ICA ≡ Argument  ¬∃Attack .ICA. Based on the (∀R.C )I = (¬∃R.¬C )I ,
which holds under the Lukasiewicz semantics [20], follows that: ICA≡Argument
∀Attack .¬ICA. The semantics of ∀R.C being (∀R.C )I = infy∈ΔI = RI (x , y) →
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C I (y) implies in FRA that if (x , y) : Attack �� α →L y : ¬ICA �� β The impli-
cation holds if 1− α + β ≥ 1 (recall table 1), or α ≤ β.

In order to keep the argumentation base semantically consistent the following
constraints exist, where γ = 1−β, represents the degree of y to the ICA concept:

– (x , y) : Attack ≤ α ⇒ α ≤ β ⇔ γ < 1 − α: If the attack relation between
x and y is maximum α, the knowledge base remains consistent as long as y
belongs to the concept ICA no more than 1− α.

– (x , y) : Attack ≥ α ⇒ β = 1 ⇔ γ = 0: If the attack relation between x and
y is at least α, the knowledge base is guaranteed to remain consistent if y
does not belong to ICA at all.

– y : ¬ICA ≤ β ⇒ α = 0: If y belongs to the concept ¬ICA with maximum β,
it means that it should belong to the opposite concept IAC at least 1 − β.
Consequently, no attack relation should exist between x and y.

– y : ¬ICA ≥ β ⇒ α ≤ β ⇔ γ ≤ 1− α.

The notion of indirect support in combination with the disjoint property of the
attack and support relation may help to signal semantic inconsistencies in an
argument bases. If A attacks B attacks C and A attacks C, then A indirectly
both supports C and attacks C.

Example 12. Consider the situation in which (A,B) : attack0.6, (B ,C ) : attack0.9,
and also (A,C ) : attack0.7. Under the Lukasiewicz semantics, the indirect sup-
port from A to C equals max (0.6 + 0.9 − 1, 0)2 = 0.25. The disjoint property
of attack and support holds because max (0.25 + 0.7 − 1, 0) = 0. If the strength
of the attack from A to C increases to 0.7 the disjoint property is violated. In
this case, the framework signals to the human agent that the argument base
is semantically inconsistent. In other words, the alert means that on the these
particular argumentation chains the strengths of the attacks or supports might
be incorrect stated and the initial facts should be reconsidered.

There is no need to explicitly define simple negation on roles, as it exists in
FDL systems by mean of assertions that use the inequalities, ≤ and < [19]. For
instance, the assertion x does not attack y can be defined as (x , y) : Attack ≤ 0

4 Argumentative Agents in FRA

Definition 8. A preference scheme specifies the order in which the conflict res-
olution strategies are applied. An example of preference scheme is MSV (fuzzy
membership value, specificity, value-based).

Preference schemes come from the cognitive system of the agents. A FRAP still
allows a lack of complete transitive preference.

Definition 9. An agent is a tuple Ag = [PreferenceScheme, (⊕,⊗,�,→),
(◦Pref , ◦Ā, ◦S̄)], where ⊕,⊗,�,→ represent the union, intersection, negation and
implication operators, and ◦Pref , ◦Ā, ◦S̄ the norm used for composing preferences,
attacks, and support relations. KB encapsulates the private domain knowledge
of the agent.
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We assume that agents acting within the same FRAP share a common vocabu-
lary of attacking, supporting, and outranking fuzzy relations and common under-
standing of their formal properties. However, they have their own order of pref-
erences and own functions for aggregating arguments. The inconsistency budget
of each agent emerges from the combination of these functions. The personality
of the agents can be encapsulated also by the above combination

Example 13. An agent Judge = [MSV , (⊕L,⊗L,�L,→L), (⊗1/2
L ,⊗2

L,⊗2
L)], by

aggregating arguments under the Lukasiewicz semantics takes into consideration
all the existing facts. It acts based on a hierarchy of values derived from the
hierarchy of laws. In case of conflict, the most specific norm, which in general
refers to exceptions, will be applied, then the argument from the most recent
case (in case based law) or most recent norm (in norm based law). Afterward,
the fuzziness of some linguistic terms from the law, will be considered in the
decision.

For modeling practical scenarios we follow the steps:

1. Identify the relevant concepts and their attacking and supporting relations.
2. Define the membership functions.
3. Formalise the FRA:

(a) define the class hierarchy;
(b) define the role hierarchy;
(c) define the role properties;
(d) define the membership of arguments to their concepts;
(e) define the known strengths of the attacking and supporting relations.

4. Build the argumentation network.
5. Reason on the knowledge within the FRA based on their own preference

schemes and aggregating functions:

(a) identify semantic inconsistencies;
(b) identify indirect attacks and supports;
(c) reduce the argumentation network by composing the fuzzy relations;
(d) aggregate arguments;
(e) compute the defeat status based on the active preference scheme;

5 A Case for Food Supply Chains

ISO 22000 is a recent standard designed to ensure safe food supply chains world-
wide. Its main component is the HACCP (Hazard Analysis at Critical Control
Points) system, which is a preventive method of securing food safety. Its ob-
jectives are the identification of consumer safety hazards that can occur in the
supply chain and the establishment of a control process to guarantee a safer
product.
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5.1 Technology Drivers for HACCP

HACCP is based on the following steps and principles [9]. In the first step, the
business entities within the supply chain determine the food safety hazards and
identify the preventive measures for controlling them. Then, the critical con-
trol points (CCP) are identified. They represent point steps in a food process
at which a specific action can be applied in order to prevent a safety hazard,
or to reduce it to an acceptable level. Afterward, critical limits are established,
representing criteria which separate acceptability from unacceptability. Crite-
ria often used include measurements of time, temperature, moisture level, pH,
Aw, available chlorine, and sensory parameters such as visual appearance and
texture. Critical limits must be specified for each CCP and they should be jus-
tified. A monitor process is followed by the establishment of critical actions in
order to deal with deviations when they occur. Then procedures for verifications
are needed to confirm that the HACCP system is working effectively. Finally,
the documentation is needed to encapsulate justifications for all the decisions
which have been taken. The main goal of the standard is to build confidence be-
tween suppliers and customers. It demands that business entities follow specific
well-documented procedures, in which the quality of the items should be demon-
strated by different types of justifications, and not only by attaching a quality
label to the product. The technical requirements for building an HACCP system
lay around the need to integrate support for argumentative debates.

Structured Argumentation. The technical support for argumentation is
needed during the HACCP development for various tasks.

Justifying hazards. The HACCP standard explicitly requests that arguments pro
and against should be provided in order to justify all decisions to classify hazards
as critical or not critical, formalised as Hazard = ∃ hasJustification.Argument .
Based on the above definition in DL, the reasoner can check that a justification
is attached to both significant or not significant hazard.

Justifying control options. For each hazard which is considered significant, a
control measure should be defined (SignificantHazard = Hazard  hasControl
Measure.�). The absence of the control measure is signaled as an inconsistency
by the reasoner. The advantages and disadvantages of each available option
should be backed by supporting arguments, respectively counter-arguments.

Justifying associated critical limits. The recommended sources of information for
justifying the chosen critical limits are: norms, experts, scientific publications,
or experimental studies. The rationale and the reference material should become
part of the HAACP plan [9].

Domain knowledge. When implementing the HACCP standard, the human
experts need ontological knowledge in the following activities.
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Hazard identification. The user can query hazard ontologies and their possi-
ble connections with ingredients and processing steps. Also, food and pathogen
ontologies may be used to compare different risks which may stem from the
production system.

Automatic verification of the safety conditions. Having formal descriptions about
what a safety device, process, or service represent (encapsulated as TBoxes)
and by having the current situation (encapsulated as ABoxes) the system can
automatically point out possible contradictions with the norms in use.

Fuzzy Reasoning. It is used as a tool for qualitatively assessing during the
following activities:

Assessment of critical control points. For each step of the production process,
one should decide whether that stage will be a CCP. The decision depends on the
hazard possibility of occurrence (terms such as rarely, often, sometimes, always
are used in practice by the experts) and on its severity (usually assessed as low,
medium, high).

Supply chain integration. An important source of hazards appears when receiv-
ing the input items. Depending on the potential risk, the company should decide
to rely on the information from the product label or to conduct its own measure-
ments of the product characteristics. This qualitative decision is based on fuzzy
assessments. Also, the feedback received from the buyers, representing their pref-
erences and perceptions is fuzzy. The costumers subjective evaluation can refer
to attributes such as: color, smell, taste. Moreover, the company decides if it is
able to deal with all the identified hazards or to outsource this task. For instance,
the presence of rodents, insects, birds or other pests is unacceptable. The hazards
are related both to the direct effects of these pests, and to the risks coming from
the substances used to eliminate them. A good option is to contract a specialized
company to handle these hazards.

Process adjustment. Actions need to be taken to bring the CCP under control
before the critical limit is exceeded. The point where the operators take such
action is called the operating limit. The process should be adjusted when the
operating limit is reached to avoid violating the critical limit.

Modeling fuzzy critical limits. Consider some microbiological data. One rule can
say: ”The product is safe if it is kept no longer than 48 hours at a temperature
below 100C”. What happens if the product is kept 47 hours at the temperature
of 90C ? Is it safer comparing with the situation in which it is kept for 1 hour at
a temperature of 120C? According to the above rule, the second item is not con-
sidered safe. As the alteration of product features is gradual, fuzzy membership
functions being able to model these cases.

5.2 An HACCP Scenario

The framework is exemplified by for a cooked shrimp company. The control
measure has emerged after an argumentation process.
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Agent HACCP Plan: Justifying control measures

E1 The first option for the control measure is to set a
microbiological limit, under which the product is considered
safe. This direct method minimizes error measurements, but
I admit the monitoring process is expensive.

E2 Several tests are necessary to determine critical limits derivations
and samples may need to be large to be meaningful.

E3 Moreover, the results are obtained in several days.
E2 The second option is to set a minimum internal temperature at

which the pathogens are destroyed. The method is practical and
more sensitive.

E1 But justification is needed to validate the chosen
temperature value.

E3 The third option is to control the factors that affect
the internal temperature of the product (oil, thickness
of the pane, or cooking time).

E1 The method requires justifications between these limits
and the internal temperature of food.

E3 I agree. Nevertheless, it is very practical and it
increases confidence in the measurements.

B1 The business policy encourages practical and reliable solutions.

Fig. 5. Arguing for the adequate control measures in an HACCP plan

The first step is two identify the main concepts and the relations among them.
In this case, three options exist, each supported by its advantages and attacked
by the disadvantages that it brings (figure 6, step 1). In the second step the agents
should agree on the fuzzy membership functions for each concept in the domain.
In figure 6 three such membership functions are shown. The ExpensiveToMonitor
concept is defined as a trapezoidal number ExpensiveToMonitor ≡ ∃ hasCost .
trapezoidal(10, 20, 30, 30). Consider a particular pathogens limit d1, which has
the estimated cost at least 18 in order to be validated. The degree of membership
to the concept ExpensiveToMonitor will be 0.8 (d1 : ExpensiveToMonitor ≥ 0.8),
reflected in the strength of the attack between d1 and the first option o1.

We consider the agents E1,E2 (decision makers) needing to be involved with
other agents E3,B1 (consultants) in the process.

E1 = [M , (⊕G ,⊗G ,�L,→G), (⊗1/2
G ,⊗2

G ,⊗2
G)]

E2 = [MS , (⊕L,⊗L,�L,→L), (⊗1/2
L ,⊗2

L,⊗2
L)]

They start by aggregating the direct attack and support roles. The aggregation of
d1, d2, d3, d4 gives an attack strength of max (0.8, 0.5, 0.4, 0.7) = 0.8 for the first
option o1, under the Gödel semantics (the agent E1) and min(min(min(0.8 +
0.5), 1)+0.4), 1)+0.7, 1) = 1 (figure 7). Because both arguments a2 and a3 sup-
port the second option o2 there strengths are aggregated, giving max (0.55, 0.49)=
0.55 for the agent E1, respectively min(0.55 + 0.49, 1) = 1 for the agent E2.

Next, the indirect relations are taken into consideration. By composing the
supporting relation Enc with Support we get an indirect attack between b1 and
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1. Identifying concepts and attacking and supporting relations.

Advantages ControlMeasures Disadvantages
Support Attack

safety

veryPractical

sensitive

confidence

SetMicrobiologicalLimit

SetInternalTemperature

SetControlFactors

ExpensiveToMonitor

LargeNoOfTests

ResultsDelay

LargeNoOfSamples

RequiresJustification

2. Define the membership functions

μ

costs
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0

1

3010 18

0.8

μ

tests

NoOfTests
LargeSmall

0

1

105 6 7

0.5

μ

hours

ResultsDelay

LateQuickMedium

0

1

7224 36 48

0.4

4. Formalizing the FRA
(A=Advantages, D=Disadvantages, O=ControlMeasures, B=BusinessPolicy, Enc=Encourage)

A = ≺ {a1 : Safety ≥ 0.6, a2 : Practical ≥ 0.7, a2 : very(Practical) ≥ 0.49,
a3 : Sensitive ≥ 0.3, a4 : Confidence ≥ 0.5, d1 : ExpensiveToMonitor ≥ 0.8,
d2 : LargeNoOfTests ≥ 0.5, d3 : ResultsDelay ≥ 0.4, d4 : LargeNoOfSamples ≤ 0.8,
d5 : RequiresJustification,b1 : B ,o1 : O, o2 : O, o3 : O} �

T = {A, D, O, B , Safeness � A, Practical � A, Sensitive � A, Confidence � A,
ExpensiveToMonitor � D, LargeNoOfTests � D, ResultsDelay � D,
LargeNoOfSamples � D, RequiresJustification � D, (A, O) : Ā), (A, O) : S̄)}

R = Rk ∪ {Enc � S̄}
3. Building the Argumentation Network

b1

a1

a2

a3

a4

o1

o2

o3

d1

d2

d3

d4

d5

A ≥ 0.8
A ≥ 0.5
A ≥ 0.4
A ≥ 0.7

A ≥ 0.6

A ≥ 0.6

S ≥ 0.6

S ≥ 0.49

S ≥ 0.7
S ≥ 0.55

S ≥ 0.8

Enc ≥ 0.9

Enc ≥ 0.9

Fig. 6. A FRA for Justifying Control Measures

o2 of strength min(0.9, 0.49)2 = 0.24 under Logic semantics and max (0.9 +
0.49 − 1, 0)2 = 0.15. Hence, (b1, o1) : Enc(⊗G)2 ≥ 0.24 for E1 and (b1, o1) :
Enc(⊗L)2 ≥ 0.15. Note that b1 indirectly supports the option o3 through two
intermediary nodes a2 and a4. The amount of indirect support provided by b1 for
o3 is max (min(0.9, 0.55)2,min(0.9, 0.8)2) = 0.64 from the E1’s perspective. The
agent E2 computes the degree of support from b1 towards o3 as min(max (0.9 +
0.55− 1, 0)2 + max (0.9 + 0.7− 1, 0)2, 1) = 0.56.
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E1 = [M , (⊕G ,⊗G ,�L,→G), (⊗1/2
G ,⊗2

G ,⊗2
G)].
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Fig. 7. Argumentative agents
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The bottom part of figure 7 depicts the aggregation of direct and indirect
relations. The compound concept a23b1 supports the option o2 with at least
max (0.55, 0.24) = 0.55 from the E1 viewpoint and with min(1 + 0.15, 0) = 1
from that of the expert E2. The support given by a24b1 to the third option
equals max (0.64, 0.8) = 0.8, respectively min(1 + 0.49, 1) = 1.

The attack on the first option is stronger then its support, from both perspec-
tives E1 and E2. Hence, an agreement between the agent E1 and E2 exists to
eliminate this option. Given the above information, the agent E2 equally accepts
the options o3 and o2. The degree of support is 1 and the attack 0.6 in both
cases. On the other hand, the agent E1 rejects the option o2 but accepts option
o3. Consequently, the last control measure gets the support from both parties.

6 Discussion and Related Work

Arguments supporting both a consequent and its negation co-exist in the knowl-
edge base. To overcome this drawback, weighted argument systems (WAS) have
been introduced, with the notion of inconsistency budget [8] used to charac-
terize how much inconsistency one is prepared to tolerate in an argumentation
base. A FRA framework is a particular instance of a WAS, where the degree of
inconsistency is accommodated by the semantics of fuzzy reasoning.

Other approaches have investigated imprecise argumentation [12,1,10]. The
fuzzy argumentation framework [12] is an extension of the classical Dung model,
while in our approach, the fuzzy component is meant to help software agents to
exploit the real arguments conveyed by humans. Compared to the defeasible logic
approach [1,10], where the ontological knowledge is embedded in the program, we
have been interested in having a clear, separate representation of the ontology,
allowing for transparency.

Rahwan and Banihashemi [17] address the idea of modeling argument struc-
tures in OWL, where arguments are represented in the Argument Interchange
Format ontology (AIF), a current proposal for a standard to represent arguments.
A mapping between the top level concepts of the AIF ontology and our research
can be done as follows: support roles over the rule application nodes, attack
roles over the conflict application nodes, conflict resolution strategies over pref-
erence nodes. Meta-argumentation [6,15] is supported by the AIF approach: one
can apply a preference on preference, attack a support, or support a preference.
Meta-argumentation can be handled in FRA indirectly by defining new concepts
and applying roles on them. For instance, the preference relation P applied to
the argument a over b can be encapsulated as the concept a preferred to b, which
makes possible to apply further attack or support roles on it. If one wants to
challenge the degree α of membership of an element a to the concept A, the new
concept A≥α can be defined and the attack should be applied on it. A hierarchy
of Dung frameworks is proposed in [14], in which level n arguments refer to level
n-1 arguments, and conflict based relations and preferences between level n-1 ar-
guments. Arguing hierarchically is handled by navigating through the concepts
which are subject of dispute and which can be organized hierarchically based on
description logic.
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The role of ontologies to resolve conflicts among arguments based on the
specificity principle appears also in [3]. The existing work has focused on concept
properties only, and do not exploit the formal properties of the attack relations.
Our formalism based on FDL contributes to the current vision of developing the
infrastructure for the World Wide Argument Web.

7 Conclusions

The fuzzy-based approach presented in this paper makes a step towards practical
applications, a fuzzy-based argumentative system being cognitively less demand-
ing for the decision makers. Real argumentative debates implies other relations
and concepts, not only attacking and support roles or arguments. This addi-
tional domain knowledge can be easily integrated into a FRA framework. The
main contribution comes from the introduction of different types of attack and
support roles with a specific semantics given by their formal properties, with no
need to invent a new mechanism to compute the strength of the attack. We have
just used the technical instrumentation provided by fuzzy logic for computing
the status of argument.

We advocate the merging of argumentation theory with semantic technologies,
which leads to the possibility to reuse the argumentation bases among multi-
agent systems. The preference schemes have already proved their success as
conflict resolution strategies in expert systems.

One drawback is that we assume a common ontology of attacking and sup-
porting roles. In the presented scenario, this limitation is partial overcome by the
fact that HACCP represents a standard, which implies a common description of
concepts and procedures. Also, the implication of fuzzy composition to indirect
attacks needs a deeper investigation to validate the proposed semantics. Third,
a methodology for modeling practical applications with argumentation theory is
needed. Reasoning with the finitely many-valued Lukasiewicz Fuzzy Description
Logic SROIQ [5] should prove even more appropriate to deal with imprecise and
vague knowledge, inherent to several real world domains.
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Abstract. In this work we present a formal model for collaborative argumenta-
tion based dialogues by combining an abstract dialogue framework with a for-
malism for dynamic argumentation. The proposed model allows any number of
agents to interchange and jointly build arguments in order to decide the justi-
fication status of a given claim. The model is customizable in several aspects:
the argument attack relation and acceptability semantics, the notion of relevance
of contributions, and also the degree of collaboration are selectable. Important
properties are ensured such as dialogue progress step by step, completeness of
the sequence of steps, and termination. Under the higher degree of collaboration,
the dialogue constitutes a sound and complete distributed argumentation process.

ACM Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intel-
ligence]: Coherence and coordination.

General Terms: Theory, Design.

Keywords: Collective intelligence, Dialogue, Argumentation.

1 Introduction and Motivation

Multi-agent systems (MAS) provide solutions to problems in terms of autonomous in-
teractive components (agents). A dialogue is a kind of interaction in which a sequence
of messages, over the same topic, is exchanged among a group of agents, with the pur-
pose of jointly drawing some sort of conclusion. There is a subset of dialogues, which
we call collaborative, in which the agents are willing to share any relevant knowledge
to the topic at issue, having no other ambition than achieving the right conclusion on
the basis of all the information they have.

Argumentation-based dialogues usually consist of interchanging arguments for and
against certain claim. Mostly in the literature, these dialogues are held between two
agents, one of them putting the arguments ‘for’ and the other putting the arguments
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‘against’. In order to achieve collaborative (in the sense described above) behavior, all
the participants should contribute with both kinds of arguments, and also they should be
able to jointly build new arguments. Even as part of non-collaborative dialogues (e.g.
persuasion) it may be useful to build arguments in conjunction.

Classical abstract argumentation [3] assumes a static set of already built arguments,
resulting insufficient for modeling collaborative dialogues. The set of arguments in-
volved in a dialogue is, in contrast, dynamic: new arguments jointly constructed by the
agents may arise, and also arguments may be invalidated (note this is not the same as
defeated) at the light of new information. The argument construction step cannot be
performed separately from the dialogue.

Recently, a dynamic abstract argumentation framework (DAF) has been proposed
by Rotstein et al. [13], which extends the work done on acceptability of arguments, by
taking into consideration their construction and their validity with respect to a varying
set of evidence. This approach results, hence, very suitable for the modeling of collab-
orative dialogues. The main elements of the DAF are summarized in Sect. 2.

In [6] we have defined an abstract dialogue framework (DF) together with a set
of collaborative semantics which characterize different levels of collaboration in dia-
logues, in terms of a given reasoning model and a given notion for the relevance of con-
tributions. Under certain natural conditions, the proposed semantics ensure important
properties of collaborative dialogues, such as termination and outcome-determinism.

The aim of this work is to show how the abstract dialogue framework and semantics
[6] can be applied to dynamic argumentation [13]. As will be seen, the agents will inter-
change both arguments (in Rotstein’s sense) and evidence, achieving the joint construc-
tion of arguments in the usual sense. A particular framework for argumentation-based
dialogues will be obtained, which inherits the semantics and properties defined for the
abstract framework. In sections 4 through 6, we will reintroduce the abstract concepts
that constitute the DF showing how they can be instantiated in terms of the DAF.

2 Background

Next we summarize an abstract argumentation framework capable of dealing with dy-
namics through the consideration of a varying set of evidence [13]. Depending on a
particular situation (given by the content of the set of evidence), an instance of the
framework will be determined, in which some arguments hold and others do not.

The formalization is coherent with classical abstractions [3], however arguments play
a smaller role: they are aggregated in structures. These argumental structures can be
thought as if they were arguments (in the usual sense), but they will not always guaran-
tee their actual achievement of the claim.

A language L will be assumed for the representation of evidence, premisses, and
claims. An argument A is a pair 〈{s1 . . . sn}, δ〉 consisting of a consistent set of pre-
misses, noted supp(A), and a claim, noted cl(A). These basic premisses are consid-
ered the argument support. A supporting argument is one that claims for the premise of
another argument. The language of all the possible arguments built from L will be noted
LA. Consider for instance the argument A1 = 〈{th, ps}, dr〉 which assumes a route to
be dangerous because there are known thieves in that area and the security there is poor.
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Consider also the supporting argument A2 = 〈{upc}, ps〉 saying that underpaid cops
might provide poor security [13].

An argument is coherent, wrt. a set of evidence E, if its claim does not contradict,
nor coincides with, any evidence in E. Then, a coherent argument is active if each of
its premisses is either evidence or a claim of an active argument. Following the above
example, the argumentA1 is active wrt. the set {th, ps} and also wrt. the set {th, upc},
but it is not wrt. {th} nor {th, ps , dr}. Inactive arguments will be depicted in gray.

dr

th ps

upc

Σ1An argumental structure (structure for short), for a claim δ, is a tree of
arguments where the root argument claims for δ, and every non-root argu-
ment supports the parent through a different premise (note there may be un-
supported premisses). The argumentsA1 and A2 from the previous example
constitute an argumental structure Σ1 , shown on the right, for the claim ‘dr ’.
Structures are depicted as dashed boxes. The box will be omitted when the
structure consists of a unique argument.

Further constraints over structures (yielding well-formed structures) are imposed in
order to ensure a sensible reasoning chain. These avoid arguments attacking each other
within a structure, infinite structures, and heterogeneous support for a premise through-
out a structure (see [13] for details). A well-formed argumental structure is active, wrt.
a set of evidence E, if every argument in it is coherent wrt. E, and every unsupported
premise is evidence in E. For instance, the previous structure Σ1 claiming a route as
being dangerous, is active wrt. the set {th, upc}, but not wrt. {th} because the premise
‘upc’ is not evidence nor the claim of another argument in the structure. Neither is Σ1

active wrt. {th, ps} since A2 would not be coherent: its claim ‘ps’ is redundant wrt. to
the evidence. Inactive structures will be depicted in gray.

The dynamic argumentation framework (DAF) we will use is a pair 〈E, (W,R)〉
composed by a consistent set E of evidence, a working set of arguments W, and an
attack relation R ⊆ LA × LA

1 between arguments. We restrict the attacks to pairs of
arguments with contradictory claims, and at least in one direction. That is, for every pair
of argumentsA1 and A2 whose claims are in contradiction, at least one of (A1,A2) or
(A2,A1) will belong to R. Contradictory sentences will be noted as a and a.

dr

th ps

upc

ps

un

fc

ps

mc

Σ1 Σ2 Σ3The notion of attack over arguments has a direct correla-
tion to argumental structures: a structure attacks another if the
root argument of the first attacks any argument of the second.
Consider, for instance, the argumentA3 = 〈{mc}, ps〉 which
assumes the security to be good because there are many cops
in the area. Consider also the arguments A4 = 〈{un}, ps〉
and A5 = 〈{fc}, un〉 saying that foreign cops might be unac-
quainted with the place, giving the idea of poor security [13]. Assume that A3 attacks
A2 andA4 attacksA3. Then, the structure Σ1 mentioned earlier is attacked by the struc-
ture Σ2 (composed by A3), which is in turn attacked by the structure Σ3 (composed by
A4 and A5). This sequence of attacks is depicted on the right.

1 In [13], the attack relation is defined over the working set of arguments W. Since a unified
policy for comparing arguments from different agents is needed in a collaborative dialogue
setting, here we introduce a slight variation generalizing the attack relation over the universal
set of arguments LA.
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Σ1

Σ2

Σ12
At any moment, the active instance of a DAF is a pair (S, R),

where S is the set of active argumental structures, and R is the re-
sulting attack relation between them. This is equivalent to Dung’s
definition of abstract argumentation framework [3]. Therefore, clas-
sic argumentation semantics can be applied to the active instance. From the previous
examples, if we consider the set of evidence {th, upc,mc} then the active instance,
depicted on the right, consists of: the structures Σ1 and Σ2 mentioned earlier, and also
the structure Σ12 composed only by argumentA2. Note that Σ3 is not active, and hence
does not belong to the active instance. Picking grounded semantics, for instance, the
only accepted structure would be Σ2.

In this work we will assume unique-extension semantics. The arguments belonging
to the extension, along with their claims, will be considered justified from the DAF,
as well as the whole evidence set. From the previous example, the claim ‘ps’ would be
justified. Multiple-extension semantics could also be used, expanding the set of possible
‘justification statuses’ of a claim (e.g. ‘justified’, ‘not-justified’, or ‘undecided’).

3 Informal Requirements for Collaborative Dialogue Models

We believe that an ideal collaborative behavior of dialogues should satisfy the fol-
lowing, informally specified, requirements. Note that these requirements address de-
sirable properties of dialogues instances, not to be confused with properties aimed to
be achieved by dialogue protocols (like the ones proposed, for instance, in [8]).

R1: All the relevant information is exposed in the dialogue.
R2: The exchange of irrelevant information is avoided.
R3: The final conclusion follows from all what has been said.

On that basis, we will conduct our analysis of collaborative dialogue behavior in terms
of two abstract elements: a reasoning model and a relevance notion2, assuming that
the former gives a formal meaning to the word follows, and the latter to the word rele-
vant. Both elements are domain-dependent and, as we shall see, they are not unattached
concepts. It is important to mention that the relevance notion is assumed to work in a
context of complete information (this will be clarified later).

We believe that the achievement of R1-R3 should lead to achieving other important
requirements, listed below. Later in this work we will state the conditions under which
this hypothesis actually holds.

R4: The dialogue should always end.
R5: Once the dialogue ends, if the agents added all their still private information, and

reasoned from there, the previously drawn conclusions should not change.

