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Preface

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel and distributed computing.
Euro-Par 2010 was the 16th edition in this conference series. The conference
took place at the congress Center of Hotel Continental Terme, on the beauti-
ful island of Ischia, Italy. The success of the conference series has provided a
convenient venue for many workshops to meet and discuss. The focus of these
workshops is on specialized topics in parallel and distributed computing, with
the aim of bringing together a community on research themes in early stages of
development.

The 2009 experience was quite successful, and it was extended to a larger size
in 2010, where 11 events were co-located with the main Euro-Par Conference.
With respect to the 2009 edition, seven out of nine workshops confirmed their
presence at Euro-Par 2010 from the previous edition, while four new workshops
were organized on emerging aspects. HiBB (High-Performance Bioinformatics
and Biomedicine), UCHPC (UnConventional High-Performance Computing),
HPCF (High-Performance Computing applied to Finance) and CCPI (Cloud
Computing Projects and Initiatives) are newcomers, while ROIA (Real-Time
Online Interactive Applications) and UNICORE were discontinued. Here follows
a brief description of the workshops:

HeteroPar 2010 is a workshop on Algorithms, Models and Tools for Paral-
lel Computing on Heterogeneous Platforms. HeteroPar 2010 was the eighth
edition of this workshop, and the second edition co-located with the Euro-
Par conference. The workshop intends to be a forum for people working
with heterogeneous platforms and trying to find efficient problem solutions
on heterogeneous systems. The 2010 edition started with an invited talk by
Marco Danelutto, who discussed structured programming models targeting
heterogeneous architectures.
HPPC—Highly Parallel Processing on a Chip workshop—is a forum for
presentation and discussion of new research into parallel single-chip/node
(multi/many-core) architectures, programming models, languages, libraries,
algorithms, and software tools, including the efficient use of highly parallel
special-purpose architectures for efficient general-purpose parallel process-
ing. The workshop aims to attract new and tentative work that seriously
addresses the problems of managing significant amounts of on-chip paral-
lelism at the levels mentioned. To be able to relate to the parallel processing
community at large, the workshop is organized in conjunction with Euro-Par,
the main European (but international) conference on all aspects of parallel
processing. The format of the workshop is to sandwich a selection of con-
tributed, thoroughly reviewed papers between two prominent invited talks
providing a broader outlook.
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HiBB 2010 was the First Workshop on High-Performance Bioinformat-
ics and Biomedicine (HiBB). This workshop aimed to bring together scien-
tists in the fields of high-performance computing, computational biology and
medicine to discuss the parallel implementation of bioinformatics algorithms,
the application of high-performance computing in biomedical applications,
as well as the organization of large-scale databases in biology and medicine.
Furthermore, the use of novel parallel architectures and dedicated hardware
to implement bioinformatics and biomedical algorithms was discussed.
CoreGRID/ERCIM provided a forum for discussing the latest develop-
ments in the field of large-scale grid, cloud and peer-to-peer computing. The
original goal of CoreGRID was strengthening and advancing technological
excellence in the areas of grid and peer-to-peer technologies. However, the
interests of the network have evolved and now additionally embrace the
emerging service-based cloud computational model. The 2010 CoreGRID
meeting followed on from previous meetings held in Pisa (2005), Krakow
(2006), Heraklion (2007), Gran Canaria (2008) and Delft (2009).
UCHPC 2010 was the Third Workshop on UnConventional High-
Performance Computing 2010. As the word “UnConventional” in the title
suggests, the workshop focuses on hardware or platforms used for HPC,
that were not intended for HPC in the first place. Reasons could be raw
computing power or especially low cost. Thus, UCHPC tries to capture so-
lutions for HPC which are unconventional today but perhaps conventional
tomorrow. For example, the computing power of platforms for games recently
grew rapidly. This motivated the use of GPUs for computing (GPGPU), or
building computational grids from game consoles. Other examples for “un-
conventional” hardware would be embedded, low-power processors, FPGAs
or DSPs. Only imagination sets the limit for their usage for HPC. The goal of
the workshop is to present the latest research in how hardware and software
(yet) unconventional for HPC is or can be used to reach goals such as best
performance per watt. UCHPC also covers programming models, compiler
techniques, and tools.
HPCF 2010 was the first workshop on the computational issues in the eval-
uation of financial instruments on advanced architectures. The workshop
aims to bring together scientists from finance, statistics, numerical analy-
sis and computer science, decision-makers and strategists from the financial
industries in order to discuss recent challenges and results in using high-
performance technologies for the evaluation of financial instruments. The
workshop was enriched by two invited lectures; the first lecture by Gilberto
Castellani and Luca Passalacqua on “Applications of Distributed and Paral-
lel Computing in the Solvency II Framework: The DISAR System”, and the
second one by Andreas Grothey on “Massively Parallel Asset and Liability
Management”.
The PROPER workshop series on productivity and performance serves
as a forum to present novel work on scalable methods and tools for high-
performance computing. This covers parallel program development and anal-
ysis, debugging, correctness checking, and performance measurement and
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evaluation. Furthermore, it is the right place to present experiences and suc-
cess stories reporting optimization or improvements of parallel scalability
achieved using tools. Besides the computing performance, the programmer
and user productivity is also addressed. This focuses on the entire process
of application development, parallelization, performance optimization, and
scalability enhancement. The PROPER workshop is supported by the Vir-
tual Institute—High Productivity Supercomputing (VI-HPS), an initiative
to promote the development and integration of HPC programming tools.
CCPI, Cloud Computing Projects and Initiatives workshop, a satel-
lite workshop organized by the Europen ICT-FP7 Project mOSAIC
(http://www.mosaic-cloud.eu), gathered together scientists, engineers and
industrial users from collaborative international and national projects and
initiatives on cloud computing. A number of key projects funded by the Eu-
ropean Commission and by National Government and Research Agencies,
addressing several issues and challenges of cloud computing were presented
at the workshop, and are in these proceedings.
VHPC 2010, the 5th Workshop on Virtualization in High-Performance
Cloud Computing, brought together researchers and practitioners presenting
their recent results. With the cloud paradigm and its enabling technology
of virtualization moving into the mainstream of scientific and commercial
large-scale computing, aspects of operational significance were emphasized.
In addition, this year’s guest speaker, Chris Kemp, IT CIO of NASA, pro-
vided an overview of the NASA Nebula cloud platform which is in-use at
HPC sites worldwide.
XtreemOS: Large-scale distributed systems like grids and clouds provide
means for executing complex scientific and business applications. But they
often involve installing and interacting with several layers of middleware,
a difficult task for inexperienced users. Tools developed for grid use are
demanding and complex, especially because they are based on operating
systems that are not designed to manage distributed and versatile resources.
The aims of this summit are: to familiarize participants with the usage of the
main XtreemOS services (virtual organization management and grid secu-
rity mechanisms, application execution management, XtreemFS - distributed
data storage etc.); to present the XtreemOS Grid system from the user’s
point of view; to demonstrate some XtreemOS main functionalities; to pro-
vide a unique opportunity for people interested in the XtreemOS technology
to meet developers, users and researchers who initiated the technology, share
experiences and discuss research work.
Gecon 2010: The commercial exploitation of technologies of distributed
computing is slowly starting to become popular under the term “cloud com-
puting”. These solutions allow selling and buying of resources (i.e., com-
puting resources, network resources, software resources, and data resources)
on demand. Existing solutions in this area are diverse, ranging from
intrastructure-as-a-service (IaaS) models via platform-as-a-service (PaaS) to
software-as-a-service (SaaS) models. Although the economics of these ser-
vices is not understood yet and the interoperability of the services is still
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VIII lacking, a common market for simple computing services is slowly de-
veloping. It allows buyers and sellers of computing services to trade easily.
However, it is still not possible that any market participant can act as a
resource provider or resource seller, depending on the current demand level.
Another example of a developing open market is the Web2.0 service sys-
tem, which enables consumers to create new services. The purpose of this
workshop is to gather original work and build a strong community in this
increasingly important area of the future economy.

The present volume includes the proceedings of the first nine workshops; the
remaining two have separate proceedings. Each workshop had a Program Com-
mittee managing the peer-review process. We would like to thank the authors
who submitted their papers to the various workshops. Without the contribution
of the members of the Program Committees and many reviewers, the organiza-
tion of the workshops would not have been possible.

Last but not least, we would like to thank all Euro-Par Steering Committee
members, and in particular Luc Bougé for the valuable advice and for following
all phases of the workshop organization. We also thank Euro-Par 2009 workshop
organizer Hai-Xiang Lin for sharing his experience with us. Many other people,
institutions and companies supported the organization of the Euro-Par 2010
conference and workshops. Their names and logos can be found on the conference
website at http://www.europar2010.it.

It was a pleasure and honor to organize and host the Euro-Par 2010 work-
shops in Ischia. We also thank the Yes Meet people involved in the confer-
ence secretariat for the kind and collaborative support they provided during the
preparation and actual course of the workshops.

March 2011 Mario R. Guarracino
Frédéric Vivien

Jesper Larsson Träff
Mario Cannataro
Marco Danelutto

Anders Hast
Francesca Perla

Andreas Knüpfer
Beniamino Di Martino

Michael Alexander
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Foreword

Networks of computers are now the most common and available parallel ar-
chitecture. Unlike dedicated parallel computer systems, networks are inherently
heterogeneous. They consist of diverse computers of different performance inter-
connected via heterogeneous network equipment providing communication links
with different latencies and bandwidths. Traditional parallel algorithms and tools
are aimed at homogeneous multiprocessors and cannot be efficiently used for par-
allel computing on heterogeneous networks. New ideas, dedicated algorithms and
tools are needed to efficiently use this new type of parallel architecture.

The HeteroPar workshop series is intended to be a forum for people work-
ing on algorithms, programming languages, tools, and theoretical models aimed
at efficient problem solutions on heterogeneous networks. The covered topics
target heterogeneous systems and platforms, and include parallel programming
languages and libraries, fault tolerance, tools for grid, cloud and green com-
puting, and the usage of these complex platforms for solving different types of
problems and applications.

HeteroPar’2010 was the eighth edition of this workshop, and the second one
co-located with the Euro-Par conference. Out of 12 manuscripts submitted this
year, 7 were accepted for presentation at the Workshop in Ischia on August 30.
Each submission received 4 reviews. Apart from the presentation of the 7 ac-
cepted papers, the workshop had one invited speaker of international reputation,
Marco Danelutto, who talked about Structured programming models targeting
heterogeneous architectures.

As program chair, I wish to acknowledge all those who contributed to the
success of HeteroPar’2010, in particular to the authors of the submitted papers,
to the Program Committee members for their invaluable time and expertise, and
to the organizers of EuroPar 2010.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, p. 3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Accurate Emulation of CPU Performance

Tomasz Buchert1, Lucas Nussbaum2, and Jens Gustedt1

1 INRIA Nancy – Grand Est
2 LORIA / Nancy-Université

Abstract. This paper addresses the question of CPU performance emu-
lation, which allows experimenters to evaluate applications under a wide
range of reproducible experimental conditions. Specifically, we propose
Fracas, a CPU emulator that leverages the Linux Completely Fair Sched-
uler to achieve performance emulation of homogeneous or heterogeneous
multi-core systems. Several benchmarks reproducing different types of
workload (CPU-bound, IO-bound) are then used to thoroughly compare
Fracas with another CPU emulator and hardware frequency scaling. We
show that the design of Fracas results in a more accurate and a less
intrusive CPU emulation solution.

1 Introduction

The evaluation of algorithms and applications for large-scale heterogeneous plat-
forms is a very challenging task. Different approaches are in widespread use [3]:
simulation of course, but also in-situ experiments (where a real application is
tested on a real environment), and emulation (where a real application is tested
on a simulated environment).

It is often difficult to perform experiments in a real environment that suits
the experimenter’s needs: the available infrastructure might not be large enough
or have the required characteristics. Moreover, controlling experimental condi-
tions in heterogeneous and distributed systems, like grids or the Internet, makes
the experimental validation error-prone. Therefore, in-situ experiments are often
not feasible, and the use of an emulated or simulated environment is often pre-
ferred. Many distributed system emulators (e.g. MicroGrid, Modelnet, Emulab,
Wrekavoc [1]) have been developed over the years, but most of them focus on
network emulation.

Surprisingly, the question of the emulation of CPU speed and performance is
rarely addressed by them. However, it is crucial to evaluate applications under a
set of different experimental conditions: to know how application’s performance
is related to the performance of the CPU (as opposed to the communication
network), or how an application would perform when executed on clusters of
heterogeneous machines, with different CPUs.

This paper explores the emulation of CPU performance characteristics, and
proposes a new implementation of a CPU emulator: Fracas. After exposing the
related works in Section 2, the problem is clarified and formalized in Section 3.
Fracas is then described in Section 4, and evaluated extensively in Section 5.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 5–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

Due to unforeseen changes in the number of pages for the proceedings version, it
was not possible to include that section in the final paper. It can be found in the
corresponding Research Report: http://hal.inria.fr/inria-00490108/en/.

3 Problem Statement

In this section core is the smallest processing unit that can execute the code of
the program independently on a processor. It is equivalent to a core of a physical
processor. Consequently, processor is a set of cores and is equivalent to a physical
processor. Additionally, a distinction is made between real processor/core (the
one existing as a hardware implementation) and emulated processor/core (the
one being emulated).

Let’s assume that a computer system consists of N cores with speeds α1 ≤
α2 ≤ α3 ≤ . . . ≤ αN . The goal is to emulate M processors, using this physical
processor. The m-th emulated processor, denoted Cm occupies a subset of real
cores: Cm ⊂ {1, 2, . . . , N}. None of the physical cores will be occupied by more
than two emulated ones so Ci ∩ Cj = ∅ for 1 ≤ i < j ≤M .

Finally, for each emulated processor Cm (1 ≤ m ≤M), a core k ∈ Cm has the
emulated speed βk. If k �∈ Cm for every 1 ≤ m ≤M then by definition βk = 0.

It is also reasonable to assume that αi ≥ βi for i ∈ {1, . . . , N}, so that each
emulated core can be mapped to a physical one. Also, in most real-life scenarios
it is true that α1 = α2 = α3 = . . . = αN . If not stated differently, this is always
assumed in the following sections.

An example of the problem instance is presented in Figure 1.
The following special cases of this problem are of particular interest and are

considered in this paper:

(A) M = 1 and C1 has one element – a single core processor is emulated.
(B) M = 1 and C1 has exactly N elements – the only emulated processor spans

all physical cores.

β1 = 5

Unused

Core 1

β2 = 5

Unused

Core 2

β3 = 7

Unused

Core 3

Unused

Core 4

C1 C2

Fig. 1. An example of a CPU emulation problem. Here: N = 4, α1 = α2 = α3 = α4 =
10, M = 2, C1 = {1, 2}, C2 = {3}, β1 = β2 = 5, β3 = 7, β4 = 0.

http://hal.inria.fr/inria-00490108/en/
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This is a hardly a complete formalization of the general problem. In a more
general setting one may relax some previous assumptions or take other prop-
erties of the computer systems into account: speed of the random access mem-
ory, the CPU cache size and properties, Simultaneous Multi Threading (SMT)
(e.g. Intel Hyper-Threading technology) or Non-Uniform Memory Architectures
(NUMA).

4 Proposed Solution

Fracas is using an approach similar to KRASH. On every processor core a CPU-
intensive process is created. It burns a required amount of CPU cycles on its
core. All other tasks in the system are moved to another group which spans all
cores. CPU time is distributed to groups proportionally to their weights so, by
adjusting them properly, the latter group will acquire the desired amount of the
CPU time. Figure 2 presents the idea graphically.

This method uses Completely Fair Scheduler (CFS) by Ingo Molnar which
is a default scheduler in the current Linux release (2.6.34). It was merged into
kernel mainline in version 2.6.23. Cpusets, which also play an important role,
were introduced in version 2.6.12 of the Linux kernel. The O(1) scheduler (also
by Ingo Molnar) used back then does not possess the features as required by
Fracas [6].

The following CFS parameters [5] have been experimentally verified to have
impact on the work of Fracas: latency (default kernel value: 5ms) – targeted
preemption latency for CPU-bound tasks, and min granularity (default kernel
value: 1ms) – minimal preemption granularity for CPU-bound tasks. The first
one defines the time which is a maximum period of a task being in a preempted
state and the latter is a smallest quantum of CPU time given to the task by the
scheduler.

Ignoring rounding, the kernel formula for computing the period in which
every running task should be ran once is (nr - a number of running tasks)
max (nr · min granularity, latency). Therefore, setting latency and
min granularity to the lowest possible values (which is 0.1ms for both of them)
will force the scheduler to compute the smallest possible preemption periods and,
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as a result, the highest possible activity of the scheduler. This substantially im-
proves the accuracy of Fracas (see Figure 3). In this figure each plot presents
the result for Linpack benchmark (see Section 5.2) under different scheduler
latency. As can be seen, the lower the latency, the more the results converge to
the perfect behavior.

5 Evaluation

In the following sections three different methods are evaluated which can be
used to emulate the CPU speed: dynamic frequency scaling (abbreviated to
CPU-Freq), CPU-Lim and Fracas.

There are many pitfalls related to the experiments involving processors. Con-
temporary processors have a very complex architecture – due to cache, branch
prediction, simultaneous multithreading technology, code alignment in the mem-
ory and other factors, the behavior of programs may vary significantly in similar
conditions. Another problem is posed by external factors that may change the
execution conditions on the fly. For instance, dynamic frequency scaling is used
to conserve power or to generate less heat than during a normal operation.
Preferably this feature should be turned off during all the experiments. Never-
theless, even if turned off, most CPUs may also throttle their frequency down in
the case of dangerous overheat, leading to an unexpected performance loss. To
make things even worse, the newest Intel processors in the Nehalem family (used
in our experiments) may introduce an “unexpected” performance gain: Turbo
Mode technology allows a processor core to overclock itself when the other cores
are idle. In the following experiments this technology was knowingly turned off
as well as Intel Hyper-Threading.

The experimental scientist must be aware of these problems to perform the
experiments reliably.

5.1 Experimental Setup

All experiments were performed on the Grid’5000 experimental testbed [2].
Specifically, the following clusters were used:

– The Parapide cluster located in Rennes, France.
All nodes in the cluster have two quad-core Intel processors (Intel Xeon
X5570). Each core has 11 different levels of dynamic frequency scaling
available.

– The Chti cluster located in Lille, France.
All nodes in the cluster have a pair of single-core AMD processors (AMD
Opteron 252). Finally, this CPU model offers 6 levels of dynamic frequency
scaling.

All nodes from a given cluster offer exactly the same configuration so it was pos-
sible to perform experiments in parallel. To achieve this, a client-server applica-
tion was created to distribute the tests automatically. The order in which tests
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are distributed is randomized. Nodes involved in the experiments were deployed
with the same instance of Linux operating system (kernel version: 2.6.33.2).

The experimental framework as well as instructions to reproduce the results
are available at http://www.loria.fr/~lnussbau/files/fracas.html.

5.2 Benchmarks

The following benchmarks, testing important aspects of the CPU emulation,
were used:

– Linpack (GFLOP/s) – a well known benchmark used to measure floating
point computing power. The version used is a slightly modified version in-
cluded in the HPCC Benchmark suite (version 1.4.0, released 2010-03-26) [4].

– Sleep (Loops/s) – a test performing CPU-intensive work, sleeping for the
amount of time that was required to perform the work, and finally running
the same computation once again. The result is the number of the compu-
tation cycles performed divided by the the time of the whole computation.

– UDP (Sends/s) – a program that measures the time required to send many
UDP packets to the network. The result is a number of sendto() invocations
divided by the time required to perform them.

– Threads (Loops/s) – a benchmark that creates a few threads (5 threads for
the Parapide cluster and 2 threads for the Chti cluster). After a simple integer
computation all threads are joined (using pthread join) and the result is
the number of computation cycles performed by each thread divided by the
time required to join all of them.

– Processes (Loops/s) – a modification of Threads benchmark. Instead of
the threads, processes are created. They are joined using waitpid syscall.

– STREAM (GB/s) – a synthetic benchmark that measures sustainable memory
bandwidth. It is available at [7].

Each benchmark performs a small calibration loop at the beginning to assure
that the computation time is big enough as to yield meaningful results (i.e. it’s
not affected by the granularity of system clock). Please also note that the results
from different benchmarks, even though sometimes measured in the same units,
are not comparable in any sensible way.

5.3 Results and Discussion

All tests were performed ten times each and the final plot value is the average
of all results. The whiskers describe the 95% confidence intervals of this value.
The results from the Chti cluster are attached only if they significantly differ
from the results obtained on the Parapide cluster. The majority of the results is
identical and differences can be easily explained. This further convinces us that
the results are independent and general. Most of the time the results obtained
by CPU-Freq method are used as a reference, as a model we want to emulate
using other methods.

http://www.loria.fr/~lnussbau/files/fracas.html
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Fig. 4. Linpack benchmark
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Fig. 5. Sleep benchmark

For every emulated frequency f , let’s define μ = f
fmax

as a scaling ratio (where
fmax is the maximum processor speed).

For a CPU intensive work the execution speed should be proportional to the
ratio μ. In Figure 4 one can see that all three methods behave similarly for a
CPU intensive work. Nevertheless CPU-Lim gives less predictable results and the
slope of a plot with Fracas results is different than the one obtained from CPU-
Freq. The observed difference between Fracas and CPU-Freq while emulating
processor at 1.6 GHz speed is around 2.5%. This shows that dynamic frequency
scaling on Intel processors affects the performance by a different factor than just
the ratio μ.

The time when processes sleep, either voluntarily or waiting for IO operation
to finish, should not influence the behavior after the process is woken up. How-
ever, from Figure 5 it is evident that CPU-Lim has problems with controlling
processes which perform this type of work. Both Fracas and CPU-Freq behave
as expected.

Generally, IO operations should not be affected by the CPU scaling because
they depend on the hardware traits (like network card speed). Results from the
Parapide cluster show that the time required to perform intensive access to the
hardware does not scale with emulated CPU speed on the tested Intel processor.
However, the results from the Chti cluster show (see Figure 9) that it scales
by a factor of 16% when emulating the lowest possible frequency using CPU-
Freq. It is because the AMD Opteron 252 processor has a wider range of available
frequencies than Intel Xeon X5570 (but a smaller set of possible values). If scaled
to 1.0 GHz, the time required to prepare UDP packet is becoming a significant
factor. This is a proper behavior of all methods.

The CPU time is a resource shared by all the tasks running in the system.
All the methods should scale down the total CPU usage and not only the one
perceived by every process. Multiple tasks doing the same work simultaneously
on different cores should finish at the same time and the total time should be
roughly the same as the CPU time consumed by one task. In Figure 6 and
Figure 7 the results for this kind of work are presented. A strange behavior
of Fracas was observed – the time required to finish the work is much longer
than the expected time. This odd behavior is of course a wrong one. CPU-Lim
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Fig. 9. UDP benchmark (on Chti cluster)

performs much better but its results are very unstable. Additionally, a significant
overhead of CPU-Lim method can be observed when used to control even just
5 processes – the results of CPU-Lim method oscillate in the range 77% ÷ 89%
of the respective CPU-Freq result (excluding the case of emulating the highest
possible frequency when CPU-Lim processes are not started at all).

The only significant difference between Figure 7 and Figure 6 is the behavior
of CPU-Lim. The observed phenomenon was described in Section 2 as Incorrect
measurement of CPU usage – the whole process (consisting of 5 threads) is
controlled and the CPU usage is an accumulated value from all the threads.
Therefore, CPU-Lim stops the process too often. As predicted, each result of
CPU-Lim equals almost exactly 20% percent of CPU-Freq’s one.

Table 1. Summary of the presented emulation methods

CPU-Freq CPU-Lim Fracas

Granularity of emulation Coarse Very good Very good
Accuracy of results Excellent Mediocre Depends on work

Stability of emulation Excellent Mediocre Very good
Scalability (with no. of tasks) Unlimited Very bad Very good

Intrusiveness None Very high Almost none
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Generally, the memory speed is expected to not change at all while scaling
CPU speed down. The conclusion from the data from Figure 8 is that memory
speed is indeed affected by every presented method and by each method in its
own way. Interestingly dynamic frequency scaling does not change memory speed
linearly (as opposed to the pure computation speed, as can be seen in Figure 4).

All the above observations are summarized in a less formal way in Table 1.

6 Conclusions

Unfortunately, the obtained results show that none of the presented methods is
perfect. Dynamic frequency scaling provides the best results, but its applicability
is very limited due to its coarse granularity of CPU speed emulation, preventing
the emulation of arbitrary speeds. Similarly, Fracas is a very good solution for
the single thread/process case, and provides notable improvements compared
to CPU-Lim, especially regarding accuracy and intrusiveness, but exhibits some
problems in the multi-thread/process case.

In our future work, we plan to make further improvements to Fracas. First, we
will try to solve the problems shown in the multi-thread/process case. Second, we
will try to incorporate the emulation of other CPU characteristics, like memory
bandwidth, as it becomes a crucial characteristic of modern CPUs. We would
also like to emulate common features such as simultaneous multi-threading. The
ultimate goal is to create a reliable, fine-grained solution to cover all important
aspects of CPU emulation.

In order to provide an easy way to run experiments with Fracas, we will
integrate it into the Wrekavoc emulator, enabling experimenters to combine CPU
emulation with Fracas, and network emulation on large clusters.
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Abstract. The evolution of high performance computers is progress-
ing toward increasingly heterogeneous systems. These new architectures
pose new challenges, particularly in the field of programming languages.
New tools and languages are needed if we want to make a full use of the
advantages offered by these new architectures. llc is a language with a
C-like syntax where parallelism is expressed using compiler directives.
In this work we focus our attention on the new backend of our pro-
totype compiler for llc which generates CUDA code. We evaluate the
performance of the target code using three different applications. The
preliminary results that we present make us believe that our approach is
worth to be explored more deeply.

Keywords: GPGPU, CUDA, OpenMP, compiler, code performance,
automatic parallelization, llc.

1 Introduction

At the present time, HPC technology is living a time of fast changes. The range
of computer architectures capable to achieve high performance [3] has broad-
ened. With a reasonable cost, it is easy at this moment to build a HPC system
interconnecting computing nodes where each node consists of several many-core
processors plus computational accelerators. These deep changes in the hardware
are immediately followed by the corresponding movements in the software layer.

Before the end of the Gigahertz race, the situation at the time to exploit
parallelism was not satisfactory in terms of programmability. From our point of
view, MPI or OpenMP, the prevailing tools to program parallel systems, are not
acceptable if we take into account that those users who have the need for HPC
are not experts in this field. The inclusion in this cocktail of hardware acceler-
ators such as graphic processors (GPUs) [5] or field-programmable gate arrays
(FPGAs) [6] does nothing but complicate the landscape. The new architectures
pose new challenges, particularly in the field of programming languages. New
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tools and languages are clearly needed if we want to take advantage of the new
hardware capabilities.

The OpenCL [8] standard represents an effort to create a common program-
ming interface for heterogeneous devices, which many manufacturers have joined.
However, it is still immature, and its programming model is not simple.

CUDA [9] is a more mature and extended approach, although currently only
supports NVIDIA devices. It offers a programming interface (mostly C with
a small set of extensions). This framework allows HPC users to re-implement
their codes using GPU devices. Despite of being partially simple to build a code
using this framework, it is hard to achieve a good performance rate, requiring a
huge coding and optimization effort to obtain the maximum performance of the
architecture.

llc is a high level parallel language [4] where parallelism is expressed through
the use of compiler directives that follow the OpenMP syntax. The performance
of the MPI and hybrid MPI+OpenMP code generated by the llc compiler
has been studied in previous works [10]. The aim of this work is to use our
language and the new CUDA backend of its compiler to study different cases in
the parallelization of loops. The computational environment where we develop
our experiments is equiped with a multicore system and an attached GPU.

The remainder of the paper is organized as follows. We begin with an intro-
duction of the llc language and its compiler in Section 2. Different situations
considered when extracting parallelism from a code annotated with llc direc-
tives are studied in Section 3. We guide our explanations through the use of three
applications implemented in llc for which we present computational results. We
summarize a few concluding remarks and future work in Section 4.

2 The llc Language and Its Compiler

We believe that simplicity and programmability are key aspects in the success
of any parallel language. With this consideration in mind, in the last years we
have been working on a project that tries to combine simplicity from the user
side with reasonable performance and portability. We expose to the HPC pro-
grammer a simple and well known language that hides the hardware complexity.
On the other side, we present templates, representing the most common parallel
patterns, where we can introduce optimized versions without too much effort.
The bridge is a software architecture, conformed by a powerful transformation
tool.

llc is a high level parallel language with a C based syntax where parallelism is
expressed using compiler directives. The syntax of these directives is compatible
with OpenMP where it is possible. llCoMP is a source to source compiler that
translates C code annotated with llc directives into high-level parallel code.
llCoMP uses the information present in the directives to produce the parallel
code. Although llc supports the most usual parallel patterns: forall, sections,
pipelines and task queues [4], the new CUDA llCoMP backend only supports
parallel loops (forall), although in the future we plan to introduce support for
additional patterns.



Case Studies in Automatic GPGPU Code Generation with llc 15

As all OpenMP directives and clauses are recognized by llCoMP, from a single
source code we can obtain different binaries (sequential or parallel) depending
on the compiler selected to translate the target code produced by llCoMP. The
OpenMP directives not relevant to the actual CUDA backend are simply ignored
by llCoMP.

The new version of the llc compiler can be considered an automatic translator
from OpenMP to CUDA, but we prefer to consider it as a prototyping tool. It
represents an intermediate software layer between llc and different backends.
It has been designed in such a way that targeting different architectures will not
require a huge effort. llCoMP has been implemented using Python and following
an object oriented approach. Reusing the code from the pycparser project [2],
we have been able to build a C frontend supporting OpenMP in a short time,
and our software architecture design allowed us to write a translation system
compound by a set of classes and methods, which encapsulate most of the work.

To make its work, llCoMP starts translating the abstract syntax tree (AST)
corresponding to the input source code to an internal representation (IR) based
on a class hierarchy. Those parts of the IR corresponding to sequential code in
the source are written in the target code without transformation. The compiler
searches in the AST for specific patterns using what we call a Filter. These
patterns corresponds to different high-level parallel constructs. The compiler has
a filter class hierarchy that deals with this search task. Once a pattern is located
in the AST, we can apply different mutators to achieve the desired translation.
Mutators produce local modifications in the AST where they insert the high-level
(CUDA) code corresponding to the desired translation. After all Mutators have
been applied, the new AST is processed by the CudaWriter module to produce
the target code.

The code generation in llCoMP uses the code pattern concept. A code pattern
is an abstraction that represents a specific task in the context of the translation.
llCoMP uses two kind of code patterns: static and dynamic. The simplest code
patterns are implemented using code templates, while the most complex cases
require the implementation of a Mutator.

A code template is a code fragment in the target language that will be modified
accordingly to some input parameters. This code is interpreted and translated
to the IR and afterwards it is grafted in the AST. The design of the backend
using code templates will ease the implementation of new future backends.

Every time we need to use a device, we can identify several common tasks:
initialization, local data allocation, device invocation, data retrieval and memory
deallocation, among others. Each of these tasks identifies a pattern which is
implemented through a code template. To manipulate these code templates and
insert them in the IR llCoMP defines a set of operations that are collected in a
library and exhibit a common facade.

In our first approach to automatic code generation for CUDA, we have prevailed
on simplicity, rather than focusing oncodeperformance.However,wehavedetected
some situations where improvements in the target code will enhance the perfor-
mance. We are currently working on the implementation of these improvements
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and some other complex optimizations that will be included in future releases of
llCoMP.

3 Case Studies

In order to study different relevant situations during the translation from llc
to CUDA we have used three applications: the Mandelbrot set computation, the
solution of a finite difference equation using the Jacobi iterative method and a
Molecular Dynamic (MD) simulation. With each code we will focus our attention
on different aspects that offer opportunities to optimize the code produced by
llCoMP. The source code for all the applications is available at the llc project
home page.

For the OpenMP and sequential versions of the codes we have used GCC while
the target codes generated by llCoMP have been compiled using the CUDA C
NVIDIA compiler. The speedups are computed using exactly the same source
code, for the llCoMP and OpenMP versions. The sequential code was obtained
deactivating the OpenMP flags.

The computational experience we present here has been carried out in a sys-
tem build from two AMD Opteron QuadCore processors (8 cores) with 4 GB of
RAM. This system has attached through a PCI-express 16x bus a Tesla C1060
card with 4 GB and 1 GPU with 240 cores.

Some of our computational results compare the performance of OpenMP code
executed with 8 threads against the execution in the GPU. Our purpose is to
exhibit the improvement obtained just by adding a GPU card to a small mul-
ticomputer. In addition, the peak power consumption of such a system is much
lower than the corresponding to an equivalent homogeneous system.

3.1 The Mandelbrot Set Computation

The Mandelbrot set is the convergence domain of the complex series defined by
Zn = Zn−1

2 +C. The area of the set is an open question in Mathematics. Using
a Monte-Carlo method, the algorithm in Listing 1 computes an estimation of
the set area. In line 1, with a syntax taken from [1], we specify the target device
for the parallel loop in line 5. When llCoMP translates to CUDA, it looks for
parallel regions preceded by an omp target directive (line 1) whose device is
CUDA. Once this situation is detected, the compiler inserts in the target code
the memory transfer pattern and encapsulates the body of any parallel loop into a
CUDA kernel. Finally, the patterns for data gathering and resources deallocation
are also inserted.

The CUDA backend of our compiler uses a specialized kernel to perform
reduction operations. The kernel implemented in the compiler [7] uses interleaved
addressing and makes the first add during data fetching from global memory.
This improvement benefits from using the device to perform the reduction and
minimizes the size of the transfer between host and device.

Our approach when translating from llc to CUDA takes advantage of spe-
cialized CUDA kernels in additional situations. If the programmer is aware that
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1 #pragma omp t a rge t dev ice ( cuda) copy in ( c )
2 #pragma omp p a r a l l e l for reduct ion (+: numoutside) p r i va t e ( i , j , ztemp ,

z ) shared ( nt , c )
3 {
4 numoutside = 0;
5 for ( i = 0; i < npoints ; i++) {
6 z . creal = c [ i ] . creal ;
7 z . cimag = c [ i ] . cimag ;
8 for ( j = 0; j < MAXITER ; j++) {
9 ztemp = ( z . creal ∗ z . creal ) − ( z . cimag ∗ z . cimag ) + c [ i ] .

creal ;
10 z . cimag = z . creal ∗ z . cimag ∗ 2 + c [ i ] . cimag ;
11 z . creal = ztemp ;
12 i f ( z . creal ∗ z . creal + z . cimag ∗ z . cimag > THRESOLD ) {
13 numoutside++;
14 break ;
15 }
16 } /∗ for j ∗/
17 } /∗ for i ∗/
18 }

Listing 1. The Mandelbrot set computation in llc

certain operation has an efficient implementation in the target language, she
can provide such information through the use of the implements clause also
proposed in [1].

Another issue that has a large impact on the performance of the CUDA code
is the number of threads per block, particularly in the presence of irregular com-
putations. Figure 1 shows the execution time for three increasing problem sizes
(number of points computed) in the Mandelbrot set area computation varying
the number of threads involved in the computation.

Although it seems counterintuitive, the best performance for a problem size
is achieved with the lesser number of threads per block. This effect is due to the
multiprocessors occupancy. With a lesser number of threads, a larger number of
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blocks can be allocated to the same multiprocessor, and therefore more blocks
are executing concurrently.

This is only one of the tradeoffs involved in the execution of CUDA programs.
Information has to be provided by the user in order to increase the performance.
High level transformations of the parallel loops directly turns into an improve-
ment of the multiprocessor occupancy and therefore in a performance gain.

3.2 The Jacobi Method

A key issue to enhance the performance in the CUDA architecture is the re-
duction of data transfer between host and device. In our PCI express × 16 bus
this data transfer rate is 1.7 GB/s between CPU and GPU, and it constitutes a
critical bottleneck.

1 while ( ( k < maxit ) && ( error > tol ) ) {
2 error = 0 . 0 ;
3 #pragma omp target device ( cuda ) copy_in ( uold , f , u ) copy_out ( u )
4 #pragma omp parallel shared ( uold , u , . . . ) private ( i , j , resid )
5 {
6 #pragma omp for
7 for ( i = 0; i < m ; i++)
8 for ( j = 0; j < n ; j++)
9 uold [ i ] [ j ] = u [ i ] [ j ] ;

10 #pragma omp for reduction (+: error )
11 for ( i = 0; i < ( m − 2) ; i++) {
12 for ( j = 0; j < ( n − 2) ; j++) {
13 resid = . . .
14 . . .
15 error += resid ∗ resid ;
16 }
17 }
18 }
19 k++;
20 error = sqrt ( error ) / (double ) ( n ∗ m ) ;
21 }

Listing 2. Iterative loop in the Jacobi method implementation in llc/OpenMP

The code in Listing 2 is the iterative loop in the Jacobi method both in llc
and OpenMP. In order to use the CUDA device, the programmer just need
to specify the target directive. Furthermore, if the programmer uses the llc
capabilities to specify memory transfers, the compiler can take advantage of
this information to optimize the code. The copy in and copy out clauses in the
directive at line 3 state the memory positions to be transferred to and from the
device.

Figure 2 measures the impact in the performance of this language feature
by comparing a pure OpenMP implementation with CUDA code generated by
llCoMP specifying (label CUDA v2) the memory transfers with these clauses and
not doing so (label CUDA v1).

In our translation strategy, at the end of each parallel region we synchronize
host and device memories. Inside a parallel region we assume that memory lo-
cations allocated in the host remain unchanged. The programmer has to use the
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Fig. 2. Speedup of the Jacobi code for different problem sizes

OpenMP flush construct in order to synchronize host and device in the case
that access to variables computed in the device in a previous parallel loop is
needed inside the parallel region. The insertion of the flush construct is not
required in the case of function calls because they are automatically translated
into device code.

With the Jacobi code we also want to measure differently the impact of mem-
ory transfers in the CUDA parallelization. The code in Listing 2 has been coded
in two different ways:

1-REG: with a single parallel region containing the parallel loops (as it is shown
in Listing 2).

2-REG: using two different parallel regions, one for each parallel loop. In this
case, at the end of the first parallel region the GPU memory is released and data
have to be transferred again, while in the former case we take advantage of the
persistence of the GPU memory between kernel calls.

The performance of these alternative parallelizations are presented in Figure 3.
The size of the problem correspond to the dimension of the square matrices
used in the computation. The OpenMP versions of the code slightly benefits
when enclosing both parallel loops in a single parallel region, but the benefit
is exceeded by CUDA versions of the code, and this benefit is larger when the
problem size grows.

3.3 Molecular Dynamic Simulation

Given positions, masses and velocities of np particles, the routine shown in listing
3 computes the energy of the system and the forces on each particle. The code
is an implementation in llc of a simple Molecular Dynamics (MD) simulation.
It employs an iterative numerical procedure to obtain an approximate solution
whose accuracy is determined by the time step of the simulation.
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1 void compute ( int np , int nd , double ∗box , vnd_t ∗pos , . . . ) {
2 double x , d , pot , kin ;
3 int i , j , k ;
4 vnd_t rij ;

6 pot = kin = 0 . 0 ;
7 #pragma omp target device ( cuda ) copy_in ( f , vel , pos , box ) copy_out ( f )
8 #pragma omp parallel for default ( shared )
9 private (i , j , k , rij , d ) reduction (+ : pot , kin )

10 for ( i = 0; i < np ; i++) { /∗ Pot . energy and force s ∗/
11 for ( j = 0; j < nd ; j++)
12 f [ i ] [ j ] = 0 . 0 ;
13 for ( j = 0; j < np ; j++) {
14 i f ( i != j ) {
15 d = dist ( nd , box , pos [ i ] , pos [ j ] , rij ) ;
16 pot = pot + 0.5 ∗ v ( d ) ;
17 for ( k = 0; k < nd ; k++) {
18 f [ i ] [ k ] = f [ i ] [ k ] − rij [ k ] ∗ dv ( d ) /d ;
19 }
20 }
21 }
22 kin = kin + dotr8 ( nd , vel [ i ] , vel [ i ] ) ; /∗ kin . energy ∗/
23 }
24 kin = kin ∗ 0 . 5 ∗ mass ;
25 ∗ pot_p = pot ;
26 ∗ kin_p = kin ;
27 }

Listing 3. Molecular Dynamic code simulation in llc

On each simulation step, the algorithm perform two basic operations: compute
(shown in Listing 3) and update. The update operation is simply a for loop that
runs over the particles, updating their positions, velocities and accelerations.
From a computational point of view, compute is more intensive than update.

With this application we want to study the best combination of GPU/CPU to
target the parallel code. If we state C for CPU and G for GPU we have measured
four different versions of the code: CC: both routines in the CPU (pure OpenMP
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code) GG: both routines in the GPU (pure CUDA code) GC: compute in the
GPU and update in the CPU CG: compute in the CPU and update in the GPU
Figure 4 shows the speedup obtained for three different problem sizes (number
of particles). The best case is to place both routines in the GPU. For the hybrid
OpenMP/CUDA codes, the best choice is to allocate the coarser grain routine in
the GPU. The pure OpenMP version of the code do not scale up when increasing
the problem size, probably due to memory constrains.

4 Conclusions and Future Work

This work represents a preliminary evaluation of the results obtained with the
new backend of the llc compiler. We have got a new version of a source to source
compiler, written in a modern, flexible and portable language that represents a
starting point for future works. The architectural design of our proposal make
our compiler a powerful prototyping tool to research in code transformation and
optimization.

With the experience achieved in the development of the CUDA backend,
we believe that the incorporation of new target languages (we plan to target
OpenCL) should not require an unaffordable effort. From now on, our goal is to
evolve the language to increase its capabilities balancing simplicity and perfor-
mance.

Work in progress within the framework of this project includes the following:

– To increase the number of applications parallelized using our compiler, with
particular attention to commercial applications.
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– To study and implement additional compiler optimizations that will enhance
the performance of the target code.

– To extend the llc syntax to capture additional information from the pro-
grammer for better adaption of the translation to the target architecture.

– To compare the performance in platforms with a larger number of CPU
cores.

Some of the compiler optimizations that are currently under study or develop-
ment are: To improve locality through a better use of the memory hierarchy,
To enhance the translation of nested loops taking advantage of the architecture
design and finally to implement an intelligent balance of load between host and
device.

With our approach, the performance loss with respect to a direct CUDA im-
plementation is clearly compensated by a significantly smaller development ef-
fort. Taking this into account, we conclude that llc is appropriate to implement
some classes of parallel applications.
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Abstract. Programming hybrid heterogeneous multi-core cluster archi-
tectures is today an important topic in scientific and mainstream commu-
nities. To address this challenge, we developed JavaSymphony providing
high-level programming abstraction and a middle-ware that facilitates
the development and high-performance execution of Java applications
on modern shared and distributed memory architectures. In this paper
we present results of programming and executing a three-dimensional ray
tracing application on a heterogeneous many-core cluster architecture.

1 Introduction

Multi-core processors have emerged today as a viable source of processing power.
The emergence of multi-core trend was the result of heat dissipation and power
consumption problems related to high clocked single-core processors. A multi-
core processor consists of several homogeneous or heterogeneous cores packaged
in a single chip. Already, there are many-core processors with hundreds of cores
and the majority of top 500 supercomputers is being based on multi-core cluster
architectures.

To exploit the underlying many-cores, applications need to be re-engineered
and parallelised with user controlled load balancing and locality, heterogeneity of
machines, and complex memory hierarchies. The Java programming constructs
related to threads, synchronisation, remote method invocations, and networking
are well-suited to exploit medium to coarse grained parallelism. Today, there are
many research efforts [2,5,6,9,10] which focus on parallel Java applications for
multi-core shared memory systems and clusters. Most of these efforts, however,
do not provide user-controlled locality of task and data to exploit the complex
memory hierarchies on many-core clusters. The locality of task and data have
significant impact on an application’s performance as demonstrated in [3,8].

In previous work [1,4], we developed JavaSymphony (JS) as a Java-based
programming paradigm for programming conventional parallel and distributed
infrastructures such as heterogeneous clusters, computational Grids, and shared
memory multi-cores. JS provides a unified API to program both shared, as well as
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distributed memory applications. JS’s design is based on the concept of dynamic
virtual architecture, which allows programmer to define a hierarchical structure
of heterogeneous computing resources (e.g. cores, processors, machines, clusters)
and to control load balancing, locality, and code placements. On top of the vir-
tual architecture, objects can be explicitly distributed, migrated, and invoked,
enabling high-level user control of parallelism, locality, and load balancing. Pre-
viously [1], we described JS run-time system and locality control mechanism for
shared and distributed memory applications. In this paper, we present new ex-
periments based on a 3D ray tracing application using a heterogeneous multi-core
cluster architecture.

The paper is organised as follows. Next section discusses the related work. Sec-
tion 3 presents the JS overview, including JS run-time system, dynamic virtual
architectures, and locality control mechanisms. Section 4 presents experimental
results and section 5 concludes the paper.

2 Related Work

Proactive [2] is a Java-based library and parallel programming environment for
parallel and distributed applications. Proactive provides high-level programming
abstractions based on the concept of remote active objects [2]. In contrast to
Proactive’s single-threaded active objects, JS provides multi-threaded remote
objects. Alongside programming, Proactive also provides deployment-level ab-
stractions. Proactive has no functionality to map an active object and thread to
specific processors or cores of a multi-core cluster.

Jcluster [9] is a Java-based message passing library for programing parallel
applications. Jcluster provides a dynamic load balancing scheduler that is based
on the Transitive Random Stealing algorithm. The dynamic scheduler enables
any node in a cluster to get a task from other used nodes to balance the load.
Jcluster scheduler has no support for multi-core processors and no functionality
to map a task or object to specific processor and core in a multi-core cluster
environment.

Parallel Java [5] is a Java-based API for shared and distributed memory
parallel applications. It provides programming constructs similar to MPI and
OpenMP. A hybrid programming model can also be used to combine both shared
and distributed memory features in a parallel program. Although Parallel Java
provides a multi-threaded approach for shared memory multi-cores, it has no
capability to map threads to specific processors and cores in a cluster.

VCluster [10] implements a new programming model which allows migration
of virtual threads (instead of complete processes) to other JVMs on the same
or on different multi-core nodes in a cluster. Thread migration can be used for
dynamic load balancing in a parallel multi-threaded application. VCluster does
not provide any functionality to map a thread to a specific processor or core of
a multi-core cluster.

MPJ Express [6] is a Java-based message passing framework that provides a
portable and efficient communication layer. Although MPJ Express uses shared
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memory communication inside a multi-core computing node, it has no capability
to control the locality of threads at processor or core level.

Most of the related work either prevents the application developer from con-
trolling the locality of data and tasks, or engage the developer in time con-
suming and error-prone low-level parallelization details of the Java language.
High-level user-controlled locality of the application, object, and task distin-
guishes JavaSymphony from other Java-based frameworks for multi-core cluster
programming.

3 JavaSymphony

JavaSymphony (JS) is a Java-based programming paradigm for developing par-
allel and distributed applications. JS provides high-level programming constructs
which abstract low-level infrastructure details and simplify the tasks of control-
ling parallelism, locality, and load balancing. Furthermore, it offers a unified
solution for user-controlled locality-aware mapping of applications, objects and
tasks on shared and distributed memory infrastructures. In this section, we pro-
vide an overview of some of the JS features, while complete description and
implementation details can be found in [1,4].

3.1 Dynamic Virtual Architectures

The Dynamic Virtual Architecture (VA) [4] concept introduced by JS allows
the programmer to define structure of heterogeneous computing resources and
to control mapping, load balancing, migration of objects, and code placements.
Most existing work assumes flat hierarchy of computing resources. In contrast
to that, JS allows programmer to fully specify the multi-core architectures [1].

Distributed memory
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Fig. 1. Four-level locality-aware VA

VA has a tree like structure, where each
VA element has a certain level representing
a specific resource granularity. Figure 1 de-
picts a four-level VA representing a hetero-
geneous cluster architecture consisting of a
set of shared memory (NUMA or UMA)
nodes on level 2, multi-core processors on
level 1, and individual cores on the leaf
nodes (level 0).

3.2 JavaSymphony Objects

Writing a parallel JavaSymphony application requires encapsulating Java ob-
jects into so called JS objects, which are then distributed and mapped onto
the hierarchical VA nodes (levels 0 to n). A JS object can be either a single
or a multi-threaded object supporting three types of method invocations: asyn-
chronous, synchronous, and one-sided.
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3.3 Object Agent System

The Object Agent (OA) System [1], a part of JS run-time (JSR), processes
remote as well as shared memory jobs. An OA is responsible for creating jobs,
mapping objects to VAs, migrating, and releasing objects. An OA has a multi-
threaded job queue which is associated with n job processing threads called Job
Handlers. The results returned by the jobs are accessed using ResultHandle
objects.

3.4 Locality Control

The Locality Control Module [1] applies and manages locality on the executing
JS application by mapping the JS objects and tasks onto the VA nodes. In JS, we
can specify locality constraints at three levels of abstraction: application, object,
and task-level. Mapping an application, object, or task to a specific core will
constrain the execution to that core. Mapping them on a higher-level VA node
(e.g. multi-core processor, SMP, NUMA, cluster) will constrain the execution on
the corresponding resource and delegate the scheduling to the inferior VA nodes.

4 Experiments

We developed a JS-based version of a multi-threaded 3D ray tracing application
(JSRT) that is part of the Java Grande Forum (JGF) benchmark suite [7]. JSRT
is a large-scale application that creates several ray tracer objects, initialises them
with scene (64 spheres) and interval data, and renders at N ×N resolution. The
JSRT application is parallelised by distributing the outermost loop (over rows
of pixels) to n JS objects which are mapped to the cores of the parallel machine.
We experimented on a heterogeneous cluster (HC), which consists of two types
of nodes outlined in Table 1:

Listing 1 shows the core of the JSRT application. First, it creates and ini-
tialises the required data structures (lines 1 − 3) and then registers itself to
the JS run-time system (line 4). Then, it creates a level-3 (cluster) and several
level-2 (NUMA, UMA) VA nodes (lines 5 − 6). The level-2 VA nodes are then
initialised and added to the level-3 VA node (lines 7 − 9). Then, several ray
tracer objects are created (line 11), initialised, and mapped to the VA nodes
(lines 12 − 13). Afterwards, the rendering method (render) is asynchronously
invoked on each rayTracer object and the handle objects (ResultHandle) re-
turned are saved (lines 14− 16). After collecting the results (checksum values)

Table 1. The heterogeneous cluster architecture

Node No. of Processor Processors Network Shared
architecture nodes per node caches

NUMA 2 Quad-core Opteron 8356 8 Gigabit ethernet L3/Processor

UMA 13 Dual-core Opteron 885 4 Gigabit ethernet Nil
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from all invoked JS objects, they are validated (line 18) to check the correctness
of the algorithm. Then, the rendered images are collected (lines 19−21) from all
rayTracers and merged into one file. Finally, the JSRT application un-registers
from the JS run-time system (line 23).

1 boolean bSingleThreaded = fa l se ; int npPerMachine = 8 ; int np = 64 ;

2 long checksum=0; int nMachines = np/npPerMachine ; int k=0; int i , j ;

3 ResultHandle [ ] rhSet = new ResultHandle [ np ] ;

4 JSRegi st ry reg = new JSReg i st ry ( ”JSRTApp” ) ; // r eg i s t e r JSRTApp to JSR

5 VA c l u s t e r = new VA(3 , nMachines ) ; // l e v e l −3 VA node

6 VA[ ] computeNodes = new VA[ nMachines ] ;

7 for ( i =0; i<nMachines ; i++) {
8 computeNodes [ i ] = new VA(2) ; // l e v e l −2 VA nodes

9 c l u s t e r . addVA( computeNodes [ i ] ) ; } //add l e v e l −2 VA nodes to l e v e l −3

10 . . . // I n i t i a l i z a t i o n of data s t ruc tu re s

11 JSObject [ ] rayTrace rs = new JSObject [ nMachines ] ; // d i s t r i b u t ed

ob je c t s

12 for ( i =0; i<nMachines ; i++) // create raytracers at l e v e l −2 VA nodes

13 rayTrace rs [ i ] = new JSObject ( bSingleThreaded , ” jsRayTracer . Worker” ,

new Object [ ] { width , height , np} , computeNodes [ i ] ) ;

14 for ( i =0; i<nMachines ; i++)

15 for ( j =0; j<npPerMachine ; j++, k++) // invoke render ta sk s

16 rhSet [ k ] = rayTrace rs [ i ] . a invoke ( ” render” ,new Object [ ] { k}) ;

17 . . . // ge t and sum the checksum values

18 j sRayTrace rVal idate ( checksum ) ; //check for correc tness

19 for ( i =0; i<nMachines ; i++) { // ge t and save rendered images

20 rhSet [ i ] = rayTrace rs [ i ] . s invoke ( ”getImage” ,new Object [ ] { } ) ;

21 renderdImage [ i ] = ( int [ ] ) rhSet [ i ] . ge tResu l t ( ) ; }
22 . . . //merge and save Image data to f i l e

23 reg . u n r e g i s t e r ( ) ; //un−r e g i s t e r from JSR

Listing 1. The core JS code of the JSRT application

4.1 Heterogeneous Cluster

On the heterogeneous cluster, we experimented using up to 128 cores and five
different versions of the JSRT application. The default version labelled JSRT is
based on a machine-fill scheduling strategy, in which we first entirely filled the
NUMA-based nodes by invoking up to 64 parallel tasks before moving to the
UMA-based nodes (8 tasks per node). We select NUMA nodes first, since they
have four times as many cores as the UMA nodes. This scheme requires less
number of nodes, thus results in low VA and communication overheads.

Figure 2(a) shows that, although the default version (JSRT) achieved decent
speedup, the machine-fill scheduling negatively affected the application perfor-
mance on the NUMA nodes. In particular, we observed that 22% of the threads
were slower, as illustrated by the load imbalance metric in Figure 2(b), calculated
as follows:
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LI =
Tmax − Tavg

Tmax
· 100,

where Tmax and Tavg represent the maximum and the average times of the paral-
lel threads. To eliminate the load imbalance, we applied first two optimisations
labelled JSRT+OPT1 and JSRT+OPT2 that shifts 10%, respectively 20% of the
threads from the NUMA nodes to other free nodes of the cluster. These versions
achieved better speedup results (see Figure 2(a)) and reduced the load imbalance
to about 9%− 11%, respectively 2.81%− 4.83%, as displayed in Figure 2(b).

In the next step, we applied locality constraints on the optimised versions
(labelled JSRT+OPT1+LOC and JSRT+OPT2+LOC) and achieved up to 50.14% more
speedup over the default version (see Figure 2(a)).

Figure 2(c) shows the efficiency of these experiments calculated as the ra-
tio between the speedup S and the weighted processor count due to the slight
difference in processor speed of the two clusters:

E =
S∑

∀C∈HC
Tmin
TC

,

where TC is the sequential execution time of the JSRT application on core C and
Tmin is the sequential execution time on the fastest core: Tmin = min

∀C∈HC
{TC}.

The efficiency achieved by the different JSRT versions is quite good (95%−52%),
although it dropped down to 45% and 39% for the 112 and 128 machine sizes. To
understand this reduced efficiency, we measured the overheads TO encountered
in each execution and calculated their severity as the ratio to the total parallel
execution time T: S = TO

T (see Figure 2(d)). For the large machines size (112−
128 cores), we observed increasing overhead severities related to the JSR and VA
creation (7.53%− 9.53%), instantiation of JS objects on remote nodes (6.67%−
7.82%), communication (4.10% − 4.55%), and I/O (10.86% − 14.26%) limited
the application performance and caused the efficiency to decrease below 50%.

The efficiency can be improved by choosing larger problem sizes. For exam-
ple, Figure 2(e) illustrates that the larger 6000 × 6000 problem size labelled
JSRT+OPT2 (6k) achieves up to 38.82% increase in efficiency compared to the
4000× 4000 problem size labelled JSRT+OPT2 (4k).

To investigate the effects of the locality constraints, we measured the number
of instructions per cycle that are up to 13.46% higher for the locality-aware im-
plementation compared to the non-locality aware version (see Figure 2(f)). The
locality constraints keep the threads close to the node and processor where the
data has been allocated, which results in a high number of local DRAM memory
accesses that significantly improve overall performance (see Figure 2(h)). We
also observed less number of data cache (L1) misses for the locality-aware JSRT
version compared to the non-locality-aware version (see Figure 2(g)). Figure 2(i)
illustrates that the number of L3 cache misses has increased for the locality-
aware version because of contention on the L3 cache shared by multiple threads
on the NUMA nodes.
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(f) Instructions per cycle.
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(g) Data cache (L1) misses.
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(h) Local DRAM accesses.
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(i) L3 cache misses.
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(j) Write bandwidth.
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(k) Read bandwidth.
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(l) DRAM bandwidth.

Fig. 2. Heterogeneous cluster experimental results

We further investigated the performance results by measuring system read,
write, and DRAM bandwidth utilisation in the locality-aware and non-locality-
aware versions. Figure 2(j) shows that the locality-aware version has a higher
write bandwidth of up to 10.51% to 55.05% for large machine sizes (32 − 128
cores). The locality-aware version also shows 4.27% to 87.47% higher system
read bandwidth for large machine sizes between 32− 128 cores (see Figure 2(k))
and the DRAM bandwidth utilisation shown in Figure 2(l) is similarly between
3.93− 54.78% higher.
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5 Conclusions

In this paper, we presented JavaSymphony, a parallel and distributed program-
ming and execution environment for multi-core cluster architectures. JS’s design
is based on the concept of dynamic virtual architecture, which allows modelling
of hierarchical resource topologies ranging from individual cores and processors
to more complex symmetric multiprocessors and distributed memory parallel
computers. JS allows user controlled locality control and load balance of appli-
cations, objects, and tasks.

We presented the JS implementation of a 3D ray tracing application followed
by experimental results on a heterogeneous cluster architecture. Our improved
locality-aware and optimised implementation improved the speedup of the ap-
plication up to 50.14% on the heterogeneous cluster. We also conducted and
presented a low-level analysis, which highlighted the reasons of better speedup
achieved by the locality-aware JS implementation.
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Abstract. The asynchronous iteration model, called AIAC, has been
proven to be an efficient solution for heterogeneous and distributed archi-
tectures. An efficient mapping of application tasks is essential to reduce
their execution time. In this paper we present a new mapping algorithm,
called MAHEVE (Mapping Algorithm for HEterogeneous and Volatile
Environments) which is efficient on such architectures and integrates a
fault tolerance mechanism to resist computing node failures. Our exper-
iments show gains on a typical AIAC application execution time up to
65%, executed on distributed clusters architectures containing more than
400 computing cores with the JaceP2P-V2 environment.

1 Introduction

In the parallel computing area, in order to execute very large applications on
heterogeneous architectures, iterative methods are well adapted [2]. These meth-
ods repeat the same instructions block until a convergence state and a desired
approximation of the solution are reached. They constitute the only known ap-
proach to solving some kinds of problems and are relatively easy to parallelize.
The Jacobi or the Conjugate Gradient methods are examples of such meth-
ods. To parallelize them, one of the most used methods is the message passing
paradigm which provides efficient mechanisms to exchange data between tasks.
As such a method, we focus here on the asynchronous parallel iterative model,
called AIAC (Asynchronous Iterations Asynchronous Communications).

In this model, as can be seen on Figure 1, after each iteration, a task sends
its results to its neighbors and immediately starts the next iteration with the
last received data. The receiving and sending mechanisms are asynchronous and
tasks do not have to wait for the reception of dependency messages from their
neighbors. Consequently, there is no idle time between two iterations. Further-
more, this model is tolerant to message loss and even if a task is stopped the
remaining tasks continue the computation, with the last available data. Several
experiments [2] show the relevance of the AIAC algorithms in the context of dis-
tributed clusters with high latency between clusters. These works underline the
good adaptability of AIAC algorithms to network and processor heterogeneity.

In a previous study [6] we proposed the implementation of two static task
mapping algorithms dedicated to the AIAC model on heterogeneous distributed
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c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Two processors computing in the AIAC model

clusters. Both these two algorithms, AIAC-QM (for AIAC Quick-quality Map)
and F-EC (for Farhat Edges-Cuts) showed an important performance improve-
ment by significantly reducing the application execution time. These experiments
were performed by using the fully fault tolerant JaceP2P-V2 environment, de-
scribed in the next section. In these experiments no computing node failures were
introduced during the computation. As architecture heterogeneity continually
evolves according to node volatility, we have to take care more precisely about
the heterogeneity of the target platform. Thus in this paper we propose a new
mapping algorithm called MAHEVE (Mapping Algorithm for HEterogeneous and
Volatile Environments). This algorithm explicitly tackles the heterogeneity issue
and introduces a level of dynamism in order to adapt itself to the fault tolerance
mechanisms and to the evolution of the executing platform. Our experiments
show gains up to 65% on application execution time, with faults during exe-
cutions, which is about 10 points better than AIAC-QM and about 25 points
better than F-EC, and MAHEVE also outperforms them in experiments with
no fault during executions.

The rest of this paper is organized as follows. Section 2 presents the JaceP2P-
V2 middleware by describing its architecture and briefly presenting its fault toler-
ance mechanisms. Section 3 formalizes our mapping and fault tolerance problems
and quotes existing issues to address them. Section 4 describes the new map-
ping strategy we propose, MAHEVE. In Section 5 we present the experiments
we conducted on the Grid’5000 testbed with more than 400 computing cores.
Finally, we give some concluding remarks and plan our future work in Section 6.

2 JaceP2P-V2

JaceP2P-V2 [5] is a distributed platform implemented in Java, dedicated to de-
veloping and executing parallel iterative asynchronous applications. It is fully
fault tolerant allowing it to execute parallel applications over volatile environ-
ments. To our knowledge this is the only such existing platform.

The JaceP2P-V2 platform part, which is based on the daemons and supervi-
sors paradigm, is composed of three main entities: the “super-nodes”, which are
in charge of supervising free computing nodes connected to the platform; the
“spawner”, which is launched by a user wanting to execute a parallel application.
It is in charge of a group of computing nodes and monitors them. If one fails, it
requires a replacing one to a super-node; the “daemon”, first connects to a super-
node and waits for a task to execute. Each daemon can communicate directly
with its computing neighbors.
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To be able to execute AIAC applications, JaceP2P-V2 has an asynchronous
messaging mechanism, and to resist daemon failures, it implements a check-
point/restart mechanism by using a distributed backup mechanism called the
uncoordinated distributed checkpointing [7]. This decentralized procedure allows
the platform to be very scalable, with no weak point and does not require a
secure nor a stable station for backups. When a daemon dies, it is replaced by
another one, as we suppose that there are enough available free nodes. For more
details on the JaceP2P-V2 platform, interested readers can refer to [5].

3 Mapping and Fault Tolerance Problems

Application modeling. The TIG [11] (Task Interaction Graph) model is the
most appropriate to our problem, as it only models relationships between tasks.
Theyare considered simultaneously executable andcommunications can takeplace
at any time during the computation, with no precedence nor synchronization.

In this model, a parallel application is represented by a graph GT (V, E), where
V = {V1, V2, . . . Vv} is the set of |V | vertices and E ⊂ V × V is the set of undi-
rectional edges. Vertices represent tasks and edges represent the mutual commu-
nication among tasks. A function EC : V → R+ gives the computation cost of
tasks and CC : E → R+ gives the communication cost for message passing on
edges. We define |V | = v, EC(Vi) = ei and CC(Vi, Vj) = cij . Another function
D : V → N+ gives the amount of dependencies of a task, noted D(Vi) = di.

Architecture modeling. A distributed clusters architecture can be modeled
by a three-level-graph. The levels are architecture (a) (here the Grid’5000 grid),
cluster (c), and computing node (n) levels. Let GG(N, L) be a graph represent-
ing a distributed clusters architecture, where N = {N1, N2, . . . Nn} is the set of
|N | vertices and L is the set of |L| undirectional edges. The vertices represent
the computing nodes and the edges represent the links between them. An edge
Li ∈ L is an unordered pair (Nx, Ny) ∈ N , representing a communication link
between nodes Nx and Ny. A function WN : N → R+ gives the computational
power of nodes and another function WL : L→ R+ gives the communication
latency of links. We define WN(Ni) = wni and WL(Li, Lj) = wlij . Let be |C|
the number of clusters contained in the architecture. A function CN : C → N

+

gives the amount of computing nodes contained in a cluster, and another func-
tion CF : C → N+ gives the amount of available computing nodes (not involved
in computation) of a cluster. We define CN(Ci) = CNi and CF (Ci) = CFi. We
also define CP fi as the average power of available resources of cluster Ci.

We evaluate the heterogeneity degree of the architecture, noted hd, by using
the relative standard deviation method, with hd = σP N

avgP N
where avgPN is the

average computing power of nodes and σPN represents the standard deviation of
computing node power. This measure provides us the coefficient of variation of
the platform in percentage – we only consider 0 ≤ hd ≤ 1 as considering values
of hd > 1 is not relevant, as hd = 1 denotes a fully heterogeneous platform.
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Mapping functions. When a parallel application App, represented by a graph
GT , is mapped on a distributed clusters architecture, represented by a graph
GG, the execution time of the application, ET (App), can be defined as the
execution time of the slowest task. Indeed, an application ends when all the
tasks have detected convergence and reached the desired approximation of the
solution. We define ET (App) = maxi=1...v(ET (Vi)), where the execution time
of each task i (i = 1 . . . v), ET (Vi), is given by ET (Vi) = ei

wni
+
∑

j∈J cij ×wlij
where ei is the computational cost of Vi, wni is the computational power of
the node Ni on which Vi is mapped, J represents the neighbors set of Vi, cij is
the amount of communications between Vi and Vj , and wlij is the link latency
between the computing nodes on which Vi and Vj are mapped. As described in
this formula, the execution time of a task depends on the task weight and on
the communications which may occur between this task and its neighbors. We
underline here that in the AIAC model, it is impossible to predict the number
of iterations of a task. So it is difficult to evaluate a priori its cost ei.

An important point to take into consideration is that the execution of multiple
tasks on the same node is not allowed, as this provides a fall of performance in
such a context. This task mapping problem is similar to the classical graph
partitioning and task assignment problem, and is thus NP-complete.

Fault tolerance. In volatile environments, computing nodes can disconnect at
any time during the computation, and have thus to be efficiently replaced. The
replacing nodes should be the best ones at the fault time, by finding them in
available nodes. As executing environments can regularly evolve, due to com-
puting node volatility, a mapping algorithm has to keep a correct overview of
the architecture, in real time. Thus, criteria to assign tasks to nodes should
dynamically evolve too.

Another problem appears after multiple crashes: some tasks may have mi-
grated over multiple computing nodes and clusters, and the initial mapping may
be totally changed. So, after having suffered some node failures the task map-
ping could not always satisfy the mapping criteria (not on the most powerful
available machine, too far away from its neighbors. . . ). A good fault tolerance
policy has to evolve dynamically with the executing environment.

3.1 Related Work

In the literature of the TIG mapping many algorithms exist, which can be
broadly classified into two categories. The first one is the Edge-cuts optimization
class, which minimizes the use of the penalizing links between clusters. As tasks
are depending on neighbors, which are called dependencies, the goal is to choose
nodes where distance, in term of network, is small to improve communications
between tasks. Here we can cite Metis [9] and Chaco [8] which are libraries
containing such kind of algorithms. The second category is the Execution time
optimization class, which aims at minimizing the whole application execution
time. These algorithms look for nodes which can provide the smallest execution
time of tasks using their computational power. We can cite QM [12] and Min-
iMax [10] as such kind of algorithms. Both classes of algorithms may fit with
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our goals as in our model we have both the computational power of nodes and
communication costs which may influence the applications performance.

All mentioned algorithms do not tackle the computing node failures issue, or
only basically by applying the same policy. As explained in Section 3, a more
efficient and dedicated replacement function is needed. Nevertheless, to the best
of our knowledge, no task mapping algorithm, addressing explicitly both the
executing platform heterogeneity and the computing node failures issues, exists.

4 MAHEVE

Here we present our new task mapping strategy, called MAHEVE (for Mapping
Algorithm for HEterogeneous and Volatile Environments). This algorithm aims
at taking the best part of each category mentioned in Section 3.1, the edge-cuts
minimization and the application execution time optimization algorithms.

This new algorithm can be divided into two parts. The first part aims at per-
forming the initial mapping, and the second part is devoted to search replacing
nodes when computing node failures occur.

4.1 Initial Mapping

In this section we will study the main mechanisms of the static mapping done by
MAHEVE, which is composed of three phases: sort of clusters, sort of tasks, and
the effective mapping, which maps tasks (in their sort order) on nodes of clusters
(also in their sort order) with a reservation of some nodes in each cluster.

Sorting clusters. The first step of the initial mapping is to sort clusters ac-
cording to the executing platform heterogeneity degree hd. The main principles
are that a cluster obtains a better mark Mi when hd < 0.5 and it contains
more computing nodes than other clusters (CFi, the number of available free
nodes, is privileged), and when hd ≥ 0.5 and it contains more powerful com-
puting nodes (CP fi, the average free computation power, is privileged). These
choices come from several experiments with the AIAC model, which show that
in such environments it is more efficient to privilege the computation power or
the number of nodes. As the number of nodes, CFi, and the average free com-
puting power, CP fi, are not in the same order of magnitude, we normalize them
with two functions, normN and normP . We note normN (CFi) = NCFi and
normP (CP fi) = NCPfi. The formula used to give a mark, Mi, to a cluster is
Mi = NChd

Pfi
+ NC1−hd

Fi (1).
This compromise function allows us to privilege clusters following our criteria,

as explained previously, according to the heterogeneity degree. If we study its
limits for the hd extremities, hd = 0 and hd = 1, we obtain limhd→0 Mi =
NCFi + 1 and limhd→1 Mi = NCPfi + 1, which fit with our objectives.

Clusters are so sorted and placed in a list containing them, starting from the
cluster which receives the better mark to the one which receives the lower mark.
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Sorting tasks. Like clusters, tasks are also sorted according to the heterogene-
ity degree of the executing platform, hd. This sort is done in the same way as
previously, as when hd < 0.5 tasks with higher dependencies will be privileged,
and when hd ≥ 0.5 tasks with higher computing cost are privileged. The main
function used to classified tasks is Qi = ei

hd × di
1−hd (2)

where Qi is the evaluation of the task i according to the heterogeneity degree
hd and di, the amount of dependencies of task i.

Then tasks are taken in the order of the first sort, determined with equation
(2), and each task is placed in a new list (the final one) and some of its de-
pendencies are added. We note Nbi = di

1−hd this amount of dependencies as
the lower the heterogeneity degree is the higher this number will be. This final
operation allows to control the necessary locality of tasks according to hd.

Mapping method. The third step of the initial mapping is to allocate tasks
to nodes. As clusters and tasks have been sorted accordingly to the executing
platform heterogeneity degree, ordered from the highest mark to the lowest,
this function maps tasks on almost all available computing nodes of clusters, in
their respective order in lists (for example a task classified first in the task list
is mapped on an available node of the cluster classified first in the cluster list).
The idea here is not to fulfill each cluster, but to preserve some computing nodes
in each cluster. These conserved nodes will be used to replace failed nodes.

4.2 Replacing Function

During the initial mapping some nodes in each cluster have been preserved.
When a node fails this function replaces it by a free node of the same cluster.
If none is available this function sorts again clusters, to take into consideration
platform modifications, and replaces the failed node by one available in the new
sorted cluster list. This mechanism allows to retain task locality and a real time
overview of the executing platform.

5 Experimentation

5.1 A Typical AIAC Application and the Execution Platform

We used a variation of the “Kernel CG” application of the NAS Parallel Bench-
marks (NPB) [4] to evaluate the performance of our new mapping algorithm. The
Conjugate Gradient method is replaced by the multisplitting method, which sup-
ports the asynchronous iterative model. More details about this method can be
found in [3]. We used used a matrix of size 5, 000, 000 with a bandwidth fixed to
35, 000, which generates between 8 and 20 neighbors per task. This application
was executed on 64 nodes selected among more than 100.

The platform used to realize our tests, called Grid’5000 [1], is a French na-
tionwide experimental set of clusters which provides us with distributed clus-
ters architectures (28 heterogeneous clusters spread over 9 sites). We used three
distributed clusters architectures, each having a different heterogeneity degree.
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Table 1. Application execution time in seconds and corresponding gains on various
platforms using different mapping algorithms, with fault free (FF) executions and with
2 node failures each 20 seconds (WF) executions

hd
Default FT-AIAC-QM FT-FEC MAHEVE

FF WF FF WF FF WF FF WF
0.08 80 229 63 (21%) 178 (22%) 61 (23%) 154 (33%) 60 (25%) 113 (50%)
0.50 67 242 61 (9%) 118 (51%) 63 (6%) 133 (45%) 54 (20%) 85 (65%)
0.72 67 192 59 (12%) 99 (45%) 65 (3%) 121 (33%) 52 (22%) 86 (53%)

The first one was composed of four clusters spread over four sites, with a total
of 106 computing nodes representing 424 computing cores with hd = 0.08; the
second one was composed of four clusters spread over three sites, with a total
of 110 computing nodes representing 440 computing cores with hd = 0.50; and
finally the third one was composed of five clusters spread over four sites with
115 computing nodes representing 620 computing cores with hd = 0.72.

All nodes can communicate with each other through an efficient network, but
as it is shared with many other users, high latencies appear during executions.

5.2 Experiments

We compared MAHEVE with FT-AIAC-QM (for Fault Tolerant AIAC-QM )
and FT-FEC (for Fault Tolerant F-EC ) which are respectively the fault tolerant
versions of the AIAC-QM and F-EC mapping algorithms presented in [6]. During
some executions, we introduced two failures in computing nodes involved in
the computation every 20 seconds to simulate a volatile environment. Table 1
shows the execution times of each mapping algorithm compared to the default
mapping strategy of the JaceP2P-V2 platform, with the corresponding gains on
application execution time, given in brackets. It presents both the executions
with faults (WF) and the fault free (FF) ones.

First of all, we can note that all mapping algorithms provide an enhancement
of the application performance by considerably reducing its execution time, es-
pecially for executions with node failures, with an average gain of about 45% in
general in comparison to the default policy. If we focus on executions with node
failures (WF), FT-FEC is efficient on architectures with a low heterogeneity de-
gree (hd = 0.08) by providing gains of about 33%, and gains are roughly the same
on heterogeneous architectures (hd = 0.72). FT-AIAC-QM is efficient on archi-
tectures with a high heterogeneity degree (hd = 0.72) by providing gains of about
45%, whereas it is not so efficient on homogeneous architectures (hd = 0.08) by
providing gains of about 22%. We can note here that on an architecture with
a heterogeneity degree of 0.50 FT-AIAC-QM is more efficient than FT-FEC by
providing gains up to 50%. Here we point out that in fault free executions (FF),
both algorithms also provide gains on their respective favorite architectures,
though gains are lower than in executions with faults (WF).

Now if we focus on the performance of our new solution MAHEVE, we can see
that it is all the time better than other algorithms. As can be seen in Table 1, in
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executions with faults (WF), it reduces the application execution time by about
50% on homogeneous architectures (here of 0.08 heterogeneity degree) which is
more than 25 points better than FT-FEC and near 30 points better than FT-
AIAC-QM. On heterogeneous architectures (here of 0.72 heterogeneity degree)
it also outperforms other mapping algorithms by reducing the application exe-
cution time by about 53% which is almost 10 points better than FT-AIAC-QM
and 20 points better than FT-FEC. On middle heterogeneity degree architec-
tures (here of 0.50), MAHEVE is once again better than its two comparative
mapping algorithms by reducing the application execution time by about 65%.
These good performance come from the fact that it is designed to be efficient on
both architectures, homogeneous and heterogeneous. Moreover, as it integrates
a fault tolerance security in the initial mapping, it is more efficient when com-
puting nodes fail. Here we can point out that this algorithm allows in general
gains on application execution time of about 55%. In fault free executions (FF),
it outperforms once again the two other algorithms.

6 Conclusion and Future Work

In this paper we have presented a new mapping algorithm, called MAHEVE, to
address the AIAC mapping issue on heterogeneous and volatile environments. It
aims at doing an efficient mapping of tasks on distributed clusters architectures
by taking the best part of the two known approaches, application execution time
optimization and edge-cuts minimization. We have shown that it is all the time
better than the two other comparative mapping algorithms, FT-AIAC-QM and
FT-FEC. This can be explained by the fact that it not only takes care about
computing nodes and clusters, but also about the task properties (computing
cost and dependencies), what refines the mapping solution.

In our future work we plan to enhance the MAHEVE algorithm performance
by modifying the notation of clusters, since their locality has not yet been taken
into consideration, and enhanced fault tolerance functions should be tried. We
also have to validate the algorithm performance with other AIAC applications.
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Abstract. Traditional load balancing algorithms for data-intensive it-
erative routines can successfully load balance relatively small problems.
We demonstrate that they may fail for large problem sizes on computa-
tional clusters with memory heterogeneity. Traditional algorithms use too
simplistic models of processors performance which cannot reflect many
aspects of heterogeneity. This paper presents a new dynamic load bal-
ancing algorithm based on the advanced functional performance model.
The model consists of speed functions of problem size, which are built
adaptively from a history of load measurements. Experimental results
demonstrate that our algorithm can successfully balance data-intensive
iterative routines on parallel platforms with memory heterogeneity.

Keywords: iterative algorithms, dedicated heterogeneous platforms,
dynamic load balancing, data partitioning, functional performance
models of heterogeneous processors.

1 Introduction

In this paper we study load balancing of data-intensive parallel iterative rou-
tines on heterogeneous platforms. These routines are characterised by a high
data-to-computation ratio in a single iteration. The computation load of a sin-
gle iteration can be broken into any number of equal independent computational
units [2]. Each iteration is dependent on the previous one. The generalised scheme
of these routines can be summarised as follows: (i) data is partitioned over the
processors, (ii) at each iteration some independent calculations are carried out
in parallel, and (iii) some data synchronisation takes place. Typically computa-
tional workload is directly proportional to the size of data. Examples of scientific
computational routines include Jacobi method, mesh-based solvers and routines
used in signal processing and image processing.

Our target architecture is a dedicated cluster with heterogeneous processors
and heterogeneous distributed memory. High performance of iterative routines
on this platform can be achieved when all processors complete their work within
the same time. This is achieved by partitioning the computational workload
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and, hence, data unevenly across all processors. Workload should be distributed
with respect to the processor speed, memory hierarchy and communication net-
work [4]. Load balancing of parallel applications on heterogeneous platforms has
been widely studied for different types of applications and in various aspects of
heterogeneity. Many load balancing algorithms are not appropriate to either the
applications or platforms considered in this paper. Applicable algorithms use
models of processors performance which are too simplistic. These traditional al-
gorithms are suitable for problem sizes, which are small relative to the platform,
but can fail for larger problems.

This paper presents a new dynamic load balancing algorithm for data-intensive
iterative routines on computational clusters with memory heterogeneity. In con-
trast to the traditional algorithms, our algorithm is adaptive and takes into
account heterogeneity of processors and memory. Load balancing decisions are
based on functional performance models which are constantly improved with
each iteration [10]. Use of the functional performance models remove restrictions
on the problem size which can be computed. This allows a computational scien-
tist to utilise the maximum available resources on a given cluster. We demon-
strate that our algorithm succeeds in balancing the load even in situations when
traditional algorithms fail.

This paper is structured as follows. In Section 2, related work is discussed. In
Section 3, we describe the target class of iterative routines and the traditional
load balancing algorithm. Then we analyse the shortcomings of the traditional
algorithm and present experimental results. In Section 4, we describe our algo-
rithm and demonstrate that it can successfully balance data-intensive iterative
routines with large problem sizes.

2 Related Work

In this section, we classify load balancing algorithms and discuss their applica-
bility to data-intensive iterative routines and dedicated computational clusters
with memory heterogeneity.

Load balancing algorithms can be either static or dynamic. Static algorithms
[8,11,13] use a priori information about the parallel application and platform.
This information can be gathered either at compile-time or run-time. These
strategies are restricted to applications with pre-determined workload and can-
not be applied to such iterative routines as adaptive mesh refinement [12], for
which the amount of computation data grows unpredictably. Dynamic algo-
rithms [1,3,5,6,7] do not require a priori information and can be used with a
wider class of parallel applications. In addition, dynamic algorithms can be de-
ployed on non-dedicated platforms. The algorithm we present in this paper is
dynamic.

Another classification is based on how load balancing decisions are made: in
a centralised or non-centralised manner. In non-centralised algorithms [1,5],
load is migrated locally between neighbouring processors, while in centralised
ones [3,6,7,8,11,13], load is distributed based on global load information. Non-
centralized algorithms are slower to converge. At the same time, centralized
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algorithms typically have higher overhead. Our algorithm belongs to the class of
centralised algorithms.

Centralised algorithms can be subdivided into two groups: task queue and
predicting the future [4]. Task queue algorithms [3,7] distribute tasks. They
target parallel routines consisting of independent tasks and schedule them on
shared-memory platforms. Predicting-the-future algorithms [6,8,11,13] can
distribute both tasks and data by predicting future performance based on past
information. They are suitable for data-intensive iterative routines and any par-
allel computational platform.

A traditional approach taken for load balancing of data-intensive iterative rou-
tines belongs to static/dynamic centralised predicting-the-future algorithms. In
these traditional algorithms, computation load is evaluated either in the first few
iterations [13] or at each iteration [6] and globally redistributed among the pro-
cessors. Current load measurements are used for prediction of future performance.
Neither memory structure nor memory constraints are taken into account. As it
will be demonstrated in Section 3, when applied to large scientific problems and
parallel platforms with memory heterogeneity, this strategy may never balance
the load, because it uses simplistic models of processors’ performance.

It has been shown in [9] that it is more accurate to represent performance
as a function of problem size, which reflects contributions from both processor
and memory. In this paper, we propose a new dynamic load balancing algo-
rithm based on partial functional performance models of processors [10]. Unlike
traditional algorithms, our algorithm imposes no restriction on problem sizes.

We would also like to mention some advanced load balancing strategies which
are not directly applicable to data-intensive iterative routines on heterogeneous
clusters. It has been shown that the task queue model implemented in [3] can
outperform the model [7] because decisions are based on adaptive speed mea-
surements rather then single speed measurements. The algorithm presented in
this paper also applies an adaptive performance model, but in such a way that
it is applicable to scientific computational iterative routines.

In this paper, we focus on dynamic load balancing with respect to processor
performance and memory hierarchy, and to this end we do not take into account
communication heterogeneity. Future work could be the development of a hybrid
approach, similar to [11], in which our algorithm is combined with one of the
many existing communication models.

3 Traditional Load Balancing Algorithm of Iterative
Routines

Iterative routines have the following structure: xk+1 = f(xk), k = 0, 1, ... with x0

given, where each xk is an n-dimensional vector, and f is some function from Rn

into itself [1]. The iterative routine can be parallelized on a cluster of p processors
by letting xk and f be partitioned into p block-components. In an iteration, each
processor calculates its assigned elements of xk+1. Therefore, each iteration is
dependent on the previous one.
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The objective of load balancing algorithms for iterative routines is to dis-
tribute computations across a cluster of heterogeneous processors in such a way
that all processors will finish their computation within the same time and thereby
minimising the overall computation time: ti ≈ tj , 1 ≤ i, j ≤ p. The computation
is spread across a cluster of p processors P1, ...,Pp such that p � n. Processor
Pi contains di elements of xk and f , such that n =

∑p
i=1 di.

Traditional load balancing algorithms work by measuring the computation
time of one iteration, calculating the new distribution and redistributing the
workload, if necessary, for the next iteration. The algorithm is as follows:

Initially. The computation workload is distributed evenly between all proces-
sors, d0

i = n/p. All processors execute n/p computational units in parallel.

At each iteration

1. The computation execution times t1(dk
1), ..., tp(dk

p) for this iteration is mea-
sured on each processor and gathered to the root processor.

2. If max1≤i,j≤p

∣∣∣∣ ti(d
k
i )−tj(d

k
j )

ti(dk
i )

∣∣∣∣ ≤ ε then the current distribution is considered

balanced and redistribution is not needed.
3. Otherwise, the root processor calculates the new distribution of computa-

tions dk+1
1 , ..., dk+1

p as dk+1
i = n× sk

i∑p
j=1 sk

j

where sk
i is the speed of the i’th

processor given by sk
i = dk

i

ti(dk
i )

.

4. The new distribution dk+1
1 , ..., dk+1

p is broadcast to all processors and where
necessary data is redistributed accordingly.

3.1 Analysis of Traditional Load Balancing

The traditional load balancing algorithm is based on the assumption that the
absolute speed of a processor depends on problem size but the speed is repre-
sented by a constant at each iteration. This is true for small problem sizes as
depicted in Fig. 1(a). The problem is initially divided evenly between two pro-
cessors for the first iteration and then redistributed to the optimal distribution
in the second iteration.

Consider the situation in which the problem can still fit within the total main
memory of the cluster but the problem size is such that the memory requirement
of n/p is close to the available memory of one of the processors. In this case paging
can occur. If paging does occur, the traditional load balancing algorithm is no
longer adequate. This is illustrated for two processors in Fig. 1(b, c). Let the
real performance of processors P1 and P2 be represented by the speed functions
s1(x) and s2(x) respectively. Processor P1 is a faster processor but with less
main memory than P2. The speed function drops rapidly at the point where main
memory is full and paging is required. First, n independent units of computations
are evenly distributed, d0

1 = d0
2 = n/2, between the two processors and the

speeds of the processors, s0
1, s0

2, are measured. Then at the second iteration
the computational units are divided according to d1

1
d1
2

= s0
1

s0
2
, where d1

1 + d1
2 = n.
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Therefore in the second iteration, P1 will execute less computational units than
P2. However P1 will perform much faster and P2 will perform much slower than
the model predicts, Fig. 1(b). Moreover the speed of P2 at the second iteration
is slower than P1 at the first iteration.

Based on the speeds of the processors demonstrated at the second iteration,
their constant performance models are changed accordingly, Fig. 1(c), and the
computational units are redistributed again for the third iteration as: d2

1
d2
2

= s1
1

s1
2
,

where d2
1 + d2

2 = n. Now the situation is reversed, P2 performs much faster than
P1. This situation will continue in subsequent iterations with the majority of the
computational units oscillating between processors.

a)

b) c)

Fig. 1. Predicted results from dynamic load balancing on two processors using constant
performance models. In (a) the problem size is small relative to available main memory
and balance is achieved. In (b, c) the problem size is large and may require paging, the
balancing algorithm causes further unbalance. (b) shows first and second iterations, (c)
shows second and third iterations. Outlined points represent performance predicted by
constant performance model.
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3.2 Experimental Results of the Traditional Load Balancing
Algorithm

The traditional load balancing algorithm was applied to the Jacobi method,
which is representative of the class of iterative routines we study. The program
was tested successfully on a cluster of 16 processors. For clarity the results pre-
sented here are from two configurations of 4 processors, Table 1. The essential
difference is that cluster 1 has one processor with 256MB RAM and cluster 2
has two processors with 256MB RAM.

Table 1. Specifications of test nodes. Cluster 1 consists of nodes: P1, P3, P4, P5.
Cluster 2 consists of nodes: P1, P2, P3, P4.

P1 P2 P3 P4 P5

Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon

Ram (MB) 256 256 512 1024 1024

The memory requirement of the partitioned routine is a n × di block of a
matrix, three n dimensional vectors and some additional arrays of size p. For 4
processors with an even distribution, problem sizes of n = 8000 and n = 11000
will have a memory requirement which lies either side of the available memory on
the 256MB RAM machines, and hence they are good values for benchmarking.

The traditional load balancing algorithm worked efficiently for small problem
sizes, Fig. 2(a, c). For problem sizes sufficiently large to potentially cause paging
on some machines the load balancing algorithm caused divergence as the theory,
in section 2.1, predicted, Fig. 2 (b,d).

Initially each processor has n/4 rows of the matrix. Processors P1 and P2

performed slowly in the first iteration and so are given very few rows in the
second iteration. However now in the second iteration they compute these few
rows quickly. In the third iteration, P1 is given sufficient rows to cause paging
and hence a cycle of oscillating row allocation ensues.

4 Dynamic Load Balancing Based on Accurate Evaluation
of Computation Load and Memory Hierarchy

Our dynamic load balancing algorithm is based on functional performance mod-
els [9], which are application centric and hardware specific. Functional perfor-
mance models reflect both processor and memory heterogeneity. In this section,
we describe how the load can be balanced with help of these models.

The functional performance models of the processors are represented by their
speed functions s1(d), ..., sp(d), with si(d) = d

ti(d) , where ti(d) is the execu-
tion time for processing of d elements on the processor Pi. As in traditional
algorithms, load balancing is achieved when ti ≈ tj , 1 ≤ i, j ≤ p. This can be
expressed as d1

s1(d1)
≈ d2

s2(d2)
≈ ... ≈ dp

sp(dp) , where d1 + d2 + ... + dp = n. These
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(a) Cluster 1 with n = 8000 (b) Cluster 1 with n = 11000

(c) Cluster 2 with n = 8000 (d) Cluster 2 with n = 11000

Fig. 2. Time taken for each of the 4 processors to complete their assigned computa-
tional units for each iteration 1,2,3, ... In (a) and (c) the problem fits in main memory
the load converges to a balanced solution. In (b) and (d) paging occurs on some ma-
chines and the load remains unbalanced.

Fig. 3. Optimal distribution of computational units showing the geometric proportion-
ality of the number of chunks to the speed of the processor

equations can be solved geometrically by noting that the points (di, si(di)): d1
si(di)

,
where c is a constant, lie on the intersection of the speed functions with a line
passing through the origin of the coordinate system (Fig. 3). This approach can
be used for static load balancing.

Functional performance models are built experimentally. Their accuracy de-
pends on the number of experimental points. Unfortunately, generating these
speed functions is computationally expensive, especially in the presence of pag-
ing. To create just 20 points of a function in Fig. 5(b) took approximately 1473
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seconds, 4 times longer then the actual calculation with a homogeneous distribu-
tion for 20 iterations. This forbids building full functional performance models
at run time. However, in this paper, we apply partial functional performance
models to dynamic load balancing of iterative routines. The partially built per-
formance models are piecewise linear approximations of the real speed functions,
s′i(d) ≈ si(d), which estimate the real functions in detail only in the relevant
regions [10]. The low cost of partially building the models makes it ideal for em-
ployment in self-adaptive parallel applications. The partial models can be built
during the execution of the computational iterative routine.

We modified the traditional dynamic load balancing algorithm, presented in
Section 2, using partial speed functions instead of single speed values. The partial
functions s′i(d) are built by adding an experimental point (dk

i , sk
i ) after each

iteration of the routine. The more points are added, the closer the partial function
approximates the real speed function in the relevant region. At each iteration,
we apply the balance criteria to find a new distribution dk+1

1 , ..., dk+1
p by solving

the system of equations: dk+1
1

s′
1(dk+1

1 )
≈ dk+1

2

s′
2(d

k+1
2 )

≈ ... ≈ dk+1
p

s′
p(dk+1

p )
, dk+1

1 + dk+1
2 +

... + dk+1
p + = n. In few iterations, our algorithm will adaptively converge to the

optimal data distribution, since s′i(d) → si(d). Let us outline how the partial
functions s′i(d) are constructed.

The first iteration. The speed of each processor is calculated as s0
i = n/p

ti(n/p) .
The first approximation of the partial speed function, s′i(d), is created as a
constant s′i(d) = s0

i , Fig. 4(a).

Subsequent iterations. The speed of each processor is calculated as sk
i =

dk
i

ti(dk
i )

. The piecewise linear approximations s′i(d) are improved by adding the

points (dk
i , sk

i ), Fig. 4(b). Namely, let {(d(j)
i , s

(j)
i )}mj=1, d

(1)
i < ... < d

(m)
i , be the

experimentally obtained points of s′i(d) used to build its current piecewise linear
approximation, then

– If dk
i < d

(1)
i , then the line segment (0, s

(1)
i )→ (d(1)

i , s
(1)
i ) of the s′i(d) approx-

imation will be replaced by two connected line segments (0, sk
i ) → (dk

i , sk
i )

and (dk
i , sk

i )→ (d(1)
i , s

(1)
i );

– If dk
i > d

(m)
i , then the line (d(m)

i , s
(m)
i ) → (∞, s

(m)
i ) of this approximation

will be replaced by the line segment (d(m)
i , s

(m)
i ) → (dk

i , sk
i ) and the line

(dk
i , sk

i )→ (∞, sk
i );

– If d
(j)
i < dk

i < d
(j+1)
i , the line segment (d(j)

i , s
(j)
i ) → (d(j+1)

i , s
(j+1)
i ) of s′i(d)

will be replaced by two connected line segments (d(j)
i , s

(j)
i ) → (dk

i , sk
i ) and

(dk
i , sk

i )→ (d(j+1)
i , s

(j+1)
i ).

4.1 Experimental Results

For small problem sizes (n = 8000, p = 4), our algorithm performed in much
the same way as the traditional algorithm. For larger problem sizes (n = 11000),
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(a) (b)

Fig. 4. Dynamic load balancing using partial estimation of the functional performance
model

(a) (b)

Fig. 5. Results of load balancing in the first 9 iterations using partial estimation of
the functional performance model for problem size n = 11000. (a) Time taken for each
of the 4 processors to complete an iteration. (b) Showing full functional performance
models and the near optimum distribution at the 9th iteration. The line intersecting
the origin represents the optimum solution and points converge towards this line.

our algorithm was able to successfully balance the computational load within a
few iterations (Fig. 5). As in the traditional algorithm, paging also occurred but
our algorithm experimentally fit the problem to the available RAM. Paging at
the 8th iteration on P1 demonstrates how the algorithm experimentally finds the
memory limit of P1. The 9th iteration represents a near optimum distribution for
the computation on this hardware. A plot of speed vs. problem size, Fig. 5(b),
shows how the computational distribution approaches an optimum distribution
within 9 iterations.
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5 Conclusion

In this paper, we have shown that traditional dynamic load balancing algorithms
can fail for large problem sizes on parallel platforms with memory heterogeneity.
They do not take into account memory hierarchy and use simplified models of
processors performance. We have shown that our dynamic load balancing algo-
rithm, based on models in which performance is a function of problem size, can
be used successfully with any problem size and on a wide class of heterogeneous
platforms.

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Number 08/IN.1/I2054.
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Abstract. In this paper, we present a distributed heterogeneous system
called OnDeGaS (On Demand Game Service), that fits the scalability
and latency requirements of MMOFPS networked games. To exploit plat-
form capabilities efficiently, the OnDeGaS system performs a mapping
mechanism that assigns the game sessions of a MMOFPS, taking advan-
tage of the specific available computational resources of individual nodes.
We show through simulation that this mapping mechanism is able to deal
with different heterogeneity conditions in the distributed area. It allows
the system to grow at any moment according to the existing demand,
while latency values are maintained under the acceptable threshold per-
mitted in MMOFPS games.

1 Introduction

Massively Multiplayer Online Games (MMOG) are the most popular genre in
the computer game world. They can be divided into three categories: MMORPG
Role Games, MMORTS based on Real Time Strategy and MMOFPS known as
First Person Shooter. The execution requirements vary with the way of playing
in each of them [11]. On the one hand, MMORPG and MMORTS can have
thousands of players in a single party, so bandwidth is an important feature for
supporting them [5]. On the other hand, in MMOFPS, players are divided into
many isolated game sessions, each with a handful of players, who are continuously
interacting. Thus, response latency is the key factor in this case. In this paper,
we focus on the optimization of MMOFPS games.

Traditionally, client-server systems have been the platforms to provide service
to massively networked games. However, when the number of players increases
this approach reaches its limits due to problems of scalability. The research
community has proposed some alternatives to overcome client-server limits with
decentralized structures where each machine contributes to, and benefits from,
a large service oriented network. The way to distribute the entire game into the
machines varies according to the category it belongs to. For MMORPG, some
authors present solutions [6,7,8] where the exploitation of the distributed area is
based on mapping the pieces of the splitted game world, or groups of players, into
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the distributed nodes. Other proposals of game distribution are focused on the
execution requirements of MMRPOG and MMORTS, such as solving cheating
problems [8]. In the case of MMOFPS, cheating is not a key issue to face because
it will potentially affect a single game service, having a negative impact for a
small set of players, and a duration of the order of minutes. Then, for MMOFPS
the research community focuses other challenges. Nharambe et al [3] proposes a
solution to assign game sessions to a pure P2P system. The increase in latency
time, inherent to this kind of architecture, is solved by proposing new rules in
many features of current MMOFPS games, such as the size of the AOI (Area
of Interest) of players in order to decrease the number of messages transferred
among players. These improvements need to be included in the internal code of
the game, which implies important implementation efforts.

In this paper, we propose a new system named OnDeGaS (On Demand Game
Service), devoted to execute the game sessions of a MMOFPS without affect-
ing the game’s internal code. OnDeGaS is a hybrid system that combines the
functionalities of a centralized server infrastructure with a distributed area com-
posed of players’ machines. A preliminary version of OnDeGaS was reported
in [1]. This proposal was designed taking into account a study of the execution
of MMOFPS’s servers, where real traces of player’s activity were monitored in
order to tune and analyze the proper values for the configuration parameters,
that determine the way to add and to remove game services in the distributed
area. In the present paper, we propose the mapping mechanism for OnDeGaS,
to assign game sessions to nodes, taking heterogeneity features into account such
as latency and available cores. To the best of our knowledge, only the work pre-
sented by Iosup et al. [9], is also based in the dynamic assignment of resources
in MMOFPS’s. However they propose a prediction based mechanism that does
not take into account the existing demand. The effectiveness of our approach,
based on the resource assignment taking into account current demand, has been
evaluated by means of simulation. Our results show that the OnDeGaS mapping
mechanism is able to deal with different heterogeneity conditions, by properly
exploiting the computational resources making up the distributed area of the
system. We also show that latency values of the entire game are maintained
under an acceptable threshold for MMOFPS in all cases.

The remainder of this paper is organized as follows. Section 2 describes the
OnDeGaS system and the proposed mapping mechanism. Section 3 evaluates
the OnDeGaS mapping performance taking system heterogeneity into account.
Finally, Section 4 outlines the main conclusions and future work.

2 OnDeGaS System Description

In this section, the OnDeGaS system is described globally, discussing the com-
ponents, their operation and implementation details.
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2.1 System Model

Figure 1 shows the OnDeGaS system model that is made up of two main areas:
one central area performing central services and a distributed area with several
zones composed of a set of heterogeneous nodes.

The central area is devoted to performing the global control of the system
and also to supplying players with services. Its components are the following:

– Master Server (MS) is the system’s main server and acts as the bootstrap
point.

– Waiting Queue (WQ) is a logical space in MS used to insert those players
who cannot be served due to overload situations. It is a transitory state for
players, who will be distributed in a short term.

– Zones Queue (ZQ) is a logical space in MS used to keep the information
about the created zones updated. This information is used for distributing
players to the already created zones.

Fig. 1. OnDeGaS system model

The distributed area is composed of players’ machines that are logically
grouped in zones. A Zone number i, Zi, has the following components:

– Zone Server (ZS) is the current server of the Zone.
– Replicated Zone Server (RZS) is the current replicated server of the Zone. It

has the role of implementing fault tolerance policies. The role of RZS is to
replace the ZS in case of failure. For this reason, players in the distributed
area play against the ZS and its RZS, and the ZS sends the game state to
both, players and the RZS. Players also update to RZS, to avoid losses of
the state of the game, when the RZS replaces ZS.
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Due to the inherent heterogeneity of nodes conforming the distributed area,
each player in the system is characterized by two determinant computational
attributes: latency in relation to the MS and the number of cores conforming
its CPU. Both attributes are taken into account to find the best ZS and RZS
for each Zone among the players waiting in the WQ. It is worth remarking that
memory is not taking into account due to the low requirements of the MMOFPS
games (order of tens MB per game service).

Regarding games, the following elements are distinguished:

– Player (Pi) is a client who connects to the system in order to play a
MMOFPS.

– Game Service (GS) is an instance of a game, where a set of players is con-
nected to play. Each GS will be hosted in the MS or in a single core of a ZS.
At any moment, each GS can be in two different states: active when players
are interacting in the GS, or over, when the GS has ended due to player
disconnections or caused by the rules of the GSs. Normally, in MMOFPS,
the number of players per GS is in the order of tens, while the duration of
the GS is in the order of a few minutes.

– Zones Notifications (ZN) are the set of N Zones that have sent a message
to the MS to notify that their respective GSs are over. In this case, the MS
will decide if the zone’s players can be reaccepted.

2.2 System Operation

The operation of the OnDeGaS platform is a hybrid between the classical cen-
tralized client-server model, performed in the central area, and the distributed
model, performed in Zones. The main idea of system operation consists of exe-
cuting a set of GSs in the central area until it reaches the limit of its capabilities.
When no more players can be accepted by the MS, new players are dynamically
distributed to avoid large waiting times and to provide scalability to the system.
Each Zone will execute N GSs as maximum, N being the number of cores of the
chosen ZS.

The system operation is controlled by the continuous execution of Alg. 1,
which has two input flows: new player connections (Pi) and zones (Zi) that have
ended their GS and want to enter the MS. At each iteration the MS checks its
state (MS.state). According to this, the two following cases are considered:

1. MS.State() == OVERLOAD, If the MS is overloaded, each new player
(Pi), will be added to the WQ queue. Next, the MS checks if the number of
players in the WQ is greater than or equal to a predefined value α, or whether
the uptime of the WQ is greater than or equal to a predefined value β, too.
If either of these two conditions is true, the algorithm tries to distribute all
players located in the WQ, with function MS.Distribute Players (see Alg.
2), to one already created zone in ZQ. If the previous function fails, then the
MS will create a new Zone with function MS.Create Zone (see Alg. 3).
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Input: ∀Pi connecting to MS
Input: ZN = {Zi, Zi+1, . . . , Zn−i, Zn} notifying to MS

while True do
switch MS.State() do

case MS.State() == OVERLOAD
if ∃ Pi then MS.Enqueue(Pi,WQ);
if (WQ.size() ≥ α or WQ.uptime() ≥ β) then

if (MS.Distribute Players(WQ,ZQ) == FALSE) then
Zi=MS.Create Zone(WQ);
ZQ=ZQ+{Zi};

endsw
case MS.State() == NOT OVERLOAD

if WQ.uptime() ≥ β then
forall the Pi in WQ do

MS.Accept(Pi);
end

if ZN �= ∅ then MS.Reaccept(Pi);
if ∃ Pi then MS.Accept(Pi);

endsw

endsw

end

Algorithm 1. OnDeGaS main Algorithm

The MS.Distribute Players function (see Alg. 2) looks for those zones of
ZQ whose ZS has at least one free core (ZS.freeCores()). If there are available
zones, the function will select the one which has the lowest latency between
the respective ZS and the MS (MS.lowestLatency()). Then the ZS and RZS
of the selected Zone will accept all players located in the WQ and finally, a
boolean is returned.

The Create Zone functionality (see Alg. 3) executes the lowestLatency
function to find the best ZS and RZS, in latency and computational resource
terms. Moreover, the function ensures that RZS is able to serve at least the
same number of GSs as the ZS to avoid problems when the fault tolerance
mechanisms acts (if statement with function swap). Then, all players in the
WQ are linked to the new ZS/RZS (ZS/RZS.accept()) with the aim of RZS
keeping the same information as the updated ZS. Thus, a fault tolerance
mechanism is maintained by the system. Then, a Zone Zi comprises the ZS,
the RZS and the set of players previously located in the WQ.

2. MS.state() == NOT OVERLOAD. When the MS is not overloaded,
Alg. 1 evaluates the three following conditional statements:
– The first condition evaluates if the uptime of the WQ is greater than or

equal to β; if it is, players located in the WQ will be accepted to play in
the MS (MS.accept()). This acceptance flow acts like a FIFO, the first
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Input: ZQ,WQ
Output: Boolean

MS.Distribute Players(ZQ,WQ):
begin

Available Zones = AZ = ∅;
forall the ((ZS and RZS) ∈ Zi) ∈ ZQ do

if (ZS.freeCores() and RZS.freeCores()) then AZ =AZ +{Zi};
end
if (AZ!= ∅) then

Zi=MS.lowestLatency(AZ);
Zi.Accept(WQ);
return TRUE;

else
return FALSE;

end

end

Algorithm 2. OnDeGaS Distribute Players function

Input: WQ
Output: Zi

MS.Create Zone(WQ):
begin

ZS=MS.lowestLatency(WQ);
RZS=MS.lowestLatency(WQ-{ZS});
if (ZS.freeCores() > RZS.freeCores()) then swap(ZS,RZS);
ZS/RZS.accept(WQ);
Zi = {ZS ∪ RZS};
return Zi;

end

Algorithm 3. OnDeGaS Create Zone function

player in the WQ queue is the first to be connected to the MS if it has
enough space.

– The second conditional statement gives priority of entry into the MS to
players of those zones that sent an over message to notify that they had
finished the GS, and wanted to start another GS in the MS. This happens
whenever a round of the game has finished and players are waiting for
the next round. In this case, if the set of notifying zones, ZN , is not
empty, the MS executes the Reaccept function. Note that distributed
players are playing continuously in the MS or the zones, and the time
transitions from WQ to the zones, and from the zones to the MS are of
the order of seconds, which is an acceptable delay for the players.

– The last conditional statement allows to connect new players to the MS.
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2.3 Implementation Issues

The following needs to be considered for the proper performance of the system:

Lowest Latency Functionality. lowestLatency function is based on a loop
that checks the latency of all players located in the WQ (case Alg. 3) or all the
ZS located in the ZQ with respect to the MS (case Alg. 2). Then, it selects the
closest ZS or Zone to the MS to assign the players located in the WQ respectively.

System Overload State. To determine the system overload state, real traces
of player’s activity of a MMOFPS have been monitored and analyzed during
two months, which allowed us to verify that the state of system overload is
determined by the number of concurrent players playing in the MS. Many authors
also corroborate this [2,5,11], as it has been proved experimentally that the
number of concurrent players is directly related to the CPU and network usage.

Free Cores Functionality. In Alg. 2 and 3, the freeCores function is used.
This function returns the number of free cores of the ZS or RZS (depending on
which node executes the function). The studies carried out by Ye and Cheng
in [11] show that with an idle processor, is possible to provide a MMOFPS
with QoS easily. Thus, if the number of GSs per core was increased the QoS
would decrease. Likewise, our system assumes that the player’s computational
resources are totally dedicated to the MMOFPS and therefore, it is feasible
to take advantage of all these computational resources of a player. Thus, the
maximum number of GSs that a Zone is able to execute is equal to the number
of cores of the ZS, given that, a ZS reserves a core to run its own GS when the
ZS is involved in a player role, apart from the ZS role.

3 Experimental Results

In this section, experimentation is conducted to demonstrate the feasibility and
good performance of the proposed mapping mechanism for OnDeGaS system.
The experimentation was performed through simulation using SimPy [10]. SimPy
is a discrete-event simulation language based on standard Python. SimPy tools
have been used to implement nodes of the platform, which can fulfill four distinct
roles: player, ZS, RZS and MS. The SimPy procedures allow random behavior
of the simulation to be created to represent the real behavior of a player.

Each simulation consists of 100, 000 player connections to the MS. The con-
nections are sequential with constant inter-arrival time (≈ 1 second) to submit
the MS to a constant stress situation or constant peak load, in order to ver-
ify that the distributed area is dynamically adapted to the on-demand queries
of players. When the MS reaches its limit, 2, 000 concurrent players, (since the
computational resources of a typical single machine server can support 2, 000 to
6, 000 concurrent clients [7]), no more players will be accepted, and new ones will
be distributed to zones. Another important issue is the calculus of the players’
latency against MS. This is determined by a triangulated heuristic, delimiting
the 2-Dimensional Euclidean Space to (x = [−110, +110], y = [−110, 110]). This
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methodology is based on the relative coordinates explained in [4]. Furthermore,
each player has a lifetime determined by a Weibull distribution scaled from 0 sec-
onds up to 24 hours. For the parameters α and β used in Alg. 1, we considered the
values of 32 players and 120 seconds respectively, it having been demonstrated in
[1], that they are appropriate values to ensure a good performance of the whole
system taking the characteristics of real MMOFPS into account. The length of
a GS is 900 seconds [3] on average, following an exponential distribution.

To configure a heterogeneous system, we considered that a player can have 2,
4 or 8 cores, where ω2, ω4 and ω8 are the percentages of players with this number
of cores in the system. Let ωmax = max(ω2, ω4, ω8) and ωi and ωj the remaining
two percentages excluding this ωmax. We define the heterogeneity degree of the
system (het degree) with equation (1).

het degree = 1−
(ωmax − ωi)

ωmax
+

(ωmax − ωj)
ωmax

2
(1)

The values of het degree range from 0 to 1, where 0 means that is a homo-
geneous system, while 1 corresponds to a system with the same percentages of
each type of players (ω2 = ω4 = ω8), it means totally heterogeneous.

According to the previous assumptions and functionalities, in the next Sub-
section, the performance provided by the mapping mechanism of OnDeGaS ac-
cording to the het degree is shown. The cases of the study are: ability to scale
the distributed area and the QoS of the system, measured by the zone’s average
latency and the waiting time for players located in the WQ.

3.1 Performance Evaluation

The scalability of the OnDeGaS system indicates its ability to manage more
zones on demand, while the QoS of the whole system is maintained.

Table 1 shows the average (AVG) and standard deviation (SD) for the number
of created zones and QoS parameters under two conditions of heterogeneity:
(a) h d=0 (het degree=0 ), where all players have two cores (ω2 = 100%, ω4 =
ω8 = 0%) and, (b) h d=1 (het degree=1 ) with ω2 = ω4 = ω8. In each case
we evaluated 100 different simulations. As can be observed in Zones column of
Table 1, the distribution performed by OnDeGaS is able to exploit the additional
cores of the heterogeneous system, as it creates a lower number of zones with
more GSs. In practice, this will suppose a significant decrease in the overhead
for the management of the set of ZS and RZS in the distributed area.

Regarding QoS, Table 1 shows similar average in the latency values in both
cases, but the standard deviation vary between the homogeneous and heteroge-
neous case. This is due to the fact that in the heterogeneous, fewer zones are
created and this behavior means that the set of potential ZS to distribute play-
ers located in the WQ was smaller than the homogeneous case. However, it is
worth remarking that in all the cases, both systems, latency values are below
the maximum acceptable threshold for MMOFPS (180 ms).
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Table 1. System performance analysis

Zones (No.) Latency (ms) WQ Time (sec.) FT Gain (sec.)
h d = 0 h d = 1 h d = 0 h d = 1 h d = 0 h d = 1 h d = 0 h d = 1

AVG 888.38 395.84 87.43 87.79 30.16 24.40 1007.865 1007.865

SD 193.37 76.92 0.293 0.955 4.70 6.30 166.65 166.65

For the waiting time of players located in the WQ, the experiment reveals a
significant impact on the average, depending on the number of cores. Whenever a
new Zone is created, a new ZS and RZS must be searched for. This process takes
30 seconds on average. This situation happens frequently in the homogeneous
case (considering 2 cores) as indicated by the average of 30.16 sec. Nevertheless,
this happens less often in the heterogeneous case as more players are mapped to
zones already created, 24.40 sec. in this case.

It is also shown in Table 1 the benefits of the fault tolerance policy (FT Gain)
that is implemented by the use of the RZS. On average, implementing zones with
a single RZS represents an extra lifetime of ≈ 16 minutes for zones, which means
an average increase of 22% of the zones’ lifetime. The standard deviation points
out a small deviation of ≈ 3 minutes, caused by the player’s lifetime determined
by a Weibull distribution. Thus, the heterogeneity of the system has not any
influence in the effectiveness of the fault tolerance mechanisms.

To expand the study of the influence carried out by heterogeneity of the
distributed area, we evaluated its effects in the number of created zones, as a
representative case. Figure 2 points out its trend according to different values
of het degree, where the total number of cores in the whole system and the
percentage values for ω2, ω4 and ω8 vary. Figure 2a corresponds to a system
where the majority of the players have 2 cores (ωmax = ω2) and the weights
have the relation: ω2 ≥ ω4 ≥ ω8. In the same way, Figure 2b, shows the results
for a system with a relation of ω2 ≤ ω4 ≤ ω8, where ωmax = ω8. As can be
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Fig. 2. Number of zones created in function of het degree
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observed, the number of cores and their distribution among players drastically
determines the number of zones created in both plots. When ωmax = ω2, the
number of created zones is, in most of the series, larger than when ωmax = ω8.
Thus, the system creates new zones only when the cores of the existing zones
are busy. It can also be seen that the number of created Zones increases in all
cases when the total number of cores is also increasing. Regarding the het degree,
there is a different trend in the plots of the figure. When ωmax = ω2, the number
of zones increases when het degree decreases as most players have only 2 cores.
However, the trend is the opposite when ωmax = ω8, as most players have 8
cores. Thus, we can conclude that the OnDeGaS mapping system is able to
deal with different heterogeneity conditions by properly exploiting the system’s
computational resources.

4 Conclusion and Future Work

In this paper, we presented a distributed heterogeneous system called OnDeGaS
(On Demand Game Service), that fits the scalability and latency requirements of
MMOFPS networked games. The proposed new system is made up of a Master
Server (MS) carrying out centralized functionalities, and several zones that make
up a distributed area. Whenever the MS is overload, the system scales by creating
zones to execute game sessions. Zones are created taking latency with respect to
the MS and the available number of cores composing their CPUs into account.

By means of simulation, experimental results show that the system is able
to scale according to the demand. Moreover, it has been demonstrated that the
number of created zones depends directly on the heterogeneity degree (het degree)
value. For higher het degree values, fewer zones are created, thus avoiding ex-
cessive fragmentation of the system. Likewise, it has also been shown that this
scalability does not damage the average latency, which is always below the maxi-
mum threshold allowed in MMOFPSs. Furthermore, the waiting time for players
located in the WQ is reduced as the het degree of the system is increased.

In future work, we are interested in improving the fault tolerance taking the
het degree characteristics of the system into account and also implementing mar-
ket policies to reward the ZS and RZS. Another important improvement would
be to merge the current simulator with a network simulator, to make a deeper
study of the network problems derived from MMOFPS gaming.
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Abstract. In this paper we explore computing max-plus algebra opera-
tions and discrete event simulations on parallel hierarchal heterogeneous
platforms. When performing such tasks on heterogeneous platforms pa-
rameters such as the total volume of communication and the top-level
data partitioning strategy must be carefully taken into account. Choice
of the partitioning strategy is shown to greatly affect the overall perfor-
mance of these applications due to different volumes of inter-partition
communication that various strategies impart on these operations. One
partitioning strategy in particular is shown to reduce the execution times
of these operations more than other, more traditional strategies. The
main goal of this paper is to present benefits waiting to be exploited
by the use of max-plus algebra operations on these platforms and thus
speeding up more complex and quite common computational topic areas
such as discrete event simulation.

Keywords: Data Partitioning, Heterogeneous Computing, Parallel
Computing, Tropical Algebra, Max-Plus algebra, Discrete Event Sim-
ulation, Hierarchal Algorithms, Square-Corner Partitioning.

1 Introduction

Max-plus algebra is a relatively new field of mathematics which grew from the
advent of tropical geometry in the early 1980s and has since been shown to
have many diverse application areas. MPA is (along with min-plus algebra) a
sub-category of tropical algebra. MPA obeys most laws of basic algebra with the
operations of addition (a+b) and multiplication (c×d) replaced by the operations
max(a, b) and addition (c+d) respectively. Min-plus algebra is similar, but with
the maximum operation replaced with a minimum function.

Discrete event simulation is an extremely expansive area of continuing and
intense research which may broadly be characterised as a collection of tech-
niques and methods which when applied to the study of discrete-event dynamical
systems generate sequences which characterize system behaviour. This includes
modelling concepts for abstracting essential features of a system into a set of
precedence and mathematical relationships, which can be used to describe the
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system and more importantly for system design, to predict behaviour, perfor-
mance, and drawbacks/bottlenecks. DES is used to design and model a vast
number of systems including travel timetables, operating systems, communica-
tion networks, autonomous guided vehicles, operating systems, CPUs and other
complex systems. There are many approaches to designing DES including Petri
nets, alphabet based approaches, perturbation methods, control theoretic tech-
niques and expert systems design. Recently MPA and other techniques involving
both logical and algebraic components have shown to be capable of simplifying
simulations while maintaining the desired outputs [11]. One such method is ex-
plored later in this paper.

The square-corner partitioning (SCP) is a top-level partitioning method for
parallel hierarchal heterogeneous computing which when applied to problems
such as matrix-matrix multiplication (MMM) and all linear algebra kernels re-
ducible to MMM, optimally reduces the total volume of communication (TVC)
between computing entities (processors, clusters, etc.) when the power ratios
between entities meet certain, yet numerous and very common ratios. This par-
titioning also has other benefits including simpler communication schedules and
the possibility of overlapping communication and computation [2,3]. As this pa-
per demonstrates the SCP can extend these benefits to many application areas.

The rest of this paper is outlined as follows: In Section 2 we review and
formally define the MPA, and introduce a specific approach for solving DES
problems. We then outline the SCP and its application to these operations on
heterogeneous parallel platforms. Section 3 presents results of MPI experiments
applying the SCP to MPA operations and a DES example which uses a mixed
algebraic/logical approach. Section 4 presents our conclusions and future work.

2 Background and Related Work

2.1 Max-Plus Algebra

Max-plus algebra is a relatively new field in mathematics, dating back approxi-
mately 30 years. It has since been shown to have several application areas such
as discrete event simulation, dynamic programming, finite dimensional linear
algebra, modelling communication networks, operating systems, combinatorial
optimization, solving systems of linear equations, biological sequence compar-
isons and even problems such as crop rotation [4,8,9,11,13]. In many scientific
and computational applications the structure of MPA matrix multiplication is an
important aspect. Additionally, higher powers of MPA matrices are of significant
interest and necessary in many application areas [5,11].

MPA is based on replacing the “normal” algebraic addition operation with a
binary max function, and the “normal” multiplication operation with addition.
Formally, if we define ε

def= −∞ and e
def= 0 then denote Rmax to be the set R∪{ε}

then for elements a, b ∈ Rmax, the operations ⊕ and ⊗ are defined respectively
by the following.

a⊕ b
def= max(a, b) and a⊗ b

def= a + b (1)
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Therefore, a⊕ ε = max(ε, a) = a and a⊗ ε = ε + a = ε. We can now formally
define max-plus algebra as Rmax = (Rmax,⊕,⊗, ε, e). Finally, the ⊗ operation
has priority over the ⊕ operation.

MPA matrices are denoted Rn×m
max , where n and m are the matrix dimensions.

For the MPA matrices A ∈ Rn×m
max and, B ∈ Rm×q

max the matrix product A⊗ B is
the same as in normal linear algebra, but following the operation substitutions
in (1). From this, matrix powers are straight-forward, and represented A⊗k for
the kth power of A. As max-plus matrix multiplication and max-plus matrix
powers are integral parts of many applications of MPA we further discuss this
in Section 3.1.

2.2 Discrete Event Simulation

Discrete event simulation is a very broad and well-studied field and therefore
the purpose of this Section is to acquaint the reader with the specific technique
utilized in this paper. Briefly, DES is a collection of techniques and methods
which when applied to the study of a discrete-event dynamical system generates
sequences which characterize the system behaviour. This includes modelling con-
cepts for abstracting essential features of the system into a set of precedence and
mathematical relationships, which can be used to describe the system and more
importantly for design, and to predict its behaviour, performance, and draw-
backs/bottlenecks. For more see any good DES text such as [7].

As most DES algorithms are computationally intensive, efforts to parallelize
them are numerous. The complexity of most practical DES algorithms however
poses numerous obstacles in effective and efficient parallelization. Amongst these
are synchronization and timing inconsistencies, synchronous vs. asynchronous
simulation, deadlock avoidance and detection, conservative vs. optimistic simu-
lation, recovery strategies, and memory management to name a few [6].

In Section 3.2 we present results of the parallelization of a DES modelling
technique which although as presented in [13] is sequential, lends itself to par-
allelization due to a computationally intensive algorithmic core which can be
efficiently ported to hierarchal heterogeneous parallel platforms. This core is
very similar to a max-plus matrix operation but using logical and/or operations
instead of max-plus operations. We employ this technique — called the Matrix
Discrete Event Model (MDEM) — using MPI and utilizing the SCP [2,3], for
the core routine.

The Matrix Discrete Event Model. The authors of [13] note that the de-
sign, simulation, and analysis of large-scale, complex systems using existing DES
techniques such as Petri nets, alphabet-based approaches, perturbation methods,
control theoretic techniques, and expert systems design are often difficult to im-
plement and are very labour and time intensive. The MDEM is a hybrid system
with logical and algebraic components that seeks to make these processes more
efficient. Although the examples in [13] focus on manufacturing systems, the
formulation is also applicable to many DES situations such as travel timeta-
bles, communication networks, autonomous guided vehicles, operating systems,
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and many others. Clearly the number of degrees of freedom, state possibilities,
and general complexity of such systems often result in simulations with several
thousands (or more) event components.

The MDEM approach is a rule-based model described by four equations: the
model state equation, start equation, resource release equation, and the product
output equation. Each of these equations are logical, only using or, and, and
negation operations. Additionally, all vectors and matrices in these equations
are binary — only composed of 0’s and 1’s. For instance, the vector which is the
output of the start equation contains a ‘1’ for each job which is to be started at
the given state of the simulation, and a ‘0’ otherwise.

The simulation itself is carried out by first calculating initial conditions from
the description of the system. The core of the simulation is carried out by the
successive calculation of ‘firing vectors’ which carry the simulation to the next
state. This amounts to the repeated calculation of an equation which has the
form of a matrix-matrix multiplication except that since the approach of the
MDEM technique is hybrid — having both algebraic and logical components —
the algebraic multiplication and addition operations are replaced with logical
‘or’ and ‘and’ operations respectively. It is this step that constitutes the bulk of
the calculation time for the MDEM technique as all other calculations only need
to be carried out once.

2.3 The Square-Corner Partitioning

The square-corner partitioning is a partitioning method for parallel hierarchal
heterogeneous computing which when applied to problems such as matrix-matrix
multiplication and all linear algebra kernels reducible to MMM reduces the total
volume of communication (TVC) between clusters optimally when the power
ratios between clusters is greater than 3:11. This partitioning also has other
benefits such as simplified communication schedules and the possibility of over-
lapping communication and computation. A defining feature of the SCP is that
it removes the restriction that all partitions be rectangular, which at first may
seem unintuitive [12].

An existing state-of-the-art heterogeneous partitioning scheme (referred to
here as the straight line partitioning or SLP) which does carry such a restriction
is introduced in [1] which presents a column based partitioning based on that
of [10]. The SLP balances the workload between processors of different speeds
in an attempt to minimize the TVC between processors. First the matrix is
partitioned into rectangles proportional in area to the speed of each processor.
These rectangles are then arranged into columns in a defined manner. The TVC
is proportional to the sum of the half-perimeters s of each rectangle, given by (2),
where p is the number of processors and hi and wi are the height and width of
the rectangle assigned to processor i, respectively.

1 In this Section the words processor and cluster are used more or less interchange-
ably as some papers simulate individual clusters with processors for simplicity of
modelling/verification purposes.
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s =
p∑

i=1

(hi + wi) (2)

Since the perimeter of any rectangle enclosing a given area is minimized when
that rectangle is a square, there is a natural lower bound l of (2), shown by (3),
where ai is the area of the partition belonging to processor i.

l = 2×
p∑

i=1

√
ai (3)

In considering the case of two clusters, we can inspect the case with relative
speeds such that cluster 1 receives a rectangle of area a1 = 1 − ε, and cluster 2

Fig. 1. The square-corner partitioning (for two partitions) and the necessary commu-
nication steps. Shaded areas belong to the respective clusters. Clearly if ε = 0, no
communication is necessary at all.

Fig. 2. Comparison of the total volume of communication between two clusters for the
square-corner and straight-line partitionings
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receives a rectangle of area a2 = ε, where ε > 0 is an arbitrarily small number.
In order to partition the unit matrix into two rectangles using the straight line
partitioning, a line of length 1 must divide the matrix. Using (2) this results in
a sum of half-perimeters equal to 3, regardless of the value of ε, but (3) shows
that the lower bound can get arbitrarily close to 2, (as ε→ 0).

A glance at Figure 1 illustrates that for the SCP (unlike the SLP), as ε→ 0,
the sum of half-perimeters — and therefore the TVC — approaches 2, showing
that the SCP is optimal. A more detailed discussion and proof are given in [2].

Figure 2 shows the TVC of the SCP compared to that of the SLP. It is clear
that when the power ratio between clusters is 3:1, the TVC values are equal,
and for ratios above 3:1 the SCP TVC is less. By the time the ratio reaches 15:1,
the SCP TVC is exactly half that of the SLP.

3 MPI Experiments

3.1 Max-Plus MMM Using the Square-Corner Partitioning

As outlined in Section 2.1 we experimented with performing a MPA MMM using
C and MPI. We used a two cluster heterogeneous platform with power ratios
between clusters ranging from 1:1 to 6:1. For all experiments we use double preci-
sion and N = 7,000. Local computations utilized BLAS. The local interconnect
was 2Gb/s Infiniband and the inter-cluster interconnect was 1Gb/s Ethernet.
Figure 3 shows the communication times for both the SCP and SLP partition-
ings. Firstly, it can be seen that as expected the SCP does not show improve-
ment in communication time until the power ratio is 3:1, as this is when the
SCP results in a lower TVC as shown in [2]. After this (as the system becomes
more heterogeneous), the gap between the two communication times widens, and
would be expected to widen further.

Figure 3 shows the resulting difference in execution times between the SCP
and SLP. As expected we also see the crossover around ratio 3:1, and note that
the lower TVC that the SCP brings also results in lower execution times for
ratios above 3:1. Again this gap would be expected to widen.

It is worth noting that since carrying out a matrix power operation An

amounts to nothing more than n repeated matrix multiplications, carrying out
matrix power operations would also benefit from the above.

3.2 The Square-Corner Partitioning for Discrete Event Simulation

In Section 2.2 we outlined the MDEM model for discrete event simulations. We
use the same experimental platform as in Section 3.1 to demonstrate results on a
parallel, heterogeneous platform of the MDEM model. We utilize both the SLP
and the SCP for the core routine which is a matrix “and/or” multiplication. We
generate the initial conditions so that the core routine involves a large system
(N = 5000). All initial calculations and cleanup are carried out on a single
processor as these calculations are carried out only once and make up a very
small percentage of the overall execution time.
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Fig. 3. Communication times (left) and execution times (right), Max-Plus MMM,
N = 7000

Fig. 4. Total execution times, MDEM DES model, N = 5000

Figure 4 shows the execution times for the MDEM DES using both partition-
ing techniques. All times are averaged over five runs. It is seen that the use of
the SCP for the core kernel of the MDEM DES algorithm significantly reduces
the execution time for ratios above 3:1. Again the expected crossover occurs near
the ratio of 3:1. The overall shapes of the curves are similar to those of Section
3.1 as the “and/or” MMM in the MDEM involves a similar computational cost
as the max-plus MMM.

4 Conclusion and Future Work

We found that the initial top-level data partitioning significantly affects overall
execution time due to the total volume of inter-cluster communication involved.
Notably the square-corner partitioning outperformed the straight-line partition-
ing in all cases. Future work involves applying similar strategies to speed up
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more complex routines on parallel hierarchal heterogeneous platforms and ex-
perimenting on more complex networks.
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Foreword

In response to the stagnant growth in conventional, single-processor performance
increased on-chip parallelism is seen as a solution to the demands for high perfor-
mance and power efficiency for general purpose, mainstream computing. While
many general-purpose architectures with a moderate number of processing cores
are already on the market, architectures with much more significant on-chip
parallelism are generally expected, as is already seen for many special purpose
processors. How the processing power of such many-core systems can be lever-
aged for general purpose computing is a most critical and completely open is-
sue, as witnessed by the lack of convergence towards standard architecture and
programming models. A major challenge for the coming years therefore is the
design of highly parallel single-chip architectures that can support manageable
programming abstractions to allow the mainstream programmer to take advan-
tage of the processing power furthered by the technological developments.

The workshop on Highly Parallel Processing on a Chip (HPPC), now in its 4th
incarnation, is dedicated to the interface between single-chip/node multi/many-
core architectures and programming paradigms, models, and languages towards
supporting parallel algorithms and applications development in an efficient and
manageable way. HPPC is a forum for bold, new ideas on architectural orga-
nization (general- and special-purpose processors, heterogeneous designs, mem-
ory organization, on-chip communication networks, etc.), parallel programming
models, languages, and libraries, many-core parallel algorithms, and application
studies on both existing and envisaged architectures.

In response to the call-for-papers that was issued early in 2010, HPPC 2010 re-
ceived 18 submissions that were all of relevance to the general workshop themes.
Based on relevance and quality of the submissions as judged by the program
committee (which did most of the reviewing with few external reviewers) this
year a slightly higher number of papers than in previous years were selected
for presentation by the program chairs. This made for an acceptance rate of
44%, which is not a measure of anything, anyway, in case this bothers anyone.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 73–75, 2011.
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The workshop organizers and program chairs thank sincerely all contributing
authors, and hope that they will also find it worthwhile to submit contributions
next year. Most contributions received four reviews (which is what HPPC strives
for), a few having only three (which we regret), and were thus given an all in
all fair consideration. The members of the program committee are likewise all
thanked for the time and expertise they put into the reviewing work, and for
getting it done within the rather strict time limit.

The Euro-Par 2010 workshop day featured a number of workshops, and was
very lively, well-attended and generally well-organized. The HPPC workshop
was conducted in an informal atmosphere and gave, hopefully, enough room for
interaction and discussion between presenters and audience. HPPC 2010 had a
high, cumulative attendance of more than 70. In addition to the 8 contributed
talks, the workshop featured two longer, invited talks by Rolf Hoffmann (on “The
massively parallel computing model CGA”) and Jim Held (on “Single-chip Cloud
Computer, an IA tera-scale research processor”). The workshop organizers thank
all attendees, who contributed much to the workshop with questions, comments
and discussion, and hope they found something of interest in the workshop, too.
We also thank the Euro-Par organization for creating the opportunity to arrange
the HPPC workshop in conjunction with the Euro-Par conference, and of course
all Euro-Par 2010 organizers for their help and support both before and during
the workshop. HPPC sponsors VTT, University of Vienna, and Euro-Par 2010
are warmly thanked for the financial support that made it possible to invite Rolf
Hoffmann and Jim Held, both of whom we sincerely thank for accepting our
invitation to speak and for their excellent talks.

These post-workshop proceedings include the final versions of the presented
HPPC 2010 papers (accepted papers not presented at the workshop will not
be included in the proceedings, but HPPC 2010 had all authors present and
presenting), taking the feedback from reviewers and workshop audience into
account. In addition to the reviews by the program committee prior to selection,
an extra, post-workshop (blind) “reading” of each presented paper by one of the
other presenters has been introduced with the aim of getting fresh, uninhibited
high-level feedback for the authors to use at their discretion in preparing their
final version (no papers would have been rejected at this stage – bar major
flaws). This idea was introduced with HPPC 2008, and will be continued also
for HPPC 2011.

The contributed papers are printed in the order they were presented at the
workshop. A full version of the invited talk by Rolf Hoffmann and an abstract
of Jim Held’s talk have also been included in the proceedings. Thematically, the
contributed papers cover aspects of memory organization (“Evaluation of low-
overhead organizations for the directory in future many-core CMPs” by Ros and
Acacio), programmability (“A work stealing scheduler for parallel loops on shared
cache multicores” by Tchiboukdjian, Danjean, Gautier, Le Mentec and Raffin,
“Resource-agnostic programming for many-core microgrids” by Bernard, Grelck,
Hicks, Jesshope and Poss, “Programming heterogeneous multicore systems us-
ing Threading Building Blocks” by Russell, Keir, Donaldson, Dolinsky, Richards
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and Riley), applications and optimization for accellerators and special processors
(“Fine-grain parallelization of a Vlasov-Poissoin application on GPU” by Latu,
“Highly parallel implementation of Harris corner detector on CSX SIMD archi-
tecture” by Hosseini, Fijany and Fontaine, “Static speculation as post-link opti-
mization for the Grid Alu Processor” by Jahr, Shehan, Uhrig and Ungerer), and
on-chip networks and routers (“A multi-level routing scheme and router architec-
ture to support hierarchical routing in large network on chip platforms” by Hols-
mark, Kumar and Palesi).

The HPPC workshop is planned to be organized again in conjunction with
Euro-Par 2011.

Sponsors

VTT, Finland http://www.vtt.fi
University of Vienna http://www.univie.ac.at
Euro-Par http://www.euro-par.org
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Abstract. The Global Cellular Automata Model (GCA) is an extension
of the Cellular Automata Model (CA). Whereas in the CA model each
cell is connected via fixed links to its local neighbors, in the GCA model
each cell is connected via data dependent dynamic links to any (global)
cell of the whole array. The GCA cell state does not only contain data
information but also link information. The cell state is synchronously
updated according to a local rule, modifying the data and the link in-
formation. Similar to the CA model, only the own cell state is modified.
Thereby write conflicts cannot occur. The GCA model is related to the
CROW (concurrent read owners write) model and it can be used to de-
scribe a large range of applications. GCA algorithms can be described in
the language GCA-L which can be compiled into different target plat-
forms: a generated data parallel multi-pipeline architecture, and a NIOS
II multi-softcore architecture.

Keywords: Global Cellular Automata, Parallel Programming Model.

1 Introduction

Since the beginning of parallel processing a lot of theoretical and practical work
has been done in order to find a parallel programming model (PPM) which
fulfills at least the following properties

– User-friendly: easy to model and to program
– System-designer-friendly: parallel processing target architectures supporting

the model are easy to design and to implement, and programs can easily be
translated into these architectures

– Efficient: The applications can efficiently be executed on the target
architecture

– Platform independent: The PPM can also be mapped (interpreted, simu-
lated) without much effort onto other standard platforms and can there be
executed with a satisfying performance.

In the following sections such a model (Global Cellular Automata) will be de-
scribed, and how it can be implemented and used. This model was introduced in
[1], then further investigated, implemented, and applied to different problems.
This paper is based on the results of former publications, mainly [1] [2] [3] [4]
[5] [6] [7] [8] [9] [10].
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2 The GCA Model (Global Cellular Automata)

The definition of the GCA model was inspired by the CA (Cellular Automata)
model. The CA model consists of an array of cells arranged in an n-dimensional
grid. Each cell (also called the “Center Cell” is connected to its local neighbors
belonging to the neighborhood, e.g. to North, East, South, West. The next
state of the center cell is defined by a local rule f residing in each cell: C ←
f(C, N, E, S, W ). All cells are applying the same rule synchronously and thereby
a new generation of cell states is defined. As a cell changes only its own state,
no write conflicts can occur which makes the model simple and elegant. Many
applications with a local neighborhood can nicely be described as a CA, and
CAs can easily be simulated or implemented in hardware.

The idea for the GCA model was (1) to retain the property that a cell can
only modify its own state, and (2) to introduce more flexibility. Flexibility was
obtained by using (2a) computed dynamic links to the neighbors and (2b) by
allowing any cell in the array to be a neighbor (global neighbors). Thus a GCA
can informally be described as follows:

A GCA consists of an indexed set of cells (e.g. an n-dimensional array). The
cells’ states are updated synchronously according to a local rule. Each cell has
k global neighbors which can dynamically be changed by the local rule (Fig.
1). Write conflicts cannot occur, therefore the model can easily be supported by
hardware for a large number of cells. A GCA is initialized by an initial state
for each cell (initial configuration CFG(t=0)). The result of the computation
is the state of the finial configuration (all cell states) at time-step tfinal. We
can also speak of a “GCA algorithm”, meaning the transformation of the initial
generation to the final generation.

Three model variants are distinguished, the basic model, the general model
and the condensed model. They are closely related to each other and can be
transformed into each other. It depends on the application or the implementation
which one will be preferred.

Basic model. The cell state is a composition (data, pointer) = (d, p) (Fig.
2a). The pointer p is used to access the global neighbor p = k∗. The remote
state (d∗, p∗) is read from the global cell via the dynamic link. Then the new
state components are computed: d′ = e(d, p, d∗, p∗) and p′ = g(d, p, d∗, p∗). Then

dynamic link, 
read access

only

cell C

(a) (b)

dynamic link, 
read access

only

cell C

(a) (b)

Fig. 1. (a) In generation t each cell is connected to k neighbors (e.g. k = 3), and
it selects k new neighbors. (b) In generation t + 1 each cell is connected to its new
neighbors.
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Fig. 2. (a) Basic model. The cell state is a composition of one or more data fields
d and one or more pointer (link) fields p. A global cell k∗ is accessed via p and a
data link is dynamically established from the global cell k∗ to the cell k (1.). Then
the function e computes the next data and the function g computes the next pointer
(2.). Then all cells are updated synchronously (3.). – (b) General model. An additional
function h(d, p) is used which computes an effective address peff to select the global
neighbor. Central control parameters W from the simulation environment can be taken
into account.

all cells are updated synchronously: d ← d′, p ← p′. In general several data
and pointer fields can be used (d1, d2, ..., p1, p2, ...) and several neighbors can be
accessed.

General model. In addition to the basic model the general model (Fig. 2b)
uses an addressing function h(d, p) which computes the effective address peff =
h(d, p) of the global neighbor. For many applications this addressing technique
is more convenient than the direct addressing with p of the basic model. In
addition, central parameters W , supplied by the simulation environment (e.g.
generation counter t, cell index k, etc.) are useful to be available in the functions:
h(d, p, d∗, p∗, W ), e(d, p, d∗, p∗, W ), and g(d, p, d∗, p∗, W ).

Condensed model. In the condensed model the cell state is not separated into
a data part and pointer part. Instead only a data part q is used. The meaning
of q is a matter of interpretation, it can be interpreted as a data or a pointer
field. Either parts of q are interpreted as data or pointer, or q is interpreted
alternatively as data or pointer depending on a data type subfield of q (like an
operation code of an instruction) or on additional information like the generation
counter t.

Relation to the CROW model. The GCA model is related to the CROW
(concurrent read owner write) model [11], a variant of the PRAM (parallel ran-
dom access machine) models. The CROW model consists of a common global
memory and P processors, and each memory location may only be written by
its assigned owner processor. In contrast, the GCA model consists of P cells,
each with its local state (data and pointer fields) and its local rule (together
acting as a small processing unit updating the data and pointer field). Thus the
GCA model is (1) “cell” based, meaning that the state and processing unit are
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Fig. 3. Fully parallel implementation. Communication implemented by a multiplexer
in each cell (a). Communication implemented by a common network (b).

encapsulated, similar as objects in the object oriented languages, and (2) the cells
are structured according to the application. The processing units of the GCA
can be seen as virtual processors, having just the processing features which are
needed for the application. On the other hand the CROW model uses “univer-
sal” processors independent of the application. Furthermore the GCA updates in
each generation the data and pointer fields simultaneously, whereas in the PRAM
model only one memory location per processor is updated simultaneously.

3 GCA Architectures

A variety of architectures can be designed or used to support the GCA model. In
the following three architectures are proposed. The fully parallel architecture can
be very powerful for small dedicated applications. The data parallel architecture
can be used for medium size dedicated applications to be configured on an FPGA.
The multisoftcore system is programmable and can be applied to medium or
large applications. Other interesting architectures could be designed, e.g. cells
with programmable rules, or pipelines with programmable rules, but these are
out of the scope of this paper. Furthermore standard platforms like standard
multicores or GPUs can be used to execute the GCA model.

In a student’s work Benjamin Milde and Niklas Büscher showed an accelera-
tion of 13 for bitonic merging and 150 for a diffusion algorithm on an NVIDIA
GFX 470 compared to an Intel Q9550@3GHz with 4 threads. Although these
results cannot be generalized, GPUs seem to be a promising platform to execute
the GCA model.

Fully Parallel Architecture. “Fully parallel” means that the whole GCA
for a specific application is completely implemented in hardware (Fig. 3). The
question is how many hardware resources are needed. The number of cells is n.
Therefore the logic (computing the effective address and the next state) and the
number of registers holding the cells’ states are proportional to n. The local in-
terconnections (wiring) are proportional to n, too. As the GCA generally allows
to access from each cell any other global cell, the wiring effort is (n − 1) × n
global wires. The length of a global wire is not a constant, it depends on the
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physical distance. If the cells are arranged in a 2d square grid the shortest dis-
tance is one and the longest (Manhattan) distance is 2

√
n. Thus the total wiring

(with respect to the mean distance) is of the order O(n2). Note that the longest
distance also determines the maximal clock rate. Many applications / GCA al-
gorithms do not require a total interconnection fabric because only a subset of
all communications (read accesses) are required for a specific application. There-
fore the amount of wires and switches can be reduced significantly for one or a
limited set of applications. In addition for each global wire a switch is required.
The switches can be implemented by a multiplexer in each cell, or by a com-
mon switching network (e.g. crossbar). Note that the number of switches of the
network can also be reduced to the number of communication links used by the
specific application. Another aspect is the multiple read (concurrent read) fea-
ture. In the worst case one cell is accessed from all the other cells which may
cause a fanout problem in the hardware implementation.

Data Parallel Architecture. The data parallel architecture (DPA) uses p
pipelines in order to process p cell rules in parallel [6][8]. The whole address space
is partitioned into (sub) arrays, also called “cell objects”. In our implementation
a cell object represents either a cell vector or a cell matrix. A cell object is
identified by its start address, and the cells within it are addressed relatively
to the start address. The destination object D stores the cells to be updated,
and the source object S stores the global cells to be read. Although for most
applications D and S are disjunct, the may overlap or be the same.

The DPA consists of a control unit and p pipelines, in Fig. 4 only one pipeline
is shown. In the case of one pipeline only, the cells of S are processed sequentially
using a counter k. In the first pipeline stage the cell D[k] is read from memory
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Fig. 5. (a) GCA-L program for the Jacobi iteration. – (b) Next data operator e auto-
matically generated out of the program. It contains 4 floating point units and several
integer units.

R. In the second stage the effective address ea is computed by h. In the third
stage the global cell S[ea] is read. In the fourth stage the next cell state d is
computed. Then the next cell state is stored in the buffer memories R′ and S′ at
location k. When all cells of the destination object are processed, the memories
(R, S) and (R′, S′) are interchanged.

An application specific DPA with p pipelines can automatically be generated
out of a high level description in the experimental language GCA-L [6]. The pro-
gram (Fig. 5a) describes the Jacobi iteration [7] solving a set of linear equations.

The most important feature of GCA-L is the foreach D with neighbor = &S[..]
do .. endforeach construct. It describes the (parallel) iteration over all cells D[i, j]
using the global neighbors &S[h(i,j)]. Our tool generates Verilog code for the
functions h, e, g to be embedded in the pipeline(s). These functions are also
pipelined. In addition control code for the control unit is generated. The most
important control codes are the rule instructions. A rule instruction triggers the
processing of all cells in a destination object and applies the so called adapted
operators h, e, g coded in the rule. All necessary application specific rule instruc-
tions are extracted from the source program [7]. Fig. 5b shows a generated next
data operation used by a rule instruction. It contains 4 floating point units and
several integer units. The floating point operations are internally also pipelined
(- :14, * :11, + :14, / :33 stages). Our tool generates Verilog code which further
is used for synthesis with Quartus II for Altera FPGAs. For p = 8 pipelines,
normalized to the amount needed for one pipeline, the relative increments for
the FPGA Altera Stratix II EP2S180 were: 8.3 for the ALUTs (logic elements),
7.5 for the registers, 4.5 for the memory bits (note that the required memory
bits are theoretically proportional to (p+1)/2 for the pipeline architecture). The
speedup was 6.8 for 8 pipelines compared to one. Thus the scaling behavior was
very good and almost linear for up to 8 pipelines.

Multisoftcore. The basic idea is to use many standard softcores together with
specific GCA support. Each core is responsible to handle a subset of all cells
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Fig. 6. Multisoftcore system implemented on an FPGA. A local GCA cell memory
is attached to each NIOS II softcore. Each core can read and write its own GCA cell
memory and read from any other GCA cell memory via the network.

being processed in one generation. In our implementation, p NIOS II softcores
were used [9][10]. To each processor a GCA cell memory is attached (Fig. 6). A
processor can read via the network the state of a global cell residing in another
cell memory. Only the cells residing in the own cell memory need to be updated
according to the GCA model. No write access via the network is needed, thereby
the network can be simplified. In case that only a specific application has to be
implemented, the network can be minimized according to the communication
links used by the application. The machine instruction set of the NIOS processors
was extended (custom instructions), e.g. read a cell via the network, read/write
local cell memory, floating point operations, synchronize and copy new cell states
into the current cell states.

A tool was developed that can automatically generate C code (extended by
custom instructions) out of a GCA-L program for such a multisoftcore system.
Then this C code is compiled and loaded into the cores of the system configured
on an FPGA.

4 Conclusion

In the GCA parallel programming model, applications are modeled as a set
of cells which are dynamically connected to other cells. Applications can be de-
scribed in the experimental language GCA-L. Different GCA target architectures
can easily be designed and implemented, e.g. a fully parallel architecture, a data
parallel architecture, and a multisoftcore architecture. Tools allow to translate
GCA-L programs into such architectures or generate them for FPGAs. These
architectures can be optimized for specific applications and adjusted to the per-
formance requirements. First investigations have shown that the GCA model
can also be efficiently executed on standard multicores and especially on GPUs.

Acknowledgment. I would like to thank Benjamin Milde and Niklas Büscher
who implemented the model on Quadcores and GPUs.
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Abstract. If current trends continue, today’s small-scale general-purpose
CMPs will soon be replaced by multi-core architectures integrating tens
or even hundreds of cores on-chip. Most likely, some of these many-core
CMPs will implement the hardware-managed, implicitly-addressed, co-
herent caches memory model. Cache coherence in these designs will be
probably maintained through a directory-based cache coherence proto-
col implemented in hardware. The organization of the directory structure
will be a key design point due to the requirements in area that it will
pose. In this work, we study the effects on performance, network traf-
fic and area that the use of compressed sharing codes for the directory
will have in many-core CMPs. In particular, we select two compressed
sharing codes previously proposed in the context of large-scale shared-
memory multiprocessors that have very small area requirements. Simu-
lation results of 32-core CMPs show that degradations of up to 32% in
performance and 350% in network traffic are experienced. Additionally,
since some proposals for efficient multicast support in on-chip networks
have recently appeared, we also consider the case of using this support
in combination with the compressed sharing codes. Unfortunately, we
found that multicast support is not enough to remove all the performance
degradation introduced by the compressed sharing codes and barely can
reduce network traffic.

1 Introduction

In the last years we have witnessed the substitution of single-core processors by
multi-core ones. Following the Moore’s Law that establishes that the number
of transistors doubles every 18 months, it is expected that current small-scale
general-purpose chip-multiprocessors (CMPs) will soon be followed by multi-core
architectures integrating tens or even hundreds of cores on-chip [1]. Architectures
of this type are usually known as many-core CMPs.
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Many-core CMPs will be probably designed as arrays of identical or close-to-
identical building blocks (tiles) connected over a switched direct network [2,3].
Tiled architectures provide a scalable solution for supporting families of prod-
ucts with varying computational power, managing the design complexity, and
effectively using the resources available in advanced VLSI technologies. As an ex-
ample, Intel has recently announced the 48-core Single-chip Cloud Computer [4],
an experimental research microprocessor that has been developed in the context
of the Tera-scale Computing Research Program. The Single-chip Cloud Com-
puter consists of 24 tiles with two IA cores per tile, which are interconnected by
means of a 24-router mesh network providing 256 GB/s bisection bandwidth.

