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Preface

Since the early 1990s, when synchronization of chaotic communication systems 
became a popular research subject, a vast number of scientific papers have been 
published. However, most of today’s books on chaotic communication systems 
deal exclusively with the systems where perfect synchronization is assumed, an 
assumption which separates theoretical from practical, real world, systems. 

This book is the first of its kind dealing exclusively with the synchronization 
techniques for chaotic communication systems. It describes a number of novel 
robust synchronization techniques for single and multi-user chaotic communica-
tion systems published in world’s leading journals in the area. In particular, it pre-
sents a solution to the problem of robust chaotic synchronization by presenting the 
first fully synchronized, highly secure, chaos based DS-CDMA system. The book 
fills a gap in the existing literature where a number of books exist that deal with 
chaos and chaotic communications but not with synchronization of chaotic com-
munication systems. It also acts as a bridge between communication system theory 
and chaotic synchronization by carefully explaining the two concepts and demon-
strating how they link into chaotic communication systems. The book also  
presents a detailed literature review on the topic of synchronization of chaotic 
communication systems. Furthermore, it presents the literature review on the gen-
eral topic of chaotic synchronization and how those ideas led to the application of 
chaotic signals to secure chaotic communication systems. It therefore, in addition 
to presenting the state of the art systems, also presents a detailed history of chaotic 
communication systems.  

Summary 

In this book, sequence synchronization techniques for single and multiple-access 
chaotic communication systems are investigated. In particular, the techniques of 
sequence synchronization studied include those based on the principles of Pecora-
Carroll (PC) chaotic synchronization and those based on the principles of tradi-
tional direct sequence code division multiple access (DS-CDMA) synchronization. 

Based on the principles of PC chaotic synchronization, novel approaches to 
chaotic synchronization are proposed and used to design new single-user chaotic 
communication systems. These new chaotic communication systems include those 
based on the chaotic parameter modulation (CPM) and the initial condition modu-
lation (ICM) techniques. Furthermore, the principles of time division multiplexing 
(TDM) are used to obtain the CPM and ICM based multi-user TDM systems. The 
performance of all of the proposed and the existing systems is evaluated in terms 
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of the bit error rate (BER) in the additive white Gaussian noise (AWGN) and the 
Rayleigh fading channels. Furthermore, it is shown that by implementing certain 
linear and wavelet filters, one can improve the BER performance of the ICM 
based systems in the AWGN channel. 

The sequence synchronization of chaotic communication systems based on the 
DS-CDMA principles is then proposed. Both phases of the sequence synchroniza-
tion process, namely the code acquisition and the code tracking, are proposed and 
investigated. It is shown that in terms of BER the chaos based DS-CDMA systems 
outperform the CPM and ICM based TDM systems for low number of users in the 
AWGN channel and vice-versa for large number of users. In addition, it is found 
that the chaos based DS-CDMA systems outperform the ICM and CPM based 
TDM systems in the Rayleigh fading channel. However, in the Rayleigh fading 

channel, they all fail to satisfy the adopted highest acceptable BER level of 310− .
In addition to the CPM and ICM based TDM systems and the chaos based DS-

CDMA systems, the chaos based TDM system with the DS-CDMA correlator 
receiver is also proposed. It is shown that this system outperforms the CPM and 
ICM based TDM systems for any number of users. However, the system is outper-
formed by the chaos based DS-CDMA systems for low number of users and vice-
versa for large number of users.

In order to mutually exploit the DS-CDMA and TDM benefits, a generalized 
chaos based TDM communication system with more than one DS-CDMA user per 
TDM branch is proposed and evaluated in the AWGN channel. In this way, the 
bandwidth efficiency of a DS-CDMA system is combined with the inter-user in-
terference immunity of a TDM system, to allow for an increased number of users 
in the system while improving the BER performance. 

In general, it is shown that the multi-user chaotic communication systems based 
on the acquisition and tracking synchronization scheme, are more robust to 
AWGN and Rayleigh fading than those based on the principles of chaotic syn-
chronization. 

Finally, the security of the proposed, as well as of the existing chaotic commu-
nication systems, is evaluated in terms of the newly proposed measures termed the 
‘Bit Power Parameter Spectrum’ (BPPS) and the ‘Bit Power Initial Condition 
Spectrum’ (BPICS). Using these measures, it is shown that chaotic communica-
tion systems can be optimized in terms of security. 

Outline 

The book is organized into eleven chapters and an appendix. Chapter 1 gives a 
thorough introduction to multi-user communication systems and presents methods 
for their modeling and performance evaluation. It states the motivation of the book 
by demonstrating the importance of synchronization among the transmitter and the 
receiver. In chapter 2, chaotic signals and their synchronization methods within 
secure communication systems are introduced. Chapters 3 and 4 investigate syn-
chronization of flows and maps, respectively, using tools from nonlinear control 
theory and propose novel methods of achieving synchronization. In chapter 5, a 



Preface IX

novel mathematical analysis for predicting master-slave synchronization of cha-
otic systems is proposed and demonstrated on three different systems. Chapter 6 
proposes a number of single user chaotic communications systems based on the 
synchronization techniques of chapters 3-5. In chapter 7, the traditional DS-
CDMA synchronization technique is implemented within the multi-user chaos 
based DS-CDMA (CBDS-CDMA) communication scheme proposing three highly 
secure and robust PRBS and chaotic pilot based CBDS-CDMA systems. Chapter 8 
proposes a chaos based TDM multi-user system based on the DS-CDMA syn-
chronization technique while chapter 9 proposes the chaotic synchronization based 
multi-user TDM systems. Chapter 10 proposes techniques for the optimization of 
security within chaotic communication systems. In chapter 11, the conclusions and 
the future directions are outlined. Finally, the methods of de-noising chaotic 
communication systems and thus improving their BER performance are proposed 
and investigated in the appendix. 

Acknowledgements 

I would firstly like to acknowledge the help of Dr. Charles Unsworth. Without his 
positive attitude toward any problem, this book, which is based on my PhD thesis, 
would not have been possible. 

Furthermore, I would like to acknowledge the financial support provided to me 
by the Faculty of Engineering Guaranteed Financial Support Scheme (GFSS), the 
Graduate Research Fund (GRF) and the Department of Electrical and Computer 
Engineering of the University of Auckland, New Zealand. 

Finally, I would like to acknowledge the help and support of my family, my 
mother Vera, father Zelimir and brother Vedran. Synchronization with them was a 
necessary requirement for the completion of this book! 



Contents

1   Introduction to Multi-user Mobile Communication Systems ...................... 1 
     1.1   Frequency Division Multiple Access (FDMA).......................................... 2 
     1.2   Time Division Multiple Access (TDMA).................................................. 3 
     1.3   Code Division Multiple Access (CDMA).................................................. 5 

    1.3.1   Frequency Hopped Multiple Access (FHMA)................................ 5 
    1.3.2   Direct Sequence Code Division Multiple Access  (DS-CDMA).... 6 

     1.4   The Hybrid Systems .................................................................................. 9 
    1.4.1   The Hybrid FDMA/CDMA (FD/CDMA) System........................ 10 
    1.4.2   The Hybrid TDMA/CDMA (TD/CDMA) System ....................... 10 

     1.5   The Channel............................................................................................. 11 
    1.5.1   Additive White Gaussian Noise (AWGN) ................................... 11 
    1.5.2   Rayleigh Flat Fading .................................................................... 13 

     1.6   The System Performance Analysis Using the Bit Error Rate (BER)....... 15 
     1.7   The Synchronization Problem.................................................................. 22 
     1.8   Conclusion and Book Organization ......................................................... 28 
     References ....................................................................................................... 28 

2   Chaotic Signals and Their Use in Secure Communications ....................... 31 
     2.1   Chaotic Systems....................................................................................... 31 

    2.1.1   Chaotic Flows............................................................................... 33 
    2.1.2   Chaotic Maps................................................................................ 35 

     2.2   Lyapunov Exponents ............................................................................... 37 
     2.3   Application of Chaos to Communications ............................................... 39 

    2.3.1   Chaotic Communication Systems Based on the Principles of  
   Chaotic Synchronization............................................................... 40 

    2.3.2   Chaotic Communication Systems Based on the DS-CDMA  
                    Principle ....................................................................................... 41 

     2.4   Noise Reduction within Chaotic Communication Systems ..................... 44 
     2.5   Conclusion ............................................................................................... 45 
     References ....................................................................................................... 46 

3   Chaotic Synchronization, Conditional Lyapunov Exponents and  
     Lyapunov’s Direct Method ........................................................................... 49 
     3.1   Pecora-Carroll Chaotic Synchronization Method .................................... 50 
     3.2   Conditional Lyapunov Exponents and the Pecora-Carroll Chaotic  
             Synchronization ....................................................................................... 52 
     3.3   Lyapunov’s Direct Method and the Pecora-Carroll Chaotic  
             Synchronization ....................................................................................... 56 



XII Contents 

     3.4   Synchronization of Chaotic Flows via Lyapunov’s Direct Method......... 59 
    3.4.1   The Linear Feedback Rigid Body Motion (LFRBM) Chaotic  

                    System.......................................................................................... 60 
    3.4.2   The Rabinovich-Fabrikant Chaotic System.................................. 68 

     3.5   Conclusion ............................................................................................... 75 
     References ....................................................................................................... 75 

4   Chaotic Synchronization of Maps ................................................................ 79 
     4.1   A Design Procedure for the Synchronization of Chaotic Maps ............... 80 

     4.2   Synchronization of the 1ℜ  Cubic Map Master-Slave  Systems ............. 82 

     4.3   Synchronization of the 2ℜ  Tinkerbell Map Master-Slave Systems ....... 87 

     4.4   Synchronization of the Lorenz 3ℜ  Chaotic Map  Master-Slave  
             Systems.................................................................................................... 93 
     4.5   Conclusion ............................................................................................. 101 
     References ..................................................................................................... 101 

5   A Novel Mathematical Analysis for Predicting Master-Slave Chaotic  
     Synchronization ........................................................................................... 103 
     5.1   Synchronization and Asymptotic Stability of the Simplest  
             Piecewise Linear Master-Slave Chaotic Flow ....................................... 104 

    5.1.1   Master-Slave System with the Master x Signal Driving............. 104 
    5.1.2   Master-Slave System with the Master y Signal Driving............. 106 
    5.1.3   Master-Slave System with the Master z Signal Driving............. 107 
    5.1.4   Summary of the Synchronization Properties .............................. 108 

     5.2   The Simplest Quadratic Master-Slave Chaotic Flow............................. 108 
    5.2.1   Master-Slave System with the Master z Signal Driving............. 109 
    5.2.2   Master-Slave System with the Master y Signal Driving............. 112 
    5.2.3   Master-Slave System with the Master x Signal Driving............. 116 
    5.2.4   Summary of the Synchronization Properties .............................. 118 

     5.3   The Ueda Master-Slave Chaotic System ............................................... 118 
    5.3.1   Master-Slave System with the Master x Signal Driving............. 118 
    5.3.2   Master-Slave System with the Master y Signal Driving............. 130 
    5.3.3   Master-Slave System with the Master z Signal Driving............. 130 
    5.3.4   Summary of the Synchronization Properties .............................. 131 

     5.4   Conclusion ............................................................................................. 131 
     References ..................................................................................................... 132 

6   Application of Chaotic Synchronization to Secure Communications ..... 135 
     6.1   Chaotic Masking.................................................................................... 136 

    6.1.1   Principles of Chaotic Masking ................................................... 136 
    6.1.2   Chaotic Masking within the Lorenz Master-Slave System......... 137 

     6.2   Chaotic Modulation ............................................................................... 139 
    6.2.1   Chaotic Parameter Modulation................................................... 139 
               6.2.1.1   Principles of Chaotic Parameter Modulation................ 139 



Contents XIII

               6.2.1.2   Chaotic Parameter Modulation within the Lorenz  
                                  Master-Slave System.................................................... 140 

    6.2.2   General Approach to Chaotic Parameter Modulation................. 143 
               6.2.2.1   Principles of the General Approach to Chaotic  

                                  Parameter  Modulation................................................. 143 
               6.2.2.2   Chaotic Parameter Modulation within the Ueda  

                                  Master-Slave System.................................................... 144 
               6.2.2.3   Chaotic Parameter Modulation within the Cubic  

                                  Map Master-Slave System ........................................... 150 
    6.2.3   Other Forms of Chaotic Modulation........................................... 153 

     6.3   Initial Condition Modulation ................................................................. 155 
    6.3.1   Principles of Initial Condition Modulation................................. 155 
    6.3.2   Initial Condition Modulation within the Ueda Master-Slave  

 Chaotic System........................................................................... 156 
    6.3.3   The Communication System Implementing the Simplest  

                    Quadratic Master-Slave Chaotic Flow ....................................... 160 
    6.3.4   The Communication System Implementing the Simplest  

                    Piecewise Linear Master-Slave Chaotic Flow............................ 163 
    6.3.5   Discussion .................................................................................. 165 

     6.4   Performance Evaluation in the Presence of Noise ................................. 166 
     6.5   Conclusion ............................................................................................. 167 
     References ..................................................................................................... 168 

7   A Robust Sequence Synchronization Unit for Multi-user Chaos Based  
     DS-CDMA Communication Systems ......................................................... 171         
     7.1   The Chaotic Communication System with the Synchronization Unit ... 175 
     7.2   The Code Acquisition ............................................................................ 177 

    7.2.1   Theoretical Model of the System................................................ 177 
    7.2.2   Theoretical Upper Bound on the Probability of Detection ......... 181 
    7.2.3   Empirical Evaluation of the Probability of False Alarm and  

                    the Probability of Detection ....................................................... 186 
    7.2.4   Theoretical and Numerical Simulation Results .......................... 189 

     7.3   Code Tracking with a PRBS Pilot Signal .............................................. 193 
    7.3.1   Theoretical Model of the System................................................ 194 
    7.3.2   Performance Evaluation of the System with AWGN and  

                  Interuser Interferences ................................................................ 201 
    7.3.3   Comparison and Discussion in AWGN Channel........................ 204 
    7.3.4   Performance Evaluation of the System in a Rayleigh Fading  

             Channel with AWGN and Interuser Interferences...................... 206 
     7.4   Code Tracking with a Chaotic Pilot Signal............................................ 208 

    7.4.1   Theoretical Model of the System................................................ 209 
    7.4.2   BER System Performance within AWGN and Rayleigh  

                 Fading Channels ......................................................................... 215 
     7.5   Conclusion ............................................................................................. 221 
     References ..................................................................................................... 223 



XIV Contents 

8   Chaos Based Multi-user TDM Communication System........................... 229 
8.1   Chaos Based TDM Communication System with Perfect Sequence  

             Synchronization Assumed ..................................................................... 231 
    8.1.1   Chaos Based TDM Communication System .............................. 231 
    8.1.2   Performance Comparison of the Chaos Based TDM to the  

          Chaos Based DS-CDMA System in an AWGN Channel ........... 234 
    8.1.3   Performance of the Chaos Based TDM System in a Rayleigh  

                    Fading Channel .......................................................................... 236 
    8.1.4   Performance Comparison of the Chaos Based TDM to the  
           Chaos Based DS-CDMA System in a Rayleigh Fading  
          Channel ....................................................................................... 237 

8.2   Chaos Based TDM Communication System without Assuming  
             Perfect Sequence Synchronization......................................................... 239 

    8.2.1  Chaos Based TDM Communication System with the  
                   Sequence Synchronization Unit .................................................. 239 

    8.2.2   Performance Comparison of the Chaos Based TDM to  
           the Chaos Based DS-CDMA System in an AWGN  

  Channel without Assuming Perfect Sequence  
         Synchronization .......................................................................... 243 

    8.2.3   Performance of the Chaos Based TDM System in a  
                  Rayleigh Fading Channel without Assuming Perfect  
                  Sequence Synchronization.......................................................... 244 

    8.2.4   Performance Comparison of the Chaos Based TDM to  
                  the Chaos Based DS-CDMA System in a Rayleigh Fading  

        Channel without Assuming Perfect Sequence  
                Synchronization .......................................................................... 246 

8.3   Generalized Chaos Based TDM Communication System without  
             Assuming Perfect Sequence Synchronization........................................ 247 

    8.3.1   Generalized Chaos Based TDM Communication System  
                    with the Sequence Synchronization Unit ................................... 248 

    8.3.2   Performance Comparison of the Generalized Chaos Based  
    TDM to the Chaos Based DS-CDMA System in an  
   AWGN Channel without Assuming Perfect Sequence  

        Synchronization .......................................................................... 252 
8.4   Conclusion ............................................................................................. 254 

     References ..................................................................................................... 255 

9   Chaotic Synchronization Based Multi-user TDM Communication  
     Systems ......................................................................................................... 257 

9.1   The CPM Based Multi-user TDM Communication System .................. 258 
    9.1.1   The Principles of the CPM Based Multi-user TDM  

                Communication System.............................................................. 259 
    9.1.2   The Lorenz CPM Based TDM Communication System ............ 260 
    9.1.3   The Ueda CPM Based TDM Communication System ............... 267 



Contents XV

    9.1.4   Performance Comparison of the Lorenz CPM Based to Ueda  
                  CPM Based TDM Chaotic Communication System in an  
                  AWGN Channel.......................................................................... 272 

    9.1.5   Performance Comparison of the CPM Based TDM Systems  
                    to the Chaos Based DS-CDMA System of Chapter 7 and the  
                    Chaos Based TDM System of Chapter 8 ................................... 273 
9.2   The ICM Based Multi-user TDM Communication System................... 277 

    9.2.1   The Principles of the ICM Based Multi-user TDM  
                    Communication System ............................................................. 277 

    9.2.2   The Ueda ICM Based TDM Communication System ................ 278 
    9.2.3   The Ueda ICM Based TDM Communication System with  

                  Only x Transmitted..................................................................... 286 
    9.2.4   Performance Comparison of the Ueda ICM Based TDM  

         Chaotic Communication Systems in an AWGN Channel........... 291 
    9.2.5   Performance Comparison of the ICM Based TDM Systems to  

                    the CPM Based TDM Systems of Section 9.1 ........................... 292 
    9.2.6   Performance Comparison of the ICM Based TDM Systems to 

                  the Chaos Based DS-CDMA of Chapter 7 and Chaos Based  
                  TDM System of Chapter 8.......................................................... 293 
9.3   Conclusion ............................................................................................. 295 

     References ..................................................................................................... 296 

10   Novel Bit Power Spectrum Measures for Improved Security in  
       Chaotic Communication Systems............................................................. 299 

10.1   Communication System Based on the Synchronization of Burgers’  
                 Map Master-Slave Chaotic System.................................................... 301 

10.2   Bit Power Security Issues of Chaotic Communication Systems........ 306 
        10.2.1   Security Evaluation of the Burgers’ Map CPM Based  

                     Chaotic Communication System .......................................... 306 
        10.2.2   Security Evaluation of the Lorenz CPM Based Chaotic  
                     Communication System........................................................ 310 
        10.2.3   Security Evaluation of the Ueda ICM Based Chaotic  

                   Communication System with Only x Transmitted ............... 311 
10.3   Conclusion ......................................................................................... 314 
References ................................................................................................... 315 

11   Conclusions and Future Directions .......................................................... 317 
11.1   Conclusions........................................................................................ 317 
11.2   Future Directions ............................................................................... 324 

Appendix 

A1   Haar Wavelet Transform...................................................................... 325 
A2   Daubechies Wavelet Domain............................................................... 326 
A3   Hard-Thresholding in the Wavelet Domain......................................... 327 



XVI Contents 

A4   Application to Communications .......................................................... 327 
      A4.1   Overview of the Ueda ICM Based Chaotic Communication  
                 System ...................................................................................... 327 
      A4.2   Low Complexity Ueda ICM Based Chaotic  
                 Communication System with Only x Transmitted ................... 328 
      A4.3   Running Average FIR Filtering ................................................ 331 
      A4.4   Filtering in the Haar Wavelet Domain...................................... 332 
      A4.5   Filtering in the Daubechies Wavelet Domain........................... 333 
      A4.6   Results and Discussions............................................................ 333 

A5   Conclusion ........................................................................................... 334 
References ................................................................................................... 334 

Index .................................................................................................................. 337 



 

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 1– 30. 
springerlink.com                                        © Springer-Verlag Berlin Heidelberg 2011 

Chapter 1 
Introduction to Multi-user Mobile 
Communication Systems  

In this chapter, the brief history and the main categories of the multi-user (multiple 
access) mobile communication systems, as well as some of their hybrids, are in-
troduced. Furthermore, the disturbances encountered within the physical transmis-
sion channel, such as noise and fading, are presented. The concept of the bit error 
rate (BER), which is used to measure the effects of the channel imperfections on 
the transmitted signal, is then outlined. The procedure of evaluating the bit error 
rate is then demonstrated when noise and fading are present in the channel.  
Finally, the motivation of the book is stated by demonstrating the importance of 
synchronization among the transmitter and the receiver through its effect on the 
BER performance of the system. 

The three basic categories of multiple access techniques include those based on 
frequency division multiplexing (FDM), time division multiplexing (TDM) and 
code division multiplexing (CDM), that is, frequency division multiple access 
(FDMA), time division multiple access (TDMA) and code division multiple ac-
cess (CDMA). These three basic techniques can be combined to form hybrid sys-
tems such as the combined frequency division and time division (FD/TDMA), 
combined frequency division and code division (FD/CDMA), combined time divi-
sion and code division (TD/CDMA) and the combined frequency division, time 
division, and code division (FD/TD/CDMA) [1,2]. Figure 1.1 illustrates the three 
basic techniques and their relationship to the aforementioned hybrids. The hybrids 
can then be further subdivided [1]. 

The concept of mobile communication systems for general use by the public 
was introduced in the 1960s and 1970s by AT&T Bell Laboratories [3]. This con-
cept was based on dividing the operational area or coverage zone of the system 
into small cells which could be reused by different users of the system. Accord-
ingly, such systems have also been termed cellular systems. Due to the lack of 
technology these mobile cellular systems could not be developed until the late 
1970s. The world’s first cellular system was implemented in Japan in 1979 by the 
Nippon Telephone and Telegraph company (NTT) [3]. In 1983, Ameritech of 
Chicago U.S.A., deployed the first U.S. cellular system, termed the Advanced 
Mobile Phone System (AMPS) [3]. NTT and AMPS used the concepts of FDMA 
to transfer information among users. In the U.S.A., AMPS was gradually phased  
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Fig. 1.1 The three basic categories of multiple access communication techniques and their 
hybrids 

 
out by the introduction of the U.S. Digital Cellular (USDC) system in 1991. 
USDC implemented TDMA principles and offered three times the capacity of the 
AMPS. A cellular system based on the principles of CDMA was developed by 
Qualcomm, Inc. in 1993. It became standardized by the Telecommunications In-
dustry Association (TIA) as an Interim Standard known as IS-95 [3]. The opera-
tion and the characteristics of the IS-95 mobile system have been described in 
detail in [2]. Today, the most advanced CDMA based mobile communication sys-
tems implement technologies such as CDMA2000 and Wideband CDMA  
(W-CDMA) [2]. 

1.1   Frequency Division Multiple Access (FDMA) 

In FDMA, individual frequency bands, or channels, are assigned to individual 
users during the transmission time. The frequency axis of a certain available 
bandwidth is divided up into M discrete channels, as illustrated in Figure 1.2 [3]. 

Such division of the available bandwidth, denoted by tB , allows each user in 

the system to be allocated a unique frequency band. The available frequency  
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band 3 

Available Bandwidth (Bt) 

Bc 
Bguard  

 
Fig. 1.2 The available frequency bands (channels) within an FDMA communication system 
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bands are assigned on demand to users who request service. Once a user has been 
assigned the particular frequency band, no other user can access this frequency 
band for the duration of the call. Furthermore, any frequency band which is not in 
use cannot be used by other users to increase or share capacity [3]. An example of 
a system which implements FDMA is the Advanced Mobile Phone System 
(AMPS) [3]. In order to allow for the simultaneous two way conversation among 
the users of the system, (ie. to be able to talk and listen simultaneously) AMPS 
implements frequency division duplexing (FDD). In this scheme a user is allo-
cated a frequency band which is separated from the other user’s frequency band 
by 45 MHz. Furthermore, in AMPS the guard bands separating the frequency 
bands (channels) from each other typically have a value of kHz10=guardB , while 

the channel bandwidth is equal to kHz30=cB . 

1.2   Time Division Multiple Access (TDMA) 

Before describing a typical TDMA system, the general principles of time division 
multiplexing (TDM) are first explained. Time division multiplexing involves sam-
pling a number of different waveforms and interleaving them into a single wave-
form before transmission across the channel takes place. Within the channel,  
disturbances such as noise and fading, affect the transmitted signal. The input sig-
nals are sampled and interleaved by employing a multiplexing switch which sam-
ples the input signals sequentially, as illustrated in Figure 1.3a. The multiplexing 
switch samples each of the M message signals m(t) from 1 to M. Once all the sig-
nals are sampled, the switch returns back to sample the user 1 again and repeat the 
cycle. A waveform c(t), produced by sampling some arbitrary message signals 
m(t), is shown in Figure 1.3b. The received signal r(t) is decomposed into the 
separate signals using a de-multiplexing switch. 

)(1 tm  

)(tr  

)(tmM

∧

)(1 tm
∧

 

)(tc  

Transmitter 

Receiver 

Channel 

)(1 tr  

)(trM  
)(tmM  

Multiplexing 
switch 

De-multiplexing 
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Fig. 1.3a A simplified block diagram showing the TDM principle. The message signals 

m(t) are transmitted across the channel and are received in the form of )(tm
∧

. 
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Fig. 1.3b The sampling procedure of some arbitrary message signals m(t) and the transmit-
ted signal c(t). 

 
Provided that all the input signals have the same message bandwidth W, the in-

puts should be multiplexed at the rate Wfs 2≥ . This results in the time separa-

tion between the successive samples of WfT ss 2/1/1 ≤= . In the TDM system, 

the time interval sT  containing one sample from each input is called a frame [4]. 

The multiplexing and de-multiplexing switches of Figure 1.3a are most often real-
ised using electronic switching [4]. Their synchronization is of crucial importance 
because each sample must be distributed to the correct output at the appropriate 
time. A way of synchronizing the multiplexer and de-multiplexer is to devote one 
time slot per frame to a distinctive marker sample which is known and expected 
by the receiver. The drawback of the synchronization using markers is that an ex-
tra time slot is required per frame to accommodate them. Other synchronization 
methods involve auxiliary pilot tone or the statistical properties of the TDM signal 
itself [4]. 

Furthermore, for different TDM systems the transmitted signal may consist of 
bursts of samples for each user rather than a single sample. The bursts can then be 
ordered into frames with one burst for each active user. 

In a typical TDMA system the users are allocated into M time slots which com-
prise one frame. On top of the time slots, the frame also consists of the preamble 
and trail bits. These are used for the synchronization purposes and to eliminate any 
possible interference among adjacent frames and time slots. They may also be 
used for channel estimation and training of the data equalizer. A particular user is 
allocated a particular time slot. Therefore, each user has access to the channel for 
the duration of a time slot. Furthermore, each time slot contains the information 
bits as well as the trail, synchronization and the guard bits. The composition of a 
TDMA frame is shown in Figure 1.4 [3]. 
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Preamble Trail Bits Information  

Time slot M Time slot 1 Time slot 2 Time slot 3 

Trail Bits Synchron. Bits Information Guard Bits 
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Fig. 1.4 The general representation of one TDMA frame 

 
An example of a system which implements TDMA is the Global System for 

Mobile (GSM) [5,3]. In GSM, each frame consists of eight time slots. Each time 
slot contains 156.25 bits and lasts for 0.577 ms [3]. Furthermore, in each time slot 
there are two traffic bursts of 58 bits of data (information), while the remaining 
40.25 bits are used as trail, synchronization and guard bits. In order to allow for 
the simultaneous two way conversation among users of the system, GSM imple-
ments FDD.  

1.3   Code Division Multiple Access (CDMA) 

Unlike FDMA and TDMA systems, a CDMA system offers a certain level of se-
curity. This is achieved by spreading the spectrum of the message beyond its 
minimum required transmission bandwidth. Therefore, the CDMA system is not 
bandwidth efficient for a single user in the system. However, a CDMA system 
becomes bandwidth efficient in a multi-user environment as the available band-
width can be shared among the users. There are two main kinds of CDMA, that is, 
multi-user spread spectrum communication systems [3]. These are called fre-
quency hopped multiple access (FHMA) and the direct sequence code division 
multiple access (DS-CDMA) systems. 

1.3.1   Frequency Hopped Multiple Access (FHMA) 

In an FHMA system a particular user is constantly assigned different frequency 
bands during the duration of the transmission, as illustrated for a 3 user system in 
Figure 1.5 [6]. 
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Fig. 1.5 A possible frequency hopping pattern within a 3 user FHMA system 

It can be observed from Figure 1.5 that a particular user is assigned a particular 
frequency band for a fixed amount of time, before being allocated a different fre-
quency band. For instance, at the end of time slot 1, user 1 hops from the fre-
quency band 1 into frequency band 3, while at the end of time slot 2 it hops from 
the frequency band 3 into the frequency band 2. The order in which the user is 
“hopped” across the frequency bands is determined by a pseudo random binary 
sequence (PRBS) [6]. Therefore, for the successful communication of the message 
across the channel, both, the transmitting and receiving parties, must have the 
knowledge of the particular PRBS used. This pseudo randomness of the hopping 
pattern provides for the increased security of transmission, as one must know the 
exact initial conditions of the particular PRBS to accurately reproduce it. 

Therefore, a FHMA system can be viewed as a hybrid combination of FDMA 
and TDMA systems [6]. Like a FDMA system, FHMA system has frequency 
bands. However, unlike a FDMA system, FHMA system does not continuously 
transmit the information of one user using a single frequency band, but spreads it 
all over the available bandwidth by hopping between frequency bands. 

1.3.2   Direct Sequence Code Division Multiple Access  
(DS-CDMA) 

In a DS-CDMA system [2] a binary message is multiplied by a particular signal 
whose bandwidth is a few magnitudes larger than the bandwidth of a message. 
This process of multiplication spreads the spectrum of the binary message. There-
fore, the multiplying signal is termed the spreading signal. The spreading signal is 
in general of a pseudo random nature, such as the PRBS. The PRBS time series is 
generated by means of a feedback shift register, as illustrated in Figure 1.6. At the 
start of operation the flip flops of the shift register are initialized to some arbitrary 
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values (initial conditions). At every clock cycle a value in each of the flip flops is 
shifted to the right with the first flip flop being assigned a new value generated by 
the logic unit. In order to generate a pseudo random sequence, the feedbacks into 
the logic unit must be precisely chosen for a given shift register length [6]. 

Thus, due to the pseudo random nature of PRBS time series, spreading intro-
duces security into the system. Each user in the system possesses its own distinct 
PRBS code which is approximately orthogonal to every other PRBS code used to  
spread other message signals. The fundamental property of the PRBS sequences 
generated by the generator of Figure 1.6 is that they are periodic with a maximum  
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Fig. 1.6 The pseudo random binary sequence (PRBS) generator 
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period of 12 −m , where m denotes the number of flip-flops in the shift register. In 
any given period of the maximum length sequence the number of ones always 
exceeds the number of zeros by one. A single point of the PRBS sequence is 

termed a chip and its period is denoted by cT . Therefore, a period of a maximum 

length sequence is equal to ( ) c
m T12 −  seconds.   

The approximately orthogonal nature of the spreading PRBS codes is demon-
strated by low cross correlation of Figure 1.7a. The autocorrelation function of the 
PRBS is presented in Figure 1.7b showing the dominant peak [6]. The length of 
the PRBS used to produce Figures 1.7a and 1.7b is equal to 511 points (chips). In 
Figures 1.7a and 1.7b t denotes the time delay.  Note that the correlation functions 
have been normalized to the peak of the autocorrelation function, that is, to 

12 −m . 
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Fig. 1.7a Cross-correlation of PRBS time 
series 

Fig. 1.7b Autocorrelation of PRBS time 
series. The close up is shown in the top 
right hand corner 

 
The orthogonal property of the spreading signals allows the receiver to decode 

the transmitted message of each of the users by correlating the received signal by 
the local copies of the spreading signals. Figure 1.8 shows the block diagram of a 
DS-CDMA communication system. Within a DS-CDMA system different modu-
lation architectures can be implemented, such as the binary phase shift keying 
(BPSK) [2] and quadrature phase shift keying (QPSK) [2] architectures. In  
Figure 1.8, the most basic architecture, namely BPSK, is shown. 

In Figure 1.8, x(t) denotes the spreading signals and A their amplitudes. The 
spreading signals are multiplied by the binary message signals m(t) and their 
products then summed up to produce the signal c(t) which is transmitted through 
the channel. The received signal r(t) is correlated with the punctual despreading 
codes. The process of correlation involves despreading, that is multiplying, the 
received signal by the locally generated replica of the spreading sequence at  
the receiver and then integrating the product over the bit period. Provided that the 
power of the noise in the system is comparatively low to the power of the signal, 
the correlation value produced at the output of each correlator is positive if the bit 
1 is transmitted and negative if the bit 0 is transmitted. A way of synchronizing the  
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Fig. 1.8 A DS-CDMA communication system, where the bit duration cb LTT =  and L 

denotes the spreading factor, that is, the number of chips representing a single bit 

spreading and despreading sequences is through the process of acquisition and 
tracking [7,8,2,9-16]. The code acquisition [7,2,9,10,13,15,16], or the initial syn-
chronization phase, involves determining the time offset amidst the incoming sig-
nal and the basis function copy at the receiver to within a specified range known 
as the pull-in region of the tracking loop [7,8,2,11,12,14].  Upon the successful 
completion of the acquisition phase, the code tracking phase starts with the fine 
alignment followed by the process of maintaining synchronization of the two sig-
nals. This type of synchronization, where the incoming and the local sequences are 
synchronized, is known as the sequence synchronization and is the primary subject 
of this book. Sequence synchronization may be achieved using techniques other 
than acquisition and tracking, as shown in the subsequent chapters. Furthermore, 
two other types of synchronization are required within a system such as that of 
Figure 1.8. These are known as carrier and clock synchronization and are briefly 
discussed in the last two sections of this chapter.  

An example of a system which implements DS-CDMA is the IS-95 system [2]. 
In order to achieve further spreading, the IS-95 system implements the so called 
Walsh functions which are perfectly orthogonal to each other. The IS-95 system 
implements both the BPSK and QPSK modulation architectures. The bit duration 
can be either 0.1042 ms or 0.0694 ms. In order to allow for the simultaneous two 
way conversation among users of the system, IS-95 implements FDD. 

1.4   The Hybrid Systems 

In this section two hybrid spread spectrum multiple access techniques are de-
scribed. These are the hybrid FDMA/CDMA (FD/CDMA) system and the hybrid 
TDMA/CDMA (TD/CDMA) system. 
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1.4.1   The Hybrid FDMA/CDMA (FD/CDMA) System 

In a FD/CDMA system the wide bandwidth of a DS-CDMA system is divided into 
a number of narrower bandwidths, with each of the narrower bandwidths imple-
menting the DS-CDMA technique. The signals of the narrower bandwidths are 
transmitted in one and only one sub-spectrum. All of the narrow bandwidths are 
assumed equal [17], as shown in Figure 1.9. 

The advantage of the FD/CDMA hybrid system over a wideband DS-CDMA 
system is that the required bandwidth does not need to be contiguous and different 
users can be assigned different narrow bandwidths. 

 

Spectrum of wideband DS-CDMA 

Spectrum of a hybrid FD/CDMA system, composed of 
frequency divided narrowband DS-CDMA systems  

 
Fig. 1.9 Schematic of a spectrum of wideband DS-CDMA system compared to a spectrum 
of a frequency divided narrowband FD/CDMA hybrid system 

1.4.2   The Hybrid TDMA/CDMA (TD/CDMA) System 

In a TDMA/CDMA hybrid system the data of each of the users is spread in a  
DS-CDMA fashion, however, the signals are then delayed in time instead of being 
immediately summed. In this way the interuser interference is eliminated or mini-
mized [18], as compared to a DS-CDMA scheme, as the users’ data is transmitted 
in different time slots. The general block diagram of a hybrid TDMA/CDMA sys-
tem is shown in Figure 1.10. The delay units of Figure 1.10 have a similar func-
tion to that of the multiplexing switch of Figure 1.3 in that they both separate user 
signals in time to avoid interuser interference. A number of different hybrid sys-
tems combining the advantages of TDMA and CDMA schemes exist [19-21]. An 
example of a system which uses the TD/CDMA hybrid, while implementing time 
division duplexing (TDD), is the Universal Mobile Telecommunications System 
(UMTS) [18]. 
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Fig. 1.10 A simplified block diagram showing a TD/CDMA hybrid system. The message 

signals m(t) are transmitted across the channel and are received in the form of )(tm
∧

. 

1.5   The Channel 

In every communications channel noise is always present. Furthermore, other dis-
turbances which cause the transmitted signal to change, such as fading, may also 
be present. In this section, additive white Gaussian noise (AWGN) and Rayleigh 
flat fading are introduced. These two disturbances are used in subsequent chapters 
to model the channel and evaluate the performance of the communication systems. 

1.5.1   Additive White Gaussian Noise (AWGN) 

In most cases, AWGN is used to evaluate the performance of a communication 
system in a noisy channel. This is an idealized form of noise where the term addi-
tive refers to the fact that noise is added directly onto the transmitted signal. The 
term white, denotes the fact that this type of noise is of theoretically infinite 
bandwidth, with power spectral density of: 

 
2

)( o
W

N
fS = ,                            (1.5.1) 

as illustrated in Figure 1.11a. The dimension of the parameter oN  of equation 

1.5.1 is watts per Hertz. oN  is usually referenced to the input stage of the re-

ceiver, and is expressed as: 

 eo kTN = ,                         (1.5.2) 

where k is Boltzmann’s constant and eT  is the equivalent noise temperature of the 

receiver.  
The equivalent noise temperature of a system is defined as ‘the temperature at 

which a noisy resistor has to be maintained such that, by connecting the resistor 
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to the input of a noiseless version of the system, it produces the same available 
noise power at the output of the system as that produced by all the sources of 
noise in the actual system’ [6]. Finally, the term Gaussian refers to the fact that the 
noise time series is of Gaussian distribution, as illustrated in Figure 1.12. Noting 
that the autocorrelation function is obtained by taking the inverse Fourier trans-
form of the power spectral density, it is readily verifiable that the autocorrelation 
function of AWGN is [6]: 

)(
2

)( t
N

tR o
W δ=                      (1.5.3) 

where t is a time delay and )(tδ  denotes the impulse function.  

The autocorrelation function of AWNG is graphically illustrated in Figure 
1.11b. It can be observed from Figure 1.11b that the autocorrelation function of 

AWGN is an impulse function weighed by the factor 2/oN . This implies that 

any two different samples of white noise are uncorrelated regardless of how close 
in time they are taken [6]. 
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Fig. 1.12 The Gaussian distribution of AWGN, where σ  denotes the standard deviation 
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There are different methods which can be used to model AWGN, such as the 
Box-Muller method [22,23], as well as a number of other methods [23]. 

1.5.2   Rayleigh Flat Fading 

Different mechanisms of fading can be present in a mobile channel, such as the 
long term, short term, frequency selective, time selective, and flat fading mecha-
nism [2].  In a flat fading channel [24-27] there are no dominant fading mecha-
nisms, but fading occurs from the random channel fluctuations. In order to  
evaluate the performance of the communication systems in a fading environment 
the Clarke and Gans flat fading model has been developed.  The method of im-
plementing this model has been outlined in [24-26] and used to simulate a  
multipath Rayleigh fading channel. This method is now briefly described. The 
technique used to obtain the simulation of multipath propagation is achieved by 
appropriately shaping the two independent Gaussian low-pass noise sources 
[24,26].  The shaping filter used is given by equation 1.5.4 [24]: 
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 (1.5.4) 

In equation 1.5.4, mf  denotes the maximum Doppler frequency shift caused by 

the movement of the receiver with the respect to the transmitter, and vice versa.  

The cf  denotes the carrier frequency and the rP  denotes the average received 

power of the Rayleigh fading envelope.  The maximum Doppler frequency shift, 

mf , depends on the speed of the receiver, v, relative to the transmitter, as well as 

the carrier frequency cf .  This relation is given by equation 1.5.5: 

 
c

vf
f c

m =                                     (1.5.5) 

where c denotes the speed of light. 
Upon shaping the random Gaussian noise sources the inverse fast Fourier trans-

form (IFFT) is performed on each of the shaped waveforms.  The Rayleigh fading 
envelope is then obtained from the two band limited noise sources, as shown in 
equation 1.5.6 [24]: 
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)()()( trtrtr QIE +=                           (1.5.6) 

In equation 1.5.6, )(trI  and )(trQ  denote the in phase and quadrature compo-

nents of the Rayleigh envelope )(trE . 

In Figure 1.13, the algorithm for the frequency domain implementation of the 
Rayleigh fading envelope at baseband is outlined. It should be noted that the Fou-
rier transform of the Gaussian noise does not exist mathematically and thus most 
often noise and fading generators are modelled in the time domain. However, it is 
also possible by way of [24] to model fading using a frequency domain represena-
tation. The steps used to implement the simulator are now briefly described [24]: 

 
(1) Specify the number of points over which the fading envelope, N, is to be 

produced. 

(2) According to a given v and cf , calculate mf , and thus determine the 

frequency spacing between adjacent spectral lines as 

)1/(2 −=Δ Nff m . 

(3) Generate the frequency vector mm ffff ::Δ−= . 

(4) Produce the positive frequency components of the complex Gaussian line 
spectra by generating a set of N/2 complex random numbers with Gaus-

sian distribution.  Store those in a vector 1pg .  Conjugate the vector 1pg  

and flip the conjugated vector left to right to obtain a vector of negative 

frequency components 1ng . Finally create the vector ],[ 111 pn ggg =  

containing the frequency components of the complex Gaussian line spec-
tra. 

(5) Generate the second set of N/2 complex random numbers with Gaussian 
distribution.  Repeat step 4 to obtain the output of the second Complex 

Gaussian noise source: ],[ 222 pn ggg = , of Figure 1.13. 

(6) Generate the fading spectrum )( fS  of size N, using the components of 

the vector f. 
(7) Take the square root of )( fS  and multiply the square rooted value by 

each of the complex Gaussian line spectra )(1 fg  and )(2 fg . 

(8) Take the IFFT of both products. 
(9) Introduce a 90 degree phase shift into the second product.  The two re-

sulting time domain signals are the in phase, )(trI , and quadrature, 

)(trQ , components of the Rayleigh fading signal )(trE . 
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(10) Obtain the magnitude of )(trI  and )(trQ  signals, square the magni-

tudes, and add them together. Take the root of the sum to obtain the 

Rayleigh fading envelope )(trE . 

(11) Normalize the resulting Rayleigh envelope to 
2

Er  [25].  This results 

in the envelope of the average power of 1W. Finally adjust the average 

power to the required average power rP , by multiplying )(trE  by 

rP .  The final result is the Rayleigh fading envelope, )(trn . 
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Fig. 1.13 The baseband implementation of a Rayleigh fading simulator 
 

 
The impact of flat fading on the transmitted signal is determined by simply 

multiplying the transmitted signal by the fading envelope [24].   

1.6   The System Performance Analysis Using the Bit Error Rate 
(BER) 

In order to analyse the performance of the communication systems an evaluation 
of the average probability of symbol error, or the bit error rate (BER), is often 
used. In this section, the concept of BER is introduced and the method used to 
obtain it described.  

The average probability of symbol error is defined as ‘the probability that the 
reconstructed symbol at the receiver output differs from the transmitted binary 
symbol, on the average’ [6]. The bit error rate of a system is obtained by counting 
the number of incorrectly received bits and dividing this number by the total  
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number of bits transmitted. By incorrectly received bits it is meant that bit 1 was 
received when bit 0 should have been received and vice versa. Therefore, the more 
incorrectly received bits, the higher the bit error rate. When measuring the bit er-
ror rate, it is assumed throughout the book that all the bits in the original binary 
message are of equal importance.  

In every communication system it is the aim of a designer to minimise the bit 
error rate as much as possible. The main causes of incorrectly received bits are the 
channel disturbances, such as noise and fading. Therefore, the bit error rate can be 
reduced, and thus the system optimized, by minimizing the effects of the channel 
disturbances on the transmitted signal. A way of presenting the bit error rate is to 

plot it against the signal energy to noise power spectral density ratio ( ob NE / ). 

A typical shape of the bit error rate curve, when plotted against the ob NE /  ratio, 

resembles a “waterfall” curve [6], as illustrated in Figure 1.14. 
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Fig. 1.14 A typical shape of a BER curve of a communication system plotted against the 

ob NE /  ratio 

It can be observed from Figure 1.14 that the higher the ob NE /  is, the lower 

the BER of a system. When a sufficiently low ob NE /  level is reached, the re-

ceiver can no longer successfully decode the message, resulting in the BER level 
of 0.5. For a system to have a satisfactory performance it is often required that the 
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BER level not exceed 310−  [28,29]. In the example in Figure 1.14, the BER level 

of 310−  is reached when the ob NE /  ratio is equal to 25 dB. 

In order to demonstrate the BER evaluation of a communication system, the 
performance of the simplest form of a binary phase shift keying (BPSK) system, 
shown in Figure 1.15, is evaluated in noisy and Rayleigh fading channels.  
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Fig. 1.15 A bandpass BPSK communication system in a Rayleigh fading and AWGN chan-

nel, where: bb TEA /2=  and )2cos()( tfty cπ=  
 

 
In Figure 1.15, A represents the amplitude of the sinusoidal carrier y(t). The si-

nusoidal carrier is of frequency much higher than that of the message signal and is 
used to up-convert the message signal to a higher frequency for the transmission 
across the channel. Depending on the polarity of the binary message symbol m(t), 
which takes on the values of 1 or -1, the sinusoidal carrier is modulated to produce 
two possible outcomes: 
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where bE  and bT  denote the energy and time duration of one bit, respectively. 

cf  denotes the carrier frequency. 
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Note that equations 1.6.1a and 1.6.1b are orthogonal to each other. It should be 
observed from equations 1.6.1a and 1.6.1b that there is only one basis function of 
unit energy, expressed by equation 1.6.2: 
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In terms of equation 1.6.2, equations 1.6.1a and 1.6.1b can be expressed in the 
form of equations 1.6.3a and 1.6.3b: 

 

 bb TttEts <≤= 0),()( 11 φ                (1.6.3a) 

 

 bb TttEts <≤−= 0),()( 12 φ                (1.6.3b) 

 
In this one-dimensional symbol space, shown in Figure 1.16, the coordinates of 
the message points are represented by equations 1.6.4a and 1.6.4b: 
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Fig. 1.16 The symbol space of the system of Figure 1.15 
 

 
If the received signal point falls in the region Z2 of Figure 1.16, the decision is 

made that bit 0 was sent. Alternatively, the decision is made that bit 1 was sent if 
the received signal point falls in the region Z1.  If, however, bit 0 is sent but the 
received signal point falls in the region Z1, due to the noise in the system, the re-
ceiver will incorrectly decide in favour of bit 1, thus causing an error of first kind.  
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The incorrect decision of second kind is made if bit 1 is sent but the received sig-
nal point falls in the region Z2. In order to optimize the performance of the system 
in the AWGN channel, it is important to separate the message points as far apart 
as possible in their symbol space. In case of the system of Figure 1.15, the deci-
sion boundary, or threshold, is at zero. It is often the case, however, that the 

threshold is not at zero, and furthermore, is not fixed, but varies with the ob NE /  

ratio [30,6]. 
The mathematical procedure of obtaining the theoretical BER curve for the sys-

tem of Figure 1.15, but without fading in the channel, is now briefly demonstrated 
[6]. The probability that the error of the first kind is made, is calculated in the fol-
lowing manner. Consider the decision region associated with bit 1 described by 

 

∞<< 11 0: xZ  
 

where 1x  is related to the received signal x(t) by equation 6: 
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The conditional probability density function of random variable 1X , given that bit 

0 was transmitted, is defined by equation 1.6.6: 
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The conditional probability that the receiver decides in favour of bit 1, given that 
bit 0 was transmitted, is expressed by equation 1.6.7: 
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Let the variable z be defined by equation 1.6.8: 
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Differentiating equation 1.6.8 with respect to 1x , and making 1x  the subject of 

the formula, equation 1.6.9 is obtained: 
 

 dzNdx o=1                  (1.6.9) 

 
Equation 1.6.7 can now be written in the compact form of equation 1.6.10 by 

changing the variable of integration from 1x  to z. 
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Note the so-called ‘complementary error function’ defined by equation 1.6.11 [6]: 
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Equation 1.6.10 can now be put into the form of equation 1.6.11, and expressed by 
equation 1.6.12: 
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Due to the fact that the symbol space of Figure 1.16 is symmetrical about the ori-
gin, it follows that the expression for the incorrect decision of the second kind is 
also described by equation 1.6.12, as shown by equation 1.6.13: 
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Averaging the conditional probabilities 10p  and 01p , equation 1.6.14 is obtained.  

Equation 1.6.14 represents the worst case probability of error, that is, the worst 
case bit error rate for coherent BPSK in an AWGN channel when perfect synchro-
nization is assumed. 
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Furthermore, it is readily verifiable that in the Rayleigh fading channel, the 
theoretical expression for the bit error rate is given by equation 1.6.15 [7]: 
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where { } )/()/(2
obrobo NEPNEE ⋅=⋅= αγ  and α  is a Rayleigh random 

variable [7].   
The empirical and theoretical BER curves for the system of Figure 1.15, under 

the influence of AWGN and Rayleigh fading, are presented in Figure 1.17. The 
theoretical BER curves are obtained by evaluating equations 1.6.14 and 1.6.15. 
From Figure 1.17, one can see a very close match between the empirical and theo-
retical curves in the presence of AWGN alone, as well as in the AWGN and 
Rayleigh fading channel. This fact indicates that the AWGN and Rayleigh fading 
simulators work correctly. Note that the speed of the receiver with respect to the 
transmitter has been chosen to be km/h55=v , and the carrier frequency 

MHz900=cf . Substituting these values into equation 1.5.5, it is readily verifi-

able that in this case the maximum Doppler frequency shift Hz83.45=mf . It 

can be observed from Figure 1.17 that the highest acceptable BER level of 310−  is 

reached at the ob NE /  of approximately 7 dB for the system in the AWGN 

channel only and at 24 dB for the system in the Rayleigh fading and AWGN 
channel. 

The system of Figure 1.15 has been analyzed at bandpass, meaning that the 
transmitted data has first been up-converted to a higher frequency using a sinusoi-
dal carrier. It should be noted that the performance of the baseband systems, 
where carrier is not included, is equivalent to those of the bandpass systems.  
However the simulations performed at baseband are more economical on comput-
ing resources than simulations performed at bandpass [31]. Therefore, in most of 
the analysis in the following chapters, unless otherwise specified, systems will be 
analysed at baseband.  