In the task of simultaneously achieving requirements R1 and R2, in the context of a
distributed MAS, a non-trivial problem arises: relevant information distributed in such

2 The term relevance appears in many research areas: epistemology, belief revision, economics,
information retrieval, etc. In this work we intend to use it in its most general sense, which may
be closer to the epistemic one: pertinence in relation to a given question, but it should not be
tied to any particular interpretation, except for concrete examples given in this work.
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a way that none of the parts is relevant by itself. For instance, considering the DAF of
Sect. 2, an agent may have an argument for a certain claim but the activating evidence
resides in a different agent. This, in principle threatens R1 since the whole contribu-
tion would be left unseen. Besides, any attempt to detect these ‘non-self-relevant’ parts
threatens R2 due to the risk of being mistaken. This could happen for instance, follow-
ing with the previous example, if the argument is exposed but the activating evidence
does not actually exist. There is a tradeoff between requirements R1 and R2.

Because of the nature of collaborative dialogues, we believe R1 may be mandatory
in many application domains, and hence we will seek solutions which achieve it, even
at the expense of relegating R2 a bit. As will be seen later in Sect. 6, the basic idea will
be to develop a new relevance notion (which will be called a potential relevance notion)
able to detect parts of distributed relevant contributions (under the original notion).

4 The Dialogue Framework

Three languages are assumed to be involved in a dialogue: the Knowledge Represen-
tation Language L for expressing the information exchanged by the agents, the Topic
Language LT for expressing the topic that gives rise to the dialogue, and the Outcome
Language LO for expressing the final conclusion (or outcome). Also assumed is a lan-
guage LI for agent identifiers. As usual, a dialogue consists of a topic, a sequence of
moves, and an outcome. In each move an agent makes a contribution (exposes a set of
knowledge). This is a public view of dialogue: agents’ private knowledge is not taken
into account yet.

Definition 1 (Move). A move is a pair 〈id , X〉 where id ∈ LI is the identifier of the
speaker, and X ⊆ L is her contribution.

Definition 2 (Dialogue). A dialogue is a tuple
〈
t, 〈mj〉, o

〉
where t ∈ LT is the dia-

logue topic, 〈mj〉 is a sequence of moves, and o ∈ LO is the dialogue outcome.

As will be seen in short, in the argumentative approach based on the DAF, the agents
will expose arguments and evidence, topics will correspond to claims, and dialogue
outcomes might be Yes (justified) or No (not justified).

Note that the dialogue protocol here is very simple, since it consists of only one type
of move: to assert a set of knowledge. For this reason, it is not modeled as a typical
dialogue-game protocol3. Instead we are interested in specifying which subsets, from
all the dialogues conforming with this basic protocol, represent desirable behaviors.

As anticipated in Sec. 3, we will study the dialogue behavior in terms of two abstract
concepts: relevance and reasoning. To that end, an Abstract Dialogue Framework (DF)
is introduced, whose aim is to provide an environment for dialogues to take place, and
which includes: the languages involved in the dialogue, a set of participating agents, a
relevance notion and a reasoning model. An agent is represented by an identifier and a
private knowledge base (kb), providing in this way a complete view of dialogues.

3 Dialogue-game protocols usually specify several rules regarding different types of allowed
moves (locutions), and the legal ways in which these may be combined during the dialogue.
For more detail about formal dialogue-game protocols see, for instance, [7].
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Definition 3 (Agent). An agent is a pair 〈id , K〉, noted Kid , where K ⊆ L is a private
finite knowledge base, and id ∈ LI is an agent identifier.

A relevance notion is a criterion for determining, given certain already known informa-
tion and a topic, whether it would be relevant to add certain other information (i.e., to
make a contribution). We emphasize that this criterion works under an assumption of
complete information, to be contrasted with the situation of a dialogue where each agent
is unaware of the private knowledge of the others. This issue will be revisited in Sec. 5.
Finally, a reasoning model will be understood as a mechanism for drawing a conclusion
about a topic, on the basis of an individual knowledge base. The argumentation-based
reasoning model, for instance, will determine the justification status of a claim from a
given set of evidence and arguments.

Definition 4 (Abstract Dialogue Framework). An abstract dialogue framework (DF)
is a tuple 〈L,LT,LO,LI,R, Φ,Ag〉 where:

– L, LT, LO and LI are the languages involved in the dialogue,
– Ag is a finite set of agents,
– R ⊆ 2L × 2L × LT is a relevance notion, and
– Φ : 2L × LT ⇒ LO is a reasoning model.

The brief notation 〈R, Φ,Ag〉 will be also used.

Notation. If (X, S, t) ∈ R, we say that X is a t-relevant contribution to S under R,
and we note it XRtS. When it is clear what relevance notion is being used, we just say
that X is a t-relevant contribution to S. For individual sentences α in L, we also use the
simpler notation αRtS meaning that {α}RtS.

Throughout this work we will refer to the partially instantiated DF Far

= 〈L ∪ LA,L, {Yes, No},LI,Rδ, Ψ,Ag〉. The languages L and LA are the ones of
Sect. 2. Hence, in this argumentation-based dialogue framework, the knowledge rep-
resentation language consists of both evidence and arguments, topics correspond to
claims, and outcomes might be Yes or No. As mentioned before, the reasoning model
Ψ determines the justification status of a claim from a given set of evidence and argu-
ments. That is, Ψ(K, δ) = Yes if, and only if, the claim δ is justified (under a certain
argumentation semantics S) from the DAF 〈E, (W,R)〉, with E ∪ W = K and R a
certain attack relation between arguments. We will sometimes use the more specific no-
tation Far(S,R). Particularly, the notation Far(G,R) will be used for the instantiation
with grounded semantics [3]. For the aim of simplicity, we will assume that the union
of the evidence in all knowledge bases is consistent.

There are two different sets of knowledge involved in a dialogue: the private knowl-
edge which is the union of the agents’ knowledge bases, and the public knowledge
which is the union of all the contributions already made, up to certain step. The former
is a static set, whereas the latter grows as the dialogue progresses.

Definition 5 (Public Knowledge). Let d be a dialogue consisting of a sequence〈
〈id1, X1〉 . . . 〈idm, Xm〉

〉
of moves. The public knowledge associated to d at step j

(j ≤ m) is the union of the first j contributions of the sequence and is noted PUj
d

(PUj
d = X1 ∪ · · · ∪Xj).
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Definition 6 (Private Knowledge). Let F be a DF including a set Ag of agents. The
private knowledge associated to F (and to any admissible dialogue under F) is the union
of the knowledge bases of the agents in Ag , and is noted PRF (PRF =

⋃
Kid∈Ag K).

In order to restrict agents’ contributions to be subsets of their private knowledge, we
define next the set of admissible dialogues under a given DF.

Definition 7 (Admissible Dialogues). Let F = 〈L,LT,LO,LI,Rt, Φ,Ag〉 be a DF,
t ∈ LT and o ∈ LO. A dialogue

〈
t, 〈mj〉, o

〉
is admissible under F if, and only if, for

each move m = 〈id , X〉 in the sequence, there is an agent Kid ∈ Ag such that X ⊆ K .
The set of admissible dialogues under F is noted d(F).

Remark 1. For any step j of any dialogue d ∈ d(F), it holds that PUj
d ⊆ PRF.

Returning to the notions of relevance and reasoning, it was mentioned in Sec. 3 that
these were not unattached concepts: a coherent dialogue must exhibit some connection
between them. Assuming a contribution to be relevant whenever its addition alters the
conclusion achieved by the reasoning model, as defined below, seems to be a natural
connection.

Definition 8 (Natural Relevance Notion). Let Φ be a reasoning model. The natural
relevance notion associated to Φ is a relation NΦ

t such that:

– XNΦ
t S if, and only if, Φ(S, t) �= Φ(S ∪X , t).

When XNΦ
t S we say that X is a natural t-relevant contribution to S under Φ.

Hence, in the argumentative approach, the natural relevance notion NΨ
δ detects the

change of the “justification status” for a given claim. It will be seen later that this con-
nection can be relaxed, i.e., other relevance notions which are not exactly the natural
one, might also be accepted. We distinguish the subclass of DFs in which the rele-
vance notion is the natural one associated to the reasoning model. We refer to them
as Inquiry4 Dialogue Frameworks (IDF), and the relevance notion is omitted in their
formal specification.

Definition 9 (Inquiry Dialogue Framework). An Inquiry Dialogue Framework (IDF)
is a DF 〈Rt, Φ,Ag〉 where Rt = NΦ

t . The brief notation 〈Φ,Ag〉 will be used.

Throughout this work we will refer to the partially instantiated IDF Iar = 〈Ψ,Ag〉. As
with DFs, we will also use the notation Iar(S,R) for specifying a particular argumen-
tation semantics and a particular argument attack relation.

5 Utopian Collaborative Semantics

A semantics for a DF is a subset of the admissible dialogues representing a particu-
lar dialogue behavior. We are interested in specifying which, from all the admissible
dialogues under a given DF, have an acceptable collaborative behavior. In Sec. 3 we

4 The term Inquiry is inspired on the popularized typology of dialogues proposed in [14], since
we believe that the natural relevance notion captures the essence of this type of interaction:
collaboration to answer some question. However, the term will be used in a broader sense
here, since nothing is assumed regarding the degree of knowledge of the participants.
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identified three requirements, R1-R3, to be ideally achieved by collaborative dialogue
systems. In this section, we will define an Utopian Collaborative Semantics which gives
a formal characterization of such ideal behavior. In order to translate requirements R1-
R3 into a formal specification, some issues need to be considered first.

In particular, the notion of relevant contribution needs to be adjusted. On the one
hand, there may be contributions which does not qualify as relevant but it would be
adequate to allow. To understand this, it should be noticed that, since relevance notions
are related to reasoning models, and reasoning models may be non-monotonic, then it
is possible for a contribution to contain a relevant subset, without being relevant itself.
For instance, in the context of the Iar(G,R) framework, an active argumental structure
Σ1 would be a natural cl(Σ1)-relevant contribution to the empty set, but if we added
an active structure Σ2 attacking Σ1, then it would not. The possibility of some other
agent having, for instance, an active structure Σ3 attacking Σ2, explains why it would
be useful to allow the whole contribution consisting of both Σ1 and its attacker Σ2

(and all the supporting evidence). In these cases, we say that the relevance notion fails
to satisfy left-monotonicity and that the whole contribution is weakly relevant5. The
formal definitions are given below.

Definition 10 (Left Monotonicity). Let Rt be a relevance notion. We say that Rt sat-
isfies left monotonicity if, and only if, the following condition holds:

– if XRtS and X ⊆ Y then YRtS.

Definition 11 (Weak Contribution). Let Rt be a relevance notion. We say that X is a
weak t-relevant contribution to S if, and only if, there exists Y ⊆ X such that YRtS.

On the other hand, there may be contributions which qualify as relevant but they are not
purely relevant. For example, the argument 〈{b}, a〉 together with the set of evidence
{b, e} constitute a natural ‘a’-relevant contribution to the empty set, although the evi-
dence ‘e’ is clearly irrelevant. These impure relevant contributions must be avoided in
order to obey requirement R2. For that purpose, pure relevant contributions impose a
restriction over weak relevant ones, disallowing absolutely irrelevant sentences within
them, as defined below.

Definition 12 (Pure Contribution). Let Rt be a relevance notion, and X a weak t-
relevant contribution to S. We say that X is a pure t-relevant contribution to S if, and
only if, the following condition holds for all α ∈ X:

– there exists Y ⊂ X such that αRt(S ∪ Y ).

Finally, it has been mentioned that the relevance notion works under an assumption of
complete information, and thus it will be necessary to inspect the private knowledge of
the others for determining the actual relevance of a given move. Now we are able to
give a formal interpretation of requirements R1-R3 in terms of the DF elements:

5 The term weak relevance is used in [12] in a different sense, which should not be related to the
one introduced here.
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Definition 13 (Utopian Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A
dialogue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Utopian Collaborative Semantics for

F (noted Utopian(F)) if, and only if:

Correctness: if mj is the last move in the sequence, then Φ(PUj
d, t) = o.

Global Progress: for each move mj = 〈id j , Xj〉 in the sequence, there exists
Y ⊆ PRF such that Xj ⊆ Y and Y is a pure t-relevant contribution to PUj−1

d .

Global Completeness: if mj is the last move in the sequence, then PRF is not a weak
t-relevant contribution to PUj

d.

Requirement R3 is achieved by the Correctness condition, which states that the dialogue
outcome coincides with the application of the reasoning model to the public knowledge
at the final step of the dialogue (i.e., the outcome of the dialogue can be obtained by rea-
soning from all that has been said). In the case of the Iar framework, for instance, this
means that the dialogue outcome is Yes if, and only if, the claim (topic) results justified
considering all the arguments and evidence exposed during the dialogue. Requirement
R2 is achieved by the Global Progress condition, which states that each move in the
sequence is part of a distributed pure relevant contribution to the public knowledge
generated so far. Finally, requirement R1 is achieved by the Global Completeness con-
dition, which states that there are no more relevant contributions, not even distributed
among different knowledge bases, after the dialogue ends. Notice that the three condi-
tions are simultaneously satisfiable by any DF and topic, i.e., there always exists at least
one dialogue which belongs to this semantics, as stated in the following proposition.

Proposition 1 (Satisfiability). For any DF F = 〈Rt, Φ,Ag〉, the set Utopian(F) con-
tains at least one dialogue over each possible topic in LT.

Furthermore, any sequence of moves satisfying global progress can be completed to a
dialogue belonging to the semantics. This means that a system implementation under
this semantics would not need to do backtracking. Although this property is useless for
the case of the utopian semantics which, as will be seen in short, is not implementable
in a distributed system, it will be useful in the case of the two practical semantics that
will be presented in Sec. 6.

Definition 14. A dialogue d2 over a topic t is a continuation of a dialogue d1 over the
same topic t if, and only if, the sequence of moves of d2 can be obtained by adding zero
or more elements to the sequence of moves of d1.

Proposition 2 (No Backtracking). Let F = 〈Rt, Φ,Ag〉 be a DF, and d1 ∈ d(F). If d1

satisfies global progress under F, then there exists a dialogue d2 ∈ Utopian(F) which
is a continuation of d1.

Note that the truth of the previous statements (regarding satisfiability and no back-
tracking) comes from the following facts, which can be easily proven: (1) if global
completeness is not achieved, then there exists at least one possible move that can be
added to the sequence according to global progress, and (2) the correctness condition
is orthogonal to the other two. Next, an illustrative example of the dialogues generated
under the Utopian Semantics is given.
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Example 1. Consider an instance of the Iar(G,R) framework, where the knowledge
bases of the agents in the set Ag are the following:

KA = {〈{b}, a〉, e}, KB = {〈{c}, b〉, 〈{d}, b〉, f} and KC = {c, g}.

The dialogue d1 shown in Fig. 1, over topic ‘a’, and also all the permutations of its
moves with the same topic and outcome, belong to the Utopian Semantics for the frame-
work. The chart (a) traces the dialogue, showing the partial results of reasoning from the
public knowledge so far generated. The last of these results (underlined) is the dialogue
outcome. The evolution of the public knowledge is depicted in subfigures (b) through
(d). At the first step of the dialogue, an inactive argument is added (b). The second step
adds another inactive argument, supporting the first one (c). Finally, the supporting ev-
idence is made available, and the whole structure becomes active (d), yielding to the
justification of claim a.

j A B C Ψ(PUj
d1

, a)

1 {〈{b}, a〉} No
2 {〈{c}, b〉} No
3 {c} Yes

(a)

a

b

(b)

a

b

c

(c)

a

b

c
(d)

Fig. 1. A dialogue under the Utopian Collaborative Semantics

An essential requirement of dialogue systems is ensuring the termination of the
generated dialogues. This is intuitively related to requirement R2 (achieved by global
progress) since it is expected that agents will eventually run out of relevant contribu-
tions, given that their private knowledge bases are finite. This is actually true as long
as the relevance notion satisfies an intuitive property, defined below, which states that a
relevant contribution must add some new information to the public knowledge.

Definition 15 (Novelty). A relevance notion Rt satisfies novelty if, and only if, the
following condition holds:

– if XRtS then X � S.

Proposition 3 (Termination). Let F = 〈Rt, Φ,Ag〉 be a DF, and d =
〈
t, 〈mj〉, o

〉
∈

d(F). If the notion Rt satisfies novelty and dialogue d satisfies global progress under
F, then 〈mj〉 is a finite sequence of moves.

It is easy to see that any natural relevance notion satisfies novelty, since it is not possible
for the conclusion achieved by the reasoning model to change without changing the
topic nor the knowledge base.

Proposition 4. For any reasoning model Φ, it holds that its associated natural rele-
vance notion, NΦ

t , satisfies novelty.

Another desirable property of collaborative dialogue models is ensuring it is not possi-
ble to draw different conclusions, for the same set of agents and topic. In other words,
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from the entirety of the information, it should be possible to determine the outcome of
the dialogue, no matter what sequence of steps are actually performed6. Furthermore,
this outcome should coincide with the result of applying the reasoning model to the pri-
vate knowledge involved in the dialogue. We emphasize that this is required for collab-
orative dialogues (and probably not for non-collaborative ones). For instance, in Ex. 1,
all the possible dialogues under the semantics end up justifying the claim, which is also
justified from KA ∪KB ∪KC. This is intuitively related to requirements R1 (achieved
by global completeness) and R3 (achieved by correctness) since it is expected that the
absence of relevant contributions implies that the current conclusion cannot be changed
by adding more information. This is actually true as long as the relevance notion is the
natural one associated to the reasoning model, or a weaker one, as stated below.

Definition 16 (Stronger Relevance Notion). Let Rt and R′
t be relevance notions. We

say that the notion Rt is stronger or equal than R′
t if, and only if, the following holds:

– if XRtS then XR′
tS (i.e., Rt ⊆ R′

t).

We will also say that R′
t is weaker or equal than Rt.

Observe that here we use the term weaker, as the opposite of stronger, denoting a binary
relation between relevance notions, and this should not be confused with its previous
use in Def. 11 of weak relevant contribution.

Proposition 5 (Outcome Determinism). Let F = 〈Rt, Φ,Ag〉 be a DF and d =〈
t, 〈mj〉, o

〉
∈ d(F). If d satisfies correctness and global completeness under F, and

Rt is weaker or equal than NΦ
t , then o = Φ(PRF, t).

For example, a relevance notion which detects the generation of new justified argu-
ments (in the usual sense) for a given claim, would be weaker than the natural one. It is
easy to see that this weaker relevance notion would also achieve outcome determinism.

The following corollaries summarize the results regarding the utopian semantics for
DFs, and also for the particular case of IDFs. Clearly, these results are inherited re-
spectively by Far and Iar.

Corollary 1. Let F = 〈Rt, Φ,Ag〉 be a DF. The dialogues in Utopian(F) satisfy ter-
mination and outcome determinism, provided that the relevance notion Rt satisfies
novelty and is weaker or equal than NΦ

t .

Corollary 2. Let I be an IDF. The dialogues in Utopian(I) satisfy termination and
outcome determinism.

It is clear that Def. 13 of the Utopian Collaborative Semantics is not constructive, since
both global progress and global completeness are expressed in terms of the private
knowledge PRF, which is not entirely available to any of the participants. The follow-
ing example shows that, it is not only not constructive, but also in many cases not even
implementable in a distributed MAS.

6 This property, which we will call outcome determinism, has been studied in various works
under different names. For instance in [9] it was called completeness. Notice that we use that
term for another property, which is not the same but is related to the one under discussion.
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Example 2. Consider the inquiry framework instance from Ex. 1. The dialogue d2

shown in Fig. 2 does not belong to the Utopian Semantics, since step 2 violates global
progress. However, it would not be possible to design a dialogue system which allows
d1 (from Ex. 1) but disallows d2, since agent B cannot know in advance that ‘c’, rather
than ‘d’, holds.

j A B C Ψ(PUj
d2

, a)

1 {〈{b}, a〉} No
2 {〈{d}, b〉} No
3 {〈{c}, b〉} No
4 {c} Yes

Fig. 2. A dialogue violating the Utopian Collab-
orative Semantics

The undesired situation is caused by a rel-
evant contribution distributed among sev-
eral agents, in such a way that none of
the parts is relevant by itself, leading to
a tradeoff between requirements R1 and
R2 (i.e., between global progress and
global completeness). In the worst case,
each sentence of the contribution resides
in a different agent. Thus, to avoid such
situations, it would be necessary for the relevance notion to warrant that every relevant
contribution contains at least one individually relevant sentence. When this happens,
we say that the relevance notion satisfies granularity, defined next.

Definition 17 (Granularity). Let Rt be a relevance notion. We say that Rt satisfies
granularity if, and only if, the following holds:

– if XRtS then there exists α ∈ X such that αRtS.

Unfortunately, the relevance notions we are interested in, fail to satisfy granularity.
It does not hold in general for the natural notions associated to deductive inference
mechanisms. In particular, it has been shown in Ex. 2 that it does not hold for NΨ

δ .

6 Practical Collaborative Semantics

The lack of granularity of relevance notions motivates the definition of alternative se-
mantics which approach the utopian one, and whose distributed implementation is vi-
able. The simplest approach is to relax requirement R1 by allowing distributed relevant
contributions to be missed, as follows.

Definition 18 (Basic Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A di-
alogue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Basic Collaborative Semantics for F

(noted Basic(F)) if, and only if, the following conditions, as well as Correctness
(Def. 13), hold:

Local Progress: for each move mj = 〈id j , Xj〉 in the sequence, Xj is a pure t-
relevant contribution to PUj−1

d .

Local Completeness: if mj is the last move in the sequence, then it does not exist an
agent Kid ∈ Ag such that K is a weak t-relevant contribution to PUj

d.

In the above definition, requirement R2 is achieved by the local progress condition
which states that each move in the sequence constitutes a pure relevant contribution to
the public knowledge generated so far. Notice that this condition implies global progress
(enunciated in Sec. 5), as stated below.
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Proposition 6. Let F = 〈Rt, Φ,Ag〉 be a DF, and d ∈ d(F). If the dialogue d satisfies
local progress, then it satisfies global progress under F.

Requirement R1 is now compromised. The local completeness condition states that each
agent has no more relevant contributions to make after the dialogue ends. Unless the rel-
evance notion satisfies granularity, this is not enough for ensuring global completeness
(enunciated in Sec. 5), since there could be a relevant contribution distributed among
several agents, in such a way that none of the parts is relevant by itself.

Proposition 7. Let F = 〈Rt, Φ,Ag〉 be a DF, and d ∈ d(F). If the dialogue d satisfies
global completeness, then it satisfies local completeness under F. The reciprocal holds
if, and only if, the relevance notion Rt satisfies granularity.

As a result, requirement R4 (termination) is achieved, given the same condition as in
Sec. 5, whereas requirement R5 (outcome determinism) cannot be warranted. These
results are summarized in the corollary below. Clearly, these results are inherited by
Far and Iar.

Corollary 3. Let F = 〈Rt, Φ,Ag〉 be a DF. The dialogues in Basic(F) satisfy termi-
nation, provided that the relevance notion Rt satisfies novelty.

Corollary 4. Let I be an IDF. The dialogues in Basic(I) satisfy termination.

Considering the same scenario as in Ex. 1, it is easy to see that the only possible dia-
logue under the Basic Semantics is the empty one (i.e., no moves are performed), with
outcome No. A more interesting example is shown next.

Example 3. Consider an instance of the Iar(G,R) framework, where the knowledge
bases of the agents in the set Ag are the following:

KA = {〈{b}, a〉, b, g}, KB = {〈{e}, a〉, 〈{f}, e〉, f, g}, and KC = {〈{g}, a〉, e}.

Also consider that both 〈{e}, a〉 and 〈{g}, a〉 attack 〈{b}, a〉, but not viceversa. The
private knowledge is depicted in Fig. 3(a). The dialogue d3 traced in Fig. 3(b), over
topic a, belongs to the Basic Semantics for the IDF instantiated above. The evolu-
tion of the public knowledge is depicted in figures 3(c) through 3(e). At the first step,
an active argument for ‘a’ is added (c). At the second step, an attacking structure is
added (d). Finally, the attacking structure is deactivated due to a supporting argument
becoming inconsistent wrt. new evidence (e). Note that global completeness is not
achieved, since there still exists a distributed relevant contribution when the dialogue
ends: {〈{g}, a〉, g}. Consequently, outcome determinism is not achieved: the outcome
is Yes whereas the result of reasoning from the private knowledge is No.

In Sec. 3 we argued that requirement R1 may be mandatory in many domains, but the
Basic Semantics does not achieve it unless the relevance notion satisfies granularity,
which does not usually happen. In order to make up for this lack of granularity, we
propose to build a new notion (say P) based on the original one (say R) which ensures
that, in the presence of a distributed relevant contribution under R, at least one of the
parts will be relevant under P . We will say that P is a potential relevance notion for
R, since its aim is to detect contributions that could be relevant within certain context,
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Fig. 3. A dialogue under the Basic Collaborative Semantics

but it is uncertain whether that context actually exists or not. Observe that the context
is given by other agents’ private knowledge, which has not been exposed yet.

Below we define the binary relation (“is a potential for”) between relevance notions,
and also its propagation to DFs. Clearly, if a relevance notion already satisfies granular-
ity then nothing needs to be done. Indeed, it would work as a potential relevance notion
for itself.

Definition 19 (Potential Relevance Notion). Let Rt and Pt be relevance notions. We
say that Pt is a potential (relevance notion) for Rt if, and only if, the following condi-
tions hold:

1. Rt is stronger or equal than Pt, and
2. if XRtS then there exists α ∈ X such that αPtS.

If XPtS andPt is a potential forRt, we say that X is a potential t-relevant contribution
to S under Rt.

Definition 20 (Potential Dialogue Framework). Let F = 〈Rt, Φ,Ag〉 and
F∗ = 〈Pt, Φ,Ag〉 be DFs. We say that F∗ is a potential (framework) for F if, and only
if, Pt is a potential relevance notion for Rt.

Proposition 8. If the relevance notion Rt satisfies granularity, then Rt is a potential
relevance notion for itself.

Now we will show a more interesting potential relevance notion, in the context of the
Iar framework. The basic idea is to detect contributions that would be relevant given
a certain situation (i.e., a certain set of evidence). To that end, we first introduce the
concept of abduction set associated to a given claim δ and a given set K . This abduc-
tion set reflects how the current situation (represented by the evidence in K) could be
minimally expanded in order to change the justification status of δ.
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Definition 21 (Abduction Set). Let K ⊆ L ∪ LA and δ ∈ L. The abduction set of δ
from K , noted AB(K, δ), is defined as:

AB(K, δ) =
{

E ⊆ L : E is consistent wrt. the evidence in K, and E is a minimal
natural δ-relevant contribution to K.

}
Example 4. Consider the Iar framework. In the chart of Fig. 4, the second column
shows the abduction set of claim “a”, from the set K on the first column. In the last case,
assume that the argument 〈{e}, a〉 attacks the argument 〈{b}, a〉, but not viceversa.

K AB(K, a)
{} {{a}}

{ 〈{b}, a〉 } {{a}{b}}
{ 〈{b}, a〉, b } {{}}

{ 〈{b}, a〉, b, 〈{e}, a〉, {{a}{e}}
〈{f}, e〉, f }

Fig. 4. Some abduction set examples

Now we are able to introduce an abductive rel-
evance notion AΨ

δ . Under this notion, a set X
is considered an δ-relevant contribution to K if,
and only if, its addition generates a new element
in the abduction set of δ from K . This means
that a new potential situation in which the jus-
tification status of δ would change has arisen.
It can be shown (proof is omitted due to space
reasons) that AΨ

δ is a potential relevance notion for NΨ
δ .

Definition 22 (Abductive Relevance). Let K ⊆ L ∪ LA and δ ∈ L. A set X ⊆ L ∪ LA

is an δ-relevant contribution to K under AΨ
δ if, and only if, there exists E ⊆ L such

that the following conditions hold:

1. E ∈ AB(K ∪X, δ), and
2. E /∈ AB(K, δ).

Proposition 9. The notion AΨ
δ is a potential relevance notion for NΨ

δ .

Returning to the semantics definition, the idea is to use the potential framework under
the Basic Semantics, resulting in a new semantics for the original framework. Next we
introduce the Full Collaborative Semantics, which is actually a family of semantics:
each possible potential DF defines a different semantics of the family.

Definition 23 (Full Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A dia-
logue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Full Collaborative Semantics for F (noted

Full(F)) if, and only if, d ∈ Basic(F∗) for some DF F∗ = 〈Pt, Φ,Ag〉 which is a po-
tential for F. We will also use the more specific notation d ∈ Full(F,Pt).