On the other hand, if current trends continue, future many-core CMP archi-
tectures will implement the hardware-managed, implicitly-addressed, coherent
caches memory model [5]. With this memory model, all on-chip storage is used
for private and shared caches that are kept coherent in hardware by using a
cache coherence protocol. In this way, each tile contains at least one level of
cache memory that is private to the local core (the L1 in this work), and the
first level of shared cache (commonly, the L2 cache) is physically distributed
between the tiles of the system.

The cache coherence protocol will be a key design issue in these architectures
since it will add requirements of area and energy consumption to the final de-
sign, and therefore, could restrict severely its scalability. When the number of
cores is large, as is the case of many-core CMPs, the best way today of keeping
cache coherence is by implementing a directory-based protocol, which reduces
energy consumption compared to broadcast-based protocols by keeping track
of the caches that hold copies of each block in a directory structure. In tiled
CMPs, the directory structure is distributed between the L2 cache banks, usu-
ally included into the L2 tags’ portion [3]. In this way, each tile keeps the sharing
information of the blocks mapped to the L2 cache bank that it contains. This
sharing information comprises two main components: the state bits used to cod-
ify one of the three possible states the directory can assign to the line (Uncached,
Shared and Private), and the sharing code, that holds the list of current sharers.
Most of the bits of each directory entry are devoted to codifying the sharing
code.

In a traditional directory organization, each directory entry keeps track of
the sharers of the corresponding memory block through a simple bit-vector (one
bit per private cache). In Figure 1, we plot the area (in mm2) that one 1MB
4-way L2 module would take as the number of cores grows from 2 to 256 (area
estimations are based on CACTI. Refer to Section 4 for more details). As it can
be seen, while the number of cores keeps below 16 the bit-vector sharing code
barely impacts area requirements. However, from 16 cores and onwards, the
use of bit-vectors would entail too much area overhead and more area efficient
sharing codes would be required.

One approach for reducing directory area requirements in the context of tra-
ditional shared-memory multiprocessors is the use of compressed sharing codes.
Compressed sharing codes store the directory information in a compressed way
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Fig. 1. Area (mm2) required for a 1MB cache module when the bit-vector sharing code
is used

to use fewer number of bits, introducing a loss of precision compared to exact
ones (e.g., bit-vector). This means that when this information is reconstructed,
some of the cores codified in the sharing code are real sharers and must receive
the coherence messages, whereas some other cores are not sharers actually and
unnecessary coherence messages will be sent to them. Unnecessary coherence
messages lead to increased miss latencies, since more messages are required to
resolve caches misses. These messages also entail extra traffic in the interconnec-
tion network and useless cache accesses, which will increase energy consumption.
Conversely, a bit-vector directory does not generate unnecessary coherence mes-
sages and thus shows the best results in terms of both performance and energy
consumption.

In this work we study the effects on performance, network traffic and area
required by the directory structure that the use of compressed sharing codes
will have in many-core CMPs. In particular, we select two area-efficient com-
pressed sharing codes previously proposed by us in the context of large-scale
shared-memory multiprocessors, namely Binary Tree (BT) and Binary Tree with
Symmetric Nodes (BT-SN) [6]. Simulation results of 32-core CMPs show that
degradations of up to 32% in performance and 350% in network traffic are ex-
perienced. Additionally, since some proposals for efficient multicast support in
on-chip networks have recently appeared [7], we also consider the case of using
this kind of support in combination with the compressed sharing codes. Unfor-
tunately, multicast support is not enough to completely remove the performance
degradation that the compressed sharing codes introduce (performance degra-
dations of 10% on average are still observed when BT is used) and barely can
reduce network traffic.

The rest of the paper is organized as follows. First of all, we will give more
details regarding the target CMP architecture in Section 2. Subsequently, in
Section 3 we will present a couple of compressed sharing codes based on the
concept of multilayer clustering. Next, in Section 4, we will describe the evalu-
ation environment that we are assuming, and the results of the evaluation will
be shown in Section 5. Finally, Section 6 closes the work.
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2 Base Architecture

A tiled CMP architecture consists of a number of replicated tiles connected over a
switched direct network. Each tile contains a processing core with primary caches
(both instruction and data caches), a slice of the L2 cache, and a connection
to the on-chip network. Cache coherence is maintained at the L1 caches. In
particular, a directory-based cache coherence protocol with directory information
stored in the tags’ part of the L2 cache modules is employed. The L2 cache
is shared among the different processing cores, but it is physically distributed
between them. Therefore, some accesses to the L2 cache will be sent to the local
slice while the rest will be serviced by remote slices (L2 NUCA architecture [8]).
Moreover, for simplicity the L1 and L2 caches are inclusive, that is to say, all the
blocks included in any L1 cache keep an entry in the L2 cache. Figure 2 shows
the organization of a tile (left) and a 16-tile CMP (right). From now on, we will
use the terms tile and node interchangeably.

3 BT and BT-SN Compressed Sharing Codes

The two compressed sharing codes considered in this work (BT and BT-SN)
were derived from the multi-layer clustering concept introduced in [6]. Multi-
layer clustering assumes that nodes are recursively grouped into clusters of equal
size until all nodes are grouped into a single cluster. Compression is achieved by
specifying the smallest cluster containing all the sharers (instead of indicating
all the sharers). Compression can be increased even more by indicating only the
level of the cluster in the hierarchy. In this case, it is assumed that the cluster is
the one containing the home node for the memory block. Although clusters can
be formed by grouping any integer number of clusters in the immediately lower
layer of the hierarchy, we analyze the case of using a value equal to two. That
is to say, each cluster contains two clusters from the immediately lower level.
By doing so, we simplify binary representation and obtain better granularity to
specify the set of sharers. This recursive grouping into layer clusters leads to a
logical binary tree with the nodes located at the leaves.

Since nodes are located at the leaves of a tree, the set of nodes (sharers) hold-
ing a copy of a particular memory block can be expressed as the minimal subtree
that includes the home node and all the sharers. This minimal subtree is codified
using the level of its root (which can be expressed using just �log2 (log2 N + 1)�
bits). Intuitively, the set of sharers is obtained from the home node identifier by
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Table 1. System parameters

32-core CMP
GEMS Parameters SICOSYS Parameters

Processor frequency 4 GHz Network frequency 2 GHz
Cache hierarchy Inclusive Topology 8x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, Routing technique Deterministic X-Y

4 hit cycles Message size 4 flits data, 1 flit control
Shared unified L2 cache 1MB/tile, 4 ways, Routing time 2 cycles

7 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

changing the value of some of its least significant bits to don’t care. The number
of modified bits is equal to the level of the above mentioned subtree. It consti-
tutes a very compact sharing code (observe that, for a 128-node system, only 3
bits per directory entry are needed). This sharing code is known as binary tree
or BT.

We also considered the concept of symmetric nodes of a particular home
node. Assuming that 3 additional symmetric nodes are assigned to each home
node, they are codified by different combinations of the two most-significant
bits of the home node identifier (note that one of these combinations represents
the home node itself). In other words, symmetric nodes only differ from the
corresponding home node in the two most significant bits. Now, the process of
choosing the minimal subtree that includes all the sharers is repeated for the
symmetric nodes. Then, the minimum of these subtrees is chosen to represent
the sharers. The intuitive idea is the same as before but, in this case, the two
most significant bits of the home identifier are changed to the symmetric node
used. Therefore, the size of the sharing code of a directory entry is the same
as before plus the number of bits needed to codify the symmetric nodes (for 3
sym-nodes, 2 bits). This sharing code is known as binary tree with symmetric
nodes or BT-SN.

4 Evaluation Environment

We perform the evaluation using the full-system simulator Virtutech Simics [9]
extended with Multifacet GEMS 1.3 [10], that provides a detailed memory sys-
tem timing model. Since the network modeled by GEMS 1.3 is not very precise,
we have extended it with SICOSYS [11], a detailed interconnection network sim-
ulator. We simulate a 32-tile CMP architecture as the one described in Section 2.
The values of the main parameters used for the evaluation are shown in Table 1.
Cache latencies have been calculated using the CACTI 5.3 tool [12] for 45nm
technology. We also have used CACTI to measure the area of a 1MB 4-way L2
cache bank that includes the different sharing codes assumed in this work. In
this study, we assume that the length of the physical address is 44 bits, like in
the SUN UltraSPARC-III architecture [13].
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Fig. 3. Area (mm2) required for a 1MB cache module when bit-vector, BT or BT-SN
are used

The ten applications used in our simulations cover a variety of computa-
tion and communication patterns. Barnes (8192 bodies, 4 time steps), FFT
(256K points), Ocean (258x258 ocean), Radix (1M keys, 1024 radix), Ray-
trace (teapot), Volrend (head) and Water-Sp (512 molecules, 4 time steps) are
scientific applications from the SPLASH-2 benchmark suite [14]. Unstructured
(Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia appli-
cations from the APLBench suite [15]. We account for the variability in mul-
tithreaded workloads by doing multiple simulation runs for each benchmark in
each configuration and injecting random perturbations in the memory systems
timing for each run.

5 Evaluation Results

We start this section by comparing the area overhead introduced by the different
organizations for the sharing code considered in this work. Next, we study the
impact that the compressed sharing codes have on network traffic, considering
both a network with and without multicast support. Finally, we compare the
execution times for the three directory organizations.

5.1 Impact on Area Overhead

Figure 3 plots the total area (in mm2) that would be required by a 1MB 4-way
cache module when bit-vector, BT and BT-SN sharing codes are used. Due to
the limited number of cores used in our simulations (32), we evaluate BT-SN
assuming only one symmetric node. In this way, the size of BT-SN is equal to
the size of BT plus 1 bit to codify whether the home node or the symmetric
node is being used in the codification.

As shown in Figure 3 (and discussed in the introduction of this work), the area
overhead that the bit-vector sharing code entails does not scale with the number
of cores. Obviously, the size of the bit-vector (in bits) increases linearly with the
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Fig. 4. Normalized network traffic for bit-vector, BT and BT-SN

number of cores. For this reason, the bit-vector could be a good option for a
small number of cores. However, for 16 or more cores the increase in area that
the bit-vector conveys makes it infeasible (the area overhead becomes almost
100% for the 64-core configuration). On the other hand, the size of BT and BT-
SN barely increases with the number of cores. Moreover, the total number of
bits needed by BT and BT-SN is very small in all cases (�log2 (log2 N + 1)� bits
and �log2 (log2 N + 1)�+ 1 bits, respectively). In this way, the area overhead of
BT and BT-SN is very low (less than 5% for the 256-core configuration) and
keeps almost constant with the number of cores. This makes BT and BT-SN
promising alternatives to bit-vector for future may-core CMPs, since besides
introducing very small overheads in terms of area, they would allow to support
families of CMPs with varying number of cores using the same tile structure
(without requiring any modifications in the directory).

5.2 Impact on Network Traffic

Although compressed sharing codes can drastically reduce the size of the di-
rectory, their drawback is that they could increase the number of coherence
messages as a consequence of the in-excess codification of the sharers that they
perform. Increasing the number of coherence messages leads to more traffic being
injected in the interconnection network of the CMP. Since previous works have
identified the interconnection network as one of the most important elements of
the CMP from the point of view of energy consumption (consuming almost 40%
of the total energy budget in the Raw processor [16]), more traffic at the end
means more energy.

Figure 4 shows the amount of network traffic that would be generated for bit-
vector, BT and BT-SN for the 32-core CMP configuration assumed in this work.
In particular, each bar plots the number of bytes transmitted through the inter-
connection network (the total number of bytes transmitted by all the switches)
normalized with respect to the bit-vector case. We present results considering
both a network with unicast support (a) and with multicast support (b).

As shown in Figure 4(a), the use of BT has severe impact on the amount of
network traffic and degradations ranging from approximately 50% for MPGenc
to 350% for Unstructured are found. The problem with BT is that when one of the
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sharers is far from the home node in the logical tree, the root of the tree is selected
as the minimum tree level covering both the home node and the sharer, which
results in all cores being actually codified. We have found that this situation
occurs frequently in most applications, which explains the significant amount of
extra traffic for BT. In particular, the average number of coherence messages
that are sent on a coherence event1 increases from 2 in bit-vector to more than
20 in BT. On the contrary, when BT-SN is considered the tree level that covers
all the sharers can be computed from either the home node or its symmetric
node. This leads to noticeable reductions in the average number of coherence
messages (12 in BT-SN), which leads to important savings in network traffic
when compared with BT. Unfortunately, BT-SN does not mitigate completely
the extra traffic introduced by BT and degradations of approximately 100% on
average are still observed. Again, when two or more cores, distant in the logical
tree, share a memory block, the root of the tree would be codified by BT-SN.

Obviously, the provision of multicast support at the interconnection network
level can alleviate the levels of extra traffic. More specifically, in Figure 4(b) we
show the results obtained when we take advantage of multicast support for send-
ing coherence messages (invalidations and cache-to-cache transfer commands).
Efficient implementations of such kind of multicast support in on-chip networks
have recently been proposed [7]. Unfortunately, using multicast support for also
the response messages is not a trivial issue. So, in this work we assume that
responses to coherence commands are unicast messages. As it can be seen, the
use of multicast support is a step forward in achieving the network traffic levels
obtained by bit-vector, and it is especially useful when BT is considered (average
traffic overhead is reduced from 200% without multicast support to 150%). Any-
way, the fact that multicast support is available just for the coherence commands
and not for their associated responses limits its benefits.

5.3 Impact on Execution Time

The degradations previously reported in terms of network traffic finally translate
into increases in terms of execution time. In Figure 5 we show how the use of
BT and BT-SN impacts applications’ execution times, considering an intercon-
nection network with and without multicast support, (a) and (b) respectively.
Again, all results have been normalized with respect to the bit-vector case.

As observed in Figure 5(a), the use of BT without multicast support has im-
portant consequences on performance. In particular, the execution time grows
from less than 10% for Barnes and Water-Sp to more than 30% for Raytrace
(19% on average). In general, the greater number of messages that are needed
with BT to resolve every coherence event leads to longer cache miss latencies,
and therefore, execution times. Obviously, the extent of the degradation in exe-
cution time will depend on the particular characteristics of each application (L1

1 By coherence event we refer to a situation where the home node must use the shar-
ing code to send coherence messages (invalidations or cache-to-cache transfer com-
mands).
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Fig. 5. Execution time for 32 cores

cache miss rate, average number of coherence messages per cache miss, kind of
synchronization used, etc.). This is why there is no direct correlation between
the amount of extra traffic reported in Figure 4(a) and the degradation in ex-
ecution time shown in Figure 5(a). On the other hand, when BT-SN is used
instead of BT, the average overhead in terms of execution time is reduced to
a half (10%). In this case, significant reductions in execution time are observed
for most applications. The exceptions are Barnes and Water-Sp, that hardly
see their execution times reduced when BT-SN is used, even when significant
savings in terms of network traffic were reported.

The effects of using multicast support with BT and BT-SN are analyzed in
Figure 5(b). As before, multicast support has significant impact on execution
time when BT is assumed. In this case, average degradation falls from 19% to
less than 10%. Although all applications benefit from multicast support, FFT,
MPGdec, Radix, Raytrace and Unstructured are the most affected (in all these
cases performance degradation entailed by BT is reduced to more than a half).
Finally, and as it was reported for network traffic, multicast support does not
help much in reducing performance overhead when BT-SN is considered. In
this case, what dominates cache miss latencies is the time taken to collect all re-
sponses to a coherence event, which is not optimized with the assumed multicast
support.

6 Conclusions

The organization of the directory needed to maintain cache coherence will be
a key design point in future many-core CMPs. In this work, we have analyzed
the effects that the BT and BT-SN compressed sharing codes have on area,
network traffic (as representative of the energy consumed in the interconnection
network), and performance in the context of many-core chip-multiprocessors. In
particular, we have found that although very area-efficient directories could be
derived based on these two sharing codes (with area overheads of less than 5%),
the degradations in terms of network traffic (200% for BT and 100% for BT-
SN) as well as execution time (20% for BT and 10% for BT-SN) that they entail
could preclude them from being employed in future many-core CMPs. Moreover,
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we have studied the case of having an interconnection network with multicast
support, and have found that although BT can significantly benefit from such
kind of support (degradations in execution time and network traffic are reduced
to 8% and 150% respectively), BT-SN barely finds any benefits from it. The
reasons why multicast support is unable to remove completely the degradation
that BT and BT-SN introduce are two. First, multicast support is only used for
sending coherence commands but not for collecting the responses. And second,
even if an efficient mechanism able to provide combined responses were used,
more destinations for the coherence commands still implies more traffic and
longer cache miss latencies.
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Abstract. Reordering instructions and data layout can bring significant
performance improvement for memory bounded applications. Paralleliz-
ing such applications requires a careful design of the algorithm in order
to keep the locality of the sequential execution. In this paper, we aim
at finding a good parallelization of memory bounded applications on
multicore that preserves the advantage of a shared cache. We focus on
sequential applications with iteration through a sequence of memory ref-
erences. Our solution relies on a work stealing scheduler combined with a
dynamic sliding window that constrains cores sharing the same cache to
process data close in memory. This parallel algorithm induces the same
number of cache misses as the sequential algorithm at the expense of
an increased number of synchronizations. Experiments with a memory
bounded application confirm that core collaboration for shared cache ac-
cess can bring significant performance improvements despite the incurred
synchronization costs.

1 Introduction

Many applications in scientific computing are memory bounded. Favoring the
locality of access patterns through data and computation reordering can bring
significant performance benefits. When designing parallel algorithms, one must
be extra careful not to lose the locality of the sequential application, which is
the key for good performance. In most last generation multicores, the last level
of cache is shared among all cores of the chip. For instance the Intel Nehalem,
the AMD Phenom and Opteron (only for the quadcores and hexacores) and the
IBM Power7 all have a shared L3 cache.

In this paper, we focus on one specific aspect of the parallelization of mem-
ory bounded applications: how to adapt the scheduling to take advantage of the
shared caches of multicore processors. The goal is to propose a scheduling algo-
rithm that improves performance by reducing cache misses, compared to parallel
algorithms that do not take into account the shared cache amongst several cores.

� Part of this work was done while the third author was visiting the ArTeCS group of
the University Complutense, Madrid, Spain.
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We propose to have cores working on independent but close (regarding the mem-
ory layout) data sets that can all fit in the shared cache. If a core needs a data
that is not in its data set, there is a good chance it will find it in the data set
loaded in the cache by one of its neighbors, thus saving cache misses. The algo-
rithm behaves as if each core would benefit from a full-size private cache, at the
price of a few extra synchronizations required to ensure a proper collaboration
between cores.

This paper focuses on algorithms that take an input sequence to produce an
output sequence of results. Such algorithms encompass many of the C++ Stan-
dard Template Library (STL) functions like for each or transform. Moreover,
many parallel libraries such as Intel TBB or the GNU STL parallel mode provide
parallel implementations of the STL. Thus providing shared cache aware paral-
lelizations of these algorithms can improve performance of many applications.

We provide a cache constraint that parallel algorithms should respect to in-
duce no more cache misses than the sequential algorithms. We present two new
algorithms respecting this cache constraint and two implementations, one based
on PThread and the other one based on work-stealing allowing efficient dynamic
load balancing. We also implement those new algorithms with the parallel library
TBB and the GNU parallel STL and compare them with our implementations.

2 Scheduling for Efficient Shared Cache Usage

2.1 Window Algorithms for Sequence Processing

We consider algorithms that take an input sequence i1, i2, . . . , in (different input
elements can share some data) and a function op to be applied on all elements
of the input producing an output sequence o1, o2, . . . , on′ . Notice that treating
one element may produce a different number of elements in the output sequence.
Most STL algorithms are variations over this model. The sequential algorithm
processes the sequence in order from i1 to in. We assume that the sequential al-
gorithm already performs well with respect to temporal locality of data accesses.
Data processed closely in the sequential execution are also close in memory. We
focus on the case where all elements of the sequence can be processed in parallel.

We introduce two parallel algorithms to process such a sequence in parallel.
These two algorithms are parameterized by m, the maximum distance between
the threads. In the first one, denoted static-window , the sequence is first di-
vided into n/m chunks of m contiguous elements. Then, each chunk is processed
in parallel by the p processors sharing the same cache. Several strategies can
be used to parallelize the processing of each chunk. The m elements could be
statically partitioned into p groups of m/p elements, one per processor, or a
work-stealing scheme can be used to dynamically balance the load. The second
parallel algorithm, denoted sliding-window , is a relaxed version of the static-
window algorithm. At the beginning of the algorithm, the first m elements of
the sequence are ready and can be processed in any order. Each time the first
element ik not yet processed in the sequence is treated by a processor, it en-
ables the element ik+m at the end of a window of size m. These two algorithms



A Work Stealing Scheduler for Parallel Loops on Shared Cache Multicores 101

will be compared with an algorithm denoted no-window that do not respect the
cache constraint. All the elements of the sequence can be processed in any order.
This algorithm induces more cache misses than the sequential algorithm and the
window algorithms, but it requires fewer synchronizations.

2.2 Cache Performance of Window Algorithms

The re-use distance captures the temporal locality of a program [1]. Let consider
a series of memory references (xk)k≥0. When a reference xk access an element
for the first time, the re-use distance of xk is infinite. If the element has been
previously accessed, xk′ = xk with k′ > k, the re-use distance of xk′ is equal to
the number of distinct elements accessed between these two references xk and
xk′ . Let hd denote the number of memory references with a re-use distance d.
The number of cache misses of a fully associative LRU cache of size C is equal
to Mseq =

∑∞
d=C+1 hd. We can extend this definition to sequence processing

algorithms: if processing ik and ik′ uses similar data, the re-use distance is k′−k.
We consider now p processors sharing the same cache that process the se-

quence in parallel in distant places like the no-window algorithm. As we assumed
the sequence has good temporal locality, elements far-away in the sequence use
distinct data. In this case, the re-use distance is multiplied by p as to each access
of one processor corresponds p − 1 accesses of the others to distinct elements.
Thus, the number of cache misses is Mno-win =

∑∞
d=C+1 hd/p ≈

∑∞
d=C/p+1 hd.

The no-window algorithm induces as many cache misses as the sequential al-
gorithm with a cache p times smaller. We now restrain the processors to work
on elements at distance less than m like in the window algorithms. Let r(m)
be the maximum number of distinct memory references when processing m − 1
consecutive elements of the input sequence. In the worst case, when processing
element ik, all elements ik+1, . . . , ik+m−1 have already been processed access-
ing at most r(m) additional distinct elements compared to the sequential order.
Thus the re-use distance is increased by at most r(m). The number of cache
misses is Mwindow ≤

∑∞
d=C+1 hd−r(m) = Mseq +

∑C
d=C+1−r(m) hd. As we as-

sumed the sequence has good temporal locality, r(m) is small compared to m

and hd is small for large d. Therefore
∑C

d=C+1−r(m) hd is small and the win-
dow algorithms induce approximately the same number of cache misses as the
sequential algorithm.

2.3 PThread Parallelization of Window Algorithms

We present here the implementation of the no-window and static-window algo-
rithms using PThreads. The PThread implementation allows a fine grain control
on synchronizations with very little overhead.

For the no-window algorithm, the sequence is statically divided into p groups.
Each group is assigned to one thread bound to one processor and all threads
synchronize at the end of the computation. For the static-window algorithm,
the sequence is first divided into chunks of size m. Then each chunk is statically
divided into p groups and all threads synchronize at the end of each chunk before
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typedef struct {
InputIterator ibeg;
InputIterator iend;
OutputIterator obeg;
size_t osize;

} Work_t ;

void dowork(...) {
complete_work:

while (iend != ibeg) {
kaapi_stealpoint(..., &splitter);
for(i=0; i<grain; ++i, ++ibeg)

op(ibeg, obeg, &osize);
kaapi_preemptpoint(..., &reducer);

}
if ( kaapi_preempt_next_thief(...) )

goto complete_work ;
} // no more work -> become a thief

void reducer(Work_t *victim, Work_t *thief) {
memmove( victim->obeg, thief->obeg,

thief->osize );
victim->osize += thief->osize;
victim->ibeg = thief->ibeg;
victim->iend = thief->iend;

} // victim -> dowork / thief -> try to steal

void splitter( Work_t *victim, int count,
kaapi_request_t* request ) {

int i = 0;
size_t size = victim->iend - victim->ibeg;
size_t bloc = size / (1+count);
InputIterator local_end = victim->iend;
Work_t *thief;

if (size < gain)
return;

while (count >0) {
if (kaapi_request_ok(&request[i])) {

thief->iend = local_end;
thief->ibeg = local_end - bloc;
thief->obeg = intermediate_buffer;
thief->osize = 0;
local_end -= bloc;
kaapi_request_reply_ok(thief,

&request[i]);
--count;

}
++i;

}
victim->iend = local_end;

} // victim and thieves -> dowork

Fig. 1. C implementation of the adaptive no-window algorithm using the Kaapi API

starting to compute the next one. Each synchronization is implemented with a
pthread_barrier. Threads wait at the barrier and are released when all of them
have reached the barrier. Although we expect the threads in the static-window
algorithm to spend more time waiting for other threads to finish their work,
the reduction of cache misses should compensate this extra synchronization cost.
The sliding-window algorithm has not been implemented in PThread because
it would require a very complex code. We present in the next section a work-
stealing framework allowing to easily implement all these algorithms.

3 Work-Stealing Window Algorithms with Kaapi

In this section, we present the low level API of Kaapi [2] and detail the imple-
mentation of the windows algorithms.

3.1 Kaapi Overview

Kaapi is a programming framework for parallel computing using work-stealing.
At the initialization of a Kaapi program, the middleware creates and binds one
thread on each processor of the machine. All non-idle threads process work by
executing a sequential algorithm (dowork in fig. 1). All idle threads, the thieves,
send work requests to randomly selected victims. To allow other threads to
steal part of its work, a non-idle thread must regularly check if it received work
requests using the function kaapi_stealpoint. At the reception of count work
requests, a splitter is called and divides the work into count+1 well-balanced
pieces, one for each of the thieves and one for the victim.
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When a previously stolen thread runs out of work, it can decide to preempt
its thieves with the kaapi_preempt_next_thief call. For each thief, the vic-
tim merges part of the work processed by the thief using the reducer function
and takes back the remaining work. The preemption can reduce the overhead
of storing elements of the output sequence in an intermediate buffer when the
final place of an output element is not known in advance. To allow preemp-
tion, each thread regularly checks for preemption requests using the function
kaapi_preemptpoint.

To amortize the calls to the Kaapi library, each thread should process several
units of work between these calls. This number is called the grain of the algo-
rithm. In particular, a victim thread do not answer positively to a work request
when it has less than grain units of work.

Compared to classical WS implementations, tasks (Work_t) are only created
when a steal occurs which reduces the overhead of the parallel algorithm com-
pared to the sequential one [3]. Moreover, the steal requests are treated by the vic-
tim and not by the thieves themselves. Although the victim has to stop working
to process these requests, synchronization costs are reduced. Indeed, instead of
using high-level synchronization functions (mutexes, etc.) or even costly atomic
assembly instructions (compare and swap, etc.), the thieves and the victim can
communicate by using standard memory writes followed by memory barriers, so
no memory bus locking is required. Additionally, the splitter function knows
the number count of thieves that are trying to steal work to the same victim.
Therefore, it permits a better balance of the workload. This feature is unique to
Kaapi when compared to other tools having a work-stealing scheduler.

3.2 Work-Stealing Algorithm for Standard (no-window) Processing

It is straightforward to implement the no-window algorithm using Kaapi. The
work owned by a thread is described in a structure by four variables: ibeg and
iend represents the range of elements to process in the input sequence, obeg is
an iterator on the output sequence and osize is the number of elements written
on the output. At the beginning of the computation, a unique thread possesses
the whole work: ibeg=0 and iend=n. Each thread processes its assigned elements
in a loop. Code of Fig. 1 shows the main points of the actual implementation.

3.3 Work-Stealing Window Algorithms

The static-window algorithm is very similar to the no-window algorithm of the
previous section. The first thread owning the total work has a specific status,
it is the master of the window. Only the master thread has knowledge of the
remaining work outside the m-size window. When all elements of a window
have been processed, the master enables the processing of the new window by
updating its input iterators ibeg = iend and iend += m. This way, when idle
threads request work to the master thread, the stolen work is close in the input
sequence. Moreover, all threads always work on elements at distance at most m.

The sliding-window algorithm is a little bit more complex. In addition to
the previous iterators, the master also maintains ilast an iterator on the first
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Processed Elements Master Work Stolen Work Remaining Elements

m-size window

ibeg ilastiend

Fig. 2. Decomposition of the input sequence in the sliding-window algorithm

element after the stolen work in the input sequence (see Fig. 2). When the master
does not receive any work request, then iend == ilast == ibeg+m. When the
master receives work requests, it can choose to give work on both sides of the
stolen work. Distributing work in the interval [ibeg,iend] corresponds to the
previous algorithm. The master thread can also choose to distribute work close
to the end of the window, in the interval [ilast,ibeg+m].

4 Experiments

We base our experiments on a common scientific visualization filter: extract-
ing an isosurface in an unstructured mesh using the marching tetrahedra (MT)
algorithm [4].

We first calibrate the grain for the work-stealing implementation and the win-
dow size m for the window algorithms. Then, we compare the Kaapi framework
with other parallel libraries on a central part of the MT algorithm which can be
written as a for each. Finally we compare the no-window , static-window and
sliding-window algorithms implementing the whole MT.

All the measures reported are averaged over 20 runs and are very stable. The
numbers of cache misses are obtained with PAPI [5]. Only last level cache misses
are reported as the lower level cache misses are the same for all algorithms. Two
different multicores are used, a quadcore Intel Xeon Nehalem E5540 at 2.4Ghz
with a shared 8MB L3 cache and a dualcore AMD Opteron 875 at 2.2Ghz with
two 1MB L2 private caches. If the window algorithms reduce the number of
cache misses on the Nehalem but not on the Opteron, one can conclude that
this is due to the shared cache.

4.1 Calibrating the Window Algorithms

Fig. 3(left) shows the number of L3 cache misses for the static-window algorithm
compared to the sequential algorithm and the no-window algorithm. The static-
window algorithm is very close to the sequential algorithm for window sizes less
than 220. It does not exactly match the sequential performance due to additional
reduce operations for managing the output sequence in parallel. With bigger
windows, L3 misses increase and tend to the no-window algorithm. For the
remaining experiments, we set m = 219.
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Fig. 3. (Left) Number of L3 cache misses for the PThread implementation of the
static-window algorithm for various window sizes compared to the sequential
algorithm and the no-window algorithm. (Right) Parallel time for the Kaapi
implementation of the static-window algorithm with various grain sizes. (Both)
All parallel algorithms use the 4 cores of the Nehalem processor.

Fig. 3(right) shows the parallel time of the static-window algorithm with the
Kaapi implementation for various grain sizes. Performance does not vary much,
less than 10% on the tested grains. For small grains, the overhead of the Kaapi
library becomes significant. For bigger grains, the load balancing is less efficient.
For the remaining experiments, we choose a grain size of 128. We can notice that
the Kaapi library allows very fine grain parallelism: processing 128 elements
takes approximately 3μs on the Nehalem processor.

4.2 Comparison of Parallel Libraries on for each

Table 1 compares Kaapi with the GNU parallel library (from gcc 4.3) (denoted
GNU) and Intel TBB (v2.1) on a for each used to implement a central sub-part
of the MT algorithm. The GNU parallel library uses the best scheduler (parallel
balanced). TBB uses the auto partitioner with a grain size of 128. TBB is faster
than GNU on Nehalem and it is the other way around on Opteron. Kaapi shows
the best performance on both processors. This can be explained by the cost of
the synchronization primitives used: POSIX locks for GNU, compare and swap
for TBB and atomic writes followed by memory barriers for Kaapi.

4.3 Performance of the Window Algorithms

We now compare the performance of the window algorithms. Table 1 shows
that the static-window algorithm improves over the no-window algorithm for all
libraries on the Nehalem processor. However, on the Opteron with only private
caches, performances are in favor of the no-window algorithm. This was expected
as the Opteron has only private caches and the no-window algorithm has less
synchronizations. We can conclude that the difference observed on Nehalem is
indeed due to the shared cache.
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Table 1. Performance of the no-window and static-window algorithms on a for each

with various parallel libraries. GNU is the GNU parallel library. Time are in ms.

Time (ms) Nehalem Opteron

Algorithms #Cores STL GNU TBB Kaapi STL GNU TBB Kaapi

no-window
1 3,987 4,095 3,975 4,013 9,352 9,154 10,514 9,400
4 1,158 1,106 1,069 2,514 2,680 2,431

static-window
1 3,990 4,098 3,981 4,016 9,353 9,208 10,271 9,411
4 1,033 966 937 2,613 2,776 2,598

No Static No Static Sliding
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4
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Fig. 4. (Left) Speedup and ratio of increased cache misses over the sequen-
tial algorithm for the no-window , static-window and sliding-window algorithms with
PThread and Kaapi implementations. (Right) Speedup and ratio of saved steal
operations for the sliding-window algorithm over the static-window algorithm with
the Kaapi implementation. (Both) All algorithms run on the 4 cores of the Nehalem.

Fig. 4(left) presents speedup of all algorithms and ratio of cache misses com-
pared to the sequential algorithm. The no-window versions induces 50% more
cache misses whereas the window versions only 13% more. The window versions
are all faster compared to the no-window versions. Work stealing implementa-
tions with Kaapi improves over the static partitioning of the PThread imple-
mentations. The sliding-window shows the best performance. Fig. 4(right) focus
on the comparison of the sliding-window and static-window algorithms. Due to
additional parallelism, the number of steal operations are greatly reduced in the
sliding-window algorithm (up to 2.5 time less) leading to a 5% additional gain.

5 Conclusions

Previous experimental approaches have shown the interest of efficient cache shar-
ing usage, on a recent benchmark [6] and on data mining applications [7].
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Many parallel schemes have been proposed to achieve good load balancing for
isosurface extraction [8]. However, none of these techniques take into account
the shared cache of multicore processors. Optimization of sequential locality for
mesh applications has been studied through mesh layout optimization [9].

The algorithms for parallel sequence processing proposed in this paper focus
on exploiting the shared cache of last generation multicores. Experiments confirm
that these techniques increase performances by 10% to 30%.
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Abstract. Many-core architectures are a commercial reality, but pro-
gramming them efficiently is still a challenge, especially if the mix is het-
erogeneous. Here granularity must be addressed, i.e. when to make use of
concurrency resources and when not to. We have designed a data-driven,
fine-grained concurrent execution model (SVP) that captures concur-
rency in a resource-agnostic way. Our approach separates the concern
of describing a concurrent computation from its mapping and schedul-
ing. We have implemented this model as a novel many-core architecture
programmed with a language called μTC. In this paper we demonstrate
how we achieve our goal of resource-agnostic programming on this target,
where heterogeneity is exposed as arbitrarily sized clusters of cores.

Keywords: Concurrent execution model, many core architecture,
resource-agnostic parallel programming.

1 Introduction

Although a mainstream task today, programming many-core architectures is
still difficult [6]. Concurrency must be exposed, and often it is also explicitly
managed [9]. For example, low-level constructs must be carefully assembled to
map computations to hardware threads and achieve synchronisation without
introducing deadlocks, livelocks, race conditions, etc. From a performance per-
spective, any overhead associated with concurrency creation and synchronisation
must be amortised with a computation of a sufficient granularity. The difficulty
of the latter is under-estimated and in this paper we argue that this mapping
task is too ill-defined statically and too complex to remain the programmer’s re-
sponsibility. With widely varying resource characteristics, generality is normally
discarded in favour of performance on a given target, requiring a full development
cycle each time the concurrency granularity evolves.

We have addressed these issues in our work on SVP (for Self-adaptive Vir-
tual Processor [2]), which combines fine-grained threads with both barrier and
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dataflow synchronisation. Concurrency is created hierarchically and dependen-
cies are captured explicitly. Hierarchical composition aims to capture concur-
rency at all granularities, without the need to explicitly manage it. Threads
are not mapped to processing resources until run-time and the concurrency ex-
ploited depends only on the resources made available dynamically. Dependencies
are captured using dataflow synchronisers, and threads are only scheduled for
execution when they have data to proceed. In this way, we automate thread
scheduling and support asynchrony in operations.

SVP’s ability to define concurrency hierarchically and its data-driven schedul-
ing brings it close to Cilk [4] and the DDM architecture [10]. SVP differs from
DDM mainly in that synchronisation is implemented in registers instead of cache,
and that yet unsatisfied dependencies cause threads to suspend.

In the context of this paper, where SVP is implemented in a processor’s
ISA [5], we have very efficient concurrency creation and synchronisation. Set-
ting up a new family of threads only costs a few processor cycles, regardless
of the number of threads. The latency of actually creating a large number of
threads can be tolerated through asynchronous completion of instruction. The
same holds for other long-latency instructions such as loads from a distributed
shared memory. The mapping of threads to a cluster of cores in our Microgrid
hybrid dataflow chip architecture is fully automatic. Compiled code can express
more concurrency than is available in a cluster. Granularity mismatches are re-
solved by automatically switching to sequential execution when hardware thread
slots are exhausted. Hence, the minimal requirement for any SVP program is a
single thread slot, which implies pure sequential execution, even though the code
is expressed concurrently. It is through this technique and the latency tolerance
that we achieve resource-agnostic code with predictable performance.

The main contribution of this paper is that we show simply implemented, re-
source agnostic SVP programs that adapt automatically to the concurrency effec-
tively available in hardware and can achieve extremely high execution efficiency.
We also show that we can predict the performance of these programs based on
simple throughput calculations even in the presence of non-deterministic instruc-
tion execution times. This demonstrates the effectiveness of the self-scheduling
supported by SVP. In other words, we promote our research goal:

“Implement once, compile once, run anywhere.”

2 The SVP Concurrency Model and Its Implementation

In SVP programs create multiple threads at once as statically homogeneous, but
dynamically heterogeneous families. The parent thread can then perform a bar-
rier wait on termination of a named family using a sync action. This fork-join
pattern captures concurrency hierarchically, from software component compo-
sition down to inner loops. A family is characterised by its index sequence, a
thread function and the definition of unidirectional dataflow channels from, to
and within the family. Channels are I-structures [1], i.e. blocking reads and single
non-blocking writes.
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We have built an implementation of SVP into ISA extensions of a novel chip
architecture called the Microgrid, described in more details in [5]. In this hybrid
dataflow architecture, SVP channels are mapped onto the cores’ registers. De-
pendencies between threads mapped to the same core share the same physical
registers to allow fast communication. With threads spread over different cores,
communication is induced automatically upon register access. The latter is still
a low-latency operation since constraints on dependency patterns ensure that
communicating cores are adjacent on chip. Implementing I-structures on the
registers also enforces scheduling dependencies between consumers and produc-
ers. Hence, long-latency operations may be allowed to complete asynchronously
giving out-of-order completion on instructions with non-deterministic delay. Ex-
amples include memory operations, floating point operations (with FPU sharing
between cores) and barrier synchronisation on termination of a family.

Also, the number of active threads per core is constrained by a block size spec-
ified for each family or by exhaustion of thread contexts. Additional expressed
concurrency is then scheduled by reusing thread contexts non-preemptively.
Deadlock freedom is guaranteed by restricting communication to forward-only
dependency chains. The dataflow scheduling, in combination with a large num-
ber of hardware threads per core, provide latency tolerance and high pipeline
utilisation. Another key characteristic of SVP is the separation of concerns be-
tween the program and its scheduling onto computing nodes. Space scheduling
is achieved by binding a bundle of processors, called a place, to a family upon its
creation. This can happen at any concurrency nesting level in the program by
dynamic arbitration. On the Microgrid, places are clusters of cores implementing
an SVP run-time system in hardware.

The Microgrid is targeted by a system language μTC [8] and a compiler that
maps this code to the Microgrid [3]. μTC is not intended as an end-user language;
work is ongoing to target μTC from a data-parallel functional language [7] and
a parallelising C compiler [11].

3 Performance Model and Results

Our aim in this paper is to show how we can obtain deterministic performance
figures, even though the code is compiled from naive μTC code, with no knowl-
edge of the target. In order to analyse the performance, we need to understand
the constraints on performance. For this we define two measures of arithmetic in-
tensity (AI). The first AI1 is the ratio of floating point operations to instructions
issued. For a given kernel that is not I/O bound, this limits the FP performance.
For P cores at 1 GHz, the peak performance we can expect therefore is P ×AI1,
the ideal case of full pipeline utilisation (one apparent cycle per operation).
In some circumstances, we know that execution is constrained by dependencies
between floating point operations, so we modify AI1 to take this into account
giving an effective intensity AI ′1. The second measure of arithmetic intensity is
the ratio of FP operations to I/O operations, AI2 FLOPs/byte. I/O bandwidth
IO is usually measured at the chip boundary (25.6GB/s), unless we can identify
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Fig. 1. Functional diagram of a 128 core Microgrid. Each pair of two cores shares
1 FPU with separate add, mul, div and sqrt pipelines. Each core supports up to 256
threads in 16 families using up to 1024 integer and 512 floating-point registers. On-chip
memory consists of 32 L2 caches of 32KB each, one L2 cache per four cores. There are 4
rings of 8 L2 caches; the 4 directories are connected in a top-level ring subordinated to
a master directory. Two DDR3-1600 channels connect the master directory to external
storage. The on-chip memory network implements a Cache-Only Memory Architecture
(COMA) protocol [12]: a cache line has no home location and migrates to the point
of most recent use. Each DDR channel provides 1600 million 64-bit transfers/s, i.e. a
peak bandwidth of 25.6GB/s overall. Each COMA ring provides a total bandwidth of
64GB/s, shared among its participants. The bus between cores and L2 caches provides
64GB/s of bandwidth; the SVP cores are clocked at 1GHz.

bottlenecks on the COMA rings (64GB/s). These I/O bandwidths are indepen-
dent of the number of cores used, so it also provides a hard performance limit.
We can then combine these two intensities to obtain a maximum performance
envelope for a given code and problem size. A program is either constrained by
AI1 if P ×AI1 ≤ AI2 × IO or AI2 when P ×AI1 ≥ AI2 × IO.

The results presented in this paper are produced using cycle-accurate emula-
tion of a Microgrid chip (Figure 1) that implements SVP in the ISA. It assumes
custom silicon with current technology [5]. It defines all states that would exist in
a silicon implementation and captures cycle-by-cycle interactions in all pipeline
stages. We have used realistic multi-ported memory structures, with queueing
and arbitration where we have more channels than ports. We also simulate the
timing of standard DDR3 channels.

3.1 Example: Parallel Reduction

The first example is the IP kernel from the Livermore suite, which computes
the Euclidean norm of a vector. The μTC code is given in Figure 2. In a first
experiment we only use the inner function ‘ik3’ to compute the Euclidean norm
of an entire vector. ‘ik3’ compiles to 7 instructions including 2 FP operations.
So AI1 = 2 ÷ 7 ≈ 0.29. However, every thread must wait for its predecessor to
produce its result before reducing. The cost of communicating the result from
thread to thread requires between 6 and 11 cycles per add depending on the
scheduling of threads, with the difference representing the cost of waking up
a waiting thread and getting it to the read stage of the pipeline, which may
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typedef double flt;
/∗ Livermore loop 3: Inner product

Q ← ∑
i Zi × Xi ∗/

thread LMK3 IP(shared flt Q, int N,
flt Z[N], flt X[N])

{
int P = get ncores();
create(DEFAULT; 0; P)

redk3(Qr = 0, Z, X, N/P);
sync();
Q = Qr;

}

thread redk3(shared flt Q, flt∗Z, flt∗X, int sp)
{

index ri;
create(LOCAL; ri ∗ span; (ri+1) ∗ sp)

ik3(Qr = 0, Z, X);
sync();
Q += Qr;

}
thread ik3(shared flt Q, flt∗Z, flt ∗X) {

index i;
Q += Z[i]∗X[i];

}

Fig. 2. Inner product in μTC using a parallel reduction. Entry point LMK3 IP creates
a family at the default place, i.e. the entire cluster. The family contains P threads
where P is the number of cores. Each thread runs ‘redk3’, identified by ‘ri’. Each
‘redk3’ thread further creates one family of N/P threads running ‘ik3’. The keyword
‘LOCAL’ hints that the concurrency be kept local relative to ‘redk3’, i.e. on the same
core if ‘redk3’ is spread over multiple cores. The reduced sums trickle from the inner
family to the entry point through dataflow channel Q.

be overlapped by other independent instructions in the pipeline. This implies
2 ÷ (7 + 11) ≈ 0.11 ≤ AI ′1 ≤ 0.16 ≈ 2 ÷ (7 + 6), i.e. an expected single core
performance of 0.11 to 0.16 GFLOP/s. As shown in Figure 3 with P=1 we
observe 0.12 to 0.15 GFLOP/s, in accordance with the envelope.

In a second experiment we exploit the associativity of addition for a two-level
implementation (full code of Figure 2). The (dynamic) number of cores in the
‘current place’ is exposed to programs as a language primitive. The reduction
is split in two stages: LMK3 IP creates a family of one thread per core, which
performs a local reduction and then completes the reduction between cores.
When the number of threads per core is significantly larger than the number
of cores, the cost of the final reduction is small and the performance should
scale linearly with the number of cores. Given the single core performance of
≈ 0.15 GFLOP/s we would expect a maximum performance of 0.15× 64 = 9.6
GFLOP/s. However, for this code AI2 = 0.125 FLOPs/byte and so performance
would be memory limited to 3.2 GFLOP/s.
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Fig. 3. IP performance, using N/P reduction. Working set: 16×#psize bytes.
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We achieve only 1.4 GFLOP/s, dropping to 0.88 GFLOP/s, for cold caches
with the largest problem size. This deviation occurs when the working set does
not fit in the L2 caches, because then loads to memory must be interleaved with
line evictions. Even though evictions do not require I/O bandwidth, they do
consume COMA ring bandwidth. In the worst case a single load may evict a
cache line where the loaded line is used only by one thread before being evicted
again. A single 8 byte load could require as much as two 64-byte line transfers,
i.e. a perceived bandwidth for loads of 4 GB/s rising to 32GB/s if all 8 words are
used. This translates into a peak performance of between 0.5 and 4 GFLOP/s
with AI2 = 0.125 FLOPs/byte, when the caches become full. Note also, at a
problem size of 20K on 64 cores, between 17 and 22% of the cycles required are
for the sequential reduction, a large overhead and at a problem size of 100K,
when this overhead is significantly smaller, only 1/6th of the problem fits in
cache for up to 32 cores (1/3 for 64 cores).

With warm caches, this transition to on-chip bandwidth limited performance
is delayed and more abrupt. For P = 32 the maximum in-cache problem size
is N=16K and for P = 64, N=32K (ignoring code etc.). As would be expected
for ring-limited performance, we see peak performance at N=10K and 20K resp.
for these two cases. Any increase in problem size beyond this increases ring
bandwidth to the same level as with cold caches.

3.2 Data-Parallel Code

We show here the behaviour of three data-parallel algorithms which exhibit dif-
ferent, yet typical communication patterns. Again, our μTC code is a straight-
forward parallelisation of the obvious sequential implementation and does not
attempt any explicit mapping to hardware resources. The equation of state frag-
ment (ESF, Livermore kernel 7) is a data parallel kernel with a high arithmetic
intensity, AI1 = 0.48. It has 7 local accesses to the same array data by different
threads. If this locality can be exploited, then AI2 = 0.5 FLOPs/byte from off-
chip memory. Matrix-matrix product (MM, Livermore kernel 21) has significant
non-local access to data, in that every result is a combination of all input data.
MM is based on multiple inner products and hence AI1 = 0.29. However, for
cache bound problems and best case for problems that exceed the cache size,
AI2 = 3 FLOPs/byte from off-chip memory. Finally, FFT lies somewhere be-
tween these two extremes: it has a logarithmic number of stages that can exploit
reuse but has poor locality of access. Here AI1 = 0.33 and for cache-bound
problems 1.6 ≤ AI2 ≤ 2.9 (logarithmic growth with problem size if there are no
evictions). However, with evictions this is defined per FFT stage and AI2 = 0.21.

For ESF, with sufficient threads, the observed single core performance is 0.43
GFLOP/s, i.e. 90% of the expected maximum based on AI1 for this problem
( 4a). Also, while the problem is cache bound, for cold caches, we see linear
speedup on up to 8 cores, 3.8 GFLOP/s. For 8 cores this problem size has 128
threads per core, reducing to 8 at 64 cores. This is an insufficient number of
threads to tolerate latency and we obtain 6.6 GFLOP/s for 64 cores, 54% of
the maximum limited by AI2 (12.3 GFLOP/s). As the problem size is increased,
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Fig. 4. Performance of the ESF. Working set: 32×#psize bytes.

cache evictions limit effective I/O bandwidth to 12.3GB/s at the largest problem
sizes, i.e. an AI2 constraint of around 6 GFLOP/s. We see saturation at 67% of
this limit for both warm and cold caches. With warm caches and smaller problem
sizes, greater speedups can be achieved ( 4b) and we achieve 9.87 GFLOP/s or
80% of the AI2 constrained limit for a cache bound problem.

MM naively multiplies 25×25 matrices by 25×N matrices using a local IP
algorithm. As AI2 = 3.1 FLOPs/byte, the I/O limit of 75 GFLOP/s exceeds the
theoretical peak performance, namely 9.8 GFLOP/s. Our experiments show an
actual peak of 8.7 GFLOP/s, or 88% of the maximum.

For FFT, the observed performance on one core is 0.23 GFLOP/s, or 69%
of the AI1 limit. When the number of cores and the problem size increase, the
program becomes AI2 constrained, as now every stage will require loads and
evictions, giving an effective bandwidth of 12.3GB/s and as AI2 = 0.21, an I/O
constrained limit of 2.6 GFLOP/s. We observe 2.24 GFLOP/s, or 86% of this.

Extra benchmark results are illustrated in Figure 5.

Program AI1 AI2 Bounded by Max. envelope Observed Eff.

DNRM2 (BLAS) 0.14-0.22 0.375 AI1 0.15-0.22 0.12-0.22 > 80%
MM 0.11-0.16 3.1 AI1 P×0.16 P×0.13 > 85%
ESF 0.48 0.5 AI1 P×0.48 P×0.43 > 85%
ESF (cache bound) 0.48 0.5 AI2 2-6.15 (IO=4-12.3G/s) 2.7 > 40%
FFT1D 0.33 0.21 AI1 P×0.33 P×0.23 > 65%
FFT1D (cache bound) 0.33 0.21 AI2 0.84-2.6 (IO=4-12.3G/s) 2.24 > 85%

Fig. 5. Observed performance vs. performance envelope for various kernels

4 Conclusion

The results presented in this paper show high pipeline utilisation of single SVP
places by naive implementations of computation kernels. Moreover, we are able
to predict performance using a simple performance envelope defined by purely
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architectural bandwidth constraints. Provided we have sufficient threads we ob-
serve performances that are very close (in the region of 80%) to the expected
envelope. Even in the worst cases we are within 50% of the envelope.

In other words, the SVP concurrency model facilitates the writing and gener-
ation of concurrent programs that need only be written and compiled once but
yet can still exploit efficiently the varying parallel resources provided by partic-
ular hardware configurations. On our Microgrid architectures programs can be
expressed in the μTC language free from the restraints of resource awareness;
the program only needs to express the available concurrency in algorithms and
the desired synchronisations, and the SVP implementation derives a schedule
that achieves high resource utilisation automatically.
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Abstract. Intel’s Threading Building Blocks (TBB) provide a high-level
abstraction for expressing parallelism in applications without writing explicitly
multi-threaded code. However, TBB is only available for shared-memory, homo-
geneous multicore processors. Codeplay’s Offload C++ provides a single-source,
POSIX threads-like approach to programming heterogeneous multicore devices
where cores are equipped with private, local memories—code to move data be-
tween memory spaces is generated automatically. In this paper, we show that the
strengths of TBB and Offload C++ can be combined, by implementing part of the
TBB headers in Offload C++. This allows applications parallelised using TBB
to run, without source-level modifications, across all the cores of the Cell BE
processor. We present experimental results applying our method to a set of TBB
programs. To our knowledge, this work marks the first demonstration of programs
parallelised using TBB executing on a heterogeneous multicore architecture.

1 Introduction

Concurrent programming of multicore systems is widely acknowledged to be challeng-
ing. Our analysis is that a significant proportion of the challenge is due to the following:

Thread management: It is difficult to explicitly manage thread start-up and clear-
down, inter-thread synchronization, mutual exclusion, work distribution and load bal-
ancing over a suitable number of threads to achieve scalability and performance.

Heterogeneity: Modern multicore systems, such as the Cell [1], or multicore PCs
equipped with graphics processing units (GPUs) consist of cores with differing instruc-
tion sets, and contain multiple, non-coherent memory spaces. These heterogeneous fea-
tures can facilitate high-performance, but require writing duplicate code for different
types of cores, and orchestration of data-movement between memory spaces.

Threading Building Blocks (TBB) [2] is a multi-platform C++ library for program-
ming homogeneous, shared-memory multicore processors using parallel loop and re-
duction operations, pipelines, and tasks. These constructs allow the user to specify what
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void SerialUpdateVelocity() {
for(int i=1; i<Height-1; ++i)
for(int j=1; j<Width-1; ++j)

V[i][j] = D[i][j]*(V[i][j]+L[i][j]*
(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));

}

Fig. 1. A serial simulation loop

can be safely executed in parallel, with parallelisation coordinated behind-the-scenes in
the library implementation, thus addressing the above thread management issues.

Offload C++ [3] extends C++ to address heterogeneity. Essentially, Offload C++
provides single source, thread based programming of heterogeneous architectures con-
sisting of a host plus accelerators. Thread management must be handled explicitly, but
code duplication and movement of data between memory spaces is handled automati-
cally. Offload C++ for the Cell processor under Linux is freely available [4].

In this paper, we combine the strengths of TBB and Offload C++ by implementing
the crucial TBB parallel for construct. This allows applications that use these constructs
to run, without source-level modifications, across all cores of the Cell BE architecture.

We also discuss data-movement optimisations for Offload C++, and describe the de-
sign of a portable template-library for bulk data-transfers. We show that this template-
library can be integrated with TBB applications, providing optimised performance when
Offload C++ is used on Cell. We evaluate our approach experimentally using a range of
benchmark applications. In summary, we make the following contributions:

– We describe how an important fragment of TBB implemented using Offload C++
allows a large class of programs to run across all the cores of the Cell architecture

– We show how performance of TBB programs on Cell can be boosted using a
portable template-library to optimise data-movement

– We demonstrate the effectiveness of our techniques experimentally

2 Background

The TBB parallel_for construct. We illustrate the parallel_for construct us-
ing an example distributed with TBB that simulates seismic effects. Figure 1 shows
a serial loop. In Figure 2 the loop body is expressed as a C++ function object whose
operator() method can process elements in a given range. The parallel_for func-
tion template takes a function object and an iteration space parameter. When invoked,
the function object is applied to each element in the iteration space, typically in parallel.
The programmer specifies neither the number of threads nor tasks.

Offload C++. The central construct of Offload C++ is the offload block, a lexical scope
prefixed with the __offload keyword. In the Cell BE implementation of Offload C++,
code outside an offload block is executed by the host processor (PPE). When an of-
fload block is reached, the host creates an accelerator (SPE) thread that executes the
code inside the block. This thread runs asynchronously, in parallel with the host thread.
Multiple SPE threads can be launched concurrently via multiple offload blocks. Each
offload block returns a handle, which can be used to wait for completion of the associ-
ated SPE thread. For full details, see [3].



Programming Heterogeneous Multicore Systems Using Threading Building Blocks 119

struct UpdateVelocityBody {
void operator()( const blocked_range<int>& r ) {
for(int i=r.begin(); i!=r.end(); ++i)

for(int j=1; j<Width-1; ++j)
V[i][j] = D[i][j]*(V[i][j]+L[i][j]*

(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));
} };
void ParallelUpdateVelocity() {

parallel_for(blocked_range<int>(1, Height-1), UpdateVelocityBody());
}

Fig. 2. Simulation loop body as a C++ function object, executable using parallel_for

3 Offloading TBB Parallel Loops on the Cell BE Architecture

The example of Figure 2 demonstrates the ease with which TBB can parallelise regu-
larly structured loops. TBB does not however support heterogeneous architectures such
as the Cell BE. We now show that, by implementing the parallel_for construct in
Offload C++ we can allow the code of Figure 2 to execute across all cores of the Cell.
The key observation is that TBB tasks are an abstraction over a thread-based model of
concurrency; of the kind provided by Offload C++ for heterogeneous architectures.

We implement the parallel loop templates of TBB to distribute loop iterations across
both the SPE and PPE cores of the Cell. These template classes are included in a small
set of header files compatible with the Offload C++ compiler. Figure 3 shows a simple
version of parallel_for, while parallel_reduce can be implemented similarly.

The implementation in Figure 3 performs static work division. Multiple distinct im-
plementations with different static and dynamic work division strategies across subsets
of the available cores can be achieved via additional overloads of the run function. Dy-
namic work division is achieved by partitioning the iteration space dynamically to form
a work queue, guarded by a mutex, from which the worker threads obtain work units.
This provides dynamic load balancing, as workers with less challenging work units are
able to perform more units of work. Overloaded versions of parallel_for allow the
user to select a specific work partitioner, e.g. to select static or dynamic work division.

Work division between the SPE cores and the PPE core is performed in the run

method of the internal::start_for template. Offload’s automatic call graph du-
plication makes this straightforward, despite the differences between these cores: in
Figure 3, local_function is called on both the SPE (inside the offload block) and
PPE (outside the offload block) without modification to the client code.

In Figure 3, NUM_SPES holds the number of SPEs available to user programs. To use
all the cores, we divide work between NUM_SPES+1 threads. One thread executes on the
PPE, the others on distinct SPEs. The body of run spawns offload threads parameterised
with a sub-range and the function object to apply; it then also applies the function object
to a sub-range on the PPE, before finally awaiting the completion of each offload thread.

When passing function objects into class and function templates, the methods to in-
voke are known statically. Therefore, the Offload C++ compiler is able to automatically
compile the function object operator() routine for both SPE and PPE, and generate
the data transfer code needed to move data between global and SPE memory [3].
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template<typename Range, typename Body>
void parallel_for( const Range& range, const Body& body ) {

internal::start_for<Range,Body>::run(range,body);
}

template<typename Range, typename Body>
struct start_for<Range, Body> {

static void run( const Range& range, const Body& body ) {
typedef Range::const_iterator iter;

unsigned NUM_SPES = num_available_spes();
iter start = range.begin(); // Simple 1D range work division
iter end = range.end();
iter chunksize = (end - start)/(NUM_SPES+1);
offloadThread_t handles[NUM_SPES];
const Body local_body = body;

for (int i = 0; i < NUM_SPES; ++i) {
iter local_begin = start + chunksize*i;
iter local_end = local_begin + chunksize;

if (local_end > end) local_end = end;
Range local_range(local_begin,local_end);
handles[i] = __offload(local_body, local_range) { // Sub-range offloaded

local_body(local_range); // to SPE for
}; // asynchronous execution

}
{ // PPE also executes a sub-range

iter local_begin = start + chunksize*NUM_SPES;
Range local_range(local_begin,end);
local_body(local_range);

}
for (int i = 0; i < NUM_SPES; i++)

offloadThreadJoin(handles[i]); // Await completion of SPE threads
} };

Fig. 3. An Offload C++ implementation of parallel_for for the PPE and SPE cores

4 Portable Tuning for Performance

Offload C++ enables code written for a homogeneous shared-memory multicore archi-
tecture to run on heterogeneous multicore architectures with fast local memories. A
consequence of this is that the relative cost of data access operations differs, depending
on the memory spaces involved. We discuss both the default data-movement strategy
employed by Offload; and the portable, manual optimisations we develop to tackle this.

Default data-movement: software cache. The compiler ensures that access to data
declared in host memory results in the generation of appropriate data-movement code.
The primary mechanism for data-movement on Cell is DMA. However, issuing a DMA
operation each time data is read or written tends to result in many small DMA opera-
tions. This can lead to inefficient code, since providing standard semantics for memory
accesses requires synchronous DMA transfers, introducing latency into data access.

A software cache is used to avoid this worst-case scenario. When access to host
memory is required, the compiler generates a cache access operation. At runtime, a
synchronous DMA operation is only issued if the required data is not in the software
cache. Otherwise, a fast local store access is issued. When contiguous data is accessed,
or the same data is accessed repeatedly, the overhead associated with cache-lookups is
ameliorated by eliminating the far greater overhead associated with DMA. Writes to
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global memory can be buffered in the cache and delayed until the cache is flushed or
the cache-entry is evicted to make room for subsequent accesses.

The software cache is small: 512 bytes by default. The cache is a convenience, and
can significantly improve performance over naı̈ve use of DMA. However, accessing
the cache is significantly more expensive than performing a local memory access, even
when a cache hit occurs. For bulk transfers, where each cache-line is evicted without
being reused, the cache leads to overhead without benefit.

Local shadowing. A common feature of code offloaded for Cell without modification
is repeated access to the same region of host memory by offloaded code. In this case,
rather than relying on the software cache, a better strategy can be to declare a local
variable or array, copy the host memory into this local data structure once, and replace
accesses to the host memory with local accesses throughout the offloaded code. If the
offloaded code modifies the memory then it is necessary to copy the local region back
to host memory before offload execution completes. We call this manual optimisation
local shadowing, as illustrated below with a fragment of the raytracer discussed in §5.1:

Sphere spheres[sphereCount]; // Allocated in host memory
__offload {

RadiancePathTracing(&spheres[0], sphereCount, ... );
};

The scene data in the spheres array, allocated in host memory, is passed into the
RadiancePathTracing function, which repeatedly accesses its elements using the
software cache. We can instead apply local shadowing by copying scene data from
spheres into a locally-allocated array, local, declared within the offload block:

Sphere spheres[sphereCount]; // Allocated in host memory
__offload {

Sphere local[sphereCount]; // Allocated in local memory
for (int i = 0; i < sphereCount; ++i)

local[i] = spheres[i];
RadiancePathTracing(&local[0], sphereCount, ... );

};

A pointer to local is now passed to RadiancePathTracing, redirecting accesses
to scene data to fast, local memory. This optimisation reduces access to scene data via
the software cache to the “copy-in” loop; after this, accesses are purely local.

Local shadowing does not compromise portability: in a system with uniform mem-
ory the copy-in and copy-out are unnecessary, but yield equivalent semantics. Assuming
that the code using the locally shadowed data is substantial, the performance hit associ-
ated with local shadowing when offloading is not applied is likely to be negligible.

Bulk data transfers. Offload C++ provides a header-file library of portable, type-safe
template classes and functions to wrap DMA intrinsics and provide support for various
data access use cases. Templates are provided for read-only (ReadArray), write-only
(Write-Array) and read/write (ReadWriteArray) access to arrays in host memory.

The array templates follow the Resource Acquisition is Initialisation (RAII) pattern
[5], where construction and automatic destruction at end of scope can be exploited
to perform processing. Transfers into local memory are performed on construction of
ReadArray/ReadWriteArray instances, and transfers to host memory are performed
on destruction of ReadWriteArray/WriteArray instances.
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struct UpdateVelocityBody {
void operator()( const blocked_range<int>& range ) const {
for( int i=range.begin(); i!=range.end(); ++i ) {

ReadArray <float, Width> lD(&D[i][0]), lL(&L[i][0]), lpT(&T[i-1][0]),
lS(&S[i][0]), lT(&T[i][0]);

ReadWriteArray<float, Width> lV(&V[i][0]);
for( int j=1; j < Width-1; ++j )

lV[j] = lD[j]*(lV[j]+lL[j]*(lS[j]-lS[j-1]+lT[j]-lpT[j]));
} } };

Fig. 4. Using DMA template wrappers for efficient data transfer

Figure 4 illustrates optimising the example of Figure 2 with bulk transfers. The dec-
laration ReadArray<float, Width> lD(&D[i][0]) declares lD a local float ar-
ray, of size Width, and issues a synchronous DMA to fill ld with data from host array
D (hence lD stands for “local D”). The ReadWriteArray instance lV is similar, except
that when destroyed (on scope exit), a synchronous DMA restores the contents of lV to
V. Velocity update is now performed with respect to local arrays only.

Bulk transfer templates share similarities with local shadowing. However, they hide
details of copy-in and copy-out operations, and bypass the software cache completely,
which is often significantly more efficient than an element-by-element copy would be.

At compile time, when targetting the PPE, a zero-copy template instantiation is
invoked instead. This implementation is also usable on systems with single memory
spaces, maintaining portability of code using the templates. Additional data-movement
use cases can be implemented by users using the same template functions abstracting
transfer operations used to implement the array templates.

Automation. The Offload C++ compiler provides feedback on memory access patterns
which can guide the manual application of local shadowing and bulk data transfers. In
principle, the compiler could conservatively perform these optimisations automatically,
given good general-purpose heuristics for when such transformations are beneficial.

5 Experimental Evaluation

We demonstrate the effectiveness of our approach using a set of parallel TBB programs.
Experiments are performed on a Sony PlayStation 3 (with six SPEs accessible), running
Fedora Core 10 Linux and IBM Cell SDK v3.0. Parallel benchmarks are compiled using
Offload C++ v1.0.4. Serial versions of the benchmarks are compiled using both GCC
v4.1.1, and Offload C++ v1.0.4. The faster of the two serial versions is taken as the
baseline for measuring the speedup obtained via parallelisation. Optimisation level -O3
is used in all cases.

– Seismic simulation. Simulation discussed in §2 for a 1120×640 pixel display
– SmallPT-GPU Raytracer. Global illumination renderer generating 256×256 pixel

images from scenes of 3 to 783 spheres, computing sphere-ray intersections with
specular, diffuse, and glass reflectance with soft shadows and anti-aliasing [6]

– Image processing kernels. A set of 8 kernels operating on a 512×512 pixel im-
age, performing black-and-white median, colour median and colour mean filtering;
embossing; sharpening; greyscale conversion; Sobel and Laplacian edge detection



Programming Heterogeneous Multicore Systems Using Threading Building Blocks 123

– PARSEC Black-Scholes. Partial differential equations modelling the pricing of
financial options, from the PARSEC benchmark suite [7] using the large data set

– PARSEC Swaptions. Simulates pricing a portfolio of swaptions using the Heath-
Jarrow-Morton and Monte Carlo methods; from PARSEC using the large data set

5.1 Results

We present results showing the performance increases obtained by parallelising each
benchmark across all available cores of the Cell (6 SPEs + PPE), compared with PPE-
only execution. In some cases, the speedup using all cores is more than 7×. The SPE
cores are significantly different to the PPE, so we would not expect them to be directly
comparable; a specific program may run faster across the SPEs due to higher floating
point performance, or efficient use of scratch-pad memory.

Seismic Simulation: After an initial offload of the original code, we found that the data
transfer intensive nature of this code results in non-optimal performance on the SPE as
the data being processed is still held in the global memory, and not in fast SPE local
store. To address this, we used the ReadArray and ReadWriteArray templates, as
shown in Figure 4, to obtain a 5.9× speedup over the PPE alone.

Image Processing Kernels: Figure 5 shows performance results. We used local shad-
owing to hold input pixel rows in stack allocated arrays, implementing a sliding window
over the input image. Fetching a new pixel row would over-write the local buffer stor-
ing the oldest, and here we utilised our bulk data transfer template operations. Writes
of individual output pixels were also buffered, and written out via bulk transfer.

SmallPT-GPU Raytracer: Figure 6 shows performance results for three versions of
the SmallPT raytracer in raytracing six scenes compared to the serial baseline. The first
version uses parallel_for to execute on the SPEs and PPE. The second version uses
local shadowing of the scene data, as discussed in §4. The last version uses a dynamic
scheduling implementation of parallel_forwhere the SPE and PPE threads dequeue
work from a shared queue, and thereby load balance amongst themselves.

Kernel B&W Median Col. Mean Col. Median Emboss Laplacian Sharpen Sobel Greyscale
Speedup 7.7× 7.4× 4.5× 3.6× 3.1× 5.3× 5.7× 3×

Fig. 5. Speedup for Image Kernels

Scene caustic caustic3 complex cornell large cornell simple
Global scene data 2.5× 2.6× 1.4× 4.5× 4.4× 2.7×
Local scene data 2.8× 3.0× 7.1× 7.2× 7.1× 3.1×
Dynamic parallel for 4.9× 5.2× 10.1× 8.9× 8.5× 5.1×

Fig. 6. Speedup for SmallPT Raytracer using parallel_for
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PARSEC Black-Scholes: Conversion of the Black-Scholes benchmark was straight-
forward. A single parallel_for template function call represents the kernel of the
application. We obtained a speedup of 4.0× relative to the serial version on PPE.

PARSEC Swaptions. The code was refactored in two stages. First, dynamic mem-
ory allocations were annotated to distinguish between memory spaces. Secondly, unre-
stricted pointer usage was replaced with static arrays. Local shadowing optimisations
were also applied. After these modifications, a 3.0× speedup was obtained.

6 Conclusions

We have shown how, using Offload C++, the TBB parallel_for construct can be
readily used to distribute work across the SPE and PPE cores of the Cell processor.
Our proof of concept implementation provides both static and dynamic work division
and supports a subset of the TBB library; parallel_for and parallel_reduce; the
associated blocked_range templates, and the spin_mutex class object.

We have also demonstrated that data transfer operations can be portably imple-
mented, exploiting target-specific DMA transfer capabilities when instantiated in the
context of code to be compiled for the SPE processors.

While related work is available for Cell, the approach of Offload C++ remains dis-
tinct. OpenMP targets homogeneous shared-memory architectures; although distributed
and heterogeneous implementations do exist [8,9]. In contrast to OpenMP on Cell [9],
the Offload compiler can use C++ templates to reflect information obtained statically
from the call graph, allowing users to optimise code using “specialised” template strate-
gies selected for a specific target architecture e.g. the SPE. OpenCL [10] also permits
programming in heterogeneous parallel environments. Unlike Offload, OpenCL intro-
duces “boilerplate” code to transfer data between distinct memory spaces via an API,
and requires accelerator code to be written in the OpenCL language.

Extending Offload C++ to massively parallel systems, such as GPUs, is likely to fol-
low. However, GPU-like architectures are not an ideal fit for the current Offload C++
programming model, which anticipates random access to a shared global store. Adapt-
ing existing application code and Offload C++ to work with the restricted programming
models associated with GPUs will be a significant research challenge.
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Abstract. Understanding turbulent transport in magnetised plasmas is
a subject of major importance to optimise experiments in tokamak fusion
reactors. Also, simulations of fusion plasma consume a great amount of
CPU time on today’s supercomputers. The Vlasov equation provides a
useful framework to model such plasma. In this paper, we focus on the
parallelization of a 2D semi-Lagrangian Vlasov solver on GPGPU. The
originality of the approach lies in the needed overhaul of both numerical
scheme and algorithms, in order to compute accurately and efficiently in
the CUDA framework. First, we show how to deal with 32-bit floating
point precision, and we look at accuracy issues. Second, we exhibit a
very fine grain parallelization that fits well on a many-core architecture.
A speed-up of almost 80 has been obtained by using a GPU instead of
one CPU core. As far as we know, this work presents the first semi-
Lagrangian Vlasov solver ported onto GPU.

1 Introduction

The present paper highlights the porting of a semi-Lagrangian Vlasov-Poisson
code on a GPU device. The work, described herein, follows a previous study made
on the loss code described in other papers [CLS06, CLS09, LCGS07]. A classical
approach in the Semi-Lagrangian community involves the use of cubic splines
to achieve the many interpolations needed by this scheme. The application we
describe here, uses a local spline method designed specifically to perform decou-
pled numerical interpolations, while preserving classical cubic spline accuracy.
In previous papers, this scalable method was described, and was benchmarked
in academic and industrial simulators. Only relatively small MPI inter-processor
communication costs were induced and these codes scaled well over hundreds of
cores (1D and 2D domain decompositions were investigated).

Particle-in-Cell (PIC) codes are often used in plasma physics studies and they
use substantial computer time at some of the largest supercomputer centers in
the world. Particle-in-Cell, yet less accurate, is a most commonly used numer-
ical method than the semi-Lagrangian one. Several papers has been published
on PIC codes that harness the computational power of BlueGene and GPGPU
hardwares [SDG08, BAB+08] and provide good scalability. Looking for new algo-
rithms that are highly scalable in the field of Tokamak simulations is important
to mimic plasma devices with more realism.
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We will describe how to enrich the Semi-Lagrangian scheme in order to ob-
tain scalable algorithms that fits well in the CUDA framework. In the sequel,
the numerical scheme and the accuracy issues are briefly introduced and the
parallelization of the main algorithm with CUDA is described. The speedup and
accuracy of the simulations are reported and discussed.

2 Mathematical Model

In the present work, we consider a reduced model for two physical dimensions (in-
stead of six in the general case), corresponding to x and vx such as (x, vx) ∈ R2.
The 1D variable x represents the configuration space and the 1D variable vx

stands for the velocity along x direction. Moreover, the self consistent magnetic
field is neglected because vx is considered to be small in the physical configura-
tions we are looking at. The Vlasov-Poisson system then reads:

∂f

∂t
+ vx .∇xf + (E + vx × B) .∇vxf = 0, (1)

−ε0∇2φ = ρ(x, t) = q

∫
f(x, vx, t)d vx, E(x, t) = −∇φ. (2)

where f(x, vx, t) is the particle density function, ρ is the charge density, q is
the charge of a particle (only one species is considered) and ε0 is the vacuum
permittivity, B is the applied magnetic field.

Eq. (1) and (2) are solved successively at each time step. The density ρ is
evaluated in integrating f over vx and Eq. (2) gives the self-consistent electro-
static field E(x, t) generated by particles. Our work focuses on the resolution
of Eq. (1) using a backward semi-Lagrangian method [SRBG99]. The physical
domain is defined as D2

p = {(x, vx) ∈ [xmin, xMax]× [vxmin , vxMax ]}. For the sake
of simplicity, we will consider that the size of the grid mapped on this physical
domain is a square indexed on D2

i = [0, 2j − 1]2 (it is easy to break this assump-
tion to get a rectangle). Concerning the type of boundary conditions, a choice
should be made depending on the test cases under investigation. At the time
being, only periodic extension is implemented.

3 Algorithmic Analysis

3.1 Global Numerical Scheme

The Vlasov Equation (1) can be decomposed by splitting. It is possible to solve
it, through the following elementary advection equations:

∂tf + vx∂xf = 0, (x̂ operator) ∂tf + v̇x∂vxf = 0. (v̂x operator)

Each advection consists in applying a shift operator. A splitting of Strang [CK76]
is employed to keep a scheme of second order accuracy in time. We took the
sequence (x̂/2, v̂x, x̂/2), where the factor 1/2 means a shift over a reduced time
step Δt/2. Algorithm 2 shows how the Vlasov solver of Eq. (1) is interleaved
with the field solver of Eq. (2).
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3.2 Local Spline Method

Each 1D advection (along x or vx) consists in two substeps (Algorithm 1). First,
the density function f is processed in order to derive the cubic spline coefficients.
The specificity of the local spline method is that a set of spline coefficients
covering one subdomain can be computed concurrently with other ones. Thus, it
improves the standard approach that unfortunately needs a coupling between all
coefficients along one direction. Second, spline coefficients are used to interpolate
the function f at specific points. This substep is intrinsically parallel wether with
the standard spline method or with the local spline method: one interpolation
involves only a linear combination of four neighbouring spline coefficients.

In Algorithm 1, xo is called the origin of the characteristic. With the local
spline method, we gain concurrent computations during the spline coefficient
derivation (line 2 of the algorithm). Our goal is to port Algorithm 1 onto GPU.

Algorithm 1. Advection in x dir., dt time step
Input : f
Output: f
forall vx do1

a(.)← spline coeff. of sampled function f(., vx)2

forall x do3

x0 ← x− vx.dt4

f(x, vx)← interpolate f(x0, vx) with a(.)5

Algorithm 2. One time step
Input : ft

Output: ft+Δt

// Vlasov solver, part 1
1D Advection, operator x̂

2 on f(., ., t)1

// Field solver
Integrate f(., ., t+Δt/2) over vx2

to get density ρ(., t+Δt/2)3

Compute Φt+Δt/2 with Poisson solver4

using ρ(., t+Δt/2)5

// Vlasov solver, part 2
1D Advection, operator v̂x (use Φt+Δt/2)6

1D Advection, operator x̂
27

3.3 Floating Point Precision

Usually, semi-Lagrangian codes make extensive use of double precision float-
ing point operations. The double precision is required because pertubations of
small amplitude often play a central role during plasma simulation. For the sake
of simplicity, we focus here on the very classical linear Landau damping test
case (with k=0.5, α=0.01) which highlights the accuracy problem one can ex-
pect in Vlasov-Poisson simulation. The initial distribution function is given by

f(x, vx, 0) = e− vx
2

2√
2 π

(1 + α cos(k x)) . Other test cases are available in our imple-
mentation, such as strong Landau damping, or two stream instability. They are
picked to test the numerical algorithm and for benchmarking.

The problem arising with single precision computations is shown on Fig. 1.
The reference loss code (CPU version) is used here. The L2 norm of electric
potential is shown on the picture (electric energy) with logarithmic scale along
the Y-axis. The double precision curve represents the reference simulation. The
difference between the two curves indicates that single precision is insufficient;
especially for long-time simulation. With an accurate look at the figure, one can
notice that the double precision simulation is accurate until reaching a plateau
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value near 10−20. To go beyond this limit, a more accurate interpolation is
needed.

3.4 Improvement of Numerical Precision

For the time being, one has to consider mostly single precision (SP) computations
to get maximum performance out of a GPU. The double precision (DP) is much
slower than single precision (SP) on today’s devices. In addition, the use of
double precision may increase pressure on memory bandwidth.
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single precision
double precision

Fig. 1. Electric energy for Landau test
case 10242 , single versus double precision
(depending on time measured as a num-
ber of plasma period ωc

−1)
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Fig. 2. Electric energy for Landau test
case 10242 , using δf representation or
standard representation

The previous paragraph shows that SP leads to unacceptable numerical re-
sults. It turns out that our numerical scheme could be modified to reduce nu-
merical errors even with only SP operations during the advection steps. To do
so, a new function δf(x, vx, t) = f(x, vx, t) − fref(x, vx) is introduced. Working
on the δf function could improve accuracy if the values that we are working on
are sufficiently close to zero. Then, the reference function fref should be chosen
such that the δf function remains relatively small (in L∞ norm). convenient to
assume that fref is a constant along the x dimension. For the Landau test case,
we choose fref(vx) = 1√

2 π
e−

vx
2

2 . As the function fref is constant along x, the
x-advection applied on fref leaves fref unchanged. Then, it is equivalent to apply
x̂ operator either on function δf or on function f . Working on δf is very worth-
wile (x̂ operator): for the same number of floating point operations, we increase
accuracy in working on small differences instead of large values. Concerning the
v̂x operator however, both fref and f are modified. For each advected grid point
(x, vx) of the f� function, we have (vo

x is the foot of the characteristic):

f�(x, vx) = f(x, vo
x) = δf(x, vo

x) + fref(vo
x), δf�(x, vx) = f�(x, vx)− fref(vx),

δf�(x, vx) = δf(x, vo
x)− (fref(vx)− fref(vo

x)).
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Working on δf instead of f changes the operator v̂x. We now have to interpolate
both δf(x, vo

x) and (fref(vx)−fref(vo
x)). In doing so, we increase the number of

computations; because in the original scheme we had only one interpolation per
grid point (x, vx), whereas we have two in the new scheme. In spite of this cost
increase, we enhance the numerical accuracy using δf representation (see Fig. 2).
A sketch of the δf scheme is shown in Algorithm 3.

4 CUDA Algorithms

4.1 CUDA Framework

Designed for NVIDIA GPUs (Graphics Processing Units), CUDA is a C-based
general-purpose parallel computing programming model. Using CUDA, GPUs
can be regarded as coprocessors to the central processing unit (CPU). They
communicate with the CPU through fast PCI-Express ports. An overview of the
CUDA language and architecture could be found in [NVI09]. Over the past few
years, some success in porting scientific codes to GPU have been reported in
the literature. Our reference implementation of loss, used for comparisons, uses
Fortran 90 and MPI library. Both sequential and parallel versions of loss have
been optimized over several years. The CUDA version of loss presented here
mixes Fortran 90 code and external C calls (to launch CUDA kernels).

Algorithm 3. One time step, δf
scheme
Input : δf t

Output: δf t+Δt

1D advection on δf , operator x̂
21

Integrate δf(., ., t+Δt/2) + fref(.)2

to get ρ(., t+Δt/2)3

Compute Φt+Δt/2,4

with Poisson solver on ρ(., t+Δt/2)5

1D advection on δf , operator v̂x6

→ stored into δf7

Interpolate fref(vx)− fref(vo
x)8

→ results added into δf9

1D advection on δf , operator x̂
210

Algorithm 4. Skeleton of an advection kernel
Input : ft in global memory of GPU
Output: ft+dt in global memory of GPU

// A) Load from global mem. to shared mem.
Each thread loads 4 floats from global mem.1

Floats loaded are stored in shared memory2

Boundary conditions are set (extra floats are read)3

Synchro.: 1 thread block owns n vectors of 32 floats4

// B) LU Solver
1 thread over 8 solves a LU system (7 are idle)5

Synchro.: 1 block has n vectors of spline coeff.6

// C) Interpolations
Each thread computes 4 interpolations7

// D) Writing to GPU global memory
Each thread writes 4 floats to global mem.8

4.2 Data Placement

We perform the computation on data δf of size (2j)2. Typical domain size varies
from 128× 128 (64 KB) up to 1024× 1024 (4 MB). The whole domain fits easily
in global memory of current GPUs. In order to reduce unnecessary overheads,
we decided to avoid transferring 2D data δf between the CPU and the GPU as
far as we can. So we kept data function δf onto GPU global memory. CUDA
computation kernels update it in-place. For diagnostics purposes only, the δf
function is transfered to the RAM of the CPU at a given frequency.
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4.3 Spline Coefficients Computation

Spline coefficients (of 1D discretized functions) are computed on patches of 32
values of δf . As explained elsewhere [CLS06], a smaller patch would introduce
significant overhead because of the cost of first derivative computations on the
patch borders. A bigger patch would increase the computational grain which is
a bad thing for GPU computing that favors scheduling large number of threads.

The 2D domain is decomposed into small 1D vectors (named “patches”) of
32 δf values. To derive the spline coefficients, tiny LU systems are solved. The
assembly of right hand side vector used in this solving step can be summarized as
follows: keep the 32 initial values, add 1 more value of δf at the end of the patch,
and then add two derivatives of δf located at the borders of the patch. Once
the right hand side vector is available (35 values), two precomputed matrices L
and U are inverted to derive spline coefficients (using classical forward/backward
substitution). We decided not to parallelize this small LU solver: a single CUDA
thread is in charge of computing spline coefficients on one patch That point
could be improved in the future in order to use several threads instead of one.

4.4 Parallel Interpolations

On one patch, 32 interpolations need to be done (except at domain boundaries).
These interpolations are decoupled. To maximize parallelism, one can even try
to dedicate one thread per interpolation. Nevertheless, as auxiliary computa-
tions could be factorized (for example the shift vx.dt at line 4 of Algo. 1), it is
relevant to do several interpolations per thread to reduce global computation
cost. The number of such interpolations per thread is a parameter that impacts
performance. This blocking factor is denoted K.

4.5 Data Load

The computational intensity of the advection step is not that high. During the
LU phase (spline coefficients computation), each input data is read and written
twice and generates two multiplications and two additions in average. During
the interpolation step, there are four reads and one write per input data and
also four multiplications and four additions. The low computational intensity
implies that we could expect shortening the execution time in reducing loads
and writes from/to GPU global memory. So, there is a benefit to group the
spline computation and the interpolations in a single kernel. Several benchmarks
have confirmed that with two distinct kernels (one for building splines and one
for interpolations) instead of one, the price of load/store in the GPU memory
increases. Thus, we now describe the solution with only one kernel.

4.6 Domain Decomposition and Fine Grain Algorithm

We have designed three main kernels. Let us give short descriptions: KernVA
operator v̂x on δf(x, vx), KernVB adding fref(vx) − fref(vo

x) to δf(x, vx), KernX
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operator x̂ on δf(x, vx). The main steps of KernVA or KernX are given in Algo-
rithm 4. The computations of 8 n threads acting on 32 n real number values are
described (it means K =4 hardcoded here).

First A) substep reads floats from GPU global memory and puts them into
fast GPU shared memory. When entering the B) substep, all input data have
been copied into shared memory. Concurrently in the block of threads, small
LU system are solved (but 87% of the threads stays idle). Spline coefficients
are then stored in shared memory. In substep C), each thread computes K =4
interpolations using spline coefficients. This last task is the most computation
intensive part of the simulator. Finally, results are written into global memory.

5 Performance

5.1 Machines

In order to develop the code and perform small benchmarks, a cheap personal
computer has been used. The CPU is a dual-core E2200 Intel (2.2Ghz), 2GB of
RAM, 4GB/s peak bandwidth, 4 GFLOPS peak, 1 MB L2 cache. The GPU is
a GTX260 Nvidia card: 1.24Ghz clock speed, 0.9GB global memory, 95GB/s
peak bandwidth, 750 GFLOPS peak, 216 cores. Another computer (at CINES,
FRANCE) has been used for benchmarking. The CPU is a bi quad-core E5472
Harpertown Intel (3 Ghz), 1GB RAM, 5GB/s peak bandwidth, 12 GFLOPS
peak, L2 cache 2×6MB. The machine is connected to a Tesla S1070, 1.44Ghz,
4GB global memory, 100GB/s peak bandwidth, 1000 GFLOPS peak, 240 cores.

5.2 Small Test Case

Let us first have a look on performance of the δf scheme. We consider the small
testbed (E2200-GTX260), and a reduced test case (2562 domain). The simulation
ran on a single CPU core, then on the 216 cores of the GTX260. Timing results
and speedups (reference is the CPU single core) are given in Table 1. The speedup
is near 30 for the two significant computation steps, but is smaller for the field
computation. The field computation part includes two substeps: first the integral
computations over the 2D data distribution function, second a 1D poisson solver.
The timings for the integrals are bounded up by the loading time of 2D data

Table 1. Computation times inside a time step and speedup (in parentheses) averaged
over 5000 calls - 2562 Landau test case, E2200/GTX260

Substeps in one time step CPU (deltaf 4B) GPU (deltaf 4B)

X Advection 5123 μs (1.0 ) 172 μs (29.7 )
V Advection 4850 μs (1.0 ) 144 μs (33.7 )
Field computation 133 μs (1.0 ) 93 μs (1.4 )

Complete Iteration 10147 μs (1.0 ) 546 μs (18.6 )
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from global memory of the GPU (only one addition to do per loaded float). The
second substep that solves Poisson equation is a small sequential 1D problem.
Furthermore, we loose time in lauching kernels on the GPU (25 μs per kernel
launch included in timings shown).

5.3 Large Test Case

In Tables 2-3, we look at a larger test case with data size equal to 10242. Com-
pared to a single CPU core, the advection kernels have speedups from 75 to 90
for a GPU card (using260 000 threads.). Here, the field computation represents a
small computation compared to the advections and the low speedup for the field
solver is not a real penalty. A complete iteration reaches a speedup of 76.

Table 2. Computation time and
speedups (in parentheses) averaged over
5000 calls - 10242 Landau test case -
E2200/GTX260

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 79600 μs (1.0 ) 890 μs (90 )

V Advections 89000 μs (1.0 ) 1000 μs (89 )

Field computation 1900 μs (1.0 ) 180 μs (11 )

Complete Iteration 171700 μs (1.0 ) 2250 μs (76 )

Table 3. Computation time and
speedups (in parentheses) averaged over
5000 calls - 10242 Landau test case -
Xeon/Tesla1070

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 67000 μs (1.0 ) 780 μs (86 )

V Advections 42000 μs (1.0 ) 960 μs (43 )

Field computation 1500 μs (1.0 ) 200 μs ( 7 )

Complete Iteration 110000 μs (1.0 ) 2200 μs (50 )

6 Conclusion

It turns out that δf method is a valid approach to perform a Semi-Lagrangian
Vlasov-Poisson simulation using only 32-bit floating-point precision instead of
classical 64-bit precision. So, we have described the implementation on GPU
of the advection operator used in Semi-Lagrangian simulation with δf scheme
and single precision. A very fine grain parallelization of the advection step is
presented that scales well on thousands of threads. We have discussed the kernel
structure and the trade-offs made to accommodate the GPU hardware.

The application is bounded up by memory bandwidth because computational
intensity is small. It is well known that algorithms of high computational inten-
sity are able to be efficiently implemented on GPU. We have demonstrated that
an algorithm of low computational intensity can also benefit from GPU hard-
ware. Our GPU solution reaches a significant speedup of overall 76 compared
to a single core CPU execution. In the near future, we expect to have a solu-
tion for 4D semi-Lagrangian codes (2D space, 2D velocity) that runs on a GPU
cluster.
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Abstract. We present a much faster than real-time implementation of
Harris Corner Detector (HCD) on a low-power, highly parallel, SIMD ar-
chitecture, the ClearSpeed CSX700, with application for mobile robots
and humanoids. HCD is a popular feature detector due to its invariance
to rotation, scale, illumination variation and image noises. We have devel-
oped strategies for efficient parallel implementation of HCD on CSX700,
and achieved a performance of 465 frames per second (fps) for images
of 640x480 resolution and 142 fps for 1280x720 resolution. For a typical
real-time application with 30 fps, our fast implementation represents a
very small fraction (less than %10) of available time for each frame and
thus allowing enough time for performing other computations. Our re-
sults indicate that the CSX architecture is indeed a good candidate for
achieving low-power supercomputing capability, as well as flexibility.

1 Introduction

Mobile robots and humanoids represent an interesting and challenging example
of embedded computing applications. On one hand, in order to achieve a large
degree of autonomy and intelligent behavior, these systems require a very sig-
nificant computational capability to perform various tasks. On the other hand,
they are severely limited in terms of size, weight, and particularly power con-
sumption of their embedded computing system since they should carry their own
power supply. The limitation of conventional computing architectures for these
types of applications is twofold: first, their low computing power, second, their
high power consumption. Emerging highly parallel and low-power SIMD and
MIMD architectures provide a unique opportunity to overcome these limitations
of conventional computing architectures. Exploiting these novel parallel archi-
tectures, our current objective is to develop a flexible, low-power, lightweight
supercomputing architecture for mobile robots and humanoid systems for per-
forming various tasks and, indeed, for enabling new capabilities.

Computer vision and image processing techniques are very common in robotic,
e.g. tracking, 3D reconstruction and object recognition. Feature detection is
a low-level image processing task which is usually performed as the first step
in many computer vision applications such as object tracking [1] and object
recognition [2]. Harris Corner Detector (HCD) [3] is a popular feature detector
due to its invariance to rotation, scale, illumination variation and image noises.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 137–144, 2011.
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Fast implementations of HCD on various architectures have been considered
in the literature including Application Specific Integrated Circuit (ASIC) [4],
Field Programmable Gate Array (FPGA) [5], Graphics Processing Units (GPU)
[6], and Cell processor [7]. A performance comparison of these implementations is
given in Section 5. ASICs and FPGAs could be used to design custom hardware
for low-power high performance applications. GPU and Cell processor are more
flexible, but the main limitation is the rather prohibitive power consumption.
None of the above mentioned solutions satisfies our requirements for mobile
system vision processing including low power consumption, flexibility, and real
time processing capability simultaneously.

In this paper, we present a fast implementation of HCD on a highly parallel
SIMD architecture, the ClearSpeed CSX700. The CSX700 has a peak comput-
ing power of 96 GFLOPS, while consuming less than 9 Watts. In fact, it seems
that CSX provides one of the best (if not the best) performance in terms of
GFLOPS/Watt among available computing architectures. Considering the CSX
architecture, we have developed strategies for efficient parallel implementation of
HCD. We have achieved a performance of 465 fps for images of 640x480 resolu-
tion and 142 fps for 1280x720 resolution. These results indeed represent a much
faster than real-time implementation and better than those previously reported
in the literature. Our experimental results, presented in this paper, clearly indi-
cate that the SIMD architectures such as CSX can indeed be a good candidate
for achieving low-power supercomputing capability, as well as flexibility, for em-
bedded applications.

This paper is organized as follows. In Section 2, we briefly discuss the HCD
algorithm. In Section 3, we briefly review the CSX architecture. In Section 4, our
approach for parallel implementation of HCD on CSX architecture is described
and experimental results are discussed in Section 5. Finally, some concluding
remarks are presented in Section 6.

2 The Harris Corner Detector Algorithm

To detect corners in a given image, the HCD algorithm [3] proceeds as follows.
Let I(x, y) denotes the intensity of a pixel at row x and column y of the image.

1. For each pixel (x, y) in the input image compute the elements of the Harris

matrix G =
[
gxx gxy

gxy gyy

]
as follows:

gxx =
(

∂I

∂x

)2

⊗ w gxy =
(

∂I

∂x

∂I

∂y

)
⊗ w gyy =

(
∂I

∂y

)2

⊗ w, (1)

where ⊗ denotes convolution operator and w is the Gaussian filter.
2. For all pixel (x, y), compute Harris’ criterion:

c(x, y) = det(G)− k(trace(G))2 (2)

where det(G) = gxx.gyy − g2
xy, k is a constant which should be determined

empirically, and trace(G) = gxx + gyy.
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3. Choose a threshold τ empirically, and set all c(x, y) which are below τ to 0.
4. Non-maximum suppression, i.e. extract points (x, y), which have the maxi-

mum c(x, y) in a window neighborhood. These points represents the corners.

3 The CSX700 Architecture

In this section, we briefly review the ClearSpeed CSX700 architecture with em-
phasis on some of its salient features that have been exploited in our imple-
mentation (see, for example, [8] for more detailed discussion). As illustrated in
Fig. 1(a), CSX700 has two similar cores, each core has a DDR2 memory interface
and a 128KB SRAM, called external memory. Each core also has a standard,
RISC-like, control unit, also called mono execution unit, which is coupled to a
highly parallel SIMD architecture called poly execution unit.

Poly execution unit consists of 96 processing elements (PEs) and performs
parallel computation (see Fig. 1(b)). Each PE has a 128 bytes register file, 6KB of
SRAM, an ALU, an integer multiply-accumulate (MAC) unit, and an IEEE 754
compliant floating point unit (FPU) with dual issue pipelined add and multiply.
The CSX700 has clock frequency of 250 MHz [9]. Considering one add and one
multiply floating point units working in parallel and generating one result per
clock cycle, the peak performance of each PE is then 500 MFLOPS, leading to a
peak performance of 96 GFLOPS for two cores (one chip). However, sequential
(i.e., scalar) operations, wherein single add or multiply is performed, take 4 clock
cycles to be performed [9]. This results to a sequential peak performance of 12
GFLOPS for two cores. This indeed represents a drastic reduction in the peak,
and hence, achievable performance. However, vector instructions which operate
on sets of 4 data are executed much faster, e.g, vector add or multiply instructions
take 4 cycles to be completed [9]. Therefore, vector instructions allow greater
throughput for operations. However, the code generated by compiler may not
be optimized. Therefore, in order to achieve the best performance, we have also
written part of our codes in assembly language of the CSX.

Poly execution unit includes a Programmable I/O (PIO) unit (Fig. 1(b))
which is responsible for data transfer between external memory and PEs’ mem-
ories, called poly memory. The architecture of poly execution unit enables the
computational units and the PIO unit to work in parallel, i.e. it allows overlap-
ping of communication with computation. This feature is fully exploited in our
implementation to reduce I/O overhead

Moreover, as shown in Fig. 1(b), a dedicated bus called swazzle path connects
the register files of neighboring PEs. Consequently, on each cycle, PEs are able to
perform a register-to-register data transfer to either their left or right neighbor,
while simultaneously receiving data from the other neighbor.

4 Proposed Parallel Implementation

Considering the SIMD architecture of CSX, we have employed data parallel
model of computation. Here, we first discuss our data decomposition strategy.
Then, we discuss more details of our parallel implementation.
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Fig. 1. (a)Simplified CSX Chip Architecture (b) Poly Execution Unit Architecture [8]

4.1 Data Decomposition

Having an image and an array of PEs, various data distributions schemes could
be considered. The most obvious schemes are row (column)-stripe distribution,
block distribution, and row (column)-cyclic distribution. Here, we discuss the
effectiveness of each of these data distribution schemes for parallel implementa-
tion of HCD algorithms on the CSX architecture. An important consideration
for the CSX architecture is the size of PE’s memory which is rather limited. For
the CSX architecture, various data distributions should be compared in terms of
the following parameters: (a) required memory space for each PE; (b) redundant
external memory communication; and (c) inter-PE communication time.

In the following, c and r denote the number of columns and rows in image
matrix, respectively. According to the algorithm description in Section 2, HCD
performs a set of operations in windows around each pixels. In fact, HCD uses
windows which may have different sizes in 3 stages: calculating partial deriva-
tives, Gaussian smoothing, and non-maximal suppression. Let ω be the sum of
these window sizes. Also, let p indicate the number of PEs. Finally, in each mem-
ory communication, each PE reads or writes m bytes of data (pixel) from/into
the external memory. Π is the memory space needed to calculate the elements
of Harris matrix for m pixels.

Block distributions. In this scheme, as illustrated in Figure 2(a), the image is
divided into p = d ∗ s blocks, with each block having c/d columns and r/s rows.
The first block is assigned to the first PE, the second one to the second PE, and
so on. Each block can be identified by an ordered pair (i, j) where 1 ≤ i ≤ s
and 1 ≤ j ≤ d. In the following, P (i, j) denotes the PE which is responsible for
processing the block (i, j) and refers to PE ((i− 1)s + j).

Figure. 2(b) depicts the boundary data needed for computation by P (i, j) and
its four immediate neighbors. To handle boundary data, needed by two neigh-
boring PEs, there are two possible alternatives: transferring boundary data from
external memory to both PEs, hence performing redundant data communication,
or transferring to one PE and then using swazzling path to transfer it to the
other PE. The former takes more time, and the latter requires more PE memory
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Fig. 2. (a)Block distribution. P(i, j) refers to PE(i − 1)s + j (b) Boundary data for
each PE in block distribution.

space to store boundary data as discussed in the following. To process first rows
(columns), P (i, j) requires the last rows (columns) of P (i−1, j) (P (i, j−1)), but
these PEs have not yet received the data which P (i, j) requires. Therefore, if the
swazzling path is used then P (i, j) should skip processing these boundary data,
until P (i− 1, j) (P (i, j− 1)) provides the required data. Also, for processing the
last rows (columns) of data, P (i, j) requires data which has already been sent to
P (i + 1, j) (P (i, j + 1)). For these PEs to provide the boundary data to P (i, j),
they need to store this part of data in their memory which is a limited resource.
It should be noted that on the CSX architecture, the distance between P (i, j)
and P (i + 1, j) which process two neighboring blocks is d.

Row-strip distribution. The first r/p rows are assigned to the first PE, the
second r/p rows are assigned to the second PE, and so on. To handle boundary
data, PE(i) requires last rows of PE(i− 1) and first rows of PE(i + 1). In fact,
like block distribution, boundary data could be transfered from external memory
to both PEs or from one PE to another via swazzling path. As discussed above,
the former takes more time, and the latter requires more PE memory space.

Row-cyclic distribution. In this scheme, the first row is assigned to the first
PE, the second row to the second PE, and so on. Since one row is assigned to
each PE, each PE needs to communicate with the PEs which are at most at
the distance of (w − 1)/2. Here, each PE needs data just after its neighbor has
finished processing that same data. So, swazzle path can be utilized without
using extra poly memory space.

Table 1 summarizes the parameters calculated for each data distribution strat-
egy. As can be seen, block and row-strip distribution schemes require either more
PE memory space or more redundant external memory communications. In fact,
for these schemes, the required poly memory space increases linearly with ω. Note
that, the size of windows in HCD are determined empirically for each application.
For larger ω, e.g. 7 or 11, using these data distributions, the required PE memory
will be larger than poly memory space. Row-cyclic distribution needs less poly
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Table 1. Figure of merit for different data distribution schemes. S indicates that
boundary data is shared between PEs by using swazzling path. M indicates that bound-
ary data is transferred from external memory.

Data Dist. Redundant External
Inter-PE Comm. PE Memory Space

Memory Comm.

Block Dist.
M cs(ω − 1) r(ω − 1) ωΠ + m
S - (ω − 1)[cs + r] (ω + ω−1

2
)Π + m

Row-strip Dist.
M pc(ω − 1) - ωΠ + m
S - c(ω − 1) (ω + ω−1

2
)Π + m

Row-cyclic Dist. - cω(ω−1)
2

Π + m

memory space and no redundant external memory communication. Although
row-cyclic distribution uses inter-PE communication more than row-strip distri-
bution by a factor of ω/2, this overhead will be negligible since communication
via swazzle path is very fast (see Section 3). Therefore, row-cyclic distribution
scheme is the most efficient for implementing HCD on the CSX architecture.

4.2 Parallel Implementation of Harris Corner Detector Algorithm

In this section, we discuss parallel implementation of HCD on the CSX architec-
ture, based on row-cyclic distribution scheme. Since, each CSX core includes 96
PEs, the input image is divided into groups of 96 rows. The computation of each
group represents a sweep and sweeps are performed iteratively. Also, to utilize
both cores of CSX700 processor, the input image is divided into two nearly equal
parts. The first �r/2�+ (ω− 1)/2 rows are assigned to the first core and the last
�r/2�+(ω−1)/2 rows are assigned to the second core. Sending boundary lines to
both cores enables each core to perform all computation locally. In the following,
implementation of HCD on one core is explained (for one sweep).

Memory Communication Pattern. In our parallel implementation, commu-
nication and computation overlapping is greatly exploited, and PEs are never
idle to receive data (except the initial phase) from external memory. In fact,
each image row is divided into segments of almost equal size (32 or 64 pixels,
depending on the image size). After receiving the first segment of data, while
each PE is processing the segment of data which is already in its memory, in the
background, PIO transfers new sets of data from external memory to memories
of PEs and the last sets of results to external memory.

Computation Steps. In this section, we present the computation of one seg-
ment of data which consists of 5 steps: calculating partial derivative of I in x and
y directions, Gaussian smoothing, computing Harris criterion, non-maximum
suppression, followed by thresholding.

To calculate partial derivative of I, we have used Prewitt operator. Prewitt
operator uses two 3x3 kernels which are convolved with the original image. In our
implementation, we take advantages of the fact that these convolution kernels
are separable, i.e. they can be expressed as the outer product of two vectors.
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So, the x and y derivative can be calculated by first convolving in one direction
(using local data), then swazzling data and convolving in the other direction.

In the next step, Gaussian smoothing, elements of Harris matrix, gxx, gxy,
and gyy are calculated using (1). Since Gaussian kernel is also separable, the 2-D
convolution can be performed by first convolving with a 1-D Gaussian in the x
direction, and then swazzling the calculated values and convolving with another
1-D Gaussian in the y direction. Then, Harris’ criterion is computed using (2).

In the next step, non-maximum suppression, the maximum value of Harris
criterion in each 3x3 neighborhood is determined. First, each PE obtains the
maximum value in 1x3 neighborhood. Then, each PE swazzles the maximum
values to both its neighbors. Receiving the maximal values of two neighboring
rows, the maximum value in 3x3 neighborhood can then be obtained.

5 Results and Performance of Parallel Implementation

To evaluate the performance, we have implemented the following HCDs on the
CSX700 architecture: HCD3×3 and HCD5×5 which uses a 3×3 and 5×5 Gaus-
sian kernel, respectively. Since our proposed parallel approach provides flexibil-
ity, it can be easily applied to images with different sizes, and various sizes of
Gaussian filter or non-maximum suppression window. The performance of imple-
mented algorithms in terms of latency, fps, and sustained GFLOPS for different
image resolutions are summarized in Table 2. As Table 2 shows, for all tested
image resolutions, even for resolution of 1280x720, our implementation is much
faster than real-time.

The arithmetic intensity, i.e., number of operation per pixel, of HCD3×3 and
HCD5×5 is 40 and 64 respectively. As Table 2 shows, the sustained GFLOPS
depends also on the image size. One reason is that in processing the last sweep
of data, some PEs may be idle, and the number of idle PEs depends on image
size.

Table 2. Performance of HCD on CSX700 architecture using 3×3 and 5×5 Gaussian
filter

Image Latency (ms) fps Sustained GFLOPS
Resolution HCD3×3 HCD5×5 HCD3×3 HCD5×5 HCD3×3 HCD5×5

128x128 .165 .224 6060 4464 3.97 4.68

352x288 .8 1.22 1250 819 5.06 5.31

512x512 1.74 2.63 574 380 6.02 6.37

640x480 2.15 3.28 465 304 5.71 5.99

1280x720 7.04 10.89 142 91 5.23 5.41

Table 3. Comparison with other implementations in the literature

Image Resolution fps reported in [ref] fps achieved by our approach

128x128 1367 [4] 4464

352x288 60 [5] 819

640x480 99 [6] 304
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Table 3 compares our implementation results with those reported in the liter-
ature. As can be seen, our approach provides much better performance in terms
of latency or frame per second while providing a high degree of flexibility in
terms of problem size and parameters.

6 Conclusion and Future Work

We presented a much faster than real-time implementation of Harris Corner
Detector (HCD) on a low-power, highly parallel, SIMD architecture, the Clear-
Speed CSX700. Considering the features of the CSX architecture, we presented
strategies for efficient parallel implementation of HCD. We have achieved a per-
formance of 465 fps for images of 640x480 resolution and 142 fps for 1280x720
resolution. These results indeed represent a much faster than real-time imple-
mentation. Our experimental results, presented in this paper, and our previous
work [10] clearly indicate that the CSX architecture is indeed a good candi-
date for achieving low-power supercomputing capability, as well as flexibility,
for embedded computer vision applications.
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Abstract. In this paper we propose and evaluate a post-link-optimization to in-
crease instruction level parallelism by moving instructions from one basic block
to the preceding blocks. The Grid Alu Processor used for the evaluations com-
prises plenty of functional units that are not completely allocated by the original
instruction stream. The proposed technique speculatively performs operations in
advance by using unallocated functional units.

The algorithm moves instructions to multiple predecessors of a source block.
If necessary, it adds compensation code to allow the shifted instructions to work
on unused registers, whose values will be copied into the original target registers
at the time the speculation is resolved.

Evaluations of the algorithm show a maximum speedup of factor 2.08
achieved on the Grid Alu Processor compared to the unoptimized version of the
same program due to a better exploitation of the ILP and an optimized mapping
of loops.

1 Introduction

The Grid Alu Processor (GAP, see Section 3) was proposed to speed up the execution of
single threaded sequential instruction streams. Compared to other designs, GAP mul-
tiplies the number of Functional Units (FUs) instead of entire cores. To configure it, a
superscalar-like processor frontend loads a standard sequential instruction stream that
is dynamically mapped onto an array of FUs by a special configuration unit. Execution
speed is gained very much from the high level of parallelism supplied by the FUs. The
main influences on the mapping process are control and data flow dependencies as well
as resource conflicts caused by limited resources, which restrict the level of instruction
level parallelism (ILP) that can be exploited.

The algorithm presented in this paper tackles this by moving parts of a basic block
(source block) to one or more preceding blocks (target blocks). By this, results that
might be required in the near future, e. g. after upcoming branches, are calculated spec-
ulatively on otherwise unused resources. At the time the reason for the speculation is
resolved, these results are made visible by compensation instructions (if required).

As the GAP shall be able to replace a superscalar RISC or CISC processor and,
hence, be able to execute the same binaries, no recompilation would be needed to make
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use of it. To preserve this advantage, we suggest using a post-link optimizer to apply
platform-dependent code optimizations because the source code of the program to op-
timize is not needed in this case. Therefore, static speculation has been designed for
use in a post-link-optimizer, hence after instruction selection, register assignment, and
scheduling1.

Static speculation is able to handle all types of control flow independent from
domination- or post-domination-relations or the number of the source block’s predeces-
sors. The only exceptions are basic blocks that are targets of indirect jumps. A binary
analysis together with profiling of the application delivers information about the execu-
tion frequency of basic blocks that can be selected as candidates for the modification.

In the remainder of the paper we give an overview of related approaches in Section 2
followed by a brief introduction of the GAP as target processor in Section 3. The algo-
rithm is described in Section 4 followed by an evaluation of its effects on the execution
of selected benchmarks in Section 5. The paper is concluded in Section 6.

2 Related Work

The GAP is a unique approach and no other code optimizations are yet suggested for it.
However, similar challenges arise in compilation for superscalar or VLIW architectures
as well as in hardware design. This section gives an overview.

For VLIW architectures, trace scheduling [5] is used to expose parallelism beyond
basic block boundaries; it is implemented e. g. in the Multiflow Trace Scheduling Com-
piler [9]. This compiler also moves instructions above splits in the control flow graph
but does this only if compensation instructions are not necessary. Other scheduling
techniques for speculation working on the level of superblocks have been introduced
and evaluated by e. g. Bergmann [2] and Mahlke [10]. These techniques require so-
phisticated knowledge of the program to optimize and, therefore, cannot be applied as
post-link optimizations.

Without giving details, Bernstein et al. [1] suggest for scalar and superscalar archi-
tectures moving single instructions speculatively. Similar work is done by Tirumalai et
al. [14]. The main difference to the work presented here is that we try to move as many
instructions of a basic block as possible or reasonable at one time which decreases the
overhead caused by repeatedly executing analyses. Beyond this, we also cope with the
duplication of instructions to execute them speculatively.

Similarities also exist with tail duplication (see e. g. [6]).We also try to expose
parallelism by duplicating instructions but handle only the important parts of basic
blocks. Hence, the program is not as heavily rewritten but the modification effort is
even smaller.

As shown in Section 4 our algorithm also has parallels with software pipelining (e.
g., Llosa [8]) because it can split a loop formed by a single block into two parts and
rearrange them (i. e., a prologue is formed). Nevertheless, it does not reach the com-
plexity of most algorithms for software pipelining because we assume that instructions

1 Nevertheless, additional implementation effort arises from this and it can happen that the opti-
mization performs not as well as if implemented directly in the compiler. Somehow this is the
price to pay for not having access to the source code.
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in blocks have already been scheduled. Accordingly, we do not try to divide the source
block into equal blocks in terms of approximated execution time and support only one
stage.

Regarding processor design techniques, out-of-order execution as implemented by
scoreboarding [12,13] or Tomasulo’s scheme [15] – both in combination with branch
prediction – execute instructions speculatively, too. The hardware-effort needed to allow
out-of-order execution is very high and adds new limitations e. g. for the issue unit of a
processor as shown by Cotofana et al. [4].

Hence, the outstanding features of the algorithm presented here are its large number
of instructions which can be handled in one iteration, its ability to handle different con-
stellations of blocks independent of the number of the source block’s predecessors or
the domination and/or post-domination relation between a source block and its prede-
cessors. Beyond this, it is a post-link optimization that uses only information available
from the analysis of the binary file and profiling. This causes also the struggle to modify
only small parts of the program with the aim of achieving maximal effects.

3 Target Platform: Grid Alu Processor

The Grid Alu Processor (GAP) has been developed to speed up the execution of con-
ventional single-threaded instruction streams. To achieve this goal, it combines the ad-
vantages of superscalar processor architectures, those of coarse grained reconfigurable
systems, and asynchronous execution.

A superscalar-like processor front-end with a novel configuration unit is used to load
instructions and map them dynamically onto an array of functional units (FUs) accom-
panied by a branch control unit and several load/store units to handle memory accesses.

The array of FUs is organized in columns and rows. Each column is dynamically and
per configuration assigned to one architectural register. Configuration and execution in
the array is always from the top to the bottom, data can flow only in this direction. The
rows of the array are used to model dependencies between instructions. If an instruction
B is dependent of an instruction A than it must be mapped to a row below the row of A.

To be able to save configurations for repeated execution all elements of the array
are equipped with some memory cells which form configuration layers. The array is
quasi three-dimensional and its size can be written as columns x rows x layers.
So, before clearing the array it is first checked if the next instruction to execute is equal
to any first instruction in one of the layers. Then, in all cases, the new values of registers
calculated in columns are copied to the register file at the top of the columns. If a match
is found, the corresponding layer is set to active and execution continues there. If no
match is found, the least recently used configuration is cleared and used to map new
instructions. With this technique, the execution of loops can be accelerated very much
because instructions do not have to be re-issued.

For a detailed description of the GAP please refer to Uhrig et al. [16] and Shehan
et al. [11].
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Fig. 1. Ratio of the configurations/rows which use the number of columns shown on the axis to
the right for the benchmark jpeg encode executed on GAP with 16x16x16 array
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4 Static Speculation

In this section, we describe the algorithm to move instructions to preceding basic blocks
together with the aim of the proposed program transformation.

When running code generated by the default compiler (GCC 2.7.2 with -O3, the latest
version available for SimpleScalar/PISA), in most rows of the array only a small number
of FUs is configured with instructions (see Figure 1). So there are enough FUs that could
be used to calculate additional results, even if they might not be needed, because they
would consume only little or no additional time. To use these spare resources we try to
speculatively execute instructions from following blocks.

An example is shown in Figure 2. It shows three basic blocks which could stand for
an if-then-structure and have been placed into the array of the GAP. The influence of
data dependencies on the instruction placement can be observed. Also, after each con-
trol flow instruction synchronization, which is a special pecularity of GAP and shown
by a horizontal line in Figure 2, is required. In this example, all instructions of the
second block can be moved to the first block and executed speculatively.

If the second block shall not be executed, i. e., the branch from the first block to
the third block is taken, its effects must not be visible. In the example, R3 is the only
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register which would have been modified by the speculatively executed instructions
and overwrite a value which is used by subsequent instructions. Therefore, the moved
instructions work on R4, which was initially unused, instead of the original R3. The
overhead for executing the speculative instructions is zero in this example, because
they are executed in parallel to the first block.

If the second block shall be executed, the content of R4 must be copied to R3, the
original target register. In the figure, this additional compensation instruction is marked
by a dark box. Even if multiple compensation instructions would be required, they can
be placed in the same row of the array and can be executed in parallel because they
do not have any interdependencies. In our example, the overhead for the compensation
instruction is zero because it is executed in parallel with the branch instruction. In the
worst case, all compensation instructions can be executed in parallel because they do
not have any dependencies on each other and, hence, consume the same time as a single
additional move instruction.

Depending on the critical path and the resource utilization of the source and the
target block, the number of rows of the array that are required to map the combined
blocks should be lower. If a lower number of rows is needed for the modified blocks the
average number of instructions per row increases. Hence, the number of instructions
that can be executed in parallel increases resulting in a higher instructions per cycle
(IPC) value.

To avoid executing too many unnecessary instructions, we move instructions only if
the probability of the usage of the calculated results is above a fixed value, e. g. 30%.
This value has been found to be a good tradeoff between performance and additionally
executed instructions. Also we want to modify blocks only if they contribute signifi-
cantly to the total program performance. Hence a block must be executed more often
than a fixed boundary, e. g. more than 10 times.

Nevertheless, we cannot be sure that the total configuration length will be shorter
after the modification of the blocks. This is because of the eventually required additional
row for the compensation instructions, the potential inconvenient layout of the critical
paths of the blocks, and resource restrictions. For example, if memory operations are
moved into a block which already uses many memory access units, then additional
rows will be needed to map the moved memory operations. Hence, resource restrictions
can also restrict the degree of parallelism of instructions. This problem is solved by
introducing an objective function to estimate the height of the modified configuration.
The additional height could also be limited by a parameter, but currently it is set to zero.

This objective function is mainly taken into account when selecting the number of
instructions to move. It is maximized in respect to the objective function and the avail-
ability of enough registers to use them as temporary registers.

A special case is to move instructions across a loop branch. As example, imagine a
block with a conditional branch to its first instruction, so it forms a very simple loop.
If we shift a part of the source block to all the preceding blocks, we shift instructions
from its beginning to one or more blocks with edges to the loop and also to the end
of the loop. these re-ordered parts of the loop can be executed with a higher degree
of parallelism. Loop carried dependencies are also handled because the speculatively
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Fig. 3. Maximum speedup for selected benchmarks on GAP array of 12x12xN FUs

calculated results are not copied to the target registers until it is clear that the loop will
be executed at least one more time.

To sum up, we expect better performance in terms of execution time. In an optimal
case a better use of the FUs of the array is achieved because more columns and less
rows are used. This leads to less reconfigurations of the array and a higher degree of
parallelism inside the array.

5 Evaluation

We evaluated the static speculation algorithm using seven selected benchmarks of the
MiBench Benchmark Suite [7]. We first compiled them using a standard compiler (GCC
with optimizations turned on, −O3). Second, we performed on these binaries a static
analysis and applied the proposed post-link-optimization with our tool GAPtimize.

The GAP is simulated by a cycle accurate simulator which can execute the same
binary files as the SimpleScalar simulator [3] using the PISA instruction set architec-
ture. For all benchmarks, we used a bimod branch predictor and an identical cache
configuration.

Figure 3 shows the speedup that can be gained for the seven selected bench-
marks and several configurations of the GAP by the optimization technique over un-
modified code. They have been distributed on the two charts according to the main
reason for the speedup. The maximum speedup of 2.08 is achieved for benchmark
secu-rijndael-encode (AES) with an array of 12 rows, 12 columns and 32 layers
(i. e. 12x12x32). The speedup is calculated as the number of total clock cycles for the
unmodified program divided by the number of clock cycles needed for the modified
program executed on GAP with identical configuration.
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The speedup for the benchmarks secu-rijndael-decode-nounroll, secu-
rijndael-encode-nounroll, and tele-crc32 is caused by effects beyond those de-
scribed in Section 4. The main reason for the speedup is here GAP’s ability to accelerate
the execution of loops if the loop body fits completely into the array. This is more often
the case if the program has been modified with reduction of the length of configurations
as objective. As example, GAP with the 12x12x1 configuration executing tele-crc32
accelerates 108310 loop iterations after applying the algorithm instead of 428 without
modifications. This is because the configuration of the loop is short enough after apply-
ing the static speculation optimization to map it onto the single available configuration
layer. In other words, the static speculation and the hardware architecture are working
hand in hand.

The more configuration layers are available the less is the impact of the optimiza-
tion for tele-crc32 and cons-jpeg-encode. This is because larger loops can be
mapped to multiple layers anyway and, hence, the advantage of the static specula-
tion is not as high as with a small number of layers. The acceleration of the two
secu-rijndael-*-nounroll benchmarks is caused by the same effects. Hereby, a
very long loop is mapped to multiple layers and by static speculation the number of
layers required for the loop is reduced. Consequently, more layers are available to con-
figure other code fragments.

Nevertheless, speed up can also be gained for benchmarks without dominant loops
like cons-jpeg-encode. This is due to a higher level of ILP (more FUs er line of the
array are used) and less instruction cache misses. Again, these effects are reduced if the
number of configuration layers is increased.

6 Conclusion

In this paper, we present an algorithm for a post-link-optimizer to increase the degree
of ILP in some parts of a program. Therefore, instructions are moved from one basic
block to the preceding blocks. This modification allows in-order architectures with high
fetch and execute bandwidth to execute these instructions speculatively. The speculative
instructions are statically modified to use registers not required by the original program
flow at that time. If the following branch is resolved the results are copied into the origi-
nal target registers, if necessary. Otherwise, they are discarded. Additional hardware for
speculative execution is not required. Our evaluations show a maximum speedup factor
of 2.08 for a standard benchmark using GAP.

A side effect of the static speculation algorithm is that moving instructions over a
loop back branch is similar to software pipelining. In the future we will focus more
on this aspect. As example, it would be possible to add an additional step to resched-
ule the instructions of the source block before modification to increase the number of
instructions that can be moved to the target blocks.

Another topic that we will examine is the real-time capability of the proposed ap-
proach. Speculative execution is also applied within out-of-order processors but, in con-
trast to our approach, its timing behavior is nearly unpredictable because of its dynamic
nature.
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Abstract. The concept of hierarchical networks is useful for designing a large 
heterogeneous NoC by reusing predesigned small NoCs as subnets. In this 
paper we show that multi-level addressing is a cost-effective implementation 
option for hierarchical deadlock-free routing. We propose a 2-level routing 
scheme, which is not only efficient, but also enables co-existence of algorithmic 
and table-based implementation in one router. Synthesis results show that a 2-
level hierarchical router design for an 8x8 NoC, can reduce area and power 
requirements by up to ~20%, as compared to a router for the flat network. This 
work also proposes a new possibility for increasing the number of nodes 
available for subnet-to-subnet interfaces. Communication performance is 
evaluated for various subnet interface set-ups and traffic situations.  

Keywords: Networks on Chip, Hierarchical Networks, Router Architecture. 

1   Introduction 

NoC will be the ideal communication infrastructure for next generation SoCs with 
hundreds of cores as predicted by ITRS. The concept of hierarchy will be helpful in 
designing and using such NoC platforms with growing number of cores. Whether 
hierarchical or not, the formation of packet deadlocks may be fatal to any network 
communication. To avoid this, several deadlock-free routing schemes have been 
proposed in literature, e.g. Turn model  [1], Odd-Even [2] and Up*/Down* [3]. 
Deadlock freedom may be compromised when combining different networks, each 
with its own deadlock-free routing algorithm. Therefore, an important new issue in 
hierarchical NoCs is the design of deadlock-free routing algorithms.  

Holsmark et al. [4] proposed hierarchical deadlock-free routing and showed that if 
subnets are interconnected by “safe boundary” nodes, it is possible to design a 
deadlock-free global routing algorithm without altering any internal subnet routing 
algorithm. But Holsmark et al. [4] assumed a flat implementation with a common 
address space for all network nodes. In this work we propose that a hierarchical 
routing function is implemented in two levels. The higher level routing function will 
determine if the destination for a packet is inside or outside the local subnet. If the 
destination is outside the current subnet, the address of the entry node of the 
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destination subnet is used for routing the message. Upon reaching the destination 
subnet, the lower level routing function determines the route using the local address 
of the destination node. Hence, multi-level routers need only to store addresses to 
subnet entry-nodes for destinations in other subnets, rather than addresses to all 
nodes. This reduces router table-sizes and we show that the 2-level router architecture 
indeed enables significant reduction in area and power consumption.  

One important parameter which affects performance is the number of safe 
boundary nodes of a subnet [4]. Since some routing algorithms provide very few safe 
nodes, we propose the concept of “safe channels” to attain higher connectivity, and 
hence higher performance of a network. We have compared the performance of 2-
level routing with common deadlock-free routing algorithms and explored the effect 
of varying the number of boundary nodes.  

Recently the topic of hierarchical NoCs has caught the attention of researchers. 
Several aspects have been studied, for example Bourduas et al. [5] have proposed a 
hybrid ring/mesh interconnect topology to remove limitations of lengthy diameter of 
large mesh topology networks. Deadlock-free routing in irregular networks often 
implies a strongly limited set of routing paths. To increase the available paths, Lysne 
et al. [6] developed a routing scheme, which avoids deadlock by assigning traffic into 
different layers of virtual channels.  

2   Safe Channels for Increased Connectivity in Hierarchical 
Routing Algorithms 

The methodology for hierarchical routing algorithms [4] used the concept of safe 
boundary nodes to ensure deadlock freedom. Whether a node is “safe” or not depends 
on each subnet routing algorithm and is checked by analysis of internal CDG 
(Channel Dependency Graph [7]) paths. If there are no internal paths from any output 
to any input of a node, it is safe (see Fig. 1). If such a path exists, the node is unsafe 
and may enable formation of CDG cycles with paths in other subnets. The 
requirement that all boundary nodes should be safe often reduces the number of 
possible boundary nodes in a network.  

For deterministic routing algorithms, like XY, all boundary nodes are safe. 
Partially adaptive algorithms provide only a few safe boundary nodes, e.g. an NxN 
network with Odd-Even [2], or West-First [1] provides only N, whereas Negative-
First [1] provides N+ (N-1) nodes. To remedy this situation we propose the concept of  
 

 

Fig. 1. Examples of unsafe boundary nodes, safe boundary nodes and safe channels 
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safe channels. Given a node n, and an internal output channel c of node n, c is a safe 
channel if there does not exist an internal CDG path from channel c to any input 
channel of n.  

Fig. 1 illustrates the differences between unsafe nodes, safe nodes and safe 
channels. The node u is unsafe because the routing restriction allows CDG paths 
between its internal ports. The restrictions in the safe node example prevent such 
CDG paths and s is therefore safe. In the safe channel example, it is straightforward to 
see that only one of the internal output channels of node us (unsafe with safe channel) 
is on a CDG path to an input channel of us itself. Using this safe channel and 
restricting the use of the other channel would, from a deadlock freedom perspective, 
be equivalent to using a safe node. Note that safe channels cannot relax the 
requirement of at least one safe boundary node in each subnet. The effect of adding 
unsafe nodes with safe channels is explored in the evaluation section. 

3   Two-Level Routing Scheme 

3.1   Addressing and Routing Protocol 

Availability of multiple boundary nodes requires that information of the destination 
subnet boundary node is added (see example in section 3.3). Therefore a source node 
tags the header destination address with three fields [subnet id, boundary node, node 
id]. The routing protocol is identical for all nodes. Each node first checks to which 
subnet a packet is destined. If it is in the current subnet, an internal routing function 
determines the route. Otherwise, it is forwarded by an external routing function.  

If subnets are heterogeneous, the encoding of node address in the source subnet 
may differ from the encoding in the destination subnet, both with respect to size and 
topology. In general, the header field for node address must be adjusted according to 
the subnet requiring largest number of bits for node address. The size of the field for 
subnet addressing depends on the number of subnets.  

3.2   Two-Level Routing Function  

The 2-level routing function is partitioned into an external routing function RG and a 
subnet internal routing function Ri. The internal routing function is identical to the 
routing function as if the subnet is a stand-alone network. One feature which is 
enabled by 2-level routing is the possibility to mix implementation techniques of the 
internal routing functions in different subnets. This implies that routers in some 
subnets may be table-based while other routers may implement algorithmic routing.  

Fig. 2 gives pseudo-code of the main hierarchical routing function RH and the 
proposed router architecture. The routing function takes dst which contains the 
destination subnet dst.sn, destination boundary node dst.bn and node address dst.addr. 
If both destination subnet and node addresses match with current subnet and node 
addresses, the function returns the local resource channel. If the destination resides in 
the same subnet as the current node, the local routing function Ri is called with the 
destination node address dst.addr. The returned output channel c_out will in this case 
always be internal. Should the subnets not match, the external routing function is 
invoked with destination subnet dst.sn and boundary node dst.bn. The external routing 
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function can return both external and internal channels if current node is a boundary 
node. If current node is not a boundary node it will only return internal channels. The 
2-level router tables are built similarly to the flat router tables, using breadth-first 
search for computing paths. The main difference is that only paths to destination 
subnets and boundary nodes are stored in the external table. This means that during 
the search, for each source-destination pair, the node where the last transition between 
different subnets was made is stored as boundary node for the destination. This 
information is used for addressing by the source node. Simultaneously, the output 
channel from which the boundary node can be reached is stored in the router table.  

function RH(curr, dst) returns c_out {
if (curr.sn = dst.sn){

/* dst in current subnet */
if (curr.addr = dst.addr) {

c_out := Resource; // at destination
}
else { // local route

c_out := Ri(curr.addr, dst.addr);
} 

}
/* dst not in current subnet - global route */
else {

c_out := RG(curr.addr, dst.sn, dst.bn);
}

}

Internalstructure

Two-level routing function
Pseudo-code Architecture

 

Fig. 2. Pseudo-code and architecture of two-level routing function 

Since all paths are obtained using the hierarchical deadlock-free routing 
methodology [4], it can be shown that the 2-level scheme is deadlock free and 
connected as well. If the destination is in another subnet, such paths must traverse a 
boundary node in the source subnet and a boundary node in the destination subnet.  

3.3   A Small Example of Routing in Two-Level Router Networks 

This small example illustrates routing in 2-level networks as well as the requirement 
of boundary node id for external destinations. Study Fig. 3 where each subnet S1, S2 
and S3 is a 2x2 mesh with routing algorithms XY, YX and XY respectively. The 
external algorithm in this case is assumed to be YX. Boundary nodes are indicated by 
double border.  

Consider routing a message from source node n1,1 in subnet S1 to the destination 
node n2,2 in subnet S2. The source node is identified with subnet and node address, src 
= (S1, n1,1). Destination address contains subnet, boundary node and node address, dst 
= (S2, b2, n2,2). When the routing function is called in src, the subnet fields do not 
match and the external function will be used. The external function returns the East 
channel, i.e. RG((n1,1), S2, b2) = East. Note that this is the only allowed route according 
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to the internal XY algorithm. At node curr = (S1, n1,2), the external algorithm returns 
South. Using East would neither violate the internal algorithm restriction. However, 
this shows the necessity for boundary node specification in the packet header. If the 
external address is specified using subnet id alone, it would not be possible to 
distinguish between destinations in row 1 and row 2 in subnet S2. 

 

Fig. 3. Example of two-level addressing 

In this case, for reaching node dst the only allowed route is South, as the packet 
cannot make this turn at row 1 in subnet S2 since both the internal algorithm and 
external algorithm is YX. After turning south, eventually the packet arrives at node 
n2,1 in subnet S2. Since the current subnet is now the same as the destination subnet, 
the node address and local algorithm is used for routing to the destination, i.e. Ri = 
(n2,1, n2,2) = East. 

4   Synthesis Results  

We evaluate area and power requirements for the network structures given in Fig. 
5(right). Straightforwardly compared, flat addressing in this case requires 64 (8x8) entries 
per router whereas, e.g., 2-level addressing with one boundary node requires one table of 
4 entries for subnet addresses and one table with 16 (4x4) entries for local addresses.  

Synthesis Results

Router Description
Routing Function Complete Router

Area Power 
(uW) Area Power 

(uW)
RF Flat 8x8 mesh 3928 2993,4 21781,5 19884

RH-1bn 2L table 1 bn 1268,2 1176,1 19121,6 18066,7

RH-4bn 2L table 4bn 1974,4 1749,1 19827,8 18639,6

RH-7bn 2L table 7 bn 2675,2 2306,2 20528,6 19196,8

RH-1bn-xy 2L tbl/alg 1 bn 317,1 332,7 17569 16426,7 0%
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Fig. 4. Area and power for different two-level router versions (RH-xbn) and a flat router (RF)  
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Fig. 4 presents synthesis results from UMC 65nm technology library, assuming 1 
GHz clock frequency. The results for implementation of a flat routing function are 
indicated by the label RF. The 2-level variants are indicated according to the number 
of boundary nodes (RH-1bn, RH-4bn and RH-7bn). The table also provides data for 2-
level routing with one boundary node and algorithmic XY routing (RH-1bn-xy). 
Results are given for one routing function per router. The table gives area and power 
consumption separately for the routing function as well as the whole router. The main 
share of cost of the complete router is dominated by input buffers of 4 flits for each 
input port. Fig. 4 also summarizes the percentage of area and power reduction of the 
2-level routing functions as compared to the flat routing function. 

The largest reduction in area, about 65 percent for the routing function (and ~12 
percent for the complete router), is obtained by the configuration with one boundary 
node (bn1), which only needs to store one entry per subnet. As the number of 
boundary nodes increase so do the resource requirements of the routing function. 
Power reduction is slightly less than area reduction for all configurations. Considering 
the algorithmic implementation with XY as local routing function, it is shown that 
area and power for the routing function can be reduced by about 90 percent.  

5   Simulation Based Performance Evaluation  

The evaluations are performed with a simulator designed in SDL using Telelogic SDL 
and TTCN Suite 6.2. Wormhole switching is employed, with packet size fixed at 10 
flits. Routers are modeled with input buffers of size 4 and flit latency of 3 cycles per 
router. Packet injection rate pir is given in average number of packets generated per 
cycle. Thus at pir=0.02, each node generates on average 2 packets per 100 cycles.  
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Fig. 5. A network with four subnets and boundary node configurations 

Different levels of external subnet traffic w.r.t. local subnet traffic are used. This 
means that out of the total, 75% is local traffic and 25% of the traffic is sent outside 
the source subnet. External traffic destinations are uniformly distributed over the 
whole network. The used subnet configurations are given in Fig. 5(left). Each subnet 
exhibits a specific traffic type, which in the case of hierarchical routing is matched 
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with a suitable routing algorithm, (e.g. Subnet 2: Negative First, Transpose1). Fig. 
5(right) shows the three configurations of boundary nodes and external routing 
restrictions in the evaluations. Nodes labeled 1, represent the one boundary node per 
subnet case (bn1).The four boundary node set-up (bn4) additionally uses the nodes 
labeled 4, while the seven boundary node instance (bn7) includes all numbered nodes.  

The bn1 and bn4 set-ups utilize only safe nodes, where bn4 represents the 
maximum attainable connectivity with safe nodes. The bn7 case allows safe channels 
of unsafe nodes in subnets 3 and 4 and achieves the maximum connectivity of the 
topology. Flat algorithms are global, e.g. in the case of XY this means that XY is used 
for routing all messages. Note that XY is only applicable to the bn7 configuration. 
The Up*/Down* algorithm is applicable to all different configurations and is 
annotated similarly to the hierarchical cases, i.e. ud_bnx. 

5.1   Simulation Results 

Fig. 6(left) compares average latency (duration from when a packet was generated at 
the source to when its tail flit was received at the destination) of the hierarchical 
hr_bn7 configuration with XY and Up*/Down* for 100, 95 and 75 percent of 
message subnet locality. Performance is adversely affected for all algorithms when 
reducing the internal traffic. The highest performance is obtained by hr_bn7 with 
100% local traffic (hr_bn7_100). Notable is that hr_bn7 also for 95 % local traffic 
performs considerably better than both XY and Up*/Down* for 100% local traffic. 
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Fig. 6. Average latency: hr vs. other algorithms (left), different hr configurations (right) 

For 75% of local traffic the differences are reduced, especially compared to XY. 
This is quite expected, since XY is known to be a very good algorithm for uniformly 
distributed traffic (which is the distribution of the external traffic). Studying the 
results for four- and one- boundary node hierarchical (hr_bn4_95 and hr_bn1_95 
respectively) in Fig. 6(right), we see that both outperform XY for 95% local traffic 
(Fig. 6(left)), even though their average distances increase due to longer routes. As 
the local traffic is reduced, fewer boundary nodes result in significantly higher 
average latency than XY. The very few external links in hr_bn1 are effective 
bottlenecks and the congestion rapidly propagates into the internal subnet traffic. 
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Fig. 7. Average latency for internal subnet traffic (left), external traffic (right)  

Fig. 7.(left) compares average latency for different algorithms and internal subnet 
traffic. Both hr_bn7 and hr_bn1 show considerably lower latency values for high load 
in the 95% local traffic scenario. Note that XY is on a higher curve than Up*/Down* 
(ud_bn1_95) at low pir but improves as pir is increased. This indicates that 
Up*/Down* may have advantage of adaptive routes at lower pir compared to XY 
routing algorithm. Fig. 7(right) complement the subnet latency by showing the latency 
of the external traffic. The higher base latency for ud_bn1and hr_bn1, due to fewer 
external links, is visible at both 75% and 95% of local traffic. But, in spite of lower 
initial latency, xy_95 rapidly increases above the latency of hr_bn1_95 at pir of 0.015. 

6   Conclusions 

In this paper we have proposed both a new routing scheme as well as a structured 
router design to support deadlock-free routing in a 2-level hierarchical NoC. One 
important hierarchical network parameter is the number of safe boundary nodes. We 
have synthesized a router for various values of this parameter and results show that 2-
level routing is less costly for area and power consumption as compared to a flat 
solution. The importance of this advantage will increase with network size and 
number of boundary nodes. We also observe through simulation that 2-level 
hierarchical routing with maximum number of boundary nodes, in general, provides 
higher performance compared to flat routing algorithms. Although it seems that the 
proposed 2-level scheme will recursively extend itself to n-levels, implementation of 
such schemes will open new challenges.  
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Foreword

High-throughput technologies such as microarray and mass spectrometry and
clinical diagnostic tools such as medical imaging, are producing an increas-
ing amount of experimental and clinical data. In such a scenario, large scale
databases and bioinformatics tools are key tools for organizing and exploring bi-
ological and biomedical data with the aim to discover new knowledge in biology
and medicine.

High-performance computing may play an important role in many phases
of life sciences research, from raw data management and processing, to data
integration and analysis, till data exploration and visualization. In particular, at
the raw data layer, Grid infrastructures may offer the huge data storage needed
to store experimental and biomedical data, while parallel computing can be used
for basic pre-processing (e.g. parallel BLAST) and for more advanced analysis
(e.g. parallel data mining). In such a scenario, novel parallel architectures (e.g.
CELL processors, GPU, FPGA, hybrid CPU/FPGA) coupled with emerging
programming models may overcome the limits posed by conventional computers
to the mining and exploration of large amounts of data.

At an higher layer, emerging biomedical applications need to use bioinformat-
ics tools, biological data banks and patient’s clinical data, that require seamless
integration, privacy preservation and controlled sharing. Service Oriented Archi-
tectures and semantic technologies, such as ontologies, may allow the building
and deployment of the so called ”collaboratories”, where experimental research
may be conducted by remote scientists in a collaborative way.

The 1st Workshop on High Performance Bioinformatics and Biomedicine
(HiBB) aimed to bring together scientists in the fields of high performance com-
puting, computational biology and medicine to discuss the parallel implementa-
tion of bioinformatics algorithms, the application of high performance computing
in biomedical applications, as well as the organization of large scale databases in
biology and medicine. Furthermore, the use of novel parallel architectures and
dedicated hardware to implement bioinformatics and biomedical algorithms has
been discussed.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 165–166, 2011.
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To be able to reach the parallel processing community, the workshop has been
organized in conjunction with Euro-Par, the main European (but international)
conference on all aspects of parallel processing. The Call for Papers for the
HiBB workshop was launched early in the year 2010, and at the passing of the
submission deadline we had received 16 submissions, which were of good quality
and generally relevant to the theme of the workshop. The papers were swiftly
and expertly reviewed by the program committee, each of them receiving at least
three qualified reviews.

The program chair thanks the whole of the program committee and the ad-
ditional reviewers for the time and expertise they put into the reviewing work,
and for getting it all done within the rather strict time limit. Final decision on
acceptance was made by the program chair based on the recommendations from
the program committee. Being an half-day event, there was room for accepting
only 8 of the contributions, resulting in an acceptance ratio of about 50%. All the
accepted contributions were presented at the workshop yielding an interesting
discussion on the role that parallel processing may play in bioinformatics and
biomedicine.

Presentations were organized in two sessions: in the former (High Performance
Bioinformatics) four papers discussing the parallel implementation of bioinfor-
matics and systems biology algorithms were presented, while in the latter (High
Performance Biomedicine) four papers describing the application of high per-
formance computing in clinical laboratories and hospitals were presented. This
post-workshop proceedings includes the final versions of the presented HiBB
papers, taking the feedback from reviewers and workshop audience into account.

The program chair sincerely thanks the Euro-Par organization for providing
the opportunity to arrange the HiBB workshop in conjunction with the Euro-Par
2010 conference. The program chair also warmly thanks the Faculty of Medicine
of the University of Catanzaro and Euro-Par for financial support which made
it possible to organize the workshop. Finally, the program chair thanks all at-
tendees at the workshop, who contributed to a lively day. Based on the mostly
positive feedback the program chair and organizers plan to continue the HiBB
workshop in conjunction with Euro-Par 2011.

October 2010

Mario Cannataro
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Anil Sorathiya3, and Massimo Torquati4

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it
2 ISTI - CNR, Italy
braccia@di.unipi.it

3 Computer Laboratory, Cambridge University, UK
{pl219,as883}@cam.ac.uk

4 Computer Science Department, University of Pisa, Italy
torquati@di.unipi.it

Abstract. The stochastic modelling of biological systems is informative
and often very adequate, but it may easily be more expensive than other
modelling approaches, such as differential equations. We present Stoch-
Kit-FF, a parallel version of StochKit, a reference toolkit for stochastic
simulations. StochKit-FF is based on the FastFlow programming toolkit
for multicores and on the novel concept of selective memory. We experi-
ment StochKit-FF on a model of HIV infection dynamics, with the aim
of extracting information from efficiently run experiments, here in terms
of average and variance and, on a longer term, of more structured data.

Keywords: Stochastic biological models, simulation, multicore.

1 Introduction

The immune system is an example of a complex system formed out of its in-
tercellular and intracellular components, which organise in space and time the
immune response to pathogens through a system of positive and negative regu-
latory nested feedbacks. The modelling of part of the immune response to HIV
infection is a paradigmatic scenario illustrating the challenges that computer-
based modelling and analysis present for this class of problems. The immune sys-
tem can be both modelled by deterministic differential equations (ODEs) and by
stochastic modelling approaches. ODEs are effective in characterizing the system
dynamics when the molecular copy number of each species is sufficiently large. A
stochastic model is much more accurate when the number of molecules consid-
ered is small. The numerical solvability of stochastic models is limited to pretty
� MA and AB have been partially supported by the HPC-Europa 2 Transnational

Access programme, MA by the Regione Piemonte BioBITs Project AB by the CNR
project RSTL-XXL, and PL by the EC’s IST SOCIALNETS project (217141) and
the U.S. Army Research Lab. and U.K. Ministry of Defence (W911NF-06-3-0001).
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small dimensions (e.g. number of species) due to their exponential complexity.
The behaviour of larger systems can be described by stochastic simulations, e.g.
those based on the Gillespie’s algorithm, which simulates the system dynamics
step by step. These methods, although often more accurate than the determin-
istic ones, can be highly demanding in terms of computational power, e.g. when
considering many simulations for increasing the precision of the model. Stochas-
tic methods represent a challenging methodological areas of system biology and
play a growing role in modelling immune responses to pathogens.

We here illustrate the use of parallelism for supporting efficient and informa-
tive stochastic analysis of one such model. Multiple simulations exhibit a natural
independence that would allow them to be treated in an embarrassingly parallel
fashion. However, this is not possible whenever the results need to be concur-
rently combined or compared. Often, recombination is done in a post-processing
phase as a sequential process whose cost in time and space depends on the num-
ber and the size of the simulation results and can be comparable to the cost
of the simulation phase. Besides, independent simulations exhibit good parallel
scalability only if executed onto truly independent platforms (e.g., multicomput-
ers, clusters or grids), but they might exhibit serious performance degradation
if run on multicores due to the concurrent usage of underlying resources. This
effect is particularly significative for I/O-bound applications since typically I/O
and memory buses are shared among cores.

We introduce StochKit-FF, a parallel version of the popular StochKit [1], aim-
ing at supporting the execution of multiple simulations and at combining their
results on cache-coherent, shared memory multicores. These architectures are
currently being developed by the whole computer industry and equip many com-
puting platforms. StochKit-FF has been designed and developed as a low-effort,
efficient porting of StochKit by means of the FastFlow C/C++ programming
framework, which supports efficient applications on multicore and makes it pos-
sible to run multiple parallel stochastic simulations and combine their results.
This relies on selective memory, a novel data structure we designed to perform
the online alignment and reduction of multiple streams of simulation results:
different data streams are aligned according to simulation time and combined
together according to a user-defined function, e.g. the average or others. By dis-
cussing the HIV case-study, we intend to show that this framework represents
an efficient way for running multiple simulations and for the development of ef-
fective modelling techniques. We focus here on producing averaged values, and
on more structured and informative data on a longer term project.

2 A Stochastic Model of the Immune Response to HIV

ODEs based models have long been used for immune system and viral infection
modeling [2,3]. They focus on the average behavior of large populations of iden-
tical objects and need often to be solved numerically. When considering a small
number of molecules, which is highly probable if we consider immune cell in-
teractions in a small volume, or when considering randomness and irregularities
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Fig. 1. a) The “noisy” immune cell dynamics over 4000 days: mutation around day
1000 and then T (mid-curve) degrades. b) A log-scale view: the high peak perturbation
of V 4+V 5 during mutation and the dynamics for the small amounts of degrading cells.

found at all levels of life, then a stochastic model is much more accurate on a
mesoscale. Stochastic methods are based on the Gillespie’s algorithm, which sim-
ulates the reactions step by step [4]. Such stochastic methods are more effective
than the deterministic ones to describe the above mentioned irregularities and
crucial chemical reactions. They observe emerging properties of the behaviour
of a system composed of a large number of simple agents (viruses and cells),
following local rules [5].

Briefly, agent behaviour consists of actions, e.g. cellular interactions, that
cause a state transition of the modelled system, e.g. a variation in the amount
of agents. Actions are stochastic, as their occurrence in time has an associated
probability distribution, which is generally memoryless, typically negative ex-
ponential distributions with the rate as parameter. Hence the overall system
behaviour can be interpreted as a Continuous Time Markov Chain (CTMC).
Systemic emergent properties can be sensitive to the local presence of mini-
mal (integer) quantities of agents/molecules/cells [6]. The combined behavior
of these agents is observed in a discrete-time stochastic simulation, from given
initial conditions: a single transition amongst the possible ones in the current
state is selected, and the state updated accordingly. The Gillespie’s algorithm [4]
determines the next transition and the time at which it occurs, exactly according
to the given probability distributions. Each such possible evolution of the system
is called a trajectory. Large computing resources may be required to correctly
determine fluctuations and averages from the system simulated trajectories.

HIV and the immune response. We recapitulate here our model here, see [2,7]
for details. During the HIV infection multiple strains of the virus arise, we con-
sider two phenotype classes, V 5 and V 4, which invade cells through different
membrane receptors. The mutation from V 5, initially prevailing, to the more
aggressive V 4 has been correlated to the progression to the AIDS phase. The
immune response is based on the action of several cells (T , Z5 and Z4), some
of which strain specific, which can also be infected by the viruses. The Tumor
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Necrosis Factor F induces bystander death of several cells. Infection is charac-
terised by the progressive loss of (infected) T , Z5 and Z4 cells. Mature T cells
and Z4 and Z5 cells are produced at a constant rate (i.e. the parameter of the
associated probability distribution). All cells are typically also cleared out at a
given rate, some of them, e.g. T , are also cleared out by the interaction with
F (Tumor Necrosis Factor). V 5 and V 4 produce the infected cells I5 and I4,
which then produce a large number of V 5 and V 4. The accumulation of F is
proportional to the amount of V 4. Z4 and Z5 proliferate due to infection and
sustain the production of T (some of these represented dynamics are abstractions
of more complex interactions). V 5 strains mutates into V 4 strains as the effect
of a stochastic triggering event expected to occur around a desired time. The pa-
rameters used have been referred from literature, e.g. [2,3] and sometimes tuned
against the known behaviour of the system. Simulations start from given initial
conditions, e.g. T = 1000, Z5 = 250 and V 5 = 100. See Fig. 1 for a trajectory of
the modelled infection dynamics.

3 Parallel Stochastic Simulations

In stochastic simulations, many trajectories might be needed to get a representa-
tive picture of how the system behaves on the whole. Processing and combining
many trajectories may lead to very high compulsory cache miss-rate and thus
become a memory-bound (and I/O-bound) problem. This in turn may require a
huge amount of storage space (linear in the number of simulations and the ob-
servation size of the average trajectory) and an expensive post-processing phase,
since data should be retrieved from permanent storage and processed. Even-
tually, the computational problem hardly benefits from the latest commodity
multi-core architectures. These architectures are able to exhibit an almost per-
fect speedup with independent CPU-bound computations, but hardly replicate
such a performance for memory-bound and I/O-bound computations, since the
memory is still the real bottleneck of this kind of architectures. Tackling these is-
sues at the low-level is often unfeasible because of the complexity of the code and
of the need to keep the application code distinct from platform-specific perfor-
mance tricks. Typically, low-level approaches only provide the programmers with
primitives for flow-of-control management, synchronisation and data sharing.