It is of crucial importance for the accurate retrieval of the bits transmitted at the 
receiver that the carrier at the transmitter and its replica at the receiver are syn-
chronized. The standard techniques used to achieve carrier synchronization exist 
[32-34]. Therefore, in case of Figure 1.15, the synchronization among the carrier 
at the transmitter and its replica at the receiver has been assumed. In addition to 
the carrier synchronization, clock synchronization, also known as timing/clock 
recovery, must be achieved and maintained [32-34]. Clock synchronization in-
volves adjusting the clock of the receiver, which controls the integrator and the 
sampling of the threshold unit of Figure 1.15, to the clock of the transmitter. In the 
following section, the effect of inaccurate synchronization is investigated at base-
band and its adverse effect on the BER curve demonstrated. 
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Fig. 1.17 The BPSK BER curves: (a) the dashed line is for the theoretical BPSK in AWGN 
channel only; (b) the open circles are for the empirical BPSK in AWGN channel only; (c) 
the solid line is for the theoretical BPSK in Rayleigh fading and AWGN channel; (d) the 
asterisks are for the empirical BPSK in Rayleigh fading and AWGN channel. 

1.7   The Synchronization Problem 

In this section, the effect of synchronization error on the bit error rate of a BPSK 
system is shown. The crucial importance of the accurate synchronization within a 
coherent communication system is thus demonstrated. A coherent communication 
system is a system which requires synchronization at the receiver in order to suc-
cessfully decode the information transmitted. In contrast to coherent systems, non-
coherent systems do not require synchronization at the receiver. However, these 
systems are not the topic of this book and will therefore not be considered any 
further.  

The analysis is performed at baseband in an AWGN channel only. Figure 1.18 
shows the equivalent system to the one of Figure 1.15 but at baseband and with no 
Rayleigh fading. 
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Fig. 1.18 A baseband BPSK communication system in an AWGN channel 

 
With non-ideal synchronization, the worst scenario probability of error of the 

BPSK communication system of Figure 1.18 is expressed by equation 1.7.1. In 

equation 1.7.1, bT  is the bit period and τ  is the signal time shift, that is, the off-

set due to the non-ideal synchronization. 
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          where: 
2

0 bT
<≤ τ . 

Equation 1.7.1 is plotted in Figure 1.19 for the time shifts of 0=τ , 1=τ , 

2=τ , 3=τ  and 4=τ  time units.  The corresponding empirical curves are 
also plotted for comparison.  In the case of Figure 1.19, the duration of one bit has 

been chosen to be 8 chips long, that is ccb TnTT 8==  seconds, where cT  is the 

time duration of a single chip. 
It should be observed from Figure 1.19 that the BER curves degrade ever more 

significantly as the time delay τ increases. Finally, at the time delay τ equal to half 
of the bit duration, the bit error rate reaches its maximum value of 0.5 and remains 

there for any ob NE / . Therefore, it is most important to obtain, and maintain, 

synchronization within the system. 
The mathematical procedure, similar to that of section 1.6, of obtaining equa-

tion 1.7.1 is now briefly demonstrated [6]. Assuming non-ideal synchronization, 
the coordinates of the message points are now represented by equations 1.7.2a and 
1.7.2b: 
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where )(1 ts , )(2 ts  and )(1 tφ  are as defined in equations 1.6.1a, 1.6.1b and 

1.6.2, respectively.  
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Fig. 1.19 Theoretical (solid line) and empirical (asterisks) BPSK BER curves for different 
synchronization errors in an AWGN channel 

 

Note that when τ = 0 equations 1.7.2a and 1.7.2b reduce to bE+  and 

bE− , respectively.  The conditional probability density function of random 

variable 1X , given that bit 0 was transmitted, is now defined by equation 1.7.3: 
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The conditional probability that the receiver decides in favour of bit 1, given that 

bit 0 was transmitted, is then expressed by equation 1.7.4: 
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Let the variable z now be defined by equation 1.7.5: 
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Differentiating equation 1.7.5 with respect to 1x , and again making 1x  the subject 

of the formula, equation 1.7.6 is obtained. 
 

 dzNdx o=1                                   (1.7.6) 

 
Equation 1.7.4 can now be written in the compact form of equation 1.7.7 by 

changing the variable of integration from 1x  to z: 
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Keeping in mind that the complementary error function is defined by equation 
1.6.11 [6], it is then readily verifiable that the worst case bit error rate, when syn-
chronization is not assumed, is expressed by equation 1.7.8: 
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The existence of the factor bb TT /)2( τ−  of equations 1.7.2a and 1.7.2b is 

now explained by considering, for simplicity, the baseband case of Figure 1.19. 
Assuming ideal synchronization, the integrator at the receiver, sums up along a 
single bit as shown in Figure 1.20, case 1.  In case 1, the integration result (sum) is 
therefore A+ .  However in case 2, when the receiver is out of synchronization, 

the sum is A
4

3+ .  Therefore, the shift of one discrete point results in the reduc-

tion of a bit by 25 %.  Similarly, a shift of two discrete points results in the bit 

reduction of 50 %.  This behaviour is represented by the term bb TT /)2( τ−  of 

equations 1.7.2a and 1.7.2b.  It has thus been demonstrated that the separation of 
symbols in their symbol space, when τ ≠ 0, is reduced from its full potential as 

compared to the situation when τ = 0 and 1/)2( =− bb TT τ . The scenario of 

Figure 1.20 is the worst case as every new bit transmitted has been assumed to be 
different from the one preceding it, so that the bits follow the pattern: [0 1 0 1 0 1 
0…]. In this case equations 1.7.2a and 1.7.2b strictly hold.  However, had the bit 
pattern involved the stream of bits where the new bit can be the same as the one 
preceding it, equations 1.7.2a and 1.7.2b and thus equation 1.7.1 (1.7.8), would 
not be accurate. 
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Fig. 1.20 The ‘in’ synchronization and ‘out of’ synchronization cases for the baseband 
BPSK communication system of Figure 1.18 

 
The one-dimensional symbol space, with the synchronization factor 

bb TT /)2( τ− , is shown in Figure 1.21. Clearly, the symbol space is reduced for 

any value of τ that is greater than 0, thus causing the degradation in the bit error 
rate performance. 
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Fig. 1.21 The symbol space of the system of Figure 1.18 with the synchronization error 
factor: bb TT /)2( τ−  

 
The three main types of synchronization introduced in this chapter, namely 

clock, carrier and sequence synchronization, are summarised within a general 
structure of a digital communication system of Figure 1.22. The clock and carrier 
synchronization techniques have been extensively studied [32-34] and are always 
assumed within this book. The motivation of the book is to investigate the se-
quence synchronization properties of chaotic systems and their application to sin-
gle and multiple-access secure communications. The inherent properties of chaotic 
systems, discussed in the next chapter, make them of prime interest in secure 
communications. However, in order to implement chaotic systems within coherent 
communication systems, one must be able to synchronize them. 
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Fig. 1.22 General structure of a digital communication system showing three different types 
of synchronization. PR stands for pseudo random. The ‘Linear operator’ denotes either an 
addition or multiplication operation.  
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1.8   Conclusion and Book Organization 

In this chapter, the three main categories of the multi-user (multiple access) mo-
bile communication systems, namely FDMA, TDMA and CDMA, as well as some 
of their hybrids, have been introduced. Following this, the disturbances encoun-
tered within the physical transmission channel, namely the AWGN and the 
Rayleigh fading have been presented. Furthermore, the concept of the BER, which 
is used to measure the effects of the channel imperfections on the transmitted sig-
nal, has been described. Finally, the effect of synchronization error on the BER 
performance has been demonstrated. 

The remainder of the book is organized in the following manner. In chapter 2, 
chaotic signals and their synchronization methods within secure communication 
systems are introduced. In chapters 3-5 and 7 the concept of synchronization 
within chaotic systems is studied and the novel methods of achieving it proposed. 
In particular, chapters 3 and 4 investigate the synchronization of flows and maps, 
respectively, using tools from nonlinear control theory and propose novel methods 
of achieving synchronization. In chapter 5, a novel mathematical analysis for pre-
dicting master-slave synchronization of chaotic systems is proposed and demon-
strated on three different systems. Chapters 6-9 investigate synchronization of 
chaotic signals within the single and multiple access chaotic communication sys-
tems and evaluate their performance in terms of BER. A number of novel chaotic 
communication systems based on the principles of synchronization of chapters 3-5 
and 7, are proposed in chapters 6-9. In particular, in chapter 6 single user systems 
based on the synchronization techniques of chapters 3-5 are proposed whereas in 
chapter 9 these are extended to TDM multiuser systems. In contrast to this, in 
chapter 7, the traditional DS-CDMA synchronization technique is implemented 
within the multi-user DS-CDMA chaotic communication scheme. In addition, 
chapter 8 proposes a chaos based TDM multiuser system based on the DS-CDMA 
synchronization technique. Furthermore, chapter 10 proposes techniques for the 
optimization of security within chaotic communication systems. In chapter 11, the 
conclusions and the future directions are outlined. Finally, the methods of de-
noising chaotic communication systems and thus improving their BER perform-
ance are proposed and investigated in the appendix. 
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Chapter 2 
Chaotic Signals and Their Use in Secure 
Communications 

This chapter introduces nonlinear dynamical systems known as chaotic systems 
and describes their suitability for application to secure communications. A nonlin-
ear or chaotic signal is characterised by its high sensitivity to parameter and initial 
condition perturbations, the random like nature and broadband spectrum [1]. From 
a nonlinear dynamical perspective, chaotic motion is a motion which possesses at 
least one positive Lyapunov exponent. Furthermore, for a given set of parameters 
and initial conditions chaotic motion is highly deterministic. Among other applica-
tions, these properties make chaotic systems suitable for the application in secure 
communications [2-9]. One of the main reasons for the increased security of 
communication provided by the chaotic signals is their broadband nature. In many 
cases the broadband nature of a chaotic system allows for the effective spectral 
cover up of the message by the chaotic carrier. In addition, the high sensitivity of 
chaotic signals to parameter and initial condition perturbations often can act as the 
encryption keys. In this chapter, the distinguishing features of chaotic systems are 
first presented and some approaches, used to identify chaotic behavior, are intro-
duced. Furthermore, the approaches and the suitability of chaotic systems to the 
implementation within secure communication systems are examined. Finally, 
some of the noise reduction techniques, used to filter chaotic communication sys-
tems, are introduced. 

2.1   Chaotic Systems 

One of the earliest observations of nonlinear behaviour was made in 1961 by the 
Japanese electrical engineer, Yoshisuke Ueda. The observation occurred when 
Ueda conducted analog computer simulations of the Duffing/Van der Pol mixed 
type equation:  

 )cos()1( 32
2

2

vtB
dt

d

dt

d =+−− υυυγμυ
                     (2.1.1) 

where: 2.0=μ , 8=γ , 35.0=B  and 02.1=v . 
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The phenomenon output by the computer subsequently became known as chaos 
[10]. At around the same time American meteorologist, Edward Lorenz, inde-
pendently discovered chaos in a third order autonomous system. Since then, a 
large number of chaotic systems have appeared in the literature [1].  

Chaotic systems can be divided into those described by differential equations, 
known as flows, and those described by difference equations, known as maps 
[1,11]. The dynamics of a chaotic system can be represented in the time domain as 
time series or in phase space as a strange attractor [1,11]. The time series and the 
corresponding “broken-egg” strange attractor, obtained by numerically integrating 
equation 2.1.1, are shown in Figure 2.1a and Figure 2.1b, respectively.  
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Fig. 2.1a The broken egg chaotic time series, 
)(tυ  

Fig. 2.1b The broken egg strange attractor 

 
The time series graph of Figure 2.1a is obtained by simply plotting the ampli-

tude of the signal against time. On the other hand, the strange attractor is obtained 
by plotting two or more of the state variables of the system against each other. The 
state variables of the system are most often defined as the first or the second de-
rivative of the time series, or a combination of those. It is readily verifiable that 
the system of equation 2.1.1 can also be represented in the state-space form of 
equation 2.1.2: 
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where υ=x , 
•

= υy  and tz =  are the state variables of the system. 
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2.1.1   Chaotic Flows 

The chaotic system of equation 2.1.1 (2.1.2) is an example of a chaotic flow. The 
Lorenz chaotic flow, which is an example of another well known flow, is now 
presented and its broadband nature and high sensitivity to parameter perturbations 
demonstrated. Further examples of some of the well known flows, such as the 
Rossler [12] and the Rucklidge flow [13], can be found in [1,12,13].  

The dynamics of the Lorenz chaotic system, described by equation 2.1.3: 
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are shown in Figure 2.2 when the parameter 10=σ , 28=r  and 3/8=b .  
 

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

20

Time

x(
t)

-20 -15 -10 -5 0 5 10 15 20
-30

-20

-10

0

10

20

30

y(
t)

x(t)  

Fig. 2.2a The Lorenz chaotic time series, x(t) Fig. 2.2b The Lorenz strange attractor 

The dynamics of the strange attractor of a chaotic flow are referred to as a tra-
jectory [1]. The trajectory of a chaotic flow is characterised by a smooth, continu-
ous nature. An example of a chaotic flow is a turbulent flow of water from a pipe 
[1]. 

The broadband nature of the Lorenz chaotic flow can be observed from Figure 
2.3 where the power spectral density of the Lorenz x signal has been plotted 
against the normalized frequency. Furthermore, the high sensitivity of the Lorenz 
chaotic flow to parameter perturbations is demonstrated in Figure 2.4. It can be 
observed from Figure 2.4 that a small alteration to a parameter of the system 
causes the system to generate an entirely different chaotic signal. It is shown in 
chapter 6 how this property of chaotic signals can be used in the design of secure 
chaotic communication systems. 
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Fig. 2.3 The power spectral density (Px) of the Lorenz x signal versus the normalized fre-
quency 
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Fig. 2.4 Sensitive dependence on the parameter perturbations within the Lorenz chaotic 
flow 
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2.1.2   Chaotic Maps 

The dynamics of one of the most well known chaotic maps, the Hénon map: 
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are shown in Figure 2.5 when the parameter 4.1=a  and 3.0=b . 
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Fig. 2.5a The Hénon chaotic time series, 

nX  

 

Fig. 2.5b The Hénon map 
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Fig. 2.6 The power spectral density (Px) of the Hénon nX  signal versus normalized  

frequency. 
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The broadband nature of the Hénon chaotic map can be observed from Figure 

2.6 where the power spectral density of the Hénon nX  signal has been plotted. 

Furthermore, the high sensitivity of the Hénon chaotic map to parameter perturba-
tions is demonstrated in Figure 2.7. As for the Lorenz chaotic flow, it can be ob-
served from Figure 2.7 that a small alteration to the parameter of the Hénon map 
causes the system to generate an entirely different chaotic signal. 
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Fig. 2.7 Sensitive dependence on the parameter perturbations within the Hénon chaotic map 
 

 
The logistic map is an example of another well known chaotic map. The logis-

tic map time series are generated using equation 2.1.5 [14]. 
 

 2
1 21 nn XX −=+                      (2.1.5) 

 
The dynamics of the logistic map are shown in Figure 2.8 [15]. Furthermore, 

the dynamics of some of the other well known maps, such as the cusp, Lozi and 
Chirikov chaotic map, can be found in [1].  

The dynamics of the chaotic map are referred to as an orbit [1]. In contrast to 
the trajectory of chaotic flows, the orbit of a chaotic map is characterised by a 
non-smooth, discontinuous motion. It can be observed from Figures 2.5 and 2.8, 
that each chaotic system has its own signature in phase space, that is, a unique 
attractor characterising it. An example of a chaotic map is the non-periodic drop-
ping of water from a pipe [1]. 
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Fig. 2.8a The logistic chaotic time series, 

nX  

Fig. 2.8b The logistic map 

2.2   Lyapunov Exponents 

One of the main characteristics of chaotic systems is that they are deterministic, 
but extremely sensitive to the starting points, that is, their initial conditions. By 
high sensitivity to the initial conditions it is meant that the two trajectories (orbits), 
starting from infinitesimally close initial conditions, quickly diverge in phase 
space. This phenomenon is illustrated in Figures 2.9 and 2.10 on the Lorenz cha-
otic flow and the Hénon chaotic map time series, respectively. However, given the 
knowledge of the exact initial conditions, chaotic systems are predictable. It is 
shown in the next section how this property of chaotic signals can be used to hide 
(encrypt) messages within a communication system. 
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Fig. 2.9 Sensitive dependence on the initial conditions, denoted by x(0), y(0) and z(0), 
within the Lorenz chaotic flow 
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Fig. 2.10 Sensitive dependence on the initial conditions, denoted by 0X  and 0Y , within 

the Hénon chaotic map 

 
The Lyapunov exponents of a system under consideration characterise the na-

ture of that particular system. They are perhaps the most powerful diagnostic in 
determining whether the system is chaotic or not. Furthermore, Lyapunov expo-
nents are not only used to determine whether the system is chaotic or not, but also 
to determine how chaotic it is. They are named after the Russian mathematician, 
Aleksandr Mikhailovich Lyapunov, who introduced the idea around the turn of the 
19th to the 20th century [16,1]. The Lyapunov exponents characterise the system in 

the following manner. Suppose that 0d  is a measure of the distance among two 

initial conditions of the two structurally identical chaotic systems. Then, after 
some small amount of time the new distance is: 

 

 tdtd λ2)( 0= ,                 (2.2.1) 

 
where λ  denotes the Lyapunov exponent. 

For chaotic maps, equation 2.2.1, is rewritten in the form of equation 2.2.2: 
 

 t
n dd Λ= 20 ,     (2.2.2) 

 

where Λ  denotes the Lyapunov exponent and n a single iteration of a map. 
The choice of base 2 in equations 2.2.1 and 2.2.2 is arbitrary [16]. The 

Lyapunov exponents of equations 2.2.1 and 2.2.2 are known as local Lyapunov 
exponents as they measure the divergence at one point on a trajectory (orbit). In 
order to obtain a global Lyapunov exponent the exponential growth at many points 
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along a trajectory (orbit) must be measured and averaged [16]. Therefore, the 
global, or the largest, Lyapunov exponent is represented by equation 2.2.3: 
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Similarly, for chaotic maps, the global Lyapunov exponent is defined by equa-
tion 2.2.4: 
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where 1)( += nn XXf . 

A motion is said to be chaotic if the global Lyapunov exponent is greater than 
zero [16,1]. A motion with a negative global Lyapunov exponent implies a fixed 
point or a periodic cycle [1]. In certain cases it is possible to analytically evaluate 
Lyapunov exponents of the system [1]. If, however, analytical evaluation is not 
possible, one must resort to the numerical evaluation [16,1]. 

A chaotic system has as many Lyapunov exponents as it has dimensions. How-
ever, the global (largest) Lyapunov exponent is the most important one as its 
evaluation determines whether the system is chaotic or not. For instance, the one-
dimensional logistic map of equation 2.1.5 (Figure 2.8) has a single positive 
Lyapunov exponent. The two-dimensional Henon map of equation 2.1.4 (Figure 
2.5) has two Lyapunov exponents, one negative and the other positive. Further-
more, the Lorenz chaotic flow of equation 2.1.3 (Figure 2.2) has three Lyapunov 
exponents, one positive, one negative and one equal to zero. 

Beside Lyapunov exponents, there are other techniques used to determine 
whether a system under consideration is chaotic or not, such as the correlation 
dimension [1] and the Kaplan-Yorke (or Lyapunov) dimension [1]. Unlike the 
Lyapunov exponent, which measures the attractor’s average predictability, the 
dimension of an attractor measures its complexity.  The attractor dimension is less 
than but not equal to the number of variables of a chaotic system. Furthermore, it 
is not an integer, but a fraction. Thus the attractor dimension is also called the 
fractal dimension. 

2.3   Application of Chaos to Communications 

Unlike pseudo random signals, which are limited in number and are periodic, cha-
otic systems can theoretically produce infinite numbers of chaotic signals which 
are non-periodic. This property and the broadband nature of chaotic signals  
make them of particular interest in secure communications. In this book, two  
approaches to chaotic communication systems are investigated. The first ap-
proach, investigated in the sixth chapter, is that based on the principles of chaotic  
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synchronization [17]. The second approach, investigated in the seventh chapter, is 
that based on the classical synchronization techniques used within DS-CDMA 
systems.  

2.3.1   Chaotic Communication Systems Based on the Principles of 
Chaotic Synchronization 

The general block diagram which demonstrates the principles of chaotic synchro-
nization is presented in Figure 2.11. In Figure 2.11, the master chaotic system 
transmits one or more of its signals to the slave system. The slave system is an-
other chaotic system, which in general, can be entirely different from the master 
system. Depending on the nature of the master signal supplied to the slave system, 
the slave system may or may not synchronize to the master system. If the master-
slave system does not synchronize for a given master signal(s), it is possible to 
design a controller at the slave side which enforces synchronization. The princi-
ples of chaotic synchronization are thoroughly discussed in the next chapter.  
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Controller 

∧

x  x  

u  

The synchronized chaotic signals 

 
 

Fig. 2.11 General block diagram demonstrating the principles of chaotic synchronization, 

where x  denotes the master and 
∧
x  the slave signal 

 

Once the master-slave synchronization has been achieved, it is possible to  
design a communication system based on the principles of chaotic synchroniza-
tion. The general block diagram of such a communication system is illustrated in 
Figure 2.12. The communication system of Figure 2.12 is therefore entirely based 
on the principles of chaotic synchronization and an ideal synchronization within it 
cannot be assumed. This is in contrast to DS-CDMA based systems where one can 
assume perfect synchronization in order to evaluate the benchmark performance, 
as was explained in the first chapter. In Figure 2.12, the sequence synchronization 
unit and the linear operator have been specifically highlighted to clarify the rela-
tion of this chaotic synchronization based system to the general system of Figure 
1.22. As will be shown in chapter 6, the message m of Figure 2.12 can be en-
crypted within the chaotic carrier x via the parameter or the initial condition per-
turbations, or by simply adding it directly onto the chaotic carrier. 
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Fig. 2.12 General block diagram of the chaotic communication system based on the concept 
of chaotic synchronization 

2.3.2   Chaotic Communication Systems Based on the DS-CDMA 
Principle 

The implementation of chaotic signals within chaos based DS-CDMA systems is 
possible due to the fact that the chaotic signals are approximately mutually or-
thogonal. In particular, this property is more dominant within signals generated by 
chaotic maps than chaotic flows. 

For instance, consider the logistic map, whose time series is generated using 
equation 2.1.5 [14] and whose dynamics are shown in Figure 2.8 [15]. The two 
different chaotic time series generated by the same logistic map, but with different 
initial conditions, are highly orthogonal as is demonstrated in Figure 2.13a by the 
cross-correlation function with no dominant peaks. The autocorrelation function of 
the logistic map time series is presented in Figure 2.13b showing the dominant 
peak. The length of the logistic map time series used to produce Figures 2.13a and 
2.13b is equal to 511 points (chips). In Figures 2.13a and 2.13b t denotes the time 
delay.  Also, note that the correlation functions have been normalized to the peak 
of the autocorrelation function. 

As opposed to the logistic map of equation 2.1.5, the Lorenz chaotic flow of 
equation 2.1.3, for instance, has the correlation properties illustrated in Figures 
2.14a and 2.14b. The length of the Lorenz flow time series used to produce  
Figures 2.14a and 2.14b is equal to 2001 points (chips). In contrast to Figure 2.13a, 
it can be observed from Figure 2.14a that the cross correlation function of the Lo-
renz flow contains dominant peaks which are strongly pronounced. Furthermore, 
whereas the autocorrelation function of the logistic map resembles an impulse func-
tion, with a single dominant peak at 0=t , the autocorrelation function of the Lo-
renz flow does not. This can in particular be observed by comparing the close ups 
of Figures 2.13b and 2.14b and observing that the logistic map autocorrelation 
function has a sharp falloff from 1 to 0 at 0=t  and 1±=t , whereas the Lorenz 
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flow does not. This indicates that the logistic map time series is more orthogonal to 
itself than the Lorenz flow time series. Therefore, in this book, only the logistic 
map time series will be used within a DS-CDMA system for spreading.  
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Fig. 2.13a Cross-correlation of logistic map 
time series 

Fig. 2.13b Autocorrelation of logistic map 
time series. The close up is shown in the top 
right hand corner 
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Fig. 2.14a Cross-correlation of Lorenz flow 
time series 

Fig. 2.14b Autocorrelation of Lorenz flow 
time series. The close ups are shown in the 
top right and left hand corners 

 
A DS-CDMA system where chaotic signals are used to spread data is termed 

chaos based DS-CDMA system. A chaos based DS-CDMA communication sys-
tem with perfect sequence synchronization assumed is shown in Figure 2.15 [18]. 

In Figure 2.15, x(t) denotes the chaotic spreading signals which are multiplied 
by the binary message signals m(t).  The products are then summed to produce the 
signal c(t) which is transmitted through the channel: 
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Fig. 2.15 The chaos based DS-CDMA system with perfect sequence synchronization  
assumed 
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(2.3.2) 

where, [ ]hT  is the signum function which denotes the thresholding operation and 

assigns either a -1 or a 1 depending on whether the value in the brackets is nega-
tive or positive, respectively [19]. It is assumed that all the received signals have 
the same average power. 

Due to the mutually orthogonal properties of the chaotic spreading sequences 
produced by the logistic map with different initial conditions, as demonstrated in 
Figures 2.13a and 2.13b, equations 2.3.3a and 2.3.3b are expected to hold: 
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Provided that the power of noise in the system and the interferences  
among different users are comparatively low to the power of the signal,  
the noise and the interferences terms of equation 2.3.2 are expected  

to be approximately equal to zero, that is: 0)()(
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form of equations 2.3.4a and 2.3.4b: 
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Therefore, by assigning the unique initial conditions to each of the M users 
provides for the increased security of transmission as only the users with the same 
initial conditions can decrypt the message at the receiver. 

2.4   Noise Reduction within Chaotic Communication Systems 

In the previous section, the two main approaches to the implementation of chaotic 
systems to secure communications have been described. In this section, the tech-
niques of noise reduction by means of de-noising (or filtering) are now briefly 
introduced. 

Noise removal from chaotic time series has been attempted by a number of re-
searchers [20-27], among others, and is still an active area of research.  Filtering 
methods include linear filters [20,22] and different wavelet techniques [20,21,23-
25], among other.  A potential application of chaotic filtering techniques lies in 
chaotic communication systems [20,26,27]. In this book, the linear and wavelet 
techniques have been developed and used to filter a newly proposed chaotic com-
munication system based on the principles of chaotic synchronization [20]. While 
the general block diagram of a chaotic communication system with the filter em-
bedded inside the receiver is shown in Figure 2.16, the complete results are  
presented in the appendix. The appendix should be read only after reading  
chapters 3-6. 

In Figure 2.16, the filter unit processes the received signal rx  and produces its 

filtered version fx . The filtered signal fx  is then fed into the slave system. In 

this book, three different kinds of filtering techniques have been developed and  
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Fig. 2.16 General block diagram of a chaotic communication system based on the concept 
of chaotic synchronization with the filter unit incorporated 

 
 

implemented within the chaotic communication system. The filtering techniques 
include those based on the running average finite impulse response (FIR) filter [1] 
and those within the Haar wavelet [28] and the Daubechies wavelet domain [28]. 
It has been shown, in terms of the bit error rate, that both linear and wavelet filters 
significantly improve the noise performance of the system [20]. 

2.5   Conclusion 

In this chapter, nonlinear dynamical systems, known as chaotic systems, have 
been introduced and their suitability to the application to secure communication 
systems outlined. Chaotic behaviour was recognised by the scientific community 
in the early sixties. It was characterized by apparent random behaviour, high sensi-
tivity to parameter and initial condition perturbations and broadband spectrum. 
These were some of the properties that led to the belief that chaotic signals could 
be used within secure communications. Here, two different types of chaotic sys-
tems, known as flows and maps, have first been introduced and their broadband 
nature and high sensitivity to parameter and initial condition perturbations demon-
strated. The Lyapunov exponents which are used to diagnose and characterize the 
system have then been presented. Furthermore, the two different approaches of 
implementing chaotic systems within secure communication systems have been 
outlined. These include chaotic communication systems based on the principles of 
chaotic synchronization and those based on the DS-CDMA principle. Finally, 
some of the filtering techniques that can be used within chaotic communication 
systems have been briefly introduced. 
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Chapter 3 
Chaotic Synchronization, Conditional Lyapunov 
Exponents and Lyapunov’s Direct Method  

Chaotic Sync hronization, C onditio na l Lya punov Expo nents  
In chapter 2, the underlying characteristic of chaos, such as their high sensitivity 
to parameter and initial condition perturbations, the random like nature and the 
broadband spectrum, were outlined. Due to these characteristics it was originally 
thought that chaotic systems could not be synchronized and thus could not be used 
as part of the coherent communication systems, where synchronization is an 
integral part of operation. However, this was not the case and in this and the next 
two chapters, synchronization of chaotic systems is investigated. In this chapter, 
the basic concepts of chaotic synchronization are outlined. Its characteristics are 
examined in terms of the conditional Lyapunov exponents and Lyapunov’s direct 
method. Lyapunov’s direct method is then used to develop a general approach in 
the design of synchronous chaotic systems. 

The first to study the topic of chaotic synchronization were Yamada and 
Fujisaka in 1983 [1], and Afraimovich et al. in 1986 [2]. However it was not until 
1990 when Pecora and Carroll (PC) introduced their method of chaotic 
synchronization [3] and suggested application to secure communications that the 
topic started to arouse major interest. In the PC method one has a master system 
and a slave system, with a single signal of the master system driving the slave 
system [3,4-11]. Similar master-slave synchronization schemes have also been 
investigated in [12,13]. Besides the PC synchronization method, numerous chaos 
synchronization methods have been developed in the last decade and a half, such 
as the Ott-Grebogi-York (OGY) based chaos synchronization method [14,15], 
John and Amritkar (JA) synchronization method [16] and Pyragas’ 
synchronization method [17]. In more general terms the chaotic synchronization 
phenomena can be divided into identical synchronization (IS) and general 
synchronization (GS), among other types [18]. IS, as the name suggests, involves 
two identical systems, whereas generalized synchronization is an extension of IS, 
involving non-identical systems [18,19]. However, it has been shown that in fact 
identical systems can also exhibit GS, thus proving that non-identity of the 
systems is not a necessary condition for GS [18]. This chapter examines a number 
of systems based on IS. 

The motivation for the study of chaotic synchronization lies in its numerous 
potential applications. The applications of chaotic synchronization range from 
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living systems applications [20,19] to the non-living systems applications [19,21]. 
The examples of applications of chaotic synchronization to living systems include 
synchronization in neurobiology [19] and chemical reactions among pancreatic 
cells [20], among other. The examples of applications of chaotic synchronization 
to non-living systems include synchronization in earth sciences [19], 
synchronization of chaotic electrochemical oscillators [22,23], synchronization in 
communications [8,10,16,24-31] etc. The synchronization schemes presented in 
this chapter are the backbone of many chaotic communication systems in the 
literature today [26,30,8,10,32-39]. The application of chaotic synchronization to 
secure communications is investigated in chapter 6. 

In Section 3.1 the principles of chaotic synchronization based on the PC 
scheme are presented. These are analysed in terms of the conditional Lyapunov 
exponents (CLEs) in Section 3.2 and Lyapunov’s direct method in Section 3.3. 
Furthermore, in Section 3.4, Lyapunov’s direct method is then used to 
demonstrate a general approach in the design of synchronous chaotic systems. 

3.1   Pecora-Carroll Chaotic Synchronization Method 

The Pecora-Carroll (PC) synchronization scheme has often been described as a 
“master-slave” system [7,37]. Essentially, a master-slave system consists of two 
chaotic systems. The two systems are described by the same set of differential 
equations, with the same parameter values. It was shown in [3] that for 
synchronization to occur, the output from, at least, one of the coupled differential 
equations of the first chaotic system must be made available to the second chaotic 
system, as shown in Figure 3.1. Thus, one chaotic system is said to drive the other 
chaotic system by the time-series signal generated from one of its differential 
equations. The driving chaotic system is known as the master system and the 
driven chaotic system is known as the slave system. As discussed in chapter 1, and 
as will be demonstrated in chapter 6, the master-slave system can also be viewed 
as the transmitter-receiver communication system. 

The master system is made up of a driving master subsystem (u) with initial 
conditions u(0) and a non-driving master subsystem (v) with initial conditions 
v(0) which are independent of the master driving subsystem. The slave system is 

made up of a driven slave subsystem (
∧
u ), which is identical to (u), and a non 

driven slave subsystem (
∧
v ), which has initial conditions )0()0( vv ≠

∧
. Since the 

driving master subsystem is fully available to the slave system it is said that the 
master system drives the slave system with the driving master subsystem. The 

non-driven slave subsystem (
∧
v ) has initial conditions that are independent of 

those of the master system. 
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Fig. 3.1 Pecora-Carroll master-slave system divided into subsystems 

In general, the master system of Figure 3.1 can be represented by equation 
3.1.1: 

),( sfs t=
•

                                                   (3.1.1) 

where dℜ∈s , that is, s  is a d-dimensional vector. The ‘dot’ above the variable 
in equation 3.1.1 denotes the operation d/dt. Let the master system s  be 
decomposed into subsystems as shown in Figure 3.1. The driving and non-driving 
master subsystems are then given by equations 3.1.2a and 3.1.2b [7].  The 
corresponding driven and non-driven slave subsystems are given by equations 
3.1.3a and 3.1.3b, respectively [7]:  

),,( vuhu t=
•

                (3.1.2a)          ),,( vugv t=
•

              (3.1.2b) 

uu =
∧

                              (3.1.3a)          ),,(
∧∧

=
•

vugv t               (3.1.3b) 

In equations 3.1.2 and 3.1.3 mℜ∈u  and nℜ∈v , with the overall dimension 

of the master system nmd += . 
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3.2   CLE and t he Pecora-Carroll Chaotic Synchronization 

3.2   Conditional Lyapunov Exponents and the Pecora-Carroll 
Chaotic Synchronization 

3.2   CLE and t he Pecora-Carroll Chaotic Synchronization 

The necessary and sufficient condition, for master-slave synchronization to occur, 
is that the non-driven slave subsystem must be asymptotically stable [7]. 
Asymptotic stability can be theoretically proven via Lyapunov’s direct method 
[7,8,37], or by evaluating the conditional Lyapunov exponents (CLEs) [4,11]. 
Lyapunov’s direct method involves finding the Lyapunov function of the system 
under consideration and thus demonstrating that asymptotic stability exists. Its use 
is demonstrated in the next section. Lyapunov’s direct method is one of the most 
powerful tools in the nonlinear system stability analysis. However, it is often too 
difficult to find the Lyapunov function of the particular system under 
consideration. The ability to do so often depends on ones intuition and experience 
[40]. Thus far, there is no systematic general procedure for the construction of the 
Lyapunov functions [41]. Therefore, it is often desirable, if not necessary, to resort 
to the CLEs. In order for the master-slave system to synchronize, all the CLEs of 
the non-driven slave subsystem must be negative [4,11]. 

The procedure for obtaining the CLEs is now briefly discussed and 
demonstrated on the simplest piecewise linear master-slave chaotic flow when the 
master x signal drives [37]. The simplest piecewise linear chaotic flow is given by 
equation 3.2.1:   

1−+−−=

=

=

•

•

•

xyAzz

zy

yx

                                 (3.2.1) 

It is found that the system of equation 3.2.1 exhibits chaotic behaviour with the 
parameter value A = 0.6 [42,37]. Its dynamics are shown in Figure 3.2. This 
system is said to be the master system and is illustrated in Figure 3.3 [37]. The 
slave system is driven by a single master signal, meaning that this particular  
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signals are generated using identical equations to those of the master system 
except that the initial conditions are different. The ‘^’ (hat) above the variable 
master signal is fully available to the slave system. The remaining two slave  
denotes the slave variable. The ‘dot’ above the variable denotes differentiation 
with respect to time. 

In what follows, the synchronization properties of the system of Figure 3.3 are 
investigated with no noise in the system. The noise performance of the system 
such as that of Figure 3.3 is investigated in chapter 6. In chapter 6, a system is first 
cast into the form of a communication system and its noise performance 
investigated in terms of BER. 

Master system: 
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Fig. 3.3 The block diagram of the simplest piecewise linear master-slave chaotic flow, with 
the x signal driving.  The parameter value: A = 0.6. 

Let the difference among the non-driving master subsystem and the non-driven 
slave subsystem be denoted by ‘*’.  When x drives this difference is given by 

equation 3.2.2: 
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⎥
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From Figure 3.3 and equation 3.2.2 one obtains equations 3.2.3 and 3.2.4: 

 ⎥
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Differentiating both sides of equation 3.2.2 it should be noted that 

•
∧•∗•

−= vvv . 

It is then readily verifiable that by subtracting equation 3.2.4 from equation 3.2.3, 
equation 3.2.5 is obtained: 

 ⎥
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The conditional Lyapunov exponents are defined as the real parts of the 
eigenvalues of the matrix B of equation 3.2.5. In the general case, provided that 
the matrix B is a constant matrix, that is, the subsystems are linear, the CLEs can 
be determined analytically. However if the matrix is not constant, that is, the 
subsystems are non-linear, one must resort to the numerical evaluation of the 

CLEs [11]. Let the eigenvalues of matrix B of equation 3.2.5 be denoted by 1λ  

and 2λ . Then the two CLEs are determined by taking the real parts of the 

eigenvalues of the matrix B: 

{ }0Re2,1 =−= BICLE λ  

⎪⎭

⎪
⎬
⎫
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⎨
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=⎥
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⎡
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⎦

⎤
⎢
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= 0

1

10

0

0
Re

2

1

Aλ
λ

,                         (3.2.6) 

{ }954.03.0,Re 212,1 jCLE ±−== λλ ,                         (3.2.7) 

resulting in:  

{ } { } 3.0ReRe 2121 −=== λλCLECLE .                       (3.2.8) 

Therefore, as both CLEs are negative, theoretically the master-slave system of 
Figure 3.3 must synchronize. The numerical simulation, confirming the theoretical 
result of the equation 3.2.8 is shown in Figures 3.4a and 3.4b. The time series 
representation of Figure 3.4a demonstrates synchronization of the master-slave y 
and z signals by showing that the two master-slave signals merge. In addition, the 
phase space representation of Figure 3.4b, also demonstrates synchronization by 
showing that the two trajectories of the master and slave chaotic attractors merge. 
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Fig. 3.4a Synchronization of the master-slave simplest piecewise linear chaotic signals, 
with the x signal driving. 
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Fig. 3.4b Phase space representation of the synchronization of the master-slave simplest 
piecewise linear chaotic signals, with the x signal driving. 
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In [37] and chapter 5, Lyapunov’s direct method is used to show that the 

simplest piecewise linear master-slave chaotic flow must synchronize when the 
master x signal drives. 

3.3   Lyapunov’s Direct Method and the Pecora-Carroll Chaotic 
Synchronization 

In this subsection, the use of Lyapunov’s direct method [40] is demonstrated. 
Asymptotic stability via Lyapunov’s direct method is proven by finding the 
Lyapunov function and showing that its derivative is negative semi-definite. By 
definition, a Lyapunov function is a function which is positive definite except at 
the origin where it equals zero, and its derivative is negative semi-definite [43]. A 
function E(t, x) is said to be positive semi-definite with respect to x if 

     E(t, 0)  =  0      and     E(t, x)  ≥  0. 

If  -E(t, x) is positive semi-definite with respect to x, then E(t, x) is negative 
semi-definite with respect to x [40].   

Consider the Chua chaotic system, given by equation 3.3.1: 
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xxbabxxf

yz

zyxy

xfyxx

β

α

                    (3.3.1) 

The system described by equation 3.3.1, exhibits chaotic behaviour with the 
parameter values α = 10, β = 18, a = -4/3, b = -3/4 [44]. Its dynamics are shown in 
Figure 3.5. By finding the Lyapunov function it is now shown that the Chua 
master-slave system of Figure 3.6 must synchronize when x drives. 
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Fig. 3.6 The block diagram of the Chua master-slave chaotic system, with the x signal 
driving.  The parameter values: α = 10,  β = 18,  a = -4/3,  b = -3/4. 

As in the previous section the difference between the non-driving master 
subsystem and the non-driven slave subsystem is denoted by ‘*’ and when x 
drives is given by equation 3.3.2: 
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The differential error is then expressed by equation 3.3.3 [37]: 
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Now consider the Lyapunov function given by equation 3.3.4: 

))1()((
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58 3   Chaotic Synchronization, CLEs and Lyapunov’s Direct Method
 

Differentiating equation 3.3.4 with respect to time, equation 3.3.5 is obtained: 
∗•

∗
∗•

∗
∗•∗•

∗∗
•

+++−−= zzyyzyzyE )1())(( ββββ    (3.3.5) 

From equation 3.3.3, equations 3.3.6a and 3.3.6b are derived: 
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Substituting equations 3.3.6a and 3.3.6b into equation 3.3.5, equation 3.3.7 is 
obtained: 

0))()(()( 222222 ≤−+−−=+−=−−=
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∗∗∗∗
•

zzyyzyzyE ββββ  

(3.3.7) 
As the derivative of the Lyapunov function, shown in equation 3.3.7, is always 

less than zero, the subsystem 
∧
v  is asymptotically stable (the equality sign applies 

only at the origin) i.e. equation 3.3.7 is negative semi-definite. Therefore, as the 
necessary and sufficient condition for synchronization is satisfied, theoretically the 
system of Figure 3.6 must synchronize. The numerical simulation, confirming  
the theoretical result of equation 3.3.7 is shown in Figures 3.7a and 3.7b. The time 
series representation of Figure 3.7a, and the corresponding phase space 
representation of Figure 3.7b, demonstrates synchronization by showing that the 
master-slave trajectories merge. 
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Fig. 3.7a Synchronization of the master-slave Chua chaotic signals, with the x signal 
driving. 
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Fig. 3.7b Phase space representation of the synchronization of the master-slave Chua 
chaotic signals, with the x signal driving. 

The PC chaotic synchronization properties of the Chua master-slave system 
have been examined in [11] in terms of the CLEs. The synchronization properties 
of the Chua chaotic system have been investigated by a number of researchers 
[11,45,9,26]. 

3.4   Synchronization of Chaotic Flows via Lyapunov’s Direct 
Method 

Sections 3.1-3.3 considered the chaotic synchronization concept when a single 
signal of the master system was supplied to the slave system. The general result of 
this is that the master-slave system either synchronizes or does not [3,7,37]. In this 
section the design of the nonlinear controllers for the chaotic flow master-slave 
systems is presented [26,46]. In particular the linear feedback rigid body motion 
(LFRBM), and the Rabinovich-Fabrikant chaotic systems are investigated. In this 
way, the nonlinear controller design is demonstrated on the system with relatively 
simple dynamical equations (LFRBM) and the system with more complex 
dynamical equations (Rabinovich-Fabrikant), thus showing the versatility of this  
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method. These controllers then ensure the synchronization among the master-slave 
systems. The design is via the Lyapunov’s direct method, that is, Lyapunov’s  
function is used to design the nonlinear control laws [46]. The nonlinear controller 
design for the chaotic synchronization of maps is studied in the next chapter. 

 

3.4.1   The Linear Feedback Rigid Body Motion (LFRBM) Chaotic 
System 

The LFRBM system [47] is given by equation 3.4.1: 
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                                   (3.4.1) 

With the parameter 175.0=α  the system is chaotic. Figures 3.8a and 3.8b 
show the time series and the chaotic attractor, respectively. 

The design procedure of the synchronizing nonlinear control laws, using the 
LFRBM master-slave chaotic system as an example, is now explained. Let the 
error be defined by equations 3.4.2a, 3.4.2b and 3.4.2c: 
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Fig. 3.8a The LFRBM chaotic time series, 
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Fig. 3.8b The LFRBM strange attractor 
plotted in two dimensions 
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Fig. 3.9 The LFRBM master-slave chaotic system. Note: 175.0=α . 

In general terms the LFRBM master-slave chaotic system can be represented by 
Figure 3.9. Keeping in mind equation 3.4.2 the differential error, (the error 
system), can then be represented by equation 3.4.3: 
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Equation 3.4.3 can also be represented in terms of error of equation 3.4.2 by 
equation 3.4.5, keeping in mind the identities of equation 3.4.4: 
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Consider the candidate Lyapunov function given by equation 3.4.6:   
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2
1 eeeV ++=                                        (3.4.6) 

Differentiating equation 3.4.6 with respect to time, equation 3.4.7 is obtained: 
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Substituting equation 3.4.5 into equation 3.4.7, and simplifying, equation 3.4.9 

is obtained: 
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For equation 3.4.6 to be a Lyapunov function, equation 3.4.9 must be negative 
semi-definite.  In order for equation 3.4.9 to be negative semi-definite, the terms: 

2
3eα , 2115 eze , 3110 eey

∧
 and 315 eye− , must be eliminated, and the term 

2
3e−  must be introduced.   The control laws u1, u2 and u3 are designed in such a 

manner to eliminate the unwanted terms, and introduce the missing necessary 
terms.  The control laws are given by equations 3.4.11, 3.4.13 and 3.4.16. 

The design of the first control law u1:   

0510 313111 =−+
∧

eyeeeyue                                  (3.4.10)  

)2(5)2(5 2331 yeeyyeu +−=−−=
∧

                       (3.4.11) 

The design of the second control law u2: 

015 2122 =+ ezeue                                        (3.4.12)  

12 15zeu −=                                            (3.4.13) 

The design of the third control law u3:  

02
333 =+ eue α                                         (3.4.14) 

33 eu α−=
                                  

           (3.4.15) 

Besides the requirement for the control law u3 to eliminate the term 2
3eα , it 

shall also be used to introduce the term 2
3e− , that is, the term 2

3ke−  where k  is 

a positive constant acting as the control parameter. Therefore, equation 3.4.16 is 
obtained: 

33 )( eku +−= α                                        (3.4.16) 

It should be pointed out that the introduction of the control parameter k, within 
the third control law u3 of equation 3.4.16, is optional. This control parameter is 
usually fixed at 1, however, any other number greater than 0 can be used, for 
synchronization to be achieved. The block diagram of this master-slave 
synchronization system is given in Figure 3.10. 
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Fig. 3.10 The LFRBM master-slave chaotic system, where: 175.0=α . 

The functionality of the control laws, given by equations 3.4.11, 3.4.13  
and 3.4.16, is demonstrated in Figures 3.11a, 3.11b and 3.11c, when k = 1.  
From Figure 3.11b it can be seen that the synchronization error for all three 
master-slave chaotic signals tends to zero. This has also been demonstrated in 
phase space in Figure 3.11c by showing that the trajectories of the master and 
slave chaotic attractors merge. Note that when k is negative, for instance k = -0.3, 
the master-slave system does not synchronize, as Figures 3.12a, 3.12b and 3.12c 
demonstrate.  
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Fig. 3.11a Synchronization of the LFRBM master-slave chaotic signals when k = 1 
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Fig. 3.11b Synchronization error of the LFRBM master-slave chaotic signals when k = 1 
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Fig. 3.11c Phase space representation of the synchronization of the master-slave LFRBM 
chaotic signals when k = 1 
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Fig. 3.12a Synchronization of the LFRBM master-slave chaotic signals when k = -0.3 
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Fig. 3.12b Synchronization error of the LFRBM master-slave chaotic signals when k = -0.3 
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Fig. 3.12c Phase space representation of the synchronization of the master-slave LFRBM 
chaotic signals when k = -0.3 
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3.4.2   The Rabinovich-Fabrikant Chaotic System 

In this subsection, the nonlinear controller design is demonstrated on the 
Rabinovich-Fabrikant chaotic system whose dynamical equations are significantly 
more complex than those of the LFRBM chaotic system. In this way, the 
versatility of the nonlinear controller design using the Lyapunov’s stability theory 
via Lyapunov’s direct method is demonstrated. The Rabinovich-Fabrikant chaotic 
system is given by equation 3.4.17 [48,42]: 
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                                 (3.4.17) 

With the parameter 1.1=α  and 87.0=γ  the system is chaotic.  Figures 

3.13a and 3.13b show the time series and the chaotic attractor, respectively. 
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Fig. 3.13a The Rabinovich-Fabrikant 
chaotic time series, x(t) 

Fig. 3.13b The Rabinovich-Fabrikant 
strange attractor plotted in two dimensions 

Again, let the error of the master-slave system be defined by equations 3.4.18a, 
3.4.18b and 3.4.18c: 

)()()(1 txtxte −=
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                                     (3.4.18a) 

)()()(2 tytyte −=
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                                    (3.4.18b) 

)()()(3 tztzte −=
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                                     (3.4.18c) 

Expanding equation 3.4.17 and keeping in mind equation 3.4.18, the 
Rabinovich-Fabrikant master-slave chaotic system can be represented by Figure 
3.14.  The design procedure of the synchronizing nonlinear control laws, for the 
Rabinovich-Fabrikant master-slave chaotic system of Figure 3.14, is now 
explained.   
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Fig. 3.14 The Rabinovich-Fabrikant master-slave system, where: 1.1=α  and 87.0=γ . 

The differential error, the error system, can then be represented by equation 
3.4.19: 
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The equation 3.4.19 can also be represented by equation 3.4.21, keeping in 
mind the identities of equation 3.4.20: 
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Consider the candidate Lyapunov function given by equation 3.4.22:  
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Differentiating equation 3.4.22 with respect to time equation 3.4.23 is obtained: 
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Substituting equation 3.4.21 into equation 3.4.23 and simplifying, equation 
3.4.25 is obtained: 
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For equation 3.4.22 to be the Lyapunov function, equation 3.4.25 must be 
negative semi definite.  In order for the function of equation 3.4.25 to be negative 
semi definite all its terms, except the term 2

32 eα− , must be eliminated.  Also, for 

it to be negative semi definite, the terms 2
1e−  and 2

2e−  must be introduced.  The 

control laws u1, u2 and u3 are designed in such a manner to eliminate the unwanted 
terms, and introduce the missing necessary terms.  The control laws are given by 
equations 3.4.28, 3.4.31 and 3.4.33. 

The design of the first control law u1: 
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Besides the requirement for the control law u1 to eliminate the terms 3
1ye , 

2
12 eyx

∧
 and 2

1eγ  it shall also be used to introduce the term 2
1e− , that is, the 

term 2
11ek−  where 1k  is a positive constant acting as the control parameter.  

Therefore, equation 3.4.28 is obtained: 
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The design of the second control law u2: 
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Besides the requirement for the control law u2 to eliminate the terms 
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2
2e− , that is, the term 2

22ek−  where 2k  is a positive constant acting as the 

control parameter.  Therefore equation 3.4.31 is obtained: 
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The design of the third control law u3: 
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The control parameters 1k  and 2k  can be fixed at 1, or any other number 
greater than 0. They are left to be adjusted as they do not introduce any extra 
complexity to the control laws u1 and u2.  The control law u3, of equation 3.4.33, 
could also include the control parameter, however in this case it would introduce 
extra complexity without any need for it.  The control laws of equations 3.4.28, 
3.4.31 and 3.4.33 are shown within the control unit of the master-slave system of 
Figure 3.14. 