In this way, each agent would be able to autonomously determine that she has no more
potential relevant contributions to make, ensuring there cannot be any distributed rel-
evant contribution when the dialogue ends, and hence achieving R1. In other words,
achieving local completeness under the potential relevance notion implies achieving
global completeness under the original one, as stated below.

Proposition 10. Let F = 〈Rt, Φ,Ag〉 and F∗ = 〈Pt, Φ,Ag〉 be DFs such that F∗ is a
potential for F, and d ∈ d(F). If dialogue d satisfies local completeness under F∗, then
it satisfies global completeness under F.
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Requirement R2 is now compromised, since the context we have mentioned may not
exist. In other words, achieving local progress under the potential relevance notion does
not ensure achieving global progress under the original one. The challenge is to design
good potential relevance notions which considerably reduce the amount of cases in
which a contribution is considered potentially relevant but, eventually, it is not. Observe
that a relevance notion which considers any sentence of the language as relevant, works
as a potential for any given relevance notion, but it is clearly not a good one.

Next we summarize the results for the dialogues generated under the Full Collabora-
tive Semantics. By achieving global completeness these dialogues achieve outcome de-
terminism under the same condition as before. Although global progress is not achieved
under the original relevance notion, it is achieved under the potential one, and thus ter-
mination can be ensured as long as the latter satisfies novelty. Clearly, these results are
inherited by Far and Iar.

Corollary 5. Let F = 〈Rt, Φ,Ag〉 be a DF, and Pt a potential for Rt. The dialogues
in Full(F,Pt) satisfy termination and outcome determinism, provided that Pt satisfies
novelty and Rt is weaker or equal than NΦ

t .

Corollary 6. Let I = 〈Φ,Ag〉 be an IDF, and Pt a potential for NΦ
t . The dialogues

in Full(I,Pt) satisfy termination and outcome determinism, provided that Pt satisfies
novelty.

Example 5. Both dialogues d1 and d2, presented in Ex. 1 and Ex. 2 respectively, belong
to Full(Iar,Aar

δ ). Also belongs to this semantics the dialogue which results from d2 by
interchanging steps 2 and 3, or by merging these two steps together in a single one.
Note that all these dialogues achieve global completeness, although global progress is
achieved only by dialogue d1.

Example 6. The dialogue d3 from Ex. 3 can be completed according to Full(Iar,Aar
δ ),

as shown in Fig. 5(a). The fifth column of the chart shows the evolution of the abduction
set of the claim “a” from the generated public knowledge. An additional step 0 is added,
in order to show the initial state of this abduction set. At step 4 an attacking, for the
meantime inactive, argument is added (5(b)). This generates a new potential situation
in which the claim ‘a’ would not be justified any more. At step 5 the previous situation
is realized, activating the attack and leaving the claim ‘a’ not justified (5(c)). Note that
other dialogues also belong to the Full Collaborative Semantics, since the first three
steps do not actually need to be natural relevant contributions. For instance, agent A
could expose the argument 〈{b}, a〉 and then, in the next step, the supporting evidence.
Moreover, agent B could make her attack while agent A’s argument is still inactive. In
that moment, the element {b, e} would be added to the abduction set.

It is important to note the existence of alternative potential relevance notions which
may be also adequate, and which may cause variations in the behavior of the dialogue.
For instance, a variant of the abductive relevance notion defined earlier is to consider a
contribution as relevant if its addition either adds or deletes an element of the abduction
set. The latter case, deletion, could be seen as discarding a possible explanation before
it is actually realized (or activated). For instance, assume from Ex. 6 that agent A ex-
poses just the argument 〈{b}, a〉 without the activating evidence. Before the activation,
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Fig. 5. A dialogue under the Full Collaborative Semantics

it would be possible for agent C to make an attack by exposing the argument 〈{g}, a〉
together with the supporting evidence {g}. Observe that that exact sequence of steps
is not allowed under the abductive notion defined earlier, in Def. 22, since no element
is added to the abduction set, instead the element {b} is deleted. Under that notion, it
would be necessary for agent A to activate her argument before agent C can attack it.
It is easy to see that the alternative notion which considers not only the expansion but
also the reduction of the abduction set, may in some cases lead to shorter dialogues.

Results regarding satisfiability and no-backtracking also hold under the two practical
semantics we have presented in this section, as stated below.

Proposition 11. For any DF F = 〈Rt, Φ,Ag〉, each one of the sets Basic(F) and
Full(F,Pt), contains at least one dialogue over each possible topic in LT.

Proposition 12. Let F = 〈Rt, Φ,Ag〉 and F∗ = 〈Pt, Φ,Ag〉 be DFs such that F∗ is a
potential for F, and let d1 ∈ d(F). If d1 satisfies local progress under F (F∗), then there
exists a dialogue d2 ∈ Basic(F) (d2 ∈ Full(F,Pt)) which is a continuation of d1.

Finally, a result showing the relation among the three collaborative semantics, for the
case in which the relevance notion satisfies granularity, is stated.

Proposition 13. Let F = 〈Rt, Φ,Ag〉 be a DF. If the relevance notion Rt satisfies
granularity, then it holds that: Basic(F) = Full(F,Rt) ⊆ Utopian(F).

To sum up, we have defined three collaborative semantics for a DF. The Utopian Se-
mantics describes an idealistic, in most cases impractical behavior of a collaborative
dialogue. Its usefulness is theoretical. It is approximated, in different ways, by the other
two practical semantics. The Basic Semantics, on the other side, describes a straight-
forward implementable behavior of a collaborative dialogue. The weak point of this
semantics is not ensuring global completeness (neither outcome determinism, thus).
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The Full Collaborative Semantics is actually a family of semantics: each potential rele-
vance notion Pt associated to Rt defines a semantics of the family. Thus, the construc-
tiveness of these semantics is reduced to the problem of finding a potential relevance
notion for Rt. These semantics succeed in achieving global completeness, at the price
of allowing moves which may not be allowed by the Utopian Semantics. The good-
ness of a given potential relevance notion increases as it minimizes the amount of such
moves.

7 Related Work

There are some works particulary related to our proposed approach, due to any of the
following: (a) an explicit treatment of the notion of relevance in dialogue, (b) the search
of the global completeness property, as we called it in this work, or (c) a tendency to
examine general properties of dialogues rather than designing particular systems.

Regarding category (a), in [10], [11] and [12], the importance of a precise relevance
notion definition is emphasized. However, these works focus on argumentation-based
persuasion dialogues (actually a subset of those, which the author called disputes),
which belong to the non-collaborative class, and thus global completeness is not pur-
sued. Instead, the emphasis is put on properties with similar spirit to our properties of
correctness and local progress (i.e., only the public knowledge involved in the dialogue
is given importance). In [11] the author considers dynamic disputes in which two par-
ticipants (proponent and opponent) interchange arguments and counter-arguments, and
studies two properties of protocols (namely soundness and fairness) regarding the rela-
tion between the generated public knowledge and the conclusion achieved (in this case,
the winner of the dispute). The author also gives a natural definition of when a move
is relevant: “iff it changes the status of the initial move of the dispute” whose spirit is
similar to our definition of natural relevance notion but taken to the particular case in
which the reasoning model is a logic for defeasible argumentation. In [12] the author
considers more flexible protocols for disputes, allowing alternative sets of locutions,
such as challenge and concede, and also a more flexible notion of relevance.

Another work in which relevance receives an explicit treatment is [9], where the
authors investigate the relevance of utterances in an argumentation-based dialogue.
However, our global completeness property is not pursued, so they do not consider
the problematic of distributed contributions (distributed arguments in this case). They
study three notions of relevance showing how they can affect the dialogue outcome.

Regarding category (b), in [2] an inquiry dialogue protocol which successfully pur-
sues our idea of global completeness is defined. However, the protocol is set upon a
particular argumentative system, with the design methodology implicit. They take a
simplified version of the DeLP system [5], and define an argument inquiry dialogue
which allows exactly two agents to jointly construct arguments for a given claim. In
the present work, we not only explicitly and abstractly analyze the distributed relevance
issue, but also consider the complete panorama of collaborative dialogue system behav-
ior, including correctness and progress properties.

Regarding category (c), different measures for analyzing argumentation-based per-
suasion are proposed in [1]: measures of the quality of the exchanged arguments, of the
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behavior of each agent, and of the quality of the dialogue itself in terms of the relevance
and usefulness of its moves. The analysis is done from the point of view of an external
agent (i.e., private knowledge is not considered), and it is focused in a non-collaborative
dialogue type, so they are not concerned with our main problematic.

8 Conclusions

We have shown how an existent abstract dialogue framework can be instantiated for
modeling argumentation-based dialogues. This new instance, in contrast with a previ-
ous one in terms of Propositional Logic Programming [6], naturally deals with possible
differences of opinion that can emerge among participants in a dialogue. Also the ver-
satility of the abstract framework is shown through this new instantiation based on a
non-monotonic reasoning model.

The obtained framework instance is capable of modeling collaborative argumentation-
based dialogues among any number of participants, each of them exposing indifferently
either type of argument (‘for’ and ‘against’), and also building arguments together. The
model inherits the chance of parametrization and properties from the abstract frame-
work. The most appropriate relevance notion can be chosen according to the dialogue
purpose, e.g. all the possible justifications for a given claim could be searched, or just
one. Also the degree of collaboration is selectable by picking a certain semantics, either
basic or full collaborative, according to domain requirements.

In particular, by picking the natural relevance notion and the full collaborative se-
mantics, a model for argumentation-based inquiry has been provided, which ensures
a sound and complete (in the usual sense) distributed reasoning. This model is still
parametrizable, since different potential relevance notions could be investigated, for
instance trying to enhance efficiency. This last issue has been left for future research.

Finally, another item left as future work is the consideration of the case in which
the agents can disagree also about evidence. This would imply redefining the reasoning
model in order to deal with inconsistencies in the set of evidence.
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Abstract. This paper discusses an argumentation system that treats ar-
gumentation dynamically. We previously proposed a model for dynamic
treatment of argumentation in which all lines of argumentation are ex-
ecuted in succession, with the change of the agent’s knowledge base.
This system was designed for grasping the behaviour of actual argu-
mentation, but it has several limitations. In this paper, we propose an
extended system in which these points are revised so that the model can
more precisely simulate actual argumentation. In addition, we provide a
simpler algorithm for judgement of given argumentation, which can be
applied to make a strategy to win.

Keywords: computational model for argumentation, belief change,
agent communication.

1 Introduction

Argumentation is a model that evaluates arguments. It was originally investi-
gated in legal reasoning. Dung’s work on constructing a logical framework for
argumentation and showing the relationships with nonmonotomic reasoning and
logic programming [8] enlarged the possibility of application area of argumenta-
tion to the field of artificial intelligence (AI). As a result, formal models of argu-
mentation have received much attention by AI researchers [4,22]. These works
include applications for defeasible logic programming [10,6,18,17,15], belief re-
vision [9,19] and so on. Argumentation is considered to be a powerful tool to
logically analyse significant phenomena that appear in multiagent systems such
as negotiation, agreement and persuation [14,1], and to make a computational
model for a bahavior of multiagents [12]. Generally, argumentation proceeds
between two agents by giving arguments in turn that attacks the opponent’s
argument until one of them cannot attack any more. Finally, the loser accepts
the winner’s proposal. This process is usually represented in the tree form [1,10].
The root node is a proposed formula and each branch corresponds to a single
argumentation line, namely, a sequence of arguments. Lots of argumentation
systems have proposed so far [4,22], but they considered evaluation of a sin-
gle argumentation line, and it cannot handle the dynamic properties of actual
� Currently, JSOL Corporation.

P. McBurney, I. Rahwan, and S. Parsons (Eds.): ArgMAS 2010, LNAI 6614, pp. 248–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Argumentation System Allowing Suspend/Resume 249

argumentation. On the other hand, we have proposed a system that can treat
continous evaluation of multiple argumentation lines [20,21].

Let us consider an example of argumentation. According to many argumen-
tation systems, a proposer P makes the first argument and a defeater C makes
counterarguments. We suppose a situation in which a murderer P tells a lie: ”I
did not commit murder”. A policeman C argues that P’s statement is a lie. Pi

and Ci represent P’s and C’s i-th utterances, respectively.

P1: “I did not commit murder! There is no evidence!”
C1: “There is evidence. We found your license near the scene.”
P2: “It’s not evidence! I had my license stolen!”
C2: “It is you who killed the victim. Only you were near the scene at the
time of the murder.”
P3: “I didn’t go there. I was at facility A at that time.”
C3: “At facility A? No, that’s impossible. Facility A does not allow a person
to enter without a license. You said that you had your license stolen, didn’t
you?”

Figure 1 shows the structure of this argumentation.

P1

C1

2P

C2

3C

3P

Fig. 1. Structure of argumentation

In this example, if argumentation proceeds along the left branch, and if C
has no counterargument to P2, then C continues a counterargument in the right
branch which attacks P1 from another side. Finally, C points out the contradic-
tion between P’s utterances and wins. P’s utterance P2 gives C new information
and causes C to generate C3.

To capture the behaviour in this example, we have proposed an argumenta-
tion system incorporating changes in an agent’s knowledge base caused by the
exchange of arguments and defined a new concept of “dynamic win” which is
different from the usual concept of “win” obtained by static analysis [20,21].
The goal of this system is to dynamically grasp argumentation by providing
a model for actual argumentation. However, several points exist in which this
earlier system does not reflect actual argumentation.

The first limitation is on the mechanism that brings up the settled matter in
some argumentation line. Consider another argumentation:

P1: “I did not commit murder! There is no evidence!”
C2: “It is you who killed the victim. Only you were near the scene at the
time of the murder.”
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P3: “I didn’t go there. I was at facility A at that time.”
C1: “There is evidence. We found your license near the scene.”
P2: “That’s not evidence! I had my license stolen!”
C′

3: “That’s strange. Facility A does not allow a person to enter without a
license. You said that you were at facility A when the murder occurred. How
did you enter?”

In this case, an argumentation first proceeds along the right branch, and then
continues to the left branch, P’s utterance P2 gives C new information and causes
C to generate C′

3 as a counterargument to P3. C also points out the contradiction
between P’s utterances, and wins. Such a phenomenon frequently occurs in actual
argumentation when each argumentation line is not so long. In our earlier system,
this mechanism could not be handled. In this paper, we present a revised system
in which each argumentation line is considered as suspended but may be resumed
afterward.

A second shortcoming is the inequivalent rights of agents. In the earlier ver-
sion, the defeater could continue an argumentation with the revised knowledge
base after he/she loses one argumentation line, leading him/her to ultimately win
the argumentation tree. However, the proposer loses the whole argumentation
tree if he/she loses one argumentation line. In the revised version, we also allow
the proposer to continue an argumentation after he/she loses one argumentation
line.

The third point is also related to the equivalent rights of agents. In the earlier
version, a proposer could not use disclosed information whereas a defeater could.
This condition is unfair and unnatural. In the revised version, we adopt commit-
ment store [13], a common knowledge base to store all the disclosed information,
and both agents can use this knowledge base.

We extend the earlier system by addressing these three points so that it
can more precisely simulate an actual argumentation and redefine the dynamic
win/lose of an argumentation tree. We show that how this extension improves
the treatment of dynamic argumentation.

Moreover, we propose an algorithm for judging the result of an argumentation
tree. This algorithm is simpler and easier to implement and it can be applied to
formulate an argumentation strategy.

This paper is organised as follows. Section 2 provides the definitions of basic
concepts such as argumentation and the argumentation tree. Section 3 proposes
an extended model for argumentation incorporating changes in an agent’s knowl-
edge base and also presents an algorithm for the judgement of an argumentation
tree. Section 4 provides an example of this algorithm. Section 5 outlines the ma-
jor changes from our previous work and compares the proposed approach with
related works. Finally, section 6 presents conclusions.

2 Argumentation

2.1 Argumentation Framework

We define an argumentation framework based on Dung [8].
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Definition 1 (consistent). Let Ψ be a set of formulas in propositional logic.
If there does not exist ψ that satisfies both ψ ∈ Ψ and ¬ψ ∈ Ψ , Ψ is said to be
consistent.

The knowledge base Ka for each agent a is a finite set of propositional formulas.
Note that Ka is not necessarily consistent and may have no deductive closure;
that is, a case may exist in which φ, φ → ψ ∈ Ka and ψ /∈ Ka hold. An agent a
participates in argumentation using elements of Ka.

Definition 2 (support). For a nonempty set of formulas Ψ and a formula ψ,
if there exist φ, φ → ψ ∈ Ψ , then Ψ is said to be a support for ψ.

Definition 3 (argument). Let Ka be a knowledge base for an agent a. An
argument of a is a pair (Ψ, ψ) where Ψ is a subset of Ka, and ψ ∈ Ka such that
Ψ is the empty set or a consistent support for ψ,

For an argument A = (Ψ, ψ), Ψ and ψ are said to be grounds and a sentence of A,
respectively. They are denoted by Grounds(A) and Sentence(A), respectively.
S(A) denotes Grounds(A)∪{Sentence(A)}. If ψ ∈ S(A), it is said that a formula
ψ is contained in an argument A.

Similar to many argumentation systems, we adopt the concept of prefer-
ence [3,16]. Preferences are assigned to formulas depending on their strength,
certainty and stability to avoid loops in the argumentation. Here, we assume
that a formula is given a preference value based on some basic rules in advance
regardless of the knowledge base in which it is contained, and adopt a simple
definition for computating the preference of an argument. Although these defi-
nitions affect the result of argumentation, we do not discuss the definitions here,
since this aspect of argumentation is out of the scope of this paper.

Definition 4 (preference). Each formula is assigned a preference value. Let
ν(ψ) be the preference for a formula ψ. Then, the preference of an argument A
is defined by

∑
ψ∈S(A)

ν(ψ).

Definition 5 (attack). Let ARKa and ARKb be sets of all possible arguments
of agents a and b, respectively.

1. If Sentence(Aa) ≡ ¬Sentence(Ab) and ν(Aa) ≥ ν(Ab), then (Aa, Ab) is said
to be a rebut from a to b.

2. If ¬Sentence(Aa) ∈ Grounds(Ab) and ν(Aa) ≥ ν((∅,¬Sentence(Aa))), then
(Aa, Ab) is said to be an undercut from a to b.

3. An attack from a to b is either a rebut or an undercut from a to b.

When (Aa, Ab) is an attack from a to b, it is said that Aa attacks Ab.
Based on Dung [8], in an argumentation framework between two agents, a

proposer P makes the first argument and a defeater C makes counterarguments.
Hereafter, KP and KC denote their knowledge bases, respectively.
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Definition 6 (argumentation framework). Let ARKP and ARKC be sets of
all possible arguments of P and C, respectively, with preferences ν. Let ATKP⇀KC

and ATKC⇀KP be sets of attacks from P to C and from C to P , respectively.
An argumentation framework between P and C, AF (KP,KC, ν) is defined as a
quadruple 〈ARKP , ARKC , ATKP⇀KC , ATKC⇀KP〉.

2.2 Argumentation Tree

Definition 7 (move). A move is a pair of a player (an agent) P/C and an
argument A in which A ∈ ARKP/ARKC . If player is P/C, then it is said to
be P/C’s move. For a move M = (player, argument), we denote player and
argument by Ply(M) and Arg(M), respectively.

Definition 8 (move’s attack). M is said to be an attack to M ′,
if (Arg(M), Arg(M ′)) is an attack from Ply(M) to Ply(M ′).

Definition 9 (argumentation line, argument set). Let P and C denote
a proposer of a formula ϕ and its defeater, respectively. Let AF (KP,KC, ν)
be an argumentation framework between P and C. An argumentation line D
for ϕ on AF (KP,KC, ν) is a finite nonempty sequence of moves [M1, . . . , Mn]
(i = 1, . . . , n) that satisfies the following:

1. Ply(M1) = P , where Sentence(Arg(M1)) = ϕ.
2. If i is odd, then Ply(Mi) = P , and if i is even, then Ply(Mi) = C.
3. Mi+1 is an attack to Mi for each i (1 ≤ i ≤ n− 1).
4. No attack occurs against Arg(Mn).
5. Mi �= Mj for each pair of i, j (1 ≤ i �= j ≤ n).
6. Both S(Arg(M1)) ∪ S(Arg(M3)) ∪ S(Arg(M5)) ∪ . . . ∪ S(Arg(Mo)) and

S(Arg(M2)) ∪ S(Arg(M4)) ∪ S(Arg(M6)) ∪ . . . ∪ S(Arg(Me)) are consis-
tent, where o and e are the largest odd number and the largest even number
less than or equal to n, respectively.

The above S(Arg(M1)) ∪ S(Arg(M3)) ∪ S(Arg(M5)) ∪ . . . ∪ S(Arg(Mo)) and
S(Arg(M2))∪ S(Arg(M4))∪ S(Arg(M6))∪ . . .∪ S(Arg(Me)) are said to be P’s
argument set on D and C’s argument set on D, and they are denoted by SP (D)
and SC(D), respectively.

This definition puts the constraints of loop-freeness and consistency of each
agent’s arguments on an argumentation line.

Definition 10 (win of an argumentation line). If the last element of an
argumentation line D is P ’s move, then it is said that P wins D; otherwise, P
loses D.

Definition 11 (argumentation tree). An argumentation tree for ϕ on
AF (KP,KC, ν) is a tree in which the root node at depth 0 is empty and all
the branches1 starting from the node of depth 1 are different argumentation lines
for ϕ on AF (KP,KC, ν).
1 Here, a branch is a path from the designated node to a leaf node.
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Fig. 2. An argumentation tree and its candidate subtrees

Definition 12 (candidate subtree). A candidate subtree is a subtree of an
argumentation tree that selects only one child node for each node correspond-
ing to C’s move in the original tree, and selects all child nodes for each node
corresponding to P’s move.

Definition 13 (solution subtree). A solution subtree is a candidate subtree
in which P wins all of the argumentation lines in the tree.

Each candidate subtree corresponds to P’s selection of an argument, and the
solution subtree indicates the case in which P takes a winning strategy. In Fig-
ure 2, (a) is an argumentation tree, (b) and (c) are its candidate subtrees, and
(b) is the solution subtree.

In general, judgement of an argumentation tree is defined as follows.

Definition 14 (static win of an argumentation tree). If an argumenta-
tion tree has a solution subtree, then P statically wins the argumentation tree;
otherwise, P statically loses it.

3 Argumentation with Changes in the Knowledge Base

3.1 Execution of Argumentation

We propose a dynamic argumentation system that considers the successive exe-
cutions of all possible argumentation lines, whilst the usual ones consider only
a single argumentation line. In a dynamic argumentation, we have to consider
the interaction of argumentation lines.

We introduce the commitment store and a hitory. The commitment store is
a set of all the formulas contained in all arguments given so far. History Ha is
prepared for each agent a to preserve the coherence of each agent’s arguments.
Ha is a set of all the formulas contained in a’s arguments in the argumentation
lines in which a wins. We, however, ignore the coherence of the loser’s side. This
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is based on the idea that the winner should be responsible for his/her arguments,
but the loser can make an attack from a different side.

A dynamic argumentation line is defined by extending a static argumentation
line with history.

Definition 15 (dynamic argumentation line). Let P,C denote a proposer of
a formula ϕ and its defeater. Let AF (KP,KC, ν) be an argumentation framework
between P and C. A dynamic argumentation line D = [M1, . . . , Mn] for ϕ on
AF (KP,KC, ν) with histories HP and HC is defined as the extension of the
(static) argumentation line by adding the following additional condition.

7. HPly(Mi) ∪ S(Arg(Mi)) is consistent for each i (1 ≤ i ≤ n).

If no misleading is involved, a dynamic argumentation line for ϕ on
AF (KP,KC, ν) with a history HP and HC , is said to be just an argumenta-
tion line on AF (KP,KC, ν).

Here, we present a dynamic argumentation model. We consider the execution
of an argumentation as selecting a branch, updating the commitment store and
agents’ histories and modifying a tree.

An argumentation starts by selecting a branch of an initial argumentation
tree. It proceeds along the branch and when the execution reaches the leaf node,
the branch is suspended. At that time, the commitment store is updated and
agents can make new arguments using the commitment store in addition to their
own knowledge bases. New nodes are added to the argumentation tree if new
arguments are generated due to this change of knowledge base. Next, another
branch is selected.

On the execution procedure, the executed node is marked and the branch con-
taining unmarked nodes can be selected. The suspended branch may be resumed
if a new unmarked node is added to it. On the selection of a branch, the turn
of an utterance should be kept. This means that if one branch is suspended at
the node that corresponds to one agent’s argument, then a next branch should
start with the node that corresponds to the other agent’s argument.

Definition 16 (executable node). For a node Mi (1 ≤ i ≤ n) in a branch
D = [M1, . . . , Mn] and a current turn t, if M1, . . . , Mi−1 are marked
and Mi, . . . , Mn are unmarked, and Ply(Mi) = t, then the node Mi is said
to be executable.

Definition 17 (execution of a branch). For a branch D = [M1, . . . , Mn],
histories HP ,HC and the commitment store K, execution of D from i (1 ≤ i ≤
n) with HP and HC is defined as follows.

1. Mark Mi, . . . , Mn.
2. Set K=K ∪

⋃n
k=i S(Arg(Mi)).

3. if Ply(Mn) = P ,
then set the current turn to C and HP =HP ∪ SP (D).

if Ply(Mn) = C,
then set the current turn to P and HC =HC ∪ SC(D).
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Definition 18 (suspend/resume). After the execution of all nodes in a
branch, D is said to be suspended. For a suspended branch D, if an executable
node is added to its leaf on the modification of a tree, and D is selected, then D
is said to be resumed.

This Argumentation Procedure with Knowledge Change is formalised as follows.

Argumentation Procedure with Knowledge Change (APKC2)

Let AF (KP,KC, ν) be an argumentation framework, and ϕ be a proposed
formula.

[STEP 1(initialisation)]
Set K = ∅, HP = ∅, HC = ∅, turn = P . Construct an initial argumentation

tree for AF (KP,KC, ν) on ϕ with HP ,HC with all the nodes unmarked.
[STEP 2(execution of an argumentation)]

if no branch has an executable node,
if turn=P, then terminate with P’s lose.
else turn=C, then terminate with P’s win.

else select a branch and execute it from the executable node.
[STEP 3(modification of a tree)]

Reconstruct an argumentation tree for AF (KP ∪ K,KC ∪ K, ν) on ϕ with
HP ,HC .
if for any pair of node N and M in the tree

where Ply(N) = Ply(M) and Arg(N) = Arg(M),
N is marked whilst M is unmarked,

then mark M .
go to STEP 2.

The elements of K are included either by KP or KC, which are both finite
sets. It follows that finite kinds of moves can be generated. Therefore, APKC2
terminates.

In the modification of a tree in APKC2, a new node may be added. An idea
of threat is introduced to explain this situation.

Definition 19 (threat). Let M and M ′ be moves in an argumentation tree
T on AF (KP,KC, ν). If S(Arg(M)) generates more than one new move that
attacks M ′, then it is said that M is a threat to M ′, and that T contains a
threat. M and M ′ are said to be a threat resource and a threat destination,
respectively.

Intuitively, a threat is a move that may provide information advantageous to the
opponent. A move may be a threat to a move in the same branch.

Definition 20 (continuous candidate subtree). For a candidate subtree
CT , if at least one candidate subtree is generated by the addition of nodes, then
these subtrees are said to be continuous candidate subtrees of CT .

Note that nondeterminism is involved in the selection of a branch in APKC2,
and finally obtained trees are different depending on the selection.
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Fig. 3. Argumentation affected on the execution order of branches

Consider an argumentation tree in Figure 3. In this figure, M2 and M4 are a
threat resource and a threat destination, respectively, and M5 is a newly gen-
erated node by this threat. If we execute from the left branch, then APKC2
proceeds by executing M1, M2, M3, M4, M5, and teminates with P’s win. On the
other hand, if we execute from the right branch, then APKC2 proceeds by exe-
cuting M1, M4 and suspends. The next turn is P. If there exists no branch in the
other candidate trees that starts with P and ends with P, the suspended branch
never resumes, and APKC2 terminates with P’s lose.

We define a dynamic win/lose of an argumentation tree according to APKC2.

Definition 21 (dynamic solution subtree). Let CT be a candidate subtree
of an initial argumentation tree. For any execution order of branches of CT, if
APKC2 terminates with P’s win or CT has a continuous subtree such that P
wins, then CT is said to be a dynamic solution subtree.

Definition 22 (dynamic win of an argumentation tree). If an argumen-
tation tree has a dynamic solution subtree, then P dynamically wins the argu-
mentation tree; otherwise, P dynamically loses it.

3.2 Judgement of Dynamic Win/Lose

APKC2 gives an execution model for an argumentation procedure. If we only
want to judge the result of an argumentation and not simulate the procedure,
then there exists a simpler algorithm.