Designing suitable high-level abstractions for parallel programming is a long
standing problem [8]. Recently, high-level parallel programming methodologies
are receiving a renewed interest, especially in the form of pattern-based pro-
gramming [9,10]. FastFlow belongs to this class of programming environments.

The FastFlow Parallel Programming Environment. FastFlow is a paral-
lel programming framework aiming at simplifying the development of efficient
applications for multicore platforms, being these applications either brand new
or ports of existing legacy codes. The key vision underneath FastFlow is that
effortless development and efficiency can both be achieved by raising the level
of abstraction in application design, thus providing designers with a suitable set
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of parallel programming patterns that can be compiled onto efficient networks
of parallel activities on the target platforms. The FastFlow run-time support is
completely based on lock-free and memory fence-free synchronizations. This ap-
proach significantly reduces cache reconciliation overhead, which is the primary
source of inefficiency in cache-coherent multicore platforms. We refer to [12,11]
for any further details. FastFlow is open source available at [11] under LGPL3.

3.1 Parallel StochKit: StochKit-FF

StochKit [1] is an extensible stochastic simulation framework developed in the
C++ language. It implements the popular Gillespie algorithm, explicit and im-
plicit tau-leaping, and trapezoidal tau-leaping methods.

StochKit-FF extends StochKit (version 1) with two main features: The sup-
port for the parallel run of multiple simulations on multicores, and the support
for the online (parallel) reduction of simulation results, which can be performed
according to one or more user-defined associative and commutative functions.
StochKit v1 is coded as a sequential C++ application exhibiting several non-
reentrant functions, including the random number generation. Consequently,
StochKit-FF represents a significative test bed for the FastFlow ability to sup-
port parallelisation of existing complex codes. The parallelisation is supported by
means of high-level parallel patterns, which could also be exploited as parametric
code factories to parallelise existing, possibly complex C/C++ codes [11].

In particular, StochKit-FF exploits the FastFlow farm pattern, which imple-
ments the functional replication paradigm: a stream of independent data items
are dispatched by an Emitter thread to a set of independent Worker threads.
Each worker produces a stream of results that is gathered by a Collector thread
into a single output stream [12].

In StochKit, a simulation is invoked by way of the StochRxn(), which realises
the main simulation loop; the propensity function and initial conditions are
among its parameters. StochKit-FF provides programmers with StochRxn ff()
function, which has a similar list of parameters, but invokes a parametric sim-
ulation modelling either a number of copies of the same simulation or a set of
parameter-sweeped simulations. StochRxn ff() embodies a farm: the emitter
unrolls the parametric simulation into a stream of standard simulations (repre-
sented as C++ objects) that are dispatched to workers. Each worker receives a
set of simulations, which are sequentially run by way of the StochRxn(), which
is basically unchanged with respect to the original StochKit. Each simulation
produces a stream of results, which are locally reduced within each worker into
a single stream [13]. The collector gathers all worker streams and reduces them
again into a single output stream. Overall, the parallel reduction happens in a
systolic (tree) fashion via the so-called selective memory data structure.

Selective Memory. Together with StochKit-FF, we introduce the selective
memory concept, i.e. a data structure supporting the on-line reduction of time-
aligned trajectory data by way of user-defined associative functions. Selective
memory distinguishes from standard reduce operation [13] because it works on
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Fig. 2. Selective Memory with average. Left: a) Curve Avg-Y is derived via oversam-
pling and time-aligned reduction (average along Y axis) of k independent simulations
(arrows highlight oversampling). Right: b) Avg-XY is derived by the reduction (average
along X axis) of k successive points of Avg-Y (grey boxes highlight averaging zone).

unbound streams, and aligns simulation points (i.e. stream items) according to
simulation time before reducing them: since each simulation proceed at a variable
time step, simulation points coming from different simulations cannot simply be
reduced as soon as they are produced. Selective memory behaves as a sliding
window in a buffer that follows the wavefront of generated simulation points. It
keeps the bare minium amount of data from different simulations to produce a
slice of simulation points that are aligned to simulation time.

The behaviour of selective memory is shown in Fig. 2 using average as combin-
ing function. Simulation points from different simulations are first averaged at
aligned simulation time points: such computed average results oversampled with
respect to single simulations (Fig. 2 a). This oversampling is possibly reduced by
applying the same technique along time axis (Fig. 2 b). Overall, selective memory
produces a combined simulation that has been adaptively sampled: time inter-
vals exhibiting a higher variability across different simulations exhibit an higher
sampling rate. Selective memory effectively mitigates the memory pressure of
result logging when many simulations are run on a multicore, as it substantially
reduces the output size, and thus capacity misses and the memory bus pressure.

4 Experiments and Discussion

Figure 3 a) is a focus on the immune response averaged over 16 simulations, per-
formed on the ness.epcc.ed.ac.uk platform (Sun X4600 SMP - 8 x Dual-Core
AMD Opteron 1218, 32 Gb memory) hosted at EPCC, University of Edinburgh.
The averaged amounts and the variance of Z4, Z5, their sum Z, and T are re-
ported. The variance of Z4 and Z5 is large till 2500 days, showing tight coupling
i.e. interdependence. Then, the variance of T decreases continuously, while the
one of Z5 decreases with the amount of Z5: it is not much involved in dynamics
after the mutation to V 4. Figures 3 b)-d) describe a sensitivity analysis for δt,
which has resulted in being very influential by a large analysis of the model: it
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Fig. 3. Experimental results. Left to right: a) A focus on the immune response, and
b) c) d) Sensitivity analysis for δt = 5.0, 3.0 and 0.5 (average and variance for multiple
trajectories (16x)). e) Speedup of StochKit-FF against StochKit. f) Scalability of Stoch-
Kit-FF(n) against StochKit-FF(1), where with n is the number of worker threads.

strongly impacts on the diffusion of V5,4. In b) V is immediately (in the interval
[0,100]) cleared out, T rapidly increases, and the system is very stable, with a
low variance. In c) the immune response still prevails, but the system appears
much perturbed. In d), well below the standard value of δt, the virus clearly
prevails. Variance is initially high, then it stabilises towards a steady state.

The performances of StochKit-FF have been evaluated on multiple runs of the
HIV case-study. A single run of the simulation with StochKit produces ∼ 150M
simulation points for 4000 days of simulated time (sampled from ∼ 6 GBytes of
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raw data); multiple runs of the same simulation will need a linearly greater time
and space. These simulations can be naively parallelised on a multicore plat-
form by running several independent instances, which however, will compete for
memory and disk accesses, thus lead to suboptimal performances. An additional
linear time (at least) in the number and the size of outputs should be spent in
the postprocessing phase for the recombination of results.

StochKit-FF mainly attacks these latter costs by online reducing the outputs
of simulations, which are run in parallel. As shown in Fig. 3 e), where average
and variance are used as combining functions, StochKit-FF exhibits a superlinear
speedup with respect to StochKit in all tested cases. This superlinear speedup is
mainly due to the fact that StochKit-FF is about two times faster than StochKit
even when running with just one thread. They are mainly due to FastFlow
memory allocator that is faster than standard memory allocator on the testing
platform. As shown in Fig. 3 f), StochKit-FF exhibits a good scalability also
when compared with the sequential (one-thread) version of StochKit-FF.

5 Concluding Remarks

StochKit-FF we presented has been realised as a minimal-modification porting
of a complex application supported by the FastFlow framework. StochKit-FF
suitably recombines the results of efficiently run multiple stochastic simulations
by exploiting the idea of selective memory. We have presented experiments,
highlighting both the aspects of the emerging behaviour of a realistic model of
the HIV infection and efficient performances.
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Abstract. The use of probabilistic models of amino acid replacement is
essential for the study of protein evolution, and programs like ProtTest
implement different strategies to identify the best-fit model for the data
at hand. For large protein alignments, this task can demand vast compu-
tational resources, preventing the justification of the model used in the
analysis.

We have implemented a High Performance Computing (HPC) version
of ProtTest. ProtTest-HPC can be executed in parallel in HPC environ-
ments as: (1) a GUI-based desktop version that uses multi-core processors
and (2) a cluster-based version that distributes the computational load
among nodes. The use of ProtTest-HPC resulted in significant perfor-
mance gains, with speedups of up to 50 on a high performance cluster.

1 Introduction

The evolution of protein sequences can be studied using statistical models that
describe the probabilities of particular amino acid replacements along specific
lineages. Because the number of parameters in these models can be large, in
most cases the 20×20 replacement matrices are not estimated de novo for each
data set. Instead, replacement rates previously estimated from large empirical
databases are adopted. Among these, some of the more popular are the Day-
hoff [4], JTT [7], mtREV [3], WAG [18], mtArt [1] or LG [10] matrices. Im-
portantly, many phylogenetic calculations like the estimation of tree topologies,
branch lengths, nodal support, divergence times or replacement rates benefit
from the use of explicit models of evolution. Because, the use of different mod-
els can change the outcome of the analysis [15], different model selection tools
for protein alignments have been implemented in the past, like ProtTest [2] or
ModelGenerator [9]. In addition, some model selection capabilities have been
added to more general phylogenetic programs like HYPHY [12], Treefinder [6]
or TOPALi [11].
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2 ProtTest

The program ProtTest is one of the most popular tools for selecting models of
protein evolution, with almost 4,000 registered users. ProtTest is written in Java
and uses the program PhyML [5] for the maximum likelihood (ML) estimation of
phylogenetic trees and model parameters. The current version of ProtTest (2.4)
includes 14 different rate matrices that result in 112 different models when we
consider rate variation among sites (+I: invariable sites; +G: gamma-distributed
rates) and the observed amino acid frequencies (+F). ProtTest uses the Akaike
Information Criterion (AIC) and other information criteria to find which of the
candidate models best fits the data at hand. In addition, it can perform multi-
model inference and estimate parameter importances [13]. The time required to
complete the likelihood calculations, that take most of the runtime of the pro-
gram, can be variable depending on the size and complexity of the alignments.
For large alignments, this task cannot be completed in a reasonable time us-
ing a single core. While ModelGenerator/MultiPhyl [8] and TOPALi implement
grid computing to speed-up the analyses, they consider fewer models and do not
implement model averaging.

3 Java for High Performance Computing

There are several programming options in Java for HPC [16]:

Java Shared Memory Programming. As Java has built-in multithreading
support, the use of threads is quite extended due to its portability and high
performance, although it is a rather low-level option. Nevertheless, Java now
provides concurrency utilities, such as thread pools, tasks, blocking queues, and
low-level high-performance primitives (e.g., CyclicBarrier), for a higher level
programming. However, this option is limited to shared memory machines, which
provide less computational power than distributed memory architectures.

Java Distributed Memory Programming. Message-passing is the preferred
programming model for distributed memory architectures (e.g., clusters) due
to its portability, scalability and usually good performance, although it gen-
erally requires significant development efforts. Among currently available Java
Message-Passing Java (MPJ) libraries, F-MPJ [17] and MPJ Express [14] de-
serve to be mentioned for their nested parallelism (MPJ+threads) support for
exploiting performance on clusters of multi-core processors.

4 ProtTest-HPC

ProtTest-HPC is a high performance computing application for protein model
selection, based on ProtTest, but completely redesigned in order to grant model
extensibility, traceability and encapsulation. ProtTest-HPC includes four main
hierarchies:
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– Substitution Models contain the amino-acid model data, although they
can be extended to also support nucleotide models.

– Likelihood Estimators optimize model parameters as a previous step to
model selection. This optimization relies on third-party applications.

– Execution Strategies determine how the optimization of the candidate
set of models is scheduled (i.e., how the workload is distributed among the
available computational resources).

– Information Criteria drive the model selection task according to the pre-
vious optimization and provide the basis for model-averaging calculations.

4.1 Shared Memory Implementation

ProtTest-HPC uses a thread pool to handle the execution of tasks on shared
memory architectures. This implementation is totally portable using thread
pools from the Java Concurrence API, which is included in the Java SDK. The
task queue contains the whole set of tasks (i.e., candidate models to optimize)
which will be processed by the thread pool in a particular order (reverse com-
plexity estimate) (Figure 1).

Fig. 1. ProtTest-HPC shared memory strategy

4.2 Distributed Memory Implementation

In order to handle the computation of tasks on distributed memory architectures
(e.g., clusters), ProtTest-HPC manages processes, which rely on message-passing
communication. ProtTest-HPC uses a distributor process to allocate the work-
load (Fig. 2) according to three different strategies, one static and two dynamic.

The static approach performs the whole distribution of the tasks before their
actual optimization. This distribution is based on the workload estimate for
each task, which is key to provide balanced workload assignments. Therefore,
message-passing among processes is avoided during computation. As long as the
computational load is very hard to estimate, this strategy will usually result in
significant runtime differences among processes. The performance of this strat-
egy is highly dependent on the workload estimate and the number of processes
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Fig. 2. ProtTest-HPC distributed memory strategy

used (i.e., an inaccurate estimate when scheduling a small number of tasks per
process will show poor performance), so it is usually less scalable than dynamic
approaches. However, shorter running times will be obtained for small datasets,
where the time spent in message-passing becomes more significant.

On the other hand, the behavior of the dynamic approaches is more similar
to that of the thread pool, where a task manager distributes the tasks among
processes. In a distributed memory implementation, the root process can assume
this role, although incurring some overhead. However, the use of an additional
dedicated distributor thread can relieve the root process of this work, increasing
performance. The computational overhead imposed by this additional thread is
almost negligible, as most of the time the thread will be waiting for the processes.

The scalability of ProtTest-HPC using shared or distributed memory was lim-
ited by the replacement models with the highest computational load, usually the
”+I+G” models, which could take up to 90% of the overall runtime. In these
cases, the runtime was determined by the longest optimization, resulting in poor
speedups. Moreover, the higher the number of cores, the higher the workload
imbalance due to runtime differences. In fact, it is expected that ProtTest-HPC
could take advantage of up to 50 cores, approximately. This important limita-
tion suggests that the combination of the distributed memory version with a
parallel maximum-likelihood computation can increase significantly the scalabil-
ity of ProtTest-HPC. Therefore, this two-level parallelism approach can result
in a much more efficient exploitation of the available computational resources.

5 Performance Evaluation

We evaluated the performance of ProtTest-HPC on a representative multi-core
cluster under two different scenarios:

– shared memory, using the available cores in a machine.
– distributed memory, running the message-passing version on the whole

cluster.
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Table 1. Test data sets used for performance evaluation. The base tree used for pa-
rameter estimation can be a BIONJ tree fixed across models or the particular ML tree
for each model. Execution times are given in minutes.

Data set/ Protein Number Length Base Execution
Analysis Sequences tree Time
RIB Ribosomal protein 21 113 Fixed BIONJ 5
RIBML ” ” ” ML tree 30
COX Cytochrome C oxidase II 28 113 Fixed BIONJ 10
COXML ” ” ” ML tree 58
HIV HIV polymerase 36 1,034 Fixed BIONJ 45
HIVML ” ” ” ML tree 185
10K Simulated alignment 50 10,000 Fixed BIONJ 552
20K ” ” 20,000 ” 1,470
100K ” ” 100,000 ” 4,785

To evaluate the performance of ProtTest-HPC we used 6 real and simulated
alignments (Table 1). In all cases the set of candidate models included all 112
models available in ProtTest.

5.1 Shared Memory Benchmarking

Figure 3 and Table 2 show the performance of ProtTest-HPC in an 8-core Harper-
town cluster node using shared memory. Here ProtTest-HPC was limited to the
use of up to 8 threads (one thread per core). In this scenario, where the number of
available threads is significantly lower than the number of models to be optimized,
the computational workload was usually well-balanced, and the scalability almost
reached the ideal case (i.e., obtaining speedups close tonwithn threads).Neverthe-
less, for the simplest analyses (e.g., COX and RIB) the performance results when
using 8 threads were poorer than for more computationally intensive tasks (e.g.,
COXMLandRIBML)as the overheadof threads operation (e.g., synchronizations)
and the workload imbalance had a higher impact on the overall performance.
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Table 2. Runtime (seconds) using shared memory on an 8-core Harpertown node

Threads RIB COX HIV RIBML COXML HIVML

1 330 563 2544 1710 3300 9498
2 165 282 1269 851 1647 5149
4 94 151 639 427 825 2581
8 63 90 338 215 415 1300

5.2 Distributed Memory Benchmarking

We explored three different distribution strategies for message-passing. Here we
only evaluated the dynamic option because it provided the most balanced work-
loads without incurring significant penalties (the core devoted to the dedicated
distributor thread represents a small percentage of the total number of available
cores, 256).

Starting from 16 cores, we ran on the cluster the message-passing parallel im-
plementation of ProtTest-HPC using multiples of 14 cores. The reason for this is
that the computational load for a given model depends on the rate heterogeneity
and frequency parameters because the replacement matrix is given. Thus, for a
specific parameter combination like “+I+G” there are 14 models with similar
workload. This suggested the use of a number of cores multiple of 14, so the
workload would be more balanced. In this case the number of tasks processed
per core is likely to be the same. Additionally, it is expected that models with
similar workloads would be optimized by different processes. Finally, ProtTest-
HPC currently includes 112 models, and as each model is optimized sequentially
by a single core, the maximum number of cores that can be used is 112. Perfor-
mance in this case was almost linear for the simple analyses up to 28 cores, while
in other cases (HIVML) the biggest speedups were obtained with 56 cores (Fig-
ure 4 and Table 3). ProtTest-HPC could only take advantage of around 56 cores
on a 256-core cluster, as the running times on 56 or 112 cores were similar. This
happens because of the coarse-grained paralelism and the differences between
the sequential execution times of each substitution model optimization, so this
is the main performance bottleneck (the longest model optimization determines
the runtime). Moreover, distributing a reduced number of tasks per core severely
limits the load balancing benefits, as it is not possible to take advantage of the
spare computational power available once a core finishes its task processing.

Table 3. Runtime (seconds) using distributed memory on a Harpertown testbed

Cores RIBML COXML HIVML 10K 20K 100K

1 1710 3300 9498 33160 88129 287134
8 224 429 1880 4421 11750 38284
16 113 251 1172 2963 6590 23417
28 71 152 516 1960 4972 15275
56 64 93 207 1032 3148 7988
112 49 78 206 1028 2593 7178
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6 Conclusions

We have developed a high performance computing version of ProtTest for the fast
selection of best-fit models of protein evolution. In order to allow for the parallel
execution of ProtTest in high performance computing environments, our imple-
mentation can work either (i) as a GUI-based desktop version that supports the
execution using the available multi-core processors, or (ii) as a cluster-based ver-
sion that distributes the computational load among the available compute nodes.
We show that ProtTest-HPC achieves a significant performance gain over
ProtTest, with speedups of up to 50 on an HPC cluster, although the combination
of the cluster-based version with a parallel maximum-likelihood computation can
increase significantly ProtTest-HPC scalability. For very large alignments, this
can be equivalent to a reduction of the running time from more than one day
to around half an hour. In this way, statistical model selection for large protein
alignments becomes feasible, not only for cluster users, but also for the owners of
standard multi-core desktop computers. Moreover, the flexible design of ProtTest-
HPC will allow developers to extend future functionalities, whereas third-party
projects will be able to easily adapt its capabilities to their requirements.
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Abstract. Grid Computing provides an efficient way for parallelizing
and gridifying computationally and data intensive applications of vari-
ous research fields. One of these application areas is molecular dynamics.
In this paper we examine a biochemical application that generates con-
formers by unconstrained molecular dynamics at high temperature to
overcome conformational bias then finishes each conformer by simulated
annealing and energy minimization to obtain reliable structures. We pro-
vide a general way for turning biochemical applications into Grid work-
flows that can be executed by Grid portals exploiting the computational
power of available production Grids. First we describe the gridification
process, then provide experimental results that show the achieved speed-
up of the ported application.

Keywords: Grid Computing, Grid portal, molecule conformer
generation, TINKER application.

1 Introduction

E-Science infrastructures play an important role in enabling large-scale scientific
research. In order to establish such e-infrastructures, various Grid systems have
been created and run in production as a service for the scientific community.
While several years ago users and companies having computation and data in-
tensive applications looked sceptical at the forerunners of Grid solutions, Grid
Computing [3] has become a separate research field: currently Grids are tar-
geted by many world-wide projects. Research groups were forming around spe-
cific middleware components and different research branches have arisen. Many
user groups from various research fields put their trust in Grids, and usage
statistics and research results show that they were undoubtedly right. Nowadays
research directions are focusing on user needs, therefore more efficient utiliza-
tion and interoperability play the key roles. The current wave of Grid research
targets user support [4]. Though several production Grid solutions are available
today (eg. [1], [9], [8]), the application of these systems is still not widespread.
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Nevertheless we already have good examples that show how beneficial these
systems can be [11], especially for biology, chemistry and physics.

In this paper we examine a biochemical application that generates conform-
ers of flexible molecules, here a tetrapeptide (Tyr-Pro-Phe-Phe-NH2), by uncon-
strained molecular dynamics at high temperature to overcome conformational
bias then finishes each conformer by different statistical modeling (SM) methods
to obtain reliable structures. These structures were successfully used to obtain
the active conformation of the peptide for its receptor (mu opioid receptor)
by QSAR modeling assisted with an efficient variable selection algorithm. We
provide a way for turning biochemical applications into Grid workflows that
can be managed and executed through high level graphical interfaces offered by
Grid portals exploiting the computational power of available production Grids.
Regarding related works, Valverde in [13] has already shown, how to execute
TINKER binaries [12] in EGEE Grids [1], but this solution used only low-level,
command line interface. On the contrary, we propose a general, high-level so-
lution using Grid portals, which provide graphical user interface for non-Grid
expert users. The general gridification process we introduce in this paper can be
applied to any parallelizable application, but the final Grid workflow is highly
dependent on the structure (the number and order of algorithms used) of the
appropriate application.

The rest of the paper is organized as follows. In Section 2 we introduce the
biochemical application and discuss its requirements. In Section 3 we introduce
our approach for gridification, and in Section 4 we present the evaluation result
of our proposed solution. Finally, we conclude our paper in Section 5.

2 The TINKER Conformer Generator Application

The application (shown in Figure 1) generates conformers by unconstrained
molecular dynamics at high temperature to overcome conformational bias (T)
then finishes each conformer by simulated annealing and/or energy minimiza-
tion to obtain reliable structures. The parameter files contain reference for the
molecular force field (here Amber99), vacuum/implicit water (here GBSA) envi-
ronment, target temperatures, etc. The aim is to obtain conformation ensembles
to be evaluated by multivariate statistical modeling. It uses the TINKER library
[12] for molecular modeling for further QSAR studies and drug development. The
target end users are biologists or chemists, who need to examine molecule con-
formers with the TINKER package. The conformer generation algorithm in its
present form comprises five different conformer finishing methods:

(i) minimizing the initial conformational states generated at high temperature
(TM),

(ii) performing a short low temperature (e.g. 300 K) dynamics with the high
temperature conformations to simulate a low temperature thermodynami-
cal ensemble (TD),

(iii) minimizing the above low temperature states (TDM),
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Fig. 1. TINKER Conformer Generator application

(iv) cooling the high temperature states by simulated annealing, e.g. to 50 K,
or completely to 0 K (TSA),

(v) minimizing the annealed states (TSAM).

The reason why to generate the conformational states or conformers (which are
conformational states at some local energy minima) is to investigate which of
them suits better for the subsequent multivariate statistical modeling (namely
quantitative structure-activity relationships studies, QSAR), then the algorithm
may be simplified. Our most recent successful QSAR modeling makes use of
the TSAM structures which is the most computationally costly method, but
may serve as a reference method to obtain the most reliable thermodynamical
ensembles. Regarding execution times, these are the average run times (in hours)
of the various methods in the vacuum environment used in the application on
a single 2GHz CPU machine: T – 13, TM – 28, TD – 3, TDM – 28, TSA – 26
and TSAM – 28 (the abbreviations discussed in this paragraph correspond to
the ones shown in Figure 1). If we use the implicit water (GBSA) environment,
the execution of the different steps takes 1,5 times longer. This means that the
execution of the whole application takes around 5-8 days.

3 Gridifying the Application

The P-GRADE Grid Portal [6] is a workflow-oriented grid portal with the main
goal to support all stages of grid workflow development and execution pro-
cesses. It enables the graphical design of workflows created from various types
of executable components (sequential and parallel jobs), executing these work-
flows in Globus-based computational Grids relying on user credentials, and fi-
nally, analyzing the monitored trace-data by the built-in visualization facilities.
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The P-GRADE Portal provides the following functions: defining grid environ-
ments, creation and modification of workflow applications, managing grid certifi-
cates, controlling the execution of workflow applications on grid resources and
monitoring and visualizing the progress of workflows and their component jobs.

A P-GRADE Portal workflow is a directed acyclic graph (DAG) that con-
nects sequential and parallel programs into an interoperating set of jobs. The
nodes of such a graph are batch jobs, while the arc connections define data re-
lations among these jobs. Arcs define the execution order of the jobs and the
input/output dependencies that must be resolved by the workflow manager dur-
ing execution. The semantics of the workflow execution means that a node (job)
of the workflow can be executed if, and only if all of its input files are available,
i.e., all the jobs that produce input files for this job have successfully termi-
nated, and all the other input files are available on the Portal Server and at
the pre-defined storage resources. Therefore, the workflow describes both the
control-flow and the data-flow of the application. If all the necessary input files
are available for a job, then the workflow manager transfers these files – to-
gether with the binary executable – to the computational resource where the job
is allocated for execution. Managing the transfer of files and recognition of the
availability of the necessary files is the task of the workflow manager component
of the Portal Server.

The WS-PGRADE Portal [7] is the latest member of the P-GRADE portal
family. It is a web-based frontend of the gUSE infrastructure [5], which is a
lose collection of web services supporting high-level distributed deployment and
scalability. It supports development and submission of distributed applications
executed on the computational resources of production Grids. The workflow se-
mantics of gUSE builds on the successful concept of the original P-GRADE
Portal, but it also provides several new features: Job-wise parametrization gives
a flexible and computing efficient way of parameter study (or sweep) (PS) appli-
cations, permitting the submissions of different jobs in different numbers within
the same workflow. During workflow execution, so-called workflow instances are
created. In this way different submissions can be managed and tracked of the
same concrete workflow. Web service calls and different sub-workflows can also
be embedded into the jobs/nodes of the workflow.

The original application has been gridified by creating P-GRADE and WS-
PGRADE workflows shown in Figure 2. Though these two versions of the ap-
plication workflow are similar, we present both versions in order to exemplify
gridification in both portals. The open-source P-GRADE portal can be attractive
for many scientists, while the WS-PGRADE portal has some new enhancements
and provide further development support. The grid workflow application consists
of three phases (denoted by dashed areas in the figures):

1. The first phase is a generator job responsible for the generation of input data
for parameter studies in the next phase.

2. The second phase consist of a PS sub-workflow, in which three PS jobs are
defined for executing three different algorithms (discussed in Section 2), and
an additional PS job that collects the outputs of the three threads and copies
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them in a compressed file to a pre-defined remote storage. (In the P-GRADE
workflow we can see an additional job as the first job of the sub-workflow
that is responsible for copying the PS input files one-by-one from a remote
storage (created by the generator job in the first phase) to the other three
PS jobs. There is no need for such a job in the WS-PGRADE portal, because
this feature is supported by its workflow interpreter.)

3. Finally in the third phase, a collector job gathers the output files of the PS
sub-workflows and uploads them in a single compressed file to the remote
storage, which can be easily downloaded by the user.

Fig. 2. TINKER Conformer Generator workflow in the P-GRADE and WS-PGRADE
portals

In the original sequential application, the TINKER algorithms are executed by
Bash Unix scripts, which are also applicable in EGEE infrastructures [1]. The
sequential generation of 50 000 conformers cannot be parallelized, this is done
by the first generator job. This job has an input file containing the required
binaries of the TINKER library and a user script that perform the execution
of the TINKER algorithms (which comes from the original user application).
During execution it reads the arguments (that can be used for parameterizing
the workflow) and generates the conformers, then sorts them to 50 output files
containing 1000 conformers, the TINKER library and the pre-defined parame-
ters. Finally these files are uploaded to a pre-defined remote storage. These files
represent the input files of the parameter study sub-workflow instances.

The second phase of the workflow application is parallelized by the parameter
study construct. Instead of executing the three TINKER algorithms (minimiza-
tion, dynamics and simulated annealing) sequentially on 50 000 conformers, we
decided to divide the computation into several parts. Since performing an al-
gorithm on one conformer takes less then a second and thousands of jobs may
flood the Grid resources, we decided to pack 1000 conformers to feed sequentially
to the algorithms, and gathered the algorithms into three threads. Each thread
processes 1000 conformers 50 times, therefore this decomposition resulted in 3
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times 50 parameter study jobs. After the execution of the TINKER algorithms,
the output of these threads are gathered, compressed and copied to a storage by
the last job of this phase. Since these PS jobs are executed 50 times parallelly
(for each input file), this phase means 200 job submissions. (In the P-GRADE
portal version we have an additional copy PS job, which makes 250 total job
submissions in this phase.) Finally in the third phase the last collector job of
the workflow compresses all the output files into a single result file, and uploads
it to a storage. Altogether the gridified workflow application consists of 202 jobs
in the WS-PGRADE and 252 jobs in the P-GRADE portals.

Regarding execution times, the original application runs for about a week on a
general single CPU machine. Regarding our experiences the generator job of the
workflow run for 9-18 hours (depending on the speed of the actual execution en-
vironment), while the parameter study jobs executing the TINKER algorithms
on 1000 conformers run within the range of 30-60 minutes each. The total exe-
cution time includes additional queuing, communication and file transfer delays.
Regarding data handling: the input TINKER package is 4.5 MBs. The genera-
tor job creates 50 tarballs containing 1000 conformers each, and the TINKER
package. Each one of these files are around 6.1 MBs. The output of the PS jobs
varies from 1 to 2 MBs, and the final compressed result file is around 280 MBs
(which is proportional to the number of conformers (50000) and the size of the
molecule (80 atoms)). One QSAR study multiplies this data, because it needs
15-20 molecules as a minimum to simulate.

Our main tasks in application porting were to find the acceptable decomposi-
tion, to modify the original application scripts to work separately with a selected
algorithm on the decomposed input sets, and to create additional wrapper scripts
that set up the working environment on the selected grid resources right before
executing the algorithms, and clear up the working directory after execution.
After the scripts have been created, we designed the workflow structure and set
its properties according to the available Grid environments (further described in
the next Section). In the preliminary tests we experienced that some Grid re-
sources failed to execute the TINKER binaries correctly. Later we found out that
the invoked Fortran programs could not manage files with long path names (eg.
/var/scratch/jobs/540873.ce.ui.savba.sk/ https 3a 2f 2flb2.egee.ces-net.cz 3a90-
00 2f1wvjmGCIwWLIDrsdmH8yg), which is typical in the utilized VOs. First
we used the default HOME of the resources (which are usually different from the
pre-defined working directories), but in some cases we still experienced failures,
because sometimes more jobs were sent to different cores of the same host and
tried to use the same working directories. The final solution was to create unique
temporary working directories (for which we used the mktemp Unix command).

The application is the first part of a drug design toolbox, whose first step is
to generate high number of conformers of extremely flexible molecules (in our
case it is a tetrapeptide). The description of highly flexible molecules can only
be considered adequate when they are treated as thermodynamical ensembles
and the rules of statistical thermodynamics are applied. Therefore a successful
QSAR study on this kind of molecules can only be performed when they are
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treated as statistical ensembles and this kind of molecular description serves as
an input for the multivariate statistical analysis step. As a result, we will use the
gridified application to perform several QSAR studies (including 15-20 molecule
explorations each).

4 Performance Evaluation

In order to execute applications (and use any service of production Grids) sci-
entists have to acquire Grid certificates from a certificate authority (eg. [2]) and
register themselves to the selected Grids or Virtual Organizations (VO). We have
applied for membership into two multidisciplinary and one biomedical applica-
tion specific VOs of EGEE for evaluation and further utilization: VOCE [14],
SEEGRID [10] and BIOMED [15]. We have executed the workflow several times
in all three VOs. The total execution time (the makespan) varied between one
and three days. The actual execution time is highly dependent on the actual
load of the resources in the utilized VO. The summary of the average execution
times can be seen in Figure 3 on the left.

By the time we carried out these experiments, we could reach 21 resources in
VOCE, 41 in SEEGRID and 183 in BIOMED. During the evaluation we expe-
rienced a little load on VOCE, medium on SEEGRID and high on BIOMED.
Regarding reliability, no execution errors happened in VOCE, but we encoun-
tered several resubmissions in SEEGRID and some in BIOMED. These environ-
mental conditions affected the measured values. As a result we can state that
the gridified application can be executed 4 to 7 times faster on real production
Grids compared to general single CPU machines. Finally we can see the detailed
execution times of different workflow application phases for selected evaluation
runs in Figure 3 on the right.

Fig. 3. Evaluation of the application on different Grid infrastructures

5 Conclusions

In this paper we have shown how to port a legacy biochemical application to a
parameterizable Grid workflow that can be executed by non-Grid expert users
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from Grid portals providing a graphical user interface for production Grids.
We have successfully parallelized the application and evaluated it on three Vir-
tual Organizations of the EGEE Grid. The presented results show that we have
achieved a significant speed-up with at most 7 times faster execution compared
to general single CPU machines. Though the presented worklows have been de-
signed for EGEE VOs, using the gUSE infrastructure it is possible to execute
the workflow in different Grids (eg. GT4, BOINC). Our future work aims at
creating a graphical portlet for workflow submissions in the P-GRADE and WS-
PGRADE portals, which will further simplify user interactions with production
Grids.
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Abstract. Multi-Criteria Protein Structure Comparison (MC-PSC) is
one of the Grand Challenge Applications (GCAs) in the field of structural
proteomics. The solution of the MC-PSC grand challenge requires the use
of distributed algorithms, architectures and environments. This paper is
aimed at the analysis of the scalability of our newly developed distributed
algorithm for MC-PSC in the grid environment. The scalability in the
grid environment indicates the capacity of the distributed algorithm to
effectively utilize an increasing number of processors across multiple sites.
The results of the experiments conducted on the UK’s National Grid
Service (NGS) infrastructure are reported in terms of speedup, efficiency
and cross-site communication overhead.

Keywords: Protein Structure Comparison, Grid, Scalability,
Bioinformatics.

1 Introduction

The theoretical analysis of the scalability of the ’computation-centric’ parallel
applications on the grid appears in [4] with a prompt to the Grid community for
the demonstration of this idea in terms of real Grid computing environments.
This theoretical analysis is based on the idea of ’Homogeneous Computational
Grid’ (HCG) and fits well with the real Grid computing infrastructure provided
by the UK National Grid Service (NGS) [8] (please see section 3 for the details
of the NGS infrastructure). The HCG model is based on the concept of ’Hierar-
chical Resource Manager’ [3] and assumes that the Grid consists of C number of
identical Computing Elements (CE′s) and each CE (being a HPC system) has
p number of identical processors connected using the same type of network. The
workload decomposition on such a system consists of two-level hierarchy: at first
the un-decomposed work (W expressed e.g. in Mflops) is equally distributed in
C CE’s (i.e W/C decomposition) and then within each CE the portion of the
work is assigned to each of the p processors (i.e (W/C)/p decomposition). Con-
sequently, this two-level hierarchy gives rise to two sources of communication
� Corresponding author.
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overhead, i.e. the communication overhead among C CE’s Q1(W, C) and the
communication overhead among p processors of each CE Q2(W/C, p). With this
formalism, the execution time on HCG could be defined as:

TC,p(W ) =
Wp

pCΔ
+ Q2(W/C, p) + Q1(W, C) (1)

Where Δ indicates the computing capacity of a processor e.g Mflops/s. Please
note that if C = 1 and if Q1(W, 1) = 0 then the overhead of equation 1 returns
to the standard parallel case i.e Q2(W, p) = Q(W, p).

Equation 1 makes it clear that running the parallel application on more than
one CE’s introduces an additional communication overhead in terms of Q1(W, C)
which increases the execution time. However, this increase in the execution time
could be masked by the value of C, which decreases the execution time by
increasing the number of processors and also by reducing the communication
overhead in terms of Q2(W/C, p) as compared to Q(W, p) on one CE.

In order to analyze the added value of parallelism we normally compare the
parallel execution time on P processors with the sequential execution time on
1 processor. However, as suggested by [4], in a Grid environment, we need to
compare the parallel execution time on C CE’s with the parallel execution time
on 1 CE. This comparison is named as Grid Speedup and is mathematically
defined as:

Γ C
p =

T1, p(W )
TC , p(W )

(2)

where, Γ C
p is the ’Grid Speedup’ (with p processors and C CE’s), T1 is the

execution time on a single CE and TC is the execution time on C CE’s.
The Grid Speedup (equation 2) is one of the scalability metrics for the parallel

applications on the Grid. Its value indicates how better a parallel application
performs when decomposed on C CE’s as compared to its performance on a
single CE in terms of execution time. From equation 2 we could also derive the
expression for the Grid efficiency as:

γC
p =

T1, p(W )
CTC , p(W )

(3)

where, γC
p is the ’Grid efficiency’ and p, C, T1 and TC represent the same pa-

rameters as described in eq. 2.
The description of the ’Grid Efficiency’ in eq. 3 follows Amdahl’s popular

statement that ”for a given instance of a particular problem, the system efficiency
decreases when the number of available processors is increased ” [1]. In the case
of the Grid efficiency, in addition to the number of processors, it is the value of
the C (number of CE’s) that affects the system efficiency.

Based on these concepts of scalability, this paper performs empirical analysis
of our parallel algorithm for MC-PSC as described in the following sections.

The remainder of this paper is organized as follows: section 2 describes the
background related to the MC-PSC Grand Challenge, section 3 describes the
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experimental setup; section 4 presents the results and discussions and finally
section 5 concludes the paper.

2 The MC-PSC Grand Challenge

The problem of large scale MC-PSC could be represented as a 3D cube. The
x and y axis of the cube representing the different proteins being compared,
while the z axis representing different comparison methods being used such as
such as the Universal Similarity Metric (USM), Maximum Contact Map Over-
lap (MaxCMO), Distance Alignment Matrix (DaliLite), Combinatorial Extension
(CE), Fast Alignment And Search Tool (FAST) and TM-Align etc. While pro-
cessed, each cell of this 3D cube holds the output of each comparison method
in terms of different measures and metrics. That is, each cell of the 3D cube
represents both the processing as well as the storage perspective of the problem
space while cell boundaries specify the communication overhead. Given the ever
growing number of protein structure comparison methods as well as the num-
ber of protein structures being deposited in the PDB; the dimensions of this
cube go on increasing and making its computation, in our opinion, to be one
of the Grand Challenge Applications (GCAs) in the field of structural biology.
GCAs are defined as ”fundamental problems in science and engineering with
great economic and scientific impact, whose solution is intractable without the
use of state-of-the-art parallel/distributed systems” [11]. Many examples of the
use of parallel/distributed systems for the solution of GCAs in the field of life
sciences in general and structural proteomics in particular are available in the
literature [10]. It is believed that most of the GCAs may have several parallel
solutions; therefore, a methodological approach based on an exploratory nature
will help in finding the best available solution [2]. An example of such approach
that is widely used for the design of parallel and distributed algorithms is the
PCAM (Partitioning, Communication, Agglomeration, and Mapping) approach.
Introduced by Ian Foster in [2], the beauty of this approach is that it enables the
designer to consider the machine-independent issues (e.g. concurrency, scalability
and communication) first and machine-specific issues (e.g granularity and load-
balancing) later in the design process. Based on the philosophy of the PCAM
approach, a high-throughput distributed framework for the solution of the grand
challenge of MC-PSC using Message Passing Interface (MPI) model of parallel
programming has been introduced [9]. The performance of this framework along
with different load balancing strategies was evaluated on a 64-node cluster as
reported in [9]. However, it was observed that for datasets having relatively large
number of proteins (e.g. 1000+), even the 64-node cluster becomes a bottleneck
and it takes about 11 days for the computation to complete. Hence, we tried to
deploy our algorithm on the UK National Grid Service (NGS) to take advantage
of greater number of cores available across multiple sites. The deployment on
the NGS is reported in the next section.
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3 Deployment on the NGS Infrastructure

The National Grid Service (NGS), provides the eScience infrastructure to all
the UK-based scientists free of cost [8]. For our case we used the Globus-based
MPIg [7] (grid-based implementation of MPI) to spawn the jobs across two
NGS sites; one at Leeds and the other at Manchester. Like its predecessors (e.g
MPICH-G and MPICH-G2), the MPIg library extends the Argonne MPICH im-
plementation of MPI to use services provided by the Globus Toolkit for cross-site
job execution using IP-based communication for inter-cluster messaging. How-
ever, being the latest implementation, the MPIg includes several performance
enhancements such as in the case of inter-cluster communication it uses mul-
tiple threads as compared to the single thread communication of the previous
implementations. Furthermore, besides being backward compatible with the pre-
web service Globus, the MPIg also makes use of the new web services provided
by Globus version 4x. By making use of the new web services, the MPIg pro-
vides much more enhanced functionality, usability and performance. The use of
the MPIg for cross-site runs requires advanced resource reservation so that jobs
(processes) can run simultaneously across all the sites. To facilitate this, NGS
provides the High-Available Resource Co-allocation (HARC) [6] as a command
line utility to perform automatic reservation. Each of the two NGS sites (Leeds
and Manchester) consists of 256 cores (AMD Opteron with 2.6GHz and 8GB of
main memory) interconnected with Myrinet M3F-PCIXD-2. However, the NGS
policies allow the advance reservation of maximum of 128 cores at each site
for the maximum duration of 48 hours. Once the reservation is done, then the
Globus-based job submission could be achieved with the Resource Specification
Language (RSL) scripts and other Globus services could be used for job moni-
toring and control. For the MPI based jobs to run on different sites, the source
code of the application needs to be compiled with MPIg libraries at each site and
the executable placed in the appropriate working directory under the respective
local file system. The compilation of the MPI based application with MPIg does
not require any change in the source code and hence from the user’s perspective
the deployment is as straight forward as running the parallel application on a
single site/cluster with the exception that the RSL scripts specifies the resources
of the additional site to be used. Figure 1, shows the overall architecture and
setup of deploying the MC-PSC application on the Grid.

3.1 Dataset

The dataset used in these experiments is the one introduced by Kinjo et al
[5] consisting of 1012 non-redundant protein chains having a total of 252, 569
residues. The 1012 chains result in as many as 1, 024, 144 pairwise comparisons
for each method/algorithm. While using all the six methods (i.e., USM, Max-
CMO, CE, DaliLite, FAST and TM-Align), the total number of pairwise com-
parisons becomes 1, 024, 144× 6 = 6, 144, 864. Given that the average time for
the comparison of 1 pair using all the six methods on a single processor machine
is about 8 secs, this computation requires about 569 days to complete on a single
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Fig. 1. Deployment of the MC-PSC application on the Grid: the application takes
protein 3-D structures as input and prepares the balanced workload W to be distributed
on the Grid. Half of the total workload (W/2) is assigned to each site (CE). Each site
further distributes the W/2 into p number of cores.

processor and it took about 10.7 days to complete on a 64-node cluster [9]. The
results on the Grid infrastructure are presented in the next section.

4 Results and Discussions

Both the single-site and cross-site experiments for MC-PSC were conducted with
varying number of processors using the Kinjo et al [5] dataset. The Grid speedup
and efficiency (eq. 2 and eq. 3 respectively) were calculated based on the results
of these experiments and are shown in figure 2. Figure 2(a) shows that initially
(for less number of processors), running the MC-PSC experiments across two
sites almost doubles the performance to that of the single-site. However, as
the number of processors increases (thereby decreasing the level of granularity
and increasing the communication overhead), the speedup decreases slightly and
finally reaches to about 1.65. There is also same trend in the Grid efficiency as
shown in figure figure 2(b).

Figure 3 provides the comparison of the algorithmic speedup on a single-
site (S1, having 128 processors) and the speedup obtained while running the
experiments on the two sites (S2, having a total of 256 processors). The speedup
in this case is taken as the ratio of the execution time on single-machine
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(a) (b)

Fig. 2. Performance of the MC-PSC on the Grid: (a) Grid Speedup (eq 2); initially the
speedup is almost ideal for less number of nodes but as the number of nodes increases
on each site the corresponding level of granularity decreases while the the level of
communication overhead increases and hence it causes the speedup to degrade slightly.
Nevertheless, the overall speedup is much greater ( 1.6) as compared to speedup on
the single site (¡1). (b) Grid efficiency (eq. 3); as expected the slight degradation of
speedup causes the degradation in the efficiency of the system.

(a) ( )b

Fig. 3. Single-Site and Cross-Site: (a) Speedup; the graph shows that though initially,
the cross-site speedup (S2) is slightly low as compared to the single-site speedup (S1);
however, given the large number of processors available on the later, the overall speedup
(S2) increases by almost a factor of 2. (b) Efficiency; as expected the cross-site effi-
ciency (E2 is slightly less as compared to the single-site efficiency (E1 due to extra
communication overhead.

(single processor) (T1) to the execution time on p processors (Tp) (i.e S1 =
S2 = T1

Tp
). As indicated by Figure 3(a), though initially, the cross-site speedup

is slightly low as compared to the single-site speedup; however, given the large
number of processors available on the later, the overall speedup increases by
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almost a factor of 2. The total time for the computation of the given dataset on
256 cores (2.4GHz each) was reduced to 38.6 hours. Comparing this with the 569
days on the single-machine and 10.7 days required on a 64-node (though having
less processor power i.e 1.4GHz each) cluster we observe a good scalability and
performance of our algorithm on the Grid. The boast in the speedup and perfor-
mance is two folds i.e the large number of processors (physical speedup) coupled
with high speed of each individual processor (power scalability). Figure 3(b),
shows the corresponding efficiency of the algorithm on single-site and cross-site
architecture. The efficiency, in this case measures the effective use of the hard-
ware and is equal to the ratio of the speedup on p processors to p (i.e E = Sp

p ).
Figure 4 shows the cross-site communication overhead in terms of running the
MC-PSC application in the Grid. It shows that, when a few processors are used,
the load of the processors and the amount of data to be exchanged is high and
consequently there is a considerable communication overhead. However, when
we use a larger number of processors, the overhead is negligible in comparison
with the computation time.

Fig. 4. Cross-site communication overhead. The graph shows that when a few pro-
cessors are used the load of the processors and consequently the amount of data to
be exchanged is high and consequently there is considerable communication overhead.
However, when we use a larger number of processors, the overhead is negligible in
comparison with the computation time.

4.1 Concluding Remarks and Future Directions

The quality of our parallel algorithm for MC-PSC has been measured in terms
of Grid speedup and efficiency. The results of the single-site and cross-site exper-
iments indicate that by making use of the Grid resources, the algorithm scales
well and that the cross-site communication overhead does not cause performance
degradation.The current cross-site experiments were conducted on two sites based
on the HCG model of the National Grid Service (NGS), UK. As the NGS is still
in the process of adding more sites, in future we would like to extend this study by
increasing the number of sites as well as incorporating the heterogeneous architec-
ture of the Grid. Because, at present the maximum time allocated for continuous
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execution of a job/process at NGS is limited to 48 hours, it does not allow evaluat-
ing the performance of the application with larger datasets; hence the software de-
veloped so far could be upgraded by adding fault tolerance mechanisms in the form
of checkpoint/restart. The checkpoint/restartmechanism could be added without
changing the code of the application by using some libraries such as the Berkeley
Lab Checkpoint/Restart (BLCR). With these improvements, it would be possible
for the MC-PSC to perform real time computation with even large datasets and
to develop a database of pre-computed results.
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Abstract. Electron tomography (ET) has emerged as the leading tech-
nique for the structural analysis of unique complex biological specimens.
Recently, real-time ET systems have appeared on the scene and they
combine the computer-assisted image collection with the 3D reconstruc-
tion, and provide the users a preliminary structure of the specimen. This
rough structure allows the users to easily evaluate the quality of the spec-
imen and decide whether a more time-consuming processing and thor-
ough analysis of the dataset is worthwhile. The aim of this work is to
develop software for real-time ET systems. The principle of ET is based
upon 3D reconstruction from projections. By means of tomographic re-
construction algorithms, the projection images in the tilt series can then
be combined to yield the 3D structure of the specimen.The 3D struc-
ture has poor signal to noise ratio, so it is necessary an additional non
linear filtering process in order to achieve enough resolution. Then, Ma-
trix Weighted Back Projections (Matrix WBP) and Beltrami methods
have been selected as reconstruction and filter procedures, respectively.
First the Matrix WBP is applied to the input sinograms to obtain the
three-dimensional structure and, next, Beltrami filter de-noises the im-
age. Both methods are highly accelerated by GPU platforms. The power
of GPU computing is then exploited to further improve the performance
and yield reconstructions of biological datasets in seconds, it allows to
integrate both methods on real time electron tomography systems.

Keywords: Electron tomography, Real time, Matrix Weighted
Back-Projection, GPU, Beltrami filter.

1 Introduction

Electron tomography (ET) has made it possible to directly visualize the molec-
ular architecture of organelles, cells and complex viruses and, in particular, it
has been crucial for recent breakthroughs in life sciences [6,10,3,11,1]. It allows
to automate specimen tilting, area tracking, focusing and recording of images

� Work supported by grants CSIC-PIE-200920I075, MCI-TIN2008-01117, JA-P08-
TIC-3518.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 201–208, 2011.
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under low electron-dose conditions in order to preserve the specimen from ra-
diation damage. But, as a consequence, the images exhibit poor signal-to-noise
ratio (SNR).

Recently, real-time ET systems have appeared on the scene [15,17]. These
systems provide rough structure which allows the users to easily evaluate the
quality of the specimen and decide whether a more time-consuming processing
and also guide the users to select further target areas to be imaged [15,17,5].
Therefore, for fully exploitation of these real-time ET systems, reconstruction
and noise reduction methods are necessary. These methods should fulfill a num-
ber of requisites to be suitable for integration in real-time ET systems:(1) re-
construction method should supply the enough accurate 3D structure and the
nonlinear denoising methods should be used so that the noise is reduced while
structural features are preserved and not blurred; (2) the methods should not
have complicated parameters to be tuned, as these systems are not intended
to run under interactive mode and (3) the methods should be fast to approach
solutions in real-time.

Weighted backprojection (WBP) is the standard reconstruction method in
the field [6,10]. In this work, three-dimensional reconstruction with WBP is ad-
dressed from a matrix perspective by formulating the problem as a set of sparse
matrix-vector products [16]. Moreover, the Beltrami flow filter has been chosen
as an efficient noise reduction method based on a geometric diffusion flow ap-
proach [9], because it reduces the noise preserving the structural features at no
huge computation time. Then, the combination of both methods is an appropri-
ated approach to develop real-time electron tomography because it verifies the
three requisites before mentioned.

In the last few years, new emerging platforms are shaking up the HPC scene.
Graphics processing units (GPUs) offer massive parallelism and provide out-
standing performance-to-cost ratio for scientific computing. The use of GPUs
for general purpose applications has exceptionally increased in the last few years
thanks to the availability of Application Programming Interfaces (APIs), such
as Compute Unified Device Architecture (CUDA) [12], that greatly facilitate the
development of applications targeted at GPUs. This work proposes the combina-
tion of Matrix WBP and Beltrami methods based on GPU computing in order
to get reconstructed 3D structures with enough resolution. These methods fulfill
the requisites to be integrable in current real-time ET systems. The GPU plat-
forms are selected to accelerate both methods, achieving a significant reduction
of the computing time.

The rest of the paper is organized as follows: Sections 2 and 3 describe the
main foundations of Matrix WBP and Beltrami methods as reconstruction and
denoising approaches respectively. Section 4 analyzes the keys of the parallel im-
plementations of these methods on multiGPU architectures. Section 5 evaluates
the GPU implementations experimentally. This paper ends with some conclu-
sions and future work.
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2 Tomographic Reconstruction Based on Matrix WBP

Assuming single tilt axis geometry, the 3D problem can be decomposed into a set
of independent two-dimensional (2D) reconstruction subproblems corresponding
to the slices perpendicular to the tilt axis [5]. The 3D volume is obtained by
stacking the 2D slices reconstructed from the corresponding sinogram (i.e. the
set of 1D projections). Now we will thus focus on the 2D reconstruction problem.
The projection process can be modeled as follows. The sinogram p is related to
the slice g� by the discrete Radon Transform or projection operation:

pi =
m∑

j=1

Ai,jg
�
j with 1 ≤ i ≤ n, (1)

where n = ntiltsnbins is the dimension of p, ntilts being the number of projection
angles and nbins the number of projection values obtained for every projection
angle; m = mxmy is the dimension of g�, i.e. the total number of voxels in every
slice, with mx and my being the number of voxels in the x and y dimensions,
respectively; and Ai,j is a weighting factor representing the contribution of the
voxel j to the projection value i, and its value only depends on the geometry
of the projections. The set of weighting factors defines the n × m matrix A.
This matrix is sparse, therefore, the projection operation can be defined as a
sparse matrix-vector product, p = Ag�, where A is usually called the forward
projection operator. Then, the system p = Ag� must be solved to compute the
unknown slice g�. In practice, the system is ill-conditioned and a least square
problem must thus be solved to compute an approximation of g�. WBP is the
standard method to solve this problem [14], which reconstructs the specimen
by uniformly distributing the specimen density present in the projection images
over computed backprojection rays. Formally, the backprojection operator can
be defined by means of the matrix B as:

gj =
n∑

i=1

Bj,ipi 1 ≤ j ≤ m (2)

where B is the transpose of matrix A, and when the number of tilt angles is large
enough, the vector g is a good estimation of the slice g�. In WBP a high-pass
filter is applied to the projections before backprojection [14], whose burden is
usually negligible. In the following, we assume that the projections are already
weighted. Our Matrix WBP approach then reconstructs a 3D object as a set of
independent SpMV products: gs = B ps with 1 ≤ s ≤ Nslices where Nslices is
the total number of slices in the volume. Note that the matrix B: (1) is involved in
all the products, since the projections have the same geometry for all slices; and
(2) is sparse and the location of nonzero coefficients (referred to as nonzeroes)
exhibits some regular pattern related to its definition (i.e. Bj,i = Ai,j).

Nowadays, the memory requirements to store the sparse matrix are fulfilled in
current computers and GPUs. Specific data structures have proven suited for the
particular SpMV operation of WBP with GPU [16], since the regularity and the
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symmetry relationships between the nonzeroes of B can be exploited to reduce
the memory access and thus accelerate the SpMV operations on GPUs. These
symmetries led reduce the storage space of the data structure in nearly 75%, as
it is explained in depth in [16].

3 Reduction Noise by Beltrami Method

The Beltrami flow is an efficient noise reduction method based on a geometric
diffusion flow approach [9]. As such, it considers images as maps that are embed-
ded into a higher dimension, that is, a 2D image is considered as a 2-manifold
embedded in 3D, i.e. the image I(x, y) is regarded as a surface S = (x, y, I(x, y))
in a 3D space [7]. In this work, this idea has been extended to 3D, that is,
a 3D volume I(x, y, z) is considered as a 3-manifold embedded in a 4D space
S = (x, y, z, I(x, y, z)). Embedding the multidimensional image into a higher
dimension allows the use of powerful differential geometry operators [9]. In that
sense, the Beltrami flow is a geometric flow approach that aims at minimizing the
area of the image manifold, driving the flow towards a minimal surface solution
while preserving edges [9]. The Beltrami flow is formulated as follows [8]:

It =
1√
g
div
(∇I√

g

)
(3)

where It = ∂I/∂t denotes the derivative of the image density I with respect to
the time t; ∇I is the gradient vector, that is ∇I = (Ix, Iy , Iz), being Ix = ∂I/∂x
the derivative of I with respect to x (similar applies for y and z); g denotes the
determinant of the first fundamental form of the surface, which is g = 1+ |∇I|2;
Finally, div is the divergence operator. The term 1√

g in Eq. (3) acts as an edge
indicator since it is proven to be the projection of the normal-to-the-surface to
the vector representing the 4th dimension [9].

Therefore, the Beltrami flow is a selective noise filtering method that pre-
serves structural features as minimizes diffusion at and across edges whereas it
applies extensive diffusion elsewhere [8]. The implementation of the partial dif-
ferential equation derived from Eq. (3) is based upon an explicit finite difference
discretization [13], using an Euler forward difference approximation for It and
central differences to approximate the spatial derivatives. The reader is referred
to that previous work [4,7] for an in-depth analysis of the denoising method.

The noise reduction method based on the Beltrami flow has no complicated
parameters to be tuned, as the detection of the edges and estimation of their
strength is performed based on g, which is directly computed from the gradient.
Nevertheless, the method is solved in an iterative way, and hence a number of
iterations have to be specified. In a previous work it was shown that a number
of iterations around 100 yielded, in general, good denoising results in ET [4].

Fig. 1 is intended to illustrate the performance of this method in terms of
noise reduction and feature preservation over a representative ET dataset that
was taken from the Electron Microscopy Data Bank (http://emdatabank.org).
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Fig. 1. From left to right, the original HIV-1 reconstruction and the results with the
noise reduced at 10, 25, 50, 100, 150 and 200 iterations are shown. Only a representative
slice of the 3D reconstruction is presented.

The dataset, whose accession code was emd-1155, is a 3D reconstruction of
human immunodeficiency virions (strain HIV-1) [2]. It is clearly observed how
the noise is progressively reduced with the iterations. These results show that
a number of iterations of 100 are appropriate in terms of noise reduction and
preservation of features.

4 Matrix WBP-Beltrami on MultiGPU

The GPU architecture is an accelerator of CPU computation and the input/
output data involved in every kernel executed on GPU are communicated be-
tween the main memory of CPU and the device memory of GPU. From the pro-
grammer’s point of view, every GPU card is considered as a set of SIMT (Single
Instruction, Multiple Threads) multiprocessors. Each kernel (parallel code) is
executed as a batch of threads organized as a grid of thread blocks. In order to
optimize the exploitation of the NVIDIA GPU architecture the programmer has
to attend to maximize: (1) the multiprocessor occupancy, that is the ratio be-
tween the number of active warps per multiprocessor and the maximum number
of possible active warps; and (2) the bandwidth memory, the memory manage-
ment can be optimized if the access pattern of the different threads belonging to
every half-warp (16 threads) verifies the coalescence and alignment conditions.

Both methods previously described have been implemented taking account the
keys about the exploitation of the multi-GPU architecture. Two levels of paral-
lelism have been applied in the multi-GPU implementations of WBP-Beltrami
method: (1) at high level the volume is distributed among P GPU cards, then
every GPU computes WBP-Beltrami method on the corresponding sub-volume
stored on its local device memory, consequently, communications processes be-
tween GPUs are necessary to solve data dependencies, these communications are
set by means of the CPU memory; and (2) at more low level every sub-volume
is computed exploiting massive parallelism of every GPU card, thus, hundreds
of threads collaborate to compute WBP-Beltrami method on the sub-volume
stored in the local device memory.

Matrix WBP has been formulated as a set of specific sparse matrix-vector
products without data dependence among them. The sinograms are distributed
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Table 1. Run-times (s) of sequential code on a core of CPU based on 2 Quad Core
Intel Xeon 2,26Ghz and GPU code on one and two Tesla C1060 cards

Vol 128 192 256 384 512 640 768

Sequential

Standard WBP 6,7 21,6 51,3 169,7 404,7 782,7 1347,7
Beltrami 8,2 28,2 98,7 335,5 800,5 1552,1 2729,3

Total 14,9 49,8 150,0 505,2 1205,2 2334,8 4077,0

1 GPU (left) and 2 GPUs (right)

Matrix WBP 0,6 0,4 1,0 0,5 1,4 0,8 2,7 1,5 5,4 3,0 7,9 4,3 11,4 6,1
Beltrami 0,5 0,4 1,0 0,7 2,1 1,4 5,7 3,2 14,6 8,1 22,9 12,7 38,7 21,6

Total 1,1 0,8 2,0 1,2 3,5 2,2 8,4 4,7 20,0 11,1 30,7 16,9 50,1 27,7

among the P GPU cards. The matrix B is computed by every card, aligned in
the device memory and so the coalesced memory access is achieved to read the
nonzeroes of B. Every reconstructed slice is related to one product accelerated
by one GPU, so P cards can simultaneously accelerate the reconstruction of P
slices, and the reconstructed volume is distributed among the P cards. Next,
every GPU sends its volume to CPU main memory and the float data format is
changed to integer format and it is also distributed among the GPU cards with an
additional slice in the boundaries between two sub-volumes (called halo) in order
to solve the data dependence of Beltrami method to denoise the corresponding
sub-volume. Then, every Beltrami iteration is accelerated by P cards, when it
finishes the halo slices are communicated among GPUs by means CPU.

5 Experimental Evaluation

The Matrix WBP-Beltrami approachwas implemented with CUDA and evaluated
on one core of CPU based on 2 Quad Core Intel Xeon E5520 2,26Ghz with 24GB
SDRAMDDR31333MhzECC,underLinux,andanarchitectureof twoGPUsTesla
C1060 with 4GB GDDR3 and 30 multiprocessors of 8 cores (i.e. 240 cores) at 1.2
GHz. Synthetic datasets were created to carry out an extensive performance eval-
uation. They comprised a number of aligned projection images to yield cubic 3D
reconstructions.The datasets had different image sizes (128, 192, 256, 512, 640 and
768) and number of tilt angles 180. In the general implementation, the memory de-
mands rapidly increase with the problem size, up to 2GB in the largest test case.
This amount does not turn out to be a problem in modern GPUs.

The datasets were subjected to tomographic reconstruction with the standard
WBP, based on recomputation of the coefficients following by the Beltrami filter
on the CPU (Standard WBP-Beltrami). The computation times of every phase
of Standard WBP-Beltrami are summarized in Table 1 and are taken as reference
to evaluate the speed-up achieved by the GPUs. Moreover, Table 1 includes the
run times of the Matrix WBP code on one and two GPUs Tesla C1060. The
run-times values shown on Table 1 highlight that: (1) The computational load
of the tomographic reconstructions based on WBP-Beltrami method strongly
increases when the dimensions of volume increases because the sequential times
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Fig. 2. (a) Speed-up factors of Matrix WBP-Beltrami implementation on one and two
GPUs vs. Standard WBP-Beltrami on the test CPU

of larger test volumes are very long; (2) the GPU architecture relevantly reduces
the run-times since the run times on one GPU card is reduced by two magnitude
orders and (3) the GPU implementation scales on two cards due to the reduction
of run-times by even half when the volume is distributed between the two cards.
Fig. 2 shows that the acceleration factor thanks to exploitation of the GPU
architecture is in the range [13.5x, 81.4x] on one GPU card and in the range
[19.2x, 147.3x] on two cards, regardless of the problem size.

These results demonstrate that Matrix WBP-Beltrami based on GPU comput-
ing relevantly reduces the computing time required for tomographic. This acceler-
ation factors lead to the capability of computing reconstructions and filter of 0.5
– 1.5 GB in size in around 11–27 s, as Table 1 shows. Therefore the tomography
based on Matrix WBP-Beltrami on GPUs can be joined to a real-time ET system
which helps the users to select the samples with relevant information.

6 Conclusions and Future Work

This work has accelerated the tomographic reconstruction problem by means of
GPU computing. Two methods have been selected to solve the reconstruction
and denoising problems: Matrix WBP and Beltrami filter. Both methods have
the appropriated characteristics to join to real-time tomographic systems, that
is, the images supplied have enough resolution, they do not include complicated
parameters to be tuned and their computational requirements are available on
the current GPU platforms. The evaluation results have shown that both meth-
ods exploit the multi-GPU architectures achieving high acceleration factor over
the run-times on CPU. Therefore these methods could be easily integrated in
current real-time electron tomography systems. Consequently, the approach de-
scribed in this work is expected to be of invaluable help for scientists to assess
the quality of their datasets acquired during their ET sessions, and also to use
this information as a guide for subsequent data collection.
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Abstract. In this paper a hybrid parallel strategy dedicated to the sim-
ulations of fluid flows in complex geometries by means of Lattice Boltz-
mann methods (LBM) is introduced. The approach allows coping with
platforms sharing both the properties of shared and distributed archi-
tectures and relies on spatial domain decomposition where each sub-
domain represents a basic block entity which is solved on a symmetric
multi-processing (SMP) system. Main emphasis is placed on testing its
realization and studying its efficiency on a realistic fluid flow problem
with a highly complex geometry. Therefore, as a suitable problem the
simulation of the expiration in the human lung, whose functionality is
described by a dedicated two-scale model, is considered.

Keywords: Numerical Simulation, Lattice Boltzmann, High
Performance Computing, Computational Fluid Dynamics, Human
Lungs, Modeling, Respiratory System.

1 Introduction

The numerical simulation of the full human respiratory system corresponds to
one of the Grand Challenges in scientific computing nowadays. The main diffi-
culties are not only related to the highly complex multiphysics phenomenology
involving multi-scale features but also to the complex geometry. Many other
problems especially in the field of biotechnology and medical sciences are also
characterized by underlying highly complex computational domains. Further-
more, related applications like the analysis of possible implications due to
surgeries in advance or cognition-guided surgeries require to consider patient-
individual geometries. A widely automated preprocessing as well as efficient
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parallelization strategies are both necessary conditions aiming to enable real-
time simulations. In this context, it is of great importance to take advantage
of nowadays available hardware architectures like IBM Cell processors, Graphic
Processing Units (GPUs), multi-core processors and especially hybrid high per-
formance technologies that blur the line of separation between architectures with
shared and distributed memory.

The goal of this work is to present a highly efficient parallelization strat-
egy dedicated to the numerical simulation of fluid flows in complex geometries
which takes great advantage of today’s typical hybrid high performance com-
puters. The approach is based on LBM which have evolved to a mature tool
in computational fluid dynamics (CFD) and related topics in the landscape of
both commercial and academic software in the last decade (cf. literature e.g.
[1,2]). The simplicity of the core algorithms as well as the locality properties
resulting from the underlying kinetic approach lead to methods which are very
attractive in the context of parallel and high performance computing (HPC).
The LBM, which are employed here, are discretization strategies for families of
BGK-Boltzmann equations [3] which are related to the Navier-Stokes equations
as shown by Saint-Raymond in [4]. Junk and Klar [5] interpret particular LB
schemes of the presented type directly as Chorin-type projection methods for
incompressible Navier-Stokes equations.

In [6,7], Krause et al. propose a hybrid parallelization strategy for LB sim-
ulations. In the following, this idea is picked up and extended for simulations
with underlying complex computational domains. Its realization is tested for the
simulation of an expiration in a human lung. The underlying two-scale model [8]
is based on the coupling of a bronchiole model with a model describing the in-
compressible Newtonian fluid flow in the upper part of the human lungs which
can be resolved using standard medical imaging like computer tomography (CT)
or Magnetic Resonance Imaging (MRI).

The paper is organized as follows: In Section 2, the hybrid parallelization
strategy is explained. A test case is formulated in Section 3 which relies on
a patient-specific lung geometry. Details concerning the discretization method
are stated. Finally, the measured performance results on the Jülich Research on
Peta-flop Architectures (JUROPA)1 supercomputer are presented and analyzed.

2 Hybrid Parallelization Strategy for LBM

The most time demanding steps in LB simulations are usually the collision
and the streaming operations. Since the collision step is purely local and the
streaming step only requires data of the neighboring nodes, parallelization by
domain partitioning leads to low communication costs and is therefore very ef-
ficient [9,10,11].

The hybrid parallelization strategy proposes to partition the data of a con-
sidered discrete position space Ωh, which is a uniform mesh with spacing h > 0,

1 http://www.fz-juelich.de/jsc/juropa

http://www.fz-juelich.de/jsc/juropa
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(a) The geometry of a human lung
split into n = 139 cuboids which are
assigned to processing units. Differ-
ent colors represent different process-
ing units. Each cuboid comprise about
503 computing grid points which are
shared by cores within the same shared
memory area.

(b) The simulated flow field
for an expiration in the human
lungs in various planes. The in-
tersections are colored accord-
ing to the computed velocity
magnitude in m/s. Cf. [8]

Fig. 1. Partition of the geometry data (a) and resulting flow field (b)

according to their geometrical origin into n ∈ N disjoint, preferably cube-shaped
sub-lattices Ωk

h (k = 0, 1, ..., n− 1) of almost similar sizes.
This becomes feasible by extending Ωh to a cuboid-shaped lattice Ω̃h through

the introduction of ghost cells. Then, Ω̃h is split into m ∈ N disjoint, cuboid-
shaped extended sub-lattices Ω̃l

h (l = 0, 1, ..., m−1) of approximately similar size
and as cube-shaped as possible. Afterwards, all those extended sub-lattices Ω̃l

h

which consist solely of ghost cells are neglected. The number of the remaining
extended sub-lattices Ω̃l

h (l0, l1, ..., ln−1) defines n. Finally, one gets for each
k ∈ {0, 1, ..., n− 1} the wanted Ωk

h as a subspace of Ω̃lk
h by neglecting the existing

ghost cells.
For p ∈ N the number of available processing units (PUs) of a considered

hybrid high performance computer which communicates by means of a network,
an even load balance for complex geometries in particular will be assured if the
domain Ωh is partitioned in a sufficiently large number n ∈ N of sub-lattices.
Then, several of the sub-lattices Ωk

h (k = 0, 1, ..., n − 1) can be assigned to
each of the available PUs. In order to find an optimal distribution where the
communication costs between the PUs are kept low, a sophisticated graph-based
partitioning algorithm can be applied. Then, each PU in turn, distributes its
load for any of its sub-lattices Ωk

h among the available threads sharing the local
memory of the PU. The sub-lattice Ωk

h is always a uniform mesh. Hence, a
dedicated parallelization paradigm for the shared memory part of the platform
can be applied in a way that takes advantage of the regular structure by means
of efficiency.
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3 Numerical Experiments

The aim of this section is to illustrate the proposed hybrid parallelization ap-
proach considering a realistic problem with an underlying complex geometry,
namely the expiration in a human lung. Thereunto, a prototypical problem for
the sub-model, describing the flow in the upper lungs, of the two-scale model
introduced in [8] is formulated. Then, the applied numerical methods in order
to solve this problem are stated. Finally, the performance results are presented
and discussed. All numerical experiments are performed with the open source
software package OpenLB2. In this library, the previously described hybrid par-
allelization concept has been realized through the use of OpenMP and MPI. A
detailed description of both the implementation and performance tests for a sim-
ple underlying geometry are provided in detail in [6,7]. The obtained numerical
results, see Figure 1b, for this simulation set-up are presented in detail in [8].

3.1 Case Study Description and Discretization Issues

An expiration for a realistic everyday situation is to be simulated. Thereby, the
flow rate is fixed to be Q = 150 ml/s which is typically observed for adult
males in situations of resting or sitting awake [12]. The air is considered at
normal conditions, i.e. 1, 013 hPa and 20 ◦C. Thus, its kinematic viscosity is
ν = 1.4 · 10−5 m2/s.

In order to set up flow simulations, it is necessary to determine a couple of
parameters, hence the velocity profiles can be set at the considered bronchi i ∈ I
in accordance with Poiseuille’s law. The area of the boundary at the trachea is
found to be approximately A ≈ 0.9065 cm2. To reach the desired flow rate of
Q = 150 ml/s a mean speed of Umean(Q) ≈ 1.65 m/s is needed. This mean speed
is considered to be the characteristic macroscopic velocity. The characteristic
macroscopic length L = 0.015 m is fixed to be the diameter of A. With it,
one obtains the Reynolds number Re ≈ 1768. As a suitable test geometry, the
lung of a middle-aged male human is considered. The computational domain
Ω is extracted from CT data with a resolution of 0.4 mm. To solve the fluid
flow problem in the upper part of the human lungs Ω a standard D3Q19 LB
model with BGK collision operator [1,2] is applied. This discretization approach
requires the computational domain to be a uniform, hence, a voxel mesh Ωh.
The patient specific mesh is created in a preprocessing step [13] which leads to
h = 0.23 mm/N for three different refinement levels N = 1, 2, 3. For N = 3 one
obtains approximately 57.7 million fluid voxels, which results in about 1.1 billion
unknowns for the D3Q19 LB scheme.

3.2 Performance Results

According to the concept presented in Section 2, the considered lattices Ωh

with h = 0.23 mm/N and N = 1, 2, 3 need to be partitioned. Thereto, at first

2 http://www.openlb.org

http://www.openlb.org
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all Ωh are extended to cuboid-shaped lattices Ω̃h through the introduction of
ghost cells. An overview concerning the dimensions of the different considered
extended lattices Ω̃h as well as its corresponding numbers of fluid, non-boundary
and boundary cells is given in Table 1. In Figure 1a the obtained remaining
extended sub-lattices obtained for m = 1, 000 but also for the geometry of the
upper human lungs are visualized.

Table 1. The considered extended discrete lattices Ω̃h representing the geometry of
human lungs for different discretization parameters h = 0.23 mm/N whereby N =
1, 2, 3 is the corresponding refinement level

refinement dimension fluid non-boundary / boundary/

level N of Ω̃h cells fluid cells fluid cells

1 452 × 234 × 859 2, 327, 357 87.8% 12.2%

2 900 × 464 × 1714 17, 465, 152 93.6% 6.4%

3 1350 × 696 × 2571 57, 675, 848 95.7% 4.3%

Then, the three considered extended lattices Ω̃h (h = 0.23 mm/N with N =
1, 2, 3) are split into m = 1, 200, 12, 000, 24, 000, 48, 000 disjoint extended sub-
lattices Ω̃l

h (l = 0, 1, ..., m− 1). Afterwards, all sub-lattices which just consist of
ghost cells are neglected, leaving a certain number n ≤ m of extended sub-lattices
Ω̃lk

h (k = 0, 1, ..., n− 1). This leads to twelve different test cases which are listed
in Table 2. There, for each of the test cases (h = 0.23 mm/N with N = 1, 2, 3)
the obtained number n of remaining lattices Ω̃lk

h (k = 0, 1, ..., n− 1) as well as
the minimal and maximal number of cells in the respective remaining lattices
Ω̃lk

h are specified. According to the presented strategy, all remaining extended
sub-lattices Ω̃lk

h (k = 0, 1, ..., n − 1) are distributed among the available PUs.
In the presented case, they are spread by building blocks with respect to the
numbering.

The twelve test cases are executed on the supercomputer JUROPA. Thereby,
in every case a different number of cores p, but always with just one core per
node, is employed. The C++ source code is compiled with the Intel compiler
using optimization level 3. In order to keep the total execution times low, the
number of the time steps to be performed is always set to 100. The time in
seconds measured for these 100 steps obtained employing p processes, respec-
tively nodes, is captured by the variable tp. In order to compare performances
of LB implementations obtained on different computers or obtained for different
implementation techniques, the measuring unit million fluid-lattice-site updates
per second MLUP/s is frequently introduced, e.g. in [14]. In the following, this
terminus is extended to also enable comparisons of LB code executed in parallel
by introducing the measuring unit MLUP/ps, which stands for million fluid-
lattice-site updates per process and second. The performance results obtained for
the test cases are measured in this unit and captured by the variable PLB which
is defined according to PLB := Nc/(104tpp) whereby Nc denotes the number of
fluid cells.
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Table 2. The table shows all considered test cases and provides for each of the cases
(h = 0.23 mm/N with N = 1, 2, 3) the initial number m of sub-lattices Ω̃l

h (l =

0, 1, ..., m − 1), the remaining number n of sub-lattices Ω̃lk
h (k = 0, 1, ..., n − 1) as well

as the minimal and maximal number of cells in the respective remaining lattices Ω̃
lk
h

case refinement initial remaining max. cell min. cell
name level N cuboids m cuboids n cuboid cuboid

N1m1200 1 1, 200 152 73,710 77,142

N1m12000 1 12, 000 744 6,859 8,000

N1m24000 1 24, 000 1, 347 3,375 4,096

N1m48000 1 48, 000 2, 258 1,728 2,028

N2m1200 2 1, 200 161 581,256 602,454

N2m12000 2 12, 000 741 57,798 62,400

N2m24000 2 24, 000 1, 310 28,830 30,752

N2m48000 2 48, 000 2, 254 14,440 15,625

N3m1200 3 1, 200 158 2,000,349 2,026,056

N3m12000 3 12, 000 734 198,476 205,320

N3m24000 3 24, 000 1, 296 97,336 103,776

N3m48000 3 48, 000 2, 210 47,952 52,022

In Figure 2 the measured performances PLB are plotted as a function of the
employed number of MPI-processes p = 20, 21, ..., 28. Considering the obtained
graphs of all test cases, a general observation made is a slight decline of PLB for
increasing p. This is in accordance with the obtained performance results for the
problem with an underlying simple geometry presented in [6,7].

For all considered test cases (m = 1, 200, 12, 000, 24, 000, 48, 000 and p =
20, 21, ..., 28) it is observed that the greater the refinement level N is chosen the
better are the obtained performances PLB. The best value PLB ≈ 2.14 MLUP/ps
is measured for m = 12, 000 and N = 3 on p = 8 nodes. This characteristics can
be explained by the fact that the computational costs for a boundary cell are
usually higher than for a non-boundary cell and that the ratio of boundary cells
to fluid cells increases for smaller problem sizes as stated in Table 1.

Further, it is observed that for the cases where the number of initial cuboids
m is the smallest, i.e. m = 1, 200, in general the obtained performances PLB are
the smallest. In these cases, the number of obtained sub-lattices ranges from
n = 152 to n = 161, while for the other cases it is much greater (n ≥ 734). This
leads to a relative bad load balance especially where p ≥ 64. However, for a fixed
problem size, which is characterized by N , the overhead due to communication
costs will be greater if m and n increases. Thus, increasing m, it is expected that
the positive effect of a better load balance is compensated by additional costs due
to increasing effort for the three steps blocking, communicating and writing to
ghost cells needed for the MPI-based implementation [7]. This is indeed observed
in the test results. By trend, in the case where N = 1 the best result is obtained
for m = 12, 000 and for the cases N = 2, 3 for m = 24, 000. Yet, it is to be noted
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Fig. 2. The graph shows the obtained values for PLB in MLSUP/ps (million fluid-
lattice-site updates per process and second) as a function of the number of employed
MPI-processes p for 100 times steps of an D3Q19 LB algorithm obtained on the JU-
ROPA. The underlying computational domain is obtained by CT scans of the upper
human lungs.

that the measured performances PLB are relatively close to each other in the
majority of the considered cases with m ≥ 12, 000. In particular, comparing the
results obtained for m = 24, 000 to those for m = 48, 000, no significant drop of
the performances PLB is observed.

4 Conclusions

A hybrid parallelization strategy dedicated for LB simulations of fluid flow prob-
lems with underlying complex geometries is introduced. The approach is based
on a partition of a domain into blocks which are distributed across the nodes of a
cluster. Its realization takes advantage of the paradigms MPI and OpenMP and
is part of the open source software OpenLB. It is tested for a realistic problem
with an underlying highly complex computational domain, namely the upper
part of a human lung extracted from CT data.

The obtained parallel performance results confirm the efficiency of the under-
lying approach in terms of the computing time that can almost be halved if the
number of employed nodes is doubled. Thereunto, it is important to ensure a
good load balance, which is accomplished by splitting the computational domain
in a sufficient large number of sub-domains. The associated overhead is observed
to be rather small. It is expected that applying a sophisticated graph-based par-
titioning algorithm would lead to a reduction of this overhead since relative ex-
pensive network communication could be replaced by memory operations. With
the obtained progress in terms of efficiency of the hybrid parallelization, the
simulation of a complete breathing cycle in the complete human lungs becomes
technically feasible.
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Abstract. Our work aims to develop and implement a mathematical
and computational model for the primary immune system response in a
microscopic section of a tissue. A large amount of computation is required
to solve the set of equations related to the mathematical model, for
this reason in this work we present an initial attempt to improve the
performance of the implementation via the use of parallel computing.

1 Introduction

The development of computational systems that simulates an entire living system
was proposed by the UK Computing Research Committee as one of the grand
challenges in computing research for 2010 and beyond [5]. This class of system is
known as iViS (in Vivo-in Silico). The potential benefits of iViS are enormous,
so are the challenges along this long way. Currently, the development of such
iViS systems is in its early stages. In this scenario, our work aims to develop
and implement a mathematical and computational model of the Human Immune
System (HIS). The complete modeling of the HIS demands a large amount of
work to be performed by a large multidisciplinary team. In this work we focus
on one specific task: the simulation of the immune response to pathogenic agents
in a microscopic section of a tissue, reproducing, for this purpose, the initiation,
maintenance and resolution of immune response. Our model describes a set of
Partial Differential Equations (PDEs) used to reproduce important HIS phe-
nomena. The simulation of these phenomena is computationally very expensive.
Depending on how accurate is the simulation, it can take hours or even some
days to compute the simulation results for a small section of tissue. Therefore,
the use parallel computing is very important in order to reduce the execution
times. In this work, we present and analyze the performance of a OpenMP (Open
Specifications for Multi Processing) [3] version of the simulator.

The remainder of this work is organized as follows. Section 2 includes the bi-
ological background necessary for understanding this work. Section 3 describes
the mathematical model implemented in this work. Section 4 describes our se-
quential implementation. Sections 5 and 6 describes our parallel version and
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presents the results, respectively. Our conclusions and plans of future works are
presented in Section 7.

2 Biological Background

The HIS is composed of two distinct parts, the innate immune system and the
adaptive immune system. Our work focuses on the modeling of the innate im-
mune system. The innate immune system is responsible for powerful nonspecific
defenses that prevent or limit infections by most pathogenic microorganisms [9].
This first line of defense against pathogenic microorganisms consists of physical
barriers, such as the skin and mucous membranes, and the second line consists
of cells that recognize specific parts of pathogenic microorganisms, herein called
antigens. After the antigens are recognized, the immune system cells, like the
macrophage, attack them. The induction of an inflammatory response as a re-
sult of the activation of the innate immune system recruits other cells to the
point of attack, such as the neutrophils. Dendritic cells (DC) uptakes antigens,
transporting them to the linfatic nodes where the adaptive immune response
starts. Activated DC produces chemokines, that are responsible for the regu-
lation of the immune response. A third line of defense, the adaptive immune
system, is activated by the innate response. Its role is to adapt the immune sys-
tem response during an infection to improve its recognition of the pathogenic
microorganism [9]. The cells that participate in the adaptive immune response
are very specialized, called lymphocytes. B-Cells and T-Cells are the major types
of lymphocytes. Chemokines plays an important role in regulating the migration
of lymphocytes and other cells types in the immune and inflammatory responses.

3 Mathematical Model

Our HIS simulator is based on a set of PDEs originally proposed by [11]. The
main differences between our model and the original one are: a) we use a simpli-
fied model; and b) we adopt distinct boundary conditions: Neumann boundary
conditions are used in our work, while the original one uses Dirichlet boundary
conditions for neutriphils and chemokines. Our main contribution is to show that
even a simple model can reproduce qualitatively the behaviour of neutrophils
during an immune response to an antigen (PAMPs). The main characteristics
of the mathematical model are: a) neutrophils interacts with chemokines and
antigens to control the infection; b) in the local of infection neutrophils diffuses
and moves in the direction of chemokine gradient; and c) the chemokine at-
tracts neutrophils to the local where the antigen concentration is higher. Our
set of equations is given below, where A, N and CH represent the population
of Antigens, Neutrophils and chemokines, respectively.{

∂A
∂t = −μAA− λA|NAN + DAΔA + g(x, t)
A(x, 0) = 0, ∂A(.,t)

∂n |∂Ω = 0
(1)
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In Equation 1, μA is the decay rate for the antigen, λA|N is the phagocytosis
rate, DA is the diffusion coefficient and the function g is the source term of
infection.

{
∂N
∂t = −μNN − λN |AAN −∇.(χNN∇CH)− δN |CHCHN + DNΔN

N(x, 0) = N0,
∂N(.,t)

∂n |∂Ω = 0
(2)

In Equation 2, μN is neutrophil decay rate, λN |A is the uptake rate by antigens,
χN is the chemotaxis coefficient, δN |CH is the regulation coefficient and DN is
the diffusion coefficient.{

∂CH
∂t = βCH|NNA− μCHCH + DCHΔCH

CH(x, 0) = 0, ∂CH(.,t)
∂n |∂Ω = 0

(3)

In Equation 3 βCH|N is the production rate of the chemokine (IL-8), μCH is the
decay rate and DCH is the diffusion coefficient.

This set of equations tries to model the role of chemotaxis and chemokinesis
on the migration of immune cells to sites of inflammation and infection. Both
cells are of fundamental importance in this process. We believe that our com-
putational model can enhance the comprehension of inflammatory and immune
processes. A better understanding of these processes is essential since they trig-
ger a cascade of events that activate and coordinate the global response of the
immune system [1]. The understanding of the neutrophils role is also impor-
tant because of its specific regulatory effectors of immunity: they orchestrate
immature DC, recruit T cells, and the chemokines released by them display
chemotactic activity for macrophages, dendritic cells, NK cells, and T cells [2].

4 Sequential Implementation

The mathematical model can be discretized in many distinct ways using, for ex-
ample, explicit, implicit or Crank-Nicholson schemes in time. Different numerical
approaches have been proposed [8,4] to solve this kind of equations. Our imple-
mentation is based on the finite volume technique for the spatial discretization
and an explicit method for the time evolution with an upwind scheme for the
advection term of the equation, i.e. the chemotaxis term. The sequential code
was implemented in C.

A numerical library, such as NAG[10], could be used to solve the PDEs. How-
ever, we decided to implement the numerical method to solve PDEs because a)
we have the possibility to parallelize the code; b) most of the numerical libraries
offer few functions that are suitable to our problem; and c) functions offered by
such numerical libraries are hard to use because arguments supplied to functions
must be in a specific format.

In this simulation we considered an unidimensional domain with dimension
4mm and the number of time steps equal to (106), which represents an interval
of approximately 2.4 hours. The simulations we are interested in are made on
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much larger length and time scales, which takes about two days to execute. Due
to this huge execution time, we simulate in this paper a smaller instance of the
problem. Table 1 presents the initial conditions, the time discretization (δT ),
the space discretization (δX) and all the parameters used in our simulations.

Table 1. Simulation parameters

Parameter Value Units

N0 25, 0 < x < 4000 cell

CH0 0, 0 < x < 4000 cell

A0 300, 2500 < x < 4000 cell

δT 10−7 s

δX 1 μm

μA 0.005 1/day

λA|N 0.5 1/cell.day

DA 7x106 μm2/day

g(x, t) 300 cell

μN 0.33 1/day

λN|A 0.55 1/cell.day

δN|CH 0.3 1/cell.day

XN 1.44x105 μm2/day

DN 1.44x106 μm2/day

βCH|N 0.1 1/day

μCH 0.03 1/day

DCH 9.216x104 μm2/day

The numerical results of some simulations are presented in Figures 1, 2 and 3.
As can be observed, the results show that initially the neutrophil population is
equally distributed over the entire domain. As the time goes by, the concentration
of the chemokine increases. As a result, the antigen population starts to decrease
due to the higher concentration of neutrophil in the area.

Fig. 1. Temporal evolution of neutrophil concentration. The x-axis represents the space
(in μm), the y-axis represents the time steps. The colormap represents the number of
neutrophil (in cells).
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Fig. 2. Temporal evolution of chemokine concentration. The x-axis represents the space
(in μm), the y-axis represents the time steps. The colormap represents the number of
chemokine (in cells).

Fig. 3. Temporal evolution of antigen concentration. The x-axis represents the space
(in μm), the y-axis represents the time steps. The colormap represents the number of
antigen (in cells).

5 Parallel Implementation

The parallel version of the HIS simulator was implemented using OpenMP (Open
Specifications for Multi Processing) [3], which offers a programming interface for
shared memory parallel machines. The programmer uses compilation directives
to identify the portions of the source code that should be executed in parallel
and may also specify how the code should be executed.

This parallelization requires us to identify sections of the code that demands
the large amounts of CPU time and that could be executed in parallel. The
instrumentation of the sequential version of the HIS simulator has shown that
the code associated with the temporal resolution of the PDEs consumes almost
99% of the total execution time. The step that followed the identification of
hotspot was its parallelization. The code is composed by two distinct loops.
The first one implements the temporal evolution of the system. For each time
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iteration, a second loop iterates over the spatial variable. This inner loop solves
the discretization of the PDEs for a position in the simulation domain. Due to
the data dependency between each temporal time step, we could not parallelize
the first loop: the result of the previous temporal step is necessary to calculate
the current time step. The inner loop was chosen to be parallelized due to the
complete data independence among all iteration steps.

The parallelization of the spatial loop was implemented with the #pragma omp
for directive with the clauses schedule(static) andnowait. The nowait clause allows
a thread to continue the execution after leave the loop without have to wait for all
others threads to finish the loop execution. The schedule(static) clause was used
to divide the loop iterations statically between the threads at the beginning of loop
execution.This is due to its lower overhead in comparisonwith thedynamicdivision
of iterations among threads. We tried to avoid overheads associated with thread
creation and synchronization. So in our implementation threads are created only
once, at the beginning of the temporal loop. The synchronization of the threads was
necessary only in one point of the code, and was used to guarantees the correctness
of the program. In particular, a barrier was added at the end of the temporal loop
to prevent a thread to start executing a new temporal iteration without all others
threads have also finished the same time step.

6 Experimental Evaluation

In this section the experimental results obtained by executing five times both
versions of our simulator, sequential and parallel, are presented. The experiments
were performed on two distinct architectures. The first architecture is a 2 GHz
Intel Core 2 Quad processor (Q8200), with 4 GB RAM and 2 MB L2 cache,
running Linux kernel 2.6.18. The second architecture is a 1.2 GHz Intel Core i7-
860 processor, with 8 GB RAM, 8 MB L2 cache, running Linux kernel 2.6.31. In
both architectures, the gcc version 4.4.2 was used to compile all versions of our
program. Although both processors have four physical cores, the i7 processors
come with Hyper-Threading (HT) technology, so it effectively scales 8 threads.

To evaluate the parallel implementation of the HIS simulator, we vary the
number of threads from 2 to 4 in the Quad processor and from 2 to 8 in the i7
processor, due to its HT capabilities. Both sequential and parallel versions of our
simulator were executed five times. The standard deviation was less than 1.5%.
The speedup figures were obtained by dividing the average sequential execution
time by the parallel one. Table 2 present the results.

As can be observed in Figure 4, the speedup achieved when running on the Quad
ranges from 1.4 up to 2.8 on 4 cores. The speedup achieved when running on the
i7 processor ranges from 1.4 up to 3.1 on 4 HT cores. We believe that both proces-
sors do not achieve a linear speedup because we scaled down the problem size. The
speedup results presented in Figure 4 are quite surprising from an intuitive point of
view: one could expected that the i7 would achieve a better speedup than the Quad
processor, specially because some works [12,6] describe a memory contention issue
in the Quad processor. The reason why the HIS simulator code do not suffer from
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Table 2. Serial and parallel execution time, in seconds, for both architectures

Number of Threads
serial 2 3 4 5 6 7 8

execution time 197.4 137.6 92.6 70.1 - - - -
Core 2 Quad

% std deviation <0.1 <0.1 <0.1 <0.1 - - - -

execution time 119.3 85.7 65.3 50.7 56.8 49.1 43.6 38.9
i7

% std deviation 1.3 0.3 0.4 0.7 1.2 0.3 1.5 0.1

Fig. 4. HIS simulator speedup curve

the memory contention in the Quad processor is simple: the amount of memory it
uses completely fits in the processor cache. Also, i7 performed worse than the Quad
processor because it is faster than the Quad. The sequential code executes almost
1.65 times faster in the i7 processor than in the Quad. So, the parallel overheads in
the code, such as the time spent doing thread creation and destruction, synchro-
nization and so on, become more prominent:we reduced the computation time, but
not the parallel overheads in the code.

7 Conclusions and Future Works

In this workwe presented a mathematical and computational model that simulates
the immune response to pathogenic agents in a microscopic section of a tissue. To
achieve this objective, the model reproduces the initiation, maintenance and res-
olution of immune response. A set of PDEs are used to model the main agents in-
volved in this processes, like the antigen, chemokines andneutrophils.However, the
resolution of the PDEs is computationally a very expensive task. So this work also
presented an initial attempt to improve the performance of the computational im-
plementation through the use of parallel programming techniques. The numerical
experiments developedherein show that the parallelizationwas effective in improv-
ing the program performance, providing gains up to 2.8, when using a Core 2 Quad
processor, or 3.1, when using a i7 processor.
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As future works, we plan to implement a more complete mathematical model
including, for example, the description of DC, T cells and macrophages. This
more complex model will require even more computation power. To cope with
this problem we are currently developing another parallel version of our code
using the new high-performance platform based on GPGPUs (General-Purpose
computation on Graphics Processing Units)[7].
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Abstract. The study of genes is currently carried out by systematic
analysis that relies on data produced by the microarray technology. The
recent development of such technology and the increasing number of
analysed samples result in an increased volume of raw data for each ex-
periment. The time for preprocessing represents an important amount of
the analysis, so the need to introduce tools for the efficient preprocessing
arises. This paper presents a system able to manage and preprocess mi-
croarray data in a parallel way. First experimental results on Affymetrix
data showing appreciable improvements in term of execution times are
discussed.

1 Introduction

Biological processes within cells are carried out by genes that can be studied using
microarray technology. For processing and studying DNA microarrays many dif-
ferent technologies as well as algorithms and tools have been introduced [2,3,7]. A
typicalworkflowforanalysingmicroarraydata is structuredon fourmainphases:(i)
preprocessing, that comprises summarisation and normalization, (ii) annotation;
(iii) statistical and data mining analysis, and (iv) biological interpretation.

Raw data generated from microarray platforms, e.g. Affymetrix Cel Files or
Illumina Tagged Images, need to be preprocessed. The first step in preprocessing,
known as summarisation, aims to recognise the position of different genes in raw
images, associating different regions of pixels to the unique gene that generated
them. Normalisation aims to correct the variation of gene expression in the same
array due to experimental bias. Filtering reduces the number of investigated
genes on the basis of biological considerations, e.g. genes of known functions, or
considering statistical criteria (e.g. associated p-value). Finally, the annotation
process associates each gene to a set of functional information, such as biological
processes that are related to gene, and a set of cross reference database identifiers.
Statistical and data mining analysis phases aim to identify biological meaningful
genes, e.g. by finding differentially expressed genes among two groups of patients
on the basis of their expression values.

The typical dimension of microarray datasets is growing for two main rea-
sons: the dimension of files encoding a single chip and the number of the arrays
involved in a single experiment are increasing. Let us consider, for instance, two
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common Affymetrix microarray files (named CEL files): the older Human 133
Chip CEL file that has a dimension of 5 MB and contains 20000 different genes
while the newer Human Gene 1.0 st that has a typical dimension of 10 MB
and contains 33000 genes. A single array of the Exon family (e.g. Human Exon
or Mouse Exon) can have up to 100 MB of size. Moreover the recent trend in
genomics is to perform microarray experiment considering a large number of
patients.

From this scenario, the need for the introduction of tools and technologies
to process such huge volume of data in an efficient way arises. A possible way
to develop the efficient preprocessing of microarray data is represented by the
parallelization of existing algorithms on parallel computing, e.g. clusters. In the
scenario we envision the whole computation is distributed onto different proces-
sors, that perform computations on smaller sets of data and results are finally
integrated. Such scenario requires the design of new algorithms for summari-
sation and normalisation that take advantage of the underlying parallel archi-
tectures. Nevertheless, a first step in this direction can be represented on the
replication on different nodes of existing preprocessing software that runs on
smaller datasets.

This paper presents a software system based on a master-worker architecture
for the parallel preprocessing of Affymetrix data. The core of the system is in
fact based on a master node that distributes data on different nodes. Each node
performs preprocessing on a subset of the dataset employing the Affymetrix
Power Tools (APT)1. Finally, results are moved to the master node and are
integrated.

Despite its relevance, the parallel processing of microarray data is a relatively
new field. An important work is represented by affyPara [8] that is a Bioconduc-
tor package for parallel preprocessing of Affymetrix microarray data. It is freely
available from the Bioconductor project. Compared to affyPara, our approach
presents three main advantages: (i) the possibility to realize more summarisation
scheme such as Plier, (ii) the easily extension to newer SNP arrays, (iii) it does
not require the installation of Bioconductor platform.

The rest of the paper is structured as follows. Section 2 discusses the sequential
preprocessing of Affymetrix data, Section 3 presents a parallel preprocessing
algorithm and Section 4 presents a case study discussing the preprocessing of
Affymetrix data. Finally Section 5 concludes the paper and outlines future work.

2 Preprocessing of Affymetrix Microarray Data

The preprocessing of microarray data can be structured as a pipeline of sequen-
tial steps, as data feeds along next steps, it becomes more and more refined.
Each step can be performed by using different algorithms that are designed
for each chip of different platforms. Usually, software tools are designed ad hoc
for a vendor and are tailored to the properties of data; they do not allow the
preprocessing in an general way.
1 www.affymetrix.com
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From a technical point of view CEL files store the results of the intensity
calculations obtained from the pixel values of the raw image files (also referred
as DAT files). The structure of the current version of CEL files (see Figure 1) is
represented by a binary file where values are stored in little-endian format.

Fig. 1. The internal structure of a CEL file

Preprocessing of Affymetrix arrays start from multiple CEL files and produces
as output a matrix whose element (i, j) represents the intensity of the i-th gene
in the j-th sample. Preprocessing can be structured as: (i) background correction
and quality control, (ii) normalisation, (iii) summarisation, and (iv) annotation.

Background correction aims to identify the background noise and to remove it
[7]. Normalisation consists of reducing the bias among chips and within different
regions of the same chip [2], aiming at removing non-biological variability within
a dataset. Both biological and technical variations introduce artifacts and vari-
ability into the system. Summarisation combines multiple preprocessed probe
intensities to a single expression value. All arrays employ more than one probe
for each genes as introduced before. Summarisation takes into account all of the
probes for the same gene and averages them by enhancing the signal-to-noise
ratio.

All of these algorithms are based on several assumptions on the data distribu-
tion and they require a set of specific libraries in order to correctly access binary
data. For Affymetrix arrays, there exist two main summarisation algorithms: Ro-
bust Multi-array Average (RMA) algorithm [6], and Probe Logarithmic Intensity
Error (PLIER) algorithm [1].

Finally, a process known as annotation, associates to each probe its known
annotations such as Gene Symbol or Gene Ontology [4] by matching probes
to public databases or knowledge bases. Often annotation files are provided by
the chip manufacturer and contain different levels of annotation, e.g. database
identifier, description of molecular function, associated protein domains.

Affymetrix Power Tools are a set of command line programs provided by
Affymetrix that implements different algorithms for preprocessing Affymetrix
arrays. In particular apt-probeset-summarize implements summarization and
normalization methods (e.g. RMA- RMA-SKETCH and PLIER) for expression
arrays. APT-Tools are able to read a set of CEL files and produce a data matrix.
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3 A Parallel System for Preprocessing Affymetrix
Microarray Data

The preprocessing of Affymetrix files can be easily executed in a parallel way
by considering the structure of RMA, RMA-SKETCH and PLIER algorithms.
All the algorithms share a common execution scheme: (a) they initially find a
raw value for the expression of the gene i starting from the binary file, (b) they
merge all the genes of the chips in a single matrix, (c) then they normalize the
expression value of each gene by considering the value of the gene i in the other
arrays of the considered dataset. From this scenario the parallelization of the
step (c) can be done by considering the split of the resulting matrix in different
arrays.

A suitable architecture for the parallelisation of this algorithm is depicted
in Figure 2. The master node is responsible for the invocation of the worker
nodes, each worker node receives as input a copy of the whole dataset and a
list of probeset to be preprocessed, then it performs their summarisation and
normalization. Finally, it sends to the master node the subset of summarised
probesets. Master node merges together results and builds the resulting matrix.

Fig. 2. Architecture of the system

Considering the APT-Tools, the parallelization can be performed by invoking
APT on a subset of probesets specified in an input file (e.g. subset.txt), as
explained in the following. The rest of the Section explains the execution of
these steps on a cluster architecture as depicted in Figure 3:

– Invocation of Master Node. The Master node computes the number of
needed nodes and the list of probeset for each node. We consider a simple
load distribution strategy that assigns to each node the same load. Let Npbs

the number of probesets of a chip, and Nwk the number of desired workers,
each worker will process Npbs

Nwk probes.
– Data Distribution. The Master Node replicates the whole dataset on each

worker node and sends the list of probesets to be considered to each node.
– Parallel execution of APT. Each Worker node executes the APT-Tool

on a subset of probesets and sends the resulting output to the Master node.
– Integration of results. The Master node, after the completion of each job

collects the results and builds the final data matrix.
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Fig. 3. Flow of data for the execution of parallel preprocessing

The following fragments of pseudo code show the main steps executed, respec-
tively, by the master node and the worker nodes.

procedure: Master Node

Input: Dataset // Microarray Dataset (CEL Files), each file contains Npbs

probesets,

Input: Nwk // Number of Workers

Input: La, Ls: Annotation and Summarisation Libraries

begin

Computation of jobs and generation of the list of probesets for each node,

Each node will receive,
Npbs

Nwk
probesets; Probeset[j], j = 1...Nwk :Array;

Replication of Data and Libraries for each node

Delivery to each node the corresponding list of probes Probeset[j] and the

preprocessing parameters

FOR EACH Workerj : send(Probeset[j], Parameters[j]) j = 1...Nwk

Collection of partial results

Fusion of partial results

end

procedure: Worker Node
Input: (D,La,Ls,Preprocessed[j],Parameters[j])
// Preprocessing of dataset
Results[j]= RunAPT (D, La, Ls, P robeset[j], Parameters[j])
// Partial Results are moved to the Master Node
send(Results[j], MasterNode)
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The Master Node receives the preprocessing requests (a dataset and the number
of desired workers) from the user, then replicates the dataset on the available
worker nodes and sends to each of them the list of the subset of probesets to
summarize and normalize. Each node will preprocess only a subset of probesets
following the commands of the Master Node. With respect to the traditional
invocation of APT-Tools, each Worker Node node preprocess only a subset of
probesets so it employs trivially a smaller time. Each Worker Node is able to
invoke an instance of the APT-Tools by using an ad hoc designed APT-Wrapper.
After the jobs completion, the Master Node reads the output files sent by the
worker nodes, and merges them together.

4 Case Study

This section demonstrates the ability of the proposed system to preprocess mi-
croarray data in a parallel way showing a considerable improvement in term
of consumed time. We considered a publicly available dataset of 21 Affymetrix
HumanGene 1.0 st arrays and we split this dataset onto three subsets respec-
tively of 7 (Dataset1 hereafter), 14 (Dataset2 hereafter), and 21 arrays (Dataset3
hereafter). The dimension of three datasets are respectively: 75Mb, 150Mb, and
220Mb.

For each dataset we measured the sequential execution time for preprocessing
considering three possible preprocessing schemas: RMA, RMA-SKETCH and
PLIER. Then we considered the execution time for the parallel preprocessing.
The execution time of each preprocessing has to consider the overhead of data-
movement among nodes as well as the execution time of the successive merging
of the jobs of the nodes. The measured transfer time is considerably lower than
the execution time, so we do not include it in this discussion. We measured
the execution times of such preprocessing respectively considering an increasing
number of worker nodes. Table 1, shows the comparison among the sequen-
tial, (Tseq) and parallel execution of preprocessing, (T10, T15, and T20), for each
dataset considering the RMA, RMA-SKETCH and PLIER algorithms.

Table 1. Execution Times for Datasets

Algorithm - Times Dataset1 Dataset2 Dataset3
Tseq T10 T15 T20 Tseq T10 T15 T20 Tseq T10 T15 T20

RMA 310 31 20 19 150 10 8 8 480 50 30 29

RMA-SKETCH 205 20 15 14 100 10 7 7 295 29 20 18

PLIER 460 50 35 26 230 23 15 12 710 80 46 46

We measured also the speed-up for each dataset measuring the ratio Speed−
Up = Tseq

Tpar
, where Tpar is the time for the parallel processing considering the

different number of workers. Figures 4(a), 4(b), and 4(c) depict the speed-up
respectively for Dataset 1, 2, and 3.
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(a) Dataset 1

(b) Dataset 2

(c) Dataset 3

Fig. 4. Speed-Up for Dataset 1,2, and 3
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As evidenced in all the figures the parallel execution initially presents a super-
linear [5] speed-up. This is due to the decrease of size of the number of probesets
and to the consequently allocation in main memory of the problem. The super-
linear speed-up is only present when 10 workers are used.

5 Conclusion

In this work we presented a system for the parallel preprocessing of microarray
data based on a distributed architecture. The proposed system is able to collect
data from user, run different preprocessing algorithms in a parallel way, and
integrate results. Early experiments with the proposed system using publicly
available Affymetrix data showed improvements with respect to execution times.
This gain will be more evident considering the constant increase of the volume
of data. Future work will focus on the complete realization of the system.
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Foreword

CoreGRID is a European research Network of Excellence (NoE) that was initi-
ated in 2004 as part of the EU FP6 research framework. The NoE developed the-
oretical foundations and software infrastructures to support the development of
large-scale Grid and P2P applications. A CoreGRID Working Group, sponsored
by ERCIM, was established in 2008 to ensure the continuity of the CoreGrid
programme after the official end of NoE. The Working Group has the goals of:

– sustaining the operation of the CoreGRID Network; and
– establishing a forum to encourage collaboration between the Grid and P2P

Computing research communities.

The original interests of CoreGrid have broadened to include the emerging field of
service-based Cloud computing which is crucially important to the development
of the European software industry. The CoreGRID community is using the ex-
perience gained from constructing inter-operable Grid middle-ware to contribute
to the development of a service-oriented paradigm. CoreGrid members are play-
ing an active part in developing service-based models such as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

The CoreGRID organisation has organised a series of workshops to discuss
state of the art developments in Grid, P2P and Cloud computing. The workshops
have been attended by CoreGRID members and also by international experts
in the area of distributed computing. Previous workshops took place in Pisa
(2005), Krakow (2006), Heraklion (2007), Gran Canaria (2008) and Delft (2009).
CoreGRID 2010 was held in Ischia-Naplesis. Topics open for discussion included
Service Level Agreements, Data & Knowledge Management, Scheduling, Virtual
environments, Network monitoring, Volunteer Computing Systems, Trust & Se-
curity, Self-* and adaptive mechanisms, Advanced programming models includ-
ing IaaS, PaaS and SaaS, Tools and Environments for Application Development
and Execution.

The workshop received 18 submissions, of which 8 were accepted. The accepted
papers where in the following areas:

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 235–236, 2011.
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– adaptive software management:
A framework for autonomic management of multiple non- functional con-
cerns by M. Aldinucci, M. Danelutto, P. Kilpatrick, V. Xhagjika; and
Adaptive instantiation of service workflows using a chemical approach
by C. Di Napoli, M. Giordano, Z.Németh, N. Tonellotto,

– interoperation and SLA negotiation in services:
Multi-level Brokering Solution for Interoperating Service and Desktop Grids
by A. Kertesz, Z. Farkas and P. Kacsuk; and
Dynamic Service Configurations for SLA Negotiation
by I. ul Haq, K. Koer, E. Schikuta,

– programming models and tools for grids and clouds:
First Class Futures: Specification and implementation of Update Strategies
by L. Henrio, M. Uzair Khan, N. Ranaldo, and E. Zimeo;
Actor-driven Workflow Execution in Distributed Environments
by S. Skorupa, F. Berretz, V. Sander, A. Belloum and M. Bubak; and
GroudSim: An Event-based Simulation Framework for Computational Grids
and Clouds
by S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,

– license management in distributed environments:
Software Licenses as Mobile Objects in Distributed Computing Environments
by C. Cacciari, D. Mallmann, C. Zsigri, F. D’Andria, B. Hagemeier, D.
GarcIa Peréz, A. Rumpl, W. Ziegler, M. Gozalo, and J. Martrat.

In addition to regular papers, three invited lectures were organized to discuss
topics of current interest. The lectures were given by S. Newhouse, R. Yahyapour
and V. Getov and an interesting discussion on the future of CoreGRID commu-
nity activities followed.

The Workshop took place on 31 August 2010, with the various sessions being
attended by between 50 and 70 participants.

We wish to thank all those that contributed to the success of the workshop:
authors submitting papers, invited speakers, colleagues participating in the refer-
eeing process / discussion session and Euro-Par 2010 organizers whose invaluable
support greatly helped in the organisation of the Workshop.

October 2010 M. Danelutto
F. Desprez
P. Fragopoulou
A. Stewart
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Abstract. We describe a lightweight prototype framework (LIBERO)
designed for experimentation with behavioural skeletons—components
implementing a well-known parallelism exploitation pattern and a rule-
based autonomic manager taking care of some non-functional feature
related to pattern computation. LIBERO supports multiple autonomic
managers within the same behavioural skeleton, each taking care of a
different non-functional concern. We introduce LIBERO–built on plain
Java and JBoss–and discuss how multiple managers may be coordinated
to achieve a common goal using a two-phase coordination protocol devel-
oped in earlier work. We present experimental results that demonstrate
how the prototype may be used to investigate autonomic management
of multiple, independent concerns.

Keywords: structured parallel/distributed programming, behavioural
skeletons, non-functional concerns, performance, security, autonomic
management.

1 Introduction

A behavioural skeleton (BS) is the result of the co-design of a well-known, effi-
cient parallelism exploitation pattern and of a rule-based control loop implement-
ing an autonomic manager of (one or more) non-functional properties related to
the pattern [1,2]. The concept was introduced to tackle the problem of efficient,
autonomic management of non-functional features of parallel/distributed com-
putations, such as performance, security, fault tolerance, power management,
etc. The BS parallel pattern makes use of well-understood techniques to imple-
ment that particular pattern on target architectures. The BS autonomic manager
executes a classical Monitor, Analyse, Plan, Execute (MAPE) control loop to
monitor and adjust the system to modify some non-functional characteristics.

Behavioural skeletons were originally designed in the framework of GCM, the
Grid Component Model [8] developed within CoreGRID [7] and subsequently

� This work has been partially supported by ERCIM/CoreGRID.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 237–245, 2011.
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Algorithmic skeleton

Autonomic controller

Autonomic
manager
NF concern C1

Autonomic
manager
NF concern C2

monitor & actuate

(1) analyze status & plan corrective action

(2) broadcast action to other AM

(5) collect answers

(6) all ACK → commit, ∃ NACK → ABORT

(3) analyse received request

(4) send ACK/NACK/Provide(PropX)

Fig. 1. Coordinating activities of distinct autonomic managers in a BS

implemented in the GCM reference implementation built on top of ProActive
[14] in GridCOMP [11]. GridCOMP produced a GCM BS prototype support-
ing common stream parallel patterns–pipelines and farms–with managers taking
care of performance issues. Those BS were demonstrated to be effective in man-
aging (best-effort) user-supplied performance contracts. In [2] it was shown how
contracts requiring a given throughput can be guaranteed when a single BS
models the entire application. In [3] we introduced techniques that support the
coordination of the different managers in a BS hierarchy.

In the general case, however, multiple non-functional concerns have to be
addressed within the same computation. The BS concept can be easily extended
in such a way that multiple managers are associated with the same parallel
pattern, each taking care of a different concern. In [4] we identified the need
for such managers to interact to achieve consensus before effecting changes to
the managed system. We also identified protocols for achieving such consensus.
However, no actual implementation was presented. In this paper we introduce
LIBERO (LIightweight BEhaviouRal skeletOn framework), which is a lightweight
prototype implementing several BS–including pipes and farms–and supporting
multiple autonomic managers within a single BS.

2 Autonomic Manager Coordination

Problems may arise when independent autonomic managers are run within the
same behavioural skeleton. In a scenario such as that depicted in Fig. 1, multiple
managers are associated with the same algorithmic skeleton in a single BS. The
algorithmic skeleton implements a well-know parallelism exploitation pattern.
Through its autonomic controller (AC) it provides i) methods to access its in-
ternal state (to support monitoring) and ii) methods to operate on its internal
state (to modify its behavior). Each associated autonomic manager takes care
of a distinct non-functional concern.

When different AMs associated with the same BS independently decide to
take some action those actions must be coordinated as they may produce effects
that are mutually incompatible. In [4] we introduced a two-phase approach to
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coordinate different manager activities. In this approach each action planned by
an AM is validated by the other AMs in the BS before being executed. The
manager taking care of non-functional concern X (e.g. performance), analyzes
system behaviour and decides to take some action (➀ in Fig. 1). It informs the
other managers of the decision ➁. These managers evaluate ➂ the decision with
respect to any consequences for their non-functional concern. Eventually they
return ➃ one of three answers: ACK, meaning the decision can be safely taken by
the first manager, NACK, meaning the decision is in conflict with the managed
non-functional concern and therefore should be aborted, or provide(property),
meaning the decision may be actuated provided property is ensured (e.g. se-
curing of connections). The manager initiating the process gets answers from
the other managers ➄ and either actuates its decision (the original plan or a
modified one to accomplish property) or aborts it ➅.

This two-phase protocol has not previously been experimented with, due
mainly to the difficulty of embedding a complex management structure in the
reference implementation of BS in ProActive/GCM. We implemented LIBERO
to allow assessment of the feasibility of this protocol as well as to experiment
with other protocols regulating autonomic management.

3 LIBERO

LIBERO is a prototype supporting BS with multiple autonomic managers imple-
mented using lightweight components. Each component implementing a parallel
computation has a managing entity–the AM–that deals with the non-functional
aspects of the parallel computation in a local and autonomic way. The AM man-
agement functions operate through the operations provided by the component
Autonomic Controller [8]–the AC–which exports its internal computation state
and provides a set of operations to modify component state and functioning.

LIBERO implements the BS previously investigated in GridCOMP, namely
those modelling the usual stream parallel patterns, such as task farms and
pipelines [6], and equipped with a single autonomic manager taking care of
a single non-functional concern. In addition, LIBERO supports Multiple Con-
cern Management, implementing the coordination algorithm outlined in Sec. 2.
All LIBERO components are native Java objects. This simplifies investigation
of multi-concern management as compared with the ProActive/GCM BS pro-
totype. The ProActive/GCM prototype requires a more complex runtime and
does not support multiple AMs in a single BS. LIBERO, like the ProActive/GCM
BS implementation, uses the DROOLS [10] library middleware to implement
autonomic managers’ control cycles.

3.1 LIBERO Base Mechanisms

LIBERO implements component deployment on remote nodes using a small Java
RMI-based runtime.This runtime allows deployment of LIBERO components and
management of their life cycle. Management activities access the runtime to check
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BS name Features
Sequential models sequential code, no actuator supported in AC, provides service time and exe-

cuted task number through monitoring AC interface
Farm models embarrassingly parallel stream parallel computations, constructor parameter

used to pass the worker component class, AC supports increase/decrease parallelism de-
gree actuators, provides service time, total task number and number of workers through
the AC monitoring interface

Pipeline models computations organized in stages, constructor parameters used to pass stage
component classes, no actuator supported in AC, provides service time and total task
number through monitoring AC interface

Fig. 2. LIBERO Behavioural Skeletons

machine dependent parameters peculiar to the node where the runtime is running,
andmayalsoaccessparametersassociatedwithothernodesof the system, ifneeded.

The functional interfaces of LIBERO components are implemented using
permanent Java TCP socket connections (either normal or SSL connections,
depending on security requirements), with the use of serialisation for input/out-
put object delivery between BS components. These permanent TCP connections
imply the use of a discovery mechanism to locate the distributed components. Im-
plementation of this mechanism assumes a global naming scheme for the compo-
nents. A centralized multicast discovery component is used as a Nameserver.This
component allows registration, removal and lookup requests using the specified
component IDs. Non-functional interfaces (those related to BS managers) need
stronger expressiveness and ease of use, and thus are implemented using RMI.

3.2 LIBERO BS

The LIBERO BS framework is provided as a set of classes [15]. A Behavioural-
Skeleton class provides the common mechanisms (such as those needed for regis-
tration/removal of sub-components) and interfaces of BS and can be extended to
implement new BS. Table 2 summarizes the main features provided by LIBERO.

Multiple managers, specialized by their contracts, can be declared using the
appropriate LIBERO classes and associated with the same LIBERO BS. The ac-
tions of these cooperating AM are coordinated by means of the two-phase pro-
tocol proposed in [4]. The AM behaviour (that is, its contract) is expressed in
terms of JBoss rules. The DROOLS rule pre-conditions are evaluated using the
parameters monitored through the BS AC interface. Actions of the rules eventu-
ally fired by the DROOLS rule engine are executed using the BS AC interface.

The consensus protocol is implemented using JBoss rules and allows use of
runtime values as contract parameters. As a consequence, the protocol is not
embedded in the manager code but rather in the rule language. Fig. 3 (right)
shows a sample JBoss rule. This is the rule fired when a new worker is added to a
farm due to a breach of contract (fewer than 8 workers in the farm). The action
part of the rule consists in setting up and broadcasting the consensus request.

Autonomic controllers provide mechanisms to monitor BS behaviour and to
actuate manager decisions on the embedded skeleton. In particular, each AC
implements the executeOperation and getMeasure methodsto change/export
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rule "FarmPerformanceManagerRuleToAskForConsensus"
 when
  $farm: AutonomicControllerInterface()
  $manager: AutonomicManagerInterface()
  $sample: String() from 
        $farm.getMeasure(Measures.NEXT_AVAILABLE_MACHINE)
  $sample_numworker: Integer() from 
        $farm.getMeasure(Measures.TOTALWORKERS)
                
   not(exists(ContractParamValue(name == 
         MulticoncernBroadcastCodes.BCAST_REQUEST_WAIT_ACK)))
   not(exists(ContractParamValue(name == 
         MulticoncernBroadcastCodes.PREPARE_BCAST_COMMAND)))
                
   eval(((Integer) $sample_numworker) < 8)
then
  $manager.setContractParam(
         MulticoncernBcastCodes.PREPARE_BCAST_COMMAND, "");
  $manager.setContractParam(
         MulticoncernBcastCodes.BCAST_PARAM, 
         CommandCode.INCREASE_PARALLELISM);
  $manager.setContractParam(
         MulticoncernBcastCodes.BCAST_SECOND_PARAM, 
         $sample);
 end

coop protocol

Pipeline Behavioural Skeleton

Farm Behavioural Skeleton

AC

ACPipeline

Seq

Farm

Seq

SeqSeqSeq

Performance
AM

Security
AM

monitor
actuate

monitor
actuate

Fig. 3. Sample use case application (left) and Sample JBoss rule (right)

the internal execution state. The AC also implements methods for accessing
machine dependent parameters, fetched from the runtime support of the node.

Machine dependent properties are made accessible through the runtime sup-
port; these properties are described in an XML file parsed at startup by the
runtime. The configuration file may host metadata relative to properties of the
machines used for program execution.

4 Experimental Results

A set of experiments to assess LIBERO functionality and efficiency has been per-
formed on an Intel/Linux cluster, with Java (version 1.5 or higher) and JBoss
DROOLS (version 5.0). The nodes in the cluster were interconnected by FastEth-
ernet and NFS was used. Here we report on one experiment illustrating multiple
non-functional concern management in LIBERO.

This experiment uses a synthetic application structured as a three stage
Pipeline component, as depicted in Fig. 3 (left): the first and the third stages
are Sequential components, while the second stage is a Farm component. Each
component is placed on a different node in the cluster and 3 machines, each
running the LIBERO runtime are assigned as resources for the Farm workers.

The scenario under test is the following. Both a performance contract and a
security contract have been supplied by the user. The performance contract re-
quires that a given number of workers (8) be employed and that that level be
maintained. It can be ensured by recruiting increasing numbers of resources to
the point where the required number is operating. New resources may also be
dynamically recruited for the computation in the event that existing ones be-
come less effective due to temporary overloads or faults. The security contract
demands that, where nodes are recruited from external, possibly unreliable do-
mains, such nodes must be suitably secured by, for example, encrypting data
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Fig. 4. Event distribution over time (secs from system startup). W.r.t. Fig. 1: prep-
BroadReq corresponds to ➀, SendBroadReq to ➁, SendAckSec/SendAckNoSec to ➂/➃,
workerUp to ➄/➅ and endAckOkNoSec/endAckOkSec to end of ➅.

and code communications; nodes internal to the user domain may be considered
secure. Thus, if the performance manager identifies failure of the performance
contract it will prompt the recruitment of further resources. If some of these are
in an external domain the security manager may in turn demand the securing
of communications with such potentially unsafe resources.

To implement this scenario, two autonomic managers are associated to the
Farm component, one handling security and the other performance. The run time
nodes host metadata classifying each node that may be recruited as secure or
insecure.We used both secure and insecure nodes in the experiment to check both
types of answers from the consensus phase: simple ACK (i.e. accept recruitment
of a new node to host a Farm worker implemented using plain TCP sockets) and
conditional ACK (i.e. accept recruitment of the node provided SSL sockets are
used for communications).

The life cycle of the managers (the period used to run the DROOLS engine)
is set to 500ms so that the plot of the runtime is sufficiently discrete to allow
observation of the events, but smaller life cycles are possible down to 100ms.

In the use case we start the Farm component with two workers. The per-
formance manager immediately detects a contract violation and asks the other
managers for permission to add another worker. If other violations are encoun-
tered then the same set of operations is applied repeatedly, until no further
violation is encountered.

The plot in Fig. 4 is automatically generated (but for arrows and ovals, added
for clarification) from the application log files and shows evolution of the Farm
component and the distribution of manager events over the same period of time.
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As can be seen, consensus is sought and achieved according to the two phase
protocol. In some cases workers are added using plain TCP connections (workers
that happen to be placed on “secure” nodes – see on the right of Fig. 4). In other
cases, the security manager detects that resources identified to host new workers
are not secure and so it requests property(Security) in the ACK message. At
this point the performance manager changes the plan used to add the worker
from that employing plain TCP to one incorporating secure SSL connection, and
eventually recruits the new worker using this modified action plan.

Overall, the consensus protocol takes an overhead of at most 4 manager life-
cycles plus the execution time of the rules, which depends only on the com-
munication overhead between managers. This gives a total overhead time of
Toverhead = 4 ∗ (TLyfeCycle + TCom), where TCom is the average number of RMI
calls * average RMI latency. In this simple case the entire reconfiguration of the
system takes 45s, and reconfiguration time for worker allocation on average (in-
cluding decision making and synchronization) is about 5 secs (including about
2 secs of idle time spent waiting 4 times for the next iteration of the control
loop). These times are of the same order of magnitude as the times spent in the
ProActive/GCM BS prototype to achieve an unmediated reconfiguration (i.e.
a reconfiguration decided autonomically by a single, uncoordinated manager),
which underlines the “lightweight” nature of LIBERO.

5 Related Work

The IBM blueprint paper on autonomic computing has already established, in a
slightly different context, the need to orchestrate independent autonomic man-
agers [12]. In [9] strategies to handle performance and power management is-
sues by autonomic managers are discussed. However the approach is much more
oriented to the generic combination of target functions relating to the two non-
functional concerns considered, rather than to the constructive coordination of
the actions planned by the two managers.

A framework that can be used to reason on multiple concerns was intro-
duced in [13]. Based on the concepts of state and action (i.e. state transition)
adopted from the field of artificial intelligence, this framework maps three types
of agenthood concepts (action, goal, utility-function) into autonomic computing
policies. Action policies may produce and consume resources, which are used
by a resource arbiter (i.e. a super manager) to harmonize conflicting concerns.
The framework does not, however, provide specific support for policy design and
distributed management overlay.

A similar approach was followed in [5], which also exploits the same policies
(action, goal, utility-function) defined on the state and configuration space of
the system. These policies are extended with resource-definition policies, which
specify how the autonomic manager exposes the system to its environment;
this makes it possible to dynamically extend manager knowledge with other
resources/parameters, possibly coming from other managers, thus supporting
management overlay.



244 M. Aldinucci et al.

6 Conclusion

LIBERO supports the implementation of behavioural skeletons with multiple au-
tonomic managers, each managing a different non-functional concern, and runs
on any distributed architecture supporting Java. The prototype allows inves-
tigation of coordination aspects of autonomic management of non-functional
concerns. The lightweight implementation of LIBERO, and in particular of the
monitoring and actuator mechanisms implemented in the autonomic controllers,
allows us to experiment with various consensus building strategies without being
burdened by the complexities of fully-fledged distributed/parallel implementa-
tions, such as that provided by the ProActive/GCM BS implementation.
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Abstract. Service oriented technologies allow Service Based Applica-
tions (SBAs) to be easily built by composing independent services avail-
able in a network and provided by many actors under conditions that
may change in time. Therefore services need to be dynamically selected
and composed when an SBA is required along with parameters repre-
senting the service delivery conditions. In this paper we propose to use a
chemical computational approach to model the process of selecting the
required service functionalities with the required conditions as an evolv-
ing and always running middleware mechanism. The chemical evolving
behaviour of the middleware allows to take into account environmental
changes coming from both the providers and users side.

1 Introduction

Service Oriented Architecture (SOA) technologies are becoming very popular
in the context of Future Internet [1] where enterprises and diverse organizations
take up the role of service providers, while users exploit such services in combined
ways to fulfill their needs. In this context, it becomes necessary to organize Ser-
vice Based Applications (SBAs) on demand in response to dynamic requirements
and circumstances. In fact, service providers can provide the same functionality
with different conditions, or even the same provider can provide one function-
ality with different conditions, usually related to non-functional characteristics
of a service (like price, time to deliver, and so on). Conditions may change in
time depending on both provider policies and consumer’s needs. For example,
the cost associated to a service may vary according to market conditions (driven
by demand-supply mechanisms), or the time to deliver may vary according to
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the workload of the provider. Given the dynamic nature of these characteristics,
they have to be managed at the time a service is required.

In the present work this problem is addressed by decoupling the process of
selecting services composing an SBA requested by a user from their actual enact-
ment. We propose to use the chemical computational model [2] to represent the
problem of selecting service instances that match an SBA requested by a user
specifying functionality of service components, their dependence constraints and
some preferred non-functional characteristics of the whole composition.

Applying this metaphor to the problem of selecting service instances allows
to reduce the search space considerably, and more important, to model the ser-
vice selection process as an “evolving” and always running mechanism that can
adapt to environmental changes as they occur, so providing adaptability to non-
functional characteristics changes. Furthermore, decoupling service instantiation
from their execution makes it possible to interleave the two processes, so that
services can be instantiated or replaced during workflow execution.

2 The Chemical Computational Model

The γ-calculus is a formal definition of the chemical paradigm aimed at relaxing
the artificial sequentializing of algorithms. The fundamental data structure of the
γ-calculus is the multiset, i.e., a set that may contain multiple occurrences of the
same element. Multisets are modified by reactions taking place independently
and potentially simultaneously, according to local and actual conditions. There
is no centralized control, ordering, serialization, but rather the computation is
carried out in an indeterministic, inherently parallel, self-evolving way. γ-terms
(molecules) are: variables x, γ-abstractions γ〈x〉.M , multisets (M1, M2) and so-
lutions 〈M〉 [2]. Juxtaposition of γ-terms is commutative and associative. These
properties realize the basic principle of ’Brownian-motion’, i.e., the free distribu-
tion and unspecified reaction order among molecules [3]. γ-abstractions are the
reactive molecules that can take other molecules and replace them by reduction.
Molecules, and solutions participating in the reaction are extracted by pattern
matching. The semantics of a γ-reduction is (γ〈x〉.M), 〈N〉 →γ M [x := N ] i.e.,
the two reacting terms on the left hand side are replaced by the body of the
γ-abstraction where free occurrences of x are replaced by parameter N [3].

Reactions may depend on conditions expressed by C in γ〈x〉�C�.M that can
be reduced only if C evaluates to true before the reaction. Reactions can capture
multiple molecules in a single atomic step and are governed by: (i) locality law,
i.e. a reaction occurs irrespectively of the environment; and (ii) membrane law,
i.e. reactions can occur in nested solutions separated by a membrane. The γ-
calculus is a higher order model where abstractions, just like any other molecules,
can be passed as parameters or yielded as a result of a reduction.

The Higher Order Chemical Language (HOCL) [4], based on the γ-calculus
extended with expressions, types, pairs, empty solutions and names, is adopted
in this work. HOCL uses the self-explanatory replace... by... if... construct
to express active molecules. replace P by M if C formally corresponds to
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γ(P )�C�.M with the difference that γ-abstractions are destroyed by the reac-
tions, while HOCL rules remain in the solution.

3 Chemical Representation of the Problem

It is assumed that users requiring SBAs submit their requests by specifying both
the functionality of each component of the application, and the dependence con-
straints occurring among the components, i.e. the order of execution in which
the components should be delivered. They also provide values for parameters
representing some non-functional characteristics they would “prefer” the appli-
cation to be delivered with. They will drive the selection of the suitable service
components.

The required SBA functionalities together with their dependence constraints
are expressed in the form of an abstract workflow (AW), a Directed Acyclic
Graph (DAG) AW = (S, E) where S = {si, . . . , sn} is a set of nodes in the
graph, and E ⊆ S × S is a set of directed edges in the graph. Each node repre-
sents a service interface whose implementation can be provided by one or more
service instances with different non-functional characteristics. Each directed edge
represents a data, or a control (or both) dependence between two nodes it con-
nects. An AW has four types of nodes: (1) a start node with an in-degree equal
to 0; (2) a stop node with an out-degree equal to 0; (3) a split node with an
out-degree equal to 2; (4) a merge node with an in-degree equal to 2.

An AW specifies only topological relations between nodes, i.e. edges between
two nodes and in- and out-degree of each node, while the interpretation of these
relations is relevant to the workflow instantiation and enactment phases. An AW
node is represented by the solution of Eq.1, where the attribute id is a unique
integer identifying the node, in is the number of the node incoming edges (in-
degree), and out is the number of the node outgoing edges (out-degree).

Nodei = 〈id : si, in : ni, out : mi, ...〉 (1)
Edgeij = 〈from : si, to : sj , ...〉 (2)
Offeri = 〈ei : si, qos : ci〉 (3)

Nodes are ordered by their identifiers, i.e. there is a path in the AW from node si

to node sj if i ≤ j. This is a baseline model for a workflow of services where the
control constructs taken into consideration are sequence, if-then, and/or, and
parallel fork/join. The type of construct can be specified by using an optional
attribute type:<value> in the solution of Eq.1.

An edge of the abstract workflow is represented by the solution of Eq.2, where
id is an integer identifying the edge, from is the identifier of the source node
and to is the identifier of the sink node.

Service providers make their services available as “offers”. An offer is com-
posed of the identifier of the service instance it refers to, and the value of the QoS
parameter representing the non-functional characteristics they can provide the
service with. So, for each service interface si of the AW a set of actual service
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implementations may be available, ei
1, . . . , e

i
mi

. An offer is represented by the
solution of Eq.3, where the ei is a generic endpoint of service si offered with a
QoS ci. If a provider offers the same service instance si with different qos values,
more offers for the same service will be available in the chemical system.

It is assumed that the user specifies a value at the time when the request is
issued representing the Quality of Service (QoS) he/she requires for the entire
composition. It is also assumed that this value is related to the QoS value of each
service offer. Of course, it is not always possible to relate a global preference on
a composition of services to the QoS value of each service offer, but for the time
being we refer to cases in which this exemplification is acceptable, i.e. where a
cumulative property holds for the QoS.

4 Workflow Instantiation as Chemical Reactions

Once service offers are available in the system, the ones matching the user’s
requirements have to be selected to obtain the actual workflow to be enacted,
called an instantiated workflow (IW). The process that leads from an abstract
workflow to an instantiated workflow is the workflow instantiation process.

This process is expressed in terms of chemical reactions [5] that occur when
some conditions are satisfied, i.e. as long as there are molecules that match
the rule conditions. When no more chemical reactions can take place an inert
state is reached. IWs are created when service endpoints are assigned to all the
corresponding nodes of the requested AW.

To model the instantiation process in terms of chemical reactions, in addition
to the molecules representing the AW and the offered services, also partially
instantiated workflows built by chemical reactions are represented with the same
formalism. A partially instantiated workflow (pIW) is composed of either a single
node (elementary pIW), or a set of nodes (IW subgraph) with the following
conditions: 1) each node different from the first and last node of the set (where
first and last refer to the node ordering) must all have edges with sink and
source nodes belonging to the subgraph; 2) the first node must have all outgoing
edges with sink nodes belonging to the subgraph; 3) the last node must have
all incoming edges with source nodes belonging to the subgraph. The chemical
molecule representing a pIW is the following:

〈first : 〈ei : si〉, last : 〈ej : sj〉, . . . , qos : c〉 (4)

where si is the first node of the pIW associated to the service endpoint ei,
sj is the last node associated to the service endpoint ej , dots represent some
intermediate nodes if any, and qos is the value of the considered non-functional
parameter associated to the pIW obtained by combining the qos values of its
component nodes. For an elementary pIW si = sj , ei = ej .

Elementary pIWs are the starting building blocks of the workflow instantiation
process. So, before the instantiation process takes place, all service offers are
converted into elementary pIWs using a chemical rule called prerule reported in
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Fig. 1. (a) Concatenating pIWs; (b) Dealing with split/merge nodes

Table 1(1). The prerule matches all service offers and thus it applies to all of
them, i.e. no condition (if part) is specified to trigger the reaction.

Two pIWs can be concatenated to form new pIWs containing a sequence of
consecutive nodes if the first one ends with a node that is not a split node,
and the second one starts with a node that is not a merge node, and they are
connected by an edge. The sequences can be further concatenated producing
longer sequences. The rule that concatenates pIWs is named chainrule reported
in Table 1(2). The replace part of the rule contains the pIWs to be chained
(line 2 and 3 of the rule), while the other solutions (line 4 of the rule) represent
the AW information used by the if part to check whether the pIWs are in the
right topological relation to be chained. These solutions are catalysts since they
remain intact after the reaction. The if part also checks that the qos values of
the two pIWs satisfy a boolean condition expressed by the function ψ. The by
part of the rule produces a new pIW that is the concatenation of the two input
pIWs, and its qos value is obtained combining the qos values of the two input
pIWs. ω symbols are wildcards to match anything inside the input molecules
that is not relevant to the reaction to take place: in this rule all information
matching the wildcards is reinserted in the new produced molecule.

To concatenate two pIWs where the first one ends with a split node and
the second one starts with a merge node, the splitrule reported in Table 1(3)
is introduced. As depicted in Fig.1(b), the rule links together four pIWs: one
ending with a split node (line 2 of the rule), one starting with the corresponding
merge node (line 3), and two pIWs representing the subgraphs of the right and
left branch of the split (line 4 and 5). The other solutions (line 6 and 7) represent
the AW edges connecting the pIWs that are matched by the rule to check their
topological relation. These solutions are catalysts available in the system for
further reactions. The if part of the rule checks if the input qos values of the
pIWs (once combined) satisfy a boolean condition to meet the QoS requirement
specified in the user request. The by part of the rule produces a new pIW
representing the combination around the split and merge nodes (lines 8-11).
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Table 1. Workflow instantiation chemical rules

(1) let prerule =

replace 〈ei : si, qos, cei〉,
by 〈first : 〈ei : si〉, last : 〈ei : si〉, qos : cei 〉

(2) let chainrule =

replace 〈first : 〈el : sl〉, last : 〈ei : si〉, qos : c1, ω1〉,
〈first : 〈ej : sj〉, last : 〈ek : sk〉, qos : c2, ω2〉,
〈id : si, in : ni, out : mi〉, 〈id : sj , in : nj , out : mj〉, 〈from : si, to : sj〉,

by 〈first : 〈el : sl〉, last : 〈ek : sk〉,
node : 〈ei : si〉, node : 〈ej : sj〉, qos : c1,2, ω1, ω2〉

〈id : si, in : ni, out : mi〉, 〈id : sj , in : nj , out : mj〉, 〈from : si, to : sj〉,
if mi = 1 ∧ nj = 1 ∧ ψ(c1, c2) = true

(3) let splitrule =

replace 〈first : 〈ei : si〉, last : 〈ek : sk〉, qos : c1, ω1〉,
〈first : 〈el : sl〉, last : 〈ej : sj〉, qos : c2, ω2〉,
〈first : 〈ei1 : si1 〉, last : 〈ej1 : sj1 〉, qos : c3, ω3〉,
〈first : 〈ei2 : si2 〉, last : 〈ej2 : sj2 〉, qos : c4, ω4〉,
〈from : sk, to : si1 〉, 〈from : sk, to : si2 〉,〈from : sj2 , to : sl〉, 〈from : sj2 , to : sl〉,

by 〈first : 〈ei : si〉, last : 〈ej : sj〉, split : 〈ek : sk〉, merge : 〈el : sl〉,
〈first : 〈ei1 : si1 〉, last : 〈ej1 : sj1 〉, ω3〉,
〈first : 〈ei2 : si2 〉, last : 〈ej2 : sj2 〉, ω4〉,
qos : c1,2,3,4, ω1, ω2〉,

〈from : sk, to : si1 〉, 〈from : sk, to : si2 〉,〈from : sj2 , to : sl〉, 〈from : sj2 , to : sl〉
if φ(c1, c2, c3, c4) = true

(4) let lazysplitrule =

replace 〈first : 〈ei : si〉, last : 〈ek : sk〉, qos : c1, ω1〉,
〈first : 〈el : sl〉, last : 〈ej : sj〉, qos : c2, ω2〉,
〈first : 〈ei1 : si1 〉, last : 〈ej1 : sj1 〉, qos : c3, ω3〉,
〈from : sk, to : si1 〉, 〈from : sk, to : si2 〉,〈from : sj2 , to : sl〉, 〈from : sj2 , to : sl〉,
〈id : sk, type : ifthen, ω4〉,

by 〈first : 〈ei : si〉, last : 〈ej : sj〉, split : 〈ek : sk〉, merge : 〈el : sl〉,
〈first : 〈ei1 : si1 〉, last : 〈ej1 : sj1 〉, ω3〉,
〈first : 〈future : si2 〉, last : 〈future : sj2 〉〉,
qos : c1,2,3, ω1, ω2〉,

. . .
if φ(c1, c2, c3) = true

5 Lazy Instantiation of Workflows

In this section we introduce the possibility to exploit the additional attributes
necessary for the execution phase also in the AW instantiation process by specif-
ically managing split nodes with an if-then attribute. In order to do so, a special
pIW, called lazy pIW, is introduced and it is represented by the molecule of
Eq.5. The future attributes represent placeholders for nodes not yet instantiated
that will be replaced by actual service instances when necessary; qos values are
not present since they are related to service instances.

〈first : 〈future : si〉, last : 〈future : sj〉, . . .〉 (5)

In the instantiation process all paths of the AW have to be instantiated to obtain
an IW even though some of them will not be executed because of the if-then
nodes. The introduction of lazy pIWs relaxes this constraint, so allowing for the
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“lazy” enactment of an IW containing lazy pIWs. The lazysplitrule has been
introduced to build lazy pIWs when if-then nodes are present in the AW.

The proposed extension is compliant with the pIW definition, so it guarantees
that lazy pIWs produced by the lazysplitrule can be reused as input for further
reactions.

At the end of the workflow instantiation process the resulting IWs can be
passed to the enactment stage, although some paths are not yet instantiated. If
during the IW execution an if-then node fires the execution of a non-instantiated
path, the enactment system will suspend the IW execution to request the chem-
ical middleware to instantiate the missing branch on the demand.

6 Related Work

(Self-)adaptive service composition is coined due to the changing behavior of
services (mobility, quality, faults, etc.), extreme dynamicity, unreliability, large
scale [6], and high complexity, already beyond the human capability to deal with
[7]. Also, it has been argued and generally accepted, that such self-adaptable,
evolvable and context-aware systems require innovative approaches that take
inspiration from nature, e.g. [6].

Viroli et al. [8] proposed a concept where above a common biochemical sub-
strate (defining the basic ”laws of nature”), different individuals interact, com-
pete, and combine with each other to serve their own individual needs as well
as the sustainability of the overall system. Ding et al. [7], Sun et al. [9] take the
neuroendocrine-immune (NEI) system as a metaphor and create a decentral-
ized, evolutionary, scalable, and adaptive system for Web service composition
and management. Bio-entities represent services able to obtain the desirable
characteristics in a self-organizing way and emerge the requested services.

Banâtre et al. [10] use HOCL to model and express various issues related to
service invocations. Their approach is very similar to ours; they are aimed at a
general conceptual model whereas we are focused on specific aspects of service
composition. Canfora et al. apply genetic algorithms to assist QoS aware ser-
vice composition [11]. The composition takes into consideration non-functional
features, cost and time constraints and it is traced back to an optimisation prob-
lem. Multimedia service composition based on ant colony optimisation is pre-
sented in [12]. Ensuring quality criteria is challenging due to the continuous flow,
synchronisation issues and dynamic characteristics.

7 Conclusions

The present work proposes to decouple the workflow instantiation from its ex-
ecution, so that the first one can be modeled as an independent, autonomous,
and always running mechanism. In such a way it is possible to take into account
environmental changes, i.e. new provider availability, or changes in the provided
QoS, as they occur without discharging IWs already produced. The chemical
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approach allows to change at runtime the state of the system (i.e. the num-
ber and/or the QoS offers), so allowing new compositions to be found because
new chemical reactions may take place in a way that simulate an adaptation of
the system to different configurations not planned in advance. Furthermore, the
proposed approach allows also to dynamically change the selection criteria com-
ing from user requirements because they are represented as chemical reactions
that are manipulated in the same way as molecules; reactive molecules can be
removed from the system, and new ones can be inserted in it, so changing the
system behaviour. In such a way the chemical mechanism provides adaptability
from both the provider side, by giving the possibility to insert new offers and so
to re-activate chemical reactions, and from the user side, by giving the possibility
to change his/her preferences during the instantiation phase.

Another advantage is the possibility to generate an IW also when there are
missing service offers for some AW nodes. In fact, once the IW enactment takes
place, and a path with missing service instances has to be executed, the exe-
cution may be suspended to query the chemical system for the missing parts
if available by instantiating the placeholders in the IW. This is because the
chemical middleware may run concurrently with the enactment engine. New of-
fers activate reactions as soon as they appear in the system, so it is possible to
exploit them, yielding partially instantiated workflows that were not possible be-
fore the enactment started. Finally, the instantiation process can be completely
distributed since all reactions take place concurrently, independently and in a
not deterministic way.
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Abstract. Since 2004 the research interests of the CoreGRID commu-
nity has evolved from distributed large scale computing to service-based
computing and Clouds. The adoption of the SOA paradigm and virtual-
ization has resulted in an unprecedented flexibility in creating distributed
applications. Old and new research challenges need to be mastered to ex-
ploit fully the potential of cloud infrastructures. In this article we present
outstanding cloud-related research questions that need to be addressed.
It is proposed that a pan-European research community is needed to
bridge existing knowledge gaps.

Keywords: Cloud Computing, HPC, Grid Computing.

1 Introduction

One key requirement for the CoreGRID network is dynamic adaption to changes
in the scientific landscape. New research challenges have arisen which need to
be addressed. Lately, the advent of clouds has caused disruptive changes in the
IT infrastructure world. However, there is a significant overlap between the sci-
entific questions related to Grid and Cloud research. Naturally, part of the Grid
community is also active in Cloud research. Current and future cloud research
challenges are considered by means of selected examples. It is argued that these
outstanding challenges need to be addressed at a European scale.

Grids and clouds have many similarities as they both address questions con-
cerning access to resources in a large-scale distributed environment. Thus, there
is significant overlap between the two areas in the ways that infrastructures
may evolve. The CoreGRID programme of work has focused mostly on Grids
with particular questions in application engineering and middleware manage-
ment for Grids. The underlying use-case was typically resource sharing between
different administrative domains for collaborated problem solving in virtual or-
ganizations. Due to the size of the research network, CoreGRID has provided a
wide variety of results e.g. component models, schedulers, SLA management, or
workflow management. With the advent of Cloud Computing, it is reasonable
to reconsider the future research questions and to compare them between the
different application fields.
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2 Research Challenges in Cloud Computing and Grids

Cloud computing is very successful in creating a layered architecture that sep-
arates the infrastructure access from applications. Infrastructure as a Service
can be utilized to run arbitrary applications. Similarly, applications can be bro-
ken down to several software services which run on such virtual infrastructures.
Grids target a similar space by combining resources from different providers in
a networked infrastructure. Grids also require substantial middleware efforts to
form the basis of core services. Thus, there is a significant overlap between Grid
and Cloud research challenges. The following is - a quite subjective - selection
of main research themes that we are currently facing.

2.1 Scalability

The HPC world has significant experience in exploiting large-scale systems. The
use of 1.000s of processors is challenging but well understood for many applica-
tion scenarios. However, we are still in the early days of many-core infrastruc-
tures; we will see a dramatic increase in processing cores in the next years. We
are already at the verge of deploying Exa-scale systems with millions of proces-
sor cores. Similarly we will also see federations of such systems in large-scale
distributed infrastructures. Currently, there is doubt as to whether science has
the right scalability answers. Existing approaches are not sufficient to cope with
this challenge. We will need new models for supporting future Cloud infrastruc-
tures. This is not only limited to application design and parallelization, but also
to aspects of infrastructure management. A multi-layered architecture will need
suitable solutions to cope with the size of such infrastructures.

2.2 Improve Efficiency

High-performance computing is heavily focused on optimization. Considerable
research effort has been expended to decrease response-time for relevant prob-
lems or to increase the throughput of infrastructures. This included optimization
for efficient utilization of machines. As such, efficiency was and remains a crucial
aspect for managing Grids and Clouds for the future. However, efficiency may
well extend to more areas that considered in the past. We already live in a time
in which energy consumption and Green IT became major aspects in running
IT infrastructures. Most Cloud computing models are based on a clear business
model and so costs in general will become a crucial aspect in optimizing service
executions. As such, our assumption is that Grid and Cloud management will
require novel solutions supporting multi-criteria optimization.

2.3 Reliability

Due to the size of future infrastructures and the dynamic composition of applica-
tions from many different services, we will increasingly face reliability questions.
This will require better understanding of software design and novel program-
ming paradigms for such infrastructures. Moreover, managing quality-of-service
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will play a major role to handle these large-scale software and infrastructure
landscapes. The multiple layers in large-scale distributed infrastructures will re-
quire a suitable abstraction of service quality. Models on creating redundancy,
fault-tolerance, and automatic adaption will be crucial. For instance, service-
level agreements are already an industry standard in ITIL-compliant IT man-
agement. However, there is not yet sufficient support for automatically managing
large infrastructures by SLAs. This will have to be taken into account in future
systems.

2.4 Reducing Complexity

Most aspects mentioned above relate to the overall challenge of mastering sys-
tem complexity. These systems are large-scale, very dynamic, and span multiple
administrative domains. Such systems will require a high degree of automatic
and autonomous management. Current approaches try to tackle this. however, it
seems necessary to completely revise the way that infrastructures are managed
with the transition from thousands to millions of cores or software components.
Our systems are still too complicated. As a consequence, many potential user
groups cannot fully exploit the technology. There is a clear need to lower the
entry barrier and to also target non-experts as users. This can only be achieved
by hiding the complexity and by providing easy-to-use tools, portals, or pro-
gramming environments. Suitable user support systems will be essential for the
broad proliferation of Clouds.

2.5 Data Management

The handling of data in distributed environments was one of the main questions
in Grid systems. Data Grids have been one of the first usage scenarios. After
several years of research in data management, the challenge seems larger than
ever. Managing huge amounts of data seems more of an issue than managing
processing power. As of now, we still have no clear understanding on how to
handle data on a global scale. Map-Reduce and Hadoop became common infras-
tructures for many usage scenarios. But this does not yet bridge from globally
distributed data repositories to individual data stores. There remains a signifi-
cant gap in efficient and automatic data management. Again, it seems necessary
to revisit this data challenge and to come up with fresh ideas for the future of
Clouds and Grids.