The functionality of the control laws, given by equations 3.4.28, 3.4.31 and 

3.4.33, is demonstrated in Figures 3.15a, 3.15b and 3.15c, when 11 =k  and 

12 =k .  From Figure 3.15b it can be seen that the synchronization error for all 

three master-slave chaotic signals tends to zero. This has also been demonstrated 
in phase space in Figure 3.15c by showing that the trajectories of the master and 
slave chaotic attractors merge. When, for instance, the control parameters are 

negative: 6.021 −== kk , the master-slave system does not synchronize, as 

Figures 3.16a, 3.16b and 3.16c demonstrate. 
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Fig. 3.15a Synchronization of the Rabinovich-Fabrikant master-slave chaotic signals when 

121 == kk  
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Fig. 3.15b Synchronization error of the Rabinovich-Fabrikant master-slave chaotic signals 

when 121 == kk  
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Fig. 3.15c Phase space representation of the synchronization of the master-slave 

Rabinovich-Fabrikant chaotic signals when 121 == kk  



74 3   Chaotic Synchronization, CLEs and Lyapunov’s Direct Method
 

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

x(t)

xhat(t)

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

A
m

pl
itu

d
e

y(t)

yhat(t)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time

z(t)

zhat(t)

 
Fig. 3.16a Synchronization of the Rabinovich-Fabrikant master-slave chaotic signals when 

6.021 −== kk  

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

e
1

(t
)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

e
2

(t
)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

e
3

(t)

Time  

Fig. 3.16b Synchronization error of the Rabinovich-Fabrikant master-slave chaotic signals 
when 6.021 −== kk  



3.5   Conclusion 75
 

-3
-2

-1
0

1
2

3

-4

-2

0

2

4

6
-3

-2

-1

0

1

2

3

4

x(t), xhat(t)y(t), yhat(t)

z(
t),

 z
ha

t(
t)

Master trajectory
Slave trajectory

No Synchronization

Initial Separation
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Rabinovich-Fabrikant chaotic signals when 6.021 −== kk  

3.5   Conclusion 

The apparent random behaviour, high sensitivity to parameter and initial condition 
perturbations and the broadband nature of chaotic systems originally led to the 
belief that they cannot be synchronized. In this chapter, synchronization of chaotic 
systems has been examined. The concept of the Pecora-Carroll chaotic 
synchronization has been described and its properties examined in terms of the 
conditional Lyapunov’s exponents and Lyapunov’s direct method. These 
demonstrate two different, yet most common approaches to the analysis of chaotic 
synchronization. Furthermore, Lyapunov’s direct method has then been used to 
show a general approach to the design of nonlinear controllers for master-slave 
chaotic systems. 
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Chapter 4  
Chaotic Synchronization of Maps 

In chapter 3, the concept of chaotic synchronization was introduced on flows, as is 
most often done in the literature [1]. However, the principles of chaotic 
synchronization presented in sections 3.1 and 3.2 [1] are also equally applicable to 
chaotic maps [2]. In contrast to section 3.4 [1], this chapter proposes a method of 
designing nonlinear control laws for the synchronization of chaotic map master-
slave systems. The general approach to the master-slave chaotic map 

synchronization is demonstrated on the one dimensional, 1ℜ , cubic map master-

slave system, the two dimensional, 2ℜ , tinkerbell map master-slave system and 

the Lorenz three dimensional, 3ℜ , chaotic map master-slave system. It is shown 
that it is always possible to achieve instant synchronization within a single 
iteration of the master-slave system for all three systems. The requirement for 
instant synchronization is that the error system matrix be reduced to zero [3]. 

Within PC synchronization, the master-slave system either synchronizes or 
does not, depending on the nature of the system and the driving signal. In contrast 
to PC synchronization, it has been shown in chapter 3 that is possible to design 
controllers to enforce synchronization within the master-slave systems [1]. Such 
design techniques have been investigated for both chaotic flows [1,4,5] and 
chaotic maps [6-18]. In a number of cases it has been shown that these techniques 
can be applied to chaotic communications [1,7,9,10,12-14]. In [6] the in-phase and 
anti-phase synchronization of chaotic maps has been investigated. Furthermore, in 
[7], chaotic map synchronization method of [6] was used to synchronize a chaotic 
communication system similar to that of Parlitz and Ergezinger [19]. Here, the 
authors of [7] investigated the possibility of regenerating the chaotic spreading 
sequences at the receiver through the process of chaotic synchronization of [6]. In 
this way the necessity of assuming perfect synchronization among the chaotic 
spreading sequences of the transmitter and the receiver was avoided. In [8,9] the 
synchronization of piecewise linear chaotic maps in a master-slave configuration 
was investigated. In particular, finite time synchronization of a chaotic map 
master-slave system was considered and the conditions for it discussed. It was 
shown that by setting the eigenvalues of the error system matrix to zero the finite 
time synchronization could be achieved. The general significance of the results in 
relation to the secure chaotic communications was also discussed. The 
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synchronization of coupled one dimensional chaotic maps in the noisy 
environment, as well as the conditions for robust synchronization, have been 
investigated in [15].  Some of the most recent advances in the synchronization of 
chaotic maps can be found in [16-18]. In [16], generalized-type synchronization 
(called Q-S synchronization) of chaotic maps was investigated using discrete 
Lyapunov functions. It was demonstrated how this approach could be used to 

synchronize two 3ℜ  chaotic maps in the master-slave configuration. In [17], a 
method termed the “slide and match algorithm” was proposed to synchronize a 
master-slave system of identical chaotic maps using almost any scalar function of 
the driving master system. 

A similar method to that of the master-slave map synchronization of [18] is 
proposed here [3]. In our method, the general approach to the master-slave 
synchronization of chaotic maps is presented and the requirements for 
synchronization outlined. It is shown that the synchronization is achieved by 
keeping the eigenvalues of the error system matrix within the unit circle in the z
domain. Using this method it is demonstrated that it is always possible to achieve 
instant synchronization, within a single iteration of the master-slave system. This 
is achieved when the control laws are designed in such a way to reduce the error 
system matrix to zero. Furthermore, the method of implementing the synchronized 
master-slave system within a chaotic parameter modulation (CPM) based secure 
chaotic communication system is demonstrated in chapter 6 with further 
elaboration in chapter 10. 

In Section 4.1, the design of the nonlinear control laws for the synchronization 
of the chaotic map master-slave systems is proposed. In Sections 4.2, 4.3 and 4.4 

this method is demonstrated on the 1ℜ  cubic map, the 2ℜ  tinkerbell map and the 

Lorenz 3ℜ  chaotic map master-slave systems, respectively. 

4.1   A Design Procedure for the Synchronization of Chaotic 
Maps 

In this section, a general approach in the design of the synchronized chaotic maps 

is proposed. In the subsequent sections, the method is then applied to the 1ℜ
cubic, 2ℜ  tinkerbell and Lorenz 3ℜ  chaotic map, demonstrating the controller 
design on three dimensionally different chaotic maps of increasing complexity. 
These controllers then ensure the synchronization among the master-slave 
systems. The design of the nonlinear control laws is via the following two 
theorems: 

Theorem 1 

Suppose: nn Bee =+1 ,∀ 0≥n , 1)( <Beig .

Then: 0→ne , as ∞→n ,∀ nRe ∈0 .
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The theorem states that the equilibrium 0, of the error system 1+ne , is globally 

asymptotically stable if and only if all eigenvalues of B have magnitude less than 
one [20].
Special cases also exist when matrix B is a function of n, and the equilibrium 0, of 

the error system 1+ne , remains globally asymptotically stable. 

Special case: If the matrix B is a function of n, then the condition that 

nn BB −+1  remains bounded must also be satisfied. 

Proof for the special case: 

Since:   nnn eBe =+1

Then:   112 +++ = nnn eBe

nnnn eBBe 12 ++ =

nnininin eBBBe …)1( −+++ = ∀ 1>i         (4.1.1) 

To ensure that the system represented by equation 4.1.1 remains bounded, that is, 

to ensure global asymptotic stability of the equilibrium 0 of the error system 1+ne ,

it must be ensured that all the matrix components of nninin eBBB …)1( −++  remain 

bounded, that is, the condition that nn BB −+1  remains bounded, must be 

satisfied. 
Theorem 1 is now manipulated to obtain Theorem 2 [3], which is suitable for 

the synchronization of chaotic maps. 

Theorem 2 

Suppose: nnnnn eUeAe +=+1 ,∀ 0≥n , 1)()( <=+ BeigUAeig nn .

Then: 0→ne , as ∞→n ,∀ nRe ∈0 .

The theorem states that the equilibrium 0, of the error system 1+ne , is globally 

asymptotically stable if and only if all eigenvalues of nn UAB +=  have 

magnitude less than one. 

Special case: If the matrix B is a function of n, then the condition that 

nn BB −+1  remains bounded must also be satisfied. 

In the above theorems brackets | | denote the magnitude of the eigenvalues of a 
matrix, and the brackets ||  || denote the Euclidian norm.  In the following sections 
Theorem 2 is used for the purpose of synchronizing one, two and three 
dimensional master-slave chaotic maps. 
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Chapter 4  
Chaotic Sync hronization of Maps 

4.2   Synchronization of the 1ℜ  Cubic Map Master-Slave  
Systems 

In this section, the master-slave synchronization of a one dimensional map, the 
cubic map, is considered.  

The cubic map [21] is given by equation 4.2.1: 

)1( 2
1 nnn XAXX −=+                                       (4.2.1) 

With the parameter 3=A  the system is chaotic. Figures 4.1a and 4.1b show 
the time series and the chaotic map, respectively. 
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Fig. 4.1a The cubic map chaotic time series,

nX
Fig. 4.1b  The cubic map 

Using the 1ℜ  cubic map master-slave system as an example, the design  

procedure of the nonlinear control laws required for synchronization is now ex-
plained. In general terms, the cubic map master-slave system can be represented in 
the form of a block diagram of Figure 4.2. Let the error be defined by equation 
4.2.2: 

nnn XXe −=
∧

                                           (4.2.2) 

The difference error, (the error system), can then be represented by equation 4.2.3: 

nnnnnnnn uAXXAAXXAXXe ++−−=−=
∧∧

++

∧

+
3

3

111              (4.2.3) 

Keeping in mind the identity of equation 4.2.4, equation 4.2.3 can also be repre-
sented by equation 4.2.5: 

)3( 23
3

nnnnnn XXeeXX
∧∧

+−=+−                                   (4.2.4) 

nnnnnnnn ueeXXAXXe +−−=−=
∧

++

∧

+ )31( 2
111                (4.2.5) 
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1 nnn XAXX −=+  

Fig. 4.2  The cubic map master-slave system, where: 3=A .

With theorem 2 in mind equation 4.2.6 is now formed: 

nnnnn eUeAe +=+1                                         (4.2.6) 

Modifying equation 4.2.5 to fit the form of equation 4.2.6, equation 4.2.7 is  
obtained: 

nnnnnnn eUeeXXAe +−−=
∧

+ )31( 2
1                      (4.2.7) 

where: )31( 2
nnnn eXXAA −−=

∧
 and nnn eUu = .

Therefore: 

nnnnnn UeXXAUAB +−−=+=
∧

)31( 2                   (4.2.8) 

From theorem 2 it is required that the magnitude of eigenvalues of equation  
4.2.8 be less than unity (ie. be within the unit circle in the z domain).  As B of 
equation 4.2.8 is a 1x1 matrix, that is a scalar, it is then required that it be in the 
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range -1 < B < 1, that is |B| < 1. This condition is now used to formulate the condi-

tions upon nU . When satisfied, they globally asymptotically stabilise the system 

of equation 4.2.7, and thus synchronize the master-slave system of Figure 4.2. 
It is readily verifiable that equation 4.2.8 is in the range -1 < B < 1 when: 

)31( 2
nnnn eXXAU −−−=

∧
λ   where: 11 <<− λ               (4.2.9) 

From equation 4.2.9, it can be observed that )31( 2
nnnn eXXAU −−−=

∧
 is the 

optimal solution as it reduces equation 4.2.8 to zero and thus causes the fastest 
possible synchronization between the master and slave systems of Figure 4.2. 

Therefore, the control law nu  is given by equation 4.2.10 and incorporated into 

Figure 4.2 to produce Figure 4.3. 

nnnnnnn eeXXAeUu )31( 2−−−==
∧

                        (4.2.10) 
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nnnnn eeXXAu )31( 2−−−=
∧
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)1( 2
1 nnn XAXX −=+  

nX
∧
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Fig. 4.3 The cubic map master-slave system, where: 3=A .
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Figure 4.4 demonstrates that the system does not synchronize when 1=λ , that 

is, when: nnnnn eeXXAu ))31(1( 2−−−=
∧

. It can be observed from Figure 4.4 that 

in this case the synchronization error among the master-slave signals is constant. 

When 99.0=λ , that is when: nnnnn eeXXAu ))31(99.0( 2−−−=
∧

, the master-

slave system synchronizes, as Figure 4.5 demonstrates. However, in this case, the 
system is on the border of synchronization and it takes approximately 500 itera-
tions for the system to synchronize. It should be noted that here the slave signal 
asymptotically approaches the master signal. The instant synchronization, 
achieved by the control law of equation 4.2.10, is demonstrated in Figure 4.6. It 
can be observed from Figure 4.6 that the master-slave system synchronizes in a 
single iteration. 
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Chapter 4  
Chaotic Sync hronization of Maps 

4.3   Synchronization of the 2ℜ  Tinkerbell Map Master-Slave 
Systems 

In this section, the complexity is increased to 2ℜ . Here, the master-slave syn-
chronization of a two dimensional map, the tinkerbell map, is considered.  

The tinkerbell map [21] is given by equation 4.3.1: 

nnnnn

nnnnn

dYcXYXY

bYaXYXX

++=
++−=

+

+

21

22
1                                  (4.3.1) 

With the parameter 9.0=a , 6.0−=b , 2=c  and 5.0=d  the system ex-
hibits chaos. Figures 4.7a and 4.7b show the time series and the chaotic map,  
respectively. 
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Fig. 4.7b The tinkerbell map 

The design procedure of the nonlinear control laws necessary for synchroniza-
tion of the tinkerbell map master-slave system of Figure 4.8 is now explained. Let 
the error be defined by equation 4.3.2: 

nnn XXe −=
∧

1                                         (4.3.2a) 

nnn YYe −=
∧

2                                           (4.3.2b) 

The difference error, (the error system), can then be represented by equation 4.3.3: 

nnnnnnnnnnnn

nnnnnnnnnnnn
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Fig. 4.8 The tinkerbell map master-slave system, where: 9.0=a , 6.0−=b , 2=c  and 
5.0=d .

Keeping in mind the identities of equation 4.3.4, equation 4.3.3 can also be repre-
sented by equation 4.3.5: 
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With theorem 2 in mind matrix equation 4.3.6 is formed: 

nnnnn eUeAe +=+1                                         (4.3.6) 

In matrix notation equation 4.3.6 takes the form of equation 4.3.7: 
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Modifying equation 4.3.5 to fit the matrix form of equation 4.3.7, equation 
4.3.8 is obtained: 
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where: nnnnn eueuu 2ii1i1 +=  and nnnnn eueuu 2iv1iii2 += .
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Following theorem 2, the control laws can be chosen in the following manner to 
obtain a constant matrix B:
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With the control laws of equation 4.3.10, equation 4.3.9 takes the form of equation 
4.3.11: 

=
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From theorem 1, it is then required that the magnitude of eigenvalues of the 
matrix B be less than one (ie. be within the unit circle in the z domain).  The ei-
genvalues are given by equation 4.3.13, where I is the 2X2 identity matrix and λ
is the scalar denoting the eigenvalues: 

[ ] 0)(
0

detdet =−=
−

=− d
dc

BI λλ
λ

λ
λ                  (4.3.12) 

0=λ             and            5.0== dλ                          (4.3.13) 

As with cubic map, the eigenvalues are within the unit circle in z domain, thus 
making the system of equation 4.3.8 globally asymptotically stable. Therefore, the 

control laws nu1 and nu2  are given by equations 4.3.14 and 4.3.15, respectively, 

and incorporated into Figure 4.8. 
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The control law performance, given by equations 4.3.14 and 4.3.15, is demon-
strated in Figure 4.9 from which one can observe that the master-slave system 
synchronizes. In particular, it should be observed that in the case of the master-

slave signals Y, the slave signal 
∧
Y  asymptotically approaches the master signal Y.

It should be noted that the control laws of equations 4.3.14 and 4.3.15 are not 
the only possible control laws which cause the master-slave system of Figure 4.8 
to synchronize. For instance, the control laws of equations 4.3.16 and 4.3.17: 
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cause both eigenvalues of the matrix B to be equal to zero. 
The performance of the control laws of equations 4.3.16 and 4.3.17 is illus-

trated in Figure 4.10, demonstrating finite time synchronization of the master-
slave system. It can be observed from Figure 4.10, that the master-slave X signals 
synchronize within one time step. However, it requires two time steps to synchro-
nize the master-slave Y signals. In order to achieve the fastest possible (instant) 
synchronization it would be required to redesign the control laws of equation 
4.3.10 to reduce the matrix B of equation 4.3.9 to zero. This would not cause a 
significant increase in the complexity of the control laws of equations 4.3.14 and 
4.3.15 as only constants need to be introduced into the control laws of equation 
4.3.10, as demonstrated by equations 4.3.18 and 4.3.19: 
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The performance of the control laws, given by equations 4.3.18 and 4.3.19, is 
shown in Figure 4.11.  Observe the instant synchronization within one time step. 

Setting the eigenvalues of the system to zero, results in the synchronization 
time faster than for any other eigenvalues, within the unit circle in the z domain. 
However, as can be seen from figure 4.10, setting the eigenvalues to zero does not 
guarantee instant synchronization within one time step. In order to achieve instant 
synchronization in one time step, it is required to design the control laws in such a 
way to reduce the matrix B to zero.  The proof of this is trivial and is obtained by 
substituting the ultimate control laws of equations 4.3.18 and 4.3.19 into the slave 
equations of Figure 4.8, respectively, and showing that the slave equations reduce 
to the master equations: 
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Fig. 4.9 Synchronization of the master-slave tinkerbell chaotic signals with the control laws 
of equations 4.3.14 and 4.3.15, that is, when one of the eigenvalues is equal to zero while 
the other is equal to 0.5 
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Fig. 4.10 Finite time synchronization of the master-slave tinkerbell chaotic signals with the 
control laws of equations 4.3.16 and 4.3.17, that is, when both eigenvalues are equal to zero 
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4.4   Synchronization of the Lorenz 3ℜ  Chaotic Map  
Master-Slave Systems 

4.4   Synchronization of t he Lorenz  C haotic Map Master-Slave Systems 

In this section the chaotic map complexity is further increased to 3ℜ . The master-
slave synchronization of a three dimensional map, the Lorenz three-dimensional 
chaotic map, is considered.  

The Lorenz three-dimensional chaotic map [21] is given by equation 4.4.1: 
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Figures 4.12a and 4.12b show the time series and the chaotic map, respectively. 

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

n

X
n

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Xn

Y
n

Fig. 4.12a The Lorenz 3ℜ  chaotic map 
time series, nX

Fig. 4.12b The Lorenz 3ℜ  chaotic map 

The same procedure for designing nonlinear control laws, as that in the 1ℜ  and 
2ℜ  cases, is now used to demonstrate the design of the nonlinear control laws of 

the Lorenz 3ℜ  chaotic map master-slave system of Figure 4.13. Let the error be 
defined by equation 4.4.2: 
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1                                            (4.4.2a) 

nnn YYe −=
∧

2                                              (4.4.2b) 
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Note the extra error term introduced as the dimension increases, highlighted in 
equation 4.4.2c and Figure 4.13. 
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Fig. 4.13  The Lorenz three-dimensional chaotic map master-slave system. 

The difference error, (the error system), can then be represented by equation 
4.4.3: 
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Keeping in mind the identities of equation 4.4.4, equation 4.4.3 can also be repre-
sented by equation 4.4.5:  
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With theorem 2 in mind matrix equation 4.4.7 is formed: 

nnnnn eUeAe +=+1                                        (4.4.6) 
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Modifying equation 4.4.5 to fit the matrix form of equation 4.4.7, equation 4.4.8 is 
obtained: 
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 where: nnn euu 1i1 = , nnn euu 1ii2 =   and  nnn euu 1iii3 = .
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Therefore: 
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Following theorem 2 the control laws can be chosen in the following manner: 
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where k is the parameter to be determined. 
With the control laws of equation 4.4.10, equation 4.4.9 takes the form of equa-

tion 4.4.11: 
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From theorem 2, it is then required that the magnitude of the eigenvalues of the 

matrix nB  be less than one (ie. be within the unit circle in the z domain).  This 

condition is now used to formulate the conditions upon k, that is, upon nui . The 

eigenvalues of the matrix nB  are obtained by evaluating equation 4.4.12, where I

is the 3X3 identity matrix and λ  is the scalar denoting the eigenvalues: 
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From equation 4.4.13 it is observed that two out of three eigenvalues are always at 
zero, whereas the third eigenvalue is equal to zero provided k is equal to zero.  

Keeping in mind the condition of theorem 1 (2) that 1)( <= Beigλ , it is evi-

dent from equation 4.4.13 that k must be kept within the unit circle in z domain: 

1<k . Clearly, in this case, choosing k = 0 is the optimal solution as it forces the 

third eigenvalue of equation 4.4.13 to zero, so that: 

nn Yu −=i                                              (4.4.14) 

Therefore, the control laws nu1 , nu2  and nu3  are given by equations 4.4.15, 

4.4.16 and 4.4.17, respectively, and incorporated into Figure 4.13. 
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01iii3 == nnn euu                                      (4.4.17) 

With such control laws, the eigenvalues of the matrix nB  of equation 4.4.11 are 

equal to 0 and the matrix nB  takes the form of equation 4.4.18: 
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However, theorem 2 requires matrix B to be constant.  As the matrix B is a  

function of n, it must also be ensured that nn BB −+1  remains bounded to 

guarantee global asymptotic stability which is the requirement for synchroniza-

tion.  The fact that nn BB −+1  remains bounded is demonstrated by equation 

4.4.19 (4.4.20): 

=
−−−

=

∧

+

∧

+

∧

++

000

000

000

010

000

10

010

000

10

010

000

10 12

12

nnn

nnn

XXX

BBB

(4.4.19) 



98 4   Chaotic Synchronization of Maps

That is: 
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for 3=i .          

In Figure 4.14, synchronization of the master-slave system is demonstrated when 
the control parameter k is a complex number within the unit circle, that is, 

5.06.0 jk += . It can be observed from Figure 4.14 that the master-slave  

system synchronizes. Furthermore, it should be observed that in the case of the 

master-slave signals X, the slave signal 
∧
X  asymptotically approaches the master 

signal X. The performance of the control laws when 0=k , given by equations 
4.4.15-4.4.17, is demonstrated in Figure 4.15. From Figure 4.15, one can observe 
the finite time synchronization among the master-slave signals.  

In order to achieve instant synchronization, the control matrix nU  of equation 

4.4.8 must be redefined to obtain the matrix equation 4.4.21: 
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where: nnnnnnn eueueuu 3v2iv1i1 ++= , nnn euu 1ii2 =   and  

nnnnn eueuu 2vi1iii3 += .

To reduce the matrix B to zero, and thus achieve instant synchronization, the 

control laws nui  to nuvi  must be chosen in the following manner: 
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Then, the control laws nu1 , nu2  and nu3  take the form of equations 4.4.23, 

4.4.24 and 4.4.25, respectively: 

nnnnnn eeXeYu 3211 +−−=
∧

                          (4.4.23) 

nn eu 12 −=                                             (4.4.24) 

nn eu 23 −=                                             (4.4.25) 

The performance of the control laws of equations 4.4.23-4.4.25 is demonstrated in 
Figure 4.16, from which instant synchronization of all three master-slave signals 
can be observed. 

It has thus been demonstrated that by following theorem 2 it is possible to 

achieve synchronization for 1ℜ , 2ℜ  and 3ℜ  master-slave chaotic maps. Fur-
thermore, by reducing the error system matrix B to zero, it has been shown that all 
master slave signals synchronize instantly, that is, within one time step. The im-
portant advantage of instant synchronization on the performance of a chaotic 
communication system is demonstrated in chapter 6. 
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Fig. 4.14 Synchronization of the master-slave Lorenz 
3ℜ  chaotic signals when two of the 

eigenvalues are equal to zero while the third one is equal to 5.06.0 j+ , where j denotes 

the complex number 
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Fig. 4.15 Finite time synchronization of the master-slave Lorenz 
3ℜ  chaotic signals with 

the control laws of equations 4.4.15-4.4.17, that is, when all eigenvalues are equal to zero 
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Fig. 4.16  Instant synchronization of the master-slave Lorenz 
3ℜ  chaotic signals using the 

control laws of equations 4.4.23-4.4.25, that is, when matrix B is equal to zero 
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4.5   Conclusion 

In this chapter a method of designing the nonlinear control laws for the synchroni-
zation of the chaotic map master-slave systems has been proposed.  The nonlinear 
control laws are designed in such a way to ensure that the eigenvalues of the error 
system matrix always fall within the unit circle in the z domain. This ensures the 
global asymptotic stability of the error system and thus causes the master-slave 
system of any complexity to synchronize. The general approach to the master-

slave chaotic map synchronization has been demonstrated on the 1ℜ  cubic map 

master-slave system, the 2ℜ  tinkerbell map master-slave system and the Lorenz 
3ℜ  chaotic map master-slave system. Furthermore, it has been shown that it is 

always possible to achieve instant synchronization, within a single iteration of the 
master-slave system, when the control laws are designed in such a way to reduce 
the error system matrix to zero. 
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Chapter 5 
A Novel Mathematical Analysis for Predicting 
Master-Slave Chaotic Synchronization 

A Novel Mathe matical A nalysis  

 

 

In this chapter, a novel mathematical analysis for predicting master-slave chaotic 
synchronization is presented. In most situations when examining this type of syn-
chronization one considers the asymptotic stability of the particular system via 
Lyapunov’s direct method, or conditional Lyapunov exponents are considered.  
Initially, in this chapter, Lyapunov’s direct method is used to show the asymptotic 
stability within the simplest piecewise linear master-slave chaotic flow. However, 
primarily the master-slave synchronization properties of the simplest quadratic 
chaotic flow and Ueda chaotic system are examined directly by means of mathe-
matical manipulation of their dynamical equations, where possible, as well as via 
numerical simulations.  In order to achieve this, numerical simulations and theo-
retical analysis are made use of in conjunction.  In this way, it is shown that the 
synchronization error of the two aforementioned chaotic master-slave systems can 
indeed be predicted for certain driving signals, without the need for either analyti-
cal or numerical evaluation of the conditional Lyapunov exponents or employment 
of Lyapunov’s direct method. 

In [1], it has been demonstrated that the necessary condition for PC master-
slave synchronization to occur is for the sub-Lyapunov exponents, (later renamed 
conditional Lyapunov exponents [2]), of the non-driving/non-driven subsystem to 
be less than zero.  In particular, this has been shown for the Lorenz and Rossler 
chaotic systems [1].  The necessary and sufficient condition for master-slave syn-
chronization to occur is that the part of the slave system not being driven by the 
master system must be asymptotically stable [3].  As shown in chapter 3, asymp-
totic stability of a system can be demonstrated via Lyapunov’s direct (or second) 
method [4] by demonstrating the existence of the Lyapunov function.  This 
method was used in [3] to show that the Lorenz master-slave systems must syn-
chronize when the master x signal drives the slave system.  Using the methodol-
ogy from [3] a similar proof was derived for the Van der Pol Duffing oscillator in 
[5].  In this chapter, initially the existence of the Lyapunov function is briefly 
demonstrated, following the procedure of section 3.3, for the simplest piecewise 
linear chaotic flow, when the x signal drives.  The simplest piecewise linear cha-
otic flow is easily realizable in the form of an electronic circuit [6].  However, the 
main emphasis of this chapter is on the master-slave synchronization via direct 
mathematical analysis of the dynamics of the simplest quadratic master-slave  
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chaotic flow and the Ueda master-slave chaotic system [7].  These systems have 
been selected for the analysis due to it being possible, as shown in this chapter [7], 
to analyze their PC synchronization properties without the use of Lyapunov’s sta-
bility theory or the need to obtain the conditional Lyapunov exponents.  Numeri-
cal simulations are used to further support the analysis. Unlike the Lyapunov’s 
stability theory which describes the general behaviour of the system, the novel 
mathematical analysis presented in this chapter [7] describes the system’s behav-
iour using the strict mathematical equations. It therefore gives a deeper insight 
mathematically into what dynamically occurs. A secure communication system 
based on the chaotic synchronization phenomena presented here is presented in 
chapter 6. 

In Section 5.1 it is shown that the asymptotic stability, which is a necessary and 
sufficient condition for synchronization, exists within the simplest piecewise lin-
ear master-slave chaotic flow, when the master x signal drives the slave subsys-
tem.   This is followed by the numerical simulations and a mathematical analysis 
of the simplest quadratic master-slave chaotic flow in Section 5.2 and the Ueda 
master-slave chaotic system in Section 5.3. 

5.1   Synchronization and Asymptotic Stability of the Simplest 
Piecewise Linear Master-Slave Chaotic Flow 

5.1   Synchronization and Asymptotic Stabil ity  

The simplest piecewise linear chaotic flow is given by equation 3.2.1, repeated 
below for convenience as equation 5.1.1:   

 

1−+−−=

=

=

•

•

•

xyAzz

zy

yx

                    (5.1.1)    

The system of equation 5.1.1 exhibits chaotic behaviour with the parameter value 
A = 0.6 [6].  As outlined in section 3.1 of chapter 3, this system is said to be the 
master system [1,3] which drives the slave system by one of its signals. The re-
maining two slave signals are generated using identical equations to those of the 
master system except that the initial conditions are different. 

5.1.1   Master-Slave System with the Master x Signal Driving 

The simplest piecewise linear master-slave chaotic flow when the master x signal 
drives has been presented in Figure 3.3 of chapter 3.  As in chapter 3, the slave 
variables are denoted by ‘^’ (hat), while the ‘dot’ above the variable denotes the 
operation d/dt.  The parameter values of the master and slave systems are identi-
cal.  Initial conditions of x, y and z signals are denoted as x(0), y(0) and z(0).   
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In the top graph of Figure 5.1 the difference between the output signal y of the 

master and the output signal 
∧
y  of the slave system are shown.  The difference 

between the two signals decreases in time, becoming negligible after approxi-
mately 10 time units, when the master and slave systems synchronize.  This dif-
ference between the master and slave signals is defined as the synchronization 
error.  It can be observed from Figure 5.1 that the synchronization error tends to 
zero for both, the master-slave signals y and the master-slave signals z. 
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Fig. 5.1 Upper graph: The error of the simplest piecewise linear master-slave y signals.  
Lower graph: The error of the simplest piecewise linear master-slave z signals. 

 

 
It is now shown, via the Lyapunov’s direct method, that the simplest piecewise 

linear master-slave chaotic flow must synchronize when x drives. The difference 
between the non-driving master subsystem and non-driven slave subsystem is de-
noted by ‘*’, and when x drives it is given by equation 5.1.2: 
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For the master-slave system of Figure 3.3 the differential error is expressed by 
equation 5.1.3: 
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Now consider the Lyapunov function given by equation 5.1.4: 
 

 222
)(

2

1

2

1 ∗∗∗∗ +++= zAyzyE                       (5.1.4) 

 
Differentiating equation 5.1.4 with respect to time, equation 5.1.5 is obtained: 
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++++= zyAzAyzzyyE             (5.1.5) 
 

Substituting the expressions for 
∗•

y  and 
∗•

z of equation 5.1.3 into equation 5.1.5, 

equation 5.1.6 is obtained: 

0))()(()( 222222 ≤−+−−=+−=−−=
∧∧

∗∗∗∗
•

zzyyAzyAAzAyE      (5.1.6) 

 
As the derivative of the Lyapunov function, shown in equation 5.1.6, is always 

less than zero, the subsystem 
∧
v  is asymptotically stable (the equality sign applies 

only at the origin),  i.e. equation 5.1.6 is negative semi-definite.  Therefore, as the 
necessary and sufficient condition for synchronization is satisfied, theoretically the 
system of Figure 3.3 must synchronize. 

5.1.2   Master-Slave System with the Master y Signal Driving 

With the master y signal driving, the master-slave z signals do not synchronize, 
while the synchronization error of the master-slave x signals is governed by  
equation 5.1.7: 

  

Jxxxx =−=−
∧∧

)0()0(                              (5.1.7) 

 
The numerical simulation confirming the result of equation 5.1.7 is shown in the 
upper graph of Figure 5.2. It can be observed from the upper graph of Figure 5.2 
that the synchronization error is indeed constant and equal to the difference among 
the master slave x initial conditions. The lower graph of Figure 5.2 shows  
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Fig. 5.2 Upper graph: The error of the simplest piecewise linear master-slave x signals.  
Lower graph: The error of the simplest piecewise linear master-slave z signals. 

that the master-slave z signals do not synchronize as the synchronization error is 
non-zero for all time. 

5.1.3   Master-Slave System with the Master z Signal Driving 

With the master z signal driving, the synchronization error of the master-slave y 
signals is governed by equation 5.1.8, while the synchronization error of the mas-
ter-slave x signals is governed by equation 5.1.9: 

 

Kyyyy =−=−
∧∧

)0()0(                                  (5.1.8) 

tKLtyyxxxx +=−+−=−
∧∧∧

))0()0(())0()0((                    (5.1.9) 

 
The results of equations 5.1.8 and 5.1.9 are confirmed by the numerical simula-
tions presented in Figure 5.3.  In the next section, the mathematical procedure of 
obtaining equations analogous to equations 5.1.7-5.1.9 will be presented. 
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Fig. 5.3 Upper graph: The error of the simplest piecewise linear master-slave x signals.  
Lower graph: The error of the simplest piecewise linear master-slave y signals. 

5.1.4   Summary of the Synchronization Properties 

Overall, for the simplest piecewise linear master-slave chaotic flow it has been 
shown that when x drives, the master-slave system synchronizes.  When y drives, 
the synchronization error of the master-slave x signals is constant while the mas-
ter-slave z signals do not synchronize.  Finally, when z drives, the synchronization 
error of the master-slave y signals is constant while the error of the master-slave x 
signals increases linearly. 

5.2   The Simplest Quadratic Master-Slave Chaotic Flow 

The simplest quadratic chaotic flow is given by equation 5.2.1:  
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The system of equation 5.2.1, exhibits chaotic behaviour with the parameter value 
A = 2.017 [6]. 

5.2.1   Master-Slave System with the Master z Signal Driving 

Figure 5.4, shows the simplest quadratic master-slave chaotic flow when the mas-
ter z signal drives. 

In Figure 5.5a, the synchronization of the master-slave signals when z drives is 
shown.  From Figure 5.5b, one can see that the error is constant for y signals, and 
that the error is linearly increasing (in the negative sense) for x signals.  The initial 
conditions of the master system are chosen to be x(0) = -0.01, y(0) = -0.001, z(0) = 

0.01.  The initial conditions of the slave system are chosen to be 5.0)0( −=
∧
x , 

9.0)0( =
∧
y . 
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Fig. 5.4 The block diagram of the simplest quadratic master-slave chaotic flow, with the z 
signal driving.  The parameter value is A = 2.017. 
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Fig. 5.5a Synchronization of the master-slave simplest quadratic chaotic signals, with the z 
signal driving. 
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Fig. 5.5b Upper graph: The error of the simplest quadratic master-slave x signals.  Lower 
graph: The error of the simplest quadratic master-slave y signals. 
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The constant error of the master-slave y signals, observed in Figure 5.5b, lower 

graph, can be determined in the following manner.  Keeping in mind that zy =
•

 

and zy =
•
∧

, equation 5.2.2 is obtained: 
 

•
•
∧
= yy                             (5.2.2) 

 
Integrating both sides of equation 5.2.2, and assuming unequal initial  
conditions, 

 

∫∫
•
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= dtydty  

 
equation 5.2.3 is obtained: 

 

 CyDy +=+
∧

  or  CyDy −=−
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Ayy =−
∧

  or  Ayy =−
∧

                (5.2.3) 

 

where 901.09.0001.0)0()0( −=−−=−=−=
∧
yyDCA .  The second version 

of equation 5.2.3 ( Ayy =−
∧

) suits the situation more, as in this case it precisely 

describes the lower graph of Figure 5.5b – it does not just indicate the constant 
difference between the master-slave y signals.  In [8] the constant error among 
master-slave signals was predicted by demonstrating that one or more of the con-
ditional Lyapunov exponents (CLEs) are zero and none are positive.  In contrast, it 
has been shown here that this constant error can be determined by direct mathe-
matical manipulation of the master-slave equations.  This technique will also be 
further used in this chapter. 

With z as the driving signal, and keeping in mind that Ayy =−
∧

, equations 

5.2.4 and 5.2.5 are obtained: 
 

yx =
•
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    Axyx −==
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       (from equation 5.2.4 and 5.2.5)            (5.2.6) 

Axx +=
•
∧•

                   (from equation 5.2.6)                           (5.2.7) 
 

Integrating both sides of equation 5.2.7, and assuming unequal initial  
conditions, 

 ∫∫∫ +=
•
∧•

Adtdtxdtx  

 
equation 5.2.8 is obtained: 

 

AtFxEx ++=+
∧

  or  AtFxEx +−=−
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AtBxx −=−
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                         or                         AtBxx +=−
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       (5.2.8) 
 

where 49.0)0()0( =−=−=
∧
xxFEB  (recall 901.0)0()0( −=−=−=

∧
yyDCA ).  

The second version of equation 5.2.8 ( AtBxx +=−
∧

) suits the situation 
more, as in this case it precisely describes the upper graph of Figure 5.5b – it does 
not just indicate the general behaviour of master-slave x signals. 

5.2.2   Master-Slave System with the Master y Signal Driving 

When the y signal drives, the simplest quadratic master-slave chaotic flow is rep-
resented by Figure 5.6. 

In Figures 5.7a and 5.7b, the situation when the y signal drives is investigated.  
The initial conditions of the master system are chosen to be x(0) = -0.01, y(0) = -
0.001, z(0) = 0.01.  The initial conditions of the slave system are chosen to be 

5.0)0( −=
∧
x , 2)0( −=

∧
z . 

From Figure 5.7a, one can see that as time tends to infinity the master and slave 
systems do not synchronize.  Figure 5.7b shows that the error is always constant, 
with a value of 0.49, for master-slave x signals. For master-slave z signals, the 
error settles to a constant value of -0.2429 as time tends to infinity. 
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Fig. 5.6 The block diagram of the simplest quadratic master-slave chaotic flow, with the y 
signal driving. The parameter value is A = 2.017. 
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Fig. 5.7a Synchronization of the simplest quadratic master-slave chaotic signals, with the y 
signal driving. 
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Fig. 5.7b Upper graph: The error of the simplest quadratic master-slave x signals. Lower 
graph: The error of the simplest quadratic master-slave z signals. 

The constant error observed in Figure 5.7b, upper graph, is determined in the 
same manner as in the previous case and is given by equation 5.2.9: 

α=−
∧
xx                                         (5.2.9) 

where: 49.0)0()0( =−=
∧
xxα . 

The behaviour of the synchronization error of the master-slave z signals (Figure 
5.7b, lower graph) is now considered.  With the y signal driving, equations 5.2.10a 

and 5.2.10b are obtained by making 2y  the subject of the formulae (see Figure 

5.6): 

xAzzy ++=
•

2              (5.2.10a) 

∧∧
•
∧

++= xzAzy 2                            (5.2.10b) 
 

Equating equations 5.2.10a and 5.2.10b and rearranging terms, equation 5.2.11 is 
obtained, which expresses the differential error of the master-slave z signals: 

)()(
∧∧
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−−−−=− xxzzAzz                 (5.2.11) 
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Substituting equation 5.2.9 into equation 5.2.11, equation 5.2.12 is obtained: 
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Integrating both sides of equation 5.2.12, one obtains equation 5.2.13: 
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where δ  is the constant of integration.  
At a particular time t = to equation 5.2.13 can be rewritten in the form of equa-

tion 5.2.14: 
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oo tdttztzAtztz
o ⋅−−−=− ∫

= ∧∧
αδ

0
))()(()()(        (5.2.14) 

 

From the lower graph of Figure 5.7b, it is observed that the synchronization error 
of the master-slave z signals tends to a constant as time tends to infinity, which is 
expressed by equation 5.2.15: 

 

constant))()((lim =−
∧

∞→
tztz

t
             (5.2.15) 

 

Therefore equation 5.2.14, which represents this error, must tend to a constant as 

time ot  tends to infinity.  Since the only isolated constant in equation 5.2.14 is δ , 

it must be the case that equation 5.2.14 tends to δ  as time tends to infinity.  
Therefore, as time tends to infinity equation 5.2.14 takes the form of equation 
5.2.16, and equation 5.2.15 can be rewritten as equation 5.2.17: 

  

δαδ =⋅−−−=− ∫
= ∧

∞→

∧

∞→
)))()(((lim))()((lim

0 o

tt

t
oo

t
tdttztzAtztz

o

oo

     (5.2.16) 

δ=−
∧

∞→
))()((lim tztz

t
                    (5.2.17)  

Keeping in mind that the behaviour of 
∧

− zz  after the transients have died down 
is required, equation 5.2.17 is substituted into equation 5.2.16 to obtain equation 
5.2.18: 

δαδδ =⋅−⋅−=− ∫
=

∞→

∧

∞→
)(lim))()((lim

0 o

tt

t
oo

t
tdtAtztz

o

oo

         (5.2.18) 
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Evaluating the definite integral of equation 5.2.18 one obtains equation 5.2.19: 
 

δαδδ =⋅−⋅−=−
∞→

∧

∞→
)(lim))()((lim oo

t
oo

t
ttAtztz

oo

      (5.2.19) 

 
Equation 5.2.19 can also be rewritten as equation 5.2.20: 

 

δαδδ =⋅+−=−
∞→

∧

∞→
))((lim))()((lim o

t
oo

t
tAtztz

oo

      (5.2.20) 

 
In order for equation 5.2.20 to be true, equation 5.2.21 must be true: 

 

0)( =⋅+ otA αδ         (5.2.21) 

 
Rearranging equation 5.2.21 one obtains equation 5.2.22: 

 

A

αδ −=                    (5.2.22) 

 
Therefore, δ  is equal to the negative difference in initial conditions of the master-
slave x signals, divided by the A parameter of the chaotic system.  Equation 5.2.22 
therefore represents the constant value to which the synchronization error of the 
master-slave z signals tends as time tends to infinity. 

It is known that in the case of the systems used to obtain Figure 5.7b, lower 
graph, the constants A and α  are as given below: 

 

017.2=A  and 49.05.001.0)0()0( =−−−=−=
∧
xxα  

 
Substituting the above values for A and α  into equation 5.2.22 one sees that, 

in fact, the constant synchronization error is equal to 
2429.0017.249.0 −=−=−= Aαδ .  This value is indeed returned by the 

computer simulation used to form Figure 5.7b, lower graph.  This confirms the 
validity of equation 5.2.22. 

5.2.3   Master-Slave System with the Master x Signal Driving 

In Figures 5.8a and 5.8b, the synchronization when the x signal drives is investi-
gated.  The initial conditions of the master system are chosen to be x(0) = -0.01, 
y(0) = -0.001, z(0) = 0.01.  The initial conditions of the slave system are chosen to 

be 8.0)0( =
∧
y , 3)0( −=

∧
z . 
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Fig. 5.8a Synchronization of the simplest quadratic master-slave chaotic signals, with the x 
signal driving. 

0 20 40 60 80 100 120 140 160 180 200
-1

-0.5

0

0.5 

1

ey(t)

Time

Error = y(t) - yhat(t)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

ez(t)

Time

Error = z(t) - zhat(t)

 

Fig. 5.8b Upper graph: The error of the simplest quadratic master-slave y signals.  Lower 
graph: The error of the simplest quadratic master-slave z signals. 
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From Figure 5.8a, one can see that as time tends to infinity the master and slave 
systems appear to synchronize. However, Figure 5.8b reveals that the synchroni-
zation is not exact, as the minimal, periodic-like, error always remains and is al-
ways in the very close vicinity of zero. 

5.2.4   Summary of the Synchronization Properties 

Overall, for the simplest quadratic master-slave chaotic flow it has been observed 
that when x drives, the master-slave system synchronizes. When y drives, the 
synchronization error of the master-slave x signals is a constant while the error of 
the master-slave z signals settles to a constant value. Finally when z drives, the 
synchronization error of the master-slave y signals is constant while the error of 
the master-slave x signals increases linearly. 

5.3   The Ueda Master-Slave Chaotic System 

Consider the Ueda chaotic system, given by equation 5.3.1 [9]: 
 

1

)cos(3

=

+−−=

=

•

•

•

z

zBkyxy

yx

                     (5.3.1) 

 
The system described by equation 5.3.1 exhibits chaotic behaviour with the pa-
rameter values k = 0.05, B = 7.5 [6]. 

5.3.1   Master-Slave System with the Master x Signal Driving 

Figure 5.9 shows the Ueda master-slave system when the master x signal drives. 
In Figures 5.10a and 5.10b, synchronization when the x signal drives is investi-

gated.  The initial conditions of the master system are chosen to be x(0) = 1, y(0) = 

0, z(0) = 0.  The initial conditions of the slave system are chosen to be 2)0( =
∧
y , 

1)0( =
∧
z .  From Figure 5.10a, one can see that the master-slave signals do not 

synchronize; however, Figure 5.10b reveals that the error of the master-slave y 
signals seems to settle to a periodic behaviour as time tends to infinity, and that 
the error of the master-slave z signals is constant.  
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Fig. 5.9 The block diagram of the Ueda master-slave chaotic system, with the x signal driv-
ing.  The parameter values are k = 0.05, B = 7.5. 

The fact that the error of the master-slave z signals is constant can be explained 
in the same fashion as in the previous cases above, and it is given by equation 
5.3.2: 

 

α=−=−
∧

DCzz                                 (5.3.2)      

where: 1)0()0( −=−=−=
∧
zzDCα . 

The fact that the error of the master-slave y signals seems to settle to a periodic 
behaviour is now explained. By manipulating equation 5.3.2 and introducing the 

term 
∧

− z2  to allow for the expression for 
∧

+ zz , equation 5.3.4 is obtained: 
 

DCzzz −=−+
∧∧

2                                     (5.3.3) 

∧∧
+−=+ zDCzz 2                                     (5.3.4) 
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Fig. 5.10a Synchronization of the master-slave Ueda chaotic signals, with the x signal  
driving. 
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Fig. 5.10b Upper graph: The error of the Ueda master-slave y signals.  Lower graph: The 
error of the Ueda master-slave z signals. 



5.3   The Ueda Master-Slave Chaotic System 121 
 

 

From Figure 5.9 it is also observed that equations 5.3.5a and 5.3.5b hold: 
 

1=
•
z           (5.3.5a)    1=

•
∧
z       (5.3.5b) 

 
Integrating equation 5.3.5a, equation 5.3.6a is obtained; integrating equation 
5.3.5b, equation 5.3.6b is obtained: 

 

Ctz +=          (5.3.6a)             Dtz +=
∧

         (5.3.6b) 
 

Substituting equation 5.3.6b into equation 5.3.4, equation 5.3.7 is obtained: 
 

 )(2 DtDCzz ++−=+
∧

    

 tDCzz 2++=+
∧

                                                                       (5.3.7) 
 

Plotting, in Figure 5.11, 
∧

+ zz , it can be seen that equation 5.3.7 holds.  Note that 

C + D = (0 + 1) = 1, so that  tzz 21+=+
∧

, as is shown in Figure 5.11. 

From master and slave systems of Figure 5.9 equations 5.3.8 and 5.3.9 are  
obtained: 

 

)cos(3 zBkyyx −+=−
•

                        (5.3.8) 

 )cos(3
∧∧∧

−+=−
•

zBykyx                      (5.3.9) 
 

Equating equations 5.3.8 and 5.3.9 and rearranging terms, equation 5.3.10 is ob-

tained.  Manipulating and solving equation 5.3.10 for the error of the master-slave 

y signals, one proceeds to eventually obtain equation 5.3.19 by following the steps 

given below: 

 ))cos()(cos()(
∧∧∧•

−+−−=−
•

zzByykyy                   (5.3.10) 

Note that )cos(z  and )cos(
∧
z  represent two cosines of the same frequency, but 

starting at different initial conditions, (C and D), as shown by equations 5.3.6a and 
5.3.6b, respectively. 
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Fig. 5.11 Sum of the master and slave z signals, represented as: tzz 21+=+
∧

. 

Integrating both sides of equation 5.3.10, and using standard trigonometric 
identities, equation 5.3.11 is obtained: 
   

    ∫∫∫
∧∧∧•

−+−−=−
•

dtzzBdtyykdtyy ))cos()(cos()()(  
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⎟
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⎜

⎝

⎛ −
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⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +−−−=
∧∧

∧
dt

zzzz
Bdtyyk

2
sin

2
sin2)(           (5.3.11) 

 

But from equation 5.3.2 it is known that 
∧

− zz  is a constant 

( α=−=−
∧

DCzz ). 
Now define a new constant φ : 
 

 
222

αφ =−=−=
∧

DCzz
            (5.3.12) 

 

Substituting equation 5.3.7, i.e. ( tDCzz 2++=+
∧

), as well as equation 
5.3.12, into equation 5.3.11, equation 5.3.13 is obtained: 
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⎜
⎝
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∧∧•
•

dtt
DC

Bdtyykdtyy
2

sin)sin(2)()( φ       (5.3.13) 

 
Now define a constant θ : 

 

D
DDC +=+=+= φαθ

2

2

2
                  (5.3.14) 

 

 
Substituting equation 5.3.14, into equation 5.3.13, equation 5.3.15 is obtained: 

 

( )∫∫∫ +−−−=−
∧∧•

•

dttBdtyykdtyy θφ sin)sin(2)()(       (5.3.15) 

 
Again using the trigonometric identities, it can be seen that equation 5.3.15 can be 
written in the form of equation 5.3.16: 

 

( )∫∫∫ +−−−=−
∧∧•

•

dtttBdtyykdtyy )sin()cos()cos()sin()sin(2)()( θθφ   

     (5.3.16) 
 

Simplifying equation 5.3.16 and evaluating the integrals, equation 5.3.17 is ob-
tained.  It must be noted that in equation 5.3.17 the first term of equation 5.3.16 
becomes a definite integral.  Equation 5.3.17 represents a general case at some 
time to: 

 

( ))cos()cos()sin()sin()sin(2))()(()()(
0 oo

tt

too ttBdttytykAtyty
o θθφ +−+−−=− ∫

=

=

∧∧
  

         (5.3.17) 

where A is the constant of integration. 
The trigonometric identity given by equation 5.3.18 will be used in what  

follows: 
 

 )sin()cos()sin( Ω+=+ tRtbta              (5.3.18) 

 

where 22 baR +=   and 
R

b=Ωsin , 
R

a=Ωcos . 

 
Relating part of the third term of equation 5.3.17 

( ))cos()cos()sin()sin( oo tt θθ +−  to equation 5.3.18, it is seen that it can be put 

into the form of equation 5.3.18 in the following manner: 
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θθ

θ
θ

R
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1

cos
sin

θ=Ω        and     
1

sin
cos

θ−=Ω  

      
Therefore, to find Ω one must satisfy both θcossin =Ω  and 

θsincos −=Ω .  Clearly, this condition is satisfied for 2/πθ +=Ω , as then 
θπθ cos)2/sin(sin =+=Ω  and θπθ sin)2/cos(cos −=+=Ω . 

Therefore, equation 5.3.17 can be rewritten in the form of equation 5.3.19: 
 

)sin()sin(2))()(()()(
0

Ω++−−=− ∫
=

=

∧∧

o

tt

too tBdttytykAtyty
o φ      (5.3.19) 

 
where:   2/πθ +=Ω . 