Definition 23 (consistent candidate subtree). Let CT be a candidate sub-
tree. If there does not exist moves M, M ′ and a formula ψ that satisfy Ply(M) =
Ply(M ′) = P , ψ ∈ S(Arg(M)) and ¬ψ ∈ S(Arg(M ′)), then CT is said to be a
consistent candidate subtree.

Let CT be a candidate subtree of an argumentation tree of AF (KP,KC, ν).
Then we can judge a proposer P’s win/lose of CT by the following algorithm.
Hereafter, D ∈ T denotes that a branch D in a tree T .
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Judgement of Win/Lose of a Candidate Subtree (JC)

[STEP 1]
if CT is not consistent, then terminate with P’s lose.
else if there exists a leaf corresponding C’s move in CT ,
then terminate with P’s lose.
else set K =

⋃
D∈CT SP (D) ∪

⋃
D∈CT SC(D).

[STEP 2]
Reconstruct CT on AF (KP∪K,KC∪K, ν), and let the resultant tree be CT ′.

[STEP 3]
if CT ′ = CT , then terminate with P’s win.
else select a new continuous candidate subtree and go to STEP 1.

The algorithm JC terminates by the same reason as that for termination of
APKC2.

We show the relationship of dynamic win of an argumentation tree and the
judgement by JC.

First, we show that P dynamically wins an argumentation tree T if there
exists a candidate subtree in T for which JC terminates with P’s win.

Theorem 1. Let T be an argumentation tree which includes no threat over dif-
ferent candidate subtrees. P dynamically wins T if there exists a candidate subtree
in T for which JC terminates with P’s win.

Proof

Let CT be a candidate subtree of an argumentation tree of AF (KP,KC, ν) for
which JC terminates with P’s win. We show that for any execution order of
branches APKC2 terminates with P’s win.

Let M0 be a node nearest to the root node of CT that corresponds to P’s
move. Let B be a set of sequences each of which consists of nodes except for
M0 in each branch of CT . Let N be a set of sequences each of which consists of
nodes added on STEP2 of JC. And let Nodes = B∪N (Figure 4). Every element
of Nodes is a sequence of nodes M1 . . . , Mh where Ply(M1) = C, P ly(Mh) = P
and Mi+1 attacks Mi (1 ≤ i ≤ h − 1). Then, any execution order of branches
can be represented as a finite sequence of elements of Nodes following M0. For
example, M0 → B1 → B2 → B5 in Figure 4 is such a sequece. Then, its final
node is P’s move. Moreover, consistency of HP and HC in APKC2 are preserved
since all reconstructed candidate trees in JC are consistent. Therefore, for any
execution order of branches APKC2 terminates with P’s win. �
Next, we show the opposite direction of this theorem, that is, there exists a
candidate subtree in T for which JC terminates with P’s win, if P dynamically
wins T . First, we prove it for a simple case, then for a general case.

Lemma 1. Let T be an argumentation tree which includes no threat over differ-
ent candidate subtrees. Assume that all the branches selected in APKC2 belong
to a single candidate subtree. There exists a candidate subtree in T for which JC
terminates with P’s win if P dynamically wins T .



258 K. Okuno and K. Takahashi

P

C

P

P

C

P

C

threat

M0

B2 B3 B4

B5

B7

B6

B = { B1,B2,B3,B4 }

B1

N = { B5,B6,B7 }

Fig. 4. Illustration of the proof for Theorem 1

Proof

In this case, we show that P dynamically loses T if JC terminates with P’s lose
for all candidate subtrees in T .

For a candidate subtree CT , if JC terminates with P’s lose for CT , there
exists a branch whose leaf node is C’s move in some step of JC procedure.

Assume that there exists such a branch at an initial state. APKC2 terminates
with P’s lose immediately if this branch is selected, since there is no branch
beginning from P’s move and there is no executable node.

Let CT0, . . . , CTk be a sequence of reconstructed candidate subtrees of CT in
JC procedure. Assume that all the leaves are P’s moves in CTi (0 ≤ i ≤ k − 1)
and there exists a branch D whose leaf node is C’s move in CTi+1. The leaf
node M of D in CTi is P’s move (Figure 5). There exists threat resource in the
nodes in CTi whose threat destination is M . It follows that new nodes are added
to D in CTi+1. Let D′ be the branch that contains the threat resource. (Note
that D′ may be D.) If D′ and D are executed in this order in APKC2, APKC2
terminates with C’s move after executing all the nodes including new nodes.
Then, APKC2 terminates with P’s lose since there is no branch beginning from
P’s move and there is no executable node.

Therefore, P dynamically loses T . �
In lemma 1, we assume that all the branches selected in APKC2 belong to a
single candidate subtree. However, branches in multiple candidate subtrees may
be selected, since APKC2 allows selection of any branch. Generally, there should
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Fig. 5. Illustration of the proof for Lemma 1

exist a (static) solution subtree that is included by a set of all executed branches.
We show this by the following two lemmas.

Lemma 2. Let Tf be a finally obtained tree when APKC2 terminates with P’s
win. For a subtree T whose root node M is C’s move in Tf , let MP1 , . . . , MPn be
M ’s child nodes, and let T1, . . . , Tn be subtrees whose root nodes are MP1 , . . . ,
MPn , respectively. If T1, . . . , Tn are all candidate subtrees, then there exists a
(static) solution subtree Ti (1 ≤ i ≤ n).

Assume that Ti is not a solution subtree for some i. Then, Ti includes C’s move
as a leaf node. Let D be a branch of Tf that contains this node. There should
exist another branch as the successive execution of D, since APKC2 terminates
with P’s move. On the other hand, when the leaf node of D has been executed,
the unmarked nodes nearest to the root node of Tf in every branch of Ti that
includes unmarked nodes are C’s moves. They are unexecutable. Therefore, a
branch in subtrees other than Ti should be selected as D’s successive execution.
If none of T1, . . . , Tn is a solution subtree, it is impossible to terminate APKC2
with P’s move. Hence, one of them should be a solution subtree. �

We can take such Ti as T ’s candidate subtree, and obtain the following lemma.

Lemma 3. Let Tf be a finally obtained tree when APKC2 terminates with P’s
win. Tf includes a (static) solution subtree.

Proof

For a subtree whose root node M is C’s move in Tf , let MP1 , . . . , MPn be M ’s
child nodes, and let T1, . . . , Tn be subtrees whose root nodes are MP1 , . . . , MPn ,
respectively. For each i (1 ≤ i ≤ n), if Ti is not a candidate subtree, then replace
it by its candidate subtree T ′

i from lemma 2; otherwise, set T ′
i be Ti. There
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exists a solution subtree T ′
i (1 ≤ i ≤ n), since all of them are candidate subtrees.

Repeating this procedure, it is proved that Tf includes a solution subtree. �
Theorem 2. Let T be an argumentation tree which includes no threat over dif-
ferent candidate subtrees. There exists a candidate subtree in T for which JC
terminates with P’s win if P dynamically wins T .

Proof

Let CT ′ is a finally obtained tree for a candidate subtree CT in JC. From
lemma 3, the finally obtained tree Tf in APKC2 includes a (static) solution
subtree. There exists CT that contains this solution subtree, since both threat
resource and threat desitination are in the same candidate subtree from the
condition. Moreover,

⋃
D∈Tf

SP (D) is consistent because of the constraints on
HP . Therefore, there exists a candidate subtree for which JC terminates with
P’s win. �

4 An Example

Consider the example shown in Section 1. We illustrate various properties of
APKC2 and JC using this example.

4.1 Formalisation

The knowledge bases of a proposer P and a defeater C are shown below. The
number attached to each formula shows its preference. We assume that the facts
and rules are all represented in the knowledge base and the agents have no other
knowledge.

KP =

⎧⎨⎩
¬m[1], ¬e[2], (¬e → ¬m)[1], ¬(la → e)[1],
ls[1], (ls → ¬(ls → e))[1], ¬n[1], a[2],
(a → ¬n)[1]

⎫⎬⎭
KC =

{
e[1], la[1], (la → e)[2], m[2], n[2],
(n → m)[1], ¬a[1], (ls → ¬a)[1]

}
The propositions have the following meanings:

m: P commits murder.
e: there is evidence.
la: P’s license was left at the scene of the murder.
ls: P’s license was stolen.
n: P was near the scene when the murder was committed.
a: P was at facility A when the murder was committed.

4.2 The Case of Changing from Static Win to Dynamic Lose

Figure 6 shows a relevant part of an initial argumentation tree and a final ar-
gumentation tree in APKC2. The argumentation starts with the murderer’s ut-
terance. The nodes M1, M2, M3, M4, M5, and M6 correspond to the utterances
P1,C1,P2,C2,P3, and C3, respectively.

This example shows the case in which a proposer statically wins but dynam-
ically loses the argumentation tree.
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(a) Initial argumentation tree (b) Final argumentation tree

Fig. 6. The argumentation trees starting from the murderer

4.3 Behaviour of Suspend/Resume

Figure 7(a) shows the trees at each step of APKC2 procedure in case the left
branch of the tree in Figure 6(a) is selected first. T0 is the initial argumentation
tree, and T1 is the modified tree based on the knowledge bases obtained after
the execution of the left branch. In these trees, the hatched nodes are marked.
T2 is the tree modified based on the knowledge bases after the execution of the
right branch afterward. No more attacks to the leaf nodes exist. No unmarked
node exists in T2, which indicates the absence of a counterargument. Then, the
procedure terminates. The winner is C, who gives the final argument.

Figure 7(b) shows the trees at each step in case the right branch of the tree in
Figure 6(a) is selected first. T ′

1 is the modified tree based on the knowledge bases
obtained after the execution of the right branch. The right branch is suspended.
T ′

2 is the modified tree based on the knowledge bases obtained after the execution
of the left branch afterward. In this case, a new node M6, which corresponds
to the utterance C′

3, is added, and it is the only node that is unmarked in T ′
2.

To execute this node, the right branch is resumed. T ′
3 is the modified tree based

on the knowledge bases obtained after this execution. No unmarked node exists
in T ′

3. Then, the procedure terminates. The winner is C, who gives the final
argument.

This example shows the procedures with different branch selection orders, and
illustrates how suspend/resume occurs.

4.4 The Case of Changing from Static Lose to Dynamic Win

Next, we show an argumentation that starts with the policeman’s utterance C0

in the first example:
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(b) APKC2 with right branch selected first

Fig. 7. Comparison of procedures on the order of selecting branches

C0: “You committed the murder.”

and continues to P1, C2, P3, C1, P2, similar to the first example. The argumen-
tation trees are shown in Figure 8. M0 is a node corresponding to C0.

The trees can be regarded as C’s argumentation trees because the roles of P
and C are switched from the first example. C statically loses, since all the leaf
nodes in the initial argumentation tree shown in Figure 8(a) are P’s move, but
dynamically wins, since the final argumentation tree shown in Figure 8(b) is
obtained by APKC2.

This example shows the case in which a proposer statically loses but dynam-
ically wins the argumentation tree.

4.5 Judgement of Dynamic Win/Lose

Here, we apply an algorithm JC to the first example, starting from the murderer’s
utterance.
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Fig. 8. The argumentation trees starting from the policeman

The initial argumentation tree is shown in Figure 6(a). It includes only one
candidate subtree2 and no threats over different candidate subtrees.

Figure 9 shows how JC works.

M1

M2 M4

M3 M5

P

P

C

T0

C

T’1

M1

M2 M4

M3 M5

M6

Fig. 9. The argumentation trees for judgement

2 This figure shows only the relevant part, and it actually contains more candidate
subtrees. Although we ignore them to make a description simple, the result is the
same.
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We take T0 as a candidate subtree, which is consistent.
First, we obtain K, a set of all formulas in T0.

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
¬m, ¬e, (¬e → ¬m), ¬(la → e),
ls, (ls → ¬(ls → e)), ¬n, a,
(a → ¬n)
e, la, (la → e), m, n,
(n → m)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Reconstruct the tree, then a new node M6 is added to obtain the tree T ′

1,
which is consistent. Since one leaf node in T ′

1 is C’s move, P loses this candidate
subtree.

Since no other candidate subtrees exist, P dynamically loses the argumenta-
tion tree.

5 Discussion

5.1 Improvements on the Earlier Version

Three significant points distinguish the argumentation system proposed in this
paper from the earlier version.

First, suspend/resume of a branch is enabled, allowing for the resumption of
a settled matter. We mark the executed node instead of deleting it, and make it
possible to add a new node to already executed ones. We also provide a simpler
judgement algorithm of win/lose for a given candidate subtree. The method of
selecting a candidate tree to win can contribute to argumentation strategy.

Second, both agents can continue an argumentation after he/she loses one
argumentation line, whilst only the defeater could do so in the earlier version.
This makes it possible to handle the case in which a proposer statically loses but
dynamically wins.

Third, both P and C can use disclosed knowledge, whereas only C could do
so in the earlier version. We prepare the commitment store for this purpose.

Due to these improvements, APKC2 provides a more natural model for actual
argumentations.

In addition, in the earlier version, we had to reconstruct an argumentation
tree every time a branch was executed, since some formulas might be deleted
from C’s knowledge base. However, in the revised version, we do not need to
reconstruct a tree, only add nodes to the existing tree, since the usable knowledge
is monotonically increasing. This makes the implementation of APKC2 easier.

5.2 Related Works

Garćıa et al. formalized argumentation based on Defeasible Logic Programming
(DeLP) [11]. In DeLP, agent’s knowledge base consists of two kinds of rules: strict
rules and defeasible rules. The result of argumentation is different depending on
which defeasible rules are used. Afterwards, Moguillansky discussed revision of
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the knowledge base [17]. In his method, after constructing the initial argumenta-
tion tree called dialectical tree, knowledge base is changed by extracting defeasible
rules and the tree is altered. The goal is to construct undefeated argumentation
by selecting suitable defeasible rules. They presented an algorithm for this alter-
ation of the tree and considered a strategy to get the undefeated argumentation.
In a series of studies, they formalized several properties in argumentation based
on this approach [15]. Similar to our approach, they consider multiple argumen-
tation lines altogether. The different point is that they investigate the effect of the
change of knowledge base not considering the change caused by the execution of
argumentation, while we focus on the effect of the execution.

Argumentation-based approach is applied to formalize processes appeared in
agents communication such as negotiation, persuasion, agreement and so on
[14,1,19]. Considering the effect of the execution of arguments, agents communi-
cation are rather related issue, since belief of each agent is updated on receiving
information from the other agent. Amgoud proposed the protocol that handles
arguments and formalized the case in accepting/rejecting new information [1].
She also presented a general framework for argumentation-based negotiation in
which agent has a theory and it evolves during a dialogue [2]. She considered the
knowledge base for each agent separately, as well as its revision by exchanging
arguments. The significant difference between her work and ours is that in her
approach only a single argumentation line is considered, so only threats to the
same branch are taken into account, whereas in our approach all argumentation
lines are considered successively, so threats to the other branches are examined.
Dunne proposed a “dispute tree” on which successive execution of all argumen-
tation lines are considered [7]. However, the revision of agents’ knowledge base,
allowing executed moves to add new information to the opponent’s knowledge
base, is not considered.

Cayrol studied how acceptable arguments are changed when a new argument
is added to an argumentation system based on Dung’s framework [5]. The aim of
her research is a formal analysis on changes to argumentation, and the contents
of the additional arguments and reasons for the addition are beyond its scope.
In contrast, we focus specifically on the effect of knowledge gained by executing
argumentation.

6 Conclusion

We have proposed an argumentation system APKC2, which is an extension of
our earlier argumentation system APKC. APKC is a system in which multi-
ple argumentation lines are executed in succession, and an agent’s knowledge
base can change during argumentation. We have extended APKC so that the
suspend/resume of an argumentation line can be processed, both agents can
continue an argumentation after he/she loses one argumentation line and both
can use information given in previous arguments. These extensions provide a
more natural model of actual argumentation. In addition, we proposed a simpler
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algorithm for the judgement of the win/lose result of an argumentation tree, and
showed that its result is equivalent to that of APKC2.

In future, we are considering an extension of APKC2 that can not only directly
use new information, but also derive new facts from the new knowledge. We are
also considering a strategy to win an argumentation.
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Abstract. Many advances in argumentation theory have been made, but the ex-
ponential complexity of argumentation-based reasoning has made it impractical
to apply argumentation theory. In this paper, we propose a binary decision dia-
gram (BDD) approach to argumentation-based reasoning. In the approach, sets of
arguments and defeats are encoded into BDDs so that an argumentation process
can work on a set of arguments and defeats simultaneously in one BDD opera-
tion. As a result, the argumentation can be computed in polynomial number of
BDD operations on the number of input sentences.

1 Introduction

Argumentation provides an elegant approach to nonmonotonic reasoning [15] and deci-
sion making [17,26], and now sees wide use as a mechanism for supporting dialogue in
multiagent systems [32,33]. As an approach that has its roots in logic — in many sys-
tems of argument, the arguments are constructed using some form of logical inference
— the efficiency of reasoning using argumentation is a topic of considerable interest
[13,16,25] with a number of negative results that stress the fact that generating argu-
ments and establishing properties of arguments can be very costly in computational
terms.

In this paper we take a rather different look at the computation of arguments. We
have been investigating the creation of multiagent plans [36,37,38], especially the con-
struction of plans that take into account the communication between agents [34,35].
In doing so, we have been using a representation, that of quantified boolean formu-
lae (QBFs) and binary decision diagrams (BDDs), which has been widely adopted in
symbolic planning in non-deterministic domains. It turns out that this representation
provides a way to compute arguments, and given the computational efficiency of plan-
ning based on QBFs and BDDs, it seems that it can provide an efficient way to compute
arguments. In this paper, we investigate exactly how efficient this approach is, and con-
clude that we can carry out many of the basic operations needed to compute arguments
in a polynomial number of operations.
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Note that we are not claiming to be performing general logical inference in poly-
nomial time. As we explain in detail later in the paper, the “polynomial number of
operations” are operations on the BDD representation, and while this representation in
many cases can be constructed compactly from a set of logical formulae, there are some
cases in which the size of this representation is exponential in the number of formulae.

2 Background

This section gives the technical background needed by the remainder of the paper, a
description of quantified boolean formulae, and binary decision diagrams.

2.1 Quantified Boolean Formulae

A propositional languageL based on a set of proposition symbolsP with quantification
can be defined by allowing standard connectives∧,∨,→,¬ and quantifiers ∃, ∀ over the
proposition variables. The resulting language is a logic of quantified boolean formulae
(QBF) [5]. A symbol renaming operation, which we use below, can be defined on L,
denoted by L[P/P ′], which means that a new language is obtained by substituting the
symbols of P with the symbols of P ′ where P ′ contains the same set of propositions
as that of P but using different symbol names (notice that |P ′| = |P|). Similarly, for
a formula ξ ∈ L, if x is a vector of propositional variables for P , then a variable re-
naming operation can be defined by ξ[x/x′] which means that all the appearances of
variables x = x1x2 . . . xn are substituted by x′ = x′

1x
′
2 . . . x′

n which is a vector of
the corresponding variables or constants in P ′. In a QBF, , propositional variables can
be universally and existentially quantified: if φ[x] is a QBF formula with propositional
variable vector x and xi is one of its variables, the existential quantification of xi in φ is
defined as ∃xiφ[x] = φ[x][xi/FALSE]∨φ[x][xi/TRUE] and the universal quantifi-
cation of xi in φ is defined as ∀xiφ[x] = φ[x][xi/FALSE] ∧ φ[x][xi/TRUE]. Here
FALSE and TRUE are two propositional constants representing “true” and “false”
in the logic. Quantifications over a set X = {x1, x2, . . . , xn} of variables is defined as
sequential quantifications over each variables xi in the set:

QXξ = QxnQxn−1 . . . Qx1ξ

where Q is either ∃ or ∀. The introduction of quantification doesn’t increase the ex-
pressive power of propositional logic but allows us to write concise expressions whose
quantification-free versions have exponential sizes [11].

With the above language, we can encode sets and relations to manipulate sets of
arguments and defeats. Let x be an element of a set X = 2P , x can then be explicitly
encoded by a conjunction composed of all proposition symbols in P in either positive
or negative form

ξ(x) =
∧

pi∈x and pi∈P
pi ∧

∧
pj �∈x and pj∈P

¬pj

where pi ∈ x means that the corresponding bit pi is set to be TRUE in the encoding of
x, and pj �∈ x means that the corresponding bit pj is set to be FALSE in the encoding
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Table 1. The mapping between set operators and QBF operators

Set operator QBF operator

X1 ∩ X2 ξ(X1) ∧ ξ(X2)
X1 ∪ X2 ξ(X1) ∨ ξ(X2)
X1 \ X2 ξ(X1) ∧ ¬ξ(X2)
x ∈ X ξ(x) → ξ(X)
X1 ⊆ X2 ξ(X1) → ξ(X2)

of x. We denote that a formula γ can be satisfied in an element x by x |= γ. Then a set
of elements can be characterized by a formula γ ∈ L, with the set denoted by X(γ),
where X(γ) = {x|x |= γ}.Two special sets, the empty set ∅ and the universal set U ,
are represented by FALSE and TRUE respectively.

With these notions we can have a mapping between the set operations on states and
the boolean operations on formulae as shown in Table 1 when X1 and X2 are interpreted
as two sets of states.

2.2 Binary Decision Diagrams

In the above, we have showed the natural connections between the set paradigm and
its implicit representation using QBF formulae. Now we will briefly discuss how QBF
formulae and the operations over them can be represented and efficiently computed
using a data structure called Binary Decision Diagrams (BDD) [5]. In this way, the time
and space complexity for exploring the space of arguments and defeats for acceptable
arguments can be significantly reduced due to the compact representation provided by
BDDs in comparison to explicit search techniques.

A BDD is a rooted directed acyclic graph. The terminal nodes are either TRUE or
FALSE. Each non-terminal node is associated with a boolean variable xi, and two
BDDs, called left and right, corresponding to the values of the sub-formula when xi

is assign FALSE and TRUE respectively. The value of a QBF formula can be de-
termined by traversing the graph from the root to the leaves following the boolean as-
signment given to the variables of the QBF formula. The advantage of using BDDs to
represent QBF formulae is that most basic operations on QBFs can be performed in lin-
ear or quadratic time in terms of the number of nodes used in a BDD representation of
the formulae if a special form of BDD, called Reduced Ordered Binary Decision Dia-
gram (ROBDD) [5], is used. A ROBDD is a compact BDD which uses a fixed ordering
over the variables from the root to the leaves in the BDD, merges duplicate subgraphs
into one, and directs all their incoming edges into the merged subgraph. Following the
notation traditionally used in symbolic model checking and AI planning, we will refer
to an ROBDD simply as a BDD.

Let ξ, ξ1, ξ2 be QBF formulae, let the number of nodes used in its BDD repre-
sentation denoted by || · ||. With this BDD representation, the complexity of a QBF
binary operator 〈op〉 (e.g. ∧,∨,→) on two formulae ξ1 and ξ2, namely ξ1〈op〉ξ2, is
O(||ξ1|| × ||ξ2||), that of negation ¬ξ is O(||ξ||) (or O(1) if complement edges are in-
troduced to the BDDs), and that of quantification Qxi (f [x]), where Q is either ∃ or ∀,
is O(||f ||2) [5,11] as summarized in Table 2.
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Table 2. The mapping between QBF operators and BDD operators. ξ, ξ1, ξ2 are formulae in QBF;
G(ξ), G(ξ1), G(ξ2) are BDD representations for these formulae.

QBF/Set operator BDD operator Complexity

¬ξ ¬G(ξ) O(||ξ||)
∃xi(ξ) G(ξxi=0) ∨ G(ξxi=1) O(||ξ||2)
∀xi(ξ) G(ξxi=0) ∧ G(ξxi=1) O(||ξ||2)
ξ1 ∧ ξ2 G(ξ1) ∧ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 ∨ ξ2 G(ξ1) ∨ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 → ξ2 G(ξ1) → G(ξ2) O(||ξ1|| · ||ξ2||)
|X| Sat-count(G(ξ(X))) O(||ξ(X)||)

The key advantage of using BDDs (and QBFs, which function as a front end lan-
guage for BDDs) to represent sets and relations is that the complexity of the operations
on those sets and relations will depend on the complexity of the BDD representation
instead of the size of the sets and relations. Since the the complexity of the BDD rep-
resentation of doesn’t necessarily1 depend on the size of those sets and relations either,
it is possible to carry out operations in a time that is not directly a function of the size
of the sets and relations. In fact, the operations on BDDs are polynomial in the size
of the BDD, and so using BDDs we can compute operations on sets and relations in
time polynomial in the size of their BDD representation. This can be a considerable
improvement over a more direct implementation of the operations which is, of course,
exponential in the size of the sets and relations.

3 Set-Theoretic Argumentation

Having introduced the ideas from QBFs and BDDs, in this section we give an overview
of the argumentation system we will capture using them. The framework we use is
mostly drawn from the work of Amgoud and her colleagues [1,2] with some slight
modifications. This framework will abstract away the inference procedure by which the
arguments are created and only keep track of the premises the arguments are based on.
In the next section, we will introduce the inference procedure back into the representa-
tion of arguments.

Definition 1. An argument based on Σ ⊆ L is pair (H, h) where H ⊆ Σ and H �= ∅
such that

1. H is consistent with respect to L,
2. H  h,
3. H is minimal in the sense of set inclusion.

H is called the support and h is called the conclusion of the argument. A(Σ) denotes
the set of all arguments which can be constructed from Σ.

1 We will return to the relationship between the size of the sets and relations and the complexity
of the BDD representation below.
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This definition of an argument can be understood as a set of constraints on how informa-
tion can be clustered as arguments. Condition (1) ensures that an argument is coherent.
The coherence of an agent’s information is defined in terms of the consistency of the
language L in which the information is written. Condition (2) can be understood as in-
sisting that the conclusion of an argument should be supported by a set of information
in the sense of inference in the language L. Condition (3) can be understood as saying
that no redundant information should appear in an argument.

Definition 2. (H ′, h′) is a subargument of the argument (H, h) iff H ′ ⊆ H .

Definition 3. Let (H1, h1), (H2, h2) be two arguments of A(Σ).

1. (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.
2. (H1, h1) undercuts (H2, h2) iff ∃h ∈ H2 such that h1 ≡ ¬h.
3. (H1, h1) contradicts (H2, h2) iff (H1, h1) rebuts a subargument of (H2, h2).

The binary relations rebut, undercut, and contradict gather all pairs of arguments
satisfying conditions (1), (2) and (3) respectively.

Definitions of rebut, undercut, and contradict will be given below and we will collec-
tively refer to the relations as defeat if no distinction is necessary or we are describ-
ing them collectively. Following Dung’s work [15], we have the following component
definitions:

Definition 4. An argumentation framework is a pair, Args = 〈A,R〉, where A is a set
of arguments, and R is the binary relation defeat over the arguments.

Definition 5. Let 〈A,R〉 be an argumentation framework, and S ⊆ A. An argument A
is defended by S iff ∀B ∈ A if (B, A) ∈ R then ∃C ∈ S such that (C, B) ∈ R.

Definition 6. S ⊆ A. FR(S) = {A ∈ A|A is defended by S with respect to R}.

Now, for a function F : D → D where D is the domain and the range of the function,
a fixed point of F is an x ∈ D such that x = F (x). When the D is associated with an
ordering P — for example, P can be set inclusion over the power set D of arguments
— x is a least fixpoint of F if x is a least element of D with respect to P and x is a
fixed point.

Definition 7. Let 〈A,R〉 be an argumentation framework. The set of acceptable ar-
guments, denoted by AccF

R, is the least fixpoint of the function FR with respect to set
inclusion.

The least fixpoint semantics can be viewed as a mathematical translation of the principle
that an argument survives if it can defend itself and be defended by a set of arguments
which can also survive all the attacks made upon them.

4 Representing Arguments in QBFs and BDDs

We now turn our attention to using QBFs and BDDs to represent the components of an
argumentation system, and then to perform the computations we need to carry out on
that representation.
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We can label each item fi ∈ Σ with a proposition li. Namely, we will extend the
language L to contain both the information base Σ and the labels for these sentences.
Formally, the proposition symbols can be extended to be P = PD ∪ PL where PD is
the set of proposition symbols for the domain information, and PL is the set of system
proposition symbols labeling the sentences in Σ. Given a finite information base Σ ⊆
L, |PL(Σ)| = |Σ|, namely each sentence fi ∈ Σ has a corresponding label li.

For any formula ξ in L based on P = PD∪PL, ξD = ∃PLξ is the formula with only
domain symbols left, and ξL = ∃PDξ is the formula with only the label symbols left.

4.1 Labeling

For representational convenience, we define

SEL(li) = li ∧
∧
j �=i

¬lj .