2.6 Trust and Security

Grid environments already have quite sophisticated security management, e.g.
through virtual organizations, certificate management, or support for secure
communication channels. But it is also obvious that many of these approaches
do not scale well for main stream adoption and future infrastructures. Clouds
currently have even less well established security methods than Grids. It is obvi-
ous that trust and security will remain high up on the scientific agenda. It needs
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to be easy-to-use, non-intrusive, but at the same time reach an even higher secu-
rity levels than before. Industrial adoption of cloud-based services may require
support for ISO/IEC 27001, SAS 70, or SOX compliance which is typically not
found in Grid infrastructures.

3 HPC and Cloud Computing

A significant part of the CoreGRID research was linked to HPC-related Grid
computing. Today Grids offer common production facilities in e-Science [4].
Many scientific communities rely on Grids for resource sharing and collaboration
in virtual organizations. It is not foreseeable that this will change in the near
future. On the contrary, we see that more scientific communities are likely to
require Grid infrastructures [2].

There is still a vivid discussion on the relation between Grid computing and
Cloud computing [7]. Our understanding is that Grids and Clouds and Clouds
are different. Both approaches address similar research areas but with different
use-cases in mind (HPC/e-Science vs. Commercial operations) and with different
technologies (common access to different infrastructure resources vs. virtualiza-
tion abstraction). Both environments successfully co-exist and will have their
share in their respective application realm.

However, there is no strong trend for Grids to be adopted as main stream
technology for the service economy beyond e-Science and HPC. Instead, Cloud
computing is taking this role. It changes the way applications are executed and
infrastructure are managed. Almost all large data centers have adopted virtu-
alization as a core technology to increase flexibility and resource utilization.
Similarly, we see more applications being run as cloud-based services. There is a
trend to adopt private public or hybrid clouds as an operational model for many
organizations.

HPC remains an important application area, but we see more differences in
the user communities requesting access to such resources. On one hand, we
have the top end of HPC resources in the renowned global super-computing
centers. Users of such resources are typically experts who are able to adapt
to the available HPC resources. A very good understanding of the underlying
hardware is required (e.g. on the specific cache structure, the interconnection
network, processor capabilities). This user group is able to extract very high
performance from such systems. On the other hand, we see many users who also
need access to HPC resources but who are unable or unwilling to adapt to the
specific hardware infrastructures. For those users it would be inefficient to access
the top end HPC super computers. Instead they need easy and fast access to
resources which are similar to the infrastructures which they know.

For HPC experts, the adoption of virtualization and cloud computing would be
counter-productive. Application performance would suffer, while top end super
computers would not be well utilized. However, for the second group clouds may
be a viable alternative. This group might not require the fine grain optimization
of their application to gain the final percent in performance. Instead, a fast and
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easy transition from existing computers to a larger resource set would suffice.
Here, a Cloud infrastructure might provide on demand the required compute
resources on which an arbitrary number of virtual machines with the necessary
applications can run. Thus, we might see that Cloud computing will also become
an operational model in the HPC eco-system in the low- and mid-range market.
These are typically local or regional data centers with HPC resources for their
user community. Similarly, we already see HPC services provided by commercial
providers such as Amazon [3].

Obviously, this will not apply to all applications: Software that is tightly cou-
pled with high communication demand will not be well suited for a Cloud. Today
cloud computing is usually agnostic of the underlying hardware and network
infrastructure. For HPC applications, we will need specific support to realize
acceptable network performance. This combination of Cloud with HPC is an
interesting scientific research subject.

4 Outlook

While CoreGRID gained significant international visibility in the Grid realm,
there is no similar impact on the Cloud community. However, many (not all)
of its members are very active in service-based computing and Clouds. This is
quite natural as the research challenges mentioned above are shared in Grids
and Clouds. Unfortunately, we see again a large fragmentation in the European
research landscape.

Several good attempts have been made to provide a joint research agenda,
e.g. by the NESSI European technology platform [1] or the S-Cube network of
excellence [5]. However, none of these serves as a pan-European Cloud research
center focusing on basic scientific research questions. These research challenges
mentioned above are major and need to be addressed. Due to the size of these
challenges, it is unlikely that single research groups or companies can solve those.
It will require again a joint effort by many scientists to overcome these obstacles.

CoreGRID can play an important role to support such efforts. However, this
will require a significant evolution in its research structure and membership.
Despite the overlap in research questions, the scientific community for cloud
research is not identical. It will require a gathering of experts from different
disciplines to achieve a similar successful network as CoreGRID constitutes for
Grids.

References

1. Nessi strategic research agenda, vol. 3 (May 2009)
2. Bird, I., Jones, B., Kee, K.F.: The organization and management of grid infras-

tructures. Computer 42, 36–46 (2009)
3. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific hpc applications:

Feasibility of running coupled atmosphere-ocean climate models on amazon’s ec2.
Cloud Computing and Its Applications (October 2008)



262 R. Yahyapour

4. Jones, B.: The use of grids for fusion applications in europe and future directions.
In: GMAC 2009: Proceedings of the 6th International Conference Industry Session
on Grids Meets Autonomic Computing, pp. 39–40. ACM, New York (2009)

5. Metzger, A., Pohl, K.: Towards the next generation of service-based systems: The
S-cube research framework. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 11–16. Springer, Heidelberg (2009)

6. Meyer, N., Talia, D., Yahyapour, R.: Grid and Services Evolution. Springer Pub-
lishing Company, Heidelberg (2008) (incorporated)

7. Schwiegelshohn, U., Badia, R.M., Bubak, M., Danelutto, M., Dustdar, S.,
Gagliardi, F., Geiger, A., Hluchy, L., Kranzlmüller, D., Laure, E., Priol, T., Reine-
feld, A., Resch, M., Reuter, A., Rienhoff, O., Rüter, T., Sloot, P., Talia, D.,
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Abstract. In recent years the concepts and implementations of modern
distributed computing infrastructures have been developing rapidly. The
cloud computing paradigm emerged shortly after the introduction of the
“invisible” grid concepts. In both cases however providing support for a
variety of autonomic properties is of primary importance for constructing
those large-scale complex systems of high quality. This paper gives an
overview of our reference smart cloud computing architecture which is
proposed as a solution to these problems. Some of the available directions
for future work are also discussed.

Keywords: Cloud computing, invisible grids, smarter planet.

1 Introduction

The main challenges for our planet are becoming grimly clear – the first decade
of the twenty-first century has been a series of wake-up calls [5], with a single
subject of focus, the reality of global integration:

– Climate change and global warming in particular;
– Population growth;
– Frozen credit markets and limited access to capital;
– Energy crisis including energy shortfalls and erratic commodity prices;
– Healthcare management and delivery around the world;
– Increasingly complex supply chains and empowered consumers.

Just being connected is not sufficient to address our challenges. There is a need
to make these global systems better. Energy systems – 170 billion kilowatt-
hours wasted each year by consumers due to insufficient power usage informa-
tion. Healthcare systems – that don’t link from diagnosis, to drug discovery, to
healthcare deliverers, to insurers, to employers while facing pandemic challenges
such as the outbreak of swine flu. Traffic systems – congested roadways cost us
billions of lost hours, billions litres of wasted petrol as well as a huge impact on
the air quality.

In order to start tackling the above challenges we need qualitatively new
large-scale computing infrastructures with smart properties. The emerging cloud
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computing paradigm looks quite suitable for this purpose but it needs significant
improvements towards providing full autonomy. This is the topic area of our
current research.

The rest of this paper is organised as follows. Section 2 gives a brief overview
of recent and related work including projects that introduced the “invisible” grid
concepts. Section 3 summarized the smarter planet vision. Section 4 introduces
our reference smart cloud architecture while Section 5 gives conluding remarks
and identifies directions for future work.

2 The Invisible Grid Concepts

We have been investigating the services design methodology in dynamically re-
configurable distributed platforms supporting flexible and fault-tolerant compo-
sition and execution of workflows. Our approach, objectives, methodology, and
existing tools and environments contribute directly to the long-term objectives
for developing ICT infrastructures in Europe [2,7]. Also, the increased interest
and motivation in the partnership related to services and service oriented ar-
chitectures, will address several problems and objectives recently stated in EU
research guidelines such as the NESSI Technology Platform.

The proposed research activity builds on results of, completes and comple-
ments current research frameworks, and in particular those related to:

– advanced Grid programming models and workflow management systems,
including initiatives from the US and other non-EU countries, those related
to the SCA initiative by IBM and all the results achieved within CoreGRID
and the “Invisible Grid” concepts in particular as well as the other recent EU-
funded projects in FP6 and FP7, including XtreemOS, GridCOMP, EDGeS,
Reservoir and S-Cube.

– autonomic management of non-functional features in distributed and parallel
programming, such as those from the GrADs project, or by IBM’s autonomic
computing initiative.

– complex (web) service orchestration and choreography, such as those related
to WSO with BLEP4WS or WSCI.

– cloud computing framework design, including the Google App engine.
– algorithmic skeletons, design patterns, and more in general distributed pro-

gramming abstractions, with communities active in Europe and in US.
– utility computing achievements, as well as theoretical and practical results

from the global computing community.

3 The Smarter Planet Vision

Based on the launch of IBM’s campaign in Nov 2008 the smarter planet vision
[8] has three elements:

First, our world is becoming instrumented. Sensors are being embedded across
entire ecosystems, supply-chains, healthcare networks, cities and even natural
systems like rivers.
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Second, our world is becoming interconnected. Systems and objects can now
“speak” to one another. Soon there will be a trillion connected and intelligent
things – cars, appliances, cameras, roadways, pipelines, pharmaceuticals, and
even livestock. The amount of information produced by the interaction of all
those things will be unprecedented.

Third, all things are becoming intelligent. Advanced analytics can turn the
mountains of data from these systems and objects into decisions and actions
that make the world smarter.

Today’s demands on a broad range of city resources, from road availability to
electrical power, effluent emission and water usage are being subjected to increas-
ing pressure as approximately 50% of the world’s population moves to within
200 kilometres of a coastline. Through the more efficient use of these resources,
it is possible to reduce these pressures. This efficiency is obtained through accu-
rate measurement of the lifecycle of these resources through data which can be
captured from today’s wide range of sensors as presented in the recent review of
key market revenue trends, technology snapshots, and growth perspectives [4].
By connecting this data to increasingly sophisticated mathematical models it
becomes possible to accurately monitor and manage the lifecycle of a resource.
The Instrumented Planet [3] is a notion which uses the idea of connecting data
from sensors to models to business processes ultimately enabling transparency
in the use and control of resources according to a specific objective.

Current capabilities of data acquisition, modelling and optimization are not
yet capable of managing the entire resource lifecycle without considerable cus-
tomized coding. Our experience shows that as cities look to manage a specific
resource, such as carbon emission or traffic or water, the need to simultaneously
manage these resources becomes increasingly more acute. The interdependence
of these resource systems becomes even clearer as the demand on the resource be-
comes more acute since every aspect of managing the resource lifecycle becomes
critical. It is thus important in situations where a particular resource is being
optimized, to provide a framework, enabling rapid service and mode integration
while identifying resource lifecycle dependencies.

Early engagements also show the importance of including humans in the re-
source management process, as models, particularly interacting models of this
type cannot be relied upon to make sensible decision under all conditions. These
issues notwithstanding, the use of an instrumented planet approach where data
are transformed into models which in turn allow cities to make decisions about
which roads to make available under specific conditions, or where to pump water
or to generate renewable energy is a rapidly evolving domain, which requires the
integration of ICT, mathematics and business processes.

The agenda for a Smarter Planet is a transformational agenda to create and
manage a new future for these instrumented, interconnected, and intelligent
systems that come together and to bring solutions that chart the course for real
time collaborative ecosystem management.
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4 A Reference Smart Cloud Architecture

The smart cloud will be the key enabler for the implementation of our smarter
planet vision contributing significant innovation in smart cloud services for sus-
tainable cities. We envision two types of sustainable services:

The first will address socio-environmental challenges like water management,
thermal energy management and traffic prediction, and create sustainable cities
with an integrated view of the disparate city services. The second will drive
economic sustainability for cities with the ability to develop and pilot industry
services for Telco, Retail and Media using in-market pilots to create greater
value.

4.1 Smart Cloud Infrastructure

We plan to introduce and implement the design methodology of a generic com-
ponent based smart cloud platform with a single software services infrastructure.
One of the main goals of his proposal is to focus on the research challenges for
rapid development and highly efficient execution of extreme-scale future Internet
applications suitable for deployment on cloud infrastructures.

The cloud infrastructural innovations necessary for achieving our objectives
will be driven by the requirements of the sustainable cities based on in-market use
cases. Following our application-driven approach, we propose to address a range
of technical challenges that span the spectrum of a smart cloud infrastructure,
a smart cloud data bus and a set of smart cloud services. We plan to give
special attention to the design of mobile cloud infrastructures. More specifically
our reference smart platform architecture includes the following major layers as
shown in Figure 1:

Non-functional properties

Use Cases – Application Domains

Smart Frameworks, Tools, and Environments

Sustainable Services

Electrical Power Grid and Natural Environment

Resources (compute, store, communicate)
(homogeneous or heterogeneous)

Programming
Model

Tuning Interface

Platform

Fig. 1. Smart Cloud Infrastructure Architecture
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– Natural environment (sensors);
– Electrical power grid and other industrial establishments (sensors);
– Smart computer communication networks;
– Information resources, infrastructures, and repositories;
– Sustainable services;
– Smart programming models, tools, and environments;
– Use cases in strategic application domains.

Three of the layers – Information resources, infrastructures, and repositories;
Sustainable services; and Smart programming models, tools, and environments
– constitute the Smart Cloud Platform. They are considered further below.

4.2 Information Resources, Infrastructures, and Repositories

Most of the data volume for sensors will not come from in situ devices, but
rather from remote sensors (e.g., active sensors like radar, etc. or passive sensors
like multi-spectral images, video systems, etc.). Of course, there will be far more
in situ devices, but they will have relatively small and simple data streams.
The challenge will be in handling of the diversity of data (modalities, sampling
strategies, data rates), properly registering them geospatially and temporally,
and how to fuse, analyze, visualize and disseminate them, etc.

We propose to address the challenge of data intensive smart cloud services
with the design and architecture of a smart cloud data bus that serves as a logical
single point of entry of the real time data streams generated and transmitted by
various sensors including mobile phones. The volume of data transmitted can be
of the order of million updates a day, given the smart services use cases where
the mobile phone is an example of a ubiquitous sensor. The cloud data bus will
receive the transmitted data and ensure intelligent routing and updates of the
stream with the persistent store associated with the corresponding service.

4.3 Sustainable Services

The smart cloud infrastructure will incorporate service and infrastructure man-
agement technologies that enable the delivery and management of IT services
in an automated fashion in a virtualized environment. This will build upon cur-
rently available technologies that provide a level of automated cloud management
and request-driven-provisioning, but will require further research innovation and
development in key areas to support the vision of the smart cloud for sustainable
cities.

Base Cloud Services. Currently available technology offerings provide core ser-
vices in the cloud related to provisioning and basic management of virtualized
infrastructure. Users are able to configure virtual servers and the accompany-
ing storage and connectivity, and deploy virtual images containing preconfigured
software stacks.
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Advanced Cloud Services. The core services above are available in current cloud
service offerings that offer a basic infrastructure service model. Realizing the
vision of a cloud platform to support Smart City services requires a number of
additional capabilities. Some of the key additional areas of required innovation
include support for workload elasticity, workload migration, data integration,
policy-based data sharing, and template-based service creation in the cloud.

Live Migration of Virtualized Services: many virtualization technologies sup-
port live migration of single virtual machines to balance load within a data
center. In the Smart Cloud Infrastructure, services may need to be moved for
a number of additional reasons including, for example, relocating services closer
to specific data sources or populations, or to overcome restrictions on data avail-
ability. Moreover, smart services are solutions that consist of multiple intercon-
nected modules which must be moved in concert and reconnected to data sources
or other services in the target location. Hence, there is a need for automation
to collect dependency information to ensure that all relevant services are relo-
cated (or accessible), plan the migration, and perform post-migration reconfigu-
ration. This migration must work within a data center and also across the wide
area where additional challenges arise in terms of network latency and network
reconfiguration.

Elastic Services: as data volumes or usage of services grows, there will be a
need to dynamically extend compute capacity based on workload utilization for a
resource pool. The trigger for the change may not be as simple as CPU utilization
thresholds – the challenges are to provide a way to use service-level metrics to
invoke changes, and also to determine the right way to extend the capacity. For
example, there may be scenarios when migration to alternate physical resources,
or replication of the service, are necessary.

Template-based Service Creation and Provisioning: Creation of cloud services
for Smart Cities will require collaboration between domain experts (e.g., water
management engineers, transportation planners) and IT experts who understand
the artefacts needed implement the service in the cloud. Without standard mod-
els and specifications which can be leveraged for a wide variety of services, the
creation process is ad-hoc, time-consuming, and expensive. The notion of service
templates or ”service appliances” should be developed to provide a framework
in which services can be defined, including their interfaces to ancillary services
and management components. These templates also enable rapid provisioning
by standardizing, for example, the specification of software images, configuration
automation scripts, and security parameters.

Service Catalogue Management: Smart service components are expected to be
developed for a variety of scenarios and by a number of different service creators
or providers. The Smart Service Catalogue brings these services together with a
unified way to present services to various user roles, and provides capability to
automatically update and manage the content as new services are added.
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4.4 Smart Programming Models, Tools and Environments

Recent advances in software service technology increasingly provide interopera-
ble frameworks and tools suitable for development of new applications/services
from existing ones, but using intelligent and automatic decision-making based
on a set of smart properties. Unfortunately, however, the level of abstraction
presented to the service developer is currently relatively low. New paradigms are
necessary to raise the level of abstraction presented to service users, particularly
in the following areas:

a) Advanced Programming Models for Services. The effort needed to com-
bine existing services to develop a new service/application, should be made
less onerous and less costly by providing new paradigms which offer the service
user/developer new and effective means to operate on/with services, means that
should be far from the low level, machine-oriented service mechanisms currently
used.

b) Smart Autonomic Management of Service Applications. Support for the
development of autonomic service managers to manage smart (non-functional)
properties should be provided through abstractions that may be instantiated,
generalized or specialized by service users to implement autonomic service man-
agement.

Both these areas require substantial investigation, and, where appropriate, reuse
of existing results in other research areas, together with the development of new,
service-oriented mechanisms, tools, programming models and frameworks. This
area includes a number of related research challenges and opportunities for future
development.

5 Conclusions

The results obtained within this research activity can be exploited directly in
the Smart Cloud Infrastructures scenario. In particular, when designing tools to
support Cloud programming, autonomic aspects must be given primary consider-
ation, due to the need to decouple programmer activities from actual knowledge
of the target architecture.

Within our generic smart cloud infrastructures model, future research ac-
tivities include development of composition support interoperable with other
service-oriented platforms including platforms conforming to the net-centric op-
erating systems approach. Further research work also focuses on the integration
with and the adoption of emerging standards [1]. This involves the develop-
ment of meta-data-based decision-taking support via high flexibility and dy-
namic properties integrated within the future SOA-oriented distributed systems.
The ultimate goal is the design methodology of fully integrated framework based
on both service-oriented and peer-to-peer-oriented approaches for rapid devel-
opment and execution of extreme-scale distributed applications.

Because of the early development stages of the cloud computing field, little
consensus about it has been reached so far. A particularly interesting activity
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is to expand and develop further support for both software development and
deployment in systems based on the cloud computing concepts [6]. Important
related opportunities stem from further developing and implementing the cloud
computing concepts of Infrastructure as a Service (IaaS) and Software as a Ser-
vice (SaaS).

Regarding IaaS, open questions are how compute and storage clouds can be
used as resources for grid applications. One such question is the introduction
of virtual machine configuration management to application deployment mecha-
nisms. Regarding SaaS, it is interesting and important to investigate if and how
hosted services can be used to execute code of grid use cases, possibly by a means
of dynamically composing applications from existing services with user-defined
ones, while also introducing meta-data support for service composition.

As a generalization of the research questions above, it remains to be inves-
tigated which use cases (with which properties) lend themselves for execution
on cloud computing infrastructures, or in other words: What is the suitability
for services computing of certain classes of applications? Therefore, the research
work on this topic will address directly the rapid development and execution
support of future Internet applications based on their suitability properties.
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Abstract. User communities have gathered around various Grid sys-
tems forming separate islands that represent borders they cannot cross.
As these communities are growing and demanding more and more com-
putational power, uniting these islands draws more attention in Grid
research and development. This problem is called the Grid Interoper-
ability problem. This issue may be tackled at different levels in the Grid
middleware, this paper targets the level of Grid resource management
also called as Grid brokering. This paper introduces a meta-brokering
approach that means a higher level resource management by enabling
automatic and simultaneous utilization of various Grid brokers manag-
ing resources of different Grid systems. Desktop Grids are using not only
different interfaces, but also different technologies. Here we also intro-
duce a novel solution to access Desktop Grids through specific brokers
that can be managed by our Meta-Broker. In this way with our multi-
level brokering solution we can unify several Service and Desktop Grids
without modifying their implementation, policies or interfaces, providing
the greatest computational power possible for all Grid user communities.

Keywords: Grid Interoperability, Grid Interoperation, Grid Resource
Management, Grid Meta-brokering.

1 Introduction

E-Science infrastructures play an important role in enabling large-scale scientific
research. In order to establish such e-infrastructures, various Grid systems have
been created and run as a service for the scientific community. Originally, the
aim of Grid systems was that anyone (called donors) could offer resources for the
Grid, and anyone (called users) could claim resources dynamically, according to
their actual needs, in order to solve a computational or data intensive task. This
twofold aim has however not fully been achieved, and today we can observe two
different trends in the development of Grid systems: Service Grids and Desktop
Grids. In Service Grids, computational resources are offered as Grid services
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube) and from EDGI (RI-261556).

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 271–278, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



272 A. Kertész, Z. Farkas, and P. Kacsuk

that can be accessed by a large number of users. A resource can become part of
the Grid by installing a predefined software set, or middleware. The middleware
is, however, so complex that it often requires extensive effort to maintain. On
the other hand, Desktop Grids are commonly known as volunteer computing
systems, because they often rely upon the general public to donate compute
resources, or spare cycles. Unlike Service Grids, which are based on complex ar-
chitectures, volunteer computing has a simple architecture and has demonstrated
the ability to integrate dispersed, heterogeneous computing resources with ease,
successfully scavenging cycles from tens of thousands of idle desktop comput-
ers. The Grid research community considers Desktop Grids only as particular
and limited forms of e-infrastructures, because they cannot work as services
nor be used by anyone who has not already setup their projects to function in
this environment. Additionally, unlike most Service Grids, which have recipro-
cal agreements for resource utilization among partners, participants in Desktop
Grid systems, cannot use the system for their own goals. Until now, these two
kinds of Grid systems have been completely separated, hence there has not been
a mechanism to exploit their advantageous, individual features in a unified envi-
ronment. However, with the objective to support new scientific communities who
need extremely large numbers of resources, the solution could be to interconnect
these two kinds of Grid systems into an integrated Service Grid – Desktop Grid
infrastructure. User communities have gathered around various Grid systems
(including Service and Desktop Grids) forming separate islands that represent
borders they cannot cross. As these communities are growing and demanding
more and more computational power, uniting these islands draws more atten-
tion in Grid research and development, which is called the Grid Interoperability
problem [8]. Grid Resource Management tools evolved from manual discovery
and task submission to sophisticated brokering solutions. To ease the simulta-
neous utilization of different Service Grids, researchers have started to revise
current brokering solutions by extending existing resource brokers with multi-
ple middleware support. In this paper we introduce a meta-brokering approach,
which acts as a higher level brokering service by enabling automatic and simul-
taneous utilization of various Grid brokers managing resources of different Grid
systems. Since Desktop Grids are using different technologies and lacking such
brokers Service Grids have, here we introduce a novel solution to access Desktop
Grids through specific gateways that act as service brokers and can be managed
by our meta-brokering solution. In this way we can unify several Service and
Desktop Grids without modifying their implementation, policies or interfaces,
providing the greatest computational power possible for all user communities.

The rest of the paper is organized as follows. In Section 2 we present the
related work for interoperation research with high-level brokering directions. In
Section 3, we present a meta-brokering solution for service Grids, and in Section
4, we show how the Desktop Grids can be interfaced to meta-brokering with a
novel service called 3G Bridge. In Section 5 we describe the multi-level brokering
solution for Grid interoperation.
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2 Related Work

The problem of Grid interoperability and interoperation is a crucial issue to
solve [8]. Meta-brokering approaches seek for interoperable solutions at the level
of Grid resource management by enabling a higher level brokering solution that
schedules user jobs among various Grid brokers/domains. Some of these meta-
brokering solutions, such as the meta-scheduling project in LA Grid [9], the
delegated matchmaking with Koala [4] and decentralized scheduling with Grid-
way [3], aim at enabling communication among existing resource brokers in a
sense that different domains are being examined as a whole, but they rather dele-
gate resource information among domains, broker instances or gateways through
their own, implementation-dependent interfaces. Usually the local domain has
preference, and when a job is forwarded, the result should be transferred back
to the initial instance. On the other hand, the advantage of our proposed meta-
brokering concept is that it does not require any modification of the existing
Grid resource managers, since it utilizes and delegates broker information by
reaching them through their current interfaces.

Regarding Grid interoperability solutions achieved so far, they are based on
short-term solutions. The paper in [8] focuses on different Grid components (like
job management, data management, information systems), and urges the usage
of standards-based solutions. The interoperability solution for UNICORE and
Globus described in [7] uses a translation mechanism to allow the execution of
jobs submitted to UNICORE on Globus. In paper [2], authors show two so-
lutions for using Condor resources in an OGSA-based infrastructure. The first
option hides the details of the Condor system: job submission, job execution
management and resource information providers are offered for the OGSA Grid
to hide Condor details. On the other hand, the second option embeds OGSA
within the Condor framework in order to provide controlled access to the Con-
dor resources. These solutions target low-level interoperability of service Grids.
Interoperability of service and Desktop Grids has been solved within the EDGeS
[1] project with the help of the Generic Grid-Grid (3G) Bridge technology [10].
The architecture of 3G Bridge has been proven to be generic enough to easily
solve interoperability of a number of service (gLite, ARC, Unicore) and Desktop
(BOINC, XtremWeb, OurGrid) Grid systems. In this paper we introduce an ex-
tension of the 3G Bridge that allows us using it as part of our meta-brokering
approach, that helps to solve Grid interoperability at higher levels.

3 Meta-Brokering for Service Grids

In order to access resources of different Grids simultaneously, we use a meta-
brokering approach. The Grid Meta-Broker Service (GMBS) [6] is a higher level
tool that matches resource brokers to user requests. The system is implemented
as a web-service (WS), which is independent from middleware-specific compo-
nents. In the following we describe the role of the components (depicted in Figure
1) and their interaction. The Translator components of GMBS are responsible
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for translating the resource specification defined by the user to the language of
the appropriate resource broker that the meta-broker selects to invoke for a given
job. We also use an extendable Broker Property Description Language (BPDL)
[6] to express metadata about brokers. The Information Collector (IC) compo-
nent of the GMBS stores the data of the reachable brokers and historical data of
the previous submissions. During broker utilization the successful submissions
and failures are tracked, and regarding these events a rank is modified for each
special attribute in the BPDL of the appropriate broker. In this way, the BPDL
documents represent and store the dynamic states of the brokers. When a large
number of jobs with similar requirements are sent to GMBS, the so-called best
effort matchmaking (choosing the less loaded one) may flood a broker and its
utilized resources. To cope with this problem, there is an IS Agent (IS stands for
Information System) service reporting to IC, which regularly checks and stores
the load of the Grids of each connected broker.

The Invoker components are used to contact the brokers. Therefore the Invok-
ers are broker-specific components: they communicate with the interconnected
brokers, calling them with job requests and collecting the results. The user has
to upload the job, Grid certificate proxies and input files along with the job
description (JSDL) to the GMBS, and the Matchmaker component tries to find
a proper broker for the request. If it could not find a broker that would be able
to fulfil the user requirements, the request is discarded, otherwise the JSDL is
translated to the language of the selected broker. In the JSDL extension the
middleware constraint fields can be used to specify certificate proxy names for
Grids/VOs. This information is used by the Invokers to select the valid certificate
proxy from the uploaded files for the actual job submission. Then the respon-
sible Invoker takes care of transferring the necessary files to the selected Grid
environment. After job submission, it stages back the output files and upgrades
the historical data stored in the Information Collector with the log of the uti-
lized broker. The Core component of the service is responsible for managing the
communication (information and data exchange) among the other components.
Generally the following operations can be done through this interface: adding
a new broker with BPDL, querying the available brokers and the name of the
tracked Grids/VOs, adding new Information Systems to be tracked, submitting
jobs and signaling submitted job results.

4 3G Bridge: A Service Broker for Desktop Grids

The Generic Grid-Grid Bridge (3G Bridge) has been created within the scope
of the EDGeS project to solve Grid interoperability. The aim of 3G Bridge is to
offer a generic implementation for a gateway service that allows the execution
of jobs within different Grid middleware using Grid plugins. On the other hand,
it offers a very simple web service interface for submitting jobs into its internal
job database. An overview of the 3G Bridge architecture can be seen in Figure
1. The central component of the 3G Bridge is the 3G Bridge Job Database.
This database is responsible for storing data of jobs and plugins. The design is
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Fig. 1. The Grid Meta-Broker Service for Service Grids (on the left) and 3G Bridge
for Desktop Grids (on the right)

very simple, for every job the following minimal set of attributes is kept track
of: the internal identifier of the job, the name of the destination plugin, the
name of the executable, the status of the job, the Grid identifier of the job, the
command-line arguments of the job, the timestamp when the job has been added
to the database, the list of input files and their locations and finally the list of
output files (and their locations given that they have been produced). Based on
this information, the Queue Manager interacts with the Grid Plugins through
the generic Grid Handler Interface. The Grid Plugins have to implement some
functions of the interface in order to create a working plugin: submit a set of jobs,
update the status of all jobs belonging to the plugin, and poll the status of one
job. These functions are responsible for managing jobs assigned to the given Grid
plugin. Using this design we managed to create Grid plugins for gLite, BOINC,
XtremWeb, OurGrid and BES-compatible resources. Clients of the 3G Bridge
have two possibilities to submit new jobs to a new plugin: the WSSubmitter
Interface and the Job Handler Interface. The WSSubmitter interface is a web
service-based interface, offering very simple operations: submit – to send a set
of jobs to 3G Bridge, the response of the submission operation is the list of 3G
Bridge job identifiers assigned to the jobs; getStatus – to query the status of
jobs from the 3G Bridge, the response is the sequence of job statuses; delete –
to cancel jobs; getOutput – to get the list of names and URLs of output files
produced by jobs; getFinished – to get the list of job identifiers assigned to a
Grid plugin that have finished; and finally getVersion – to get the version of the
3G Bridge service.

The Download Manager and HTTPD components have responsible for man-
aging input and output files of jobs. The Download Manager is responsible for
fetching input files of submitted jobs onto the 3G Bridge server machine. The
HTTP component is a simple web server that makes 3G Bridge clients able to
fetch output files produced by 3G Bridge jobs. All this information makes 3G
Bridge usable as a Grid gateway, but the information needed for brokering is
not propagated yet. In order to make 3G Bridge usable for our meta-brokering
solution, the WSMonitor Interface has been created. This is a web service in-
terface offering basic information about Grid plugins: getRunningJobs returns
the number of jobs in the running status within the Grid belonging to a Grid
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plugin, getWaitingJobs returns the number of jobs in the waiting status within
the Grid belonging to a Grid plugin, and getCPUCount returns the total number
of usable CPUs within the Grid belonging to the Grid plugin. It is important
to emphasise that the provided information does not reflect the status of the
3G Bridge Job Database, but the status of the Grid connected to the given plu-
gin. This difference is clearly indicated in Figure 1. With the above in mind,
we can state that a 3G Bridge service can offer every necessary interface and
information so that the GMBS can schedule jobs onto it. In case of BOINC,
the above information is calculated based on the BOINC project’s database the
following way: the number of running jobs comes from the result table of the
BOINC database. The number of waiting jobs is determined in the same way,
the difference is the value the query looks for. The CPU count is collected from
the host table of the BOINC database. The query summarizes the number of
CPUs of the hosts, whose last connection was within the last 24 hours, thus the
host is assumed to be active.

5 Meta-brokering among Service and Desktop Grids

In order to bring Desktop Grid resources to our meta-brokering environment
presented in Section 3, we use the 3G Bridge described in Section 4. The GMBS
sees 3G Bridges as service brokers, therefore we have created a new Invoker
that uses the WSSubmitter web-service interface of the 3G Bridge (described
by a WSDL). The IS Agent of GMBS is also interfaced to the WSMonitor web-
service interface of the 3G Bridge. Through this interface the GMBS can be
informed about the number of running and waiting jobs, and also about the
number of available CPUs in the actual Desktop Grid. Exactly these attributes
are used by the IS Agent to store the actual load information in the BPDL
descriptions of the utilized brokers by GMBS. The Translator component has
also been extended to convert the JDSL description of the job provided by the
user to the XML description needed by the 3G Bridge (which contains the name
of the executable, arguments, possible input/output files and the name of the
target Desktop Grid).

Regarding security issues, in Section 3 we have stated that the Invokers use
the attached proxies named in the JSDL extension of the submitted job for au-
thentication by the selected service broker and other related Grid services. Ad-
ditionally, the GMBS makes use of the EDGeS Application Repository [1]: this
service contains application descriptions. For each application, the hash of the
executable and supporting Desktop Grid resources are stored within the repos-
itory. Eg. in BOINC, for a given application we can collect the set of BOINC
projects that support the application based on its hash. With the EDGeS Ap-
plication Repository the Meta-Broker service can have an overview of which
application is supported by which BOINC project, and selects a 3G Bridge ser-
vice during scheduling if and only if the given application is supported by the
given BOINC project. To enable this validation, the IS Agent has been extended
to periodically fetch the contents of the Application Repository as there could be
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updates, and stores the MD5 hashes of the available applications in the BPDL
of the appropriate 3G Bridge. The validation is done during matchmaking: the
MD5 hash of the application to be scheduled is compared to the ones found
in the repository and stored in the BPDLs. If the validation fails for a given
3G Bridge (which means that the job is not supported by the Desktop Grid
reachable by the 3G Bridge), the 3G Bridge is filtered out from the candidate
brokers.

In general, the matchmaking process of GMBS remains the same: the list
of available brokers are filtered according to the special requirements of the
submitted job, then the actual load and performance data stored in the BPDLs
of the brokers (including 3G Bridges) are used to select the best candidate.
In this way at the meta-level the GMBS schedules user jobs among brokers of
different Grids, then the invoked broker schedules the job among resources in its
Grid environment. The extended meta-brokering solution is depicted in Figure
2, which serves as an interoperable brokering service among both Service and
Desktop Grids.

Fig. 2. Interoperation between Service and Desktop Grids with meta-brokering

6 Conclusions

Grid interoperability and interoperation among different Grid systems gets more
and more attention due to the increasing number of users and Grid applications.
Though some low level solutions for interconnecting different middleware sys-
tems have already appeared, a higher level brokering solution was still missing.
In this paper we have shown how the Grid Meta-Broker Service can serve as
an interoperable service to interconnect several Service and Desktop Grids. The
design and the architecture of the GMBS enable a multi-level interoperable bro-
kering by utilizing existing resource brokers of different Grid systems. It gathers
and utilizes meta-data about existing widely used brokers from various Service
Grid systems, and communicates with 3G Bridge instances to reach resources of
Desktop Grid systems in a brokered way. The novel advantage of our extended
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meta-brokering concept is that it does not require any modification of the exist-
ing Grid systems, since it gathers and delegates broker-related information and
utilizes them through their current interfaces. In this way the presented multi-
level brokering solution can unify several Service and Desktop Grids without
modifying their implementation, policies or interfaces, providing the greatest
computational power possible for all Grid user communities. Several ideas of
the described meta-brokering and the 3G Bridge solution have built into the P-
GRADE and WS-PGRADE portal that provide workflow level interoperability
among various gLite, GT2, GT4 and BOINC Grids [5]. Our future work aims
at investigating different scheduling policies for the coordinated use of these
heterogeneous resources, and extending our meta-brokering solution to Cloud
infrastructures.
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7 Gridcore AB, Göteborg, 411 33, Sweden
miriam.gozalo@gridcore.se

Abstract. Current praxis of software licensing has been identified as
major obstacle for Grid computing a couple of years ago already. Recent
surveys of Clouds indicate that the same holds true for Cloud comput-
ing. As a consequence, using commercial applications that require access
to a license server for authorisation at run-time has been quite limited
until recently in distributed computing environments. Due to the manda-
tory centralised control of license usage during application run-time tra-
ditional software licensing practices are not suitable. In this paper we
present a novel approach for managing software licenses as web service
resources in distributed service oriented environments. Licenses become
mobile objects, which may move to the environment where required to
authorise the execution of a license protected application. The SmartLM
solution, which has been recently implemented as a prototype decou-
ples authorisation for license usage from authorisation for application
execution.

1 Introduction

So far, commercial software is rarely used in Grids due to the limitations both
with respect to the license management technology and the missing business
models of the independent software vendors (ISV) for using their software in the
Grid. Only recently MathWorks has provided a technical solution (and a business
model) allowing to use their MATLAB suite in the EGEE Grid environment [5].
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However, this is a bilateral agreement only and has so far no implications for us-
ing MathWorks software in other Grids. The license management technology for
software licenses is still based on the model of local computing centres providing
both resources for computation and the software used for simulations together
with the required licenses locally. Thus, these licenses are provided on the basis
of named users, IP-addresses, or as a site license for the administrative domain of
an organisation. Executing software in a distributed service oriented infrastruc-
ture is impossible using resources that are spread across different administrative
domains, that do not host the application’s license server. The licenses usually
are bound to hardware within the domain of the user and do not allow access
from outside, e.g. due to firewalls.

The increasing role Grid environments and virtualized infrastructures play
in resource provisioning requires a solution. Traditional licensing practices are
under pressure from a variety of alternative options (Software as a Service,
open source, low-cost development environments, and the increasing software
piracy [6] etc.) and are tightening vendors profit margins, pushing down licens-
ing costs and giving more negotiating power to users. On the one hand, software
manufacturers need to change the way licensing works and use flexible and non-
hardware based licensing solutions that better fit into a virtual environment (one
of the top ten obstacles for Cloud Computing mentioned in [1]). End users want
fairness and flexibility and software vendors do not vote for a reduction in rev-
enue. Hence, the achievement of a win-win situation between software vendors
and software users is the main requirement for a mutually advantageous change.
The major part of the licensing technology presented in this paper has been de-
signed, implemented and evaluated with three industrial applications (ANSYS
CFX, INTES PERMAS and LMS OPTIMUS) in the SmartLM project [9].

The remainder of the paper is organised as follows. Section 2 presents related
work. Section 3 addresses the new business models (based on new license models)
and the technology. Section 4 presents the SmartLM approaches for security.
Validation and enforcement of virtualised licenses are described in Section 5.
The paper concludes with a summary and plans for future research.

2 Related Work

To our best knowledge little research has been focusing on licensing technology
since the new IT infrastructure paradigms Grids, Clouds and SOA became se-
rious enhancements of traditional IT infrastructures. Only recently when these
new paradigms gained ground in productive environments where e.g. more com-
mercial simulation codes are used than in the e-Science domain license technology
came to the fore. In [4] the authors give an overview on current licensing tech-
nology and models and describe two approaches developed in European projects
to overcome the limitations. One of the presented approaches breaks with the
current technology and is currently implemented in the SmartLM project while
the second approach circumvents some of the limitations imposed by the de-
facto standard. The authors of [2] describe another approach, which is similar
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to SmartLM but lacks the integrated accounting and billing service and still
requires network connectivity with the ISV when a user requests a license from
the local license management server. As we will explain in the following sections
SmartLM has taken a holistic approach for all services around license manage-
ment while effectively making dispensable the requirement for permanent net-
work connectivity between the license management service, the execution site of
the application during runtime or to the ISV when requesting a license. In the
European project BEinGRID another approach was developed which allows the
use of existing licenses in Grid environments through tunneling of the communi-
cation of the license server to the application [7]. While technically feasible this
approach raises a number of legal issues since many license contracts limit the
use of a software license outside a company or outside a certain radius from the
company.

3 Mobile Licenses

3.1 New Business Models

Through close collaboration with stakeholders - software vendors, application
providers, end users - we identified some real licensing gaps and have developed
new models that would help fill them in.

’Featuring the ASP’ - In this model we find the Application Service Provider
(ASP) offering various solutions to various problems. We highlight the following
cases:

1. Customer license hosting: the customer owns a license for a specific applica-
tion and deploys the license in the ASP’s environment. This case also allows
for aggregation of licenses.

2. Embedded license: a dependant software vendor commercialises its templates
through the ASP. This case implies a license dependency to be solved, ac-
counted and billed by the ASP.

3. License redirection: a third party (external consultant) owns a license and
deploys the full license or part of it (sub-license) to carry out a specific
project for the customer. Proper accounting is needed.

4. License reselling: the ASP resells the ISV’s licenses for third-party use. ISVs
may prefer to minimise the number of contacts they sell directly to and even-
tually minimise the risk for non-payments. Also for small software vendors,
the ASP makes the access to market easier.

License extension - The license extension model allows end users to extend
their licenses in both their Local Area Network (LAN) and distributed envi-
ronments on-demand, e.g. for workload peaks. The license server manages the
process of the extension of licenses, e.g. in terms of accounting and license admin-
istration. License aggregation - Most contracts between ISVs and end users
restrict the license usage to LAN. The license aggregation model allows the use
of licenses that belong to different sites and brings them together to form a single
license token. These licenses can come from either the ISV or the ASP.
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3.2 Architecture

The SmartLM License Service follows a layered architecture comprising 6 layers:
Coallocation, Authentication, Administration, Management, Business, and Per-
sistency. Figure 1 depicts the layered architecture of SmartLM highlighting the
major communication paths between the components. The following paragraphs
describe the different layers, the components inside a layer, and their interaction
with other components. Finally, since security affects all layers, the fundamentals
of the orthogonal SmartLM security are described.
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Fig. 1. Architecture of the license service

3.3 License Service

The license service is capable to manage all licenses that support the new li-
censing mechanism owned by a company. It provides a single point for license
management and an easy and comfortable access to the entire license information
either through a graphical user interface or the command-line. For redundancy
multiple synchronised instances of the service may be hosted on different servers.
When a company buys a license from a software vendor, the license is added to
the license service using the License Administration Service (LAS). This is the
main contact point for the ISV and the license service administrators in general.
It acts as a proxy to forward the requests to the various internal components
of the license service not accessible for external actors like ISVs or users and to
report back the responses. In particular it interacts with the License Manage-
ment Service, the License Information Service (LIS) and the Policy Management
Service. The actions performed through the LAS interface are related to license,
authorisation and policy management. The License Management Service may
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then fork software license tokens from this license once the user’s request for a
license has been accepted. Policies of the ISV and local policies are used by the
policy management service to authorise the user’s request.

The License Information Service allows both users and administrators to re-
trieve information on installed ISV licenses, licenses available or in use. When
a user requests a license for an application or a feature of an application from
the license service, the terms of license usage are negotiated between the user
and the service through the SLA and negotiation service and then embedded in
a Service Level Agreement document following the WS-Agreement [3] specifica-
tion. The negotiation is based on templates specific to the application. The cost
resulting from license request is calculated beforehand and becomes part of the
SLA. This allows to easily check the license cost against budget constraints for
users or user groups implemented in UVOS [10]. After creating the token the
information relevant for accounting and billing is passed to the Accounting and
Billing Service (ABS) through the usage record service in form of a usage record.

3.4 SLAs and Negotiation

The SLA and Negotiation service provides license mechanisms based on WS-
Agreement/WS-Agreement Negotiation [8]. The Service is responsible of creating
Service Level Agreements as a result of a user request for a license addressed
to the license server. The created SLA describes all specific conditions of the
application usage the user is entitled to, e.g. application id, duration, number
of processors and guarantees like the maximum cost, etc. In order to implement
WS-Agreement and WS-Agreement Negotiation, the SmartLM component SLA
and Negotiation Service uses the WS-Agreement Framework for Java (WSAG4J)
[11]. WSAG4J implements the WS-Agreement protocol and also the negotiation
extension.

4 Security

One of the strict requirements of the SmartLM project was to enable licensing
without constant connection to the network and thus without constant con-
nection to the license server hosted by the user’s home organisation. This was
achieved by introducing signed documents conveying the information in an un-
alterable manner, such that their contents can be verified at the appropriate
locations, i. e. in the application. The documents we introduced were licenses,
authorisations, and license tokens. Figure 2 shows the flow of documents when
using the SmartLM license mechanism. After a license has been requested from
the ISV for a particular license server, a license is sent to the license server and
it is ensured that a valid authorisation is available. Authorisations express the
trust of the ISV in the license server. Tokens are needed by an application to
run and verify its execution according to license restrictions. They contain in-
formation about features of the application which may be used, or the number
of threads that can be run in accordance with the license.
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Fig. 2. License workflow

4.1 Licenses

Licenses are issued by ISVs to be used by a certain license server. The association
with a particular server is ensured by enclosing the server’s certificate in the
signed part of the license. The server software will only accept licenses that have
been specifically issued to the license server it is running in. If the license has
been issued to a different license server, it will refuse to use the license. Licenses
contain features, which are reserved by the license server when a token that uses
these features is created.

4.2 Authorisation

An authorisation is a signed document expressing the trust of the ISV in a
particular license server. Ingredients to this document are the ISV, who expresses
the trust, the certificate of the license server, and a duration for which this
authorisation is valid. We have decoupled authorisations from licenses for several
reasons. First of all, one means for the application to validate the authorised
issuance of tokens for the application would be to see the entire license document,
as it was signed by the ISV. However, the license may contain information about
the owner that may not be intended for the general public. E.g., if a large ASP
buys licenses by the hundreds or thousands and receives these in one license
document, then a user may gain insight into the capabilities and cost model of
the provider. Secondly, the lifetime of a license can be much longer than the
ISV can trust in the license server or its owner. Thus, authorisations are short
lived compared to licenses. Lastly, tokens can have multiple parent licenses,
which would all have to be included if the verification would be done using the
server. It is thus easier to include a single authorisation, if the parent licenses
are located in the same license server.

4.3 License Tokens

License tokens are issued by license servers and can be seen as children of the
licenses available in the server. It is the license tokens that are necessary for
a protected application to run. Multiple licenses can be parents of one token.
The license server thus aggregates the features available from all licenses of the
same type, which are available to it. Features need to be scheduled in order to
ensure that the total of checked out features in all child tokens never exceeds
the total of available features in all parent licenses. A license token is bound
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to a job’s input by including digests of the input files in the token. As these
digest values are signed by the license server, the token can only be used for
a specific set of input files. Thus, a user gains no additional value from using
the token multiple times. The digest values are contained in the InputHashes
element of the license token and identified by file name. Some vendors used their
own license enforcement mechanisms up to now. In order to foster the uptake
of the SmartLM mechanism and to gain vendors’ trust in the solution, a special
VendorKey can be embedded into the token. It is computed given the token
constraints and would in most cases just be a different encoding of these, e. g.
using the vendor’s legacy encoding. The license server supports vendor or even
application specific plugins responsible for creating these VendorKeys. Thus, it
is up to the vendor to provide such plugins for the license servers that use their
tokens.

5 License Enforcement

The enforcement of the license constraints during the runtime of the application
is the crucial point. This is the point where the above mentioned documents are
validated and their contents evaluated. Remember, the application only receives
the license token and the authorisation. For ease of use and most of all trans-
mission of the token, the authorisation is embedded in the license token. The
validation process of the two documents can be separated into three steps.

The first step is the validation of the documents’ integrity. This is done by
validating their respective digital signatures. If any of the documents fails to
validate against its signature, then the application will not be executed. Also,
the issuer of the authorisation must be the correct ISV, i. e. the vendor of the
application. And lastly, the subject of the authorisation must be the license
server which issued the token. If these conditions are met, then the license token
can be considered trustworthy by the application and it can proceed with the
evaluation of the token’s contents. In the second step, some general restrictions
of the token are checked. This mainly concerns the period in time, during which
the token is valid. Finally, once all these generic constraints have been checked,
through its SmartLM API the application can query the token for the features
which need to be available for the application to execute. Also, whenever an
input file is accessed for reading by the application, the digest value of the file
needs to be compared with the one mentioned in the token. If the digest value
does not match, then the token is invalid.

6 Conclusions and Future Work

We discussed a new approach for software licensing in distributed computing
infrastructures based on Service Level Agreements presenting the basics of the
SmartLM technology, new business models considering the interest of the soft-
ware vendors, the users and the application service providers. Managing soft-
ware licenses as Web service resources allows to achieve the flexibility required
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by distributed environments such as Grid or Clouds. The project is currently
focussing on three crucial aspects of the licensing process: the re-negotiation of
the Service Level Agreements [8], the accounting based on the actual usage of
the resources and additional security and trustability of the license tokens. More-
over, additional enhancements like (i) the introduction of trusted clocks limiting
the possibilities of cheating by manipulating time and date of the execution en-
vironment and (ii) the realisation of a trusted entity are under investigation and
will become part of the system in near future.
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Abstract. Currently, most workflow management systems (WfMS) in
Grid environments provide push-oriented task distribution strategies,
where tasks are directly bound to suitable resources. In those scenar-
ios the dedicated resources execute the submitted tasks according to the
request of a WfMS or sometimes by support of a Meta-Scheduling ser-
vice. This approach has specific problems, especially because of various
conditions and constrains that have to be taken into account like local
policies or the sites’ autonomy. To deal with such issues, this paper takes
a closer look to the task distribution strategies. The established Grid
WfMSs essentially support control-flow and data perspectives. However,
they neglect the resource perspective. This paper exposes the advantages
to deal with this perspective and demonstrates its feasability by a proto-
type implementation that integrates the missing resource patterns into
UNICORE.

Keywords: Grid WfMS, Resource Pattern, UNICORE, jBPM, Human
Tasks.

1 Introduction

Current e-Science infrastructures provide support for complex scientific processes
that consist of orchestrated resources such as pure computational devices, data
repositories, scientific instruments or applications. Grid environments are the
common technical approachused to build these e-Science infrastructures on a mid-
dleware platform by a proper service layer. In order to support the orchestration
of scientific tasks, many Grid middleware platforms offer a WfMS either as an in-
tegrative part or as an enactment service build on top of the middleware. So far, all
popular Grid WfMSs use an approach that follows push patterns [4]. Here, a soft-
ware agent, e.g. the workflow engine, actively exercises control about the progress
of a workflow by pushing the individual tasks to selected resources according to
the dependencies, provided by the workflow description. Consequently, in either
case it is the WfMS that takes the initiative and causes the distribution process of
newly created workflow tasks to occur. The alternative solution would be a pull-
based actor-driven approach, where the commitment to undertake a specific task
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is initiated by the resource itself rather than the system. But the implementation
of the associated pull patterns are not considered in today’s Grid WfMSs that
all prefer a system-initiated resource allocation [4]. In fact, all Grid WfMSs and
their corresponding description languages focus on control-flow and data issues
when mapping scientific processes onto workflows. In such data-centric systems
resources are just regarded as dedicated machines that execute software as in-
structed. Within this paper the term ”actor” is used to describe the entity that is
actually responsible for the execution of a task. This means, e.g. an actor can be
a computing Grid resource that executes a job according to a specific task. The
proposal of this paper is to take a closer look on the resource perspective and espe-
cially the work distribution strategies. The participating resources who actually
are the actors of a workflow should not be treated as passive automata with lit-
tle influence to the assigned tasks and the way work is distributed. The modeling
of the acting resources should be considered in a proper way and the connection
between the resources and WfMSs is not just unidirectional. In the following para-
graphs the focus is on the pros and cons of push- and pull-based work distribution
approaches. Furthermore, this paper presents a possible prototype implementa-
tion of the pull-based approach on the example of the well known jBPM WfMS
[11] and the UNICORE Grid middleware [7].

2 Related Works

This paper presents a novel concept for WfMSs in Grid environments. All known
Grid WfMS approaches follow the push pattern. Desktop Grids, such as BOINC,
EDGeS or pilot jobs in the DIRAC Pilot framework [10][9] can be viewed as inter-
mediate approaches that emulate a pull concept. The presented task repository
can be realized by using mechanism such as UNICORE XML-spaces [6], where
computational resources request for jobs from a shared job queue implemented
as tuple space. However, the space is targeted towards high-throughput com-
puting and that’s why it is a thin application without any logical layer that is
required for our application domain. Clearly, the work among the emerging WS-
HumanTask [12] standard is related to the presented concept. There, a model
is described that enables the integration of human beings in service-oriented
applications like BPEL processes. In the proposed architecture the WfMS is
separated from a task processor, which is a standalone component, exposed as
a service to manage tasks’ lifecycles. But in contrast to the task processor of
WS-HumanTask the task repository should manage tasks for any kind of actors.

3 Task Distribution to Resources

As indicated in the introduction the currently used Grid WfMSs primarily focus
on the control-flow and data perspectives, while neglecting the resource per-
spective of the well-known workflow patterns. From a resource’s perspective the
manner in which tasks are advertised and ultimately bound for execution is of
particular importance. In Figure 1 a part of the state transition diagram for



Actor-Driven Workflow Execution in Distributed Environments 289

offered to a single
resource

created

offered to multiple
resources

allocated to a single
resource

S:offer_s

S:offer_m

R:allocate_s

R:allocate_m

S:allocate

S:create

Push-Pattern Pull-Pattern offered to a single
resource

created

offered to multiple
resources

allocated to a single
resource

S:offer_s

S:offer_m

R:allocate_s

R:allocate_m

S:allocate

S:create

Fig. 1. Patterns of the resource perspective to bind resources to tasks [1]. Possible task
states are denoted by boxes and transitions by edges. Blue edges indicate the applicable
transitions supported by the particular pattern. Dash doted edges indicate that this
state transitions only make sense if there is a transition of a pull pattern.

tasks is illustrated according to Aalst et al. [1]. In this paper, we focus on the
allocation process, which is performed after a task is created and before it is
executed by a suitable resource.

After a workflow task comes into existence, it is set into the created state,
indicating that it is capable of being executed. Here, the task has not been
bound to a specific resource for execution. Obviously, there are multiple possible
paths through these states for an individual task. The edges within this diagram
are prefixed with either an S or an R indicating that the transition is initiated
by the WfMS or resource respectively. Essentially, there is a distinction between
push- and pull-patterns, identified by the initiator of the various transitions. The
state transitions that belong to the push-patterns are typically initiated by the
WfMS for created tasks. So, these push-patterns concentrate on the subject
of making resources aware of available tasks to execute. This can be realized
in three different ways leading to distinct subsequent states. In today’s Grid
WfMSs, a task is usually allocated to a suitable resource explicitly denoted by the
s:allocate operation. Hence, the resources are always allocated by the system.
Indeed, most Grid WfMSs use schedulers and information systems to identify the
most appropriate resource for the task allocation. Nevertheless, the real binding
of a task to a resource is initiated by the system. Consequently, the alternative
courses of action indicated by the states offered to a single resource and
offered to multiple resources are not considered in common Grid WfMSs.
This means in turn that the resource-initiated operations of the pull-patterns like
R:allocate s and R:allocate m are not implemented in current Grid WfMSs.
This is exactly the gap that the concepts presented in this paper aimed to bridge.
The feasibility of our concepts is discussed in section 3.

The integration of such pull-pattern might solve various existing problems
with regard to the interactions between the WfMSs and the resources. For in-
stance, pushing each job from the WfMS to the resources requires efficient work-
ing Meta-Schedulers [3] that have to be to be able to coordinate and allocate
resources across multiple administrative domains. These Meta-Schedulers have
to consider various conditions and constraints, like local policies and the auton-
omy of each site, security issues like authentication and authorization as well
as the heterogeneity of the different sites and their local scheduling systems.
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A pull-based approach could remove the need for a complex scheduling process
to identify the right resource explicitly and enables the resource providers to
enforce their local policies. This approach to distribute tasks could effectively
speed throughput by eliminating the notion of complex allocation by scheduling
services. With regard to the heterogeneity of the resources the pull-based allo-
cation strategies for tasks are also benificial. The incorporation of more specific
resources like the integration of human beings, telescopes or medical devices
is, however, a rather difficult task that often lacks of related standards such as
JSDL for job submission to computational resources. Standards like the emerg-
ing WS-HumanTask [12] that might address this issue are neither sufficiently
supported by Grids nor cover all kinds of specific resources. We believe the main
reasons for the troublesome incorporation of specific resources are the commonly
used push-based allocation mechanism, which postulates that a WfMS or any
other job distributer require a set of well-known interfaces to interact with the
resources. While OGSA provides a general framework for this, more details such
as provided by JSDL are needed for specific resources. Because this assumption
cannot be fulfilled with reasonable expenditure and in absence of related stan-
dards, it is currently hard to join the push-oriented model to the ambition of
integrating special resources. The proposed pull-based task distribution strategy
makes this goal relatively easy to realize because it opens the way to integrate
resources that do not have a well-defined interface. Therefore, it is necessary to
offer tasks to execute to resources, e.g. by informing multiple suitable resources
of the existence of a specific task. In this case the WfMS does not attempt,
which resource should undertake the task. So the resources, to which the task is
offered, are free to choose whether they are interested in undertaking the task
or not. Generally, this procedure results in the task being placed on a specific
task list of the individual resources for later execution. In the proposed pull
concept actors are the driving force of the execution of a workflow. Indeed, this
approach makes a centralized resource control e.g. by scheduling systems imprac-
tical. But, at the same time it opens new perspectives with respect to community
approaches, where members delegate their resources to execute tasks as actors
for the benefit of a community.

4 UNICORE Middleware Integration

The above discussed concept of using pull patterns to bind resources to tasks
has been ported to existing Grid technologies in the scope of the ongoing project
HiX4AGWS [8]. In particular, the UNICORE Grid middleware has been ex-
tended by establishing a corresponding task repository to allow an actor-driven
execution of tasks. The resulting UNICORE architecture is illustrated in figure
2. A starting point for integrating the pull-based approach has been the jBPM
WfMS [11]. The jBPM engine that is a suitable candidate for the realization
of the pull-based approach especially because of its expandability supports the
usual workflow control-flow and data patterns [1].

In the first step the jBPM engine has been integrated to UNICORE frame-
work similarly to the actually used Chemomentum engine [7]. The fundamental
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Fig. 2. Architecture of the prototype and its integration into UNICORE. The grey
boxes represent the UNICORE components that have not been changed. Green high-
lighted boxes indicate the components implemented within the HiX4AGWS project.

difference between these two WfMSs is the concept of abstract and concrete
workflows. Thereby an abstract workflow can be regarded as a generalization of
a business case whose instances are referred to as concrete workflows. In jBPM
an abstract workflow has to be deployed before it can be instantiated as often as
desired to finally execute several concrete workflows. The Chemomentum system
lacks of this concept to distinct between abstract and concrete workflows. Here,
a workflow modeled by a user is executed just once immediately after the sub-
mission. Therefore, the jBPM engine offers some advantages, particularly with
respect to the reusability of workflows and hence to a collaborative working.

For the purpose of the UNICORE integration of jBPM, the essential interfaces
of the WfMS, e.g. to deploy or delete abstract workflows, has been abstracted
through web services. Endpoint references (EPRs) are used to explicitly identify
workflows. For instance, once a abstract workflow is deployed, in form of a jPDL
schema conform XML document [11], the associated web service operation re-
turns the relevant EPR to the invoking entity. Afterwards, this EPR can then be
used to create concrete workflows or to delete the deployment and all associated
instances. If, e.g., a wrong EPR is used to instantiate a workflow or any other
internal or external failures occur, all web service operations are able to notify
the invoking entity with the help of a corresponding exception handling. After
successfully integrating jBPM into UNICORE by the explained web services,
the next step is to focus on the actually intended goals: Autonomous resources
should be able to apply for jobs in a pull-based way. Therefore, a new kind of task
has been introduced to jBPM. During the processing of this new task, jBPM con-
tacts an external repository, where the associated task description is published.
That means the task is not executed by the WfMS on the local UNICORE site,
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but is available for interested and appropriate resources in a repository. After,
a task that is published like this is executed by an appropriate resource, jBPM
is notified through a callback mechanism and the corresponding workflow is re-
sumed. The result is that the extension of the jBPM engine allows a pull-based
task distribution and execution by corresponding resource clients.

4.1 Task Repository

Like mentioned above the implementation of a task repository is necessary to
realize a pull-based task distribution. This repository has to be integrated into
UNICORE like the jBPM engine by abstracting it through UNICORE web ser-
vices. On the one hand the repository serves as storage for the tasks and jobs
that need to be executed and that are received by the WfMS. On the other hand
the repository is a kind of intermediary between the published tasks and the
respective actors. Hence, the task repository is designed to provide two indepen-
dent interfaces. One interface enables the jBPM WfMS to publish jobs that can
be executed by appropriate actors. The second interface allows resources to deal
with tasks, e.g. to query for tasks, waiting for them and to work on these tasks.

Once the WfMS publishes a task, a wrapper object is created and stored in the
repository. This object consists of the task description, which can be a JSDL job
and resource description. The resource description is used to define which role a
resource must possess to claim and execute the task. This process corresponds
to a role-based access control, which also allows working across various VOs. If
a resource provider wants to apply for specific kinds of tasks, he just has to get
the associated role. Besides this information, which is particularly necessary for
the communication to the actors, the wrapper object also consists of callback
information. This information allows notifying the WfMS and respectively the
corresponding workflow instance about a successful execution of a task to trigger
the workflow’s progress. The current status of a task is additional an essential
information stored in the wrapper object. For this purpose a state engine has
been implemented to manage the different states of a published task and the
transitions between them. The associated state diagram for the tasks is shown in
figure 3. The presented actions and their resulting state transitions are abstracted
by web service operations that can be invoked by the actors. Hence, the actors
are able to communicate with the task repository by web service operations like
claim(), start(), finish() or cancel(). The unique identification of a task is again
directed through EPRs. An integrated exception framework notifies the actors
about invalid state transitions or faulty accesses to EPRs.

CREATED READY RESERVED IN_PROGRESS COMPLETED

FAILED

activate() claim() start() finish()

failed()stop()release()

ERROR

Fig. 3. The task repository’s state engine including all states represented by oval boxes,
transitions and its triggering actions represented by the arrows and its labels
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4.2 Evaluation - Human Tasks in Unicore

UNICORE uses the Chemomentum engine to execute workflows. In this WfMS
the resource allocation is done by the service orchestrator, who submits JSDL
jobs to appropriate resources, supervises their execution and informs the work-
flow enginge of job completion. So, the service orchestrator can be identified
as the resource broker or scheduler working according to the push pattern, be-
cause he determines which resource is used for a specific job. The process of job
submission only works, if the service orchestrator knows the interfaces of the
resources, which makes the integration of more specific resources like humans
hard to realize. Because sometimes a resource may even be a person, one goal
of our project was to integrate human tasks into UNICORE workflows. This is
a useful feature, if workflows require a human step, such as verification by a
scientist that the workflow is proceeding correctly. To integrate human resources
into a workflow execution, our jBPM integration prefer a hybrid usage of pull
and push patterns for task distribution. This approach also serves as an evalu-
ation for the implemented pull patterns. In the hybrid approach, a task to be
executed by a human can explicitly be denoted as ”pull”-task in the workflow
description. The jBPM engine sends such a task to the task repository where
a human can pick up it for execution according to the pull pattern. Each task
that is not denoted as pull-task is treated like a common Grid job that can be
sent to the service orchestrator by using its web service interface. This solution
enables the integration of human resources into UNICORE workflows, whereby
a first project goal can be complied. Furthermore, the pull-based approach can
be evaluated by executing a workflow that contains a human step on our system.
At this time, it is not possible to make performance analysis because the task
repository and the corresponding pull concept lacks a comprehensive security
concept. For this reason, it is inequitable to compare workflow execution of the
jBPM and the Chemomentum engine. Such analysis are planned for the future.

5 Conclusions and Future Works

This paper has shown that current Grid WfMSs neglect the resource perspec-
tive of the workflow patterns resulting in several problems that are mentioned
in the previous sections. Developments as mentioned in section 4 try to inte-
grate the resources’ point of view into Grids. But these approaches continue to
place importance on well known standards. The proposed actor-driven approach
binds resources to tasks through an intermediate task repository presented in
this paper. The prototype prepares a way to cleanly integrate pull patterns into
UNICORE. Important components are the task repository and the actors. There-
fore, the Grid resources as well as human resources are connected to the task
repository. Thus, e.g. human beings are able to claim and execute tasks like the
qualitative evaluation of interim results resulting in a clean integration in scien-
tific workflows. The next steps consist of the integration of additional resources
by proper actors into the Grid. Particularly, the expansion of the actor-based
pull concept by using Cloud computing technologies e.g. to incorporate resources
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from community clouds may increase the elasticity of the system with respect
to the amount of users as well as the amount of available resources.
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1 Introduction

Futures are language constructs that improve concurrency in a natural and trans-
parent way. A future is a place holder for a result of a concurrent computation [5].
Once the computation is complete and a result (called future value) is available,
the placeholder is replaced by the result. Access to an unresolved future results
in the caller being blocked, until the result becomes available. Results are only
awaited when they are really needed which helps in improving the paralleliza-
tion. Futures may be created transparently or explicitly. For explicit creation,
specific language constructs are necessary to create the futures and to fetch the
result. Transparent futures, on the other hand, are managed by the underlying
middleware and the program syntax remains unchanged; futures have the same
type as the actual result. Some frameworks allow futures to be passed to other
processes. Such futures are called First class futures [2]. Replacing a future refer-
ence by the corresponding calculated value is called “future update”. In this case
additional mechanisms to update futures are required not only at the creator,
but also on all processes that receive a future. First class futures offer greater
flexibility in application design and can significantly improve concurrency both
in object-oriented and procedural paradigms like workflows [12].

Our work focuses on various future update strategies; it can be considered as
an extension of [2] and [10] through a language-independent approach that makes
it applicable to various existing frameworks that support first class futures. The
experiments are performed with ProActive [1], which is a middleware providing
first-class futures. Formal semantics for our strategies are presented in [6]. The
main contributions of this paper are: a semi-formal event-like notation to model
the future update strategies, and a description of three different update strategies
using this notation (Section 2); results from experiments carried out to study
the efficiency of strategies (Section 3).

1.1 Related Works

Futures, first introduced in Multilisp [5] and ABCL/1 [11] are used as con-
structs for concurrency and data flow synchronization. Frameworks that make
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use of explicit constructs for creating futures include Multilisp [5], λ-calculus [9],
SafeFuture API [13] and ABCL/f [11]. In contrast, futures are created implicitly
in frameworks like ASP [2], AmbientTalk [4] and ProActive [1]. This implicit
creation corresponds to asynchronous invocation. A key benefit of the implicit
creation is that no distinction is made between local and remote operations in
the program. Additionally, the futures can be accessed explicitly or implicitly.
In case of explicit access, operations like claim and touch, etc., are used to ac-
cess the future [7, 11]. For implicit access, the synchronization on the future is
triggered automatically by the operations manipulating the actual result value.
Accessing a future that has not been updated, results in the caller being blocked.

Creol [3] allows for explicit control over data-flow synchronizations. Creol
has been extended to support first class futures. In contrast to our work, fu-
ture creation and manipulation in Creol is explicit. ASP [2] and ProActive [1],
have transparent first-class futures and the synchronization is transparent and
data-flow oriented. In AmbientTalk, futures are also first-class and transparently
manipulated; but the future access is a non-blocking operation thus avoiding the
possibility of a dead lock as there is no synchronization. Processes interested in
the future value are registered as observers, and results are sent to registered
observers when they are computed. The future update strategy in AmbientTalk
is close to the eager-message based strategy presented here. [13] provides a safe
extension to Java futures, but with explicit creation and access.

2 Modeling Different Future Update Strategies

This section gives a semi-formal definition for the three main future update
strategies. Those strategies explain how future references can be updated when
they are spread into different processes.

2.1 General Notation

This section presents a brief overview of the various notation and entities that we
use to model the future update strategies. We denote by A the set of processes
(also called activities); α, β, . . . ∈ A range over processes. F denotes the set of
future identifiers, each future identifier is of the form fα→β, which represents
the future f created by the activity α, and being calculated by β. As each object
needs to keep track of the futures it has received, we make use of some local lists
for this purpose. There is one future list for each activity α. It represents the
location where the futures are stored in local memory.

FLα : F �→ P(Loc)

Locations, called loc in the following and of type Loc, refer to the in-memory
position of the future. To keep track of activities to which a future is to be sent,
a future recipient list is stored in each process.

FRδ : F �→ P(A)
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γ ∈ FRδ (fα→β) if the future value for fα→β has to be sent from δ to γ. It should
be noted that each fα→β can be mapped to several locations in FL or several
activities in FR. FR and FL are initialized to empty mapping on all processes.
We use an event-like notation to define the different strategies. Operations trig-
gered by the strategies, and events triggered by the rest of the middleware are
described respectively in bellow. Events are indexed by the activity on which
they occur, or α→ β for a communication from α to β.

Operations
Register Future - Reg: F × B × F �→ P(B)
We define an operation Reg that is given a future, a process and a mapping
F �→ P(B) (either FL when B = Loc, or FR when B = A). Regγ(fα→β , b, L)
replaces the list L by the list L′ defined as follows:

L′(fα′→β′
2 )=

{
L(fα→β) ∪ {b} if fα′→β′

2 =fα→β

L(fα′→β′
2 ) else

The Reg operation replaces the old mapping L with a new one containing the
additional mapping. An example of its usage could be Regγ(fα→β , loc,FLγ)
which adds to the FLγ list, a new location loc associated to future fα→β .

Locally Update future with value - Update: Loc× V alue
Once the value for a given future is received, this operation is triggered to update
all corresponding local futures with this value. The operation Updateγ(fα→β , v)
replaces, in the activity γ, each reference to the future fα→β by the value v.
Remember the set of locations of these references is FLγ(fα→β).

Clear future from list - Clear: F × F �→ P(B)
The clear operation Clear(fα→β , L) removes the entry for future fα→β from the
list L. It will be used after a future update to clear entries for the updated future.
It replaces the list L by the list L′ defined by:

L′(fα′→β′
2 ) =

{
L(fα′→β′

2 ) if fα′→β′
2 �= fα→β

∅ else

Send future value: SendValue: F × Loc× V alue
Send is used when a process needs to send the value of a computed future to
another process in order to update the future there. SendValueδ→γ(fα→β , loc, v)
sends the value v for the future fα→β from δ to γ. Sending a future value
can trigger send future reference events, SendRef , for all the future references
contained in the value v. This operation is detailed in Sections 2.2, 2.3, and 2.4

Events. Future update strategies react to events, triggered by the application
or the middleware, presented below.

Create future: Create: F × Loc
Createα(fα→β , loc) is triggered when α creates a future that will be calculated by
the process β. The semantics of this event is similar for all strategies: it registers
the future in the future list FL of the creating process.

Createα(fα→β , loc) � Regα(fα→β , loc,FLα)
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Send future reference: SendRef: F × Loc
SendRefδ→γ(fα→β , loc) occurs when the process δ sends the future reference
fα→β to γ and the future is stored at the location loc on the receiver side. The
details of this operation will be described in Sections 2.2, 2.3, and 2.4.

Future computed: FutureComputed: F × V alue
FutureComputedβ(fα→β , val) occurs when the value val of future fα→β has
been computed by β.

Wait-by-necessity: Wait: A
This event is triggered when a process accesses an unresolved future. This cor-
responds to get or touch operation in [8, 7, 11]. For the two eager strategies it
simply causes the process to be blocked until the value is received. For the lazy
strategy, this event retrieves the future value, see Section 2.4.

2.2 Eager Forward-Based Strategy

In this strategy, each process remembers the processes to which it has forwarded
the future. When the value is available, it is sent to all such processes. The
list of processes to which a process β should send the future value for fα→β is
FRβ(fα→β). It is the list of processes to which β has sent the future reference.

Figure 1 shows an example of this strategy. Process A makes an asynchronous
call on process H and receives the future fA→H . A then passes this future to B,
which in turn passes the future to C, D and E. Finally C passes the future to F .
Each time a future is forwarded, i.e., upon a SendRef message, the forwarding
process δ adds the destination to its FRδ(fA→H). When the result for fA→H

is available, it is communicated to A using SendValue message. A then forwards
the update on B (FRA(fA→H) = {B}). B can make concurrent updates on C,
E and D (FRB(fA→H) = {C, E, D}). Finally, the occurrence in F is updated
by C (FRF (fA→H) = {C}).

H A

B

C DE

F

f:M()

Legend

Future Update

Method Call

Registration

Fig. 1. Eager Forward Based

H
A

B

C DE

F

f:M()

{C, D,E}

Fig. 2. Eager Message Based
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Send Future Reference. When a process δ sends a future fα→β to a process γ,
the sender registers the destination process in FRδ, and the destination process
registers the location of the future in FLγ .

SendRefδ→γ(fα→β , loc) � Regδ(fα→β , γ, FRδ); Regγ(fα→β , loc,FLγ)

Future Computed. Once the value (val) of a future fα→β has been computed at
process β, it is immediately sent to all the processes that belong to FRβ(fα→β).
This will trigger chains of SendValue operations. Once the future value have been
sent, the future recipient list is no longer useful:

FutureComputedβ(fα→β , val) � ∀ δ∈FRβ(fα→β), SendValueβ→δ(fα→β , val)
Clearβ(fα→β ,FRβ))

Send Future Value. When a future value is received, the receiver first updates
all the local references, and then sends the future value to all the processes to
which it had forwarded the future (the processes in its FR list). The operation is
recursive, because the destination process of SendValue may also need to update
further futures. This operation can potentially trigger the SendRef operation
in case of nested futures. The future locations and future recipient lists for this
future are not needed anymore after those steps:

SendValueδ→ε(fα→β , value) � ∀ loc∈FLε(fα→β), Updateε(loc, value),
Clearε(fα→β ,FLε)
∀ γ∈FRε(fα→β), SendValueε→γ(fα→β , value),
Clearε(fα→β ,FRε)

2.3 Eager Message-Based Strategy

In eager message-based strategy, the process β, computing the future value,
is responsible for updating all processes which receive a future. Opposed to
forward-based strategy where futures updates are performed in a distributed
manner, here all updates are performed by same process β (home) in a centralized
manner. Whenever, a process δ forwards a future to another process γ, it sends
a message SendRegReq to the home process β, and updates the list of future
recipients FRβ . FRβ(fα→β) contains the set of processes to which fα→β has
been forwarded.

Figure 2 shows an example of this strategy. When A forwards the future to
process B a registration message SendRegReq is sent from A to H , registering B
in FRH . Similarly we have a registration message sent to H from B adding C,
E, and D to FRH ; finally we have FRH(fA→H) = {A, B, C, D, E, F}.

Once the future result is available, H uses the SendValue message to commu-
nicate the value to all processes in FRH(fA→H).

Send Future Reference. In the message-based strategy when a future fα→β is
forwarded by a process δ to a process γ, a registration message is sent to the
process that will compute the future, β.

SendRefδ→γ(fα→β , γ, loc) � Regβ(fα→β , γ,FRβ); Regγ(fα→β , loc,FLγ)
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The registration Regβ(fα→β , γ,FRβ) is performed using a communication ad-
dressed to the home process β, and is called SendRegReq in Figure 2.

Future Computed. Once the execution is completed and the value is available in
β, the process β sends the value to all the processes in FRβ(fα→β).

FutureComputedβ(fα→β , val) � ∀ δ ∈ FRβ(fα→β) SendValueβ→δ(fα→β , val);
Clearβ(fα→β ,FRβ)

Send Future Value. Contrarily to forward-based strategy, there is no need to
forward the future value when received, only local references are updated, and
then the FL list can be cleared.

SendValueβ→γ(fα→β , val) � ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);
Clearγ(fα→β ,FLγ)

The received future value may contain other futures as well. In this case, it can
potentially trigger the send future reference operation.

2.4 Lazy Message-Based Strategy

The lazy strategy differs from the eager strategies in the sense that future values
are only transmitted when absolutely required. When a process accesses a unre-
solved future, the access triggers the update. This strategy is somewhat similar
to message-based strategy except the futures are updated only when and if nec-
essary. In addition, each process now needs to store all the future values that it
has computed. For this, we introduce another list, FV that stores these values:
FV : F �→ P(V alue). FVβ(fα→β), if defined, contains a singleton, which is the
future value of fα→β .

Compared to Figure 2, in the lazy strategy only the processes that require
the future value register in FRH , FRH(fA→H) = {C, D} if only C and D
access the future. When the result is available, H communicates it to processes
in FRH(fA→H). In addition, the value is stored in FVH(fA→H). If the future
value is required later, it will be retrieved from FVH(fA→H).

Send future reference. This strategy does not require registration with home
process when forwarding a future. Incoming futures are registered in FLγ on
the receiver. Once the value is received, all local references can be updated.

SendRefδ→γ(fα→β , γ, loc) � Regγ(fα→β , loc,FLγ)

Wait-by necessity. Wait-by-necessity is triggered when the process tries to access
the value of the future. We register the waiting process at β:

Wait-by-necessityγ(fα→β) � SendRegReqγ→β(fα→β , γ)

If the future has already been computed by β, the value is transmitted immedi-
ately. Otherwise, the request is added to the Future receivers list of β.

SendRegReqγ→β(fα→β , γ) �
{

SendValueβ→γ(fα→β , val) ifFVβ(fα→β) = {val}
Regβ(fα→β , γ,FRβ) if fα→β /∈ dom(FVβ)
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Future Computed. When a result is computed, the value is stored in the future
value list. Moreover, if there are pending requests for the value, then the value
is sent to all the awaiting processes.

FutureComputedβ(fα→β , val) � ∀ δ ∈ FRβ(fα→β)SendValueβ→δ(f
α→β , val)

Clearβ(fα→β,FRβ); Regβ(fα→β , val,FVβ)

Send Future Value. The SendV alue operation is the same as for the eager
message-based strategy:

SendValueβ→γ(fα→β , val) � ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);

Clearγ(fα→β ,FLγ)

3 Experimental Evaluation

We conducted an experimentation with a real system in order to test the effi-
ciency of the various strategies. We implemented our strategies using ProActive
programming library(4.1). ProActive is based on the notion of active objects,
abstracting processes with a unique thread and message queue. We deployed an
application featuring a tree topology where each node is an active object. For
the scope of the analysis, we kept the number of nodes accessing future value
constant. The graph in Figure 3 compares the time needed to update futures for
the evaluated strategies. Experiments are realized over trees of varying heights.
Lazy strategy takes less time to update the futures since much less updates have
to be made. Update time required for lazy and eager message-based strategies is
roughly independent of the height of the tree. Eager-forward based strategy can
take advantage of concurrent updates. On the other hand, it also gets more time
to reach the bottom of high trees as shown by the shape of the graph. As the
height of the tree increases, overheads increases due to time spent at intermediate
nodes. As a result, at height 7, the time needed for updates is higher.

Figure 4 shows the time necessary to update a future along a simple chain of
processes. Time taken by the lazy strategy is constant because only one update
is made. Both the forward-based and message-based strategies scale in a linear
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manner. Future updates in eager forward-based strategy go through a number
of intermediate steps before arriving at the final node, introducing additional
delay. In message-based strategies, all updates are performed by same node in
single step, resulting in a relatively constant update time.

4 Conclusion

This paper presented a semi-formal description of three strategies for updating
first class futures. Our main contributions are: A semi-formal event-like no-
tation: A language independent notation for modeling future update strategies;
other frameworks using futures may benefit from our work. Experimental results :
Implementation of different strategies in the ProActive to study the efficiency.

We hope this article will help answering the non-trivial question: “Which is the
best future update strategy”? There is no single best strategy, rather the strategy
should be adopted based on the application requirements, to summarize:

Eager forward-based strategy is more suitable when the number of interme-
diate processes and the future value are relatively small. Eager message-based
strategy is more adapted for process chains since it ensures that all updates are
made in relatively constant time. Due to its centralized nature, it may require
more bandwidth and resources at the process that computes the future. Lazy
strategy is better suited for scenarios where not all processes with a given future
require its result value. Considerable savings in network load can be achieved
but this has to be balanced against the additional delay inherent in the design
of lazy approach. Also results have to be stored for longer time.
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Abstract. We present GroudSim, a Grid and Cloud simulation toolkit
for scientific applications based on a scalable simulation-independent
discrete-event core. GroudSim provides a comprehensive set of features
for complex simulation scenarios from simple job executions on leased
computing resources to calculation of costs, and background load on re-
sources. Simulations can be parameterised and are easily extendable by
probability distribution packages for failures which normally occur in
complex environments. Experimental results demonstrate the improved
scalability of GroudSim compared to a related process-based approach.

1 Introduction

Scientific applications have a continuous demand for fast and scalable execution
environments such as computational Grids to deliver results for ever increasing
problem sizes or concurrent requests in a required timeframe. Today, a new trend
named Cloud computing is to rent modern computational capabilities from spe-
cialised hosting companies, which frees research institutions from the burden of
buying, operating, and maintaining expensive and rapidly deprecating hardware.
This new class of Cloud resources raises new research questions in the field of re-
source management, scheduling, fault tolerance, or Quality of Service, requiring
hundreds to thousands of simulation experiments for finding valid solutions. To
enable and support such research, a scalable simulation framework is typically
required for early testing and validation of results before the real deployment
is performed. In Clouds, the role of a simulator becomes even more important,
since cost models are an integrated part of any Cloud environment, in contrast
to computational Grids where resources are often freely shared.

In previous research [11], we have demonstrated how Clouds have the po-
tential of complementing Grids for large applications that do not benefit from
fast enough resources required by their computational demands. Nevertheless,
there is a lack of support in the community for scalable and easy to use sim-
ulation frameworks able to aid combined Grid and Cloud scientific research.
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Existing simulators such as GridSim [12] and CloudSim [3] follow a process-based
approach that runs a separate thread for each entity in the system resulting in
poor scalability when the number of entities in the system becomes large. To
address this issue, we describe in this paper GroudSim, a new event-based sim-
ulator for scientific applications on Grid and Cloud environments that requires
one simulation thread only (instead of one thread per entity). We present ex-
perimental results that demonstrate the scalability of our approach with respect
to sequential and parallel job submissions and file transfers, as well as the su-
periority over the process-based approach for simulating the execution of two
real-world workflows.

The paper is organised as follows. Section 2 summaries the related work,
followed by an introduction to the discrete-event simulation technology in Section
3. Section 4 presents the GroudSim simulator in detail, while Section 5 shows
the results of the evaluation. Section 6 concludes the paper.

2 Related Work

GridSim [12] is a simulation toolkit for resource modelling and application
scheduling for Grid computing. GridSim uses SimJava [10] as the underlying
simulation framework, which is a process-based discrete event simulation pack-
age that runs a separate thread for each entity in the system resulting in poor
performance. Evaluation results show that this toolkit suffers when simulating
more than 2000 Grid sites concurrently, because of large memory consumption.
CloudSim [3] extends GridSim by modelling and simulating Cloud computing
infrastructures and services showing the same scalability problems.

SimGrid [4] is a simulation framework for evaluating cluster, Grid, and peer-
to-peer algorithms and heuristics. The approach is comparable to the one used
in GroudSim, but uses C instead of Java as the main development language,
which makes its integration with existing Java tools and services more difficult.
SimGrid does not address simulation of Cloud infrastructures.

3 Discrete-Event Simulation

A discrete system [8] is one in which the state variables change only at discrete
points in time called events, whose chronological sequence describe the behaviour
of the system. The following terms are important when working with a discrete-
event simulation system: (1) event being an instant occurrence that changes the
state of a system; (2) future event list (FEL) being a list of future events that
is ordered by their occurrence in time; (3) clock being a variable representing
the time at which the simulation currently stands; (4) entity being any object or
component in the system that requires explicit representation in the model; and
(5) system state being a collection of variables that contain all the information
necessary to describe the system at any time. In our case, the system variables
are the Grid and Cloud resources and their assigned jobs.
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Further, a discrete-event simulation system also needs a so called time advance
algorithm, which is used to advance the simulation clock when there are no
more external requests. An event scheduling algorithm is another very important
part of a discrete-event simulator, responsible for the correct processing order
of events. An event can influence other events that are stored in the FEL that
might need to be removed or altered, leading to a critical dependency in the
order of event processing.

4 GroudSim

In this section, we describe the technical details of GroudSim by referencing to
the most important Java API classes available at [2] where also the sources are
available under GPL. Following the API it is easy to write test scenarios that
can be controlled using XML configuration files.

Entities. SimEngine is the main GroudSim class which implements the time
advance algorithm, the clock, and the FEL, and keeps track of the so called regis-
tered entities used for tracing during a simulation. There are three options when
starting a simulation: (1) simulate as long as there are events in FEL; (2) simulate
for a specified simulation time; and (3) simulate until an arbitrary point in time
and shutdown the SimEngine afterwards. The Grid and Cloud resources classes
share most of the common functionality implemented in the groud package, and
override the specialised behaviour in the groud.grid and groud.cloud pack-
ages. To allow manipulation of the state of entities (e.g. CloudSite, GridSite),
a level of indirection for forwarding events directly to the destination entity is
added. GroudEntity is an abstract class which provides all method stubs for
manipulating the state of entities.

Jobs. A GroudJob has an identifier, a problem size (in million of instruc-
tions (MI)), a source (needed for cancelling it), and can be executed on a
Grid or a Cloud site. A GroudJob also has a state which is changed during
the execution of the specific JobEventTypes: unsubmitted, submitted, queued,
activated, finished, failed, and cancelled. Grid and Cloud jobs that spe-
cialise a GroudJob differ in their execution policy. Grids follow a job queuing
policy by putting the jobs into a waiting queue until a CPU becomes available.
For using a Cloud, resources, also called instances, need first to be acquired,
after which a resource policy sharing upon job arrival is applied (no queuing
mechanism employed). For each state in the job state transition diagram, there
exists a corresponding event type in the groud.event.job package implement-
ing a callback method on the source of the event, on its destination, or on both.
The only classes that the end-user directly needs to use in his simulation are
JobSubmitEventType for submitting JobCancelEventType for cancelling jobs.
Figure 1 shows the interaction of three possible entities: a user, a SimEngine,
and one GridSite. The first step has to be initiated by the user, while the rest
are done automatically by GroudSim:
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1. The user adds a JobSubmitEventType to the SimEngine;
2. The submit event occurs and the submitJob method of the target Grid site

is called. The job is in state submitted;
3. The Grid site creates a JobQueuedEventType and adds it to the SimEngine;
4. The queued event occurs and the handleJobQueuedmethod of both the user

and the Grid site is called. The job is in state queued;
5. The user needs to implement the handleJobQueued method. The Grid site

adds JobActivatedEventType and JobFinishedEventType events to the
SimEngine, as it already knows how much time the job will need to finish;

6. The activated event occurs and the handleJobActivated method of both
the user and the Grid site is called. The job is in state activated. The Grid
site resets the consumed MI of the job, indicating that it is starting to run;

7. The finished event occurs and the handleJobFinished method of both
the user and the Grid site is called. The job is in state finished. The Grid
site releases the CPU occupied by the job and calculates its costs. The user
can now analyse the costs, the runtime, or submit new jobs.

Several Cloud instances of the same InstanceType can be acquired using a
ResourceReservation. Each Cloud instance is an object of type CloudSite
registered properly with the simulation engine. If there are jobs still running on
a CloudSite once it is released, they are simply cancelled before the release of
the ResourceReservation is confirmed.

Fig. 1. Job submission workflow

Cost. We support two cost mod-
els in the simulation environment.
For Grid resources, the computa-
tion time is typically free, but can
be charged per time unit of CPU
core used. Cloud instances have to
be paid for their usage, typically
on an hourly basis as charged by
most of today’s commercial Cloud
providers. GroudSim allows keep-
ing track of the costs resulting
from a simulation and supports custom billing intervals to study the their in-
fluence on the overall cost. The cost introduced by file transfers is calculated
per gigabyte of data to allow rich simulation scenarios and detailed analysis on
Cloud or mixed resource setups. The end-user can retrieve these costs during
runtime to allow steering of scheduling polices or at the end of the simulation
for later analysis.

Tracing. Tracing is an essential tool to support the offline evaluation of sim-
ulation results. GroudSim provides two different configurable tracing types: (1)
entity state tracing for analysing the system state of all entities in the current
simulation including active entities like GridSites and CloudSites, and pas-
sive entities such as users; and (2) event-based tracing is based on the simulated
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events and hence more powerful than the static entity-based tracing. Never-
theless, there are simulation results which are more intuitive to gather with
entity-based tracing such as the the utilisation of the current Groud entities. We
designed a tracing architecture similar to the one used by java.util.logging
which includes three important additional classes: (1) Tracer defines the link
between the simulation engine and the visualisation of the tracing stream; (2)
Handlers are responsible for the visualisation of the current tracing stream, in-
cluding the writing of information to a console or a tracing file as, well as the
creation of predefined charts; and (3) Filters are used to remove unnecessary
information from the tracing stream for a specific handler.

Probability Distributions. As GroudSim is based on a time sharing system
with a lot of different initial timespans and stochastic decisions, distributions are
used at multiple points in a simulation. This affects the runtime and the failure
behaviour of Grid sites and Cloud instances, as well as the distribution of the
initial jobs simulated. The groud.dist package introduces an adapter pattern
to use different stochastic distributions from different packages while providing
a homogeneous interface. A wide range of different distributions including the
widely-used exponential and logarithmic, as well as simpler distributions such as
normal or uniform are included. Our implementation uses the standard ssj.jar
stochastic package [6, 9], which gives the possibility to run deterministic and
nondeterministic simulations by using precise or random initial seeding values.

Failures. As real Grids and Clouds are distributed systems prone to failures,
the simulator provides the possibility to let some of the registered resources fail
for certain time intervals. Furthermore, the problem size and the occurrence
probability can be configured for each failure. The simulator provides two dif-
ferent types of failures implemented in the groud.failure package: job and
file transfer-related. Each GroudEntity defines its own failure behaviour. The
standard behaviour is configurable via the GroudSimEntityProp and follows a
stochastic distribution for each failure property. As already mentioned, these
properties consist of the size of the failure, the duration of the failure and the
mean time to next failure for both jobs and file transfers. For activating the
failure behaviour for all registered entities, one has to introduce and register the
GroudFailureGenerator in the simulation engine. From an abstract point of
view, this failure generator is another passive simulation entity registered. The
failure generator iterates over all registered entities before the simulation starts
and adds one reactivation event to the FEL for each entity. Once the simulation
reaches such a reactivation event, the failure generator gets activated and injects
a failure with the defined size at the target entity. At the same time, events for
recovering the affected entity and for reactivating the failure generator are added
to the FEL. Using this “circle” of simulated events, each failure behaviour can
be simulated for Grid, Cloud, as well as for network resources.

Background Load. GroudSim offers functionality to introduce background
load into the current simulation by building an interface to the file format of
the Grid Workload Archive [7]. The BackgroundLoader class located in the
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groud.bg package contains the main functionality of background loading able
to introduce new GroudEvents into the SimEngine and to handle the generated
callbacks for each GroudJob executed. For each GWA entry that is properly
parsed, the BackgroundLoader introduces a new GroudJob into the current sim-
ulation.

5 Evaluation

We run the GroudSim evaluation experiments on an Intel Core Duo E6750 (2.67
gigahertz) with 2048 megabytes DDR2-RAM using the JavaTMSE Runtime En-
vironment (build 1.6.0 16-b01). Each experimental result presented represents
the average of ten separate runs. The simulated workflow runs were compared
with real executions on the Austrian Grid and resulted in a runtime in a reason-
able range of 10% of real executions.

5.1 GridSim Comparison

We start our evaluation by comparing GroudSim with the GridSim [12] sim-
ulator. We implemented a simple workflow execution environment capable of
working with both GridSim and GroudSim as back-end and used two real-world
workflow applications in our evaluation: WIEN2k and MeteoAG. The size of the
simulated workflows can be changed using a parameter x called parallelization
size, which corresponds to the problem size of the input data. We generated the
performance models for these applications from real trace data logged in the
Austrian Grid environment over the course of the last few years.

WIEN2k [1] is a material science workflow for performing electronic structure
calculations of solids using density functional theory based on the full-potential
(linearised) augmented plane-wave ((L)APW) and local orbital (lo) method.
The WIEN2k workflow contains two parallel sections of size x, with sequential
synchronisation activities in between. The total number of activities in a Wien2k
workflow is: Nwien2k = 2 · x + 3.

MeteoAG [5] is a workflow designed for meteorological simulations based on
the RAMS numerical atmospheric model. The simulations produce spatial and
temporal fields of heavy precipitation cases over the western part of Austria
to resolve most alpine watersheds and thunderstorms. The workflow structure,
in which a large set of simulation cases x (parallelization size) is modelled as a
parallel loop, where For each simulation, another nested parallel loop is executed
with different parameter values. The total number of activities in a MeteoAG
workflow is: Nmeteoag = 69 · x + 2.

Figure 2 shows that for growing parallelization sizes, the GridSim simulation
time increases significantly faster than the GroudSim for both workflows. The
reason for this advantage is in the event-based nature of GroudSim, in which the
number of simulated resources (Grid sites, Cloud instances) has very little impact
on the runtime performance, as demonstrated by the experiments following.
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Fig. 2. GroudSim and GridSim comparison

5.2 Job Submission

Figure 3a shows the results of the parallel submission of multiple jobs to Grid
sites with 32 CPUs each and a computing power of 1000 MI per second (MIPS)
for each CPU. We ran the tests on 8 to 32, 768 Grid sites and submitted between
16, 384 and 1, 048, 576 jobs. Submitting four times as many jobs to a given num-
ber of Grid sites requires four times as long simulation time to complete, slightly
longer due to the Java Virtual Machine (JVM) garbage collector. The compari-
son between the clusters shows that the simulation also scales with the number
of registered Grid sites, the execution times being almost independent of the
number of entities except for cases when when the available memory is low.
Different amounts of computing power per CPU did not affect the runtime at
all, therefore the results of these experiments are not presented. The different
number of CPUs per Grid site means the creation of additional objects, however,
the overhead caused by this parameter is negligible.

Figure 3b presents the scenario where the jobs were submitted sequentially
to Cloud resources, showing that the simulation scales linearly with the number
of jobs. Moreover, the number of acquired Cloud instances does not have a
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significant impact on the simulation time, which gets slightly worse the more
Cloud instances are acquired due to the huge amount of objects that need to be
managed by the JVM.

6 Conclusion

We presented GroudSim, a Java-based simulation toolkit for scientific applica-
tions running on combined Grid and Cloud infrastructures. GroudSim uses a
discrete-event simulation toolkit that offers better performance then process-
based approaches used in related work. The current version offers some basic
statistics and analysis views after runtime to allow the user to easily writer
more complex analysis. The developed simulation framework supports modelling
of Grid and Cloud computational and network resources, job submissions, file
transfers, as well as integration of failure, background load, and cost models. A
sophisticated textual and visual tracing mechanism and a library-independent
distribution factory give extension possibilities to the simulator: a new tracing
mechanisms can be easily added by implementing new handlers or filters in the
event system, and additional distribution functions can be included by adding
a new library and writing an appropriate adapter. We provided experimental
results that demonstrate the scalability of the job submission mechanisms, as
well as the superiority of our solution over a related process-based approach for
simulating the execution of two real-world scientific workflow applications.

The GroudSim framework is integrated as a back-end in the ASKALON Grid
computing environment, which enables to perform both real and simulated exe-
cutions of real-world applications using the same integrated development, mon-
itoring, and analysis interface.
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Abstract. Utility Computing based infrastructures such as Cloud Com-
puting promise on-demand packaging of resources similar to metered
public utilities, i.e. electricity, water, gas and telephone. However, com-
puting resources, which are traded as services are very different from
the usual commodities due to their dynamically changing behavior and
(re)configurable properties. Service Level Agreements(SLA) ensure the
necessary guarantees to the highly dependent service consumers. There
may be several rounds of negotiation before a formal SLA is established.
During automated negotiation sessions, the service provider needs to un-
derstand consumer requests and is required to offer the closest possible
service configuration fulfilling these requirements, keeping in view the
preferences of the consumer on one hand and the business rules and
configuration constraints of the service provider on the other. Service
providers need to be prepared to expect demands for all possible per-
mutation of service attributes. This requires a mechanism to map given
expected values onto a discrete or continuous set of possibilities and then
their refinement through multiple negotiation rounds. In this paper, we
present a formal approach to compute feasible configurations of services,
which fulfill the consumer preferences as well as the service provider’s
constraints and then introduce an SLA negotiation process based on this
formal model.

1 Introduction

With the popularization of utility computing in the form of Cloud Computing
infrastructures, there is a high likelihood for an IT-based service economy to
cause a major shift from Capital Expenditure (CAPEX) to Operational Ex-
penditure (OPEX) based enterprise setups. This will bring about new business
models which will encourage resellers and Composite Service Providers [4] [5],
not only affecting Small and Medium Enterprises (SME) but also directly pro-
moting the micro-economical sector. For this, services of varying granularity and
customizable configurations will be contracted through SLAs as on-demand con-
sumable resources similar to the metered public utilities such as electricity, gas,
water and telephone. However, computing utilities are very different from other
commodities due to their highly dynamic nature and flexibly configurable at-
tributes. This requires new trade mechanisms. A supermarket approach [6] i.e.,
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a take-it-or-leave-it negotiation model, is drastically insufficient to harness the
optimal business value of IT-based service markets. In IT-based service market,
a single service can be packaged into several different products depending upon
its varying configurations. Moreover these configurations cannot be prepackaged
due to customized requirements of clients. To cope with this situation, in addi-
tion to many other enabling requirements, there is a strong need for dynamic
and flexible negotiation mechanisms, which allow service providers to dynam-
ically compute customizable service configurations against consumer specifica-
tions following the business policies of the service provider at the same time. We
argue that to enable an IT-based service economy, it is essential to promote such
flexible SLA-based negotiation models.

For this, an SLA template initiated by either a service provider or a consumer
may pass through several rounds of negotiation before becoming a legal contract.
The interests of the client may go beyond cheap price and high quality of ser-
vices and include preferences demanding strict specifications in case of certain
properties and relaxation for the others. For instance, a client may be very strict
with the output resolution of an image processing service but may not bother
about the throughput of the service for a batch job. The service provider on
the other hand would make an utmost effort to find some ways to match the
client’s requirements while protecting its business rules and thus not risking the
overall profit margin and deliverable QoS (Quality of Service) levels. For this
purpose, the service provider must be able to configure services dynamically, in
accordance with the client’s preferences and compliant to the business rules. The
resultant configurations may not exactly match clients’ requirements but would
reflect the best that the service provider could offer. This may lead to another
round of negotiation if the client slightly modifies its requirements or preferences
in order to get a better quotation.

In this paper we present a formal model to facilitate the process of SLA
negotiation. The negotiation model is not a symmetric model because the service
provider and the consumer have different roles and need to act accordingly within
their non-identical scopes. The proposed formal model:

– allows the clients and the service providers to express and offer customized
configuration and reconfiguration of services, and

– forms the basis of a multi-round negotiation/renegotiation protocol

In section 2 we explain the concept of dynamic configuration of SLA offers,
whereas in section 3 we present our formal model in this regard. Section 4 depicts
a motivational scenario to realize various aspects of the model, whereas section 5
explains a negotiation protocol based on the formal model. Section 6 concludes
the paper with an overview of the contribution and future work.

2 Dynamic Configuration of SLA Offers

In this section, we explain how the service provider can customize service con-
figurations dynamically in response to the client’s requirements and priorities.
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We assume that both the service provider and the service consumer are able to
express their requirements in their respective SLA templates and any of them
can initiate the negotiation process by sending its SLA offer to the other. For
the sake of the argument, let’s say that the client initiates the process.

Service Consumer’s Role. For the service provider to better understand the
consumer’s exact requirements and to reciprocate with its best offer, the con-
sumer should be able to express its requirements precisely along with their pri-
orities. This will allow the service provider more flexibility to come up with the
cheapest and most desirable offer possible for the client. The client can express
its requirements expressing the desired values of service attributes and assigning
weights to them to highlight its priorities.

Service Provider’s Role. The service provider is required to compute a con-
figuration of the service fulfilling the client’s requirements in accordance with its
business rules, compute the corresponding price and respond to the client with
its counteroffer. The counteroffer need not contain the exact configuration that
the client required but the closest possible that the service provider can offer.
The client, on examining this offer, can redefine certain values or weights of its
requirements in order to expect a better offer.

Negotiation and Renegotiation. The negotiation round will go on until both
parties agree on certain terms. In the next section, we formulate these concepts
in a formal model that will serve as a basis for computing service configurations
as part of a dynamic and flexible SLA negotiation protocol. A similar communi-
cation pattern can be followed for a renegotiation round. In case of renegotiation
the previously established SLA will remain intact even in case of a failure of the
process whereas in case of negotiation an SLA does not exist before and in fact
is the output of the process.

3 Formal Model for Dynamic Service Configurations

In this section, we will formalize the concept of dynamic service configurations
based on the client requirements and preferences. These service configurations
will be presented to the clients in the form of SLA offers.

3.1 Definitions

We define a service through its attributes and a service configuration as a set of
specific values assigned to the service attributes.

Definition (Service Attribute and Attribute Value). A service attribute
is a pair ai = (Di, ni) where Di is a set called the definition domain (most
commonly, we will have Di ⊆ R, this also covers booleans if we identify true as
1 and false as 0) and ni : Di → [0, 1] is a map called the normalization map
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for the attribute. It represents a QoS parameter such as the compression rate.
The definition domain specifies the possible values the QoS attribute can take,
the normalization map specifies how to map those values to a quality between
0 and 1, where 0 is the worst possible quality and 1 the best one. The map can
be increasing or decreasing: it will be increasing for attributes which directly
indicate a quality, it will be decreasing for attributes such as latencies where less
is better. An attribute value is a value (q0)i ∈ Di. It specifies a concrete value
the attribute can take.

Definition (Service). A service s is a list of attributes a1, . . . , am (i.e. we de-
fine a service by its attributes). It models a specific service offered by a specific
provider, e.g. the video compression service of company XYZ. The normaliza-
tion map n : D = D1 × . . .×Dm → [0, 1]m for the service is the map mapping
each attribute value (q0)i to ni((q0)i). In other words, each component of the
normalization map for the service is the normalization map for the respective
attribute.

Definition (Configuration). A configuration of the service s is an attribute
vector q0 ∈ D, i.e. a vector of specific attribute values for the attributes of a
service. We assume that all the relevant properties of the service are given as
such QoS attributes, so those fully define the service. Note that this is a vector
of attribute values (q0)i ∈ Di. This attribute vector maps under n to a quality
vector q = n(q0) ∈ [0, 1]m.

Definition (Set of Feasible Configurations). For each service, we assume
that only a subset F of the set D = D1× . . .×Dm of all possible configurations
can actually be fulfilled by the service provider. We call F the set of feasible
configurations. An attribute value q0 will be called feasible if and only if q0 ∈ F ,
infeasible otherwise. The exact nature of F will in general only be known to the
service provider, not to the client.

Definition (Price Function). Each service has a given price function f : D →
R+ which maps each feasible attribute value q0 to its monetary cost f(q0). We
set f(q0) = ∞ for infeasible q0. This price function will also usually only be
known to the service provider.

Definition (Weights). A vector w ∈ Rm
+ , where m is again the number of

attributes of a given service s, will be called a vector of weights corresponding
to the service s. During the renegotiation process, it allows the client to define
which attribute values carry most importance to him, which influences the ser-
vice provider’s idea of the closest feasible point.

Definition (Negotiation Function). If the client requests an infeasible con-
figuration q0, the service provider computes the closest feasible configuration
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q̂0 = g(q0, w) using a negotiation function defined as follows:

g(q0, w) =
argminq̂0 dw(q̂0, q0)
s.t. q̂0 ∈ F,

i.e. the q̂0 in the set F of feasible configurations which minimizes dw(q̂0, q0),
where

dw(q̂0, q0) = ‖n(q̂0)− n(q0)‖w
and ‖u‖w =

√∑m
i=1 w2

i u2
i is the 2-norm weighted by w.

If we write q = n(q0) and q̂ = n(q̂0), dw can be written as

dw(q̂0, q0) =

√√√√ m∑
i=1

w2
i (q̂i − qi)2.

Figure 1 shows a geometric interpretation of the weighted 2-norm distance dw de-
fined above in an example with a 2-dimensional, triangular set of feasible configu-
rationsF . In the absence of weights, the 2-norm is the Euclideannorm and the clos-
est point under the 2-norm is given by an orthogonal projection. Setting weights
w corresponds to stretching, for all i, the ith coordinate axis by a factor wi (the ith

coordinate of w). This deforms the orthogonal projection, yielding a point which
deviates less in the coordinates weighted higher at the expense of those weighted
lower. An analogous geometric interpretation is possible in higher dimensions.

(a) For the trivial weights
w = (1; 1), g corresponds
to an orthogonal projec-
tion.

(b) Nontrivial weights w
correspond to a coordinate
stretch by factors w.

(c) The effects of the
coordinate transfor-
mation in the original
coordinates.

Fig. 1. Geometric interpretation of the negotiation function g and the distance dw

3.2 Extensions

Here we discuss some possibilities to extend the formal model described above.

Parameter Vector. Both the set F of feasible configurations (and thus the
renegotiation function g) and the price function f may depend on additional out-
side parameters known to the service provider, such as the amount of idle CPU
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power currently available on the server infrastructure, or such as the number of
services from the same provider being purchased by the client, to be considered
for mass purchase rebates. This can be modeled by introducing an additional
parameter vector θ which is added to the definition of F , f and g, turning the
set F into a set-valued function F (θ) and adding an additional parameter to
f(θ, q0) and g(θ, q0, w). (In the definition of g, we only need to replace F by
F (θ), all the other quantities do not depend on θ.)

If the vector θ is assumed constant throughout the negotiation process, we
can ignore it during computation and just consider F , f and g for a given fixed
value of θ.

Asymmetric Weights. Due to the symmetricity of the distance relation dw

used in the renegotiation function g, the client has no way to specify that for
a given attribute, e.g. the resolution of the video, getting a higher quality than
requested is not a big problem, but getting a lower one is. Instead, a violation
by the same amount in either direction will always be the same.

This limitation can be addressed by introducing asymmetric weights w+ ∈ R
m
+

and w− ∈ Rm
+ and redefining dw as the asymmetric distance

dw(q̂0, q0) =

√√√√ m∑
i=1

{
w+

i

2
(q̂i − qi)2, if q̂i ≥ qi

w−
i

2
(q̂i − qi)2, if q̂i < qi.

It shall be noted that this asymmetric distance is no longer a distance relation in
the classical sense, which would require symmetricity, i.e. d(u, v) = d(v, u) ∀u, v.

For simplicity, throughout the rest of this paper, we will assume symmetric
weights. However, the results extend straightforwardly to asymmetric weights.

4 Motivational Scenario

We use an example from the Datagrid project of the CERN [1]. We have used this
scenario also in our previous work [2] [3]. In our scenario, physicists are working
at distributed locations in the world requesting access to the data store. The time
which elapses between sending the request and retrieving / storing the required
data locally is defined as the response time of the system. The location of the
client application has an important impact on the response time because a LAN
normally has a much higher bandwidth than a WAN. This results in a shorter
response time which we consider as the major performance measurement for the
data store. We have the following requirements for the data storage service.

1. The minimum requirement for the bandwidth to access the data is 10 Mbps.
2. Due to parallel access, the available disk size may change dynamically, but

the disk size at the storing location always has to be at least 5 GB.
3. For the application characteristics of the running example in focus, a high

compression rate is desired.
4. The data needs to be replicated to at least one extra location.
5. A very high level (e.g. 99.9 percent) of availability of the service is desired.
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Service
Attribute

Desired Value
(qo)

Weight
(w)

Availability

Bandwidth

Disk Size

Compression

Degree of 
Replication

99.9 % 1

10 MB 0.8

5 GB 0.5

2 0.5

2 1

Data Storage Service
(Client’s Preferences)

(a)

Data Storage Service
(Service Provider’s Options)

Availability BandWidth Disk Size Compression
Degree of 

Replication

99.9 %

_

_

_

8 MB/s 2 GB 1 1

15 MB/s 4 GB 2 2

20 MB/s 8 GB 4 3

30 MB/s 16 GB _ 4

(b)

Fig. 2. (a) Client’s Preferences, (b) Service Provider’s Options

Following our formal model, we have formulated the client requirements and
preferences mentioned above in Figure 2(a). It must be noted that the service
provider is not in a position to fulfill every preference of the client. But that is
where it will use the priorities of the client expressed in terms of weights and
will compute the most suitable configuration closest to the client’s requirements
following the negotiation function:

g(q0, w) =
argminq̂0 dw(q̂0, q0)
s.t. q̂0 ∈ F.

Note that this simple example has been chosen such that the possible values for
each attribute are independent of each other and thus the weights have no effect.

So instead of the bandwidth of 10 Mbps and the desired diskspace of 5 GB,
the client is offered a bandwidth of 8 Mbps and diskspace of 4 GB, which are
the closest available values to the ones the client requested.

5 Negotiation Process Based on SLA Configurations

Now we explain the step by step detail of the negotiation process based on the
dynamic configuration of services as depicted in Figure 3.

1. Initiation of the Negotiation Process: Any party can initiate the negotiation
process. However, this is not a symmetric protocol because the real world
is not symmetric. Both the service consumer and the service provider need
to maximize their interests so their activities within their scopes vary from
each other. In Figure 3, we have assumed that the client first gets the SLA
template and fills in its preferences.

2. Preparation of SLA quotation by the service consumer: The client provides
two types of information to the service provider. It fills in the desired values
of service attributes within the SLA template, and it also informs about its
priorities regarding those attributes. This information can either be a part
of the SLA template or can be sent separately. The idea is to give clues to
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Get SLA Template

Accept / Reject SLA

quote_Request(Qo, w)

prepare/modify_Quote( )

Compute_Quote( )

respond_Quote(Q’o, price )

Create SLA

Fig. 3. Negotiation Protocol for SLA configuration

the service provider about where adjustments can be tolerated and which
attributes are a must-have requirement. The service consumer will send the
values shown in the Figure 2(a).

3. Computation of the best configuration offer by the service provider: The ser-
vice provider, following the difference function described in the formal model,
computes a service configuration, which is closest to the desired service con-
figuration. It also computes the price using the price function described in
section 3. As depicted in Figure 2(b), it is quite possible that no configura-
tion exists that matches the service consumer’s preferences exactly. In that
case, during the configuration selection, a relaxation is assumed on the at-
tributes with the least priority. The exact computational criteria have been
described in the formal model. The service provider in our scenario will offer
a bandwidth of 8 Mbps and a disk size of 4 GB while fulfilling the rest of
the requirements of the client.

4. Analysis of the offer and modification of service preferences by the con-
sumer: After receiving the best possible configuration matching the con-
sumer’s request, the service consumer analyzes the offered configuration and
can opt to proceed in three different ways, i.e., accept, reject or further ne-
gotiate the offer. The client can decide to further negotiate the offer either
by changing/modifying certain attribute values or by relaxing certain prior-
ities (changing weights). In case of a modified quote, the negotiation process
keeps on going until both parties agree or disagree to continue it further.

5. SLA establishment: If the client agrees with the SLA offer of the service
provider, it can opt to commit and send an acceptance call thus binding
itself to the agreement. If the service provider also accepts then a contract
is formed and an SLA is formally established. Conversely, if either of parties
reject the SLA offer then the negotiation round is failed.
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6. Renegotiation: The same process can also be utilized for renegotiation. In
case of a successful renegotiation process, the newly formed SLA takes the
place of the old one, otherwise the previous SLA survives and remains intact.

6 Conclusion

The provision of such flexible configurability of services discusses in this paper
is essential to increase the market liquidity where service consumers and ser-
vice providers can adapt themselves to market situations in accordance with
the dynamically changing resources. In the future, we intend to implement and
simulate this model in connection with service composition scenarios.
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Foreword

As the word ”UnConventional” in the title suggests, the UCHPC workshop fo-
cuses on hardware or platforms used for HPC, which were not intended for HPC
in the first place. Reasons could be raw computing power or especially low cost.
Thus, UCHPC tries to capture solutions for HPC which are unconventional to-
day but perhaps conventional tomorrow. For example, the computing power of
platforms for games recently raised rapidly. This motivated the use of GPUs
for computing (GPGPU), or building computational grids from game consoles.
Other examples for ”unconventional” hardware would be embedded, low-power
processors, FPGAs or DSPs. Only imagination sets the limit for their usage for
HPC. The goal of the workshop is to present latest research in how hardware and
software (yet) unconventional for HPC is or can be used to reach goals such as
best performance per watt. UCHPC also covers according programming models,
compiler techniques, and tools.

It was the 3rd time the UCHPC workshop took part, with previous workshops
held in 2008 in conjunction with the International Conference on Computational
Science and Its Applications 2008, and in 2009 with the ACM International
Conference on Computing Frontiers 2009. This year, the organizers were very
pleased by a large number of high quality submissions. This made it possible to
accept nine out of sixteen submitted papers. While there only was a half-day
available, it was no problem for the speakers to stay in time, although a very
tight schedule had to be met. We were able to group the talks into three topics.
These formed the structure of the workshop sessions, and made up for a very
exciting program:

– Accelerator Usage for Applications with four talks about applications from
electromagnetics, medical image processing, molecular dynamics simulation,
and object detection,

– Accelerator Usage Infrastructure with two talks on GPU/CPU callbacks and
static GPU workgroups, and

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 327–328, 2011.
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– Speeding up Algorithms with Accelerators with three talks on domain-inde-
pendent irregular kernels, multi-coloring preconditioning, and custom preci-
sion arithmetics with FPGAs.

This post-workshop proceedings includes the final versions of the presented
UCHPC papers, taking the feedback from reviewers and workshop audience into
account.

Finally, the organizers and program chairs of the UCHPC workshop want to
thank the authors of the papers. Without them, the workshop would not have
been able to come up with the interesting topics for discussion. But also, we sin-
cerely thank the EuroPar organization for providing the opportunity to arrange
the workshop in conjunction with the EuroPar 2010 conference. Last but not
least, we especially appreciated the hard work of the members of our Interna-
tional Program Committee. They did a perfect job at reviewing the submissions.
And we thank all attendees at the workshop, who contributed to a lively day,
and we hope they too found something of interest in the workshop. Based on
the very positive feedback, the program chairs and organizers plan to continue
the UCHPC workshop in conjunction with EuroPar 2011.

October 2010 Anders Hast
Lars Bengtsson
Josef Weidendorfer
Ren Wu
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Abstract. In this paper, we propose the use of graphics processing units
as a low-cost and efficient solution of electromagnetic (and other) numer-
ical problems. Based on the software platform CUDA (Compute Unified
Device Architecture), a solver for unstructured sparse matrices with dou-
ble precision complex data has been implemented and tested for several
practical cases. Benchmark results confirm the validity of the proposed
software in terms of speed-up, speed and GPU execution time.

Keywords: linear system, GPU, CUDA, biconjugate gradient, BiCG.

1 Introduction

Software simulations are continuously requested to become faster, more accurate,
and able to handle new, bigger and more complex problems. Recently, thanks to
the continuous impulse coming from video game industry, graphics processors
(GPUs) are affirming as a valid solution to accelerate time-demanding scientific
computations. This is facilitated by the publication of simple-to-use libraries
such as CUDA [1] which greatly ease software implementation.

An important research effort is currently devoted to the implementation of
GPU-enabled linear solvers, since modern software simulations often depend on
the solution of a computationally demanding linear system. A wide range of lin-
ear solvers exist, the choice of which depends fundamentally on the properties
of the system matrix. For instance, when the matrix is known to be sparse, real
symmetric or complex Hermitian, an iterative solver, such as the conjugate gra-
dient (CG) algorithm, is usually preferred [2]. The biconjugate gradient (BiCG)
method is a generalization of the CG suited to handle real nonsymmetric and
complex non-Hermitian matrices. This feature is a significant advantage in many
areas, such as computational electromagnetics (CEM) for the analysis and design
of EM structures. In this case, a key role is played by the Method of Moments
(MoM) [4] which transforms the integral-differential Maxwell’s equations into
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a linear system of algebraic equations. MoM usually generates unstructured,
sparse, symmetric and non-Hermitian matrices with complex coefficients. More-
over, double precision is needed in order to achieve a satisfying accuracy.

Starting from the requirements of such a category of problems, we imple-
mented a new BiCG solver for GPUs. Indeed, available GPU-enabled iterative
solvers, such as Iterative CUDA [5], CUSP [6], SpeedIT [7] and ”Concurrent
Number Cruncher” (CNC) [8], deal with real coefficient matrices, most concen-
trating on the CG algorithm.

Our solver is implemented in CUDA and tackles unstructured complex sparse
matrices. It has been tested on matrices coming from concrete scientific prob-
lems, some being taken from well recognized matrix collections, others being
generated during in-house experimentation in the area of EM circuit design.

2 Design and Implementation

2.1 CUDA Background

A NVIDIA GPU is built around an array of multiprocessors, each of which
supporting up to 1024 threads. CUDA is a standard C language extension for
thread-based application development on GPU. A CUDA application consists
of a sequential host code that executes parallel programs (kernels) on a parallel
device (the GPU). Kernels are SIMT (Single Instruction Multiple Thread) com-
putations that are executed by a potentially large number of threads organized
into a grid of thread blocks.

Great benefits are obtained when threads access a contiguous part of device
memory: in this case the individual memory instructions are replaced by a single
memory access (memory coalescence).

2.2 The BiCG Algorithm

BiCG is an extension of the CG algorithm. It produces two mutually orthogonal
sequences of vectors in place of the orthogonal sequence of residuals generated
in the CG algorithm.

We implemented the complex BiCG algorithm with Jacobi preconditioning,
in the form presented by Jacobs in [9]. First, we define initial variables: the
residual r and bi-residual r, the direction vector p and the bi-direction vector
p, the preconditioned residual d and bi-residual d, the residual error ρ. Then,
assuming that b is the rigth-hand side (r.h.s) of the linear system Ax = b, M the
Jacobi preconditioner and x0 the initial guess of the solution, the following steps
are repeated for each iteration (the asterisk denotes the complex conjugate):

1. calculate the step length parameter and form the new solution estimate

qi = Api−1 qi = AHpi−1 (1)
αi = ρi−1/p∗i−1qi (2)
xi = xi−1 + αipi−1 (3)
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2. update residual and bi-residual, with and without preconditioning

ri = ri−1 + αiqi ri = ri−1 + α∗
i qi (4)

di = M−1ri di = M−1ri (5)

3. calculate the residual error ρ and bi-conjugacy coefficient β

ρi = dT
i r∗i (6)

βi = ρi/ρi−1 (7)

4. update next direction and bi-direction vectors

pi = di−1 + βipi−1 pi = di + β∗
i pi−1 (8)

Iteration is continued till a termination condition of the form:∥∥ri
∥∥

2
/ ‖b‖2 ≤ ε (9)

is satisfied. Values of ε used in literature range from 10−6/10−7 [3].

2.3 Matrix Format

There is a multitude of sparse matrix representations, each with different storage
requirements, computational characteristics and methods of accessing and ma-
nipulating entries of the matrix. We focused on schemes which efficiently store
matrices with arbitrary sparsity patterns. Moreover, we preferred formats suited
for the GPU use, where the amount of available memory is strictly limited and
memory accesses should be as regular as possible. Based on these considera-
tions, we considered two matrix formats: Compressed Row Storage (CRS) and
the hybrid (HYB) Ellpack-Coordinate format [10].

CRS is the most common data structure used to represent general sparse
matrices. It makes no assumptions about the matrix sparsity and provides a
compact representation. It uses three one-dimensional arrays, from where non-
zero elements, column indices and pointers to the first element of each row are
retrieved. HYB joins features from the so-called Ellpack (ELL) and Coordinate
(COO) formats. ELL is suited for matrices whose maximum number of non-zeros
per row does not substantially differ from the average; it stores the non-zero
values in a dense bi-dimensional array and the corresponding column indices in
a vector. COO, instead, is a very simple format which uses three vectors to store
the row indices, column indices, and non-zero values of the matrix. The HYB
format, proposed in [10], calculates the typical number of non-zeros per row and
stores the majority of matrix entries in ELL and the remaining in COO.

2.4 Implementation

In the CUDA implementation of the BiCG algorithm, the main loop controlling
the iterations is kept on the CPU, whilst the computations inside are performed
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Table 1. Summary of BiCG functions and floating point operations (N is the matrix
dimension, nnz is the number of non-zeros)

OPERATION FORMULAS DESCRIPTION FLOPS

SpMV Eq. 1 sparse matrix-vector product 8nnz
dot product Eq. 2, 6 scalar product of two vectors 8N
e. w. product Eq. 5 element-wise product of two vectors 6N

axpy Eq. 3, 4, 8 ax + y (a scalar, x and y vectors) 8N

on the GPU. Four kernels are in charge of the operations carried out in the
BiCG main loop (see Table 1). Among them, the sparse matrix-vector product
(SpMV) is the heaviest operation, even though each of the listed operations
deserves being optimized on the GPU hardware. The implementation of the four
kernels is shortly described below.

SpMV - this kernel implements the Bell and Garland algorithm [10], which
is, at our knowledge, the best performing code currently available for solving
sparse matrix-vector product on GPUs. This algorithm is avaible in the CUSP
library [6] only for single and double precision real coefficients. Therefore, we
adapted it in order to tackle matrices and vectors having double precision com-
plex values and replicated the sophisticated optimization strategies, such as loop
unrolling and shared memory exploitation, described in [10]. Memory accesses
were optimized according to the storage format: one warp was assigned to each
matrix row in the CRS format, whilst one thread was assigned to each row of
the matrix in the HYB format. In addition to the matrix-vector product Api−1,
BiCG requires computing a Hermitian product AHpi−1 (see equation 1). In a
distributed-memory context, there will be extra communication costs associated
with one of the two matrix-vector products, depending upon the storage scheme
for A. To alleviate this problem, in the initialization phase we precalculate AH

at the cost of doubling the storage requirements for the matrix.

Dot product - cuBLAS complex dot function provided with CUDA is available
only for single precision coefficients. Therefore, we implemented such function
from scratch. Our kernel is an adaptation and generalization of the well known
parallel reduction algorithm proposed by Harris et al. in [11]. Such algorithm
deals with the sum of vector elements and is appreciated for its efficiency due
to the adoption of advanced optimization strategies such as shared memory
exploitation, loop unrolling and algorithm cascading (combine parallel and se-
quential reduction). The result is a function which, given as input two complex
double precision arrays, provides as output their dot product, with performances
aligned with those obtained by Harris.

Element-wise product and axpy - also in these cases, the cuBLAS func-
tions provided with CUDA don’t support double precision complex coefficients.
Therefore, we implemented such functions from scratch by taking advantage
of the CUDA cuComplex library [1] and by adopting optimization strategies



Iterative Solution of Linear Systems with CUDA 333

finalized to the maximization of coalesced accesses. Moreover, in order to reduce
the overhead due to communication between host and device we aggregated
multiple calls in a single kernel wherever possible.

In addition to the optimization strategies briefly mentioned above, we also
took advantage from CUDA texture memory, which provided relevant perfor-
mance gains, as it caches data spatially closed together. Texture memory is nor-
mally read from kernels by using device functions called fetches. We implemented
our own fetching functions since CUDA provides them only for real single preci-
sion data. Moreover, thanks to the exploitation of the so-called CUDA built-in
arrays we efficiently minimized the cost of memory accesses.

3 Experiments and Results

The GPU-enabled solver has been tested on the CUDA-compatible nVidia Ge-
Force GTX 260 GPGPU, featuring 24 streaming processors. The code was com-
piled by using CUDA 2.3 with driver version 190.53. For comparison we used a
serial code implemented in C and all calculations were performed by a single core
of an Intel Core2 Quad CPU Q9550 @ 2.83 GHz. The CPU code was compiled
by GCC 4.3.4 with the ”-O3” optimization option enabled on a PC equipped
with 4 GB of DDR2 RAM, Ubuntu 9.10 as the 32-bit Linux operating system
and ATLAS 3.6 [14] as BLAS library.

We tested our algorithms on sparse matrices, some of which were obtained
from the application of the MoM to the design of EM circuits, the remaining were
taken from the ”University of Florida Sparse Matrix Collection” [12]. In both
cases, based on GPU characteristics, we maximized multiprocessor occupancy
and adopted equation (9) as convergence criterion with ε set to 10−7.

3.1 EM Matrices

As to EM matrices derived from MoM, they concern the design of branch-line
couplers in microstrip technology, which are four ports devices widely adopted in
microwave and millimetre-wave applications like power dividers and combiners
[13]. More specifically, the analyzed layout consists of two branch-line couplers
connected by means of a 360◦ microstrip line and operating in the 2.5-3.5 GHz
frequency band (see Fig. 1). The desired sparsity pattern was obtained by making
a thresholding operation which determines the number of non-zero elements
while maintaining a good accuracy of the final solution (error less than 2%).

The left side of Fig. 2 shows the convergence times of the host (CPU) and
device (GPU) code for different matrix sizes (N) and formats. The percentage of
non-zero elements is kept to 5% of the total number of entries by thresholding.
The maximum matrix size was imposed by the memory limit of the available
CPU, as before thresholding the entire dense matrix had to be loaded. Table 2
lists the achieved speed-ups. They are higher when matrix dimension allows for
an optimum exploitation of hardware resources.
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Fig. 1. Layout of the EM circuit used for testing

Fig. 2. BiCG convergence time (left) and performance in GFlops/s (right) for EM
matrices

The right side of Fig. 2 shows the BiCG performance in terms of number of
floating point operations (FLOPs) per second. For clarity, we report the equation
used for calculating performance:

GFlops/s =
Cinit + nit · (2Cspmv + 2Cewp + 2Cdot + 5Caxpy)

109 · Te
(10)

where Cinit is the number of FLOPs in the initialization phase of the algorithm,
Cspmv, Cewp, Cdot and Caxpy respectively represent FLOPs required for SpMV,
element-wise product, dot product and axpy functions (see last column of Table
1), nit is the number of iterations of BiCG main loop and Te is the total execution
time of the algorithm. The multiplying factors of each C term in the numerator
indicates the number of corresponding operations in the BiCG main loop.

In all EM matrices we analyzed, CRS format always produces faster results
because of the high variability of the non-zero number per row (see Fig. 3). It is

Table 2. Achieved speed-ups for EM matrices

Problem Size (N) Speed-Up CRS Speed-Up HYB

2E+3 3.01 1.84
4E+3 12.8 11.5
6E+3 23.79 21.36
8E+3 25.17 20.74
10E+3 28.57 23.69
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Fig. 3. Distribution of number of non-zeros per row for EM-MoM matrices

well known that convergence behavior of BiCG may be quite irregular, and the
method may even break down, but in practical cases of EM circuit analysis we
never observed this phenomenon in agreement with what observed in [3].

3.2 Florida Matrices

As to the ”University of Florida Collection” [11], we identified ten complex
sparse matrices (see table 3), belonging to different research areas and exhibiting
different size, sparsity pattern and number of non-zeros.

The left side of Fig. 4 shows the performance obtained in the ten cases. Re-
sults are shown in terms of number of floating point operations and calculated
according to equation (10). As the number of non-zeros per row was substantially
constant for all the chosen matrices, the HYB format performed better than the
CRS in all cases. Therefore we reported in the table on the right side of Fig. 4
only the speed-up obtained for the HYB format. As shown, the obtained speed-
ups are even higher than those reached with EM matrices since we could better
exploit GPU hardware resources as much bigger matrices were elaborated.

Table 3. Florida matrices used for performance testing

ID. GROUP NAME SIZE Non-zeros Kind of problem

1 Bindel ted AB 106052 522387 thermal

2 Sinclair 3Dspectralwave2 2920082 12935272 materials

3 Rost RFdevice 741042 365580 semiconductor device

4 QCD conf6 0-8x8-80 491522 1926928 chemistry

5 Puri ABACUS shell md 234122 218484 model reduction

6 Lee fem hifreq circuit 4911002 20239237 electromagnetic

7 Kim kim2 4569762 11330020 2D/3D mesh

8 FreeFieldTech. mono 500Hz 1694102 5033796 acoustic

9 Dehghani light in tissue 292822 406084 electromagnetic

10 Lee fem filter 740622 1731206 electromagnetic
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Fig. 4. Performance results (left) and speed-ups (right) for Florida matrices

4 Conclusions

In this paper, the achievement of peak-performance for EM solvers through the
use of the inexpensive and powerful GPUs has been investigated. Based on the
requirements coming from CEM, a sparse iterative solver for GPUs has been
proposed. Taking advantage from CUDA library, we implemented a BiCG algo-
rithm which tackles unstructured sparse matrices with two different storaging
schemes. It has been tested on several matrices, both from well recognized matrix
collections and from in-house experimentation in the area of EM circuit design.
Results in terms of speed-up, execution time and GPU speed have been provided
as a validation and assessment of solver efficiency.
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Abstract. Automated classification of medical (computed tomography)
images may ultimately lead to faster and improved diagnosis, benefiting
both patients and clinicians. We describe a software system, that can be
trained for classification purposes in the area of medical image process-
ing. The underlying algorithm is based on a set of perceptron-like feature
detectors, which are combined to short feature vectors. Those are used
to form self-organized Kohonen maps, which will be used for the classifi-
cation of new image data. The exact description of the feature detectors
is derived from a large set of sample images by way of an evolutionary
strategy. This leads to a computationally demanding process of iterated
image decomposition, Kohonen map training and quality assessment. To
make our method feasible, we rely on clusters of rather cheap commodity
hardware, namely general purposes graphics processing units (GPGPU
[5]) and the STI Cell Broadband Engine Architecture (Cell), as it comes
with the PS3 gaming console.

1 Introduction

Medical image processing is applied on a wide range of levels, such as database-
centered storage/retrieval applications, systems that physicians’ strategic plan-
ning, automated counting of cells in histology and many more. Our work focuses
on the automated detection of kidneys within computed tomography (CT) data.
Although seemingly trivial for a human (even one without much medical experi-
ence), the task is difficult to accomplish on a computer system, due to the many
possible shapes, sizes, levels of contrast, and medical anomalies a human kidney
can display. In a training phase some 12000 image samples undergo a perceptron
based filtering process that leads to a set of feature vectors. These feature vec-
tors are both used for training of a Kohonen self-organizing feature map and for
assessment of the resulting recall quality. The process starts with randomized
perceptron weights, which subsequently are being refined by application of an
evolutionary strategy (ES). According to ES a population of many individuals,
each one describing a distinct set of perceptrons, has to be evolved for many
generations to find proper settings. Fortunately, this computationally very de-
manding process is highly parallel in itself, so we can easily map it onto clusters

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 339–347, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



340 P. Zinterhof

of Cell Broadband Engine Architecture (Cell) processors and general purpose
graphics processing units (GPU). The proposed system is domain specific by
training, rather than by architecture. So there happen to be no restrictions to
the domain of medical image processing.

2 Related Work

Several approaches for the automated segmentation and registration of organ
tissue have been proposed, not necessarily restricted to kidney tissue. These in-
clude contour-based [3], graph-based [4], texture-based, and statistical [9] meth-
ods. The latter seems especially promising, because of its ability to cope with
cysts, that may distort the kidney and make the detection even more difficult.
Due to a lack of appropriate data, we could not yet test our system with images
of pathologically distorted kidneys. Petkov [6] describes a system of n parallel
1-dimensional Kohonen self-organizing maps for general image classification pur-
poses. Although not based on evolutionary strategies, it displays some similarity
with the proposed system, in that it makes use of different ’views’ of the data
(cortical images) which are subjected to self-organizing maps. In principle, the
texton-based approach [8] also bears a rather close resemblance with our ap-
proach, but we rely on Kohonen maps for classification instead of support vector
machines. Additionally, in our case the filter masks (textons) are not derived
from the set of training samples, but their formulation is left to evolution. A
more general approach is taken by Pinto et al. [7] who describe a very efficient
method of high-throughput screening of good visual representations on Cell and
GPU hardware. By evaluating a large population for a single generation, the pro-
posed system effectively mimics the latter approach. Generally, by adding more
generations our approach extends high-throughput screening, thus constituting
the well-known evolutionary process. Currently, we are not aware of approaches
for automated kidney detection on Cell or GPU hardware.

3 Perceptron-Based Image Filtering

Image samples are filtered by a sliding window scheme based on 4x4 pixel wide
perceptrons (a good introduction can be found in [1]). Every window location
is preprocessed by a thresholding mechanism, that determines which of the 16
gray values fall within a given interval V. Pixels are set to 1 when lying within
V and set to 0 otherwise, forming a temporary image P consisting of black and

white pixels only. Convolving P and W with c =
3∑

y=0

3∑
x=0

Py,xWy,x leads to a

local output of T=0, if c < Θ and T=1, if c ≥ Θ. The final result is given

by Fn =
Sy∑
0

Sx∑
0

Ty,x, with Sx, Sy denoting the dimension of the sample image in

pixels reduced by the width of the perceptron (4 pixels) to account for the image
boundaries. For each dimension k of the feature vector different weight matrices
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Fig. 1. Overview on distributed computation by means of MPI and PVM

Wk and pixel intervals Vk are used and subjected to evolution. The rationale of
this process is to enable the evolutionary algorithm to find such weight matrices
and pixel intervals, that ’behave well’ during self-organization of the Kohonen
map.

4 Kohonen Maps

Kohonen self-organizing maps reduce high-dimensional data to lower (e.g. two-)
dimensional ’maps’. We employ an 8-dimensional Kohonen map of 192 x 192
elements. The training phase consists of two steps: A) find vector W within
the map that has the minimum Euclidean distance to sample vector S and B)
within a given radius R around W, change vectors Wr such, that the difference
S−Wr is reduced by a small factor γ ∈]0.0, 0.3], Radius R and learning-rate γ are
constantly reduced during training to allow the map to settle to a stable state.
The choice of dimensions of the map has been guided by the tight memory
constraints of the Cell processor, which allows to store a map of 8x192x192
elements in the local store (LS) of 6 SPEs.

4.1 Parallel Computation

The genetic algorithm utility library (GAUL) was used for parallel and dis-
tributed evaluation of the population’s fitness scores. GAUL has been linked
against the MPICH2 library and parallelization occurs at several levels, depend-
ing on the chosen accelerator hardware. We first employ GAUL’s distributed
evaluation of individuals by which the genotypes are sent to the remote worker
processes for fitness evaluation. When based on GPU acceleration, the worker
process employs a local GPU for the main steps of our algorithm, namely
the image filtering process and the training of the Kohonen map. Obviously,
the GPU code is highly parallel in itself. For the filtering step a number of
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Fig. 2. Outline of GPU-based Kohonen map training

CUDA-blocks equal to the number of image samples are allocated. Within the
MP, we make substantial use of the (SIMD-)vector capabilities. The 192x192
map vectors are distributed in blocks of 8x8 vectors onto the MPs, hence we get
576 data-independent CUDA-blocks. Since synchronization of the MPs proofed
rather expensive, we moved the reduction of the 576 local minima to the CPU.
In order to use Cell as the application’s accelerator, we have to engage a sec-
ond scheme of inter-process-communications for two reasons. MPICH2 does not
support little- and big-endian machines within the same setup and LAM-MPI
has been too outdated for proper installation on the PS3. OpenMPI should have
been a feasible candidate, but as GAUL assumes all participating MPI ranks
(worker processes) to be active ’evaluators’, we would have had to introduce
major changes to the internal workings of GAUL. We therefore employ the par-
allel virtual machine (PVM 3.4), which manages all necessary data conversions
in a transparent way and does not interfere with GAUL’s internal structure.
CPU-based (x86) workers enroll both within PVM and MPI (Fig. 1) while PS3
based workers enroll within PVM only and establish 1:1-links to their CPU-
based counterparts. Due to the very high demand of vector shifts during the
sliding-window filter algorithm, we encountered performance levels that did not
justify further development efforts and we restricted the Cell code to the Koho-
nen map training and recall process. Also, 200 MB of available memory would
have hampered scalability in terms of the number of training images.

5 Implementation

In this section we will focus on some implementation details which are critical
to performance on the various types of hardware.
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5.1 GPU

The filtering stage delivers very high performance on the GPU, but we had to
test several approaches to reach this goal. As 8 perceptrons have to be applied
onto each sample image (64x64 pixels), we chose a grid size of 60. Within each
of the 60 rows a single thread loops from index 0 to index 59, summing up the
fire events of the perceptrons. To account for the computation of the 8 different
perceptrons a second - outer - loop is used. The resulting performance proofed
to be insignificantly higher than the CPU code (i7, 2.6GHz), which called for a
rearrangement of the GPU code. By mapping the outer loop onto dimension y
of the kernel, we change the partitioning from 60 threads to 60x8 threads. By
changing the inner loop index (0..59) from row- to column-based computation,
performance could also be improved to a high degree, resulting in a total speedup
of 18.3 compared to the standard GPU code.

5.2 Cell

For maximum performance on map training we rely on the local store (LS) of
the SPEs only. Every SPE manages 32x192 vectors of the map. Because the
dimensions are multiples of 4, with 4 quad words taking up 128 bit (the cache
line size), we get perfect data alignment which is key for fast vector operations.
In the parallel winner-takes-all scheme of Kohonen map training, the winner
has to be found after every iteration. In contrast to the GPU code, in which
the CPU computes the global minimum, the Cell version operates without CPU
interventions. As a consequence, the full algorithm of map training has been
encapsulated in a single function, that can be called from within the main PPC-
code. It even incorporates the code necessary for the classification of unknown
vectors, which is being executed automatically after training. Cell’s rather unique
mechanism for conditional assignments of vector values (spu sel, spu cmpgt) has
been extensively used in step A. See an excerpt of the code:

// DEMONSTRATION OF spu_cmpgt and spu_sel for a nearest-neighbor search
// mymap: array of Kohonen-map vectors (1/6 of total map)
// testvector: random vector, whose nearest neighbor is computed
for (i=0; i < RES*DIM; i++) {

sum=(vector float){0.0,0.0,0.0,0.0}; current_nr=spu_splats (i);

diff = mymap[i][0] - testvector[0]; sum = spu_madd (diff,diff, sum);
diff = mymap[i][1] - testvector[1]; sum = spu_madd (diff,diff, sum);

...
diff = mymap[i][7] - testvector[7]; sum = spu_madd (diff,diff, sum);

mask = spu_cmpgt (localbest, sum);
// if localbest > sum -> arg 1, else arg 0 is new minimum
localbest=spu_sel(localbest,sum,mask);
localbest_nr = spu_sel (localbest_nr,current_nr,mask);

}

The Cell toolkit (CTK-0.73, [2]) is offering mutex, semaphore, and barrier func-
tions, but we designed our own improved barrier function (Fig. 3), on base of
CTK’s mutex code. This new function extends the traditional functionality by a
means for distributing arbitrary data between the SPUs. ’Value’ holds 16 words
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Fig. 3. Cell barrier function

(64 bytes total size). The first 4 words are reserved for 4 distinct barrier vari-
ables, the remaining 12 words are dedicated to the 6 SPUs. Accesses to the
array ’value’ are protected by a single mutex. The SPUs store the locally com-
puted values of the minimum search, along with the vector position at places
2∗spu id, 2∗spu id+1 of the array ’value’. As the SPUs call the barrier function,
they are not only being synchronized but the additional data are communicated
within the group of 6 SPUs. The crucial point is the lack of additional data
transfers for the SPUs. So each SPU receives the set of 6 local minima, reduces
them into the number of the winner and continues with step B. As the SPU has
to rely on a PPU-callback for most of the glibc-functions, we face problems in
measuring the actual speedup of the new barrier function. Therefore, we take
measurements (Tab. 1) from two reasonably large numbers of synchronizations
in order to reduce the effects of code startup delays and call overheads. The busy-
waiting scheme at the end of the barrier code can - in principle - lead to a race
condition. By using two separated barriers, which are being called consecutively,
this issue has been solved.

Table 1. Execution times (wall-time) for the standard synchronization and data dis-
tribution between 6 SPUs and the improved barrier function, that delivers about 14 %
of speedup

number of calls standard code improved barrier speedup

10.000.000 286.10 s 251.08 s 1.13947 x
100.000.000 2858.76 s 2508.87 s 1.13946 x

6 Results

The benchmarks (Tab. 2) show a tremendous advantage in using accelerator
hardware during the training phase of the algorithm. We found speedups in the
range of 11x (Cell) to 22x (GPU) for the evaluation of single individuals, which
makes up the very core of the algorithm and can be directly translated to overall
speedups of the application itself. Cell, albeit considerably less powerful than
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Table 2. Execution times for the CPU-, Cell- and GPU-based algorithms. The Cell
number denotes the sum of both training and recall execution times. CPU timings
based on i7, 2.66 GHz, GPU timings based on single NVIDIA GTX 295. Total timings
are measured at the level of the CPU-based worker and include all communication
(MPI,PVM), as well as memory transfers to and from the GPU.

arch convolution Kohonen quality evaluation total time speedup

CPU 6.064 s 182.9 s 6.6 s 195.6 s 1.00 x
Cell n/a 15.8 s n/a 16.69 s 11.7 x
GPU 0.351 s 4.2 s 3.18 s 8.86 s 22.05 x
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cores, 2.3 GHz). Core counts based on ’full’ CPUs without HT-support (e.g. numbers
for eight i7-cores result from two i7 sockets).

the GPU in terms of the number of processing elements, delivers respectable
performance. Fig. 4 displays execution times for up to 8 GPUs (4 dual-node
NVIDIA GTX 295) and the corresponding numbers of i7 1 and Xeon-cores. The
GPU-based code clearly outperforms all CPU-based codes. Scalability is nearly
linear. Fig. 5 displays execution times for up to 8 GPUs (NVIDIA GTX 295)
and Cell processors. Cell timings are split into two setups. In setup 1 each Cell
is served by a ’private’ GPU, in setup 2 a single global GPU serves all (up to 8)
Cell processors. A single GPU easily serves up to 8 Cell processors, therefore a
cluster of PS3s does not necessarily have to be accompanied by an equally large
GPU cluster.

1 i7 quad core @2.66 GHz, Xeon 5345 quad core @2.3 GHz, GTX 295 cards consist of
2 GPUs with 240 streaming processors each.
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7 Conclusion

The proposed system for medical image classification has been successfully tested
on GPU and Cell accelerators. Both platforms leverage performance by at least
one order of magnitude, thus making the application of the very demanding
algorithms feasible for users who lack access to large CPU-based HPC-systems.
The high speedup gained from GPU hardware is essential for the evolution of
proper features for the classification process in a reasonable amount of time.
Ongoing work will be subject to the next generation of Fermi-based GPUs,
which are expected to further improve throughput due to larger shared memory
areas and thus shall further increase classification rates.
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Abstract. Molecular dynamics (MD) simulation is widely used in computational
science, however, its irregular memory-access pattern imposes great difficulty on
performance optimization. This paper presents a joint application/architecture
study to accelerate MD on an emerging unconventional computing platform–
Godson-T many-core architecture. We propose three incremental optimizations:
(1) a divide-and-conquer algorithm adaptive to on-chip memory; (2) a novel data-
layout to re-organize linked-list cell data structures to improve data locality; (3)
an on-chip locality-aware parallel algorithm to enhance data reuse. Experiments
on an event-driven, cycle-accurate Godson-T simulator achieve excellent speedup
of 62 on 64 cores.

1 Introduction

Molecular dynamics (MD) simulation is widely used to study material properties at the
atomistic level. But increasingly large computing power is needed to satisfy the spa-
tiotemporal scale of the real world simulations. The advent of many-core paradigm has
provided unprecedented computing power, and promises to enable large-scale and long-
time simulation only if we can efficiently harvest the computing power. Challenges to
achieve efficient parallel MD algorithm mainly on many-core platform arise from two
aspects: (1) MD application is characterized by irregular memory access which imposes
difficulty on locality optimization; (2) many-core hardware limitation (volume of on-
chip memory, bandwidth of on-chip networking, etc.) constrains the size of working-set
per core which imposes difficulty on on-chip parallelization. To address these difficul-
ties, this paper presents a joint study from both application and architecture aspects on
how to accelerating MD on Godson-T emerging many-core architecture, where we map
an MD algorithm to architecture for achieving high on-chip parallel efficiency.

The main contribution of this paper are: (1) An adaptive divide-and-conquer (ADC)
algorithm is designed to optimize the use of memory hierarchy; (2) A novel data layout
is employed to re-organize linked-list cell data structures to maximize data locality;
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(3) An on-chip locality-aware parallel algorithm is designed to maximize data reuse;
(4) Detailed experiments on an Godson-T simulator shows the optimized MD achieves
a strong-scaling parallel efficiency 0.92 on 64 cores.

The rest of this paper is organized as follows. Section 2 briefly introduces the DC-
MD algorithm used in this work, where key performance bottlenecks are summarized.
Section 3 highlights the main architectural features of Godson-T , and Section 4 de-
scribes our optimization strategies. Section 5 presents the experimental results and
detailed analysis. Finally, Section 6 concludes the paper.

2 A Divide-and-Conquer MD Algorithm

We have previously proposed a space-time multiresolution MD (MRMD) algorithm to
reduce the O(N2) time complexity of potential evaluation to O(N) [4]. In the MRMD,
E(rN ) consists of two-body E2{rij} and three-body E3{rijk} terms within a cutoff
radius rc. In the linked-list cell method, the dimension Rc of the cells is usually chosen
to be larger than rc. For a given atom in a cell, the search space for interacting neighbor
atoms is limited to the 26 nearest neighbor cells. Conventional summation rule to com-
pute 3-body interaction is written as E3(rijk) =

∑N
i=1

∑nbr(i)
j=1

∑nbr(j)
k �=i v(ri, rj , rk),

where ri is the coordinate of the i − th atom and nbr(i) is the list of neighbor atoms
within the three-body cutoff length from atom i, which acts as the center of atomic
triplet (j, i, k). To maximally exploit parallelism in a multi-core cluster, our EDC-
STEP-HCD scheme has employed a multi-level parallelization strategy [5,6]. Although
this scheme has achieved internode parallel efficiency well over 0.95 for 218 billion-
atom MD simulation on 212, 992 BlueGene/L processors [5], it suffers inefficient on-
chip parallelism with on-chip parallel efficiency only 0.65 for 8 threads on a dual Intel
quadcore Xeon SMP platform [6]. We observe several features that prevent the program
from achieving high performance on conventional multi-core architectures: (1)Irregu-
lar memory access. Straightforward or sparse-matrix-like implementation of linked-list
data structure leads to irregular memory accesses in three-body interaction calculation;

(a) (b)

Fig. 1. (a) and (b) are percentages of events that cause last level cache (LLC) miss and data
translation look aside buffer (DTLB) miss for the original DC-MD algorithm on an Intel quadcore
core i7 920 platform measured by Intel VTune Performance Analyzer
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(2)High latency to access shared data. Let Nc denote the number of cells in each Carte-
sian direction, q the atom density(number of atoms divided by system volume (NcRc)3,
then the total number of cross-cell pairs in the system is given by N3

c × qR3
c × 26qR3

c .
Thereby the size of atomic data for interaction computation easily exceeds that of the
last level cache. Combining with the irregular memory access mentioned before, the
latency problem becomes even worse, as evidenced by the memory accessing perfor-
mance in Fig. 1(a) and Fig. 1(b) conducting on Intel quadcore core i7 920 platform
measured by the Intel VTune Performance Analyzer. Therefore, it is of great signifi-
cance to optimize the memory accessing to improve the performance and scalability of
our MD application on many-core platforms.