Therefore, it can be seen that the error 
∧

− yy  depends on three terms, namely 

the offset A, the definite integral and the sinusoidal component.  From the upper 
graph of Figure 5.10b it is observed that soon after the start the third term of equa-
tion 5.3.19 seems to dominate and fully control the system.  Using numerical 
simulations this has been observed for very small values of k, that is, for the val-
ues of k near zero. The results of equation 5.3.19, and equation 5.2.22 of previous 
section, are both important findings as they describe the synchronization error 
using the strict mathematical equations. 

The theoretical finding expressed by equation 5.3.19 is now verified by com-
paring the theoretical results to the results obtained by numerical simulation.  Note 
that in the case of Figures 5.10a and 5.10b: 

5.0
2

10

22
−=−=−=−=

∧
DCzzφ  and 5.0

2
=+= DCθ  radians 

 
Therefore, in the case of Figures 5.10a and 5.10b, the amplitude and phase of the 

dominating third term of equation 5.3.19 are given by 

          
19.719.7)5.0sin(5.72)5.0sin(5.72)sin(2 =−=⋅⋅−=−⋅⋅== φBAmplitude

. 
From (5.3.19),  0708.22/5.02/ =+=+=Ω ππθ .  Therefore, 
 

0708.10708.2 −=−= πPhase   radians     or °−= 35.61Phase . 
 
Finally, the constant A is now determined for the case of Figures 5.10a and 

5.10b, that is, for those particular initial conditions. From Figure 5.10b, top graph, 
enlarged in Figure 5.12, one can see that the function of the error of the master-
slave y signals starts from -2 at t = 0.  This is as expected since the difference in 
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the initial conditions between the master-slave y signals is 2)0()0( −=−
∧
yy .  

Also, at t = 0 the second and third terms of equation 5.3.19 are equal to 0 and -
6.3110 as shown by equations 5.3.20 and 5.3.21, respectively: 

 

 0))()((
0

0
=−− ∫

==

=

∧
ott

t
dttytyk                           (5.3.20) 

3110.6)0708.20sin()5.0sin(5.72)sin()sin(2 −=+⋅−⋅⋅=Ω+otB φ     (5.3.21) 
 
Therefore, constant A can now be found by substituting equations 5.3.20 and 

5.3.21 into equation 5.3.19: 
 

3110.4311.6023110.60)0()0( =⇒−+=−⇒−+=−
∧

AAAyy  
 

Therefore, equation 5.3.19, in terms of initial conditions from Figures 5.10a 
and 5.10b, can now be rewritten as equation 5.3.22: 

 

)35.61sin(19.7))()((05.031.4)()(
0
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=

∧∧

o

tt

too tdttytytyty
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  (5.3.22) 
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Fig. 5.12 Enlargement of Figure 5.10b.  Note that time and angle scales are equal, as 
1=ω  radians/second, where ω  would be the angular frequency of the cosine term of 

equation 5.3.1. 
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Equation 5.3.22 tells us that the sinusoid of the function is in fact a sinusoid 
lagging by °35.61 .  This fact is indeed confirmed by observing Figure 5.12.  Note 
that at t = 0 the function is not a perfect sinusoid and thus the indication of the 
phase lag is approximate. 

The error between the master-slave y signals is now investigated further.  One 
can see that equation 5.3.19 goes to zero if its third term is made to go to zero.  To 
make the third term go to zero, the initial conditions of the master-slave z signals 
must be chosen such that: 

 

 0
2

sin
2

sin)sin( =⎟
⎠
⎞

⎜
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⎟

⎠

⎞
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⎝

⎛ −=
∧

DCzzφ                   (5.3.23) 

 

To make equation 5.3.23 true, equation 5.3.24 must be satisfied: 
 

 πφ n±=   (where n is any integer)                  (5.3.24) 
 

To make equation 5.3.24 true, equation 5.3.25 must be satisfied: 
 

 DCn −=±= πφ 22                      (5.3.25) 
 

where n is any integer and C and D are initial conditions of the master and slave z 

signals, respectively. 

Therefore, according to equation 5.3.19, one must have a difference between 
the master-slave z initial conditions of πn2±  for the synchronization of the mas-
ter-slave y signals to occur.  This fact is confirmed by numerical simulations, pre-
sented in Figures 5.13a and 5.13b, when the x signal drives.  The initial conditions 
of the master system are chosen to be x(0) = 1, y(0) = -3, z(0) = π.  The initial con-

ditions of the slave system are chosen to be 2)0( =
∧
y , =

∧
)0(z -π. 

From Figure 5.13a, one can see that as time tends to infinity the master-slave y 
signals synchronize.  Figure 5.13b shows that the error of the master-slave y sig-
nals tends to zero. 

Also it is important to mention that the error between the master-slave y signals 
is at its maximum when equation 5.3.26 is satisfied (see equation 5.3.19): 

 

1
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sin
2

sin)sin( ±=⎟
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⎜
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⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −=
∧

DCzzφ                      (5.3.26) 

 

To make equation 5.3.26 true, equation 5.3.27 must be satisfied: 
  

πφ
2

n±=   (where n is any odd integer)                  (5.3.27) 
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Fig. 5.13a Synchronization of the Ueda master-slave chaotic signals, with the x signal driv-
ing and πφ = . 
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Fig. 5.13b The error tends to zero as time tends to infinity for the master-slave y signals.  
Signal x drives and πφ = . 
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To make equation 5.3.27 true, equation 5.3.28 must be satisfied: 
 

DCn −=±= πφ2                       (5.3.28)  

 
where n is any odd integer and C and D are initial conditions of the master and 
slave z signals, respectively. Therefore, according to equation 5.3.19, one must 
have a difference between the master-slave z initial conditions of πn± , where n 
is odd, for the maximum error of the master-slave y signals to occur. This fact is 
confirmed by numerical simulations, presented in Figures 5.14a and 5.14b, when 
the x signal drives.  The initial conditions of the master system are chosen to be 
x(0) = 1, y(0) = -2.5, z(0) = 2π.  The initial conditions of the slave system are cho-

sen to be 4.2)0( =
∧
y , =

∧
)0(z π. 

Therefore, in the case of Figures 5.14a and 5.14b, the amplitude and phase of 
the dominating third term of equation 5.3.19 are given by 
 

          15115)
2

sin(5.72)sin(2 =⋅=⋅⋅== πφBAmplitude  

 

πππππθ 2
22

2

2
=++=+=Ω=Phase  radians 

 

or: °⇒°=⋅=Ω= 0360
180

)2(
π

πPhase  

  
The enlargement of Figure 5.14b is presented in Figure 5.14c showing the zero 

phase. Also, in the case of Figures 5.14a and 5.14b the constant A of equation 
5.3.19 is found to be equal to -4.9 so that equation 5.3.19 takes the form of equa-
tion 5.3.29: 

 

)sin(15))()((05.09.4)()(
0 o

tt

too tdttytytyty
o ⋅+−⋅−−=− ∫

=

=

∧∧
         (5.3.29) 

 

From Figure 5.14a, one can see that as time tends to infinity the master-slave y 
signals do not synchronize.  Figure 5.14b shows that the amplitude of the syn-
chronization error of the master-slave y signals indeed tends to 15. 

Note that it has also been observed that making the difference between the ini-
tial conditions of the master-slave y signals near to )sin(2 φB−  makes the syn-

chronization error settle into periodic behaviour more quickly. 
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Fig. 5.14a Synchronization of the Ueda master-slave chaotic signals, with the x signal driv-
ing and 2/πφ = . 

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

ey(t)

Time

Error = y(t) - yhat(t)

0 50 100 150 200 250 300
3.1416

3.1416

3.1416

3.1416

3.1416

3.1416

ez(t)

Time

Error = z(t) - zhat(t)

 

Fig. 5.14b The error exhibits maximum oscillations as time tends to infinity for the master-
slave y signals.  Signal x drives and 2/πφ = . 
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Fig. 5.14c Enlargement of Figure 5.14b showing the zero phase of equation 5.3.29. 

5.3.2   Master-Slave System with the Master y Signal Driving 

When the y signal drives, the synchronization error is constant for both master-
slave x and master-slave z signals, and it is governed by equations 5.3.30 and 
5.3.31, respectively. This is easily shown in the same fashion as for the previous 
cases presented above. 

 

Axxxx =−=−
∧∧

)0()0(                             (5.3.30) 

Bzzzz =−=−
∧∧

)0()0(                             (5.3.31) 

5.3.3   Master-Slave System with the Master z Signal Driving 

Finally, when the z signal drives, the master-slave system does not synchronize, as 
Figure 5.15 demonstrates.     
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Fig. 5.15 Synchronization of the Ueda master-slave chaotic signals, with the z signal  
driving. 

5.3.4    Summary of the Synchronization Properties 

Overall, for the Ueda master-slave chaotic system it has been shown that when x 
drives, the synchronization error of the master-slave y signals is sinusoidal while 
the error of the master-slave z signals is constant.  The master-slave y signals syn-
chronize only when the difference between the master-slave z signals’ initial con-
ditions is πn2± , where n is any  integer.  When y drives, the synchronization 
error is constant for both master-slave x and master-slave z signals.  Finally, when 
z drives, the master-slave system does not synchronize. 

5.4   Conclusion 

In this chapter it has been demonstrated, via Lyapunov’s direct method, that the 
simplest piecewise linear master-slave chaotic flow synchronizes when the master 
x signal drives. However, when the system does not synchronize and Lyapunov’s 
direct method cannot be used, it has been shown that the novel mathematical 
analysis presented here can often be used to predict the system’s synchronization 
error. 

In this chapter, primarily the master-slave synchronization properties of the 
simplest quadratic chaotic flow and Ueda chaotic system have been investigated 
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by direct mathematical analysis. It has been shown that when the z signal drives, 
the synchronization error of the simplest quadratic master-slave y signals is con-
stant whereas the synchronization error of the master-slave x signals increases 
linearly.  Using numerical simulations, in conjunction with mathematical analysis, 
it has been demonstrated that the simplest quadratic master-slave chaotic flow 
does not synchronize when the y signal drives; however, the synchronization error 
of the master-slave z signals tends to a constant value which is predictable and can 
be expressed as a combination of the master-slave x signals’ initial conditions and 
the system’s parameter value.  It has also been found that the simplest quadratic 
master-slave chaotic flow synchronizes when the x signal drives. 

The analysis has then been performed on the Ueda master-slave chaotic system. 
It has been shown that the Ueda master-slave system does not synchronize when 
the master y or master z signal drives. However, it has been shown here that the 
master-slave y signals do synchronize under certain conditions when the master x 
signal drives.  When the signal x drives, mathematical manipulation of the sys-
tem’s dynamics allows one to determine a useful mathematical expression for the 
error of the master-slave y signals.  This expression, along with the numerical 
simulations, allows one to predict that if the difference between the master-slave z 
signals’ initial conditions equals πn2± , the master-slave y signals will always 
synchronize.  When the y signal drives, the synchronization error is constant and 
has been mathematically expressed. In this way it has been demonstrated that the 
novel mathematical analysis presented describes the system’s behaviour using the 
strict mathematical equations what is in contrast to Lyapunov’s stability theory 
which describes the general behaviour of the system. The novel analysis therefore 
gives a deeper insight mathematically into what dynamically occurs. 

In general, it can be concluded that the synchronization properties of chaotic 
systems, in particular Pecora - Carroll synchronization properties, do not necessar-
ily have to be investigated by Lyapunov’s stability theory, or by evaluation of 
conditional Lyapunov exponents. Instead, an alternative direct mathematical 
analysis can be used in certain cases, as has been demonstrated in this chapter for 
the simplest quadratic chaotic flow and Ueda chaotic system. The work of this 
chapter has been published in [7]. 
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Chapter 6  
Application of Chaotic Synchronization to 
Secure Communications 

In chapters 3, 4 and 5 the phenomenon of chaotic synchronization has been stud-
ied. In this chapter, a popular application of chaotic synchronization in the area of 
secure communications is presented. Several chaotic communication systems with 
the receiver based on the chaotic synchronization concept are described. It is 
shown how a general approach to synchronization of chaotic flows via 
Lyapunov’s direct method and chaotic maps via the theorems of chapter 4 can be 
used for the development of chaotic communication systems. The communication 
schemes examined include those of chaotic masking, chaotic modulation and the 
newly developed chaotic communication scheme of initial condition modulation. 
Finally, the noise performance of the chaotic parameter modulation and the initial 
condition modulation are compared in terms of the bit error rate. It is shown that 
the newly developed initial condition modulation scheme outperforms the chaotic 
parameter modulation scheme. 

Since the onset of chaotic synchronization research, a number of demodulation 
techniques based on chaotic synchronization have been proposed for potential 
communication systems [1-13]. Of those, the following are based on the Pecora-
Carroll synchronization method [1,2,4-6,8-11,13]. 

Pecora and Carroll’s (PC) original paper on chaotic synchronization [14], sug-
gested the application of chaotic synchronization in communications, and shortly 
after Oppenheim et al. presented a communication system based on the PC syn-
chronization method [4]. The method of [4], termed “chaotic masking”, was  
experimentally demonstrated in [5] using Chua’s circuit. In this method, the in-
formation signal is added onto the chaotic carrier directly, and transmitted. The 
requirement of this method is that the power of the information signal has to be 
significantly lower than the power of the chaotic carrier [4]. In contrast to chaotic 
masking, a technique of “chaotic modulation” incorporates the message into the 
dynamical equations producing the chaotic carrier. Chaotic parameter modulation 
is an example of the chaotic modulation technique where a binary message modu-
lates one or more of the system’s parameters [8,9]. Other forms of chaotic modu-
lation involve techniques where one or more of the state variables is modulated by 
the message [2,11,13]. As opposed to chaotic modulation, the technique of “initial 
condition modulation” introduces the binary message into the system through its 
initial conditions [10,15,16]. 
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Communication methods based on chaotic synchronization other than PC syn-
chronization have also been proposed. For instance in [7] chaotic masking and 
Pyragas’ synchronization method have been used to transmit and receive informa-
tion, whereas in [3] chaotic modulation and John and Amritkar (JA) synchroniza-
tion method have been used. 

Section 6.1 presents the communication technique of chaotic masking. The 
communication techniques based on chaotic modulation are presented in section 
6.2. In addition, it is shown how a general approach to chaotic synchronization of 
flows via Lyapunov’s direct method and chaotic synchronization of maps via the 
theorems of chapter 4 can be used in the design of chaotic communication  
systems. In section 6.3, a recently developed technique of initial condition modu-
lation is presented. Finally, section 6.4 evaluates and compares the noise perform-
ance of the presented systems in terms of the bit error rate. It is shown that the 
initial condition modulation technique exhibits better noise performance than the 
chaotic parameter modulation technique. 

6.1   Chaotic Masking  

Chaotic masking (CM) was one of the earliest chaotic communication techniques 
proposed [4,5,8]. It is based on the principles of PC synchronization. It primarily 
involves the transmission of analog signals [4]. 

 

6.1.1   Principles of Chaotic Masking 

Chaotic masking involves the addition of a message signal m to a chaotic carrier 
signal x, before the transmission of the sum of the two signals takes place [4]. The 
block diagram illustrating the principles of chaotic masking is shown in Figure 6.1 
[16]. 

 

Master system Slave system 

n  

Transmitter Channel Receiver 

∧

m  
x  

m  
∧

x  rx  sx  

 
 

Fig. 6.1 General block diagram of the chaotic communication system based on the chaotic 
masking concept 
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In Figure 6.1 n denotes the additive white Gaussian noise (AWGN) component 

introduced by the channel and rx  denotes the received signal affected by AWGN. 

The slave system of the receiver generates a signal 
∧
x  which is expected to be 

synchronized with the corresponding master signal x of the transmitter. Assuming 
that the AWGN component is near zero, and that sufficient amount of time has 

passed for x and 
∧
x  to synchronize, the transmitted message m can be recovered in 

the form of 
∧
m : 

 

 mxxmxxm r ≈−+=−=
∧∧∧

)(                   (6.1.1) 
 

The requirement of a chaotic masking scheme is for the power of the information 
signal to be significantly lower than the power of the chaotic carrier. 

6.1.2   Chaotic Masking within the Lorenz Master-Slave System 

Chaotic masking within the Lorenz master-slave system has been demonstrated in 
[4,8, 9]. The system has been designed using the Lorenz x signal as the driving 
signal. Lyapunov’s direct method has been used in [8] to show that using the x 
signal as the driving signal the master-slave system synchronizes. It has then also 
been shown that by adding a small amplitude speech signal onto the chaotic car-
rier one is able to recover the speech signal at the receiver. The communication 
system based on chaotic masking, while implementing the Lorenz master-slave 
system, is shown in Figure 6.2. An ability to recover the transmitted information is 
demonstrated under noiseless conditions in Figure 6.3 by processing the word 
“Oak” through the system. By comparing the top and the bottom graphs of Figure 
6.3 one can see that the transmitted original message has been recovered with  
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Fig. 6.2 The Lorenz based communication system implementing chaotic masking  
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Fig. 6.3 The signals of the Lorenz based communication system implementing chaotic 
masking 
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reasonable accuracy. In the case of Figure 6.3 the chaotic parameter values of the 
system of Figure 6.2 have been set to: 16=σ , 6.45=r  and 4=b . An evi-
dent difference in power between the chaotic carrier and the speech signal can be 
observed in Figure 6.3. The transmitted signal of Figure 6.3 has been plotted in 
phase space in Figure 6.4. The small ripple, observed on the strange attractor of 
Figure 6.4, is caused by the message m embedded within it. 

6.2   Chaotic Modulation 

In the chaotic masking scheme, described above, information is added directly 
onto the chaotic carrier without the influence of the message on the dynamical 
equations producing the carrier. In contrast to chaotic masking, chaotic modula-
tion incorporates the message into the dynamical equations producing the chaotic 
carrier. 

6.2.1   Chaotic Parameter Modulation 

As opposed to chaotic masking which is primarily used for analog transmission, 
chaotic parameter modulation (CPM) is used for transmission of binary  
information. 

6.2.1.1   Principles of Chaotic Parameter Modulation 

A block diagram of a chaotic communication system based on the CPM concept is 
shown in Figure 6.5 [16]. As for the CM scheme, a requirement for the CPM 
scheme is for the master-slave system to synchronize for a given driving signal, as 
outlined in sections 3.1-3.3. 
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Fig. 6.5 A block diagram of the chaotic communication system based on the parameter 
modulation concept 
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In Figure 6.5, the message m varies between the two particular values, depend-
ing on whether a binary 0 or a binary 1 is to be transmitted. The message is incor-
porated into a certain modulating parameter of the master system causing it to 
change its value with the change in the message. The parameters of the slave sys-
tem are fixed at all time. When the master-slave parameters are identical synchro-
nization occurs. This forces the synchronization error to zero, indicating that bit 0 
has been transmitted. Alternatively, with the master-slave parameter mismatch the 
system does not synchronize, indicating that bit 1 has been transmitted. Therefore, 
this is a form of on-off keying. This concept is illustrated in Figure 6.6. The choice 
of the modulating parameter of the master chaotic system must be chosen with 
care to ensure the chaotic properties of the system at all time. This ensures the 
increased security within the communication system. 
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Fig. 6.6 The chaotic parameter modulation concept 

6.2.1.2   Chaotic Parameter Modulation within the Lorenz Master-Slave 
System 

The concept of parameter modulation is now demonstrated on the Lorenz master-
slave chaotic system [8,9]. In [8] the binary message is used to alter the parameter 
b of the master (transmitter) Lorenz chaotic system between 4 and 4.4 depending 
on whether a bit 0 or bit 1 is to be transmitted. However, at the slave (receiver) 
side the parameter b is fixed at 4 for all time. Thus, the synchronization either oc-
curs or does not, depending on the state of the parameter b at the transmitter  
(master) side. The parameters σ and r are fixed at 16 and 45.6, respectively. For 
these parameter values the system is chaotic. In order to implement the CPM 
scheme the authors of [8] have scaled the Lorenz chaotic system to allow for the 
limited dynamic range of the operational amplifiers. This system, based on the PC 
synchronization concept, is presented in Figure 6.7. 
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Fig. 6.7 The Lorenz based communication system implementing chaotic parameter modula-
tion. The parameter values: 16=σ , 6.45=r  and 4=b . 

 
 

The transmitted signal x, of Figure 6.7, is shown in Figure 6.8 when the series 
of 10 bits is transmitted, that is, when m = [0, 0, 0.4, 0, 0.4, 0.4, 0, 0.4, 0, 0.4], or 
in binary terms: message = [0 0 1 0 1 1 0 1 0 1]. Figure 6.8 also shows the corre-

sponding squared synchronization error, 2
xe , under noiseless conditions. The re-

ceived bits are detected by squaring and integrating the error xe . The output of 

the integrator is then compared to the predetermined threshold and the decision is 
made whether a bit 0 or a bit 1 was sent. The behaviour of the system, correspond-
ing to the master-slave parameter match (bit 0) and mismatch (bit 1), can also be 
illustrated in phase space. In Figure 6.9 the strange attractors corresponding to the 
third, fourth, fifth and sixth transmitted bit have been plotted. It can be observed 
from Figure 6.9 that in the case of the third, fifth and sixth bit the master-slave 
trajectories do not synchronize, but follow their own separate paths [16]. This is as 
expected due to the master-slave parameter mismatch. However, in the case of the 
fourth bit, the master-slave parameters match, causing the trajectories to synchro-
nize. Note that the spreading factor of 400 has been used to represent one bit. By 
definition the spreading factor denotes the number of discrete sample points 
(chips) contained within one information bit. It is the ratio of a bit period to a chip 
period [17]. A spreading factor that is too small may be insufficient for synchroni-
zation to take place and thus make it more difficult to decode the transmitted in-
formation. Alternatively, a spreading factor that is too large may be impractical 
from the bandwidth point of view. A transient period of 1000 chips has been  
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Fig. 6.8 The transmitted signal x and the squared synchronization error 
2
xe  

 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

xr(t+nT), xhat(t+nT)

xr
(t

),
 x

ha
t(

t)

Master trajectory
Slave trajectory

Bit 1

End of bit Beggining of bit

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

xr(t+nT), xhat(t+nT)

xr
(t

),
 x

ha
t(

t)

Master trajectory
Slave trajectory

Bit 0

End of bit

Beggining of bit

 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

xr
(t

),
 x

ha
t(

t)

xr(t+nT), xhat(t+nT)

Master trajectory
Slave trajectory

Beggining of bit

End of bit

Bit 1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

xr(t+nT), xhat(t+nT)

xr
(t

),
 x

ha
t(

t)

Master trajectory
Slave trajectory

Bit 1

End of bit

Beggining of bit

 

(a) (b) 

(c) (d) 

 

Fig. 6.9 Phase space representation of the received signal 
rx  and the corresponding slave 

signal
∧
x for: (a) the 3rd bit of the transmitted message sequence: [0 0 1 0 1 1 0 1 0 1], (b) the 

4th bit, (c) the 5th bit, and (d) the 6th bit. 
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allowed for the case of Figure 6.8. During the transient period there is no data 
transmission taking place. 

6.2.2   General Approach to Chaotic Parameter Modulation 

In this subsection, a general approach to chaotic parameter modulation is devel-
oped. It involves the design of the nonlinear controller via Lyapunov’s direct 
method, as outlined in section 3.3. In contrast to the CPM scheme presented in 
subsection 6.2.1, the scheme presented here does not rely on the inherent synchro-
nization properties of the master-slave system for a given drive signal. It instead 
enforces synchronization upon the master-slave system by designing the control 
laws which ensure asymptotic stability within the system. 

6.2.2.1   Principles of the General Approach to Chaotic Parameter  
Modulation 

Consider a general block diagram, given in Figure 6.10 [16], of the chaotic com-
munication system based on the parameter modulation concept. 
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Fig. 6.10 General block diagram of the chaotic communication system based on the pa-
rameter modulation concept 

 
In Figure 6.10, the binary message m is introduced into the system by varying 

one or more of the parameters of the master system. As in subsection 6.2.1, the 
parameters of the slave system are fixed at all time. Therefore, synchronization 
occurs or not, depending on the state of the parameters at the transmitter side. The 
controller of Figure 6.10 is designed via Lyapunov’s direct method, as outlined in 
section 3.3. The controller output, u, then ensures the synchronization of the mas-
ter-slave system when the master-slave parameters match. Note that, in general, 
the signal x may be an interleaved version of more than one signal of the master 
system [10], such as in a TDM system, as discussed in chapters 8 and 9. 
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6.2.2.2   Chaotic Parameter Modulation within the Ueda Master-Slave System 

Here the control law for the Ueda master-slave chaotic system, with the master 
signal x driving, is designed. The system is then applied to a CPM based commu-
nication system. In order to justify a design of a controller for the Ueda master-
slave chaotic system its inherent synchronization properties without the controller 
must first be investigated. Figure 6.11, shows the Ueda master-slave chaotic sys-
tem with the master signal x driving. The dynamics of the Ueda master chaotic 
system are shown in Figure 6.12. In Figure 6.11, the initial conditions of the mas-
ter-slave z signals have been set to an equal value. As will be shown, with the ini-
tial conditions so chosen the controller design is significantly simplified. In Figure 
6.13, the synchronization errors for the x, y and z master-slave chaotic signals are 
shown. These errors demonstrate that the master-slave x signals of the system of 
Figure 6.11 do not synchronize and thus the system warrants a controller design. 
Note that the master-slave system synchronization error has been defined by  
equation 6.2.1: 
 

 )()()(1 txtxte
∧

−= ,        )()()(2 tytyte
∧

−= ,        )()()(3 tztzte
∧

−= .      (6.2.1) 

 

Master system: 
 

1

)cos(3

=

+−−=

=

•

•

•

z

zBkyxy

yx

 

x  

)0(z  

)0(y  

)0(x  

)0()0( zz =
∧

 

)0()0( yy ≠
∧

 

Slave system: 
 

1

)cos(3

=

+−−=

=

•
∧

∧∧
•
∧

∧∧
•

z

zBykxy

yx

 

∧

z  

∧

x  

∧

y  

x  

y  

z  

)0()0( xx ≠
∧

 

 

Fig. 6.11 The block diagram of the Ueda master-slave chaotic system, with the x signal 
driving.  The parameter values are 05.0=k , 5.7=B . Note that this system differs from 

that of Figure 5.9 of chapter 5 in that xx ≠
∧

. 
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Fig. 6.12a The Ueda chaotic time series, x(t)
 

Fig. 6.12b The Ueda strange attractor 
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Fig. 6.13 Inherent synchronization error of the Ueda master-slave chaotic signals without 
the controller 

 
Consider the CPM Ueda communication system of Figure 6.14. The constants f 

and g of the master system can be of any value and are chosen so that the parame-
ters k and B take on the appropriate values for a given m. 
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Fig. 6.14 The Ueda chaotic communication system based on the parameter modulation 
concept 

 

 
In order to demonstrate the design of the controller of Figure 6.14 assume no 

noise in the system. It follows then that: xxr = , so that the slave system, includ-

ing the control laws, takes the form given by equation 6.2.2: 
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The differential synchronization error of the master-slave system of Figure 6.14 is 
then given by equation 6.2.3: 
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The difference between the master-slave z signals is governed by equation 6.2.6 
[10]: 
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Given that the master-slave z initial conditions are equal to each other, or that their 
difference is equal to πn2± , where n is any integer, equation 6.2.6 can be re-
duced to equation 6.2.7 [10]: 
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Using the standard trigonometric identities, equation 6.2.3 can be rewritten in the 
form of equation 6.2.8: 
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Substituting equation 6.2.7 into equation 6.2.8, equation 6.2.9 is obtained: 
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Finally simplifying equation 6.2.9, equation 6.2.10 is obtained: 
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In order to design the controller for this particular master-slave system, consider 
the candidate Lyapunov function given by equation 6.2.11: 
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Differentiating equation 6.2.11 with respect to time equation 6.2.12 is obtained: 
 

2211 eeeeV
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+=                               (6.2.12) 

 
Substituting equation 6.2.10 into equation 6.2.12 and simplifying, equation 6.2.13 
is obtained: 
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2
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For equation 6.2.11 to be the Lyapunov function, equation 6.2.13 must be negative 
semi-definite. In order for equation 6.2.13 to become negative semi-definite the 

term 21ee  must be eliminated, while the term 2
1e−  must be introduced. It is read-

ily verifiable that this is achieved with the control laws of equations 6.2.15 and 
6.2.17: 

 

 2
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12 eu =                          (6.2.17) 

 
 
 



6.2   Chaotic Modulation 149
 

 

From equations 6.2.15 and 6.2.17 it can be seen that the control laws are identi-
cal, as shown in Figure 6.14. The functionality of the control laws of equations 
6.2.15 and 6.2.17 is demonstrated in Figure 6.15 from which it can be observed 
that all of the master-slave signals synchronize. 
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Fig. 6.15 Synchronization error of the Ueda master-slave chaotic signals with the controller 

 
In Figure 6.14 the master system parameter set of k = 0.05 and B = 7.5 has been 

chosen to represent a bit 0. The master system parameter set of k = 0.1 and B = 10 
has been chosen to represent a bit 1. Thus, the constants f and g of the master sys-
tem of Figure 6.14 are set at 0.05 and 2.5, respectively. This allows for the ad-
justment of parameters k and B when bit 1 is to be transmitted. The slave system 
parameters are set for all time at k = 0.05 and B = 7.5, so that synchronization at 
the receiver side signals a bit 0 and de-synchronization signals a bit 1. Both pa-
rameter sets, k = 0.05, B = 7.5 and k = 0.1, B = 10 generate chaotic behaviour 
within the system [18]. 

The transmitted signal x is shown in Figure 6.16 when the series of 10 bits is 
transmitted, that is, when m = [0 0 1 0 1 1 0 1 0 1]. Figure 6.16 also shows the 

corresponding squared synchronization error, 2
xe , under noiseless conditions. As 

for the Lorenz based CPM scheme, the spreading factor of 400 has been used. 
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Fig. 6.16 The transmitted signal x and the squared synchronization error 
2
xe  

6.2.2.3   Chaotic Parameter Modulation within the Cubic Map Master-Slave 
System 

The method of implementing the synchronized chaotic map master-slave system 
of chapter 4 within a CPM based communication system is now demonstrated on 
the 1ℜ  cubic map. It is thus shown that one can apply either a flow or a map to a 
CPM based communication system when the nonlinear control laws are designed 
in such a way to cause synchronization among the master and slave systems. Fur-
thermore, it is shown that the instant synchronization, as defined in chapter 4, 
within CPM based communication systems is of particular importance. In chapter 
10, the CPM based communication system is demonstrated on the 2ℜ  Burgers’ 
chaotic map and its security evaluated and compared to the other chaotic commu-
nication systems. 

The CPM based chaotic communication system implementing the cubic map 
master-slave system and the nonlinear controller of Figure 4.3, section 4.2, is 
shown in Figure 6.17. 
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Fig. 6.17 The cubic map chaotic communication system based on the parameter modulation 
concept 

 
In Figure 6.17, the master system parameter 9.2=A  has been chosen to repre-

sent a bit 0. The master system parameter 3=A  has been chosen to represent a 
bit 1. The message m of Figure 6.17 takes on the values of 0 and 1 depending on 
the polarity of a bit transmitted. The slave system parameter A is set for all time at 

9.2=A , so that synchronization at the receiver side signals a bit 0 and de-
synchronization signals a bit 1. Both parameter values, 9.2=A  and 3=A , gen-
erate chaotic behaviour within the system. 

The transmitted signal nX  is shown in Figure 6.18 when the series of 10 bits is 

transmitted, that is, when m = [0 0 1 0 1 1 0 1 0 1]. Figure 6.18, also shows the 

corresponding squared synchronization error, 2
ne , under noiseless conditions, that 

is, when n = 0. The squared synchronization error, 2
ne , is shown for the three dif-

ferent cases, that is, when the eigenvalues are equal to 1, 0.99 and 0.  As for the 
Lorenz and Ueda CPM based schemes, the spreading factor of 400 has been used. 
A transient period of 10 chips has been allowed for the case of Figure 6.18. 

It can be observed from Figure 6.18c that the system exhibits the worst per-
formance when the eigenvalue of the system is equal to 1. This is to be expected 
as when the eigenvalue is outside the unit circle in the z domain the system does 
not synchronize even when the master-slave parameters match. Thus, in this case, 
the receiver cannot discriminate among bits 0 and 1. In contrast to this, it can be 
observed from Figure 6.18d that when the eigenvalue is just within the unit circle, 
that is, at 0.99, the system synchronizes for bits 0 and does not for bits 1. How-
ever, as can be seen from Figure 6.18d, the time it takes to synchronize is long and 
thus affects the performance of the system by impeding with the time period of the  
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Fig. 6.18 (a) The binary message m, (b) The transmitted signal 
nX , and: The squared syn-

chronization error 2
ne  when: (c) 1=λ , that is, when the control law: 

nnnnn eeXXAu ))31(1( 2−−−=
∧

, (d) 99.0=λ , that is, when the control law: 

nnnnn eeXXAu ))31(99.0( 2−−−=
∧

, (e) 0=λ , that is, with the control law of Figure 

6.17. 



6.2   Chaotic Modulation 153
 

 

next bit. Finally, with the eigenvalue at 0, that is, with the error system at 0, in this 

1ℜ  case, synchronization with the matched parameters is instant. As can be seen 

by comparing Figures 6.18c, d and e, this allows for the most efficient discrimina-
tion among bits 0 and 1.   

6.2.3   Other Forms of Chaotic Modulation 

In the case of chaotic parameter modulation, the binary message is introduced into 
the dynamical equations of the system through one or more of the system’s  
parameters. Alternatively, it is also possible to introduce the message into the dy-
namical equations of the system by incorporating it into one or more of the  
system’s state variables. For instance, in [11,2] a binary message has been incor-
porated into the dynamics of the Chua master-slave system. Also, in [11], a cha-
otic communication system with a sinusoidal message incorporated into the  
dynamics of the Lorenz master-slave chaotic system has been presented. Further-
more, Lyapunov’s direct method has been used to prove that the master-slave sys-
tem must synchronize in the presence of the message. Using a similar approach to 
the one of [11,19], the authors of [13] introduce the message into the system 
through the x state variable. However, in this case, the message is recovered 
through an extra, purpose designed, state variable of the system. 

The principles of operation of the Lorenz based chaotic communication system 
of [11], are now briefly demonstrated. The system is shown in Figure 6.19. Note 
that the Lorenz chaotic system has been modified here by introducing the parame-
ter μ . The asymptotic stability within the master-slave system of Figure 6.19 has 

been demonstrated in [11], by showing the existence of the Lyapunov function: 
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where:      )()()(1 txtxte −=
∧

,    )()()(2 tytyte −=
∧

,    )()()(3 tztzte −=
∧

. 

Therefore, under noiseless conditions, the master-slave x signals must synchro-

nize for a given drive signal mxxr += . Assuming that the sufficient amount of 

time has passed for x and 
∧
x  to synchronize, the transmitted message m can then 

be exactly recovered in the form of 
∧
m : 

 

 mxmxxxm r =−+=−=
∧∧∧

)(                  (6.2.19) 
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Fig. 6.19 The Lorenz based chaotic communication system of [11]. The parameter values: 
16=σ , 6.45=r , 4=b  and 98.0=μ . 
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Fig. 6.20 The transmitted signal mx +  and the recovered message 
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Figure 6.20 demonstrates the operation of the system in a noiseless environ-
ment when: )2sin( mm fAm π= , and: 01.0=mA , π/8.1=mf  [11]. The upper 

graph of Figure 6.20 shows the transmitted signal mx + . From the lower graph 
of Figure 6.20 it can be observed that as the transients die out the sinusoidal mes-
sage remains. 

6.3   Initial Condition Modulation  

This section presents a recently developed chaotic communication technique 
based on the initial condition modulation (ICM) of the chaotic carrier by the bi-
nary message, published in [10,16]. The chaotic modulation techniques of section 
6.2 introduce the message into the system by incorporating it into the dynamical 
equations of the system. In contrast to those, the ICM technique introduces the 
message into the system through the system’s initial conditions. The ICM tech-
nique is based on the principles of the novel mathematical analysis for predicting 
master-slave synchronization presented in chapter 5 [10]. 

6.3.1   Principles of Initial Condition Modulation 

A general block diagram of a chaotic communication system based on the initial 
condition modulation concept is shown in Figure 6.21. The binary message m is 
introduced into the system through an initial condition (IC) of one of the master 
signals. The choice of the initial condition depends on the synchronization proper-
ties of the particular master-slave system under consideration. Using the mathe-
matical analysis of chapter 5 [10], it is often possible to show that the mathemati-
cal expression for the synchronization error of the master-slave signals can be ex-
pressed in terms of the initial conditions of the system. The communication sys-
tem is then designed by choosing two different sets of initial conditions to repre-
sent binary symbols 0 and 1. To represent a bit 0 the master-slave initial condi-
tions are so chosen to cause the system to synchronize, that is, to cause the syn-
chronization error to go to zero. Alternatively, to represent bit 1, the master-slave 
initial conditions are so chosen to inhibit synchronization. Therefore the operation 
of the ICM scheme resembles that of the CPM scheme in that they both rely on the 
state of the synchronization error at the receiver. However, the ICM scheme oper-
ates in accordance with the mathematical expression for the synchronization error. 
In general, the signal x may be an interleaved version of more than one signal of 
the master system [10]. 
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Fig. 6.21 A block diagram of the chaotic communication system based on the initial condi-
tion modulation concept 

6.3.2   Initial Condition Modulation within the Ueda Master-Slave 
Chaotic System 

Consider the Ueda master-slave chaotic system of Figure 5.9, section 5.3, when 
the master signal x drives. It has been shown in section 5.3 that in this configura-
tion equation 5.3.19, repeated below as equation 6.3.1, governs the synchroniza-
tion error of the master-slave y signals [10]: 
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In addition, it has also been shown in section 5.3 [10] that as time tends to in-

finity equation 6.3.1 settles to the steady state behaviour governed by its third 
term. Furthermore, note that the third term of equation 6.3.1 is governed by the 
initial conditions of the master-slave z signals. By observing equation 6.3.1 it is 
then readily verifiable that the error of the master-slave y signals tends to zero 
when the difference among the master-slave z initial conditions is equal to 

πn2±  (where n is any integer). Alternatively, when the difference is equal to 
πn± , (where n is any odd integer), the error of the master-slave y signals 

reaches its maximum possible value. These two chaotic synchronization properties 
of the Ueda master-slave chaotic system have been utilized to construct the com-
munication system of Figure 6.22. The master initial condition of the z signal is 
varied according to the value of the bit to be transmitted, bit 0 being represented 
by π2=m  and bit 1 by π=m . In this way, the overall difference among the 
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master-slave z initial conditions entering the transmitter and the receiver is equal 
to either π  or π2 . Therefore, under noiseless conditions, the system either syn-
chronizes or does not [10]. 

As explained in chapter 1, for optimal performance of the system in the AWGN 
channel, it is essential that the symbols (bits) are as far apart as possible in their 
symbol space [20]. For the communication system of Figure 6.22 the separation of 
symbols 0 and 1 in their symbol space is largest when the difference among the 
master-slave z initial conditions is equal to πn2±  (where n is any integer) and 
πn± , (where n is any odd integer), respectively. These two properties of the 

Ueda master-slave chaotic system are expressed by equations 5.3.25 and 5.3.28 
and illustrated by Figures 5.13b and 5.14b of section 5.3. 
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Fig. 6.22 The Ueda chaotic communication system based on the initial condition  
modulation 

 

In order to evaluate ye  at the receiver, both master signals x and y, must be 

transmitted. Therefore, in Figure 6.22, the transmitted signal s is a signal com-
posed of x and y master signals interleaved in the fashion described by Eqs. 6.3.2 
and 6.3.3, respectively [10]: 
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In equations 6.3.2 and 6.3.3 )(tδ  is the impulse function and N is the spreading 

factor, that is, the number of x (y) chaotic points representing a single bit.  

The rx  and ry  signals, at the receiver side of Figure 6.22, represent the noisy 

x and y signals of the transmitted signal, where n denotes AWGN, composed of 
the two components represented in time domain by equations 6.3.4 and 6.3.5: 
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The rx  and ry  signals are represented by equations 6.3.6 and 6.3.7, respectively: 
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In order to avoid periodicity of chaotic sequences representing bit 0 (or bit 1), it is 
essential to alter x(0) and y(0) with every new bit sent. Also, in order to ensure the 
continuity of the smooth nature of the signals at the transition of the transmitted 
bits, the initial conditions of x and y for every new bit transmitted are chosen as 
the final values of the chaotic carrier of the preceding bit. The interleaved trans-
mitted signal s is shown in Figure 6.23 when the series of 10 bits is transmitted, 
that is, when m = [2π, 2π, π, 2π, π, π, 2π, π, 2π, π], or in binary terms: message = 
[0 0 1 0 1 1 0 1 0 1]. Figure 6.23 also shows the corresponding squared synchroni-

zation error, 2
ye , under noiseless conditions. The spreading factor of 400 has been 

used. 
In order to demonstrate the performance of the Ueda ICM based communica-

tion system of Figure 6.22, an empirical BER curve has been produced and com-
pared to the BER curve of the BPSK communication system [20,21].  In addition, 
an empirical BER curve of the Lorenz based CPM scheme presented above [8] has 
also been produced [21].  The results of the BER analysis are displayed in Figure 
6.24. From Figure 6.24 it is observed that it requires 13-14 dB less energy per bit 
to achieve the same probability of error using the Ueda ICM based system of  
Figure 6.22 as compared to the Lorenz CPM based system of [8]. The empirical 
BER curves have been obtained in the following manner. The bit energy  
was obtained by first determining the average power of the chaotic carrier and  
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multiplying it by the bit period [10,20].  Then for specified bit energy to noise 

power spectral density ratio ( ob NE / ), the required power (variance) of noise 

was calculated and thus white Gaussian noise of that power generated.  Finally for 

each ob NE /  the probability of error, that is the bit error rate, was determined. 
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Fig. 6.23 The interleaved transmitted signal s, and the squared synchronization error 
2
ye  

It should be pointed out that the scheme of Figure 6.22 is not the only possible 
configuration of implementing the system presented.  For instance, in order to 
avoid transmission of both x and y master signals across the channel, it is possible 
to introduce a differentiator at the receiver side and pass the received x signal 
through it to obtain an estimate of the master y signal, as from equation 5.3.1, sec-

tion 5.3, it is observed that in fact yx =
•

. Such a configuration has the advantage 

from the aspect of the reduced bandwidth requirement by transmitting a single 
signal instead of two interleaved signals.  However, in this case, the robustness to 
noise of the system is significantly reduced as is demonstrated by the open squares 
BER curve of Figure 6.24.  

Yet another, more robust scheme which shows how to implement the Ueda 
ICM scheme by transmitting only the master signal x is proposed. This scheme is 
outlined in the appendix [15]. In this particular configuration it is shown that the 
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transmitted bits can be recovered by only observing the slave signal 
∧
y  thus 

eliminating the requirement of transmitting the master signal y as well. 
Similar ICM based communication systems can also be constructed as is dem-

onstrated in the next two subsections on the simplest quadratic and the simplest 
piecewise linear master-slave chaotic flows. 
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Fig. 6.24 The BER curves: (a)  the solid line is for the theoretical BPSK, (b)  the solid cir-
cles are for the Ueda ICM based system of Figure 6.22, (c)  the crosses are for the Lorenz 
CPM based system of Figure 6.7 [8], (d) the open squares are for the Ueda ICM based sys-
tem of Figure 6.22 but with the differentiator and only x transmitted, (e) the solid squares 
are for the simplest quadratic ICM based system of Figure 6.25, (f) the open circles are for 
the simplest piecewise linear ICM based system of Figure 6.27. 

6.3.3   The Communication System Implementing the Simplest 
Quadratic Master-Slave Chaotic Flow 

In Figure 6.25 the communication system implementing the simplest quadratic 
master-slave chaotic flow is outlined. 
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Fig. 6.25 The simplest quadratic chaotic communication system based on the initial condi-
tion modulation 

The transmitted signal s is a signal composed of y and z master signals, inter-
leaved in the same fashion as signals x and y of the previous section.  The signals 

ry  and rz , are described by equations 6.3.8 and 6.3.9, respectively: 
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The operation of the communication system of Figure 6.25 is based on the syn-
chronization error of the master-slave z signals. It has been shown in section 5.2 
[10] that after the transients die down, the synchronization error of the master-
slave z signals is governed by equation 5.2.22, repeated below as equation 6.3.10 
for convenience: 

 

A

αδ −=                         (6.3.10) 
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Recall that in equation 6.3.10, 
∧∧

−=−= xxxx )0()0(α , and A is the system 

parameter. 
The master initial condition of the x signal is varied according to the value of 

the bit to be transmitted, bit 1 being represented by 9.8=m  and bit 0 by 

0=m .  Such choice of m ensures that the distance of symbols (bits) in their 
symbol space is large, while still maintaining the chaotic properties of the system.  
The symbol space of this system is limited by the basin of attraction of the initial 
conditions of the simplest quadratic chaotic flow and therefore care must be taken 
in the choice of the initial conditions [22] to avoid the system going off to infinity. 

To avoid periodicity of chaotic sequences representing bit 0 (or bit 1), it is es-
sential to alter y(0) and z(0) with every new bit sent.  However, in this case, the 
initial conditions of y and z for every new bit transmitted have not been chosen as 
the final values of the chaotic carrier of the preceding bit, due to the limited basin 
of attraction of the initial conditions. Instead, they have been randomly assigned 
within the basin of attraction for every new bit transmitted.  This ensures the cha-
otic properties of the system; however, it may jeopardize the security of the  
system as compared to the system of Figure 6.22, due to the non-smooth bit transi-
tions and the more restricted choice of initial conditions. The interleaved transmit-
ted signal s is shown in Figure 6.26 when the series of 10 bits is transmitted, that 
is, when m = [2π, 2π, π, 2π, π, π, 2π, π, 2π, π], or in binary terms: message = [0 0 1 
0 1 1 0 1 0 1]. Figure 6.26 also shows the corresponding squared synchronization  
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Fig. 6.26 The interleaved transmitted signal s, and the squared synchronization error 
2
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error, 2
ye , under noiseless conditions. The spreading factor of 400 has been used. 

From Figure 6.26 one can observe that the transmitted signal diverges to infinity  
if the chosen initial conditions of a particular bit are not within the basin of  
attraction. 

The result of the BER analysis for the simplest quadratic ICM based system of 
Figure 6.25 is displayed in Figure 6.24 by the curve marked by solid squares.  
From Figure 6.24 it is observed that it requires 11-12 dB less energy per bit to 
achieve the same probability of error using the simplest quadratic ICM based sys-
tem of Figure 6.25 as compared to the Ueda ICM based system of Figure 6.22. 

6.3.4   The Communication System Implementing the Simplest 
Piecewise Linear Master-Slave Chaotic Flow 

In Figure 6.27 the communication system implementing the simplest piecewise 
linear master-slave chaotic flow, where the transmitted signal s is composed of the 
interleaved signals y and x, is outlined. 

 

Transmitter 
(Master system) 
 

1−+−−=

=

=

•

•

•

xyAzz

zy

yx

 

0)0( =x  

)0(y  )0(z  0)0( =
∧

z  

Receiver 
(Slave system) 
 

1−+−−=

=

=

∧∧
•
∧

∧

∧
•

xyzAz

yy

yx

r

r

r  

n  

∧

x  

xe  

dt2)(  

∧

m  

0)0( =
∧

x  

m  

rx  

y  

x  

ry  

rx  

s  

 

Fig. 6.27 The simplest piecewise linear chaotic communication system based on the initial 
condition modulation 
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The signals ry  and rx , are described by equations 6.3.11 and 6.3.12,  

respectively: 
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The operation of the communication system of Figure 6.27 is based on the syn-
chronization error of the master-slave x signals, represented by equation 5.1.7, and 
repeated below as equation 6.3.13 for convenience: 

 

Jxxxx =−=−
∧∧

)0()0(                                       (6.3.13) 

 
The initial condition of the master signal x is varied according to the value of the 
bit to be transmitted, bit 1 being represented by 1=m  and bit 0 by 0=m .  Such 
a choice of m ensures that the separation of symbols (bits) in their symbol space is 
relatively large, while still maintaining the chaotic properties of the system, that is, 
preventing the system from going off to infinity.  In order to preserve smoothness 
of the transmitted chaotic sequence y, as well as to avoid periodicity, the initial 
condition of y for every new bit transmitted is chosen as the final value of the cha-
otic carrier of the preceding bit. The disadvantage of this system is that the initial 
conditions of the master signal x modulate the message to be transmitted while at 
the same time transmitting the master signal x, thus jeopardizing the security of 
the information transmitted as compared to the systems of Figure 6.22 and Figure 
6.25.  The interleaved transmitted signal s is shown in Figure 6.28 when the series 
of 10 bits is transmitted, that is, when m = [2π, 2π, π, 2π, π, π, 2π, π, 2π, π], or in 
binary terms: message = [0 0 1 0 1 1 0 1 0 1]. Figure 6.28 also shows the corre-

sponding squared synchronization error, 2
ye , under noiseless conditions. The 

spreading factor of 400 has been used. From Figure 6.28 one can observe that the 
transmitted signal does not diverge to infinity at any time if the chosen initial con-
ditions of a particular bit are within the basin of attraction. 

The result of the BER analysis for the simplest piecewise linear ICM based sys-
tem of Figure 6.27 is displayed in Figure 6.24 by the curve marked by open cir-
cles.  From Figure 6.24 it is observed that it requires 6-9 dB more energy per bit to 
achieve the same probability of error using the simplest piecewise linear  
ICM based system of Figure 6.27 as compared to the Ueda ICM based system of 
Figure 6.22. 
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Fig. 6.28 The interleaved transmitted signal s, and the squared synchronization error 
2
xe  

6.3.5   Discussion 

In this section the three chaotic communication systems, based on the initial con-
dition modulation of the message to be transmitted, have been presented. They are 
now discussed in terms of their performance. 

The communication system based on the simplest quadratic master-slave cha-
otic flow exhibits the best performance in terms of the bit error rate, as compared 
to the other two systems, due to the largest relative separation of the bits transmit-
ted in their symbol space at the receiver.  Due to having the smallest relative sepa-
ration of the bits transmitted in their symbol space, the communication system 
based on the simplest piecewise linear master-slave chaotic flow exhibits the 
worst bit error rate performance. 

From the security point of view, the communication system based on the Ueda 
master-slave chaotic system may offer the most security out of the three systems 
presented, as this system is not limited by the basin of attraction. This allows for 
the widest range of initial conditions for the message modulation, that is, it en-
ables for the smooth nature of the transmitted signal at the bit transitions.  The 
communication system based on the simplest piecewise linear master-slave cha-
otic flow uses the error of the master-slave x signals to demodulate the message 
while at the same time the initial conditions of the transmitted master signal x 
modulate the message. This can be seen from equation 6.3.13 and Figure 6.27.  
Therefore the security of this system is jeopardized as compared to the other two 
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systems whose demodulation, that is, steady state synchronization error, equations 
are independent of their own initial conditions, but depend on the modulating ini-
tial conditions of the signal not transmitted. This can be seen from equations 6.3.1 
and 6.3.10, and Figures 6.22 and 6.25, respectively. 