A sentence fi of Σ corresponds to a pair 〈SEL(li), fi〉 which can be represented by
SEL(li) ∧ fi. Given a set of input information Σ = {fi} for fi ∈ LD , a labeling table
Λ(Σ) can be expressed as follows

Λ(Σ) = {〈SEL(li), fi〉}

where fi ∈ Σ and li ∈ PL, and the corresponding QBF representation

ξ(Λ(Σ)) =
∨

fi∈Σ

[SEL(li) ∧ fi]

The above Λ(Σ) expression requires 2 × |Σ| QBF/BDD operations.2 Given a subset
σ ⊆ Σ,

SEL(σ) =
∧

fi∈σ

(li) ∧
∧

fj �∈σ

¬lj

4.2 Consistent Subsets

Since the support of an argument is a consistent set of propositions, a natural place
to start thinking about argument computation is with the computation of consistent
subsets. The set of all consistent subsets of Σ is

CONS(Σ) =
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi] (1)

Computing the above expression directly requires an exponential number of QBF/BDD
operations, so we want to find another way to compute it.

2 The first condition of using QBF/BDD is to guarantee a way to express the informa-
tion/specification that we need with only polynomial, linear, or even a logarithmic number
of QBF/BDD operations; the second condition is to guarantee that the size of the initial, inter-
mediate, and final BDDs corresponding to the information/specification is small enough to fit
into memory. For the second condition, if the size of the BDD explodes, we may partition the
expression into conjunctions or disjunctions, and modify the algorithms manipulating these
BDDs correspondingly to try to avoid the explosion. If this still fails, then it means that the
problem cannot be efficiently handled by BDDs. In this case, it usually also means that some
aspect of the information required to solve the problem is simply too complex.
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Proposition 1. CONS(Σ) can be constructed using 2×|Σ|−1 operations as follows

CONS(Σ) =
∧

fi∈Σ

[li → fi]. (2)

Proof. The form of formula 2 follows from

CONS(Σ) =
∧

fi∈Σ

[li → fi]

=
∧

fi∈Σ

[li → (li ∧ fi)]

=
∧

fi∈Σ

[¬li ∨ (li ∧ fi)]

=
∨

σ⊆Σ

[
∧

fj �∈σ

¬lj ∧
∧

fi∈σ

(li ∧ fi)]

=
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi]

(li → fi) ↔ (li → (li ∧ fi)) follows from:

A → B ↔ ¬A ∨B

↔ (¬A ∨A) ∧ (¬A ∨B)
↔ ¬A ∨ (A ∧B)
↔ A → (A ∧B)

�
With the above expression, we can exclude empty consistent subsets by

CONS+(Σ) = CONS(Σ) ∧ (
∨

fi∈Σ

lk)

Because we are only interested in non-empty consistent subsets, from here on we will
mean CONS+(Σ) when we use CONS(Σ). The set of subsets of selected sentences
is

CONS(Σ)L = ∃PD

(∨
σ∈Σ(SEL(σ) ∧

∧
fi∈σ fi)

)
=
∨

σ∈Σ(SEL(σ) ∧
[
∃PD

(∧
fi∈σ fi)

)]
=

∨
σ⊆Σ SEL(σ)

As we see, the complexity of CONSL(Σ) is O(2 × |Σ| − 1 + |PD|). Let

CONJ(σ) = SEL(σ) ∧
∧

fi∈σ

fi.
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Proposition 2. Given a sentence set selector σ ⊆ Σ represented by SEL(σ), if the
conjunction of the selected sentences in σ is consistent then it can be expressed as
follows

CONJ(σ) = SEL(σ) ∧ CONS(Σ)
=
∨

σ⊆Σ [SEL(σ) ∧
∧

fi∈σ fi]

Proof. CONS(Σ) is a disjunction of conjunctions of all consistent subsets of Σ.
Among these conjunctions, SEL(σ) only can make the one corresponding to the σ
selection true, which is SEL(σ) ∧

∧
fi∈σ fi, and others false. Namely SEL(σ) ∧

CONS(Σ) = SEL(σ) ∧
∧

fi∈σ fi �

Similarly, the set of conjunctions of a set of selected sentences can be expressed by:

CONJ({σi}) =
∨
σi

[SEL(σi)] ∧ CONS(Σ)

With this expression, we will be able to filter combinations of consistent and inconsis-
tent sets of sentences into consistent sets.

4.3 QBF/BDD Representation of Arguments

We can extend the language P further to contain P = PL ∪PD ∪PL,C ∪PD,C where
PD,C is a set of renaming symbols of PD to represent the conclusions of arguments;
PL,C is an optional set of symbols to label an interesting sub-space of conclusions
(the ones we want to compute arguments for). For example, if the sentences in Σ and
their negations are of interest, then PL,C = 2log|Σ| (we don’t need to label a set of
sentences, instead we just need to label individual sentences and their negations so that
we need 2log|Σ| symbols). Similarly, we will denote PD by PD,P for premises when
a distinction is needed.

An argument (H, h) in LD can then be represented by formula ξ(H, h) in L

ξ(H, h) = SEL(H) ∧
∧

fi∈H

fi ∧ h[PD,C ]

where h[PD,C ] means the expression h is in terms of the symbols of PD,C .
The set of all arguments that can be constructed from Σ will be equivalent to

A(Σ) = CONS(Σ)

for the moment by abstracting away the conclusions. Later we will reintroduce the con-
clusions to the representation during the query for conclusions and the defeat process.

4.4 Arguments for Conclusions

We can construct the set of arguments for a set of conclusions all at once as follows. Let
us assume that, besides the input information base Σ, we also have a set of conclusions
C that we wish to support.

C = {hk}
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with K = log|C| and a set of labeling symbols

PL,C = lC = {l1,C , . . . , lK,C}
and let ck be defined as lC = k, namely ck is the encoding of integer k using the
boolean symbols of PL,C .

The set of arguments for C based on Σ can be represented as

Args(Σ, C)L = ∀x∈PD∪PD,C

∨
hk∈C

∨
σ⊆Σ

[(
∧

fi∈Σ

fi → hk) ∧ SEL(σ) ∧ ck)]

and results in

Args(Σ, C) = Args(Σ, C)L ∧ CONS(Σ) ∧
∨

hk∈C

(ck ∧ hk)

Proposition 3. Args(Σ, C)L can be expressed as

∀x∈PD∪PD,C CONS(Σ)L ∧
[ ∨

hk∈C

(ck)

]
∧

⎡⎣ ∨
fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)

⎤⎦
using O(2 × |C|) + O(|Σ|) + O(2 × |Σ| + |PD|) + O(|PD ∪ PD,C |) QBF/BDD
operations.

Proof. Start with the first two items above,

CONS(Σ)L ∧
[ ∨

hk∈C

(ck)

] ∨
σ⊆Σ

∨
hk∈H

[SEL(σ) ∧ ck]

Conjoining with the remaining two items
[∨

fi∈Σ (li ∧ ¬fi) ∨
∨

hk∈C (ck ∧ hk)
]
, gives:

∨
σ⊆Σ

∨
hk∈C

⎡⎣SEL(σ) ∧ ck ∧

⎛⎝ ∨
fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)

⎞⎠⎤⎦
=
∨

σ⊆Σ

∨
hk∈Σ

⎡⎣⎛⎝SEL(σ) ∧ (
∨

fi∈σ

¬fi)

⎞⎠ ∨ (ck ∧ hk)

⎤⎦
=
∨

σ⊆Σ

∨
hk∈Σ

⎡⎣SEL(σ) ∧ ck ∧

⎛⎝ ∧
fi∈σ

(fi) → (hk)

⎞⎠⎤⎦
The first line is derived using

∨
i Ai ∧

∨
j Bj =

∨
i

[
Ai ∧

(∨
j Bj

)]
. The second line

is derived using

SEL(σ) ∧ (
∨

fi∈Σ

(li ∧ ¬fi)) = SEL(σ) ∧ (
∨

fi∈σ

¬fi)

since:
SEL(σ) ∧ (li ∧ ¬fi) = FALSE

for any fi �∈ σ. The second line also employs ck ∧
∨

hk∈C(ck ∧ hk) = ck ∧ hk �
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4.5 Minimization of Consistent Sets with Respect to Conclusions

In the above, Args(Σ, C) may contain non-minimal arguments. To overcome this, we
need to minimize the arguments in Args(Σ, C) with respect to their conclusions. Given
a set of arguments Q ⊆ A and a partial relation B ⊆ A × A (e.g. the set-inclusion ⊆
relation on the supports of arguments) on A, the set of minimal arguments in Q with
respect to B is

Min(Q, B) = {A ∈ Q|for all C ∈ Q, (C, A) ∈ B implies (A, C) ∈ B}
By encoding Q with a QBF formula Q[P ] based on a set P of propositional symbols,
and encoding the partial relation B with another QBF B[P ,P ′] with the first component
of B based on symbols in P and the second component of B based on the symbols in
P ′, we can compute Min(Q, B) as follows

Min(Q, B) = Q ∧ ∀Z [(Q[P/Z] → (B[P/Z,P ′/P ] → B[P ′/Z])]

where Z is a temporary set of symbols renamed from P to hold the intermediate results
during the computation.

The set-inclusion relation between two sets of supports H1[P ] and H2[P ′] can be
implemented as:

ξ(⊆) =
∧

fi∈Σ

[li → l′i].

This requires 2× |Σ| QBF/BDD operations to construct. A linear BDD size implemen-
tation of ⊆ on the supports of A is given in Algorithm 4.13.

The set of minimal supports which attack a sentence hk ∈ C can be computed as

Argsmin(Σ, hk) = Min ((Args(Σ, C) ∧ ck)L, ξ(⊆)) .

The set of minimal supports with respect to each each sentence in C can be computed as

Argsmin(Σ, hk) =
∨

hk∈C

Argsmin(Σ, hk).

For convenience of description, below we will use Args(Σ, C) for Argsmin(Σ, C).

4.6 A QBF Representation of Defeat

A defeat relation defeat((H, h), (H ′, h′)) can be represented by

ξ(H, h, H ′, h′) = CONJ(H) ∧ SEL(h)[PL,C] ∧ h[PD,C ]
∧ CONJ(H ′)[P ′

D] ∧ SEL(h′)[P ′
L,C ] ∧ h′[P ′

D,C ]

by extending the language L[P ] to be L[P ] ∪ L[P ′]. A defeat relation D = {(Ai, A
′
i)}

can be represented by a single QBF/BDD formula:

ξ(D) =
∨

(Ai,A′
i)∈D

[ξ(Ai) ∧ ξ(A′
i)].

Now we need an expression with a polynomial number of operations to generate the
set of all possible defeats from Σ. To do this, we need to inspect the specific types of
defeats. We start with undercut:

3 To the best of our knowledge only an exponential implementation exists in the literature [3].
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Algorithm 4.1. Computing BDD for set-inclusion ⊆
1: Associate with each element in fi ∈ Σ two BDD variables li and l′i.
2: Take the variable order l1, l

′
1, l2, l

′
2, ..., ln, l′n (n = |Σ|)

3: for each li do
4: link li = 1 to l′i
5: link li = 0 to li+1

6: end for
7: for each l′i �= l′n do
8: link l′i = 1 to li+1

9: link l′i = 0 to terminal 0
10: end for
11: link l′n = 0, to terminal 0
12: link l′n = 1, to terminal 1

Definition 8. An argument (H1, h1) undercuts another argument (H2, h2) iff there ex-
ists an f ∈ H2 such that h1 ≡ ¬f .

and this gives us:

Proposition 4. Let C = Σ ∪ {¬fi|fi ∈ Σ}, the set of all possible undercuts can be
constructed as

undercut(Σ) = Args(Σ, C) ∧Args(Σ′, C′) ∧
(∨

f ′
i∈Σ′(c¬fi ∧ li)

)
where c¬fi denotes the encoding of the label that corresponds to ¬fi in C.

Proof. Args(Σ, C) and Args(Σ′, C′) constructs the arguments for C based on Σ us-
ing two sets of symbols, and the corresponding selection of input sentences and con-
clusion sentences.

∨
f ′

i∈Σ′(c¬fi ∧ li) builds up the undercut relation between these two
sets of arguments. �

Note that the setting of the conclusion points C = Σ∪{¬fi|fi ∈ Σ} can be changed ac-
cording to any application-dependent argumentation process, for example CONS(Σ)
and their negations as required.

Next we consider rebut:

Definition 9. (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.

We can construct the rebut relation in the same way as undercut, by assuming a set of
interesting conclusions the status of which we want to discover. However, we can also
construct the rebut relation in the following way thus leaving the conclusions unspeci-
fied, making the system more flexible.

Definition 10. Given a set H of sentences, let

S(H) = {s|s |= H}
S(h) = {s|s |= h}

where s is an assignment to P . H  h iff S(H) ⊆ S(h).

The definition of rebut is then:
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Definition 11. H1 rebuts H2, if there is some h such that H1  h and H2  ¬h.

and we have:

Proposition 5. Given two consistent sets of sentences H1 and H2, H1 rebuts H2 iff
S(H1) ∩ S(H2) = ∅, namely [CONJ(H1) ∧ CONJ(H2)] ↔ FALSE.

Proof. If H1 rebuts H2, then there is a h such that H1  h and H2  ¬h. Since S(h)∩
S(¬h) = ∅, and S(H1) ⊆ S(h) and S(H2) ⊆ S(¬h), therefore S(H1) ∩ S(H2) = ∅.

If S(H1) ∩ S(H2) = ∅, the rebutting point h can be constructed as follows. Let
padding = ¬(H1 ∨ H2), and h = H1 ∨ padding. In this way, S(padding) =
U \ (S(H1) ∪ S(H2)), S(h) = S(H1) ∪ S(padding), S(¬h) = U \ (S(H1) ∪
S(padding)) = S(H2). Therefore S(H1) ⊆ s(h) and S(H2) ⊆ S(¬h), namely h
is the rebutting point we are looking for such that H1  h and H2  ¬h. �

Actually h can be anything such that S(H1) ⊆ S(h) ⊆ (S(H1) ∪ S(padding)), so we
have the following corollary.

Corollary 1. Given two sets of sentences H1 and H2 which rebut each other, the rebut
point h can be obtained by setting S(H1) ⊆ S(h) ⊆ S(H1) ∪ S(padding) where
padding = ¬(H1 ∨ H2). The choice of h = H1 ∨ ¬(H1 ∨ H2) which makes H1 and
H2 be the minimal sets of sentences such that H1  h and H2  ¬h �

As a result, the set of all rebuts can be expressed as

rebut(Σ) =∨
σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧CONJ(σ′)D)]

and we have:

Proposition 6. rebut(Σ) can be expressed as

rebut(Σ) = CONS(Σ) ∧ CONS′(Σ) ∧
[∨

fi∈Σ(li ∧ ¬fi) ∨
∨

fj∈Σ(l′j ∧ ¬fj)
]

using 2.O(CONS(Σ)) + 6.|Σ|+ 3 QBF/BDD operations.

Proof.

rebut(Σ)

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧ CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧CONJ ′(σ′) ∧ (¬CONJ(σ)D ∨ ¬CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ

⎡⎣CONJ(σ) ∧ CONJ ′(σ′) ∧

⎛⎝ ∨
fi∈σ

¬fi ∨
∨

fj∈σ′
¬fj

⎞⎠⎤⎦
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=
∨

σ⊆Σ,σ′⊆Σ

⎡⎣CONJ(σ) ∧ CONJ ′(σ′) ∧

⎛⎝ ∨
fi∈σ

(li ∧ ¬fi) ∨
∨

fj∈σ′
(l′j ∧ ¬fj)

⎞⎠⎤⎦
= CONS(Σ) ∧ CONS′(Σ) ∧

⎡⎣ ∨
fi∈Σ

(li ∧ ¬fi) ∨
∨

fj∈Σ

(l′j ∧ ¬fj)

⎤⎦
�

Finally we consider the computation of the contradict relation:

Definition 12. (H1, h1) contradicts (H2, h2) if and only if (H1, h1) rebuts a subargu-
ment of (H2, h2).

The contradict relation can be computed by

contradict(Σ) = ∃Z (rebut(Σ)[P ′/Z] ∧ ξ(⊆)[P/Z])

4.7 Computing Fixed Points of Argumentation

The relations undercut, rebut and contradict give us the relationship between individual
arguments, but, as is usual, we are more interested in computing properties of arguments
such as whether arguments are acceptable, where such properties are defined as fixed-
points.

Definition 13. An argument H defends another argument H ′ if there exists another
argument H ′′ such that H ′′ defeats H ′ but H defeats H ′′.

The defend relation can be constructed from the defeat relation on the set of arguments
as follows:

defend(Σ, defeat) = ∃Z (defeat(Σ)[P ′/Z] ∧ defeat(Σ)[P/Z])

where defeat(Σ) is either undercut(Σ), rebut(Σ), contradict(Σ), or any disjunction
of the relations, such as undercut(Σ)∨ rebut(Σ). The composition of two relations R1

and R2 on the set A of arguments can be computed by

ComposeR(R1, R2) = ∃ZR1[P ′/Z] ∧R2[P/Z].

With these constructs defined, the fixed point of argumentation can be computed using
Algorithm 4.2. In Algorithm 4.2, the closure of a binary relation R on A, is computed
using a method called iterative squaring [6] which is guaranteed to terminate within
O(log|A|) steps. In line 3:

OldR ← IPL ∪ defendPL

the defend relation is first projected to sentence labeling symbols so that during the
computation of the defending closure only the labels of arguments are considered with-
out referring to their internal structure; the union with the identity relation

IPL =
∧

fi∈Σ

(li ↔ l′i)

is to keep the defended arguments in the closure.
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Algorithm 4.2. Computing Fixed Point of Argumentation
1: function ComputeF ixedpoint(Σ,defeat) {

(1) Σ: The set of input information
(2) defeat is binary relation on A }

2: defend ← defend(Σ, defeat)
3: OldR ← IPL ∪ defendPL

4: R ← FAIL
5: while (OldR �= R) do
6: tmpR ← R
7: R ← ComposeR(OldR,OldR)
8: OldR ← tmpR
9: end while

10: Undefeated ← CONS(Σ) ∧ ¬ (∃x∈Pdefeat) [P ′/P ]
11: Acc ← ∃x∈P(Undefeated ∧ R)[P ′/P ] ∨ Undefeated
12: return Acc end function

Proposition 7. Algorithm 4.2 computes the fixed point of the defend relation, namely
the set of acceptable arguments constructed from Σ.

Proof. Let step(R) be the maximum length of paths between a pair (A, A′) ∈ R in
the induced graph of the defend relation defend. Let the starting R in line 3 denoted
by R0 = defend ∪ I . In R0, for every (A, A′) ∈ R, either (A, A′) ∈ defend, namely
A defends A′ using one step, or A is identical to A′ namely A defends A′ using 0
step, therefore step(R0) = 1. Let the consequent content of R in each while itera-
tion denoted by Ri where i is the number of the iteration. Each time, when Ri+1 ←
ComposeR(Ri, Ri) is applied in line 7, Ri+1 will gather all the argument pairs of
the form (A, A′) such that A defends A′ using defending steps less or equal than
step(Ri+1) = 2 × step(Ri) steps. Assume that i is the number such that Ri+1 = Ri,
if the iteration continues we will have:

Ri+2 = ComposeR(Ri+1, Ri+1) = ComposeR(Ri, Ri) = Ri+1 = Ri

namely for all j ≥ i, Rj = Ri. Therefore, after the while loop terminates R will gather
all the argument pairs (A, A′) via any number of defending steps. Since the number of
arguments is finite, all the defending paths are of finite length, therefore the algorithm
is guaranteed to terminate. �

Proposition 8. The complexity of Algorithm 4.2 is O(|Σ|.K2.|P|) where K is the max-
imum size of the BDDs which appear during the fixed point computing process.

Proof. As the analyzed in the proof of proposition 7, the step(Ri) = step2(Ri+1). The
maximum possible step of Ris is the number of arguments which is 2|Σ|. Therefore the
algorithm is guaranteed to terminate after m = log22|Σ| = |Σ| iterations, therefore
the number of iterations is bounded above by O(|Σ|). In each iteration, CompoeseR
can be computed using O(1 + |P|) number of BDD operations, each operation is of
complexity O(K2) where K is the maximum size of BDDs used. Therefore the whole
algorithm is bounded above by O(|Σ|).O(K2.|P|). �
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5 Discussion

Proposition 8 shows that we can compute the fixed-point in a polynomial number of
BDD operations. As we mentioned above, this is a long way from saying that we can do
general logical inference in polynomial time, rather what we are saying is that while the
complexity of algorithm 4.2 depends on the maximum size of the BDD (K), this doesn’t
depend on the size of Σ but rather on the complexity of the information contained in Σ.
In the worse case, K can still be exponential in |P|, but in many practical applications
K tends to be small.

Because of this feature of systems built using the QBF/BDD representation, there
has been a lot of work on reducing the size of BDDs. Many successful approaches have
been developed in literature, especially those developed for symbolic model checking
in software and hardware verification [24], and in non-deterministic AI planning [10].
Examples of techniques for reducing the size of BDDs are early quantification [19],
quantification scheduling [9], transition partitioning [7], iterative squaring [6,8], frontier
simplification [12], input splitting [28,29], and state set A∗ branching [22,21,23] (a
BDD version of the A∗ search heuristic [31]).

Another factor affecting the BDD size greatly is variable ordering. The problem of
finding an optimal variable ordering is NP-complete [4]. Algorithms based on dynamic
programming [14], heuristics [20], dynamic variable reordering [30] and machine learn-
ing approaches [18] have been proposed for finding a good variable ordering in reason-
able time4.

We are currently working on an implementation of the reasoning mechanism pro-
posed above with the aim of experimentally clarifying the nature of K for different
argumentation problems.

6 Conclusions and Future Work

In this paper, we have proposed a symbolic model checking approach to compute ar-
gumentation. The computation only uses a polynomial number of BDD operations in
terms of the number of sentences in the input and the number of symbols used in the
input. A key idea in the approach is to construct the set of consistent arguments all
together using a polynomial number of BDD operations. In the same way, the defeat
relation among these arguments can also be computed all at once using a polynomial
number of BDD operations. And with the iterative squaring technique, we are able to
compute the fixed point of a set of arguments in polynomial number of BDD operations.

We are currently working on implementing the BDD-based argumentation system
proposed in this paper, with the aim of conducting experiments to classify the nature of
the BDDs constructed for argumentation. This will allow us to determine how effective
this approach will be in general. This in turn may lead us to look for new heuristics
for controlling the size of the BDDs we need to construct to compute arguments. An-
other direction that we are working on is to extend the current method to compute more
sophisticated and controllable approaches argumentation, such as those based on argu-
mentation schemes [27]. On the way, we will need to develop BDD techniques to effi-
ciently specify application-dependent patterns of arguments (such as those captured by

4 [18] is also a good source for other references on BDD variable (re-)ordering.
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argument schemes), specify application-dependent patterns of defeats (defeat schemes),
and extend the basic entailment-based reasoning modelled here to specify the necessary
patterns of rule-based procedural reasoning. In combination with our continuing efforts
to use BDD techniques in multiagent planning and dialogues [34,35,36,37,38] all these
efforts are aimed at our ultimate goal of a practical argumentation-based dialogue model
for multiagent planning.
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Abstract. This paper deals with strategical issues of arguing agents in
a multi-agent setting. We investigate different scenarios of such argu-
mentation games that differ in the protocol used for argumentation, i. e.
direct, synchronous, and dialectical argumentation protocols, the aware-
ness that agents have on other agents beliefs, and different settings for
the preferences of agents. We give a thorough investigation and classifica-
tion of these scenarios employing structured argumentation frameworks
which are an extension to Dung’s abstract argumentation frameworks
that give a simple inner structure to arguments. We also provide some
game theoretical results that characterize a specific argumentation game
as strategy-proof and develop some argumentation selection strategies
that turn out to be the dominant strategies for other specific argumen-
tation games.

1 Introduction

The study of computational models of argumentation [4] is a relatively novel
research area in the field of artificial intelligence and non-monotonic reasoning
with logic-based formalisms for knowledge representation. There are a lot of ap-
proaches to model argumentation in different kinds of logics, e. g. classical logic
[5] or defeasible logic [19,12] and also abstract formalizations of argumentation
[11] are widely used to talk about computational argumentation in general. In
abstract argumentation, arguments are represented as atomic entities and the
interrelationships between different arguments are modeled using an attack re-
lation. Abstract argumentation has been thoroughly investigated in the past ten
years and there is quite a lot of work on, e. g. semantical issues [3] and extensions
of abstract argumentation frameworks [16,2].

In the context of agent and multi-agent systems, there are mainly two ap-
plications of formal argumentation. First, using argumentation techniques as a
non-monotonic reasoning process within a single agent and second, using argu-
mentation in dialogues between different agents in order to realize persuasion,
cooperation, planning, or general conflict solving. Here, we focus on the second
application where reasoning is performed involving the whole system of agents,
see e. g. [13,1,7,25] for formalizations. In a dialogue, agents take turns in bringing
up arguments for some given claim and depending on the interrelationships of
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the arguments the claim is accepted or rejected by the agents (either individ-
ually or jointly). Up until recently, strategic issues in argumentation dialogues
have been mostly ignored with few exceptions, e. g. [22]. By considering game
theoretical aspects in argumentation dialogues [20] the interest in strategies for
the selection of arguments and the general connection of game theory and argu-
mentation has grown. From the point of view of game theory, an argumentation
dialogue can be represented as a strategic game involving a set of self-interested
agents and in choosing the “right” arguments agents can influence the outcome
of the argumentation and reach a more desirable result according to their own
preferences. In [20,21,17] Rahwan et al. investigate direct argumentation mech-
anisms in which agents have to state all arguments they wish at once. Under
specific circumstances of the underlying argumentation framework they were
able to prove strategy-proofness, i. e. the dominant strategy of each agent is to
truthfully report all their arguments. Besides this scenario of direct argumenta-
tion there are other formalizations of specific argumentation games, e. g. [22,7].
But up till now, to our knowledge there has been no comprehensive overview
on the different argumentation settings and the different scenarios where agents
can argue with each other.

The contribution of this paper is twofold. The main contribution lies in a clas-
sification of the different argumentation games agents can play within a multi-
agent setting. We make a first attempt to characterize argumentation games
by means of the game protocol, the awareness of the agents on other agents’
beliefs, and the structure of the preferences of the agents. We use structured
argumentation frameworks, a novel approach which generalizes abstract argu-
mentation frameworks, to model argumentation between different agents. The
second contribution lies in generalizing the strategy-proofness result of [20] and
investigating several other settings for argumentation games in terms of the
strategical issues involving argument selection.

This paper is a slightly extended version of a previously published paper [24]
and is organized as follows. In Section 2 we give a brief overview on abstract
argumentation and introduce the novel approach of structured argumentation.
We continue in Section 3 with applying structured argumentation onto a multi-
agent setting. Section 4 develops a classification of argumentation games in the
multi-agent setting in terms of game protocol, awareness, and agent types. We
investigate several strategical issues in some instances of argumentation games
in Section 5 and conclude in Section 6.

2 Preliminaries

We first give a brief overview on abstract argumentation frameworks [11] and
continue by introducing structured argumentation frameworks which extend ab-
stract argumentation frameworks and are the means to model argumentation
games in this paper.
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2.1 Abstract Argumentation

Abstract argumentation frameworks [11] take a very simple view on argumenta-
tion as they do not presuppose any internal structure of an argument. Abstract
argumentation frameworks only consider the interactions of arguments by means
of an attack relation between arguments.

Definition 1 (Abstract Argumentation Framework). An abstract argu-
mentation framework AF is a tuple AF = (Arg, attacks) where Arg is a set of
arguments and attacks is a relation attacks ⊆ Arg × Arg.

For two argumentsA,B ∈ Arg the relation (A,B) ∈ attacks means that argument
A attacks argument B. Abstract argumentation frameworks can be concisely
represented as directed graphs, where arguments are represented as nodes and
edges model the attack relation.

Example 1. Consider the abstract argumentation framework AF = (Arg, attacks)
depicted in Figure 1. Here it is Arg = {A1,A2,A3,A4} and attacks = {(A1,A2),
(A2,A3), (A2,A4), (A3,A2), (A3,A4)}.

A1

A2 A3

A4

Fig. 1. A simple argumentation framework

Semantics are given to abstract argumentation frameworks by means of exten-
sions. An extension E of an AF = (Arg, attacks) is a set of arguments E ⊆ Arg
that gives some coherent view on the argumentation underlying AF. In the lit-
erature [11,8] a wide variety of different types of extensions has been proposed.
All these different types of extensions require some basic properties as conflict-
freeness and admissibility. A set S ⊆ Arg is conflict-free if and only if there
are no two arguments A,B ∈ Arg with (A,B) ∈ attacks. An argument A ∈ Arg
is acceptable with respect to a set of arguments S ⊆ Arg if and only if for ev-
ery argument B ∈ Arg with (B,A) ∈ attacks there is an argument C ∈ S with
(C,B) ∈ attacks. A set S ⊆ Arg is admissible if and only if it is conflict-free and
every argument a ∈ S is acceptable with respect to S.