3 Godson-T Many-Core Architecture

Godson-T is a low-power many-core architecture developed by Institute of Computing
Technology, Chinese Academy of Sciences to serve as a dedicated petaflops computing
engine. As shown in Fig. 2, Godson-T has 64 homogeneous, dual-issue and in-order
processing cores running at 1 GHz, where a floating-point multiply-accumulate opera-
tion can be issued to a fully-pipelined function unit in each cycle, resulting in a peak
floating-point performance of 128 Gflops. The 8-pipeline processing core supports 32-
bit MIPS ISA (64-bit ISA will be supported in latter version) with synchronization
instruction extensions. Key architectural features for achieving decent scalability and
high performance include the following [1]:

– Fine-grained parallelism [8]. Each core works as a lightweight hardware thread
unit executing in a non-preemptive manner. A dedicated synchronization manager
(SM) is a centralized unit to collect and handle synchronization requests, which
provides architectural support for fast mutual exclusion, barrier and signal/wait syn-
chronization. In addition, an extremely efficient thread execution runtime system
has been developed to manage thread execution [8,3].

– Locality-awareness. Each processing core has a 16KB 2-way set-associative pri-
vate instruction cache and a 64KB local memory (like data cache). As inspired by

Fig. 2. Godson-T architecture: INT is
fixed point arithmetic unit, FP/MAC is
floating point unit, and CU is communi-
cation unit
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IBM CELL and Nvidia GPU, an explicit memory hierarchy is implemented for user
to exploit better locality with less complex hardware implementation compared to
that of the traditional transparent memory hierarchy. Moreover, in Godson-T , each
local memory is configured as explicitly-controlled, globally-addressed scratched-
pad memory (SPM) to further help programmer maximize locality. An 8×8 packet-
switching 2D mesh network connects all on-chip units with a 128bit bandwidth
employing deterministic X-Y routing policy, which can provide a total of 2TB/s
on-chip bandwidth among 64 processing cores. In addition, there are 16 address-
interleaved L2 cache banks (256KB each) distributed along the perimeter of the
chip, which are shared by all processing cores and can serve up to 64 cache access-
ing requests in total. The bandwidth between SPM and L2 cache is 256GB/s, and
each four L2 cache banks on the same side of the chip share a memory controller
with a 25.6GB/s memory-accessing bandwidth.

– Latency tolerance [7]. Since there may exist intensive contention on on-chip net-
work and memory controller, latency to L2 cache will possibly become primary ob-
stacle to achieve decent performance. To address this issue, a DMA (direct memory
accessing)-like coprocessor Data Transfer Agent (DTA) is built in each core to do
fast data communication, that is, when one core is doing calculations, DTA can be
programmed to manage various data communications at backend in parallel.

4 Optimizations on Godson-T
In this section, we describe how to design an efficient MD algorithm based on the
features provided by Godson-T many-core architecture.

4.1 Adaptive Divide-and-Conquer Algorithm

In the original DC-MD algorithm, the physical space is subdivided into spatially local-
ized cells, with local atoms constituting subproblems. The algorithm recursively divides
a coarse cell into finer cells until some criterion is satisfied. In our adaptive divide-and-
conquer (ADC) algorithm specially designed for many-core architectures, we use the
size of the first level memory (i.e. private local memory), Cpm, as a critical factor of the
criterion.

Since this paper only addresses the issue of fine-grained parallelism within a
subsystem, we assume that the interchange of cached atoms (atoms near subsystem
boundaries) has been completed by a higher-level parallelism (e.g. using MPI) among
multiple many-core computing processors [5]. Figure 3 illustrates of the cells in a sub-
system. The algorithm divides the subsystem consisting of the resident and cached
atoms into small cells of equal size. Assume that there are P = Px ×Py ×Pz cores in a
many-core processor and that the number of cells in a subsystem is L = Lx ×Ly ×Lz.
Then each core i processes L

P cells as Eq. 1 (since how to efficiently embed 3D mesh
into 2D one has already been solved by classical algorithms [2], the 2D on-chip network
on Godson-T is viable for this decomposition): {(cx, cy, cz)|cx ∈ [ iLx

Px
, (i+1)Lx

Px
), cy ∈

[ iLy

Py
,

(i+1)Ly

Py
), cz ∈ [ iLz

Pz
, (i+1)Lz

Pz
)}. Let B denote the memory space for storing one
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atomic data, Nb denote the number of neighbor atoms per cell. In order for all the resi-
dent atomic data to fit in the private local memory, Rc should satisfy

qR3
c × (Nb +

L

P
) × B ≤ Cpm ⇒ Rc ≤ 3

√
PCpm

(PNb + L)Bq
. (1)

ADC algorithm performs recursive cellular decomposition until Eq. 1 is satisfied. When
the atomic data are distributed into each core’s local memory, they are reused in both
two- and three-body force calculations, as the software controlled SPM provides a
mechanism for user to decide what data locate in the private local memory and when.
However, a direct implementation based on the linked-list cell data structure is not effi-
cient enough because of MD’s irregularity. In the next subsection, we propose a novel
data layout optimization to address this problem.

4.2 Data Layout Optimization

At the beginning of MD simulation, each atom is assigned an integer in [0...N − 1],
which is used as an identifier for the linked-list based algorithm to access atomic data.
We refer to this method as global-ID-centered addressing. However, during the simu-
lation, the identifiers cannot be kept contiguous due to atom migration between com-
puting nodes/processors. In the ADC algorithm, it is expected that the atomic data is
distributed among different cores, where each cell only interacts with 26 neighbor cells.
Therefore, if all the atomic data within one cell were grouped together, they would be
easily reached through its cell index. Here, we propose a new strategy—cell-centered
addressing.

Figure 4(a) depicts the data structure designed for the atomic data in SPM, where na
denotes the maximum number of atoms in one cell. Since all the atomic data for each
cell are grouped, the cell index (cc) can be used to search the neighbor cells, and then the
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Fig. 4. (a) The atomic data of cells in a core’s SPM. (b)The neighbor atomic data of cells in the
shared L2 cache or off-chip memory. Pad is used for address alignment. Each L2 data unit[i]
represents a contiguous block of all neighbor atomic data for the i − th cell in L2 cache or
off-chip memory (i = 1, ..., L/P ).
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atomic data in each cell can be touched contiguously. Moreover, considering the sequen-
tial mapping between cores and cells, the searching of neighbor cells is completed inO(1)
time: The scalar value of cc is transformed into a vector (ccx, ccy, ccz), then the neighbor
cell index is calculated by the combination of {(ccx + lx, ccy, +ly, ccz + lz)|lx, ly, lz ∈
{−1, 0, 1}}, where the number of neighbors including itself is 27.

As was shown in section 2, the number of cross-cell atom pairs is qR3
c×26qR3

c per cell,
and it is impossible to store all the data in each core’s private memory. Since the three-
body interaction calculation also involves atoms in one cell and its 26 neighbor cells, it can
also benefit from the cell-centered addressing for contiguous accessing of atomic data in a
cell. Similarly, we group the neighbor atoms as well. Figure 4(b)depicts the data layout of
neighbor atoms located in L2 cache or off-chip memory, where we group all the neighbor
atomic data for the i-th cell together as L2 data unit[i], which can be transferred to the
SPM through a DMA like operation that utilizes high bandwidth provided in Godson-T .

4.3 On-Chip Locality Aware Parallel Algorithm

In this subsection, we present our on-chip locality aware parallel algorithm to enhance
data reuse and further to alleviate the long latency to access the shared neighbor atomic
data in L2 cache or off-chip memory. The two-body force calculation involves core-core
communication, and it may cause on-chip network congestion. Moreover, the access to
L2 cache also goes through the on-chip network, which may introduce more congestion.
Here, we propose a solution to enhance the data reuse and to reduce the remote shared-
data memory accessing, thereby alleviating the long latency. Suppose that the atoms in
a cell at core i interacts with those in another cell at core j. In order to achieve on-chip
locality for core i, we maximize the data reuse of cells from core j, and vice versa for
core j. Our solution is first to construct a set of cell pairs PC[cj] = {ci0, ci1, ., cik},
where cj is the global index of the cell interacting with cells ci0, ..., cik in core i.
For example, suppose that core i has cells {1, 4, 8}, and core j has cells {2, 5}. Also
assume that cell 2 interacts with {1, 4} and that cell 5 interacts with {4, 8}. Then we
construct two cell pairs PC[2] = {1, 4} and PC[5] = {4, 8}. We then use the core-
core communication to transfer the atomic data according to the cell pairs from core
j to core i. If more than one cell are assigned to a core, then some neighbor cells are
located in the same core, and thus no core-core communication is required.

The algorithm uses a preprocessing to collect the set of cell pairs. Since each cell
only interacts with its 26 surrounding neighbors, the size of set PC is expected to be
less than O( L

P × 26). Since the calculation of neighbor’s indices is done in O(1) time
using cell-centered addressing, the preprocessing requires O( L

P ) time and O( L
P ) space,

which is negligible compared with the two-body interaction time O( L
P ×qR3

c×26qR3
c).

5 Evaluation

In this section, we present the experimental results and detailed analysis of the proposed
MD optimization on a Godson-T many-core simulator.

Godson-T is an on-going research project for building a petaflops supercomputer,
and a real chip is expected to be shipped in late 2010. In order to evaluate its
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performance at early stage of the architectural development, we here employ an instruction-
level simulator. The Godson-T simulator is event-driven, cycle-accurate, executing both
kernel and application codes, and has modeled all architectural features introduced pre-
viously. Since it is an instruction-level simulator, it can produce detailed traces and in-
struction mix of all executed instructions for any given application after execution. The
toolchain on Godson-T consists of a gcc-3.3 compiler and a thread execution runtime
system, which provides a POSIX thread-like API. Moreover, since our ultimate objec-
tive is to build a large-scale parallel computer, where on-chip parallelism is of critical
importance, we mainly focus on on-chip parallelization with a fixed problem size, and
the speedup on p cores is calculated by S(p) = Timeone core

Timep cores
, where T imep cores rep-

resents the executing time on p cores and T imeone core represents that on one core.
And strong-scaling parallel efficiency E(p) is then defined as E(p) = S(p)

p for a fixed
problem size. In the following experiments, the MD simulation tested is for a silica sys-
tem [5]. Within the DC framework, the whole system is divided into subsystems each
containing 24, 000 atoms as the fixed problem size for strong scalability analysis.

The experiments compare three incrementally improved versions of MD algorithm:

– optimization-1: implementation of ADC algorithm,
– optimization-2: implementation of ADC algorithm and data layout optimization,
– optimization-3: implementation of ADC algorithm, data layout optimization and

on-chip locality-aware algorithm.

We have tested the scalability of the parallel algorithms. Figure 5shows that optimization-
3 makes MD scale excellently with an on-chip strong-scaling parallel efficiency 0.92 on
64 cores while optimization-1 begins to deteriorate when the number of cores exceeds
32. It tells that optimizations which take advantage of architectural features to maximize
data locality and exploit data reuse benefit scalability most, which is also evidenced by
the running time in Fig. 6 as optimization-3reduces the execution time by a factor of 2.

Fig. 5. Speedup as a function of the number of
cores for optimization-1 and optimization-1

Fig. 6. Execution time in milliseconds on 64-
core Godson-T . Here, number i represents
optimization-i (i = 1, 2, 3, 4)

6 Conclusion

The emergence of many-core architecture has provided unprecedented computing power
to computational scientists, and it is of great significance to exploit the computational
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power of such new platforms to improve the performance and scalability of large-scale
scientific applications. In this paper, we have described our investigation of accelerating
MD simulation on representative many-core architecture Godson-T . We have proposed
a divide-and-conquer algorithm adaptive to the memory hierarchy to facilitate the on-
chip local memory, a novel data layout to improve data locality to alleviate the irregular
memory accessing, an on-chip locality-aware parallel algorithm to enhance data reuse to
amortize the long latency to access shared data. These techniques have made the parallel
MD algorithm scale nearly linearly with the number of cores. Also we have found that
the data locality and data reuse schemes taking advantage of explicit memory architec-
ture and high-bandwidth on-chip network are essential to achieve high scalability. The
contribution of this work lies not only in giving application scientists advice on how to
optimize their applications utilizing architectural mechanisms, but also in guiding future
hardware developments.
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Abstract. Moving object detection is a relevant step for many computer
vision applications, and specifically for real-time color video surveillance
systems, where processing time is a challenging issue. We adopt a dual
background approach for detecting moving objects and discriminating
those that have stopped, based on a neural model capable of learning
from past experience and efficiently detecting such objects against scene
variations. We propose a GPGPU approach allowing real-time results,
by using a mapping of neurons on a 2D flat grid on NVIDIA CUDA.
Several experiments show parallel perfomance and how our approach
outperforms with respect to OpenMP implementation.

Keywords: Video Surveillance, Stopped Object Detection, Neural
Model, GPGPU.

1 Introduction

Moving object detection in videos is the first relevant step of information ex-
traction in many computer vision applications. The usual approach is through
background subtraction, that consists in maintaining an up-to-date model of the
scene background and detecting moving objects as those that deviate from such
a model. Among the objects detected as extraneous to the background, in visual
surveillance, specific attention is given to stopped objects, i.e. temporally static
image regions indicating objects that do not constitute the original background,
but were brought into the scene at a subsequent time. Examples are given by
abandoned luggage or illegally parked vehicles [2,3,8]. Approaches proposed in
literature are either tracking-based, i.e. results are obtained based on the analy-
sis of object trajectories through an application-dependent event detection phase
(e.g. most of the papers in [2,3]), or non tracking-based, i.e. objects are classified
without the aid of tracking modules (e.g. [1,4,7]).

We adopt a non tracking-based approach to stopped object detection in image
sequences taken by stationary cameras. Based on the use of a double background
strategy [7], we construct separate long- and short-term neural self-organizing
backgrounds, based on the approach reported in [5]. The long-term background
is the usual background model, holding a model for the scene background, while
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the short-term model contains temporarily static background elements. Using
such models an evidence score is inferred for each pixel as belonging or not to a
stationary foreground object. The model, named by us Dual Background SOBS
Algorithm, possesses a significant amount of data-level parallelism, suitable for
a Single Instruction Multiple Data (SIMD) architecture that allows massively
parallel processing. Following the approach of General-Purpose computing on
Graphics Processing Units (GPGPU), we decided to exploit the CUDA (Com-
pute Unified Device Architecture) technology on NVIDIA graphical chipsets [6],
by organizing both short- and long-term models as neural networks mapped onto
2D flat grids. Section 2 reports the Dual Background SOBS Algorithm, while
Sections 3 and 4 respectively report the adopted parallelization technique and
performance evaluation.

2 Stopped Object Detection

2.1 Dual Background Approach

In order to automatically detect stopped objects in digital color sequences It, t =
1, . . . , . taken by stationary cameras, we adopt a dual background strategy based
on the approach proposed in [7]. We construct two separate models (whose spe-
cific structure is described in §2.2): a long-term model BL, that models the scene
background without moving objects, and a short-term model BS , that contains
temporarily static background elements, including moving objects that have been
excluded by BL. By comparing each sequence frame with these models, we ob-
tain two binary masks: the long-term foreground mask FL, that is true only for
objects (both moving and stopped) that are extraneous to the background, and
the short-term foreground mask FS , that is true only for moving objects. An
evidence score is inferred at each pixel x by applying a set of hypotheses on the
foreground masks and, to provide temporal consistency, the resulting evidence
scores Et(x) for each pixel x of sequence frame It are aggregated in time as

Et(x) =
{

min(τ, Et−1(x) + Δt) if FL(x) ∧ !FS(x)
max(0, Et−1(x)− k) if !FL(x) ∨ FS(x) (1)

where ∧, ∨ and ! indicate logical and, or and not operations, respectively. If
x is not modeled by BL but it is modeled by BS , than it must belong to a
stopped object, and correspondingly Et(x) is incremented by the factor Δt.
The maximum value τ for Et(x) corresponds to the stationarity threshold, i.e.
the minimum number of consecutive frames after that a pixel assuming constant
features is classified as stopped; the value for τ is chosen depending on the desired
responsiveness of the system. Otherwise, if x is modeled by BL or is not modeled
by BS , than it must belong either to the background or to a moving object,
and correspondingly Et(x) is decremented by the factor k, that determines how
fast the system should recognize that a stopped pixel has moved again. When
thresholded by τ , the aggregated evidence score computed as in (1) provides a
binary mask that is true only for pixels belonging to objects extraneous to the
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background and that stay stopped for at least τ consecutive sequence frames.
An example of the stopped object detection procedure is shown in Fig. 1. The
sequence frame It of Fig. 1-(a) shows a bag that has been left on the floor
more than τ frames ago, while a man is moving. The corresponding long-term
foreground mask FL shown in Fig. 1-(b) is true (white colored) only for pixels
extraneous to the scene background (i.e. pixels that are not modeled by the
long-term background BL), while the short-term foreground mask FS (Fig. 1-
(c)) is true only for moving pixels, since the short-term background has included
pixels belonging to the stopped object. The evidence score Et, whose normalized
version is shown as a gray-level image in Fig. 1-(d), has reached the maximum
value τ only for pixels of the stopped object, while gets lower values for pixels
that where recently moving. Thresholding the evidence score with respect to τ ,
the stopped object shown in red in Fig. 1-(e) is obtained.

(a) (b) (c) (d) (e)

Fig. 1. (a) original sequence frame; (b) F L; (c) F S; (d) E; (e) stopped object (in red)

2.2 Neural Self-Organizing Background Model

The background model constructed and maintained in SOBS algorithm [5], here
adopted for both the long-term and the short-term backgrounds, is based on a
self-organizing neural network arranged as a 2-D flat grid of neurons. Each neu-
ron computes a function of the weighted linear combination of incoming inputs,
with weights resembling the neural network learning, and can be therefore rep-
resented by a weight vector obtained collecting the weights related to incoming
links. An incoming pattern is mapped to the neuron whose set of weight vectors
is most similar to the pattern, and weight vectors in a neighborhood of such node
are updated; such learning of the neuronal map allows to adapt the background
model to scene modifications. Specifically, for each pixel x we build a neuronal
map consisting of n × n weight vectors bi

0(x), i = 1, . . . , n2 where each weight
vector is a 3D vector initialized to the color components of the corresponding
pixel of the first sequence frame I0. The complete set of weight vectors for all
pixels of an image I0 with N rows and M columns is represented as a neuronal
map B0 with n × N rows and n ×M columns, where adjacent blocks of n × n
weight vectors correspond to adjacent pixels in image I0. The value n = 3, sug-
gested and justified in [5], is adopted for all experiments reported in §4. For
each frame It, the color It(x), at position x is compared to the weight vectors
b1
t−1(x), . . . , bn2

t−1(x) related to it in the model Bt−1, to determine the weight
vector bBM

t−1 (x) that best matches it according to a metric d(·):
d(bBM

t−1 (x), It(x)) = min
i=1,...,n2

d(bi
t−1(x), It(x)). (2)



360 G. Gemignani, L. Maddalena, and A. Petrosino

The best matching weight vector is used as the pixel’s encoding approximation,
and therefore x is detected as foreground if the distance in (2) exceeds a threshold
ε; otherwise, it is classified as background. The adopted color space, the metric
d(·) and the threshold ε can be suitably chosen as in [5].

Learning is able to adapt the background model Bt−1 to scene modifications
and is achieved by updating the best matching weight vector bBM

t−1 (x), supposed
at position z of Bt−1, and all other weight vectors in its neighborhood Nz ac-
cording to:

bt(y) = (1 − αt(y, z))bt−1(y) + αt(y, z)It(x), ∀y ∈ Nz (3)

Here α(y, z) = γt ·G(y-z), where γt represents the learning rate, that depends
from scene variability, while G(·) = G(·; 0, σ2) are the values of a Gaussian filter
with zero mean and σ2 variance in Nz. For the purpose of the double background
approach to stopped object detection, the long-term background model BL

t is
updated according to (3) in a selective way, i.e. only if d(·, ·) ≤ ε, otherwise, it
remains unchanged. Such selectivity allows to adapt the background model to
scene modifications without introducing the contribution of pixels not belonging
to the background scene. Instead, the short-term background model BS

t is always
updated according to (3), with a learning rate γS

t higher than the learning rate γL
t

for the long-term model, so that it can quickly include moving and temporarily
static background elements that have been excluded by the long-term model.

2.3 The Algorithm

The stopped object detection procedure described in the previous section for
each pixel x can be sketched as the following algorithm:

Dual Background SOBS Algorithm

Input: pixel x in sequence frame It, t = 0, . . . , LastFrame
Output: aggregated evidence score Et(x)

1. InitializeModels(BL
0 (x), BS

0 (x))
2. for t=1, Kinit
3. CalibrateModels(BL

t (x), BS
t (x))

4. for t=Kinit+1, LastFrame
5. (FL(x), FS(x)) = UpdateModels(BL

t (x), BS
t (x), It(x))

6. Et(x) = ForegroundCompare(FL(x), FS(x))

Steps 1-3 represent the calibration phase, that involves initial learning of the two
neural networks modeling the long-term and the short-term backgrounds over
Kinit initial frames, while steps 4-6 represent the online phase, that involves the
updating of both neural network models and the computation of the evidence
score based on (1), (2), and (3).

Most of the computation for each pixel can be done concurrently, indepen-
dently from adjacent pixels. Communication is only needed for the update of the
background models in the case that the neighborhood of best matching weight
vector, computed according to (2), contains weight vectors of adjacent pixels.
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A suitable parallelization strategy is therefore based on data decomposition,
where each thread is responsible of data needed to perform the whole Dual
Background SOBS Algorithm for a single pixel.

3 Parallelizing Stopped Object Detection

To afford the parallelization approach we should firstly point out some costraints
of CUDA architectures. Parallel programs for CUDA are organized into three
levels of abstraction: elementary sequences of instructions (threads) are clustered
into different blocks, which are themselves grouped into grids. All threads execute
the same sequence of instructions on different data. Each block is executed on
one multiprocessor (consisting of 8 processors), which can alternate with other
blocks in order to hide latencies due to not-cached memory accesses. Once a
block is assigned to a multiprocessor, it is divided into 32 thread units (called
warps), effectively scheduled such that the threads within a warp are executed
in a somewhat lock-step way called single-instruction multiple-thread. Whenever
the number of blocks is higher than the number of available multiprocessors, the
remaining blocks are queued.

Given a sequence frame consisting of M × N pixels and fixed the number
thx×thy of threads for each block, we define a grid G consisting of (2×M

thx
)×( N

thy
)

blocks. The grid G is subdivided into two subgrids, GS and GL, each consisting
of ( M

thx
) × ( N

thy
) blocks, running simultaneously. The subgrid GS processes the

short-term background model BS , while the subgrid GL processes the long-term
background model BL.

The implementation is divided into four different kernels (program modules
executed independently on different data), corresponding to steps 1, 3, 5, and 6
of the Dual Background SOBS Algorithm (cfr. §2.3): the initialization, the cal-
ibration, the model update, and the evidence computation, which are launched
sequentially by the CPU. The only exchange of memory between CPU and GPU
is the one for loading the input images into the global memory device and for
sending back the resulting binary evidence image. Since global memory is not
cached, it is particularly important to follow the right access pattern to get the
maximum bandwidth. The device is capable of reading 4-byte, 8-byte, 16-byte
words from memory into registers in a single instruction; for structures larger
than 16 bytes the compiler generates several load instructions. Moreover, global
memory bandwidth is most efficiently used when the simultaneous memory ac-
cess by threads in half-warp can be coalesced into a single memory transaction
of 32, 64, or 128 bytes, respectively, and this is achieved if all threads access
1-byte, 2-byte, or 4-byte words lying in the same segment, respectively.

Since usually images are stored into 1D arrays in row-major order, we reor-
ganize the image data before transferring them to the global memory device in
order to guarantee coalesced access during the parallel processing. As an exam-
ple, in Figure 2-(a) we show a simple image consisting of M ×N = 6× 6 pixels,
distributed on a grid of 2× 2 blocks (identified by different colors), where each
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block consists of 3×3 threads which are assigned one pixel each. The usual storing
into a 1D array in row-major order (shown in Figure 2-(b)) is reorganized as in
Figure 2-(c), so that each block accesses data as sequential chunks of the 1D
array. This preprocessing phase is done sequentially and should be taken into
account for time measurements, as described in the next section.

(a)

(b)

(c)

Fig. 2. (a) Image consisting of 6 × 6 pixels distributed on a grid of 2 × 2 blocks
(identified by different colors), each consisting of 3 × 3 threads, having one pixel each;
(b) usual image memorization pattern; (c) reorganized image memorization pattern

4 Experimental Results

In order to evaluate the performance of the parallel version of the Dual Back-
ground SOBS Algorithm we considered several color image sequences resized at
a resolution of M ×N = 720× 480 pixels, belonging to the publicly available i-
LIDS 2007 dataset (available at ftp://motinas.elec.qmul.ac.uk/pub/iLids/), that
represent typical situations where stopped objects can be of great concern (aban-
doned luggage in train stations and parked vehicles in no parking zones). Experi-
ments were performed on two Intel Core i7 CPUs at 2.67GHz equipped with two
different NVIDIA GPUs, both based on the G80 architecture: a Tesla C1060 (in
the following referred to as Tesla), with 30 multiprocessors and 4 GB of global
memory, and a GeForce 8400GS (in the following referred to as GeForce), with
2 multiprocessors and 300 MB of global memory. Concerning memory into the
NVIDIA G80 chipset, each thread accesses only 32 registers and each block has
16 KB of shared (cached) memory common to all its threads. Furthermore, as
memory transfer between CPU and GPU is very time consuming, it is prefer-
able to perform all the calculations on data stored in the global memory. The
Tesla card contains 16384 registers, and thus only 512 threads per block should
be active at a time; the number of threads per block has to be chosen between
64 and 512 in order to optimize the block distribution and avoid latency. The
GeForce card contains 8192 registers, and thus only 256 threads per block should
be active at a time; the number of threads per block has to be chosen between
64 and 256 in order to optimize the block distribution and avoid latency.

The serial implementation in such environment has an average execution time
TSEQ = 431.68ms per frame; this accounts for only 2.3165fps, much lower than
the 24fps required for real-time processing of an image sequence. The parallel
processing time TPAR is given by the sum of a sequential time ts (elapsed time to
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acquire an image from the video and to re-arrange the image data as described
in §3) and a parallel time tp (elapsed time from the start of storage of the
re-arranged image on global memory device to the end of the computation of
the binary evidence image). To compare performance on Tesla and GeForce,
we fix 8 × 8 threads per block (optimal configuration supported by GeForce to
process the considered 720 × 480 image sequences) corresponding to a grid of
180 × 60 blocks, that simultaneously processes BL and BS . On GeForce TPAR

is 280.13ms, consisting of ts = 3.73ms and tp = 276.40ms, while on Tesla TPAR

is 20.55ms, with ts = 3.73ms and tp = 16.82ms. It turns out that achieved
speedups as compared to serial time TSEQ (1.6x for the GeForce and 20x for
the Tesla) can be considered satisfactory, although the implementation with
GeForce still does not allow for real-time execution. Indeed, the implementation
on GeForce achieves 3.57fps, while that on Tesla 48.64fps. Other experiments on
720× 480 image sequences have been carried out on the most performing Tesla
GPU varying the number of block threads, in order to measure the overhead
given by block scheduling as shown in Table 1. The number of active blocks per

Table 1. Parallel times TPAR (in ms), Speedups, and fps on Tesla for image size
720 × 480 and different configurations of Block and Grid sizes

Block size Grid size TPAR Speedup fps

8 × 4 180 × 120 22.63 19.07x 44.18
8 × 8 180 × 60 20.84 20.70x 47.97
16 × 8 90 × 60 20.55 21.00x 48.64
16 × 16 90 × 30 22.19 19.45x 45.05
20 × 8 72 × 60 20.86 20.68x 47.91

multiprocessor depends on how many registers per thread and how much shared
memory per block are required for a kernel, since the multiprocessor registers and
shared memory are split among all the threads of the active blocks. Allocating
more threads per block is better for efficient time slicing, but the more threads
per block the fewer registers are available per thread, which might prevent the
kernel invocation from succeeding.

Further experiments have been done varying the size of the image sequences
to assess the extent to which the requirement of real-time processing (24fps) is
guaranteed. Results on 720× 480 , 960× 720 and 1200× 960 image sequences,
with an average execution serial time TSEQ = 431.68ms, TSEQ = 862.94ms and
TSEQ = 1430.30ms per frame, respectively, are reported in Table 2(a). Finally,
we have designed an OpenMP implementation that parallelizes the algorithm on
the 8 cores of our CPU through the definition of 8 independent threads working
on data stored on shared memory. The parallel processing time (Table 2(b))
reduces 6 times: multicore architecture gets better performance with respect to
GeForce 8400GS, even if the real time requirement is not yet satisfied.
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Table 2. Parallel times (ms), speedups, and fps on (a) Tesla and (b) OpenMP

(a) Tesla

Image Size Block size TPAR Speedup fps

720 × 480 16 × 8 20.55 21x 48.64
960 × 720 8 × 8 40.96 21x 24.9
1200 × 960 16 × 8 65.41 21.8x 15.2

(b) OpenMP implementation

Image Size TPAR Speedup fps

720 × 480 76.42 5.64x 13.08
960 × 720 152.08 5.67x 6.57
1200 × 960 254.25 5.62x 3.9

5 Conclusions

We have described a dual background approach to stopped object detection in
digital image sequences based on self-organizing neural networks, proposing a
data parallel algorithm, which is specifically suitable for SIMD architectures.
Parallel performance of our CUDA implementation with two different GPUs has
been analyzed, concluding that with the Tesla C1060 GPU significant speedups
can be achieved as compared to our serial implementation, allowing for real-
time stopped object detection. Further experiments have been carried out in
order to check different configurations of the parallel implementation, varying
the number of threads, the number of pixels per thread, the number of blocks
per multiprocessor and the size of image sequences, also making comparisons
with an OpenMP implementation.
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Abstract. We present GPU-to-CPU callbacks, a new mechanism and
abstraction for GPUs that offers them more independence in a hetero-
geneous computing environment. Specifically, we provide a method for
GPUs to issue callback requests to the CPU. These requests serve as
a tool for ease-of-use, future proofing of code, and new functionality.
We classify the types of these requests into three categories: System calls
(e.g. network and file I/O), device/host memory transfers, and CPU com-
pute, and provide motivation as to why all are important. We show how
to implement such a mechanism in CUDA using pinned system mem-
ory and discuss possible GPU-driver features to alleviate the need for
polling, thus making callbacks more efficient with CPU usage and power
consumption. We implement several examples demonstrating the use of
callbacks for file I/O, network I/O, memory allocation, and debugging.

1 Introduction

Microprocessor architectures are becoming ever more complicated. Even now, the
world is moving in the direction of System-on-a-Chip (SoC), wherein the CPU
and many specialized cores reside on one common die. With an SoC, systems will
inevitably contain more cores than can be concurrently powered. The heat and
wattage demands will be such that only a fraction of the cores can run at a time.
There is no reason the CPU should not be able to idle or power off while other
cores stay functional. Right now, this is impossible because the CPU controls
many functions of the machine and is the only core to do so.

There is no insurmountable challenge to having another core, such as the
GPU, be capable of managing aspects of a machine. In fact, we contend that the
GPU should be able to access hard drives, communicate with network controllers,
make other various system calls, and even wake up a sleeping CPU. As of right
now, the graphics driver does not allow this, and would require a significant
amount of work from driver architects to properly implement.

For now, the concept of a machine controlled by the GPU is attractive, if for
no other reason than a CPU often need only sit idle while the GPU is working.
In fact, users often split long GPU kernels into multiple smaller kernels simply
because CPU intervention is necessary for one reason or another, typically to
make a system call or transfer memory from the CPU to the GPU.

In this paper, we detail a new mechanism that allows the GPU to execute
system calls and control the CPU, and we provide a library that wraps this

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 365–372, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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functionality via callbacks. By using GPU-to-CPU callbacks, our library exposes
a mechanism that allows the GPU to request computation from the CPU, and
that allows these tasks to execute concurrently with GPU kernels. This mecha-
nism demonstrates the new model of GPU programming that allows the GPU
to execute system calls and control the machine.

In our current implementation, callbacks most often do not yield performance
improvements, nor are they meant to. We implemented callbacks for two reasons:
to make code future-proof (as drivers and systems advance, update the callback
library and code runs more efficiently) and to make certain tasks easier, especially
those that use either concurrent compute and memory transfers, or concurrent
CPU and GPU compute. We predict that performance improvements will come
as the GPU driver and system architecture evolve.

2 Existing Methods

Callbacks can used in two ways: the GPU requests some data/computation from
the CPU, or the GPU feeds debugging/checkpointing information to the CPU.
The GPU currently does not request work from the CPU because there are few
mechanisms by which to do so. Instead, most kernels take the data they need,
perform their computation, and leave results in GPU memory. Even though
there are times when logically it makes more sense for a GPU to request work
or data from a CPU, programmers do not write applications this way due to the
restrictions of the GPU.

The second general way in which callbacks can be used is debugging. Many
GPU-debugging tools have been announced recently, including a fully capable
GDB port from NVIDIA called CUDA-GDB [3]. However, CUDA-GDB does
not address the problems that arise through dataflow, when a bug in one kernel
results in erroneous data used by other kernels, which eventually causes a later
kernel to perform incorrectly or even crash. In 2009, Hou et al. used dataflow
recording to debug GPU stream programs [2]. This was a solid start to debug-
ging large applications, but it required users to be able to mark their data, fit
all debugging information on the GPU along with the data, and interpret a
visualization to understand exactly where a problem occurred.

To further address the deficiencies in debugging, NVIDIA ported printf func-
tionality to CUDA as cuPrintf [4], which lets developers use console output.
This eased the burden of debugging for many but had the drawback that results
were only printed to stdout upon kernel completion. With long-running kernels
and kernels that crash the GPU, cuPrintf might not function properly.

Stuart and Owens [5] created a mechanism to let the GPU execute system calls
using their library DCGN. DCGN relied on concurrent, asynchronous memory
copies from the GPU to the CPU, which are not possible on compute-1.0 ar-
chitectures, are not supported in OpenCL, and are never guaranteed to execute
asynchronously. Furthermore, all calls to the CPU in this work are hard-coded,
precluding implementions of new system-call requests without heavily modifying
the underlying library.
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3 Implementation

We implemented callbacks with 0-copy memory and a polling mechanism. Polling
goes against our motivation of having idle CPUs, but we expect driver innova-
tions to mitigate this. When issuing a callback, the GPU puts a callback request
in 0-copy memory and sets a flag to alert the CPU of said request. The kernel
then either continues with its work, busy-waits on the callback, or finishes exe-
cution and examines the return value of the callback with a future kernel. On
the CPU, our library handles callbacks via polling (modern GPU drivers do not
expose any interrupt/signal capabilities). Once a kernel is invoked, the user calls
one of two functions. Figure 1 shows a basic overview of how the CPU and GPU
interact via callbacks. Calling callbackSynchronize ceases all CPU execution ex-
cept for handling callbacks until both the kernel has finished executing and
all callbacks have completed. The other function, callbackQuery(cudaStream t),
polls the status of the kernel and any active/pending callbacks, but does not
block. A successful return value from callbackQuery implies all callbacks com-
pleted and all kernels finished executing. We provide more details below.

Fig. 1. An overview of callbacks and the CPU-GPU interactions they create. The CPU
initializes the callback library and allocates the pool of 0-copy memory. It then invokes
a kernel and executes callbackSynchronize, and the GPU starts the kernel. Next, the
GPU invokes a synchronous callback and the CPU polls 0-copy memory. Then, the
GPU halts and the CPU executes the callback. Next, the callback finishes. Now, the
CPU sets a 0-copy memory flag to tell the GPU that it handled the callback request.
Finally, the GPU unblocks the calling thread and continues its execution.

3.1 CPU Implementation

Our library provides an API to register callbacks and issue them within a kernel,
as well as a backend that handles callbacks. The user initializes the library by
specifying how many concurrent callback requests the GPU may issue, the maxi-
mum number of parameters for any callback, and the number of CPU threads to
handle callback requests. The library creates a CPU-thread pool and allocates
enough 0-copy memory to hold all concurrent callback requests.
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Once the library finishes initialization, it is ready to register callbacks. To
do so, a user first creates a data structure that contains information about the
callback (parameter type(s), return type, and function address), then registers
the callback with the library and receives a unique handle for use on the GPU
(which can be passed as a kernel argument). After launching all kernels, the user
can either sleep wait or periodically check on the kernels. Both of these must be
done using library-supplied functions and not the functions provided by CUDA.

When the CPU detects a callback request, it passes the parameters from 0-
copy memory to the user-specified callback function. Once completed, the call-
back returns a value which the library gives to the GPU, and sets a flag to
tell the GPU the callback completed. This method works well, even with many
callbacks (on the order of hundreds) in flight.

3.2 GPU Implementation

The user may invoke any number of callbacks in a kernel (though the number
of concurrent callbacks is limited). To do so, any GPU thread invokes callback-
Execute (synchronous callback request) or callbackExecuteAsync (asynchronous
callback request), passing the callback handle and callback parameters. Every
thread that invokes either of these two functions will trigger a callback, so a
conditional is needed when the user only wants specific GPU threads to exe-
cute a callback. The parameters are loosely typed; the compiler will not issue
any warnings when the user passes an incorrect number of arguments, nor when
the parameter types require strong coercion (e.g. int to float), which is handled
implicitly by the library.

When a GPU thread executes a synchronous callback, the GPU thread spins
until the request completes. For performance, we suggest using the asynchronous
version of callbacks whenever possible. If the user executes an asynchronous call-
back, the invokation function returns a handle the user, in their GPU code, may
query or block upon in a manner similar to cudaStreamQuery and cudaStream-
Synchronize (again, these function are host functions, though the functions we
provide are device functions). This allows the CPU and GPU to overlap work
without stalling the GPU.

Whenauser invokesa callback, the librarycoerces theparameters to their correct
types andmoves themto0-copymemory.The function identifier is also set in 0-copy
memory, and then a threadfence() is executed to ensure that the writes to 0-copy
memory are flushed.The library returns a handle for querying orwaiting.When the
user executes a synchronous callback, the function implicitly waits on the handle
until the callback is complete. Blocking works by spinning on a region of 0-copy
memory until the CPU signals that the specific callback is complete.

To guarantee an upper bound on the number of concurrent callbacks, the
library simply uses a queue of freely available “slots.” We borrow the notion of
slots from DCGN, but instead of explicitly requiring a slot identifier, the library
uses an atomicly guarded queue to obtain the next available slot and mark
previously unavailable slots as available again. When no slots are available, the
library will spin wait. We experimented with a version of callbacks that required
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explicit slot identifiers (similar to DCGN) but found that slots make sense for
communication patterns in DCGN but are often cumbersome and unnecessary
for general-purpose callbacks.

4 Tests

We categorize callbacks into three types of combinable requests: system calls,
overlapping CPU and GPU compute, and overlapping compute and memory
transfers. The most interesting to us is system calls because it shows how pro-
grammers will leverage the GPU when it gains such an ability and no longer
requires a user-level library to mimic that ability. System calls also allow for
command line I/O such as printf, a very useful tool during the development and
debugging cycle of any application.

A useful callback library must have three characteristics: an ability to scale,
an acceptable response time, and be easy to use. Scalability is important because
a GPU has many thread processors and the situation may arise that each thread
processor has an outstanding asynchronous (or synchronous) callback. As such,
it is important for the library to work well when dealing with one callback
request or tens-to-hundreds of callback requests. An acceptable response time
is important because each millisecond spent on a callback represents numerous
FLOPs of wasted compute. And like any library, ease of use is important.

We wrote several applications to demonstrate callbacks, our library, and a
proper implementation of each of the above-mentioned requirements, and touch
on three of them: a TCP/IP client and server, a CPU-side memory manager for
the GPU, and a command-line debugging tool that uses printf. All applications
use callbacks and are straightforward to write.

For our tests, we used a GTX 280 running in a machine with a 2.5 GHz Intel
Core 2 Quad and 4 GB of RAM. The machine is running the 2.6.18 Linux kernel,
GCC 4.1.2, the 2.3 CUDA Toolkit, and the NVIDIA 190.53 GPU driver.

4.1 TCP/IP

We wrote a TCP/IP client and server to demonstrate the response time of our
library. Both the client and a server operate in the same kernel1. The configu-
ration uses two blocks with one thread each. This guarantees each thread is run
in a different warp and thus does not deadlock from warp-divergence stalls. The
first thread uses callbacks to create a server socket, accept an incoming connec-
tion, receive a string, and close both the server socket and the receiving socket.
The second thread uses callbacks to create a socket by connecting to the server,
send a string, and close the socket. For reference, the device code for the server
is shown in Figure 2. This code is representative of most callback code, so for
brevity we only show the code for this test and not others.

1 On our test GPU, this was necessary as the GPU only runs a single kernel at a time.
This test also is beneficial as it shows one way to perform interblock communication,
though obviously one would avoid network I/O for such a thing in a real application.
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__device__ void serverKernel(callbackData_t * cdata, callbackFunction_t * funcs)
{
int serverSocket = callbackExecute<int>(cdata, funcs[START_SERVER_CALLBACK],

SERVER_PORT);
int recvSocket = callbackExecute<int>(cdata, funcs[ACCEPT_CALLBACK]);
int bytesRead = callbackExecute<int>(cdata, funcs[RECV_CALLBACK],

recvSocket, 0, 1024, 0);
callbackExecute<int>(cdata, funcs[CLOSE_CALLBACK], serverSocket);
callbackExecute<int>(cdata, funcs[CLOSE_CALLBACK], recvSocket);

}

Fig. 2. The GPU callback code to create a TCP server. callbackExecute requires a
template parameter for the callback return type, a pointer to a callbackData t structure
that contains information about all callbacks registered before kernel invokation, the
handle for the callback to be invoked, and the parameters to the callback.

This test is important because it shows callback performance when there is
little contention, at most two callbacks run concurrently. The GPU version of
this test executes in approximately 2.5 ms, while the CPU version executes in
approximately 1 ms. The slowdown can be attributed to several things, but the
primary reasons are thread-safety mechanisms in the callback library and the
overhead of polling 0-copy memory with active callbacks.

4.2 Memory Manager

We implemented a primitive memory manager and matrix multiplication to
showcase the effectiveness of our library at scale. We make a certain number
of “pages” available to any number of blocks. Each block uses a callback to
request an adequately-sized page to hold three large, square matrices from the
CPU. Once the CPU responds, the block generates two random matrices, stores
the product of the two, then issues a callback to free the page (the result is
essentially ignored). It is possible that every block is stalled waiting for the CPU
to return a page, thus providing details on our library’s performance with many
concurrent callbacks. While this test is trivial and the GPU often would not
work on random data, the test is important because it grants a wish for many
GPU programmers: dynamic memory allocation from the GPU during runtime2.
Because a kernel can request new memory while running, and the request goes
to the CPU, users are free to implement a heap as complicated as necessary to
accomplish their tasks. This is prohibitively difficult without callbacks.

We varied the total number of blocks from 30 to 20000 and the maximum
number of concurrently scheduled blocks from 30 to 120 (we did this by using
various sizes of shared memory). Our allocatePage and deallocatePage callbacks
each required the use of a lock to either get the next available page or free
a page. The locks affected performance in the worst case, but only slightly.

2 CUDA does not allow any memory management while a kernel or asynchronous
memory copy is running. Many writers of GPU renderers have stated that being
able to use more complex data structures and dynamic memory on the GPU would
be beneficial.
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Our average time to service a callback was under 4 ms, the minimum was under
2 ms, and the maximum was approximately 10 ms.

4.3 Debugging

The last test we wrote was one for debugging, something important with either
a long-running kernel producing erroneous results, or a kernel that crashes. In
either case, the programmer absolutely must find the problem(s) and fix their
code. The current methods are 1) allocate GPU memory for debug information
that the CPU consumes and displays (Hou et al. did this for stream dataflow
debugging), which is very similar to 2) breaking up a kernel into many smaller
kernels and inspect certain GPU variables after each kernel completes, which is
also similar to 3) removing pieces of a kernel, from last line to first line, until the
last executed step is found to be the offending step, 4) use cuda-gdb, which often
times does not behave properly when a GPU crashes, or 5) use cuPrintf, which
only prints to the console upon kernel completion and offers no guarantee of
proper functionality if a kernel crashes before completion or if the user executes
too many cuPrintf statements.

All these options have drawbacks; they are time-consuming to implement,
not guaranteed to work, or require significant refactoring of code. Callbacks
offer a simple method: the user simply inserts synchronous callbacks so the CPU
code will immediately print to the console. The GPU warp halts until the CPU
outputs to the console (and if desired, a global barrier can halt the entire GPU),
guaranteeing the proper execution of printf before the GPU crashes. In fact,
even if the GPU crashes, as long as the callback buffers remain uncorrupted, the
library will still issue the callback, even after it detects a GPU crash.

We would like to point out some notable tradeoffs in using a synchronous
callback to execute printf, and using cuPrintf. cuPrintf will execute quickly,
because it only writes straight to GPU memory, whereas, on a discrete GPU,
the CPU must issue many PCI-e transactions to get the callback’s payload.
However, we contend that this is fine because of the other tradeoff, cuPrintf is
delayed until the end of kernel execution, whereas even synchronous callbacks
execute concurrently with the kernel.

To demonstrate this, we wrote a test wherein each block has a preassigned
memory space on the GPU. The block generates two random matrices and mul-
tiplies them, then invokes a callback to the print out the determinant of the
result. This kernel, when ran with sufficiently many blocks, takes several min-
utes to complete. During execution, we can see the progress of the GPU as each
printed determinant tells us that another block has finished execution.

5 Conclusion

As we have shown, callbacks offers several advantages to users. Perhaps the most
important advantage is that code that uses our library is now future-proof (all
one must do is use an updated version of the library that takes advantage of new
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GPU advancements). As drivers (software) and system architectures (hardware)
progress, kernels that are split or use modified algorithms to work around defi-
ciencies in the GPU hardware and driver require modification. Code that takes
advantage of callbacks simply requires an update to the callback library to use
the new features of the driver and system. This is both in terms of hardware
advancements and software advancements.

We see several avenues for advancement. For hardware, the important ad-
vancement is that of a more tightly-integrated and powerful (not in of FLOPs
but in system control) GPU. AMD is on this path with their Fusion [1] proces-
sors; putting a CPU and GPU on the same die. This is great as it lowers memory
latency (especially 0-copy) and paves the way for more advancements. It is in
these advancements that we hope to see a GPU that can control the machine
and put CPU cores to sleep. In terms of software advancement, a mechanism
that allows the GPU to send signals or interrupts to the CPU would most benefit
callbacks. This is useful as it allows the CPU to be put to sleep and woken up
when either the GPU issues a callback or completes a kernel.
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Abstract. Current GPU programming systems automatically distribute
the work on all GPU processors based on a set of fixed assumptions, e. g.
that all tasks are independent from each other. We show that auto-
matic distribution limits algorithmic design, and demonstrate that man-
ual work distribution hardly adds any overhead. Our Scan+algorithm is
an improved scan relying on manual work distribution. It uses global
barriers and task interleaving to provides almost twice the performance
of Apple’s reference implementation [1].

1 Introduction

Graphics processing units (GPUs) are a compelling platform for High Perfor-
mance Computing (HPC) as they offer multiple times the processing power and
memory bandwidth of modern CPUs. However, GPUs are a rather new HPC
platform and their programming systems are still at an early stage of its devel-
opment. NVIDIAs CUDA and the Open Compute Language (OpenCL) are the
most modern systems currently available, yet they limit algorithmic design with
a fixed work distribution scheme and the lack of global synchronization.

Current GPUs are tiled many-core systems, consisting of tiles of closely cou-
pled processors. We refer to these tiles as multiprocessing elements (MPEs). In
both CUDA and OpenCL, developers must define as many tasks as possible.
These tasks are automatically mapped on the MPEs, which allows for transpar-
ent scalability, but as the mapping order of the tasks is undefined, one cannot use
intertask synchronization. However, intertask synchronization and manual map-
ping of tasks to MPEs is a requirement for complex algorithm. We introduce the
notion of static workgroups, which are similar to CPU threads in the sense that
they process not one task but multiple tasks sequentially. Static workgroups are
implemented by fully occupying the GPU with workgroups and manually map
the tasks to these static workgroups. Using static workgroups in scenarios were
they are of no algorithmic benefit decreases performance slightly, since the auto-
matic scheduling is more efficient than our manual scheduling. However, control
over task mapping allows for easy sharing of data between tasks mapped to the
same workgroup, as data can be kept in fast on-chip memory. For example it
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allows sharing data between matrix multiplication tiles and thereby prevents
reoccurring reads from slow off-chip memory.

Relying on manual work distribution and global synchronization allows for
implementing an improved scan (prefix sums) algorithm. We refer to this algo-
rithm as Scan+. The algorithm is based on the algorithm by Blelloch [2], which
was e. g. implemented by Harris et al. [5] for GPUs. Scan+removes the need
for multiple kernel calls by using global synchronization and interleaves the two
phases of the scan algorithm to allow for higher processor utilization. These
techniques allow a performance increase of about a factor of two.

We experienced with OpenCL and CUDA and measured the performance of
our implementation with a GeForce GTX 280.

The paper is organized as follows. First, Sect. 2 gives a basic introduction in
GPU architecture and Sect. 3 explains the CUDA and OpenCL programming
model. The next section introduces our concept of static workgroups and shows
its performance with a basic matrix multiplication. We show both the overall
performance decrease compared to a standard CUDA implementation with au-
tomatic work distribution and the speedup to demonstrate that manual work
distribution allows for good scalability. Section 5 describes the Scan+algorithm
and its benefits compared to the well known algorithm. The paper finishes with
related work and a conclusion in Sects. 6 and 7, respectively.

2 GPU Architecture

GPUs are considered to be one of the first many-core architectures with hundreds
of slow in-order cores not providing decent single thread performance. The cores
are organized in tiles, meaning subsets of the processors are bundled together.
These architectures allow for fast communication and synchronization within the
tile, but communication between processors of different tiles is rather slow. On
current GPUs, communication between tiles must be done using off-chip mem-
ory. In NVIDIA hardware these tiles are called streaming multiprocessors. We
continue to refer to these tiles as MPEs and call a single processor a processing
element (PE). On GPUs, PEs are oversatured with threads and the hardware
uses this oversaturation to hide memory latency. The number of threads that
can be executed at once depends on a set of factors, e. g. the number of regis-
ters required by a thread and the number of registers available in the hardware.
Detailed rules can for example be found in [4]. The hardware used for our mea-
surements has 30 MPEs with 8 PE each.

3 OpenCL/CUDA Programming Model

In this section we give a brief introduction to the OpenCL programming model.
CUDA’s programming model is almost identical to that of OpenCL and mostly
differs by names. We use the OpenCL names throughout the following sections,
even for programs written in CUDA. In OpenCL the GPU (called compute de-
vice) is exposed to the CPU (called host) as a co-processor with its own memory
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subsystem. The host launches special functions on the device called kernels,
which are similar to main functions in CPU programs.

Kernel execution is done in an SPMD fashion with normally up to hundreds
of thousands of microtasks (called workitems in OpenCL). Microtasks must be
bundled together in (data parallel) tasks called workgroups. All workitems in one
of these groups can be synchronized and share fast on-chip memory called local
memory. A set of workgroups is scheduled to a MPE, which than executes these
groups in parallel. How many workgroups a MPE can execute in parallel depends
on the hardware and the kernel, as described before. If there are more groups
than the hardware can execute in parallel, an external queue is generated and
a group from the queue is executed after another one has completed execution.
The order in which the workgroups are scheduled is undefined. User can therefore
e. g. not have one workgroup wait for completion of another one, since this can
result in a deadlock. Furthermore, a global barrier is not possible, since it is not
guaranteed that all workgroups are currently active.

In the following section we enhance the programming model to give users
access to the scheduling of the workgroups and also allow for global barrier
synchronization.

4 Static GPU Threads

In OpenCL the mapping of tasks (workgroups) to the hardware is intransparent
to the user. We now introduce so called static workgroup or MPE threads that
compute not only one task but multiple – static workgroups are therefore similar
to CPU threads. To implement static workgroups one must identify how many
workgroups can be executed at the device at once and than only start this
amount of workgroups, so the device is fully utilized and no workgroup is in the
external queue. Unfortuatly OpenCL does not allow this to be queried, so the
developer must rely on hardware dependent code calculating this number.

One may implement different scheduling schemes to distribute the tasks to the
static workgroup, for example a static scheduling can be implemented with a loop,
which indexes depend on the (static) workgroup index. However, one may also
decide to implement forms of dynamic scheduling using an atomically incremented
counter. Without static workgroups, both CUDA and OpenCL do not allow users
to specify the work scheduling and expect tasks all of the same size or it may result
in poor performance. Furthermore static workgroups allow for synchronization of
workitems in different blocks, so it is e. g. possible to have a global barrier for all
workitems, since all workitems are active at the same time.

However as the current programming systems do not natively support static
workgroups, using them results in more complex programs, as even static schedul-
ing requires an additional loop. More complex kernel may increase the register
pressure, which can decrease overall performance. Figure 1 shows matrix multi-
plication performance implemented in CUDA. The non-optimized version runs
the well known blocked matrix multiplication algorithm that is also being used in
NVIDIA’s CUDA SDK sample. We can see that the implementation using static
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Fig. 1. GTX 280 Matrix multiplication performance (matrix sizes 4800*7200*4800)

threadblocks scales linearly up to the 30 MPEs and oversaturation the MPEs in-
creased performance as well. The overall performance is slightly below that of
the SDK implementation. This is the result of the overhead being added by us-
ing static threadblocks, however as we can see the overhead is rather small. We
have implemented an optimized version that shares data in local memory between
tasks. This version calculates not one tile with one static workgroup at a time, but
interleaves the computation of two tiles and thereby can utilize the shared mem-
ory more efficiently. See figure 2 for an example. The blocks that are in the same
row in the result matrix C require the same data from A, so interleaving reduces
the amount of data that must be fetched from off-chip memory.

Fig. 2. Optimized blocked matrix multiplication

5 Scan+Algorithm

In this section we first introduce the CUDA parallel prefix sums implementation
suggested by Harris et al. [5] and afterwards outline a way of how this algorithm
can be improved using static workgroups. We end this section with a performance
comparison to Appel’s OpenCL implementation of Harris work.

All prefix sums – also known as scan – is an important parallel building block
used in a wide variety of algorithms. Scan takes an input array [x0, x1, ..., xn−1]
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and a binary associative operator + with the identity I as input and returns
[I, x0, (x0 + x1), ..., (x0 + x1 + ...xn−2)]. Harris et al. suggested a work-efficient
implementation for CUDA, which subdivides the whole array into blocks and
uses workgroups to perform a local reduction in every block.

The local reduction is split into two phases: first the up-sweep phase and after-
wards the down-sweep phase. The array access pattern in both phases is based
on a balanced tree. During the up-sweep phase the tree is traversed from the
leaves to the root computing partial sums. In the down-sweep phase the tree is
traversed from the root to the leaves using the partial sums to compute the miss-
ing elements. Figures 3 and 4 show the algorithm in detail. After the up-sweep,
the block sums of every workgroup are written to an auxiliary array (SUM). In
a second kernel, SUM is scanned and in a third kernel, the result of the scan are
used to update the originally array, so it contains the final result. We identify
two major performance problems:

1. This algorithm requires 3 kernel calls in the best case. In case more than
1024 workgroups are used, we must recursively apply the algorithm to scan
the SUM array. This complicates implementation by a great deal and every
kernel call also imposes overhead to the CPU.

Fig. 3. Up-sweep phase

Fig. 4. Down-sweep phase
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2. Except d = 0 in the up-sweep and d = maxLevel in the down-sweep phase,
only a fraction of workitems are active.

We suggest a solution for both problems, by using static workgroups. Figure 5
shows our solution to the first problem. As you can see, the whole computation
is done with one kernel call. We subdivide the input array into as many blocks
as we use static workgroups and have every static workgroups scan its part. We
subdivide every block in smaller blocks and perform the scan identical to the one
used by Harris et al. on these sub blocks. After the scan is complete, every static
workgroups writes its result out to a SUM array. Note that the number of static
workgroups does not depend on the input size of the array, which reduces the
size of the SUM array. The SUM array is scanned by the last static workgroup
to finish its part of the input array. We identify the last block by atomatically
increment a shared counter in global memory. A global barrier is placed, so all
other static workgroups wait until the work of the last workgroup is completed.
The barrier is implemented following a wait→ notify all concept. One counter is
being used to identify the last block reaching the barrier. The last block notifies
all other blocks by setting a flag. After the barrier, the final array is updated.
We refer to this version solving problem 1 simply as V1.

Our approach to solve problem 2 is to execute both phases in parallel. Fig-
ure 6 shows this in detail. We refer to this version as Scan+. Executing both
stages in parallel results in a higher workitem utilization in every step of the up-
and down-sweep phase and thereby decreases the time it takes to compute both
phases. In the first step one workitem has to execute an instruction of both the
up- and down-sweep phase, but in every other step there is up to one task for
each workitem. Figure 7 shows the performance of both V1 and Scan+in compar-
ison with Apple’s implementation. Scan+outperforms Apple’s implementation in

Fig. 5. Global overview of the Scan+algorithm
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Fig. 6. Overlapping both scan phases

Fig. 7. GTX 280 scan performance

almost all cases. All three version use shared memory padding to prevent shared
memory bank conflicts and unrolled loops to increase performance.

Our implementation is mostly limited by register pressure. If hardware would
provide us with more registers, we could e. g. implement global memory prefetch-
ing as it has been suggested by [4] to increase our performance further. The per-
formance is also limited by the strict synchronization primitives made available
by OpenCL. Synchronization within a workgroup is only possible with a classic
barrier, meaning every workitem of the workgroup has to reach the same bar-
rier. However, NVIDIA hardware allows for finer grained synchronization [6] with
barriers of which only a subset of workitem of a workgroup have to participate.

6 Related Work

Our implementation of the scan algorithm is based on Harris et al.’s work [5] and
gains from their optimizations. Xiao et al. [8] studied fast barrier synchronization
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between threadblocks. Their fastest implementation differs to our solution by
using arrays of counters. Stuart et al. [7] have implemented a MPI like interface
for cooperate work of multiple MPEs. In previous work [3], we have showed
that sharing data between work groups in OpenCL is also beneficial for the Cell
Broadband Engine.

7 Conclusion

In this paper, we demonstrated that manual work distribution on GPUs in-
creased flexibility in algorithm design, which can result in increased performance.
We introduced the notion of static workgroups to effectively allow manual work
distribution and evaluate its overhead compared to the native work distribu-
tion based on matrix multiplication. As a result there is hardly any performance
difference between automatic and manual work distribution. Manual work distri-
bution however allows for more flexibility in algorithm design, including global
synchronization. We used the parallel execution of two tasks in one static work-
group and global synchronization to improve the scan performance by almost a
factor of two. Future work will identify the strength and weaknesses of manual
work distribution in different algorithms and different hardware architectures.
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Abstract. Current parallelizing and optimizing compilers use techniques
for the recognition of computational kernels to improve the quality of
the target code. Domain-independent kernels characterize the compu-
tations carried out in an application, independently of the implemen-
tation details of a given programming language. This paper presents
streaming-oriented parallelizing transformations for irregular assignment
and irregular reduction kernels. The advantage of these code transforma-
tions is that they enable the parallelization of many algorithms with little
effort without a depth knowledge of the particular application. The ex-
perimental results show the efficiency on current GPUs, although the
main goal of the proposed techniques is not performance, but assist the
programmer in the parallelization for a better productivity.

Keywords: Stream programming, domain-independent kernels, auto-
matic parallelization, hardware accelerators, GPGPU.

1 Introduction

The development and maintenance of applications that make efficient use of
modern hardware architectures is a complex and time consuming task even for
experienced programmers. Parallel application lifecycle costs are highly depen-
dent on the hardware advances, especially in domains that change as fast as
the GPUs (Graphics Processing Units). The use of GPUs for general purpose
computation (or GPGPU ) is becoming more relevant because of the increasing
computational power and low cost of last-generation GPUs. However, from a pro-
grammability standpoint, CPUs have many advantages over GPUs due to the
existence of standard programming languages like C++ or Java, very powerful
tools for software development and debugging, and well-known parallel program-
ming APIs like OpenMP. Nowadays, GPU programming is more complicated as
it requires using special languages (like OpenCL [9], NVIDIA’s CUDA [12] or
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ATI’s Brook+ [1]) which often expose hardware features or limitations that re-
strict the flexibility of GPU programs.

Recently, tools for the parallelization of sequential codes for modern GPUs are
beginning to emerge. An OpenMP -like semiautomatic approach targeting regular
codes as well as read-only irregular computations has been proposed [11]. A step
forward towards automatic parallelization for these platforms is a C -to-CUDA
parallel code generator for sequential affine (regular) programs based on the
polyhedral model [6]. Despite these advances, the automatic parallelization of
irregular applications for GPUs remains a great challenge.

Parallelizing compilers for multiprocessors address irregular applications by
recognizing domain-independent computational kernels [5] (e.g. inductions,
scalar reductions, irregular reductions and array recurrences) and by applying
appropriate parallelizing transformations [8,3]. The main contribution of this
paper is the proposal of streaming-oriented parallelizing transformations for the
well-known domain-independent kernels called irregular assignment and irregular
reduction. Our strategies combine inspector-executor techniques, loop versioning
and loop unrolling. A performance analysis using the Brook+ language for GPU
programming is also presented. Brook+ is well suited for the streaming model
that we are going to use in this work.

This paper is structured as follows. Section 2 describes the domain-indepen-
dent irregular kernels and Section 3 presents the parallelizing transformations
for a stream programming model. Section 4 describes our tests and shows the ex-
perimental results on a GPU. Finally, section 5 summarizes the main conclusions
and future work.

2 Domain-Independent Irregular Kernels

Multiple definitions of computational kernel have been proposed in the lit-
erature in the context of automatic program analysis. In this work we use
the domain-independent concept-level computational kernels recognized by the
XARK compiler framework [5], which proved to be a useful tool for automatic
parallelization of procedural and object-oriented programming languages [4], as
well as for data locality optimization [2].

Domain-independent kernels (or simply kernels from now on) characterize
the computations carried out in a program with independence of the program-
ming language. These kernels do not take into account domain-specific problem
solvers. Well-known examples are irregular assignment and irregular reduction,
which will be described next.

2.1 Irregular Assignment

An assignment kernel consists in storing a value in a memory address. Within a
program, this address can be accessed by a scalar variable, a memory pointer or
an indexed variable, typically an array. Thus, an irregular assignment (see Algo-
rithm 1) may be represented by a loop that computes a sentence A(f(i)) = e(i),
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where A is the output array, f is an indirection array that introduces an un-
predictable access pattern at compile-time, and e is an expression. Neither the
right-hand side expression e(i) nor any function call within it contain occur-
rences of A. As a result, unless f is a permutation, output data dependencies
will appear at run-time. This kernel can be found in application fields such as
computer graphics, finite element applications or sparse matrix computations.

2.2 Irregular Reduction

The distinguishing characteristic of the reduction kernel is that the value stored
in a memory address is computed using its previous value. The most popular one
is the scalar reduction (see Algorithm 2), v = v ⊕ e(i), where the reduction vari-
able v is a scalar,⊕ is the reduction operator and e(i) is a loop-variant expression
whose value is not dependent on v. Scalar reductions appear in financial appli-
cations or statistical methods to obtain information of a sample, like the mean
value. They are so common that programming languages usually provide some
built-in support. An irregular reduction, A(f(i)) = A(f(i))⊕ e(i), is character-
ized by the use of an indirection array f that selects the locations of an array
A to be updated (see Algorithm 3). Note that in this kernel loop-carried output
and true data dependencies may appear at run-time. Irregular reductions are
very common in many complex scientific applications and adaptive algorithms.

3 Parallelizing Transformations for the Streaming Model

In this section we describe streaming-oriented parallelizing transformations for
irregular assignments and irregular reductions targeting current GPUs.

3.1 Irregular Assignment

In the literature, parallel irregular assignments for multiprocessors follow two
main approaches. First, loop-partitioning oriented techniques [10] split the iter-
ation space among processors and privatize the output array A. However, this
technique is not of practical use on GPUs because memory requirements will
grow proportionally to the number of threads (one copy of A for each thread),
which limits its scalability and performance. Second, data-partitioning oriented
techniques [3] split the iteration space and the output array A, reordering the
loop iterations in order to balance the workload among the processors. Hereafter,
we propose a data-partitioning oriented parallelizing transformation based on the
inspector-executor model tuned for a streaming model.



384 J. Lobeiras et al.

The inspector-executor technique analyzes the contents of the indirection ar-
ray f at runtime to determine which set of loop iterations must be assigned
to each processor to avoid write conflicts. As shown in Algorithm 4, the in-
spector generates a table ins table to store the last loop iteration that writes
to each element of A. Algorithm 5 shows the executor, which uses ins table
to determine whether each element of the output array A remains unchanged
(ins table(i) = 0) or will be updated (ins table(i) > 0) in iteration ins table(i).

Finally, some performance issues are briefly discussed. First, a given access
pattern is often reused during the execution of an adaptive irregular application
(this is called reusability). In this case, the extra cost of the inspector is amortized
over several calls of the executor. Second, our inspector minimizes the cost of
the executor by performing run-time dead code elimination, which removes any
loop iterations that compute values of A overwritten in higher iterations.

3.2 Irregular Reduction

Techniques based on loop-partitioning and data-partitioning have also been pro-
posed for irregular reduction parallelization in multiprocessors. In the scope of
GPUs, we propose an inspector-executor technique that uses loop versioning and
loop unrolling to efficiently exploit the available resources. The inspector code
is shown in Algorithm 6. The goal is to create a table ins table that stores all
the iterations writing to a given element of A. First, the indirection array f is
analyzed (lines 1-8) to compute the degree of contention, that is, the maximum
number of writes to the same element of the output array A. Then, the de-
gree of contention max cont is used to statically allocate memory for ins table
in the GPU. Note that, in contrast to irregular assignments, all the iterations
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that contribute to an element need to be stored. Next, the executor presented
in Algorithm 7 is called to compute the parallel reduction. A set of conflict-
free iterations can be assigned to each processor using ins table. In the CPU
each thread will compute a portion of the iterations, while on the GPU each
thread will be assigned the reduction of a single location of A. This adaptation
is only beneficial for streaming architectures because they heavily depend on
multithreading techniques to hide memory access latencies. The GPU can also
benefit from the use of both loop versioning and loop unrolling (see lines 11-24),
storing the information on one or more SIMD short vectors (like float4 or int4 )
which can be fetched in a single memory access.

4 Performance Evaluation on a GPU Using Brook+

Our test platform is composed by a Phenom II X4 940 processor running at 3.0
GHz, 4 GB DDR2 800 CL5 memory, a 790X chipset based motherboard and a
Radeon 4850 GPU. The software setup is WinXP x64 operating system, using
MS Visual C++ 2005 compiler (x64, release profile) and Catalyst 9.12 driver.

As the programming language we use Brook+ 1.4 [1], a C extension for AMD
GPUs that exposes a stream programming model [7], designed to encourage and
exploit a high degree of parallelism without significant compiler effort. In this
paradigm the same function is applied to a set of inputs in parallel, producing
another set of outputs, but there should be no overlapping between the input
and the output data to prevent race conditions. The data inputs and outputs of
a streaming kernel are called streams and each thread can only write to a certain
location of the output stream, otherwise the performance is greatly reduced.

4.1 Benchmark Suite

We designed several benchmarks to analyze the performance of the GPU using
our streaming-oriented parallelization strategies. In the irregular assignment test
Asig Irr, the data of a matrix is updated using an indirection array whose values
were generated using a uniform random distribution. As the number of indirec-
tions is equal to the size of the input, it is very likely that several iterations will
try to update the same output address. To simulate a moderate computational
load, the right-hand side of the assignment adds 100 integer numbers.

In the irregular reduction test Red Irr, a matrix is updated by adding a value
to those matrix locations specified by an indirection array generated using an
uniform random distribution, thus again it is highly probable that more than
one reduction will be performed on many of the matrix locations. The number of
reductions for a given location can be easily estimated by a binomial distribution
B(N, 1/N). As in the previous case, in order to simulate some computational
load, the reduction function will add 100 integers. Figure 1 shows an implemen-
tation using Brook+ of the executor method for the irregular reduction kernel. It
presents a general version for any degree of contention (gpu executor), as well as
a specialized version for degrees of contention less or equal to (gpu executor f4)
that uses float4 data type.
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Fig. 1. Brook+ versions of the executor for the irregular reduction kernel

Table 1. Execution time (in sec.) and speedup for the 2048 × 2048 problem size

Benchmark CPU 1P (Original) CPU 2P (OMP) CPU 4P (OMP) GPU (Brook+)

Asig Irr
R0 71.44 − 37.20 (1.9x) 22.94 (3.1x) 10.59 ( 6.7x)
R100 71.38 − 25.83 (2.8x) 12.70 (5.6x) 0.91 (78.4x)

Red Irr
R0 75.09 − 65.69 (1.1x) 44.81 (1.7x) 29.98 ( 2.5x)
R100 75.12 − 41.09 (1.8x) 19.97 (3.8x) 1.28 (58.7x)

4.2 Performance Analysis

Here we analyze the performance of the proposed parallelization techniques on
a GPU and on a multi-core CPU using OpenMP. The tests were run in single
precision for matrices of sizes 512× 512, 1024× 1024 and 2048× 2048, repeating
each test 100 times to obtain meaningful times for the smaller problems. The
computational cost of the tests tends to be deliberately low to study a worst case
GPU scenario. Table 1 summarizes the execution times obtained in the tests
using a 2048× 2048 problem size as well as the respective speedups enclosed in
parentheses. The time measured for the GPU includes the inspector and the data
transfer of the analysis table between the CPU and the GPU. The execution of
each inspector requires about 0.10 sec. for the Asig Irr test, while the Red Irr
test requires about 0.25 sec. due to the additional memory and complexity.

Figure 2 shows the speedup of the two kernels for several problem sizes and for
several reusability degrees (R0 if the inspector is not reused, R10 if it is reused 10
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(a) Irregular assignment (b) Irregular reduction

Fig. 2. Performance analysis of domain-independent irregular kernels

times, and R100 if it is reused 100 times). Under the same conditions of problem
size and reusability, GPU performance is always better than the CPU, but for
a good performance there should be some reusability in both cases. Otherwise,
the execution time of the additional analysis required by the inspector stage
is proportionately high. In the GPU, even a small reusability degree is able to
compensate for the memory transfer times.

In the irregular assignment (Figure 2(a)) the optimal GPU performance is
obtained for a 1024 × 1024 input. If there is no reusability, both architectures
lose speedup as the problem size increases. The OpenMP implementation has
superlinearity for the irregular assignment kernel because with the increase in
the number of cores, the problem fits better in their caches. Also note that our
inspector implementation is performing runtime dead code elimination, so the
parallel execution can avoid computing some of the iterations.

Figure 2(b) shows the speedups for the irregular reductions. Although the
speedups are not as remarkable as in the case of the irregular assignment, the
parallelization is still beneficial. The reason behind this lower speedup is the
additional bandwidth required by the inspector table in the GPU. Observe that
in this case, the bigger the problem size, the more speedup the GPU is able
to achieve over the CPU. In the GPU, every thread within a wavefront must
execute the same code, so a certain degree of computing power will be wasted
if the degree of contention is uneven. In problems where the contention has
a large variance, the lookup table could be stored in a sparse matrix format
like CRS (compressed row storage), however, accessing the data in the executor
would require an additional indirection level, which according to our experiments
lowers the efficiency on the GPU.
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5 Conclusions and Future Work

This paper proposes streaming-oriented parallelizing transformations for two
widely-used domain-independent computational kernels: the irregular assign-
ment and the irregular reduction. The strategy hinges on the inspector-executor
model to split the iteration space and the output array with irregular access pat-
tern. It also takes advantage of loop versioning and loop unrolling to exploit the
hardware of the GPU. The paper proposes a performance evaluation on a GPU
using Brook+ and an OpenMP -based multi-core implementation. The results
show good performance even in codes with low arithmetic intensity and irregu-
lar memory access patterns. Due to the complexity of GPU programming, peak
performance is not the goal of this work. Rather our contribution is centered on
maximizing the programmer productivity thanks to the described parallelization
techniques. As future work we intend to study the parallelization of other less
common kernels and port our work to other languages like OpenCL or CUDA.
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Abstract. Krylov space methods like conjugate gradient and GMRES
are efficient and parallelizable approaches for solving huge and sparse lin-
ear systems of equations. But as condition numbers are increasing poly-
nomially with problem size sophisticated preconditioning techniques are
essential building blocks. However, many preconditioning approaches like
Gauss-Seidel/SSOR and ILU are based on sequential algorithms. Intro-
ducing parallelism for preconditioners is mostly hampering mathematical
efficiency. In the era of multi-core and many-core processors like GPUs
there is a strong need for scalable and fine-grained parallel precondition-
ing approaches. In the framework of the multi-platform capable finite
element package HiFlow3 we are investigating multi-coloring techniques
for block Gauss-Seidel type preconditioners. Our approach proves effi-
ciency and scalability across hybrid multi-core and GPU platforms.

Keywords: Parallel preconditioners, multi-coloring, Gauss-Seidel,
multi-core CPU, GPU, performance analysis.

1 Introduction

Solution methods for linear systems of equations fall into direct methods like
LU decomposition or FFT, and iterative methods like splitting methods (Ja-
cobi, Gauss-Seidel, SSOR), Krylov space methods (CG, GMRES) or multigrid
solvers. For iterative methods the number of iterations for reaching a prescribed
error tolerance depends on the structure of the iteration matrix, in particular
on its eigenvalues and condition number. Preconditioning techniques are used to
influence the structure and the spectrum of the matrix. On the one hand, the
number of necessary iterations shall be reduced, on the other hand extra work
for solving additional linear systems shall not outweigh associated benefits.

In the era of multi-core and many-core computing particular emphasis has
to be put on fine-grained parallelism within preconditioning approaches. In this
work we consider node-level preconditioning techniques on hybrid multi-core
CPU and GPU platforms. The impressive power of GPUs originates from pro-
cessing thousands of lightweighted threads on huge arrays performing uniform
operations and coalesced memory transfers via highly capable on-device data
paths. For many applications the limitations of the PCIe connection to the host
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machine are considerable bottlenecks. Moreover, programmability is a major
challenge for hybrid and heterogeneous computing platforms since extensions by
accelerators introduce different processing models and programming interfaces.

The parallel HiFlow3 finite element package [8] is built on a two-level library
with an inter-node level communication layer based on MPI and an intra-node
communication and computation model: the local multi-platform linear algebra
toolbox (lmpLAtoolbox) [7]. By unified interfaces with backends to different
platforms and accelerators it allows seamless integration of various numerical
libraries and devices. The user is freed from any particular hardware knowledge
– the final decision on platform and chosen implementation is taken at run time.

This paper investigates parallel symmetric block Gauss-Seidel type precondi-
tioning based on multi-coloring techniques for GPU and CPU platforms. It eval-
uates performance and scalability characteristics and shows performance benefits
for three matrix systems on diverse hybrid multi-core CPU and GPU platforms.
Our test scenarios and environments unveil particular behavior with respect to
core and memory configuration. Our approach provides an out-of-the box type
node-level preconditioning approach for general purpose utilization as well as for
use within the complex finite element package HiFlow3 [8].

To our knowledge there is not much work about parallel preconditioning tech-
niques on GPUs in the literature – although it is a highly important topic. In
[5] fined-grained parallel preconditioners and multigrid smoothers are considered
for GPUs. But, the approach is limited to banded matrices based on linewise
numbering of generalized tensor product meshes. Chebyshev type precondition-
ers [1] have the appealing of fine-grained parallelism within basic linear algebra
routines. However, detailed knowledge of the spectrum of the matrix is required
and hence, it is not applicable as a general purpose parallel technique.

2 Parallel Preconditioning Techniques

Due to their work complexity splitting methods are a non-optimal choice for the
solution of huge linear system. However, they play an important role as precon-
ditioners for Krylov space methods and smoothers for multigrid solvers. For the
Poisson model problem on regular grids Jacobi and Gauss-Seidel methods have
an asymptotic complexity of O(N1+2/d) where N is the number of unknowns
and d = 1, 2, 3 is the problem dimension. For Krylov space methods like the
conjugate gradient (CG) method work complexity for solving the model prob-
lem is only O(N1+1/d). By choosing the optimal relaxation parameter SSOR
preconditioning for CG reduces work complexity to O(N1+1/(2d)) [2]. This is
still not the optimal order O(N) like for multigrid methods but this approach
circumvents complex treatment of mesh hierarchies, grid transfer operators, and
limited parallel scalability due to communication imbalance on coarse grids. An
alternative approach is given by algebraic multigrid methods that do not rely
on representations of PDEs or any geometric information. Only matrix struc-
tures and size of matrix elements are analyzed for constructing a hierarchy of
operators. While parallelization of the solution phase is straightforward, this is
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not true for the setup phase [6]. Hence, we concentrate on Gauss-Seidel type
preconditioning. For our investigation we consider the CG-method for symmet-
ric positive definite matrices. Similar to the ILU-preconditioning approach the
relaxed symmetric Gauss-Seidel (SSOR) method is purely sequential. By using
the splitting A = D + L + R for the system matrix A with diagonal matrix D,
strict lower part L, and strict upper part R the SSOR preconditioning within
each CG-step requires solution of the linear system

Mz = r with M =
1

ω(2− ω)
(D + ωL)D−1(D + ωR).

Since D +ωL and D +ωR are triangular systems, the solution procedure is typ-
ically sequential. For structured grids and stencil operations parallelism can be
introduced by red-black or wavefront ordering of nodes which are not applicable
to general matrices and for the latter case has varying degree of parallelism. The
restriction to simple Jacobi preconditioners with M = D is highly parallel but
without positive effect for many linear systems.

An increased level of parallelism can be introduced by block decomposition
of the matrix A as shown in Figure 1 (right). The block diagonal matrix D now
consists of B blocks D1, . . . , DB. Each block row i, i = 1, . . . , B, has i − 1 left
blocks Li,j , j = 1, ..., i − 1 and B − i right blocks Ri,j , j = 1, . . . , B − i. The
block type solution of Mz = r now reads

xi := D−1
i (ri −

i−1∑
j=1

Li,jxj) for i = 1, . . . , B, (1)

yi := D−1
i xi for i = 1, . . . , B, (2)

zi := D−1
i (yi −

B−i∑
j=1

Ri,jzi+j) for i = B, . . . , 1. (3)
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The diagonal blocks Di, i = 1, . . . , B, are square with size bi × bi but bi may
be different for all i. The vectors xk, yk and zk, k = 1, . . . , B, are block vectors
of length bk. The bracket expressions in the right hand sides of (1) and (3) now
consist of i− 1 and B− i matrix-vector products with vector length bj and bi+j .
In total B2 −B sparse matrix-vector products and 3B sparse matrix-inversions
are necessary to compute (1)-(3). For equal block size the degree of parallelism
is bk = N/B. The major difficulty in computing (1)-(3) arises from solving for
the diagonal blocks Di which are non-diagonal itself in general.

The basic idea of the multi-coloring approach is to resolve neighbor depen-
dencies by introducing neighborship classes (colors) such that for non-vanishing
matrix elements ai,j with A = (ai,j)i,j i and j are not members of the same class
(color). A straightforward algorithm for determining the colored index sets is

for i=1,...,N Set Color(i)=0;
for i=1,...,N Set Color(i)=min(k>0:k!=Color(j) for j ∈ Adj(i));

where Adj(i) = {j �= i|ai,j �= 0} are the adjacents to node i [10]. By renumber-
ing the mesh nodes by colors diagonal blocks Di become diagonal itself, B is
the number of colors, and bk is the number of elements for color k. Inversion of
Di then is only a component-wise scaling of the source vector. Due to the data
parallelism of the associated routines on vectors there is no load imbalance even
for varying block sizes (if the number of elements per block is reasonably large).

In the following we consider three different types of preconditioners: sequential
symmetric Gauss-Seidel preconditioner (SGS), parallel block-Jacobi precondi-
tioner with prescribed uniform block size and block-level symmetric Gauss-Seidel
preconditioning for approximate inversion of diagonal blocks (BJ), and the par-
allel multi-coloring symmetric Gauss-Seidel preconditioner (MCSGS). Increasing
the number of blocks in the BJ approach increases parallelism, decreases the level
of coupling, but also decreases efficiency of the preconditioner. The drawback of
the BJ preconditioner is that parallelism is only given by the number of blocks
introduced (degree of parallelism is B). Hence, this approach is not scalable with
respect to the number of cores.

The importance of preconditioning within the CG-method is presented in
Figure 1 (left) by means of three test problem matrices detailed in Table 2.
It shows the speedup factor in terms of the ratio of iteration numbers of the
non-preconditioned system to the preconditioned system.

3 Implementation Aspects

Our collection of preconditioning routines is part of the HiFlow3 finite element
package [8], a generic, modularized and template-based C++ implementation
of fluid dynamic solvers. Under the roof of a MPI-based communication and
computation layer the lmpLAtoolbox provides backends to heterogeneous nodes
built of various processor types like multi-core CPUs (OpenMP-parallel, Intel
MKL, Atlas) and NVIDIA GPUs (CUBLAS and own CUDA SPMV kernels).
Currently, an extension by means of an OpenCL interface and vendor-specific
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approaches is under construction. The whole module will be released within the
framework of the HiFlow3 project [8]. More information on the structure of the
module and its cross-platform portability can be found in [7].

We have tested our three described preconditioning approaches on platforms
detailed in Table 1 and for different matrices taken from [9,11] – see Table 2.
The CG method is either implemented on the CPU or on the GPU. We use start
vector zero, right hand side constant to one, and stop the solver with relative
residual less than 10−6. Preconditioning is performed on the same device with
exception of SGS which is solely executed on the CPU due to its sequential
nature. All computations are performed in double precision. Matrices and all
sub-blocks are stored in compressed sparse row format (CSR). This format is
our favorite choice for general matrix structures, whereas DIA and ELL format
show benefits for particular matrix structures. See [4,3] for SpMV-kernels in
different formats for GPUs. Due to the small number of non-zero elements in
FEM matrices we use scalar code (one row per thread) versions on the GPU (see
[4]) with and without texture caching. Kernel and thread launch times have a
considerable impact on overall performance for small sized matrix problems.

MCSGS relies on a preprocessing step in which the matrix graph is analyzed,
the matrix and vectors are permuted, and decomposed into blocks. The number
of colors depends on the choice of finite elements (Q1, Q2, or others) and mesh
properties. For higher degree elements graph connectivity and number of colors
increases. 3D problems typically exhibit more graph-connectivity than 2D prob-
lems. In the MCSGS approach the amount of data and work per iteration step is
independent of the data decomposition into blocks. As no detailed information
is available on matrix properties we use the relaxation parameter ω = 1.

Table 1. CPU and GPU system configuration: Pa/Pi = Pageable/Pinned memory,
H2D = host-to-device, D2H = device-to-host, 1c/2c/4c/8c = 1/2/4/8 core(s)

Host Device

CPU BW H2D GPU MEM BW [GB/s] D2H
[GB/s] [GB/s] [GB] BT/daxpy/ddot [GB/s]

2x Intel Xeon 4c 8c: 6.14 Pa: 1.92 Tesla T10 4x4 71.8/83.1/83.3 Pa: 1.55
(E5450), 8 cores 1c: 2.62 Pi: 5.44 S1070 Pi: 3.77

1x Intel Core2 2c 2c: 3.28 Pa: 1.76 GTX 480 1.5 108.6/135.0/146.7 Pa: 1.38
(6600), 2 cores 1c: 3.08 Pi: 2.57 Pi: 1.82

1x Intel Core i7 4c 4c: 12.07 Pa: 5.08 GTX 280 1.0 111.5/124.3/94.8 Pa: 2.75
(920), 4 cores 1c: 5.11 Pi: 5.64 Pi: 5.31

4 Performance Analysis

Our performance analysis is performed on three different GPU-based platforms
detailed in Table 1 giving particular information on the system bandwidth. These
configurations and associated results clearly show that not only the internal
bandwidth of the GPU but also the PCIe bus speed and the utilization of the
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bandwidth per core on the CPU need to be considered. Bandwidth values on the
GPU are determined by means of the bandwidth test provided by the CUDA
SDK (denoted by BT), for the vector update (daxpy), and for the scalar product
(ddot). For maximal bandwidth all cores of the CPU need to be active. All our
CPU tests are performed on the dual-socket quadcore Xeon system. Although
the Tesla S1070 provides four GPUs we only utilize a single GPU in all our tests.
Test matrices are listed in Table 2. For the g3 circuit matrix the decomposition
into colors is imbalanced (689390, 789436, 106502, 150 entries per color) while
for both other examples the block distributions have balanced sizes. In general,
smaller matrices (like 3dkq4m2) are better suited for the cache-oriented CPUs.

The MCSGS algorithm shows good scaling properties and load balancing on
the test platforms as it is based on fine-grained parallelism of the BLAS 1 vector
operations and sparse matrix-vector operations in (1)-(3). For a larger number
of unknowns parallelism can be better exploited. As the #colors or #blocks B
stays constant the #cores may be increased with N asymptotically. Since the
algorithm is bandwidth-bound on most platforms it scales with the bandwidth
of the system and hence with core configurations and memory organization.

Table 2. Description and properties of test matrices

Name Description of the problem #rows #non-zeros #colors #block-SpMV

s3dkq4m2 FEM - Cylindrical shells 90449 4820891 24 552

g3 circuit Circuit simulation 1585478 7660826 4 12

L2D 4M FEM - Q1 Laplace 2D 4000000 19992000 2 2

First, we compare the performance of the non-preconditioned CG solver on
our test platforms in Figure 2 - 4. For large matrices we observe that the speedup
of the GPU version over the OpenMP-parallel CPU version is basically due to the
bandwidth difference. The only exception for the GPU is given for the 3dkq4m2
matrix which is so small that the full internal bandwidth of the GPU device
cannot be utilized due to the large number of kernel calls over the PCIe. In all
cases we find that texture caching on the GPU slightly improves performance.
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GPU (TC: with texture caching) for L2D 4M test matrix

Computation of the SGS preconditioning step sequentially on the CPU – while
the CG solver is either performed on the GPU or OpenMP-parallel – emphasizes
the limitations due to Amdahl’s law.

The BJ preconditioning is improving the number of iterations (see Figure 1)
but not in all cases the total time is reduced. The CPU plots in Figures 2-4 show
the BJ results in terms of total CG-solver time for block sizes 32, 16, and 8 and
for a fixed number of eight blocks (B8). For the L2D 4M matrix on the CPU the
best performance is obtained by using BJ preconditioning (see Figure 4) since
the CPU cores are optimized for executing large sequential parts.

On the GPU the multi-coloring MCSGS preconditioning yields the best results
for all test matrices and CPU-GPU configurations due to its inherent scalable
parallelism. Efficiency of the preconditioner is paired with parallel execution
within the forward and the backward step. In MCSGS the number of sparse
matrix-vector operations in the block decomposition increases quadratically with
the number of colors. Therefore, we observe a significant latency for launch-
ing GPU kernels and forking CPU threads as the number of colors increases.
But even in the scenario with 552 SpMV operations per preconditioning step
(s3dq4m2) the speedup over the CPU version is more than a factor of two. For
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small matrices with large number of colors the latency is further increased when
texture caching is used. Therefore, MCSGS is faster without texture caching on
the GPU for the s3dkq4m2 matrix. If the number of unknowns in each color
is small and evenly distributed then even for the single-threaded CPU-case a
significant speedup of MCSGS is observed (see Figure 3). For the L2D 4M ma-
trix SGS and BJ preconditioning give a breakdown in performance on the GPU.
Only the MCSGS preconditioner yields slightly improved results on the GPU.

5 Conclusion

We have tested preconditioning techniques for various matrix problems on hybrid
multi-core CPU and GPU systems. Our investigated multi-coloring technique for
symmetric Gauss-Seidel preconditioning (MCSGS) provides a scalable and fine-
grained parallel approach on the level of basic linear routines. It is a robust
solution and applicable to a large class of problems. Hence it can be used as an
out-of-the-box approach for any FEM matrix. In our test scenarios MCSGS has
delivered best results on both the 2-socket quadcore CPUs and on GPUs. For
the s3dkq4m2 matrix MCSGS preconditioning is speeding up the CG method on
our GPU systems up to a factor of 17.6. Assessment of performance has shown
that the PCIe connection of GPUs is not limiting performance and scalability
for this solution. In our ongoing work we consider an extended set of precon-
ditioners (e.g. Chebyschev, non-sysmmetric cases with GMRES). Furthermore,
preconditioning techniques in a cluster of multicore-CPU and GPU nodes with
parallelisation across several devices is investigated.
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Abstract. FPGAs have the native feature that reduced resource usage
of single operators can be directly translated in additional parallelism.
For floating-point (FP) operators, such reduced resource usage can be
achieved by reducing the mantissa bit width. The work presented here
pursues two objectives: First, the maximum number of operands of a par-
allel dot product architecture is explored experimentally on an FPGA
for different custom precision FP number formats. Given the resources of
this FPGA, it is shown that based on non-pipelined basic FP operators,
a dot product for input vector size 21, 57 and 123 can be implemented for
double-, single- and half-precision, respectively. This corresponds to a re-
spective peak performance of 1, 3.2 and 9.9 GFlop/s. Second, it is shown
that the maximum dot product peak performance as a function of used
precision can be modeled by a function of the form P (p) = c1 + c2 · pc3 ,
given a certain type of FPGA, library and synthesis settings. Fitting ex-
perimental data to this model reveals similarities as well as differences
among generations of devices.

1 Introduction

It is a basic property of FPGAs that free hardware resources can be used to im-
plement additional functional units and thus to increase chip-level parallelism.
Given a specific FPGA, reducing the precision (mantissa bit width) of the FP
number format translates directly into more functional units and, in case this
additional parallelism can be exploited, to improved performance. There is, how-
ever, a trade-off between the effort to be invested in analysis and algorithmic
modifications for minimizing the precision and the resulting performance gain.
Consequently, key to productive algorithm and application development for FP-
GAs are reliable performance estimation schemes. The hardware resource usage
of FP operators on FPGAs depends on many factors, including the architecture’s
total size, the chosen library and pipeline depth, the FPGA architecture and fea-
ture mix, the synthesis tool and its configuration. It is therefore impossible to

� This work was supported by the Austrian Research Promotion Agency (FFG) under
contract 819469 (MixSVM) and by the Austrian Science Fund (FWF) under contract
S10608-N13 (NFN SISE).

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 399–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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extrapolate the performance data reported in this paper to all FPGAs or all pos-
sible constellations. The efforts summarized in this paper should be considered
an initial design space exploration with the precision level as a variable while
most other influence factors are kept constant. While reported hardware resource
usage on FPGAs typically scales linearly with the number of identical functional
units, the same is not true for routing resources (affecting the achievable clock
frequency). When investigating peak performance, it is therefore important to
actually implement designs of a specific size rather than extrapolating from the
basic building blocks.

The main contributions of our work are (i) extensive measurements of peak
performance based on fully synthesized designs up to 100% resource usage on
different FPGAs over a wide range of precisions up to double precision (64 bit)
in single-bit resolution and (ii) a model describing the dot product architecture’s
peak performance as a function of precision. To the best of our knowledge, this
is the most complete investigation to date of a dot product architecture’s peak
performance on FPGAs.

FPGA designs (and libraries) implementing FP arithmetic often favor deeply
pipelined basic operators to maximize clock frequency. This choice boosts peak
performance, but lowers the worst-case performance thereby making sustained
performance less predictable. We have opted to implement our architecture with
unpipelined (combinatorial) basic FP operators. Consequently, the reported peak
performance figures are lower than the ones reported by authors using more
pipelined architectures while our worst-case performance is better.

Paper Outline. Chapter 2 summarizes related work. Chapter 3 describes the
dot product architecture. Based on extensive measurements reported in Chap-
ter 4, we derive a model for the peak performance as a function of precision in
Section 4.1. We close with a summary and outlook in Chapter 5.

2 Related Work

Table 1 gives a compact overview over related literature and the respective num-
ber formats1 investigated. The table reveals that most publications deal exclu-
sively with either double- or single precision number formats. Only [1] also gives
detailed synthesis results for a limited set of custom-precision number formats.

de Dinechin et. al [1] propose an FPGA-based accumulation- and sum-of-
products module for FP numbers. By using the Flopoco code generation tool [5]
and by targeting high-end FPGA platforms, they achieve a fast (up to 416 MHz
for double-precision) and deeply pipelined architecture. Synthesis results are
reported for single modules and for four different FP number formats only. Peak
performance achievable on some FPGA is not documented. The data provided
makes estimation of the total hardware-resources required to implement a large
dot product unreliable.

1 s12e10m stands short for a FP number representation using a 12 bit wide exponent
and a 10 bit wide mantissa, totaling 1 + 12 + 10 = 23 bit.
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Table 1. Floating-point number formats investigated in related literature.

Publication DP SP HP Custom Precision Comments

[1]
√ √

– s10e37m, s7e6m internal fixed-point register

[3] –
√

– – internal fixed-point register: 2-52 bits

[6]
√

– – –

[2]
√

– – – dot product based, blocked DGEMM

[4]
√

– – – dot product based GAXPY

This work
√ √ √

s11e<4..52>m

Lopes and Constantinides [3] propose a fused hybrid (floating- and fixed-
point) dot product architecture for FPGAs. Hardware resource usage and
achieved maximum frequency of their architecture, depending on the bit width
of the internal register are reported for three different dot product vector lengths
only. The single-precision peak performance for a vector length of m=50 is
about 15 GFlop/s (the frequency is not explicitly given) and has a total la-
tency of 80 clock cycles. The worst-case performance for this architecture is
15 [GFlop/s] / 80 [cycles] = 187.5 MFlop/s.

Zhuo et. al [6] investigate different architectures for linear algebra operations
on FPGA. Among the considered operations is also a double-precision dot prod-
uct architecture based on a binary adder tree, which is identical to ours. Different
to this work, the authors limit the size of their architecture by an estimate of
I/O bandwidth to six input operand pairs. Their dot product module for six
operand pairs has a latency of 9 clock cycles and runs at about 170 MHz. This
results in a peak performance of 1.87 GFlop/s and a worst-case performance of
207 MFlop/s.

Langhammer and VanCourt [2] report performance results of a highly par-
allel double-precision DGEMM implementation, using an experimental FP core
builder. The resulting implementation is based on a dot product core very sim-
ilar to our architecture. The implementation achieves a double-precision peak
performance of 47.46 GFlop/s for vectors of length 128 and a latency of 55
cycles, resulting in a worst-case performance of 863 MFlop/s. The authors do
not investigate different number formats nor do they investigate performance on
different FPGAs.

Kestur et. al [4] discuss and evaluate different FPGA architectures to imple-
ment BLAS kernels based on a tree-based dot product core, and compare final
performance figures with CPU- and GPU-based implementations. The authors
use Xilinx’s CoreGen tool to generate fully pipelined FP multipliers and adders,
making their BLAS-core run at a frequency of 100 MHz. The authors report a
peak performance of 3.11 GFlop/s, with a maximum variance of 32% over a va-
riety of problem sizes. They do not mention explicitly the total latency for their
overall architectures. Different number formats or FPGAs are not compared.
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3 Dot Product Architecture

The canonical dot product of two real-valued input-vectors a = [a1, . . . , an]
and b = [b1, . . . , bn] is defined as: < a, b >= aT b =

∑n
i=1 ai · bi. As n can be

arbitrary large, the above formulation requires a dot product operation accepting
arbitrary large input vectors. In case a custom dot product operator accepting
input vectors of length m exists, the dot product can be rewritten as follows:

< a, b >=
n∑

i=1

ai · bi =
� n

m �−1∑
j=0

m∑
i=1

ai+j·m · bi+j·m +
n∑

i=� n
m �·m+1

ai · bi

Our objective is to document and to model the maximum input vector length m
implementable on FPGAs for different FP number formats. We have chosen to
implement m parallel multipliers followed by a pipelined binary tree structure
of adders to sum the products. Our dot product architecture implements a dot
product function accepting 2 vectors of maximum length m input operands each
clock cycle, using FP modules from the FPLibrary2. While the individual FP
modules are purely combinatorial (see Section 1 for the motivation), registers are
placed between basic operators to achieve a pipelined dot product architecture.
The total latency is the depth of the binary adder tree (�log2 m�) plus one
cycle for multiplication and two for pre- and post-conversion of number formats,
respectively. This leads to a total latency of �log2 m� + 3 clock cycles for the
computation of a single dot product of two vectors with m entries.

In detail, the architecture performs the following steps: (i) The input-values
are being converted from the IEEE custom-precision FP number format to the
FPLibrary internal number format. (ii) All m products are calculated in parallel
by m multipliers. (iii) The m products are summed up by a binary adder tree
of depth �log2 m� containing a total of m− 1 adders. (iv) The final dot product
is converted back to the used IEEE custom-precision FP number format.

Assuming a fully filled pipeline, the architecture accepts two new input vectors
and outputs one result every clock-cycle. As computing the dot product requires
2m−1 FP operations, this corresponds to a peak performance of (2m−1) ·fmax
FP operations per second (Flop/s), where fmax is the maximum clock frequency
achievable for the respective architecture.

P = (2m− 1) · fmax (1)

4 Experiments

In the following, we describe the tools used and steps performed to achieve real-
world measurements on the maximum dot product size implementable on a set of
FPGAs. We report measurements on three different types of FPGAs. Our initial
measurements use the largest available Altera Cyclone II device, the EP2C703.
2 http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/(July 30th, 2010)
3 http://www.altera.com/products/devices(July 30th, 2010)

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/
http://www.altera.com/products/devices
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To verify the results obtained, we repeat our measurement using two more recent
devices: the Cyclone III EP3C803 and the Stratix III EP3SL703 . Table 2 gives
details on the available resources for each FPGA. Finally, we develop a model
approximating best the original measurements and verify the model with the
measurements obtained from the two more recent devices.

Table 2. Hardware resources of used FPGAs

FPGA FPGA Logic Feature DSP blocks Emb. Memory
Device Family elements size [9x9bit blocks] [kbits]

EP2C70 Cyclone II 68,416 90nm 300 1,125
EP3C80 Cyclone III 81,264 65nm 488 2,745
EP3SL70 Stratix III 67,500 65nm 576 2,214

We implemented a generic dot product architecture, as described in Section 3,
in VHDL, using VHDL generic statements to achieve a flexible code accept-
ing the number of input-operands and the mantissa bit width as parameters.
We implemented a measurement framework using the TCL scripting language
to generate a large set of possible implementations by setting the parameters
of the VHDL code accordingly. The TCL script initiates synthesis of multiple
implementations of varying size for each chosen FP mantissa bit width and
records reported performance figures. The synthesis tool used is the freely avail-
able QuartusII WebEdition v9.1 4 from Altera. For the optimization goal of the
synthesis, the option ”speed” was chosen. For the rest of the many available
synthesis options, the default options have been used.

Resource Usage vs. Dot Product Size. The first series of measurements targets
the hardware-resource usage of the dot product architecture as a function of
the number of input operands. The chosen architecture requires one additional
adder and one additional multiplier for each new pair of input operands. For
multipliers, the hardware-resource usage is expected to increase linearly until all
available DSP-blocks are consumed. After this point, the synthesis software as-
sembles further multipliers from LUTs, only. This results in more logic elements
per operator and therefore in a steeper increase of total hardware resource usage,
until all hardware resources of the FPGA are consumed and no more operators
can fit. Figure 1 shows the logic elements and DSP blocks used as well as the
maximum achievable clock frequency, when implementing the dot product ar-
chitecture on an Altera EP2C70 FPGA, for double-, single-, and half-precision,
respectively. For each number format, the number of input operand pairs is in-
creased until all available hardware resources are consumed. The logic elements
increase linearly over the whole resource range for single- and half-precision
while there is a visible change in slope for double-precision when all available
DSP blocks are consumed. Table 3 shows the maximum clock frequency and

4 http://www.altera.com/products/software/sfw-index.jsp(July 30th, 2010)

http://www.altera.com/products/software/sfw-index.jsp
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Fig. 1. Dot product hardware resource usage on Altera EP2C70 over dot product size

maximum number of input operand pairs for double-, single-, and half-precision
implementable on the EP2C70 using our dot product architecture. The resulting
peak performance can be calculated according to equation 1.

FPGA Peak Performance vs. Number Format. In this series of measurements,
we identify the maximum dot product size fitting the FPGA for each number
format (i.e. adding another pair of input operands would require more resources
than are available on the respective FPGA). Figure 2 shows the maximum size
and the maximum clock frequency of the dot product architecture over the
range of considered number formats on all three FPGAs (EP2C70, EP3C80,
EP3SL70). According to Equation (1) we can calculate the corresponding peak
performance of our architecture for each mantissa bit width. Figure 3 shows the
resulting peak performance for EP2C70, EP3C80 and EP3SL70, respectively.
The peak performance for all three FPGAs increases with decreasing mantissa
bit width. The peak performance achieved on the EP3C80 is consistently higher
than the one achieved on the EP2C70, thanks to additional hardware resources
and higher clock frequencies. The performance achieved on th EP3SL70 is con-
sistently higher than the one on EP3C80 due to higher clock frequencies.

Table 3. Dot product peak performance on Altera EP2C70 for selected formats

Floating-point max. input fmax peak-performance
number format operand pairs m [MHz] [GFlop/s]

double precision (s11e52m) 21 24.82 1
single precision (s8e23m) 57 28.98 3.2
half-precision (s5e10m) 123 40.42 9.9



Peak Performance Model for a Custom Precision Floating-Point Dot Product 405

Fig. 2. Maximum dot product input vector length over mantissa bit width

Fig. 3. Dot product peak performance measurements and model

4.1 Dot Product Performance Model

We fit the observed data to fractional polynomials of the form P (p) = c1+c2 ·pc3

where p is the precision. Figure 3 shows the peak performance derived from
measured data together with the fits for all three FPGAs. The exponents c3 are
-0.35, -0.33 and -0.24 and the weighted sum of squared residuals χ2 is 1.89, 2.76
and 9.15 for the EP2C70, EP3C80 and EP3SL70, respectively. The maximum
absolute error is about 1 GFlop/s. It is interesting to observe that the exponent
c3 is almost identical for the EP2C70 and the EP3C80 (-0.35 vs. -0.33) while
it differs significantly for the EP3SL70 (-0.24). We conclude that for Cyclone
devices (even spanning different generations), the peak performance of our dot
product architecture scales with the power of about −0.35 of the precision. For
the Stratix III device, we see a higher general performance level, but somewhat
lower scaling (c3 = −0.24).
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5 Conclusions

We have explored the peak performance of a parallel custom precision FP dot
product architecture on FPGAs as a function of the precision (mantissa bit
width). We have chosen to implement our dot product architecture with min-
imum pipeline depth. Compared to other architectures, this results in lower
peak performance figures, but better performance in the worst case when deep
pipelines can not be filled. We provided detailed measurements of the hardware
resources consumed, the maximum clock frequency achieved and the resulting
peak performance on three different FPGAs for mantissa bit widths from 52
bit down to 4 bit. Based on our experiments, the peak performance achievable
as a function of the mantissa bit width can be modeled as a fractional polyno-
mial of order one. The exponent is between -0.35 and -0.24, depending on the
FPGA chosen. With this result, the performance benefit of reduced precision
can be reliably quantified for the devices considered and comparable settings.
We hope that this stipulates work investigating the minimally required FP pre-
cision for selected application’s dot products. Our experiments show that the
custom-precision FP dot product architecture is regular enough to scale up to
almost 100% hardware resource usage on all tested FPGAs. This guarantees that
our model holds even in settings where most of the resources of the FPGA are
used and gives strong evidence that peak performance will benefit directly from
larger FPGAs. Future work will explore the impact of (i) pipelining, (ii) the
behavior of different FP libraries for FPGAs, (iii) the robustness of our results
in terms of synthesis settings, and (iv) the impact of the size of FPGAs on the
performance achieved.
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Foreword

The Workshop on High-Performance Computing applied to Finance (HPCF)
focuses on the computational issues in the solution by advanced architectures
of financial problems, particularly concerning the evaluation of financial instru-
ments, asset and liability portfolio management, measuring and monitoring of
risks and assessment of solvency requirements.

Kontoghiorghes, Nagurney and Rustem – in the year 2000 – in the guest
editorial of a special number of Parallel Computing (in economics, finance and
decision-making)1 stated that “[parallel] computing has evolved into an essential
tool in the solution of complex, large scale problems arising in [...] finance, in
particular. Nevertheless, [...] its potential to solve problems in [...] finance has
neither been fully addressed nor explored.”

This statement is at the moment partially still true for high-performance
computing.

The critical issue is yet the lack of complex valuation systems, for advanced
computing architectures, able to provide “market-consistent evaluation” of val-
ues and risks and to perform timely measurements, as required by markets and
regulations, in order to carry out continuous verification. The development of
such a system requires a strong synergy between high-level theory and high-level
technology, that is a synergy between models and techniques of quantitative fi-
nance, computational schemes and data management. The appropriateness of
data quality and models as well as accuracy and efficiency of computation and
the adequacy of the IT infrastructure are more and more preconditions for an
efficient governance of financial companies and an effective monitoring of market
stability.

The Financial Services Authority (FSA), in a document on Solvency II project2,
stated indeed that to develop, implement and maintain an “internal model”
insurance undertakings must make “a cross-functional team: comprising finance,
actuarial, risk and IT functions” [p. 29. 5.4], and that “an adequate system of

1 Kontoghiorghes, J., Nagurney, A., Rustem, B., Parallel computing in economics,
finance and decision-making - Guest editorial, Parallel Computing, 26 (2000), 507-509.

2 Financial Services Authority, Insurance Risk Management: The Path To Solvency II,
FSA, September 2008.
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c© Springer-Verlag Berlin Heidelberg 2011



410 F. Perla

governance should be carried out by persons with sufficient knowledge of actu-
arial and financial mathematics and [...] able where appropriate to demonstrate
their relevant experience and expertise” [p. 16, 3.19]. Mario Draghi – Governor
of Banca d’Italia – in the Concluding Remarks of year 20073 claimed as well that
“the consolidation of our banking system [...] must be accompanied by a significant
acceleration in the integration of networks, organizational structures, IT systems
[...] to enable banks to manage the new and complex risks.”.

The integration between high-level theory and high-level technology requires
a close collaboration between experts in finance, in modelling, in computational
mathematics and in computer science. In addition, the new banking regulation
(Basilea 2) and insurance and reinsurance regulation (Solvency II) strongly affect
the governance of financial companies, thus requiring decision-makers and regu-
lators to make their own contribution to the design, development and validation
of valuation systems.

From the hardware point of view, a wider spread of high-performance com-
puting can be achieved by exploring new technology solutions that trade off
costs and performance, such as blade systems, cloud computing, gpu computing,
many-core processors and so on.

The workshop aims at providing a forum for researchers and practitioners on
the challenge of fully addressing the potential of high-performance computing to
realize effective systems for the estimation of values and risks that can be used
in a business and industry context.

The contributions of the authors certainly concur both to the advance of
knowledge in the computational finance field and to the effective solution of
financial problems by the application of innovative ideas of other research areas,
such as data processing, numerical analysis and high-performance computing,
and further stimulate the research on these topics.

The choice of invited lectures has been inspired by the main problem of asset-
liability management and in particular by the actual debate on the Solvency II
implementing measures.

The first lecture by Gilberto Castellani and Luca Passalacqua addresses com-
putational problems deriving from Solvency II compliance in the context of Ital-
ian life insurance. They present DISAR (Dynamic Investment Strategy with
Accounting Rules), a relevant example of “internal model” designed for the
monitoring of portfolios of “profit sharing” Italian life insurance policies with
minimum guarantees, linked to “segregated funds”, working on a grid of conven-
tional computers.

The second lecture by Andreas Grothey focuses on asset-liability manage-
ment of portfolio optimisation by large long-term investors. He shows that re-
alistic simulations lead to problems with many millions of unknowns that now
can be really faced-up using stochastic dynamics models on massively parallel
architectures. He reviews some of the results and challenges in this framework.

3 Banca d’Italia, The Governor’s Concluding Remarks - Ordinary Meeting of Share-
holders, 2007 - 114th Financial Year, Rome 31 May 2008.
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Both the contributions represent notable examples of synergy between high-
level theory and high-level technology and meet the requirement of a strong
community of interests between scientific and business and industry context.
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Abstract. We address computational problems deriving from Solvency
II compliance in the context of Italian life insurance. Solvency II re-
quires insurance undertakings to perform market consistent valuation of
technical provisions and continuous monitoring of risks. We examine the
case of profit sharing policies with minimum guarantees, which is the
most diffused type of life policy in Italy. Market consistent valuation of
the complex cash flows generated by these contracts entails modelling of
management actions and the use of numerical techniques in a stochastic
framework, typically Monte Carlo simulation on a fine grained time grid.
Fulfillment of the subsequent highly-demanding computational tasks is
possible only by implementing valuation procedures in parallel and dis-
tributed architectures. In this work we introduce DISAR, a Solvency II
compliant system designed to work on a grid of conventional computers,
and discuss its performances.

1 Introduction

The European Directive 2009/138 (Solvency II) [Dir-09] requires insurance un-
dertakings to evaluate technical provisions in a market-consistent way and to
measure the Solvency Capital Requirement (SCR) with the Value-at-Risk ap-
proach (confidence level = 99.5%, unwinding period = 1 year).

Moreover, insurance undertakings “shall have in place an effective risk-mana–
gement system comprising strategies, processes and reporting procedures neces-
sary to identify, measure, monitor, manage and report, on a continuous basis the
risk, at the individual and at an aggregated level, to which they are or could be
exposed, and their interdependencies” [Dir-09, art. 44]. It is possible to identify
at least five relevant areas that the risk-management system should cover: 1 –
underwriting and reserving; 2 – asset-liability management; 3 – investment; 4 –
liquidity and concentration risk management; 5 – risk-mitigation techniques.

The implications and requirements introduced by the Directive become par-
ticularly compelling when the undertaking calculates technical provisions and
SCR using an “internal model” [Dir-09, art. 112]. The internal model is a system
used by the undertaking to assess risks and determine the overall solvency needs,

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 413–421, 2011.
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ensuring the quality standards indicated by the Directive and subject to the ap-
proval of the national supervisory authority [Dir-09, art. 112-127]. In addition,
the new requirements will have strong impact on the IT function responsibilities,
which, instead of being restricted to hardware and software solutions, shall be
extended to include processes and monitoring of performance and standards.

In such complex scenario, we shall introduce and discuss DISAR (Dynamic
Investment Strategy with Accounting Rules), a computational system designed
for the monitoring of portfolios of “profit sharing” Italian life insurance policies
with minimum guarantees, linked to “segregated funds”. Notice that systems
like DISAR are required also when the undertaking computes the SCR using
the “standard formula”, as presently defined by the Committee of European
Insurance and Occupational Pensions Supervisors (CEIOPS) in the Quantitative
Impact Study 5 (QIS5) [C-10].

2 Life Insurance Policies in Italy

Profit sharing policies with minimum guarantees are one of the most popular
contracts in the Italian life insurance market. In this type of policies benefits
provided to the insured are periodically adjusted depending on the return of a
dedicated fund, the so-called segregated fund (in Italian gestione separata) 1.

As reference example of the profit sharing mechanism, we consider a single
premium pure endowment contract, written at time 0, for a life aged x, with
term T years and initial sum insured Y0. In this case, the benefit YT paid by the
insurer if the policyholder is alive at time T is determined by incrementing each
year the insured sum by a fraction of the interest earned by the insurer in the
segregated fund where the premium is invested. Specifically,

YT = Y0 ·
T∏

k=1

(1 + ρk) , where (1)

ρk =
max {min{βIk; Ik − η} − i; δc}

1 + i
(2)

is the so-called readjustment rate, β ∈ (0, 1] is the participation coefficient, Ik

is the annual rate of return of the segregated fund in year [k−1, k], η is the
minimum annual rate retained by the insurance company, i is the technical rate,
and δc is the minimum guaranteed annual cliquet rate.

The market consistent valuation of the policy must be performed in a stochas-
tic framework where uncertainties are of actuarial and financial type. The valu-
ation principles and the methodological approach are detailed in [DM-05]. The
core of market consistent valuation is the fact that value of the benefits at time
t=0, V0(YT ), can be expressed as the expected value of the payoff at time t = T ,

1 At the end of year 2009 the Italian Supervisory Authority listed 386 segregated
funds, belonging to 76 insurance companies, with the overall amount of statutory
reserves summing up to about 65% of the total life reserves.
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weighted by a suitable state-price deflator. Assuming independence between ac-
tuarial and financial uncertainty, the expectation can be factorised. Finally, the
expectations can then be rewritten with a change of measure, employing the
so-called risk-neutral probability measure Q. Under Q prices measured in units
of the value of the money market account are martingales. Accordingly,

V0(YT ) = EQ

[
YT

e
∫

T
0 rudu

∣∣∣∣∣F0

]
T px = Y T EQ

[
T∏

k=1

(1+ρk) e−
∫

T
0 ru du

∣∣∣F0

]
, (3)

where rt is the instantaneous intensity of interest rate determining the value of
the money market account, Ft is the filtration containing the information about
financial events, T px is the risk-neutral probability that an individual aged x
will persist for T more years (lapse included) and Y T = Y0 T px is the actuarially
expected benefit. Notice that both ρt and rt are Ft-adapted random variables.

A closer inspection of the payoff of the policy in eq. (1) shows that it includes
embedded options, whose underlying is the segregated fund return. The presence
of the options can be made explicit by expressing V0(YT ) using either a put or
a call decomposition [DM-05, p. 91]:

V0(YT ) = B0 + P0 = G0 + C0, (4)

where B0 is the value of a risky investment (base component) and P0 that of
a put option; G0 is the value a guaranteed investment and a C0 that of a call
option, or – in the words of the Directive – the policy guaranteed benefits and
its future discretionary benefits.

For this type of policies the fund return is typically defined by “book ac-
counting rules” which offer several strategic handles to control the return of the
segregated fund and play a key role in the management strategy of the fund it-
self. Due to the complexity of the payoff and the management actions involved,
the valuation processes are performed numerically using Monte Carlo simulation
on a fine grained time grid. Fast evaluations are hindered by at least six differ-
ent factors: 1 – the maturity of policies (about 100 years); 2 – the control of the
investment and accounting strategy; 3 – the computing time required by Monte
Carlo simulation; 4 – the large number of policies involved (typically at the mil-
lion level); 5 – the large number of segregated funds owned by each undertaking;
6 – the large number of securities composing each segregated funds.

3 The DISAR System

DISAR is a system composed by a DataBase Management System and by sev-
eral calculation engines. The methodological asset-liability management (ALM)
framework in which DISAR has been designed is detailed in [CDMP-05] 2.
2 It is a well established framework embedding all principles of modern finance, rooted

in the first works on the market consistent valuation of this type of policies, that date
back to 1994 [DM-94] and acknowledging the guidelines suggested in “New Math for
Life Actuaries” [B-02] and in [DM-05].
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The theoretical framework and the “high technological” infrastructure allow
DISAR to meet the requirements needed for the approval of internal models,
i.e. use test [Dir-09, art. 120], statistical quality standards (art. 121), calibration
standards (art. 122), profit and loss attribution (art. 123), validation standards
(art. 124), documentation standards (art. 125).

DISAR is able to provide (inter alia): the market value of the policies, the
net asset value (NAV) of the ALM portfolio and the corresponding components
(base, call, put and guaranteed); the Value of Business In Force (VBIF); the
overall SCR and its components (interest rate, equity, mortality, etc.).

3.1 Management Actions

The management of the policy portfolio is modelled defining an asset-liability
management ALM strategy, i.e. a set of rules for the actions to be undertaken
by the insurance company until run-off of all policies. The strategy affects:

1. the portfolio of outstanding policies (including expenses);
2. the segregated funds, composed by the assets defining the reference index;
3. an external fund, composed by all remaining assets;
4. a bank account, controlling liquidity positions;
5. the subordinated loan capital.

The set of operations that are performed, either monthly or at the end of each
accounting year, include:

1. cash-flow hedging: defines how benefits and expenses are paid;
2. technical provision and solvency margin calculation: it is performed at the

end of each accounting year;
3. company capital strategy: defines how capital is allocated from the company

to shareholders (and vice versa) and how debt is created/cancelled on the
company balance sheet; it is performed at the end of each accounting year;

4. fund allocation: defines how capital is allocated between the segregated fund,
the external fund and the bank account.

5. asset portfolio management: defines the asset allocation strategies for the
segregated fund and the external fund.

The strategy components are governed by algorithms driven by a set of param-
eters and embody several constraints. For example, the asset portfolio manage-
ment is defined by creating a classification scheme (asset class) for all possible
assets and fixing a range of values for the relative contribution of each class (in
terms of value, duration, etc.). Similarly, a target return for the segregated fund
can be constrained to be constant or indexed to a financial yield prevailing on
the market at that date (e.g. the swap rate for a given maturity).

Since the quantities constrained by the strategy assume values that depend on
the trajectory of simulated market prices, the constraints should be periodically
monitored along the trajectory making proper readjustments when needed. The
monitoring frequency of the constraints strongly affects the overall computing
time since it is required to repeat the valuation of a large set of contracts with
very long maturities.
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3.2 Reduction of Computational Complexity

DISAR achieves a reduction of the computation complexity of the valuations by:

1) decomposing the overall valuation into an actuarial valuation and an ALM
valuation as done in eq. (3): all actuarially expected cash flows Y are com-
puted first and used later as an input for the ALM valuation;

2) performing scenario generation separately from the actuarial and ALM val-
uation; this decoupling allows to use exogenous reference trajectories; more-
over, the simulation of the trajectories can be easily parallelised;

3) performing on the liability side a decomposition of the contracts, followed by
an aggregation of elementary contracts ; these are obtained by decomposing
derivatives in baskets of simpler contracts; this operation is fully information-
preserving and is different from the traditional model-point technique, where
information may be lost;

4) sub-dividing the evaluations to be performed by processing and assembling
“atomic units” or elementary elaboration blocks (EEB), each corresponding
to a given segregated fund, for a given set of parameters.

The above operations allow the implementation of DISAR in a distributed and
parallel computing environment.

3.3 Sources of Uncertainty

Two main types of uncertainty are considered: actuarial risks such as mortal-
ity/longevity risk, surrender risk (lapses), expense risks and financial risks, such
as interest rate risk, equity risk, property risk, credit risk (default and spread
risk), currency risk, inflation risk.

Actuarial and financial risks are assumed to be independent. Moreover, ac-
tuarial risks are assumed to be independent between each other, while financial
risks are possibly correlated. Table 1 reports a list of the main risk drivers with
a corresponding model used for the valuation. The list is not exhaustive since
in DISAR it is possible to choose between different models: for example credit
risk can be modeled either with deterministic credit spreads (as in the “standard
formula” QIS5 approach) or with a suitable stochastic model, as in [DS-99]. Ulti-
mately, the financial uncertainty is described by a vector Z of Brownian motions,
e.g. Z = {Zp

t , Zr
t , ZB

t , Zc,j
t , Ze,i

t }, and a correlation matrix ΣZ .
The number of sources of uncertainties is computationally relevant when com-

puting the capital requirement. For each source of uncertainty s the SCRs is
determined as the impact of a specified scenario on the NAV of the undertaking.
Two scenarios are considered: one where the source of uncertainty is stressed up
to the reference confidence level, and another where the stress is in the opposite
direction. For example, for interest rates, let Δt be the NAV central value, Δu,d

t

the NAV stressed up and down values; then

SCRint.rate = max{Δt −Δu
t ; Δt −Δd

t ; 0} (5)
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Table 1. Financial models

risk driver evolution model

consumer prices dpt = yt pt dt + σp pt dZp
t lognormal model

expected inflation yt = y∞ + (y0 − y∞) e−αy t deterministic

nominal risk-free int. rates drt = α (γ − rt) dt + ρ
√

rt dZr
t CIR model

nominal risk-free disc. factor v(t, s) = A(s−t) e−B(s−t) rt CIR model

risky nominal disc. factors vj(t, s) = Aj(s−t) e−Bj(s−t) η
j
t DS model

credit spreads dηj
t = αc

j(γ
c
j − ηj

t )dt + ρc
j

√
ηj

t dZ
c,j
t DS model

real risk-free rates xt = rt − (yt − σ2
p) stoch. Fisher eq.

equity benchmark dBt = Bt μB dt + Bt σB dZB
t Black-Scholes model

equity prices dSi
t = Si

t μi
S dt + Si

t (βi σB) dZB
t CAPM

exchange rates dCi
t = Ci

t μi
C dt + Ci

t σi
C dZe,i

t lognormal model

For each segregated fund the number of EEB to be performed is then:

Nb = 1(best estimate) + 2×# sources of uncertainty. (6)

Each elementary block can be processed independently from the other, which
allows a trivial parallelisation of the valuation of the different SCRs. Finally, a
dedicated EEB performs the consolidation of the SCRs into the overall SCR.

4 The Computing Environment

DISAR works over a grid of conventional computers. Each node of the grid hosts
a service that activates the computing engine upon request. The components of
the system are the following.

1. A Database Server, hosting a Relational DataBase Management System;
2. A Master Server, hosting the Disar Master Service (DiMaS), that receives

the primary requests from the Clients, defines the elementary elaboration
blocks, estimates the complexity of the elaborations, establishes the elabo-
ration schedule, distributes the elementary requests to the processing units
and monitors the process. If necessary, the Master Service is also able to dis-
tribute the data needed for the evaluations and to collect the results and to
write them into the Database. In addition, the Master Server hosts also the
Disar Consolidation Service (DiConS) that performs the aggregation of the
individual results at higher levels.

3. A set of Computing Units: each unit hosts the Disar Engine Service
(DiEngS) that manages the Disar Actuarial Engine (DiActEng) and the
Disar Alm Engine (DiAlmEng). The Disar Engine Service executes a single
run of either one of the two engines. It may write the results directly to the
Database or return them to the Master Server.
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Table 2. Computing times. No ordering/Ordered refers to the index of complexity.

time Company A Company B
schedule No ordering Ordered Serial No ordering Ordered Serial

monthly 1h 14m 1h 05m 34h 28m 2h 12m 1h 47m 54h 33m
annual 0h 43m 0h 34m 17h 45m 0h 31m 0h 22m 11h 31m

4. A set of Clients, each hosting the Disar Interface (DiInt) that allows to
set computational parameters and monitors the progress of the elaborations.
Moreover, the DiInt allows to start DiConS directly and gives direct access
to the outputs.

5 DISAR Performances

DISAR performances were investigated on two (stylised) Italian life insurance
companies. Company A (B) has a portfolio of about 5 (1) mln policies referred to
30 (30) segregated funds. The number of policies linked to the same segregated
fund ranges from few hundreds to one million (to hundreds of thousands). The
number of representative policies – that is the policies having equal insurance
parameters (same age, sex, etc.) is about 0.35 mln (0.4 mln). In both cases the
maximum time horizon of the policies is 109 years.

The computing grid is composed of 7 heterogeneous computing units for a
total of 32 cores. The Relational DataBase Management System is Oracle server
10g. Connections between units are provided by a LAN with a 1 Gbit HUB
switch. The total number Ntot of processed EEB per company was

Ntot = Ns

[
(1 + 2 na)︸ ︷︷ ︸

DiActEng

+ (1 + 2(na + nf ) + 1)︸ ︷︷ ︸
DiAlmEng

]
+ 1︸ ︷︷ ︸

DiConsEng

,

where Ns is the number of segregated funds, na is the number of sources of
actuarial uncertainty and nf is the number of sources financial of uncertainty
and we let DiAlmEng perform an additional forward scenario used to compute
the intrinsic and time value of the embedded options (see [CDMP-05], p. 22 for
details). In particular, we let na = 2 (mortality + lapses) and nf = 2 (interest
rate + equity), which implied a total of Ntot = 451 EEB per company, of which
150 are of actuarial type and 300 of ALM type, and 1 the (final) consolidation
elaboration. 5000 Monte Carlo simulations were used for each EEB. Stressed
up/down scenarios correspond to the 99.5%-quantile.

In general the optimal scheduling is driven mainly by the differences in com-
plexity of the jobs and by the differences in computing power of the CPUs. In this
application the ordering in complexity has been made using an heuristic index
of complexity, computed on the basis of the time horizon of the evaluation, the
number of representative policies times the number of elementary contracts, the
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Table 3. Reduction achieved

time Company A Company B
schedule Ordered Serial Reduction Ordered Serial Reduction

monthly 1h 05m 34h 28m 31.8 1h 47m 54h 33m 30.6
annual 0h 34m 17h 45m 31.3 0h 22m 11h 31m 31.4

number of assets and asset classes composing the segregated fund and the num-
ber of risk drives. The results obtained are not fully optimal since the ordering
does not take into account the differences in CPU computing power.

Table 2 reports computing times for the two Companies in 4 different hy-
potheses: with a monthly/annual time schedule of the ALM strategy and with
a casual/ordered submission of the jobs. Computing time is all inclusive; in-
put/output Database access time is estimated to be about 6 min. (5 min.) for
Company A (B). Finally, Table 3 shows that, when the jobs are submitted in
order of increasing complexity, the reduction factors achieved are almost equal
to the number of CPUs used, so that the system is almost optimal.

6 Conclusions and Outlook

DISAR has proven to be able to monitor portfolios of profit sharing policies
with minimum guarantees as required by the Solvency II Directive. The grid
architecture adopted for DISAR is effective, easy to implement and easy to
scale. With a small number of non specialised nodes, typical computing times
are at most of a couple of hours.

Since the most time consuming jobs are those processed by the ALM engine
and involve Monte Carlo calculations, a further improvement of the system is
achievable by parallelising the simulations. In fact, it has already been shown that
Monte Carlo evaluation in a similar problem scales linearly with the number of
CPU’s in a “traditional” parallel architecture [CDMP-09]. A promising evolution
under study is to use a mixed GPU/CPU architecture where the GPUs are used
to speed up the generation of the Monte Carlo sample paths and the conventional
CPUs are used whenever a large quantity of data is needed in the calculation.
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Abstract. Multistage Stochastic Programming is a popular method to
solve financial planning problems such as Asset and Liability Manage-
ment (ALM). The desirability to have future scenarios match static and
dynamic correlations between assets leads to problems of truly enormous
sizes (often reaching tens of millions of unknowns or more). Clearly par-
allel processing becomes mandatory to deal with such problems.

Solution approaches for these problems include nested Decomposition
and Interior Point Methods. The latter class in particular is appealing
due to its flexibility with regard to model formulation and its amenability
to parallelisation on massively parallel architectures. We review some of
the results and challenges in this approach, demonstrate how popular risk
measures can be integrated into the framework and address the issue of
modelling for High Performance Computing.

1 Introduction

Asset and Liability Management (ALM) is one of the most important applica-
tions of portfolio optimization. The basic setup is that a large long-term investor
(such as a pension fund or an insurance) has to decide how to invest available
capital into a choice of assets (which may be stocks, bonds, real estate, etc) over
several time periods. In every time period the investor faces liability payments,
but may also receive cash contributions. The problem is to find an optimal invest-
ment strategy that maximised net return, while controlling the risk of defaulting
on the liability payments. Parameters such as asset returns, liability payments
and cash contributions are uncertain, however it is assumed that some informa-
tion about their (joint) distribution is available.

The simplest model of this kind is the Markowitz Mean-Variance model in
which only one period of investment is considered, and all uncertain parameters
are assumed to follow a multivariate normal distribution with known expecta-
tions and covariances. There has been widespread criticism of this model, most
importantly concerning its static nature (which does not take into account ef-
fects due to rebalancing or transaction costs), the implicit assumption of normal
distributions and the use of variance as a risk measure.

In response a multitude of alternative risk models have been suggested, from
simple linear Mean Absolute Deviation through to Stochastic Dominance Con-
straints. As a result research emphasis as shifted to stochastic dynamic models
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that (in principle) allow the use of any return distribution and can be adapted
to a variety of risk measures.

Realistic models need to account for long planning horizons and adequate cap-
ture of the joint distributions of all future events that can influence the return of
the portfolio over the planning horizon. These requirements quickly result in as-
tronomical problem sizes. On the other hand progress on solution algorithms (in
particular Interior Point Methods) and the use of High Performance Computing
techniques have made problems of unprecedented sizes tractable.

The aim of this paper is to present risk-averse ALM models, the challenges
inherent in building and solving them and to show how high-performance com-
puting can be leveraged to overcome these challenges. In the following section we
discuss the features of stochastic programming models for ALM with various risk
measures. Section 3 will give details of solution challenges and HPC approaches
to them, while the final Section 4 will summarise some numerical results.

2 The Stochastic Programming Approach to ALM

Let A be the set of possible investments available over time periods t = 1, .., T .
With each investment j ∈ A and each time period t we associate an (unknown)
return rt,j . Further there are (again uncertain) cash contributions Ct and liability
payments Lt. Denote by ξt = (Ct, Lt, {rt,j}j∈A) the uncertain data in each time
period. The state of the portfolio is denoted by the vector xh

t = {xh
t,j}j∈A, where

xh
t,j is the current position in asset j (i.e. the total capital currently invested in

this asset). Decisions are xb
t , x

s
t , the amount to buy and sell of each asset in each

time period.
The task is to find optimal investment decisions xt = (xh

t , xb
t , x

s
t ) that maxi-

mize expected surplus return at the final time stage subject to cash balance and
inventory constraint. The discrete-time ALM problem is thus

max IE[XT ], XT = (1 − γ)
∑

j∈A xh
T,j

s.t. xh
t,j = (1 + rt−1,j)xh

t−1,j − xs
t,j + xb

t,j (inventory)
Lt + (1+γ)

∑
j xb

t,j = Ct + (1−γ)
∑

j xs
t,j , t �= 1

(cash balance)
L1 + (1+γ)

∑
j xb

1,j = b0

(1)
where γ are the (assumed proportional) transaction costs and XT is the value
of the portfolio at the final time period when converted into cash.

The model describes a multi-stage decision process in which information ξt

becomes available at certain discrete points in time, and decisions xt at time t can
be based only on information available at that point in time (non-anticipativity):

x1 → ξ2 → x2(ξ2)→ ξ3 → x3(ξ2, ξ3)→ · · · ξT → xT (ξ1, . . . ξT ).

Note that in this setting both the data ξt as well as the decisions xt are de-
scribed by discrete-time stochastic process, hence problem (1) is a semi-infinite
optimization problem and as such very difficult to solve.
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The stochastic programming approach to ALM overcomes this problem by
replacing the data process ξt by a discrete approximation ξ̃t. That is at every
stage there are finitely many different outcomes ξ̃t,i. The resulting process ξ̃ can
be visualised by a tree giving the evolution of future data realisation: this is
known as the scenario tree. Let Lt denote the set of all nodes at stage t in the
tree, L =

⋃
t Lt the whole tree and for a given node i ∈ Lt let a(i) ∈ Lt−1 be

the ancestor node. Then the discretised version of (1) reads

max
x

∑
i∈LT

y, (2a)

s.t. xh
i,j = (1 + ra(i),j)xh

a(i),j − xs
i,j + xb

i,j , ∀i ∈ L \ {0}, j ∈ A
Li +

∑
j∈A

(1 + γ)xb
i,j = Ct +

∑
j∈A

(1− γ)xs
i,j , ∀i ∈ L \ {0}

L0 +
∑

j∈A
(1 + γ)xb

0,j = b0

y = (1− γ)
∑

i∈LT
πi

∑
j∈A xh

T,j,i.

(2b)

which is a standard (if large) linear programming problem. With appropriately
chosen matrices Wi, Ti, di (see [6]) the Jacobian for the scenario tree given in
Figure 1 has the given nested bordered block-diagonal form. In particular note
the final constraint in (2b) which stretches over all scenarios and corresponds to
the linking row in the constraint matrix. While it would be possible to substitute
for y in the objective function, thereby eliminating this row, the presence of y as
an explicit variable results in more modelling flexibility and sparser formulations
(cf [6] for details).

The question of scenario generation, that is how to construct a discrete ap-
proximation ξ̂t to ξt in some optimal sense is an active field of research. An
overview can be found for example in [9]. For our purposes it suffices to say that
for every node in the scenario tree, the scenarios described by the successor nodes
need to capture means, variances and correlations (conditional on the current
state) between the |A| different assets. For a realistic model description the size
of the scenario tree quickly reaches astronomical sizes. For a tree with T = 5
stages and a branching factor of 30 at each node (barely enough to capture the
correlation between say, 60 considered random variables describing the evolu-
tion of investments and liabilities), the resulting tree has 24 million scenarios.
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Fig. 1. Scenario tree and resulting structured constraint Jacobian
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Assuming 20 different assets, model (2) would have 1.5 × 109 variables and
5.3× 108 constraints.

2.1 Risk Averse ALM Modelling

The main deficiency of the prototype ALM model in the previous section is
that it only aims to maximise expected excess return, without attempting to
control risk. The standard approach to handle risk follows the suggestion of
Markowitz[12] and uses the variance of the surplus return as a risk measure. In
the Markowitz model the twin contradictory objective of maximizing expected
return while minimizing risk are combined into a single objective

max
x

IE[XT ]− λVar[XT ], (3)

where λ > 0 is a risk-aversion parameter. Using the identity Var[X ] = IE[X2]−
IE[X ]2, the variance of the final wealth can be expressed within model the ALM
model as

Var[XT ] = (1− γ)2
∑

i∈LT

πi(
∑
j∈A

vjx
h
i,j)

2 − y2 (4)

which can be readily incorporated into the formulation (2) leading to a quadratic
programming problem with a block-diagonal Hessian [6].

On the other hand the use of of the variance as a risk measure has been
criticised in various places as being to simplistic. Practitioners often recommend
the use of a von Neumann-Morgenstern type [15] nonlinear utility formulation

IE[U(XT )] (5)

where U : IR → IR is a utility function. Usually U is assumed to be convex and
non-decreasing which corresponds to a risk-averse investor. A popular choice
for U(x) is U(x) = − logx. Konno et al. [10, 11], suggest the use of skewness
(third moment of XT ) in the objective to adequately cover non-symmetrical
distribution of return. Pflug [13] suggests the use of lower-semivariance

IE[XT ]− λ
√

IE[([XT − IE[XT ]]−)2]

for the same reason. As shown in [6] these formulations can be incorporated into
the model (2), at the expense of introducing nonlinear constraint and objective
terms, while keeping the structure of the problem intact.

Stochastic dominance has been suggested as an alternative for risk modelling
by [2]. A random variable X is said to dominate another r.v. y by second order
stochastic dominance (X #ssd Y ) if and only if

IE[u(X)] ≥ IE[u(Y )]

for all non-decreasing concave utility functions; i.e. any rational risk-averse in-
vestor would prefer portfolio X to portfolio Y . In order to use stochastic domi-
nance within ALM models one can define a benchmark portfolio B (whose return
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is a random variable) and only consider investment decisions whose return out-
performs the benchmark by s.s.d.:

max
x

IE[XT (x)] s.t. XT (x) #ssd B
(+ inventory & cash balance constraints)

(6)

It has been shown in [2] that XT #ssd B is equivalent to

IE[(η −XT )+] ≤ IE[(η −B)+], ∀η, (here (x)+ = max{x, 0}). (7)

In the case where the benchmark (which is often sampled from historical data)
has only discrete outcomes {bj}j=1,..,m and XT is given by a discrete distribution
(as is the case in stochastic programming), constraints (7) can be modelled by
the system∑
i∈LT

πisi,j ≤ vj , j = 1, ..., m, si,j ≥ bj −XT,i, si,j ≥ 0, i ∈ LT , j = 1, ..., m

This leads to m constraints that are linking all final stage scenarios (and are
thus of the same form as the final constraint in (2b)).

3 Solution Based on Interior Point Methods

Since their emergence in the 1990’s Interior Point Methods (IPM) have proven
to be among the most efficient methods for solving large stochastic programming
problems and multitude of applications to ALM exist [1, 5, 6, 14]. The reasons
for the success of IPMs on these problems include their applicability to a wide
range of formulations, spanning linear, quadratic and nonlinear models, their
comparative non-sensitivity to large problem sizes (IPMs are in practice observed
to converge in O(log n) iterations, where n is the problem size), and not least the
amenability of the linear algebra operations to parallelisation. In the remainder
of this section we concentrate on the computational complexity of IPMs for
multistage ALM models. A more thorough description of the algorithm can be
found in the above references. For the quadratic programming problem

min cT x + 1
2xT Qx, s.t. Ax = b, x ≥ 0 (8)

the main computational work consists of solving the Newton system

Φ

[
Δx
Δy

]
=
[
ξd −X−1ξμ

ξp

]
, Φ =

[−Q−Θ−1 AT

A 0

]
(9)

where (xk, sk, yk) is the current iterate, ξp = b − Axk, ξd = c − AT yk − sk +
Qxk, ξu = μe − XkSke, X = diag(x1, ..., xn) and Θ = XS−1. For an IPM
applied to the nonlinear problem

min
x

f(x) s.t. g(x) = 0, x ≥ 0

we need to use A = ∇g(x), Q = ∇2f(x) +
∑m

i=1 yi∇2gi(x) in (9). For the ALM
model (2) with the Jacobian as in Figure 1, matrix Φ can be reordered into the
nested double-bordered block-diagonal form shown in Figure 2.
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Fig. 2. Scenario tree and resulting nested bordered block-diagonal augmented system
matrix Φ: highlighted is a matrix block corresponding to a scenario tree node

3.1 Parallelisation and Modelling

As pointed out earlier, the main computational effort in solving the ALM model
(2) by Interior Point Methods consists of the repeated solution of system (9) for
an augmented system matrix Φ with the nested structure displayed in Figure 2.
Rather than solving this system directly it is more efficient to obtain a Cholesky-
like factorisation Φ = LDLT and solve system (9) by successive backsolves with
LT , D and L. Naturally parallelisation efforts are primarily targeted at these
steps. A appealing property of bordered block-diagonal matrices is that by using
Schur complement techniques the factorisation and backsolve operations can
be decomposed into corresponding operations on the diagonal sub-blocks. Since
these sub-block operations are independent they can be readily parallelised.

To exploit the nested structure in Φ in the parallel IPM solver OOPS the
whole matrix is represented by a tree of (simple) bordered block-diagonal ma-
trices, mirroring the scenario tree in Figure 2. Every node of the matrix tree is

1

2

3

4

1,2

3,4

1,2,3,4

Fig. 3. Allocation of processors to ma-
trix blocks

represented by an instance of a structured
matrix object following object-oriented
principles. In this manner linear alge-
bra operations on the root node of the
matrix tree (corresponding to the whole
matrix) are recursively decomposed into
corresponding operations on the leaf node
matrices. Parallelism is dealt with in the
same manner: to every node in the matrix
tree a set of processors Pi is allocated.
Between them the processors in Pi are
responsible for all operations to be per-
formed on this node. This is done by re-
cursively allocating the processors in Pi to the child nodes of the current node
(see Figure 3). The approach has been demonstrated to be scalable up to 1280
processors. Details of the implementation can be found in [7].
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An important consideration is how to transfer the data needed to describe
the problem onto the processors. Two approaches have been used traditionally:
Either the model and data is generated in-situ on every processor; while effi-
cient in execution this requires writing carefully handcrafted code for every new
model. Alternatively, modelling languages such as AMPL[3] are designed to over-
come this problem by providing the user with a descriptive language in which
to formulate the model and automating the task of model generation. None of
the existing modelling languages, however, support parallelisation of the model
generation, creating a major bottleneck. In some of the large ALM problems
solved by OOPS, the model description alone requires upwards of 40GB mak-
ing serial model generation impossible. To overcome this issue OOPS is linked
to SPML (Structure-conveying Parallel Modelling Language), a parallel model
generator[8]. SPML extends AMPL with keywords to indicate model structure.
A preprocessor extracts the model structure, builds processor-sized submodels
and distributes them among the available processor, leaving the local model
generation to be done on each processor independently.

4 Numerical Results

Numerical results on OOPS and SPML have been reported in various papers[5,
6, 4, 16]. We therefore restrict ourselves to some highlights. OOPS was able
to solve an ALM problem with 6 stages, 12.8 million scenarios, and 1.02 × 109

variables on 1280 processors of the 1600-1.7GHz processor machine HPCx in
3020 seconds[4]. OOPS has been applied to various formulations of the ALM
problem reported in this paper such as nonlinear utility functions and stochastic
dominance constrained problems. In most cases solution times in serial improve
(sometimes significantly) on those that can be obtained with the commercial
solver CPLEX. On parallel machines a consistent speed-up of 6.22 – 7.64 on 8
processors has been reported[5] as has been a speedup of 27.5 going from 16 to
512 processors[4].
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Fig. 4. Speedup for OOPS on 1-8 (a) and 16-512 (b) processors

5 Conclusions

We have presented recent approaches to the parallel solution of multistage port-
folio optimization problems using a variety of approaches to model risk. Problems
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of many millions of variables can now be routinely solved on moderate paral-
lel hardware with almost linear speed-up, while the use of dedicated massively
parallel machines makes the solution of problems with 109 variables and more
feasible.
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Abstract. For the analysis of many exotic financial derivatives, the He-
ston model, a stochastic volatility model, is widely used. Its specific pa-
rameters have to be identified from sets of options market data with
different strike prices and maturities, leading to a minimization prob-
lem for the least square error between the model prices and the market
prices. It is intrinsic to the Heston model that this error functional typi-
cally exhibits a large number of local minima, therefore techniques from
global optimization have to be applied or combined with local optimiza-
tion techniques to deliver a trustworthy optimum. To achieve results in
reasonable time, we approach as follows: (1) For the evaluation of the
objective function, we use a Fourier cosine method, optimized for paral-
lelization, and (2) the local/global optimization scheme is carried out on
parallel architectures. Results are reported for a multi GPU server and
a multicore SGI Altix 4700.

Keywords: Heston Model, Calibration, Cosine Method, GPU,
Multicore CPU.

1 Model and Methods

1.1 The Heston Model

The Heston stochastic volatility model [1] relaxes the constant volatility assump-
tion in the classical Black Scholes model by incorporating an instantaneous short
term variance process (CIR)

dSt = r(t)Stdt +
√

vtStdW 1
t (1)

dvt = κ(θ − vt)dt + λ
√

vtdW 2
t v0 ≥ 0

where r denotes the domestic yield curve, vt denotes the stock price variance,
dW i

t are standard Brownian motions with correlation ρ, κ is the the mean re-
version parameter, Θ is the long term level and λ is the volatility of variance
parameter. The variance process is always positive if 2κθ > σ2 (Feller condition).
The characteristic function of the Heston model is analytically available. (see for
example [2]).

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 431–438, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



432 M. Aichinger et al.

1.2 The Calibration Problem

Before complex instruments can be priced, the model parameters pi have to be
calibrated to market prices of liquid instruments, e.g. by minimizing the least
squares error of model prices compared to market prices [2].∑

j

||V Mod
j ({pi})− V Mar

j ||2 → min (2)

where the Vj are single calibration instruments, i.e. European call/put options
with with different strike prices and different expiries. One of the difficulties in
solving the resulting inverse problem is that the market information is insuffi-
cient to completely identify a pricing model, which means that several sets of
model parameters may reproduce the market prices, leading to ill-conditioned
problems and model uncertainty. To overcome the ill-conditioned nature of the
problem, regularization methods can be used to guarantee stable parameters [2].
The corresponding optimization problem, formulated as a minimization prob-
lem of a least squares functional, is not necessarily convex as a function of the
model parameters and is therefore hard to solve. It may happen that several,
even a large amount of local minima exist. Another problem that may arise is
that the objective function may exhibit an extremely ”flat” behaviour such that
even if only a unique minimum exists, a parameter set is accepted as optimal
although it is far away from the true optimum. Two groups of algorithms can be
applied to solve these optimization problems. The first group are locally conver-
gent algorithms which will find a minimum but not necessarily the global one
(e.g. Levenberg-Marquardt). The second group of algorithms are globally con-
vergent, which should theoretically (CPU time going to infinity) be able to find
the global minimum (simulated annealing, particle swarm methods, evolution-
ary algorithms, . . . ) [4]. The disadvantage of the second group is the enormous
amount of computation time in comparison to the algorithms of the first group
to obtain results. Our key idea to overcome this drawback is to take the best
parts of both worlds to improve the quality of the results for the first group and
to speed up the computation for algorithms of the second group. We start with
quasi-random low-discrepancy sequences to get a good coverage of the parameter
space and evaluate the residual function (2) for each of these NI points. After
sorting, a gradient based algorithm (Levenberg-Marquardt) is started from the
NB best points of the initial set. The Levenberg-Marquardt algorithm is an it-
erative technique that locates the minimum of a function that is expressed as
the sum of squares of nonlinear functions. It has become a standard technique
for nonlinear least-squares problems and can be thought of as a combination of
steepest descent and the Gauss-Newton method [9].

Special attention is turned to the stability of the optimal parameters and
of the prices for the exotic instruments obtained under these parameters with
respect to time. Crucial for this kind of algorithm is the fast evaluation of the
residual value as well as the corresponding gradients with respect to the model
parameters.
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1.3 Fast Evaluation of European Style Options and Their
Derivatives

If the model under consideration does not provide an analytic solution for the
European option price efficient numerical methods are required to price Euro-
pean options in order to calibrate the parameters of the model to given market
data.

Starting point is the risk neutral valuation formula

v(x, t0) = e−rΔt
EQ[v(y, T )|x] = e−rΔt

∫
R

v(y, T )f(y|x)dy (3)

where v denotes the option value, Δt is the difference between the maturity T
and the valuation date t0, f(y|x) is the probability density of y given x and r is
the risk neutral interest rate. Some of the state of the art numerical integration
techniques have in common that they rely on a transformation to the Fourier do-
main [7]. The main reason for this is that the probability density function appears
in the integration in the original pricing domain but is not known analytically
for many important pricing processes. Instead, the characteristic functions of
these processes, the Fourier transforms of the respective density functions, can
often be expressed analytically. The density and its characteristic function form
a Fourier pair and the idea of the Fourier-Cosine method [6] is to reconstruct
the whole Fourier integral in - not only the integrand - from its Fourier-cosine
expansion. In the case of European options one ends up with

L[v(x, t0)] = e−rΔt
′N∑
k=0

Re
{

L

[
[φ
(

kπ

b− a
, x

)]
exp
(
−i

kaπ

b− a

)}
Vk (4)

Vk depends on the payoff of an European option at maturity T . L[·] denotes an
operator being id, if the option value or L = ∂

∂pi
if the gradient of the option

value with respect to the ith model parameter should be calculated.

2 Implementation Details

We have implemented the calibration routine on two parallel hardware platforms,
a CPU multicore server SGI Altix 4700 with 256 cores in clusters of four with one
terabyte memory and a GPU server with two C1060 (240 streaming processor
cores) and one GTX 260 (192 CUDA cores) graphic cards from Nvidia, two Intel
E5520 CPUs and 24 gigabyte memory. For parallelization Open-MP has been
used on the SGI machine and a combination of Open-MP and the Nvidia Cuda
framework has been used on the GPU Server.