6.4   Performance Evaluation in the Presence of Noise  

In this section, the noise performance of the binary modulation techniques of sec-
tions 6.2 and 6.3 is examined and compared in terms of the bit error rate. 

In Figure 6.29 the BER performance of the Lorenz, Ueda and cubic CPM sys-
tems is compared to that of the ICM systems of section 6.3. Furthermore, the BER 
curve of the filtered and plain Ueda ICM system with only x transmitted [15], 
(outlined in the appendix), is also presented. 
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Fig. 6.29 The BER curves: (a) the solid line is for the theoretical BPSK, (b) the solid 
squares are for the simplest quadratic ICM system of Figure 6.25 [10], (c) the open penta-
gram stars are for the Filtered Ueda ICM system of the appendix [15], (d) the open dia-
monds are for the Ueda ICM system of the appendix [15], (e) the solid circles are for the 
Ueda ICM system of Figure 6.22 [10], (f) the open circles are for the simplest piecewise 
linear ICM system of Figure 6.27 [10], (g) the open squares are for the Ueda CPM system 
of Figure 6.14 [16], (h) the crosses are for the Lorenz CPM system of Figure 6.7 [8], (i) the 
open pentagram stars are for the cubic CPM system of Figure 6.17. 

 
 



6.5   Conclusion 167
 

 

While evaluating the BER curves of Figure 6.29 it has been assumed that the 
clock synchronization among the clock at the transmitter and the clock at the re-
ceiver has already been achieved. As discussed in chapter 1, this assumption is 
used in most cases when evaluating the performance of binary modulation tech-
niques [20,10]. 

From Figure 6.29 it is observed that it requires 7-10 dB less energy per bit to 
achieve the same probability of error using the Ueda ICM system as compared to 
the Ueda CPM system. Furthermore, it requires 4-6 dB less energy per bit  
to achieve the same probability of error using the Ueda CPM system as compared 
to the Lorenz CPM system. Therefore, the Ueda ICM system exhibits better noise 
performance than the Ueda CPM system which in turn exhibits better noise per-
formance than the Lorenz CPM system. However, most importantly, it should be 
observed that all of the ICM based systems developed here outperform the CPM 
based systems. In particular, the best performance is exhibited by the simplest 
quadratic ICM based system and the worst by the cubic CPM based system. Al-
though the simplest quadratic ICM based chaotic communication system exhibits 
the best performance in terms of BER it has been argued in section 6.3 that it may 
not be the most secure system. Similarly, it was argued that Ueda ICM based sys-
tem exhibits the best overall performance in terms of security and BER. Therefore, 
the further 4-5 dB BER improvement exhibited by the Ueda ICM based system 
with only the master signal x transmitted over the Ueda ICM based system with 
both master x and y signals transmitted (Figure 6.22) is of particular importance. 
Furthermore, it has been shown in the appendix [15] that by applying filters to the 
received signal x further improves the performance of the system by 3-4 dB. How-
ever, it can be observed from Figure 6.29 that even the simplest quadratic ICM 
based system which exhibits the best BER performance, out of all of the chaotic 
synchronization based systems examined, is still outperformed by the BPSK sys-
tem by approximately 14 dB. In the next chapter, a robust synchronization unit for 
the chaos based DS-CDMA systems is proposed. It is shown that in terms of BER 
it outperforms the communication systems based on the principle of chaotic syn-
chronization presented and examined in this chapter. 

It should be noted that all of the communication systems presented in this chap-
ter are inherently single user systems. It will be shown in chapter 9, how principles 
of TDM can be used to allow these systems to become multi-user systems. Their 
performance will be examined in both AWGN and Rayleigh fading channels. Fur-
thermore, it will be shown that by using different receiver architectures BER per-
formance can be improved in certain cases. 

6.5   Conclusion  

In this chapter, several chaotic communication systems with the receiver based on 
chaotic synchronization have been described. These include the chaotic communi-
cation schemes of chaotic masking, chaotic modulation and the new chaotic com-
munication scheme of initial condition modulation.  
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It has been shown how Lyapunov’s direct method presented in chapter 3 can be 
used in the design of CPM based communication systems. In particular, this has 
been shown on the Ueda master-slave chaotic system.  

Furthermore, a method of implementing the synchronized chaotic map master-
slave system of chapter 4 within a CPM based secure communication system, was 
demonstrated on the 1ℜ  cubic map. It was shown that instant synchronization 
within the chaotic map CPM based communication system allows for the highest 
level of discrimination among bits 0 and 1. 

On the basis of findings of chapter 5, a secure communication system based on 
the initial condition modulation of the chaotic carrier by the binary message was 
then presented. In particular, this system utilizes a novel approach to the master-
slave synchronization properties of the three chaotic flows investigated. The  
empirical BER curves for the presented communication systems have then been 
produced and compared to the empirical BER curve of the Lorenz CPM based 
communication system of [8], demonstrating a significant improvement.  It has 
been shown that the communication system based on the simplest quadratic mas-
ter-slave chaotic flow exhibits the best performance in terms of BER, as compared 
to the other two presented systems based on the Ueda and the simplest piecewise 
linear master-slave chaotic flows.  From the security point of view it has been ob-
served that the communication system based on the Ueda master-slave chaotic 
system may be the most secure of the three systems presented. 

Finally, the overall performance of the chaotic parameter and initial condition 
modulation techniques has been examined and compared in the presence of 
AWGN. It has been shown in terms of BER that the ICM based chaotic communi-
cation systems exhibit better noise performance than the CPM based ones. There-
fore, most importantly, it can be concluded that all of the chaotic synchronization 
ICM based systems presented here outperform the presented CPM based systems. 
Furthermore, it has been shown on the Ueda ICM based chaotic communication 
system that the denoising techniques can be used to further improve the BER per-
formance. The details of the denoising techniques developed have been described 
in the appendix. The work of this chapter has been published in [10,16,15]. 
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Chapter 7  
A Robust Sequence Synchronization Unit for 
Multi-user Chaos Based DS-CDMA 
Communication Systems 

A Robust Se que nce Sy nchronization Unit  

 
 

This chapter demonstrates two ways of achieving and maintaining sequence syn-
chronization in multi-user chaos based direct sequence code division multiple ac-
cess (CBDS-CDMA) communication systems. In both cases, synchronization is 
achieved and maintained through code acquisition and code tracking phases, re-
spectively. The performance of the proposed systems is evaluated in the presence 
of additive white Gaussian noise and interuser interferences as well as in a 
Rayleigh fading channel. A pseudo random binary sequence (PRBS) and a logistic 
chaotic map are used as the synchronizing periodic, and non-periodic, pilot signals 
within the multi-user chaotic communication system.  In addition, the Bernoulli 
chaotic map is also used as the pilot signal in the investigation of the code acquisi-
tion performance. The code acquisition circuit is evaluated in terms of the  
probability of detection and probability of false alarm. The corresponding results 
demonstrate an ability to achieve initial synchronization. Furthermore, it is shown 
that in terms of code acquisition the PRBS outperforms the logistic and Bernoulli 
chaotic maps when used as pilot signals. The mathematical models of the code 
tracking loops are then developed and their validity demonstrated by means of a 
simulation for both PRBS and chaotic pilot based CBDS-CDMA systems. From 
the models, the control laws for the generation of time offset estimates are de-
rived. The robustness of the synchronization units is then demonstrated in terms of 
the bit error rate. It has been shown that for the PRBS based system, in an AWGN 
channel, for the case of 1, 2, 3, 4, and 5 users the bit error rate goes below the 

maximum acceptable limit of 310−  at the bit energy to noise power spectral den-
sity ratio of approximately 8, 9, 9.5, 11 and 12 dB, respectively. The chaotic pilot 
based CBDS-CDMA systems exhibit marginally better performance for a single 
user plus a chaotic pilot signal than the corresponding PRBS pilot based CBDS-

CDMA system at the BER level of 410−  and below. In particular, at the BER level 

of 610− , this improvement in performance is approximately equal to 0.175 dB. 
Their BER performances match for more than one user in the system. It has also 
been shown that the periodic and non-periodic chaotic pilot based CBDS-CDMA 
systems’ BER performances match for any number of users in the system. Fur-
thermore a gradual degradation in performance, above the maximum acceptable 
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bit error rate limit, is demonstrated for the increasing number of users for all sys-
tems. Finally, it is shown that although the systems are robust to the influence of 
AWGN and interuser interferences, they all fail to satisfy the maximum allowable 

bit error rate limit of 310−  in the Rayleigh fading channel. By introducing a cha-
otic pilot signal in place of a PRBS signal, the CBDS-CDMA system is made fully 
chaotic. In this way, the CBDS-CDMA systems’ security is significantly improved 
by eliminating an inherently different PRBS pilot signal. 

As mentioned in chapter 3, the synchronization of chaotic systems was first 
studied by Yamada and Fujisaka in 1983 [1], and Afraimovich et al. in 1986 [2].  
However it was not until 1990 when Pecora and Carroll (PC) introduced their 
method of chaotic synchronization (CS) [3] and suggested application to secure 
communications that the topic started to arouse major interest.  The chaotic syn-
chronization of [3] is most often established by employing Lyapunov’s direct 
method [4-6] or by considering the conditional Lyapunov exponents [7-9], leading 
to the design of the chaotic communication systems. Alternatively, the synchroni-
zation techniques of traditional spread spectrum communication systems [10-15] 
achieve synchronization between the transmitter and receiver in two distinct 
phases. These are called the code acquisition and the code tracking phase [10-21]. 
The code acquisition [11,10,13,14,15,18,20,21], or the initial synchronization 
phase, involves determining the time offset amidst the incoming signal and the 
basis function copy at the receiver to within a specified range known as the pull-in 
region of the tracking loop [11,12,10,15-17,19]. Upon the successful completion 
of the acquisition phase, the code tracking phase starts with the fine alignment 
followed by the process of maintaining synchronization of the two signals. Due to 
the mutually orthogonal properties of some chaotic signals [22-25] the synchroni-
zation techniques of the traditional code division multiple access (CDMA) spread 
spectrum communication systems have a potential to be applied to the chaotic 
communication systems [24,26-36].  In most cases, when evaluating the sequence 
synchronization of the chaos based DS-CDMA systems the code acquisition is 
analysed only [24,26,27,29-35]. In [26,27] Setti et. al. investigate the acquisition 
procedure of a chaos based DS-CDMA system and briefly discuss the possible 
general model for the tracking operation. The tracking model of [26,27] is essen-
tially based on a continuance of the acquisition procedure and it does not deal with 
the synchronization within the chip level which is required for the fine alignment 
between the received and the despreading sequences. It has been suggested in 
[26,27] that the Bernoulli and the Tailed Shift chaotic maps may in fact yield 
somewhat better performance during the code acquisition phase than the classical 
spread spectrum sequences such as m (PRBS) and Gold sequences. Furthermore, 
in [29], the authors use the Gaussian approximation for the self-interference term 
to show its effect on the acquisition performance. In [30] the moments approach is 
used to obtain a more accurate characterization of the self-interference term. 
Throughout [26,27,29,30] the noise has not been included in the system in order to 
study the effects of the interuser interferences on the acquisition performance. 
However in any real communication system noise is an inevitable part of opera-
tion and is thus included here in the study of the system performance. In [32,34] 
the authors look at the acquisition performance of Markov chaotic sequences 
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when used as the spreading codes within a DS-CDMA system. It is shown in [34] 
that the bit error rate and code acquisition performance of the Markov based DS-
CDMA systems are superior to that of the independent and identically distributed 
(i.i.d.) based DS-CDMA systems. In [33], the distribution of self-interferences of 
an incompletely synchronized, (to within a fraction of a chip), Markov based DS-
CDMA system is considered. It is shown that Markov codes show promise in this 
regard; however, no tracking circuit is proposed to completely synchronize the 
system. In addition, in [36], the author investigates the generation of spread spec-
trum chaotic sequences via Markov chains whose autocorrelation values always 
take real numbers. Due to the reduction in the number of unknown parameters, it 
is argued that the synchronization of such sequences is simpler than the synchro-
nization of Markov chain sequences whose autocorrelation values take complex 
values. A more recent advance in the synchronization of chaotic CDMA systems 
combines the interior penalty method of optimization theory and chaotic synchro-
nization theory to achieve detection at the receiver [37]. 

Studies into the optimal spreading sequences for DS-CDMA systems have been 
conducted in [24-27,32-35,38-45], and it has been found that in many instances 
chaotic time series are the optimal spreading sequences [24,26,27,34,35,38-45]. 
For instance, in [24,43], it has been shown that quantized chaotic spreading codes 
can be generated for any number of users and exhibit generally better performance 
than the classical, m and Gold, sequences. Alternatively, in [38] an estimation 
technique for the minimum achievable interference in DS-CDMA systems is pro-
posed and used in [42] to find the autocorrelation function resulting in the mini-
mum possible interference-to-signal ratio. Furthermore, it has been shown in  
[39-41], that in terms of capacity, where capacity is defined as the maximum rate 
at which information can be transmitted without error, the suitably chosen chaotic 
spreading sequences outperform the classical spreading sequences. Quantization 
of chaotic time series is recognised as one of the possible practical problems in the 
generation of the spreading sequences as it may affect the security and the system 
performance [23,44]. In [44] a practical implementation of the optimal real-valued 
Chebyshev chaotic spreading sequence is investigated in terms of the finite preci-
sion representation. It is shown that the bit error rate performance of a 31 bit pre-
cision machine matches that of a double precision machine. Therefore, a 31 bit 
precision machine is sufficient for the practical implementation of some chaotic 
sequences within DS-CDMA systems. The digital signal processors (DSPs) are 
the devices commonly used to investigate the implementation of chaotic commu-
nication systems [46-51]. Under the assumption of perfect synchronization the 
chaos based DS-CDMA system of [22] has been investigated in [51] on a 32 bit 
precision TigerSHARC DSP chip by Analog Devices. It has been shown that the 
quantization of the logistic map at this precision does not affect the bit error rate 
performance of the system. 

Broadly speaking, chaotic communication systems can be classified into those 
that require sequence synchronization at the receiver, the coherent systems, and 
those that do not, the non-coherent systems.  However, in many cases when study-
ing coherent chaotic communication systems perfect synchronization between the 
spreading code at the transmitter and its replica, or copy, at the receiver is  
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assumed [52,22,23,51,53,54-56].  Such analyses only provide the benchmark per-
formance of the system [53]. In [57] it was reported that the PC chaotic synchro-
nization method of [3] is insufficiently robust for the implementation within the 
practical chaotic communication systems.  In order for the CDMA multi-user cha-
otic communication systems to become of practical and not just academic interest 
robust synchronization techniques must be developed [57,53,54,58-61,62]. The 
motivation for the work of this chapter was to develop a robust and secure syn-
chronization technique for the multi-user DS-CDMA chaotic communication sys-
tem of [22] using the traditional techniques of sequence synchronization within 
the CDMA systems.  

In this chapter, the code acquisition and tracking phase of the sequence syn-
chronization system are implemented within the multi-user DS-CDMA chaotic 
communication scheme of Parlitz and Ergezinger [22].  The proposed systems are 
evaluated in the presence of additive white Gaussian noise (AWGN) and the inter-
user interferences as well as in the Rayleigh fading channel.  The synchronization 
systems utilize a pseudo random binary sequence (PRBS) pilot signal and a peri-
odic and non-periodic logistic map chaotic pilot signals within the multi-user cha-
otic communication system to achieve and maintain synchronization. Under the 
assumption of perfect synchronization the benchmark performance of the system 
of [22] has already been investigated in the presence of noise and interuser inter-
ferences in [22,55] as well as in the Rayleigh fading channel of [56], demonstrat-
ing the potentially robust nature of this system.  Also under the assumption of  
perfect synchronization the security of the system of [22] has been evaluated in 
[62], demonstrating some weaknesses of the system to the return map and correla-
tion function attacks. 

Section 7.1, presents the entire system, consisting of the system in [22] and the 
sequence synchronization system proposed. The interconnections of the two sys-
tems are explained.  In section 7.2, the code acquisition circuit is presented and 
analysed in terms of the probability of false alarm and the probability of detection.  
The ability to achieve initial synchronization in the presence of noise and interuser 
interferences is demonstrated. The mathematical model of the code tracking loop 
for a PRBS pilot based CBDS-CDMA system is presented in section 7.3. The con-
trol law used for the generation of the time offset estimates is then derived. This is 
followed by the investigation into the overall noise performance of the system in 
terms of the bit error rate for different numbers of chaotic users in an AWGN 
channel. Furthermore, the performance of the system proposed is compared to the 
initial condition modulation (ICM) scheme of chapter 6 [63] based on the princi-
ples of PC synchronization. Finally, the performance of the system is evaluated in 
the Rayleigh fading channel with AWGN and interuser interferences present. In 
section 7.4, the periodic and non-periodic chaotic pilot based CBDS-CDMA sys-
tems are proposed and evaluated in AWGN and Rayleigh fading channel. The 
mathematical model of the code tracking loop is presented for both chaotic pilot 
based CBDS-CDMA systems. The control laws used for the generation of the time 
offset estimates are derived. This is followed by the investigation into the overall 
noise and fading performance of the systems in terms of the bit error rate for dif-
ferent numbers of chaotic users and comparison of the results to those of PRBS 
pilot based CBDS-CDMA system. 
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7.1   The Chaotic Communication System with the 
Synchronization Unit  

Figure 7.1 shows the ‘DS-CDMA communication scheme based on the chaotic 
dynamics’ introduced in [22], with the synchronization unit proposed here. Thus, 
the system of Figure 7.1 does not assume perfect sequence synchronization. The 
mathematical model of the chaos based DS-CDMA communication system of 
Figure 7.1 with perfect sequence synchronization assumed has been presented in 
chapter 2 [52].   
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Fig. 7.1 DS-CDMA chaotic communication system with the synchronization unit 
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In Figure 7.1, x(t) denotes the chaotic spreading signals which are multiplied by 
the binary message signals m(t).  The products are then summed up to produce the 

signal c(t) which is transmitted through the channel.  )(tx p  denotes the pseudo 

random binary sequence (PRBS) which acts as the periodic pilot signal used for 
synchronization purposes.  Provided that the power of the noise in the system is 
comparatively low to the power of the signal, the synchronization unit uses the 
received signal r(t) to generate the despreading codes which are punctually syn-
chronized to the spreading codes at the transmitter.  In order for the spreading 
waveform generator at the receiver to produce punctual despreading codes the 
initial conditions of the spreading codes of each of the M users at the transmitter 
must be available to it. The received signal r(t) is then correlated with the punctual 
despreading codes. For sufficiently low noise levels in the system the correlation 
value produced at the output of each correlator is positive if the bit 1 is transmitted 
and negative if the bit 0 is transmitted [22].  Note that the correlator receiver of 
Figure 7.1 has been represented by integrals, rather than sums as in [22], in order 
to conform to the continuous time domain which is used in this chapter. 

The synchronization unit of Figure 7.1 is composed of two interconnected 
units, namely the acquisition or the initial synchronization unit and the tracking 
unit which includes everything but the initial synchronization unit. For the com-
munication between the transmitter and the receiver to take place the synchroniza-
tion between the chaotic spreading codes x(t) at the transmitter and their replicas 
at the receiver must be established and maintained. The synchronization is estab-
lished through the acquisition or the initial synchronization unit [11,10,13,14] by 
acquiring the time offset of the received signal r(t) to within a certain fraction of 

the chip period cT . Once the synchronization has been established it is continu-

ously maintained by the tracking unit [11,12,10] by ensuring that the incoming 

time offset is matched by the estimated time offset dT
∧

, as explained in section 
7.3.  Synchronization using the PRBS signal as the pilot signal within the chaotic 
communication system is possible due to the fact that the PRBS signal and the 
chaotic signal used, the logistic map [22] shown in phase-space [62] in Figure 7.1, 
are highly orthogonal as is demonstrated in Figure 7.2a by the cross-correlation 
function with no dominant peaks. The autocorrelation function of the logistic map 
time series is presented in Figure 2.13b, repeated below as Figure 7.2b, showing 
the dominant peak. The logistic map time series has been generated using the 
equation 2.1.5, repeated below for convenience as equation 7.1.1 [22]: 

 

 2
1 21 nn XX −=+                    (7.1.1) 

 
The length of the logistic map time series used to produce Figures 7.2a and 7.2b is 
equal to 511 points (chips). The dynamic range of the logistic map time series is 
confined to ±1 [22].  In Figures 7.2a and 7.2b t denotes the time delay.  Also, note 
that the correlation functions have been normalized to the peak of the autocorrela-
tion function.  
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Fig. 7.2a Cross-correlation of logistic map 
and PRBS time series 

Fig. 7.2b Autocorrelation of logistic map 
time series 

7.2   The Code Acquisition 

In this section, the first phase of the sequence synchronization process known as 
the code acquisition or the initial synchronization phase is presented [15,64]. 

7.2.1   Theoretical Model of the System 

In Figure 7.3, the circuit diagram of the code acquisition circuit is shown [15]. The 
following mathematical analysis of the acquisition circuit is performed at band-
pass, as is the common practice when dealing with this kind of circuitry 
[65,10,11]. 
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Fig. 7.3 Code acquisition circuit 
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The physical description of the circuit is as follows.  The input signal r(t), is 
composed of the M user signals combined together and up converted, as well as 
the noise component introduced by the channel. Among the user signals is the 
pilot signal which is used for the sequence synchronization purposes of the com-

munication system. The )(1 tr , )(2 tr  pair are the baseband signals produced by 

down converting the signal r(t). The )( υ−tx p  is the copy of the pilot signal 

with some arbitrary time offset υ .  The time offset υ  can be represented as 

cTjΔ=υ , where j is an integer and Δ any value between zero and one depend-

ing on the search strategy employed [66].  The )( υ−tx p  copy of the pilot signal 

is used to despread the )(1 tr , )(2 tr  pair.  The despread signals are then inte-

grated over the period of the pilot signal )(tx p  equal to cNT  units of time.  The 

decision variables jZ1  and jZ 2  are squared and summed to produce the decision 

variable jZ , which is used to decide whether the time offset has or has not been 

acquired by comparing it to the predetermined threshold.  If the time offset has not 

been acquired the despreading pilot signal is shifted by further cTΔ  and the new 

decision variable produced.  The procedure is repeated until the approximate time 

offset, (to within cTΔ± ), is determined.  The reason of having two branches is to 

eliminate the influence of the carrier component from the decision making [15].  It 
is assumed that the clock and carrier synchronization between the transmitter and 
the receiver has already been achieved and is maintained throughout the acquisi-
tion procedure, so that the system has the knowledge of where the chips start and 
end.  As discussed in chapter 1, this assumption is used in most cases when evalu-
ating the performance of binary modulation techniques [67,63].  In the bandpass 
case the received signal of Figure 7.1, r(t), is assumed to be of the up converted 
form given by equation 7.2.1: 
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where: )sin()(2)cos()(2)( ttnttntn cQcI ωω −=  

In equation 7.2.1, iA  represents the amplitude of the transmitted signals, ix  

the spreading waveforms and im  the information signals, with η  denoting some 

arbitrary time offset of the received signal.  The limit of the sum M denotes the M 
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users of the system, with p corresponding to an extra user ( 0=p ), that is, the 

pilot signal, as illustrated in Figure 7.3.  The terms )(tnI  and )(tnQ  denote the 

in phase and quadrature components of the noise signal n(t).  The angular fre-

quency of the carrier is denoted by cω  and its phase by ϕ .  The signal 1X  of 

Figure 7.3 is expressed by equation 7.2.2: 
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Rearranging equation 7.2.2, equation 7.2.3 is obtained: 
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Upon low pass filtering signal 1X , signal )(1 tr  is obtained: 
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In equation 7.2.5, the first term is the wanted signal, the second terms are the in-
terferences of other users and the third term is the noise component.  Keeping in 

mind that it is so chosen that 1)( =tm p  for all time [10,15], equation 7.2.5 is 

rewritten as equation 7.2.6: 
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In a similar manner, equation 7.2.7 is obtained: 
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The decision variable jZ 1  is expressed by equation 7.2.8: 
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Keeping in mind that η  and υ  are some arbitrary time offsets with respect to 

each other, let τ  represent the overall time offset between the received signal and 
the despreading replicas at the receiver.  In this case equation 7.2.8 can be rewrit-
ten as equation 7.2.9: 
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Note that for periodic waveforms the general expression for the autocorrelation 
function )(τR  is defined by equation 7.2.10 [10], where the pilot signal period 

cNTT = : 
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The decision variable jZ 1  can then be expressed by equation 7.2.11: 
 

 jjpj NTRAZ 11 )()cos( += τϕ                (7.2.11) 

 

In equation 7.2.11 jN1  is expressed by equation 7.2.12:  
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In a similar manner, equation 7.2.13 is obtained:  
 

 jjpj NTRAZ 22 )()sin( += τϕ                (7.2.13) 

 

In equation 7.2.13 jN 2  is expressed by equation 7.2.14:  
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7.2.2   Theoretical Upper Bound on the Probability of Detection 

In this subsection, the theoretical expression for the upper bound probability of 
correctly acquiring the time offset between the received signal and the despread-

ing replicas at the receiver is given. The statistical properties of 1N  are now 

briefly analysed.  Expanding equation 7.2.12 and noting that the phase of the noise 

term )(tnI relative to the pilot signal is arbitrary, equation 7.2.15 is obtained: 
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In general, 1N  is composed of the white Gaussian noise term (γ ) and the inter-

ferences term (I ).  The mean value of the white Gaussian noise term γ  is equal to 

zero, and its variance can be expressed by equation 7.2.16 [11,10]: 
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In equation 7.2.16 B denotes the bandwidth of the intermediate frequency (IF) 
filter (not explicitly shown), so that the noise component is the baseband white 

Gaussian noise process with two-sided power spectral densities 2/oN  over the 

frequency range 2/Bf <  [11].  Therefore γ  is a Gaussian random variable of 

zero mean and 2/co BNTN  variance, and can be represented by equation 7.2.17: 
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The interference term, I, is expected to always be close to zero due to the orthogo-
nal relationship among the chaotic interferences and the PRBS pilot signal, as 
demonstrated in Figure 7.2a, with certain variance not equal to zero.  With this in 
mind, equation 7.2.18 is assumed to hold [10]: 
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Therefore, 1N  is the Gaussian random variable of zero mean and variance 

2/'
co BNTN , where '

oN  denotes the effective noise power spectral density that 

is due to both the receiver noise and the interferences [10,15].  Variance 

2/'
co BNTN  thus includes both the variance of γ  and I terms.  Overall equation 

7.2.19 holds: 
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Now the general expressions for the decision variables jZ 1  and jZ 2  can be  

re-expressed in the form of equations 7.2.20 and 7.2.21: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅=

=

+=

1),()cos(

2

12

1

)
2

1
),()cos((

)
2

1
,0()()cos(

'

'

'

'
1

τϕ

τϕ

τϕ

TR

BNTN

A
GBNTN

BNTNTRAG

BNTNGTRAZ

co

p
co

cop

cop

            (7.2.20) 



7.2   The Code Acquisition 183
 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅=

=

+=

1),()sin(

2

12

1

)
2

1
),()sin((

)
2

1
,0()()sin(

'

'

'

'
2

τϕ

τϕ

τϕ

TR

BNTN

A
GBNTN

BNTNTRAG

BNTNGTRAZ

co

p
co

cop

cop

            (7.2.21) 

 

Keeping in mind that at bandpass ccp TEA /2= , where cE  denotes the en-

ergy of a single PRBS chip, equations 7.2.20 and 7.2.21 are rewritten as equations 
7.2.22 and 7.2.23, respectively: 
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Therefore, the decision variable 2
2

2
1 jjj ZZZ +=  is co BNTN '

2

1
 times a non-

central chi-squared random variable with two degrees of freedom, and the non-
centrality parameter is given by equation 7.2.24 [10]: 
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The probability density function (PDF) for jZ  is given by equation 7.2.25 

[10,11], where co BNTN '2

2

1=σ : 
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where oI is the modified Bessel function of the first kind of order zero. 

The initial synchronization test can be viewed as a hypothesis test. Let 1H  be 

the hypothesis that the incoming and local signals are aligned to within one chip 

length, (by choosing the search strategy with 1=Δ ), and let 0H  be the hypothe-

sis that they are not.  These hypotheses are represented by equations 7.2.26 and 
7.2.27 [10]: 
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The PDF, conditioned on the hypotheses above, takes the form of equations 7.2.28 
and 7.2.29: 
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From equations 7.2.28 and 7.2.29, the single run probability of detection and false 
alarm are now evaluated by integrating the PDF.  The false alarm threshold is de-
noted by

Tβ .  Provided that this threshold is equalled or exceeded by the decision 

variable jZ , the system assumes that the time offset has been acquired and 

switches to the tracking circuit which maintains the acquired time offset.  If the 
noise in the system is too high, or the sequence period over which the integration 
is performed is too short, the threshold maybe exceeded by the decision variable, 
when in fact it should not be so.  In such a case the time offset is falsely acquired 

and the false alarm occurs.  The threshold Tβ , for a particular noise level and se-

quence length, can be determined from the false alarm probability.  The false 
alarm probability is given by equation 7.2.30: 
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From equation 7.2.30 expression for the threshold Tβ , for a certain probability of 

false alarm, can be expressed as shown by equation 7.2.31: 
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The probability of detection is given by equation 7.2.32: 

 

dz
BNTN

z
Ie

BNTN

dzHzp

HZPjP

T

co

T
j

co

o

BNTN

z

co

z

TjrD

∫

∫

∞ ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−

∞

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

=

>==

β

λ

β

λ

β

2

1
1

)|(

)|()1(

2

12

1

1

1

    (7.2.32) 

 
Consider the Marcum’s Q-function given by the integral of equation 7.2.33: 
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Equation 7.2.32 is now transformed into the form of the Marcum’s Q-function of 

equation 7.2.33.  Let 2

2

1
xBNTNz co= , so that dxxBNTNdz co= .  Substi-

tuting z and dz into equation 7.2.32, equation 7.2.34 is obtained: 
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Equation 7.2.34 is in the form of equation 7.2.33 and is now compactly expressed 

as shown in equation 7.2.35: 
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Substituting equations 7.2.24 and 7.2.31 into equation 7.2.35, equation 7.2.36 is 
obtained: 
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where 1)0()( =≤ RR τ .   

The expression for the upper bound on detection probability is then obtained by 

assuming that oo NN ≈'  and 1)0()( =≈ RR τ  [10], and is expressed by equa-

tion 7.2.37: 
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In summary, in equation 7.2.37 FP  stands for the probability of false alarm given 

by co

T

BNTN
F ejP

'

)1(
β−

== , where Tβ  denotes the false alarm threshold level. 

Using the Gaussian Q-function [10] to approximate Marcum’s Q-function, 
equation 7.2.37 can be accurately estimated by equation 7.2.38: 
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where γQ  denotes the Gaussian Q-function. 

7.2.3   Empirical Evaluation of the Probability of False Alarm and 
the Probability of Detection 

A way of obtaining the empirical expressions for the probability of false alarm and 
the probability of detection is now briefly presented [15].  Assume that at a certain 
level of noise in the system the output of the acquisition circuit is as given in  
Figure 7.4. 
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Fig. 7.4 Output 
jZ  of the code acquisition circuit of Figure 7.3 

 

Then at this certain level of noise the decision variable jZ  will exceed the 

threshold value six times and in any of those times synchronization will be de-
clared.  However, in only one of those six times (denoted by a circle in Figure 7.4) 

the incoming signal )(tr  and the basis function )( υ−tx p  will actually be syn-

chronized, while in the other five times (denoted by the crosses) the two will not 
be synchronized.  Therefore, the circle in Figure 7.4 corresponds to the case when 
the two are indeed synchronized while crosses correspond to the cases when they 
are not synchronized but the threshold is exceeded. The probability of one event 
occurring while another has in fact occurred is termed conditional probability and 
is represented by equation 7.2.39: 
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Equation 7.2.39 states that the probability of event A given that event B has oc-
curred is equal to the probability of both A and B occurring divided by the prob-
ability of event B.  The equation 7.2.30 which represents the probability of false 
alarm can therefore also be written as equation 7.2.40: 
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The expression for the numerator term )( 0HZP Tjr ∩> β  of equation 7.2.40 

is given by equation 7.2.41: 
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In equation 7.2.41 k represents the number of crosses in Figure 7.4, that is, the 

number of decision variables jZ  exceeding the threshold value Tβ  when in fact 

they should not.  S represents the total number of decision variables jZ . 

The expression for the denominator term )( 0HPr  of equation 7.2.40 is given 

by equation 7.2.42: 
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Substituting equations 7.2.41 and 7.2.42 into equation 7.2.40, equation 7.2.43 is 
obtained:  
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Saying that S is unlimited implies that the synchronization time is unlimited.  In 

order to obtain an accurate result, when S is limited, the experiment must be run a 
number of times, that is, a large number of synchronization bits (periods) must be 
processed.  Processing a large number, m, of bits, while keeping S limited permits 
an accurate estimation of the probabilities, for a limited size of the synchroniza-
tion bit.  Running the experiment m number of times leads to the expression for 
the probability of false alarm given by equation 7.2.44: 
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Also equation 7.2.32 which represents the probability of detection can be written 
as equation 7.2.45: 
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The expression for the numerator term )( 1HZP Tjr ∩> β  of equation 7.2.45 

has only two outcomes, depending on whether the threshold Tβ  has been ex-

ceeded or not.  These two outcomes are given by equation 7.2.46: 
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The expression for the denominator term )( 1HPr  of equation 7.2.45 is given by 

equation 7.2.47: 
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Substituting equations 7.2.46 and 7.2.47 into equation 7.2.45, equation 7.2.48 is 
obtained:  
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From equation 7.2.48 it is clear that to obtain the expression for the probability of 
detection one must run the experiment over more than a single synchronization 
bit, regardless of the length of the synchronization bit, that is, the synchronization 
bit period.  Running the experiment m number of times leads to the expression for 
the probability of detection given by equation 7.2.49: 
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where }1,0{)1( ∈= nD jP . 

7.2.4   Theoretical and Numerical Simulation Results 

The theoretical and empirical performance of the code acquisition circuit of Figure 
7.3 is now examined in terms of the probability of detection and the probability of 
false alarm.  In particular, the system performance is examined when the ratio of 

the chip energy to the noise power spectral density, oc NE / , is equal to -15 dB 

[10], and the chaotic interferences and the period of the synchronizing pilot signal 
vary.  It has been found that the theoretical upper bound on the probability of de-
tection (equation 7.2.37) matches the empirical upper bound on the probability of 
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detection when 7/12=B .  Note that the empirical upper bound on the probabil-
ity of detection is obtained by simply eliminating chaotic users from the system 
and processing only the pilot signal.  Figure 7.5a, shows the theoretical upper 
bound on the probability of detection, (equation 7.2.37), when 

dB15/ −=oc NE , 255=N  and 7/12=B , followed by the corresponding 

no interference empirical curve. The subsequent empirical curves associated with 
the increasing number of users in the system, demonstrate the expected degrada-
tion in the system performance with the increasing level of interference. For in-
stance, one can see from Figure 7.5a that an integration time equivalent to 255 
chips is required to achieve a detection probability of approximately 94 % while 

maintaining a false alarm probability of 5 % when dB15/ −=oc NE  and the 

total interference is equivalent to an interference encountered within a 5 user sys-

tem.  On the other hand for a 20 user system, when dB15/ −=oc NE  and 

255=N , one is only able to achieve a detection probability of approximately 
75.5 % while maintaining the same false alarm probability of 5 %. 

By increasing the length of the pilot signal from 255=N  to 383=N  chips 

and 511=N  chips, while keeping oc NE / , B and the interferences unaltered, 

the results shown by Figures 7.5b and 7.5c are obtained, respectively.  From  
Figures 7.5b and 7.5c one can see that by increasing the integration time of the 
integrators of Figure 7.3 the effect of the noise and the interferences is reduced 
resulting in a higher probability of detection.  However, increasing the integration 
time inevitably increases the overall initial synchronization time [15]. Therefore, 
there is a trade off between the time it takes to search the possible pilot time off-
sets and the reliability of acquiring the correct time offset.  Thus, the choice of the 
particular integration time will depend on the nature of the application. Note that 
although the cross correlation between the chaotic signal generated by the logistic 
map and the PRBS pilot signal is very low (Figure 7.2a), the variance caused by 
the interuser interferences (equation 7.2.18) cannot be ignored in the analytical 
model, especially for the case when the number of users is large. 

The acquisition performance of the chaotic maps, in particular the Bernoulli 
shift map [68], has been investigated in a noiseless environment in [26,27]. In or-
der to evaluate and compare the acquisition performance of the PRBS pilot signal 
in a chaotic DS-CDMA system, Figures 7.5d and 7.5e show the results obtained 
when the logistic and Bernoulli chaotic map sequences are used as the pilot signal, 

respectively. It can be seen from Figure 7.5d that for dB15/ −=oc NE  and 

255=N  the logistic map pilot signal exhibits virtually the same performance as 
the PRBS pilot signal for the first five users. However, when the number of users 
increases to 10, 15 and 20 the performance of the system with the PRBS pilot sig-
nal is better. Furthermore, it can be seen from Figure 7.5e that when the Bernoulli 
chaotic sequence is used as the pilot signal, in a logistic map based DS-CDMA 
system, the acquisition performance deteriorates by a non-negligible margin for 
any number of users in the system. Therefore, the acquisition performance of the 
logistic map based DS-CDMA system in a noisy environment is better when the  
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Fig. 7.5a The probability of detection vs. the probability of false alarm for 
dB15/ −=oc NE , 255=N  and varying levels of interference when the PRBS is used as 

the pilot signal. 
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Fig. 7.5b The probability of detection vs. the probability of false alarm for 

dB15/ −=oc NE , 383=N  and varying levels of interference when the PRBS is used 

as the pilot signal. The close up is shown in the lower right-hand corner. 
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Fig. 7.5c The probability of detection vs. the probability of false alarm for 

dB15/ −=oc NE , 511=N  and varying levels of interference when the PRBS is used 

as the pilot signal. The close up is shown in the lower right-hand corner. 
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Fig. 7.5d The probability of detection vs. the probability of false alarm for 

dB15/ −=oc NE , 255=N  and varying levels of interference when the logistic map is 

used as the pilot signal. The close up is shown in the lower right-hand corner. 



7.3   Code Tracking with a PRBS Pilot Signal 193
 

 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

Pf

P
d

Logistic
Bernoulli

Theoretical
upper
bound

Empirical
upper
bound,
no
users
just pilot

10 users + pilot
15 users + pilot

20 users + pilot

5 users + pilot

4 users
+ pilot

3 users
+ pilot

1 user
+ pilot

2 users
+ pilotEc/No

= -15dB

N = 255 0.01 0.02 0.03 0.04 0.05 0.06
0.9

0.92

0.94

0.96

0.98

1

Theoretical
upper bound

Empirical
upper
bound,
no
users
just
pilot

5 users
+ pilot

1 user
+ pilot

 
 

Fig. 7.5e The probability of detection vs. the probability of false alarm for 

dB15/ −=oc NE , 255=N  and varying levels of interference when the Bernoulli map 

is used as the pilot signal. The close up is shown in the lower right-hand corner. 

 
PRBS is used as the pilot signal than the logistic and Bernoulli chaotic maps. This 
could be due to better correlation properties. 

7.3   Code Tracking with a PRBS Pilot Signal 

In this section the second phase of the sequence synchronization process known as 
the code tracking phase is presented.  Once the initial synchronization circuit of 
Figure 7.1, has established the correct time offset to within the pull-in region of 
the tracking circuit, the tracking circuit is able to take over the synchronization 
process.  Note that the pull-in region of the tracking circuit is defined as the range 
of the time offset error that can be successfully corrected by it [66]. The function 
of the tracking circuit is to fine align the approximate time offset acquired be-
tween the received and despreading sequences and to maintain the synchronization 
from this point onward [11,12,10,66].  In this section, the code tracking loop with 
a pull-in region of half a chip length is considered.  Therefore, to this end it is as-
sumed that the search parameter Δ of the initial synchronization circuit of Figure 

7.3 is equal to a ½.  This ensures that the acquired time offset of Figure 7.1, aT , is 

accurate to within half a chip length of the exact time offset enabling the tracking 
circuit to correct the inaccuracy and maintain the correct time offset.  Thus, we 
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redefine the incoming time offset η , of section 7.2 as dT , indicating that the ac-

quisition phase has been finished and that the synchronization unit now has the 
approximate knowledge of the correct time offset to within half a chip length: 

 
 

–Tc/2 ≤ ( )da TT − ≤ Tc/2                              (7.3.1)  

7.3.1   Theoretical Model of the System 

The tracking circuit examined here is known as the delay lock loop (DLL) 
[11,12,10,17] and it includes the entire synchronization unit of Figure 7.1 except 
for the initial synchronization unit. The early work on DLL circuits can be found 
in [17]. The ultimate function of the synchronization unit of Figure 7.1 is to pro-
duce the punctual codes for despreading the received signal r(t). This is achieved 
by correlating the early and late replicas of the pilot signal by the received signal 
r(t), subtracting their difference, and ensuring that the resulting error signal e(t) is 
constantly forced to zero. In Figure 7.1, VCO stands for the “Voltage controlled 
oscillator” whose function is to increase or decrease the clock frequency depend-
ing on the current value of e(t) [11].  The term δ  of Figure 7.1 is defined as the 

normalized difference among the incoming time offset dT  of r(t) signal and the 

tracking circuit time offset estimate dT
∧

, that is, cdd TTT /)(
∧

−=δ . The loop 

filter of Figure 7.1 is essentially an averaging integrator, integrating over the 
PRBS pilot signal period: 
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Provided that one is already synchronized to within half a chip period, after suc-

cessful acquisition, it is now shown how a punctual time offset dT
∧

, which 

matches the received signal time offset dT , is obtained at discrete time instances.  

With a correct estimate of dT , the receiver is able to accurately despread the re-

ceived signal.  The following mathematical analysis is performed at baseband and 
is based on the circuit of Figure 7.1.  Therefore, the received baseband signal r(t) 
can now be represented by equation 7.3.3: 
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The received signal r(t) is composed of the transmitted signal c(t) and the additive 
white Gaussian noise component n(t).  The transmitted signal c(t) is in turn com-
posed of the mixture of signals of different users as well as the pilot signal. 

The signal )(1 ty  of Figure 7.1 is then expressed by equation 7.3.4: 
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Equation 7.3.4 can be rewritten as equation 7.3.5: 
 

)()
2

()()()( 11 tn
T

TtxATtmTtxAty c
dppdi

M

pi
dii ++−−−=

∧

=
∑       (7.3.5) 

 

where:  )
2

()()(1
c

dpp

T
TtxAtntn +−=
∧

 

Evaluating equation 7.3.5, equation 7.3.6 is obtained: 
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Recall that the term )( dp Ttm − disappears, since it is so chosen that 

1)( =tmp  for all time [15].  The second and the third term of equation 7.3.6 are 

the interference and noise terms, respectively, and can be written in a joint form so 
that equation 7.3.6 takes the form of equation 7.3.7: 
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In the similar fashion equation 7.3.8, representing )(2 ty , is obtained: 
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Subtracting equation 7.3.7 from equation 7.3.8, equation 7.3.9 is obtained: 
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is white but not Gaussian [11].  It possesses a two sided power spectral density 
given by equation 7.3.10: 
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where N is the number of chips in one PRBS period. 

Equation 7.3.9 is now integrated over the PRBS period cNTT =  to obtain 

equation 7.3.11: 
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Equation 7.3.11 can be rewritten in the form of equation 7.3.12: 
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Using the general form of equation 7.2.10, let the autocorrelation now be defined 
by equation 7.3.13 [11]: 
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In terms of )(τ
pxC , equation 7.3.12 can also be expressed by equation 7.3.14: 
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Figure 7.6 shows the plots of ⎟
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autocorrelation function is given by equation 7.3.16, and its minimum by equation 
7.3.17: 
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Fig. 7.6 Plot of the early, late, and on time PRBS correlation functions 

 
Assuming that the PRBS pilot signal is tracked over its entire period the gradi-

ent in the linear region is then expressed by equation 7.3.18: 
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Therefore, in the linear region the operation of the delay lock tracking loop is  
governed by equation 7.3.19: 
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Rearranging equation 7.3.19 to make dT
∧

 the subject of the formula, equation 
7.3.20 is obtained: 
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The numerator of the second term of equation 7.3.20 is determined by the DLL, 

and according to that error, dT
∧

, which is the estimate of the time offset dT , is 

determined.  Although dT  and dT
∧

 are not shown explicitly to be time varying 

they are [11].  In order to implement equation 7.3.20 digitally dT  and dT
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 must 

be represented as time variables.  Assuming that the DLL executes a cycle, that is, 
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seconds, equation 7.3.20 can be re-represented by equation 7.3.21: 
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Equation 7.3.21 cannot be implemented in practice since it requires the knowl-

edge of the time offset dT  in order to calculate the estimate dT
∧

 of that time offset 

in the same time instant.  Under the assumption that the time offset has been ac-
quired successfully to within half a chip period, as denoted by equation 7.3.1, 
every new subsequent value of the time offset estimate can then be calculated 
based on its previous estimate in the following manner. Assuming that at the mo-

ment of the tracking phase start-up da TT = , and substituting it into equation 

7.3.21, yields equation 7.3.22: 
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Provided that indeed at the tracking phase start-up da TT = , )( cd TT
∧

 takes 

the value of aT  since the numerator of the right hand side of equation 7.3.22 goes 

to zero (refer to Figure 7.6).  If, however, da TT ≠ , when it was assumed that 

da TT = , then )( cd TT
∧

 takes on the actual value of dT  at the start-up of the 

tracking phase, as the right hand side of equation 7.3.22 generates the difference 

among the acquired and the actual time offset: da TT − , so that equation 7.3.22 

takes the form of )()( daacd TTTTT −−=−
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, resulting in dcd TTT =
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With this thought in mind equation 7.3.22 can be rewritten as equation 7.3.23: 
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where the initial condition is set as: ad TT =
∧

)0( . 

Figures 7.7a and 7.7b demonstrate the operation of the tracking loop model de-
veloped at no noise and no interferences present.  The tracking loop was set to 

execute 50 cycles, with the incoming time offset dT  varied for the first 35 cycles 

and set to a constant value, equal to the one of the previous cycle, thereafter. The 
figures demonstrate the optimal performance of the tracking loop governed by the 
control law of equation 7.3.23.  In this particular case the pilot period has been set 

equal to cT⋅511  seconds with cT  represented by 8 time units.  Choosing the 

simulation parameters in this way allows one to observe the ability of the tracking 
loop to actively track the changes in the incoming time offset for the first 35 cy-
cles. Furthermore, when the time offset stabilises for the following 15 cycles, the 
tracking loop also stabilises its estimate at this particular value, as demonstrated in 
Figures 7.7a and 7.7b. 

In order for the tracking loop to remain operational and thus ensure the transfer 
of data between the transmitter and the receiver of Figure 7.1, the range of equa-
tion 7.3.24 must be satisfied at all times: 
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Equivalently, in terms of equation 7.3.23, the range of equation 7.3.25 must be 
satisfied at all times: 
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With the range of equation 7.3.24 (7.3.25) not satisfied the tracking circuit of  
Figure 7.1 will no longer be able to track the incoming time offset and the connec-
tion among the transmitter and the receiver will inevitably be lost.  In this case the 
time offset will need to be re-acquired by the initial synchronization unit, as out-
lined in section 7.2, before the successful data transfer can take place again. 
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7.3.2   Performance Evaluation of the System with AWGN and 
Interuser Interferences 

In this subsection, the performance of the system, highlighted in Figure 7.1, is 
examined under the influence of AWGN and interuser interferences during its 
tracking mode of operation.  The performance is evaluated for different numbers 
of chaotic users with bit error rate curves [66] for the specified range of the bit 

energy to noise power spectral density ratio ( ob NE / ).  The spreading factor of 

73 chips has been used to represent a single information bit transmitted.  Tracking 
is conducted over the synchronization period of the pilot signal which has been 
chosen to be 511 chips long, that is, seven times the duration of the information 
bit.  The general transmission structure of the signals is plotted in Figure 7.8. The 
code acquisition is required only at the beginning of the transmission, and when 
the system is no longer able to track. 

The empirical BER curves for the system of Figure 7.1 are presented in Figure 
7.9 for 1-5, 10, 15 and 20 chaotic users on top of the system’s PRBS pilot signal.  

The incoming time offset dT  has been uniformly varied within the boundaries of 

equation 7.3.24. 
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Fig. 7.8 General transmission structure of the signals 

 
Note that with the perfect synchronization assumed, the theoretical bit error rate 

curves of the system of [22] have been shown to be governed by equation 7.3.26 
[55]: 
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where, erfc denotes the complementary error function [55], and Ω  is defined as 
the variance of the chaotic signal squared divided by the square of the average 
power of the same chaotic signal, and is expressed by equation 7.3.27: 
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In addition to the empirical BER curves of the system of Figure 7.1, Figure 7.9 
also presents the perfect synchronization theoretical BER curves obtained by 
evaluating equation 7.3.26 for 1-5, 10, 15 and 20 chaotic users without the sys-
tem’s pilot signal. Note that these theoretical BER curves should be used as a 
guide only since equation 7.3.26 is somewhat inaccurate [55], especially at the 
low values of BER. 
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From Figure 7.9 it can be observed that without assuming perfect synchroniza-
tion the noise performance of the system introduced by Parlitz and Ergezinger [22] 

degrades by approximately 1-2 dB for the single user case.  For a given ob NE /  

the single user plus the pilot signal exhibit the best performance due to the lowest 
interference at the receiver which subsequently causes the tracking unit of Figure 
7.1 to generate least error in the time offset estimates. As the number of users in-
creases the interuser interference inevitably increases, causing further degradation 
in the performance of the tracking unit, what in turn further degrades the bit error 

rate.  With the decreasing levels of noise, that is with increasing ob NE / , the 

interuser interference dominates, causing the constant bit error rate characterised 
by the flattening of the BER curves of Figure 7.9. 
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Fig. 7.9 The empirical BER curves of the system of Figure 7.1 (marked curves), with dT  

varied within the boundaries of equation 7.3.24.  The corresponding theoretical curves with 
perfect synchronization assumed are shown by unmarked curves. 

 
By assuming that the highest acceptable level of BER equals 310−  [69,70], it 

can be observed from Figure 7.9 that the ob NE /  ratio for which the system per-

formance is satisfactory for the case of 1, 2, 3, 4, and 5 users is equal to approxi-
mately 8, 9, 9.5, 11 and 12 dB, respectively. In the case of 10, 15 and 20 users the 

BER curves flatten before reaching the BER level of 310− .  This is unacceptable 
in practice.  However, as seen from Figure 7.9, in the case of 10, 15 and 20 users, 
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even the perfect synchronization BER curves exceed the BER of 310− .  A possi-
ble method to improve the performance in this case would be to use the filters 
specially designed for the chaotic time series [71].  The clock synchronization 
between the transmitter and the receiver is assumed, as is in most cases when 
evaluating the performance of binary modulation techniques [67,12,63]. 