Extensions of an abstract argumentation framework can be described using
the characteristic function FAF(S) = {A ∈ Arg | A is acceptable wrt. S} defined
for sets S ⊆ Arg.

Definition 2 (Extensions). Let AF = (Arg, attacks) be an abstract argumen-
tation framework and S ⊆ Arg an admissible set.
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– S is a complete extension if and only if S = FAF(S).
– S is a grounded extension if and only if it is a minimal complete extension

(with respect to set inclusion).
– S is a preferred extension if and only if it is a maximal complete extension

(with respect to set inclusion).
– S is a stable extension if and only if it is a complete extension and attacks

each A ∈ Arg \ S.

Example 2. We continue Example 1. As FAF({A1,A3}) = {A1,A3} the set
{A1,A3} is a complete extension. Furthermore it is the only complete exten-
sion and also grounded, preferred, and stable.

Note that the grounded extension is uniquely determined and always exists [11].

2.2 Structured Argumentation

In the following, we introduce structured argumentation frameworks which ex-
tend Dung’s abstract argumentation frameworks and are a slightly modified
variant of dynamic argumentation frameworks [23]. In structured argumenta-
tion frameworks arguments are built using a very simple propositional language,
so let Prop denote a finite and fixed set of propositions. The basic structure
for structured argumentation frameworks are basic arguments which represent
atomic inference rules by connecting some set of propositions (the support) to
another proposition (the claim).

Definition 3 (Basic Argument). Let α1, . . . , αn, β ∈ Prop be some proposi-
tions with β /∈ {α1, . . . , αn}. Then a basic argument A is a tuple A = ({α1, . . . ,
αn}, β). We abbreviate supp(A) = {α1, . . . , αn} (the support of A) and cl(A) = β
(the claim of A).

For the rest of this paper, let U be some fixed and finite set of basic arguments,
called the universal set of basic arguments. As such, U represents all possible
basic arguments under consideration. To keep things simple, we assume that
U does not contain any cyclic dependencies, i. e. there is no infinite sequence
A1,A2, . . . ∈ U with cl(Ai) ∈ supp(Ai+1) for all i > 0. Together with an attack
relation →⊆ U ×U the set of basic arguments form a structured argumentation
framework (SAF) F = (U,→).1

Example 3. Consider the SAF F1 = (U,→) given by

U = { A1 = (∅, a), A2 = ({a}, b), A3 = (∅, c)
A4 = (∅, d), A5 = ({d}, e), A6 = ({b}, f)
A7 = (∅, g) }

and

→ = { (A3,A2), (A2,A4), (A5,A6),
(A5,A7), (A6,A7), (A7,A5) } .

1 Although SAFs have the same structure as abstract argumentation frameworks, we
deliberately use different notations to avoid ambiguity.
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A1 A2

A3

A4 A5

A6

A7

Fig. 2. The SAF F1

The rough structure of F1 is depicted in Figure 2, where the attack relation is
represented by solid arrows and “support” by dashed arrows. Notice that Fig-
ure 2 does not contain all the information represented by F1 as the propositions
the arguments relate to have been omitted.

A set S ⊆ U is conflict-free if and only if there are no two basic arguments
A,B ∈ S with A → B. A finite sequence [A1, . . . ,An] of basic arguments is
conflict-free if and only if {A1, . . . ,An} is conflict-free. Basic arguments are
used to form inference chains called argument structures.

Definition 4 (Argument Structure). Let S ⊆ U be a set of basic arguments
and A ∈ S a basic argument. An argument structure AS for A with respect
to S is a minimal (with respect to set inclusion) conflict-free sequence of basic
arguments AS = [A = A1, . . . ,An] with {A2, . . . ,An} ⊆ S such that for any
Ai ∈ AS and for any α ∈ supp(Ai) there is an Aj ∈ AS with j > i and
cl(Aj) = α (for 1 ≤ i, j ≤ n). Let ArgStructS(A) denote the set of argument
structures for A with respect to S and let ArgStructS =

⋃
A∈S ArgStructS(A) be

the set of all argument structures with respect to S.

For an argument structure AS = [A1, . . . ,An] let top(AS) = A1 denote the
first basic argument in AS. The attack relation → on basic arguments can be
extended on argument structures by defining AS1 → AS2 if and only if there is
an A ∈ AS2 with top(AS1) → A for two argument structures AS1 and AS2. An
argument structure AS1 indirectly attacks an argument structure AS2, denoted
by AS1 ↪→ AS2 if AS1 → . . . → AS2 with an odd number of attacks.

Example 4. We continue Example 3. In F1 the following sequences are argument
structures

AS1 = [A2,A1] AS2 = [A5,A4]
AS3 = [A6,A2,A1] AS4 = [A7]

Due to A2 → A4 it holds AS1 → AS2. Similarly, it holds AS2 → AS3, AS3 →
AS4, AS2 → AS4, AS4 → AS2, and especially AS1 ↪→ AS4.
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Using the extended attack relation, a structured argumentation framework F
induces an abstract argumentation framework AFF = (ArgF, attacksF) with
ArgF = ArgStructU and attacksF = {(AS1, AS2) | AS1 → AS2}. Let Sem denote
one of the Dung-style semantics, cf. Subsection 2.1. Given a structured argu-
mentation framework F and a semantics Sem the output of F denotes the set
of all conclusions acceptable with the semantics Sem in the induced abstract
argumentation framework AFF, cf. [9]. More precisely, if E1, . . . , En are the ex-
tensions of AFF under Sem, then OutputSem(F) = {α ∈ Prop | ∀i : ∃AS ∈ Ei :
cl(top(AS)) = α}.

Example 5. A graphical representation of the induced abstract argumentation
framework AFF1 of F1 from Example 3 is depicted in Figure 3. Note that we
abbreviated some argument structures by their names introduced in Example 4.
The grounded extension EG of AFF1 computes to EG = {[A1], [A3], [A4], AS2}
and therefore Outputgrounded(F1) = {a, c, d, e}.

[A1] AS1

[A3]

[A4] AS2

AS3

AS4

Fig. 3. The induced abstract argumentation framework of F1 from Example 3

Structured argumentation frameworks are a clear generalization of abstract ar-
gumentation frameworks as every abstract argumentation framework can be cast
into a structured argumentation framework while retaining semantics.

Definition 5 (Equivalent Structured Argument Framework). Let AF
= (Arg, attacks) be an abstract argumentation framework. For every argument
A ∈ Arg introduce a new proposition A ∈ Prop. The equivalent structured argu-
mentation framework FAF = (U,→) to AF is defined as

U = {(∅,A) | A ∈ Arg}
→ = {((∅,A), (∅,B)) | (A,B) ∈ attacks}

The following theorem states that structured argumentation frameworks are a
clear generalization of abstract argumentation frameworks and can easily be
verified.

Theorem 1. Let AF be an abstract argumentation framework with extensions
E1, . . . , En under some semantics Sem and let E′

1, . . . , E
′
m be the extensions
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of AFFAF
under Sem. Then there is bijective function T : {E1, . . . , En} →

{E′
1, . . . , E′

m} such that T ({A1, . . . ,Ak}) = {(∅,A1), . . . , (∅,Ak)} for every Ei =
{A1, . . . ,Ak}, 1 ≤ i ≤ n. In particular, it is n = m.

So far we have motivated the use of structured argumentation frameworks as a
computational model for argumentation. We now turn to the setting of argu-
mentation in dialogs. Usually in a multi-agent setting, the universal set of basic
arguments U is unknown to all agents because of lack of expertise or just lack of
knowledge. When considering a multi-agent setting, every agent may only have
a partial view on U and the attack relation.

Definition 6 (View). A view VF on a structured argumentation framework
F = (U,→) is a structured argumentation framework VF = (U ′,→′) with U ′ ⊆ U
and →′= {(A1,A2) ∈→| A1,A2 ∈ U ′}.

We will omit the subscript of VF when the SAF F is clear from context. Defini-
tion 6 implies that, in general, games played on some structured argumentation
framework are incomplete as not every possible move of an agent might be known
by other agents. Nonetheless, when a move is played (i. e. an argument has been
put forward) all agents agree on the attack relation. So with respect to the attack
relation the information distributed among the agents is complete.

3 The Multi-agent Setting

The scenario we consider can be intuitively described as follows. At the beginning
every agent has some view on the underlying SAF F and some preferences over
the output of the argumentation. The common view considered by all agents
as starting point is empty and the agents take turn by bringing up some basic
arguments from their own view and incorporating them into the common view.
When no agent can bring up more arguments the argumentation ends and an
abstract argumentation framework is computed with respect to the final common
view. Lastly, this abstract argumentation framework is used to compute the
output of the argumentation given some predefined semantics. In the following,
we formalize this intuition.

The multi-agent setting is divided into two parts, one describing the basic
contents of the scenario, namely the underlying argumentation framework and
the agents, and one describing the dynamic part of an evolving argumentation.

Definition 7 (Structured Argumentation System). A structured argu-
mentation system (SAS) Π is a tuple Π = (F, Ag) with a structured argumen-
tation framework F and a set of agent identifiers Ag.

As a simplification we assume that the universal set of basic arguments U of F
contains exactly the union of the basic arguments appearing in the views of the
agents. Hence, any basic argument in U is known by at least one agent. This is
not a restriction as an argument not appearing in any view cannot be used at
all. In particular, we do not allow agents to “make up” arguments as in [21].
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A SAS Π describes the functionality and the underlying language of an argu-
mentation game. Dynamism is introduced by considering evolving states of Π .
At any time the state of Π is determined by a current common view V 0, the
views of each agent V i, and the outcome of the argumentation.

Definition 8 (State). A state Γ Π of Π = (F, Ag) with Ag = {A1, . . . , An}
is a tuple Γ Π = (V 0, {V 1, . . . , V n}, O) with views V 0, . . . , V n on F, and a set
O ⊆ Prop. Let ΔΠ denote the set of all states of Π.

We will omit the superscripts Π when Π is clear from context. The final com-
ponent O of a state Γ denotes the output of the argumentation if Γ is the final
state. If the final state has not been reached yet, we set O = nil, where nil is a
special identifier denoting no output. For a state Γ = (V 0, {V 1, . . . , V n}, O) we
denote V i(Γ ) = V i, and O(Γ ) = O. The initial state of a SAS Π is denoted by
Γ Π

0 with O(Γ Π
0 ) = nil. The state of a SAS Π evolves over time when agents bring

up new basic arguments from their own views. The protocol of an argumentation
game might restrict an agent to only bring up one basic argument at a time or
all basic arguments he wants at once. We will elaborate some of these possible
protocols in the next section. In the general case, if an agent has to take turn
in an argumentation he does so by using its selection function. Given a common
view of a SAF and an agent’s own view a selection function selects a set of basic
arguments of the agent’s view to come up with. Let P(S) denote the power set
of a set S.

Definition 9 (Selection Function). Let Ak be an agent identifier. A selection
function selAk for Ak is a function selAk : Δ → P(U) such that selAk(Γ ) ⊆
(Uk \ U0) for any Γ ∈ Δ with V k(Γ ) = (Uk,→k) and V 0(Γ ) = (U0,→0).

The condition selAk(Γ ) ⊆ (Uk \ U0) ensures that the agent brings up new ba-
sic arguments that are not already part of the common view. Notice also that
an agent may bring up no basic arguments at all via selAk(Γ ) = ∅. Intuitively
spoken, a selection function implements the strategy of an agent in an argumen-
tation in a game theoretical sense. As said before, in our framework the strategy
of an agent only allows for hiding arguments but not for making up new argu-
ments, cf. [17]. To our understanding this is not a drawback as arguments that
could be made up by an agent could also be integrated in the agent’s view from
the beginning. From the perspective of knowledge representation this is a more
adequate formalization as making up arguments requires the agent to have an
understanding of rational inference chains (i. e. atomic arguments) to support
their claim.

In game theory, the performance of an agent’s strategy is evaluated by using
the agent’s preferences on the outcomes of a game. As in our framework the
outcome of the argumentation game is determined by the output of the final
common view of the underlying F the agent’s utility is determined by its util-
ity function which maps sets of propositions, i. e. possible outcomes, to natural
numbers, thus describing a ranking on the output.

Definition 10 (Utility Function). An utility function utilA for an agent iden-
tifier A is a function utilA : P(Prop) → N.



294 M. Thimm and A.J. Garćıa

An agent A with a utility function utilA prefers the outcome (i. e. the output)
L1 ⊆ Prop over L2 ⊆ Prop if utilA(L1) > utilA(L2). By taking a selection function
and an utility function together we obtain the basic characteristics of an agent.

Other agents observe new basic arguments and integrate these in their own
views respectively. As a convenience we abbreviate this operation as follows.

Definition 11 (View Update). Let V = (U ′,→′) be a view on F = (U,→)
and A ∈ U a basic argument. The view update of V with A is a view V ′ = V ⊗A
on F with V ′ = (U ′′,→′′) defined as U ′′ = U ′ ∪ {A} and

→′′ = →′ ∪{(A,B) ∈→| B ∈ U ′} ∪ {(B,A) ∈→| B ∈ U ′}

Definition 11 suggests that agents are fully aware of attacks between known
arguments. This means that when agents incorporate new basic arguments into
their view, all attacks between this argument and arguments already known are
incorporated as well. This assumption corresponds to the assumption of perfect
information in e. g. [22]. For a set of basic arguments A = {A1, . . . ,An} ⊆ U we
define V ⊗ A = (. . . ((V ⊗A1)⊗A2)⊗ . . .)⊗An.

4 Argumentation Games

The type of argumentation game that agents play directly influences the strate-
gies agents should use in order to obtain the best outcomes. In [20,21,17] Rahwan
et. al. investigate mechanism design techniques [14] in order to determine suit-
able mechanisms, i. e. types of games, for abstract argumentation. For a special
case of mechanism and a special type of agents they were able to identify this
scenario as a strategy-proof game. As such, the best strategy for the agents is
to be truthful about their views and bring up all arguments they know of. In
their works, Rahwan et. al. focus on direct mechanisms, i. e., mechanisms where
every agent reports his arguments at once without having the possibility to react
on other agents’ arguments. Restricting the attention on these simple games is
not as limiting as it seems. Due to the revelation principle—a well-known result
in mechanism design—if some social choice function can be implemented with
some equilibrium by some mechanism it can also be implemented by a direct and
truthful mechanism [20]. Roughly, this means that when designing a game one
does not lose expressive power by just considering direct mechanisms. Instead
one gains the additional advantage that agents have to be truthful. Nonetheless,
there is some criticism on the revelation principle, especially when it comes to
natural representation of games or computational issues. Implementing a game
in a direct fashion might put a computational intractable task onto the evaluator
of the game or create an exponential overhead in communication [10]2. Further-
more, as a direct mechanism expects an agent to (truthfully) report its type,
e. g. in our framework his arguments, confidentiality issues might be considered
as well [6]. Hence, besides direct mechanisms we also investigate more natural

2 Thanks to Iyad Rahwan for pointing that out to us.
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forms of argumentation dialogs in the following. We obtain a similar result as in
[20] of strategy-proofness for a special scenario of a SAS but we have a look on
strategies for non-strategy-proof games as well, cf. Section 5.

In this section we give an overview on different settings for argumentation
games. To this end we identify three key parameters as follows.

1. Game protocol : How do agents take turn and when does the game
terminates?

2. Awareness : Does an agent have knowledge on the views of other agents?
3. Agent types : How are the preferences of an agent organized?

As discussed above, we assume for all scenarios that every action undertaken by
any agent is recorded by all other agents and the agents agree on the structure
of the attack relation.

4.1 Game Protocol

A protocol describes the extensional rules of an argumentation game and pre-
scribes how agents take turns and which actions can be undertaken. More for-
mally, we describe argumentation game protocols by means of state transition
rules as in operational semantics [18] that transform one state of a SAS Π into a
new one. Given a SAS Π and some initial state Γ Π

0 of Π the rules of a protocol
P are applied to Γ Π

0 and its successor state until a final state finalP (Γ Π
0 ) with

O(finalP (Γ Π
0 )) �= nil is reached. In this paper, we do not allow for probabilistic

decision in the agents’ strategies, so finalP (Γ Π
0 ) is uniquely determined. An in-

vestigation on indeterministic strategies is part of future work. For an agent A
its gain for Γ Π

0 and P is defined as gainP
A(Γ Π

0 ) = utilA(O(finalP (Γ Π
0 ))), i. e. the

agent’s utility for the outcome of the argumentation. In the following, let Π be
a SAS with Π = (F, {A1, . . . , An}) and Γ a state.

Direct Argumentation Mechanism

A direct argumentation mechanism [20] allows only one single step in the argu-
mentation game. Every agent may put forward any set of basic arguments at
once. After this, the mechanism terminates. This can be realized with the single
state transition rule T d

1 defined as follows.

[T d
1 ]

A = selA1(Γ ) ∪ . . . ∪ selAn(Γ )
Γ −→ (V 0′ , {V 1′ , . . . , V n′}, OutputSem(V 0′))

with: V i′ = V i(Γ )⊗ A (0 ≤ i ≤ n)

Obviously, the direct argumentation protocol P d = {T d
1 } always terminates after

one execution step.
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Synchronous Argumentation Mechanism

A generalization of the direct argumentation mechanism is the synchronous argu-
mentation mechanism. There, every agent may bring up a set of basic arguments
at the same time but the process is repeated until no agent wants to bring up
any more basic arguments. There are two variants of this mechanism, one where
agents are allowed to bring up new basic arguments even if they have not done
so in a previous step, and one where agents cannot bring up any new basic ar-
guments if they previously decided not to do so. We call the second variant a
rigid protocol. When using a rigid protocol, agents have to carefully deliberate
whether they choose to not bring forward any arguments, because they do not
get any other chance to do so. In the following, we only consider the non-rigid
variant. The non-rigid variant is realized with the following transition rules.

[T s
1 ]

A = selA1(Γ ) ∪ . . . ∪ selAn(Γ ) and A �= ∅
Γ −→ (V 0′ , {V 1′ , . . . , V n′}, nil)

with: V i′ = V i(Γ )⊗ A (0 ≤ i ≤ n)

[T s
2 ]

selA1(Γ ) ∪ . . . ∪ selAn(Γ ) = ∅
Γ −→ ( · , · , OutputSem(V 0(Γ )))

The synchronous argumentation protocol P s = {T s
1 , T s

2 } also clearly terminates
after a finite number of steps, because the number of basic arguments is finite.
Note, that in the synchronous and the direct argumentation mechanism the
assumption of perfect information is restrained due to the simultaneous moves
of the agents. Therefore, the selection of arguments to put forward can only
depend on the moves of other agents from the previous steps but not on those
in the current step.

Dialectical Argumentation Mechanism

In natural dialogues agents usually alternately take turns when bringing up argu-
ments. In general, this can be realized by a dialectical argumentation mechanism
where we assume some order of the agents and basic arguments can be brought
up with respect to this order. As for the synchronous argumentation mechanism
two variants are possible with respect to rigidness of the protocol. Anyway, the
protocol needs some extra meta information for the states to select the next
agent appropriately and we have to ensure that the protocol terminates if no
agent wants to bring up new arguments. To this end we introduce some meta
information M = (k1, k2) ∈ N2 such that k1 is the index of the agent that last
took turn and k2 counts the number of agents that skipped bringing up new basic
arguments since the last one that did. For an initial state Γ Π

0 we set M = (0, 0).
Then this protocol is realized by the following transition rules.
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[T t
1 ]

k2 < n and A = sel
Ak′

1 (Γ )
Γ −→ (V 0′

, {V 1′
, . . . , V n′}, nil)

M = (k1, k2) −→ M ′ = (k′
1, k

′
2)

with: V i′ = V i(Γ )⊗ A (0 ≤ i ≤ n)
k′
1 = (k1 mod n) + 1

k′
2 =

{
0 if A �= ∅
k2 + 1 otherwise

[T t
2 ]

k2 = n

Γ −→ ( · , · , OutputSem(V 0))
M = (k1, k2) −→ M

As for the synchronous argumentation protocol the termination of the dialectical
argumentation protocol P t = {T t

1 , T
t
2} is ensured due to the finiteness of the

universal set of basic arguments U .
Notice that a variant of the rigid version of the dialectical argumentation

mechanism has been previously employed for an argumentation game in [22].
The general protocols described above allow an agent to bring forward an

arbitrary number of arguments at any step. For the synchronous and dialectical
mechanisms a restricted variant would be allow an agent to bring forward only
a single argument at any step. We call such a protocol an atomic-step protocol.
More formally, an atomic-step protocol P can only be applied to a SAS (F, Ag)
if for all A ∈ Ag it is |selA(S, F)| ≤ 1 for any S ∈ P(U) and every F. Together
with the option of rigidness we obtain each four variants of the synchronous
and dialectical mechanisms. Notice also, that we do not restrict the agents to
follow some dialectical structure such as always replying to the last argument
brought forward. The above protocols can be refined in order to implement
such restrictions but this is outside the scope of this paper. Assuming a fair
implementation of the protocols they fulfill most of the desiderata expected
for argumentation protocols proposed in [15] such as separation of syntax and
semantics and discouragement of disruption.

4.2 Awareness

Our definition of selection functions (Definition 9) is quite general as it takes the
whole state of the system into account when determining the basic argument
that should be brought forward. In particular, a selection function might be
heavily influenced by the views of other agents. Usually, an agent does not have
complete and accurate knowledge on the subjective views of other agents. One
extreme is that an agent has no awareness of other agents views. More formally,
a selection function selAk of an agent Ak ∈ Ag is ignorant if for all Γ1, Γ2 ∈ Δ it
holds: If V0(Γ1) = V0(Γ2) and V k(Γ1) = V k(Γ2), then it is selAk(Γ1) = selAk(Γ2).
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This means that the decision of agent Ak is at any time only dependent on the
agent’s own view and the common view.

Usually, an agent has some subjective beliefs about the views of other agents.
Let BelAk

(Aj , Γ ) the subjective belief of agent Ak on the view of agent Aj

in state Γ , i. e. BelAk
(Aj , Γ ) is itself a view. Then, a selection function selAk

of Ak is belief-based if for all Γ1, Γ2 ∈ Δ it holds: If V 0(Γ1) = V 0(Γ2) and
V k(Γ1) = V k(Γ2) and for all j �= k it is BelAk

(Aj , Γ1) = BelAk
(Aj , Γ2), then it is

selAk(Γ1) = selAk(Γ2). An agent Ak has full awareness if his selection function
selAk is belief-based and BelAk

(Aj , Γ ) = V j(Γ ) for every state Γ ∈ Δ and j �= k.
In between no awareness and full awareness there is a wide range of incomplete

and uncertain awareness of other agents’ views, but we will not discuss this topic
in the current paper.

4.3 Agent Types

Under the term agent type we understand in this paper the way the preferences
of the agent are organized. The main reason for arguing with other agents is to
persuade other agents or to prove some statement. This goal is represented by the
agent’s utility function which ranks the possible outcomes of the argumentation.
In the following we identify some simple utility functions.

The most simple attitude of an agent towards the outcome of an argumenta-
tion is the desire to prove a single proposition, no matter what else is
proven.

Definition 12 (Indicator Utility Function). Let α ∈ Prop. The utility func-
tion utilα is called an indicator utility function for α if for any L ⊆ Prop it is
utilα(L) = 1 if α ∈ L and utilα(L) = 0 otherwise.

The choice of 0 and 1 as the only values for the indicator utility function is
arbitrary. Any utility function util with util(L) = k and util(L′) = l for any
L, L′ ⊆ Prop with α ∈ L and α /∈ L′ for some α can be normalized to an
indicator utility function if k > l. Note that the definition of indicator utility
functions resembles the rationale behind focal arguments in [20]. Because of this,
if utilα is the utility function of an agent A we call α the focal element of A.

The definition of an indicator function can be extended to comprehend for
multiple focal elements as follows.

Definition 13 (Multiple Indicator Utility Function). The utility function
utilS is called a multiple indicator utility function for S ⊆ Prop if for any L ⊆
Prop it is utilS(L) = 0 if S � L and utilS(L) = 1 if S ⊆ L.

Notice that it holds util{α} = utilα. This general definition does not demand that
S has to be “consistent”, i. e. there may be argument structures AS1 resp. AS2

for some α ∈ Prop resp. α′ ∈ Prop such that AS1 → AS2. Another variant of an
agent’s preferences can be characterized by a counting utility function which is
similar in spirit to the notion of acceptability maximising preferences in [20].

Definition 14 (Counting Utility Function). Let S ⊆ Prop. The utility func-
tion util#S is called a counting utility function for S if for any L ⊆ Prop it is
util#S (L) = |L ∩ S|.
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Notice that it holds util#{α} = utilα. The difference between a counting utility
function and a multiple indicator utility function is that for a multiple indicator
utility function all focal elements have to be in the output of an argumentation
in order to yield a better utility than zero. An agent with a counting utility
function tries to prove as many of his focal elements as possible.

In general, there has to be no direct relationship between an agent’s view and
his utility function. For example, an agent with an indicator utility function utilα
may have no basic argument for α in his own view or, more drastically, his view
can give reasons to not believe in α. A special form of views are subjective views
in which an agent’s utility function is consistent with its own view.

Definition 15 (Subjective View). Let V be a view on F. V is a subjective
view on F with respect to a utility function util if and only if util(OutputSem(V ))
is a maximum of util.

Furthermore, a view V = (U ′,→′) is globally consistent with respect to a SAF F if
there are no two argument structures AS1, AS2 in F such that AS1 ↪→ AS2 and
AS1 ∩ U ′ �= ∅ and AS2 ∩ U ′ �= ∅. This means that no two basic arguments in V
can be used to construct argument structures that are, in any way, inconsistent
to one another.

Figure 4 summarizes the different game parameters we investigate in this
paper, ordered by their “complexity”. Distance from the origin indicates a more
demanding setting with respect to the complexity of the strategy for argument
selection.

5 Strategies for Selecting Arguments

In the following, we investigate some strategies for argument selection in differ-
ent argumentation games as defined in the previous section. The most simple
selection function one can think of is the one that just reports all basic argu-
ments of the agent’s view. Let Ak ∈ Ag be an agent identifier and Γ a state.
Then the truthful selection function selAk

� is defined as selAk

� (Γ ) = Uk \U0 with
V k(Γ ) = (Uk,→k) and V 0(Γ ) = (U0,→0). In other words, the selection function
selAk

� always returns all basic arguments of an agent’s view that aren’t already
present in the common view of the SAS. As being truthful does not demand for
strategic decisions the function is the same for direct, synchronous, and dialecti-
cal argumentation protocols. For an atomic-step protocol the truthful selection
function can be serialized, i. e., a serialized variant would select an arbitrary
basic argument each turn until all arguments have been brought forward.

In general, we are interested in finding selection functions that maximize an
agent’s gain in an argumentation game. Here, an argumentation game AG is
defined as a tuple AG = (Π, P ) with a SAS Π and a protocol P . The strongest
concept of a selection function that maximizes utility is that of a dominant
strategy. Let Π be a SAS and let Π ′ be the same as Π except possibly different
selection functions of the agents. Then the selection function selAk of agent Ak is
a dominant selection function if for any such Π ′ it is gainP

Ak
(Γ Π

0 ) ≥ gainP
Ak

(Γ Π′
0 ).
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Fig. 4. Complexity of game parameters

This means, regardless of how the other agents select their arguments, the selec-
tion function selAk maximizes the gain of agent Ak.3 The truthful strategy is of
special interest in game theory as it is the dominant strategy for strategy-proof
games. Therefore, given a strategy-proof argumentation game it is the best choice
for each agent to truthfully report all their basic arguments. In [20] Rahwan et.
al. identified a special type of direct argumentation game as strategy-proof. We
can restate and extend their result in our framework as follows.

Theorem 2. Let Π = (F, Ag) be a SAS. If the initial view V i(Γ Π
0 ) of each agent

Ai ∈ Ag is subjective and globally consistent with respect to F and the utility
function utilAi of each agent Ai is a counting utility function, then (Π, P d) is
strategy-proof.

Observe that the above statement is independent of the actual chosen semantics
due to the skeptical definition of Output. Theorem 2 states that the dominant
strategy for subjective and globally consistent views is to use the truthful se-
lection function sel�. It is a clear extension of Theorem 32 stated in [20] as
our underlying argumentation framework is a structured argumentation frame-
work. The statement of Theorem 2 easily extends to indicator utility functions,
multiple indicator utility functions as well as synchronous and dialectical argu-
mentation protocols (the latter because of the revelation principle, see above).
However, the condition of a globally consistent view is hard to check for an agent
3 Notice that agent Ak may have the same selection function selAk in Π and Π ′.