The key point in programming effective GPU algorithms is the optimal mem-
ory management. We used constant memory (which is read-only but cached)
for look-up tables and ensured that all memory transactions on global memory
are coalesced. Special emphasize has been put on the minimization of memory
transfers between host and global memory since this is bottleneck in terms of
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speed. To achieve the highest performance, it is necessary to get the best com-
bination of the number of registers, the number of threads and the amount of
shared memory. All GPU computations has been performed in double precision
to ensure the accuracy necessary for calibration purposes. However, at this point
in time double precision is much slower than single precision (typically ba a fac-
tor of eight). Switching to new hardware with FERMI technology will probably
speed up the whole algorithm.

On each of our testing platforms the function evaluations for the NI starting
points are distributed between the processing units - GPUs or Cores. Whereas
the parallelization is straight forward in the CPU case, details of the implemen-
tation on the GPU can be found in figure (1). The residuals (2) are sorted on

Fig. 1. Implementation details of the calibration algorithm - a combination of
quasi-random low-discrepancy sequences and a gradient based Levenberg-Marquardt
algorithm

the CPU, and Levenberg-Marquardt algorithms are started from the NB points
with the lowest residuals. Within the Levenberg-Marquardt algorithm, it de-
pends whether the evaluation of the objective function (2) and the derivatives
with respect to the model parameters are again performed in a parallel man-
ner. In the case of the Multicore CPU machine each core is used to perform
a Levenberg-Marquardt optimization and the residual and the derivatives are
computed sequentially. Also in the GPU case, each GPU performs such an opti-
mization but the threads and multiprocessors on each GPU are used to parallelize
the summation in (4).

The main difference in the implementation between the GPU and the CPU is
the number of summands used in (4). To get the best performance on the GPU,
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each thread on each Multiprocessor should be equally busy. Therefore it is advan-
tageous to keep the number of summands N fixed. On the other hand, on a CPU
or a MultiCore CPU, a processing unit can start with the next parameter set after
finishing a valuation task therefore it is advantageous to have a stopping criterion.
We use the absolute value of the characteristic function, i.e. the envelope function
as stopping criterion and abort the summation if |φ(u)| < ε.

3 Results

Market Data
All results presented in this section are calculated for a set of options on the
FTSE-100 index for May 1st 2008. The forward rates (GBP) on that date ranged
between 3.4% p.a. and 4.52% p.a. (continuous compounding).

Evaluation of Points in the Parameter Space
We start with reporting the performance of the first part of our combined al-
gorithm - the evaluation of the residual for a large number of points in the five
dimensional parameter space. As mentioned before, the speed of the calculation
of one option set (different strikes and maturities) is crucial. Therefore we re-
port the performance using the GPU compared with a single core of the CPU of
our GPU Server and using several CPUs on our multicore CPU server in Tab.1.
Starting from NI points we evaluate the objective function for each of these
parameter sets. Increasing NI allows to improve the best residual, as NI1 ⊂ NI2

if |NI2 | > |NI1 | when using quasi-random low discrepancy sequences (here Sobol
points). Unfortunately it is possible that the optimal parameter set violates the
Feller condition.

Table 1. This table shows the average computation time (in milliseconds) for one
option set (256 options) on the GPU (C1060),on a single core of the GPU server, on
three GPUs (2xC1060+1GTX260) and for 8 and 32 cores on the Altix for a fixed
number of summands denoted by N = 512 as well as for an abort criterion denoted by
ε = 10−8

NI CPU-N GPU-N CPU-ε 8-CPU-N 32-CPU-N 8-CPU-ε 32-CPU-ε 3-GPU-N

27 217.24 4.05 15.59 9.46 3.52 1.40 1.42 4.19
28 217.02 3.29 16.29 9.55 2.75 1.41 0.68 2.34
210 216.97 2.85 16.92 9.26 2.39 1.14 0.50 1.30
212 217.03 2.71 17.10 9.27 2.38 1.05 0.47 1.02
214 217.00 2.68 16.96 9.20 2.34 1.03 0.47 0.97
216 216.96 2.67 16.94 9.23 2.33 0.93 0.45 0.95

The Gradient Algorithm and the Feller trap
Next we will focus on the gradient part of the calibration algorithm (Leven-
berg Marquardt). To check whether the analytical derivatives are advantageous
to the numerical ones, calculated via finite difference formulas, we have used
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our gradient based optimization routine. We have started from the following
point in the five dimensional parameter space: (2.5, 0.5, 0.5,−0.5, 2.5) and per-
formed 50 iterations of the Levenberg-Marquardt algorithm (see Tab.2). Again
a major drawback for the performance of the Levenberg-Marquardt is the Feller
condition. Up to our experience, for some of the starting points the algorithm
converges towards parameter sets not satisfying the Feller condition. When hit-
ting the boundary of the area defined by the Feller condition we add/subtract
a small number to move the parameter set to the allowed region - slowing down
the performance of the whole algorithm. As Tab.3 shows this is especially true
for the algorithm using analytic derivatives. Furthermore the values for the op-
timal parameters can be different for each of the methods used for calculating
the derivatives (compare with Tab.2).

Table 2. This table shows the residual and the corresponding calibrated parameter
set using the Levenberg Marquardt algorithm starting from (2.5, 0.5, 0.5, 0.5,−0.5) and
fixing the number of iterations to 50. The different lines correspond to the different
methods for calculating the derivatives with respect to the Heston parameters: analytic
means calculation using (4), bd means using a simple backward difference quotient (first
order), fd means forward difference quotient (first order), cd means central difference
quotient (second order) and cd2 means a higher order central difference quotient (fourth
order).

Method Residual κ θ λ ρ v0

analytic 0.00181063 0.092252 0.486551 0.695210 -0.384361 0.048140
fd 0.00181035 0.090878 0.493407 0.694971 -0.384394 0.048132
bd 0.00181089 0.093595 0.480052 0.695447 -0.384329 0.048147
cd 0.00181063 0.092256 0.486530 0.695211 -0.384361 0.048140
cd2 0.00181063 0.092249 0.486566 0.695210 -0.384361 0.048137

The Overall Calibration Algorithm
Finally we report some results for the whole calibration algorithm - the combi-
nation of the quasi-random low discrepancy sequences and the gradient based
algorithm, the overall performance on our different computing systems and some
comparison with other optimization algorithms. We have used a simulated an-
nealing (SA) algorithm, a direct search simulated annealing (DSSA) algorithm
and a differential evolution (DE) algorithm [4],[5] to get values for comparison.
All of these algorithms give comparable results for the value of the objective
function (2) but the parameter sets are different. The reason for this will be
reported elsewhere [10]. In Tab.4 the results for these global optimization al-
gorithms are reported. Furthermore we have added results obtained with our
combination algorithm and emphasize the enormous advantage in performance
obtained with our method. Table 5 shows the dependence of the residual and
the optimal parameters from the starting points NI and the number of points
NB chosen after sorting to start the gradient based algorithm from.
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Table 3. This table shows the influence of the Feller condition on the results when
starting from a certain point of the parameter space (2.5, 0.5, 0.5, 0.5,−0.5). The num-
ber of iterations for the Levenberg-Marquardt algorithm has been fixed to 20 for these
calculations.

Method Feller y/n Time[s] κ θ λ ρ v0 R

analytic y 286 5.16374 0.0535189 0.743359 -0.656857 0.0532264 0.00317053
analytic n 13 0.490489 0.128122 0.757395 -0.381153 0.0489238 0.00175283
fd y 142 4.94054 0.0557186 0.741914 -0.634476 0.0474512 0.00300541
fd n 24 0.599426 0.117699 0.803694 -0.376169 0.0490682 0.0017445
bd y 40 8.32845 0.0523705 0.926955 -0.409117 0.0488767 0.00341173
bd n 24 0.609957 0.116568 0.805291 -0.37605 0.049105 0.00174367
cd y 65 4.45272 0.0525163 0.682833 -0.66807 0.0522633 0.00321284
cd n 38 0.604866 0.11711 0.804514 -0.376109 0.0490869 0.00174406

Table 4. This table shows results obtained with SA, DSSA, DE and our hybrid method
(HM). For the results obtained with the hybrid method we have used NI = 16384,
NB = 8 and report the parameters of the best three points.

Method Time κ θ λ ρ v0 R

SA > 1h 1.37489 0.0659624 0.42583 -0.521524 0.0442002 0.0026999
DSSA > 1h 3.326651 0.056260 0.609410 -0.528481 0.045514 0.002731
DE > 1h 2.19221 0.0606641 0.515656 -0.52504 0.0442017 0.002674
HM 20s 2.110270 0.060529 0.503548 -0.532090 0.045330 0.002684
HM 20s 2.851548 0.057947 0.574742 -0.512623 0.045789 0.002700
HM 20s 4.487206 0.054525 0.699049 -0.509853 0.045819 0.002808

Table 5. This table shows the residual for different combinations of initial points NI

and Levenberg-Marquardt starting points NB .

NI\NB 1 2 4 8 16 32 64 128

27 0.00441 0.00383 0.00359 0.00353 0.00316 0.00297 0.00293 0.00285
28 0.01350 0.01350 0.00343 0.00306 0.00300 0.00287 0.00287 0.00287
210 0.00394 0.00325 0.00311 0.00311 0.00311 0.00293 0.00288 0.00285
212 0.00311 0.00311 0.00311 0.00299 0.00290 0.00286 0.00275 0.00275
214 0.00286 0.00286 0.00286 0.00286 0.00285 0.00285 0.00283 0.00282
216 0.00286 0.00286 0.00286 0.00286 0.00286 0.00283 0.00283 0.00283

4 Conclusion

We have presented an algorithm for the calibration of the widely used Heston
model which is theoretically capable of finding the global minimum. The combi-
nation of local and global algorithms together with parallelization on GPUs and
CPUs led to a massive speed up compared to global algorithms. Including the
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Feller condition has an enormous impact on the results and the performance -
these problems will be addressed in further investigations.
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Abstract. The problem at hand is the integration of expert forecasts for
plane prices into a fully calibrated basic economy. The economy is sim-
ulated through an Economic Scenario Generator (ESG), which includes
macroeconomic processes, interest rate term structures, etc.. By defining
the available best-case, worst-case, and mid-case forecasts to correspond
to the 95%, the 50% and the 5% quantiles of the plane price distribution,
one could describe the problem with the following optimization setting:

min
(βc,αc,i,δc′,σc,i)

{‖
(

Q
(
(ĨT,S) � P̃ R

c,i,T,S(βc, αc,i, δ′
c, γ′

c,σc,i), q
)
− F̃M

)
� W‖2

F }

The tilded matrices represent simulation results, i.e. they have the di-
mension timesteps T and scenarios S. The function Q(M̃T,S ,q) : R

T ·S ×
[0, 1]q → R

T ·q is mapping a matrix M̃T,S of simulated scenarios with
dimension (T × S) onto each timestep’s quantiles q , resulting in a ma-
trix of dimension T × q. FM is the (T × q) matrix of expert forecasts,
and W is a (T × q) weighting matrix. ‖‖F denotes the Frobenius norm,1

and � is the element-wise multiplication. The economy simulation is
computation-intensive, for which we take benefit of using GPGPU tech-
niques. The optimisation part is also a high-dimensional computation-
intensive problem, for which we use a natural computing approach using
Differential Evolution.

Keywords: Economic Scenario Generation, Plane Price Modelling,
Expert Forecasts, GPU Computation, Differential Evolution.

1 Basis Economy

For the comprehensive modeling of plane prices we use the risklab Economic Sce-
nario Generator (ESG)2 as the basic theoretical framework. This model builds
1 Compare e.g. [3].
2 Compare [11].
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on fundamental macroeconomic factors to describe the evolution of interest rates
and equities. Using a cascade structure, the model captures the long-term eco-
nomic relationships while allowing for short-term deviations. This structural
approach allows for an integrated modeling of financial markets to obtain eco-
nomically meaningful and consistent scenarios. We assume an arbitrage-free,
frictionless financial market in continuous time t ∈ [0, T ∗], where T ∗ is the end
of the given time horizon and the uncertainty in the market is described by
the complete filtered probability space (Ω,F , F, IP). Details on this framework
can be found in [10]. The numeraire is represented by a non-defaultable money
market account defined by P (0, t) =

´ t

0
erN (s)ds, the process {rN (t)}t∈[0,T∗] rep-

resents the nominal short rate. We assume the existence of a probability measure
Q equivalent to IP, under which all discounted price processes of the financial
market under consideration are martingales. Onto this foundation, we impose
the cascade structure mentioned before and explained in the following, to incor-
porate long-term economic dependencies.

The first cascade of the model comprises an inflation process {i(t)}t∈[0,T∗]

and an economic growth process {w(t)}t∈[0,T∗], which are both modeled with
Vasicek processes, introduced in [9]. Under the equivalent martingale measure
Q they are specified as follows:

di(t) = [θi − âi · i(t)]dt + σidWQ
i (t), (1)

dw(t) = [θw − âw · w(t)]dt + σwdWQ
w (t), (2)

with the positive real numbers θi, θw, âi, âw, σi, σw and the independent standard
Brownian motions WQ

i and WQ
w . The third risk factor from the first cascade is

the real oil price, which is directly relevant for plane price modeling. We assume
the real oil price PR

o to follow a geometric Ornstein-Uhlenbeck process under
the real measure IP, which is specified as follows:3

dP R
o (t) = [θo − ao · log PR

o (t)]PR
o (t)dt + PR

o (t)σodWo(t), (3)

with θo,ao and σo as positive real numbers.
The following second cascade contains the real and nominal interest rate pro-

cesses. The real short rate process {r(t)}t∈[0,T∗] is modeled with a two factor
Hull White model. Its dynamics are specified as:

dr(t) = [θr(t) + brw · w(t)− âr · r(t)]dt + σrdWQ
r (t), (4)

with brw, âr, and σr being positive real numbers, θr being a time dependent de-
terministic function and the standard Brownian motion WQ

r being independent of
the Brownian motions mentioned before. The nominal short rate {rN (t)}t∈[0,T∗]

comprises real short rate and inflation short rate, and is obtained as the sum of
real short rate and inflation, i.e.:

rN (t) = r(t) + i(t). (5)
3 See [2] for more information on the geometric Ornstein-Uhlenbeck process.
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The term structure of nominal interest rates can then be derived by the zero-
coupon bond prices obtained from this setting. [11] show, that under the pre-
sented set of assumptions the price of a zero-coupon bond with maturity t <
T ≤ T ∗ is given by:

P (t, T ) = e(A(t,T )−B(t,T )r(t)−C(t,T )i(t)−D(t,T )w(t)), (6)

where

B(t, T ) = 1
âr

(1− e(−âr(T−t))),
C(t, T ) = 1

âi
(1− e(−âr(T−t))),

D(t, T ) = brw

âr
·
(

1−e(−âr (T−t))

âw
+ e(−âw(T−t))−e(−âr(T−t))

âw−âr

)
,

A(t, T ) =
´ T

t (1
2 (σ2

rB(l, T )2 + σ2
i C(l, T )2 + σ2

wD(l, T )2)− θr(l)B(l, T )
−θiC(l, T )− θwD(l, T ))dl.

The model equations can be derived under the real measure IP instead of the
equivalent martingale measure Q using Girsanov’s Theorem, by replacing WQ

i ,
WQ

w , WQ
r with the independent standard Brownian motions Wi, Ww, Wr and

using the parameters ai = âi−λiσ
2
i , aw = âw−λwσ2

w , and ar = âr −λrσ
2
r . The

parameters λi, λw, and λr are obtained by the change of measure, as shown e.g
in [7]. In addition, we assume the Brownian motion Wo(t) to be correlated with
Ww(t) with a constant correlation coefficient ρ > 0. As can be seen, the term
structure of interest rates is driven by the real short rate process, as well as the
underlying macroeconomic factors of economic growth and inflation rates. The
third cascade contains equity assets. The equity prices {SE

t }t∈[0,T∗] are driven
by the following dynamics:

dSE(t) = [αE + bErr(t) − bEii(t) + bEww(t)] SE(t)dt + σESE(t)dWE(t), (7)

where bEr, bEi, bEw, and σE are positive real numbers, αE ∈ R and WE(t) is a
standard Brownian motion, independent of those mentioned above.

2 Plane Price Model

On the basic economy just described, we will impose our model of the plane
price process. As plane prices are dependent on macroeconomic factors, whereas
macroeconomic factors do not depend on plane prices, we follow a two-step pro-
cedure to simulate plane prices. In a first step, we simulate the basic economy
using the risklab ESG, and then impose the plane price process onto the cali-
brated basic economy. Using the methods of dynamic panel data analysis,4 one

4 For a detailed exposition of panel data analysis methods, compare [4]. For log-linear
plane price modeling and the inclusion of age dependency compare e.g. [6].
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can identify the following model describing the real prices in year t of a plane
belonging to class c5 and built in year i under IP:6

PR
c,i(t) = exp(βc + αc,i + ρc · log(1 + PR

c,i(t− 1))

+ δc
′ ·Ac,i(t) + γc

′ ·M(t) + σc,iεc,i(t))− 1,

with the vectors Ac,i(t) and M(t) defined as:

Ac,i(t) :=
(
log(1 + agec,i(t))), (log(1 + agec,i(t)))

2, (log(1 + agec,i(t)))
3
)′

,

M(t) :=
(

w(t), log(1 + PR
o (t)),

1
P (t, TM )

, log
SE(t)

SE(t− 1)

)′
,

and the parameter vectors (βc, αc,i) ∈ R2, δc ∈ R3and γc ∈ R4. As introduced
before, wt is GDP-growth, agec,i(t) is the age of the plane, PR

o (t) is the real oil
price and P (t, TM ) is the price of a zerobond with a notional of 1 currency unit
and one year to maturity, and the residual noise εc,i(t) ∼ N(0, 1).

The nominal plane price PN
c,i(t) can then be obtained by multiplying the real

price PR
c,i(t) with the inflation index I(t):

PN
c,i(t) = PR

c,i(t) · I(t), (8)

where I(t) is the value of the inflation index7 generated by {i(t∗)}t∗∈[0,t] at time
t. With this model, macroeconomic variables obviously have an impact on plane
prices, but not vice versa.

3 Simulation and Calibration

We would like now to integrate plane price model and expert forecasts for plane
prices into the calibrated basic economy. As there is only a one-way dependence,
i.e. plane prices depend on macroeconomic factors, but not vice versa, the first
step of integration is done simply by calculating plane prices given the exoge-
nous factor realizations from the basic economy. However, also the given expert
forecasts on plane prices need to be considered. Usually, one is given best-case,
worst-case, and mid-case forecasts for plane prices. One approach is then to
define these three cases to correspond to specific quantiles of the plane price dis-
tribution, e.g. 5% for the worst case, 50% for the mid case and 95% for the worst
case. Following this approach, one could describe the problem of integrating the
expert forecasts generally by the following optimization setting:8

min
(βc,αc,i,δc′,σc,i)

{‖
(
Q
(
(ĨT,S)$ P̃R

c,i,T,S(βc, αc,i, δc
′, γ′

c,σc,i),q
)
− FM

)
$W‖2F }.

(9)
5 E.g. widebody, narrowbody, etc.
6 For the ease of exposition, we present a reduced model. The generalized model con-

siders several economies with their proper economic processes and linking exchange
rates.

7 Starting with I(0) = 1.
8 In this optimisation, we consider only one build-year. Thus, we set αc,i = 0.
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Fig. 1. Simulated Quantiles and Expert Forecats

The tilded matrices represent simulation results, i.e. they have the dimension
timesteps T and scenarios S. The matrix P̃R

c,i,T,S is for instance composed of the
components:

PR
c,i(t, s) = exp(βc + αc,i + ρc · log(1 + PR

c,i(t− 1, s))

+ δc
′ ·Ac,i(t) + γc

′ ·M(t, s) + εc,i(t, s))− 1.

The function Q(M̃T,S ,q) : RT ·S × [0, 1]q → RT ·q is mapping a matrix M̃T,S of
simulated scenarios with dimension (T × S) onto each timesteps’ quantiles q ,
resulting in a matrix of dimension T × q. FM is the (T × q) matrix of expert
forecasts, and W is a (T × q) weighting matrix9. ‖‖F denotes the Frobenius
norm,10 and $ is the element-wise multiplication.

In our case, best, worst and mid case forecasts are given. So we set q = 3
and q = (0.05, 0.5, 0.95)′. Note that the optimization is only over the parame-
ter vector (βc, αc,i, δc

′, σc,i). This is due to the fact that the parameter vector γc

represents economic relationships, i.e. sensitivities of real plane prices to macroe-
conomic variables and is estimated on empirical data11. Thus, this vector should
not be altered in the course of the optimization. However, the parameter vector
(βc, αc,i, δc

′) controls a deterministic evolution of plane prices over time, and
is therefore predestined to incorporate the expert forecasts. The parameter σc,i

9 One has to take into consideration that the components of the weighting matrix will
be squared when applying the Frobenius norm. As a result, corresponding transfor-
mations should be applied to the weighting matrix when needed.

10 Compare e.g. [3].
11 The parameters were in fact estimated on historical data using a generalized method

of moments following Arrelano and Bover, which can be found e.g. in [4], p. 53f.
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incorporates the experts opinion on quantile spread. Therefore, we face the large-
scale unrestricted optimization problem described above, which we solve using
differential evolution.

The optimization result can be seen in Figure 1 exemplarily for a one plane-
class. The bars show each year’s nominal plane price distribution quantiles, the
dots show the median. The red lines indicate the given expert forecasts consid-
ered in the optimization. The image shows that the plane price simulation using
the optimized parameters matches well the given forecasts.

4 GPGPU Computation

As simulating a large number of scenarios for the Economic Scenario Generator
could be quite computation-intensive, we are making use of the GPGPU tech-
niques to harness the computation intensivity of the basic economy simulation.

GPUs are computation devices that are capable of running a very large num-
ber of threads simultaneously. A key requirement to the efficient use of GPUs
for computation is independence of the running threads. This means the running
threads are not allowed to interact with each others and will be operating on
different data. However, threads are allowed to share data but without I/O flow
dependencies. In the context of GPGPU, the main CPU is also known as the
host, and the GPU devices are known as the device. For these two computation
devices to coexist without intevening with each other’s work, they would need to
maintain separate memory spaces, entitled the host memory and the device
memory respectively.

So, for our application, the simulation of the underlying risk factors represent-
ing the basic economy as well as the plane price process fit nicely to the target
applications of GPGPU techniques. The different processes are data parallel and
computation-intensive. For this purpose, we had to separate the different process
Stochastic Differential Equations (SDEs) into CUDA functions that are follow-
ingly compiled into the instruction set of the GPU device, called kernels in
CUDA parlance.

The simulated scenarios run independently of each other and have no data
dependencies. Since what differentiates the scenarios is the diffusion part of
their stochastic differential equation, which stems from the dynamics of the
corresponding Brownian motion, generating random numbers is a critical part
in our simulation. In addition, the dynamics driving the plane prices and those
driving the growth of the economy are positively correlated (ρ > 0). We generate
the needed random numbers in parallel using a parallel implementation of the
Mersenne Twister (MT) Pseudo-Random Number Generator (PRNG) that
leviates the inherent serial behavior of the Mersenne Twister and allows threads
to generate random numbers in parallel, with good statistical properties. The
resulting speedups from running the kernels in two hardware sets are illustrated
in Figure 2.
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Fig. 2. GPGPU Speedups

5 Differential Evolution

Differential Evolution (DE) is a vector-population-based stochastic optimization
method that was introduced to the public in 1995. It has been widely used since
then and in various domains of applications. Pointers for further reference in this
respect can be found in [5], [8], or [1], among others.

Our parameter vector for the optimisation problem in Setting 9 is composed
of 5 parameters12, namely (βc, σc,i, δc,1, δc,2, δc,3) with δ′c = (δc,1, δc,2, δc,3). At
each iteration, DE compares the current population to a competent population.
A population is the number of parameter vectors assessed at the given iteration.
Hence, at a given iteration k, DE takes the best population from the last itera-
tion and for each individual in the population (target individual), it constructs a
competent individual by taking the difference of two randomly chosen individuals
and adds it to either the target individual or another randomly selected indi-
vidual from the population. Then, a single candidate vector is chosen from the
two individuals uniformally based on a crossover bound (CR) probabililty. The
probabilistic approach for selecting the final vector based on the CR probability
is applied per parameter value individually. The selected candidate is then evalu-
ated and used for the next iteration. The algorithm starts by randomly selecting
a starting vector from the defined boundaries of the optimization problem.
12 Remember that αci = 0.
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Abstract. This work focuses on the development of a parallel pricing
algorithm for Asian options based on the Discrete Wavelet Transform.
Following the approach proposed in [6], the pricing process requires the
solution of a set of independent Fredholm integral equations of the second
kind. Within this evaluation framework, our aim is to develop a robust
parallel pricing algorithm based on wavelet techniques for the pricing
problem of discrete monitoring arithmetic Asian options. In particular,
the Discrete Wavelet Transform is applied in order to approximate the
kernels of the integral equations. We discuss both the accuracy of the
method and its scalability properties.

Keywords: Asian options, Discrete Wavelet Transform, Parallel
Computing.

1 Introduction

The backward recursion that arises in option pricing can be converted into a
set of independent Fredholm integral equations of the second kind by means of
the z-transform. This approach is described in [7] for European, Barrier and
Lookback options and in [6] for Asian options. Moreover, the development of a
grid-enabled pricing algorithm for plain vanilla options is presented in [5].

In this paper we focus on the pricing procedure for Asian options, based on
the randomization technique described in [6]; as authors point out, the pricing
procedure turns out to be computational demanding. Our purpose in this frame-
work is to develop an accurate and efficient pricing algorithm based on wavelet
techniques. In probabilistic terms, most of a wavelet mass is concentrated in a
compact subset of R, that is, one of the main features of wavelets is “localiza-
tion”. This property motivates the use of wavelet bases for data compression:
wavelet coefficients contain local information, thus, if we neglect the coefficient

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 447–454, 2011.
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under a fixed threshold, accuracy can be preserved with a significative gain in ef-
ficiency. Even if most applications of wavelets deal with signal analysis, wavelets
have been applied in the numerical solution of partial differential and integral
equations, and in the approximation and interpolation of data [1]. Much effort
has been indeed devoted to the development of routines that perform the com-
putation of the Discrete Wavelet Transform (DWT) both on serial and parallel
architectures (see, for example, [2] and [4] and references therein).

We project the linear systems which arise from the discretization of the in-
tegral equations onto wavelet spaces in order to obtain a sparse representa-
tion of the discrete operators, retaining information so to preserve accuracy. We
furthermore discuss the parallelization of the pricing wavelet-based procedure.

In Section 2 we briefly describe the pricing method, addressing to existing
literature for details. In Section 3 we introduce the DWT operator. In Section
4 we describe the wavelet-based pricing algorithm we developed, which is tested
in Section 5. Finally, Section 6 deals with the parallel implementation and the
performance analysis.

2 The Randomization Pricing Algorithm

In this section we briefly recall the Asian fixed call randomization pricing al-
gorithm presented in [6]. Authors show that, under the assumption that the
underlying asset evolves according to a generic Lévy process, the price of a call
option with fixed strike K, N equidistant monitoring dates (Δ being the time
interval between them) and maturity T is equal to

e−rT

∫ +∞

−∞

(
S0

N + 1
(1 + ex)−K

)+

fB1 (x) dx (1)

The density fB1 is the key variable: it can be computed exploiting the recursion

u (x, k) =
∫

R

K (x, y)u (y, k − 1) dy, k = 1, . . . , N − 1 (2)

with initial condition u (x, 0) = f (x), where u (x, k) = fBN−k
(x) and K (x, y) =

f(x− log (ey + 1)), being f the transition probability density function from time
t to time t + Δ of the considered Lévy process.

The randomization technique consists in making the expiry date T to be
random according to a geometric distribution of the parameter q and then com-
puting the value of U (x, q) := (1− q)

∑+∞
k=0 qku (x, k). With some manipulations

on (2), we get that the function U (x, q) satisfies the integral equation:

U (x, q) = q

∫
R

K (x, y)U (y, q)dy + (1− q)f (x) (3)

Therefore a recursive integral equation for u (x, k) is transformed into an inte-
gral equation for U (x, q). If we approximate the integral equation (3) with a
quadrature rule with nodes xi, i = 1, · · · , m, we obtain the linear system

u− qKDu = f (4)
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with (u)i = U(xi), (K)ij = K(xi, xj), (f)i = (1−q)f(xi) and D being the diago-
nal matrix of the quadrature weights. The system (4) is the main computational
kernel in the procedure. The unknown function u (x, N − 1), i.e., fB1(x), can be
then obtained by de-randomizing the option maturity exploiting the complex
inversion integral

u (x, N − 1) =
1

2πρN−1

∫ 2π

0

U
(
x, ρeis

)
1− ρeis

e−i(N−1)sds (5)

Approximating (5) with a trapezoidal formula, and applying the Euler summa-
tion, a convergence-acceleration technique well suited for evaluating alternating
series, we obtain

fB1(x) = u (x, N − 1) ≈ 1
2meρN−1

me∑
j=0

(
me

j

)
bne+j(x)

where bk(x) =
∑k

j=0(−1)jajU (x, qj) with qj = ρeijπ/(N−1), a0 = (2(N − 1)(1−
q0))−1, aj = ((N − 1)(1− qj))−1, j ≥ 1, assuming N > ne +me. A sketch of the
pricing algorithm is reported in Fig. 1.

Procedure
• compute K, D and f
• for j = 0, · · · , ne + me, solve the integral equations (I − qjKD)u = f
• reconstruct fB1(x) by means of the solutions of the integral equation

• compute the integral (1)
End Procedure

Fig. 1. Asian fixed call randomization pricing algorithm

3 The Discrete Wavelet Transform

A wavelet ψ(t) is defined as a function belonging to L1(R) ∩ L2(R) such that∫
R

ψ(t)dt = 0. Wavelets have either compact support or the most of information
contained in them is concentrated in a compact subset of R [3]. Each wavelet
basis is derived by a mother wavelet by means of dilation and translation; in
particular, the dilation factor corresponds to a scale within the Multiresolution
Analysis (MRA). Projecting a function onto a space of a MRA allows one to
obtain information about it, depending on the resolution of the space. The map-
ping that leads from the l-th level resolution to the (l − 1)-th level, retaining
the information that is lost in this process, is the Discrete Wavelet Transform.
The aforementioned properties justify the use of DWT for data compression [9]:
wavelet coefficients contain the detail information, thus, if we neglect the coef-
ficients under a fixed threshold, accuracy can be preserved with a significative
gain in efficiency.
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Given a MRA, two sequences (hk)k∈Z and (gk)k∈Z, the low-pass and the high-
pass filters of the MRA, respectively, define a change of level within the MRA.
More precisely, let cl = (cl

n)n∈Z be the vector of the coefficients of the projection
of a function f(t) onto the l-th resolution subspace of the MRA; the DWT
operator W is defined as follows:

W : cl ∈ l2(Z) −→ (cl−1,dl−1) ∈ l2(Z) × l2(Z)

where l2(Z) = {(ck)k∈Z : ck ∈ C,
∑

k |ck|2 < ∞}, cl−1
n =

∑
k∈Z

hk−2ncl
k, and

dl−1
n =

∑
k∈Z

gk−2ncl
k.

In matrix form, if L = (h̃i,j = hj−2i) is the low-pass operator and H =
(g̃i,j = gj−2i) is the high-pass operator, the above relation can be written in the
following way: (

cl−1

dl−1

)
=
(

L
H

)
· cl ⇐⇒

{
cl−1 = Lcl

dl−1 = Hcl

The vector cl−1 retains the information about the low frequencies, while the
filters gk “detect” the high frequencies: so the vector dl−1 contains the details,
that is, the information that is lost passing from the resolution l to the resolution
l − 1. From a computational point of view, it is worth emphasizing that, if s is
the length of the two sequences hk and gk, then the number of floating-point
operations required for the computation of the DWT of a vector of length m is
O(sm).

If Q := (L, H)�, then the DWT of a matrix A is defined as QAQ�. In
practice, the bidimensional DWT is computed in two stages: the product QA
actually requires to transform the columns of the matrix; then, the DWT is
applied to the rows of the intermediate matrix QA. Note that if the wavelet
basis is orthonormal, then the matrix Q is orthogonal, thus QQ� = I.

4 The Wavelet-Based Pricing Algorithm

In this work, we consider the Daubechies Wavelets [3], a family of orthonormal
compactly supported wavelets. Each family of Daubechies wavelets is character-
ized by a fixed number of vanishing moments, from which the amplitude of the
support depends. Our idea is to increase the sparsity of the coefficient matrices
of the linear systems to be solved, so to improve efficiency, by means of a hard
threshold [9] applied to the projection of the discrete operators onto wavelet
spaces, which allows one to better preserve information for the sake of accuracy.

Let us discretize (3) by means of a quadrature rule on a truncated integration
domain [l, u]. The bounds are chosen in such a way that the tails of the density
outside of it are less than 10−8 [6]. Moreover, since f is the transition probability
density of the log-price of the underlying asset, it is reasonable to expect a
decay of the values of f moving towards l or u. For this reason, we expect the
most significant elements of the matrix KD to be localized in a region near
its diagonal, and smoothness away from this region. Let us refer to the pricing
algorithm reported in Fig. 1: in the solution of the linear systems in step 2, we
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apply to both sides the DWT operator Q, so for each value of q we obtain the
linear system, equivalent to (4), (I − qQ(KD)Q�)Qu = Qf . Therefore, if we
denote by KDW ,uW , fW the DWT of KD,u, f respectively, we have:

(I− qKDW )uW = fW (6)

We then apply a hard threshold to the coefficient matrix of (6), thus we actually
solve the linear system:

(I− qKDε
W )y = fW (7)

where KDε
W is the hard threshold of KD with threshold ε. Finally, the inverse

DWT is applied to the solution y of (7), thus an approximation of u, Q�y, is
obtained.

5 Numerical Results

In this section we price an Asian fixed option with 100 monitoring dates, maturity
T = 1 and strike K = 100. The Market data are S0 = 100, r = 3.67% and the
underlying asset is assumed to follow a Jump Diffusion Merton Lévy process
with parameters σ = 0.126349, α = −0.390078, λ = 0.174814 and δ = 0.338796.
We consider a Gauss-Legendre quadrature rule with m = 2048 nodes and three
methods to solve the integral equations: the “standard” quadrature method with
Gauss-Legendre nodes, the wavelet transform method, and the Reichel algorithm
[11], which is a fast solution method for integral equations based on a low-rank
representation of the kernel of the equation. The quadrature rule considered for
the wavelet transform method is the Gauss-Legendre one. We fix ne = 12 and
me = 10.
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Fig. 2. Top-left: approximation error; top-right: percentage of neglected elements in
the hard threshold following the DWT; bottom-left: execution time
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In Fig. 2 we report the results concerning a simulation in which two steps of
DWT, based on Daubechies wavelets with four vanishing moments, have been
performed, for different threshold values ranging between 10−14 and 10−6. In
the top-left picture the absolute error is represented for different threshold lev-
els, considering the results in [6] as exact solution, the corresponding execution
time being represented in the bottom-left graphic. We see that the DWT-based
approach is almost always the most efficient and the approximation error has the
same order of magnitude up to 10−10 threshold level. On the other hand, when
the threshold is in the range 10−10 − 10−6 more than the 80% of the elements
are set to zero, as it can be seen in the top-right graphic, where the percentage
of elements which are neglected in the threshold procedure are reported, for dif-
ferent threshold values. The same behavior has been observed when the number
of DWT steps increases.

6 Parallel Implementation

The performances of our method can be improved using High Performance Com-
puting methodologies. Parallelism has been introduced both in the linear systems
solution process and in the DWT computation. In this section we describe the
parallel algorithm and we present numerical results from the implementation of
the developed software.

As already pointed out, the computation of the bidimensional DWT is per-
formed in two stages; we distribute the matrix KD in a row-block fashion. In
the first stage, processors concurrently compute the DWT of rows; then, com-
munication is required for globally transposing the matrix, so, processors can
concurrently transform the columns of the intermediate matrix. Finally, the ma-
trix is globally transposed again.

While to apply the DWT the matrix KD has to be distribute among processor,
to solve the linear system each processor can build independently from the others
the coefficients matrix. We have then Nsys = ne+me linear systems to be solved.
We distribute them among processors, so that each one solves �Nsys/nprocs�
systems; in this phase, processors work concurrently. In Fig. 3 a sketch of the
algorithm is reported.

We carried out our experiments on an IBM Bladecenter installed at Univer-
sity of Naples “Parthenope”. It consists of 6 Blade LS 21, each one of which
is equipped with 2 AMD Opteron 2210 and with 4 GB of RAM. The imple-
mented software is written in C language, using the Message Passing Interface
(MPI) communication system. We use the freely available GSL Library [8] to
perform the wavelet transform, while for the global matrix transposition we use
the routine pdtrans of the PUMMA library [10].

The matrix arising from the threshold applied to the projection of the dis-
crete operators onto wavelet spaces is strongly sparse. We solve the sparse linear
systems by means of the GMRES solver, with Incomplete Factorization ILU(0)
preconditioner, implemented in the SPARSKIT library [12].
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Procedure
• apply the DWT operator to KD and to f in parallel

- distribute the matrix KD in row-block fashion

- each processor computes the DWT of a row block

- global transposition

- each processor computes the DWT of a column block

- global transposition

• collect the matrix so that each processor stores the whole matrix

• neglect the elements of KDW below the fixed threshold ε;
• for j = 0, Nsys, solve in parallel (I− qjKDε

W )y = fW
- distribute the values of q among processors;

- each processor solves the linear systems distributed to it;

- each processor applies the inverse transform to y.
• processor 0 collects local solutions

End Procedure

Fig. 3. Sketch of the parallel pricing algorithm for Asian options based on the DWT

To evaluate the parallel performance of the algorithm, in Fig. 4 we report
the speed-up for m = 210, m = 211 and m = 212, considering the same pricing
problem presented in Section 5. We use the Daubechies wavelets of length 4 and
with 4 level of resolution. The graph reveals a decrease in terms of performance
with four processors. This is due to the communication overhead of the global
transposition. Better results could be obtained if the transposed matrices were
built, so to avoid one transposition, as we plan to do in the next future.
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7 Conclusion

In this paper we focus on the use of wavelet techniques in a pricing procedure
for Asian options based on randomization. Preliminary experiments reveal that
wavelet bases allow one to improve efficiency without loss in accuracy. Moreover,
we discuss the parallelization of the proposed algorithm; parallelism is introduced
at two levels, both in the wavelet transform and in the solution of the linear
systems arising from the discretization of the involved integral operators. Parallel
performance results reveal that the parallel algorithm needs some revisions which
we are planning to implement in the next future.
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Abstract. This paper proposes a computational intelligence approach to stock
market decision support systems based on a hybrid evolutionary algorithm with
local search for many-core graphics processors. Trading decisions come from
trading experts built on the basis of a set of specific trading rules analysing fi-
nancial time series of recent stock price quotations. Constructing such trading
experts is an optimization problem with a large and irregular search space that
is solved by an evolutionary algorithm, based on Population-Based Incremen-
tal Learning, with additional local search. Using many-core graphics processors
enables not only a reduction in the computing time, but also a combination of
the optimization process with local search, which significantly improves solution
qualities, without increasing the computing time. Experiments carried out on real
data from the Paris Stock Exchange confirmed that the approach proposed outper-
forms the classic approach, in terms of the financial relevance of the investment
strategies discovered as well as in terms of the computing time.

1 Introduction

In recent years, many computational approaches to financial modelling appeared [2].
Neural networks and evolutionary algorithms were applied to stock market data analysis
[4], [5], [7]. Genetic programming was used to building decision trees for supporting
financial decision making [12]. Evolutionary approaches were constructed for portfolio
optimization [8]. Computational intelligence was also applied to money management
[10] or option pricing [3].

Although the recent development in computational algorithms leads to an increasing
number of applications in stock market data analysis, the data size and the computing
time still remain to be the bottleneck for computational methods. Therefore, the in-
creasing computational power of many-core graphics processors enables new horizons
for computational approaches and offers a challenge for researchers.

This paper proposes a computational intelligence approach to stock market deci-
sion support systems based on a hybrid evolutionary algorithm with local search for
many-core graphics processors. Trading decisions come from trading experts built on
the basis of a set of specific trading rules analysing financial time series of recent stock
price quotations. Constructing such trading experts is an optimization problem with a
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large and irregular search space that is solved by an evolutionary algorithm, based on
Population-Based Incremental Learning [1] - a fast and simple Estimation of Distribu-
tion Algorithm [6], with additional local search. Using many-core graphics processors
enables not only a reduction in the computing time, but also a combination of the op-
timization process with local search, which significantly improves solution qualities,
without increasing the computing time.

Experiments carried out on real data from the Paris Stock Exchange confirmed that
the approach proposed outperforms the classic approach, in terms of the financial rel-
evance of the investment strategies discovered as well as in terms of the computing
time.

This paper is structured in the following manner: Section 2 defines the optimiza-
tion problem of building efficient trading experts. Section 3 describes the hybrid evo-
lutionary algorithm and Section 4 proposes its parallelization. Section 5 reports some
experiments performed on real data from the Paris Stock Exchange. Finally, Section 6
concludes the paper.

2 Problem Definition

A stock market trading rule is a function f : K �→ s ∈ R that maps a factual financial
knowledgeK (e.g. financial time series of recent stock price quotations) to a real num-
ber s encoding a trading signal (low values denote a sell signal, high values denote a
buy signal). Examples of such trading rules may be found in Technical Analysis [9].

A stock market trading expert is a subset E of the entire setR of some specific trad-
ing rules f1, f2, . . . , fd, available in the decision support system, encoded in a binary
vector e = (e1, e2, . . . , ed) ∈ {0, 1}d. A trading signal of the trading expert, for a given
factual financial knowledge, is the arithmetic average of trading signals of trading rules
included in the trading expert.

For a given training period, the trading expert is evaluated in a type of simulation. It
starts with an initial capital: an initial amount of cash and an initial number of stocks. In
successive days of the training period, the trading expert produces a trading signal. If it
is a buy signal, a part of available cash is invested in stocks. If it is a sell signal, a part of
available stocks is sold. Each transaction is charged with a transaction fee. Finally, the
efficiency of the trading expert is defined by the Sharpe ratio [11] of daily return rates.

Table 1. Simulation settings used in experiments

threshold for a buy signal +0.05
threshold for a sell signal -0.05
buy limit 50% of cash
sell limit 50% of stocks
initial cash 10000
initial stocks 100
transaction fee 0.39%



A Stock Market DSS with a Hybrid EA for Many-Core GPUs 457

Table 1 presents the simulation settings applied in experiments. Trading rules always
produce−1 (sell), 0 (do nothing) or 1 (buy) signals. Thresholds for buy and sell signals
concern interpreting the arithmetic average of trading rule signals as trading expert
signals. The Sharpe ratio of daily return rates was calculated with the daily risk-free
return rate of 0.01%.

Therefore, constructing efficient trading experts is an optimization problem of find-
ing the binary vector e, corresponding to the trading expert, maximizing the efficiency
measure � being the Sharpe ratio over a given training period.

However, due to the large number of trading rules in the decision support system (in
experiments, d = 500), the dimension of the search space is excessively large (in exper-
iments, |{0, 1}d| = 2500), which constitutes the main bottleneck for many optimization
algorithms.

3 Hybrid Evolutionary Algorithm

In order to solve the optimization problem, an hybrid evolutionary algorithm, based
on Population-Based Incremental Learning (PBIL) [1], with additional local search,
HPBIL-LS, is proposed.

Algorithm 1. Hybrid Population-Based Incremental Learning with Local Search
(HPBIL-LS)

p = (0.5, 0.5, . . . , 0.5);
t = 0;
while not Termination-Condition() do

P = Random-Population(p);
Population-Evaluation(P);

PartialLocalSearch(P);

e∗ = Find-Best-Solution(P);

{updating the probability model};
p = (1 − α) · p + α · e∗;

{mutating the probability model};
if random(0, 1) < β then

u = random-binary-vector();
p = (1 − γ) · p + γ · u;

end if

t = t + 1;
end while

Algorithm 1 presents the overview of the HPBIL-LS algorithm. It starts with initial-
izing the probability model p = (p1, p2, . . . , pd) ∈ [0, 1]d with (0.5, 0.5, . . . , 0.5).
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Afterwards, the evolution starts with creating a random population with the proba-
bility model p. It generates a population P of N random trading experts e = (e1, e2,
. . . , ed) ∈ {0, 1}d in such a way that, for i = 1, 2, . . . , d, ei = 1 with probability pi

and ei = 0 with probability (1 − pi). Next, the population is evaluated and addition-
ally optimized with local search. Local search selects 0.20 ·N trading experts from the
population at random and tries to improve them by negating one gene (for each trading
expert considered, local search checks d possible improvements). Finally, the best trad-
ing expert e∗ is taken, the probability model p is updated with a learning rate α ∈ [0, 1]
and mutated with a mutation probability β ∈ [0, 1] and a mutation rate γ ∈ [0, 1],
and the evolution process repeats until a termination condition is held (after a certain
number of iterations).

In the sequential approach, local search makes the algorithm very time consuming
and impractical in the case of a large population size N and a large number of trading
rules d. In the parallel approach, population evaluation as well as local search may be
run in parallel, which significantly reduces the computing time.

4 Parallel Hybrid Evolutionary Algorithm

HPBIL-LS was modified for many-core graphics processors and Compute Unified De-
vice Architecture (CUDA), version 2.3, which is a parallel computing architecture for
NVidia graphics processors, with a specific parallel programming model and an instruc-
tion set architecture, for many-core graphics processors.

Experiments were performed on NVidia GeForce GTX 280 with a many-core graph-
ics processor with 240 cores, but the approach should be compatible with other graphics
cards of the NVidia GeForce 200 series supporting CUDA 2.3. Details of the hardware
platform specification are presented in Table 2.

Population evaluation was run in parallel – each trading expert from the population
was processed in a separate thread. According to CUDA, threads was organized in
blocks. Blocks were processed in parallel by multiprocessors, in such a way that a warp
of 32 threads were processed at the same time, while the remaining warps of the same
block were waiting active in the queue. The number of threads per block depended on
the problem size, because only 16 kB of shared memory was accessible for the entire

Table 2. Hardware platform specification (NVidia GeForce GTX 280)

number of multiprocessors 30
number of registers per multiprocessor 16384
maximum number of threads per block 512
number of threads per warp 32
shared memory per multiprocessor 16 kB
constant memory 64 kB
local memory per thread 16 kB
maximum number of active blocks per multiprocessor 8
maximum number of active warps per multiprocessor 32
maximum number of active threads per multiprocessor 1024
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block (thus, the number of threads per block was approximately equal to 16 kB divided
by the size of the trading expert).

A number of technical issues had to been addressed, as a result of some limitations of
CUDA. Due to memory constraints, financial time series of stock quotations were rep-
resented in short integer numbers (2 bytes) of euro cents. Simulations of trading expert
performances were calculated in either integer numbers (4 bytes) or short integer num-
bers (2 bytes). Return rates and Sharpe ratios were calculated in float numbers (4 bytes,
single precision arithmetic), but stored in integer numbers of 0.0001%, which in certain
situations caused some numerical problems (insignificant in the final assessment).

Permanent data structures, such as financial time series and trading rule signals, eval-
uated before the evolution had started, were stored in texture memory, because of the
lack of faster shared memory. Trading experts and objective values were stored in shared
memory. Global memory was not used in computations, because of the low bandwidth.

Local search was also run in parallel – each trading expert was optimized in a sepa-
rate thread. It required a similar architecture than in the case of population evaluation,
but smaller numbers of threads were run.

5 Experiments

Experiments were performed on 10 benchmark datasets. Each dataset concerned one
stock chosen from the CAC IT 20 index of the Paris Stock Exchange, a training period
from January, 2, 2009 to November, 30, 2009 (234 trading days) and a testing period
from December, 1, 2009 to December, 31, 2009 (22 trading days).

In each experiment, the same set of 500 trading rules, based on technical analysis
indicators [9], was used. Signals of trading rules were evaluated before the evolution
had started and were buffered in memory. The learning rate α was 0.15, the mutation
probability β was 0.05, the mutation rate γ was 0.05. The population size N was 3600.

The first part of experiments focused on comparing the computing time necessary
to construct a trading expert in the sequential approach and the parallel approach with
many-core graphics processors. In the sequential approach, the Intel Pentium Core2Duo
3GHz processor was used. In the parallel approach, the NVidia GeForce GTX 280
graphics card was used.

Table 3 presents a summary of the comparison of the computing time. The first two
rows correspond to the algorithm with local search turned off. The next two rows corre-
spond to the algorithm with reduced local search, where only 0.04 · d randomly chosen
genes were examined. The last two rows correspond to the algorithm with full local
search (experiments with the sequential algorithm were stopped after 6 hours).

Not surprisingly, the parallel approach outperformed the sequential one in terms of
the computing time and enabled to process the cases that were impractical for the se-
quential approach.

The second part of experiments focused on evaluating the financial relevance of the
investment strategies discovered. It focused on the parallel approach, because the fi-
nancial relevance of both approaches are similar, the difference lies in the computing
time.

Figure 1 (a) presents the evolution of the probability model for one chosen exper-
iment with the dataset concerning Neopost (other experiments gave similar results).
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Table 3. Comparison of the computing time necessary to construct a trading expert in the sequen-
tial and parallel approach (average times for 8 runs)

parallel sequential
1000 iterations, without local search 50 s 5 min
5000 iterations, without local search 240 s 25 min
1000 iterations, with reduced local search 2.5 min 11 min
5000 iterations, with reduced local search 12 min 55 min
1000 iterations, with full local search 28 min > 6 h
5000 iterations, with full local search 2 h > 6 h
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Fig. 1. Evolution of the probability model and the objective function values in successive itera-
tions for an experiment with the dataset concerning Neopost

For each iteration, a stabilization factor ξ was evaluated on the probability model p =
(p1, p2, . . . , pd) in such a way that

ξ =
4
d
·

d∑
i=1

(pi − 0.5)2, (1)

so that ξ ≈ 0 denotes that most of pi are close to 0.5 (i.e. probabilities of including and
excluding the i-th trading rule are similar – the model not stabilized) and ξ ≈ 1 denotes
that most of pi are either close to 0 or to 1 (i.e. the i-th trading rule either should be,
or should not be, included in the efficient trading expert – the model stabilized). Figure
1 (b) presents the evolution of the maximum objective function value in successive
populations for the same experiment. It is easy to see that the evolutionary algorithm
is capable of optimizing the objective function in successive iterations. In addition to
this, the model varies and is not stabilized even after a large number of iterations, which
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Table 4. Financial relevance of the investment strategies discovered (average values for 8 runs)

Stock ISIN Training Training Training Test Test
Time Sharpe Ratio Return Rate Return Rate B&H

Alcatel-Lucent FR0000130007 52 s 28.19 264.77 1.33 5.84
Alstom FR0010220475 180 s 20.05 107.89 0.72 4.92
Cap Gemini FR0000125338 104 s 21.02 75.86 3.20 3.48
France Telecom FR0000133308 98 s 10.97 18.28 0.08 0.24
Legrand FR0010307819 69 s 22.96 64.57 1.79 6.09
Neopost FR0000120560 74 s 19.43 40.25 0.62 -1.15
Schneider Electric FR0000121972 113 s 25.87 88.43 6.68 11.91
STMicroelectronics NL0000226223 139 s 20.07 92.76 5.97 19.73
TF1 FR0000054900 83 s 25.72 202.95 1.40 8.29
Vivendi FR0000127771 127 s 16.19 41.08 2.61 8.03

enables further optimization of the objective function. It may also mean that the search
space is irregular and contains many local optima.

Finally, Table 4 presents the financial relevance of the investment strategies discov-
ered. The first two columns define the dataset, the third column presents the computing
time to find the best trading expert (for the parallel approach with reduced local search).
The next two columns concern the training period and present the Sharpe ratio and the
average return rate. The last two columns concern the testing period and present the re-
turn rate and the Buy-and-Hold benchmark, which consists of investing the entire cash
in stocks at the beginning and keeping it until the end of the testing period. In all the
experiments, the investment strategy discovered had a positive return rate. In one case,
the dataset concerning Neopost, the investment strategy discovered outperformed the
Buy-and-Hold benchmark.

6 Conclusions

This paper proposed a hybrid evolutionary algorithm with local search for many-core
graphics processors for building efficient trading experts. Parallelization of the sequen-
tial approach concerned population evaluation and local search. Despite some con-
straints of many-core graphics processors, mainly related to memory management, the
parallel approach not surprisingly outperformed the sequential approach and enabled to
process the cases that were impractical for the sequential approach.

However, further research on parallelization of the approach may lead to additional
improvements. First, recent developments in many-core graphics processors in CUDA
3.0 led to a new mechanism of memory management with up to 64kB of shared memory
for a block of threads and the 2nd level cache, which allows to load permanent data, such
as financial time series and trading rule signals, to the shared memory in order to speed
up computation. Second, other models of the thread organization should be studied in
order to optimally balance computation on multiprocessors. Third, parallelization may
also be applied to other parts of the evolutionary algorithms, such as finding the best
trading expert (searching through the population), updating and mutating the probability
model.
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Finally, further studies on parallelization of other evolutionary algorithms, such as
SGA, ECGA or BOA, which may solve the optimization problem more efficiently, may
reduce the computing time of more advanced approaches.
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Abstract. The aim of this work is to provide fast and accurate ap-
proximation schemes for the Monte Carlo pricing of derivatives in the
Lévy LIBOR model of Eberlein and Özkan [4]. Standard methods can
be applied to solve the stochastic differential equations of the succes-
sive LIBOR rates but the methods are generally slow. We propose an
alternative approximation scheme based on Picard approximations. Our
approach is similar in accuracy to the full numerical solution, but with
the feature that each rate is evolved independently of the other rates
in the term structure. This enables simultaneous calculation of deriva-
tive prices of different maturities using parallel computing. We include
numerical illustrations of the accuracy and speed of our method pricing
caplets.

Keywords: LIBOR models, Lévy processes, Lévy LIBOR model, Picard
approximation, parallel computing.

1 Introduction

The LIBOR market model has become a standard model for the pricing of inter-
est rate derivatives in recent years. The main advantage of the LIBOR model in
comparison to other approaches, is that the evolution of discretely compounded,
market-observable forward rates is modeled directly and not deduced from the
evolution of unobservable factors. Moreover, the log-normal LIBOR model is
consistent with the market practice of pricing caps according to Black’s formula
(cf. [2]). However, despite its apparent popularity, the LIBOR market model has
certain well-known pitfalls.

On the one hand, the log-normal LIBOR model is driven by a Brownian
motion, hence it cannot be calibrated adequately to the observed market data.
An interest rate model is typically calibrated to the implied volatility surface
from the cap market and the correlation structure of at-the-money swaptions.
Several extensions of the LIBOR model have been proposed in the literature
using jump-diffusions, Lévy processes or general semimartingales as the driving
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motion (cf. e.g. Glasserman and Kou [5], Eberlein and Özkan [4], Jamshidian [7]),
or incorporating stochastic volatility effects (cf. e.g. Andersen and Brotherton-
Ratcliffe [1]).

On the other hand, the dynamics of LIBOR rates are not tractable under
every forward measure due to the random terms that enter the dynamics of LI-
BOR rates during the construction of the model. In particular, when the driving
process has continuous paths the dynamics of LIBOR rates are tractable under
their corresponding forward measure, but they are not tractable under any other
forward measure. When the driving process is a general semimartingale, then the
dynamics of LIBOR rates are not even tractable under their very own forward
measure. Consequently: if the driving process is a continuous semimartingale
caplets can be priced in closed form, but not swaptions or other multi-LIBOR
derivatives. However, if the driving process is a general semimartingale, then
even caplets cannot be priced in closed form. The standard remedy to this prob-
lem is the so-called “frozen drift” approximation, where one replaces the random
terms in the dynamics of LIBOR rates by their deterministic initial values; it
was first proposed by Brace et al. [3] for the pricing of swaptions and has been
used by several authors ever since.

Although the frozen drift approximation is the simplest and most popular
solution, it is well-known that it does not yield acceptable results, especially for
exotic derivatives and longer horizons. Therefore, several other approximations
have been developed in the literature. We refer the reader to Joshi and Stacey
[8] for a detailed overview of that literature, and for some new approximation
schemes and numerical experiments.

In this article we develop a general method for the approximation of the
random terms in the drift of LIBOR models. In particular, by applying Picard
iterations we develop a generic approximation where the individual rates can
be evolved independently in a Monte Carlo simulation. This enables the use
of parallel computing in the maturity dimension. Our method is universal and
can be applied to any LIBOR model driven by a general semimartingale. We
illustrate the accuracy and speed of our method in a case where LIBOR rates
are driven by a normal inverse Gaussian process.

2 The Lévy LIBOR Model

The Lévy LIBOR model was developed by Eberlein and Özkan [4], following
the seminal articles of Sandmann et al. [11], Miltersen et al. [9] and Brace et al.
[3] on LIBOR market models driven by Brownian motion; see also Glasserman
and Kou [5] and Jamshidian [7] for LIBOR models driven by jump processes
and general semimartingales respectively. The Lévy LIBOR model is a market
model where the forward LIBOR rate is modeled directly, and is driven by a
time-inhomogeneous Lévy process.

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor struc-
ture where δi = Ti+1 − Ti, i ∈ {0, 1, . . . , N}. Consider a complete stochastic
basis (Ω,F ,F, IPT∗) and a time-inhomogeneous Lévy process H = (Ht)0≤t≤T∗
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satisfying standard assumptions such as the existence of exponential moments
and absolutely continuous characteristics. The law of Ht is described by the
Lévy–Khintchine formula:

IEIPT∗

[
eiuHt

]
= exp

(∫ t

0

κs(iu)ds

)
. (1)

Here κs is the cumulant generating function associated to the infinitely divisible
distribution with Lévy triplet (0, c, FT∗), i.e. for u ∈ R and s ∈ [0, T∗]

κs(iu) = −cs

2
u2 +

∫
R

(eiux − 1− iux)FT∗
s (dx). (2)

The canonical decomposition of H is:

H =
∫ ·

0

√
csdWT∗

s +
∫ ·

0

∫
R

x(μH − νT∗)(ds, dx), (3)

where WT∗ is a IPT∗ -standard Brownian motion, μH is the random measure
associated with the jumps of H and νT∗ is the IPT∗ -compensator of μH . We
further assume that the following conditions are in force.

(LR1). For any maturity Ti there exists a bounded, continuous, deterministic
function λ(·, Ti) : [0, Ti] → R, which represents the volatility of the forward
LIBOR rate process L(·, Ti). Moreover, we assume that (i) for all s ∈ [0, T∗],
there exist M, ε > 0 such that

∫ T∗
0

∫
{|x|>1} euxFt(dx)dt <∞, for u ∈ [−(1 +

ε)M, (1 + ε)M ], and (ii) for all s < Ti

N∑
i=1

∣∣λ(s, Ti)
∣∣ ≤M.

(LR2). The initial term structure B(0, Ti), 1 ≤ i ≤ N + 1, is strictly positive
and strictly decreasing. Consequently, the initial term structure of forward
LIBOR rates is given, for 1 ≤ i ≤ N , by

L(0, Ti) =
1
δi

(
B(0, Ti)

B(0, Ti + δi)
− 1
)

> 0. (4)

The construction of the model starts by postulating that the dynamics of the
forward LIBOR rate with the longest maturity L(·, TN) is driven by the time-
inhomogeneous Lévy process H and evolve as a martingale under the terminal
forward measure IPT∗ . Then, the dynamics of the LIBOR rates for the preceding
maturities are constructed by backward induction; they are driven by the same
process H and evolve as martingales under their associated forward measures.
For the full mathematical construction we refer to [4].

We will now proceed to introduce the stochastic differential equation that the
dynamics of log-LIBOR rates satisfy under the terminal measure IPT∗ . This will
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be the starting point for the approximation method that will be developed in
the next section.

In the Lévy LIBOR model the dynamics of the LIBOR rate L(·, Ti) under the
terminal forward measure IPT∗ are given by

L(t, Ti) = L(0, Ti) exp
(∫ t

0

b(s, Ti)ds +
∫ t

0

λ(s, Ti)dHs

)
, (5)

where H = (Ht)0≤t≤T∗ is the IPT∗ -time-inhomogeneous Lévy process. The drift
term b(·, Ti) is determined by no-arbitrage conditions and has the form

b(s, Ti) = −1
2
λ2(s, Ti)cs − csλ(s, Ti)

N∑
l=i+1

δlL(s−, Tl)
1 + δlL(s−, Tl)

λ(s, Tl)

−
∫

R

((
eλ(s,Ti)x − 1

) N∏
l=i+1

β(s, x, Tl)− λ(s, Ti)x

)
FT∗

s (dx), (6)

where

β(t, x, Tl, ) =
δlL(t−, Tl)

1 + δlL(t−, Tl)

(
eλ(t,Tl)x − 1

)
+ 1. (7)

Note that the drift term in (5) is random, therefore we are dealing with a general
semimartingale, and not with a Lévy process. Of course, L(·, Ti) is not a IPT∗ -
martingale, unless i = N (we use the conventions

∑0
l=1 = 0 and

∏0
l=1 = 1).

Let us denote by Z the log-LIBOR rates, that is

Z(t, Ti) := log L(t, Ti)

= Z(0, Ti) +
∫ t

0

b(s, Ti)ds +
∫ t

0

λ(s, Ti)dHs, (8)

where Z(0, Ti) = log L(0, Ti) for all i ∈ {1, . . . , N}.
Remark 1. Note that the martingale part of Z(·, Ti), i.e. the stochastic integral∫ ·
0
λ(s, Ti)dHs, is a time-inhomogeneous Lévy process. However, the random drift

term destroys the Lévy property of Z(·, Ti), as the increments are no longer
independent.

3 Picard Approximation for LIBOR Models

The log-LIBOR can be alternatively described as a solution to the following
linear SDE

dZ(t, Ti) = b(t, Ti)dt + λ(t, Ti)dHt, (9)

with initial condition Z(0, Ti) = log L(0, Ti). Let us look further into the above
SDE for the log-LIBOR rates. We introduce the term Z(·) in the drift term
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b(·, Ti; Z(·)) to make explicit that the log-LIBOR rates depend on all subsequent
rates on the tenor.

The idea behind the Picard approximation scheme is to approximate the drift
term in the dynamics of the LIBOR rates; this approximation is achieved by the
Picard iterations for (9). The first Picard iteration for (9) is simply the initial
value, i.e.

Z(0)(t, Ti) = Z(0, Ti), (10)

while the second Picard iteration is

Z(1)(t, Ti) = Z(0, Ti) +
∫ t

0

b(s, Ti; Z(0)(s))ds +
∫ t

0

λ(s, Ti)dHs

= Z(0, Ti) +
∫ t

0

b(s, Ti; Z(0))ds +
∫ t

0

λ(s, Ti)dHs. (11)

Since the drift term b(·, Ti; Z(0)) is deterministic, as the random terms have been
replaced with their initial values, we can easily deduce that the second Picard
iterate Z(1)(·, Ti) is a Lévy process and equivalent to the well known frozen drift
approximation. Finally a third Picard iteration can be performed to get a more
refined approximation:

Z(2)(t, Ti) = Z(0, Ti) +
∫ t

0

b(s, Ti; Z(1)(s))ds +
∫ t

0

λ(s, Ti)dHs, (12)

This process is clearly no longer a Lévy process due to dependence on Z(1)(s)
in the drift. However, the main advantage is that the resulting SDE for Z(2)(·, Ti)
can be simulated more easily than the equation for Z(·, Ti). Indeed, looking at
(9) and (6) again, we can observe that each log-LIBOR rate Z(·, Ti) depends
on all subsequent log-rates Z(·, Tl), i + 1 ≤ l ≤ N . Hence, in order to simulate
Z(·, Ti), we should start by simulating the furthest rate in the tenor and proceed
iteratively from the end. On the contrary, the dynamics of Z(2)(·, Ti) depend
only on the Lévy processes Z(1)(·, Tl), i + 1 ≤ l ≤ N , which are independent
of each other. Hence, we can use parallel computing to simulate all approximate
LIBOR rates simultaneously. This significantly increases the speed of the Monte
Carlo simulations as will be demonstrated in the numerical example.

3.1 Caplets

The price of a caplet with strike K maturing at time Ti, using the relationship
between the terminal and the forward measures can be expressed as

C0(K, Ti) = δiB(0, T∗) IEIPT∗

[ N∏
l=i+1

(
1 + δlL(Ti, Tl)

)
(L(Ti, Ti)−K)+

]
. (13)

This equation will provide the actual prices of caplets corresponding to simu-
lating the full SDE for the LIBOR rates. In order to calculate the Picard ap-
proximation prices for a caplet we have to replace L(·, T·) in (13) with L(2)(·, T·).
Similarly, for the frozen drift approximation prices we must use L(1)(·, T·) instead
of L(·, T·).
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4 Numerical Illustration

The aim of this section is to demonstrate the accuracy and efficiency of the
Picard approximation scheme for the valuation of options in the Lévy LIBOR
model. We will consider the pricing of caplets, although many other interest rate
derivatives can be considered in this framework.

We will examine a simple example with a flat volatility structure of λ(·, Ti) =
18% and zero coupon rates generated from a flat term structure of interest
rates: B(0, Ti) = exp(−0.04 · Ti). The tenor structure has 6 month increments
(i.e. δi = 1

2 ).
The driving Lévy process H is a normal inverse Gaussian (NIG) process with

parameters α = δ̄ = 12 and μ = β = 0, resulting in a process with mean zero
and variance 1. We denote by μH the random measure of jumps of H and by
ν(dt, dx) = F (dx)dt the IPT∗ -compensator of μH , where F is the Lévy measure of
the NIG process. The necessary conditions are then satisfied for term structures
up to 30 years of length because M = α, hence

∑60
i=1 |λ(·, Ti)| = 10.8 < α. The

NIG Lévy process is a pure-jump process with canonical decomposition

H =
∫ ·

0

∫
R

x(μH − ν)(ds, dx). (14)

The cumulant generating function of the NIG distribution, for all u ∈ C with
|&u| ≤ α, is

κ(u) = δ̄α− δ̄
√

α2 − u2. (15)

4.1 Accuracy of the Method

The Picard approximation should be considered primarily as a parallelizable
alternative to the standard Euler discretization of the model. The Euler scheme
will therefore be the benchmark to which we compare. In order to avoid Monte
Carlo error we use the same discretization grid (5 steps per tenor increment) and
the same pseudo random numbers (50000 paths) for each method. The pseudo
random numbers are generated from the NIG distribution using the standard
methodology described in Glasserman [6].

Figure 1 shows the difference between the Euler discretization and the frozen
drift (9) and Picard approximation (12) respectively. The difference in price is
expressed in basis point of implied volatility. As can been seen the errors from
the Picard approximation are a full order of magnitude smaller than the errors
from the frozen drift. Implied volatility is normally quoted in units of 1 basis
point while bid-ask spreads are usually around at least 5 bp of implied volatility.
The errors from the Picard approximation are therefore at acceptable levels.
Note also that in experiments not shown we found that the levels and patterns
of the errors are insensitive to the number of discretization points as well the
number of paths.
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Fig. 1. Difference in implied caplet volatility (in basis points) between the Euler dis-
cretization and the frozen drift prices (left), and the Euler discretization and the Picard
approximation (right)

The errors display a non-monotonic behavior as a function of maturity with
peaks around mid-maturity. The non-monotonicity can be explained by the fact
that volatility dominates the price of options in the short end, making the drift,
and any error in it, less relevant. As maturity increases the importance of the
drift grows relative to volatility but the state dependence becomes less critical
as the number of “live” rates decreases. These two opposing effects result in the
mid-maturity peak that we observe. This pattern is also noted in the study by
Joshi and Stacey [8].

4.2 Speed of the Method

The gains from parallelization using the Picard approximation can be seen in
Figure 2. There, indicative CPU times as a function of the number of paths

Fig. 2. CPU time vs. number of paths
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is plotted for the Picard approximation and the Euler discretization. The com-
putations are done in Matlab using an Intel i7 processor with the capability
of running 8 processes simultaneously. Here we see the typical linear behavior
as the number of paths is increased, but it can be observed that the Picard
approximation has a significantly lower slope than the Euler scheme.

5 Conclusion

This paper derives a new approximation method for Monte Carlo derivative
pricing in LIBOR models. It is generic and can be used for any semimartingale
driven model. It decouples the interdependence of the rates when moving them
forward in time in a simulation, meaning that the computations can be paral-
lelized in the maturity dimension. We have demonstrated both the accuracy and
speed of the method in a numerical example. The interested reader is referred
to Papapantoleon and Skovmand [10] for a more detailed analysis.
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Abstract. In this paper we investigate the computational issues in the
use of a stochastic model – the doubly stochastic intensity default model
– to measure default risk in the development of “internal models”, ac-
cording to the new rules of the Solvency II project. We refer to the val-
uation framework used in DISAR, an asset-liability management system
for the monitoring of portfolios of “Italian style” profit sharing life insur-
ance policies with minimum guarantees. The computational complexity
of the overall valuation process requires both efficient numerical algo-
rithms and high performance computing methodologies and resources.
Then, to improve the performance, we apply to DISAR a parallelisation
strategy based on the distribution of Monte Carlo simulations among the
processors of a last generation blade server.

Keywords: high performance computing, credit risk, life insurance
policies, asset-liability management, reduced-form models.

1 Introduction

The aim of the work is to investigate the computational issues in the use of
stochastic models to measure default risk in the development of “internal mod-
els”, according to the rules of the European Directive 2009/138 (Solvency II) [7].

The analysis is carried out on “Italian style” profit sharing (PS) life insur-
ance policies with minimum guarantees, briefly introduced in Sect. 2. In these
contracts, the benefits which are credited to the policyholder are indexed to the
annual return of a specified investment portfolio (segregated fund); the return is
transferred to the policyholders by retrocession. Then, a part of the counterparty
default risk falls on the insurance company, because of the minimum guarantees,
and a part is transferred to the policyholders, by the retrocession mechanism.

We consider a reduced-form approach, illustrated in Sect. 3, for valuing de-
faultable bonds in the segregated fund, by modeling the default probability by
means of a suitable stochastic intensity process [6,8,9].
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We use the DISAR (Dynamic Investment Strategy with Accounting Rules) sys-
tem [2] – an Asset Liability Management (ALM) system – as valuation framework.

From the computational point of view, the implementation of stochastic mod-
els for default risk in ALM procedures implies a rise of computational complex-
ity. In [2] a computing grid approach is adopted to monitor portfolios of profit
sharing policies. Here, as shown in Sect. 5, we improve the performance by par-
allelising Monte Carlo simulations [3], the most time consuming tasks involved
in the valuation process.

2 Valuation Framework: The DISAR System

We use the valuation framework of DISAR [2], a risk-management system de-
signed to monitor portfolios of Italian style PS policies with minimum guaran-
tees. A profit sharing policy is a “complex” structured contract, with underlying
the segregated fund return; the models for values and risks evaluation of the policy
must provide “market-consistent valuation”, thus requiring the use of a stochastic
framework and of Monte Carlo simulation techniques. For an exhaustive analysis
of the basic principles and the methodological approach for a valuation system of
profit sharing policies with minimum guarantees we address to [4,5].

The core of the problem is the computation, at the evaluation time (t = 0), of
the stochastic reserve V0(YT ) (see [2], eq. (3) and [5], eq. (15)), that plays a crucial
role for the insurance company. The annual minimum guarantees in PS policies
imply that a series of financial options written on the segregated fund return are
embedded in the policies. The stochastic reserve V0(YT ) can be expressed using
either a put or a call decomposition (see [2], eq. (4) and [5], p. 91)

V0(YT ) = B0 + P0 = G0 + C0, (1)

where B0 is the “base value” of the policy and P0 is the value of a put option;
G0 is the cost of the non-participating policy and C0 is the participating cost.

About the financial risks evaluation models, for the interest rate risk we refer
to the well-known one-factor Cox, Ingersoll and Ross (CIR) model. In this work,
we just consider the risk-neutral dynamics of the spot rate, r(u), since the risk
adjusted parameters, usually denoted in literature with r(0), α̃, γ̃, and ρ (see
[4], p. 38), are the parameters required when the CIR model has to be used for
pricing purpose. We do not consider the computation of the risk-capital (the
Solvency Capital Requirement, SCR, in Solvency II jargon).

In a risk-neutral setting, it is well known that the closed form of the price at
time t = 0 of the unitary default-free zero-coupon bond (zcb) with maturity T ,
that is the value of the risk-free discount factor, B(0, T ) is available [4].

3 Stochastic Default Risk Simulation

In the last decade, reduced-form default risk models have become popular. Ac-
cording to these models, default is treated as an unexpected event with likelihood
governed by a default intensity process [6,8,9,10].
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In this work we refer to the reduced-form approach. The time of default τ is
modeled as the first arrival time of a Poisson process with random arrival rate
λ. We therefore consider a doubly stochastic process, in that we have two layers
of uncertainty, both the time and the intensity of default [6]. In a risk-neutral
setting, the survival probability in [0, T ] is given by

P (0, T ) = EQ
[
e−

∫
T
0 λ(u)du

]
,

where Q denotes, as usual, the risk-neutral measure. A very useful result, proven
by Lando [9], provides the following expression for the price at time 0 of a
defaultable unitary zcb with maturity T , that is the value of the risky discount
factor, denoted by B̄(0, T ), in terms of short rate and default intensity

B̄(0, T ) = EQ
[
e−

∫ T
0 r(u)+λ(u) du

]
. (2)

We moreover assume r and λ to be stochastically independent; in this case, the
expected value in (2) can be factorised in the following way [9,10]

B̄(0, T ) = B(0, T )P (0, T ).

Defaultable coupon bonds may be valued as a linear combination of defaultable
zero-coupon bonds [6].

We choose to model the default intensity λ following the CIR process; in a
risk-neutral setting, the stochastic equation governing the process is

dλ(t) = k̃[θ̃ − λ(t)] dt + σ
√

λ(t) dZ̃λ(t). (3)

A closed form for survival probability in [0, T ] can be obtained, which depends
on the parameters of the intensity process in (3) and on the value of λ at t = 0

P (0, T ) = Aλ(0, T )e−λ(0)βλ(0,T ), (4)

where Aλ(0, T ) =
[ dλeφλT

φλ(edλT − 1) + dλ

]νλ

, βλ(0, T ) =
edλT − 1

φλ(edλT − 1) + dλ

dλ =
√

k̃2 + 2σ2, νλ =
2k̃θ̃

σ2
, φλ =

k̃ + dλ

2
, (5)

following the Brown-Dybvig parametrisation [1].

3.1 The Data and Calibration Method

Our aim is to model the evolution of a collection of term structures of defaultable
bonds credit spreads for different credit classes (ratings).

Let B̄j(0, T ) be the price, at time 0, of a zero-recovery zcb in the j-th credit
class of corporate bonds with maturity T , we have

B̄j(0, T ) = EQ
[
e−

∫ T
0 r(u)+λj(u) du

]
. (6)
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Hence, λj(u) is the intensity of a Poisson process used to model the event of
default of the j-th credit class.

The data. We refer to data on investment-grade bonds from Finance sector with
Moody’s rating Aa3 e Baa1. We consider current market data of a set of coupon
bonds at the evaluation date April 30th 2010; we refer to the closing prices. We
have initially examined 75 Aa3 and 62 Baa1 Finance corporate coupon bonds
with residual maturities ranging from three months up to twenty years for Aa3
bonds and up to ten years for Baa1 ones.

Even within a fairly homogeneous credit quality sample, the credit spreads of
some bonds can noticeably vary [10]. A problem which arises is then the removal
of outliers. We use a two-stage procedure to remove outliers. In the first stage
a bond is removed if its yield deviates more than twice the standard deviation
from the average yield in the same maturity bracket. Afterwards, the same pro-
cedure is repeated1.

The calibration method. Defaultable bond yields have two components: the
risk-free interest rate and the default spread. We choose the risk-free term struc-
ture implied by the single-factor CIR model. Risk neutral parameters for CIR
model have been calibrated on market data using the methodology described in
[4] (r(0) = 0.00560384, α̃ = 0.30368297, γ̃ = 0.04367279, ρ = 0.13681307).

We estimate the vector of default risk parameters, (dλ, νλ, φλ, λ(0)), by per-
forming a non-linear fit procedure on the two different sets of corporate bonds.
The estimation is then done by means of a non linear least-square method that
minimizes the sum of the quadratic differences between the market prices and
the model prices.

In the calibration phase, the second stage of the outliers removal procedure,
as described in [10], has been performed by removing those defaultable bonds
whose pricing errors exceed two times the average root-mean square relative
pricing errors; and afterwards by repeating the calibration procedure. For the
implementation of the above calibration and selection procedure, we use the
Matlab software environment (trust-region reflective Newton method).

At the end of the removal procedure, we obtain a set of 40 Aa3 and a set of
49 Baa1 Finance bonds.

In Table 1 we report the resulting estimates of the default risk parameters
in (4) and (5), using the two different sets of selected corporate bonds, and the
sample standard deviation of residuals.

In Fig. 1, for both the two credit classes, we plot on the left the term structures
of credit spreads (in basis points), over a range of thirty years of maturities,
obtained using the calibrated default risk parameters; in the same figure, on
the right, we plot the related risk-neutral default intensity λ(u). Credit spreads
range from about 33 to 176 basis points for Aa3-rated zero-coupon bonds and
from 101 to 219 basis points for Baa1-rated ones.

1 We refer to a criteria applied by ECB when selecting bonds for the estimation of
yield curves (www.ecb.int/stats/money/yc/html/index.en.html).
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Table 1. Default risk parameters

t = 04/30/2010 Aa3-Finance Baa1-Finance

λ(t) 0.00079011351155 0.00762255771740
dλ 0.32209372929069 0.36215265757040
φλ 0.30328555876149 0.36208344131790
νλ 1.00000000000468 321.544667798335

sqmr 0.37561488234354 0.29840697224378
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Fig. 1. Credit spreads term structure and default intensity for Aa3 and Baa1 Finance
zcb

4 Computational Issues

Stochastic default risk simulation in DISAR increases the computational com-
plexity of the system in terms of both amount of data to be managed and of
computing time.

Specifically, the system has to be able to manage a set of default-risk adjusted
term structures, each of them related to a combination of rating and economic
sector – the choice of the combinations and the number of the term structures to
consider depending on the company investment strategy –; the default intensity
parameters computation requires a pre-processing phase implementing the pro-
cedure described in Sect. 3.1; this phase has an impact on the amount of data,
needed to properly calibrate the parameters, to be included in the DataBase
system; it has also an impact on the execution time required to perform the
calibration procedure on each set of data.

After the pre-processing phase, the DataBase must be enriched with all the de-
fault risk parameters calibrated for each default intensity process; the DataBase
Management System has to be able to identify and then to manage credit risky
bonds on the basis of the appropriate rating and sector.

The default risk simulation in DiAlmEng – the ALM computing unit of
DISAR [2] – requires, for each set of calibrated default intensity parameters:
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1 – simulation of stochastic default intensity processes,
2 – simulation of stochastic default probabilities,
3 – computation, at the evaluation date, of the default-risk adjusted term
structures.

The simulations at points 1 and 2 require the use of numerical methods for
solving stochastic differential equations (SDEs) and Monte Carlo methods. The
computation at point 3 requires the evaluation of (6), for each considered class.

Each risky bond in the fund has to be managed in order to be “linked” to
the pertaining default-risk adjusted term structure and default probabilities, to
properly estimate the related financial quantities (value, duration, ...) involved
in the considered ALM framework.

We performed numerical simulations considering two different investment
portfolios, each composed by the same quantity of just one type of risky bond –
Aa3 and Baa1 Finance, respectively –, with maturity three years, fixed annual
coupons and same market price at the evaluation date. The policies portfolio
contains about 200 policies. The time horizon of simulation we consider is forty
years. The SDEs for the risk sources are numerically solved by means of the Euler
method with a monthly discretisation step. Further, to make some comparisons,
we carried out a simulation also on an investment portfolio composed by the
same quantity of a risk-free coupon bond, with same maturity and market price.

The experiments have been carried out on an IBM Bladecenter installed at
Università di Napoli “Parthenope”. It consists of 6 Blade LS 21, each one of
which is equipped with 2 AMD Opteron 2210 and with 4 GB of RAM.

In Table 2 we report the values, in euro, of the stochastic reserve V0(YT ) (and
the related standard error) and of the components of the put and call decom-
positions in (1), for the three different segregated funds, obtained performing
N=5000 Monte Carlo simulations.

Table 2. V0(YT ), put and call components for three different segregated funds

N=5000 risk-free bond Aa3-Finance bond Baa1-Finance bond

V0(YT ) 711.793.017 716.334.673 722.241.384
std. err. 523.798 535.177 543.725

B0 690.066.024 697.948.820 705.637.021

P0 21.726.993 18.385.853 16.604.364

G0 704.994.119 705.134.076 705.134.076

C0 6.798.898 11.200.598 17.107.309

Table 3. Execution times (in seconds) for two different segregated funds

N risk-free bond Aa3-Finance bond time increment

6000 135.812 163.423 20.3 %

12000 269 326.333 21.3 %
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To quantify the increment of computing time overhead due to the stochastic
default risk simulation, we report in Table 2 the execution times of the overall
ALM procedure on the investment portfolio composed by risk-free coupon bonds
and on that composed by Aa3-Finance risky bonds (the execution times being the
same for the investment portfolio composed by the Baa1-Finance), respectively,
for N=6000 and N=12000 MC simulations on one processor. We observe that
the default risk valuation implies an increment of about 20% of the computing
time, for both the considered values of N, including just one credit risk class in
the investment portfolio.

5 Parallel Implementation and Performance Results

The most time consuming processes are those involved in MC simulation, thus
an improvement of performance is achievable by parallelising the simulations,
as we showed in [3]. Here we implement the same parallelisation strategy in
DiAlmEng.

We use the Mersenne-Twister generator included in the Intel Math Kernel
Library for the generation of pseudo-random sequences. We use the MPI com-
munication system to handle the message passing among the processors.

To analyse the performance of the parallel procedure, we report, on the left
hand of Fig. 2, the execution times, expressed in seconds, for two values of global
number of simulated trajectories, N = 6000 and N = 12000, versus the number
of processors involved in the computation. To evaluate the parallel efficiency, we
show, on the right hand of Fig. 2, the related speed-up. The graph reveals the
good scalability properties of the algorithm. Indeed, speed-up is almost linear.
The same behavior was observed in all our experiments.

procs N = 6000 N = 12000

1 163.423 326.333

2 85.687 169.048
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Fig. 2. On the left hand the execution time (in seconds); on the right hand the speed-up
versus number of processors

6 Conclusions and Prospects

A market-consistent valuation of default risk is a very relevant task in the de-
velopment of internal models. Nevertheless, stochastic default risk simulation
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increases the computational complexity of the valuation process, thus motivat-
ing the use of high performance computing. A parallelisation strategy, based on
the distribution of Monte Carlo simulations among the processors of blade sys-
tems, allows to pull down the execution time, thus allowing to efficiently deal
with this complex task. The combined use of the showed parallelisation strat-
egy with a grid approach [2] could allow further reductions of the computing
time, so the experimentation of new technology solutions, as, for example, gpu
computing.
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Andreas Knüpfer1, Jens Doleschal1, Matthias Müller1, and Felix Wolf2

1 ZIH, TU Dresden, Germany
2 GRS-SIM, Aachen, Germany

Foreword

The PROPER workshop addresses the need for productivity and performance
in high performance computing. Productivity is an important objective during
the development phase of HPC applications and their later production phase.
Paying attention to the performance is important to achieve efficient usage of
HPC machines. At the same time it is needed for scalability, which is crucial in
two ways: Firstly, to use higher degrees of parallelism to reduce the wall clock
time. And secondly, to cope with the next bigger problem, which requires more
CPUs, memory, etc. to be able to compute it at all.

Tool support for the user is essential for productivity and performance. There-
fore, the workshop covers tools and approaches for parallel program development
and analysis, debugging and correctness checking, and for performance measure-
ment and evaluation. Furthermore, it provides an opportunity to report success-
ful optimization strategies with respect to scalability and performance.

This years contributions reflect this spectrum nicely. The invited paper by
Torsten Höfler proposes to combine the so far disjoint approaches from perfor-
mance modeling and tool based performance analysis. The paper by Chee Wai
Lee et.al. presents an online extension to the TAU tools. Robert Schöne et.al.
introduce a plug-in mechanism for adding new performance counter sources to
the VampirTrace run-time measurement system. Judit Giménez et.al. propose a
combined profiling and event tracing solution which is demonstrated with the
Paraver tools. Christian Iwainsky et.al. present an in-depth analysis of mem-
ory access behavior on Intel Nehalem-EX CPUs. Stas Negara et.al. present the
challenges of automatic transformation of MPI codes to adaptive MPI. Stefano
Masini et.al. discuss the use of Python for HPC.
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Abstract. Application performance is critical in high-performance com-
puting (HPC), however, it is not considered in a systematic way in
the HPC software development process. Integrated performance models
could improve this situation. Advanced analytic performance modeling
and performance analysis tools exist in isolation but have similar goals
and could benefit mutually. We find that existing analysis tools could
be extended to support analytic performance modeling and performance
models could be used to improve the understanding of real application
performance artifacts. We show a simple example of how a tool could
support developers of analytic performance models. Finally, we propose
to implement a strategy for integrated tool-supported performance mod-
eling during the whole software development process.

1 Motivation

High performance computing (HPC) software development differs from tradi-
tional software development in several aspects. In addition to the forus on relia-
bility, correctness and productivity, HPC software development strives to achieve
maximum performance. This is reflected throughout the whole development pro-
cess and tool-chain. HPC libraries and APIs such as BLAS, LAPACK, and the
Message Passing Interface (MPI) focus mostly on the highest performance and
performance portability. HPC applications are mostly scientific codes that are
usually dominated by floating-point and memory operations and are often reg-
ular. Languages such as Fortran and High Performance Fortran thus pick their
default semantics (e.g., dense arrays) to support such regular scientific codes.

In addition to the traditional software development tools such as debuggers
and profilers, advanced (parallel) performance analysis tools are often necessary
to understand the complex performance characteristics of HPC applications.
Large scientific codes are often significant investments at a national level, but
a clear software engineering methodology that integrates performance into all
layers of the development process has not been established yet. The field of
performance engineering [15] made some advances in this direction and first
strategies exist to incorporate performance models into standard software devel-
opment using UML [10,14].
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c© Springer-Verlag Berlin Heidelberg 2011
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2 State of the Art

We advocate the idea that performance should play a central role in software
development and maintenance. This means that expected performance of codes
or parts of codes are expressed as analytic performance models. The development
and maintenance of such models should be supported by tools that become an
essential part of HPC software development and maintenance.

In this position paper, we point out that both, performance tools and perfor-
mance models, exist separately and could be combined to improve HPC software
development. We begin with an (due to space limitations incomplete) overview
of the state of the art techniques for performance modeling, which is followed
by a similar discussion for performance analysis tools.

2.1 Overview of Analytic Performance Modeling

Performance modeling is important for many aspects of HPC. It has been used
to compare system performance, validate large system installations (acceptance
testing), for routine tests during the lifetime of a computer system to detect
anomalies and degradation, to guide hardware-software co-design, to guide re-
engineering of large applications, to optimize schedulers and batch systems, and
to predict costs to solve a particular scientific problem. Performance models
are generally less accurate than actual benchmark studies but allow predicting
performance on different systems.

Alam and Vetter propose code annotations, called “Modeling Assertions” [2]
that combine empirical and analytical modeling techniques and help the developer
to derive performance models for his code. Kerbyson et al. propose a performance
modeling approach [11] that is based on manually developed human expert knowl-
edge about the application. Those modeling techniques rely on empirical execution
of serial parts on the target architecture and are usually applied to stable codes
which limits their usefulness during software development. Snavely et al. uses an
application’s memory access pattern and processing requirements to predicts its
performance on a target architecture [16]. This approach relies on memory profiles
of the application and automated, simulation-based prediction. Hoefler et al. de-
fine strategies to trade the accuracy and complexity for modeling the performance
of Message Passing Interface implementations [7].

Several other research works, such as [9], use analytic performance model-
ing to understand the performance characteristics of different codes or to guide
optimizations.

Analytic performance modeling of scientific codes is usually performed in three
phases: (1) identify the performance-critical input parameters, (2) formulate
and test a hypothesis about the performance as function of the performance-
critical input parameters, and (3) parametrize the function. Empirical modeling
strategies that benchmark parts of the code (kernels) on the target architecture
are often employed to maintain human-manageable performance models. Steps
(2) and (3) of developing analytic performance models are often performed with
the help of performance tools even though performance tools do not offer explicit
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support for the modeling workflow. Analytic performance models strive
to capture the applications’ performance characteristics in a human-
understandable form.

2.2 Overview of Performance Analysis Tools

Performance tools are an integral part of the HPC ecosystem. They allow deep
insights into the behavior of machines and their performance by displaying the
performance characteristics of executed applications. Tools allow us to find bot-
tlenecks and tune applications. They can also guide re-engineering of applications
and they are often used to collect the data to design application models.

HPCToolkit [1] provides a framework for measurement and analysis of pro-
gram performance, collects call path profiles, and can display hierarchical space-
time diagrams. Periscope [5] monitors performance online and uses a distributed
search to detect performance bottlenecks automatically. This approach omits
time-and space-intensive offline trace analysis and allows the specification of
“performance properties” to check during runtime. The TAU project [13] offers
multiple tracing, profiling, and analysis tools to collect and analyze performance
data of large-scale parallel applications. Vampir [12] uses the Open Trace Format
and supports the visualization of performance traces and profiles. Scalasca [4] is
targeted at large-scale architectures and offers scalable performance views and
analyses.

In general, performance tools strive to guide performance analysis by dis-
playing performance behavior. This enables users to understand the perfor-
mance characteristics. Advanced analysis tools try to support users by pin-
pointing possible performance bottlenecks, hotspots, or other potential prob-
lems. Fully-automated tools are often imperfect and allow some guidance (such
as Periscope’s “performance properties”) to be specified by the user. Perfor-
mance tools strive to extract performance properties of applications
that enable users to understand application performance.

We now discuss how performance tools and performance-models could be
combined to benefit the software development process.

3 Combining Performance Tools and Analytic Modeling

We showed in the previous section that there already exists some overlap be-
tween performance analysis tools and analytic performance modeling. Analytic
performance modeling can be seen as top-down approach where the user for-
mulates an expectation based on an algorithm or implementation and tries to
validate and parametrize it to predict performance. Performance analysis tools
can be seen as a bottom-up approach that records performance artifacts and
strive to trace the artifacts back to the original implementation or algorithm.

It is now obvious that performance analysis and analytic performance modeling
can benefit from each other. Performance tools could use analytic performance
models to filter the displayed information or even to pinpoint possible problems
automatically and during runtime. Creating analytic performance models could
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Fig. 1. Comparison of Performance Modeling and Performance Analysis Approaches

benefit largely from effective tool support that could automatize the benchmark
and fitting cycle. Both scenarios require human input of an initial model and model
inputs (performance-critical input parameters). However, such models are often
easy to derive and already used in algorithm design.

We now describe the first option, i.e., how a performance analysis tool could
assist users in deriving performance models. For this, we propose a possible
work-flow based on tools and human input.

The first step would be to identify performance-critical input parameters. This
has to be done by an application expert. Performance-critical input parameters
(called critical parameters in the following) are for example the dimensions of
the simulated system or parameters that influence convergence. Other param-
eters, such as initial starting values (e.g., heats or masses) might not change
the runtime of the algorithm and are thus not critical in performance models.
More complex parameters such as the shape of the input systems need to be
approximated into a single value by the application expert.

The set of critical parameters could now be used by a static analysis framework
to identify the propagation though the code. This could help to guide the user
through the second step, the identification of critical blocks which exhibit similar
performance characteristics. This often means identifying parts of the call-tree
for which the runtime can be modeled by a single analytic expression.

The third step requires the user to define abstract parametric models for
the performance of each code block. For example, the user can specify that the
expected runtime of a matrix-matrix multiplication is TMM = a+b·(c·N)3 where
N is the size of the matrix (a critical input parameter), and a,b,c are parameters
that depend on the performance characteristics of the implementation and the
target machine. Such performance expectations are often low-order polynomials
or simple logarithmic functions and a tool could support the user with pre-
defined functions. Additionally, a tool could support modeling of caches by pre-
defining segmented functions, such as TMMc = a + min{CN , N} · b1 · (c1 ·N)3 +
max{N−CN , 0}·b2·(c2·N)3 where CN specifies the number of elements x·N that
can be stored in fast cache-memory. The variables b1 and c1 model the in-cache
execution and b2 and c2 out-of-cache execution. Such simple transformations
can easily be extended to deeper memory hierarchies and supported by tools.
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The performance tool could then assist in conducting a series of benchmarks
with different values of N and perform user-guided statistical fits to the target
function in order to parametrize the model.

Communication analysis could similarly be guided by tools. A communication
model usually includes the number of messages and the communicated sizes for
each critical block. Those counts are then used to parametrize network models
such as the LogGPS model. Tools and techniques to parametrize the LogGPS
machine model exist elsewhere [8].

The model validation phase could similarly be automated with an appropri-
ate tool which then benchmarks different parameter configurations in order to
certify the model’s prediction. Several well-known methods from statistics exist
to perform such checks. This would imply that tools need to be extended to run
multiple experiments instead of analyzing only a single experiment.

The two main impediments to wide adoption of analytic performance model-
ing are (1) that the software developer needs to be familiar with the details of
the modeling strategy and (2) the necessary manual work and missing standard-
ization and guidance for notation (cf. UML). The proposed tool-support would
address both in that it offers an integrated interface to performance analysis
and performance modeling. Tools would also be able to adopt UML-like syntax
and add performance assertions (cf. [10,14]). This would enhance the software
development cycle in HPC and help the developers to focus on end-to-end per-
formance and thus improve productivity.

4 A Motivating Modeling Example: MILC

We now present a brief overview about manual analytic performance modeling
for the MIMD Lattic Computation (MILC) code [3]. This code is highly regular
and the code- and data-flow is mostly deterministic and very structured. The
balanced computation is performed on a regular four-dimensional grid.

The critical parameters of the MILC code are the size of each dimension
nx, ny, nz, nt, the number of warmups (warms) and trajectories (trajecs),
steps per trajectory (steps) and trajectories between measurements (meas). The
number of CG iterations is determined by different input parameters (masses and
convergence factors) but a single step usually requires around 2,100 iterations.

Identifying the critical blocks can often be done by analyzing the call-graph
and identifying subtrees with common performance characteristics. The MILC
developers already identified five significant blocks: (1) LL (load longlinks),
(2) FL (load fatlinks), (3) CG (ks congrad), (4) GF (imp gauge force), and
(5) FF (eo fermion force twoterms).

The expected runtime of each of the serial blocks scales linearly with the
number of grid points per process V . Thus, a simple linear function, for example
TGF (V ) = t1,GF · V can be used to model the performance. In order to model
the cache hierarchy, we split the linear model into two pieces TGF (V ) = t1,GF ·
min{sGF , V }+ t2,GF ·max{0, V − sGF } with t1,GF being the in-cache time per
grid point and t2,GF being the out-of-cache time.
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Parametrizing t1,GF and t2,GF and finding the exact switching point s is usu-
ally done via curve-fitting. Figure 2(a) shows the benchmarked and parametrized
model (t1,GF = 88μs, t2,GF = 157μs, and sGF = 1900). The model was
parametrized by least-squares curve-fitting which could be easily supported by
tools. This time-consuming step needs to be repeated for each target architecture
and can easily be automatized.

 0

 500

 1000

 1500

 2000

 2500

 0  5000  10000  15000
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e 
[m

s]

R
el

at
iv

e 
E

rr
or

 [%
]

Grid Points per Process (L)

Model Function
Model Error

(a) TGF measured and modeled

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  5000  10000  15000

T
im

e 
[m

s]

Grid Points per Process (L)

16
256

1024
Model

(b) Parallel model and benchmark for GF

Fig. 2. Performance Modeling on POWER5+

A complete serial application model can now be constructed from either a
detailed understanding of the code execution or by analyzing multiple different
program runs and observing the number of invocations of each critical block.
The complete serial model for MILC is a simple linear model:

Tserial(V ) = (trajecs+ warms) · steps · [TFF (V ) + TGF (V ) + 3(TLL(V ) +

TFL(V ))] +
⌊
trajecs

meas

⌋
[TLL(V ) + TFL(V )] + niters · TCG(V )

Parallel execution models can often be derived from serial performance mod-
els. For MILC, it is sufficient to add the communication overheads to the serial
time. The communication overhead depends on the number and sizes of messages
sent via point-to-point and collective communication calls. Those parameters
can either be derived from the source-code or measured with performance tools.
Using the latter approach, we were able to construct a simple linear model for de-
tailed message counts and sizes for nearest-neighbor (along the four-dimensional
grid) and collective (CG convergence checks) communication. We omit the de-
tailed linear equations for brevity. Tool support for automatic counting and data
correlation could improve productivity significantly.

Figure 2(b) shows the parallel performance model for GF on 16, 256, and 1024
CPUs. The used LogGPS model ignores congestion and shows thus some little
deviation from the benchmark for large V .
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4.1 Application of the Model

After successfully deriving and parametrizing the model for POWER5+, we are
able to make a first prediction for the performance of a large-scale system like
Blue Waters. At this point, there is only a single POWER7 MR system available
for testing but the network parameters are known to us. First, we construct a
serial performance model as described before. Figure 3(a) shows the serial model
in comparison to POWER5+. Figure 3(b) shows the parallel model prediction
for 1,024 CPUs.
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Fig. 3. Performance Models of POWER7 MR

The parallel model allows us to predict the performance and identify potential
improvements. For example, a possible optimization which could save up to 15%
for small V is the replacement of the pack routine with MPI Datatypes. The
benefits of this approach were demonstrated in practice [6].

5 Summary and Conclusion

We support the idea of making analytic performance modeling part of the HPC
software development cycle in order to improve programmer productivity and
code maintainability.

We show that a huge body of knowledge, techniques and tools exist in the
analytic performance modeling and the performance analysis tools communities.
We show how performance tools and performance modeling could mutually ben-
efit from each other and we propose an easy roadmap to extend existing tools
with the capability to support simple performance models.

We also show a simplified exemplary model for the MILC application which
could be used as a starting point to explore tool support for analytic performance
modeling. More complex (less regular) applications most likely require more
advanced techniques. However, techniques like clustering are already employed
in current performance analysis tools such as Vampir and TAU.

We propose to both communities to analyze the mutual benefits and de-
velop a roadmap to synchronize the efforts in analytic modeling and performance
analysis.



490 T. Hoefler

Acknowledgments. The author thanks William Gropp, Bill Kramer, and Marc
Snir for many helpful discussions and ideas regarding concepts of analytic mod-
eling. Thanks to Steven Gottlieb for discussions about MILC and Shirley Moore,
Fredrik Kjolstad and all anonymous reviewers for comments on early drafts of
this work.

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exper. 22(6), 685–701 (2010)

2. Alam, S., Vetter, J.: A framework to develop symbolic performance models of
parallel applications. In: Parallel and Distributed Processing Symposium, vol. 0,
p. 368 (2006)

3. Bernard, C., Ogilvie, M.C., DeGrand, T.A., DeTar, C.E., Gottlieb, S.A., Krasnitz,
A., Sugar, R., Toussaint, D.: Studying Quarks and Gluons On MIMD Parallel
Computers. Intl. Journal of High Perf. Comp. Applications 5(4), 61–70 (1991)

4. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
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TAUmon: Scalable Online Performance Data

Analysis in TAU
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Abstract. In this paper, we present an update on the scalable online
support for performance data analysis and monitoring in TAU. Extend-
ing on our prior work with TAUoverSupermon and TAUoverMRNet, we
show how online analysis operations can also be supported directly and
scalably using the parallel infrastructure provided by an MPI application
instrumented with TAU. We also report on efforts to streamline and up-
date TAUoverMRNet. Together, these approaches form the basis for the
investigation of online analysis capabilities in a TAU monitoring frame-
work TAUmon. We discuss various analysis operations and capabilities
enabled by online monitoring and how operations like event unification
enable merged profiles to be produced with greatly reduced data volume
prior to application shutdown. Scaling results with PFLOTRAN on the
Cray XT5 and BG/P are presented along with a look at some initial
performance information generated from FLASH through our TAUmon
prototype frameworks.

1 Introduction

As the level of parallelism increases in large-scale systems, performance mea-
surement of parallel applications will be affected by the size of the performance
data being maintained per process/thread, the effects of measurement overhead,
and the cost of output, both during and at the end of execution. The traditional
approach of post-mortem (offline) analysis of performance experiments will come
under increasing pressure as the sheer volume and dimensionality of performance
information drives up I/O and analysis complexity. Enhancing performance mea-
surement systems with online monitoring support is a necessary step to address
both challenges. In our prior research, we have explored extensions to the TAU
performance system [9] that allow access to the parallel performance data mea-
surement for an application at runtime. The TAUoverSupermon [13] (ToS) and
TAUoverMRNet [12] (ToM) prototypes leveraged the online transport infrastruc-
tures, Supermon [15] and MRNet [1], respectively. While ToS and ToM demon-
strate monitoring functionality, it is becoming increasingly clear that we need to
push forward on the scalable algorithms for performance analysis and evaluate
their efficiency in real application scenarios.

In this paper, we reconsider the approaches and capabilities of online perfor-
mance monitoring from a perspective of the online operations necessary to sup-
port scalable performance measurement and runtime analysis requirements. In

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 493–499, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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addition to updating ToM to support new machines, we investigate the approach
of directly using the parallel infrastructure provided by MPI as an alternative,
complementary monitoring framework. Together these different approaches for
operations via different transports form the foundation of a framework for TAU
performance monitoring we call TAUmon. We will structure the rest of the paper
as follows. Related work is discussed in section 2. In section 3, we describe the
statistical analysis operations enabled by TAUmon. Section 4 briefly covers the
changes to ToM and the use of the MPI transport. Section 5 presents scaling
results for analysis operations implemented using MPI and ToM for the PFLO-
TRAN [11] application and FLASH [4]. These experiments were conducted on
Jaguar, Oak Ridge National Lab’s Cray XT5 and Intrepid, Argonne National
Lab’s IBM BlueGene/P.

2 Related Work

Prior literature that guided our work can be classified roughly into 2 cate-
gories: work that seek to provide general monitoring interfaces and those that
seek scalable transport support. The Online Monitoring Interface Specification
(OMIS) [8] project provided a general interface between tools and a monitor-
ing system. An event-action paradigm mapped events to requests and responses
to actions as part of that interface. J-OMIS [2] was built on top of this in-
terface to provide extensible monitoring facilities for the support of tools for
Java applications. Specific target tools were performance characterization and
debugging tools. Lee [7] explored the effectiveness of asynchronously collecting
profile data transformed from performance traces generated within a running
Charm++ application. The work demonstrated how an adaptive runtime sys-
tem like Charm++ was able to serve as an effective transport medium for such
purposes. Periscope [5] made use of hierarchical monitor agents working with
applications and an external client in order to address scalability issues with
transport. The Distributed Performance Consultant [10] in Paradyn made use
of MRNet to support introspective online performance diagnosis. In addition, a
number of computation steering frameworks [6,14,16,3] exist where performance
information is collected, analyzed and fed through parameter-modifying inter-
faces in order to change an application’s behavior. What distinguishes TAUmon
is the attempt to design an integrated abstraction to TAU’s interface for swap-
ping independent transport mechanisms in order to provide maximum flexibility
for efficiently delivering and processing performance data.

3 Online Performance Monitoring

Our efforts to build monitoring support have grown out of more general concerns
of reducing the size, time, and number of files needed to offload parallel profile
data at the end of the application execution. For several years, we have been ex-
tending the TAU measurement infrastructure with scalable capabilities to access
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performance data online via different transports, what we call performance mon-
itoring. There are several benefits to performance monitoring including offload-
ing of performance data, on-the-fly analysis, and performance feedback. With
performance data offload, it becomes possible to capture a running time-series
snapshots of event statistics, histograms and cluster-averages. Presentation of
these snapshots as they appear permits on-the-fly analysis, possibly on a remote
client while the application is still executing. We now describe the monitoring
operations currently supported as a part of the TAUmon framework.

Profile Merging: By default, TAU creates a file for every thread of execution in
the parallel program. In this case, the number of files required to save the full
parallel profile grows as an application scales. We have added to the monitor-
ing framework an operation that merges profile streams in order to reduce the
number of files required. The operation is a concatenation operation used only
at the end of the run. The root processor requests for the profiles of the other
processors one at a time. On receipt of these profiles, the data is immediately
concatenated to a single file by the root processor to avoid running out of mem-
ory. When profile merging is coupled with and preceded by event unification,
the gains in overall data volume when compared with the traditional approach
of profile output are significant with low overhead costs. For example, 27 GB
of PFLOTRAN profile output for 131k cores was reduced to 600 MB, taking
12.96 seconds on the Cray XT5.

Event Unification: In TAU, because events are instantiated locally, each thread
assigns a unique event identifier. This results in full event maps that need to
be stored for each thread. Event unification begins by sorting each processor’s
events by name. The information is propagated up the transport’s reduction
tree, where at each stage, the output to the next level of the tree is the unified
and sorted by the list of events from the set of inputs. At the same time, each
intermediate node in the tree maintains the reverse event maps. When the fully-
unified event information arrives at the root, it is broadcast back through the
tree during which the full event map for each processor can be constructed using
the local maps maintained at each intermediate node. Note that event unification
is the pre-requisite to all other monitoring operations that do not involve simple
concatenation and thus require global event identification consistency.

Statistics Operations: Basic reductions in the transport support the computa-
tion of sum, sum of squares, minimum and maximum values of events across
processors. From these, we can derive mean profiles and compute histograms
with fixed-sized bins. The mean profile is useful as a summary from which addi-
tional statistical information can be sought via other operations. As time-series
data, it is capable of highlighting the relative significance of events and their
relative rate of growth. Histograms are useful for highlighting work distribution
across processors for events which cannot be captured by mean profiles.
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4 Transport Infrastructure Updates

Our original ToM instantiation scheme was designed to allow additional MRNet
resources to be initialized flexibly and semi-transparently to both the application
and job scheduling system. This was achieved to a reasonable degree through the
splitting of MPI communicators as described in [12]. This instantiation scheme,
however, did not foresee other flexibility problems in the way MRNet trees may
have to be set up. For example, because of the way MRNet trees are currently
implemented, intermediate tree nodes may only be allocated on the service nodes
of BG/P. As a result, we have had to update ToM to make use of new versions
of MRNet with the latter’s support for much larger machines like the Cray XT5
and BG/P platforms and specialized batch environments.

In addition, we have adopted MPI as an online monitoring transport. This was
derived from our work to reduce the overheads associated with end-of-execution
profile output and analysis. We found it necessary to deal with a large number
of profiles using more efficient profile representations. We had separately im-
plemented parallel event unification, profile merging, and profile data analysis
(average, min, max and histogramming) using MPI for use at the end of the
execution, and considered how these solutions could be applied to other moni-
toring operations. The monitoring operations were then implemented in parallel
using a binomial reduction tree based on the algorithms used in MPI reduction.
Enabling them for online monitoring was a then simple matter.

5 Experiments and Results

Fig. 1. Time taken for PFLOTRAN moni-
toring operations on the XT5 using ToM as
the transport layer

Our experiments with TAUmon had
two goals. First, we aimed to observe
transport performance against differ-
ent online monitoring operations. Sec-
ond, we wanted to observe expected
performance structures over time not
normally captured by a final appli-
cation profile. We targeted two ap-
plications: PFLOTRAN [11], a 3-D
reservoir simulator that models sub-
surface reactive flows, and FLASH [4],
a multi-physics multi-scale simulation
code that has been used to simulate
type Ia supernovae explosions. The in-
put data set used for PFLOTRAN
modeled a large 2 billion degree-of-
freedom river simulation. This data set was used for both our preliminary exper-
iments as well as our strong scaling experiments above 4,096 processor cores on
the Cray XT5 and BG/P machines. For FLASH, we employed the Sod 2d input
dataset with varying maximum refinement levels.
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Fig. 2. Time taken for PFLOTRAN moni-
toring operations on the XT5 using MPI as
the transport layer

At each major iteration, event uni-
fication followed by monitoring oper-
ations to compute per-event means
and histograms over 20 bins. In the
case of ToM, this is measured by the
front-end process which marks the be-
ginning and end of each operation’s
communication protocol. For MPI
transport, the root process of our re-
duction tree takes responsibility for
measuring when the collective oper-
ation was begun and when the per-
formance data was finally gathered at
the root. To get a perspective on the
effects of data volume on online mon-
itoring overhead, we made compar-
isons of PFLOTRAN when executed
with full instrumentation against selective instrumentation of significant events.
The full event set numbered around 756, while selective instrumentation yielded
about 57 events.

Fig. 3. Time taken for PFLOTRAN moni-
toring operations on the BG/P using MPI
as the transport layer

Figure 1 shows the scaling results
for the Cray XT5 using ToM from 4K
to 12K cores. Since event unification
has not yet been implemented with
MRNet, we used MPI event unifica-
tion results for the other analyses. All
times are less than 0.7 seconds, with
histogramming taking longer than av-
eraging. Times increase with larger
cores counts. Both of these results
were expected. We are investigating
performance in more detail to deter-
mine if optimizations are possible.

In contrast, Figure 2 shows the
scaling results for the Cray XT5 us-
ing the MPI transport for 4K to 24K
cores. Except for histogramming on
758 events, MPI analysis operations
are all less than 0.06 seconds. Compared to ToM, this is significantly faster. Fur-
thermore, there is little effect of scaling on these times. Clearly, the anomaly is
the histogramming results for 758 events. More investigation is needed to un-
cover the poor performance here. Our suspicions are that there is an interaction
between the histogramming algorithm and the core locality boundaries that dis-
rupt performance. In addition to being high, the execution times have the weird
behavior of declining at larger scale.
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Fig. 4. Online profile snapshots of FLASH execution on 1,536 Cray XT5 processes

Moving to the IBM BG/P, Figure 3 shows the scaling results using MPI
transport for 4K to 16K cores and 57 events. Again, the execution times are all
less than 0.06 seconds. The interesting effect is the larger event unification time
relative to mean and histogram analysis. This is also represented in the XT5
results for 57 events, keeping in mind that Figure 2 is a log-log plot. As before,
monitoring analyses with MPI transport appears to be minimally affected by
scaling.

Finally, our work with FLASH returned to online monitoring experiments to
demonstrate how analysis of parallel profile snapshots taken during execution
can highlight performance effects that would otherwise be missed in an aggre-
gate profile. Figure 4 highlights 34 frames of mean profiles from 1,536 processes
running FLASH on the Cray XT5. The most significant five events are labeled.
The frames were chosen because they show the step-like behavior in the events
associated with AMR operations.

6 Conclusions and Future Work

The TAU project is developing a scalable parallel monitoring framework called
TAUmon, based on past research prototypes, but with an eye toward leveraging
current scalable infrastructure like MRNet and high-performance MPI libraries.
The results from initial experiments reported here give confidence that end-of-
execution and online monitoring capabilities will provide opportunities for large-
scale performance analysis. The parallel performance of the TAU event, merging,
and reduction (mean, histogram) operations are good for both MRNet and MPI
transport designs. We are currently developing other analysis operations, such
as clustering and wavelet analysis, as well as tuning the monitoring analysis for
higher efficiency. Long term, we hope to provide a monitoring interface for par-
allel applications to interrogate performance online from TAUmon, for purposes
of adaptive performance optimization.

Acknowledgments. The research was by a grant from the U.S. Department of
Energy, Office of Science, under contract DE-SC0001777.
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Abstract. The growing complexity of microprocessors is not only driven
by the current trend towards multi-core architectures, but also by new
features like instruction set extensions, additional function units or spe-
cialized processing cores. The demand for more performance and scal-
ability also results in an increasing complexity of the software stack:
operating systems, libraries, and applications all need to exploit more
parallelism and new functionalities in order to meet this demand. Both
aspects – hardware and software – put pressure on performance moni-
toring infrastructures that face two conflictive requirements. On the one
hand, performance tools need to be somewhat stable without entailing
significant software changes with every additional functionality. On the
other hand they need to be able to monitor the influence of new hard-
ware and software features. We therefore present a plugin interface for
our performance monitoring software VampirTrace that allows users to
write libraries that feed VampirTrace with data from new (platform de-
pendent) performance counters as well as hardware features that may not
be accessed by Open Source software. This paper describes the interface
in detail, analyzes its strength and weaknesses, depicts examples, and
provides a comparison to other plugin-like performance analysis tools.

1 Introduction

Profiling and event tracing are the two major analysis techniques to evaluate
performance and pinpoint bottlenecks within parallel programs on high perfor-
mance computing (HPC) systems. A well-established event tracing infrastruc-
ture is VampirTrace. Its main focus is to instrument and trace parallel programs
written in Fortran or C that are parallelized with the Message Passing Interface
MPI [1]. However, VampirTrace also supports OpenMP parallelized programs
and hybrid MPI & OpenMP programs, Pthreads, UNIX processes and parallel
Java programs [2,3]. The tool is jointly developed by the Forschungszentrum
Jülich and the Technische Universität Dresden. It is shipped with OpenMPI [4]
and therefore available as a software package for all major Linux distributions.

VampirTrace supports numerous performance counters to track metrics such
as PAPI or I/O events. These performance counters are typically standardized
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and portable. New processor or operating system features are often system spe-
cific and not compatible with previous or upcoming systems. However, they
influence the overall system performance and need to be tracked by performance
monitoring tools. To branch a monitoring infrastructure for each different plat-
form would enlarge the code base significantly – this is inefficient and slows
down the development progress. The inclusion of all the new features within the
main branch is also not feasible since it would increase both the code size and
the error-proneness of the software. We therefore extend our performance mon-
itoring software VampirTrace with the presented VampirTrace plugin counter
infrastructure that effectively resolves the described issues. The new interface
allows developers to write libraries that feed VampirTrace with data from new
(platform dependent) performance counters as well as hardware features that
may not be accessed by Open Source software. This effort is an important step
towards a VampirTrace infrastructure that enables arbitrary, platform specific
performance counters while remaining stable and consistent.

The paper is structured as follows: Section 2 topics design and implementation
details of the VampirTrace plugin counter infrastructure. Three different plugin
counter libraries that extend the functionality of VampirTrace are presented
in Section 3. We discuss design limitations in Section 4 and address related
work with respect to plugins for performance analysis tools in Section 5. Finally,
Section 6 presents conclusions and outlines future work.

2 The Plugin Counter Interface

2.1 Design

Currently, there are four possible types of plugin counters that differ with respect
to their type of synchronicity:

Synchronous plugin counters are very similar to other performance events
in VampirTrace. Whenever a VampirTrace event occurs (e.g., the call of an
instrumented function or a call into the MPI library), the current value of such
a plugin counter is gathered and merged into the event trace.

Asynchronous Callback plugin counters usually start background threads
that report data by calling a function of the VampirTrace counter interface. The
event data can be gathered from a buffered local or even remote location. Such
plugin counter libraries have to provide timestamps along with the counter values
since they can not be matched directly to a VampirTrace event. Functions to
generate timestamps in a supported format are passed on to the plugin counter
library during the initialization phase of VampirTrace.

Asynchronous Post-mortem plugin counters collect tracing information
during the full runtime of a program. The event data is collected by Vampir-
Trace after the program has finished. Function calls that implicate overhead
occur either prior to or after the program runtime, thus minimizing the program
perturbation. If the plugin library itself gathers its data from an external source
over a network, the measurement process is not influenced at all.
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Asynchronous On-event plugin counters are a hybrid approach. While per-
formance events are collected asynchronously, VampirTrace retrieves the data
only when a classic event (e.g., function or MPI call) occurs. The advantage
of this plugin counter type is that the event buffer size can be decreased com-
pared to post-mortem plugin counters while still allowing a similar asynchronous
collection method.

Another distinction for plugin counter libraries is the scope of their counters.
For example, PAPI counters can be related to a thread while CPU-related coun-
ters are not thread specific. Thread-independent counters can be associated to a
host (e.g., network interface counters) or to the whole system (e.g., usage of an
NAS). The current implementation of the plugin counter interface allows mea-
suring counters per thread, per process, on the first thread of the first process
of each host (“once per host”), or only on the first thread of the first process
(“once”).

Plugin libraries can also define counter datatypes such as unsigned and signed
integer or floating point values. The relation of values to time can be defined as
“relates to the current timestamp” (e.g., temperature of components), “relates
to the time frame from the last event to the current” (e.g., average power con-
sumption for the last time frame), “relates to the time frame from the current
event to the next one” (e.g., the current processor, a thread is scheduled on),
“relates to the time frame from the first time stamp to the current” (e.g., PAPI
reads).

2.2 Implementation

The VampirTrace plugin counter interface is developed using C. It depends only
on POSIX functions and definitions declared in dlfcn.h and stdint.h. Func-
tions from dlfcn.h enable dynamic loading of plugins at runtime. The interface
defines functions for initialization, adding counters, enabling and disabling coun-
ters, providing results, and finalization. A subset of at least five functions has to
be implemented, others are optional. A minimal useful plugin can be written in
less then 50 lines of code.

Specific plugin counters can be added by the user who can define the envi-
ronment variable VT PLUGIN CNTR METRICS. This variable consists of the library
name followed by the counter name. For example, setting it to Power watts
would define the library libPower.so and the counter name watts. Multiple
plugin counters can be passed by separating them with colons. VampirTrace
evaluates the specified metrics and checks for the existence of implicitly defined
libraries. This is done for every process that is monitored by VampirTrace (e.g.,
for every MPI rank). Afterwards, the plugin counter libraries are loaded using
dlopen. Each plugin counter library has to implement the function get info,
which provides VampirTrace with pointers to all needed functions. For instance,
the get event info function assigns meaningful names and units to the coun-
ters. Furthermore, plugin developers can use this function to extend the passed
counter name to multiple counters. The functionality of wildcards can be a pos-
sible use case. If the user sets VT PLUGIN CNTR METRICS to Power *, get info



504 R. Schöne et al.

(a) Initialization per process (b) Initialization per thread

Fig. 1. Initialization procedures for plugin counters

might add one counter per available node and provide a comprehensible name
(e.g., “power for node 1”) and unit (“watts”) for each. Finally, VampirTrace
activates all defined metrics for the corresponding library. The entire process is
depicted in detail in Figure 1a. Additionally, for every new thread of the program
the required metrics are determined and added as pointed out in Figure 1b.

The trace buffer for the measured thread is shared by VampirTrace and all
used plugins. Writing a trace entry is not an atomic operation and a plugin thread
can therefore not write to this buffer directly. Mutexes could assure mutual
exclusion when writing events but this would add an unacceptable overhead.
Therefore, each callback plugin needs to create separate event buffers. The buffer
sizes need to be chosen carefully by the plugin library developer to avoid both
event loss and excessive memory usage.

2.3 Overhead Analysis

Monitoring tools typically influence the runtime behavior of the monitored ap-
plication. In our case, both VampirTrace itself as well as the plugins create a
certain overhead. The latter is fully in control of the plugin developer and we
therefore focus on the overhead that is induced by VampirTrace and the plu-
gin interface itself. We use a synthetic, OpenMP-parallel program that runs 4
threads on the test system. The system consists of 4 Intel Xeon 7560 proces-
sors and 128 GiB registered DDR3-1066 memory. Each processor runs at a core
frequency of 2.27 GHz. The TurboBoost overclocking feature allows processor
cores to increase their frequency up to 2.67 GHz. All measurements are per-
formed with Linux kernel version 2.6.32.12. This configuration is also used for
the examples presented in Section 3. The benchmark repeatedly calls an empty
function (immediate return), a worst-case scenario in terms of trace overhead.
We compare a minimal synchronous and a minimal asynchronous post-mortem
plugin counter to the runtime with no counters. The runtime is measured at the
beginning and the end of the program, ignoring the initialization and finalization
phase of VampirTrace.
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When no counter is added, each function call lasts about 1.65 μs. Every syn-
chronous counter increases this time by about 600 ns, most of which is required
to write the counter value to the trace buffer. Asynchronous post-mortem coun-
ters do not influence the runtime of the program. Therefore, plugin libraries that
record events on an external system and gather the data in the finalization phase
have no impact on the program execution at all.

2.4 Additional Software Infrastructure

For the examples presented in Section 3, we use two additional tools. The DBUS-
based perf event server provides enhanced access to kernel tracing events. The
Dataheap is a distributed counter collection system.

The Linux kernel tracing infrastructure [5] enables event counting on a user
level, but certain restrictions apply in a non-privileged context. Users can only
read counters that are attached to their processes (per-task-counters). This af-
fects some of our use cases in Section 3, for example in case of a plugin that
monitors the operating system scheduler events. When the time slice of the
observed process ends, the operating system scheduler selects a new task and
starts its execution on the CPU. These actions are executed from the context
of the observed (previous) process. Scheduling events that are created whenever
the own process is stripped from a CPU will be reported correctly. Scheduling
the observed process to a CPU is performed from the context of a different
task and will not be reported by a per-task-counter. It is therefore necessary
to trace scheduling events for all processes. This implies the usage of per-CPU-
counters that trace all events of a specific type on one CPU. These counters
gather information of foreign processes and therefore require privileged rights.
Our DBUS-based perf event server allows applications to send tracing requests
that include their PID, the event that shall be traced, and the desired memory
to buffer the data. The server checks for appropriate user rights and available
memory and starts the monitoring if both requirements are satisfied. The plugin
collects the gathered data from the server after the task finishes and merges it
into the trace file (see Figure 2).

The distributed counter collection system Dataheap uses a central manage-
ment daemon that runs on a dedicated server and collects performance data
from information sources. The Dataheap manager then distributes this data to
arbitrary clients, for example monitoring tools. The default usage scenario of the
Dataheap framework implies a distributed set-up, where sources and clients run
on different nodes. We use this infrastructure for several different purposes, for
example monitoring I/O activity by reading information from network attached
storage servers, or for measuring the power consumption of compute nodes.

3 Examples

In this Section we demonstrate the potential of the VampirTrace plugin counter
interface. Two plugin counters exploit the Linux kernel tracing infrastructure,
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(a) Perf event server and plugin (b) Dataheap infrastructure and plugin

Fig. 2. Comparison of perf event and Dataheap Plugin infrastructure

which was introduced with kernel version 2.6.31. The third one utilizes the Data-
heap infrastructure. For our tests we use a small MPI program that executes the
following commands:

0: all ranks: sleep 1 second

1: rank 0: sleep 1 second

2: all ranks: sleep 1 second

3: rank 0: sleep 1 second

4: all ranks: sleep 1 second

5: all ranks: busy waiting for 1 second

6: all ranks: sleep 1 second

7: all ranks: busy waiting for 1 second

8: all ranks: sleep 1 second

Each of these commands is followed by an MPI Barrier to synchronize all ranks.
The resulting traces are presented in Figure 3, 4, and 5.

3.1 Power State Tracing

We use three different kernel events to determine the C-state and clock frequency
of a CPU: power:power frequency, power:power start, and power:power end. A
power:power frequency event is created every time a CPU changes its frequency.
power:power start and power:power end correlate with a CPU entering or leaving
a sleep state. The plugin is implemented as post-mortem type to reduce the
overhead within VampirTrace. This means that the event buffers for the kernel
events have to be large enough to hold all events.

The possibility of dynamically overclocking a processor (e.g., via Turbo Boost)
is not considered, as both the current availability of overclocking and its real fre-
quency are not passed from the operating system to userspace. This could be
fixed by adding information about the registers aperf and mperf to the re-
ported event. Moreover, switching to another C-state has to be done in kernel
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(a) Test application - frequency and C-
state for every CPU

(b) Frequency of a CPU is increased with
a short delay after it leaves a C-state

Fig. 3. Power state tracing, frequency and C-state for every CPU

mode since all routines initiating a C-state (e.g., mwait or hlt) require privileged
rights. Therefore we use the perf event server introduced in Section 2.4. Switch-
ing to another frequency is mostly done by a governor that adapts the processors
frequencies automatically based on the recent load (ondemand/conservative gov-
ernor). The counters displayed in Figure 3a show that whenever a process starts
sleeping, its processor immediately switches to a higher C-state. As shown in
Figure 3b, the adaption of the frequency is not quite as fast, as the CPU gover-
nor bases its frequency scaling decisions on the recent load.

3.2 Scheduler Tracing

Processes or threads that migrate to other cores have to rebuild their regis-
ter content and their cache entries. The induced overhead can be performance
relevant and of interest for an optimization task. Our next plugin therefore mon-
itors sched:sched switch events that are created whenever a process is scheduled
onto a CPU or stripped from it. Figure 4a depicts the trace visualization of
our test application including scheduler events. Figure 4b shows that there is
periodical scheduler activity during the busy waiting phase in a blocking
MPI Barrier routine (see process 1 with PID 20049). The counter values corre-
spond to the CPU number that a selected process is scheduled to. For example,
when process 0 (with PID 20048) is active, it is scheduled onto CPU 3. Whenever
process 0 is put into a sleep state, it is unscheduled (-1).

Since a sched:sched switch event is created every time the operating system
scheduler is invoked, tracing this event makes excessive use of the result buffer.
With the support for sched:sched migrate task events, our plugin provides an
alternative to trace scheduling behavior. Such a sched:sched migrate task event
is created when a process is scheduled onto a different CPU. This occurs less
frequently and reduces the required buffer size significantly. The reduced buffer
size comes along with the drawback that the sched:sched migrate task event can
not detect phases, where the observed process is not scheduled onto a CPU.
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(a) Overview of scheduler behavior for the
test application. Processes are unsched-
uled (-1) when they enter a sleep state

(b) Counter 1:1 shows periodical operat-
ing system interrupts every 10 ms during
busy waiting in a blocking MPI routine

Fig. 4. Scheduler event tracing, CPU id for every rank

3.3 Power Consumption Tracing

There are currently three distinct Dataheap counter plugins, each with its own ad-
vantages and disadvantages. We use the asynchronous post-mortem plugin, which
only registers at the management daemon and collects the written data after the
application has finished. This solution is clearly preferable in terms of trace over-
head. The trace depicted in Figure 5 uses the Dataheap framework to provide in-
formation about the power consumption of our test system (see Section 2.3).

Fig. 5. Power consumption in Watts, collected from
an external counter database

We use a ZES LMG 450
power meter with a 10 Hz
sampling frequency that re-
ports its measurement data to
the Dataheap manager. The
trace shows how the power
state changes of the CPUs re-
duce the power consumption
of the whole system. We can
see that the OpenMPI im-
plementation of MPI Barrier
uses a busy waiting algorithm
that consumes considerably
more power than our busy
waiting loop.

4 Limitations

Recording events from performance counters always increases the overall trac-
ing overhead. The proposed VampirTrace extension allows using a post-mortem
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interface that moves the overhead for the actual event generation within Vam-
pirTrace from within the program runtime to after the program has finished.
Therefore, the program perturbation is small (kernel tracing) or zero (tracing of
external events, see Section 3.3). However, the post-mortem runtime overhead
as well as the memory overhead for the event buffers can be significant. These
overheads are not introduced by the plugin counter interface, but by the plugins
themselves.

Another limitation is that only one counter is internally measured at a time.
This can be a drawback when using numerous synchronous events. In contrast,
PAPI and the Linux kernel tracing infrastructure allow reading multiple events
with only one function call, thereby avoiding some overhead.

5 Related Work

While there is a wide range of performance analysis tools and libraries, only some
of them provide a plugin interface. The Collector Plugins of Open|SpeedShop [6]
are comparable to our approach. However, while Open|SpeedShop focuses on
profiling with only limited tracing support, the focus of VampirTrace clearly is
event tracing.

The PAPI project specifies an application programming interface for accessing
hardware performance counters. Monitoring these counters can for example give
hints how software can be optimized for a specific platform. PAPI version 4
provides the possibility to implement own counters called Components, which
can be read using PAPI. For design reasons, PAPI has to be recompiled for every
new component. Moreover, its design prohibits asynchronous events. However,
for synchronous events that are counted for every thread, it is a more flexible
and well accepted interface.

The Vampir framework is a well established performance analysis tool chain
with a strong focus on scalable high performance computing applications [2,3,7].
Recent work hast demonstrated the applicability of both the event monitor Vam-
pirTrace and the performance visualizer Vampir on state of the art systems in-
cluding hardware accelerators [8,9]. While we used the kernel tracing infrastruc-
ture to trace scheduling events, Kluge et al. [10] follow a different approach.
They use an additional thread, which monitors all other threads with a specific
polling interval. A high polling frequency strongly influences the test system even
if no rescheduling events occur. A too low frequency increases the possibility of
missed events and reduces the time accuracy of scheduling events.

6 Conclusion and Future Work

This paper presents the design and implementation of the VampirTrace plugin
counter interface along with some typical usage scenarios. The main goal of this
work is to address the issue of the constantly increasing number of performance
events sources that are typically highly platform specific. The plugin counter
interface allows these events to be recorded with VampirTrace while at the same



510 R. Schöne et al.

time strongly reducing the need to modify the core source code of the tool. Its
tight integration into VampirTrace and the availability of asynchronous events
further increase the benefit of this extension. Our exemplary implementation of
three different plugins demonstrates the potential of the newly defined plugin
infrastructure. All three plugins are used in current research efforts to analyze
programs and libraries with respect to performance and energy efficiency. Future
work will focus on making the plugin counter interface generally available within
the VampirTrace trunk. Moreover, other plugins are currently under develop-
ment, e.g., a libsensors plugin to read hardware information asynchronously.
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Abstract. Performance analysis is very important to understand the
applications’ behavior and to identify bottlenecks. Performance analysis
tools should facilitate the exploration of the data collected and help to
identify where the analyst has to look. While this functionality can pro-
mote the tools usage on small and medium size environments, it becomes
mandatory for large-scale and many-core systems where the amount of
data is dramatically increased. This paper proposes a new methodology
based on the integration of profilers and timeline tools to improve and
facilitate the performance analysis process.

1 Introduction

The performance of an application is influenced by multiple and complex factors.
Performance measurement and analysis tools allow to understand the application
performance behavior and give hints on how they can be optimized. There are
two main approaches on such performance analysis tools:

Profile-based tools accumulate statistics over the time dimension, keeping
the metrics per function and/or process. Despite the time aggregation, the vol-
ume of data can still become huge if a large number of processes is measured or
a very large number of metrics is precomputed. But usually the accumulation
over time drastically reduces the data volume. The profiled data is presented
structured in tables or trees. These two facts (size and type of display) facilitate
the correlation between metrics. Many of the profiler tools can link the metric
values with the source code showing the location and in some cases the code can
be edited from the profiler GUI.

Timeline visualization tools work with performance data in the 2D space
defined by processes and time. This approach yields a lot of data, and the justifi-
cation is that the variance over time is very important. The advocates for traces
defend that the aggregation could mask the metrics, preventing the analyst from
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514 J. Giménez et al.

looking at the metrics details and variance. Keeping the time dimension allows
the user to dynamically compute separate values for different time regions while
doing the analysis. In addition, some of these tools are capable of computing new
metrics defined on the fly increasing the search tree size. Many timeline tools
allow the user to accumulate the metrics in tables to obtain profile-like views or
histograms for a given metric.

There are clear strengths in both approaches that make them complementary,
but usually these tools are disconnected. A first reason is that profilers and
timeline tools work with different types of data, but even if there is a translator,
the integration does not go further than being able of working with performance
data from the other tool. To make things more difficult, each tool has its own
format despite initiatives to promote a common format like OTF [1] for traces
and PERI-XML [2] for profiles. The contribution of this work is to demonstrate
how profilers and timeline tools can interoperate defining a new methodology
that uses at each step the tool that easily answers the analyst question.

The methodology defined herein benefits from both approaches. The analysis
is initiated using the profiler to identify regions or metrics of interest for a
deep analysis. For these regions/metrics, the timeline tool is used to display
the details, e.g., to investigate the context or history of a source of unusual
metric values. The integration should provide the feeling of a unified environment
capable of collecting all the information required in a single run and the tools
should be responsible for keeping the analysis context as transparent as possible.
In our work we have interfaced KOJAK and PeekPerf profilers with the Paraver
analysis tool. The focus of the methodology is not on the data adquisition but
on the analysis phase because we consider it more complex.

Due to the limit of the proceedings number of pages, this paper has been
drastically reduced eliminating sections like tools description, related work and
conclusions and future plans. The full version of the paper can be found as
technical report UPC-DAC-RR-CAP-2010-28.

2 Performance Analysis Workflows

Post-mortem performance analysis is usually defined in two steps for both profile
and timeline tools. The first step collects data from the execution and the second
one displays the data to the analyst. If a user wants to use a profiler and a
timeline for the analysis, usually this would require to do two different executions
of the application, unless there is a translator and the data required by one tool
can be extracted from the data collected by the other. Some tools like KOJAK
divide the second step in two parts: the automatic analyzer (EXPERT) extracts
metrics from the trace that are presented to the user with CUBE.

The proposed approach (Figure 1) extends this structure to explore new paths
between the collected data and its visualization. The initial path connects the
profile and the tracefile views combining them to carry out the analysis. Other
interesting paths would be to generate new profile views from the visualization
modules (usually trace visualization, but even from a profile view). This approach
refines the metrics based on the results of a previous analysis step.
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run tracefile
profile
data

profile
visualization

trace
visualization

Fig. 1. Proposed workflow

In the current implementation, the selection is controlled by the user, who
decides what to do next. This includes a manual refinement to extract new
metrics based on the previous step. But this process can be done automatically
by an expert system. The methodology would be defined on a search tree and
the intermediate results would decide the branch for the next step. The system
would present the relevant data to the analyst who can decide where and how to
refine the analysis. An example of semi-automatic approach is the IBM’s High
Productivity Computing System toolkit (HPCST) [3] which actively searches
for known performance patterns instead of recording information. The toolkit
integrates performance tools, compiler and expert knowledge.

3 Coupling Profile and Timeline Analyzers

As depicted in the previous section, one of our objectives is to obtain all the
information from a single run. It is not only a matter of conserving resources,
but also to avoid correlating different runs measurements. When data is collected
with instrumentation (as opposite to sampling) the overhead of gathering the
information is similar for both timeline and profiling except on the regions where
the tracing buffer is flushed to disk. The proposed approach is to collect the
timeline information and to extract from it the profiled data.

The module that processes trace data to obtain the profiler input corresponds
to the EXPERT module in the KOJAK environment. It is a kind of filter that
extracts and aggregates the data relevant to the selected metrics. The user is
able to select the metrics to be explored, but it is important to provide a good
default set. Examples of performance metrics to be analyzed by the profiling en-
vironment are: time, instructions per cycle, load balance, L2 misses, L1/L2 miss
ratio and message size. The filter program may use the functionality provided by
the trace tool to generate a profile. In order to be able to later connect the pro-
file visualization with the timeline visualization, in this phase some additional
references have to be included on the profile data. The references should define
which views can be generated and how to compute them (for instance being on
a given user function or being on a region with a late sender).

The profile visualizer is used to analyze the generated metrics. The tool has
to offer a new functionality for the coupling with the timeline visualizer: it needs
to accept as part of its input new hidden metrics used to send a request to an
external presenter and to offer to the user the possibility to call the timeline.
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Finally, the timeline visualizer provides a mechanism to be driven by the
profile analysis, interpreting its requests. The basic mechanism allows the profiler
to raise a new window on the timeline tool. In the future it might be interesting to
use a mechanism that allows to create a kind of dialog, or to get feedback. There
is a wide range of possibilities: from checking that the view was successfully
presented to get details on the data shown to be added on the profiler display.

4 The Tools

The tools used to validate this methodology are PeekPerf [5] and KOJAK [6] as
profile tools and Paraver [8,9] as timeline analyzer. The modifications required
to support this approach were very simple: PeekPerf and Kojak were extended
with a new menu option to invoque a external tool and Paraver was extended
with a signal command functionality to enable external applications to trigger
loading new views on a selected time range or zooming on a previous view.

5 Examples of Analysis with the Proposed Framework

This section shows how the combination of profile and timeline tools improves
the ease-of-use and accuracy of the analysis using the profiler to focus and the
timeline tool to look for details/distribution. While the first example uses the
trace visualization to complement the facts identified on the profiler, the second
example covers the approach of refining the data depending on previous results.

5.1 KOJAK and Paraver

The example is based on a measurement of WRF-NMMii [11], a public-domain
numerical weather forecast code developed by the U.S. National Oceanic and At-
mospheric Administration (NOAA) National Centers for Environmental Predic-
tion (NCEP), consisting of the Nonhydrostatic Mesoscale Model (NMM) within
the Weather Research and Forecasting (WRF) system. It consists of some 530+
source files with over 300 thousand lines of code (75% Fortran, 25% C). Simu-
lations were analyzed using the Eur-12km dataset with a default configuration,
apart from varying the duration of the forecast and disabling intermediate check-
points. The data shown here are from an experiment with 64 processors on the
MareNostrum machine at Barcelona Supercomputing Center.

After instrumenting the application with KOJAK tools, executing it on the
parallel system, and analyzing the traces with EXPERT, it is possible to inves-
tigate the generated pattern profile with CUBE (see Figure 2). In the “Metric
tree” pane on the left side, one can quickly see that KOJAK found two main
problems: First, more than half of the point-to-point traffic is Late Senders
(3.69 seconds compared to 3.41 seconds spent in regular MPI point-to-point
functions). More than half of the late Senders can be attributed to Messages in
Wrong Order (1.99 vs. 1.70 seconds). The second detected problem is WaitAt-
NxN with a severity of 0.68 seconds. Selecting the collective operation pattern
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Fig. 2. KOJAK’s analysis results for WRF shown in the CUBE browser

(as shown in Figure 2), displays in the middle “Call tree” pane where this pattern
occurred in the program. In the example, it is a single call of MPI Allreduce
from the module function advection::had2 called from solvenmm. By selecting
MPI Allreduce in the call tree pane, the distribution of the imbalance over the
nodes and processes can be investigated in the “System tree” pane on the right.

It is important to note that waiting time in front of a collective is more of a
symptom than a cause of a performance problem. When the problem cannot be
resolved by looking at the corresponding portion of the source code, the context
of this pattern can be investigated with timeline tools like Paraver. To do this
easily, one can use the “Connect to trace browser” item of the “File” menu.
This automatically starts a new instance of Paraver, loading the corresponding
trace file via remote control. By default, it brings up the “State as is” display
of Paraver which shows the change of MPI states over time. The dialog window
also allows the user to select other Paraver configuration files if desired.

Fig. 3. Zoomed-in Paraver timeline display of a WRF trace showing just the instance
of the WaitAtNxN pattern with maximum severity
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In the beginning, the complete timelime is shown. By either selecting the
desired pattern in the “Metric tree” (e.g. WaitAtNxN) or the affected call path
(e.g. MPI Allreduce) in the CUBE display and using the context menu item
“Max severity in trace browser”, CUBE is automatically configured to zoom
Paraver’s timeline display to the most severe instance of the selected pattern
overall in the execution or in the context of the selected call path respectively.
The result is shown in Figure 3. In this view dark blue corressponds to the
unbalanced computing while light orange represents time in the MPI collective.
One of the tasks on the bottom of the image is the latest to end its computation
and around 25% of the time 3 tasks compute while the rest wait for them.

Paraver can be used to investigate the context or the history of the instance
of the pattern, for example whether a calculation or communication imbalance
causes the imbalanced waiting times indicated by WaitAtNxN. The same method
can of course also be used to investigate the detected performance problems of
the point-to-point communication of the application.

Finally, as explained earlier, EXPERT is also able to produce a trace of pat-
terns in addition to the pattern profile report. So in this example, we could have
done the same analysis steps also with the pattern trace, or even with both
traces. In this case, when a zoom to the most severe instance of a pattern is
requested, CUBE zooms both timeline displays via remote control of Paraver.

5.2 PeekPerf and Paraver

The environment was used to analyze the scalability of GROMACS [12], a versa-
tile package to perform molecular dynamics, with “nucleosome” testcase. As the
scalability decreases over 256 tasks, the analysis compares the run of 256 tasks
with the 64 tasks case that achieves better performance. We obtained traces for
these configurations and extracted a first set of global metrics to measure the
efficiency at the whole execution level such as parallel efficiency and load balance
as described in [13]. The values range from 0 to 1 (except IPC) with high values
reporting a good performance and low values identifying a problem.

The analysis starts from PeekPerf (Figure 4 captures the metrics for both
runs). As PeekPerf displays all global metrics on a line, it is very simple and
quick to analyze and compare their values. The parallel efficiency is 55% with 64
tasks decreasing to 31% when there are 256 tasks. Both values indicate a poor
performance, but with 256 tasks more than 2/3 of the resources are wasted.

Fig. 4. Global metrics displayed on PeekPerf (top: 64 tasks case; botton: 256)
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We can observe that the poor scalability is mainly due to load imbalance (du-
ration) and computation imbalance (instructions) as those are the factors with
a higher decrease. But, the communication efficiency is also very poor in both
runs. These observations drive the next analysis step to focus on two targets:
(1) analyze time and computation balance to understand the poor scalability
and (2) analyze the communication performance with 64 tasks.

With respect to the first issue, as we are interested in the time and processes
distribution, the timeline analysis tool is foreseen as the best alternative. The
PeekPerf contextual menu offers the choice “Call Back to the Integrated Tool”
that allows to easily raise a set of predefined Paraver windows. Selecting the
duration of the computation bursts we detect that GROMACS is composed by
two kinds of tasks: a subset performs FFTs that are characterized by a sequence
of medium size computations (around 8ms with 64 tasks) while the rest execute
particle computations significantly larger (around 20ms for the same case). For
simplicity, the details on the load balance are provided only for the FFTs tasks–
Figure 5 compares their execution. The x-axis represents time and the y-axis the
MPI tasks. Despite the image of the FFTs for the 256 case is compresed and
with this window size we cannot isolate the behavior of a given task, it provides
enough details on the global behavior (structure, imbalance, duration, etc.).

Fig. 5. Analysis of the FFTs duration scalability (top: 64 tasks case; botton: 256).
Black corresponds to MPI. 6 ellipsis denote 6 code regions. Note the poor speed-up
achieved by the fourth marked region due to imbalance.

On a perfect speed-up, the duration of a region with 256 tasks should be 1/4
of the execution with 64 tasks. Both windows have the same time scale, showing
that on the interval where the 64 tasks run executes one iteration with 256 tasks
executes a little bit more than two iterations. Observe that the main computation
regions (zones 2, 4 and 6) obtain good time reductions. Zone 4 has a problem
of imbalance: while with 64 tasks it has a small impact, in the 256 tasks case it
becomes the bottleneck as this imbalance does not scale. Zone 1 is dominated by
communications and as would be expected, it achieves a poor speed-up. Within
Paraver the callstack can be used to identify where any of those regions are in
the source code. Notice that this part of the analysis was easily done opening
the Paraver views while would be very complex using a profiler.
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Fig. 6. Analysis of the computation (#instructions) imbalance (top: 64 tasks case;
botton: 256). Note that region 1 #instructions is not reduced and imbalance increases.

Restating the hints given by the PeekPerf analysis, the metrics reported a
computation balance problem. To analyze this issue, from PeekPerf we opened
the instructions histogram. Again, this analysis is done with the timeline tool
because we are interested on the distribution. With both histograms at the same
scale, we obtain Figure 6. Paraver histograms have processes on the y-axis and
the selected metric on the x-axis. In the instructions histogram, colored cells on
the right side of the image represent areas with a large number of instructions,
colored cells on the left side correspond to regions that execute few instructions.

If a code region is perfectly scalable with respect to #instructions, when tasks
are multiplied by 4, the #instructions/task is reduced to 1/4, so both versions
execute the same number of instructions (no code replication). This reduction
is reflected on the histogram as a proportional shift to the left. With a perfect
speed-up the displacement would be 3/4 on the x-axis. While zone 2 (with a high
number of instructions) obtains a good reduction (the displacement is close to a
perfect scenario), zone 1 obtains a poor reduction and increases the imbalance.

Finally, to analyze the poor communication performance with 64 tasks, we
extracted new metrics applied at the level of the MPI call lines. These metrics
include time, number of calls, average duration and message size. Computing
these metrics at the level of the call line allows to separate, for instance, different
broadcasts depending on the calling context. Due to space limitations it is not
possible to discuss the details but we would like to remark that the profiling
view is the most appropriate tool for this analysis. Notice that with the proposed
methodology based on refinements, this new profiling would be generated only
because a previous step identified it as a relevant peformance data.
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Abstract. The integration of the memory controller on the processor
die enables ever larger core counts in commodity hardware shared mem-
ory systems with Non-Uniform Memory Architecture properties. Shared
memory parallelization with OpenMP is an elegant and widely used
approach to leverage the power of such systems. The binding of the
OpenMP threads to compute cores and the corresponding memory asso-
ciation are becoming even more critical in order to obtain optimal per-
formance. In this work we provide a method to measure the amount of
remote socket memory accesses a thread generates. We use available per-
formance monitoring CPU counters in combination with thread binding
on a quad socket Nehalem EX system. For visualization of the collected
data we use Vampir.

1 Introduction

With the ever increasing demand for compute power to satisfy the demand of
scientists and engineers, hardware vendors assemble larger and larger systems.
Considering the Top 500 list [1], current clusters are ranging in the tens of thou-
sands of compute nodes, typically in a dual socket Non Uniform Memory Archi-
tecture (NUMA) configuration focused on distributed memory computation. At
the same time ”fat” commodity nodes with up to eight sockets and up to 128
logical threads become available. They satisfy the need of heavily communicating
workloads, shared memory constrained applications and memory requirements
up to 2TB [2].

Developing efficient algorithms for such platforms poses a serious problem for
developers, particularly if one takes into account that the sockets of these systems
might not even be fully connected, i.e. one requires a number of hops between
sockets to deliver a piece of data from one processor core to the other1. Based
1 Notice that the terms cores, CPUs, sockets and nodes are often used in a confusing

fashion, mostly due for historical reasons. Here we refer to a core as compute core
(which a OS will denote as a CPU). A CPU we refer to as a single package compute
device mounted in a socket.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 523–530, 2011.
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on todays most widely supported programming models, OpenMP and MPI (or
a hybrid version of both), one has to develop highly parallelizable algorithms
taking into account the memory location across as well as within the NUMA
nodes in order to minimize communication and synchronization times. A variety
of software tools are available that help developers to detect various inefficiencies
of their software by addressing important issues like hotspots or thread correct-
ness checking (examples: [3,4,5]). None of these tools, however, specifically helps
developers to optimize for the now ubiquitous NUMA platforms.

In this work we address this shortcoming by presenting a technique to directly
measure and visualize the used bandwidth between sockets on a four socket
NUMA platform based on the Intel Xeon 7500 Series processor. The remainder
of this work is structured as follows: First we describe the features and the layout
of our test system. We then detail on our methodology and implementation
approach. After a brief evaluation of a test code we apply our method to a
Jacobi solver kernel to evaluate our approach.

2 Test System Description

We conduct our research on a Xeon X7560 4-socket system, with the CPUs being
clocked at 2.26 GHz nominal frequency. The Xeon 7560 CPU features 8 cores
capable of symmetric multi-threading (SMT) resulting in 16 possible hardware
threads per CPU. The core details are not of particular interest here since we
are mostly concerned with the memory subsystem. As for the cache hierarchy,
there are three levels on each die as follows: 32kB 1st and 256kB 2nd level cache,
both 8 way set associative and individual to each core, and a 24MB 24-way set
associative 3rd level cache that is shared between the cores.

An important design principle of this CPU is a fundamental differentiation
between the processing cores and the remaining environment, like memory con-
trollers, caches, etc., called uncore. Memory accesses that cannot be satisfied by
the LLC are either routed to the local or remote memory via the uncore routing
facility (R-Box), depending on the physical memory location. In this setup, given
a homogeneous memory layout with an equal number of DIMMs per memory
channel, the cores have only direct access at native speed to a fraction of the
total memory of the system via four separate memory channels. The remaining
memory then has to be accessed through the QPI links on a 64-byte cache line
basis.