In Figure 7.10, the BER curves for dT  varied within and beyond the bounda-

ries of equation 7.3.24 are plotted. With the boundaries of equation 7.3.24 violated 
the tracking loop operates outside the linear region of Figure 7.6 and can no longer 

estimate the incoming time offset dT .  As seen from Figure 7.10 this results in the 

significant increase in the bit error rate for a given ob NE / .  In the case of Figure 

7.10 it has been assumed that the time offset is immediately reacquired so that the 
tracking loop can accurately execute the subsequent cycles, provided that equation 
7.3.24 is now satisfied. 
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Fig. 7.10 The empirical BER curves of the system of Figure 7.1 (marked curves), with dT  

varied within and beyond the boundaries of equation 7.3.24.  The corresponding theoretical 
curves with perfect synchronization assumed are shown by unmarked curves. 

7.3.3   Comparison and Discussion in AWGN Channel 

In order to evaluate and compare the performance of the system of Figure 7.1  
the BER curves for the binary phase shift keying (BPSK) and the CS based  
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communications technique of initial condition modulation (ICM) of chapter 6 
[63,72,71], have been produced in Figure 7.11 alongside the single user curves of 
Figures 7.9 and 7.10.  In this work, the ICM scheme [63] is of interest as it is 
based on a different form of synchronization strategy [3] used within chaotic 
communication systems. 
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Fig. 7.11 The BER curves:  (a) the solid lines are for the theoretical BPSK and chaotic DS-
CDMA system of [22] with the perfect synchronization assumed;  (b) the inverted triangles 

are for the system of Figure 7.1 with dT  varied within the boundaries of equation 7.3.24;  

(c) the asterisks are for the system of Figure 7.1 with dT  varied within and beyond the 

boundaries of equation 7.3.24;  (d) the solid squares are for the CS ICM based system of 
[63]. 

 
 
From Figure 7.11, it can be observed that the single user chaotic DS-CDMA 

system of Figure 7.1 outperforms the ICM single user communications scheme 
based on the principles of CS [63]. Therefore, the synchronization scheme pro-
posed and investigated here has been shown to be more robust to noise than the 
Pecora – Carroll (PC) CS based ICM communication scheme, which in turn has 
been shown in chapter 6 [63,72,71] to be one of the more robust PC CS communi-
cation schemes [63,72,71]. 
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7.3.4   Performance Evaluation of the System in a Rayleigh 
Fading Channel with AWGN and Interuser Interferences 

In this subsection, the performance of the system of Figure 7.1 is evaluated in a 
Rayleigh fading channel with AWGN and interuser interferences present [19]. 
This system, with Rayleigh fading incorporated into Figure 7.1, is shown in Figure 
7.12. 
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Fig. 7.12 DS-CDMA chaotic communication system with the synchronization unit in the 
Rayleigh fading channel 
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The empirical BER curves for the system of Figure 7.12 are shown in Figure 

7.13 for 1, 5, 10, 15 and 20 users. The Rayleigh fading envelope, )(trn , was gen-

erated for the velocity of the receiver relative to the transmitter of 55 km/h and the 
carrier frequency of 900 MHz [73]. For comparison, the theoretical BER curves 
for the Rayleigh fading channel with the perfect synchronization assumed [10] are 
also shown. It can be seen from Figure 7.13 that in the Rayleigh fading channel 

the system fails to satisfy the maximum allowable BER limit of 310−  for any 

number of users and any ob NE / .  Furthermore, it can be observed from Figures 

7.9 and 7.13 that the system performance in the Rayleigh fading channel degrades 
more significantly when the perfect synchronization is not assumed than when the 
perfect synchronization is not assumed without Rayleigh fading. Although the 

system satisfies the BER level of 310−  for 1-5 users in an AWGN channel it fails 
for all users in a fading channel. Thus, in comparison, the system in the Rayleigh 
fading channel is not practical for real world applications. In order to improve the 
performance in the fading environment techniques used to disperse bursts of error 
in time, such as block interleaving [10], could be employed. 
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Fig. 7.13 The empirical BER curves of the system of Figure 7.12 in a Rayleigh faded, 

AWGN channel (marked curves), with dT  varied within the boundaries of equation 7.3.24.  

The corresponding theoretical curves with perfect synchronization assumed are shown by 
unmarked curves.  
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7.4   Code Tracking with a Chaotic Pilot Signal 

In this section the code tracking with a chaotic pilot signal in place of the PRBS 
pilot signal is proposed. Figure 7.14 shows the CBDS-CDMA communication 
system similar to that of Figure 7.1, but with the chaotic pilot based tracking unit 
in place of the PRBS pilot based tracking unit.   

As in Figure 7.1, x(t) of Figure 7.14 denotes the chaotic spreading signals of 
amplitude A and spreading factor L, which are multiplied by the binary message  
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Fig. 7.14 DS-CDMA chaotic communication system with the chaotic pilot based synchro-
nization unit 
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signals m(t) and then summed up to produce the signal c(t) which is transmitted 
through the channel. The spreading factor L is defined as the number of chaotic 

points representing a single bit [63]. )(tx p  denotes the chaotic signal which acts 

as the periodic or non-periodic, as explained in section 7.4.1, pilot signal used for 
synchronization purposes.  The mutually orthogonal chaotic signals used within 
the CBDS-CDMA system of Figure 7.14, are produced by the logistic map of 
equation 7.1.1 [22,15].  

The fundamental difference among the proposed system of Figure 7.14 and the 
corresponding system of  Figure 7.1 [15,19] is that the system of Figure 7.14 im-
plements the chaotic pilot signal in place of the PRBS pilot signal. 

7.4.1   Theoretical Model of the System 

In this subsection the mathematical model of the chaotic pilot based code tracking 
loop is developed and its validity demonstrated by means of a simulation. Once 
the chaotic pilot based initial synchronization circuit of Figure 7.14, (as described 
in section 7.2 [15]), has established the correct time offset to within the pull-in 
region of the tracking circuit, the tracking circuit is able to take over the synchro-
nization process.  As in section 7.3, the code tracking loop with a pull-in region of 
half a chip length is considered. Therefore, to this end it is assumed that the search 
parameter Δ of the logistic chaotic map based initial synchronization unit of Fig-

ure 1 is equal to a ½. This ensures that the acquired time offset of Figure 7.14, aT , 

is accurate to within half a chip length of the exact time offset enabling the track-
ing circuit to correct the inaccuracy and maintain the correct time offset.  Thus, as 
for PRBS pilot case above, we redefine the incoming time offset η , of section 7.2 

[15] as dT , indicating that the acquisition phase has been finished and that the 

synchronization unit now has the approximate knowledge of the correct time off-
set to within half a chip length, as shown in equation 7.3.1.  

The tracking circuit examined here utilizes the logistic chaotic map pilot signal 
in place of the PRBS pilot signal of [15] to produce punctual codes for despread-
ing the received signal r(t). It includes the entire synchronization unit of Figure 
7.14 except for the initial synchronization unit. As in section 7.3, the loop filter of 
Figure 7.14 is essentially an averaging integrator, integrating over the chaotic pilot 

signal integration period cNT : 
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where the term δ  is defined as the normalized difference among the received 

signal time offset dT  and the tracking circuit time offset estimate dT
∧

, that is, 
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cdd TTT /)(
∧

−=δ . In equation 7.4.1, N denotes the number of chips in the 

integration period cNT . 

By keeping in mind that with no fading in the system, (for simplicity of analy-
sis), the received signal )(tr  is composed of the mixture of signals of different 

users, the pilot signal and the noise component )(tn : 
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it is then readily verifiable that equation 7.4.2, as in section 7.3, can be represented 
as equation 7.4.3 [15]: 
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where )(tne  denotes the AWGN component )(tn  and inter-user interferences 

[15]. In equation 7.4.3, ( )cx TC
p
δ  is defined to be the autocorrelation function 

of the chaotic pilot signal multiplied by the integration period of the tracking loop 
[15]. 

As for the PRBS pilot signal, the tracking unit produces punctual codes for de-
spreading the received signal by correlating the early and late replicas of the cha-
otic pilot signal by the received signal. It then subtracts the two and ensures that 
the resulting error signal )(te  is constantly forced to zero [15,11]. It is now 

shown how a punctual time offset dT
∧

, which matches the received signal time 

offset dT , is obtained at discrete time instances.  With a correct estimate of dT , 

the receiver is able to accurately despread the received signal. 
Due to the random like nature of chaotic and PRBS signals, spreading intro-

duces security into the system. However, the fundamental difference between a 
PRBS signal and a chaotic signal is that a PRBS signal is inherently periodic 
whereas a chaotic signal is non-periodic. Furthermore, whereas a PRBS signal has 

only two values, pA±  denoting a binary one and a zero, a chaotic signal theo-

retically may assume an infinite number of amplitudes in a given dynamic range. 
In case of the logistic chaotic map, used as part of the CBDS-CDMA system pro-
posed here, the dynamic range is 1± . In any given period of the maximum length 
PRBS the number of ones always exceeds the number of zeros by one. Because of 
this inherent property of PRBS signals it is possible to theoretically determine 
upper and lower bounds of the auto-correlation function of a maximum length 
PRBS signal, as shown in Figure 7.6 [15]. However, due to the non-periodic  
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nature of chaotic signals and their constantly changing amplitude, upper and lower 
limits of the auto-correlation function cannot be determined theoretically and thus 
need to be determined empirically for every new chaotic signal generated, as ex-
plained below. 

Figure 7.15 shows the plots of ⎟
⎠
⎞

⎜
⎝
⎛ − cx TC

p
)

2

1
(δ  and ⎟

⎠
⎞

⎜
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⎛ + cx TC

p
)

2

1
(δ  

functions of equation 7.4.3, and their difference, as well as the plot of 

( )cx TC
p
δ . It is important to note that plots of Figure 7.15 are valid for non-

periodic chaotic pilot signals only when the integration period of the tracking unit 
[15] is sufficiently large so that )0(/)()0(/)(

pppp xcxxcx CTCCTC −≈ , that is, 

so that approximate symmetry of the correlation plots exists about the y axis. Fur-
thermore, for any periodic pilot signal, that is, any pilot signal (chaotic or other) 
that reuses the same portion of a signal for every new pilot period, as in section 
7.3 [15,19]: ):0()0:( ∞=−∞

pp xx CC . Figure 7.6 shows similar plots to those 

of Figure 7.15 for a maximum length PRBS pilot signal. 
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Fig. 7.15 Plot of the early, late, and on-time, chaotic correlation functions 
 

 
By comparing Figure 7.6 of section 7.3 [15] to Figure 7.15 above, the main dif-

ference that should be observed is that for every maximum length periodic PRBS 

signal the terms )0(
pxC  and )( cx TC

p
 are constant and equal to cpTNA2  and 
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cpTA2− , respectively, while they vary for chaotic signals with different initial 

conditions. The following mathematical analysis shows the effect of this on the 
operation of the tracking loop. For a given tracking period of a chaotic pilot signal, 
the gradient in the linear region of Figure 7.15 is expressed by equation 7.4.4: 
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Therefore in the linear region, operation of the tracking loop is governed by equa-
tion 7.4.5: 
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Rearranging equation 7.4.5 to make dT
∧

 the subject of the formula, equation 7.4.6 
is obtained: 
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Assuming that the tracking circuit executes a cycle, that is, calculates new values 

of ⎟
⎠
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 every cT  

seconds [15], equation 7.4.6 can be re-represented by equation 7.4.7: 
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Equation 7.4.7 cannot be implemented in practice since it requires the knowl-

edge of the time offset dT  in order to calculate the estimate dT
∧

 of that time offset 

in the same time instant [15]. Equation 7.4.7 thus needs to be rewritten in a differ-
ent form. The procedure of section 7.3 [15] used to rewrite a similar PRBS pilot 
signals equation in a different form is identical to that for chaotic pilot signals 
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proposed here and is repeated below for convenience. Under the assumption that 
the time offset has been acquired successfully to within half a chip period, as  
denoted by equation 7.3.1 [15], every new subsequent value of the time offset es-
timate can then be calculated based on its previous estimate in the following man-

ner [15]. Assuming that at the moment of the tracking phase start-up da TT = , 

and substituting it into equation 7.4.7, yields equation 7.4.8: 
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Provided that indeed at the tracking phase start-up da TT = , )( cd TT
∧

 takes the 

value of aT  since the numerator of the right hand side of equation 7.4.8 goes to 

zero (refer to Figure 7.15).  If however da TT ≠ , when it was assumed that 

da TT = , then )( cd TT
∧

 takes on the actual value of dT  at the start-up of the 

tracking phase, as the right hand side of equation 7.4.8 generates the difference 

among the acquired and the actual time offset: da TT − , so that equation 7.4.8 

takes the form of )()( daacd TTTTT −−=−
∧

, resulting in dcd TTT =
∧

)( . 

 
With this thought in mind equation 7.4.8 can be rewritten as equation 7.4.9: 
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where the initial condition is set as: ad TT =
∧

)0( . 

While for a non-periodic chaotic pilot signal the denominator terms 0C  and 

3C  of equation 7.4.9 vary and need to be calculated for every tracking period, in 

case of a periodic chaotic pilot signal they are constant and need to be calculated 
only once. Therefore, for a periodic chaotic pilot signal equation 7.4.9 can be re-
written as equation 7.4.10: 
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Figures 7.16a and 7.16b demonstrate the optimal performance of the periodic cha-
otic pilot based tracking loop model governed by the control law of equation 
7.4.10 when no noise, no fading and no interferences are present. Furthermore, a 
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similar set of Figures demonstrating successful synchronization is also readily 
obtainable by executing the control law of equation 7.4.9 for a non-periodic cha-
otic pilot signal. As in section 7.3 [15], the tracking loop was set to execute 50 

cycles, with the incoming time offset dT  varied for the first 35 cycles and set to a 

constant value, equal to the one of the previous cycle, thereafter. Also as in section 

7.3 [15,19], the tracking loop integration period has been set equal to cT⋅511  

seconds with cT  represented by 8 time units. Choosing the simulation parameters 

in this way allows one to observe the ability of the tracking loop to actively track 
the changes in the incoming time offset for the first 35 cycles and then also stabi-
lize at the constant incoming time offset value for the next 15 cycles. 

In order for the tracking loop to remain operational and thus ensure the transfer 

of data between the transmitter and the receiver of Figure 7.14, the range of equa-

tion 7.4.11 must be satisfied at all times: 
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Equivalently, in terms of equations 7.4.9 and 7.4.10, the range of equation 7.4.12 
must be satisfied at all times: 
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With the range of equations 7.4.11 and 7.4.12 not satisfied, the tracking circuit 
will no longer be able to track the incoming time offset and the connection among 
the transmitter and the receiver will inevitably be lost [15].  In this case the time 
offset will need to be re-acquired by the chaotic pilot based initial synchronization 
unit of section 7.2 [15] before successful data transfer can take place again. 
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7.4.2   BER System Performance within AWGN and Rayleigh 
Fading Channels 

In this section, the performance of the chaotic pilot based system of Figure 7.14 is 
examined under the influence of AWGN, inter-user interferences and Rayleigh 
multi-path fading during its tracking mode of operation. The performance is 
evaluated for 1-5, 10, 15 and 20 chaotic users in the system with bit error rate 
curves [66] for the specified range of the bit energy to noise power spectral den-

sity ratio ( ob NE / ). As in section 7.2 [15,19], the spreading factor of 73 chips 

has been used to represent a single information bit transmitted with the tracking 
loop integration period of 511 chips, that is, seven times the duration of the infor-
mation bit. Also, as in section 7.3, the Clarke and Gans flat fading model [73-75] 
(described in chapter 2) has been used to simulate a multipath Rayleigh fading 
channel for a velocity of the receiver relative to the transmitter of 55 km/h and a 
carrier frequency of 900 MHz [73]. 

The empirical BER curves for the system of Figure 7.14 without Rayleigh 
multi-path fading are presented in Figure 7.17 for 1-5, 10, 15 and 20 chaotic users 
on top of the system’s periodic chaotic pilot signal whose tracking operation is 
governed by equation 7.4.10. Similar empirical BER curves for the non-periodic 
chaotic pilot signal, whose tracking operation is governed by equation 7.4.9, are  
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Fig. 7.17 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic 
pilot signal (marked curves) is used. The corresponding theoretical curves with perfect 
synchronization assumed are shown by unmarked curves. 
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Fig. 7.18 The empirical BER curves of the system of Figure 7.14 when the non-periodic 
chaotic pilot signal (marked curves) is used. The corresponding theoretical curves with 
perfect synchronization assumed are shown by unmarked curves. 

 
presented in Figure 7.18. In both cases, the incoming time offset dT  has been uni-

formly varied within the boundaries of equation 7.4.11. Figures 7.17 and 7.18 also 
show the corresponding theoretical bit error rate curves without the synchronizing 
pilot signal, that is, when the perfect synchronization is assumed [55]. 

Figures 7.17 and 7.18 show that the CBDS-CDMA systems utilising both peri-
odic and non-periodic chaotic pilot signals, respectively, experience degradation 
in performance as compared to the case when perfect synchronization is assumed. 
It must also be noted that the theoretical BER curves of Figures 7.17 and 7.18 
should be used as a guide only since they are somewhat inaccurate [55], especially 
at the low values of BER. 

Furthermore, it can be observed from Figures 7.17 and 7.18 that for a given 

ob NE /  the single user plus the periodic chaotic pilot signal exhibit the best per-

formance due to the lowest interference at the receiver which subsequently causes 
the tracking unit of Figure 7.14 to generate least error in the time offset estimates. 
As the number of users increases the inter-user interference inevitably increases, 
causing further degradation in the performance of the tracking unit, what in turn 
further degrades the bit error rate.  With the decreasing levels of noise, that is with 

increasing ob NE / , the interuser interference dominates, causing the constant bit 

error rate characterised by the flattening of the BER curves of Figures 7.17 and 
7.18. 
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In Figure 7.19, the BER curves of Figures 7.17 and 7.18 are plotted on the same 
set of axes for easy comparison. Figure 7.19 shows that there is no noticeable dif-
ference in BER performance among the periodic and non-periodic chaotic pilot 

based CBDS-CDMA systems for any number of users and any ob NE / . By as-

suming that the highest acceptable level of BER equals 310−  [69,70], Figures 

7.17, 7.18 and 7.19 show that the ob NE /  ratio for which the systems’ perform-

ance is satisfactory for the case of 1, 2, 3, 4, and 5 users is equal to approximately 
8, 9, 9.5, 11 and 12 dB, respectively. In the case of 10, 15 and 20 users the BER 

curves flatten before reaching the BER level of 310− . Identical behaviour, for the 

BER level of 310−  and above, has also been observed in section 7.3 [15] for the 
CBDS-CDMA system utilizing the periodic PRBS pilot signal. The flattening of 

BER curves above the BER level of 310−  in the case of 10, 15 and 20 users is 
unacceptable in practice. However, as seen from Figures 7.17 and 7.18, even the 

perfect synchronization BER curves exceed the BER of 310−  for 10, 15 and 20 
users. A possible method to improve the performance in this case would be to use 
filters specially designed for the chaotic time series [71]. As in section 7.2, the 
clock synchronization between the transmitter and the receiver is assumed, as is in 
most cases when evaluating the performance of binary modulation techniques 
[67,12,63]. 
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Fig. 7.19 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic 
pilot signal (solid marked curves) is used, and when the non-periodic chaotic pilot signal 
(dashed marked curves) is used. 
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As stated above, the periodic and non-periodic chaotic pilot based CBDS-
CDMA systems proposed here exhibit identical behaviour as the periodic PRBS 
pilot signal based CBDS-CDMA system of section 7.2 [15] at the BER level of 

310−  and above. This behaviour is confirmed in Figures 7.20 and 7.21. However, 
Figures 7.20 and 7.21 also reveal that both periodic and non-periodic chaotic pilot 
based CBDS-CDMA systems exhibit marginally better performance for a single 
user plus a chaotic pilot signal than the corresponding PRBS pilot based CBDS-
CDMA system at the BER level of 410−  and below. In particular, at the BER level 

of 610− , this improvement in performance is approximately equal to 0.175 dB. In 
other words, for a single user in the system, it requires approximately 0.175 dB 
more energy per bit to achieve the BER of 610−  using the PRBS pilot based 
CBDS-CDMA system than the chaotic pilot based CBDS-CDMA systems. 
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Fig. 7.20 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic 
pilot signal (solid marked curves) is used, and when the periodic PRBS pilot signal (dashed 
marked curves) of section 7.3 [15,19] is used. 

 

 
The BER analysis results for the system of Figure 7.14 in the AWGN and 

Rayleigh fading channel are shown in Figures 7.22-7.24. As above, the incoming 

time offset dT  has been uniformly varied within the boundaries of equation 

7.4.11. Figure 7.22 shows the empirical BER curves for 1, 5, 10, 15 and 20 users 
plus the periodic chaotic pilot signal alongside the corresponding theoretical BER 
curves with perfect synchronization assumed [19].  It can be seen from Figure 
7.22 that in the Rayleigh fading channel the system fails to satisfy the maximum  
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Fig. 7.21 The empirical BER curves of the system of Figure 7.14 when the non-periodic 
chaotic pilot signal (solid marked curves) is used, and when the periodic PRBS pilot signal 
(dashed marked curves) of section 7.3 [15,19] is used. 
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Fig. 7.22 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded, 
AWGN channel when the periodic chaotic pilot signal (marked curves) is used. The corre-
sponding theoretical curves with perfect synchronization assumed are shown by unmarked 
curves.  
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allowable BER limit of 310−  for any number of users and any ob NE / . In  

Figure 7.23, the corresponding empirical BER curves for the non-periodic chaotic 
pilot based CBDS-CDMA system are plotted on the same set of axes as the peri-
odic chaotic pilot based CBDS-CDMA system BER curves. It can be observed 
from Figure 7.23 that the non-periodic chaotic pilot based CBDS-CDMA system 
exhibits identical behaviour to that of the periodic chaotic pilot based CBDS-
CDMA system in the Rayleigh fading channel. Therefore, both chaotic pilot based 
systems fail to satisfy the maximum allowable BER limit of 310−  for any number 

of users and any ob NE /  in the Rayleigh fading channel. Finally, Figure 7.24 

shows the corresponding empirical BER curves for the PRBS pilot based CBDS-
CDMA system plotted on the same set of axes as the periodic chaotic pilot based 
CBDS-CDMA system BER curves. It can therefore be observed from Figures 7.23 
and 7.24 that both proposed chaotic pilot based CBDS-CDMA systems also match 
the BER performance of the PRBS pilot based CBDS-CDMA system [19]. 
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Fig. 7.23 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded, 
AWGN channel when the periodic chaotic pilot signal (solid marked curves) is used, and 
when the non-periodic chaotic pilot signal (dashed marked curves) is used. 

 
In addition, it can be observed from Figures 7.17-7.24 that the systems’ per-

formance in the Rayleigh fading channel degrades more significantly when the 
perfect synchronization is not assumed than when the perfect synchronization is 
not assumed without Rayleigh fading. Although both chaotic pilot based  
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Fig. 7.24 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded, 
AWGN channel when the periodic chaotic pilot signal (solid marked curves) is used, and 
when the periodic PRBS pilot signal (dashed marked curves) of section 7.3 [15,19] is used. 

 
CBDS-CDMA systems satisfy the BER level of 310−  for 1–5 users in an AWGN 
channel they both fail for all users in the fading channel. Thus, in comparison, the 
system in the Rayleigh fading channel is not practical for real-world application. 
To improve the performance in the fading environment, techniques used to dis-
perse bursts of error in time, such as block interleaving [10], could be employed. 
Furthermore, specialized receiver architectures used to combat fading, such as the 
rake receiver [10], could also be employed. 

7.5   Conclusion 

In this chapter, chaotic carriers have been embedded within a practical multi-user 
DS-CDMA chaotic communication system and its performance evaluated in the 
presence of noise and interuser interferences. The mutually orthogonal properties 
between the chaotic time series produced by the logistic map and the PRBS pilot 
signal have enabled the traditional ideas of the multi-user CDMA sequence syn-
chronization process to be utilized within the multi-user chaos based DS-CDMA 
(CBDS-CDMA) system. Furthermore, the system has been taken one step further 
by introducing a chaotic pilot signal in place of the PRBS pilot signal, thus mak-
ing the CBDS-CDMA system fully chaotic. In this way, the security of CBDS-
CDMA systems is significantly improved by eliminating the security threat posed 
by an inherently different PRBS pilot signal used in the otherwise chaotic  
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CBDS-CDMA systems. Both phases of the sequence synchronization process, 
namely the code acquisition and the code tracking, have been proposed and  
investigated. 

The code acquisition phase has been evaluated in terms of the probability of de-
tection and the probability of false alarm at the chip energy to noise power spectral 
density ratio of -15 dB for the three different pilot signals and varying number of 
chaotic users in the system. The theoretical upper bound on the probability of de-
tection has been derived and compared to the empirically determined results with 
the chaotic interferences present.  The subsequent empirical curves associated 
with the increasing number of users in the system have demonstrated the expected 
degradation in the system performance with the increasing level of interference. In 
addition, the expected increase of the probability of detection, with the increase in 
the integration time, has been demonstrated. Furthermore, it has been shown that 
the best code acquisition performance is achieved when the PRBS is used as the 
pilot signal as compared to the logistic and Bernoulli chaotic maps. 

The mathematical models for the investigation of the code tracking loops have 
been presented and used to derive the control laws used for the generation of the 
time offset estimates for PRBS and, periodic and non-periodic chaotic pilot sig-
nals. Their validity has then been demonstrated by means of a simulation.  The 
performance of the proposed code tracking circuits has been primarily evaluated 
in terms of the bit error rate for varying levels of the chaotic interuser interfer-
ences, that is, for different numbers of chaotic users in the system. It has been 
shown that the systems are reasonably robust to noise as compared to the perform-
ance under the assumption of perfect synchronization. The overall BER perform-
ance degradation in an AWGN channel for a multi-user system is characterised by 
the flattening of the BER curves at low levels of noise due to the prevailing effects 
of the interuser interferences.  

Furthermore, it has been demonstrated that the CBDS-CDMA communication 
systems implementing the proposed sequence synchronization schemes, with a 
single user in the system, in general exhibit better noise performance in terms of 
the bit error rate than the Pecora – Carroll CS based communication techniques. It 
was also shown that although the systems are robust to the influence of AWGN 
and interuser interferences, they all fail to satisfy the maximum allowable bit error 

rate limit of 310−  in the Rayleigh fading channel, exbhibiting identical BER  
performance. 

Finally, it has been shown that in terms of BER, in the AWGN channel only, 
the proposed chaotic pilot based CBDS-CDMA systems outperform the PRBS 

pilot based system for a single user in the system at the BER level of 410−  and 
below. In particular, an improvement of 0.175 dB has been demonstrated at the 

BER level of 610− . Therefore, in addition to the added security, it has been dem-
onstrated that by introducing the chaotic pilot based tracking unit in place of the 
corresponding PRBS unit makes the CBDS-CDMA system more robust. The BER 
performance of all systems has been shown to be identical for more than one user 
in the system. 
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Chapter 8 
Chaos Based Multi-user TDM Communication 
System 

This chapter proposes a chaos based multi-user time division multiplexing (TDM) 
communication system. Its performance is compared to the performance of chaos 
based direct sequence code division multiple access (DS-CDMA) system in the 
noisy and Rayleigh fading channels. Initially, the benchmark performance of the 
systems is investigated in terms of the bit error rate under the assumption of 
perfect synchronization. The chaotic spreading signals, used to encrypt the binary 
messages, are generated using the logistic map. The degradation in performance of 
the systems in the Rayleigh fading channel as compared to the noisy channel is 
demonstrated. Furthermore, it is shown that in both noisy and Rayleigh fading 
channels the chaos based multi-user TDM system outperforms the chaos based 
DS-CDMA system for a larger number of users in the system, while the chaos 
based DS-CDMA system yields better performance for low number of users in the 
system. The sequence synchronization unit of chapter 7 is then adapted for the use 
within the proposed chaos based multi-user TDM communication system and its 
performance investigated without assuming perfect sequence synchronization. 
Again, it is shown that the chaos based TDM system outperforms the chaos based 
DS-CDMA system in the AWGN channel for a larger number of users and vice-
versa for low number of users in the system. As for the chaos based DS-CDMA 
system, it is shown that the proposed chaos based TDM system fails in the 
Rayleigh fading channel when perfect sequence synchronization is not assumed. 
To obtain the full characterization of the system, the sequence synchronization is 
also assumed with the PRBS pilot signal present on top of each signal. The effect 
of the pilot signal on the performance of the system is thus demonstrated in 
AWGN and Rayleigh fading channels. Finally, a generalized TDM chaotic 
communication system, which does not assume perfect synchronization, is 
proposed and investigated when there is more than one DS-CDMA user per TDM 
branch in the AWGN channel. In this way, it is shown that allocating more than 
one DS-CDMA user per TDM branch yields a better BER performance while at 
the same time increasing the total number of users. 

As shown in chapter 6, in many cases when studying chaotic communication 
systems only single user systems are considered [1-6]. Alternatively, multi-user 
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chaotic communication techniques, based on the DS-CDMA principle, have been 
studied in [7-14], demonstrating their robust nature to noise. However, these 
systems suffer from the inevitable interuser interference which causes the 
degradation in the bit error rate (BER) performance for a large number of users in 
the system.  

In contrast to chaos based DS-CDMA, chaos based time division multiplexing 
(TDM) systems do not suffer from interuser interference, when one assumes 
perfect synchronization between the transmitter and the receiver. Chaos based 
TDM systems have been investigated in [15-21]. The principles of TDM from a 
viewpoint of the chaos based spread spectrum communication systems have been 
discussed in [15]. The synchronization among the multiplexing and de-
multiplexing switches of the transmitter and the receiver has been considered and 
the method of achieving synchronization proposed [15]. In this method, the high 
frequency signal for rotating the switch is extracted by applying the received 
chaotic sequence to high pass or bandpass filters. Based on this method, the multi-
user chaos based TDM system was proposed in [16,17]. The system was 
investigated for the two user case using the Pecora-Carroll (PC) self synchronizing 
properties of the Chua master-slave systems. In [19,20], a chaotic communication 
scheme based on the principles of chaotic masking was investigated and the 
possibility of constructing a time division multiple access (TDMA) secure 
communication system based on this scheme was suggested. 

In this chapter, a chaos based TDM technique is proposed and used to transmit 
the information of multiple users across the same channel [14]. The work 
presented here is in contrast to [15-21], where the PC synchronization principle is 
used to encode and decode information. Instead, here the information is encoded 
and decoded using a correlator transceiver as used in DS-CDMA systems. 
Synchronization among the spreading sequences between the transmitter and the 
receiver is initially assumed and the benchmark performance of the system is 
obtained in terms of the BER curves. It is demonstrated in terms of BER that the 
chaos based TDM system proposed outperforms the chaos based DS-CDMA 
system [7,12] for a large number of users in the system in both additive white 
Gaussian noise (AWGN) and Rayleigh fading channels. Following this, the 
proposed chaos based TDM system is investigated without the assumption of 
perfect sequence synchronization in AWGN and Rayleigh fading channels. Again, 
it is shown that in terms of BER it outperforms the chaos based DS-CDMA 
system for a large number of users in the system whilst it is outperformed for low 
number of users in the system. It is also shown that both chaos based TDM and 
chaos based DS-CDMA systems are insufficiently robust in the Rayleigh fading 
channel when perfect sequence synchronization is not assumed. Finally, a 
generalized TDM communication system with more than one DS-CDMA user per 
TDM branch is proposed and evaluated in the AWGN channel. In this way, the 
bandwidth efficiency of a DS-CDMA system is combined with the interuser  
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interference immunity of a TDM system, to allow for an increased number of 
users in the system while improving the BER performance. 

Section 8.1, proposes and presents a chaos based multi-user TDM system under 
the assumption of perfect sequence synchronization. The principles of operation of 
the system are explained and its performance evaluated in the AWGN and 
Rayleigh fading channels. The performance of the system is then compared to that 
of the DS-CDMA system, demonstrating the superior performance of the TDM 
system for a large number of users in the system. Section 8.2, evaluates the 
performance of the TDM system of Section 8.1 without assuming perfect 
sequence synchronization. Its performance superiority over the corresponding DS-
CDMA system is again demonstrated for a large number of users in the system. 
Finally, a generalized chaos based TDM system is proposed and investigated in 
the AWGN channel in Section 8.3. It is shown that its bandwidth efficiency and 
interuser interference immunity, allow for an increased number of users in the 
system, while improving the BER performance. 

8.1   Chaos Based TDM Communication System with Perfect 
Sequence Synchronization Assumed 

8.1   Chaos Based TDM Communication Syste m  

In this section, the chaos based TDM communication system is proposed and 
evaluated in terms of BER in the presence of AWGN, interuser interferences and 
Rayleigh fading. Its performance is evaluated under the assumption of perfect 
synchronization within the system. 

8.1.1   Chaos Based TDM Communication System 

The proposed chaos based TDM communication system with the correlator 
transceiver is shown in Figure 8.1 [14]. 
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Fig. 8.1 The chaos based TDM communication system 
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In Figure 8.1, x(t) denotes the chaotic spreading signals which are multiplied by 
the binary message signals m(t). The products p(t) are then multiplexed to produce 
the signal c(t) which is transmitted through the channel. As in chapter 7, in order 
for the spreading waveform generator at the receiver to produce punctual 
despreading codes the initial conditions of the spreading codes of each of the M 
users at the transmitter must be available to it.  Provided that the chaotic generator 
at the receiver is identical to that of the transmitter, the initial conditions provide 
sufficient information to readily regenerate chaotic sequences at the receiver. The 
received signal r(t) is then de-multiplexed and correlated with the punctual 
despreading codes.  Provided that the power of the noise in the system is low 
compared to the power of the signal, the correlation value produced at the output 
of each correlator is positive if the bit is 1, denoted by m(t) = 1, is transmitted and 
negative if the bit is 0, denoted by m(t) = -1, is transmitted [7].  As in chapter 7, 
the chaotic spreading signals have been generated using the logistic map time 
series of equation 2.1.5, repeated below for convenience as equation 8.1.1 [7]: 

2
1 21 nn XX −=+                                           (8.1.1) 

The logistic map time series is shown in phase-space [22] in Figure 8.1.  
The multiplexing, or interleaving, operation at the transmitter side of Figure 8.1 

can be represented by equation 8.1.2: 
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In equation 8.1.3 )(tδ  is the impulse function and L is the spreading factor, that 

is, the number of chaotic points representing a single bit [6]. 
The received signal r(t) is represented by equation 8.1.4: 
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The individual, de-multiplexed, signals of each of the M users can then be 
represented by equation 8.1.6: 

∑
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The received message is recovered by first despreading and then correlating the 
incoming de-multiplexed received signals by the basis function copy at the 
receiver, as described by equation 8.1.7: 
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where [ ]hT  is the signum function which denotes the thresholding operation and 

assigns either a -1 or a 1 depending on whether the value in the brackets is 
negative or positive, respectively [14,23]. If the value in the brackets is equal to 
zero, the receiver makes a random guess in favour of -1 or 1 [24]. 

Since the chaotic spreading sequences produced by the logistic map for 
different initial conditions are highly orthogonal to each other, demonstrated by 
near zero cross correlation and high autocorrelation in Figures 2.14a and 2.14b, 
equations 8.1.8a and 8.1.8b hold: 
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Provided that the power of noise in the system is comparatively low to the power 
of the signal causes the noise affected term of equation 8.1.7 to be approximately 

equal to zero, that is: 0)()(
)1(

≈∫ −

c

c

kLT

LTk iii dttxAtn , so that equation 8.1.7 takes 

on the form of equations 8.1.9a and 8.1.9b: 
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The bit error rate numerical simulation results of the system of Figure 8.1 are 
presented for 1-5, 10, 15 and 20 users in Figure 8.2 in the additive white Gaussian 
noise (AWGN) channel. As in the evaluation of most binary modulation 
techniques, clock synchronization between the transmitter and the receiver is 
assumed [25,6]. Also, in order to evaluate the benchmark performance of the 
system, synchronization among the multiplexing and de-multiplexing switches, as 
well as the sequence synchronization among the spreading and despreading 
sequences at the transmitter and the receiver are assumed. 
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Fig. 8.2 The empirical BER curves of the chaos based TDM system of Figure 8.1 for 1-5, 
10, 15 and 20 users 

By assuming that the highest acceptable level of BER equals 310−  [26,27], it 
can be observed from Figure 8.2 that the bit energy to noise power spectral density 

ratio, ob NE / , for which the system performance is satisfactory for the case of 1, 

2, 3, 4, 5, 10, 15 and 20 users is equal to approximately 7, 10, 12, 13, 14, 17, 18.5 

and 20 dB, respectively. In mobile communications the BER level of 310−  is 
often used as the target BER [26,27]. 

8.1.2   Performance Comparison of the Chaos Based TDM to the 
Chaos Based DS-CDMA System in an AWGN Channel 

The chaos based DS-CDMA communication system of [7] with perfect 
synchronization assumed is shown in Figure 2.15 of chapter 2 [14]. As for the 
chaos based TDM system of Figure 8.1, the logistic map chaotic signals have been 
used within the chaos based DS-CDMA system of Figure 2.15 for spreading and 
despreading. 

The bit error rate numerical simulation results of the chaos based TDM system 
of Figure 8.1, are compared to those of the chaos based DS-CDMA system of 
Figure 2.15, for 1-5, 10, 15 and 20 users in Figure 8.3 in the AWGN channel. 

It can be observed from Figure 8.3 that the ob NE /  ratio for which the system 

performance is satisfactory for the case of 1, 2, 3, 4, and 5 users is equal to 
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approximately 7, 7.5, 8, 9 and 10 dB, respectively. In the case of 10, 15 and 20 
users the BER curves flatten, due to the prevailing interuser interferences, before 

reaching the BER level of 310− .  This is unacceptable in practice [26,27].  In 
contrast to this, the corresponding BER curves of the chaos based TDM system do 
not flatten as can be observed from Figure 8.3. Therefore, for a larger number of 
users, the chaos based TDM system outperforms the chaos based DS-CDMA 
system. However, for the low number of users, it can be observed from Figure 8.3 
that the chaos based DS-CDMA system outperforms the chaos based TDM system 

at the BER level of 310− . 
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Fig. 8.3 The empirical BER curves of the chaos based DS-CDMA system of Figure 2.15 
for 1-5, 10, 15 and 20 users (marked curves), alongside the corresponding empirical BER 
curves of the chaos based TDM system of Figure 8.1 (unmarked curves). 

One of the main characteristics of the DS-CDMA systems is that they are 
bandwidth efficient and that they offer increased security of transmission [7,24]. 
However, as seen from Figure 8.3, they suffer from interuser interference which 
gets more significant for the large number of users. On the other hand, a TDM 
system does not in general suffer from the interuser interferences, (assuming 
perfect synchronization), due to the fact that it assigns different time slots to 
different users [28,29]. However, this characteristic of TDM systems also makes 
them inefficient of bandwidth, as with each new user introduced into the system 
the bandwidth inevitably increases. This is because the scheme must squeeze M 
samples derived from M independent message sources into a time slot equal to one 
sampling interval [24]. The purpose of introducing the chaos based TDM system 
is to eliminate the interuser interference, at the expense of the increased 
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bandwidth, while still maintaining the security of transmission. Due to the 
increase in bandwidth, for an increased number of users in the TDM system, the 
BER performance degrades. The BER performance of a multi-user TDM system 
can be improved to equal that of a single-user TDM BER performance by 
increasing the power of each TDM user. However, in the case of the TDM system 
proposed here the power has been kept constant. The reason for this somewhat 
unconventional approach is to allow one to directly compare the TDM BER 
performance to that of the chaos based DS-CDMA system. To this effect, in the 

case of the multi-user TDM system proposed, bE  denotes the bit power in the 

BER curves presented. It should be noted, however, that in a real world TDM 
system the power would be increased to adjust all the multi-user BER curves to 
the BER curves of the single-user TDM system. 

Due to their security of transmission, the chaos based TDM and DS-CDMA 
systems of subsections 8.1.1 and 2.3.2, respectively, may find applicability in the 
areas such as mobile military communications [14]. 
 

8.1.3   Performance of the Chaos Based TDM System in a 
Rayleigh Fading Channel 

To determine the impact of flat fading on the received signal, the transmitted 

signal of Figure 8.1 is multiplied by a fading envelope )(trn . The chaos based 

TDM system in the Rayleigh fading channel is presented in Figure 8.4 [14]. 
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Fig. 8.4  The chaos based TDM communication system in the Rayleigh fading channel 

The bit error rate numerical simulation results of the chaos based TDM system 
of Figure 8.4 for 1-5, 10, 15 and 20 users in the Rayleigh fading channel are 
shown in Figure 8.5. For comparison, the corresponding curves of the chaos based 
TDM system in the AWGN channel only are also presented. As in chapter 7, the 

Rayleigh fading envelope, )(trn , was generated for the velocity of the receiver 

relative to the transmitter of 55 km/h and the carrier frequency of 900 MHz 

[30,31] with W1=rP . 
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Fig. 8.5 The empirical BER curves of the chaos based TDM system of Figure 8.4 for 1-5, 
10, 15 and 20 users (marked curves), alongside the corresponding empirical BER curves of 
the chaos based TDM system of Figure 8.1 (unmarked curves). 

It can be observed in Figure 8.5, that the ob NE /  for which the system 

performance is satisfactory for the case of 1, 2, 3, 4, 5, 10, 15 and 20 users is equal 
to approximately 24, 27, 29, 30, 31, 34, 36 and 37 dB, respectively. By comparing 
the BER curves of the systems a significant degradation in performance can be 
observed from Figure 8.5 when the Rayleigh fading is present in the channel. 

8.1.4   Performance Comparison of the Chaos Based TDM to the 
Chaos Based DS-CDMA System in a Rayleigh Fading 
Channel 

The chaos based DS-CDMA system in the Rayleigh fading channel with perfect 
synchronization assumed is presented in Figure 8.6 [14]. 

The bit error rate numerical simulation results of the system of Figure 8.6 are 
presented for 1, 5, 10, 15 and 20 users in Figure 8.7 in the Rayleigh fading 

channel. Again, the Rayleigh fading envelope, )(trn , was generated for the 

velocity of the receiver relative to the transmitter of 55 km/h and the carrier 

frequency of 900 MHz [30,31] with W1=rP . 
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Fig. 8.6 The chaos based DS-CDMA communication system in the Rayleigh fading 
channel 
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Fig. 8.7. The empirical BER curves of the chaos based DS-CDMA system of Figure 8.6 for 
1, 5, 10, 15 and 20 users (marked curves), alongside the corresponding empirical BER 
curves of the chaos based TDM system of Figure 8.4 (unmarked curves). 

It can be observed from Figure 8.7 that the ob NE /  ratio for which the system 

performance is satisfactory for the case of 1-5 users is equal to approximately 24-
25 dB. In the case of 10, 15 and 20 users the BER curves flatten before reaching 

the BER level of 310− . This is unacceptable in practice [26,27].  In contrast to  
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this, the corresponding BER curves of the chaos based TDM system do not flatten 
as can be observed from Figure 8.7. Therefore, for a larger number of users,  
the chaos based TDM system outperforms the chaos based DS-CDMA system in 
the Rayleigh fading channel from the respect of the BER curves. However, for the 
case of 1-5 users, it can be observed from Figure 8.7 that in the Rayleigh fading 
channel the chaos based DS-CDMA system outperforms the chaos based TDM 

system at the BER level of 310− . 

8.2   Chaos Based TDM Communication System without 
Assuming Perfect Sequence Synchronization 

8.2  Chaos Based TDM Communication Syste m  
 

In this section, the sequence synchronization unit of chapter 7 is incorporated into 
the chaos based TDM system. The performance of the chaos based TDM 
communication system is thus evaluated without assuming perfect sequence 
synchronization. As in the previous sections the performance is evaluated in terms 
of BER in the presence of AWGN, interuser interferences and Rayleigh fading. 

8.2.1   Chaos Based TDM Communication System with the 
Sequence Synchronization Unit 

The chaos based TDM communication system of subsection 8.1.1 with the 
sequence synchronization unit of chapter 7 incorporated is proposed in Figure 8.8. 
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Fig. 8.8 The chaos based TDM communication system with the pilot signals and the 
sequence synchronization unit 
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In Figure 8.8, x(t) denotes the logistic map chaotic spreading signals which are 
multiplied by the binary message signals m(t).  In each TDM branch a unique 

PRBS pilot signal, )(tx p , is introduced for synchronization purposes. The pilot 

signals are multiplied by )(tm p  which are set at 1 for all time [13,30]. The two 

products are then summed and multiplexed with the products of the other TDM 
branches to produce the signal c(t) which is transmitted through the channel. The 
received signal r(t) is then de-multiplexed and fed into the M separate sequence 
synchronization units at the receiver. As in chapter 7, the sequence 
synchronization unit generates the punctual despreading code. The block diagram 
illustrating a sequence synchronization unit of Figure 8.8 is shown in Figure 8.9. 

Spreading 
waveform 
generator 

VCO 

Loop filter 

)(te i  

late 

early 

)
2

( ,,,
c

idipip

T
TtxA +−
∧

 

)
2

( ,,,
c

idipip

T
TtxA −−
∧

 

),( ii t δε  

)(,1 ty i  

)(,2 ty i  

Punctual code for 
despreading 

)( ,,, idipip TtxA
∧

−  

)( , idii TtxA
∧

−  

Initial 
Synchronization 

)( ,,, iaipip TtxA −  

)(,, iipip txA υ−  

Synchronization Unit 

)( , idii TtxA
∧

−  

)(tri  

)(tri  

)(tri  

W

 

Fig. 8.9 The architecture of the sequence synchronization unit for each of the M users of 

Figure 8.8, where cididi TTT /)( ,,

∧
−=δ . 

In the case of Figure 8.8, it is assumed that each of the de-multiplexed signals, 

)(tri , has its own independent time offset idT , . Therefore, in contrast to the DS-

CDMA system of chapter 7, each synchronization unit of Figure 8.8, that is, 

Figure 8.9, produces a unique time offset estimate idT ,

∧
 for each TDM branch. 
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With the synchronization within each TDM branch at the receiver achieved, the 
correlation process takes place. 

Provided that the synchronization is accurate and that the power of the noise in 
the system is low compared to the power of the signal, the correlation value 
produced at the output of each correlator is positive if the bit is 1, denoted by m(t) = 
1, is transmitted and negative if the bit is 0, denoted by m(t) = -1, is transmitted [7]. 

The bit error rate numerical simulation results of the system of Figure 8.8 are 
presented for 1-5, 10, 15 and 20 users in Figure 8.10 in the additive white 
Gaussian noise (AWGN) channel. In addition, the corresponding empirical BER 
curves of the system of Figure 8.1, where the perfect synchronization is assumed, 
are plotted for comparison. An expected degradation in performance can be 
observed from Figure 8.10 when perfect synchronization is not assumed. Again, as 
in the evaluation of most binary modulation techniques, clock synchronization 
between the transmitter and the receiver is assumed [25,6]. Also, synchronization 
among the multiplexing and de-multiplexing switches at the transmitter and the 
receiver is assumed. 
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Fig. 8.10 The empirical BER curves of the chaos based TDM system of Figure 8.8 for 1-5, 
10, 15 and 20 users (marked curves). The corresponding empirical BER curves of Figure 
8.2 with perfect synchronization assumed are shown by unmarked curves. 

Again, by assuming that the highest acceptable level of BER equals 310−  

[26,27], it can be observed from Figure 8.10 that the ob NE /  ratio for which the 

system performance is satisfactory for the case of 1, 2, 3, 4, 5, 10, 15 and 20 users 
is equal to approximately 8, 11, 13, 14, 15, 18, 20 and 21 dB, respectively. 
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Therefore, as compared to the perfect synchronization BER curves, it can be 

observed from Figure 8.10 that at the BER level of 310−  a constant degradation 
of approximately 1 dB occurs in each case. 

The effect of the sequence synchronization error only on the BER performance 
of the system of Figure 8.8 is now illustrated. This is achieved by assuming 
perfect sequence synchronization while still keeping the pilot signals within the 
system of Figure 8.8. The BER curves of the system of Figure 8.8 with the pilot 
signals intact, but with the perfect sequence synchronization assumed at the 
receiver, are shown in Figure 8.11. 
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Fig. 8.11 The empirical BER curves of the chaos based TDM system of Figure 8.8 for 1-5, 
10, 15 and 20 users (marked curves). The corresponding empirical BER curves of the chaos 
based TDM system of Figure 8.8, but with perfect synchronization assumed and the pilot 
signals intact, are shown by unmarked curves. 

It can be observed from Figure 8.11 that at the BER level of 310−  the 
degradation in performance is equal to approximately 0.75 dB in each case. 
However, by careful observation of Figures 8.10 and 8.11 one can see that as the 

ob NE /  increases the corresponding BER curves of Figure 8.10 diverge from 

each other whereas those of Figure 8.11 do not. The former is due to the interuser 
interference among the pilot signals and the user signal within each TDM branch 
causing those BER curves to diverge with the tendency to eventually flatten, as 
seen in chapter 7. In the latter, the corresponding  BER curves do not diverge from 
each other as in both cases of Figure 8.11 the pilot signals interfere with the user 
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signals regardless of whether the perfect synchronization is assumed or not. It can 
thus be concluded from Figures 8.10 and 8.11 that the degradation in the BER 
performance, caused by the sequence synchronization error only, is approximately 
constant and equal to 0.75 dB. 

8.2.2   Performance Comparison of the Chaos Based TDM to the 
Chaos Based DS-CDMA System in an AWGN Channel 
without Assuming Perfect Sequence Synchronization 

The chaos based DS-CDMA communication system with the sequence 
synchronization unit is shown in Figure 7.1 of chapter 7. 

The bit error rate numerical simulation results of the chaos based TDM system 
of Figure 8.8, are compared to those of the chaos based DS-CDMA system of 
Figure 7.1, for 1-5, 10, 15 and 20 users in Figure 8.12 in the AWGN channel. 
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Fig. 8.12 The empirical BER curves of the chaos based TDM system of Figure 8.8 for 1-5, 
10, 15 and 20 users (marked curves), alongside the corresponding empirical BER curves of 
the chaos based DS-CDMA system of Figure 7.1 (unmarked curves). 

As in subsection 8.1.2, in the case of 10, 15 and 20 users the chaos based DS-
CDMA BER curves flatten, due to the prevailing interuser interferences, before 

reaching the highest acceptable BER level of 310− . In contrast to this, the 
corresponding BER curves of the chaos based TDM system do not flatten. 
Therefore, for a larger number of users, the chaos based TDM system with the 
sequence synchronization unit outperforms the corresponding chaos based  
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DS-CDMA system. Furthermore, it can be observed from Figure 8.12 that the 
chaos based DS-CDMA system outperforms the chaos based TDM system at the 

BER level of 310−  for the low number of users in the system. However, by 
careful observation of Figures 8.3 and 8.12 one can observe that at the BER level 

of 310−  the performance of the chaos based TDM system degrades less than that 
of the chaos based DS-CDMA system when perfect synchronization is not 
assumed. 