On Strategic Argument Selection in Structured Argumentation Systems 301

who has no idea of the structure of the underlying framework F. Given a basic
argument A in his view he may not know if A can be used to construct an ar-
gument structure against one of his “own” arguments. Due to this observation
Theorem 2 is only applicable for an agent if the global consistency is assured by
a trustworthy third party or if the agents have full awareness of the other agent’s
views and thus can verify the global consistency by themselves. Otherwise an
agent cannot know if the best strategy is to be truthful.

In general, full awareness is not a realistic assumption in argumentation. When
agents cannot verify the global consistency of their view, some strategic deliber-
ations are mandatory as the following example shows.

Example 6. Consider the following SAF F2 = (U,→).

U = { (∅, a), ({a}, b), ({b}, c), (∅, e),
({e}, d), ({d}, f), ({d}, c) }

→ = { (({d}, f), ({d}, c)), (({d}, f), ({b}, c)) }

An overview of F2 is given in Figure 5 (a). Let Π = (F2, {A1, A2}) be a SAS and
the initial state Γ Π

0 = (∅, {V 1, V 2}, nil) of Π be given as follows.

V 1 = (U \ {({d}, f)}, ·) V 2 = ({({d}, f)}, ∅)

The attack relation of V 1 is omitted but can be determined via Definition 6.
Note that view V 1 is subjective but not globally consistent. Imagine A1 wants to
prove c, i. e., the utility function of Ak is utilc. Note that there are two argument
structures in F2 to prove c while one of them ([({d}, c), ({e}, d), (∅, e)]) enables A2

to bring up an attacker, namely [({d}, f), ({e}, d), (∅, e)]. From a self-interested
point of view A1 should only bring forward the arguments that do not allow A2

to counterargue.

In the following, we develop some simple strategies for argument selection that
generalize the truthful strategy in scenarios where the agent may not have a

({e}, d)

(∅, e) (∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c) ({a}, d)

(∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c)

(a) (b)

Fig. 5. The structured argumentation frameworks (a) F2 from Example 6 and (b) F3

from Example 8
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globally consistent view and that are more cautious in bringing forward argu-
ments. In order to ensure that an agent brings forward only the arguments
that are not harmful for proving his focal elements, we define the attack set as
follows.

Definition 16 (Attack Set). Let F = (U,→) be a SAF and α ∈ Prop. The
attack set AttackSetF(α) of α in F is defined as

AttackSetF(α) = { A ∈ U | ∃AS1, AS2 ∈ ArgStructU :
A ∈ AS1 ∧ cl(top(AS2)) = α ∧AS1 ↪→ AS2 }

Intuitively, the set AttackSetF(α) contains all arguments that can be harmful to α
in any way. For example, for any argumentA with claim α, the set AttackSetF(α)
contains all attackers on A. More generally, AttackSetF(α) contains every argu-
ment that belongs to an argument structure that indirectly attacks an argument
structure for α. Using attack sets we can define a simple strategy that brings
only forward arguments that cannot be harmful in any way.

Definition 17 (Overcautious Selection Function). Let α ∈ Prop and Ak

an agent identifier. Let soc
α,Ak

be the selection function defined as

soc
α,Ak

(Γ ) = selAk

� (Γ ) \ AttackSetV k(Γ )(α)

for every state Γ . The function soc
α is called the overcautious selection function

for α.

Although the overcautious strategy is more careful in bringing forward argu-
ments one should note that the determination of AttackSetV k(Γ )(α) depends on
the current view of the agent and might not be complete. The overcautious
selection function can be extended to a belief-based selection function by incor-
porating the beliefs of Ak on the views of the other agents, into the determination
of AttackSetV k(Γ )(α). However, we will not formalize this in the current paper.

Example 7. We continue Example 6 but suppose selA1 = soc
c,Ak

. Here, A1 will not
bring forward arguments (∅, e) and ({e}, d) as they all belong to AttackSetV1(c).
Note that this strategy is independent of the strategy of any other agent.

Although the overcautious strategy is a very simple strategy for argument se-
lection it is the dominant strategy in a simple class of argumentation games. If
an agent has a complete view, i. e., he knows of every argument in the system,
but has no awareness on the other agents beliefs, then its best choice is to avoid
bringing forward possibly harmful arguments.

Theorem 3. Let Π = (F, Ag) be a SAS. For an agent Ai ∈ Ag, if Vi(Γ Π
0 ) = F

and Ai has no awareness then the overcautious selection function is a dominant
strategy for Ai in (Π, P d).

The limitations of this simple strategy are reached very quickly as the following
small modification of Example 6 shows.
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Example 8. Consider the following SAF F3 = (U,→), cf. Figure 5 (b).

U = { (∅, a), ({a}, b), ({b}, c), ({a}, d), ({d}, f), ({d}, c) }
→ = { (({d}, f), ({d}, c)), (({d}, c), ({d}, f)) }

Let Π = (F3, {A1, A2}) be a SAS and Γ Π
0 = (∅, {V1, V2}, nil) the initial state

of Π with V 1 = F3 and V 2 = (U \ {({a}, d)}, ·). Suppose utilA1 = utilc and
selA1 = soc

c,Ak
. Here, A1 will never bring forward argument (∅, a) as (∅, a) ∈

AttackSetV1(c). As a consequence, A1 will never be able to proof any argument
for c.

As Example 8 showed it is advisable to bring forward arguments that on the
one side may be harmful to one own’s desires but on the other side necessary to
actually reach the desires. So we refine the overcautious strategy by allowing the
agent to bring forward arguments that are inherently necessary for constructing
an argument structure for his focal element.

Definition 18 (Necessary Arguments). Let F = (U,→) be a SAF and α ∈
Prop. The set of necessary arguments NecArgF(α) for α in F is defined as

NecArgF(α) =
⋂

A∈U,cl(A)=α,AS∈ArgStructU (A)

AS

Definition 19 (Cautious Selection Function). Let α ∈ Prop, Ak and agent
with a view V and scα,Ak

be the selection function defined as

scα,Ak
(Γ ) = selAk

� (Γ ) \ (AttackSetV (α) \ NecArgV (α))

scα,Ak
is called the cautious selection function for α.

Example 9. We continue Example 8 but suppose utilA1 = utilc and selA1 = scc,Ak
.

Here, A1 will bring forward argument (∅, a) because it is inherently necessary to
construct any argument structure for c.

The cautious strategy performs well in the above example and can be seen as
a lower bound for direct argumentation protocols, i. e. the cautious strategy
returns as few arguments as necessary.

6 Summary and Future Work

In this work we have introduced structured argumentation frameworks, a for-
malism that extends Dung’s abstract argumentation frameworks [11] and are a
slightly modified variant of dynamic argumentation frameworks [23]. We have
used structured argumentation frameworks for defining a multi-agent setting
that contains two elements: one describing the basic contents of the scenario,
i. e. the underlying argumentation framework and the set of agents; and a sec-
ond element that describes the dynamic part of an evolving argumentation and
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determines how the state of the multi-agent system evolves in time. In our frame-
work every agent has its own view on the underlying argumentation framework
and its own preferences over the output of the argumentation process. We pro-
posed a first attempt to characterize argumentation games by means of the used
game protocol, the awareness of the agents on other agents beliefs, and the struc-
ture of the preferences of the agents. We used structured argumentation systems
to model argumentation among a group of agents. We have also presented some
properties for the proposed framework and protocols.

For future work we plan to investigate the concept of strategies based on (un-
certain) beliefs of other agents’ views. In natural dialogues strategic argumenta-
tion is all about what an agents expects of his opponents beliefs and attitudes as
even weak arguments can win an argumentation if the opponent has no counter-
argument available. Especially when considering dialectical argumentation the
possibility to learn from an agent’s previous moves and thus building up beliefs
on the other agent’s view incrementally might bring advantage in the ongoing
argumentation.
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Abstract. First, we present a novel approach to an abstract preference-
based argumentation framework (an abstract PAF ), which generalizes
Dung’s abstract argumentation framework (AF ) to deal with additional
preferences over a set of arguments. In our formalism, the semantics of
such a PAF is given as P-extensions that are selected from extensions of
acceptability semantics by taking into account such preferences. Second,
using a prioritized logic program (PLP) capable of representing priority
information along with integrity constraints, the proposed method de-
fines the non-abstract preference-based argumentation framework (the
non-abstract PAF ) translated from a PLP, whose semantics is also given
by P-extensions instantiating those of an abstract one. Finally we show
the interesting result that, P-extensions of such a non-abstract PAF
under stable semantics capture preferred answer sets of a PLP, which
ensures the advantages as well as the correctness of our approach.

1 Introduction

In the research field of argumentation, Dung’s frameworks of abstract argumen-
tation [11] have gained wide acceptance and are the basis for the implementation
of concrete formalisms. In his paper [11], Dung showed that argumentation can
be viewed as a special form of logic programming with negation as failure and
gives a series of theorems that relate semantics of logic programs and semantics of
argumentation frameworks. And as its application, there have been a number of
proposals for negotiation between multiagents that make use of argumentation.

Recently, several approaches to generalize Dung’s theory have been proposed
in order to handle additional information such as preferences as well as con-
straints which a negotiating agent generally has knowledge of, because prefer-
ences are useful to solve conflicts between arguments and constraints are needed
to eliminate extensions not satisfying the required conditions. With respect to
handling preferences, quite recently, Amgoud and Vesic [2] pointed out that,
there is the critical problem such that extensions are not conflict-free w.r.t. the
attack relation for existing preference-based argumentation frameworks such as
Amgoud and Cayrol’s approach [1]. Conflict-freeness for extensions is impor-
tant since it ensures sound results. Hence they [2] proposed a new abstract
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preference-based argumentation framework whose semantics ensures require-
ments of conflict-freeness along with generalization to recover Dung’s accept-
ability semantics in the case where preferences are not available.

On the other hand, with respect to formalisms for integrating logic program-
ming and argumentation, Dung [10] showed that answer set semantics [13] of
an extended logic program (an ELP, for short) is captured by stable seman-
tics of Dung’s argumentation framework, whereas Prakken and Sartor [15] in-
troduced an argument-based formalism for extended logic programming with
defeasible properties, which instantiated Dung’s grounded semantics if it is re-
stricted to static priorities. With respect especially to logic programming based
on answer set semantics [12,13], a significant amount of studies have been done
such as Brewka and Eiter’s preferred answer sets for extended logic programs [5],
Sakama and Inoue’s prioritized logic programming [19], Delgrande and Schaub’s
ordered logic programs [9] and so on. However, as far as we know, few works
have been achieved respecting the semantic relation between such logic program-
ming capable of handling preferences and preference-based argumentation which
generalizes Dung’s argumentation framework [11].

Under such circumstances, first, we present a new approach of an abstract
preference-based argumentation framework (an abstract PAF , for short), which
generalizes Dung’s abstract argumentation framework to deal with additional
preferences with meeting requirements of conflict-freeness and generalization.
In our formalism, the semantics of such a PAF is given as P-extensions that
are selected from extensions of Dung’s acceptability semantics by taking into
account such preferences.

Second, since Sakama and Inoue’s formalism of a prioritized logic program
(PLP) is capable of representing priority information along with integrity con-
straints in a nonmonotonic logic program, we use such PLP as the underlying
logic to construct a non-abstract PAF instantiating an abstract PAF . That
is, the proposed method defines a non-abstract preference-based argumentation
framework (a non-abstract PAF , for short) translated from a PLP, whose se-
mantics is also given by P-extensions instantiating those of the corresponding
abstract PAF. As a result, we can show the interesting result that, P-extensions
of such a non-abstract PAF under stable semantics capture preferred answer
sets of a PLP, which generalizes Dung’s theorem about relation between answer
sets of an ELP P and stable extensions of the argumentation framework associ-
ated with P . Thus this property ensures the advantages as well as the correctness
of our approach.

Finally under an inconsistent knowledge base, the PLP system [21,20] is un-
able to reason at all, whereas the non-abstract PAF translated from a PLP is
able to reason the intended results based on preferred semantics, i.e. preferred P-
extensions. Therefore we can regard such a non-abstract PAF as the enhanced
PLP so that it can also reason paraconsistently from inconsistent knowledge
bases.

This paper is organized as follows: Section 2 gives the preliminaries. Section 3
presents a new abstract PAF . Section 4 presents the non-abstractPAF translated
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from a PLP and the semantics. Section 5 discusses the related work and Section 6
concludes the paper.

2 Preliminaries

We briefly review the basic notions used throughout this paper.

2.1 Extended Logic Programs and Answer Set Semantics

The logic programs we consider in this paper are extended logic programs
(ELPs), which have two kinds of negation, i.e. classical negation (¬) along with
negation as failure (not) defined as follows.

Definition 1. An extended logic program (ELP)[13,12] is a set of rules of the
form:

L ← L1, . . . , Lm, notLm+1, . . . , notLn, (1)
or of the form:

← L1, . . . , Lm, notLm+1, . . . , notLn, (2)

where L and Li’s are literals, i.e. either atoms or atoms preceded by the classical
negation sign ¬ and n ≥ m ≥ 0. The symbol “ not” denotes negation as failure.
We call a literal preceded by “ not” a NAF-literal. For a rule r of the form (1), we
call L the head of the rule, head(r), and {L1, . . . , Lm, notLm+1, . . . , notLn} the
body of the rule, body(r). Especially, body(r)+ and body(r)− denote {L1, . . . , Lm}
and {Lm+1, . . . , Ln} respectively. We often write L ← body(r)+, not body(r)−

instead of (1) by using sets, body(r)+ and body(r)−. Each rule of the form (2)
is called an integrity constraint. For a rule with an empty body, we may write
L instead of L ←. As usual, a rule with variables stands for the set of its ground
instances.

The semantics of an ELP is given by the answer sets [13,12] as follows.

Definition 2. Let LitP be the set of all ground literals in the language of P .
First, let P be a not-free ELP (i.e., for each rule m = n). Then, S ⊆ LitP is an
answer set of P if S is a minimal set satisfying the conditions:

1. For each ground instance of a rule L ← L1, . . . , Lm in P , if {L1, . . . , Lm} ⊆
S, then L ∈ S. In particular, for each integrity constraint ← L1, . . . , Lm in
P , {L1, . . . , Lm} �⊆ S holds;

2. If S contains a pair of complementary literals, then S = LitP .

Second, let P be any ELP and S ⊆ LitP . The reduct of P by S is a not-free ELP
PS whose form is L ← L1, . . . , Lm, or ← L1, . . . , Lm,
iff there is a ground rule of the form (1), (2) in P s.t. {Lm+1, . . . , Ln} ∩ S = ∅.
Then, S is an answer set of P if S is an answer set of PS.

An answer set is consistent if it is not LitP . A program P is consistent if it has
a consistent answer set; otherwise, P is inconsistent. We write P |= L if a literal
L is included in every answer set of P .
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2.2 Prioritized Logic Programs and Preferred Answer Sets

A prioritized logic program (PLP) [19] is defined as follows.

Definition 3 (Priorities). Given an ELP P and the set of ground literals LitP ,
a reflexive and transitive relation 	 is defined on LitP . For any element e1 and
e2 from LitP , e1 	 e2 is called a priority, and we say e2 has a higher priority
than e1. We write e1 ≺ e2 if e1 	 e2 and e2 �	 e1, and say e2 has a strictly
higher priority than e1.

Definition 4 (Prioritized Logic Programs, PLPs). A prioritized logic pro-
gram (PLP, for short) is defined as a pair (P, Φ), where P is an ELP1 and Φ is
a set of priorities on LitP .

The declarative semantics of a PLP (P, Φ) is given by preferred answer sets
which are selected from answer sets of P based on the preference relation �as

derived from priorities in Φ. In what follows, the closure Φ∗ is defined as the set
of priorities which are reflexively or transitively derived using priorities in Φ.

Definition 5 (Preferences between answer sets). Given a PLP (P, Φ), the
preference relation �as over answer sets of P is defined as follows:
For any answer sets S1, S2 and S3 of P ,

1. S1 �as S1,
2. S1 �as S2 if for some literal e2 ∈ S2 \ S1,

(i) there is a literal e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗, and
(ii) there is no literal e3 ∈ S1 \ S2 such that e2 ≺ e3 ∈ Φ∗,

3. if S1 �as S2 and S2 �as S3, then S1 �as S3.

We say that S2 is preferable to S1 with respect to Φ if S1 �as S2 holds. We write
S1 �as S2 if S1 �as S2 and S2 ��as S1. Hereafter, each S1 �as S2 is called a
preference between answer sets.

Definition 6 (Preferred answer sets). Let (P, Φ) be a PLP. Then, an answer
set S of P is called a preferred answer set (or p-answer set, for short) of (P, Φ) if
S �as S′ implies S′ �as S (with respect to Φ) for any answer set S′ of P .

2.3 Abstract/Non-abstract Argumentation Frameworks and
Acceptability Semantics

Dung presented an abstract argumentation framework and acceptability seman-
tics [11] defined as follows.
Definition 7 (Abstract Argumentation Frameworks). An abstract argu-
mentation framework is a pair AF=(A, R) where A is a set of arguments and
R is a binary relation over A, i.e. R ⊆ A×A. (a, b) ∈ R, or equivalently a R b,
means that a attacks b. A set S of arguments attacks an argument a if a is
attacked by an argument of S.
1 In this paper, for a PLP (P, Φ), P is restrictedly given as an ELP though such P is

originally allowed to be a GEDP, i.e. a member of the superclass of an ELP [19].
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Definition 8 (Acceptable sets / Conflict-free sets). Let AF=(A,R) be an
argumentation framework. A set S ⊆ A is conflict-free iff there are no arguments
a and b in S such that a attacks b. An argument a ∈ A is acceptable w.r.t. a
set S ⊆ A iff for any b ∈ A such that (b, a) ∈ R, there exists c ∈ S such that
(c, b) ∈ R.

Definition 9 (Acceptability Semantics). Let AF=(A,R) be an argumenta-
tion framework and E ⊆ A be a conflict-free set of arguments. Let F : 2A → 2A

be a function with F (E) = {a | a is acceptable w.r.t. E}.
Acceptability Semantics such as complete (resp. stable, preferred, grounded)
semantics is given by the respective extensions defined as follows. E is admissible
iff E ⊆ F (E). E is a complete extension iff E = F (E). E is a grounded extension
iff E is a minimal (w.r.t. set-inclusion) complete extension. E is a preferred
extension iff E is a maximal (w.r.t. set-inclusion) complete extension. E is a
stable extension iff E is a preferred extension that attacks every argument in
A \ E.

Definition 10 (Credulous Justification vs Skeptical Justification).
Let AF=(A, R) be an argumentation framework. and Sname be one of complete,
stable, preferred, and grounded. Then for an argument a ∈ A,

– a is credulously justified (w.r.t. (A, R)) under a Sname semantics iff a is
contained in at least one Sname extension of (A, R);

– a is skeptically justified (w.r.t. (A, R)) under a Sname semantics iff a is
contained in every Sname extension of (A, R).

Non-abstract argumentation formalisms for ELPs [15,17] are defined as follows.

Definition 11 (Arguments). [17] Let P be an extended logic program whose
rules have the form (1). An argument associated with P is a finite sequence Ag =
[r1; . . . ; rn] of ground instances of rules ri ∈ P such that for every 1 ≤ i ≤ n,
for every literal Lj in the body of ri there is a k > i such that head(rk) = Lj.
The head of a rule in Ag, i.e. head(ri) is called a conclusion of Ag, whereas
a NAF-literal not L in the body of a rule of Ag is called an assumption of
Ag. We write assm(Ag) for the set of assumptions and conc(Ag) for the set of
conclusions of an argument Ag. Especially we call the head of the first rule r1

the claim of an argument Ag as written claim(Ag).
A subargument of Ag is a subsequence of Ag which is an argument. An ar-

gument Ag with a conclusion L is a minimal argument for L if there is no
subargument of Ag with conclusion L. An argument Ag is minimal if it is mini-
mal for its claim, i.e. claim(Ag). Given an extended logic program P , the set of
minimal arguments associated with P is denoted by ArgsP .

As usual, the notions of attack such as “rebut”, “undercut”, “attack”, “defeat”
abbreviated to r, u, a, d are defined as a binary relation over ArgsP as follows.

Definition 12 (Rebut, Undercut, Attack, Defeat). For two arguments,
Ag1 and Ag2, the notions of attack such as rebut, undercut, attack, defeat (r, u,
a, d for short) are defined as follows:
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– Ag1 rebuts Ag2, i.e. (Ag1, Ag2) ∈ r if there exists a literal L such that
L ∈ conc(Ag1) and ¬L ∈ conc(Ag2);

– Ag1 undercuts Ag2, i.e. (Ag1, Ag2) ∈ u if there exists a literal L such that
L ∈ conc(Ag1) and not L ∈ assm(Ag2);

– Ag1 attacks Ag2, i.e. (Ag1, Ag2) ∈ a if Ag1 rebuts or undercuts Ag2;
– Ag1 defeats Ag2, i.e. (Ag1, Ag2) ∈ d if Ag1 undercuts Ag2, or Ag1 rebuts

Ag2 and Ag2 does not undercut Ag1.

Definition 13 (Abstract vs non-Abstract Argumentation Frameworks).
Let P be an ELP, ArgsP be the set of minimal arguments associated with P and
attacksP be the binary relation over ArgsP defined according to some notion
of attack (e.g. r, u, a, d). Then we call AFP

def
= (ArgsP , attacksP ) the “non-

abstract argumentation framework” associated with P .

Although Dung’s acceptability semantics is defined as the set of extensions under
the specified argumentation semantics w.r.t. an abstract AF = (A,R), it is also
given as the set of extensions w.r.t. the non-abstract AFP = (ArgsP , attacksP )
instantiating AF using an ELP P .

2.4 Answer Set Programming as Argumentation

Dung [10] showed that stable extensions of the argumentation framework AFP

associated with an ELP P without integrity constraints capture answer set se-
mantics of P as follows.

Theorem 1. Let P be an ELP having no integrity constraints, and AFP =
(ArgsP , attackP ) be the concrete argumentation framework associated with P ,
where attacksP is the binary relation over ArgsP defined according to undercut
(i.e. u) as the notion of attack. Then S is an answer set of P iff there is a stable
extension E of AFP such that

S = { L |L is a literal s.t. L = claim(Ag) for an argument Ag ∈ E}.2

3 A New Approach of an Abstract Preference-Based
Argumentation Framework

We present a new approach of an abstract preference-based argumentation frame-
work (an abstract PAF for short), where Dung’s acceptability semantics is ex-
tended in a natural way so as to take into account additional preferences.

An abstract PAF takes as input three elements: a set A of arguments, an
attack relation R on A, and a preorder ≤ on A, where a pair AF=(A, R)
coincides with Dung’s argumentation framework. It returns extensions that are
subsets of A satisfying two basic requirements as addressed by Amgoud [2] as
follows.
Conflict-freeness: If E is an extension (i.e. P-extension in our approach) of
2 In [10], it is expressed that S = { L |L is supported by an argument from E}.
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PAF=(A, R, ≤), then E is conflict free w.r.t. R.
Generalization: Dung’s acceptability semantics of AF=(A, R) is captured as

the special case of the semantics of PAF=(A, R, ≤).

Our formalism of PAF satisfies these basic requirements. It is based on the idea
that an arguing agent wants to filter out extensions of the traditional accept-
ability semantics according to his/her preferences. Our approach is defined as
follows.

Definition 14 (Priorities between arguments). A reflexive and transitive
relation ≤ is defined over A. For any element a1 and a2 from A, a1 ≤ a2, or
equivalently (a1, a2) ∈≤, is called a priority, and we say a2 has a higher priority
than a1. We write a1 < a2 if a1 ≤ a2 and a2 �≤ a1, and say a2 strictly has a
higher priority than a1.

Definition 15 (Preference-based Argumentation Frameworks).
A preference-based argumentation framework (PAF ) is a tuple PAF=(A,R,≤),
where A is a set of arguments, R is an attack relation on A, and ≤ is a preorder
(i.e., a reflexive and transitive relation) on A, called a priority relation.

The semantics of an abstract PAF=(A,R, ≤) is given as preferable extensions (or
P-extensions) which are maximal arguments in A w.r.t. �ex defined as follows.

Definition 16 (Preferences between extensions). Given PAF=(A, R, ≤)
and Sname ∈ {complete, stable, preferred, grounded}, let E be the set of ex-
tensions for AF = (A,R) under Sname semantics. Then the preference relation
�ex over E (i.e., �ex ⊆ E ×E) is defined as follows. For any Sname extensions
E1, E2 and E3 from E,

1. E1 �ex E1,
2. E1 �ex E2 if for some argument a2 ∈ E2 \ E1,

(i) there is an argument a1 ∈ E1 \ E2 such that a1 ≤ a2 w.r.t. ≤, and
(ii) there is no argument a3 ∈ E1 \ E2 such that a2 < a3 w.r.t. ≤,

3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3.

Note that �ex is reflexive and transitive according to the items no.1 and no.3.
We say that E2 is preferable to E1 with respect to ≤ if E1 �ex E2 holds. We
write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1. Hereafter, each E1 �ex E2 is
called a preference between extensions.

Example 1 Consider PAF=(A,R,≤), where A = {a, b, c, d}, R = {(a, b), (b, a),
(c, d), (d, c), (c, a), (b, d)} and ≤ is the reflexive and transitive closure of {(a, b),
(a, c), (b, d), (c, d)}. Then both of {a, d} and {b, c} are preferred extensions as
well as stable extensions of AF = (A,R), and {b, c} �ex {a, d}. Note that
{a, d} ��ex {b, c} by the presence of b ≤ d and c ≤ d in ≤.

Definition 17 (P-extensions). Let E be the set of Sname extensions (e.g. a
set of preferred extensions) for AF = (A,R). Given PAF = (A,R,≤), a Sname
extension E ∈ E (e.g. a preferred extension) is called a Sname P-extension (e.g.
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Fig. 1. The Argumentation Framework (AF ) of Example 3

a preferred P-extension) of PAF if E �ex E′ implies E′ �ex E (with respect to
≤) for any Sname extension E′ ∈ E. In other words, a Sname extension E is
a Sname P-extension of PAF if E ��ex E′ (with respect to ≤) for any Sname
extension E′ ∈ E.

Example 2 (Ex. 1, Cont.). {a, d} is the preferred P-extension as well as the
stable P-extension of PAF w.r.t. ≤, but {b, c} is neither of them.3

Proposition 1 (Generalization). E is a Sname extension of AF=(A, R) iff
E is a Sname P-extension of PAF = (A,R,≤) when ≤ is empty.

Example 3 We can illustrate our PAF by using the example of travel arrange-
ments. Let us suppose that there are three alternative vehicles for traveling by
car, train or bicycle. Then we get nine arguments as follows.

C0 : We travel by car if there is no evidence that we travel by bicycle or train.
C1 : We will be able to carry more baggage in case of traveling by car.
C2 : We will be less tired in case of traveling by car.
T0 : We travel by train if there is no evidence that we travel by car or bicycle.
T1 : We will not encounter traffic jams in case of traveling by a train.
T2 : We will be less tired in case of traveling by train.
B0 : We travel by bicycle if there is no evidence that we travel by train or car.
B1 : Our health will be promoted in case of traveling by bicycle.
B2 : We will not encounter traffic jams in case of traveling by bicycle.

W.r.t. these arguments, we can represent the argumentation framework AF :
AF = (A,R), where A = {Ci, Ti, Bi | 0 ≤ i ≤ 2} and
R = {(Ci, Tj), (Tj , Ci), (Bi, Tj), (Tj , Bi), (Ci, Bj), (Bj , Ci) | 0 ≤ i, j ≤ 2},

which is shown as the directed graph in Fig. 1. Then there are three preferred
extensions of this AF as follows.

EC = {C0, C1, C2}, ET = {T0, T1, T2}, EB = {B0, B1, B2}
3 Based on Amgoud and Cayrol’s approach [1], the unique preferred (resp. stable)

extension, {b, d} is obtained for this PAF . But it is not conflict free w.r.t. R.
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Now suppose that an agent has two preferences such as,
(1) being less tired is preferable compared to promoting health, and
(2) not encountering traffic jams is preferable compared to carrying more bag-
gage, which are expressed as follows:

B1 ≤ T2, B1 ≤ C2, C1 ≤ T1, C1 ≤ B2

Taking account of these priorities, this example is represented by PAF = (A,R,
≤), where ≤= {(B1, T2), (B1, C2), (C1, T1), (C1, B2)} ∪ {(x, x)|x ∈ A}.
According to Definition 16, preferences between extensions are derived as follows.