Due to the rather complex memory architecture there are several latencies for
a single piece of data, depending where that data resides and if the neighboring
caches, i.e. caches on one of the CPUs of another socket, have to be queried or
not. Our initial research on a quad socket Nehalem EX system shows up to 6
different access times that could occur for a single memory access:

– LLC hit that does not need snooping (non-shared line): order of 40 cycles
– LLC hit requiring snooping (shared line), clean response: order of 65 cycles
– LLC hit requiring snooping (shared line), dirty response: order of 75 cycles
– LLC miss, answer from local DRAM: order of 180 cycles
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– LLC miss, answer from remote LLC: order of 200 cycles
– LLC miss, answer from remote DRAM: order of 300 cycles

Evidently, there are large differences between local and remote memory re-
sponses, which strongly underlines the need to optimize multi-threaded applica-
tions for memory affinity [6].

As each of the CPUs of each socket has four QPI links, a quad socket system
can be build fully interconnecting each of the packages to each other. Therefore
three of the QPI links are used to connect a single package to all its neighbors.
This leaves one link free for I/O or other purposes.

3 Measurement of Cross Socket Traffic

3.1 Performance Monitoring

Performance monitoring is an ubiquitous feature of modern CPUs of all flavors,
not only providing the CPU designers with means to debug hardware units,
but also benefiting the user with feedback on the quality of the execution[7].
Generally the configuration of a performance monitoring unit (PMU) is quite
simple, although low level. In order to obtain the number of occurrences of a
given event in a given time one has to touch three types of model specific registers
(MSR)2 on the CPU: a control register which globally enables the tracking of
events, a configuration register telling the CPU to which event to accumulate
and a counter register which gets incremented each time the event occurs.

The Nehalem EX provides a manifold of hardware events to track a wide vari-
ety of observables on a per core basis, such as executed floating point operations,
cache misses, branch-mispredictions, etc[8]. Seven core events can be measured
at the same time, three of which are fixed events and four can be programmed
for general purpose[9].

In contrast to earlier CPUs, however, the Nehalem CPUs also include special
counter registers not associated with specific cores, but with the uncore itself.
It is important to notice that, unlike the conventional core PMU, not all events
on the uncore-PMU can be programmed in every register reflecting the internal
layout. For this work the events and counters of the routing facility (R-Box) are
of interest, as there the requests for cache-lines are routed to either the local
memory or dispatched to the adjunct sockets for fulfillment.

3.2 Programming the Uncore MSRs

Even though there is no direct counter to measure the request for remote-cache
lines it is possible to count the responses with the NEW PACKETS RECV
event. This event can be configured to track many different incoming message
types, like snoop message replies (compare [10, p2-92]), but also to count all in-
coming data responses being received through a specific QPI-link. The number
2 MSRs can generally change with every new generation of a CPU, although some of

them are architectural, being guaranteed to be found on every new generation.
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Table 1. Uncore counter initialization sequence

1: U MSR PMON GLOBAL CTL[29]=1 Reset global uncore counters
2: R MSR PMON GLOBAL CTL 7 0[7-0]=1 Enable R-Box counters

for ports 0-3 (counters 0-7)
3: R MSR PORT0 IPERF CFG0[3,6,7]=1 Configure event ”Data

Response Any” for port 0
4: R MSR PMON CTL0=0x01 Set the control of counter 0

to monitor the event set in
R MSR PORT0 IPERF CFG0

5: U MSR PMON GLOBAL CTL[0,28]=1 Globally enable performance
monitoring

of incoming packets along with the payload of each packet can then be used
to compute a close estimate of the actually used uni-directional bandwidth of
that link. As the router of the CPU (R-Box) has eight separate counter regis-
ters, it is possible to track the traffic of each QPI-link separately, facilitating
the measurement of all QPI-links within a multi-socket system for performance
analysis.

We detail on the programming of the uncore registers. The configuration se-
quence in (Tab. 1) sets exactly one counter to monitor the packages received at a
particular QPI port on one socket. The counter register R MSR PMON CTR0,
which is controlled by R MSR PMON CTL0, will now start incrementing each
time a package is received that represents a data response3.

Ideally one would like to directly measure whether a given LLC-miss was ser-
viced from local or remote memory on a per-instruction level to get the most
accurate information on that instructions impact to the whole application per-
formance. Although this would be feasible in a statistical sampling approach, the
implementation of a sampling driver is certainly beyond the scope of this work.
Here we therefore measured the counters on an OpenMP-construct level, similar
to ompP[5]. This results in a more coarse measurement interval, but helps to
reduce the overhead. This also helps to associate the data with the parallelism
described by the OpenMP constructs.

Unfortunately one is only able to measure on a per socket basis. Therefore a
method to map the remote access to the thread with the LLC miss has to be
found. This again splits up into two distinct issues.

On the one hand the operating system is altering the scheduling on the system,
potentially moving processes and threads from one socket to another. As there
are no hooks to intercept such occurrences it is not possible to measure the traffic
up to that point and associate this with the new core the thread is running on.
To circumvent this issue one can use process/thread-binding to pin the threads
of the program to specific cores. Therefore a given thread will always execute on
a specified core and no special runtime handling is necessary.

3 Notice that we haven’t configured any interrupt firing upon overflow of this register,
so that we currently have to make sure that an overflow does not occur.
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On the other hand there is no further mechanism available to us, to directly
identify which core caused the cache miss on a given socket. For this work, our
approach therefore schedules only one thread per socket, in order to directly
associate its misses with the QPI-traffic. For two or more threads per socket this
would not be possible and is not handled.

3.3 Implementation and Visualization

In order to obtain the counter data from an execution of an OpenMP program
we used the OPARI tool[11]. It is a source-to-source instrumenter and can be
used to insert measurement hooks for all OpenMP constructs. These hooks then
provide the means to attach a measurement library to the program. With this
we are able to instrument any given OpenMP program without any manual
modification of the code.

Within the backend-library we gathered the 12 (one for each link on each of the
four CPUs) NEW PACKETS RECV counter values at the beginning and end of
each OpenMP construct directly from the R-Box of each Nehalem CPU. As cur-
rently no generic API, like PAPI[12], exists that supports the uncore counters of
the Nehalem EX, we used the MSR interface of current Linux Kernels to directly
interface with the CPU. This interface provides special files (/dev/cpu/x/msrm,
where ’x’ denotes the OS CPU number) by the msr kernel module which allow
direct access to the model specific registers.

After obtaining the traffic through each of the 12 QPI links responsible for in-
ter socket communication the open trace format (OTF)[13] is used to time-stamp
and store the data to a trace-file on the hard-drive for post-mortem analysis. We
selected the OTF due to its scalability, ease of use, wide acceptance and avail-
ability of a library implementation.

Because the QPI-links and messages through these links bear some resem-
blance to message passing we visualized the traces with Vampir[14], a renowned
MPI-performance analysis tool. Vampir uses time-line visualization, i.e. it dis-
plays the message passing behavior as horizontal bars displaying function calls,
one for each process, and vertical lines representing messages (Fig. 1A). This ap-
proach can be adapted to the view of our Nehalem EX system. To achieve this,
we mapped in a post-mortem processing step the sockets to (MPI-)processes and
the transfer of data within a region through a QPI link to a (MPI) message from
the source socket to the target socket with the same time frame.

However as we always observed some traffic through any given QPI-link this
would lead to the creation of a message for every QPI-link at every possible lo-
cation. This would result in message-lines at all possible locations resulting in an
overwhelming magnitude of messages to analyze. To account for this, we utilized
Vampir’s capability to filter its display with regard to the communicator of a
message. We sorted the measured QPI bandwidths into different groups of as-
cending bandwidth-ranges (<100MiB/s, <200MiB/s, <1GiB/s, ...) and assigned
to each bandwidth-group a different communicator. With this approach the user
is later able to use Vampir’s communicator filtering mechanism to select which
group of ”messages” he would like to investigate, with the ability to ”on the
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fly” suppress any noise or message ranges of low and uninteresting bandwidths.
This will in the end enable the user to focus on regions where the cache traffic
exhibits interesting behavior.

4 Results

4.1 Basic Functionality Test

For the initial test we used an for this purpose designed OpenMP test code.
This code executes with one thread per socket and allocates and initializes one
continuous block of 1GiB memory with the first OpenMP-thread. As the whole
block is initialized by the first thread of the process, the memory location for
that block will be on the memory of the socket that the thread was running
on according to the first touch policy of Linux. Afterwards we read this block
of memory once per thread, whilst using an OpenMP-single construct to limit
the access to that memory to one single thread at a time. We also ensured that
each time a different OpenMP thread entered the single construct. This code
was then executed on our four socket system exclusively. We used four OpenMP
threads, where each of the underlying system-threads was bound to the first core
on each of the different sockets using the ”taskset” command of Linux. With our
approach we were able to measure and identify which socket each thread was
running on and which QPI link was used to access the remote memory. As the
QPI can transmit 64 bytes per transfer, we confirmed at least 16 million hits
for 1 GiB (the QPI communicates always a whole cache line) of remote memory
accesses.

4.2 Jacobi Kernel

Besides our test code, we also tested our approach on a simple implementation
of a Jacobi-solver kernel. To evaluate our analysis method we started with a
simple NUMA unaware implementation.

We applied our analysis technique to this code with the aforementioned setup
(4 threads, binding, etc.) and a 28k×28k matrix size. The resulting program ex-
ecution took 7.6s in total runtime, which corresponds to 0.08s for the compute-
and 0.18s for the copy-back loop per iteration. As predicted the initial display
of our measurement-data showed traffic-lines (messages) between all packages
at all times. Using the described communicator filtering approach, we filtered
any traffic below 100MiB/s out, which we concluded to be ”background noise”.
The resulting display (Fig. 1A) showed the bulk of the inter-socket communica-
tion. From the regularly structured message-lines we concluded that a significant
portion of the used memory was not evenly distributed to all sockets resulting
in increased QPI-traffic (and memory latency). We confirmed this with Vam-
pirs ”communication matrix”-view for the whole program as well as for a single
Jacobi-iteration (see fig. 1B). The numbers showed that 4 multiples of 1/4th of
the matrix was transfered from package 1 to each other socket and 1 multiple
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A B C

Fig. 1. A) Excerpt of the Vampir-timeline; Visualization of the QPI-message-volume
of a typical iteration for B) the non optimized and C) NUMA optimized Jacobi

was collected back to the initial thread socket. This indicated that all the Ja-
cobi matrix data was residing only on socket one. For this case the highest total
transferred data observable was 11.2 GiB.

To alleviate this potential ”performance issue” we included the initialization
of the matrix into the parallel region and used an OpenMP-for construct in
combination with the first-touch policy to distribute the memory to the sockets
where it would later be used in the iterations. Re-evaluation of the program
showed a 45% improvement in runtime. The improvement for the compute loop
was 0.67s and for the copy-back loop 0.15s ( 22% and 19% improvement respec-
tively). The change in behavior was easily observed in the graphical presentation
of the performance data. In contrast to the NUMA unaware implementation the
highest observable bandwidth was well below 200 MiB/s. After again filtering
out the background noise, the timeline showed only one occurrence of barely
increased traffic. As this did not reoccur with any of the other Jacobi iterations
we concluded this to be an artefact. Investigating the ”communication matrix”
we observed a significant lower and more distributed amount of transferred data,
peaking at 69.9 MiB. Matching the improvements of the total message volume,
the highest traffic for a single Jacobi iteration was typically in the range of 0.4
to 1.74 MiB (Fig. 1C).

5 Conclusion

Analyzing an OpenMP code to adapt it to modern NUMA hardware architec-
tures is currently a difficult task. Obtaining and interpreting information about
the codes memory behavior on current NUMA-platforms is a key part when
striving for good performance. In this work we introduced a novel approach to
visualize the remote socket cache traffic of an shared-memory parallelized ap-
plication on the Intel Nehalem EX platform. Granted the current prototypical
approach with its restrictions in the setup is in its current form of limited use
as it cannot map the gathered data to each core within a socket, it is a viable
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approach to obtain and analyze initial data for shared memory tuning on a
NUMA platform.

Further research and investigation of the counters of modern CPUs may overt
ways to obtain even more detailed information possibly enabling even a per core
mapping of data. In addition to the source-to-source implementation sampling
may also be used to gather the necessary data within a region to provide a better
time resolution enabling even better analysis. Detailed case studies and research
may also provide an automatic hot-spot indicator and best-threshold detection
mechanism as it is already done for MPI in tools like Scalasca[15].
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Abstract. Adaptive MPI, or AMPI, is an implementation of the Mes-
sage Passing Interface (MPI) standard. AMPI benefits MPI applications
with features such as dynamic load balancing, virtualization, and check-
pointing. Because AMPI uses multiple user-level threads per physical
core, global variables become an obstacle. It is thus necessary to con-
vert MPI programs to AMPI by eliminating global variables. Manually
removing the global variables in the program is tedious and error-prone.
In this paper, we present a Photran-based tool that automates this task
with a source-to-source transformation that supports Fortran. We eval-
uate our tool on the multi-zone NAS Benchmarks with AMPI. We also
demonstrate the tool on a real-world large-scale FLASH code and present
preliminary results of running FLASH on AMPI. Both results show sig-
nificant performance improvement using AMPI. This demonstrates that
the tool makes using AMPI easier and more productive.

1 Introduction

The Message Passing Interface (MPI) is a standardized library API for a set
of message passing functions. It has become the de facto standard for parallel
programming on a wide range of platforms. The conventional implementations of
the MPI standard tend to associate one MPI process per processor, which limits
their support of the dynamic nature of these applications, for example, load
balancing is challenging, and must be handled by the application programmer.
As a result, application performance and programmer productivity suffer.

One approach to decouple an MPI process from its OS process is to adopt a
finer grained decomposition using light-weight threads. In this execution model,
each MPI “process” is running in the context of a thread, and there are multiple
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threads running on a processor. One advantage of this approach is to allow auto-
matic adaptive overlap of communication and computation, i.e., when one MPI
“process” (or thread) is blocked to receive, another MPI thread on the same pro-
cessor can be scheduled for running. Another advantage is that it allows different
mapping of MPI threads to processors to take advantage of the multicore ar-
chitectures. With sophisticated thread migration techniques [12], dynamic load
balancing via migratable user-level threads can be supported at the run-time.
Adaptive MPI (AMPI) [3] exemplifies this approach. It is an adaptive imple-
mentation and extension of MPI with migratable threads, implemented on top
of Charm++ [5]. More recent work in FG-MPI [6] also follows this direction;
however, it does not support thread migration and dynamic load balancing yet.

One major obstacle for switching a legacy MPI application to this multi-
threaded MPI execution model is global (and static) variables. These variables
in the MPI code cause no problem with traditional MPI implementations, since
each process image contains a separate copy. However, they are not safe in the
multi-threading paradigm. Therefore, the global variables in the MPI code need
to be privatized to ensure thread safety. One approach is to manually remove
global variables at source code level. However, this process is mechanical and
sometimes cumbersome. Other more sophisticated approaches described in [12]
enable run-time to automatically privatize global variables by analyzing GOT
(Global Offset Table) in ELF (Executable and Linkable Format) executables.
These approaches however do not handle static variables, and are limited to the
platforms that support ELF executables.

In this paper, we present a compiler-based tool that automatically trans-
forms a user program to run with MPI implementations that support the multi-
threaded execution model. Since a significant number of legacy MPI applications
are written in Fortran, we will mainly target Fortran language in this paper. Our
tool employs Photran’s [7] source-to-source compiler infrastructure for Fortran
that we discuss in more details in Sect. 2. We will focus only on AMPI as the
target MPI implementation for code transformation from now on. However, the
transformed code is a legitimate Fortran MPI program with only a couple of
AMPI specific extensions to support thread migration and load balancing. The
transformed program is portable and can run on any other MPI implementation
as long as the AMPI thread migration feature is disabled.

2 MPI to AMPI Code Transformation

The design goal of our tool is to automatically transform Fortran 90 MPI pro-
grams to run on AMPI, and take full advantage of AMPI’s load balancing ca-
pability. The major task is to privatize global variables.

Fortran Global Variables Privatization. Global variables are those vari-
ables that can be accessed by more than one subprogram (including several
calls of the same subprogram) and are not passed as arguments of these sub-
programs. In Fortran 90, global variables are module variables, variables that
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PROGRAM MyProg
include ’mpif.h’
INTEGER :: i, ierr
COMMON /CB/ i
CALL MPI_Init(ierr)
i = 3
CALL PrintVal
CALL MPI_Finalize(ierr)

END PROGRAM

SUBROUTINE PrintVal
INTEGER :: v
COMMON /CB/ v
print *, ‘‘val=’’, v

END SUBROUTINE

MODULE GeneratedModule
TYPE GeneratedType
INTEGER :: f

END TYPE GeneratedType
END MODULE GeneratedModule

SUBROUTINE MPI_Main
USE GeneratedModule
include ’mpif.h’
INTEGER :: ierr
TYPE(GeneratedType) :: p
CALL MPI_Init(ierr)
p%f = 3
CALL PrintVal(p)
CALL MPI_Finalize(ierr)

END SUBROUTINE MPI_Main

SUBROUTINE PrintVal(p)
USE GeneratedModule
TYPE(GeneratedType) :: p
print *, ‘‘val=’’, p%f

END SUBROUTINE

Fig. 1. Example of the code transformation that privatizes a common block variable.
The original code of an MPI program is on the left; the transformed code, which can
be executed on AMPI, is shown on the right.

appear in common blocks, and local variables that are saved (i.e. local variables
that keep their values between subprogram calls like static variables in C).

Privatizing global variables means giving every MPI “process” its own copy
of these global variables. This happens automatically in most MPI implemen-
tations, where each MPI process is a separate operating system process, while
multithreaded AMPI requires that it be ensured by the programmer. One way
to do this is, essentially, to put all of the global variables into a large object (a
derived type in Fortran, or struct in C), and then to pass this object around
between subprograms. Each AMPI thread can be given a different copy of this
object. Figure 1 presents an example of privatizing a common block variable. Al-
though this variable has two different names (i in MyProg and v in PrintVal),
it is a single global variable in the original program.

We implemented global variables privatization for Fortran 90 using the refac-
toring infrastructure in Photran, an Eclipse-based [1] Integrated Development
Environment (IDE) for Fortran [7]. Photran IDE exposes an Application Pro-
gramming Interface (API) that provides functionality to parse a Fortran program
and construct its Abstract Syntax Tree (AST) representation. The produced
rewritable AST is augmented with information about binding of program’s enti-
ties. Our tool analyzes the underlying Fortran program using information from
its AST and transforms the program by manipulating its AST.

2.1 Code Analysis and Transformation

The overall code transformation performed by our tool proceeds in four steps:

1. Stubs are generated for the derived type and the module that contains this
type. Our tool ensures that their names do not conflict or shadow names of
other entities in the program.
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2. Subprograms are processed. An extra parameter is added to each subpro-
gram and each call site within its body. Components for saved variables
are inserted into the derived type, accesses to these variables are replaced
with accesses to the corresponding derived type components, and finally, the
saved variables are deleted from the subprogram.

3. Common blocks are eliminated in a manner similar to saved local variables.
4. Module variables are eliminated similarly.

As a result of the code transformation, every global variable is replaced in the
program’s code with the corresponding field of the generated derived type. The
type and specifications of the replacing field should be consistent with those of
the replaced global variable. According to the Fortran standard, specifications
of a variable may be defined by multiple specification statements. Our tool uses
variable binding information provided by Photran infrastructure to collect the
type and all specifications of a particular global variable, which are combined in
a single declaration statement of the replacing field.

Declarations with Constants. Declarations of global variables may contain
constants, e.g. a variable may be initialized with a constant, or dimensions of an
array may be specified using constants. To make the declaration of the replacing
field in the generated derived type consistent with the declaration of such global
variable, our tool moves declarations of all constants contained in the variable’s
declaration to the generated module (i.e. the declarations of constants are deleted
from the original code and placed in the generated module, and all accesses
to the deleted constants in the original code are replaced with accesses to the
corresponding constants from the generated module). These moved declarations
of constants may contain some other constants, whose declarations also need to
be moved to the generated module, and so on.

Figure 2 illustrates a code sample (on the left), where declarations of two
global variables, boundary and ar, contain constants y and total respectively.
Declarations of constants y and total contain other constants. Moreover, the
declaration of constant total contains constant y. To generate the correct code,
we need to detect all constants that are immediately or transitively contained
in the declarations of global variables boundary and ar and also, we need to
establish an order of appearance of these declarations in the generated module
such that if a declaration of some constant C1 contains constant C2, then the
declaration of constant C2 comes before the declaration of constant C1 in the
generated module.

To achieve this goal, our tool constructs a graph, where nodes represent con-
stants and edges represent “is contained in” relationship, i.e., there is an edge
going from a node that represents constant C1 to a node that represents con-
stant C2 if and only if constant C1 is contained in the declaration of constant
C2. The graph construction starts with the initial set of nodes for constants that
are immediately contained in the declarations of global variables and proceeds
recursively by adding nodes and edges for constants that are contained in the
declarations of constants that are already present in the graph. The order of
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SUBROUTINE MySub
INTEGER, PARAMETER :: offset = 5
INTEGER, PARAMETER :: x = offset + 10
INTEGER, PARAMETER :: y = offset + 20
INTEGER, PARAMETER :: total = x * y
INTEGER :: boundary = y
REAL, SAVE :: ar(total)
...

END SUBROUTINE

MODULE GeneratedModule
INTEGER, PARAMETER :: CN_offset = 5
INTEGER, PARAMETER :: CN_y = CN_offset + 20
INTEGER, PARAMETER :: CN_x = CN_offset + 10
INTEGER, PARAMETER :: CN_total = CN_x * CN_y
TYPE GeneratedType
INTEGER :: MySub_boundary = CN_y
REAL :: MySub_ar(CN_total)

END TYPE GeneratedType
END MODULE GeneratedModule

Fig. 2. Example of two global variable declarations that contain constants (on the left),
and the corresponding generated module (on the right)

appearance of the declarations of these constants in the generated module is the
topological order of the graph. Figure 2 (on the right) presents the resulting
generated module.

Global Fixed Size Arrays. In real-world scientific computation programs
(like the one we use for our case study) there are many large fixed size arrays de-
clared in different modules. If all these global arrays are placed in the generated
derived type, its size would exceed the maximum allowed size of a derived type,
which may vary for different Fortran compilers, and is usually around several
megabytes. To avoid this problem, our tool transforms global fixed size arrays
into pointer arrays and generates an initialization subroutine that allocates these
arrays according to their sizes in the original program. This initialization sub-
routine is called right after MPI Init, ensuring that every MPI process gets its
own allocated and initialized copy of the transformed arrays.

3 Evaluation

This section offers comparative evaluations between the original MPI code and
the transformed version with AMPI using NAS Benchmarks and a real-world
application FLASH.

3.1 Multi-zone NAS Benchmark

NAS Parallel Benchmark (NPB) is a well known parallel benchmark suite.
Benchmarks in its Multi-Zone version [4], LU-MZ, SP-MZ and BT-MZ, which
are written in Fortran, solve discretized versions of the unsteady, compressible
Navier-Stokes equations in three spatial dimensions. Among these benchmarks,
LU and SP are well-balanced, while BT is imbalanced application. In BT, the
partitioning of the mesh is done such that the sizes of the zones span a signif-
icant range, therefore creating imbalance in workload across processors, which
provides a good case study for AMPI and its load balancing capability.

We transformed the above mentioned three benchmarks, and evaluated the
transformed code on the Queen Bee cluster at LSU. The native MPI we used
for comparison is MVAPICH, which takes advantage of the Infiniband inter-
connect. Figure 3(a) illustrates the execution time of the original benchmarks
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Fig. 3. Comparing NAS benchmarks time on a logarithmic scale (Queen Bee cluster)

on the native MPI, and the transformed benchmarks on the native MPI and
AMPI. The X axis displays the name of a benchmark, the problem class, and
the number of processors it was run on. The transformed code introduces some
overhead that ranges from a fraction of one percent for LU.B.16 up to 14% for
BT.A.16. Although the transformation overhead is the highest for both BT-MZ
benchmarks, running on AMPI almost completely eliminates it. Note that in
this comparison, we associate one MPI thread per physical processor, and thus,
do not employ any specific benefits of AMPI. The observed speed up is solely
due to the efficient implementation of the AMPI’s communication layer.

Figure 3(b) compares the total resource consumption (execution time multi-
plied by the number of physical processors used) between the native MPI and
AMPI. In AMPI runs, we map four MPI threads to a single physical processor,
thus reducing the number of physical processors used by a factor of four. The
second bar in Fig. 3(b) shows the AMPI resource consumption without load bal-
ancing. The decrease in the total processor time demonstrates one of the benefits
of using AMPI, i.e., adaptive overlapping of the computation/communication.
The third bar shows the AMPI resource consumption with dynamic load balanc-
ing. We employed a greedy-based load balancer that is called once after the third
simulation step. We see that BT-MZ benchmarks take advantage of both com-
putation/communication overlap and load balancing, while LU.A.16, LU.B.16,
and SP.A.16 benefit only from computation/communication overlap (since there
is no load balance problem in both LU and SP). SP.B.64 is the only case that
does not benefit from any advantages offered by AMPI.

3.2 Case Study – FLASH

We evaluated our tool on a large-scale project: FLASH, version 3 [2]. FLASH is
a parallel, multi-dimensional code used to study astrophysical fluids. It is written
mainly in Fortran 90 and parallelized using MPI. It is essentially a collection of
code pieces, which are combined in different ways to produce different simula-
tion problems, e.g., FLASH supports both uniform grid and a block-structured
adaptive mesh refinement (AMR) grid based on the PARAMESH library.
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Fig. 4. Sedov simulation performance (Abe cluster, NCSA)

We transformed and evaluated Sedov-Taylor explosion simulation problem [9],
which is a common test problem for strong shocks and non-planar symmetry.
The problem is set up using a delta function initial pressure perturbation in an
uniform medium. We use 9 AMR levels and two-dimensional fluids for our tests.
The experiments are run on the Abe cluster at NCSA.

Figure 4(a) compares the execution time of the transformed Sedov simula-
tion on AMPI with and without load balancing. For load balancing we employ
a refinement-based load balancer that is called every 100 simulation steps. We
vary the number of physical processors (X axis) from 1 to 16, while the number
of virtual processors is 16 for all AMPI runs. The maximum benefit from load
balancing is achieved for the execution on 4 physical processors (vp/p ratio 4)
which is 16.8%. The two additional bars of the last group reflect the execution
time of the original and the transformed Sedov simulation on the native MPI
(MVAPICH). The code transformation incurs about 20% overhead compared to
the original code when both running on MVAPICH. However, we see that the
overhead is almost completely eliminated while running on AMPI. The corre-
sponding speedup of the simulation with AMPI is illustrated in Fig. 4(b).

Although our evaluation of Sedov simulation shows that code transformation
incurs considerable overhead for this application, the results prove the usefulness
of AMPI features. After we fix the overhead problem in the next version of our
tool, we believe that AMPI execution would demonstrate considerably better
performance than the original MPI execution.

4 Related Work

TMPI [11] uses multithreading for performance enhancement of multi-threaded
MPI programs on shared memory machines. More recent work in FG-MPI [6]
shares the same idea with AMPI by exploiting fine grained decomposition using
threads. However, FG-MPI does not support thread migration and dynamic
load balancing. The source-to-source transformation implemented in our tool
will benefit these MPI implementations as well.

SPAG [10] is a tool for analyzing and transforming Fortran programs. It pro-
vides both static and dynamic analysis, but its transformation capabilities are
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limited to a predefined set. ROSE [8] is a source-to-source compiler infrastruc-
ture to analyze and transform C, C++, and Fortran programs. Like in Photran,
programs are represented with ASTs that can be manipulated and unparsed back
to source code. To the best of our knowledge, no work has been done in ROSE to
implement a tool that automatically privatizes global variables in legacy Fortran
applications.

5 Conclusions and Future Work

In this paper, we presented a Photran-based tool that automatically transforms
legacy Fortran MPI applications to run on any MPI implementation that sup-
ports multi-threaded execution model. Specifically, we presented techniques to
remove global variables in Fortran applications. We demonstrated the utility of
the tool on AMPI, an MPI implementation that supports processor virtualiza-
tion using user-level threads and dynamic load balancing with thread migration.
We demonstrated the effectiveness of our tool on both NAS benchmarks and a
real-world large scale FLASH application.

We plan to continue our performance evaluation. In particular, we would
like to consider more complex and larger problems, which are expected to be
inherently more load imbalanced, and, consequently, could benefit more from
dynamic load balancing offered by AMPI.
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Abstract. High-performance and parallel computations have always
represented a challenge in terms of code optimization and memory us-
age, and have typically been tackled with languages that allow a low-level
management of resources, like Fortran, C and C++. Nowadays, most of
the implementation effort goes into constructing the bookkeeping logic
that binds together functionalities taken from standard libraries. Because
of the increasing complexity of this kind of codes, it becomes more and
more necessary to keep it well organized through proper software en-
gineering practices. Indeed, in the presence of chaotic implementations,
reasoning about correctness is difficult, even when limited to specific
aspects like concurrency; moreover, due to the lack in flexibility of the
code, making substantial changes for experimentation becomes a grand
challenge.

Since the bookkeeping logic only accounts for a tiny fraction of the
total execution time, we believe that for such a task it can be afforded to
introduce an overhead due to a high-level language. We consider Python
as a preliminary candidate with the intent of improving code readability,
flexibility and, in turn, the level of confidence with respect to correctness.
In this study, the bookkeeping logic of SMP-MRRR, a C & Fortran highly
optimized multi-core eigensolver, is ported to Python. We report here
on the porting process and on the pros and cons of using a high-level
language in a high-performance parallel library.

Keywords: Productivity, Code Development, High-Performance
Computations, Python, High-Level Languages.

1 Introduction

The scientific computing community spends a great deal of effort in developing
numerical routines and libraries. The codes are often both large and difficult
to manage. As an example, representative codes for 3D Finite Element solvers
normally include hundreds of files, thousands of routines, surpass the 100K lines
of code, and are entirely written in one or more of the classic languages: C,
C++ and Fortran. Even though the situation is considered to be sub-optimal,
it is often tacitly accepted in the name of high-performance.

Typically, complex numerical solvers and simulations are organized into layers:
the key logic is expressed at high level in terms of simpler algorithms that perform
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most of the number crunching. A large number of separate routines, taken from
consolidated libraries and often used as black boxes, needs to be orchestrated
through proper data structures, function calls and thread synchronization. The
libraries themselves are organized in the same fashion. As an example, LAPACK,
the de facto standard linear algebra library, is layered on top of the routines of
levels 3, 2 and 1 of the BLAS library. Such a modular approach helps separating
the computation—confined to well-defined functions—from the data and thread
management.

A considerable challenge arises when concurrency is required: in that situa-
tion it is generally hard to be highly confident with respect to correctness and
absence of deadlock. The typical approach is to try to keep the logic as simple
as possible so that the intricate implementation remains confined to limited sec-
tions. Unfortunately, always in the name of high-performance, Fortran and C
are often misused to obtain low-level optimizations over instructions, registers
and the memory hierarchy. Applying these practices when not strictly necessary
makes it unlikely that code rich in semantics is also simple and compact. Fur-
thermore, if achieving correctness is already time consuming, it becomes even
more expensive to experiment with algorithmic variants, despite this activity is
precisely what scientific research is all about.

The main concerns for numerical code and libraries are correctness and perfor-
mance. We believe that nowadays other concerns should be considered as equally
important: code modularity, flexibility, and development time. In this paper we
focus on the development of the logic for the management of data, functions and
threads (bookkeeping) in high-performance parallel libraries. For this specific
task, high-level languages might be better suited than C or Fortran: we chose
Python in our first attempt to investigate the pros and cons of replacing C as
the main programming language.

The paper is organized as follows. In Section 2 we describe our experimen-
tal setup and compare with related approaches. In Section 3 we report on the
concrete advantages that we experienced in porting to Python. Section 4 ex-
plains the impact of the Global Interpreter Lock in order to understand the
performance numbers presented in Section 5, together with future directions. In
Section 6 we draw conclusions.

2 Setup

Python is a very appealing language for the scientific computing community
at large [6]. Its applicability, even to large projects, has been proven fruitful
for a long time already [13]. Most of the investigations and studies targeting
parallel computations have only considered the model of distributed memory
and message passing [4,7,8,9,10,11,12]. In that scenario Python has been used
to steer the computation by organizing and synchronizing processes containing
number-crunching operations performed by libraries normally written in C, C++
or Fortran. By targeting shared memory parallelism, our investigation departs
sharply from previous efforts.
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We aim at using Python within a high-performance numerical library, i.e., a
piece of code that is highly optimized for speed. Our computing model is SMP
(Symmetric MultiProcessing), in which parallelism is obtained through multi-
threading, and synchronization is based on primitives like semaphores. When
compared to approaches based on MPI or BSP, multithreading leads to a dif-
ferent type of parallelism: thanks to fast shared memories and the absence of
costly message passing operations, algorithms are parallelized at a much finer
granularity.

There is a diffuse perception that Python is not mature enough to be used
in this context because of its slow interpreted nature and well known limita-
tions like the Global Interpreter Lock. While some of these criticisms are well
founded, we are nonetheless interested in exploring the boundaries of applica-
bility of Python to scenarios in which we feel developers would highly benefit
from an expressive language. The goal of this study is to shed some light on
Python’s current actual limits. We envision two favorable consequences: on the
one hand scientific developers might come to the realization that some of the
drawbacks of the language are not as severe as expected; on the other hand,
Python’s developers could pinpoint specific weaknesses that is worth improving
on.

In the attempt of stressing the limits of the language, we set out for a rather
challenging goal: using Python within a highly-optimized parallel numerical li-
brary. We selected SMP-MRRR, a multi-core version of the MRRR symmetric
eigensolver [2,3]. Eigensolvers are at the core of innumerable scientific compu-
tations and are included in all the standard numerical libraries. SMP-MRRR is
currently the fastest eigensolver available for multi-core architectures. It is writ-
ten in C and Fortran, and makes use of routines from LAPACK and BLAS. It is
designed for systems comprising up to 60-80 cores. SMP-MRRR constitutes an
especially disadvantageous choice for our goal: not only is it a high-performance
library, it also has the lowest algorithmic complexity among all the existing
eigensolvers, O(n2)1. As a consequence, any overhead introduced by Python will
impact the overall execution time much more noticeably than it would had the
algorithm had O(n3) complexity, like most of the dense linear algebra algorithms
have. With such a complexity, the overhead would be easily hidden under a much
higher amount of computations, quickly becoming negligible.

The execution of SMP-MRRR unfolds by computing an initial approximation
of the eigenvalues first, and the eigenvectors together with more accurate eigen-
values later. Depending on the number of available cores, the initial eigenvalue
computation is either performed sequentially by the fast dqds algorithm, or in
parallel by bisection. The eigenvectors, together with more accurate eigenvalues,
are then computed in parallel by organizing the computation according to a tree
of tasks, and utilizing a task queue based approach.

1 Given an input matrix of size n, SMP-MRRR computes all the eigenvalues and eigen-
vectors of the matrix in O(n2) floating point operations. While such a complexity is
an upper bound, the actual completion time depends on the input matrix.
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The way that tasks are created, their execution order and the portion of data
they manipulate represent the core contribution to the algorithm implemen-
tation, and accounts for most of the development time. We will refer to this
portion of code as the bookkeeping logic, implemented in roughly 5000 lines of C
code. The remaining code, mostly written in Fortran, is what we consider actual
computation, or informally, number crunching.

Porting the bookkeeping logic to Python introduces overhead, so it is useful
to start from a clear understanding of this portion of the code in relation to
the actual number crunching. In our experiments we considered two different
types of matrices: Wilkinson and Hermite2 The number of calls to Fortran rou-
tines ranges approximately from 10 to 50 thousands accounting for 0.83% to
4.18% of the total running time [1]. This indicates that the sections of number
crunching are highly fragmented and interspersed with bookkeeping logic; the
exact figures depend on the nature of the matrices. With Hermite matrices, the
amount of time spent inside the bookkeeping logic decreases with larger matri-
ces, as expected, due to the quadratic complexity of the algorithm. The trend
for Wilkinson matrices is not as apparent, because of the numerical properties
of these matrices.

All the experiments were run on a Mac Pro with two 2.4Ghz Quad-Core Intel
Xeon processors, for a total of 8 available cores. We limited the runs to only
6 cores in order to avoid interference with others applications and collect more
stable results.

3 The Advantages of Python and Refactoring

We chose Python as target high-level language because of its clean syntax, power-
ful semantics and rich standard library. When compared against more traditional
languages, Python presents a much lighter cognitive load, so developers become
more productive and are less likely to introduce subtle bugs.

The Python code makes use of the NumPy and Cython packages in order to
manipulate multi-dimensional arrays and call the Fortran routines. Please refer
to the techical report [1] for details on the porting process.

The porting was performed by one of the authors, without specific knowledge
of the mathematics involved in the eigensolver. Nonetheless he became intimately
familiar with the algorithm and was able to refactor the code and introduce a
more Object Oriented design. In the process, thanks to the improved readability,
he was able to uncover a subtle bug that in some corner cases could lead to
deadlock.

In the context of parallel computing, such defects are especially dangerous as
they both add unnecessary complications to the logic—which is already difficult
to keep in sync with the mathematical model—and might lead to idling proces-
sors. An effective practice is then to keep the code in the best possible shape

2 In order to avoid the possible overhead due to the contention of shared data struc-
tures we performed the measurements in single threaded executions.
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in order to maintain a high level of confidence in the correct behaviour of the
system.

The competencies required to develop high quality software are largely inde-
pendent of domain specific knowledge so, in general, sane software engineering
practices can and should be applied in order to keep the complexity under con-
trol, regardless of the programming language used.

Code refactoring is a necessary activity but it requires knowledge and disci-
pline. Learning and applying it though seems to be easier on modern dynamic
languages like Python because of their simplicity and flexibility. We believe that
by using such languages developers have a better chance of becoming more con-
scious about software engineering issues thus writing better code and becoming
more productive. Some references to available literature can be found in [1].

4 Simulating the Global Interpreter Lock

Python supports multithreading but the internal implementation of its most
commonly used interpreter (CPython, written in C) limits the effectiveness of
this model in the case of multi-core CPUs. A Global Interpreter Lock (GIL)
needs to be acquired by a thread before its execution can continue. Fortunately
the GIL can be released during execution of C or Fortran code, therefore in our
case all the available core were effectived used.

The presence of locks is standard in the SMP model because they are required
to protect shared data structures, e.g., the task queue. This kind of locks though
is very fine grained, therefore we were interested in measuring the impact on
the overall performance when a coarse grained lock like the GIL is introduced.
This will be of primary importance to understanding the overhead introduced
by Python, as described in Section 5.

In order to reproduce the contention caused by the GIL in Python, we created
a modified C version of SMP-MRRR in which we artificially introduced a global
lock. Since the modified and the original versions have no other differences,
the resulting measured overhead is a direct indication of the amount of extra
contention introduced. Our implementation is much simpler than that of the
Python GIL, therefore our measurements represent a lower bound on the amount
of overhead introduced by the real interpreter.

We report on the execution of the modified version of SMP-MRRR for two
types of input matrices, Wilkinson and Hermite. The eigenspectrum of Wilkinson
matrices is such that the computation of eigenvalues and eigenvectors is espe-
cially involved, which translates to number-crunching sections that take longer
to complete. The Hermite matrices are instead quite favorable, meaning that
the outputs can be computed with shorter number-crunching sections. The im-
pact of the bookkeeping logic will therefore be significantly more evident in the
latter case. In the case of Hermite matrices, a larger problem size makes the
bookkeeping become less noticeable, as more and more time is spent within
number-crunching sections. For Wilkinson such a trend is more subtle, because
the complexity of the eigenspectrum increases together with the problem size.
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Table 1. Execution time penalty due to the use of a global lock

Wilkinson

Size 2 cores 4 cores 6 cores

3001 0.60% 1.07% 2.62%

5001 0.66% 1.82% 3.28%

10001 0.60% 2.17% 3.53%

Hermite

Size 2 cores 4 cores 6 cores

3001 0.85% 1.42% 4.76%

5001 0.65% 1.16% 5.81%

10001 0.20% 0.43% 0.56%

Finally a note about multithreading: as the number of threads increases, there is
a higher chance of threads competing for the lock to start a bookkeeping section,
thus increasing the overhead.

Table 1 shows the impact on the overall running time. The two C versions of
the algorithm were tested 30 times for every combination of matrix type, size and
number of cores. The percentage represents the amount of overhead computed
using the average values across the runs. The standard deviation for the original
algorithm always remains below 10% of the minimum value, indicating that the
behaviour of the system is quite stable and predictable. In the case of the global
lock instead we measured an increase also of the standard deviation, of up to 2
to 3 times in some cases, indicating that the contention not only decreased the
overall performance, but also made it somewhat less predictable.

For space reasons we have not included measurements about the lock usage.
More details can be found in [1].

5 Performance Hit and Future Work

In Table 2 we compare the execution time of the original SMP-MRRR and the
Python version. The overhead should be considered in light of the observations
made in Section 4 about the Global Interpreter Lock. There is no clear way to
identify precisely the amount of overhead due to the GIL, but it certainly has
an impact and explains why the overhead increases with the number of cores.

Table 2. Overall performance overhead: Python over C

Wilkinson matrix

Size 2 cores 4 cores 6 cores

3001 11.80% 28.20% 57.80%

5001 15.00% 22.20% 40.10%

10001 13.20% 15.00% 19.20%

Hermite matrix

Size 2 cores 4 cores 6 cores

3001 95.40% 231.30% 386.90%

5001 85.20% 121.20% 197.80%

10001 43.50% 54.60% 53.00%
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The interpreted nature of Python is the other obvious source of overhead.
Previous studies [5]have shown that for some simple calculations there can be
a difference of up to 2 orders of magnitude between the speed of a Python im-
plementation and the equivalent C. The bookkeeping logic cannot be considered
proper algorithmic code because it does not include loops and numerical calcu-
lations but, still, we expect it to be much slower than C.

There are well known approaches to circumvent the speed limit of the Python
interpreter. Ultimately they are all based on the generation of efficient machine
code, or C source code that can in turn be compiled.

We experimented with Psyco, a Just In Time (JIT) that has been shown
to increase the performance even by 70-80% in the case of simple numerical
computations with nested loops [5]. Unfortunately, in our case we have observed
a consistent performance loss of up to 15%. The reason lies in the very nature of
the bookkeeping code that, by definition, does not include computation intensive
loops that can outweight the startup cost of the compilation step.

Other tools include PyPy, RPython, Cython and ShedSkin. Some of them
allow for a low level approach that could help circumvent the GIL limitation
and could be the subject of further study. Please see [1] for a more complete
description.

We foresee two possible directions for future development of our experiments.
On the one hand we could optimize the current Python implementation by adopt-
ing one or more of the tools described above. It would be interesting to see how
close we can get to the original C performance by still maintaining a high-level
Python development environment. On the other hand, we could look at different
languages that perform better than Python when used in our context. We could
see how they relate to Python and if they can be considered as equally attractive
and productive from the point of view of the developer.

6 Conclusions

Porting the bookkeeping logic from C to Python proved to be an incredibly valu-
able exercise: it yielded a code readable and easy to reason about. Thanks to this,
we were able to thoroughly investigate the correctness of the implementation. As
a result, we spotted possible deadlocks and hidden constraints that could affect
performance. The new code also lends itself for experimentation and testing of
new design and algorithm strategies. We believe that proper software engineer-
ing practices should discipline the development process even for scientific codes.
High-level languages like Python can greatly enhance this opportunity and so
they deserve full attention by the scientific computing community.

On the downside, Python added overheads, as expected, and is still far from
being a concrete alternative to traditional languages like C or C++ in perfor-
mance critical environments. Nonetheless, considering the extremely disadvan-
tageous situation represented by an O(n2) SMP-parallel algorithm, we observed
an interesting performance in spite of the Global Interpreter Lock and the slow
interpreted nature of Python. We believe that in many cases these limitations
are outweighed by the enhanced flexibility of the language.
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The high-level dynamic languages scene is rapidly evolving, so it will be in-
teresting to see how these performance issues will be addressed in the coming
years.
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Foreword

Cloud computing is a recent computing paradigm for enabling convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction1. Clouds are currently used mainly in commercial settings and focus
on on-demand provision of IT infrastructure. Cloud computing can play a signif-
icant role in a variety of areas including innovations, virtual worlds, ebusiness,
social networks, or search engines. But currently, it is still in its early stages,
with consistent experimentation to come.

The Workshop on Cloud Computing Projects and Initiatives (CCPI) gathered
together scientists, engineers, computer users both from industry and academia
to exchange and share experiences, new ideas, and research results from collab-
orative international and national projects and initiatives on Cloud Computing.
A number of key projects funded by the European Commission and by National
Government and Research Agencies, addressing several aspects of the Cloud
Computing arena were presented at the workshop, and now in the following
post-workshop proceeding papers.

The paper The “Cloud@Home Project: Towards a New Enhanced Comput-
ing Paradigm” describes the Cloud@Home Italian Research Ministry funded
project aiming at creating a new Cloud paradigm, Cloud@Home, in which both
the commercial/business and the volunteer/scientific viewpoints coexist. The
Cloud@Home infrastructure has to be able to provide adequate resources to sat-
isfy user requests also taking into account QoS requirements. The goal of the
project is to design, to implement and to test on real case studies a complete
middleware able to demonstrate the feasibility of the Cloud@Home vision.

The paper “Cloud-based mediation and access of healthcare data in the
@neurIST project” by Martin Koehler, Siegfried Benkner, Gerhard Engelbrecht,
and Steven Wood describes the utilization of Cloud technologies for the manage-
ment of unruptered aneurysms and associated research into risk factors in the
@neurIST EC funded project. Diagnosis and treatment of aneurysms relies on
the interpretation and integration of information, coming from the patients them-
selves, from the experience of clinicians, and from derived information from med-
ical literature and other biomedical information sources. Within the @neurIST

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 551–553, 2011.
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project a data service infrastructure has been built on top of state-of-the art Grid
and Cloud technologies that supports the provisioning of virtual data sources.
Virtual data sources enable transparent access to and integration of distributed
heterogeneous biomedical and clinical data sources. Virtual data and mediation
nodes ensure an easy distribution, hosting and deployment of virtual data sources
by utilizing Cloud computing technologies.

The paper “Building a Mosaic of Clouds” describes the concept behind an
open-source API and platform under construction as part of the EC funded
mOSAIC project that intends to use multiple Cloud offers to satisfy the deploy-
ment requirements of component-based long-running applications. It empha-
sizes the need of such a platform by use cases mainly related to data-intensive
applications.

The paper ”Cloud@Home: Performance Management Components” from R.
Aversa, D. Bruneo, A. Cuomo, B. Di Martino, S. Distefano, A. Puliafito, M.
Rak, S. Venticinque and U. Villano deals with the design of performance com-
ponents and their integration into a coherent subsystem for the management of
the SLA/QoS of Cloud@Home, a cloud environment based on voluntarily-offered
resources currently under development in the context of Cloud@Home project.

The paper “A Cloud Agency for SLA Negotiation and Management” presents
the architectural design of an agent based software conceived within the mO-
SAIC project in order to provide facilties for brokering an negotiation of Cloud
resources from different providers that fulfills at the best the requirements of
user’s applications. The user is able to delegate to this Agency the necessary
checks of the agreement fulfilment, the monitoring of resource utilization and
eventually necessary re-negotiations.

The paper “Running business applications in the Cloud: a use case perspec-
tive” presents a methodology based on the EC funded RESERVOIR project’s
cloud infrastructure, which automates most of the work needed to migrate an
application to the cloud and eases the use of the Cloud itself. As the Cloud
computing paradigm is gaining wide consensus among academic and industries,
the need to have infrastructures and well know procedures to ease the migra-
tion of industrial applications to such paradigm rises. Current solutions such as
EC2 might need low level expertise resulting in complex and tedious procedures,
which tend to delay the decision of users to use the Cloud. We present here a
real use case of a complex SAP ERP 6.0 application which has been ported on
the RESERVOIR Cloud infrastructure.

The paper “Minimizing technical complexities in emerging cloud computing
platforms” from Andreas Menychtas, Georgios Kousiouris, Dimosthenis Kyriazis
and Theodora Varvarigou, analyses the complexities of cloud platforms, which
disallow their wide adoption as business and technological solutions for applica-
tions and services. It identifies and analyses the key challenges for the emerging
cloud platforms in order to minimize these technical complexities and presents
various innovative approaches from European research activities.
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This post-workshop proceedings includes the final versions of the presented
CCPI papers, taking the feedback from reviewers and workshop audience into
account.

The program chairs sincerely thank the EuroPar Program Chairs and Organi-
zation for providing the opportunity to arrange the CCPI workshop in conjunc-
tion with the EuroPar 2010 Conference, the reviewers of the submitted papers
and of their final proceeding versions, and all the participants (speakers and
attendees) to the Workshop.
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Abstract. Cloud Computing is emerging as a promising paradigm capable of
providing a flexible, dynamic, resilient and cost effective infrastructure for both
academic and business environments. The aim of this project is to create a new
Cloud paradigm, “Cloud@Home”, in which both the commercial/business and
the volunteer/scientific viewpoints coexist. The Cloud@Home infrastructure has
to be able to provide adequate resources to satisfy user requests also taking
into account QoS requirements. The goal of the project is to design, to imple-
ment and to test on real case studies a complete middleware able to demonstrate
the feasibility of the Cloud@Home vision. In this paper we try to summarize
the the Cloud@Home project, identifying the tasks in order to implement the
Cloud@Home middleware.

1 Introduction and Motivations

Cloud computing is a service-centric, distributed computing paradigm in which all ca-
pabilities and resources (usually geographically distributed) are provided to users as a
service, to be accessed through the Internet without any specific knowledge of, exper-
tise with, or control over the underlying technology infrastructure that supports them.
It offers a user-centric interface that acts as a unique, user friendly, point of access for
users’ needs and requirements. Moreover, Cloud computing provides on-demand ser-
vice provision, QoS guaranteed offer, and autonomous system for managing hardware,
software and data transparently to users [9].

� The work described in this paper has been partly supported by MIUR-PRIN 2008 project
“Cloud@Home: a New Enhanced Computing Paradigm”.
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In order to achieve such goals it is necessary to implement a level of abstraction
of physical resources, uniforming their interfaces and providing means for their man-
agement, adaptively to user requirements. This is done through virtualizations, service
mashups (Web 2.0) and service oriented architectures (SOA). The development and the
success of Cloud computing is due to the maturity reached by such technologies.

A great interest on Cloud computing has been manifested from both academic and
private research centers, and numerous projects from industry and academia have been
proposed. In commercial contexts, among the others we highlight: Amazon Elastic
Compute Cloud, IBMs Blue Cloud, Sun Microsystems Network.com, Microsoft Azure
Services Platform, Dell Cloud computing solutions. There are also several scientific ac-
tivities, among the others: Reservoir [7], Nimbus-Stratus-Wispy-Kupa [8], OpenNEbula
[2], Eucalyptus [4], OCCI [5], Open Cyrrus [3] and Open QRM [6]. All of them sup-
port and provide an on-demand computing paradigm, in the sense that a user submits
his/her requests to the Cloud that remotely, in a distributed fashion, processes them and
gives back the results. This client-server model well fits aims and scopes of commer-
cial Clouds: the business. But, on the other hand, it represents a restriction for scientific
Clouds, that have a view closer to Volunteer computing. Volunteer computing (also
called Peer-to-Peer computing, Global computing or Public computing) uses comput-
ers volunteered by their owners, as a source of computing power and storage to provide
distributed scientific computing [1].

We believe the Cloud computing paradigm is applicable also at lower scales, from
the single contributing user, that shares his/her desktop, to research groups, public ad-
ministrations, social communities, small and medium enterprises, which make available
their distributed computing resources to the Cloud. Both free sharing and pay-per-use
models can be adopted in such scenarios. We therefore propose a more “democratic”
form of Cloud computing, in which the computing resources of single users access-
ing the Cloud can be shared with the others, in order to contribute to the elaboration
of complex problems. Since this paradigm is very similar to the Volunteer comput-
ing one, it has been named Cloud@Home. Both hardware and software compatibility
limitations and restrictions of Volunteer computing can be solved in Cloud computing
environments, allowing to share both hardware and software resources or services. The
Cloud@Home paradigm could be also applied to commercial Clouds, establishing an
open computing-utility market where users can both buy and sell their services.

2 Aims and Goals

The Cloud@Home paradigm is inspired to the Volunteer computing one. In this new
paradigm, user’s hosts are not passive interfaces to Cloud services anymore, but they
can interact (for free or by charge) with other Clouds. Fig. 1 depicts the Cloud@Home
reference scenario, identifying the different stakeholders characterized by their role:
consuming and/or contributing. Arrows outgoing from the Cloud represent consum-
ing resources, from which a Cloud@Home client submits its requests; otherwise, ar-
rows incoming to the Cloud represent contributing resources providing their services to
Cloud@Home clients. Therefore, infrastructure providers, datacenters, Grids, clusters,
servers, till desktops and mobile devices can both contribute and consume.
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Fig. 1. Cloud@home Reference Scenario

In fact, we believe that the Cloud@Home paradigm is widely applicable, from research
groups, public administrations, social communities, SMEs, which make available their
distributed computing resources to the Cloud, till, potentially, the single contributing
user, that autonomously decides to share his/her resources.

According to the Cloud@Home vision, all the users can be, at the same time or in
different moments, both clients and active parts of the computing and storage infrastruc-
ture. A straightforward application of this concept to the world of mobile devices is not
so much useful, because of the limited computing power and storage capacity that are
available on such nodes. Still, an active participation of the mobile nodes to the cloud
services can be opportune if we start considering as resources, not only computing
and storage, but also the peculiar and commonly available peripherals/sensors avail-
able on mobile phones (e.g., camera, GPS, microphone, accelerometer, etc) or other
devices such as the nodes of a sensor network. In other words Cloud@Home, besides
virtualizing the computing and storage resources, aims at virtualizing also the sensing
infrastructure. Such infrastructure, consistently with the other functionalities, has to be
accessed as a service (sensor as a service, SEAAS). According to this perspective, in
Fig. 1 mobile devices are considered as both contributing and consuming resources,
since they can provide their sensors to Cloud@Home and/or they can access the Cloud
for submitting their requests as common clients, respectively.

The project framework will be based on a Cloud@Home software system which
provides readily available functionality in the areas of directory/information services,
security and management of resources. In order to implement such a form of comput-
ing the following issues should be taken into consideration: resources management,
user interface, security, accounting, identity management, virtualization; interoperabil-
ity among heterogeneous Clouds; business models, billing, QoS and SLA management.
A possible rationalization of the tasks and the functionalities the Cloud@Home mid-
dleware has to implement can be performed by considering the layered view shown
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in Fig. 2. Three separated layers are there identified in order to apply a separation of
concerns and therefore to improve the middleware development process:

– The Frontend Layer that globally manages resources and services (coordination,
discovery, enrolment) implements the user interface for accessing the Cloud (ensur-
ing security reliability and interoperability), and provides QoS and business models
and policies management facilities.

– The Virtual Layer that implements a homogeneous view of the distributed Cloud
system offered to the higher frontend layer (and therefore to users) in form of two
main basic services: the execution service that allows to set up a virtual machine,
and the storage service that implements a distributed storage Cloud to store data
and files as a remote disk, locally mounted or accessed via Web. Virtual Sensors
(VSs) provide the access points to the sensing infrastructure.

– The bottom Physical Layer that provides both the physical resources for elaborating
the requests and the software for locally managing such resources. It is composed
of a “cloud” of generic nodes and/or devices geographically distributed across the
Internet.

3 Insights

Fig. 3 identifies and groups all the tasks of the Cloud@Home project into six blocks:
frontend, SLA, QoS, service composition, security management and virtualization. In
the following we provide some details on them.

3.1 Frontend

The user frontend provides tools for Cloud@Home-user interactions. It collects and
manages the users’ requests issued by the Cloud@Home clients. All such requests are
transferred to the underlying layer for processing. The frontend is made up of three
subtasks: mobile access, Web access and Web service access. The mobile access pro-
vides user interfaces specifically customized for being accessed by devices with small
screens and limited input capabilities. The Web access provides all mechanisms and
tools for implementing the Web access to the Cloud@Home infrastructure. The Web
service access instead focuses on the interface to Web services of the Cloud@Home
infrastructure.
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3.2 SLA and QoS

The SLA block will take into account the high dynamicity of the Cloud@Home vol-
unteer context, so it is split into: dynamic SLA negotiation and SLA management. The
dynamic SLA negotiation module provides a framework for the negotiation of non-
functional parameters in complex environments of resource and service sharing, com-
position and virtualization. The SLA management system is responsible for the service
lifecycle. This includes service definition, deployment, management, monitoring, com-
pliance and termination. Users require services which are incorporated within contracts
containing business terms with no reference to raw resources. The system manages
the service by automatically configuring and deploying it. In order to meet the con-
tract terms, the system will monitor SLAs and take any opportune action, such as re-
configuration, re-location or resource re-allocation.

One of the Cloud@Home project aims is to deal with QoS in both open and com-
mercial environments. In this context several issues concerning the QoS and SLA man-
agement have to be adequately considered, faced, and solved, as mentioned above. Re-
source optimization within the Cloud becomes a key requirement.

The Cloud@Home project QoS activity is organized in two sub-activities: service
monitoring and performance prediction and resource management. The service moni-
toring and performance prediction will be carried out at three different levels:

– Application Level: the mobile agent platform will offer a set of a monitoring
agents, able to move between the virtual resources collecting performance indexes;

– Platform Level: both SLA Engine and CHASE will collect information from the
monitored resources using their proprietary solutions;

– Resource Level: (some of) partecipating resources will be enriched with monitor-
ing tools that can be remotely interrogated.

3.3 Service Composition

Cloud@Home will exploit CHASE (Cloud@Home Autonomic Service Engine) in or-
der to manage resources: the main goal of CHASE is to schedule, allocate, and
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possibly migrate the services making up the applications running in Cloud@Home in
an “intelligent” way, making it possible to obtain given QoS indexes and to fulfil SLA
agreed upon when applications are submitted. These features are provided automati-
cally, self-tuning and self-optimizing the hardware/software system under dynamic and
possibly rapidly-changing resource usage conditions. CHASE achieves this results us-
ing simulation based techniques in conjunction with optimization algorithms, avoiding
the brute-force exploration of the possibly large space of solutions.

3.4 Security Management

In order to design a prototype of a security infrastructure to support the use cases of the
Cloud@Home project, the following issues will be faced:

– Protection level agreement. The agreement between a service provider and a client
normally contains guarantees over non functional requirements, reflecting the client
business objectives. These objectives determine the Quality of Service (QoS) that
the provider should guarantee during service provisioning.

– Policy specification languages. Our objective in this area is to analyse several lan-
guages for the specification of security policy and to identify the most suitable for
the specification of cloud security policies, by possibly extending existing propos-
als, that do not provide some critical features.

– Security-aware resource/service discovery and selection. The discovery and selec-
tion of services/resources in Cloud@Home will take into consideration security
among the main requirements. Thanks to the specific security policy adopted by a
provider, a potential client will be able to explicitly describe and to impose con-
straints on security aspects, which will be accounted for in the process of discovery
and resource selection.

3.5 Virtualization

The virtualization of the Cloud@Home infrastructure is one of the most important task
to implement. All the Cloud@Home computing, storage and sensors resources have
to be virtualized in order to be provided as a service. Thus, the activity is organized
into three main sub-activities: sensing and context abstraction service, virtualization
environment and mobile agent platform.

The sensing and context abstraction service (SCAS) implements the virtual sensor
concept, and provides sensing and context information to applications executed within
the Cloud.

In the considered scenarios, the context could also include the nature of the device,
the quality and availability of wireless connection, the residual power, the physical lo-
cation of the user. To protect the users from unwanted accesses to their data, the system
will include mechanisms useful to specify and enforce access policies.

The virtualization environment provides solution to the problem of heterogeneous
hardware and software (OS, libraries, compilers, etc.) by means of virtualization tech-
niques, based on Virtual Machine Monitors such as VMware, VirtualBox, Xen, Qemu
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and so on. They create virtual execution environments that satisfy individual require-
ments in terms of memory, disk space, operating system, adapting the runtime environ-
ment to the application instead of adapting the application to the runtime environment.

Similar problems must be tackled in organizing and managing storage resources. In
fact it is necessary to provide an adequate architecture able to split data in chunks and to
store such chunks into the distributed disks. Problems of data security such as confiden-
tiality and integrity, have to be adequately considered and solved in the implementation
of the virtual storage environment system.

In order to face the flexibility of virtualized resources, the Cloud@Home platform is
enriched with a mobile agent platform which offers a flexible programming paradigm
and adaptable services. The mobile agent platform will be adopted to easily deploy
new application on the virtual resources, to perform application level monitoring, to
develop brokering services and to build up customized interfaces between users and the
platform.

4 Case Studies

The Cloud@Home middleware will be tested by using some real reference scenarios,
involving organizations external to the project, such as Oracle, Insirio, IBM, and In-
quadro, in order to highlight the needs that could decisively encourage its adoption.
The first one refers to the utilization of complex enterprise software systems requiring
specific hardware resources. Since one of the main source of costs and complexity for
companies is related to expand, to tune and to optimize the hardware resources in order
to effectively satisfy high demanding, domain-specific technical software and to ensure
adequate productivity levels, we consider the utilization of complex enterprise software
systems requiring specific hardware resources as the first use case of Cloud@Home.
The use of the Cloud@Home technology allows to adequately exploit the company
computing resources, which are sometimes distributed over several sites, to meet the de-
mands of the mentioned software, building a private Cloud. Cloud@Home also enables
to create, customize and use resources and services running in remote interoperable
Clouds. In this scenario powerless terminals can be used to implement remote-desktop
connections with both computing and storage delegated to the Cloud. Optimized man-
agement of hw/sw platforms and services, simpler monitoring and maintenance, QoS
and security provision are some of the further benefits inherent in such approach.

A volunteer computing scenario is instead identified in the second case study, which
intends to set up a federated Cloud@Home environment, composed of “local” Clouds
located in each research group. This case study intends to highlight the free-sharing and
volunteer contributing vocation of Cloud@Home. Each research group involved in the
project will build its own local Cloud, starting from the available resources and services
in its organization. The Clouds thus created will be federated, implementing a unique
Cloud@Home environment, also open to individual contributors. In this way we will
set up a significant testbed for experimenting the Cloud@Home middleware and all its
capabilities (interoperability, QoS, security, resource management, etc) and scenarios
(heterogeneous nodes, wireless devices, ubiquitous and pervasive computing, location
based services, etc).
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The third use case is mainly focused on mobile environments, in which we imagine
the following scenario: a cloud computing system hosts an application dedicated to the
management of traffic lights and parking lots of an urban area. Users equipped with mo-
bile phones could voluntarily share their positioning information with the management
application. Information gathered in this way could be used to dynamically compute
more efficient vehicle routing strategies. The presence of supporting and shared mech-
anisms for the abstraction of sensing information within the cloud infrastructure foster
the reuse of available data in different applications.

5 Conclusions

In this paper we proposed an innovative computing paradigm that merges volunteer con-
tributing and Cloud approaches into Cloud@Home. This proposal represents a solution
for building Clouds starting from heterogeneous and independent nodes, not specifically
conceived for such a purpose.

In this way Cloud@Home opens the Cloud computing world to scientific and aca-
demic research centers, as well as to communities or single users: anyone can voluntar-
ily support projects by sharing his/her resources. On the other hand, it opens the utility
computing market to the single user that wants to sell his/her computing resources. To
realize this broader vision, several issues must be adequately taken into account: reli-
ability, security, portability of resources and services, interoperability among Clouds,
QoS/SLA and business models and policies.
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Abstract. Managing and sharing data and information related to the
understanding of human disease processes represents a huge challenge
for medical researchers and clinicians. The European @neurIST project
addressed this challenge by developing an advanced service-oriented IT
infrastructure for the management of all processes linked to research,
diagnosis and treatment development for complex and multi-factorial
diseases. The @neurIST infrastructure relies on a service-oriented ar-
chitecture comprising data services and compute services encompass-
ing data repositories, computational analysis services and information
systems handling multi-scale, multi-modal information at distributed
sites. The @neurIST data services infrastructure offers tools based on
Grid and Cloud technologies for constructing virtual data sources that
enable transparent access to and integration of distributed heteroge-
neous biomedical and clinical data sources. Pre-configured virtual data
nodes and a virtual mediation node ensure an easy distribution, host-
ing and deployment of data services by utilizing latest Cloud computing
technologies.

1 Introduction

The @neurIST Information Society Technologies (IST) Integrated Project funded
within the European Commission’s (EC) Sixth Framework Programme focused
on supporting the research and treatment of cerebral aneurysms. @neurIST is
part of a wider vision, which aims at addressing the problem of inequalities
in healthcare and outcomes across the European Union. At the heart of the
project is a clinical problem, managing unruptered cerebral aneurysms and as-
sociated research into risk factors. Diagnosis and treatment of aneurysms relies
on the interpretation and integration of numerous pieces of information, com-
ing from the patients themselves in the form of radiographic images, family
history and physiological measurements, from the experience of clinicians, and
from derived information from medical literature and many other biomedical
information sources.
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The @neurIST consortium, comprised of more than 30 partners including hos-
pitals, universities, research institutes and the industry across Europe, addressed
this challenge by developing an advanced service-oriented IT infrastructure for
the management of all processes linked to research, diagnosis and treatment
development for complex and multi-factorial diseases. The @neurIST infrastruc-
ture has been built on top of state-of-the art Grid and Cloud technologies en-
compassing data repositories, computational analysis and simulation services
and information systems handling multi-scale, multi-modal information at dis-
tributed sites. The infrastructure supports personalized patient management in-
cluding data capture, referral, decision support, and treatment planning, as well
as clinical research in cerebral aneurysms.

The @neurIST infrastructure relies on a flexible, generic service framework
with support for advanced security mechanisms that ensure the stringent privacy
and security requirements of patient-specific data. At the heart of the @neurIST
infrastructure are generic services to support complex analysis and simulation
tasks, and to provide transparent access to and integration of heterogeneous data
from diverse, distributed sources comprising text, images, and other structures.
A new ontology, formalizing the conceptual space of @neurIST, has been devel-
oped and supports semantic service discovery and data integration. Several ad-
vanced end-user applications for risk assessment, for linking genetic information
to the disease, for multi-modal image processing, and for virtual endovascular
treatment planning have been developed on top of these services.

2 @neurIST Architecture

Providing end users with seamless access to distributed medical data and compu-
tational resources is a major goal of the @neurIST system. The @neurIST system
provides twomain modes of operation to end users.The firstmode of operation tar-
gets clinical practitioners by providing an integrative decision support system. The
second mode of operation targets in silico research, linking genetic and phenotypic
evidence so that new knowledge can be extracted, structured and transposed for
its later exploitation in the decision support operation cycle. Due to privacy and
security requirements, the research system has only access to anonymized data sets
while the decision support system also deals with specific patient-related data. A
versatile middleware layer comprising data and compute services is utilized by the
application suites for transparent access to diverse data and information resources
as well as to computational resources for performing compute-intensive analysis
and simulation tasks. The middleware layer takes care of data transport, security,
data access and integration, and management of computational tasks.

The @neurIST system and infrastructure has been developed using multiple
technologies and is deployed across a wide geographic distribution. @neurIST
adopts a service-oriented architecture to integrate the diverse components of the
system, and uses open standards and technologies from the Internet, Grid, Cloud
and medical domains. A layered view of the @neurIST reference architecture
is shown in Fig. 1 including the constituent components. The system can be
logically divided into three layers application, middleware and resource layer.
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Fig. 1. @neurIST System Architecture

3 @neuInfo - Data Services

A generic data management and integration framework that supports the pro-
visioning and deployment of data services is provided by the @neuInfo middle-
ware. @neuInfo enables the virtualization of heterogeneous scientific databases
and information sources as Web services which allows transparent access to and
integration of relational databases, XML databases and flat files. The develop-
ment of data services has been based on the Vienna Grid Environment (VGE) [3]
and utilize advanced data mediation and distributed query processing techniques
based on GDMS, OGSA-DAI [2], and OGSA-DQP [1].

Data services hide the details of distributed data sources, resolving hetero-
geneities with respect to access language, data model and schema. Data inte-
gration is based on a mediator approach where local data sources are integrated
bottom-up by mapping local data base schemes into a virtual global schema. This
is done to preserve the autonomy of data sources and to ensure up-to-date data,
which are key requirements of the project. Internally, data services utilize the de-
facto standard for Grid-based data access and integration (OGSA-DAI). Client
applications usually access data services by submitting SQL queries and down-
loading query results in the form of OGSA-DAI-compliant XML documents.

Data services can be deployed with different configurations, all providing the
same interface to clients. Data access services (DAS) provide access to a single
data source, anonymized image services (AIS) support the transfer of large image
data of different modalities, and data mediation services (DMS) offer transparent
access to multiple data sources via a global virtual schema. The virtual schema of
a DMS provides an integrated, global view of the underlying local data sources.
Data mediation services translate queries with respect to the global schema into
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local queries, manage the access to the local data sources, and integrate results
from local queries according to the global schema.

In order to optimize complex data integration scenarios, data mediation ser-
vices may be configured to support distributed query processing, relying on
OGSA-DQP. Data mediation, which was initially based on hand-written map-
ping schemas [10], is facilitated through semantic technologies in order to reduce
the integration effort. Support for semantic data mediation [9] relies on using
the @neurIST ontology, a semantic broker, and a semantic query resolver.

4 Cloud-Based Biomedical Infrastructure

Each clinical center involved in @neurIST hosts a database, usually inside a
virtual data node (see Section 4.1), storing patient information from a part of
the Biomedical Infostructure (BioIS). The BioIS connects all the clinical centers
with the @neurIST framework.

The BioIS is an @neurIST-specific implementation, following a project-defined
data schema called CRIM (Clinical Reference Information Model) which is driven
by the need to gather clinical data from multiple clinical centers for research
purposes. The CRIM data schema lists and defines all data items needed by the
@neurIST project. The BioIS supports various different patient identification
and de-identification mechanisms to ensure that private information cannot be
used outside of the hospital, while ensuring that new patient data generated
by @neurIST services can be associated with the patient and reviewed by the
clinician.

The BioIS system utilizes @neuInfo services (distributed queries and updates)
for providing information to the application suites. The BioIS supports requests
for clinical data, as well as patient-specific data obtained from other @neurIST
services. Clinical information does always remain at its source within the clinical
information systems (CIS) of participating centers. The BioIS sub-system does
interface with the CIS databases for accessing actual data. Two BioIS models
have been implemented. Following the anonymised (ANO) model, data from the
original patient record is anonymised and copied to a separate database (called
anoDB) in the de-militarized zone of a hospital and then accessed by means
of an @neuInfo data service. In the on-the-fly (OTF) model, a corresponding
@neuInfo data service directly accesses patient records within the CIS.

Stakeholders are able to transparently access all BioIS instances via the vir-
tual mediation node hosting an @neuInfo data mediation service. Access to the
underlying clinical centers is done behind the scenes utilizing distributed query
mechanisms.

4.1 Virtual Data Node

The virtual data node, shown in Fig. 2, is based on a virtual appliance and
encapsulates the BioIS ANO Model installation of @neuInfo providing access to
the anoDB following the CRIM schema. A fully configured system installation
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Fig. 2. @neurIST Virtual Data Node

is provided as a virtual machine, including preconfigured system components
such as Apache, Tomcat and SSL configuration. This allows simple deployment
for test and production use at new clinical partners and supports future Cloud
computing infrastructures. The @neurIST software needed for the ANO model
is preinstalled, including an @neuInfo data service, an anoDB installation that
follows the CRIM schema, the @neuQuest tool for capturing data of new pa-
tients, and a Fura Virtual File1 system providing access to medical images. The
Virtual data node has been implemented on top of VMWare and CentOS.

4.2 Virtual Mediation Node

The virtual mediation node encapsulates the installation of @neuInfo data me-
diation services providing transparent access to all the virtual data nodes at
different clinical sites. Queries against the mediation service within the virtual
mediation node are automatically resolved and the underlying data access ser-
vices are accessed in a distributed fashion. A fully configured system installa-
tion is provided as a virtual machine, deployable on an VMWare server. New
data mediation nodes may be set up to provide specialised views onto the dis-
tributed set of clinical data for new usage scenarios or different stakeholders.
Providing the service with a preconfigured virtual machine allows replicating
and scaling service instances on demand by utilizing the capabilities of Cloud
computing infrastructures. The @neurIST software required for the virtual me-
diation node is preinstalled, including an @neuInfo data mediation service, and a
CRIM-compliant data mediation schema that integrates all participating clinical
centers. The mediation service is hosted using a Tomcat server and the VMWare
server is secured by using a firewall. The configuration of the virtual mediation
node is depicted in Fig. 3.

1 Fura: http://fura.sourceforge.net/
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Fig. 3. @neurIST Virtual Mediation Node

The virtual data and mediation nodes utilize the centralized security model
with SSL and HTTP authentication. Moreover, a federated security model is also
supported, but has not been adopted by all users, which typically prefer the cen-
tralized security model. The federated security model comprises a Relationship
Manager (RSM) as well as the RSM token service [5].

4.3 Cloud-Based @neurIST System

The @neurIST BioIS data mediation system has been set up in a test bed compris-
ing a variety of services at different sites in Europe. At the clinical partner sites
in Barcelona, Geneva, Oxford, Rotterdam and Sheffield, patient data (CRIM)
and images are made available via a corresponding virtual data node comprising
an @neuInfo data access service (DAS-CRIM) and an anonymized image service
(AIS). In order to provide an integrated view of all patient data, a data mediation
service (DMS-CRIM) is hosted at the University of Vienna. The DAS-CRIM and
the DMS-CRIM services are hosted in private Cloud environments at the Grid
sites based on VMWare. Due to the architectural conception of virtual nodes,
services can be scaled and replicated on-demand. The @neurist system includes
additional compute and data services utilized by the application suites.

5 Related Work

A Grid-based healthcare platform providing a seamless integration of traditional
and emerging sources of biomedical information was developed by the Health-
e-Child project [4]. The US caBIG initiative [8] developed a Grid-based collab-
orative information network for sharing of data and knowledge that aims at
accelerating the discovery of new approaches for the detection, diagnosis, treat-
ment, and prevention of cancer. They introduced a Cancer Knowledge Cloud that
enables remote access to data, analytical tools, and computing power. Addition-
ally there are several research projects on Cloud computing which can enable the
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development of biomedical Cloud infrastructures. The European RESERVOIR
project [7] couples virtualization, grid computing, and business service manage-
ment techniques to develop system and service technologies that serve as the
infrastructure for Cloud computing.

The Virtual Physiological Human [6] Initiative (VPH-I) aims to provide a
systematic framework for understanding physiological processes in the human
body in terms of anatomical structure and biophysical mechanisms at multiple
length and time scales. Research projects under this initiative aim to develop
patient-specific computational modeling and simulations of such mechanisms.
The European commission has identified that to achieve this objective a com-
bined data/compute infrastructure will need to be developed and have called for
proposals in the area of Cloud computing to address these needs (ICT Call 6
FP7-ICT-2009-6).

6 Conclusion

The @neurIST project developed an advanced service-oriented IT infrastruc-
ture that supports seamless access to computational resources and distributed
medical data in an easy to use and secure way. The @neurIST system fosters
multiple high-level application suites facilitating the analysis and treatment of
aneurysms.

The @neuInfo data access and mediation services are utilized for seamlessly
integrating the biomedical infostructures from multiple hospitals. A virtual data
node was developed for the BioIS that enables easy distribution and deployment
of @neuInfo services based on Cloud computing technologies. The virtual media-
tion node supports the deployment of different tailor-made views on distributed
and heterogeneous data by creating a virtual database. The virtual mediation
host is deployed in a Cloud environment and can be easily adopted and dupli-
cated for different usage scenarios.

The @neurIST infrastructure is generic and applicable to other diseases. It
can be utilized for future analysis and decision support systems not only in
the clinical context. In particular, the utilization of Cloud technologies, which
have been integrated during the final phase of the project, represents a significant
step beyond the limits of Grid technologies by completely decoupling the physical
execution environment from the infrastructure, ensuring easy migration to future
IT infrastructures.

Furthermore, to cope with the complexity and diversity of the data under-
lying multi-factoral diseases, a semantic environment supporting data access
and integration including a domain specific ontology has been developed includ-
ing semantic annotation technologies, a semantic query resolver, and a seman-
tic broker. Fully leveraging these semantic technologies for increasing the level
of automation in data mediation remains, however, a topic of future research
activities.
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Abstract. The current diversity of Cloud computing services, benefic
for the fast development of a new IT market, hinders the easy devel-
opment, portability and inter-operability of Cloud oriented applications.
Developing an application oriented view of Cloud services instead the
current provider ones can lead to a step forward in the adoption of Cloud
computing on a larger scale than the actual one. In this context, we
present a position paper exposing the concepts behind a recent proposal
for an open-source application programming interface and platform for
dealing with multiple Cloud computing offers.
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1 Introduction

Cloud computing, currently used mainly in commercial settings and focusing
on on-demand provision of services, has a clear potential to play a significant
role in a variety of areas including innovations or e-business, virtual worlds or
social networks. Cloud computing offers until date have been developed without
addressing a common programming model, open standard interfaces, adequate
service level agreements or portability of applications. Neglecting these issues
current Cloud computing offers force people to be stranded into locked, propri-
etary systems. Developers making an effort in Cloud-ifying their applications
cannot port them elsewhere. Moreover, users put in the hands of commercial
providers applications and data without negotiable quality of service agreements.
From these points of view, Cloud computing is still in its early stages with con-
sistent experimentation to come.

In order to respond to the above described community needs, the mOSAIC
project has been initiated in the frame of FP7-ICT programme. It intends to
create and promote an open-source Cloud application programming interface
and a platform targeted for developing multi-Cloud oriented applications. This
early position paper about mOSAIC offer describes its concepts and expecta-
tions. It is organized as follows. Section 2 is dedicated to mOSAIC’s manifest.
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The user requirements motivating the concepts implementation are described
through several scenarios in Section 3. Section 4 identifies the main challenges
and components of the proposed software developments. Finally, Section 5 com-
ments the implementation status and the benefits of mOSAIC offer usage.

2 Manifesto

The mOSAIC proposal is motivated by existing weaknesses of the current re-
search and practice in Cloud computing: (a) lack of common programming
model for Cloud-oriented applications; (b) lack of tools for easy deployment
of scalable applications and (multi)-Cloud-based service compositions; (c) lack
of standard interfaces for resource virtualisation; (d) lack of adequate service
level agreements and their dynamic negotiation; (e) platform dependability and
non-portability due to different APIs for different types of resources. To these
weaknesses mOSAIC intends to respond by providing the followings:

1. Design a language- and platform-agnostic application programming interface
for using multi-Cloud resources and Cloud usage patterns.

2. Build an open-source and portable platform for using Cloud services based
on the proposed API and Cloud usage patterns.

3. Design a generic agent skeleton for representing various stakeholders, e.g.
vendors and their resources, users of various types, and collection of modules
that can be used to adapt agent skeleton to support needed functionalities.

4. Design user-centric service level agreements, a Cloud ontology and mecha-
nisms for dynamic negotiation of resources based on multi-agent technologies
and semantic data processing.

5. Build proof-of-concept applications with emphasis on data intensive appli-
cations.

The open-source platform will be a proof-of-the-concept prototype ready to be
tested, exploited or extended by its users. It will include instances of the APIs
for at least two programming languages and applications tools. Its semantic en-
gine that, based on the Cloud ontology, will express the application’s needs for
Cloud resources in terms of SLAs and QoS requirements that are the inputs of a
negotiation module. This module initiates a bid to the agents representing differ-
ent Cloud resources providers. Cloud resources can vary from software services
(including virtual appliances) or data services to hardware services.

In the current context of the Cloud market, mOSAIC is expected to offer the
freedom of choice at programming level as well as at the resource level.

3 Usage Scenarios and Proof-of-the-Concept Applications

3.1 An Entreprise Usage Scenario

In order to describe an example of use of the mOSAIC API and the related
framework and platform, we refer to a common Enterprise-to-Cloud use case
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reported in [1] which involves an enterprise using Cloud services for its internal
processes. Suppose that the context is the one of a project with limited duration
and that will be a need which will stress the internal resource, reducing the SLA
for all the other tasks of the enterprise. The enterprise has a fixed project fund for
computational use and will acquire external computational resources from Cloud.
Actual Clouds offer a large set of solutions able to solve this kind of problems:
as an example the enterprise may acquire computational resources from EC2,
customize the machines, deploy its data on the Amazon S3 storage system, setup
their software on the target resources, define a set of procedures for accessing
the Cloud resources from internal ones and viceversa, and only after that they
will proceed to the target project. Even if the procedure remain the same for
every kind of Cloud resources (e.g. EC2 or GoGRID), they should be completely
re-executed from scratch, changing Cloud provider: different machine images,
needing a new customization, new setup of software, probably different procedure
to access the external resource from internal ones, and so on. Moreover, as side
effect, once the project started using a given Cloud provider, even if a cheaper one
arises, e.g. after more detailed evaluation, another Cloud proves to be cheaper
than the chosen one, the change will probably be too expensive. Furthermore, if
two different Cloud providers offer different features at different prices, and the
best solution (in term of quality/cost ratio) is to use both for the different tasks,
the cost of setting up the procedure on both will be very high. The overall cost
may be not acceptable for a project with limited time and budget.

We expect that in this context the enterprise will use mOSAIC solutions
to describe the kind of resources, to request them, and setup internal-external
communication. Thanks to the mOSAIC the enterprise will have access to all
the (supported) Cloud providers independently. No cost in changing the provider
or difficulties in accessing different providers are foreseen. Moreover the solution
developed may be easily reused for different applications and projects (the overall
development cost and time are reduced). Furthermore is possible to use the
mOSAIC framework in order to enrich the needed resource description with an
expected quality/cost ratio or the expected cost, so that the framework, in an
autonomous way setup a different set of resources or stop using them when the
costs grows too high.

3.2 Application Scenarios

A special attention will be given to the validation of the API and platform
through data-intensive applications and simulations. The motivation for data-
intensive applications is the emergency of the fourth paradigm of scientific and
technological discovery, the data-intensive science: the availability of diverse data
is shifting scientific approaches from hypothesis-driven scientific method to sci-
ence based on exploration. The following Gray’ laws were recently postulated
in the book [2]: scientific computing is becoming increasingly data intensive;
the solution is in a ”scale-out” architecture; bring computations to the data,
rather than data to the computations. In this context Cloud computing offers
consists in: allowing groups to host, process, and analyze large volumes of data;
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consolidating computing and storage in very large data centers as an economical
efficient solution; offering hosting facilitates for long-term data preservation.

On another hand the current scientific and business simulations can scale to a
point where they are either computationally too expensive, or require too much
memory to be able to run on simple computers, servers, or supercomputers.
Simulations are therefore obvious candidates as Cloud applications, their extra
needs being satisfied by customized resource allocations.

The mOSAIC’s proof-of-the concept applications described in what follows
have different requirements and intend to validate not only the usage of Cloud
services and the proposed APIs but also the semantic engine for the selection of
Cloud resources vendors.

Earth Observation Scenarios. Due to its intensive data processing and highly
distributed organization, the multidisciplinary Earth Science (ES) applications
community is uniquely positioned for the validation and exploitation of Cloud
computing infrastructures. Petabytes of already acquired data are presently
under-exploited (under 10%), because for getting the results in a reasonable time
not enough computing resources are available. However, even if they were to be
made available, an efficient infrastructure to handle and treat very large data
sets is still missing. In particular mOSAIC will focused on Earth Observation
(EO), a specific discipline of ES that well represents their needs and challenges.

Storage and data distribution. With the growth of network bandwidths and local
storage capacities, the media for the distribution of EO data has a new approach.
Users are able to discover, select and download data eventually combined with
processing services. While the access to near-real time isi currently addressed,
the EO systems are not able to respond to peaks of demand. Moreover, providing
on-line access to huge amounts of data is challenging and different data policies
and controlled access are issues that need to be addressed. Cloud computing
for EO on-line data access can split the archiving/preservation from the on-line
data access while providing a number of clearly identified benefits: (a) controlled
access: access to data can be made private or public and specific rights can
be granted to specific users; (b) several data access protocols: http/https and
Bittorrent are common among Cloud computing providers; (c) high uptime rates,
protected by SLAs; (d) controlled and simple cost model.

EO mission reprocessing. The EO mission re-processing targets improvements of
the EO data quality. These improvements can be achieved with the development
of new and enhanced algorithms, tuning of auxiliary parameters, processor re-
design, instrument calibration or threshold and scaling factor corrections. Huge
volumes of data of an EO mission need to be processed. The input data can
then be pushed into Cloud storage for the duration of the processing and the
reprocessed data can be published on Cloud storage with the extra benefit of
possibly being used for on-line data access and distribution.

Routine production. EO routine production includes the generation, archiving
and eventually the distribution of high-level products following data- or date-
driven scheduled services. These products have different goals and purposes, but
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a common point is that it is the same data being processed over and over again
during specific moments of the production cycle and then no longer used. With
this in mind, Cloud storage could host the amount of input data required for
the generation of these products using Cloud computing processing power.

Fast data access for crisis situations. EO data has proven to be an excellent
source of information for damage assessment for both natural and man-made
disasters. There are several services fully dedicated in providing EO-based crisis
mapping. The applications behind it rely on an on-line archive continuously feed
with new data acquired taken from rolling-archives and on a number of com-
puting resources to do the processing. The common issues for these applications
are the fast access to post-crisis data in near-real time and to archived historical
data, and the fact that the computing resources have to be ”on-call”, i.e. contin-
uously available for processing in case of a crisis event. Moreover, the interest for
related data is concentrated in a short time span; this situation may put strain on
the on-line data distribution and eventually lead to its unavailability. Since the
Cloud provides scalable storage capacity, the EO historical archive and near-real
time data could be hosted on such infrastructure. Furthermore, the processing
resources needed to provide the higher-level products and maps could also be
provided by Cloud computing thus removing the need for maintaining ”on-call”
computing resources. Furthermore, Cloud storage provides high transfer rates
even when numerous users access the same data at the same time.

Distributed Intelligent Maintenance. Another scenario involves the devel-
opment of a distributed intelligence maintenance tool based on advanced data
processing techniques, more precisely based on data mining and artificial intelli-
gence paradigms. A generic platform is intended to be build to target industrial
systems and processes in the fields of energy and transport where data-intensive
tasks must be performed for analysis, diagnosis, anomaly detection and resource
optimization. The data load is usually non-uniform and it presents peaks and
stagger increments during intensive workloads or when the park of monitored
units increases; for these data-intensive telemetry scenarios, on-demand and dis-
tributed storage allocation and computing is needed. Fast deployment on Clouds
using mOSAIC’s platform will be possible without a considerable investment in
application re-writing.

Agent-Based Simulations: from Cluster to Cloud. Agent-based models
usually depend on several input parameters, which in turn have several possible
values. When the parameter space is explored, the number of simulations re-
quired runs easily out of hands. A simulation running tool named MEME [3] is
extended in the frame of mOSAIC to allow users to run their parameter sweep
distributed using Cloud services. Currently the prototype can utilize a local or
remote cluster of machines to distribute the parameter sweep operation on the
machines. Similar speed-up can be achieved by accessing Cloud services with the
extra advantage of more flexible resource provisioning. Typical business cases for
running simulations can be explored, such as asap/money does not matter, min-
imize cost/ no deadline, anything in between.
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An important function of the mOSAIC platform will be that it will be able to
compose virtual services by matching applications’ requirements to service de-
scriptions provided by Cloud vendors. In iterative experiment designs, in partic-
ular, the simulations periodically need several parallel VMs to run experiments,
followed by en evaluation phase using a single VM, which determines further
computations to carry out. The resource need of such experiments therefore fluc-
tuate between a single VM and several parallel VMs. A semantic description of
an actual simulation service requested can describe the varying resource needs
of this type of simulations, and will help the platform to find a best possible
composition of cloud service providers.

The sweeping through the parameter space of distributed simulations that
use several machines themselves requires a special service profile where VMs
that cooperate in running one simulation should have a fast Internet connec-
tion, while other instances of the same simulation can be run anywhere. That is,
parameter sweeping of distributed simulations require several clusters of com-
puter, where there is fast network connection within a cluster, but can be slower
connections between the clusters. Semantic description of such simulations will
be provided by the users who write the simulations to enable the mOSAIC plat-
form to compose appropriate service considering the different processor, storage,
and communication needs of different parameter settings.

4 Main Challenges for the Technical Solutions

From the five main challenges identified in [4] for Cloud, mOSAIC will address
application and data portability and interoperability. The use of standard inter-
faces could allow the flexibility to create new solutions enabled by applications
and data that interoperate with each other regardless of a specific Cloud type; in
this context vendor-independent application interfaces (as mOSAIC’s one) are
emerging. Moreover currently the term of virtualisation is understood differently
in the context of different technologies such as storage, processing, networking,
and a unified resource representation is needed to be considered. Furthermore,
mOSAIC investigates the Cloud usage patterns in order to expose them through
the proposed API.

The selection of Cloud providers for a particular application is an intricate is-
sue due to the complex business model associated with such computing systems.
RESERVOIR project [5] is the first initiative intending to provide open source
technology to enable deployment and management of complex services across
different administrative domains. mOSAIC proposes a complementary solution,
based on software agents and semantic data processing, for Cloud resource ne-
gotiations and service level agreements.

In what concerns the data services, data lock-in (lack of standardized APIs)
is one of the important issues to deal with. The solution proposed by mOSAIC
is to use semantics to identify the application requirements in terms of Cloud
data services. We further consider that service requirements of applications can
change over time and thus may require amendments of original service requests.
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mOSAIC proposes Cloud specific SLAs and QoS requirements that allow nego-
tiation and re-negotiation solutions during run-time.

The starting point in order to build a comprehensive API is to consider the
emerging standards and to build the missing pieces. The current emerging stan-
dards to be considered are OCCI, UCI, OVF and CDMI. For building the Cloud
ontology the starting point is the design of a Cloud taxonomy - the recent pro-
posals for taxonomies (e.g. [8]) are taken into consideration. One of the most
challenging goals of the semantic engine is to design and develop semantic-based
Cloud services discovery; a prototypical tool will be built based on syntactic and
structural schema matching.

The mOSAIC platform has two parts: Resource Broker and Application Ex-
ecutor. The Resource Broker, responsible with resource negotiation and booking,
has also two sub-systems: Client interface and Cloud agency. The first one uses
an application specification document for describing application resources needs
and supplementary resource specification document for requesting supplemen-
tary resources by the Application Executor. The second one includes a monitor, a
negotiator, a mediator, a service registry and a client semantic engine, provider
semantic engines represented by agents, and uses a Cloud ontology and QoS
parameters. Moreover, it validates the application specifications and generates
a SLA document for resource negotiation and booking, as well as a resource
contract used by the Application Executor to access the physical resources for
application execution. The Application Executor, in charge with application ex-
ecution using the resources booked and stated in Resource contract document,
has also several sub-systems like: API Execution Engine that is the user’s API
for accessing the physical resources; Virtual Cluster including the booked re-
sources; Providers wrappers as special connectors ensuring a uniform interface
to the Clouds resources available in resource contract; Resource manager en-
suring resource availability and management, including Resource scheduler and
Resource monitor, and handling supplementary resources request.

Agents will represent different Cloud resources providers and users; e.g. each
agent representing a vendor that offers resources understands the requirements
specified in the unified representation of resources and translates them in vendor
specific requirements. A core set of agents will implement the basic services
provided by the Cloud agency. Some agents will be in charge of interacting with
users and providers in order to negotiate and to broker the needing resources. The
agents of the selected resources during the negotiation will further represent the
Cloud resources during the execution of an application, as they will understand
the application requests and translate them into vendor specific requests (acts as
wrappers). Starting from the MAGDA toolset [6], mOSAIC platform component
related to the agent layer will provide facilities to design, develop and deploy
agents-based services.

A special platform component is the Virtual cluster (named so by folowing the
proposal from [7]), an agent-based resource management facility. The Resource
contract will refer this cluster build for an application. The platform will build
up a Vc on the basis of a given SLA established within a certain application.
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5 Conclusions

The main benefit of using the mOSAIC solutions will be a transparent and
simple access to heterogeneous Cloud computing resources and the avoidance
of lock-in proprietary solutions. The open-source platform will enables applica-
tions to negotiate Cloud services as requested by their users. Using a specific
Cloud ontology, applications will be able to specify their service requirements
and communicate them to the platform via the innovative API. The platform
will implement a multi-agent brokering mechanism that will search for services
matching the applications’ request, and possibly compose the requested service
if no direct hit is found. Cloud-application developers and maintainers will be
able to postpone their decision on the procurement of Cloud services until run-
time, while end-user applications will be able to find best-fitting Cloud services
to their actual needs and efficiently outsource computations. The platform will
also facilitate competition between Cloud providers, who, in return, will be able
to reach customers they could not reach before.

The developments scheduled in the mOSAIC project have recently started
and there is a long way until its promises will become a reality. The first open-
source stable version of the API will be publicly available in autumn 2011 and
the full platform and proof-of-the concept applications in two years. Until this
early date of the project, the Cloud computing offers, emerging standards, usage
patterns and semantic solutions were tested or analyzed to identify the inputs
for the developments that are scheduled in the near future.
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1 Introduction

Cloud computing is a new emerging paradigm that merges a large set of different
technologies and solutions. The main idea driving the cloud computing approach
is that all resources, hosted by providers in large datacenters, should be accessed
through the network with a service-oriented model. Even if the basic principle
is relatively simple, it is very hard to give a precise and clear definition of cloud
computing [12]. Volunteer computing is a type of distributed computing in which
computer owners donate their computing resources (essentially, processing power
and storage space) to one or more “projects”. The goal is to build up a single in-
frastructure from small resources, distributed and administrated independently.

The Cloud@Home project (shortly, C@H) is a proposal for a new enhanced
paradigm which integrates both cloud and volunteer computing approaches. It
is supported by a grant from the Italian Government in the context of MIUR-
PRIN 2008, and has received letters of interests from relevant companies active
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in the cloud computing field. The main idea behind the Cloud@Home project
is to build up a cloud by collecting many different kinds of voluntarily-offered
resources. This cloud can provide computing, storage and sensor resources both
to the contributing “volunteers” and to commercial users, for free or for charge,
guaranteeing service levels, negotiated and agreed upon at service request time.

The Cloud@Home project is thoroughly described in a companion paper [13].
In this paper, we focus on the architectural solution proposed to tackle the
performance problems, which are particularly complex in a system made up
of distributed and independently-administered resources. The remainder of this
paper is structured as follows. The next section opens with a brief overview of the
Cloud@Home architecture, followed by a detailed description of the components
devised for performance management. Section 3 describes how these components,
which perform tasks as performance evaluation, prediction and management,
have been integrated in the Cloud@Home performance subsystem. In the last
section we draw the conclusions and outline the future work.

2 Cloud@Home Architecture

Figure 1 shows the layered architecture of Cloud@Home. The Hardware Layer
collects all the physical resources available. These range from clusters, datacenter
and computing grids to PCs, notebooks or even smartphones (the last are mainly
used to exploits their sensors).

The Virtual Engine Layer offers a virtualized version of the physical re-
sources available. The virtual engines have a key role in cloud computing, because

Fig. 1. The Cloud@Home architecture
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they guarantee the full independence of the resources as they are perceived by
the users from the physically available ones.

The C@H IaaS Layer offers the typical cloud Infrastructure as a Ser-
vice services. It is composed of a set of different cloud middlewares, previ-
ously developed by research units involved in the project (PerfCloud [7] and
Clever [14]). A discovery layer, which may be implemented in a centralized or
distributed way, grants uniform access to the available resources. The discov-
ery layer might be extended in order to support open-source cloud middleware
(such as Eucalyptus[11], Nimbus[2] or Open Nebula[1]) or commercial cloud
providers (e.g., Amazon EC2). In fact, this extension is not planned within the
Cloud@Home project, even if it will be possibly made in the context of future
research.

The C@H PaaS Layer integrates a set of components that offer a high-
level view of the cloud infrastructure and aim at providing the functionalities
(services) needed to face the performance problems mentioned previously. Its
main components are the SLA Engine, the CHASE autonomic engine, the mobile
agents platform and the mobile device middleware.

The C@H Frontend Layer is a vertical layer (in that it cooperates with all
the others) that operates as an interface between final users and the Cloud@Home
components. It provides services for user request of resources, for request en-
riched with a SLA, or for starting up mobile agent-based applications.

The focus in this paper is on the subsystem for SLA/QoS management, in
green in Figure 1. This subsystem has to provide suitable mechanisms to nego-
tiate SLAs and to guarantee QoS on the top of the virtual environments making
up the platform. The proposed architecture involves two components for perfor-
mance management: SLAEngine and CHASE (developed by two different units
in the project organization). The first component is involved with resource uti-
lization monitoring and SLA management, whereas the latter (CHASE) enables
the application to integrate autonomic self-optimization features. In the follow-
ing we will briefly describe the two tools, showing successively how they are
integrated in the Cloud@Home platform.

2.1 SLA Engine

Two specific components of the Cloud@Home middleware have been identified
in the SLA Engine system. These are the SLA and the QoS subsystems, which
ensure the seamless execution of applications (Figure 2a).

SLA Negotiator. The SLA Negotiator is responsible for the service lifecycle.
This includes service definition, deployment, management, monitoring, compli-
ance and termination. Users call for services that incorporate contracts made
up of business terms, with no reference to raw resources. Service invocations are
enriched with SLAs, adopting languages such as SLAng[3]. The system manages
the service by configuring and deploying it automatically. In order to meet the
contract terms, the system is monitored and the SLAEngine takes any required
action, such as the re-configuration or re-allocation of resources. Finally, when
the service fruition finishes, the system frees the resources. It should be noted
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(a) QoS/SLA and Virtual environ-
ment architecture

(b) interactions with the C@H in-
frastructure

Fig. 2. Cloud@Home SLA and QoS subsystems

that the ultimate goal for the infrastructure is the maximization of the number
of services executed. The SLA Negotiator needs to monitor service performance
levels, in order to detect dynamically contract violations.

QoS service. The QoS service is responsible for the management of the cloud
resources and the services needed to achieve the application requirements es-
tablished by the SLA negotiator. It translates the application requirements (ex-
pressed in terms of high-level parameters such as time execution, throughput,
transaction rate) into low-level criteria related to computing, storage and net-
work distributed resources. The QoS service also has an important role during
the negotiation phase, carried out by the SLA Negotiator. In fact, it acts as an
estimator able to predict the computational load generated by applications and
the corresponding performance obtained.

Fig. 2b shows the communication between the SLA Negotiator and the QoS
service. It is possible to identify two different sub-modules in the QoS service: the
QoS director and the QoS manager. The former accepts requests from the SLA
Negotiator and invokes the QoS manager to submit applications with appropriate
QoS criteria, in terms of computing and network services. In other terms, the
QoS director translates the high-level QoS specifications of the SLA Negotiator
into the low level requirements (in terms of raw resource requests) for the QoS
manager. Moreover, the QoS director has to inform the SLA Negotiator about
the estimated processing time of a particular application.

In order to perform the right choices and to provide correct information to
the SLA Negotiator, the QoS director has to estimate the computational, storage
and network resources needed for the execution of the applications. This goal can
be accomplished querying the cloud information system to check the availability
of the requested resources.
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2.2 The CHASE Component

CHASE (Cloud@Home Autonomic Service Engine) is based on the MAWeS
framework, which was developed to support the predictive autonomicity in web
service-based architectures [6]. MAWeS itself leverages on the MetaPL language
[9] and the HeSSE simulation environment [10]. The first is used to describe the
software system and the interactions inside it; the latter, to describe the system
behaviors and to predict performances using simulation. Following a bottom-up
approach, we will briefly describe the features of these tools and then show at
the end of the section how CHASE operates on top of them.

HeSSE. HeSSE is a simulation tool that allows to simulate the performance
behavior of a wide range of distributed systems for a given application, under
different computing and network load conditions. It makes it possible to describe
distributed heterogeneous systems by interconnecting simple components, which
reproduce the performance behavior of a section of the complete system.

MetaPL. MetaPL is an XML-based meta-language for parallel program de-
scription and prototyping [9,4]. It provides a core language that can be extended
through Extensions (XML DTDs) to support different programming paradigms
and to enrich the semantics of the description. A MetaPL program can be pro-
cessed by filters (XSLT transformations) to produce different program views :
one of these set of filters can produce traces to be simulated in HeSSE, thus
providing reliable performance predictions even at the early phases of software
development [8].

MAWeS. The MAWeS framework relies on MetaPL to run HeSSE simulations
and to obtain performance data. The user can specify through the autonomic
MetaPL language extension [5,6], the set of parameters that can be modified by
the optimization engine. MAWeS will automatically perform a set of simulations
varying the values of these parameters to find the set of values that optimizes
the software execution according to one or more criteria (e.g., shortest execution
time).

MAWeS is structured in three layers (Figure 3). The MAWeS frontend in-
cludes a standard client application interface, MAWeSclient, providing the gen-
eral services that can be used and extended to develop new applications. The
MAWeS Core exploits environment services (i.e., the services offered by the envi-
ronment to monitor and to manage itself) and the MetaPL/HeSSE WS interface,
using the application information contained in the MetaPL description to find
out optimal execution conditions.

CHASE. It is now easy to illustrate how the Cloud@Home Autonomic Ser-
vice Engine operates. CHASE acts as a special client of MAWeS. It hands in to
MAWeS the configuration of the cloud system (in a format suitable for HeSSE)
and of the service/application (in MetaPL format) and receives in response the
optimal configuration parameters. In order to perform these tasks, the MAWeS
framework must also be extended to predict the behavior of virtualized applica-
tions, which is an ongoing work within the Cloud@Home project.
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Fig. 3. The three layers of the MAWeS Framework. The client functionalities in the
Frontend can be integrated in applicative software.

3 C@H Component Integration

SLAEngine and CHASE have similar aims, but follow different approaches:

– SLAEngine accepts a task submission enriched by a SLA description, which
describes the application requirements. The SLA Engine accepts, refuses or
negotiates it, deploys the needed resources and monitors the application
execution, in order to grant that SLA requirements are respected.

– CHASE accepts a task submission enriched by a MetaPL description, which
describes the application behavior together with application optimization
parameters, predicts the application execution performance in different con-
figurations, and returns the optimal application configuration.

In fact, the two components focus on different characteristics of the application
execution. The SLA Engine takes into account the resource usage optimization
and so aims at granting resources quality and availability (i.e., reserving a net-
work with granted bandwidth to an application). On the other hand, CHASE
focuses on application execution optimization, choosing the suitable resources
that can lead to the optimization of user-oriented application performance in-
dexes (e.g., response time), even when the application behavior changes (i.e.,
there is a variation of the number of processes making up the task or of the way
in which data are partitioned). The two approaches are orthogonal: SLAEngine
can change the resources available to the application, but cannot change the
application behavior. CHASE does not directly manage resources (just asks for
them), but it, through MetaPL, knows which parameters affect the application
behavior and it is able to change them optimally. In Cloud@Home the two func-
tionalities are integrated in order to get the advantages of both approaches.

In order to clarify how the invocation of a service behaves, Figure 4a illus-
trates the SLA-based service invocation process. Just after the invocation, an
evaluation step takes place (the Service Evaluation activity), in order to predict
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the best configuration in terms of both resource usage and application behavior.
If the result respects the SLA requirements, the Service Execution activity will
follow; otherwise, a negotiation step driven by the SLA Engine will take place.
In the current state of the project, the negotiation phase is absent, and so the
service invocation is possibly rejected (Service Refusal). During service execu-
tion, a warning may occur if a SLA requirement is nearly to be violated (i.e.,
a resource crashes, an unpredicted load is detected, . . . ). In this case, the ser-
vice is re-evaluated, taking into account the actual resource state, and possibly
suspended and re-executed with a new resource utilization scenario.

The CHASE-SLAEngine integration implements the above described behavior,
as shown in Figure 4b. The user invokes the service through the C@H Frontend.
This starts up the request collecting both the SLA request and the application be-
havior description (for simplicity’s sake, the diagram does not show the user/Fron-
tend interaction). The service invocation is redirected to the SLA Negotiator and
to the QoS Director. This latter is integrated in CHASE, and asks it for an optimal
application behavior. CHASE makes its prediction by evaluating a set of differ-
ent resource configurations and finding the optimal one, than returns the result
to the QoS director which evaluates the SLA requirements and checks if they are
respected. If so, the result is returned to the SLA Negotiator and to the FE, which
finally starts up the service.

(a) C@H service invocation (b) SLAEngine-CHASE Interaction

Fig. 4. Cloud@home SLAEngine-CHASE Interaction

4 Conclusions and Future Work

The adoption of the volunteer computing paradigm poses problems related to
unreliability and low performance. In the Cloud@Home project, whose objective
is to build a cloud environment based on volunteer resources, we propose two
components that jointly aim at supporting SLA/QoS requirements. One of them
focuses on resource utilization, the other on application behavior. In this paper
we have shown how both components work, and how it is possible to integrate
them in order to obtain a very flexible system for SLA/QoS management. We
will apply the proposed approach and evaluate it in the project case studies.
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Abstract. Resources management facilities, based on service level
agreements, are needed in the Cloud in order to negotiate a collection
of inter-connected and virtualized computers between resource providers
and consumers. In this paper we present the architectural design of a
system named Cloud Agency which aims to respond to this need and
to offer added value to the existing Cloud services. This system is in
charge to broker the collection of Cloud resources from different providers
that fulfills at the best the requirements of user’s applications. The user
is able to delegate to the Agency the necessary checks of the agree-
ment fulfilment, the monitoring of resource utilization and eventually
necessary re-negotiations.

1 Introduction

Cloud computing is an emerging paradigm that, due to an intensive use of the
virtualization approach, offers to users resources on which they have full ad-
ministrative control. Cloud computing is expected to be the paradigm that will
deliver a basic level of computing service that is considered essential to meet
the everyday needs of the general community [1]. Such a computing utility is
targeted to a market of consumers who require specific QoS to be maintained
by their providers in order to meet their objectives and sustain their operations.
In this context the need of SLA-oriented resource management represents the
solution to negotiate a collection of inter-connected and virtualized computers
between resource providers and consumers (or between resource providers and
a third-party broker) [2]. The selection of Cloud providers that fulfills the re-
quirements of a particular application is a complex issue due to the different
business models associated with such computing systems. Cloud providers usu-
ally employ a system-centric resource management architecture. According to
[1] a market-oriented resource management is needed in order to regulate the
supply and demand of Cloud resources, providing feedback in terms of economic
incentives for both Cloud consumers and providers, and promoting QoS-based
resource allocation mechanisms that differentiate service requests based on their
utility. The current Cloud computing technologies offer a limited support for dy-
namic negotiation of SLAs between participants. There are no mechanisms for
automatic allocation of resources to multiple competing requests. Furthermore,
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current Cloud computing technologies are not able to support customer-driven
service management based on customer profiles and requested service require-
ments. Also it is impossible according to [1] to derive appropriate market-based
resource management strategies that encompass both customer-driven service
management and computational risk management to sustain SLA-oriented re-
source allocation. New SLA-oriented resource management strategies must be
designed for Clouds in order to provide personalized attention to customers. Ser-
vice requirements of users can change over time, due to continuing changes in
business operations and operating environment, and thus may require amend-
ments of original service requests. We proposed recently in the frame of the
EC-FP7-ICT project proposal, named mOSAIC, a solution, based on software
agents and semantic data processing, for Cloud resource negotiations and ser-
vice level agreements. The mOSAIC project (www.mosaic-cloud.eu) intends to
improve the state-of-the-art in Cloud computing by creating, promoting and ex-
ploiting an open-source Cloud application programming interface and a platform
targeted for developing multi-Cloud oriented applications. The main benefit of
using the mOSAIC software package will be a transparent and simple access to
heterogeneous Cloud computing resources and the avoidance of lock-in propri-
etary solutions. A special attention will be given to the applications that are
data-intensive: the Earth Observation community is strongly involved in the
platform testing. In this paper we present an important component of mOSAIC
framework, we named Cloud Agency, which aims at offering value added Cloud
services. It will be in charge to broker a collection of Cloud resources from dif-
ferent providers that fulfills at the best the requirements of user’s applications.
According to the available offers it will generate a SLA document that represents
the result of resource negotiation and booking with supported Cloud providers.
The user will be able to delegate to the Agency the necessary checks of SLA
fulfilment, the monitoring of resource utilization and eventually necessary re-
negotiations. The paper is organized as follows. The second section discusses the
motivation of our research and the state of art of Cloud dealing with the resource
brokering. The third section introduces the requirements for Cloud Agency de-
sign. In the fourth section the Cloud Agency design is described. Finally, in the
last section, some conclusion are provided.

2 Requirements for SLA Negotiation and Management

The mOSAIC team plans to investigate Cloud-specific SLAs and QoS require-
ments in order to support resources management. The proposed approach is to
start from Cloud usage patterns. Such patterns were recently identified in [3],
reflecting a business view.

Definition of QoS parameters. One of the preliminary requirements, which are
relevant to support negotiation activities into the Cloud, is the definition of QoS
parameters for existing service. Of course this can be done after an exhaustive
study of available Cloud platforms and services. There are critical QoS param-
eters to consider in a service request for Cloud computing, such as for instance:
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time, cost, computer power, storage size, reliability, trust, security, or even loca-
tion of resources due to business constraints. An attempt to define several QoS
metrics is presented in [4]. Authors define response time, availability, reliability,
cost and reputation. A reference of SLA model is provided in [5], where SLA
objectives (SLOs) are used to compose a SLA. The existence of a number of ser-
vice levels and performance metrics for each resource results in multiple SLOs
for every service.

Role of users, brokers and providers. As actors of the Cloud market needs to
be defined. Users submit service requests from anywhere in the world to the
Cloud. Cloud providers offer resources, allocate the one acquired and bill their
consumption. They need to control that there is no overloading of resources
whereby many service requests cannot be successfully fulfilled. This leads the
decision on whether to accept or reject the request. On the other hand users
need to be aware about the resources they are really exploiting and the service
level they are provided with at any time. The monitoring of QoS level is relevant
to detect SLA violation which can be regulated by penalties that providers must
pay. Applications and new services have to be designed in order to let user
delegate to applications the automatic negotiation and management of SLA,
resources and services on behalf of users and providers.

SLA negotiation and renegotiation. SLA negotiation with multiple Cloud
providers is a first example of complex application that could be delegated to
a third party, represented by a broker in a market based context. A broker in-
termediates between users and providers in order to negotiate the best SLA for
both consumer and vendors. On user behalf it can:

– search for available Cloud services, compliant with user needs;
– check of trustness of providers;
– decide with whom to negotiate, according to user requirements and past

experiences;
– negotiate the best price for the same offer by different providers;
– negotiate multiple SLAs, with different providers, to overcome the lackness

of one compliant offer by a single provider.

Since consumers’ requirements can potentially vary over time it needs to sup-
port dynamic re-negotiation of SLA. Some mechanisms to reconfigure virtual
resources are already available, but it needs policies and protocols for changing
the SLA parameters, to include new amendments and withdraw previous ones.
Re-negotiation is another service that can be provided to solve some inconsis-
tencies between the SLA and the real user’s requirements which can change
dynamically. Dynamic SLA re-negotiation has actually limited support. Issues
to be investigated are:

– withdraw of a SLA and negotiation of a second one;
– deletion/addittion of a SLA objective;
– redefinition of a QOS parameter;
– negotiation of boundaries within which the SLA can be re-negotiated at the

same price or with a pre-defined price adjustment.
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Monitoring. The utilization of Cloud resources is another service that can be
delegated. Providers monitor utilization of their resources for billing, to change
bid prices in order to optimize profit, to not exceed in resource allocation beyond
the capability of fulfill the agreements. On the other hand, the user, who has
conflicting interests with providers, needs to trust a third party that can be
delegated to monitor the satisfaction of the agreed service levels. Monitoring
process should provide information about:

– under-utilization of cloud resources, in order to negotiate cheaper agree-
ments;

– saturation of resources, to not let the users’s applications work under the
QoS level granted to users’ clients;

– unbalanced utilization of Cloud resources, in order to check the correctness
of negotiated parameters, or to tune the execution of applications in the
Cloud;

– violation of SLA by providers.

3 A Cloud Agency in mOSAIC

Applications for SLA negotiation and management should act on behalf of their
users and should be able to compose available Cloud services. They will be proac-
tive applications that, beyond the stateless SOA model, are aware about the
status of their user’s resources and services and interact with brokers, providers
and eventually with other Cloud actors in order to pursue user’s objectives.
Because of these considerations, we modeled the services as agents who imple-
ment a Cloud Agency [6] in a framework that aims at deliver and manage Cloud
resources and services provided by different Cloud platforms.

3.1 Architecture and Agents’ Role

The Cloud Agency architecture is showed in Figure 1. The main service pro-
vided by the Agency is the negotiation of Cloud resources. The core agents are
enumerated in Table 1. A Client Agent acts as an access point for the user who
is exploiting proactive services. It maintains the user profile and cooperates with
the Negotiator in order to provide to the user the services with the requested
quality levels. A Mediator Agent retrieves a list of available Provider Agents
from the Registry Agent. It contacts each Provider Agent and requests a bid for
the needed resources. Once it obtains responses from Provider Agents, it assesses
the following: the QoS provided; the quality of the provider itself (requesting his-
torical data from an Archiver Agent); after assessing the bid responses, it should
put together a contract with the winning providers on behalf of the client; it
replies to the Client Agent with the attached contract. The Negotiation Agent
could try to optimize the contract by applying different trade-offs between per-
formance or availability and costs, but within the bounds specified by the client.
A Provider Agent accepts bid requests from the Mediator Agent, and tries to
propose a contract for the resources it could provide. A Registry Agent will allow
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Fig. 1. The Cloud Agency Architecture

the publication of services which are available and accessible by the mOSAIC
framework and their discovery. An important project activity includes an ex-
haustive study of the most important Cloud platforms, in order to regognize
what services they can provide and how to use them. Agents exploit a Semantic
Engine that will allow also semantic validation and translation of messages that
use different ontologies and will refine the application specification document
into a correct and complete SLA on behalf of the user. The monitoring of Cloud
resources utilization is necessary to evaluate the satisfaction of SLA and the ef-
fective utilization of resources by the user’s applications. A Monitor Agent will
be in charge to collect all the available information from Cloud providers and
from the user’s application themselves to figure out the effective values of QoS
parameters and the application performance. Even when the resource utilization
is accessible for evaluation from outside the virtual environment, it could be rel-
evant to measure the system performance inside the virtual resource in order to
evaluate the perceived quality of service by the application without trusting the
provider. Specific exceptions can be generated when particular events occur. For
example a SLA violation, or saturation of resources by user’s application can be
notified to the user or directly to the Client Agent that will be responsible to
ask for a re-negotiation of the SLA.
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Table 1. Core agents of mOSAIC platform

Agent type Function

Client agent Responsible for collecting users’ application require-
ments, for creating and updating the SLAs in order to
grant always to best QoS

Negotiator Manages SLAs and mediates between the user and
the meta-broker, selects appropriate protocols for agree-
ments, negotiates SLA creation, handles fulfilment and
violation

Mediator Select a vendor agent that is capable of deploying a ser-
vice with the specified user requirements

Vendor agent Interacts with virtual or physical resources at provider
side, and in case the required service needs to be deployed
it interacts directly with the automatic service deployer

Archiver Stores historical data about quality of services and re-
sources offered by providers

Automatic service deployer Install the required service on the selected resource on
demand

Benchmarker Periodically build performance figures of used resources
and notify the client agents about values of measured
parameters

3.2 MAGDA as Agents Technology

The MAGDA toolset [7] will be the base for developments of the Cloud Agency
in mOSAIC. Its architecture is showed in Figure 2. MAGDA provides a set
of agents based services for distributed computing. Users can exploit existing
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Fig. 2. MAGDA Architecture
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services by different protocols, eventually being unaware about the agent tech-
nology, accessing a front-end and controlling the agent execution on available
resources. On the other hand they can develop new agent based services. Ad-
vanced facilities such as strong authentication, agent migration across multiple
domains, workload balancing, or dynamic resource allocations are provided [8].
MAGDA provides facilities to design, develop and deploy agents-based services.
Services will be stored in the repository and will be able to execute on Cloud
resources. Agents will communicate one with th other via standard ACL (Agent
Communication Language) messages over http, or over other transport protocols
if it will be necessary. Services provided by agents are exposing a Web Services
interface that works as a Message Gateway: SOAP to ACL and ACL to SOAP.

3.3 Ontology and Semantic Engine

In order to support interoperability among users and different providers, an uni-
form Cloud Ontology will be defined. It represents a common vocabulary to be
used for different purposes. First of all, requests and responses (SLA’s, bid re-
quests, and contracts) should be described according to that specific ontology
that governs the Cloud domain. Because each user or proder could natively use a
different ontology, agents could also implement a semantic mapping between the
native ontology and the uniform one. The ontology will be used to implement a
semantic discovery facility to find all relevant services and resources published
in the Clouds. The ontology will describe Cloud resources and services, Cloud
actors, Quality of Service Parameters, the negotiation protocol and the SLA.
OWL is prposed as th onntology language. The benefit of using an ontology
language is that it acts as a general method for the conceptual description or
modeling of information that is implemented by actual resources. This approach
will allow to easily take a Cloud resource model and adapt it within other on-
tology languages making it both platform and vendor agnostic. In this respect,
mOSAIC aims to develop ontologies that would offers the main building block to
describe the services at the three delivery models. In order to enable algorithms
for matching different types of resources, functionalities and capabilities must be
captured in these ontologies: a clear description and categorization of existing
functionalities, capabilities and specificities of different resources (possibly ex-
isting in the Cloud) will ease rapid development of successful applications of the
Cloud/over the Cloud. Matching algorithms will equally apply at the different
layers of the Cloud architecture selecting the best available Cloud application
from a large base of available applications, based on matching customers needs
with application specificities. One of the most challenging goals of the semantic
engine is to design and develop semantic-based Cloud services discovery. A pro-
totypical tool will be built based on syntactic and structural schema matching.
The input will be an ontology describing a service request and services descrip-
tions. This can be achieved on the syntactic level through a service description
language (like WSDL), or on the semantic level, through service ontologies (like
in OWL-S and WSDL-S). Semantic matching is possible since service request
and services descriptions are semantically annotated based on concepts from
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ontologies adopted for modelling the specific domain of application. The result
of a semantic discovery is a new set of exploitable Cloud services and providers.

4 Conclusion

A step forward in the Cloud computing evolution is the development of tools
that allows the negotiation and composition of services offered by different Cloud
providers. The complexity of the business model related to a multi-Cloud en-
vironment imposes the automatization of the offer selections. In this context,
mOSAIC proposes to use agent technologies incorporated in a Cloud Agency
and a Virtual Cluster to enable the easy development and deployment of multi-
Cloud based applications. The on-going development of mOSAIC’s proof-of-the-
concept prototypes and ready-to-use platform are based on the reasons, concepts,
architectures and technologies that were exposed in this paper.

Acknowledgements. This research is partially supported by the grant FP7-
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Abstract. Cloud computing leverages the use of abstracted resources.
However, migrating an industrial application to well-known Cloud solu-
tions such as EC2 might be complex and low level expertise is indeed
needed. In this use case we present a methodology, based on practical
experience matured on the ground, that allows service providers to en-
able complex applications to the RESERVOIR cloud infrastructure. We
also show an example of how a complex business application, such as the
SAP ERP 6.0, can be automatically fully deployed and scaled up and
down as resource needs change, easing the use of a cloud system for ser-
vice providers that might experience difficulties or have mental barriers
to carry out such task.

Keywords: Cloud computing, Industrial applications, Use case,
RESERVOIR, cloud enabling methodology.

1 Introduction

Today a growing number of companies, such as start-up and SMEs, is using
Cloud computing to carry out their business, due to the easy requirements to
be satisfied and to the fast high competitiveness gained at lower investment
costs. However, Cloud computing is far from being definitive, since the always
changing requirements are constantly modifying this paradigm. Enterprises are
analysing the use of Cloud to carry out some of their processes, which add even
more requirements. For example, many enterprise processes are time-critical,
with secure and privacy requirements. Also the scale of enterprise applications
is in the order of thousands of concurrent services, which is in contrast with
SMEs that have a number of services orders of magnitude lower than enterprises.
Another aspect in favour of SMEs for the Cloud adoption is that their system
have a low number of functions, making no difference between data and logic, and
therefore less complex to be ”cloudified”. This is not feasible for enterprises that
have much more complex functions to be taken into account. The result is that
Cloud solutions face difficulties to cope with both opposite class of customers
and so the use of Cloud within enterprises is still low. However, the benefits
in using Cloud are many and Cloud providers, pushed by the hype of the IT
environment, are progressing fast to meet the new demands. Although there are
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efforts [1] to design new enterprise applications to be cloud oriented, they are
far from being a reality. Thereby, adopting the Cloud for legacy applications can
give enterprises advantages as well as speed up the usage of this paradigm.

The RESERVOIR solution provides an infrastructure able to run not only
applications for SMEs, but also for large complex enterprises. The system offers
capabilities such as rapid provisioning, elasticity, applications coexistence, fed-
eration and security. In this paper we focused on the first two features through
a SAP ERP use case, showing how such complex application can be fully auto-
matically deployed and scaled according to specific user requirements, without
requiring any modification of the application. This will be an advantage not only
for large enterprises using this application, but also for SMEs that are normally
afraid of installing and configuring SAP systems due to their complexity. Finally,
SAP itself can benefit because it can reach discouraged clients.

The reminder of the paper is organized as follows: section 2 discusses the
related work. In section 3 we present the RESERVOIR solution along its main
components. Next is discussed the use case, we give details about the application,
the testbed and the scenarios performed. After, we describe the lesson learnt.
Finally we draw the conclusions and discuss the future work.

2 Related Work

Different Cloud solutions (e.g. RightScale, Scalr, Flexiscale and Elastra) are
available, offering high level functionalities on top of Cloud infrastructures such
as Amazon EC2, Google App Engine and GoGrid. Such Cloud solutions try
to fill the gap between Cloud infrastructures’ offers and the Service Providers
(SPs) that use them, by providing automation services to control the virtual
resources assigned. However, their service definition is not comprehensive. In
fact each Virtual Machine (VM) needs to be installed, configured and managed
singularly, which restricts the service deployment. Moreover, the automation
controls, such as auto-scaling, are too rigid due to the use of predefined monitored
variables within the server templates offered, thereby not allowing the SPs to
define their own service indicators. As result, SPs have to constantly monitor
the VMs running state in order to instantiate or remove VMs to scale the service
up or down.

In [2], the authors point out how elasticity is an important feature which al-
lows SPs to save on costs of over-provisioning and risks of under-provisioning.
Motahari et al [3] also highlights from a business perspective how such ability
has a positive impact on the enterprise business processes management. In [4],
the authors discuss the issues commented above and identify four goals, service
abstraction level, automatic scalability, smart scaling and avoidance of Cloud
vendor lock-in, thus reinforcing the importance to address those issues. On the
other hand, migrating enterprises’ IT systems to the Cloud, needs to be care-
fully studied. In [5] the authors investigated the implication to migrate an IT
system to the Cloud. Few other works studied the impact of such migration
from an enterprise perspective [6], showing also a real use case [7]. In the latter,
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the authors show how migrating an IT infrastructure to a Cloud system can
significantly reduce costs opposite to create and maintain an in-house solution.

The RESERVOIR project addresses the limits of current solutions, by pro-
viding a Cloud infrastructure where SPs can easily define their services that run
in a fully automated fashion.

3 The RESERVOIR Solution

The RESERVOIR cloud solution [8][9][10] is shown in figure 1. SPs are external
entities requiring resources for their applications based on high level business
requirements.

Fig. 1. RESERVOIR Cloud Architecture

A service in RESERVOIR is a set of Virtual Execution Environments (VEEs).
Each VEE essentially wraps part of a SP’s application. The SP specifies the terms
of the service requested through a Service Manifest based on an extended version
of the OVF [11].

Service Manager (SM). The SM is the module that interacting with the
service providers, deals with the service deployment, checks elasticity rules and
SLA compliance, and handles the service billing. The aim of this component is
to automate a manual, complex and lengthy service delivery process. The SM
processes the service requirements embedded within the manifest and determines
the VEEs needed by the service, along their placement constrains based on
cost, licensing, affinity, etc. SLAs are checked over the service life cycle and
capacity is adjusted according to elasticity rules within the service manifest.
This is accomplished by evaluating the application specific KPIs and deploying
or removing the relative VEE instances. Finally, an accounting system within the
SM processes the resources utilization of the service and creates bills according
to post-paid or pre-paid billing models.
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Virtual Execution Environment Manager (VEEM). The VEEM interacts
with the SM and VEE Hosts (VEEHs) within the same site, and with remote
VEEMs. The VEEM, based on the SM instructions, creates VEEs and places
them in the VEEHs. Placement is done first to satisfy the SM constrains derived
from the manifest, and second to optimize the site utilization according to the
current local optimization policy such us of load balancing or power saving. Site
policies can be easily plugged within the VEEM, so that each site can have its
own optimization strategy. Cloud federation is also performed by this component.
This feature allows to extend the cloud capacity over the physical limit of a single
site. The VEEM can, within the manifest constraints, place VEEs across remote
sites with which agreements have been created.

Virtual Execution Environment Host (VEEH). The VEEH interacts with
the lower resources through the virtualization technology, such as XEN, KVM,
etc, and also with the VEEM. The VEEH manages the VEEs abstracting the
specific virtualization commands, into a common interface that the VEEM can
use. In this way, the VEEM is unaware of the virtualization technology in place.
VEEs can be deployed across different VEEHs and sites. This component also
deals with network configurations. A specific module is dedicated to create Vir-
tual Area Networks (VANs) for each application. This allows the application to
communicate through a dedicated channel, independently of each VEE location.
Therefore applications deployed in the same site are separated from each other.

Interfaces. The design of the RESERVOIR architecture facilitates the layers
interoperability, by supporting open, generic and standard protocols and inter-
faces. Each layer can be implemented in a different way, but still able to intercat
with each other. This approach will encourage new cloud enabling solutions.
The Service Management Interface (SMI) allows service providers to access the
RESERVOIR solution through the use of the OVF manifest. This means that
different RESERVOIR providers use a common business requirements language.
The VEE Management Interface (VMI) facilitates the use of different VEEMs
within the RESERVOIR stack allowing to experiment with different manage-
ment strategies. This interface allows also the cross-site communication needed
to support the federation feature. Finally, the VEE Host Interface (VHI) sup-
ports the use of new virtualizaion technologies.

Monitoring Framework. The monitoring framework stretches across all lay-
ers. Its task is to pass information from lower to higher layers, in order for each
component to take due action at runtime [12]. Applications running locally as
well as across sites need to be monitored. Data can come from physical and vir-
tual resources. For example, the SM needs to continuously check that elasticity
rules and SLAs are satisfied. Therefore, probes have been developed and embed-
ded within each VEE, to collect high level specific service data in the form of
KPIs. Also, other probes interacting with the hypervisor and collecting CPU,
memory and network usage were developed.
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4 Use Case

The SAP Business Application. The use case presented in this paper is
based on the SAP ERP 6.0, which is part of the SAP Business Suite. The ERP
facilitates the flow of information among all business functions within a company.
The suite runs over SAP NetWeaver Application Server (NWAS), a three tier
architecture shown in figure 2. The application layer is made of two elements:

– Central Instance (CI): only one CI is present in a system and implements
many services such as dialog, update, batch, spool, gateway, message server
and enqueue server. Also, it provides higher level locking mechanism on the
message server. It has high availability requirements and cannot be scaled
out.

– Dialog Instance (DI): it processes user requests or Remote Function Call
(RFC) from remote systems. Requests are handled in the form of work pro-
cesses which can be dynamically parallelized. It can be scaled out.

Fig. 2. SAP NETWeaver 3 tier architecture

The SAP NWAS can be configured either as 2-tier or 3-tier system. In a 2-tier
system Database and Application layers form a single layer. A system deals with
growing load by dynamically scaling up the DI instances. In our case, the NWAS
was configured in a 2-tier fashion, where the CI and database were installed
within the same VEE while the DI in a different VEE. As Presentation layer
a proxy was installed within a VEE. The CI VEE requested 4 CPUs and 7GB
of RAM, and its image was 120GB growing to 150GB with the swap area. The
DI VEE requested 2 CPUs and 3GB of RAM, with an image of 1.5GB growing
to 10GB with the swap area. The proxy requested 2 CPUs and 2GB of RAM.
These VEEs requirements were coded within the service manifest.
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Testbed Configuration. The RESERVOIR testbed is made of 4 sites, geo-
graphically distributed at UniMe (University of Messina, Italy), Umea (Umea
University, Sweden), Thales (France) and IBM (Israel). For the presented sce-
nario, the Umea site was used since the SAP application fitted in it. The Umea
site is composed of 2 VEEHs and a management node running the SM and
VEEM components. Each physical machine is equipped with Quad Xeon X3330
(2.66GHz), 8G RAM, and 160GB of Disk. A storage node stores the images.

4.1 Scenarios

Rapid Provisioning. The goal of this scenario is to demonstrate an automated
full deployment of the SAP ERP 6.0 system. The system starts from an OVF
descriptor, containing the details of the SP service, such as location of the images,
minimum number of instances, VEE description (hypervisor, number of CPUs,
memory, network) and elasticity rules to scale up and down the system. The SM
contains an OVF parser [11] which extracts all necessary information to create,
for each VEE, a descriptor file needed by the VEEM for the deployment, and
a configuration file that will be used by the VEE itself. The configuration file,
created as an ISO image, is mounted on the CD drive of the VEE that is then
mounted by the VEEH. Next, the configuration file is used by the Activation
Engine, within the image itself, that configures the VEE after the boot phase.
Tiers need to know where to contact others tiers of the application, and the
activation engine is used for this purpose. Figure 3 shows the process so far
described.

As result, once deployed the CI (3-5 minutes from boot to running), the DI
(3 minutes) and the SAPProxy (1 minute) get connected through a dedicated
VAN, and the SAP application is fully configured. The result is a complex multi-
tier business application, fully deployed within the RESERVOIR infrastructure,
without any human intervention.

Elasticity. After the system has been deployed, 10000 concurrent users were
simulated in order to generate a load that the system could not manage.

Fig. 3. SAP manifest processing
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This was done through a load generator within the SAPProxy. The number
of users represents the KPI for the SAP application, which was reported up to
the SM, through the probe within the SAPProxy image that sends this data
to the monitoring system. Since the Manifest contained elasticity rules to scale
the system in such situations, a further DI was created and added to the SAP
system, so that all users could be served. After a while the number of concurrent
users was reduced by the load generator, which led the extra allocated DI to be
removed by the SM.

5 Lesson Learnt

The SAP use case represents a complex class of applications, an enterprise multi-
tier system, which allowed us to develop a methodology, based on our practical
experience, to enable applications within the RESERVOIR cloud:

– Virtualization of the application:
• embed the application in one or more VMs;
• verify in-house that the application works;

– Development of the OVF manifest:
• map the virtualized application into the manifest;
• identify the valuable KPIs for the application;
• create the appropriate elasticity rules;

– Development of the activation engine: configure each VM of the appli-
cation appropriately;

– Development of application’s probes: create the appropriate probes to
push out the right KPIs from the VEEs;

– Testing: tests on deployment and elasticity in a real RESERVOIR environ-
ment.

6 Conclusions

This paper presented a complex business use case, the SAP ERP 6.0, running
over the RESERVOIR cloud infrastructure. Two different scenarios were pre-
sented, the rapid provisioning and the elasticity. The former showed how the
SAP ERP could be automatically deployed, starting from an OVF-based Mani-
fest. The role of the Activation Engine to internally configure the VM, was also
described. The latter scenario showed how the SAP application could be auto-
matically scaled up and down, accordingly to the KPI. The process to bring this
use case on the RESERVOIR cloud system allowed us to develop a methodology,
which we formalized in a set of practical steps, that each SP can follow to enable
its application to use the RESERVOIR solution.

Next we are going to demonstrate more features of the RESERVOIR system:
applications coexistence: deploying more applications within the same site, in
a transparent and secure fashion; federation: extending the infrastructure by
setting agreements with other sites; and cross sites live-migration of VMs.
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Abstract. Cloud Computing is considered nowadays as the future of
ICT systems leveraging new methodologies for developing, providing
and consuming services. Even though many people believe that “Cloud”
is just another buzzword for utility computing, this new computing
paradigm is not only changing the design of modern computing plat-
forms in technical level, but it also impels, from the market perspective,
the creation of new value chains and business models. However, many
technical complexities still remain, which disallow the wide adoption of
Clouds to eventually address the new business trends and requirements
of end-users. In this paper we identified and analyzed the key challenges
for the emerging cloud platforms in order to minimize these technical
complexities while the innovative approaches emerging from European
research activities are presented.

1 Introduction

Although cloud computing [1] as another distributed computing paradigm is not
something new, nowadays seems that the number of people and organizations
exploiting the cloud computing capabilities is increasing and the research inter-
est in cloud technologies is expanding. The main IT players such as Google and
Microsoft have already developed platforms [2,3] to offer cloud services hosted
in their datacenters and at the same time hundreds of new companies worldwide
are involved in the service delivery value chain either by using their owned in-
frastructures or by providing added value services utilizing the infrastructures
of the main players.

The new cloud ecosystems are changing the way the computing, storage and
networking resources are purchased and consumed creating new business models
and value chains. In contrast with the proprietary software where the license
schemas are rather simple, the cloud based services -exploiting the advantages
of the cloud features for scalability, multi-tenancy and reliability- are strongly
related with the business aspects of the application and platform influencing
all process of the service lifecycle. Currently, this is getting even more complex
since the IT services are not independent each other but are often federation
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of other services, aggregating data and information from various sources. How-
ever, a number of technical complexities in the new computing environments
deter the placement of composite applications and services. As cloud computing
passed the “Peak of Inflated Expectations” and is moving towards the “Plateau
of Productivity” according to the Hype Cycle of Gartner Research [4], issues
like interoperability, data lock-in and QoS degradation are considered of major
importance for the wide adoption of such systems. Therefore minimizing the
technical complexities allows the involvement of more players in the elastic ser-
vices market offering cost efficient services with high QoS and security guarantees
without large investments on infrastructures.

The technical challenges for the emerging cloud systems span all layers of the
established cloud model (SaaS, PaaS and IaaS) [5] with most of them affecting
the functionality and the performance of system components (both in the same
and cross layer). In the following figure we summarize the most important of
them, which are also expected to draw the main research interest for the next
few years. In addition, as the tight coupling of system components is of high im-
portance for the future cloud platforms in order to provide efficient management
and operation capabilities, we also present and analyze the main architectural
design and cross-layer challenges.

Fig. 1. The challenges for the future cloud computing platforms

The rest of the paper is structured as follows. In Chapter 2 we identify the
main technical challenges which will be addressed the next years and illustrate
approaches on how to minimize their complexities. Cloud architectural issues
are presented in Chapter 3, along a series of critical cross-layer issues that need
to be addressed in the forthcoming period. Chapter 4 contains the conclusions
of this work.

2 Technical Challenges of Future Cloud Platforms

In order to enable the wide adoption of Clouds and the involvement of SMEs,
independent users and developers, the future cloud infrastructures have to be
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attractive as technical and business solutions. This implies providing advanced
capabilities for all infrastructure layers and mechanisms to support the individual
business and market requirements of each application. In next sections we have
identified and analyzed the technical challenges from this perspective.

2.1 Performance Analysis

One of the most critical issues in modern cloud platforms is the performance
analysis of the application running on a distributed infrastructure. This prob-
lem has been thoroughly investigated the previous years in the context of grid
technologies (like in the works of [6,7,8]. However, in the current cloud business
model, the different roles of SaaS, PaaS and IaaS limit the flow of information
from one layer to the other (like source code or hardware capabilities knowledge).
In this context, the task of analyzing performance characteristics of an unknown
application running on unknown resources becomes almost impossible. In order
to minimize the complexity inserted, the IRMOS project [9] follows a multilevel
approach that meets most of the PaaS responsibilities.

First of all, the application and its components are described in an XML
format through the Papyrus tool. This way, the platform has a complete de-
scription of the application, its structure and a number of behavioral and func-
tional characteristics of each individual component. Afterwards, each component
is benchmarked through a process analysed in [10]. This aids in modeling the
application behavior with regard to changing resources assigned and the effect
on the QoS output. From the IaaS part, further analysis is conducted on whether
co-scheduling of VMs in the same host influences the performance of each in-
dividual VM, thus reducing the effective resource allocation performed by the
cloud provider.

2.2 Interoperability

One of the main challenges of future cloud platforms is the interoperability issue.
To this direction, the emerging REST protocol [11] is expected to have increased
uptake. This is due to the fact that through the standardized interfaces that
are required from the former interoperability at least in terms of interfaces is
achieved.

This alleviates from the need to have advanced mechanisms for service com-
position. However the need for semantic bridging between the different providers
still remains. Having the same interface is only the first step. The choice of what
type of service to use and what type of resources is needed is critical. Research
up to now, like in the FUSION [12] project, has progressed to some extent in
this area, through the usage of an intermediate, bridging semantic description
to which each provider adapts. However, if we are to meet the full expectations
of a global and diversified IT market, this process must be performed on the
fly and automatically, without the need for intermediate adjusting mechanisms
that usually include manual intervention at some level.
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2.3 Cloud Federation

Like in the previous case regarding interoperability, the realization of cloud fed-
eration in projects like RESERVOIR [13] is based on a predefined schema that
is followed by both providers that wish to federate. However this implies hu-
man intervention and it limits the amount of dynamicity. In order to have a full
scale autonomous platform that is able to federate on the fly with other IaaS
providers, automated semantic bridging between e.g. the ontologies used by both
is compelling.

A number of issues arise, from the usage of distributed IT infrastructures,
which are not technical from a first glance. This mainly has to do with legal
issues (e.g. data location) regarding the operational aspects of cloud platforms.
The new project OPTIMIS [Optimis] aims to investigate, among others, the
aforementioned critical parameters. Having as a starting point a legal analysis
of requirements posed by a number of involved parties like legislation dictations
or specific user constraints, OPTIMIS data services will be called to implement
inter-Cloud data transfer mechanisms that will cover both the functional and
the performance-driven point of view. Furthermore policies enforcement mech-
anisms for data that are transported to federated Clouds and for selecting the
optimal data for federation with regard to their nature and characteristics will
be investigated.

In order to meet these goals, aspects such as QoS requirements, functional re-
quirements (e.g. how data are accessed from an external network across multiple
domains), energy efficiency, performance constraints, data locality and integrity
must be taken under consideration. For this purpose, modeling of the data mech-
anisms will be pursued in order to aid in the management of data sets during op-
erational deployment of the latter in federated (or not) cloud platforms. What is
more, a decision needs to be made regarding which parts of existing or newly de-
ployed data will be federated in order to save resources. This decision must weigh
critical factors such as what is the nature or usage of the data sets contained at
the moment in the infrastructure. For this purpose, profiling mechanisms must
be in place in order to assist in this process.

2.4 Data Management

Given that a major limitation of existing distributed and vitalized environments
is the insufficient support for data-intensive services, the data management fea-
tures of the cloud platforms are determinant for delivering cost effective applica-
tions and services to the ICT players and end-users. Therefore a great challenge
for the success of the future cloud platforms is the integration, both in technical
and business levels, of the computational, storage and network resources in an
efficient manner to facilitate the delivery of data intensive services with QoS and
security guarantees. This is one of the challenges that will be addressed by the
VISION project.

VISION Cloud will include several innovative technical and technological ap-
proaches in data management. First of all it will raise the abstraction level of
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storage, encapsulating the data into objects with user-define and system defined
attributes. Metadata will be used for effective access, management and manip-
ulation of the storage enabling scalability and simplification of all storage and
data functions. In addition, the problem of data interoperability and data lock-in
will be addressed with the implementation of advanced data management func-
tionality for migration and federation of data across geographically distributed
administrative domains. Certainly data resources are not independent from the
computational ones. To this direction, solutions providing secure execution of
computational tasks near their data will be architected. The access to storage
will be also highly simplified and efficient with mechanisms to define domain-
specific optimizations which will make the content visible to users instead of its
underlying storage container. The aforementioned advancements in data man-
agement are expected to achieve significant and quantifiable improvements in
service delivery productivity, quality, availability, reliability and cost.

2.5 Application and Service Marketplaces

The notions of low-entry cost, scalability and dynamic total ownership cost for
using the cloud technologies are fundamental for the Cloud adoption and its
economic success. However, in the existing cloud paradigms this comes with
limitations regarding the involvement of players with competitive applications in
the cloud ecosystem because of the various, often complex, business and technical
requirements. In addition, third parties are difficult to deploy their applications
in the cloud infrastructures, create new business models and establish synergies
since these cannot be fulfilled from a single provider.

In the mobile phones paradigm there are several approaches addressing this
problem with the most known and successful the iPhone App Store. The develop-
ers and providers join these marketplaces selling their applications and services
using various business and revenue models. These solutions leaded many de-
velopers and providers to be involved extending their businesses in the mobile
market while end users are able to discover hundreds of services and applications
to satisfy their needs. In cloud computing paradigm, the marketplace concept is
still immature and with many technical complexities.

4CaaSt project [14] targets to minimize these technical complexities designing
a cloud marketplace that supports all phases of the service lifecycle (knowledge,
intentions, contract and settlement). The marketplace will offer to the providers
the ability to publish services and applications in a managed environment, which
controls the business terms and conditions (price, revenue sharing, promotion,
etc) and also includes integrated rating and billing capabilities, unlike most ex-
isting marketplace environments. The 4CaaSt infrastructure will be designed
to allow a hosting of compositions allowing the definition of combined models
and end-to-end SLAs. While existing marketplaces focus on the trading with
standalone services, 4CaaSt service compositions can be published in the mar-
ketplace supporting various business terms and conditions. It allows defining
business policies taking into account the price models of a service, handling
revenue sharing among multiple partners, and executing composed SLAs.
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2.6 APIs

The interoperability, federation and marketplace capabilities of future cloud
environments need to be supported by advanced, but also efficient and dy-
namic, APIs. Developing programming interfaces for deploying applications on
the Cloud as well as blueprints for describing these applications is a compli-
cated process because of the need to support tailored applications which may
be in addition compositions of existing or new applications. Besides, the variety
of business characteristics of the applications should be reflected on the design
of the APIs. The above introduce additional complexity and overhead in the
process of developing and adapting applications for clouds. To eliminate these
complexities for all the involved entities -users, developers, providers- the APIs
should allow automated or guided human-interactive facilitation of applications
and compositions without reducing though the cloud capabilities for interoper-
ability, scalability and QoS provisioning. IRMOS project [9] follows an approach
to this direction for applications with real-time requirements. Modeling tools not
only enable the deployment of applications on the Cloud but also allow the de-
scription of their rich set of high level operational and business requirements in a
language that can be interpreted by the platform to a set of low level performance
parameters. Furthermore application wrappers can be configured for providing
high level monitoring data to the platform for evaluation and comparison with
data from the infrastructure to guarantee, through automated corrective deci-
sions during runtime such as resource renegotiation and migration, the smooth
operation of the application.

3 Cloud Architectures

Clouds of the future will not be able only to manage and virtualize several types
of resources (network, storage, computational) but also to communicate with
legacy systems and internet enabled “things” such as wifi locators. The challenge
for the system architects is to design a system tha includes services that interact
dynamically and continuously, spanning between different domains, and ranging
from the application level and down to the level of network resources manage-
ment and the execution environment. This inlcude a careful synchronization of
this rich set of services so as to efficiently operate, manage and reconfigure all
the resources under real-time conditions, providing to the end-users the required
Quality of Service, agreed in the SLAs. IRMOS project followed an architectural
approach that included services to support application developers in engineer-
ing their applications, while other services support, in real-time, the application
execution.

A major challenge for SaaS providers wanting to exploit the benefits of cloud
computing is to manage QoS commitments to customers throughout the lifecy-
cle of a service. The PaaS offers SaaS providers services and tools for estimating
resource needs in advance of execution, negotiating QoS with service providers,
provisioning virtualized resources. Furthermore, assessment tools for the techni-
cal and economic outcomes of provisioning policies and management actions are
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provided in case either the application or resources do not perform as expected
or need to be adjusted. The IRMOS approach considers analysis and decision
support to determine which actions are triggered. In addition, the performance of
the monitoring and control between cloud layers is as essential factor in ensuring
that QoS guarantees are maintained.

An essential element of cloud computing is the ability to deliver on-demand
services with minimal manual configuration. All subsystems need to be self-
managed and reconfigured in order to achieve management efficiencies, to react
to QoS failures (such as an SLA violation or network link failure) in a timely
way and avoid the escalation of such problems. Cloud utilization involves sev-
eral processes that span in different cloud layers and stakeholders. Therefore,
the cloud platforms of the future must not only provide a set of services but
also cross layer workflows that consider the control channels and information
exchanges which are required to support management of applications and appli-
cation compositions throughout the full lifecycle.

3.1 Cross Layer Issues

The current business model that dominates the service oriented computing
paradigm dictates the 3-tier approach. While very adaptive and flexible from
a business point of view, this separation of roles between software, platform and
infrastructure providers creates another series of challenges.

First of all, the issue of hardware description exists. Up to now, there is no
accurate and widely accepted hardware metric in order to describe a compu-
tational resource. The unit that is widely used refers to the processor clock
speed. However this is far from sufficient. The PaaS provider is not aware of
the scheduling policies of the IaaS provider. Therefore, when a virtual machine
(VM) is requested based only on processor speed, the effect of co-scheduling
other VMs on the same host is not taken into account, despite the fact that the
latter influences significantly in some cases the performance of the application.
Furthermore, hardware failures may affect the application execution. The iden-
tification of the responsible in this case is critical given that this layer should
be held accountable for breaching the SLA contract. Third party presence may
be necessary in order to ensure that the allocation of resources in IaaS layer are
the requested. However, the existence of third party software internally to the
cloud provider is not expected to be something the latter would easily permit.
If these points are addressed, then the responsibility for not meeting QoS levels
falls on the estimation from the PaaS layer.

Another issue, this time between the SaaS and PaaS roles is the confidential-
ity regarding the source code of the various application components. While the
most promising performance estimation techniques require some knowledge of
the source code for accurately depicting the dependencies from various perfor-
mance characteristics, this is not available in the context of current distributed
computing infrastructures due to the lack of willingness to disclose application
internal characteristics. This feature leaves the PaaS provider with the only op-
tion of ‘black box’ approaches for the prediction of the application behavior.
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4 Conclusions

While cloud infrastructures have up to now fulfilled part of their promises and
have emerged as sound technological solutions for end users and providers, a
number of issues still exist that hinder the harvest of the potential benefits of
this paradigm. These issues, coming both form the technical and business con-
straints of the current cloud implementations are close related each other and
span all the layers of cloud model, obstructing the wide adoption of Clouds
and the involvement of SMEs and individuals. Clouds have the power to extend
the technological barriers for providing distributed services in global scale and
to create new value chains and networks for applications. However, many chal-
lenges still remain and to this direction, a number of European research projects
are significantly contributing so as to minimize the technical complexities and
leverage the cloud platforms to the higher levels of innovation and automation.
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Foreword

Virtualization has become a common abstraction layer in modern data centers,
enabling resource owners to manage complex infrastructure independently of
their applications. Conjointly virtualization is becoming a driving technology
for a manifold of industry grade IT services. Piloted by the Amazon Elastic
Computing Cloud services, the cloud concept includes the notion of a separation
between resource owners and users, adding services such as hosted application
frameworks and queuing. Utilizing the same infrastructure, clouds carry signif-
icant potential for use in high-performance scientific computing. The ability of
clouds to provide for requests and releases of vast computing resource dynami-
cally and close to the marginal cost of providing the services is unprecedented
in the history of scientific and commercial computing.