8.2.3   Performance of the Chaos Based TDM System in a 
Rayleigh Fading Channel without Assuming Perfect 
Sequence Synchronization 

The chaos based TDM system in the Rayleigh fading channel with the sequence 
synchronization units of Figure 8.9 is presented in Figure 8.13. 
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Fig. 8.13 The chaos based TDM communication system with the pilot signals and the 
sequence synchronization unit in the Rayleigh fading channel 

The bit error rate numerical simulation results of the chaos based TDM system 
of Figure 8.13 for 1-5, 10, 15 and 20 users in the Rayleigh fading channel are 
shown in Figure 8.14. For comparison, the corresponding curves of the chaos 
based TDM system in the Rayleigh fading channel with perfect synchronization 
assumed are also presented. As in subsection 8.1.3, the Rayleigh fading envelope, 

)(trn , was generated for the velocity of the receiver relative to the transmitter of 

55 km/h and the carrier frequency of 900 MHz [30,31] with W1=rP . 
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Fig. 8.14 The empirical BER curves of the chaos based TDM system of Figure 8.13 for 1-5, 
10, 15 and 20 users (marked curves). The corresponding empirical BER curves of Figure 
8.5 with perfect synchronization assumed are shown by unmarked curves. 

It can be observed in Figure 8.14, that in all cases the BER curves of the chaos 
based TDM system of Figure 8.13 flatten before reaching the highest acceptable 

BER level of 310− . Therefore, one can observe from Figure 8.14 that without 
assuming perfect synchronization in the Rayleigh fading channel, the system 
performance degrades significantly. 

By comparing Figures 8.10 and 8.14, it can be observed that although the 

system satisfies the BER level of 310−  for all users in an AWGN channel, it fails 
for all users in a fading channel. Thus, in comparison, the system in the Rayleigh 
fading channel is not practical for real world application. As mentioned in chapter 
7, in order to improve the performance in the fading environment techniques used 
to disperse bursts of error in time, such as block interleaving [30], could be 
employed. 

In the same fashion as in subsection 8.2.1, the effect of the sequence 
synchronization error only on the BER performance of the system of Figure 8.13 
is now illustrated. Again, this is achieved by assuming perfect sequence 
synchronization while still keeping the pilot signals within the system of Figure 
8.13. The BER curves of the system of Figure 8.13 with the pilot signals intact, 
but with the perfect sequence synchronization assumed at the receiver, are shown 
in Figure 8.15. 
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Fig. 8.15  The empirical BER curves of the chaos based TDM system of Figure 8.13 for 1-
5, 10, 15 and 20 users (marked curves). The corresponding empirical BER curves of the 
chaos based TDM system of Figure 8.13, but with perfect synchronization assumed and the 
pilot signals intact, are shown by unmarked curves. 

It can be observed from Figure 8.15 that the BER curves of the system of 
Figure 8.13 with perfect synchronization assumed also flatten before reaching the 

BER level of 310− . It can thus be concluded that the flattening of the BER curves 
in the Rayleigh fading channel is primarily due to the interuser interference among 
the pilot signals and the user signal within each TDM branch and not due to the 
sequence synchronization error. By careful observation of Figure 8.15, one can 
observe that the BER performance degradation due to the sequence 
synchronization error only is minimal. 

8.2.4   Performance Comparison of the Chaos Based TDM to the 
Chaos Based DS-CDMA System in a Rayleigh Fading 
Channel without Assuming Perfect Sequence 
Synchronization 

The chaos based DS-CDMA system in the Rayleigh fading channel with the 
synchronization unit incorporated is presented in Figure 7.12 of chapter 7. 

The bit error rate numerical simulation results of the system of Figure 7.12 are 
presented for 1, 5, 10, 15 and 20 users in Figure 8.16 in the Rayleigh fading 
channel.  



8.3   Generalized Chaos Based TDM Communication System 247
 

 

-5 0 5 10 15 20 25 30

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

TDM curves
1 User + pilot
5 Users + pilot
10 Users + pilot
15 Users + pilot
20 Users + pilot 1 user

2

3

5
4

10

15

20

 

Fig. 8.16 The empirical BER curves of the chaos based DS-CDMA system of Figure 7.12 
for 1, 5, 10, 15 and 20 users (marked curves), alongside the corresponding empirical BER 
curves of the chaos based TDM system of Figure 8.13 (unmarked curves). 

It can be observed from Figure 8.16 that the BER performance of the chaos 
based DS-CDMA system is better for the low number of users in the system (1-5), 

for ob NE /  less than approximately 27 dB.  Its performance is worse for the 

large number of users in the system (10, 15, 20), for ob NE /  greater than 

approximately 24, 22 and 21 dB, respectively. However, as mentioned previously, 
one can also observe that both systems fail to satisfy the maximum allowable BER 

level of 310−  for any number of users in the system. 

8.3   Generalized Chaos Based TDM Communication System 
without Assuming Perfect Sequence Synchronization 

8.3   Generalize d Chaos Based TDM Communication System  

In this section, the chaos based TDM communication system of Figure 8.8 is 
extended to include more than one DS-CDMA user per TDM branch. It is thus 
shown that in this way the overall number of users in the system can be increased 
substantially while at the same time improving the BER performance of the 
system. Its performance is evaluated without assuming perfect sequence 
synchronization in terms of the bit error rate in an AWGN channel. 



248 8   Chaos Based Multi-user TDM Communication System
 

 

8.3.1   Generalized Chaos Based TDM Communication System 
with the Sequence Synchronization Unit 

The generalized chaos based TDM communication system is proposed in Figure 
8.17. 
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Fig. 8.17 The generalized chaos based TDM communication system with the pilot signals 
and the sequence synchronization unit 

In each TDM branch of the system of Figure 8.17 a unique PRBS pilot signal, 

)(tx p , is introduced for synchronization purposes. In addition, each of the M 

TDM branches also contains W users which are modulated in the DS-CDMA 
manner. These are then multiplexed in the TDM manner to produce the signal c(t) 
which is transmitted through the channel. As in section 8.2, the received signal r(t)  
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is then de-multiplexed and fed into the M separate sequence synchronization units 
at the receiver. The sequence synchronization unit generates the punctual 
despreading codes. The block diagram illustrating the sequence synchronization 
unit of Figure 8.17 is shown in Figure 8.18. 
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Fig. 8.18 The architecture of the sequence synchronization unit for each of the M TDM 

branches of Figure 8.17, where cididi TTT /)( ,,

∧
−=δ . 

The bit error rate numerical simulation results of the TDM/DS-CDMA 
system of Figure 8.17 are presented in Figure 8.19 for 1-3 DS-CDMA users per 
each branch of a 2 TDM branch system. Furthermore, Figure 8.20 shows the 
BER curves for 1-3 DS-CDMA users per each TDM branch of a 3 TDM branch 
system. Finally, Figure 8.21 shows Figures 8.19 and 8.20 on the same set of 
axis. 
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Fig. 8.19 The empirical BER curves of the chaos based TDM/DS-CDMA system of Figure 
8.17 for 2, 3, 4 and 6 users in the system. 
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Fig. 8.20 The empirical BER curves of the chaos based TDM/DS-CDMA system of Figure 
8.17 for 3, 4, 6 and 9 users in the system. 
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Fig. 8.21. The empirical BER curves of Figures 8.19 and 8.20 plotted on the same set of 
axes. 

It can be observed from Figure 8.19 that at the BER level of 310−  the 

ob NE /  ratio for which the system performance is satisfactory for the case of the 

total of 2, 3, 4 and 6 users is equal to approximately 11, 13, 12 and 12.5 dB, 

respectively. Thus, at the BER level of 310−  the chaos based TDM system of 
Figure 8.17 with 2 TDM branches in the system and 3 DS-CDMA users in each 
branch (6 users in total), outperforms the system with 1 DS-CDMA user in each of 
the 3 TDM branches (3 users in total). Furthermore, it can be observed that the 
total of 4 users in the ‘2 DS-CDMA per 2 TDM’ configuration, outperforms the 
total of 3 users in the ‘1 DS-CDMA per 3 TDM’ configuration by approximately 
1dB. Therefore, allocating more than one DS-CDMA user per TDM branch yields 
a better BER performance while at the same time increasing the total number of 
users. In this way, the bandwidth efficiency of a DS-CDMA system is combined 
with the interuser interference immunity of a TDM system, to allow for an 
increased number of users in the system while improving the BER performance. 
However, in actual practice TDM systems may often be more bandwidth efficient 
than CDM based systems. This is due to the signalling formats employed by CDM 
based systems which are often not optimized for bandwidth efficiency. 

 



252 8   Chaos Based Multi-user TDM Communication System
 

 

In Figure 8.20, a similar scenario to that of Figure 8.19 can be observed. It is 

shown that at the BER level of 310−  the ob NE /  ratio for which the system 

performance is satisfactory for the case of the total of 3, 4, 6 and 9 users is equal 
to approximately 13, 14, 13.5 and 14.5 dB, respectively. It can be observed that 
the BER performance degrades by approximately 0.5 dB in the case of the total of 
9 users in the ‘3 DS-CDMA per 3 TDM’ configuration as compared to the total of 
4 users in the ‘1 DS-CDMA per 4 TDM’ configuration. However, this degradation 
in the BER performance is minimal compared to the increase in the number of 
users which in this case is more than two fold. 

Finally, the BER curves of Figures 8.19 and 8.20 are plotted in Figure 8.21 on 
the same set of axes. It can be observed from Figure 8.21 that out of the two 
possible 6 users configurations the ‘3 DS-CDMA per 2 TDM’ configuration 
outperforms the ‘2 DS-CDMA per 3 TDM’ configuration by approximately 1 dB 

at the BER level of 310− . However, at the ob NE /  level of approximately 16.5 

dB, the ‘2 DS-CDMA per 3 TDM’ configuration starts to outperform the ‘3 DS-
CDMA per 2 TDM’ configuration. This is as expected, as the interuser 
interference which, as seen in chapter 7, is more dominant for more DS-CDMA 
users starts to flatten the BER curve. Furthermore, an improvement of 
approximately 2 dB can be observed for the total number of users of 4 in the ‘2 
DS-CDMA per 2 TDM’ configuration as compared to the ‘1 DS-CDMA per 4 
TDM’ configuration. 

As in section 8.2, the clock synchronization and the synchronization among the 
multiplexing and de-multiplexing switches at the transmitter and the receiver are 
assumed. 

8.3.2   Performance Comparison of the Generalized Chaos Based 
TDM to the Chaos Based DS-CDMA System in an AWGN 
Channel without Assuming Perfect Sequence 
Synchronization 

The chaos based DS-CDMA communication system with the sequence 
synchronization unit is shown in Figure 7.1 of chapter 7. 

The bit error rate numerical simulation results of the chaos based TDM 
system of Figure 8.17 are now compared to those of the chaos based DS-CDMA 
system of Figure 7.1. In Figure 8.22 the BER results are shown in the AWGN 
channel. 



8.3   Generalized Chaos Based TDM Communication System 253
 

 

-5 0 5 10 15 20 25 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

2 CDMA users + pilot,
in each of 2 TDM branches
3 CDMA users + pilot,
in each of 2 TDM branches
2 CDMA users + pilot,
in each of 3 TDM branches
3 CDMA users + pilot,
in each of 3 TDM branches
10 users with pilots TDM
DS-CDMA

6 users
in total

1 user + pilot

2 users + pilot

4 users
in total

9 users
in total

4 users + pilot

10 users with pilots TDM

3 users + pilot

5 users + pilot

10 users
+ pilot

15 users + pilot

20 users + pilot

 

Fig. 8.22 The empirical BER curves of the generalized chaos based TDM system of Figure 
8.17 for 4, 6 and 9 users (marked curves). The empirical BER curves of the chaos based 
DS-CDMA system of Figure 7.1 for 1-5, 10, 15 and 20 users are shown by unmarked 
curves. 

It can be observed from Figure 8.22 that the generalized chaos based TDM 
system of Figure 8.17 is outperformed by the chaos based DS-CDMA system at 

the BER level of 310−  for the low number of users (4, 6) in the system. However, 
the margin by which the generalized system of Figure 8.17 is outperformed is not 
as large as the margin by which the system of Figure 8.8 is outperformed at the 
low number of users in the system. Furthermore, one can see from Figure 8.22 that 
the generalized chaos based TDM system starts to significantly outperform the 

chaos based DS-CDMA system at the BER levels less than 310− . As the number 
of users in the system increases to 9 users, it can be observed from Figure 8.22 
that the BER curve of the generalized chaos based TDM system of Figure 8.17 
does not flatten. Therefore, for a larger number of users, the generalized chaos 
based TDM system with the sequence synchronization unit outperforms the 
corresponding chaos based DS-CDMA system. Furthermore, at the BER level of 

310− , it can also be observed that the generalized chaos based TDM system of 
Figure 8.17 exhibits a significant improvement over the chaos based TDM system 
of Figure 8.8 (dashed curve) for a larger number of users in the system. 
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8.4   Conclusion 

In this chapter, a chaos based multi-user TDM system has been proposed and 
evaluated in terms of the bit error rate. Its performance has been investigated with 
and without the assumption of perfect sequence synchronization in the noisy and 
Rayleigh fading channels. Furthermore, the BER performance of the chaos based 
DS-CDMA system has been compared to the performance of the chaos based 
multi-user TDM system. The chaotic spreading signals, used to encrypt the binary 
messages, have been generated using the logistic map. As in chapter 7, the 
mutually orthogonal properties, between the chaotic time series produced by the 
logistic map with different initial conditions, have been used to decrypt messages 
sent across the channel. 

Assuming perfect sequence synchronization, it has been shown that in the 
AWGN and Rayleigh fading channels the TDM system reaches the adopted 

minimum allowable BER level of 310−  for 1-5, 10, 15 and 20 users in the system. 
Furthermore, it has been shown that in terms of BER the chaos based multi-user 
TDM system outperforms the chaos based DS-CDMA system for a large number 
of users in the system, while the chaos based DS-CDMA system yields better 
performance for low number of users in the system. 

The proposed chaos based TDM system was then investigated without the 
assumption of perfect sequence synchronization in the AWGN and Rayleigh 
fading channels. Again, it was shown that in terms of BER the chaos based TDM 
system outperforms the chaos based DS-CDMA system for a large number of 
users in the system and vice-versa for low number of users in the system. In order 
to obtain the full characterization of the system, the sequence synchronization was 
also assumed with a PRBS pilot signal present on top of each user signal. The 
effect of the pilot signal on the performance of the system was thus demonstrated 
in AWGN and Rayleigh fading channels. Furthermore, it was shown that both 
chaos based TDM and chaos based DS-CDMA systems are insufficiently robust in 
the Rayleigh fading channel when the perfect sequence synchronization is not 
assumed.  

One of the main characteristics of the DS-CDMA systems is that they are 
bandwidth efficient and that they offer increased security of transmission. The 
purpose of introducing the chaos based TDM system was to eliminate the interuser 
interference, at the expense of the increased bandwidth for an increasing number 
of users in the system, while still maintaining the security of transmission. In order 
to mutually exploit the DS-CDMA and TDM benefits, a generalized chaos based 
TDM communication system with more than one DS-CDMA user per TDM 
branch was proposed and evaluated in the AWGN channel. In this way, the 
bandwidth efficiency of a DS-CDMA system has been combined with the 
interuser interference immunity of a TDM system, to allow for an increased 
number of users in the system while improving the BER performance. 
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Chapter 9 
Chaotic Synchronization Based Multi-user 
TDM Communication Systems 

In this chapter, the chaotic synchronization based multi-user TDM communication 
systems are proposed and evaluated in terms of BER in AWGN and Rayleigh fad-
ing channels. In particular, the proposed systems include the Lorenz and Ueda 
CPM based TDM systems and the Ueda ICM based TDM systems. It is shown 
that the ICM based multi-user TDM systems outperform the CPM systems. How-
ever, it is also found that both CPM and ICM based TDM systems fail to satisfy 

the maximum allowable BER level of 310−  in the Rayleigh fading channel. The 
performance of the ICM and CPM based TDM systems, is then compared to that 
of the chaos based DS-CDMA and TDM systems of chapters 7 and 8. It is shown 
that in the AWGN and Rayleigh fading channels the chaos based TDM system of 
chapter 8 outperforms the CPM and ICM based TDM systems. Furthermore, it is 
also found that the chaos based DS-CDMA system outperforms the CPM and ICM 
based TDM systems for low number of users in the system while the opposite is 
true for large number of users. 

In chapter 8, sequence synchronization within the proposed chaos based multi-
user TDM system [1] has been achieved through the process of acquisition and 
tracking of chapter 7 [2]. In contrast to this, in this chapter sequence synchroniza-
tion within TDM multi-user systems is achieved through the process of chaotic 
synchronization of chapter 6 [3,4]. In this way, the design principles of the single-
user systems of chapter 6 are extended and the new chaotic synchronization based 
multi-user TDM systems proposed. As in chapter 8, the synchronization among 
the multiplexing and de-multiplexing switches of the transmitter and the receiver 
is assumed [1]. 

As mentioned in chapter 8, chaos based TDM systems have been investigated 
in [5-11]. The principles of TDM from a viewpoint of the chaos based spread 
spectrum communication systems have been discussed in [5]. The synchronization 
among the multiplexing and de-multiplexing switches of the transmitter and the 
receiver has been considered and the method of achieving synchronization pro-
posed [5]. Based on this method, the multi-user chaos based TDM system was 
proposed in [6,7]. The system was investigated for the two user case using the 
Pecora-Carroll (PC) self synchronizing properties of the Chua master-slave  
systems. 



258 9   Chaotic Synchronization Based Multi-user TDM Communication Systems
 

In this chapter, chaotic parameter modulation (CPM) and initial condition 
modulation (ICM) based multi-user TDM systems are proposed. The work pre-
sented here is similar to [5-11] in that the PC synchronization ideas are used to 
synchronize the transmitter and the receiver and thus decode the information. In 
particular, the authors of [6,7] use the PC synchronization within analogue elec-
tronic circuits to transmit sinusoidal messages across the noiseless channel. How-
ever, in this chapter the information is encoded and decoded using the novel me-
thods of chaotic synchronization proposed in chapters 3 and 5 [3,4]. Furthermore, 
the performance of the systems in the presence of noise and fading is also  
evaluated. 

In this chapter, it is shown that in terms of BER the ICM based TDM systems 
outperform the CPM based TDM systems in both AWGN and Rayleigh fading 
channels. In addition, it is also shown that of the two Ueda ICM based TDM sys-
tems proposed, the system with only the master signal x transmitted outperforms 
the system with both master signals x and y transmitted. However, the BER analy-
sis in the Rayleigh fading channel reveals that both CPM and ICM based systems 

fail to satisfy the highest acceptable BER level of 310−  for any number of users in 

the system and any ob NE / . Furthermore, two different receiver architectures 

are implemented on all of the CPM and ICM based TDM systems. These include 
the predetermined threshold receiver architecture [4,3] and the receiver architec-
ture implementing two slave systems [12,13]. It is shown that in terms of BER 
only in the case of the Lorenz CPM based TDM system the two slave receiver 
architecture outperforms the predetermined threshold architecture. Finally, the 
BER performance of the CPM and ICM based TDM systems is compared to the 
BER performance of the chaos based DS-CDMA system of chapter 7 [14] and the 
chaos based TDM system of chapter 8 [1]. It is shown that in both AWGN and 
Rayleigh fading channels the CPM and ICM based TDM systems are outper-
formed by the chaos based TDM system of chapter 8. However, it is also shown 
that the chaos based DS-CDMA system of chapter 7, outperforms the CPM and 
ICM based systems only for low number of users. For larger number of users in 
the system, the CPM and ICM based TDM systems outperform the chaos based 
DS-CDMA system in the AWGN channel. 

Section 9.1, proposes and presents the chaotic synchronization based multi-user 
TDM systems implementing the CPM technique of chapter 6. The principles of 
operation of the systems are explained and their BER performance evaluated and 
compared to that of the chaos based DS-CDMA and TDM systems of chapters 7 
and 8. The ICM based TDM systems are then proposed in Section 9.2. Their per-
formance is compared to that of the CPM based TDM systems as well as to that of 
the chaos based DS-CDMA and TDM systems of chapters 7 and 8. 

9.1   The CPM Based Multi-user TDM Communication System 

In this section, the single-user Lorenz and Ueda CPM based communication sys-
tems of subsection 6.2.1 are used to construct the CPM based multi-user TDM 
communication systems. Their performance is evaluated in terms of BER in the 
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AWGN and Rayleigh fading channels. Furthermore, their performance is com-
pared to that of the chaos based DS-CDMA system of chapter 7 and TDM system 
of chapter 8. As mentioned previously, the BER performance of a multi-user TDM 
system can be improved to equal that of a single-user TDM BER performance by 
increasing the power of each TDM user. However, in the case of the TDM system 
proposed here the power has been kept constant so that one can directly compare 
its BER performance to that of the chaos based DS-CDMA system. To this effect, 

in the case of the multi-user TDM system proposed, bE  denotes the bit power in 

the BER curves presented. In contrast to the chaos based DS-CDMA and TDM 
systems of chapters 7 and 8, the sequence synchronization of the CPM based 
TDM system is achieved through the process of chaotic synchronization principles 
of chapters 3 and 6. 

9.1.1   The Principles of the CPM Based Multi-user TDM 
Communication System 

The principles of the single-user CPM based chaotic communication system have 
been outlined in subsection 6.2.1. In this subsection, the principles of the CPM 
based multi-user TDM chaotic communication system are proposed. The general 
structure of this system is presented in Figure 9.1. 
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Fig. 9.1 A block diagram of the multi-user TDM chaotic communication system based on 
the parameter modulation concept 
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In Figure 9.1, each TDM branch is composed of a chaotic master-slave pair. 
The principles of operation of a chaotic master-slave pair, within the CPM based 
communication system, have been described in subsection 6.2.1. The transmitted 

signal tx  of Figure 9.1 is composed of the interleaved master signals 1x  to Mx , 

where M denotes the number of users in the system. After passing through the 

channel, the transmitted signal is received as the signal rx . As in chapter 8, the 

received signal is de-multiplexed into M signals, 
1rx  to 

Mrx . Each of the de-

multiplexed signals is then fed to the appropriate slave system at the receiver. The 
messages are recovered within each branch of the TDM system following the pro-
cedure described in subsection 6.2.1. As discussed in subsection 6.2.1, a require-
ment for the CPM scheme is for the master-slave system to synchronize for a  
given driving signal. Therefore, in order to ensure successful recovery of the 
transmitted bits, each slave system at the receiver must have the knowledge of the 
corresponding master system parameters. If, however, the knowledge of the para-
meters is not sufficient, that is, the master-slave system does not synchronize for a 
given driving signal, the controller is necessary to enforce synchronization. For 
instance, it has been shown in subsection 6.2.1 that the Lorenz CPM system does 
not require the controller, whereas the Ueda CPM based system does. Finally, in 
order to ensure security among different users of the system, it is important to as-
sign different parameter values to each master-slave pair within the TDM system. 

In addition to the predetermined threshold receiver used in chapter 6 and Figure 
9.1, it is also possible to design the system to include two slave systems within 
each TDM branch. In this way, the outputs of the two slave systems are used in 
the symbol detection by comparing the two detector outputs to each other [12,13]. 
The architecture of a receiver with two slave systems is explained on the Lorenz 
CPM based TDM communication system in subsection 9.1.2, as well as in section 
9.2. It is shown that in certain cases the receivers with two slave systems lead to 
improved BER performance, whereas in the other cases they do not. 

9.1.2   The Lorenz CPM Based TDM Communication System 

The concept of parameter modulation on the single-user Lorenz master-slave 
chaotic system [15,16] was demonstrated in subsection 6.2.1 [3]. The Lorenz 
CPM based multi-user TDM communication system with the receiver implement-
ing the predetermined threshold principle [4,3] is proposed in Figure 9.2. 

In Figure 9.2, the binary message m is equal to 0 or 0.4 depending on whether a 
binary 0 or 1 is to be transmitted, respectively. To ensure the security between the 
M users of the system, the parameter b of each master-slave pair is varied in the 
range { }45.4...,,5.3...1 ∈Mbb . Provided that the power of noise in the system is 

comparatively low to the power of the signal causes the synchronization error, xe , 

within each TDM branch to be equal to zero for a master-slave parameter match 
and non-zero for a mismatch. The principles of operation of a Lorenz master-slave 
pair, when implemented within a CPM system, have been explained in detail in 
subsection 6.2.1. 
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Fig. 9.2 The Lorenz CPM based multi-user TDM communication system in the AWGN 
channel, implementing the predetermined threshold at the receiver. The parameter values 
are 16=σ , 6.45=r  and { }45.4...,,5.3...1 ∈Mbb . 

 
In Figure 9.3, a similar system to that of Figure 9.2 is shown, however, the re-

ceiver of Figure 9.3 implements the two slave systems per each TDM branch. A 
detailed description of the master-slave pair within a TDM branch is shown in 
Figure 9.4. 
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Fig. 9.3 The Lorenz CPM based multi-user TDM communication system in the AWGN 
channel, implementing the two slaves at the receiver. The parameter values are 16=σ , 

6.45=r  and { }45.4...,,5.3...1 ∈Mbb . 

 
In Figure 9.4, 1,iP  of the upper slave system is set equal to 1,1, iii mbP += , 

where 1,im  denotes the binary symbol 1 and is set to 4.01, =im  for all time. 

Alternatively, 0,iP  of the lower slave system is set equal to 0,0, iii mbP +=   
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Fig. 9.4 A single branch of the Lorenz CPM based multi-user TDM communication system 
of Figure 9.3. The parameter values are 16=σ , 6.45=r  and { }45.4...,,5.3∈ib . 

 
where 00, =im  for all time. Therefore, the parameters of the upper slave system 

are so set to always match those of the master system when bit 1 is transmitted. 
Alternatively, those of the lower slave system are set to always match those of the 
master system when bit 0 is transmitted. As discussed in chapter 6, the synchroni-
zation occurs provided that the master-slave parameters match and does not if a 

mismatch occurs. Accordingly, the decision variable 1,id  of the upper slave sys-

tem, with parameters set to match for bit 1, tends to zero when bit 1 is transmitted 

and does not when bit 0 is transmitted. In contrast, the decision variable 0,id  of 

the lower slave system, with parameters set to match for bit 0, tends to zero when 
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bit 0 is transmitted and does not when bit 1 is transmitted. Therefore, if 

0,1, ii dd >  for a particular bit, the comparator decides in favour of bit 0 and vice-

versa. The transmitted signal ix , of Figure 9.4, is shown in Figure 9.5 when the 

series of 10 bits is transmitted, that is, when im = [0, 0, 0.4, 0, 0.4, 0.4, 0, 0.4, 0, 

0.4], or in binary terms: message = [0 0 1 0 1 1 0 1 0 1]. Furthermore, Figure 9.5 
also shows the corresponding squared synchronization errors of the two slave sys-
tems under noiseless conditions. It can be observed from Figure 9.5 that the slave 
system with parameters set to match for bit 1 synchronizes to the master system 
when a bit 1 is transmitted. Similarly, it can be observed that the slave system with 
parameters set to match for bit 0 synchronizes to the master system when a bit 0 is 
transmitted. Note that as in chapter 6, the spreading factor of 400 has been used to 
represent one bit. 

The bit error rate numerical simulation result of the single-user system of  
Figure 9.2 is compared to that of Figure 9.3 in Figure 9.6, in the AWGN channel. 
It can be observed from Figure 9.6 that the system of Figure 9.3 outperforms the 
system of Figure 9.2 by approximately 3.5 dB. Therefore, the system of Figure 
9.3, which implements the two slave receiver, will be used to obtain the empirical 
BER simulation results for the Lorenz CPM based multi-user TDM communica-
tion system. As before, the clock synchronization, as well as the synchronization 
among the multiplexing and de-multiplexing switches at the transmitter and the 
receiver is assumed. 
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Fig. 9.6 The empirical BER curves of the chaos based TDM system of Figure 9.2 (prede-
termined threshold) and Figure 9.3 (two-slave receiver) for a single-user in the system. 
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Fig. 9.7 The empirical BER curves of the chaos based TDM system of Figure 9.3 for 1-5, 
10, 15 and 20 users 
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The empirical BER simulation results of the system of Figure 9.3 are shown in 
Figure 9.7 for 1-5, 10, 15 and 20 users in the AWGN channel. Again, by assuming 

that the highest acceptable BER level is equal to 310−  [17,18], it can be observed 

from Figure 9.7 that the ob NE /  for which the system performance is satisfacto-

ry for the case of 1, 2, 3, 4, 5, 10, 15 and 20 users is equal to approximately 43, 46, 
48, 49, 50, 53, 55 and 56 dB, respectively. 
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Fig 9.8 The Lorenz CPM based multi-user TDM communication system in the Rayleigh 
fading channel, implementing the two slaves at the receiver. The parameter values are 

16=σ , 6.45=r  and { }45.4...,,5.3...1 ∈Mbb . 

 



9.1   The CPM Based Multi-user TDM Communication System 267
 

20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

1, 5, 20 users in the Rayl. fad. channel
1 user in the AWGN channel only
2 users in the AWGN channel only
3 users in the AWGN channel only
4 users in the AWGN channel only
5 users in the AWGN channel only
10 users in the AWGN channel only
15 users in the AWGN channel only
20 users in the AWGN channel only

1, 5, 20 users in the
Rayleigh fading channel

1 user

20 users
5 users Close up

 
 

Fig. 9.9 The empirical BER curves of the Lorenz CPM based TDM system of Figure 9.8 
for 1, 5 and 20 users (unmarked curves), with the close up. The corresponding empirical 
BER curves of the system of Figure 9.3 in the AWGN channel only are also shown (marked 
curves). 

 

The system of Figure 9.3 is shown in Figure 9.8 in the Rayleigh fading channel. 
Figure 9.9 shows the empirical BER simulation results of the system of Figure 9.8 
for 1, 5 and 20 users. It can be observed from Figure 9.9 that the system perfor-
mance is unsatisfactory in the Rayleigh fading channel for any number of users in 
the system as the BER curves always remain at the BER level of 0.5. A close up 
of the BER curves reveals an initial marginal difference among 1, 5 and 20 users 
in the system. However, this difference is insignificant from a practical point of 
view. 

9.1.3   The Ueda CPM Based TDM Communication System 

The single-user Ueda CPM based chaotic communication system of chapter 6, 
subsection 6.2.2 [4,3], is now used to form a multi-user TDM communication sys-
tem. The Ueda CPM based multi-user TDM communication system with the re-
ceiver implementing the predetermined threshold principle [4,3] is proposed in 
Figure 9.10. 

In Figure 9.10, the binary message m is equal to 0 or 1 depending on whether a 
binary 0 or 1 is to be transmitted, respectively. The detailed operation of each 
TDM branch of the system of Figure 9.10 has been explained in subsection 6.2.2. 
As in subsection 9.1.2, the output of each TDM branch is interleaved to form a 
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signal tx  which is transmitted through the channel. To ensure security between 

the M users of the system, the parameters k and B of each master-slave pair are 

varied in the range { }13.0...,,03.0...1 ∈Mkk  and { }3.10...,,4.7...1 ∈MBB . 

In contrast to the Lorenz CPM based TDM communication system of Figure 9.2 
(9.3), the system of Figure 9.10 requires the controller for each master-slave pair 
in order to achieve synchronization. Provided that the power of noise in the system  
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Fig. 9.10 The Ueda CPM based multi-user TDM communication system in the AWGN 
channel, implementing the predetermined threshold at the receiver. The parameter values 
are { }13.0...,,03.0...1 ∈Mkk  and { }3.10...,,4.7...1 ∈MBB . 
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is comparatively low to the power of the signal causes the synchronization error, 

xe , within each TDM branch to be equal to zero for a master-slave parameter 

match and non-zero for a mismatch. 
It has been found that in terms of BER, the Ueda CPM based TDM communi-

cation system with the receiver based on the predetermined threshold, outperforms 
the same system with the receiver based on the two slave systems. This is con-
firmed in Figure 9.11 for the single-user system in the AWGN channel. It can be 
observed from Figure 9.11 that the system of Figure 9.3 outperforms the similar 
system based on the two slave receiver by approximately 2-4 dB. Therefore, the 
system of Figure 9.10, which implements the predetermined threshold, will be 
used to obtain the empirical BER simulation results for the Ueda CPM based mul-
ti-user TDM communication system. As before, the clock synchronization, as well 
as the synchronization among the multiplexing and de-multiplexing switches at 
the transmitter and the receiver is assumed. 
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Fig. 9.11 The empirical BER curves of the Ueda CPM based TDM system of Figure 9.10 
(predetermined threshold) and the corresponding system with the two-slave receiver for a 
single user in the system. 
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The empirical BER simulation results of the system of Figure 9.10 are shown in 
Figure 9.12 for 1-5, 10, 15 and 20 users in the AWGN channel. Again, by assum-

ing that the highest acceptable level of BER equals 310−  [17,18], it can be ob-

served from Figure 9.12 that the ob NE /  for which the system performance is 

satisfactory for the case of 1, 2, 3, 4, 5, 10, 15 and 20 users is equal to approx-
imately 42.5, 46, 47.5, 49, 50, 53, 54.5 and 56 dB, respectively. 
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Fig. 9.12 The empirical BER curves of the Ueda CPM based TDM system of Figure 9.10 
for 1-5, 10, 15 and 20 users 

 

The system of Figure 9.10 is shown in Figure 9.13 in the Rayleigh fading chan-
nel. The empirical BER curves of this system are shown in Figure 9.14 for 1, 5 
and 20 users in the system. It can be observed from Figure 9.14 that the system 
performance is unsatisfactory in the Rayleigh fading channel for any number of 
users in the system as the BER curves always remain at the BER level of 0.5. A 
close up of the BER curves reveals no observable difference among 1, 5 and 20 
users in the system. 
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Fig. 9.13 The Ueda CPM based multi-user TDM communication system in the Rayleigh 
fading channel, implementing the predetermined threshold at the receiver. The parameter 
values are { }13.0...,,03.0...1 ∈Mkk  and { }3.10...,,4.7...1 ∈MBB . 
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Fig. 9.14 The empirical BER curves of the Ueda CPM based TDM system of Figure 9.13 
for 1, 5 and 20 users (unmarked curves), with the close up. The corresponding empirical 
BER curves of the system of Figure 9.10 in the AWGN channel only are also shown 
(marked curves). 

9.1.4   Performance Comparison of the Lorenz CPM Based to 
Ueda CPM Based TDM Chaotic Communication System in 
an AWGN Channel 

In this subsection, the BER performance of the Lorenz CPM based multi-user 
TDM system of Figure 9.3 is compared to the corresponding Ueda CPM based 
system of Figure 9.10. The performance is compared in the AWGN channel only. 
It has been observed from Figures 9.9 and 9.14 that in the Rayleigh fading channel 
both systems exhibit unsatisfactory performance as their respective BER curves 
remain at 0.5 for any number of users in the system. 

In Figure 9.15, the BER numerical simulation results of the Lorenz CPM based 
TDM system of Figure 9.3 are plotted on the same set of axes with those of the 
Ueda CPM based TDM system of Figure 9.10. 
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Fig. 9.15 The empirical BER curves of the Ueda CPM based TDM system of Figure 9.10 
for 1-5, 10, 15 and 20 users (marked curves), alongside the corresponding empirical BER 
curves of the Lorenz CPM based TDM system of Figure 9.3 (unmarked curves). 

It can be observed from Figure 9.15 that the BER performance of the Lorenz 
CPM based TDM system is virtually identical to that of the Ueda CPM based 
TDM system for any number of users in the system. 

9.1.5   Performance Comparison of the CPM Based TDM Systems 
to the Chaos Based DS-CDMA System of Chapter 7 and the 
Chaos Based TDM System of Chapter 8 

In this subsection, the performance of the Lorenz and Ueda CPM based TDM sys-
tems is compared to that of the chaos based DS-CDMA system of Figure 7.1 and 
the chaos based TDM system of Figure 8.8. 

In Figure 9.16, the AWGN BER curves of the Lorenz CPM based TDM system 
of Figure 9.3 and the chaos based DS-CDMA system of Figure 7.1 are plotted on 
the same set of axes. 
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Fig. 9.16 The empirical BER curves of the Lorenz CPM based TDM system of Figure 9.3 
for 1-5, 10, 15 and 20 users (marked curves) in the AWGN channel. The corresponding 
empirical BER curves of the chaos based DS-CDMA system of Figure 7.1 are shown by 
unmarked curves. 

 

It can be observed from Figure 9.16 that for low number of users in the system 
(1-5), at the BER level of 310− , the chaos based DS-CDMA system outperforms 
the Lorenz CPM based TDM system by approximately 35-38 dB. It can thus be 
concluded that in terms of BER, for low number of users in the system, the chaos 
based DS-CDMA system is a superior system. However, for a larger number of 
users in the system (10, 15, 20), the Lorenz CPM based TDM system outperforms 
the chaos based DS-CDMA system as its BER curves do not flatten. Note that as 
the BER performance of the Lorenz and Ueda CPM based TDM systems of sub-
sections 9.1.1 and 9.1.2 is essentially identical, the same conclusion can be drawn 
for the Ueda CPM based TDM system.  

Although the Lorenz and Ueda CPM based TDM systems outperform the chaos 
based DS-CDMA system for large number of users in the system, it should be 

noted that the two CPM based systems are only functional at the ob NE /  level of 

40-60 dB. Therefore, the two CPM based systems require that the bit energy, bE , 

be ten thousand to a million times larger than noise power spectral density, oN , 

for the systems to be operational. In the next section it is shown that the ICM 
based TDM chaotic communication systems are more robust to the influence of 
AWGN than are the CPM based TDM systems. 
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In Figure 9.17, the BER curves of the Lorenz CPM based TDM system of Fig-
ure 9.3 are compared to those of the chaos based TDM system of Figure 8.8, chap-
ter 8, in the AWGN channel. 
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Fig. 9.17 The empirical BER curves of the Lorenz CPM based TDM system of Figure 9.3 
for 1-5, 10, 15 and 20 users (marked curves) in the AWGN channel. The corresponding 
empirical BER curves of the chaos based TDM system of Figure 8.8, chapter 8, are shown 
by unmarked curves. 

 

It can be observed from Figure 9.17 that at the BER level of 310− , the chaos 
based TDM system of Figure 8.8, chapter 8, outperforms the Lorenz (and Ueda) 
CPM based TDM system of Figure 9.3 (Figure 9.10) by approximately 35 dB. It 
can thus be concluded that in terms of BER, the chaos based TDM system of 
chapter 8 is a superior system for any number of users in the system. 

A similar BER comparison to that of Figures 9.16 and 9.17 is now performed in 
the Rayleigh fading channel. In Figures 9.18 and 9.19, the Lorenz CPM based 
TDM system of Figure 9.8 is compared to the chaos based DS-CDMA system of 
chapter 7 (Figure 7.12) and to the chaos based TDM system of chapter 8 (Figure 
8.13), respectively. 

It can be observed from Figures 9.18 and 9.19 that the chaos based DS-CDMA 
and TDM systems of chapters 7 and 8, respectively, outperform the Lorenz CPM 
based TDM system of Figure 9.8. Again, the same conclusion can be drawn in re-
gard to the Ueda CPM based TDM system of Figure 9.13 as its BER performance 
closely resembles that of the Lorenz CPM based TDM system of Figure 9.8.  
 



276 9   Chaotic Synchronization Based Multi-user TDM Communication Systems
 

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

1, 5, 20 users of the Lorenz CPM based TDM
1 User + pilot
5 Users + pilot
10 Users + pilot
15 Users + pilot
20 Users + pilot

1, 5, 20 users
of the Lorenz CPM based TDM

 
 

Fig. 9.18 The empirical BER curves of the chaos based DS-CDMA system of Figure 7.12 
for 1, 5, 10, 15 and 20 users (marked curves) in the Rayleigh fading channel. The corres-
ponding empirical BER curves of the Lorenz CPM based TDM system of Figure 9.8, are 
shown by unmarked curves. 
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Fig. 9.19 The empirical BER curves of the chaos based TDM system of Figure 8.13 for 1-5, 
10, 15 and 20 users (marked curves) in the Rayleigh fading channel. The corresponding 
empirical BER curves of the Lorenz CPM based TDM system of Figure 9.8, are shown by 
unmarked curves. 
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However, as can be observed from Figures 9.18 and 9.19, neither of the systems 

satisfies the highest acceptable BER level of 310− . Therefore, the systems are 
impractical in the Rayleigh fading channel. 

9.2   The ICM Based Multi-user TDM Communication System 

In this section, the single-user Ueda ICM based chaotic communication system of 
subsection 6.3.2 [4,3] is used to construct the ICM based multi-user TDM com-
munication system. Furthermore, the single-user Ueda ICM based chaotic com-
munication system with only the master signal x transmitted, as outlined in the 
appendix [19], is also used to construct an ICM based TDM system. The perfor-
mance of the two systems is examined and compared in terms of the BER in 
AWGN and Rayleigh fading channels. As in section 9.1, their performance is then 
compared to the performance of the chaos based DS-CDMA system of chapter 7 
and TDM system of chapter 8. In contrast to the chaos based DS-CDMA and 
TDM systems of chapters 7 and 8, the sequence synchronization of the ICM based 
TDM system is achieved through the process of chaotic synchronization principles 
of chapters 5 and 6. 

9.2.1   The Principles of the ICM Based Multi-user TDM 
Communication System 

In subsection 6.3.1, the principles of the single-user ICM based chaotic communi-
cation system have been outlined. In this subsection, the principles of the ICM 
based multi-user TDM chaotic communication system, shown in Figure 9.20, are 
proposed. 

As in Figure 9.1, each TDM branch of an ICM based TDM system of Figure 
9.20 is composed of a chaotic master-slave pair. The principles of operation of a 
chaotic master-slave pair, within an ICM based communication system, have been 

described in section 6.3. The transmitted signal, tx , is received as the signal rx  

which is then de-multiplexed at the receiver into M signals, 
1rx  to 

Mrx , where M 

denotes the number of users in the system. The multiplexing and de-multiplexing 
operations of Figure 9.20 are performed in the same manner as for the CPM based 
TDM systems of subsection 9.1.1. The messages are recovered within each branch 
by driving each slave system by the corresponding master signal and observing the 

nature of the error xe . As discussed in section 6.3, the difference in the master-

slave initial conditions governs the synchronization error. Therefore, in order to 
ensure successful recovery of the transmitted bits, each slave system at the receiv-
er must have the knowledge of the corresponding master system’s initial condi-
tions. Furthermore, it should be noted that all the parameters of all the master and 
slave systems are identical. Finally, in order to ensure security among different 
users of the system, it is important to assign different initial condition values to 
each master-slave pair within the TDM system. 
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Fig. 9.20 A block diagram of the multi-user TDM chaotic communication system based on 
the initial condition modulation concept 

 

Besides the predetermined threshold receiver used in chapter 6 and Figure 9.20, 
it is also possible to design the system to include two slave systems within each 
TDM branch. As for the CPM based systems, in this way the outputs of the two 
slave systems are used in the symbol detection by comparing the two detector out-
puts to each other. The architecture of the receiver with two slave systems is ex-
plained on the Ueda ICM based TDM communication system of subsection 9.2.2. 
However, it is shown that for the ICM based systems examined, the receivers with 
two slave systems lead to the inferior BER performance. 

9.2.2   The Ueda ICM Based TDM Communication System 

The Ueda ICM based multi-user TDM communication system with the receiver 
implementing the predetermined threshold principle [4,3] is proposed in Figure 
9.21. The principles of operation of the corresponding single-user system have 
been presented in the subsection 6.3.2 of chapter 6 [4,3]. 

In Figure 9.21, the signals MM yxyx ,...;, 11  are first multiplexed into the set 

of signals Mss ...1  which are in turn multiplexed into the signal ts . The signal 

ts  passes through the channel and is received in the form of the signal rs . The 

signal rs  is then de-multiplexed into the set of signals 
Mrr ss ...

1
. Finally, the set  
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Fig. 9.21 The Ueda ICM based multi-user TDM communication system in the AWGN 
channel, implementing the predetermined threshold at the receiver. The parameter values 

are 05.0=k , 5.7=B . 
 

 

of signals 
Mrr ss ...

1
 is de-multiplexed into the set of signals  

MM rrrr yxyx ,...;,
11

 of which the signals 
Mrr xx ...

1
 are used to drive the cor-

responding slave systems. As explained in subsection 6.3.2, the set of signals 

Mrr yy ...
1

 is used in conjunction with the output of the slave systems to decode 

the received information. To ensure the security between the M users of the sys-
tem, the initial conditions of each of the master-slave pairs need to be different 
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from each other. In Figure 9.21, the bit 0 is represented by π2=m  and bit 1 by 
π=m  [4,3]. Furthermore, as shown in chapters 5 and 6, it is of crucial impor-

tance that the difference among the master-slave z initial conditions be equal to 
πn2± , where n is any integer [4]. In this way, it is ensured that for a bit 0 each 

master-slave pair synchronizes and for a bit 1 it does not, with the synchronization 
error reaching its maximum possible value. For simplicity, in Figure 9.21, n has  
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Fig. 9.22 The Ueda ICM based multi-user TDM communication system in the AWGN 
channel, implementing the two slaves at the receiver, where en  denotes any even integer. 
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been set to zero. The principles of operation of a Ueda master-slave pair, when 
implemented within an ICM system, have been explained in detail in subsection 
6.3.2. 

In Figure 9.22, a similar system to that of Figure 9.21 is shown, however the 
receiver of Figure 9.22 implements the two slave systems per each TDM branch. 
A detailed description of the master-slave pair within a TDM branch is shown in 
Figure 9.23. 
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Fig. 9.23 A single branch of the Ueda ICM based multi-user TDM communication system 
of Figure 9.22, where en  denotes any even integer. The parameter values are 05.0=k , 

5.7=B . 

 
In Figure 9.23, 1,iP  of the upper slave system is set equal to 

1,1, )0( iii mzP += , 

where 1,im  denotes the binary symbol 1 and is set to π=1,im  for all time. Al-

ternatively, 0,iP  of the lower slave system is set equal to 
0,0, )0( iii mzP +=  where 

0,im  denotes the binary symbol 0 and is set to π20, =im  for all time. Therefore, 

the initial conditions of the upper slave system are so set to always cause synchro-
nization of the master-slave system when bit 1 is transmitted. Alternatively, those 
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of the lower slave system are set to always cause synchronization of the master-

slave system when bit 0 is transmitted. Accordingly, the decision variable 1,id  of 

the upper slave system tends to zero when bit 1 is transmitted and does not when 

bit 0 is transmitted. In contrast, the decision variable 0,id  of the lower slave sys-

tem tends to zero when bit 0 is transmitted and does not when bit 1 is transmitted. 

Therefore, if 0,1, ii dd >  for a particular bit, the comparator decides in favour of 

bit 0 and vice-versa. The transmitted signal is , of Figure 9.23, is shown in Figure 

9.24 when the series of 10 bits is transmitted, that is, when im = [2π, 2π, π, 2π, π, 

π, 2π, π, 2π, π], or in binary terms: message = [0 0 1 0 1 1 0 1 0 1]. Furthermore, 
Figure 9.24 also shows the corresponding squared synchronization errors of the 
two slave systems under noiseless conditions. It can be observed from Figure 9.24 
that the slave system, with initial conditions set to cause synchronization for bit 1, 
indeed synchronizes to the master system when a bit 1 is transmitted. Similarly, it 
can be observed that the slave system, with initial conditions set to cause synchro-
nization for bit 0, indeed synchronizes to the master system when a bit 0 is trans-
mitted. Note that as in chapter 6, the spreading factor of 400 has been used to 
represent one bit. 
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The bit error rate numerical simulation result of the single-user system of Fig-
ure 9.21 is compared to that of Figure 9.22 in Figure 9.25, in the AWGN channel. 
It can be observed from Figure 9.25 that the system of Figure 9.21 outperforms the 
system of Figure 9.22 by approximately 4 dB. Therefore, the system of Figure 
9.21, which implements the predetermined threshold, will be used to obtain the 
empirical BER simulation results for the Ueda ICM based multi-user TDM com-
munication system. Again, the clock synchronization, as well as the synchroniza-
tion among the multiplexing and de-multiplexing switches at the transmitter and 
the receiver is assumed. 
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Fig. 9.25 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.21 
(predetermined threshold) and Figure 9.22 (two-slave receiver) for a single user in the  
system. 

 

The empirical BER simulation results of the system of Figure 9.21 are shown in 
Figure 9.26 for 1-5, 10, 15 and 20 users in the AWGN channel. Again, by assum-
ing that the highest acceptable level of BER equals 310−  [17,18], it can be  
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observed from Figure 9.26 that the ob NE /  for which the system performance is 

satisfactory for the case of 1, 2, 3, 4, 5, 10, 15 and 20 users is equal to approx-
imately 32, 35, 36.5, 38, 39, 42, 43.5 and 44.5 dB, respectively. 
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Fig. 9.26 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.21 
for 1-5, 10, 15 and 20 users 

 

The system of Figure 9.21 is shown in Figure 9.27 in the Rayleigh fading chan-
nel. In Figure 9.28 the empirical BER simulation results of the system of Figure 
9.27 are shown for 1, 5 and 20 users. As for the Lorenz and Ueda CPM based 
TDM systems, it can be observed from Figure 9.27 that the performance of the 
Ueda ICM based TDM system is also unsatisfactory in the Rayleigh fading chan-
nel for any number of users in the system. A close up of the BER curves reveals 
an initial difference among 1, 5 and 20 users in the system, before the curves settle 
to the BER level of approximately 0.4. However, as for the CPM based systems, 
this difference is insignificant from a practical point of view. 
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Fig. 9.27 The Ueda ICM based multi-user TDM communication system in the Rayleigh 
fading channel, implementing the predetermined threshold at the receiver. The parameter 
values are 05.0=k , 5.7=B . 
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Fig. 9.28 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.27 
for 1, 5 and 20 users (unmarked curves), with the close up. The corresponding empirical 
BER curves of the system of Figure 9.21 in the AWGN channel only are also shown 
(marked curves). 

9.2.3   The Ueda ICM Based TDM Communication System with 
Only x Transmitted 

In this subsection, the Ueda ICM based multi-user TDM system with only the 
master signal x transmitted, is proposed. The single-user Ueda ICM based chaotic 
communication system with only the master signal x transmitted, has been  
presented in the appendix [19]. The Ueda ICM based multi-user TDM communi-
cation system with only the master signal x transmitted and the receiver imple-
menting the predetermined threshold principle [4,3], is proposed in Figure 9.29. 

In general, the operation of the Ueda ICM based TDM system of Figure 9.29 is 
identical to that of the system of Figure 9.21, except that the receiver uses only the 

slave signal 
∧
y  to decode the message. This is in contrast to the Ueda ICM based 

TDM system of Figure 9.21 which uses the synchronization error of the master-
slave y signals to decode the message. Therefore, in the case of the system of  
Figure 9.29, it is not required to transmit the master signal y but only the master 
signal x which is used to drive the slave system. The detailed operation of each 
TDM branch of the system of Figure 9.29 has been explained in the appendix. As 
in subsection 9.1.2, the output of each TDM branch is interleaved to form a signal 

tx  which is transmitted through the channel. 
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Fig. 9.29 The Ueda ICM based multi-user TDM communication system with only the mas-
ter signal x transmitted, in the AWGN channel and implementing the predetermined thresh-
old at the receiver. The parameter values are 05.0=k , 5.7=B . 
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It has been found that in terms of BER, the Ueda ICM based TDM communica-
tion system with only x transmitted and the receiver based on the predetermined 
threshold, outperforms the same system with the receiver based on the two slave 
systems. This is confirmed in Figure 9.30 for the single-user system in the AWGN  
channel. It can be observed from Figure 9.30 that the system of Figure 9.29  
outperforms the similar system based on the two slave receiver by approximately 
2-4 dB. Therefore, the system of Figure 9.29, which implements the predeter-
mined threshold, will be used to obtain the empirical BER simulation results for 
the Ueda ICM based multi-user TDM communication system with only x trans-
mitted. Again, the clock synchronization, as well as the synchronization among 
the multiplexing and de-multiplexing switches at the transmitter and the receiver 
is assumed. 