EB �ex ET , EC �ex ET , EC �ex EB , EB �ex EC

i.e., ET ��ex EB , ET ��ex EC , Therefore we obtain ET as the unique P-extension
of this PAF under preferred or stable semantics, which is the expected result.

Remark. It should be noted that according to Amgoud and Vesic’s approach [3]
(resp. Amgoud and Cayrol’s approach [1]), the PAF of Example 3 has the same
extensions as those of the basic AF , i.e. EC , ET , EB under preferred or stable
semantics respectively. This means that preferences do not filter the extensions
of its basic framework based on their respective methods. Moreover Amgoud
and Vesic [3] proposed rich PAFs to refine AF s by preferences. However, exten-
sions of the rich PAF for Example 3 are obtained as Max({EC, ET , EB},�d)=
{EC , ET , EB}, where �d is the democratic relation4 given by them. This also
indicates that preferences do not work well to filter extensions based on their
rich PAF [3], whereas preferences effectively work well to select the intended
extension ET based on the proposed method, as shown in Example 3.

4 Preference-Based and Constrained Argumentation
Capturing Prioritized LP

In Section 3, an abstract PAF is presented. In this section, a non-abstract
preference-based argumentation framework (a non-abstract PAF , for short)
compiled from a PLP expressing domain knowledge is proposed as follows:

In the following, let P (resp. IC) be a set of rules of form (1) (resp. (2)). Then
in answer set programming (ASP), the semantics of an ELP P ∪ IC is given by
answer sets which are selected from answer sets of P by taking into account the
set IC of integrity constraints. On the other hand, the semantics of a prioritized
logic program, i.e. a PLP (P ∪IC, Φ), is given by preferred answer sets (p-answer
sets, for short) which are selected from answer sets of P ∪ IC by taking into
account the set Φ of priorities between literals, where integrity constraints from
IC and priorities from Φ are regarded as hard and soft constraints respectively.

A similar idea is also applied to our formalisms of argumentation for han-
dling preferences and constraints. That is, our basic idea is that, given an ELP
P ∪ IC as the underlying logic and specified a particular Dung’s argumen-
tation semantics, the semantics of the constrained argumentation framework,
4 The democratic relation [3] is the variant of the Hoare ordering. (See [6].)
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i.e. CAF (P, IC) = (ArgsP , attacksP , IC) is given by C-extensions which are
selected from extensions of the non-abstract argumentation framework AFP

= (ArgsP , attacksP ) by taking into account integrity constraints from IC, whereas
given a PLP (P ∪IC, Φ) as the underlying logic and specified a particular Dung’s
argumentation semantics, the semantics of the non-abstract preference-based ar-
gumentation framework, i.e. PAF (P ∪IC, Φ) = (ArgsP , attacksP , IC,≤) trans-
lated from the PLP is given by P-extensions which are selected from C-extensions
of the CAF by taking into account the set ≤ of priorities between arguments as
constructed via priorities between literals from Φ.

4.1 Constrained AFs Built on ELPs with Integrity Constraints

First, we show a constrained argumentation framework whose underlying logic
is an ELP with integrity constraints as follows.

Definition 18 (From ELPs with constraints to constrained AFs).
The constrained argumentation framework CAF (P, IC) associated with an ELP
P ∪ IC is defined as follows:

CAF (P, IC)
def
= (ArgsP , attacksP , IC),

where P and IC are sets of rules of form (1) and (2) respectively.

After defining the claims of a set of arguments, we show the definition of satis-
fiability of an extension w.r.t. constraints as follows.

Definition 19 (The claims of a set of arguments). Let E be a set of
arguments. Then claims(E) which we call the claims of E is defined as follows:

claims(E)
def
= {L | L is a literal s.t. L = claim(Ag) for an argument Ag ∈ E}.

Definition 20 (Satisfiability). Let CAF (P, IC)
def
= (ArgsP , attacksP , IC)

be a constrained argumentation framework associated with P ∪ IC. Note that for
a rule, ric from IC whose form is (2) as follows:

ric : ← L1, . . . , Lm, not Lm+1, . . . , not Ln, (2)
body(ric)+ = {L1, . . . , Lm} and body(ric)−={Lm+1, . . . , Ln}.
Then for E ⊆ ArgsP , whether E satisfies IC is defined as follows.

• E violates IC iff claims(E) ∪ IC is inconsistent
iff ∃ric ∈ IC s.t. body(ric)+ ⊆ claims(E) and body(ric)− ∩ claims(E) = ∅.

• E satisfies IC iff E does not violate IC iff claims(E)∪ IC is consistent
iff ∀ric ∈ IC if body(ric)− ∩ claims(E) = ∅, then body(ric)+ �⊆ claims(E).

The semantics of a constrained argumentation framework is defined as follows.

Definition 21 (C-extensions) . Let CAF (P, IC) = (ArgsP , attacksP , IC) be
the constrained argumentation framework associated with an ELP P ∪ IC and
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AFP = (ArgsP , attacksP ) be the argumentation framework associated with P .
Then the semantics of CAF (P, IC) is given by C-extensions defined as follows.
For E ⊆ ArgsP and Sname ∈ {complete, preferred, stable, grounded},

• E is C-admissible iff E is admissible for AFP and satisfies IC.
• E is a Sname C-extension of CAF (P, IC) under Sname semantics iff E is

an extension of AFP under Sname semantics and satisfies IC.

The following Theorem extends Theorem 1 to handle integrity constraints.

Theorem 2. Let CAF (P, IC)
def
= (ArgsP , attacksP , IC) be the constrained

argumentation framework associated with an ELP P ∪ IC, where P and IC are
the sets of rules of the form (1) and (2) respectively, and attacksP is the binary
relation over ArgsP which is defined according to undercut (i.e. u) as the notion
of attack. Then S is an answer set of P ∪ IC iff there is a stable C-extension E
of CAF (P, IC) such that S = claims(E).

Proof: See appendix.

Example 4. Let us consider the following ELP P ∪ IC:

P : p ← not q, q ← not p,

q ← not r, r ← not q.

IC: ← p, r.

P has two answer sets, S1 and S2 such that S1 = {p, r} and S2 = {q}, whereas
P ∪ IC has the unique answer set, S2. On the other hand, the set ArgsP of
minimal arguments associated with P is {A, B, C, D} such that

A = [p ← not q], B = [q ← not p]
C = [q ← not r], D = [r ← not q],

and the attack relation, attacksP is derived according to undercut as follows,
attacksP = {(A, B), (B, A), (C, D), (D, C), (C, A), (B, D)}.

Thus, w.r.t. AFP = (ArgsP , attacksP ) whose graph is shown on the left of
Fig. 2, there are two preferred as well as stable extensions, E1 and E2 as follows:

E1 = {A, D}, E2 = {B, C}

with claims(E1) = {p, r} and claims(E2) = {q}.

A B

C D

A B

C D

A B

C D

A B

C D

Fig. 2. Argumentation Frameworks (AFP s) of Example 4 and Example 5
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Instead, E2 is the preferred C-extension as well as the stable C-extension of
CAF (P, IC) = (ArgsP , attacksP , IC), but E1 is neither of them since
claims(E1) ∪IC is inconsistent, but claims(E2) ∪ IC is consistent. Note that
claims(E2) coincides with the answer set S2 = {q} of P ∪ IC as addressed by
Theorem 2.

Remark. It is well-known in answer set programming (ASP) that we can express
an integrity constraint by means of a rule of form (1) instead of (2), where its
head is expressed by a newly introduced propositional symbol, say α, as follows:

α ← L1, . . . , Lm, notLm+1, . . . , notLn, not α. (3)

It is obvious that integrity constraints of the form (3) are effective in not deriving
stable extensions which violate such integrity constraints based on Theorem
1. However, they are ineffective for extensions under the other argumentation
semantics like preferred semantics.

4.2 Preference-Based AFs Translated from PLPs

Here, we show the non-abstract preference-based argumentation framework
translated from a PLP (P ∪ IC, Φ).

Definition 22 (From PLPs to Preference-based AFs).
Given a PLP (P ∪ IC, Φ), the non-abstract preference-based argumentation
framework PAF (P, IC, Φ) associated with the PLP is defined as follows:

PAF (P, IC, Φ) = (ArgsP , attacksP , IC, ≤)

where ≤ is a priority relation on ArgsP such that,
Ag1 ≤ Ag2 iff e1 	 e2 ∈ Φ∗ for claim(Ag1) = e1 and claim(Ag2) = e2.
For any argument Ag1 and Ag2 from ArgsP , Ag1 ≤ Ag2 or (Ag1, Ag2) ∈≤ is
called “a priority between arguments”, and we say Ag2 has a higher priority than
Ag1. We write Ag1 < Ag2 if Ag1 ≤ Ag2 and Ag2 �< Ag1, and say “Ag2 has a
strictly higher priority than Ag1”. Note that ≤ is a preorder, i.e. a reflexive and
transitive relation. When IC is empty, we may write

PAF (P, Φ) = (ArgsP , attacksP ,≤)

instead of PAF (P, ∅, Φ) = (ArgsP , attacksP , ∅, ≤).

In our approach, given a PLP (P ∪ IC, Φ), preferences between C-extensions are
defined w.r.t. PAF (P, IC, Φ) as follows.

Definition 23 (Preferences between C-extensions).
For a PLP (P∪IC, Φ) and Sname ∈ {complete, preferred, stable, grounded},
let PAF (P, IC, Φ)= (ArgsP , attacksP , IC, ≤) be the non-abstract preference-
based argumentation framework associated with the PLP, and E be the set of
Sname C-extensions for CAF (P, IC) associated with P ∪ IC under Sname se-
mantics. Then the preference relation �ex over E (i.e., �ex⊆ E × E) is defined
as follows. For any C-extensions, E1, E2 and E3 from E,
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1. E1 �ex E1,
2. E1 �ex E2 if for some argument Ag2 ∈ E2 \ E1,

(i) there is an argument Ag1 ∈ E1 \ E2 s.t. Ag1 ≤ Ag2 w.r.t. ≤, and
(ii) there is no argument Ag3 ∈ E1 \ E2 s.t. Ag2 < Ag3 w.r.t. ≤,

3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3.

Note that �ex is reflexive and transitive according to the items no.1 and no.3.
We say that E2 is preferable to E1 with respect to ≤ if E1 �ex E2 holds. We
write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1. Hereafter, each E1 �ex E2 is
called “a preference between C-extensions”.

The semantics of PAF (P, IC, Φ) is given by P-extensions as follows.

Definition 24 (P-extensions). For a PLP (P ∪ IC, Φ) and Sname ∈
{complete, preferred, stable, grounded}, let E be the set of the Sname C-
extensions for CAF (P, IC) associated with P ∪ IC. Then a C-extension E ∈ E
is called a Sname P-extension of PAF (P, IC, Φ) associated with the PLP under
Sname semantics if E �ex E′ implies E′ �ex E (with respect to ≤) for any
E′ ∈ E. In other words, E ∈ E is called a Sname P-extension of PAF (P, IC, Φ)
iff E ��ex E′ with respect to ≤ for any E′ ∈ E.

The following theorem shows that stable P-extensions of PAF (P, IC, Φ) capture
preferred answer sets of a PLP (P ∪ IC, Φ), which extends Theorem 2.

Theorem 3. Let PAF (P, IC, Φ)=(ArgsP , attacksP , IC,≤) be the non-abstract
preference-based argumentation framework associated with a PLP (P ∪ IC, Φ),
where attacksP is the binary relation over ArgsP defined according to undercut
(i.e. u). Then S is a preferred answer set (i.e. p-answer set) of a PLP (P∪IC, Φ)
iff there is a stable P-extension E of PAF (P, IC, Φ) such that S = claims(E).

Proof: See appendix.

The skeptical (resp. credulous) query-answering problem is uniformly handled
for our preference-based argumentation framework as follows.

Definition 25 (Credulous / Skeptical query-answering) .
Let PAF (P, IC, Φ)=(ArgsP , attacksP , IC,≤) be the preference-based argumen-
tation framework associated with a PLP (P ∪ IC, Φ). Then for an argument
Ag ∈ ArgsP and Sname ∈ {complete, preferred, stable, grounded},

– Ag is credulously justified w.r.t. PAF (P, IC, Φ) under Sname semantics iff
Ag is contained in at least one Sname P-extension of PAF (P, IC, Φ);

– Ag is skeptically justified w.r.t. PAF (P, IC, Φ) under Sname semantics iff
Ag is contained in every Sname P-extension of PAF (P, IC, Φ).

The following proposition denotes that Dung’s acceptability semantics is the
special case of our preference-based argumentation semantics.

Proposition 2. For a PLP (P ∪ IC, Φ) whose IC and Φ are empty, E is a
Sname extension of an argumentation framework AFP associated with P iff E
is a Sname P-extension of PAF (P, IC, Φ) associated with the PLP.
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In the following examples, each attacksP is constructed based on undercut as
the notion of attack in order to illustrate Theorem 3.

Example 5. Let us consider the PLP (P, Φ) of Example 4.2 in [19] as follows:

P : p ← not q, not r,

q ← not p, not r,

r ← not p, not q,

s ← p.

Φ: p 	 q, r 	 s.

P has three answer sets S1 = {p, s}, S2 = {q}, S3 = {r}, whereas the PLP
(P, Φ) has the unique p-answer set, S2 = {q} since S3 �as S1, S1 �as S2 and
S3 �as S2 due to p 	 q, r 	 s from Φ.

On the other hand, we obtain PAF (P, Φ)=(ArgsP , attacksP , ≤) compiled
from this (P, Φ) according to Definition 22, where ArgsP is {A, B, C, D} s.t.

A = [p ← not q, not r], B = [q ← not p, not r]

C = [r ← not p, not q], D = [s ← p; p ← not q, not r]

with claim(A) = {p}, claim(B) = {q}, claim(C) = {r} and claim(D) = {s},
attacksP is the binary relation derived according to undercut as follows,
{(A, B), (B, A), (C, A), (A, C), (B, C), (C, B), (B, D), (D, B), (C, D), (D, C)}

and ≤= {(A, B), (C, D)} ∪ {(x, x)|x ∈ ArgsP }, since p 	 q ∈ Φ for claim(A) =
{p}, claim(B) = {q} and r 	 s ∈ Φ for claim(C) = {r}, claim(D) = {s}.

Now AFP = (ArgsP , attacksP ) associated with this P whose graph is on the
right of Fig.2 has three preferred as well as stable extensions as follows:

E1 = {A, D}, E2 = {B}, E3 = {C}

where claims(E1) = {p, s}, claims(E2) = {q} and claims(E3) = {r}. Therefore
E2 is the unique preferred (resp. stable) P-extension of PAF (P, Φ) since E3 �ex

E1, E1 �ex E2 and E3 �ex E2 due to (A, B) ∈≤, (C, D) ∈≤ and transitive
law of �ex. Noted that the unique p-answer set, S2 of the PLP coincides with
claims(E2) for the stable P-extension, E2 of PAF (P, Φ).

Example 6. Consider the PLP (P ∪IC, Φ), where P and Φ are given in Example
5 and IC has the integrity constraint as follows:

IC: ← q.

Then P has two answer sets S1 = {p, s} and S3 = {r}, whereas the PLP (P ∪
IC, Φ) has the unique p-answer set, S1 since S3 �as S1.

On the other hand, we obtain PAF (P, IC, Φ)=(ArgsP , attacksP , IC,≤) com-
piled from this PLP (P ∪ IC, Φ), where AFP = (ArgsP , attacksP ) and ≤ are
the same as the ones shown in Example 5.

Though there are three preferred as well as stable extensions, E1, E2 and E3

for this AFP , both E1 and E3 are preferred as well as stable C-extensions of this
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CAF (P, IC) but E2 is not because both claims(E1)∪ IC and claims(E3)∪ IC
are consistent, but claims(E2) ∪ IC is inconsistent. As a result, according to
Definition 23, E1 = {A, D} is not only the unique preferred P-extension but
also the unique stable P-extension of PAF (P, IC, Φ), but E3 is not. Note that,
the unique p-answer set, S1 = {p, s} of this PLP (P ∪ IC, Φ) coincides with
claims(E1) for E1 = {A, D} of PAF (P, IC, Φ).

Example 7 (Gordon’s Perfected Shipping Problem).
Let us consider the famous legal reasoning example from Gordon [14]. The prob-
lem is described as follows:

“A person wants to find out if her security interest in a certain ship is perfected.
According to the Uniform Commercial Code (UCC) which is a state law, a
security interest in goods may be perfected by taking possession of the collateral.
However, the federal Ship Mortgage Act (SMA) states that a security interest in
a ship may only be perfected by filing a financing statement. She currently has
possession of the ship, but a statement has not been filed. Both UCC and SMA
are applicable: the question is which takes precedence here.”

The situation is presented by the ELP P1 as follows.

P1: perfected ← posses, ucc, (UCC )
¬perfected ← ship,¬file, sma, (SMA)
posses ←, ship ←, ¬file ←,

ucc ← not ¬perfected, sma ← not perfected.

Since the two laws are in conflict with one another, they lead to two answer
sets S1 and S2 of P1 as follows.

S1 = {perfected, posses, ship,¬file, ucc}.
S2 = {¬perfected, posses, ship,¬file, sma}.

Now, there are two well-known legal principles for resolving such conflict be-
tween laws as follows.
“The principle of Lex Posterior gives precedence to newer laws, and the principle
of Lex Superior gives precedence to laws supported by the higher authority. In
our case, UCC is newer than the SMA, and the SMA has higher authority since
it is a federal law.” Such knowledge may be described as the following sets:

Φ1 = {sma 	 ucc}, Φ2 = {ucc 	 sma}, Φ3 = {sma 	 ucc, ucc 	 sma},

where Φ1 takes account of only the principle of Lex Posterior, Φ2 only Lex
Superior, and Φ3 both. Then S1 (resp. S2) is the unique p-answer set of (P1, Φ1)
(resp. (P1, Φ2)), but both of S1 and S2 become tie p-answer sets of (P1, Φ3) since
S1 �as S2 and S2 �as S1 due to the conflict between these principles.

On the other hand, this problem can be represented by the preference-based
argumentation framework PAF (P1, Φi)=(ArgsP , attacksP , ≤i) compiled from
(P1, Φi) (1 ≤ i ≤ 3), where ArgsP1 is {A, B, C, D, F, G, H} such that,
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A = [perfected ← posses, ucc; posses; ucc ← not ¬perfected],

B = [¬perfected ← ship,¬file, sma; ship; ¬file; sma ← not perfected],

C = [ucc ← not ¬perfected],

D = [sma ← not perfected],

F = [posses ←], G = [ship ←], H = [¬file ←]

with claim(A) = {perfected}, claim(B) = {¬perfected}, claim(C) = {ucc},
claim(D) = {sma}, claim(F ) = {posses}, claim(G) = {ship}, claim(H)
= {¬file}, attacksP1 is {(A, B), (B, A), (A, D), (B, C)} derived according to un-
dercut, and each ≤i is the binary relation over ArgsP1 such that ≤1= {(D, C)}∪
Ψ , ≤2= {(C, D)} ∪Ψ , ≤3= {(C, D), (D, C)} ∪Ψ where Ψ = {(x, x)|x ∈ ArgsP1}
due to the respective Φi. In this case, AFP1=(ArgsP1 , attacksP1) has two pre-
ferred as well as stable extensions, E1 = {A, C, F, G, H} and E2 = {B, D, F,
G, H} with claims(E1) = {perfected, ucc, posses, ship,¬file} and

claims(E2) = {¬perfected, sma, posses, ship,¬file}.
According to ≤1 (resp. ≤2), E1 (resp. E2) is the unique preferred as well as
stable P-extension of PAF (P1, Φ1) (resp. PAF (P1, Φ2)), but both E1 and E2

are the preferred as well as stable P-extensions of PAF (P1, Φ3) since E1 �ex E2

and E2 �ex E1 due to ≤3.

The following example shows that even for a PLP (P, Φ) whose P is inconsistent,
intended results of argumentation are derived based on the PAF.

Example 8 (Ex. 7 Cont.). Consider the PLP (P2, Φi) (1 ≤ i ≤ 3) such that
P2 = P1 ∪ {ab ← not ab}, Due to the added rule to P1, P2 is inconsistent since
it has no answer sets. Hence the PLP (P2, Φi) with any Φi has no p-answer sets.
This reveals the limitation of answer set programming which is only applicable
to consistent knowledge bases. Instead, for the PLP (P2, Φi), we have

PAF (P2, Φi) = (ArgsP2 , attacksP2 , ≤i) (for 1 ≤ i ≤ 3),

where ArgsP2 = ArgsP1 ∪ {I} such that I = [ab ← not ab] and attacksP2

= attacksP1 ∪ {(I, I)} as derived according to undercut. In this case, AFP2

=(ArgsP2 , attacksP2) has no stable extensions but has the same two preferred
extensions, E1 and E2 that AFP1 has. Similarly, each PAF (P2, Φi) (1 ≤ i ≤
3) has no stable P-extensions but has the same preferred P-extensions that
PAF (P1, Φi) has.

5 Related Work

Amgoud and Vesic [2] proposed only a new abstract PAF , whereas we present
not only a new approach of an abstract PAF but also propose a non-abstract
PAF constructed from a prioritized logic program. In our approach, we can show
Theorem 3 for such a non-abstract PAF as is the generalization of Theorem 1
presented by Dung [10]. This property ensures the advantages as well as the
correctness of our approach.
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Coste-Marquis et al.[8] proposed an abstract CAF where constraints are ex-
pressed by a propositional formula defined over the set of abstract arguments,
whereas in our approach, a non-abstract CAF is defined where constraints are
given as nonmonotonic rules embedded in an extended logic program expressing
a agent’s domain knowledge. From the computational point of view, Besnard
and Doutre’s approach [4] for encoding acceptable semantics can be applied to
their CAF , whereas a non-abstract CAF presented in this paper can be easily
encoded in ASP setting by extending our previous work [22] to compute argu-
mentation semantics in ASP based on Caminada’s reinstatement labellings [7].

S̆efránek [18] presented the semantics, i.e. preferred answer sets of a prioritized
logic program (P,≺,N ) based on argumentation, where P is an ELP, ≺ is a strict
partial order on rules of P and N is a function assigning names to rules of P . He
proposed an argumentation framework translated from such a prioritized logic
program, and defined preferred answer sets in his framework. However, not only
argumentation framework proposed in [18] is inapplicable to a inconsistent P but
also it is not the generalization of Dung’s argumentation framework for handling
additional preferences.

6 Conclusion

To handle preferences along with constraints, we presented a new abstract
preference-based argumentation framework as well as a non-abstract one trans-
lated from a prioritized logic program. In our approach, we can show Theorem 3
such that, stable P-extensions of the preference-based argumentation framework
associated with a PLP (P ∪ IC, Φ) capture p-answer sets of the PLP. Hence the
advantages and the correctness of our approach are ensured.

On the other hand, when agent’s knowledge expressed by an ELP P is in-
consistent, we cannot reason anything from the PLP (P, Φ) as well as from our
PAF (P, Φ) under stable semantics, since there are no p-answer sets of the PLP
as well as no stable P-extensions of PAF (P, Φ). However, with such inconsis-
tent P , we can infer the intended results from a non-abstract PAF (P, Φ) under
preferred semantics because there exists a preferred P-extension for PAF (P, Φ).
Thus in some sense, a non-abstract PAF presented in the paper can be regarded
as the extended PLP.

Applying the techniques used in our previous work [20,21,22], the encoding to
compute P-extension of a non-abstract PAF can easily be established in a ASP
setting. Thus such a system which encodes our PAF presented in the paper will
behave as the enhanced PLP system such that not only it can compute p-answer
sets of a PLP via the stable P-extensions, but also it can infer intended results
via the preferred P-extensions even if P is inconsistent.

Our future work will not only investigate computational complexity of the
proposed method but also will implement the PAF system in a ASP setting so
that it may be used in practical multiagent systems of negotiation based on the
proposed preference-based argumentation.
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Appendix: Proofs of Theorems

Proof of Theorem 2
Proof. (⇐=) Suppose E is a stable C-extension of CAF (P, IC)= (ArgsP ,
attacksP , IC). According to Definition 21, E is a stable extension of AFP =
(ArgsP , attacksP ) and satisfies IC. Therefore, there is the answer set S of P
such that S = claims(E) due to Theorem 1. Thus according to Definition 2, S
is also an answer set of the not-free PS , i.e. the reduct of P .
Now, since such E satisfies IC, which means that, for S = claims(E),

∀ric ∈ IC if body(ric)− ∩ S = ∅, then body(ric)+ �⊆ S,
the answer set S of PS satisfies body(ric)+ = {L1, . . . , Lm} �⊆ S if body(ric)− ∩
S = {Lm+1, . . . , Ln} ∩ S = ∅ for any integrity constraint ric ∈ IC as follows:

ric : ← L1, . . . , Lm, notLm+1, . . . , notLn.

Therefore it is concluded that S is an answer set of (P ∪ IC)S . Hence S =
claims(E) is an answer set of P ∪ IC.
(=⇒) The converse is also proved similarly. �

After preparing the following lemma, we show the proof of Theorem 3.

Lemma 1. For a PLP (P ∪ IC, Φ), let PAF (P, IC, Φ) be (ArgsP , attacksP ,
IC,≤), CAF (P, IC) be (ArgsP , attacksP , IC), E1, E2 be stable C-extensions of
CAF (P, IC), and S1, S2 be answer sets of P ∪ IC. Then it holds that,

E1 �ex E2 iff S1 �as S2 for S1 = claims(E1) and S2 = claims(E2).

Proof
Suppose E is a stable C-extension of CAF (P, IC). Then according to Theorem 2,
claims(E) coincides with an answer set S of P ∪ IC. Moreover, for an argument
Ag ∈ ArgsP and its claim e ∈ LitP , i.e. e = claim(Ag), it holds that,
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Ag ∈ E iff e ∈ S, and Ag �∈ E iff e �∈ S. (3)
Now with respect to stable C-extensions E1, E2 of CAF (P, IC) whose claims
are S1 = claims(E1), S2 = claims(E2) respectively, it holds that, due to (3), for
a literal e2 ∈ LitP such that e2 = claim(Ag2),

Ag2 ∈ E2 \ E1 iff Ag2 ∈ E2 and Ag2 �∈ E1 iff e2 ∈ S2 and e2 �∈ S1

iff e2 ∈ S2 \ S1. (4)
Similarly for a literal e1 ∈ LitP such that e1 = claim(Ag1), it hold that,

Ag1 ∈ E1 \ E2 iff e1 ∈ S1 \ S2. (5)
On the other hand, according to Definition 22,

Ag1 ≤ Ag2 iff e1 	 e2 ∈ Φ∗ for claim(Ag1) = e1 and claim(Ag2) = e2. (6)
Thus due to (4), (5), (6), it holds that,

∃Ag2 ∈ E2 \ E1 and ∃Ag1 ∈ E1 \ E2 such that Ag1 ≤ Ag2

iff ∃e2 ∈ S2 \ S1 and ∃e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗. (7)
Therefore by extending (7), it is obviously derived that,

∃Ag2 ∈ E2 \ E1[ ∃Ag1 ∈ E1 \ E2 such that Ag1 ≤ Ag2

∧¬∃Ag3 ∈ E1 \ E2 s.t. Ag2 < Ag3 w.r.t. ≤],
iff ∃e2 ∈ S2 \ S1[∃e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗

∧¬∃e3 ∈ S1 \ S2 s.t. e2 ≺ e3 ∈ Φ∗] (8)
where Si = claims(Ei) and ej = claim(Agj) (1 ≤ i ≤ 2, 1 ≤ j ≤ 3).
(8) means that E1 �ex E2 iff S1 �as S2 for S1 = claims(E1) and S2 =
claims(E2) w.r.t. the item no.2 of Definition 23 and that of Definition 5. Since
both �ex and �as are reflexive and transitive, it also holds that, E1 �ex E2 iff
S1 �as S2 w.r.t. items no.1 and no.3 of these definitions. �

Proof of Theorem 3
Proof: For a PLP(P ∪ IC, Φ), let AS be the set of all answer sets of P ∪ IC and
E be the set of all stable C-extensions of CAF (P, IC)= (ArgsP , attacksP , IC).
Then, it follows that,

E ∈ E is a stable P-extensions of PAF (P, IC,≤) built on a PLP(P ∪ IC, Φ)
iff E �ex E′ implies E′ �ex E (with respect to ≤) for any E′ ∈ E
iff w.r.t. S = claims(E) ∈ AS,

S �as S′ implies S′ �as S (with respect to Φ) for any S′ = claims(E′) ∈ AS
due to Theorem 2 and Lemma 1,

iff S = claims(E) ∈ AS is a preferred answer set of (P, Φ). �
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