Distributed computing concepts that leverage federated resource access are
popular within the grid community, but have not seen previously desired de-
ployed levels so far. Also, many of the scientific datacenters have not adopted
virtualization or cloud concepts yet. This workshop aims to bring together in-
dustrial providers with the scientific community in order to foster discussion,
collaboration and mutual exchange of knowledge and experience.

This year’s workshop featured 10 papers on diverse topics relating to HPC
virtualization. Papers of note include Han et al. examining adverse effects of
non-uniform memory latency in NUMA architectures along with a proposed soft
real-time scheduler by Cucinotta et al. The guest speaker Chris Kemp, IT CIO
of NASA, provided an overview of the NASA Nebula cloud environment.

The chairs would like to thank the Euro-Par organizers and the members of
the program committee, Mr. Chris Kemp along with the paper presenters and
attendees, whose interaction contributed to a stimulating environment. VHPC
is planning to continue the successful co-location with Euro-Par in 2011.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, p. 613, 2011.
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Abstract. In this paper, we evaluate the overheads of virtualization in
commercial multicore architectures with shared memory and MPI-based
applications. We find that the non-uniformity of memory latencies affects
the performance of virtualized systems significantly. Due to the lack of
support for non-uniform memory access (NUMA) in the Xen hypervisor,
shared memory applications suffer from a significant performance degra-
dation by virtualization. MPI-based applications show more resilience
on sub-optimal NUMA memory allocation and virtual machine (VM)
scheduling. However, using multiple VMs on a physical system for the
same instance of MPI applications may adversely affect the overall per-
formance, by increasing I/O operations through the domain 0 VM. As
the number of cores increases on a chip, the cache hierarchy and external
memory will become more asymmetric. As such non-uniformity in mem-
ory systems increases, NUMA and cache awareness in VM scheduling
will be critical for shared memory applications.

1 Introduction

Virtualization has become popular to improve system utilization by consolidat-
ing multiple servers into a physical system. In addition to the improved utiliza-
tion, other benefits of virtualization, such as flexible resource management, fault
isolation, and support for different operating systems, have led to the increase
of interest in the virtualization of computing clusters for high performance com-
puting (HPC). Public cloud computing services, such as Amazon EC2 [1], also
accelerated the adoption of virtualization for HPC applications. However, the
characteristics of compute-intensive HPC applications are quite different from
those of I/O-intensive server applications. To adopt virtualization for HPC ap-
plications, thorough analysis of their performance characteristics in virtualized
systems is necessary. Furthermore, the fast increase of core counts in multicore
architectures, combined with virtualization techniques, affects the performance
of HPC applications significantly.

In multicore architectures, the effects of complicated memory hierarchies, such
as non-uniform memory access (NUMA), have become significant for HPC appli-
cations. Virtualization hides the underlying non-uniformity in memory access, and
thusaguestoperating systemmaynotbeable tomakeoptimal schedulingdecisions.

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 615–623, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



616 J. Han et al.

In this paper, we investigate the overheads of virtualization on HPC appli-
cations running on multicore systems with uniform and non-uniform memory
access latencies. Using the Xen hypervisor, we evaluate both a shared-memory
multi-threaded benchmark, PARSEC [4], and a MPI-based benchmark, NAS
Parallel Benchmark (NPB) [3] in various configurations.

The experimental results show that for shared memory applications, the per-
formance overheads by virtualization are minor with uniform memory latency.
However, in non-uniform memory access architecture, the current Xen hyper-
visor [6] adds a significant overhead for shared-memory applications and small
overhead for MPI applications. However, for MPI applications, the granularity
of VMs, the number of virtual CPUs (vCPUs) per VM, is important.

2 Methodology

2.1 Target Multicore Architectures

We use two different types of commercial multicore systems to evaluate HPC
applications with virtualization. The first system is a single-socket system with
a 12-core AMD Opteron 6168 processor (single-socket), which is a multi-chip
module with two dies packaged together. Each die has six cores. Each core has
separate 64KB instruction and data caches, and 512KB L2 cache. Six cores in a
die share a 6MB L3 cache. The twelve cores in the system have almost uniform
memory latencies to any memory modules.

The second system (dual-socket) uses two Intel Nehalem E5530 processors,
which have four cores in each processor. Each core has separate 32KB instruction
and data caches, and a 256KB private L2 cache. Four cores in a processor share
an 8MB L3 cache. In the dual-socket system, two quad-core processors are con-
nected by QPI interconnections. With the QPI interconnections, each processor
has its own DRAM memory banks. An important characteristic of the system is
non-uniform memory access (NUMA).

2.2 Methodology

To evaluate the effects of virtualization, we use the Xen hypervisor (version
3.4.2) [6]. We compare the performance of two selected benchmarks on virtual-
ized configurations to that on non-virtualized (native) configurations. The guest
operating system in the virtualized configurations is a Linux (kernel version
2.6.31.13) modified to support the para-virtualization mode of the Xen hypervi-
sor. For the operating system in the native configurations, the same version of
the Linux kernel is used.

We use two benchmarks representing different uses of HPC clusters: PAR-
SEC [4] is a shared-memory multi-threaded benchmark with a single physical
machine. We use the native input set for PARSEC. As a MPI-based benchmark,
we evaluate the NAS parallel benchmark (NPB) [3]. To evaluate the overheads of
MPI communications, we connected two systems by a 1gigabit Ethernet switch,
and used the MPICH 1.2 library [2]. For NPB, we use the class C input set.



The Effect of Multi-core on HPC Applications in Virtualized Systems 617

2.3 Virtual Machine Scheduling

In the Xen hypervisor, the unit of scheduling is a virtual CPU (vCPU). Each
VM may have multiple vCPUs, emulating a multiprocessor system. The Xen
hypervisor assigns credits to each vCPU periodically to guarantee fairness among
vCPUs. Since vCPUs are scheduled independently, there is no guarantee that the
vCPUs from a single VM are scheduled together. The Xen hypervisor maintains
queues for each physical core, but vCPUs may migrate to all the physical cores
freely unless they are pinned to specific cores. In the default setting, the scheduler
will try to maximize the overall throughput by not wasting any CPU cycles.
Whenever a core becomes idle, it will attempt to steal active vCPUs waiting in
the queues of other cores.

In the target dual-socket system, relocating a thread across the processor
boundary may cause two effects: shared L3 cache and NUMA effects. When a
thread migrates from a processor to the other processor, it can no longer access
the cached data in the L3 cache in the old processor directly. The other effect
is non-uniform memory access latencies. Depending on which memory modules
a thread mostly accesses, the processor where the thread is running may have a
significant effect on the overall performance due to non-uniform memory access
latencies.

3 Shared Memory Applications: PARSEC

3.1 Performance

Single Socket Results: To isolate the effect of NUMA, we first evaluate the
effect of virtualization by using a system with one processor (single-socket).
Among 12 cores, we use only 8 cores to be consistent with dual-socket results.
Figure 1 presents the execution times of the PARSEC benchmark normalized to
those of the native system with the same number threads. In this experiment,
the vCPUs are not pinned to physical cores, and thus the Xen scheduler can
migrate vCPUs without any restriction to minimize unused CPU cycles. For
each application, three bars are shown: one, four, and eight vCPUs. The number
of threads in each application is set to the number of vCPUs.

In general, for the single-socket system, the performance overheads by virtual-
ization are insignificant, regardless of the number of vCPUs. The Xen hypervisor
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Fig. 1. Single socket (unpinned vCPUs): execution times with 1, 4, and 8 vCPUs
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supports efficient virtualization for compute-intensive shared-memory applica-
tions for the single-socket system with uniform memory access. To further inves-
tigate the effect of scheduling, we fix vCPUs to physical cores. Figure 2 presents
the execution times normalized to those of the native system, when vCPUs are
pinned to physical cores. The results are similar to those with the unpinned
configuration. With uniform memory access latencies, mapping between vCPUs
and physical cores does not have a significant impact on the performance of the
PARSEC applications. Furthermore, the cost of vCPU migration across shared
L3 caches is minor, as shown by the almost same performance by the pinned
and unpinned configurations.
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Fig. 2. Single socket (pinned vCPUs): execution times with 1, 4, and 8 vCPUs

Dual Socket Results. To include the NUMA effect, we use a dual-socket sys-
tem in which each socket has four cores. Figure 3 presents the execution times
with the dual-socket system normalized to those of the native system. In this
experiment, the vCPUs are not pinned to physical cores. Unlike the previous
single socket results, the performance degrades significantly. The performance
degradation is 12% for 1 vCPU, 16% for 4 vCPUs, and 37% for 8 vCPUs on
average, respectively.

To eliminate the effect of vCPU migration, we fix each vCPU to a physical core.
Figure 4 presents the normalized execution times (to those of the native system)
with the pinned configuration. For the one and four vCPU configurations, the per-
formance degradations reduce to 8% and 9% respectively. However, for the eight
vCPU configuration, the performance degradation increases slightly to 40%.
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Fig. 3. Dual socket (unpinned vCPUs): execution times with 1, 4, and 8 vCPUs



The Effect of Multi-core on HPC Applications in Virtualized Systems 619

0.0

0.5

1.0

1.5

N
or

m
. R

un
tim

e

1 vCPU
4 vCPUs 
8 vCPUs

bla
ck

sc
ho

les

ca
nn

ea
l

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

x2
64 av

g.

Fig. 4. Dual socket (pinned vCPUs): execution times with 1, 4, and 8 vCPUs

When the number of vCPUs is in the range from 1 to 4, pinning vCPUs makes
the system use only one socket for the vCPUs, reducing the effect of NUMA and
eliminating the cost of vCPU migration across the shared L3 cache boundary.
However, for 8 vCPUs, pinning may eliminate the cost of vCPU migration across
the shared L3 cache boundary, but it does not mitigate the effect of NUMA. Eight
vCPUs must use all the cores in both sockets, but the memory pages of the VM
are mostly located in one of the socket.

3.2 Mitigating the NUMA Effect

In this section, we isolate the effect of NUMA to further investigate its perfor-
mance impact on HPC applications. To explain the benefit of pinning in the
dual-socket system (as shown in Figure 4), we evaluate the “worst” and “best”
case scheduling for the four vCPU configuration. Considering the NUMA effect,
the worst case scheduling is to map all four vCPUs on a socket to which memory
pages are not allocated. The best case scheduling is to map all four vCPUs on
the same socket to which all the memory pages are located. Figure 5 presents
the execution times normalized to those of the native system with the worst
and best case scheduling for four vCPUs, as well as the unpinned and pinned
configurations.

As shown in Figure 5, the performance with the unpinned configuration is
slightly better than that with the worst case range-pinned configuration. The
performance with the pinned configuration is similar to that with the best case
range-pinned configuration. Pinning vCPUs has a similar effect to the best case
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Fig. 5. The worst and best range pinning schemes for 4 vCPUs (dual-socket)
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configuration, since in our experiments, all four vCPUs happen to be mapped to
the same socket to which their memory pages are located. However, we expect
that blindly pinning vCPUs, without considering the memory affinity, will not
improve performance consistently.

However, for the eight vCPU configuration, it is not possible to find the best
case scheduling, since eight vCPUs must be mapped to 8 cores in two sockets.
To reduce the effect of NUMA, we modified the Xen scheduler slightly such that
it attempts to schedule vCPUs to the right socket. In the PARSEC applications,
all the eight vCPUs are not always used, since available parallelism dynamically
changes. If less than eight vCPUs are used, active vCPUs are scheduled as much
as possible to the socket in which their memory pages reside. However, we do
not make any physical core idle, if there are active vCPUs not scheduled to any
core. Thus, if no core in the right socket is available, a vCPU will be scheduled
to the other socket. This rudimentary optimization, called NUMA-first, provides
a significant improvement in performance. Figure 6 presents the normalized ex-
ecution times with the unpinned, pinned, and NUMA-first configurations. With
the NUMA-first scheduling, the average performance degradation is reduced to
18% from 37% of the unpinned configuration. The NUMA-aware scheduling re-
quires further investigation to make it adaptable to more complex cases than
our configurations.
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Fig. 6. NUMA-first optimization for 8 vCPUs (dual-socket)

4 MPI-Based Applications: NPB

In this section, we evaluate the performance overheads of virtualization with the
MPI-based NPB. For the experiments in this section, the half of the total MPI
processes are running in a system, and the other half are running in the other
system.

Unlike shared memory applications, MPI-based applications can run with
various numbers of virtual machines per system. For 16 MPI processes, in each
system, 8 MPI processes can use a VM with 8 vCPUs, 2 VMs with 4 vCPUs, 4
VMs with 2 vCPUs, or 8 VMs with 1 vCPU. The VM granularity, or the number
of vCPUs per VM, may have some impact on the cost of communication among
MPI processes. MPI communications among processes in a VM are done only
within the guest operating system. MPI communications among the VMs in a
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system do not access the network hardware, but the communications must pass
through the hypervisor and the domain0 VM. MPI communications among the
VMs in different systems must access the network hardware, hypervisor, and the
domain0 VM.

Figure 7 presents the execution times with different numbers of VMs for 16
MPI processes without pinning. Firstly, for all applications, using the largest VM
(8 vCPUs per VM) is better than using multiple VMs in a system. It is because
MPI communications within a VM have lower overheads than those across VMs.
Secondly, for each application, if the best VM granularity (8 vCPUs per VM)
is used, the performance overheads on MPI-applications by virtualization are
much lower than those on shared memory applications. Even though all the 8
cores are used for each system, the average execution time is only 11% higher
than that of the native system. Due to the I/O activities, NUMA effect does not
dominate the overall performance.

Figure 8 presents the execution times with vCPUs pinned to physical cores.
Pinning vCPUs does not improve the NPB performance for the best VM granu-
larity, with a similar 11% average increase of execution times. However, pinning
improves performance for any VM granularity other than 8 vCPU per VM.
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Fig. 7. NPB execution times (unpinned vCPUs): varying vCPUs per VM
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5 Related Work

The effects of virtualization on the performance of applications have been stud-
ied in previous work. Due to space limitation, we review some of such work in
this section. Huang et al showed that I/O virtualization overhead is the major
issue for virtualization, and proposed VMM-bypass I/O to reduce I/O virtual-
ization overhead [9]. In [12], the effects of resource sharing (specially, sharing an
Infiniband interconnect) on the performance of HPC applications were studied
in a virtualized multicore cluster. In [13], the performance of the compute-bound
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benchmark applications was analyzed, and in [11], the performance overheads
for network I/O device virtualization were measured. A simulation-driven ap-
proach was presented in [7], which analyzes the virtualization overheads of I/O
intensive workloads. The performance impact of a consolidated workload, com-
posed of server applications, was evaluated in [5]. In our paper, we focus on how
the complex memory hierarchy affects the performance of HPC applications in
virtualized systems.

A VM-aware MPI library was developed to reduce the communication over-
head for HPC application in [8]. To improve I/O performance, Liao et al presented
cache-aware scheduling which co-schedules Dom0 and I/O intensive DomUs to
communicate more efficiently via a last level cache, and credit-stealing which steals
credits for I/O intensive vCPUs [10].

6 Conclusion

In this paper, we evaluate single and dual socket multicore systems with the
Xen hypervisor. For shared memory applications, NUMA awareness is critical
for performance in dual-socket systems. As the complexity and non-uniformity
in memory systems increase, NUMA and cache awareness in VM scheduling
will become critical for them. For MPI-based applications, the NUMA effect
is much smaller than that with the shared memory applications. However, the
granularity of VMs (the number of vCPUs per VM) becomes critical for the
overall performance.
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Abstract. Virtualization technologies have been widely deployed in
data centers to improve the system utilization. However, they cause in-
creased workload for operators to clarify the structure of virtual net-
works in data centers. To reduce the operation time, this paper provides
the virtual-network management system which automates the integra-
tion of the configurations of the virtual networks. The proposed sys-
tem collects the configurations from server virtualization platforms and
VLAN-supported switches, and integrates these configurations according
to the newly developed XML-based management information model for
virtual-network configurations. The preliminary evaluations show that
the proposed system helps to reduce the time to collect and update the
configurations by about 40 percent. This result implies that the proposed
system is effective for improving the configuration management process
for virtual networks in data centers.

1 Introduction

In 2013, the scale of the data-center service market in Japan, which was 88
billion dollars in 2009, is expected to reach 140 billion dollars [9]. Reducing
management costs is the main motivation for the server consolidation in data
centers [11]. To achieve this server consolidation, servers are being increasingly
virtualized. In addition, High-Performance Computing (HPC) platforms are also
being virtualized [7].

To operate efficiently data centers in which server-virtualization technology is
used, data-center operators have to manage virtual networks as well as virtual
machines (VMs). For such virtual-network management, prior works provide sev-
eral methods for clarifying the structure of virtual networks in accordance with
the configurations of virtual LAN (VLAN) [3] switches and network-connection
information [8, 10].

However, to reduce the implementation costs of management functions, the
servers with server-virtualization functions (virtualized servers) have configu-
rations with their own forms that differ from those of VLAN switches. As a
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result, to manage the virtual-network structure in data centers in which server-
virtualization technology is used, operators need to collect data on multiple forms
of configurations. Configuration management time thereby increases.

To improve interoperability of management information, DMTF (Distributed
Management Task Force) is developing a standard management model [4]. How-
ever, this model covers only virtual VLAN switches created on virtualized servers
and does not cover physical VLAN switches. Therefore, the configurations of vir-
tualized servers still differ from those of physical network devices.

In the present study, to reduce the time taken to collect the configuration
data about virtual networks in a data center, a ”virtual-network-configuration
acquisition function” has been developed.

2 Issues in Virtual-Network Configuration Management

2.1 Prior Virtual-Network Configuration Management

In a network without VLAN, which is standardized as IEEE802.1Q, all servers
can communicate with each other. On the other hand, in a VLAN-enabled net-
work, multiple and isolated virtual networks can exist on a physical network.

The logical structure of the VLAN-enabled networks varies according to VLAN
configurations. Therefore, to clarify the structure of the networks, operators have
to manage the VLAN configurations.

Management Information Base (MIB), a part of the Internet Standard
Management Framework [5], is a standard approach for defining management
information. Fig.1 shows the management procedure for the previously described
VLAN configurations through a MIB.
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Fig. 1. Collecting VLAN configuration with MIB

The two key issues regarding configuration management of virtual networks
with MIBs are described as follows.

The first issue concerns the reusability of configuration information. Although
the data of MIBs include sets of object IDs and values, MIBs lack information
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about data structure. Therefore, when other management tools reuse VLAN con-
figurations collected through MIBs, they require additional information about
the data structure. As a result, the complexity of configuration information
causes a decrease in manageability.

The second issue concerns the integrity of configuration information. A MIB
contains information only about the switch that the configuration is acquired
from. Therefore, as the scale of the managed network expands, the number of
VLAN configurations that the operators have to manage increases. In turn, the
increased workload to manage the configurations becomes another serious issue.

2.2 Virtual-Network Configuration Management in Server
Virtualization Environments

Virtualized servers, as shown in Fig.2, run virtual switches to connect VMs on
the same server in data centers in which server virtualization is used. Since most
of these virtual switches support VLAN technology, the structure of a virtual
network varies according to their VLAN configurations.
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MIB
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Proprietary
Configuration

Proprietary
Configuration

Proprietary
Management I/F

SNMP

Virtualized Server (Blade Server)

VM

VM
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Switch

Virtualized
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Scope of Configuration 
Management of Virtual Networks

Previous Scope

Virtual Network I/F 
(VNIC)

VSW

VM : Virtual Machine
VSW : Virtual Switch

VLAN-
supported 
Switches

Proprietary
Management I/F

Fig. 2. Virtual network management in the server-virtualized environment

To clarify the structure of virtual networks, the data-center operators therefore
have to manage the configurations of the virtualized servers in addition to those
of the virtual switches. However, the configurations of the virtualized servers
are vendor-specific, unlike those of the Internet-standard MIBs. This makes sig-
nificant differences in data structure between them. Operators therefore have
to manage multiple forms of configurations and thus face increased workload.
Additionally, the management interface (I/F) of the virtualized servers is also a
vendor-specific I/F and thus leads to increased workload.

2.3 Challenges Facing Virtual-Network Configuration Management

To resolve the three above-described issues, the following three challenges must
be faced. First, we should improve the reusability of configuration data so that
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operators can easily recognize its data structure. Second, we should improve the
integrity of configurations so that operators can manage multiple devices as a
whole. Third, we should improve the extensibility of configurations so that oper-
ators can manage virtualized servers that have their own forms of configurations.

3 Virtual-Network Configuration Acquisition Function

3.1 Architecture

A virtual-network management system that manages the configurations of the
whole data-center network (including virtualized servers and switches) was de-
veloped. These configurations are called the ”system configuration.”

Fig.3 shows the architecture of the proposed system. The proposed system
consists of a server-information acquisition function, a switch-information ac-
quisition function, and an XML merge function. These functions collect configu-
rations from virtualized servers and switches and aggregate them into a system
configuration. Operators then add link information if needed.

Configuration
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VLAN-
supported 
Switches

Operator Link Information 
XML

Network
Diagram

Generator

Virtualized
Servers

Configuration 
Acquisition Function

Virtual Network Management System
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Server 
Information XML

Switch 
Information 

XML

XML-File
Merge

Function

Fig. 3. Structure of the virtual network management system

The proposed system configuration has three characteristics. First, the sys-
tem configuration is defined as an XML document. Since XML documents have
a textual and structured data format, they are easily processed by programs.
The XML-based system configuration can therefore improve reusability of con-
figurations from the viewpoint of other management systems.

Second, the system configuration includes XML elements used to represent the
overall network. These elements aggregate multiple elements, which are equiv-
alent to managed network devices. The system configuration can therefore de-
scribe the overall structure of the managed network in an integrated manner.

Third, the system configuration includes the XML elements that represent the
configuration of a managed node. These elements can keep the configurations
specific to device type. The system configuration can therefore describe multiple
types of configurations.
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3.2 System Configuration XML

Fig.4 and Fig.5 show the XML trees of the system-configuration. The XML tree
shown in the Fig.4 has configurations elements to represent device configurations.

http://easylayering.crl.hitachi.co.jp/schemas/world
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Fig. 4. XML tree of system-configuration XML
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Fig. 5. XML elements for VM/VLAN configurations

The left side of Fig.5 shows the XML tree of a configurations element for
a virtualized server. The LparInfo element in this XML tree has child nodes,
corresponding to a name, a CPU core number, and an amount of memory of a
VM. It also has a VNICInfoArray element that represents VNICs of the VM.

The right side of Fig.5 shows the XML tree of a configurations element for a
switch. It has an AbstractionPorts element that represents LAG (link aggrega-
tion) [1] configurations and anVlans element that representsVLAN configurations
as the child nodes. These two elements have a set composed of AggregationPort el-
ements and a set of Vlan elements as child nodes, respectively.

3.3 Configuration Acquisition Function

The server-information acquisition function, as shown on the upper side of Fig.6,
gets configurations from the virtualized servers and generates the server infor-
mation XML. To generate the server information XML, this function collects
the system information including the list of server blades, virtual-machine con-
figurations, and interface/LAG/VLAN configurations through the management
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Fig. 6. Generating server/switch information XML

interface of the management module of the blade server, server-virtualization
platform, and internal switch, respectively.

The switch-information acquisition function, as shown on the lower side of
Fig.6, gets configurations from the daemons on the switches, which manage
MIBs and NETCONF [6] configuration datamodels. This function collects the
contents of the MIB-II System group [12] for the physicalNode elements. It also
collects the contents of the LLDP (Link Layer Discovery Protocol) MIB [2] for
the physicalLinks elements. Further, it uses the NETCONF protocol to collect
NETCONF I/F and VLAN configuration datamodels for physicalInterface, Ag-
gregationPort, and Vlans elements.

The XML-file merge function gets the server-configuration XML and the
switch-configuration XML, and it then aggregates them into a system-
configuration XML. If there are multiple physicalNetwork elements with the
same ID in those XMLs, this function aggregates those elements into a phys-
icalNetwork element.

4 Evaluation

4.1 Evaluation Method

To evaluate the proposed function, we used the test network containing a server-
virtualization supported blade server and four VLAN-supported switches. Five
virtual machines and three VLANs were configured in this test network. In
addition, a virtual-network-management-system prototype with the proposed
function implemented by Perl and Java was set up. This prototype was run on
a Windows Server 2003 PC, incorporating a Xeon 3GHz CPU and 2GB RAM.

We evaluated the performance of the proposed configuration-acquisition func-
tion by measuring the time the proposed function took to export a system-
configuration XML file. Further, we evaluated the efficiency improvement for
operators, by measuring the time they took to update configurations in the case



Proposal of Virtual Network Configuration Acquisition Function 631

when the operators used existing CLIs and the case when they used our proto-
type. The following steps are included in the measured time. First, the operator
gets the VLAN configurations from devices. Second, he checks the configurations
according to VLAN configuration data sheets. Finally, he updates the sheets if
necessary.

4.2 Evaluation Result

The left side of Fig.7 shows the measurement results for the time taken to make
the system-configuration XML with the prototype. The total time is 97.85 s,
which is broken down in terms of each device as blade-server chassis, 38%, in-
ternal switch, 24%, layer-2/3 switch, 29%, and others, 9%.

And, the right side of Fig.7 shows the comparative measurement result for the
time taken by the operator to update the configuration sheets. The conventional
method took an average 1870 s and the proposed method took 1126 s; in other
words, the proposed method reduced the time by 39.8% on average. Moreover,
the proportions of the times for each task are not significantly different in the
two cases (i.e., ”by hand” and ”by tool”).
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Fig. 7. Measurement result of evaluation

4.3 Discussion

The virtual-network-configuration acquisition function improved the efficiency
of the configuration-update processes performed by operators without regard
to device type. The reason for this improvement is considered to be as follows.
Operators can get all information required to update the configuration sheets
just by accessing the system-configuration XML.

Further, the proposed function would be effective in the case of dynamic
changes of configurations, such as VM migrations. In such case, operators can
easily acquire the latest configurations by using the proposed function at the
notification about configuration changes from devices.

From a scalability point of view, the proposed function should be enhanced.
The reason is that the number of queries to the devices increases in proportion
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to the number of managed devices in networks. On the other hand, a query to
a device is independent from those to the other devices. Thus, parallelizing the
queries is effective to suppress the time to collect configurations.

Further, the proposed function can be also applied to manage HPC platforms.
Especially, it is useful in the case that HPC users use their own isolated platforms
by means of server virtualization. However, to specify the user of a VLAN,
we must develop the additional function that acquire user-information from an
external authentication function and manage the user-VLAN mappings.

5 Conclusion

A configuration-acquisition function for virtual-network management systems
was developed. This function collects configurations from virtualized servers and
switches and integrates the configurations into the system-configuration XML.

The performance and effectiveness of the proposed function was evaluated by
using a prototype of a virtual-network management system. In particular, it took
97.85 s to collect the configurations of five VMs and three VLANs . Furthermore,
when operators used the prototype, the function reduced the time taken by op-
erators to update the configuration documents for the test network by 39.8%
on average. The results show that the proposed configuration-acquisition func-
tion is effective for improving the configuration-management process for virtual
networks in data centers and HPC platforms.

References

1. Link Aggregation. IEEE Std 802.1AX-2008 (November 2008)
2. Station and Media Access Control Connectivity Discovery. IEEE Std 802.1AB-2005

(May 2005)
3. Virtual Bridged Local Area Networks. IEEE Std 802.1Q-2005 (May 2006)
4. VirtualEthernetSwitchProfileVersion1.0.0.DMTFProfileDSP1097(October2010)
5. Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicabil-

ity Statements for Internet Standard Management Framework. IETF RFC 3410
(December 2002)

6. Enns, R.: NETCONF Configuration Protocol. IETF RFC 4741 (December 2006)
7. Huang, W., Liu, J., Abali, B., Panda, D.K.: A Case for High Performance Com-

puting with Virtual Machines. In: Proc. The 20th ACM International Conference
on Supercomputing (ICS 2006), Queensland (June 2008)

8. Israel, R., Fang, Y., Cohen, P., Eichen, E.: Configuration Management of Large IP
Telephony Networks. In: Proc. 2000 IEEE/IFIP Network Operations and Manage-
ment Symposium, Honolulu, pp. 435–446 (April 2000)

9. Ito, M.: Japan Datacenter Services 2010-2013 Forecast and 2009 Review: Customer
Perceptions and Needs. Market Analysis # JP2542801S (February 2010)

10. Kim, M.S., Leon-Garcia, A.: Autonomic Network Resource Management using
Virtual Network Concept. In: Ata, S., Hong, C.S. (eds.) APNOMS 2007. LNCS,
vol. 4773, pp. 254–264. Springer, Heidelberg (2007)

11. Kusano, K.: Japan Datacenter Network Infrastructure 2009-2012 Forecast. Market
Analysis # JP209203S (July 2009)

12. McCloghrie, K., Rose, M.T.: Management Information Base for Network Manage-
ment of TCP/IP-based internets: MIB-II. IETF RFC 1213 (March 1991)



Security and Performance Trade-off in

PerfCloud�

Valentina Casola1, Antonio Cuomo2,
Massimiliano Rak3, and Umberto Villano2

1 Dipartimento di Informatica e Sistemistica, Università Federico II di Napoli
casolav@unina.it

2 RCOST and Dipartimento di Ingegneria, Università del Sannio
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Abstract. Both cloud and GRID are computing paradigms that man-
age large distributed resources, and currently there is a lot of inter-
est in their integration. An integrated architecture cloud-GRID requires
fine-grained access control and identity federation among untrusted dis-
tributed domains in the cloud. This paper deals with the trade-off be-
tween security and performance in such architectures, comparing the
overhead introduced by cloud services with different security levels. The
quantitative results obtained in PerfCloud, an existing cloudgrid infras-
tructure, are presented and discussed.

1 Introduction

According to the definition by NIST, cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, services) that can
be rapidly provisioned and released, with minimal management effort or ser-
vice provider interaction [9]. On the other hand, GRID computing is basically
a paradigm that aims at enabling access to high performance distributed re-
sources in a simple and standard way. In GRIDs, users can compose complex
stateful services in order to build up complex and computation-intensive tasks.
GRID and clouds are at least similar, not to mention the use of many common
underlying technologies. However, they are typically used for different purposes
by different classes of users. In short, clouds are used by users that are prone to
buy computing resources to get their results as soon as possible. On the other
hand, GRID users wish to exploit the optimum set of resources that can solve
their problem, overcoming the boundaries of a single enterprise. In fact, the two
technologies complement gracefully each other, and currently their integration
is actively investigated. The two principal integration approaches used are the
� The work described in this paper has been partly supported by MIUR-PRIN 2008

project “Cloud@Home: a New Enhanced Computing Paradigm”
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GRID-on-cloud (a cloud is exploited to build up and to manage a flexible GRID
system [4]) and the cloud-on-GRID (the well-known and stable GRID infras-
tructure is exploited to build up a cloud environment).

In brief, adopting the GRID-on-cloud approach the GRID middleware is in-
stalled and configured on the top of a cloud system. The cloud “elasticity” makes
it possible to add and to remove dynamically nodes to/from the resulting GRID
infrastructure. The cloud-on-GRID approach is instead based on the develop-
ment of typical cloud services (e.g., services to start up, to destroy, to manage
virtual machines) as GRID services, offered by an existing GRID infrastructure
[6,13]. Some of the most famous GRID environments are currently experiment-
ing this solution with dedicated projects [13,10]. One of the tough tasks involved
in cloud and GRID integration is to provide the integrated environment with
a suitable security infrastructure. This is not trivial and might involve perfor-
mance losses that could not be tolerable for all classes of users. The authors of
this paper are involved in a project that aims to join the cloud-on-GRID and
GRID-on-cloud approaches, by implementing a cloud on the top of a GRID,
and integrating the cloud resources leased to users in the existing GRID. This
solution, named cloudgrid [8], wishes to collect the advantages (possibly, not dis-
advantages) of the two computing paradigms. A previous paper [2] outlines the
security requirements for a cloudgrid and proposes a possible solution, imple-
mented in an existing prototype environment, PerfCloud [8]. This paper instead
deals with the quantitative evaluation of the overheads introduced in the over-
all GRID infrastructure because of the cloud layer, pointing out the trade-off
between the security level provided and the end-user GRID performance. It is
worth noting that, even if the security/performance trade-off is a well known
issue, very few quantitative studies are available on the topic. Besides exploring
the cloud-GRID integration field, this paper is also intended to give a contribu-
tion for filling this gap. Almost surprisingly, it will be shown that the advanced
authorization mechanism needed in the cloud layer turn out to have negligible
impact on the GRID overall performance. The remainder of this paper is orga-
nized as follows. The next section illustrates the cloudgrid security requirements.
In Section 3 the focus will be on the PerfCloud framework, showing in partic-
ular the architectural solutions used to meet security requirements. Section 4
presents a detailed analysis of the performance corresponding to each available
security configuration. The paper closes with the conclusions and a discussion
on our future work.

2 Cloudgrid Security Requirements

The integration of the GRID and cloud is of great interest, as it allows to re-use
the effort spent in the last 20 years on GRID computing. In PerfCloud, an ex-
isting cloud-on-GRID infrastructure with provision for predictive performance
evaluation [8], this problem is solved by integrating the virtual resources offered
by the cloud into the underlying GRID. Given an existing computing GRID,
users can gain access to virtualized resources (namely, to VCs, virtual clusters of
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machines) through a cloud interface, and these virtual resources are integrated
in the existing GRID and can cooperate with its component systems. Fine-grain
access control mechanisms are needed to grant different levels of privilege to
users that can play a different role in accessing system resources (both physical
and virtual). We have analyzed the different roles and corresponding security
policies for the access to both administration and user cloud services, pointing
out four different roles: the System Administrator and the Grid User to
respectively manage and use the GRID platform and the physical resources;
the Cloud Administrator and the Cloud User to respectively supervise the
cloud environment and configure/use the assigned Virtual Clusters. It is inter-
esting to point out that the a cloud administrator is able to create a new set of
virtual clusters and assign them to cloud users, but does not have administration
rights over them, which are owned by the cloud users. Even if offering to users
full rights on the virtual cluster is one of the aims of clouds, this can have a
side effect on the cloudgrid approach: in fact, a VC administrator has full right
access to the VC but he can also manage the new physical GRID site. This
represents a big security issue: an user of an hosted site could access physical
resources if the cloud administrator does not enforce proper security policies or
if it wants to abuse of his role on the physical resources. As a consequence, it
is of fundamental importance that the cloudgrid approach provides a powerful
role-based authorization mechanism.

Data integrity, confidentiality and privacy are not secondary requirements for
the proposed architecture. Proper security mechanisms must be enforced not
only at application level, but also in the other layers and components of the ar-
chitecture (e.g., network, transport, service communication, internal application
and databases). As we will discuss later, the adoption of secure protocols and
encryption techniques has proven to be very useful in such distributed architec-
tures. Furthermore, to fully enable the cloud approach, it is desirable to grant
cooperation among users and virtual resources even when they are offered by
potentially untrusted domains. So, a federated approach to security and, specif-
ically, to Identity management is required [5].

3 The Security Infrastructure in PerfCloud

PerfCloud, our cloudgrid implementation, adopts Globus Toolkit 4 (GT4) as
GRID middleware, and so we customized and enriched the default Globus con-
figurations in order to meet the security requirements described in the previous
section. In particular, GT4 uses the concept of Security Descriptors as standard
method for configuring the security requirements and policies of clients and ser-
vices [11]. GT4 authentication founds on PKI and the adoption of X.509 digital
certificates with basic path authentication. The Security Descriptor (SD) makes
it possible to specify the communication protocols and some mechanisms to im-
prove security at message level (Secure Message), at session and transport level
(Secure Conversation and SecureTransport); they are based on the implementa-
tion of WS-Security and WS-SecureConversation specifications [1].
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As for the Authorization mechanisms, by default GT4 offers only simple mech-
anisms: (i) the basic GRID mapfile that statically assign to each GRID user an
existing O.S. user with its group, (ii) Embedded PDP, in which it is possible to
define a per-container, a per-service or per-resource mechanism handled by a
Local Policy Decision Point (PDP).

However, GT4 also offers a set of APIs to integrate an external PDP, as
XACML [12], to support more expressive authorization policies. In a cloudgrid
archtecture, as the one implemented in PerfCloud, the default security solutions
offered by Globus do not meet all the security requirements we have outlined
above. The first limit is related to the adoption of a basic authentication path,
which limits the access only to users authenticated internally to the Virtual
Organization. We enriched this solution adopting an extended path validation
that supports a federated approach, as described in [3]. Moreover, we extended
the authorization mechanism in order to support XACML, and forced the secu-
rity descriptor to adopt secure communication channels for all the cloud-related
service and resources. The main drawback of this approach is an inevitable per-
formance penalty, as complex authorization mechanisms or secure channels may
heavily increase the platform overhead. The next section will evaluate quantita-
tively the actual impact of these choices.

4 Overhead Evaluation

The goal of the following analysis is to evaluate the overhead introducedby themul-
tilayered cloudgrid architecture by performing measurements on PerfCloud. We
have developed a synthetic PerfCloudNULL service, which just sends a reply when
invoked. The response time measured in several working conditions (corresponding
to the different security policies discussed in the previous section) will provide in-
sight on thedelay introducedby thePerfCloud middleware, unrelated to the service
invoked and to the actual tasks to be performed on the target environment.

In order to understand how PerfCloud (and the cloudgrid approach) affects
performance, we measured the response time of the above described target ser-
vice on both physical and virtual clusters. The comparison between the figures
obtained will make it possible to ascertain if the use of a GRID made up of both
physical and virtual resources is a reasonable solution, or if the performance
penalties incurred are too high.

4.1 Performance Evaluation Methodology

A complex system as the one described, in which different factors are involved
in its performance, lends itself well to the full factorial design of experiments
[7]. The selected factors and their N possible values are shown below:

– Resource (N=2), can be Physical or Virtual
– Channel (transport) (N=2), can be HTTP or HTTPS
– Auth (N=3), can be None, Conversation or Message
– Authz (N=2), can be None, MapFile or XACML
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All the tests were performed in a dedicated environment, where the only source
of load is a measurement client invoking the NULL service. This client repeats
the test 50 times. Then we evaluated the mean, the standard deviation and
the confidence interval. The session was repeated three times, and we chose the
session with the lowest standard deviation, discarding the remainder.

According to the well-known methodology presented in [7], the next step of
the analysis was the definition of a model taking in consideration the main
effects (the contributions that come from a single factor). Then the interaction
effects (the contributions that come from the mutual interaction of factors) were
gradually introduced, until the evaluated error (meant as the difference between
the measured value and the value predicted) could be considered negligible. In
the next subsection, we will describe the construction of such model. It should
be explicitly pointed out that this measurement technique does not allow to test
system behavior under real workloads, as it corresponds to an ideal condition,
where only the target service uses the target resource. However, this solution has
the advantage to be easily reproducible, and so to perform all the tests under
exactly the same conditions.

4.2 Experimental Results and Model Evaluation

Table 1 summarizes the performance results obtained for all the possible con-
figurations. Each cell in the table reports the mean value and the confidence
interval (in square parenthesis) of the response time, in milliseconds. In order to
give an interpretation of the above presented results, we derived the following
prediction model that corresponds to the DOE used [7]:

y = μ + Ri + Cj + Authk + AuthZh + Auth− Cjk + eijkh

where i=(Physical,Virtual), j=(HTTP, HTTPS), k=(None, Conversation, Mes-
sage), h=(None, MapFile, XACML), and μ is the global mean (i.e., the average

Table 1. Response times for the different configurations (ms)

Physical Cluster

AuthZ Transport None Conversation Message

None
HTTP 106 [102.61, 109.39] 370 [358.51, 381.49] 515 [497.33, 532.67]
HTTPS 263 [256.50, 269.50] 853 [837.60, 868.40] 612 [590.02, 633.98]

MapFile
HTTP 107 [103.86, 110.14] 367 [356.49, 377.51] 508 [490.72, 525.28]
HTTPS 262 [255.94, 268.06] 859 [843.31, 874.69] 617 [595.12, 638.88]

XACML
HTTP 108 [104.81, 111.19] 369 [358.87, 379.13] 521 [504.50, 537.50]
HTTPS 266 [259.67, 272.33] 866 [850.20, 881.80] 627 [604.06, 649.94]

Virtual Cluster

AuthZ Transport None Conversation Message

None
HTTP 85 [ 81.86, 88.14] 328 [317.06, 338.94] 456 [438.67, 473.33]
HTTPS 238 [231.96, 244.04] 797 [780.52, 813.48] 556 [535.59, 576.41]

MapFile
HTTP 86 [ 82.48, 89.52] 322 [311.42, 332.58] 453 [434.33, 471.67]
HTTPS 239 [232.88, 245.12] 797 [780.35, 813.65] 556 [534.52, 577.48]

XACML
HTTP 86 [ 82.88, 89.12] 321 [310.09, 331.91] 452 [435.36, 468.64]
HTTPS 245 [238.58, 251.42] 799 [782.67, 815.33] 563 [538.98, 587.02]
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of all values). R, C, Auth and AuthZ (respectively Resource, Channel trasport
protocol, Authentication security protocol and Authorization mechanism) are
the independent factors that we decided to take into account in the model. They
appear in the equation for y, according to the factor-level under evaluation. We
will consider all the possible configurations described in the previous section with
RPhysical and RV irtual, CHTTP or CHTTPS , and so on. These factors are all in-
dependent, and represent the main effects of the prediction model. Auth − C
is the contribution to the model that comes from the interaction between the
Authentication security protocol and the Trasport protocol, and represents the
way in which such coupling affects the mean. So, we will evaluate the different
combinations Auth−CNone,HTTP , Auth−CConversation,HTTP and so on. They
are part of the so-called interaction effects of the prediction model. Finally, e is
the error introduced by the model, and it depends on all factors taken in consid-
eration. The other interactions (for example, Auth−AuthZ or Auth−R) were
computed, but not included in the model, because of their negligible impact.
In fact, the model that includes only Auth − C explains for the 99.85% of the
measured values, as shown in Table 2. For brevity’s sake, we present below just
the results of the ANOVA analysis of the obtained model (Table 2). In this table
we have reported for every effect the sum of the squares of all values (second
column) and the variation of y as it is explained by the different effect. For
example, in the considered model the main effect Channel explains the model
for the 26.99% while the factor Authentication (Auth) explains the model for
the 59.60%. In conclusion, the correctness of the prevision model is supported
by the value of the error variation, which is under 1%. Further analysis, both
visual and statistical, whose details are not shown here for brevity, shows that
the residuals are uniformly distributed around zero, have homogeneous variance
and that there is no polarization of the results.

Table 2. ANOVA table

Component Sum of Squares Variation (%)

Resource (R) 927,068.06 0.91%
Channel (C) 27,565,312.50 26.99%

Authentication (Auth) 60,868,636.11 59.60%
Authorization (AuthZ) 6,211.11 0.01%

Auth-C Interaction 12,606,925.00 12.34%
Errors 149,862.50 0.15%

4.3 Performance Considerations

The above model points out clearly the fundamental sources of overhead in a
fully functional cloudgrid solution. The first result obtained, which was not com-
pletely unexpected, is the low impact of virtualization on overhead. In practice,
there is no difference (in terms of security overhead) between a service hosted on
a physical cluster and on a virtual one. In fact, the ratio of variation, explained
by the factor R, is 0.91%. Moreover, looking at the results in Table 1, we can
note that the invocation of a service on a virtual resource performs even better
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than the corresponding request on a physical one. This counterintuitive behav-
ior is due to the fact that modern virtual engines introduce very small overhead
(in our test, we used Xen 3, which declares less than 5% overhead). This can
be compensated and sometimes overcome by the performance gain obtained by
OS noise reduction. The virtual images, being targeted to a specific appliance,
can exclude generic OS management services, which are instead needed in a
general-purpose physical environment. It should noted, however, that we have
implemented a service that does not stress much the system and the virtual-
ization environment. For other kind of services, e.g., bandwidth-intensive ones,
virtualization could become the bottleneck. A performance comparison between
virtual and physical clusters is out of the scope of this paper.

Also the introduction of advanced authorization mechanisms as XACML,
needed to deal with the different roles of the users, surprisingly, does not have a
great effect on the overall system performance. The AuthZ factor simply does
not affect the overhead, as shown by the ANOVA Table (less than 0.01% of vari-
ation explained). This can be explained by considering that even the basic GSI
authorization mechanism needs to instantiate Java objects to take an autho-
rization decision. As a result, the time required to invoke external authorization
services is dwarfed by the time necessary to load the chain of GSI objects.

Unlike the previous factors, the Channel transport and the Authentication
security protocol affect heavily system performance, both on virtual and physical
resources. The model analysis shows that the introduced overhead depends on
two factors: the adoption of security protocols at transport layer, i.e., the choice
between HTTP and HTTPS, and the security protocols adopted at message
layer, i.e., the cryptography applied to the XML-based SOAP message. Both
factors have a great impact (with a variation on the model of about 30% and
60%, respectively). Also their interaction has a high impact (about 10%).

Considered that the measured overhead shows a minimum value of 85 ms and
a maximum value of 866 ms (a value about 10 times higher), the parameters
setup in the Security Descriptors should be performed with great care. From
a security point of view, we can note that security at transport and security
at message layer are independent of one another. They both aim at granting
confidentiality and integrity of information, and they can reach the same result
in different ways. The secure transport layer (HTTPS) has a lower impact on
performance and, in terms of security, is considered equivalent to the message
layer one. So the best solution is to disable completely the message layer security.
When this is not possible, it should be avoided to enable both the security layers.

Some interesting considerations can also be done on the interaction of the
two factors. Analyzing the result table (Table 1), it is possible to note that,
enabling the transport layer, the performance of Secure Conversation (which
offers a lower security level) becomes worse than the performance offered by the
Secure Message approach. So, if for any reason both Transport and Message
layer security must be enabled, the lowest overhead can be obtained by enabling
the message level security protocol, which also offers the highest security level.
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5 Conclusions and Future Work

In this paper we have considered the security issues linked to the use of a cloud-
grid approach. We showed through extensive experimentation on our prototype
PerfCloud that, in contrast with intuition, the cloudgrid approach does not in-
troduce perceptible overhead, notwithstanding the presence of a virtualization
layer and the need for complex authorization mechanisms. We have also proposed
a trade-off analysis between performance and security.

Our plans for future research include the extension of the proposed analysis to
the case of federated identities, which we outlined in another paper [3] as another
necessary component in a complete security infrastructure for cloud and GRID
integration.
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Abstract. With the number of services using virtualization and clouds
growing faster and faster, it is common to mutualize thousands of virtual
machines within one distributed system. Consequently, the virtualized
services, softwares, hardwares and infrastructures share the same physi-
cal resources, thus the performance of one depends of the resources usage
of others. We propose a solution for vm load balancing (and rebalancing)
based on the observation of the resources quota and the dynamic usage
that leads to better balancing of resources. As it is not possible to have
a single scheduler for the whole cloud and to avoid a single point of fail-
ure, our scheduler uses distributed and collaborative scheduling agents.
We present scenarios simulating various cloud resources and vm usage
experimented on our testbed p2p architecture.

1 Introduction

Nowadays, server farms are popular for running a large range of services from web
hosting to e-commerce sites or enterprise systems. The common way to deal with
those growing server farms is to mutualize services, softwares, hardwares and
infrastructure using virtualization technologies. However, when multiple virtual
machines share the same physical resources, the performance of each vm and its
embedded application depends on the resources usage of other vm running on
the physical host. So, the management of vm becomes critical. Currently, most
of clouds (and grids) schedulers are solely based on quota negotiations and do
not take into account real resources usage.

First, section 1.1 introduces the related works. After, we present our goals and
confront them with the previous work in the section 1.2. Then, section 2 presents
the architecture of our dynamic load balancer and explains how we efficiently
place virtual machine to a host. Then, we come back on our implementation (sec-
tion 3) and the experiments (section 4) that we have done through simulations
to validate our algorithms and architecture.

1.1 Related Works

The scheduling of jobs on a grid is a NP-Complete problem. Moreover, the result
of the scheduling process is not optimal too. It means that the schedulers are not

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 641–648, 2011.
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searching for the optimal solution but a one that is good “enough” [1]. Dynamic
scheduling algorithms are useful when it is not possible to predict the behavior
of a task [2] and is the best algorithm to maximize the resource usage.

Work stealing has a better scalability and fault tolerance through the use of
a decentralized approach [6] than work sharing (centralized). The work stealing
method allows idle consumers to search among the other consumers to find
additional work.

One kind of schedulers are p2p schedulers [3]. Within the peer-to-peer model,
the cloud is seen as a set of nodes (i.e. peer) that makes available for each other
a part (or the totality) of their resources. The main advantage of the p2p is that
it does not contain a central coordination point and thus, avoid a single point
of failure.

The live migration process allows a virtual machine to move from a host to
another one without being stopped. From a virtualization point of view, a cloud
is seen as a shared and distributed environment where concurrent users run vm
on. Those vm have a heterogeneous behavior e.g. a website with peak traffic or
a graphical interface. Accordingly, the resource usage can change at any given
time, so taking into account the dynamic resources is essential. Some academic
works proposed vm schedulers i.e. vm placement [7,5]. Automatic reallocation
for virtual machine [9] i.e. vm migration, has been proposed too.

1.2 Motivations

There is some automatic solutions that allow sharing the load of multiple vm
on the heterogeneous and distributed system but they mainly are dedicated to
cluster or grid computing and not clouds. As vm behaviors can not be predicted
due to those complex behaviors and non-deterministic events such as interac-
tive input/output, dynamic approach is the best choice. In clouds, “black-box”
monitoring is needed because the vm are heterogeneous and instrumenting them
is too much time consuming. Moreover, with vm provided by users, instrumen-
tations required to trust all the users within the cloud and that is impossible.
Furthermore, clouds require the allocation and reallocation processes to be oper-
ating systems and applications agnostic. In addition, the placement must remain
“good“ enough for the maximum period of time to reduce the cost due to vm mi-
gration. Furthermore, dynamic load balancer on a cloud is a scalability challenge
as one load balancer can not allocate vm for the whole cloud. But, distributed
dynamic load balancer can achieve such goal.

To reach the goal of a decentralized virtual machine load balancer for clouds,
we introduce our architecture enabling:

1. The monitoring of the vm and the hosts;
2. The placement of the vm on the best fitting host based on dynamic resources-

centric algorithm;
3. The migration of vm if the load on a host is increasing, a special resource 1

is needed, a maintenance operation is taken place;
1 For example, a vm with a gpu.
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4. No single point of failure through the use of a distributed P2P architecture.
The load balancer agents can cooperate together to share the load of the
placement processes based on a work stealing algorithm;

Furthermore, in [4], the authors state that traditional distributed and dynamic
load balancing methods have the following issues: they do not assume the hetero-
geneity of used hardware; processes, i.e. vm in our case, are assigned onto nodes
based on nodes free resources only; many of them consider just the processor
utilization as the only resource. Thus, our dynamic load balancing algorithm
takes into account the heterogeneity of the hardware, takes into account free,
static and quota resources for the processor and memory utilization.

2 Dynamic Load Balancer for Virtual Machine

2.1 Architecture

Within our architecture, each node provides a set of services as a hypervisor or
a load balancer. Those services allow the placement and migration processes but
also the collaboration between load balancers. Another service is a distributed
hash table [8] that stores, distributes and replicates meta-data related to virtual
machines (running state, location, etc) on each peer.

2.2 Monitoring Hosts

Using the static, free and used resources of a host and the running vm combined
with the soft 2 and hard 3 resources quota, we are able to compute a score that
is more relevant than a classical weight given to each host based on their static
resources (and other static metrics).

In order to balance the load of the nodes of our architecture, a score is com-
puted for each node. The computation of the score needs to be quick and does
not require too much resources. But in the same time, the score needs to closely
reflect the amount of resources used by each vm. To reach those goals, we intro-
duced our score algorithm. It can be extended on-demand to take into account
other resources than cpu and memory usage like network or hard drive band-
width. It is divided in 2 parts. A static score that takes into account static
resources e.g. the amount of cpu core on a node and the resources (soft and
hard) quota reserved for a virtual machine. A dynamic score that is based on
dynamic resources e.g. the amount of free memory.

The algorithm that computes score takes two arguments. A structure host
containing the static resources of the node and a list of virtual machine vmlist
that contains vm quota resources. For each virtual machine in the list, the ram
and cpu soft quota is added and multiplied by a static parameter α 4, then the
result for each virtual machine is added into the variable static vm soft. The
2 The amount of resources that is dedicated to the virtual machine.
3 The maximum amount of resources that the vm can use.
4 All the static parameters are set through experimentations (see section 4).
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same thing is done with the hard quota into the variable static vm hard and
the static parameter β. Secondary, the static host score is computed by dividing
the processor speed host(CPU)speed in Mhz by a static parameter γ then it is
multiplied by the number of core host(CPU)number of core. The final static score
static score for the given host with the list of virtual machine vmlist is computed
by summing the amount of memory to the result of last computation.

The the dynamic part of the score takes into account the free resources on
the node and the resources used by the running vm. Our approach is based on a
global scheduler on all cores of each host but our score can be extended to take
into account the need of a dedicated core (or a part of it). For each cpu cores,
it gets the amount of free cpu on it and sums them. Then it multiplies this
result by the static variable (γ) and sums the result to the amount (in Kb) of
ram free. For each virtual machine, it retrieves the amount of cpu and memory
used. Then it multiplies the amount of cpu used by all vm by a static value
(β) and then sums it with the amount of ram free. Finally, the dynamic score
is computed by dividing the amount of free resources by the number of used
resources by the vm.

The static part of the score is multiplied by a static value (κ) and then adds
to the dynamic score that gives the score of a given node. Our approach permits
a better placement and helps to limit the needs of migration by taking into
account resources that can be potentially used by the vm (the soft and hard
quota).

2.3 Virtual Machine Placement and Migration

The purpose of vm placement is to share the load of multiple vm on a cloud.
When a new vm is added to the cloud, the placement algorithm looks for a node
that fits the static resources requirements of the vm. We introduce an algorithm
that takes into account the resources of each node to have a more efficient load
balancing using the previously introduced score (see section 2.2) The algorithm
can be divided into three parts:

1. the algorithm computes the global score of each node on the cloud (resources
discovery).

2. based on the result of the global score, a node is elected (resources selecting).
3. after checking if the elected computer has enough resources i.e. the algorithm

checks if the soft quota are respected on the host, the vm is started. If there
is not enough resources, the algorithm is relaunched with an updated nodes
list that excludes the previously elected node (placement).

The purpose of the migration algorithm is to automatically move a started vm
from a node to another one to keep a “good enough” placement of the virtual
machines on the distributed system. The objectives are: reduce the load on a
host (i.e. its dynamic score), move a vm to a new host with more resources, move
a vm to a new host with specialized resources (like a gpu) and move a vm to
a new host before putting into maintenance the current one. The algorithm can
be divided into two steps: electing a vm, if needed i.e. no vm given by the event
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and then, using the placement algorithm, to migrate the vm. In the first step,
when no vm is given, a list of all vm running on the host is built and it is sorted
from lower score to the highest one.

2.4 Decentralized Load Balancer for Virtual Machine

Our work stealing algorithm implementation is straightforward. First, each load
balancer agent has two queue:

– a local queue: for the virtual machine to-place that the local load balancer
agent is placing itself i.e. a list of task reserved for the local load balancer.

– a shared queue: for the virtual machine to-place that can be placed either
by the local load balancer agent or by other ones through the use of work
stealing.

To fit it in our decentralized peer-to-peer network, the second queue is available
as a service for other load balancer agents. The local agent reserves a chunk of
vm to-place for itself (by removing them from the shared queue and adding them
to the local queue). When the local agent has placed all the virtual machine in
the local queue, it preempts another buck. If there is no more task in the shared
queue, it randomly chooses a victim load balancer agent and tries to take a buck
from it. By having the two queue (local, shared), we have a better scalability
with a limited latency due to lock. Moreover, we respect our goal of no point of
failure by using a distributed algorithm.

3 Implementation

Architecture
Our p2p architecture is implemented using the Java based library jxta because
of its services of peer and service discovery and multi-cast communication. The
major components of our architecture are the service components that implement
one of the elementary tasks requested by the algorithms.

– Score: it computes the score of the node.
– FreeResource: it returns a set containing the amount of free resources.
– LaunchVM: it checks if a given vm can be started on the current node and

starts it.
– Migration: it checks if a given vm can be migrated to the current node. If

it is the case, the service migrates the vm.
– LoadBalancer: it receives to-place virtual machines. Then, it uses the place-

ment algorithm to place each virtual machine on the cloud. Moreover, if in
idle mode, it steals vm to-place from other load balancer.

– Stealing: it returns a buck of virtual machines that are not preempted by
the local load balancer agent i.e. a buck that comes from the shared queue.

By using dynamic discovery service, our proposal can easily fit in a cloud where re-
sources are added or removed. Some services like Score are also available through
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a multi-cast address allowing to send a request to all the agents at one time and
without discovery process. It permits to have an efficient scaling score service be-
cause of the absence of concurrency in the placement and migration algorithms.
Furthermore, the dht allows to share the list of all the running vm.

4 Experimentation

To validate our approach based on a p2p network of agents and our algorithms,
we have implemented our model on a custom cloud testbed.

4.1 Architecture Simulation

To simulate different nodes and virtual machines, we have chosen to implement
three different resources scenarios for the nodes (see table 1) and two for the vm
(see table 2).

Table 1. Host Configuration

Nb of Core Mhz RAM in Gb
Host 1 2 3.2 4
Host 2 4 2.6 16
Host 3 8 2 32

Table 2. vm Configuration and Simulation Scenario

CPU in Mhz RAM in Gb

VM 1 300 0.512
VM 2 600 1.024

Nb Host 1 Nb Host 2 Nb Host 3 Nb VM 1 Nb VM 2
#1. Cluster 10 0 0 10 10
#2. Heterogeneous cluster 5 3 3 40 20
#3. Larger Heterogeneous cluster 15 15 10 100 50
#4. Cloud 55 55 30 700 300

We have done four simulations as shown in the table 2.
The purpose was to test our architecture in different case of usage (homo-

geneous, heterogeneous) and to test its scalability (number of nodes, virtual
machines, placement and migration choices, distributed load balancer). In our
simulation, we uses the following static parameters for the score algorithm:

– α = 1, β = 1: to give the same importance to the soft quota of processor or
memory.

– γ = 0.75: because we want to give more weight to the virtual machine
resources quota than the static resources on the node.

– δ = 1: to give the same importance to the amount of free processor or free
memory.

Moreover, we randomly increase or reduce cpu and memory usage of each vm
every 30 seconds to simulate dynamic load.
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4.2 Results

As shown on the figure 1 and 2, the amount of time taken by the startup process
for a virtual machine without cooperative schedulers grows linearly with the
number of nodes on the cloud. Indeed, with large size distributed systems, most
of the interactions between agents can be parallelized. When a larger number of
nodes (simulation #3 and #4) are part of the cloud, more interactions can be
done in parallel on different agents and thus the overall throughput increases i.e.
the number of vm placement in a given time grows.
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We compute the average time between the detection of an overloaded node
and its solving. Each simulation was kept running for one day to evaluate if the
placement of virtual machines was “good“ enough. On the 1st simulation, no
migration happens. During the second simulation, an average of five overloaded
nodes has been detected. It took five seconds to detect the overload and solving
it. During the third simulation, two migrations have been required and it took
four seconds to solve it. On the last simulation, 15 migrations for the 1,000
virtual machines has been required and they took 19 seconds each. Consequently,
we state that the placement of virtual machines on the distributed system is
sufficiently “good” because the number of migrations is low.

With cooperative schedulers, both placement and migration processes are
speed up as shown on the figures 1 and 2. In the two first simulation scenarios,
it does not improve as there is overhead due to the placement process. But, it
reduces the time for the placement of a vm from 5 to 4.34 seconds for the sim-
ulation #3 and from 25 to 19 for the simulation #4. It can be done because a
vast majority of services can be parallelized.

5 Conclusion

Our paper presents a novel load balancer dedicated for vm on clouds. It is based
on p2p architecture allowing a fully decentralized model. The load balancing de-
cisions are based on dynamic-resources centric algorithm that computes a score.



648 J. Rouzaud-Cornabas

This score is based on both static and dynamic resources usage of processor and
memory but also uses the resources quota associated with each vm. Moreover,
the load balancer agents can cooperate together through a distributed and de-
centralized facility. We have implemented our model using Java and jxta. Then,
we implement it within our cloud testbed to evaluate our model efficiency. As
we show, the simulation results are encouraging. Indeed, we do not see any scal-
ability bottleneck and the balancing of resources works great.

Futur works will tackle the over-migration issue when a vm is migrating con-
stantly from a node to another. The fault tolerance of the stealing algorithm
is still an open question for our work stealing algorithm. Another futur work
will be to test our solution on a real cloud. Futhermore, we need to test more
complex versions of our score algorithm taking into account other resources like
network, I/O bandwidth, etc.
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Abstract. General Purpose Computation on Graphics Processing Units
(GPGPU) makes it possible to use the massive computing power of
modern graphics cards for generic high-performance computing. How-
ever, the new virtualization technologies will typically not support high-
performance graphics cards and as a consequence GPGPU resources can
not be used in typical virtualization setups. In this paper we present
an approach to introduce accelerated 3D graphics support as well as
GPGPU facilities into virtualized environments. We present our proof-
of-concept ”VirtGL” and discuss architectural considerations and a lean,
straight-forward way of implementation. We then give an outlook on how
this approach can easily be adopted for virtualizing GPGPU APIs like
CUDA, Stream, OpenCL and alike.

Keywords: GPGPU, virtualization, virtualized 3D acceleration, High
Performance Computing.

1 Introduction

Accelerated graphics access is a relatively new feature in the virtualization tech-
nology realm. Only a few virtualization solutions currently support full 3D-
accelerated graphics. It is therefore difficult to do General Purpose Computation
on Graphics Processing Units (GPGPU) in virtualized environments.

We suggest an approach for implementing fully accelerated 3D-graphics sup-
port. Our approach relays graphics commands through the virtualization layer
to the readily available graphics card interface of the host system. As it avoids
thick and multiple software layers the resulting implementation turns out to be
fast, lean, robust and straight-forward.

“VirtGL” is a software package which brings accelerated 3D-graphics to vir-
tualized guest operating systems. It reuses existing abstractions provided by the
hosting operating system and lets them reappear in the guest environment. In
other words: A “tunnel” between the guest’s graphics interface abstraction and
the pre-existing functionality in the host is created. With VirtGL we are able
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to provide high-end High Performance Computing facilities in virtualized envi-
ronments. VirtGL integrates GPGPU techniques with virtualization technology,
with low implementation costs as well as with minimal performance overhead.

2 Environment

In this section we give an overview of the environment, in which we have estab-
lished VirtGL. We show the virtualization solution chosen (QEMU), the graphics
card programming interface we use (OpenGL) and the operating system we tar-
geted for a prototype driver on the virtualization guest side (Rainbow OS).

2.1 Virtualization

Several virtualization solutions are currently available for productive use. To add
our new VirtGL device emulation to the virtualization software it needs to be
available as source code. As one of the most important goals of our operating
system project is a lean system, adding new complexity besides a new driver to
our operating system was not an option. Thus, paravirtualization is not viable
for our purposes. Accordingly, only the following virtualization solutions are
considered to satisfy our requirements: VirtualBox Open Source Edition, Xen
(version 3.0 or later), QEMU, Kernel Virtual Machine (KVM), Bochs.

The decision was made in favor of QEMU, because it is viable even with-
out hardware virtualization. Device emulation modules in QEMU can easily be
ported to KVM, Xen HVM and VirtualBox [9].

Our VirtGL device emulation uses memory mapped IO (MMIO) as the de-
vice’s interface for the communication between the guest operating system and
the host. QEMU devices can register such MMIO regions and corresponding
handlers to be called on MMIO operations. Whenever the guest reads from or
writes to a MMIO region, QEMU calls the according registered handlers. As
a consequence the execution traps into QEMU. To determine the result of the
access, the registered handler is called and the result is passed to the quest. So
every read or write access to this region is immediately handled by the emulated
device within QEMU.

2.2 Graphics Card Programming

The Open Graphics Library (OpenGL) [5] is a platform and programming lan-
guage independent API. OpenGL is designed to offer a single and uniform inter-
face to access various different graphics cards. To compensate for the different
feature sets of the cards the API is capable to emulate in software missing fea-
tures of the hardware. OpenGL programs use this API to view 2D- and 3D-data
and images. The API does also support the use of shaders. Shaders are stream-
ing processors, specially designed to execute a huge number of floating point
operations, which are typically required to render a 3D scene. OpenGL shader
language (GLSL) is used to program the shaders.
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Shader programming can also be used for genereal purpose computation on
graphics hardware (GPGPU). High-level abstractions were created to alleviate
the programmer’s job. With, for example, CUDA [8] and OpenCL [4] high-
level languages, libraries and toolchains are made available to support the GPU
programmer. These tools and interfaces are finally based on the above mentioned
shader programming facilities like GLSL (as part of OpenGL).

2.3 Operating System

Rainbow OS is a transactional distributed memory (TDM) operating system
for commodity 64-bit multicore architectures. The PCs constitute a cluster con-
nected via Gigabit Ethernet [11]. Rainbow OS is almost completely implemented
in a Java-like language. With our locally developed high-speed compiler SJC [1],
Rainbow OS compiles into native x86 code, thereby avoiding the need for a Java
Virtual Machine (JVM). Objects are accessed natively without interposed mid-
dleware layers or wrapper classes. So Rainbow OS offers to system programmers
and application programmers the benefits of a strongly type-safe language cou-
pled with fast runtime performance. Code and data structures of all applications
as well as the kernel are accessible and shared by all nodes of the cluster (single
system image) using a distributed memory abstraction. In order to guarantee
a consistent memory perspective for both operating system components and
application tasks Rainbow OS implements a unique transactional consistency
mechanism [13].

3 VirtGL

3.1 Architecture

The initial and most important idea behind VirtGL was to develop a lean so-
lution with low code complexity. Another important design goal was to develop
the QEMU part without modifying the core of QEMU. We needed a module
that was easily interchangeable between subsequent versions of QEMU and at a
later time easily transferable to KVM.

VirtGL comprises two components: the VirtGL device and the VirtGL driver.
The VirtGL device is a new emulated device, which is added as a module to
the virtualization software. From the perspective of the guest system it is a
hardware OpenGL interface. This is VirtGL’s guest-system independent core.
On the guest system’s side a device driver for the VirtGL device is needed. That
driver is guest-system specific by nature.

Important to note is, that the interface of the VirtGL device essentially is an
OpenGL interface “in hardware” and the VirtGL driver making this interface
accessible exposes itself as an OpenGL interface, too. The driver’s interface can
be directly used by the applications. Thus, particularly we remove the need for
several layers of interfaces and wrappers in the guest system. Usually operating
systems have a stack of interface levels with successively more abstract semantics:
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– the graphics card exposes an intricate interface, which is vendor specific or
even model specific,

– the device driver exposes an interface, which is typical for graphics, drivers
and often is vendor specific,

– an abstraction interface that allows uniform access to all drivers,
– often several additional wrappers or filters,
– the actual graphics interface in standardized way (e.g. OpenGL) to be used

by applications.

With VirtGL the situation is reduced to (cf. figure 1):

– the VirtGL driver exposes a standard graphics interface (e.g. OpenGL)
– the device driver in the guest OS exposes a standard graphics interface (e.g.

OpenGL), which is at the same time the actual graphics interface to be used

Fig. 1. VirtGL architecture

Not only the number of layers and interfaces is reduced. Also the mapping
between the layers is much simpler. This is due to the fact that semantics do
not change from one layer to the next; merely the way of identifying functions
and passing parameters is different. Thus relaying a call from the software side
to the hardware side is simple and efficiently implementable.

3.2 Implementation

Few changes were actually necessary in QEMU. From the point of view of QEMU
this simply results in the addition of a simple PCI device. The changes essentially
consist of: (1) the VirtGL emulation module: a C-file and its header file (“VirtGL
core”); (2) a little patch that instructs QEMU to load the module just added;
(3) adjusting the Makefile to link against certain libraries (OpenGL, window
management).
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The VirtGL core registers some callback routines during initialization time.
These callback functions handle intercepted accesses to memory mapped I/O re-
gions (see above). It is this piece of software that ultimately issues the OpenGL
commands to the host system’s OpenGL interface. The intercepted memory ac-
cesses tell the VirtGL core which OpenGL functions to call and which parameters
to pass.

The guest system - in our case the locally developed Rainbow OS - merely
provides a device driver for the VirtGL device. Because the VirtGL device is
emulated as a traditional PCI device all the preexisting features in the operating
system dealing with PCI device enumeration and configuration can be used. The
VirtGL device is configured and commands are issued by reading and writing to
MMIO regions. The device’s PCI configuration space reports two MMIO regions
which are required by the VirtGL device.

The first and most important region is the so called “command region”, typ-
ically one page (4 KB) in size. All accesses are intercepted by QEMU and del-
egated to the VirtGL device emulation module. Such accesses result in a state
change of the emulated VirtGL device. The second region is called the “direct
data region”. It has a configurable size, we currently chose to spend 2 MB. There
is a corresponding memory block assigned and none of the accesses to this region
are intercepted by QEMU. The direct data region is not really physical memory
observable by the guest system. Rather it should be perceived as device memory
embedded in the emulated PCI device (VirtGL graphics device) - very much like
dedicated graphics RAM on real graphics cards.

Before an OpenGL command is issued, the parameters are written to the di-
rect data region and then the command code assigned to the required OpenGL
function is written to the command region and suitably intercepted. Thus, the
device emulation will remain inactive as long as not all parameters are written.
Writing the command code is intercepted to allow an immediate response. Be-
cause all parameters are known and the command code specifies the OpenGL
function to be called, the command is immediately carried out.

3.3 Measurements

The performance of VirtGL was tested using the well-known GLXgears1. For a
maximum of comparability the native GLXgears implementation was ported to
Rainbow OS and QEMU.

In the virtualized QEMU environment of the guest system, the hardware
timers and clocks might not provide correct values. However, during the mea-
surements it is essential to have a reliable clock, so the code that determines the
frames per second rate (FPS), was moved to the QEMU counterpart. Effectively,
the time between two buffer swappings is measured to determine the FPS values.
Due to the timing issues we are faced with in the virtualized guest system, the
rotation of the gears was done in every frame with a constant angle2.
1 Part of the Mesa 3D Graphics Library 7.7
2 The Mesa GLXgears implementation calculates dynamically a rotation angle, but

this has no impact on the performance.
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The test system was a Lenovo Thinkpad T410 with a Nvida NVS 3100M
graphics card and an Intel Core i7 M620 CPU and 4 GB of RAM. The operating
system was a recent Linux kernel (2.6.32.9) with the proprietary Nvidia graphics
driver (190.53). The CPU frequency was set to 1.20 GHz in the first test and
to 2.67 GHz in a second test run. The Linux host system was booted using the
kernel parameter “nosmp” to suppress the influence of optimizations that could
be achieved with more than one processor.

The tests ran for approximately one minute printing every 5 seconds the
current FPS rate. Afterwards the frame rate was averaged over the measuring
points. At the CPU frequency of 1.20 GHz we achieved a performance of ap-
proximately 93% (Rainbow 5280 FPS and native 5670). With an over 2 times
higher CPU frequency (2.67 GHz) the performance of VirtGL was about 99%
(Rainbow 5877 FPS and native 5903 FPS). The performance difference can be
explained with the overhead of the virtualization. The higher the CPU frequency,
the smaller the weighting of the overhead. The outcome shows that the CPU fre-
quency has only a small impact and can be neglected.

4 Perspective

VirtGL currently supports only a tiny subset of OpenGL functions. We plan
to extend the set of supported functions extensively in the future. Especially
supporting more texture-related functions and integration of shader support is
one of the most urgent needed extensions in VirtGL.

We also expect that relaying the shader functions would have only marginal
negative effect on overall performance. The shader-related functions will typically
only be used in the initialization part of the program and very rarely in the
later program runtime. Texture operations might be used more frequently in
GPGPU applications and the amount of data to be moved could be much more
compared to typical 3D graphics applications. How this behavior impacts the
overall performance remains unclear at the moment. Due to the fact, that VirtGL
at the moment introduces one additional data copying step might be a downside.
Preliminary measurements indicate that the impact is not as big as suspected
at first. Thus, some refinements targeted on this issue might be needed and are
currently in the evaluation phase.

As soon as all texture- and shader-related functions can be relayed from the
guest to the host system, VirtGL will immediately be ready for the GPGPU
use. A refined version of VirtGL would enable HPC applications in virtualized
environments to use the GPGPU technology. Carrying the thought a bit further,
VirtGL could enable GPGPU usage for HPC clouds: Infrastructure-as-a-Service
providers could make GPGPU facilities available within their node instances,
which are realized via virtualization.

5 Related Work

The research to provide accelerated 3D graphics to virtual machines is going on
since several years. There are a number of different solutions. The most common
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solution is [7], which describes a way of reusing device drivers from the host
in the virtual machine. This is a low-level approach which offers direct access
to the host device driver. The authors made no attempt to use this approach
to graphics cards. Due to the fact that the device driver has to be exclusively
used by the virtual machine this approach is rather inappropriate for graphics
cards, unless there are multiple graphics cards installed. This is also true for the
approach of allowing a direct access to the graphics card itself from within the
guest operating system.

There are a number of publications related to replacing the original library
with a stub which forwards the OpenGL command stream. VirtualGL [12] is
designed to provide accelerated 3D-graphics for remote display software like
VNC. The data is sent over a network connection. This is a by far more indirect
solution than the VirtGL approach; latencies can be expected to be dramatically
higher and due to the interposed network connection overall performance should
be considerably lower. A similar approach has WireGL [3], system for scalable
interactive rendering on clusters. It focuses on distributing rendering resources
and thus is not geared towards virtualization appliances.

In the past years several programs were published specializing in accelerated
graphics for virtual machine guests. VMGL [6] uses the WireGL network protocol
for communication between the guest and the host. Apart from displaying 3D
data, the GPU can also be used for scientific calculations. Shi et al. [10] proposed
a system to use the GPGPU libraries from inside an guest operating system.
They use classical XML based remote procedure calls (RPC), which, due to
its massive indirections and rather unfortunate data representation, imposes a
considerable overhead compared to the custom-tailored VirtGL interface.

The system closest to VirtGL might be GViM [2], which makes the CUDA fa-
cilities of the host available inside the guest system. GViM uses queues of CUDA
commands which are filled by the guest system’s driver, eventually processed in
the hypervisor and by then are ultimately issued to the host’s CUDA interface.
To achieve the functionality GViM introduces additional software layers. In con-
trast, our VirtGL package removes software layers and thus has a leaner design
and a smaller footprint. Unlike GViM, VirtGL does not uncouple the processing
of the commands from their issuing. VirtGL rather provides a direct interface
to work with which entails immediate command execution/relaying.

None of the solutions found has the extremely lean and straight-forward char-
acteristics of the VirtGL package. Most of the listed projects impose a consid-
erable overhead, which VirtGL does not.

6 Conclusion

In this paper we presented an approach of re-using host system facilities in the
guest environment. We used this approach to introduce accelerated 3D graphics
support for virtualized environments. Our tests show that the approach is vi-
able and that the solution has reasonable overall performance. We have found
that our approach lends itself to a lean and simple software design, thus raising
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software quality. Compared to the implementation of a native graphics driver
our development effort, the resulting code size and the program complexity is
reduced by orders of magnitude. The approach also allows us to more easily keep
up with fast evolving 3D-graphics technology.

VirtGL in its current state is not ready for production environments. At the
moment it is rather a “proof of concept”. Currently, a small subset of OpenGL
functions is supported. Clearly we aim to support the complete OpenGL function
set. One of the next steps would be to support modern shader functions and then
to extend the approach with the OpenCL or CUDA interfaces. In the near future
we will extend, improve and optimize VirtGL in several ways. In the more remote
future VirtGL might facilitate GPGPU usage for HPC clouds.
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Abstract. In this paper we tackle the problem of providing Quality of Service
guarantees to virtualized applications, focusing on computing and networking
guarantees. We propose a mechanism for providing temporal isolation based on
a CPU real time scheduling strategy. This allows not only to have control over
the individual virtual machine throughput, but also on the activation latency and
response-time by which virtualized software components react to external events.
We show experimental results gathered on a real system validating the approach.

1 Introduction

When deploying virtualized distributed applications over a set of physical resources, by
means of machine and network virtualization, one of the hot problems that is receiving
an increasing attention [16, 14] is the one of how to provide a stable performance of
individual virtualized applications. This problem is due to a multitude of factors: on the
networking side, multiple data flows need to be streamed over a pool of shared physical
network links; on the computing side, multiple Virtual Machines (VMs) need to be
concurrently scheduled over a set of shared processors and cores; for storage, multiple
data flows need to be concurrently supported during access to shared storage devices.

Sharing of physical resources constitutes a great opportunity for IaaS and PaaS
providers. It allows for a better utilization of the underlying physical infrastructure.
This is especially true with the increasing need [2] to deploy complex, distributed, in-
teractive real-time applications over virtualized infrastructures (as common in the Cloud
Computing world), a scenario implying a potential under-utilization of resources. An
efficient utilization of resources in datacenters may also lead to the deployment of in-
teractive applications on the same physical hosts occupied by HPC applications, which
typically are CPU intensive and may rely on communication channels to pass data and
synchronize themselves. In this case, it is crucial to provide CPU and I/O isolation
between the two classes of workloads to avoid decreasing the customer satisfaction.

However, without an appropriate support for temporal isolation, concurrently run-
ning VMs may interfere each other in a way that it becomes impossible to guarantee
a stable performance level to each one of them. This problem has been previously ad-
dressed in the case of compute-intensive VMs [6, 7], however it still remains a hot topic
in the case of I/O-intensive and mixed workloads.
� The research leading to these results has received funding from the European Community’s

Seventh Framework Programme FP7 under grant agreements n. 214777 “IRMOS—Interactive
Realtime Multimedia Applications on Service Oriented Infrastructures” and n. 248465
“S(o)OS – Service-oriented Operating Systems.”
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2 Related Work

The interaction between CPU scheduling and I/O performance of virtualized environ-
ments was studied before, mainly in virtualization systems based on the Xen hypervi-
sor [1]. The papers cited below all consider the Xen setup with device drivers in dedi-
cated domains [10]. In [5], the authors proposed a monitoring infrastructure for Xen and
estimated the CPU overhead induced by I/O virtualization using a set of HTTP-based
benchmarks. In [3], the authors characterized the overheads of network virtualization in
Xen using full system simulation; in this way, they were able to estimate the effects of
the hardware architecture on the virtualization stack performance. To increase the con-
trol over I/O virtualization, various solutions were proposed; most of them used CPU
scheduling to isolate the VMs from the performance perspective. In [11], the authors
proposed to augment the Xen hypervisor with a set of mechanisms to account for and to
control the CPU time spent on behalf of VMs doing I/O. In [17], the authors proposed an
extension to the Xen credit-based scheduler improving its behavior in presence of mul-
tiple different applications with heavy I/O workloads, prioritizing the I/O bound ones.
Also, in [13], the authors proposed to modify the Xen CPU scheduler and networking
architecture to improve the performance of virtualized I/O on 10 Gbps Ethernet.

None of the approaches described above deal with service guarantees, most of them
aim at improving fairness and/or throughput; we advocate the need for providing ex-
plicit guarantees in order to obtain predictable performance.

The existing solutions that support QoS, like for example Open vSwitch [18], or
VMWare vNetwork 1, tend to be confined to the networking domain, and enforce QoS
policing and shaping network traffic according to user-defined policies. A widely used
virtual networking tool, VDE [9] uses the Linux bridging capabilities to achieve similar
results. Our work differs from these latter approaches in that it tries to take into account
isolation and CPU scheduling effects on I/O performance.

Finally, in our previous works [7, 8] we proposed to use CPU real-time schedul-
ing for supporting proper timeliness guarantees to virtualized applications concurrently
running on different VMs deployed on the same CPU. However, in these works the in-
vestigation was limited to CPU-bound workloads, while in this paper we consider also
the effect of I/O-intensive workloads.

3 Proposed Approach

In this paper, we propose to provide stable computing and networking performance
guarantees to VMs concurrently running on the same CPU(s) using an EDF-based soft
real-time scheduling strategy for the CPU, which we developed in the context of the
IRMOS project2. The proposed approach is particularly useful when mixing VMs with
workloads that are heterogeneous with respect to the time granularity over which the
temporal requirements of the hosted applications need to be fulfilled.

The IRMOS real-time scheduler [4] allows to reserve a “slice” of the processing
capability of a system to a group of threads and/or processes (shortly, tasks). This is

1 http://www.vmware.com/products/vnetwork-distributed-switch
2 More information is available at: http://www.irmosproject.eu

http://www.vmware.com/products/vnetwork-distributed-switch
http://www.irmosproject.eu
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done by specifying two scheduling parameters for each group: a budget Q and a period
P , with the meaning that the tasks in the group are entitled to run on each of the CPUs
(processor, or cores when present) available to the OS, for Q time units every period of
P time units. This constitutes a scheduling guarantee and a limitation at the same time.
Also, when a group is entitled to run on each CPU, the IRMOS scheduler employs a
POSIX priority-based real-time scheduling strategy [12]. See [4] for further details.

With KVM, there is little control on how multiple VMs compete in accessing the
available CPUs. In fact, the default Linux scheduling strategy (SCHED OTHER) imple-
ments the Completely Fair Scheduler (CFS) policy, which tries to be as fair as possible
across competing processes. Therefore, we used the scheduler described above to iso-
late the temporal behavior of concurrently running VMs, and at the same time provide
them with their specifically required scheduling guarantees.

When dealing with compute-intensive VMs only, most of the time dedicated to a VM
is spent by the host by running the corresponding KVM process. Therefore, providing
proper CPU scheduling guarantees to the process, as achievable with our real-time IR-
MOS scheduler, allows for the achievement of a sufficient isolation degree between
that VM and other VMs. The scheduling parameters for a VM can be set-up as follows.
The scheduling period controls the activation latency of the VM and can be set equal
to the minimum expected interarrival period of external requests triggering the VM
services. The ratio budget over period controls how much computing capability of the
host is reserved for the VM, thus the budget may be tuned by performing a preliminary
benchmarking phase. Thanks to the hard reservation nature of our real-time scheduler,
the performance obtained when the VM is running in isolation on the host, with given
scheduling parameters, is only marginally affected by the workload imposed on the host
by other VMs.

However, the situation becomes more complex when dealing with I/O-intensive work-
loads. In fact, in such case, the host may spend a significant part of the CPU time related
to a VM outside the context of the KVM threads. The lowest level of the networking
code executes in interrupt context, preempting the execution of VMs potentially unre-
lated to the I/O traffic that is being handled, thus “stealing” part of the budget reserved
to the interrupted VMs, even under the use of our real-time scheduler. To deal with this
problem, we suggest to overprovision the assigned budget, as compared to the minimum
one detected when benchmarking the VM in isolation. Specifically, not only the budget
should be increased of the amount necessary to deal with the interferences of multiple
VMs at the cache level (this is unavoidable in modern systems), but also of a quantity
that is strictly dependent on the overall networking traffic performed by the VMs hosted
on the same system. Such aggregate figure is usually available to the infrastructure that
handles the deployment of the VMs on the physical host.

Also, higher-level in-kernel networking code often executes in softirq context [15].
Furthermore, when using the PREEMPT-RT kernel [19], part of the low-level network-
ing driver code runs in dedicated kernel threads, where it may be at risk of not getting a
proper chance to run, compromising networking performance. In such case, we suggest
to put all the threads relative to the same VM into the same reservation, comprising
both KVM threads and kernel threads necessary for dealing with its (para-)virtualized
networking. Our real-time scheduler allows for the provisioning of overall scheduling
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guarantees to the entire group of threads, even if not belonging to the same process.
Fig. 1a depicts the overall architecture, showing how the temporal capsule extends also
to the interrupt threads, which act as interconnecting channels between the kernel and
the virtual machines. In the preliminary results reported below, we show how it is possi-
ble to achieve a proper degree of isolation in presence of I/O-intensive VMs, deferring
to future work the adoption of more sophisticated techniques (see Section 5).

4 Experimental Results

For validating the proposed approach, in this section we report results gathered from an
experimental set-up involving a real Linux system running KVM as hypervisor.

All the described experiments have been conducted by using two physical systems
equipped with an Intel Quad Core Q6600 CPU running at 2.4 Ghz, 4 GB of RAM,
and a Gigabit Ethernet card. One of the two systems played the role of server, and was
running a Fedora 11 Linux distribution with a modified version of the kernel including
our real-time scheduler. VMs were started with KVM in bridge mode and with 1 GB
of guest memory. The networking was setup to use the virtio interface. The other
system was used as client. On multi-core systems, the problem addressed in this paper
appears when deploying VMs with an overall number of virtualized CPUs greater than
the number of available physical CPUs. In order to keep a simple experimental set-up,
the tests were run with only one core brought online, thus all the VMs running on it.

In what follows, resource-level experiments are shown first, demonstrating how the
proposed technique improves isolation of I/O intensive traffic across concurrently run-
ning VMs, gathered running a synthetic network-benchmarking tool. Then, application-
level results are shown, from an experiment involving a real Apache web server.

Resource-level isolation. In the following experiment, we investigate on the impact of
different CPU share allocations over the networking throughput achievable by the VM.
To this purpose, a VM was run alone on the server, with all of its threads attached to a
unique real-time reservation for the VM, with a period of 100ms and different budgets
varying from 10ms to 90ms. We used iperf 3 to measure the network throughput
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Fig. 1. System architecture and network bandwidth for a VM with various CPU reservations

3 More information at: http://sourceforge.net/projects/iperf/.
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between an iperf client running on the client machine, and an iperf server running
inside the VM. The test was repeated 100 times for each budget value. As shown in
Fig. 1b, there is a nearly linear relationship between the network throughput achieved
by the VM and its CPU share. Each point corresponds to the average throughput over
the 100 repetitions, and is flanked by a small vertical segment showing the standard
deviation, which is barely noticeable except for a budget of 75ms.

Now, in order to measure the degree of temporal isolation enforced by the real-time
scheduler, we started two VMs on the same physical host and core, each one isolated in
a different resource reservation. Each VM was running an iperf server. We launched
two iperf clients on the client machine against the two VMs, and we measured the
achieved throughput at varying scheduling parameters for both VMs.

The obtained results are shown in Fig. 2 and 3, from different perspectives. Fig. 2
shows (on the Y axis) the throughput obtained by a VM as a function of its own reser-
vation share (on the X axis), at varying reservation share for the other VM (different
curves). Ideally, if the temporal isolation were perfect, we should see perfectly super-
imposed curves. However, as expected, a performance drop is experienced by the VM
under observation, quantified in a 20%–30% drop when the reservation share of the
other VM is increased from 10% (similarly to the single-VM case in Fig. 1b) to 40%.
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Fig. 2. Network throughput (Y axis) for a VM as a function of its own CPU share (X axis), at
varying CPU shares for the other VM (different curves)
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Fig. 3 shows the throughput (Y axis) obtained by the VM under observation as a
function of the CPU share assigned to the other VM (X axis), and at varying CPU
shares for itself (different curves labeled with “Network”). Again, if the isolation were
perfect, we should see horizontal lines. Instead, we see again the performance drop that
is achieved. Finally, we made a third experiment with a computation-intensive workload
on the other VM (it was running Octave4 inverting a 1000x1000 matrix). The results
are shown on the same graph, in the set of curves labeled as “Compute”. As expected,
the performance drop in this case is smaller, being due exclusively to cache interfer-
ence. The difference between the two sets of curves may be basically attributed to the
increased interrupt activity experienced in the former experiment, which was “stealing”
CPU from the first VM despite the reservation at the scheduling level.

However, we would like to point out that the adoption of our real-time scheduling
strategy is capable of providing a controllable bound on the maximum interference that
a VM may undergo due to intensive networking activities of other VMs. For example,
in order to counteract the expected interferences from other VMs, Fig. 2 may be used in
place of Fig. 1b for “looking-up” the (correctly overprovisioned) budget for sustaining
a given VM throughput, depending on the expected networking load of other VMs.

Application-level results. To demonstrate the achievable level of isolation on a real-
world application, a ramdisk with the Apache web server5 was setup inside each VM6.

The two VMs were started, and the download of a file of 100 kBytes was requested
(via the HTTP protocol) to the first VM every 20ms using the ab tool7, from the client
machine. Also, 1000 concurrent requests of a file of the same size were being continu-
ously sent to the second VM, serving as both networking and computation “load”.

The experiment was performed with and without the load imposed by the second
VM, and we measured the completion time of the requests, i.e., the time at which the
download of the file finished, for 500 consecutive requests. Moreover, both the unloaded
and loaded experiments were repeated while the two VMs were co-scheduled by the

4 More information is available at: http://www.octave.org.
5 More information is available at: http://httpd.apache.org
6 By setting it up in a ramdisk, additional interference in the form of disk I/O was avoided.
7 We modified ApacheBench (ab) to behave as described.

http://www.octave.org
http://httpd.apache.org


Providing Performance Guarantees to Virtual Machines Using Real-Time Scheduling 663

standard Linux kernel mechanisms, and with the first VM in a reservation with param-
eters RSV (Q, P ) = (4ms, 20ms). The Cumulative Distribution Function (CDF) of
the completion time in all the four evaluated scenarios is shown in Fig. 4. The verti-
cal line at 20 ms represents the time by which a request must complete, since another
one should start (i.e., the deadline). It is easy to see how, in the unloaded case (curves
labeled with “no load”), both with and without the reservation (curves labeled with
“w/RSV” and “w/o RSV”, respectively), the performance is good enough, since the
completion time is almost constant at about 2.1ms among the various requests and it is
always far from the deadline (with peaks of nearly 6.2ms). However, in the loaded case,
the original VM performance is completely subverted, and more than 30% of the re-
quests for the first VM cannot complete within the 20ms deadline/period, with peaks of
download-time of nearly 27ms. When encapsulating the VM in a real-time reservation,
instead, the download times returned to be well below the deadline, with a maximum
of 7.1ms.

5 Future Work and Conclusions

In this paper, the problem of provisioning QoS guarantees to VMs concurrently running
on the same CPU was tackled. The focus was on VMs with I/O intensive workloads,
where even if the guest OSes are for most of the time suspended for performing I/O,
actually the host needs to execute the para-virtualized and native networking drivers
necessary to deliver the packets, what is a major cause of interference between the
VMs. Therefore, I/O-intensive and compute-intensive VMs may strongly interfere with
each other, leading to a performance that is completely subverted as compared to the
case in which they were running or benchmarked in isolation.

We showed that, by recurring to soft real-time scheduling strategies at the virtualiza-
tion layer, it is possible to provide a good level of isolation between the concurrently
running VMs. Furthermore, it is possible to achieve both a good throughput of the VMs
and to keep the individual guarantees at the latency level, something that is not possible
with the standard Linux scheduling strategies. However, the proposed solution is all but
conclusive in this regard. In fact, as highlighted in the experimental section, still there is
a degree of interference which is due to the resources that are implicitly shared among
the VMs inside the host OS, namely network interface drivers and bridging logic that
runs on the host OS. We plan to enhance the isolation with this regard by slightly re-
working the networking driver infrastructure in Linux for such purpose, exploit some
recent kernel features that allows for putting the networking code in a per-VM thread-
/context. Also, we plan to experiment with the PREEMPT-RT branch of the kernel, in
which part of the drivers logic is moved to dedicated kernel threads, thus it is possible
to control when they execute with our real-time scheduler, and for which a variation of
our real-time scheduler is already being ported.

Finally, we plan to investigate on the use of adaptation for fine-tuning the resource
reservation parameters so as to better suit the needs of virtualized applications.
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Abstract. Nowadays, seeking optimized data paths that can increase
I/O throughput in Virtualized environments is an intriguing task, espe-
cially in a high-performance computing context. This study endeavors to
address this issue by evaluating methods for optimized network device
access using scientific applications and micro-benchmarks.

We examine the network performance bottlenecks that appear in a
Cluster of Xen VMs using both generic and intelligent network adapters.
We study the network behavior of MPI applications. Our goal is to: (a)
explore the implications of alternative data paths between applications
and network hardware and (b) specify optimized solutions for scientif-
ic applications that put pressure on network devices. To monitor the
network load and the applications’ total throughput we build a custom
testbed using different network configurations. We use the Xen bridge
mechanism and I/O Virtualization techniques and examine the trade-
offs. Preliminary results show that a combination of these techniques is
essential to overcome network virtualization overheads and achieve near-
native performance.

1 Introduction

Today, with the advent of virtualization techniques, Cloud Computing infras-
tructures are becoming a great trend, providing flexibility, dedicated execution
and isolation to a vast number of services. These infrastructures, built on clusters
of multicores, offer huge processing power, ideal for mass deployment of compute-
intensive applications. However, bridging the gap between I/O techniques in vir-
tualized environments and application demands seems to be a major challenge.
Numerous studies both in native [1,2] and virtualized environments [3,4,5] ex-
plore the implications of alternative data paths that increase the system’s I/O
throughput and help applications overcome significant bottlenecks in data re-
trieval from storage or network devices.

Typical HPC applications often utilize adaptive layers to overcome limita-
tions that operating systems impose in order to ensure security, isolation and
fairness in resource allocation and usage. These layers are usually communica-
tion libraries (e.g. MPI) or mechanisms to bypass the general purpose kernel-
algorithms for (i) process scheduling (CPU affinity, process priority) and (ii)
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device access (user-level networking, direct I/O techniques such as zero-copy,
page-cache bypass, etc.). Intelligent interconnects, suitable for HPC applica-
tions, provide adapters that offload protocol processing and achieve fast message
exchange. To avoid the overhead associated with user-to-kernel–space commu-
nication, HPC interconnects often utilize a user-level networking approach. To
use such a method in virtualized environments, several issues have to be taken
into account.

Data retrieval from storage or network devices in virtualized environments is
usually realized by software layers within the hypervisor, which allow VMs to
interface with the hardware. A common implementation of such interfaces is a
split driver model. These layers host a backend driver that communicates with
the native driver and the device, while guest VM kernels host a frontend driver,
exposing a generic device API to guest user– or kernel–space.

Similarly to operating systems, the hypervisor in virtualized environments
multiplexes guest kernels which run on VMs and are not directly aware of the
underlying hardware. Moreover, the application has to access specific resources
on the network adapter’s hardware. However, letting applications access I/O
devices without regulation raises security issues.

Currently, only a subset of the aforementioned adaptive layers is implemented
in virtualization platforms. For example, SR/MR-IOV [4] lets VMs exchange
data with the network via a direct data path, bypassing the hypervisor and
the privileged guest. Device access by multiple VMs is multiplexed in firmware
running on the hardware itself. However, these features are only implemented for
general purpose networking adapters (such as ethernet) and, as a result, cannot
be used with High-performance interconnects such as Myrinet or InfiniBand.

Our work is focused on integrating HPC interconnect semantics into the VMM
split driver model [5]. We aim to decouple data transfers from the virtualization
layers and explore direct application-to-NIC data paths. In order to justify devel-
oping a framework to support standard features of HPC interconnects (user–level
networking, zero–copy etc.) in VM environments, we need to examine the be-
havior of HPC applications in such environments [6]. In this work, we deploy
network benchmarks and a real scientific application in a cluster of ParaVirtu-
alized Xen [7] VMs and present some preliminary results.

The rest of this paper is organized as follows: Section 2 presents network
performance measurements using common micro-benchmarks. In Section 3 we
describe the evaluation of a real scientific application in a cluster of VMs. Sec-
tion 4 discusses evaluation issues and related work. In Section 5, we conclude.

2 Network Performance in Xen VMs

In this section, we evaluate various network configurations using two popular net-
work micro-benchmarks. Our testbed consists of two host machines, connected
back-to-back. The host machines (H0, H1) are two dual quad-core Xeons@2.0GHz
with two Neterion X3110 10GbE adapters, hosting 8 dual-core VMs (n1 . . . n8)
with 1.5GB of memory each. To determine the optimum data path of our testbed,
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we consider three configurations: NATIVE, the baseline of our testbed, running
vanilla linux-kernel; BRIDGED, the default Xen setup, where all network traffic
crosses the privileged guest (Dom0) either by copying or by granting the pages
that hold the frames to the specified guest; I/O Virtualization (IOV), our
optimized setup. Specialized network adapters export PCI functions to the OS
providing a direct VM-to-NIC data path.

We measure the bandwidth achieved by each VM separately on different hosts
(n1 → n4, n2 → n6 and so on) and compare its sum to the aggregate bandwidth
measured in the Native case (H0 → H1).

Table 1. Bandwidth (MiB/sec) for netperf TCP STREAM and iperf (1 proc)

netperf iperf

node1 node2 node3 node4 total node1 node2 node3 node4 total

NATIVE 811.73 1238

BRIDGED 90.45 123.03 112.23 100.26 425.97 205.00 190.00 181.25 172.50 748.75

IOV 160.33 159.43 152.45 162.63 634.84 221.25 222.25 221.25 220.00 884.75

We used netperf to test the maximum achievable bandwidth that our testbed
can sustain. Table 1 shows the bandwidth in MiB per second. The bandwidth
achieved in the BRIDGED case is about 65% of the IOV case. On the other
hand, IOV sustains 80% of the bandwidth achieved with the NATIVE case,
but remains bound at only 50% of the theoretical maximum of the 10GbE link
(1250MiB/sec).

3 Deploying an MPI Application in a Cluster of VMs

In order to project the results obtained by network benchmarks to a real scientific
paradigm, we deploy an HPC application on top of our mini VM-cluster. Our
application computes an advective process in a XxY xZ space for a time window
T [8]. We choose a fixed grid size (512x512x512, T = 512), distributing X , Y or
Z dimension across all 16 processes.

Our physical nodes (H0 and H1) provide 4 dual-core VMs each, resulting in an
8-node, 16-core cluster (n1 to n8). Each process communicates with its nearest
neighbor, providing a linear communication pattern. We place processes across
cores using three different placement patterns (Figure 1): a. inter–node, b. intra–
node, c. hybrid. At first, we choose to place the processes (P1 . . . P16) in a way
that data cross the network in every MPI operation (inter-node). For example,
P2 communicates with P1 and P3: we place P2 on n5 in H1 and P1,3 on n1,2

in H0 respectively. In order to study how the process placement influences the
application’s behavior, we then choose the intra-node communication pattern:
we place P1 . . . P8 on n1 . . . n4 in H0 and P9 . . . P16 on n5 . . . n8 in H1. Thus,
network communication occurs only between n4 and n5 (intra–node).

Figure 2 presents the execution time of the advective equation application
when using the inter–node and the intra–node cases. In the first bar we plot
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Fig. 1. Communication pattern according to process placement when using all 8 VMs
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(c) Inter–node Scaling

Fig. 2. Advective equation execution time for the linear case (1x1x16, 1x16x1, 16x1x1)

the application’s performance on a native linux kernel setup. In the second and
third bar we plot the Xen case, with the BRIDGED and IOV configurations
respectively.

This figure raises some interesting issues: (i) in the IOV case, the application
execution time is almost half the time of the BRIDGED case for the inter-
node communication pattern and its performance achieves 63% of the NATIVE
case; (ii) there is significant performance degradation in the case of IOV in
intra-node communication. In this case, the optimized configuration seems to
be the BRIDGED case. An alternative, would be to provide a shared memory
mechanism across VMs, as presented in [9]; (iii) the speed-up obtained using IOV
techniques (Figure 2(a)) compared to the BRIDGED case is not proportional to
the bandwidth measured with micro-benchmarks.

To gain further insight on the scalability of the advective application when
adding cores, we deployed the application using 2 . . . 16 cores. To provide a base-
line we deployed the application in a 4-node cluster of machines identical to H0,1

(32 proc) using the inter-node placement pattern. Figure 3(a) presents the com-
putation time and total execution time vs. the number of cores for the NATIVE
and the BRIDGED case.

In general, it is important to note that the computation time is almost the
same for all cases. Moreover, we observe that in the NATIVE case the com-
munication part of the execution time becomes noticeable over 16 cores. This
performance degradation appears in the Virtualized environment as well, and
can be attributed to application characteristics. Since we are interested in the
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virtualization overheads on the communication part of the execution, we can
study its behavior using 16 cores without loss of generality.

In the BRIDGED case, the application’s performance starts to degrade when
we add more than 8 cores. Since computation time remains the same in both
cases, this degradation is due to the communication overhead associated with
the Xen bridge mechanism. We also plot the total execution time of the IOV
case (the computation time appears to be the same as in the NATIVE case). We
observe a significant performance improvement with IOV due to optimizations
in the network layers. Direct data paths allow messages to traverse the network,
bypassing the hypervisor or the privileged guest. IOV’s performance is nearly
80% of the NATIVE case.

Figure 2(c) presents the execution time breakdown for the {XxY xZ} =
{2 . . .16x1x1} process distribution using the inter–node communication pattern.
In the BRIDGED case (2nd bar), the negative scaling factor as we add cores to
the application is due to the communication part of the execution (light part);
the computation part (dark part) remains constant. On the other hand, the IOV
case follows the scaling pattern of the NATIVE case, with a constant overhead
due to virtualized communication layers.

Based on Figure 1, we can also examine the application’s behavior when
customizing the number of communication (inter– or intra–node) messages. The
total number of MPI operations per iteration between 16 processes is 15. Thus,
according to the placement pattern (Figure 1): in case a, all MPI operations
traverse the network, so the inter–node communication mechanism is the only
means of data exchange (15/15 = 100%); in case b, only one MPI operation
crosses the network, so the intra–node communication is dominant (1/15 ≈ 6%);
in case c, there are 7 inter-node messages, leading in a hybrid model, which is
the usual communication pattern in a native cluster of SMPs (7/15 ≈ 46%). We
plot the speedup of the IOV case over the BRIDGED case vs. the percentage
of inter–node messages when distributing dimension X , Y or Z across all 16
processes in Figure 3(b). We observe that when 50% of MPI operations traverse
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the network, IOV outperforms the BRIDGED case by at least 40%. The only
case where one should choose the BRIDGED case, is when network operations
are lower than 20% of all MPI operations (for example Figure 1 case (b)).

4 Discussion and Related Work

In virtualized environments, the basic building blocks of the system (i.e. CPUs,
memory and I/O devices) are multiplexed by the hypervisor in a secure, isolat-
ed and flexible manner. Different network configurations raise some interesting
issues:

Xen Networking: Using I/O Virtualization techniques, our application out-
performs the generic case. Nonetheless: (i) IOV requires specialized hardware,
specific software support and its capabilities are often bound by hardware con-
straints; (ii) SR/MR-IOV is currently implemented for ethernet adapters, en-
forcing all communication libraries to stack their protocols above TCP/IP and
ethernet.

HPC applications in clusters of VMs: As shown in Section 3, the computa-
tion part of the application’s execution time in Xen is the same compared to
the NATIVE case either in the BRIDGED or in the IOV mode; the overhead
associated with the virtual environment is solely due to the communication part
of the execution. Thus, by utilizing a direct optimized data path, the application
achieves nearly 88% of the NATIVE case when all MPI operations traverse the
network and 70% of the NATIVE case when only one process communicates over
the network (Figure 1 for the communication pattern and Figure 2 for the total
execution time, cases (a) and (b) respectively).

Several research papers [6,7], have analyzed Xen’s performance. In [6] the
authors investigate the overheads imposed by the Xen hypervisor using various
linux kernel versions and they conclude that the perceived significant overheads
are unwarranted. Huang et al. [9] design an inter-VM, intra-node communica-
tion library, implement it on top of a popular MPI library and evaluate its
performance. They show that a VM-aware MPI library, in conjunction with
VMM-bypass data paths [3] imposes very little overhead to the execution of
HPC applications in VM environments.

5 Conclusions and Future Work

We have presented preliminary performance evaluation results of a real scientific
application running in a cluster of Xen VMs. Our work demonstrates the need for
profiling application behavior prior to deploying HPC applications in virtualized
environments. We explore alternative data paths for network communication
between HPC applications that run on clusters of VMs. Specifically, we have
shown that for a given parallel HPC application, its communication pattern has
to be examined before placing processes in VMs We should also note that the
computation part of the application execution is not altered when migrating to a
VM environment. These results show that HPC applications can be executed in
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VM environments with very little overhead, provided that their communication
pattern is examined and that all parallel processes are distributed in a way that
data flow through the optimum ad-hoc data path (direct or indirect). We plan
on evaluating message passing using shared memory techniques when processes
co-exist in VM containers. Our agenda also consists of evaluating higher level
frameworks for application parallelism based on MapReduce and its extensions
in VM execution environments.
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Abstract. Virtualization has opened an exciting and powerful way to experiment
and evaluate complex distributed systems. In this paper we describe the experi-
ences and lessons learned from building a distributed operator CDN consisting
of 260+ virtual machine nodes in a six blade server unit. This provided us with a
flexible platform to analyze a caching architecture we were developing. We also
discuss the impact of virtual networking and virtual software routers on hardware
resources.

1 Introduction

When faced with the task to design, implement and evaluate a complex distributed
system with lots of advanced networking, and at your disposal are only very restricted
manpower, a tight budget and hardware limited to a handful of servers in a rack, what
can you do? That is one question this paper tries to answer and as will be shown a good
part of the answer is centered on judicious use of virtualization.

The computer networks of operators, enterprises or other large organizations are
today highly complex infrastructures.The introduction of Content Delivery Networks
(CDNs) in operator networks [1] [2] is a good illustration of this evolution. A CDN
is a system of strategically placed nodes in a network with copies of data requested
by the end users of that network. The CDN logic redirects end user requests to CDN
nodes with the appropriate copy satisfying some predefined optimization criteria. Com-
mon optimization criteria include higher bandwidth, lower latency and jitter from an
end user perspective and lower traffic, higher availability, reduced traffic fluctuations in
the operator network as well avoiding the bottleneck and higher transports costs at the
origin server [8].

CDN development, experimentation and deployment encompass a wide range of is-
sues spanning from understanding the pros and cons of different caching strategies,
development of mechanisms and algorithms for content delivery, cache selection, re-
quest redirection and content migration, choosing placement and size of caches taking
into account network topologies and traffic patterns. All of these aspects have impact
on the performance of the system and the network it operates in.

Experimentation with systems like a CDN in operational networks is often not ac-
ceptable since bad configurations or unstable beta version functionality may jeopar-
dize these business-critical infrastructures. Building a scaled down mirror infrastructure
based on real hardware may be too costly or, for budget reasons, will be too small to

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 673–680, 2011.
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be realistic and useful. Global testbeds like PlanetLab [7] and VINI [4] offer interesting
alternatives in this regard. However, these testbeds are shared resources where utiliza-
tion can vary greatly, the topology of available nodes may not suit the system to be
evaluated or experimented with and testbed nodes may not be able to host the needed
functionality. For these reasons simulators like OPNET, OMNET++ have thus far often
been the only practical alternative. But this approach has inherent weaknesses such as
that a model rather than the real system is evaluated and that good simulations models
may be lacking for critical pieces of the system (e.g., “closed” vendor equipment).

Advances in hypervisors and virtual network appliances like Open vSwitch [3] have
opened a promising middle way [6] [11] [5] [10] between pure hardware testbeds and
simulators. The rest of the paper reports on our experiences when exploring this avenue,
by having built a distributed network operator CDN with 260+ nodes in a purely virtual
environment on six blade server unit. An exercise that pushed the limits of virtualization
quite beyond what is typically the case in server consolidation.

2 An Operator Network with CDN Functionality

For the operator CDN study we created a network topology with distinct core and ac-
cess networks, to resemble ISP networks of today.Figure 1 shows this system topology
comprising the 260+ virtual nodes. It contains identical access networks that are in-
terconnected via a core network of IP routers.In total there were 36 access networks
and the core network consisted of 12 core routers. Being a distributed architecture,the
CDN functionality was introduced to nodes placed in the access networks. They con-
tained nodes for caching,cache control logic and emulating end users. There was also
an infrastructure cluster containing DHCP,DNS and NFS servers.

A-block

C-block

Infrastructure nodes

Core router
Access router

clientgenerators

Caching 
logic

cache

switch

A block(s)

A block(s)

A block(s)

Fig. 1. Core and access networks with the A and C-block templates
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3 Creating and Orchestrating a Virtual System

To manually create a virtual replica of complex systems like an operator deployed
CDN comprising several hundreds of interconnected nodes is very impractical. The
sheer number of nodes and the amount of configuration needed requires a way to auto-
mate such a process. We therefore resorted to an approach that lends itself to scripting,
namely, identifying structurally recurring blocks in our system topology that can be
replicated and customized.

3.1 Leveraging Structure for Automation: Network Lego Blocks

We utilized the structure present in our network to create what we call templates. It con-
sists of a set of nodes (with associated VM images) and has a topology (utilizing one or
more virtual switches). The template also has a control script which can instantiate and
connect the virtual nodes and switches as per the defined topology. Thus the template
acts as a kind of a basic Lego block for the virtual replica to be created.

We created two such templates, one for the access network (called A-block) and
another aggregate one for the network core called C-block. A naming convention was
used which enabled the template control scripts to interconnect nodes to create the right
topology. Each node name embedded an identifier specifying which core, access and
subnet block it belonged to.

3.2 Creation and Configuration of Nodes and Connectivity

The Lego blocks that can be created from the templates only provide generic VM nodes.
They can in a way be viewed as the “stem cells” of the system. To become a CDN these
nodes need to assume the appropriate functionality in the right location in the topology.
We now describe how this process was automated.

Creation of virtual network and nodes. The first phase involves creation of the virtual
nodes and network topology. We used two basic node types in the system. One was
a virtual router node and the other was a generic node. The router node used the Vy-
atta open source distribution with all the routing packages. Configuration files were
pushed out to the router nodes manually after topology creation. The generic node was
a customized Linux image based on the Ubuntu 7.10 release. It was stripped of all un-
necessary packages to reduce image size and memory consumption. It was also patched
with appropriate run time environments necessary for the CDN modules and digital cer-
tificates for password-less ssh logins for remote management. The generic node later
transforms into a specialized CDN node during the startup phase.

Automated IP configuration. The second phase is for nodes to establish network con-
nectivity. Each CDN nodes when it configures its networking, requests an IP Address
using DHCP (i.e., broadcasting on the locally connected LAN). Both the access and
the core routers are setup to enable DHCP relay so that the requests reach the DHCP
server in the infrastructure cluster. The DHCP server matches the node using its MAC
address, and looks up its IP address assigned in its IP address plan. This IP address is
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sent back as a DHCP IP offer via the same relays. The offer also contains the default
gateway, netmask and importantly the host name.

Node metamorphosis. Once the node has obtained network connectivity and has a host-
name, it can begin the process to transform itself into a custom CDN node. It mounts
an exported NFS volume as a local directory. The exported NFS volume contains vari-
ous program binaries and other configuration information. Using its hostname as input,
the node initiates a startup script which resolves which services and programs need to
be launched for that node from the exported NFS volume. Once these programs are
launched, the generic node is transformed into a specialized CDN node in the network,
ready to accept test scenarios delivered over the virtual network.

4 Testbed and System Experimentation

The methods and procedures described in the previous section were used to instantiate
the virtual CDN system on a hardware platform with virtualization support. It consisted
of one single GEM (Generic Ericsson Magazine) unit; an Ericsson x86 prototype blade
system. Each blade server employed an Intel Xeon Quad Core CPU running at 2.13GHz
and had 24GB of RAM. The used GEM unit was equipped with six such blades and two
gigabit Ethernet backplanes for internal chassis switching.

There was no storage in the blade servers or in the chassis. However, there were
onboard flash disks on each blade server where VMware ESXi 3.5, bare metal, full
virtualization hypervisors were installed. Virtual machines were instead stored on a
separate iSCSI server (an HP Proliant DL180G5) running OpenFiler 2.2. VMware’s
Virtual Center management software and Perl API were used for the blade system and
virtualization management.

4.1 Test Scenarios Control, Measurements and Visualization

Apart from having an automated process to create and instantiate the CDN system with
its virtualized environment, a convenient way to experiment with such a large system
is also desirable. To do this we developed experiment-conduction, measurement and
visualization enablers and embedded them in the nodes of the system. This meant that
once the system was started, no additional configurations steps were needed to perform
experiments.

System test scenarios were controlled and distributed from a node in the infrastruc-
ture nodes group to all the client request generators. These scenarios consisted of user
media consumption profiles mapped to areas. Areas consisted of one or more access
networks. Scenarios and caching logic could be changed with the click of a button.

Measurement tools were developed for collecting information about the network. One
measured transit traffic across the core routers in the system and another one, the total
download traffic at the client locations. Each node periodically collected this information
and sent it to a centralized measurement node for aggregation, analysis and display.

A generic visualization tool was created capable of displaying network topology and
arbitrary information (like measurement data and statistics) coupled to nodes and links.
In the CDN study this was used to visualize in real-time the status of the client request
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generators and the caches. It could show correlations between traffic and cache contents
thus giving insights that could later be studied in detail offline. The ability to visually ob-
serve the system proved very useful to get an intuitive understanding of system behavior.
It also enabled quicker verification of the created topology and experiment configuration.

5 Performance of Networking in Hypervisors

Understanding the performance and limitations of the underlying virtualization machin-
ery is important to make a sound deployment (in terms of utilization and balance) of
the VM nodes across the physical hardware cluster. For that reason a series of measure-
ments using simple topologies were performed, in particular to understand achievable
throughput and the requirements put by virtual networking (routers and switches) on
the hardware. Those measurements were done using a single blade server.

5.1 Relation Between Virtual Networking and CPU Resources

The purpose of these measurements was to understand how the performance of concur-
rently communicating VMs impacts and are impacted by CPU load. Another purpose
was to investigate how fairly the hypervisor schedules VMs and to benchmark the blade
server capacity.

One to ten independent (i.e., not interconnected) links were carrying TCP traffic
between one to ten pairs of virtual machines using the Netperf tool. A set of independent
virtual machines with load generators were used to consume CPU cycles on the blade
server but without generating any network traffic.

Each link pair consisted of two virtual nodes directly connected using a virtual
switch. Both nodes used Ubuntu 8.04 with VMware tools installed and had no caps
on their virtual CPUs. The separate load generators had similar Ubuntu installations but
had no network connections. Each of these load generators was configured to create a
constant CPU load of 350 MHz. This number was chosen to be able to increase the load
in steps without consuming all CPU cycles at once.

All measurements were initiated by giving the following command to the client node
of the links.

netperf -H 10.0.1.3 -l 60 -c -C -t TCP STREAM

The measurement commands were sent from a separate control node (another Ubuntu
VM) to the server nodes using multicast. This made sure all links measurements started
simultaneously when more than one link was measured. The measurement was done
starting with one link and increasing sequentially up to ten links. With each scenario, 0
to 20 load generators were added in steps of 5 giving a total of 40 measurements.

Fig. 2 (a) shows the result for 1-10 links when no load generators were used. Each
individual link has its own color to show the TCP throughput distribution between the
links. With one link, the figure reveals that the total throughput is about 1900 Mbps
and with the two parallel and independent links it rises to about 3300 Mbps. The total
throughput then drops to about 2200 Mbps when yet a third parallel and independent
link is added. This observed behavior can be readily explained in terms of the under-
lying physical four cores CPU on the blade. The number of VMs in the one, two and
three link scenarios is two, four and six, respectively.
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Fig. 2. (a) & (b) TCP throughput for varying numbers of independent server-client pairs

When instantiated, these VMs are mapped by the hypervisor onto the physical cores
and in the one and two link cases, both the server and the sink nodes can be allocated
their own core. With the used hardware, hypervisor and software configuration the sin-
gle link pair server is able to achieve the throughput of 1900 Mbps. The two link pairs
together do not quite achieve the double of that (3800 Mbps) even though all VMs
can be mapped to separate cores, thus revealing a kind of “concurrency” related perfor-
mance loss of 3800 - 3300 = 500 Mbps. With the addition of the third link, there are less
physical cores (four) than VMs (six). This results in a more pronounced performance
drop which can be explained by the increased scheduling of VMs across the cores. As
more links, and thus more VMs, are added, the performance reduces further due to
scheduling cost. There are thus two distinct modes with clearly differing behavior, one
where VMs can be allocated their own core and one where multiplexing is needed.

The histogram in Figure 2(a) also shows that the scheduling of VMs performed by
the hypervisor used has good fairness properties. All links have about the same amount
of network traffic which gracefully degrades equally as the number of links is increased.
This is very important since scheduling unbalances or in the worst case, starvation of
VMs, will introduce bias in experiments and lead to misleading results.

Figure 2(b) shows the result for similar measurements but with a varying number of
non-networked load generator VMs added to the system. For readability, only the total
traffic for each measurement is shown. Again, there are two modes in the curves. The
uppermost curve, corresponding to the case with zero load generators, is the same as
the top of the bars in the Figure 2(a) histogram. As expected, with every increase in
load from the load generators, a corresponding discrete drop in aggregate throughput
follows. What can also be observed is that the throughput only drops slowly as the
number of parallel links increases. With 40 virtual nodes running (20 non-networked
load generators and 20 server and sink nodes) the aggregate throughput is slightly less
than 1000 Mbps, some 500 Mbps lower than with no load generator case.
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5.2 Performance of Virtual Routing

This measurement was done to investigate performance of virtual software routers. We
used the Vyatta open source router (version 4.0). Maximum lossless throughput, la-
tency, and host and guest CPU load was measured with two different setups. The first
used a single Vyatta router. The second setup used five routers connected in series,
R1 → R2 → ... → R5. The interfaces of the router were connected to front panel
connectors on the blade server via which an IXIA traffic generator was used to generate
and measure UDP traffic of 1500 byte packet size. Figure 3 show the results from these
measurements.
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Fig. 3. (a) & (b) CPU load, packet loss and latency vs. injected traffic. 5 router path

In the single router case the achievable throughput was limited by a single core to
slightly less than 200Mbps. Near that point delay and packet loss increase noticeably.
For the case with multiple routers, until CPU saturation all routers show similar for-
warding rates at each CPU usage. After CPU saturation, around 25 Mbps on each router,
packet losses (measured at the egress port of the blade) starts happening. A likely expla-
nation for the seemingly disproportionate spread in CPU load from this point onwards
is that packet losses are concentrated to the routers near the ingress side. As a con-
sequence, R5 will have less incoming packets that R4, which in turn will have less
incoming packets than R3, etc.

6 Lessons Learnt and Conclusion

When starting the project it was assumed that available memory would be a major is-
sue in creating a system with a very large number of virtual nodes. Instead the CPU
consumption of the virtual routers limited the maximum number of nodes and the max-
imum throughput of the virtual network. Studies like [9] [11] performed using the Xen
hypervisor show a similiar observation. There are efforts like [12] to improve inter-VM
networking performance. Other studies [11] [5] have argued on the benefits of using
a container based virtualization approach that exhibits a higher network performance
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though sacrificing transparency. We also observed that the bandwidth of a link would
vary considerably depending on the momentarily available host CPU. But given enough
CPU, the virtual links can attain high levels of performance but under heavy load the
performance falls considerably, though in a fair manner.

By leveraging specific characteristics of the application, in our study the asymmet-
ric distribution of load in a globally distributed CDN, large system topologies can be
supported through reliance on statistical multiplexing. This enabled us to scale our net-
work beyond available physical resources, while at the same time ensuring even and
full utilization of our blades.

Generation and configuration of a system with 260+ virtual nodes proved to be a
non-trivial task even though setting up each individual node is not that complicated.
The approach to handle the complexity was to exploit structure in the network and sys-
tem topology.The overall experience is that with even a fairly small server cluster and a
state-of-the-art hypervisor, a useful virtual environment can be created for experimen-
tation and evaluation of complex systems of application and networking nodes.
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Abstract. Elasticity is an important feature in cloud computing envi-
ronments. This feature allows a Virtual Machine to adapt resource allo-
cation according to the nature of its workload. Until now, most memory
elasticity implementations require human intervention. The implemen-
tation of memory elasticity is not very straightforward, due to old Op-
erating System concepts; in general an Operating System assumes that
all installed memory will be static and will not increase or decrease until
the next shutdown. This paper compares two techniques for the imple-
mentation of memory elasticity, one based on the concept of Exponen-
tial Moving Average and the other based on Page Faults. To compare
these modes of implementation, a method to measure allocation efficiency
based on the space-time product was used. With an Exponential Moving
Average, memory could be used more efficiently. When Page Faults were
used as the main criteria to allocate or remove memory, the performance
improved when compared to the Exponential Moving Average technique.

Keywords: Resource Management, Memory Management, Virtual
Machines, Memory Elasticity.

1 Introduction

Resource elasticity is a new term that became popular with Cloud Computing.
This term is a reference to the ability of resources to be removed or allocated
according to current workload. The main advantage of this feature is more ef-
ficient use of resources. Elasticity can be implemented for any computational
resource, like CPU cycles, I/O subsystems and memory. However, of the three,
memory elasticity is more difficult to implement, due to old Operating System
(OS) concepts.

To confront this problem, virtualization technology vendors have designed
very innovative techniques, like Balloon Driver [16] and Memory Hashing [16]
[4], to outline OS limitations. Moreover, implementation of virtualization in the
x86 platform is not a simple affair; actually it requires considerable effort, for
example, Paravirtualization [18], Binary Translation [3] and Virtualization at
the processor level [15].
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The Virtualization concept is not new; it goes back to the 1970s [17], and it was
briefly very popular with industries and research centers. However, during 1980s
and 1990s more powerful computers and multitask OS became popular and Vir-
tualization was practically consigned to little more than a footnote in the history
books [14]. Now virtualization is being used as a means to making another old
concept, known as The Computer as a Public Utility, feasible again [13].

This paper discusses the main issues in implementing memory elasticity and
then presents two techniques to address these issues. The first is based on Page
Faults, and the second is based on the Exponential Moving Average (EMA)
concept. Both mechanisms have been implemented in Xen [5]. To compare the
techniques, two benchmarks (one CPU bound and the other I/O bound) were
used. Two analyses were carried out, one based on benchmark performance, and
the other based on how accurately the memory was allocated and removed from
Virtual Machines (VM).

This paper is organized as follows: in Section 2, we discuss the main issues
concerning Memory Elasticity. In Section 3, the two techniques used to address
the issues, as well as their implementation, are described. Methodology and
Results are detailed in Section 4, and Section 5 contains our conclusions.

2 Memory Elasticity

Elasticity can be understood as the ability to adapt any given resource to a
current workload, thus avoiding resource wastage. Basically, any resource can
be elastic, but the effort to implement this feature can increase substantially,
depending on the resource. This paper is focused on memory resources and com-
pares two techniques to address this issue. When discussing resource elasticity,
there are several issues that must be taken into account when designing an elas-
ticity mechanism:

– To identify when a resource is scarce;
– To quantify the resource requirements of the system;
– To identify when and how much of a resource can be removed from the

system without affecting its performance;

Addressing these problems is not very straightforward, and it is more complex
when the resource being managed is memory. With memory we encounter dif-
ficulties with regards to old concepts of OS design. Since OS were designed [8],
the premise has been that all available memory can be taken up by the OS and
it will all be under the latters control. This has been effective up until now, but
with the advent of virtualization and now cloud computing, these concepts must
be revised.

Memory resources have become a bottleneck to improving virtualization tech-
niques [12] and, contrary to CPU cycles, memory management implemented in
OS cannot be ported to VMM. The VMM CPU scheduler is not that different
from a CPU scheduler implemented in OS; there are obviously several peculiar-
ities, but essentially it is the same concept.
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Both techniques were developed by VMWare [16], and are now used in other
VMMs [5] and even in the current Linux Kernel [4]. Balloon Driver is a mech-
anism that forces the OS algorithms to identify memory pages that can be
swapped out (in other words, pages that the OS will probably not use) and
used by VMM for something else.

3 Memory Elasticity Implementation

Both Memory Elasticity strategies were developed in Xen VMM. To fulfill the
requirement of memory adaptation, the Balloon Driver mechanism present in
Xen was used. According to this criterion, the prototype basically removes or
adds the memory requested by the VM. The prototype was developed in C and
all the communication between VM and Domain 0 (Dom0 a special VM in Xen
with administration privileges) was carried out through a shared memory region
called XenStore [6]. Finally, to adjust the memory allocation, a C library called
Libvirt was used [2].

The prototypes were developed in a client/server scheme. The client side,
running in VM has the objective of monitoring the VM and, according to the
criterion, it calculates the amount of memory to request or to free up. Inside the
Dom0, on the server side, the daemon receives the request from the client, checks
whether it is possible to allocate the memory requested, and finally allocates or
removes the amount of memory sent by the client.

3.1 Memory Elasticity Based on Page Faults

The first criterion used to design the prototype was the Page Fault rate. The
premise is that if any given system has a high page fault rate, the current amount
of memory will probably be insufficient to accommodate the workload imposed
on the system. With this in mind, the client side of the prototype monitored the
Major Page Fault Rate.

The daemon running inside the VM monitored the page fault rate from the last
second. After three samples, it checked whether the page faults were increasing
or decreasing. The three samples were used to avoid situations like cold starts
[9] (when a new process starts, an increase in page faults is common, due to the
allocation of pages to the new process).

After a memory requirement is detected, the amount of memory required is
calculated as a function of the page fault rate of the previous one second. The
amount of memory requested is the size of one page multiplied by the page fault
rate of the second. This process was repeated until the page fault rate decreased.

The process of returning memory to the VMM is a little different. To remove
some memory, the daemon needs to be sure that the VM is stable. One way
to fulfill this requirement is to measure other aspects of the system, like CPU
Usage and Load, IO wait and other items. The thresholds for these metrics are
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set by the administrator (for this paper, it was collected when the VM was idle).
When the prototype detected a situation where the VM was able to return some
memory, it was returned in slices of 5-10% of the current VM allocation. If the
VM has the majority of the real memory allocated (more or equal to 51%), it is
removed in slices of 10%; otherwise the slices amount to 5%.

3.2 Memory Elasticity Based on the Exponential Moving Average

The second criterion used to add or remove memory from a VM is based on the
Exponential Moving Average (EMA) concept. The use of EMAs is very common
in the financial market [11] to detect the price tendency of the share value of any
given publically traded company. The main purpose of an EMA is to calculate
the average of the last few samples and not the average of all samples. According
to the amount of samples, the average can be more or less sensitive to changes
(in a few samples, the EMA is more sensitive to peaks).

There are two kinds of Moving Average, the simplest form is just the arith-
metic mean from the last few samples, whilst the second form, more complex,
gives greater weight to the most recent values of the samples. This is called
Exponential Moving Average, and it is the one used in this study.

The prototype monitored free memory every second. To identify the tenden-
cies, two EMAs with different amounts of samples were used, one from the last
5 seconds and other from the last 25 seconds (these values were chosen empir-
ically). To identify memory requirements, the crossing points (see Figure 1) of
the EMA for the last 5 seconds (EMA5) and for the last 25 seconds (EMA25)
were used, along with the direction of the cross. When EMA5 is increasing and
crosses EMA25 (in an upwards direction), it constitutes an increasing tendency;
otherwise there is a decreasing tendency of memory utilization and memory can
be thus removed from the VM.

Fig. 1. Memory Tendency Identification, the arrows indicate the direction of crossing



A Survey Analysis of Memory Elasticity Techniques 685

4 Methodology and Results

To evaluate both strategies, two benchmarks were used. The first was the Linux
Kernel compilation (CPU Bond) and the second was the DBench (IO Bond)
[1]. Benchmarks were run 15 times on two Virtual Machines at the same time
(to ensure that VMs were competing for memory), and the average and the
student-t distribution were calculated with 95% confidence. Both VMs have the
same hardware configuration (1 VCPU and 30GB of HD capacity). In order to
compare the memory elasticity mechanism, two metrics were used:

– Benchmark Performance Evaluation (compilation time and throughput);
– Memory Allocation Efficiency (in MBxSec);

4.1 Performance Evaluation

The first method used to compare both strategies was the performance evalua-
tion. It is important to verify the impact of the strategy on the environment. As
can be seen in Figure 2, the performance of both strategies was statistically the
same for the DBench, although the EMA strategy was a little bit better than
the Page Fault strategy (higher values are more desirable).

When comparing the performance for Kernel Compilation (lower values are
more desirable), the page fault strategy is more advantageous. The main reasons
for this difference were the memory usage patterns of each benchmark. With

Fig. 2. Performance Comparison between strategies
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Linux, the free memory was used as a buffer for IO operations and hence the
DBench consumes all the available memory [10]. While the page fault strategy
waits for page faults to occur in order to add some memory, the EMA strategy
could detect an increase in the tendency of memory usage and add memory
before it runs out.

For Kernel compilation, a limited amount of memory was used during execu-
tion, but it was possible to note a high page fault rate peak during a specific
part of the compilation. This is the part of the compilation process that will
differentiate a fast execution from a slow one. Due to a higher page fault rate in
this part of the execution, the strategy based on page faults adds more memory
and can decrease the page fault rate substantially. As a consequence, compilation
time decreases as well.

4.2 Memory Allocation Efficiency

Memory Allocation Efficiency is based on the difference between the memory
actually used and the memory available for use during the benchmark execution
period. With this metric it is possible to evaluate the amount of memory being
wasted and how effective the strategy is in detecting memory requirements.

This metric is known as Space-Time Product [7] and basically it is the dif-
ference between the area representing the amount of available memory and the
area representing the used memory. The area of the graph can be calculated by
the total amount of memory used and allocated by the prototype over the time
spent by the benchmark for execution.

When the difference between available memory and used memory is near zero,
efficiency tends to improve because the strategy involves allocating exactly what
the VM actually needs. But it is important to note that a difference equal to
zero is not good because in this situation, the OS can enter a trashing state
or the strategy will not be able to identify the actual memory requirements.
A satisfactory difference between used memory and total available memory is
about 10% [19].

As can be seen in Figure 3, the EMA strategy is more efficient in allocating
memory in almost all situations. Another point to observe is that the EMA can
balance the memory between two VMs evenly (the values of MV01 and MV02
are almost the same, with a low level of oscillation). On the other hand, the page
fault strategy is exaggerated in some situations (like in DBench running with
150 clients configured in VM01). In these cases, a lot of memory is wasted.

These differences are due to short term predictions of the EMA. With this
strategy the prototype could predict that memory usage was increasing and it
allocated the necessary amount of memory before the VM actually required it,
thus not needing to allocate a large chunk of memory under emergency condi-
tions. The page fault strategy can identify the VM requirements only when it is
too late and the utilization peaks can be no longer handled.



A Survey Analysis of Memory Elasticity Techniques 687

Fig. 3. Memory Allocation Efficiency of Benchmarks

5 Conclusions

This paper compared two strategies for designing memory elasticity in virtual
environments. The first strategy is based on the Major Page Fault Rate and
the second is based on the Exponential Moving Average concept. To compare
both strategies, two benchmarks were used, one CPU intensive (Linux Kernel
compilation) and other IO intensive (DBench that simulates a Samba Server).
After the benchmarks were executed, the comparison was based on two metrics,
firstly on performance and secondly on memory allocation efficiency, based on
the Space-Time Product.

The Page Fault strategy exhibited better performance in the Linux Kernel
compilation, due to its behavior regarding page fault peaks. For DBench, the
page fault strategy is not as efficient, because of its difficulty in detecting the
end of the peak. Memory wastage in the page fault strategy was very high when
compared with the EMA strategy for both benchmarks.

The EMA strategy proved to be more efficient in identifying and managing
memory for both benchmarks, and its performance was a little better than page
faults for DBench and lower than the Kernel Compilation. The main difficulty,
for both strategies, was the overhead imposed by Balloon Driver. Balloon Driver
forces the OS to swap pages and the high-frequency activation and deactivation
of this mechanism can cause higher overheads for the VM. The design of a more
accurate mechanism for predicting memory usage and easing the Balloon Driver
overhead will be evaluated in a future study.
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Abstract. Vistas, a generalisation of the object capability concept, are
presented which provide a scalable, distributed means for specifying and
controlling the interaction rights that entities have in open distributed
systems such as the Cloud. The operations for combining Vistas and
examples of their use are discussed. Finally, a natural development of
vistas to full behavioural control is outlined.

1 Introduction

The Cloud is perhaps the most genuinely ‘open’ computing model so far pro-
posed. Active and passive entities — agents, services and resources — can ap-
pear within a cloud at any time and start interacting with existing entities. They
may also create further entities and thus set up new interactions. All this oc-
curs without any prior knowledge of their behaviours. It is important, therefore,
to provide means for constraining this anarchic situation to conform to limited
behavioural specifications in order for sensible computation to occur. Since the
general Cloud model is decentralised and non-hierarchical, any appropriate be-
havioural constraint system must scale well over manifold entities and platforms,
be dynamically adaptable, and be available to the entities and not merely part
of the infrastructure.

The conventional way of limiting behaviour in computational environments is
the access control list which prescribes, for each group of entities in the environ-
ment, some subset of a fixed collection of permissions. However, even in simple
monolithic systems, this mechanism has many disadvantages; in open distributed
environments the problems with ACLs mean that they become untenable.

The alternative to the ACL approach – capabilities — was first described over
four decades ago [3] in the context of hardware-mediated protection mechanisms.
Over time this concept has been applied to more software-oriented areas, such as
operating systems [9], languages [8], and semantics [2]. The simplicity of imple-
mentation of the ACL technique, and its choice as the access control mechanism
for the most popular operating systems, has meant that it has overshadowed the
capability approach. However, with the advent of persistent and open distributed
systems the specific advantages of the capability idea are becoming increasingly
clear. A recent trend in the use of capabilities has been to apply them in a theo-
retical context, as an adjunct to type systems [4,5]. This view tends to relegate
them to a formal ‘trick’ which can be applied in early stages and then erased: a
kind of catalyst that facilitates the analysis and then disappears.
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There are, of course, advantages in this approach: if the information is erased
before runtime, then there are no runtime resources required to support it. How-
ever, in spite of these positive aspects of the static view of capabilities, this paper
takes the view that there is potential for significant gains in a dynamic approach
— capabilities should be first-class, reified runtime objects which can thus be
exploited in a variety of Cloud applications. These generalised capabilities are
called vistas, which introduce a first level of behavioural specification. A richer
level of behavioural control is provided by a further extension, treaties, which
are outlined in §5.

2 Vistas: Constraining Rights

For the purposes of this paper, a simple generic relational view of objects will
be taken [1,6]: objects consist of a number of names which entities can use in
ways that are appropriate to the value referred to by the name. Then a visibility
is defined to consist of an object reference and one of its names.

A vista is a collection of visibilities, which define the entitlements that a holder
of the vista has to interact with the objects to which the vista applies. Thus, a
vista makes visible to its holder a subset of its objects’ names.

Vistas constitute a generalisation of conventional object-capabilities: a vista
can encapsulate visibilities for multiple objects. How this affects the meaning of
vista expressions will be clarified in later sections, but the semantics of vistas
are identical to conventional object references when they contain visibilities for
a unique object.

2.1 Vista Operations

Vistas represent the objects in the system: as far as the entities are concerned,
the vistas are the objects, in the same way that object references in an OO
system can be seen to be the objects. Consequently an expression of the form
γ.foo is defined to be the selection of objects called foo that are made visible
by the vista γ. This is directly analogous to an expression such as o.foo in an
OO language which represents the object foo in o’s scope.

However, the main novelty of the vista model is that γ might contain several
visibilities that make foo available, but on different objects. Consequently, any
language that is using vistas must be able to handle multiple selections. Some
implications of this are dealt with below (§2.1). The crucial point, though, is that
a multiple selection does not prescribe what the result of using that selection is
to be — it simply states that the members of that selection are available to be
used.

Vista Constructors By analogy to the object-capability model, vistas are
obtained by an entity in one of four ways [8]:
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– Initiality. Some vistas will be available to an entity on its creation.
– Parenthood. If an entity creates an object, then it has the full vista for the

new object. This vista will be the only way of referring to the new object.
– Endowment. When an entity creates an object, it may pass to the object any

vistas that it holds. In an OO system this would correspond to passing the
vistas as arguments to the object’s constructor.

– Introduction. An entity can pass vistas to another by sending a message
containing them, or by returning them as a result. In a non-distributed OO
system this would correspond to calling a method on the other entity with the
vista as an argument. Alternatively, this could be a ‘physical’ communication
between distributed entities.

To these means of obtaining capabilities, the vista model adds:

– Combination. An entity can use various constructors on the vistas that it
holds to produce new vistas. It is these operations that are the focus of this
paper.

There are two fundamental principles in vista-enabled systems which are direct
analogues of the basic requirements for capabilities:

Requirement 1. Visibilities cannot be increased.

Given the set of visibilities for an object implied by the vistas that an entity
holds, it must not be possible for the entity to generate a vista that has more
visibilities for that object. Consequently, any vista operations must conform,
directly or indirectly, to this requirement.

The second principle is a consequence of Requirement 1:

Requirement 2. Vistas cannot be forged.

That is, there can be no way to create a valid vista other than by parenthood, or
the constructors given below. Ensuring this is an implementational issue, that is
essentially cryptological: a bit string representing a vista can neither be altered
nor created by an entity to form a valid vista. Although it might be objected
that how unforgeability is to be achieved is crucial to the viability of the vista
concept, it is beyond the scope of this paper. The position taken here is that
either unforgeability is solvable, or it isn’t. If it were proved to be unsolvable,
then the viability of vistas would be the least troublesome of consequences: the
ramifications for all security would be much more severe. However, this property
of vistas is important to bear in mind when considering their use.

The basic four vista operations are:
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Sum α + β is a vista representing all the visibilities of α and β.

Product α × β is a vista that represents ordered pairs of visibilities from
α and β.

Difference α − N ,
α − β

is a vista containing the visibilities of α without those,
if any, referring to the names contained in the set N .
Since a vista can be regarded as a set of visibilities, this
operation is naturally overloaded to allow a vista as its
second argument.

Intersection α ∧ β,
α ∧ N

is the vista containing visibilities, if any, that are com-
mon to α and β. This is extended to work with a set of
names N as in the case of difference.

The safety of these constructors, in the sense of Requirement 1, is guaranteed
since an entity can only form a combination if it already holds the vistas involved
in the operation.

Interpretations. The definitions of the constructors are given purely in terms
of their meanings as vistas. Since the intention is that vistas should be used
in the generic open-system Cloud context, it is necessary to define them inde-
pendently of any particular language or computational model. However, there
are issues involved in the interpretation of vistas that impact on the properties
of the virtual machines that Clouds support. For instance, both difference and
intersection require that entities be able to discover, at run-time, the names as-
sociated with other entities in the system. The VMs will have to be the sources
of this metadata. Since entities could be written in any language, the use of vista
values within these languages will vary, but they must be consistent with their
definitions given above. This section deals with some of these considerations.

Sum. It is this constructor that gives rise to vistas referring to multiple ob-
jects. Therefore languages must be able to interpret an expression α.f which
results in a set of values.

The ability to handle multiple selections is common in most OO lan-
guages. Although the exact mechanism varies, several procedures can be
applied to reduce the selections to at most one value. For instance at com-
pile time most common OO languages use their class system to distinguish
between multiple values of an expression such as obj.doIt(3). Occasionally
this can’t be done statically and the final selection of the object to be ap-
plied is left until run-time. There is then the possibility that no value can
be selected in which case a run-time exception might result.

However, many other mechanisms for dealing with multiple selections
exist, and not all require reduction to a unique value. For instance, in a
concurrent language it would be possible to handle all members of a multiple
selection simultaneously. Alternatively, a non-deterministic choice of one of
the visibilities could be made: such might be the case in a logic programming
language.
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In order to distinguish between these various ways of dealing with multi-
ple selections languages can provide syntactic features. For instance, a simple
language would only provide expressions of the form vista.name which ex-
pects to evaluate to a unique object, or raise an exception. A multi-cast lan-
guage might provide a .. operator, so that vista..name(params)would ap-
ply each of the values — vistas— of name to the params, and a concurrent lan-
guage could provide a || operator that would cause vista||name(params)
to be evaluated in parallel. These ‘extra’ selection operators could also do
some further type-based filtering of the visibility set based on the supplied
parameters. However, it should be noted that the .. and || operators are
derived versions of the basic . operator, and don’t require a re-interpretation
of the meaning of the vistas involved.

Difference. This is the fundamental visibility-reduction operation, and doesn’t
introduce any new linguistic issues, unlike sum, since the set of objects to
which it applies isn’t increased.

However, it gives rise to an interesting interpretation in terms of a generic
OO view: since the effect of a difference expression is to reduce the visible
members of an object’s interface, it is, in effect, creating the interface for a
new super-class of the original object, and ‘inserting’ this into the object’s
inheritance hierarchy.

Although this observation is of only marginal interest to the user of a
vista-enabled language, it suggests two things: firstly, a way of implementing
vistas in an OO language and, secondly, that the type-system for the VMs
for Clouds need to provide facilities for this form of interface injection.1

Intersection. Intersecting with a set of names is a convenient way to specify a
vista with only a particular set of visibilities: rather than having to subtract,
and thus know, the visibilities that a vista could hold, it’s easier to specify
the ones that are required. In this form it is equivalent to a sum of selections.

Intersecting two vistas is a necessary operation since specifying the com-
mon visibilities would be difficult using a sum-of-selections expression as the
names of the two vistas to be selected would need to accessed first.

Product. This constructor introduces an embryonic behavioural specification.
Since it represents ordered pairs of visibilities, the ‘language neutral’ state-
ment of its interpretation is that α×β makes visible a name from α followed
by a name from β. That is, an application of a visibility from a product vista
involves evaluating both the elements of the pair. The intended semantics is
that they are both evaluated unless the first fails in which case the second
evaluation is abandoned.

Products, therefore, mandate that both elements be evaluated in the or-
der specified. This implies that, as far as the evaluating entity is concerned,
the two evaluations are atomic, in the sense that the entity cannot do any-
thing until their evaluation has completed. However, there is no implication

1 The term interface injection often refers to adding methods to an object — here we
require their removal. The former usage is, in essence, dynamic sub-classing, whereas
vistas require dynamic super-classing.
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of atomicity in the evaluation of the pair itself — other events in the Cloud
can (and probably will) occur ‘in between’ their execution. One consequence
of this is that there is no way for the executing entity to process the result
of the first evaluation of the product before the second is evaluated. This re-
quires a different behavioural model, treaties (§5). However, even the limited
restriction on behaviour that products provide gives useful control facilities
as shown in the examples in §3.

In order to use product vistas, languages need to provide means for
supplying pairs of arguments in applications of a product vista. This could
be done by means of an API method or, more satisfactorily, syntax such
as vista.<f,g>(<fs, gs>), which would select the <f,g> visibility from
vista and then evaluate o1.f(fs) followed by o2.g(gs), where o1, o2 are
the sets of objects whose f and g names are exposed.

3 Use-Case

There are many situations which benefit from the use of vistas— due to space
limitations a single example will be given here which illustrates the main oper-
ations.

Security Proxy — Introducing Sum and Product Vistas. Alice will be
going to University, so her parents set up a college tuition account for her. They
wish there to be some control over how it is operated: they can deposit and
withdraw funds and view the current balance; Alice is to be able to deposit
and see the balance, but not withdraw. So they could request a bank object
to create an account object — both are, of course, represented by vistas. They
could then merely give Alice a restricted version of the account vista: (account∧
{deposit, balance}).

On reflection, however, they want to add a layer of security to the account by
requiring Alice to supply login details before using the account’s balance facili-
ties, while still allowing her unrestricted use of deposit. To do this they create a
guard object which exposes a setlogin method. This method takes parameters
which set a valid user’s login details, and returns a vista for a function which
takes details, checks them against the guard ’s stored user details, returns if they
are valid, or raises an exception if not. The vista that is sent to Alice is:

alice = (guard.setlogin(aliceDetails) × account.balance) + account.deposit

allowing her to evaluate expressions such as alice.〈aliceDetails, balance〉
and alice.deposit(5.96) but both alice.〈aliceDetails, withdraw(100)〉 and
alice.withdraw(100) would be illegal.

Now assume that Alice enrols at her chosen college. Her parents would be
able to supply the college finance office with a vista:

fees = guard.setlogin(uniDetails) × (account ∧ {withdraw, deposit})
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which prevents them from seeing Alice’s balance while being able to take the
fees, and deposit Alice’s earnings as a conference helper in the vacation.

Finally, Alice can send her account vista to friends and family so that they can
deposit useful birthday presents. Since the deposit name is not protected by
the guard, there would be no requirement for others to login in order to increase
Alice’s account.

4 Related Work

As mentioned in the Introduction, capabilities have been studied for the past 35
years, although there has been an increase in interest in their particular benefits
relatively recently. This is probably due to the steady increase in the importance
of distributed systems research, and internet-hosted systems in particular.

The work most closely related to that reported here has been in the general
area of Coordination Languages and systems, particularly those deriving from
the tuple-space model. Work by Iain Merrick using the idea of ‘scopes’ [7] showed
the power of combination operations on capability-like objects, and derived in
part from earlier work on the use of attributes in coordination.

The μKLAIM language and computational model has always had capabilities
at its heart: the most recent work is very close to the proposals in this paper [4],
in that the research uses ‘pure’ capabilities to supply control on process mobility
and resource protection. The novel feature in that work is the amalgamation of
static, compile-time, analysis of capabilities, with the necessity of dynamic run-
time, capability processing. The former is possible since all processes are written
in μKLAIM, and so are amenable to a consistent static analysis. However, the
non-determinism inherent in both the tuple-space model, and the openness of the
system mean that there are ‘residual’ capabilities that cannot be analysed away
statically and thus must be processed by the middleware at run-time. Unlike
vistas, their model does not see capabilities as first-class, expressible values, nor
does their work address the problems of heterogeneous open systems such as
clouds.

5 Future Work

Vistas provide a rich and subtle vocabulary of expressions to control interactions
of entities in a Cloud, but in many situations they seem not to be powerful enough
to express useful behavioural constraints. Take the bank account example in §3:
it would be more natural to require Alice to login only once and then access the
{deposit, balance} names arbitrarily often. However, this is not possible with
vistas since there is no way of expressing the fact that she is in a ‘logged in’
state. WE are extending the vista concept to treaties which will allow a much
wider range of behavioural control, due to the introduction of state.

There are many ways in which behaviours may be specified: the simplest,
and the one that we are currently working with, is as a finite-state machine,
or regular expression, where the state transitions are labelled by the names in
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the object’s interface. A vista can be seen as a treaty having a single state with
reflexive transitions labelled with the names in the vista’s visibilities.

The concept of treaties gives significant advantages for behaviour control. For
instance, due to their management of state, treaties are able to define actions
with a fixed number of applications, and behaviours with ‘end-states’, and so
garbage-collection can be predictive, which cannot be achieved using standard
techniques in a heterogeneous, open, distributed Cloud. Treaties, due to the
complexity of state-handling, give rise to significant challenges in implementation
and distribution, but the potential benefits are great. Future work will be carried
out to investigate the functionality and scalability of treaties.
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Máhr, Tamás 571
Mallmann, Daniel 279
Malony, Allen D. 493
Mångs, Jan-Erik 673
Marazzina, Daniele 447
Marino, Zelda 447, 471
Mart́ınez, José A. 201
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