The empirical BER simulation results of the system of Figure 9.29 are shown in 
Figure 9.31 for 1-5, 10, 15 and 20 users in the AWGN channel. It can be observed  
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Fig. 9.30 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.29 
(predetermined threshold) and the corresponding system with the two-slave receiver, for a 
single user in the system. 
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Fig. 9.31 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.29 
for 1-5, 10, 15 and 20 users 

from Figure 9.31 that at the highest acceptable BER level of 310−  [17,18], the 

ob NE /  for which the system performance is satisfactory for the case of 1, 2, 3, 

4, 5, 10, 15 and 20 users is equal to approximately 42.5, 46, 47.5, 49, 50, 53, 54.5 
and 56 dB, respectively. 

The system of Figure 9.29 is shown in Figure 9.32 in the Rayleigh fading chan-
nel. The empirical BER curves of this system are shown in Figure 9.33 for 1, 5 
and 20 users in the system. Again, it can be observed from Figure 9.33 that the 
system performance is unsatisfactory in the Rayleigh fading channel for any num-
ber of users in the system as the BER curves always remain at the BER level of 
approximately 0.4. A close up of the BER curves reveals an initial difference 
among 1, 5 and 20 users in the system, before the curves settle to the BER level of 
approximately 0.4. Furthermore, it should be observed by careful inspection of 
Figures 9.28 and 9.33 that in the Rayleigh fading channel the Ueda ICM based 
TDM system marginally outperforms the Ueda ICM based TDM system with only 
the master signal x transmitted. However, this difference is insignificant from a 
practical point of view.  
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Fig. 9.32 The Ueda ICM based multi-user TDM communication system with only the mas-
ter signal x transmitted in the Rayleigh fading channel, implementing the predetermined 
threshold at the receiver. The parameter values are 05.0=k , 5.7=B . 
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Fig. 9.33 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.32 
for 1, 5 and 20 users (unmarked curves), with the close up. The corresponding empirical 
BER curves of the system of Figure 9.29 in the AWGN channel only are also shown 
(marked curves). 

9.2.4   Performance Comparison of the Ueda ICM Based TDM 
Chaotic Communication Systems in an AWGN Channel 

In this subsection, the BER performance of the Ueda ICM based multi-user TDM 
chaotic communication system of subsection 9.2.2 is compared to that of the simi-
lar system of subsection 9.2.3 but with only x transmitted. The BER curves of the 
two systems in the AWGN channel for 1-5, 10, 15 and 20 users are plotted on the 
same set of axes in Figure 9.34. It can be observed from Figure 9.34 that the Ueda 
ICM based TDM system with only x transmitted of Figure 9.29, outperforms the 
Ueda ICM based TDM system of Figure 9.21 by approximately 5 dB for any 
number of users in the system. In general, Figure 9.34 shows that the system with 
only x transmitted can accommodate approximately three times the number  
of users as compared to the system of Figure 9.21 for any given BER level. A fur-
ther advantage of the system with only x transmitted is the resulting reduced  
overall complexity of the system. This can be observed by comparing Figures 9.21 
and 9.29. 

It has already been observed from Figures 9.28 and 9.33 that in the Rayleigh 
fading channel both systems exhibit unsatisfactory performance as their respective 
BER curves remain at approximately 0.4 for any number of users in the system. 
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Fig. 9.34 The empirical BER curves of the Ueda ICM based TDM system of Figure 9.21 
for 1-5, 10, 15 and 20 users (marked curves). The corresponding empirical BER curves of 
the Ueda ICM based TDM system with only x transmitted of Figure 9.29 are shown by 
unmarked curves. 

9.2.5   Performance Comparison of the ICM Based TDM Systems 
to the CPM Based TDM Systems of Section 9.1 

In this subsection, the performance of the Ueda ICM based TDM systems is com-
pared to that of the Lorenz CPM based TDM systems of section 9.1. It has been 
shown in section 9.1 that the AWGN BER performance of the Lorenz and Ueda 
CPM based TDM systems is virtually identical. Therefore, as before, the BER 
curves of the Lorenz CPM based TDM system will only be used in the analysis. 
Furthermore, it has been shown that the Ueda ICM based TDM system, with only 
x transmitted, of Figure 9.29, outperforms the Ueda ICM based TDM system of 
Figure 9.21 by approximately 5 dB. Thus, the BER curves of only the Ueda ICM 
based TDM system of Figure 9.29 will be used in the analysis. 

In Figure 9.35, the AWGN BER curves of the Lorenz CPM based TDM system 
of Figure 9.3 and the Ueda ICM based TDM system of Figure 9.29, are plotted on 
the same set of axes. 
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Fig. 9.35 The empirical BER curves of the Lorenz CPM based TDM system of Figure 9.3 
for 1-5, 10, 15 and 20 users (marked curves) in the AWGN channel. The corresponding 
empirical BER curves of the Ueda ICM based TDM system, with only the master signal x 
transmitted, of Figure 9.29, are shown by unmarked curves. 

 

It can be observed from Figure 9.35 that the Ueda ICM based TDM system, 
with only the master signal x transmitted, of Figure 9.29, outperforms the Lorenz 
(and Ueda) CPM based TDM system by approximately 16 dB at the BER level of 

310− . It can thus be concluded that in terms of BER in the AWGN channel, the 
Ueda ICM based TDM system is a superior system. 

As shown in section 9.1 and above, it should be noted that in the Rayleigh fad-
ing channel both CPM and ICM based TDM systems fail in terms of BER. 

9.2.6   Performance Comparison of the ICM Based TDM Systems 
to the Chaos Based DS-CDMA of Chapter 7 and Chaos 
Based TDM System of Chapter 8 

In this subsection, the BER performance of the Ueda ICM based TDM systems is 
compared to that of the chaos based DS-CDMA system of Figure 7.1 and chaos 
based TDM system of Figure 8.8. 

In Figure 9.36, the AWGN BER curves of the Ueda ICM based TDM system of 
Figure 9.29 and the chaos based DS-CDMA system of Figure 7.1 are plotted on 
the same set of axes. 
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Fig. 9.36 The empirical BER curves of the Ueda ICM based TDM system, with only x 
transmitted, of Figure 9.29 for 1-5, 10, 15 and 20 users (marked curves) in the AWGN 
channel. The corresponding empirical BER curves of the chaos based DS-CDMA system of 
Figure 7.1 are shown by unmarked curves. 

 

It can be observed from Figure 9.36 that for 1-5 users in the system, at the BER 

level of 310− , the chaos based DS-CDMA system outperforms the Ueda ICM 
based TDM system, with only x transmitted, by approximately 18, 21, 22, 22 and 
22 dB, respectively. As for the CPM systems, it can thus be concluded that for low 
number of users in the system, the chaos based DS-CDMA system is a superior 
system in terms of BER. However, it should also be observed that the ICM based 
TDM chaotic communication systems are more robust to the influence of AWGN 
than are the CPM based TDM systems of section 9.1. Due to the prevailing inte-
ruser interference among the DS-CDMA users, the BER curves for the 10, 15 and 

20 users flatten before reaching the highest acceptable BER level of 310− . In con-
trast to this, for a larger number of users in the system (10, 15, 20), the Ueda ICM 
based TDM system outperforms the chaos based DS-CDMA systems as its BER 

curves do not flatten but reach the BER level of 310− . 
In Figure 9.37, the AWGN BER curves of the Ueda ICM based TDM system, 

with only x transmitted, of Figure 9.29, are compared to those of the chaos based 
TDM system of Figure 8.8. 
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Fig. 9.37 The empirical AWGN BER curves of the Ueda ICM based TDM system, with 
only x transmitted, of Figure 9.29, for 1-5, 10, 15 and 20 users (marked curves). The cor-
responding empirical BER curves of the chaos based TDM system of Figure 8.8, chapter 8, 
are shown by unmarked curves. 

 

Figure 9.37 shows that at the BER level of 310− , the chaos based TDM system 
of Figure 8.8, chapter 8, outperforms the Ueda ICM based TDM system with only 
x transmitted, of Figure 9.29, by approximately 18.5 dB for 1-5, 10, 15 and 20 
users in the system. It can thus be concluded that in terms of BER, the chaos based 
TDM system of chapter 8 is a superior system for any number of users in the  
system. 

It can be readily observed by comparing Figures 9.28 and 9.33 to Figures 9.18 
and 9.19, that the Rayleigh fading performance of the Ueda ICM based TDM sys-
tems is inferior to that of the chaos based DS-CDMA system of chapter 7 and the 
chaos based TDM system of chapter 8. 

9.3   Conclusion 

In this chapter, the chaotic synchronization based multi-user TDM systems have 
been proposed and evaluated in terms of BER in AWGN and Rayleigh fading 
channels. In particular, the proposed systems include the Lorenz and Ueda CPM 
based TDM systems and the Ueda ICM based TDM systems. It has been shown 
that in terms of BER, the ICM based TDM systems outperform the CPM based 
TDM systems in both AWGN and Rayleigh fading channels. Furthermore, it has 
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been found that the Ueda ICM based TDM system with only the master signal x 
transmitted, outperforms the Ueda ICM based TDM system with both master sig-
nals x and y transmitted. However, the BER analysis in the Rayleigh fading chan-
nel has revealed that both CPM and ICM based systems fail to satisfy the highest 

acceptable BER level of 310−  for any number of users in the system and any 

ob NE / . In addition, two different receiver architectures have been implemented 

and evaluated in terms of BER on all of the CPM and ICM based TDM systems. 
These include the predetermined threshold receiver architecture and the receiver 
architecture implementing the two slave systems. It has been shown that in terms 
of BER only in the case of the Lorenz CPM based TDM system the two slave re-
ceiver architecture outperforms the predetermined threshold architecture. 

Furthermore, the BER performance of the CPM and ICM based TDM systems 
has been compared to the BER performance of the chaos based DS-CDMA system 
of chapter 7 and the chaos based TDM system of chapter 8. Again, the comparison 
has been conducted in both AWGN and Rayleigh fading channels. It has been 
shown that in terms of BER the chaos based DS-CDMA system of chapter 7, out-
performs the CPM and ICM based TDM systems for low number of users in the 
AWGN channel. However, for larger number of users in the system, the BER 
curves of the chaos based DS-CDMA system flatten before reaching the highest 

acceptable BER level of 310− . In contrast to this, the BER curves of the CPM and 
ICM based TDM systems do not flatten and thus outperform the chaos based DS-
CDMA system for larger number of users. Furthermore, it has been shown that the 
chaos based TDM communication system of chapter 8, outperforms the CPM and 

ICM based TDM systems for any number of users and any ob NE / . Finally, it 

has been shown that the chaos based DS-CDMA system of chapter 7 and the 
chaos based TDM system of chapter 8; outperform the CPM and ICM based TDM 
systems in the Rayleigh fading channel. Therefore, it can be concluded that in 
general, the multi-user chaotic communication systems based on the acquisition 
and tracking synchronization scheme of chapter 7, are more robust to AWGN and 
Rayleigh fading than those based on the principles of chaotic synchronization of 
chapters 3, 5 and 6. 
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Chapter 10  
Novel Bit Power Spectrum Measures for 
Improved Security in Chaotic Communication 
Systems 
Novel Bit Power Spectrum Measures for Improved Security  

In this chapter, the general approach to master-slave chaotic map synchronization 

of chapter 4 is demonstrated on the 2ℜ  Burgers’ map master-slave system. A 
Burgers’ map CPM based chaotic communication system is then designed using 
the method of chapter 6. Primarily, however, the security of the proposed Burgers’ 
map and the existing CPM, as well as of the ICM, chaotic communication systems 
is evaluated. The security is evaluated in terms of the average power of the bits 
transmitted using the newly developed measures, termed the bit power parameter 
spectrum (BPPS) and the bit power initial condition spectrum (BPICS). It is 
shown that due to the largest bit power overlap region of the chaotic carriers of the 
transmitted bits, (overlap within BPPS and BPICS), the Ueda ICM based chaotic 
communication system is more secure than the CPM based chaotic 
communication systems. 

With the development of secure communication techniques based on the 
concept of chaotic synchronization, eavesdropping techniques have also been 
developed in parallel [1-13], highlighting the lack of security in many of the 
proposed systems. The eavesdropping techniques include those based on the 
prediction attacks [1-4], short-time zero-crossing rate (STZCR) attacks [5], 
generalized synchronization attacks [6,7], return map attacks [8,9], spectral 
analysis attacks [10-12], and parameter estimation attacks [13], among other. 

In [1] Stark and Arumugam demonstrated that it is possible to extract a 
deterministic signal from a chaotic time series when the two are added together as 
in the CM scheme.  Given that the dynamics of the chaotic background are known 
it has been shown that the deterministic signal can be recovered even when the 

ratio of the deterministic to chaotic signals is as low as 1:10 10−  increasing to 

1:10 5−  with the unknown dynamics.   
It has been shown in [2] that using the multi-step prediction technique the 

message hidden within the chaotic carrier can be extracted for the three different 
kinds of message signals embedded within the chaotic carrier.  Here the basic idea 
in extracting the hidden message, from the chaotic communication system based 
on the CM principle, is to predict the carrier from the received signal, then 
subtract the predicted carrier from this received signal and thus reveal the hidden 
message. 

The STZCR technique has been used in [5] to show the vulnerability in the 
security of the CPM scheme when implemented on the Chua circuit [14].   
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In [6] eavesdropping is achieved through the concept of generalized 
synchronization where the unauthorised receiver attempts to synchronize to the 
received signal, with limited success, and thus decode the message.  Here the 
eavesdropper uses the set of parameters at the slave side which neither correspond 
to bit 0 nor bit 1, but is still able to retrieve the message successfully due to  
the significant difference in synchronization errors corresponding to bits 0 and 1.  
The GS eavesdropping attack presented in [6] is also used in [7] to demonstrate 
the security weakness within the CPM chaotic communication system based on 
the adaptive observer synchronization scheme of [15]. 

In [8] the authors show that the eavesdropper can extract the hidden messages 
within chaotic communication systems based on CM and CPM schemes due to the 
fact that any perturbations of the carrier signal influence the attractors of the return 
map. 

The spectrogram of the received signal, followed by mathematical 
morphological filters, is used in [10] to extract the message from the CPM based 
chaotic communication system of [14].  Furthermore, in [12], the security of the 
CM chaotic communication system, based on the synchronization of two chaotic 
systems of different order [16], is examined showing that the hidden message can 
be directly extracted from the received signal by simply high pass filtering it.   

Finally, in [13], the eavesdropping technique of parameter estimation has been 
used to break into the chaotic communication system based on the phase 
synchronization [17], while implementing the CPM scheme to encode binary 
information. 

In perhaps the broadest of terms the chaotic communication eavesdropping 
techniques, in the literature today, can be divided into those which directly extract 
the transmitted message without the knowledge of the dynamics of the transmitter 
[2-7,10-12], and those which make certain assumptions about the dynamics of the 
transmitter before attempting the extraction of the message [6,7,12,13]. In this 
chapter, initially the method of implementing the synchronized master-slave 
system within a CPM based secure chaotic communication system of chapter 6 is 

demonstrated on the 2ℜ  Burgers’ chaotic map [18,19]. Following this,  
the eavesdropping message extraction technique which assumes no knowledge of 
the dynamics of the transmitter is investigated in relation to the proposed and the 
existing CPM and ICM based communication systems.  The message extraction 
technique developed here is based on the average power of the received signal 
which for a secure system must be equal for both bits 0 and 1. The carrier signal 
powers of bits 0 and 1 must be equal, or very nearly equal, to each other to 
eliminate the possibility of recognising the transmitted message from different 
carrier powers [7]. It is shown that in terms of the bit power security, the Burgers’ 
map CPM based chaotic communication system can be optimized and thus 
outperforms the Lorenz CPM based chaotic communication system. 

Section 10.1 presents the design of the nonlinear control laws for the 
synchronization of the Burgers’ chaotic map master-slave system. The method of 
implementing the synchronized Burgers’ master-slave system within a CPM based 
secure chaotic communication system is then demonstrated. In section 10.2, the 
security of the proposed and the existing CPM, as well as of the ICM, chaotic 
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communication systems is evaluated in terms of BPPS and BPICS, that is, in 
terms of the average power of the bits transmitted. 

10.1   Communication System Based on the Synchronization of 
Burgers’ Map Master-Slave Chaotic System 

10.1   Communication Syste m Based on t he Synchronization  

In this section, the general approach to the design of the synchronized chaotic 

maps of chapter 4 is applied to the 2ℜ  Burgers’ chaotic map master-slave system. 
As in chapter 6, the synchronized system is then used to design the Burgers’ map 

CPM based chaotic communication system. However, in contrast to the 1ℜ  Cubic 
map CPM based system of chapter 6, this section demonstrates the process of 

implementing the 2ℜ  Burgers’ chaotic map within a CPM based communication 

system. As will be shortly demonstrated, the 2ℜ  Burgers’ map has been chosen 
for the design as only the single master signal is required to synchronize the 
master and slave systems. 

The Burgers’ map [18,19] is given by equation 10.1.1: 
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YXbYY
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+

+

1

2
1                                            (10.1.1) 

With the parameters 75.0=a  and 75.1=b  the system is chaotic. Figures 
10.1a and 10.1b show the time series and the chaotic map, respectively. 
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Fig. 10.1a  The Burgers’ map chaotic time 

series, nY  

Fig. 10.1b The Burgers’ map 

The design procedure of the synchronizing nonlinear control laws of the 
Burgers’ map CPM based chaotic communication system of Figure 10.2 is now 
explained. Let the error be defined by equation 10.1.2: 

nnn XXe −=
∧

1                                        (10.1.2a) 

nnn YYe −=
∧

2                                         (10.1.2b) 
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Fig. 10.2 The Burgers’ map chaotic communication system based on the parameter 
modulation concept 

In order to demonstrate the design of the controller of Figure 10.2 assume no 

noise in the system. It follows then that: nnr YY = .  The difference error, (the 

error system), can then be represented by equation 10.1.3: 
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Equation 10.1.3 can also be represented by equation 10.1.5, keeping in mind the 
identities of equation 10.1.4: 
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With theorem 2 of chapter 4 in mind, matrix equation 10.1.6 is formed: 

nnnnn eUeAe +=+1                                        (10.1.6) 
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Modifying equation 10.1.5 to fit the matrix form of equation 10.1.7, equation 
10.1.8 is obtained: 
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where: nnnnn eueuu 2ii1i1 +=  and nnnnn eueuu 2iv1iii2 += . 

Therefore: 
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Following theorem 2 of chapter 4, the control laws can be chosen in the following 
manner: 
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With the control laws of equation 10.1.10, the matrix B of equation 10.1.9 takes 
the form of equation 10.1.11: 
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n Y
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It is then readily verifiable that the eigenvalues of matrix nB  of equation 10.1.11 

are equal to 0 and a.  Furthermore, the theorem 2 of chapter 4, requires matrix B to 
be constant.  As the matrix B is a function of n, it must also be ensured that 

nn BB −+1  remains bounded to guarantee global asymptotic stability which is 

the requirement for synchronization. The fact that nn BB −+1  remains bounded 

is demonstrated by equation 10.1.12 (10.1.13): 
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Therefore, as stated in equation 10.1.13, in order for the master and slave systems 
of Figure 10.2 to synchronize, the parameter a must be kept within the unit circle 
in z domain. 

The control laws nu1  and nu2  are therefore given by equations 10.1.14 and 

10.1.15, and incorporated into Figure 10.2. 

nnnnnnnn eYYeueuu 22ii1i1 )( +=+=
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                         (10.1.14) 
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The important feature of the master-slave system of Figure 10.2 is that it only 

requires the master signal nY  to synchronize the master and slave systems. This 

fact is of particular importance for communications as only one signal needs to be 
transmitted thus reducing the required bandwidth and complexity [20-22]. 

The functionality of the control laws, given by equations 10.1.14 and 10.1.15, 
is demonstrated in Figure 10.3 from which synchronization of both master-slave 
signals can be observed. 
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Fig. 10.3 Synchronization of the master-slave Burgers’ chaotic signals. 
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In Figure 10.2, the master system parameter set of 015.0=a  and 75.1=b  
has been chosen to represent a bit 0. The master system parameter set of 

205.0=a  and 75.1=b  has been chosen to represent a bit 1. The reasoning 
behind such choice of parameters is clarified in the next section. Note that the 
message m of Figure 10.2 takes on the values of 0 and 1 depending on the polarity 
of a bit transmitted.  The slave system parameters are set for all time at 

015.0=a  and 75.1=b , so that synchronization at the receiver side signals a 

bit 0 and de-synchronization signals a bit 1. Both parameter sets, 015.0=a  and 

75.1=b , and 205.0=a  and 75.1=b  generate chaotic behaviour in the 
system [19]. 

The transmitted signal nY  is shown in Figure 10.4 when the series of 10 bits is 

transmitted, that is, when m = [0 0 1 0 1 1 0 1 0 1]. Figure 10.4 also shows the 

corresponding squared synchronization error, 2
nye , under noiseless conditions.  

The received bits are detected by squaring and integrating the error nye . The 

output of the integrator is then compared to the predetermined threshold and the 
decision is made whether a bit 0 or a bit 1 was sent. Note that as in chapter 6, the 
spreading factor of 400 has been used to represent one bit. A transient period of 10 
chips has been allowed for the case of Figure 10.4. During the transient period 
there is no data transmission taking place. 
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Fig. 10.4 The transmitted signal nY  and the squared synchronization error 
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10.2   Bit Power Security Issues of Chaotic Communication 
Systems 

In this section, high security regions and insecure regions of the Burgers’ map and 
Lorenz flow CPM based chaotic communication systems are identified using a 
newly developed measure called the ‘Bit Power Parameter Spectrum’ (BPPS) 
[23]. The BPPS measure is based on determining the power of the transmitted bits 
encrypted within the chaotic carriers of the system. Furthermore, a similar 
measure to BPPS, termed the ‘Bit Power Initial Condition Spectrum’ (BPICS), is 
proposed and used to evaluate the security of the Ueda ICM based [21,20] chaotic 
communication system. 

10.2.1   Security Evaluation of the Burgers’ Map CPM Based 
Chaotic Communication System 

For any secure chaotic communication system it is imperative that the power of 
the chaotic carriers representing bits 0 and 1 be approximately equal to avoid the 
possibility of decoding information by a third party simply based on the average 
powers of the chaotic carriers [7]. In order to perform the security analysis on the 
Burgers’ map communication system of Figure 10.2, and thus explain the choice 
of the modulating parameters, the average power of the chaotic carriers 
representing bits 0 and 1 is now analysed. To do so the average power of a number 
of bits (1024) is first calculated and the mean of those powers and the 
corresponding standard deviation found. A number of points are then obtained for 
a number of different sets of chaotic parameters and the average power graph, 
with the error bars, versus the varied parameter, plotted. A pseudo random binary 
sequence (PRBS) generator has been used to model the transmitted bits. The plots 
have been produced with the concept of security in mind.  If the average power of 
the chaotic carriers of bits 0 and 1 are different during the same transmission, with 
the confidence intervals which do not overlap, then the security of the system 
based on those carriers is jeopardized. This security measure has been termed the 
‘Bit Power Parameter Spectrum’ (BPPS) [23]. 

Figure 10.5 shows the BPPS of the chaotic carriers representing the bits 
transmitted.  For the bits 1 the parameter b is always kept constant at 1.75 with the 
parameter a varied in steps of 0.01 from a = 0 to a = 0.75.  For the case of Figure 
10.5 bits 0 are represented by the parameter values: a = 0.6 and b = 1.75 at all 
times. Bits 1 must then be represented by some other parameter values in order to 
achieve successful communication.  From Figure 10.5 it can be observed that the 
average power of the chaotic carriers is approximately the same, (and the 
deviation of this power), when the parameter a is kept in the region: 0 < a < 0.22, 
whereas it differs drastically outside of this region. Therefore, choosing the  
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parameter sets for bits 0 and 1 anywhere outside this region would jeopardize the 
security of the system. Thus, choosing the parameter values: a = 0.6 and b = 1.75 
to represent bits 0 is not suitable for the security reasons.  In order to remedy this 
let the parameter values representing bits 0 be: a = 0.015 and b = 1.75.  In this 
case, Figure 10.6 is obtained.  From Figure 10.6 it is observed that the carrier 
powers of the bits 0 and 1 have approximately equal values thus offering increased 
security over the choice of parameters of Figure 10.5. 

Based on the findings of Figure 10.6, it is now shown that choosing the 
parameter set: a = 0.015 and b = 1.75, to represent bits 0, and the parameter set, a 
= 0.205 and b = 1.75, to represent bits 1, produces the best performance in terms 
of the bit error rate (BER). In Figure 10.7, the BER vs. the bit energy to noise 

power spectral density ratio ( ob NE / ) curves have been plotted. Figure 10.7 

demonstrates the progressive improvement represented by the BER curves with 
the parameter a varied in the secure region of Figure 10.6 from a = 0.0625 up to a 
= 0.205 in steps of 0.0475.  The parameter b has been set to 1.75 for both bits 0 
and 1. The parameter a representing bit 0 has been set to: a = 0.015.  Note that the 
best BER performance is achieved by choosing the parameter sets, representing 
bits 0 and 1, to be as far apart as possible from each other within the secure region 
of Figure 10.6. Also note further improvement in the BER curve, marked by the 
open circles, as one exits the secure region [23]. 
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Fig. 10.5 The BPPS within the Burgers’ CPM based chaotic communication system when 
the bits 0 are represented by the parameter set: a = 0.6, b = 1.75. 
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Fig. 10.6 The BPPS within the Burgers’ CPM based chaotic communication system when 
the bits 0 are represented by the parameter set: a = 0.015, b = 1.75. 
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Fig. 10.7 The secure region BER curves of the chaotic communication system based on the 
parameter modulation of the Burgers’ chaotic map with the progressively increasing bits 1 
parameter a. 
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Figure 10.8 illustrates the effect on security caused by choosing inappropriate 
parameter sets which produce chaotic carriers of different power [23]. In case of 
Figure 10.8 bits 0 have been represented by the parameter set of a = 0.6 and b = 
1.75, while bits 1 have been represented by the parameter set of a = 0.205 and b = 
1.75.  The average power of the transmitted signal of Figure 10.8 has been 
evaluated using the sliding window of 400 chips in length (the spreading factor of 
a single bit).  The sliding window is then shifted one chip in time and the average 
power evaluated again. This process is repeated until the end of the transmitted 
signal.  It can be observed from Figure 10.8 that the average power of the chaotic 
carriers of the transmitted bits oscillates periodically with the change of the binary 
message. In contrast to Figure 10.8, Figure 10.9 illustrates the effect on security 
caused by choosing the appropriate parameter sets which produce chaotic carriers 
of approximately equal power.  In case of Figure 10.9, bits 0 have been 
represented by the parameter set of a = 0.015 and b = 1.75, while bits 1 have been 
represented by the parameter set of a = 0.205 and b = 1.75. 
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Fig. 10.8 The binary message, the transmitted signal nY  and the average power of the 

transmitted signal. Bits 0 parameter set: a = 0.6 and b = 1.75.  Bits 1 parameter set:  a = 
0.205 and b = 1.75. 
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Fig. 10.9 The binary message, the transmitted signal nY  and the average power of the 

transmitted signal. Bits 0 parameter set: a = 0.015 and b = 1.75.  Bits 1 parameter set: a = 
0.205 and b = 1.75. 

10.2.2   Security Evaluation of the Lorenz CPM Based Chaotic 
Communication System  

In subsection 6.2.1 of chapter 6, the Lorenz CPM based chaotic communication 
system has been presented [24]. The Lorenz system is a classical nonlinear 
dynamical system that is often used to highlight chaotic applications. Here it is 
shown that the communication system of [24], although chaotic, is not as secure as 
originally thought [24]. In this scheme the binary message is used to alter the 
parameter b of the master (transmitter) between 4 and 4.4 depending on whether a 
bit 0 or bit 1 is to be transmitted. However, at the slave (receiver) side the 
parameter b is fixed at 4 for all time. Thus, the synchronization either occurs or 
does not, depending on the state of the parameter b at the transmitter (master) side. 
The other Lorenz parameters, namely σ and r, are fixed at 16 and 45.6, 
respectively. For these parameter values the system is chaotic. In order to 
implement the CPM scheme the authors of [25] have scaled the Lorenz chaotic 
system to allow for the limited dynamic range of the operational amplifiers. This 
system, based on the PC synchronization concept, is presented in Figure 6.7 of  
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chapter 6. A similar BPPS plot as that of Figures 10.5 and 10.6 is plotted in Figure 
10.10 but for the Lorenz CPM based chaotic communication system of [25]. In 
this case the parameter b of the bits 1 is varied from 0.1 to 10 in steps of 0.1 with 
the other parameters being fixed at the constant values specified above.  From 
Figure 10.10 one can see that there are no secure regions where one can operate 
the system as the power of the bits 1 increases, almost linearly, with the parameter 
b. Therefore, to minimise the impact on the security, the parameters b representing 
bits 0 and 1, must be kept as close to each other as possible. 

It can thus be concluded that the Burgers’ map CPM based communication 
system is more secure than the Lorenz based CPM system. 
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Fig. 10.10 The BPPS within the Lorenz CPM based chaotic communication system. The 
close up is shown in the upper left hand corner. 

10.2.3   Security Evaluation of the Ueda ICM Based Chaotic 
Communication System with Only x Transmitted 

The demodulation of the received signal of the Ueda ICM based system of chapter 
6, section 6.3.2, is achieved by observing the synchronization error of the master-
slave y signals.  If this error tends to zero, it is concluded by the receiver that bit 0 
was sent.  It is concluded that bit 1 was sent if the steady state error is sinusoidal,  
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that is, not zero.  However, it has also been shown in the appendix [21] that it is 
sufficient to only observe the behaviour of the slave signal y in order to 
successfully discriminate among the binary symbols 0 and 1. In this case it is 
required to only transmit the driving transmitter (master) signal x, thus reducing 
the required bandwidth. In this subsection, a similar security analysis to the BPPS 
analysis of subsections 10.2.1 and 10.2.2 is performed on the Ueda ICM based 
system with only the master signal x transmitted. The detailed operation of this 
system is outlined in the appendix [21]. Its structure is shown in Figure 10.11, 
where the message m varies among 2π and π, depending on whether bit 0 or bit 1 
is to be transmitted, respectively. The bit power security analysis of the system of 
Figure 10.11 is shown in Figure 10.12. In order to produce Figure 10.12, the 
power of a number of bits (1024) has first been calculated and the mean of those 
powers and the corresponding standard deviation found.  This has been done for a 
certain set of initial conditions.  A number of points have then been obtained for 
a number of different sets of initial conditions and the average power graph, with 
the error bars, versus the varied initial condition plotted. Accordingly, this 
security measure has been termed the ‘Bit Power Initial Condition Spectrum’ 
(BPICS). 

For the bits 1 the initial condition is varied in steps of 0.05 from 1+π to 1+2π.  
For the case of Figure 10.12 bits 0 are represented by the initial condition value of 
1+2π at all time. Note that bit 1 can then at no time be represented by 1+2π but a 
value very near this value has been used since using the value of 1+2π makes bits 
0 and 1 identical to the receiver. From BPICS of Figure 10.12 it can be observed 
that the average power of the chaotic carriers is approximately the same for any 
initial conditions representing bits 1. This ensures the security of transmission as a 
third party cannot eavesdrop on to the system by trying to discriminate bits 0 and 
1 from the power of the transmitted signal x. Furthermore, as can be observed 
from BPICS of Figure 10.12, the bit powers are essentially identical when the bits 
1 are represented by 1+π and bits 0 by 1+2π. Therefore, choosing sets of initial 
conditions separated by πn2±  and πn± , for bits 0 and bits 1, respectively, not 
only produces the largest bit separation in symbol space [20,21], but also the 
maximum security from the bit power point of view.  In addition to Figure 10.12, 
Figure 10.13 shows the absolute difference of the mean and standard deviation of 
the average powers of bits 0 and 1.  Due to the lowest absolute difference of the 
mean and standard deviations of the average powers, two regions exist, as 
indicated in Figure 10.13, where the security is at its peak. 

By comparing Figures 10.6, 10.10 and 10.12 it can be observed that the Ueda 
ICM based chaotic communication system of Figure 10.11 offers more security 
than the CPM based chaotic communication systems of Figures 10.2 and 6.7 due 
to the largest bit power overlap region. 
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Fig. 10.11 The Ueda chaotic communication system, based on the initial condition 
modulation of [20], but with only x transmitted [21]. 
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Fig. 10.12 The BPICS within the Ueda ICM based chaotic communication system. 
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Fig. 10.13 The absolute difference of the mean and standard deviation of the average 
powers of bits 0 and 1 

10.3   Conclusion 

In this chapter, the security of the proposed, as well as of the existing chaotic 
communication systems, has been evaluated in terms of the average power of the 
chaotic carriers of the bits transmitted. In order to do so, the two new measures 
have been developed. These have been termed the ‘Bit Power Parameter 
Spectrum’ (BPPS) and the ‘Bit Power Initial Condition Spectrum’ (BPICS) 
measures and used for security evaluation of CPM and ICM based communication 
systems, respectively. 

Initially, the method of implementing the synchronized master-slave system 
within a CPM based secure chaotic communication system has been demonstrated 
on the two dimensional Burgers’ map. The nonlinear control laws have been 
designed in such a way to force the synchronization among the master and slave 
systems using only one signal of the master system. This is of particular 
importance for communications as only one signal needs to be transmitted thus 
reducing the required bandwidth. 

The security of the Burgers’ and the Lorenz CPM, as well as of the Ueda ICM, 
chaotic communication systems has then been evaluated. The security of the 
proposed and the existing systems has been evaluated in terms of the average 
power of the chaotic carriers of the bits transmitted, that is, in terms of the BPPS 
and the BPICS. It has been shown that due to the largest BPPS and BPICS overlap 
region of the chaotic carriers of the transmitted bits, the Ueda ICM based chaotic 
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communication system is more secure than the CPM based chaotic 
communication systems. Furthermore, it has been shown that the BER 
performance of the CPM based chaotic communication system, implementing 
Burgers’ map system, can be optimized. The optimization is achieved by choosing 
the parameter sets, representing bits 0 and 1, to be as far apart as possible within 
the secure operating region. Thus, BPPS and BPICS measures developed here 
prove very useful in the design of secure chaotic communication systems. 
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Chapter 11 
Conclusions and Future Directions 

11.1   Conclusions 

In this book, sequence synchronization techniques for single and multiple-access 
chaotic communication systems have been investigated. In particular,  
the techniques of sequence synchronization studied include those based on the 
principles of Pecora-Carroll (PC) chaotic synchronization and those based on the 
principles of traditional DS-CDMA synchronization. 

Based on the principles of PC chaotic synchronization, the novel approaches to 
chaotic synchronization were proposed and used to design new single-user chaotic 
communication systems. These new chaotic communication systems include those 
based on the chaotic parameter modulation (CPM) and initial condition 
modulation (ICM) techniques. Furthermore, the principles of time division 
multiplexing (TDM) were used to obtain the CPM and ICM based multi-user 
TDM systems. The performance of all of the proposed and the existing systems 
was evaluated in terms of the bit error rate (BER) in the additive white Gaussian 
noise (AWGN) and the Rayleigh fading channels. Furthermore, it was shown that 
by implementing certain linear and wavelet filters, one can improve the BER 
performance of the ICM based systems in the AWGN channel. 

The sequence synchronization of chaotic communication systems based on the 
DS-CDMA principles was then proposed. It was shown how the mutually 
orthogonal properties between the logistic map chaotic time series and the PRBS 
pilot signal enable the traditional ideas of the multi-user CDMA sequence 
synchronization process to be utilized within the multi-user chaos based DS-
CDMA system. Furthermore, the system was taken one step further by introducing 
a chaotic pilot signal in place of the PRBS pilot signal, thus making the CBDS-
CDMA system fully chaotic and eliminating the security threat posed by an 
inherently different PRBS pilot signal. Both phases of the sequence 
synchronization process, namely the code acquisition and the code tracking, were 
proposed and investigated. It was shown that in terms of BER the chaos based DS-
CDMA systems outperform the CPM and ICM based TDM systems for low 
number of users in the AWGN channel. However, for larger number of users in 
the system, the BER curves of the chaos based DS-CDMA systems flatten before 

reaching the adopted highest acceptable BER level of 310− . In contrast to this, the 
BER curves of the CPM and ICM based TDM systems do not flatten and thus 
outperform the chaos based DS-CDMA system for large number of users. In 
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addition, it was found that the chaos based DS-CDMA system outperforms the 
ICM and CPM based TDM systems in the Rayleigh fading channel. However, 

they all fail to satisfy the highest acceptable BER level of 310−  in the Rayleigh 
fading channel. Finally, it was shown that in terms of BER, in the AWGN channel 
only, the proposed chaotic pilot based CBDS-CDMA systems marginally 
outperform the PRBS pilot based system for a single user in the system at the BER 

level of 410−  and below. 
In addition to the CPM and ICM based TDM systems and the chaos based DS-

CDMA system, the chaos based TDM system with the DS-CDMA correlator 
receiver was also proposed. It was shown that this system outperforms the CPM 
and ICM based TDM systems for any number of users. However, the system was 
outperformed by the chaos based DS-CDMA systems for low number of users and 
vice versa for large number of users.  

In order to mutually exploit the DS-CDMA and TDM benefits, a generalized 
chaos based TDM communication system with more than one DS-CDMA user per 
TDM branch was proposed and evaluated in the AWGN channel. In this way, the 
bandwidth efficiency of a DS-CDMA system was combined with the interuser 
interference immunity of a TDM system, to allow for an increased number of 
users in the system while improving the BER performance. 

In general, it can be concluded that the multi-user chaotic communication 
systems based on the acquisition and tracking synchronization scheme, are more 
robust to AWGN and Rayleigh fading than those based on the principles of 
chaotic synchronization. 
Finally, the security of the proposed, as well as of the existing chaotic 
communication systems, was evaluated in terms of the average power of the 
chaotic carriers of the bits transmitted. In order to do so, the two new measures 
were developed. These were termed the ‘Bit Power Parameter Spectrum’ (BPPS) 
and the ‘Bit Power Initial Condition Spectrum’ (BPICS) measures. Using these 
measures, it was shown that chaotic communication systems can be optimized in 
terms of security. 

In chapter 1, the three main categories of the multi-user mobile communication 
systems (FDMA, TDMA and CDMA), as well as some of their hybrids, were 
introduced. Furthermore, the disturbances encountered within the physical 
transmission channel, such as the additive white Gaussian noise and Rayleigh 
fading, were presented. The concept of the bit error rate, which is used to measure 
the effects of the channel imperfections on the transmitted signal, was then 
outlined. In addition, the procedure of evaluating the bit error rate was then 
demonstrated when noise and fading are present in the channel. Finally, the 
motivation of the book was stated by demonstrating the importance of 
synchronization among the transmitter and the receiver through its effect on the 
BER performance of the system. 

In chapter 2, the phenomenon of chaos was introduced. The Lyapunov 
exponents which are used to diagnose and characterize the system were then 
presented.  Furthermore, the two different approaches of implementing chaotic 
systems within secure communication systems were outlined. These include 
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chaotic communication systems based on the principles of chaotic synchronization 
and those based on the DS-CDMA principle. Finally, some of the filtering 
techniques that can be used within chaotic communication systems were briefly 
introduced. 

Chapter 3 examined synchronization of chaotic systems. The concept of the 
Pecora-Carroll chaotic synchronization was described and its properties examined 
in terms of the conditional Lyapunov’s exponents and Lyapunov’s direct method. 
These demonstrate two different, yet most common approaches to the analysis of 
chaotic synchronization. Furthermore, Lyapunov’s direct method was then used to 
show a general approach to the design of nonlinear controllers for the master-slave 
chaotic systems. 

In chapter 4, a method of designing the nonlinear control laws for the 
synchronization of the chaotic map master-slave systems was proposed.  The 
nonlinear control laws were designed in such a way to ensure that the eigenvalues 
of the error system matrix always fall within the unit circle in the z domain. This 
ensures the global asymptotic stability of the error system and thus causes the 
master-slave system of any complexity to synchronize. The general approach to 

the master-slave chaotic map synchronization was demonstrated on the 1ℜ  cubic 

map master-slave system, the 2ℜ  tinkerbell map master-slave system and the 

Lorenz 3ℜ  chaotic map master-slave system. Furthermore, it was shown that it is 
always possible to achieve instant synchronization, within a single iteration of the 
master-slave system, when the control laws are designed in such a way to reduce 
the error system matrix to zero. 

In chapter 5, the master-slave synchronization properties of the simplest 
quadratic chaotic flow and the Ueda chaotic system were investigated by a newly 
proposed mathematical analysis. It was shown that when the z signal drives, the 
synchronization error of the simplest quadratic master-slave y signals is constant 
whereas the synchronization error of the master-slave x signals increases linearly. 
Using numerical simulations, in conjunction with mathematical analysis, it was 
demonstrated that the simplest quadratic master-slave chaotic flow does not 
synchronize when the y signal drives; however, the synchronization error of the 
master-slave z signals tends to a constant value which is predictable and can be 
expressed as a combination of the master-slave x signals’ initial conditions and the 
system’s parameter value. It was found that the simplest quadratic master-slave 
chaotic flow synchronizes when the x signal drives. 

Furthermore, it was found that the Ueda master-slave chaotic system does not 
synchronize when the master y or the master z signal drives. However, it was 
shown that the master-slave y signals do synchronize under certain conditions 
when the master x signal drives. When the signal x drives, mathematical 
manipulation of the system’s dynamics allows one to determine a useful 
mathematical expression for the error of the master-slave y signals.  This 
expression, along with the numerical simulations, allows one to predict that if the 
difference between the master-slave z signals’ initial conditions equals πn2± , 
the master-slave y signals will always synchronize. When the y signal drives, the 
synchronization error is constant and was mathematically expressed. 
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In general, it can be concluded that the synchronization properties of chaotic 
systems, in particular Pecora-Carroll synchronization properties, do not 
necessarily have to be investigated by Lyapunov’s stability theory, or by 
evaluation of conditional Lyapunov exponents. Instead, direct mathematical 
analysis can be used in certain cases, as was demonstrated in chapter 5 for the 
simplest quadratic chaotic flow and the Ueda chaotic system. 

In chapter 6, several chaotic communication systems with the receiver based on 
chaotic synchronization were described. These include the chaotic communication 
schemes of chaotic masking, chaotic modulation and the new chaotic 
communication scheme of initial condition modulation.  

It was shown how Lyapunov’s direct method, presented in chapter 3, can be 
used in the design of the CPM based communication systems. In particular, this 
was shown on the Ueda master-slave chaotic system.  

Furthermore, a method of implementing the synchronized chaotic map master-
slave system of chapter 4 within a CPM based secure communication system, was 

demonstrated on the 1ℜ  cubic map. It was shown that instant synchronization 
within the chaotic map CPM based communication system allows for the highest 
level of discrimination among bits 0 and 1. 

On the basis of findings of chapter 5, a secure communication system based on 
the initial condition modulation of the chaotic carrier by the binary message was 
then proposed. In particular, this system utilizes a novel approach to the master-
slave synchronization properties of the three chaotic flows investigated. The 
empirical BER curves for the proposed communication systems were then 
produced and compared to the empirical BER curve of the Lorenz CPM based 
communication system, demonstrating a significant improvement. It was shown 
that the communication system based on the simplest quadratic master-slave 
chaotic flow exhibits the best performance in terms of BER, as compared to the 
other two proposed systems based on the Ueda and the simplest piecewise linear 
master-slave chaotic flows. From the security point of view it was observed that 
the communication system based on the Ueda master-slave chaotic system may be 
the most secure of the three systems proposed. 

Finally, the overall performance of the chaotic parameter and initial condition 
modulation techniques was examined and compared in the presence of AWGN. It 
was shown in terms of BER that the ICM based chaotic communication systems 
exhibit better noise performance than the CPM based ones. Furthermore, it was 
shown on the Ueda ICM based chaotic communication system that the denoising 
techniques can be used to further improve the BER performance. The denoising 
techniques, including linear and wavelet filters, were presented in the appendix. 

In chapter 7 chaotic carriers were embedded within a practical multi-user DS-
CDMA chaotic communication system and its performance evaluated in the 
presence of noise and interuser interferences. It was shown how the mutually 
orthogonal properties between the chaotic time series produced by the logistic 
map and the PRBS pilot signal enable the traditional ideas of the multi-user 
CDMA sequence synchronization process to be utilized within the multi-user 
chaos based DS-CDMA (CBDS-CDMA) system. Furthermore, the system was 
taken one step further by introducing a chaotic pilot signal in place of the PRBS 
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pilot signal, thus making the CBDS-CDMA system fully chaotic. In this way, the 
security of CBDS-CDMA systems is significantly improved by eliminating the 
security threat posed by an inherently different PRBS pilot signal used in the 
otherwise chaotic CBDS-CDMA systems. Both phases of the sequence 
synchronization process, namely the code acquisition and the code tracking, were 
proposed and investigated. 

The code acquisition phase was evaluated in terms of the probability of 
detection and the probability of false alarm at the chip energy to noise power 
spectral density ratio of -15 dB for the three different pilot signals and varying 
number of chaotic users in the system. The theoretical upper bound on the 
probability of detection was derived and compared to the empirically determined 
results with the chaotic interferences present.  The subsequent empirical curves 
associated with the increasing number of users in the system have demonstrated 
the expected degradation in the system performance with the increasing level of 
interference.  In addition, the expected increase of the probability of detection, 
with the increase in the integration time, was demonstrated. Furthermore, it was 
shown that the best code acquisition performance is achieved when the PRBS is 
used as the pilot signal as compared to the logistic and Bernoulli chaotic maps. 

The mathematical models for the investigation of the code tracking loops were 
presented and used to derive the control laws used for the generation of the time 
offset estimates for PRBS and, periodic and non-periodic chaotic pilot signals. 
Their validity was then demonstrated by means of a simulation. The performance 
of the proposed code tracking circuits was primarily evaluated in terms of the bit 
error rate for varying levels of the chaotic interuser interferences, that is, for 
different numbers of chaotic users in the system. It was shown that the system is 
reasonably robust to noise as compared to the performance under the assumption 
of perfect synchronization. The overall BER performance degradation in an 
AWGN channel for a multi-user system is characterised by the flattening of the 
BER curves at low levels of noise due to the prevailing effects of the interuser 
interferences.  

Furthermore, it was demonstrated that the CBDS-CDMA communication 
systems implementing the proposed sequence synchronization schemes, with a 
single user in the system, in general exhibit better noise performance in terms of 
the bit error rate than the Pecora-Carroll CS based communication techniques. It 
was shown that although the systems are robust to the influence of AWGN and 
interuser interferences, they all fail to satisfy the maximum allowable bit error rate 

limit of 310−  in the Rayleigh fading channel, exbhibiting identical BER 
performance. 

Finally, it was shown that in terms of BER, in the AWGN channel only, the 
proposed chaotic pilot based CBDS-CDMA systems outperform the PRBS pilot 

based system for a single user in the system at the BER level of 410−  and below. 
In particular, an improvement of 0.175 dB was demonstrated at the BER level of 

610− . Therefore, in addition to the added security, it was demonstrated that by 
introducing the chaotic pilot based tracking unit in place of the corresponding 
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PRBS unit makes the CBDS-CDMA system more robust. The BER performance 
of all systems was shown to be identical for more than one user in the system. 

In chapter 8, a chaos based multi-user TDM system was proposed and 
evaluated in terms of the bit error rate. Its performance was investigated with  
and without the assumption of perfect sequence synchronization in the noisy and 
Rayleigh fading channels. Furthermore, the BER performance of the chaos based 
DS-CDMA system was compared to the performance of the chaos based multi-
user TDM system. The chaotic spreading signals, used to encrypt the binary 
messages, were generated using the logistic map. As in chapter 7, the mutually 
orthogonal properties, between the chaotic time series produced by the logistic 
map with different initial conditions, were used to decrypt messages sent across 
the channel. 

Assuming perfect sequence synchronization, it was shown that in the AWGN 
and Rayleigh fading channels the TDM system reaches the adopted minimum 

allowable BER level of 310−  for 1-5, 10, 15 and 20 users in the system. 
Furthermore, it was shown that in terms of BER the chaos based multi-user TDM 
system outperforms the chaos based DS-CDMA system for large number of users 
in the system, while the chaos based DS-CDMA system yields better performance 
for low number of users in the system. 

The proposed chaos based TDM system was then investigated without the 
assumption of perfect sequence synchronization in the AWGN and Rayleigh 
fading channels. Again, it was shown that in terms of BER the chaos based TDM 
system outperforms the chaos based DS-CDMA system for large number of users 
in the system and vice-versa for low number of users in the system. In order to 
obtain the full characterization of the system, the sequence synchronization was 
also assumed with the PRBS pilot signal present on top of each user signal. The 
effect of the pilot signal on the performance of the system was thus demonstrated 
in AWGN and Rayleigh fading channels. Furthermore, it was shown that both 
chaos based TDM and chaos based DS-CDMA systems are insufficiently robust in 
the Rayleigh fading channel when the perfect sequence synchronization is not 
assumed.  

In order to mutually exploit the DS-CDMA and TDM benefits, a generalized 
chaos based TDM communication system with more than one DS-CDMA user per 
TDM branch was proposed and evaluated in the AWGN channel. In this way, the 
bandwidth efficiency of a DS-CDMA system was combined with the interuser 
interference immunity of a TDM system, to allow for an increased number of 
users in the system while improving the BER performance. 

In chapter 9, the chaotic synchronization based multi-user TDM systems were 
proposed and evaluated in terms of BER in AWGN and Rayleigh fading channels. 
In particular, the proposed systems include the Lorenz and Ueda CPM based TDM 
systems and the Ueda ICM based TDM systems. It was shown that in terms of 
BER, the ICM based TDM systems outperform the CPM based TDM systems in 
both AWGN and Rayleigh fading channels. Furthermore, it was found that the 
Ueda ICM based TDM system with only the master signal x transmitted, 
outperforms the Ueda ICM based TDM system with both master signals x and y 
transmitted. However, the BER analysis in the Rayleigh fading channel revealed 
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that both CPM and ICM based systems fail to satisfy the highest acceptable BER 

level of 310−  for any number of users in the system and any ob NE / . In 

addition, two different receiver architectures were implemented and evaluated in 
terms of BER on all of the CPM and ICM based TDM systems. These include the 
predetermined threshold receiver architecture and the receiver architecture 
implementing the two slave systems. It was shown that in terms of BER only in 
the case of the Lorenz CPM based TDM system the two slave receiver 
architecture outperforms the predetermined threshold architecture. 

Furthermore, the BER performance of the CPM and ICM based TDM systems 
was compared to the BER performance of the chaos based DS-CDMA system of 
chapter 7 and the chaos based TDM system of chapter 8. Again, the comparison 
was conducted in both AWGN and Rayleigh fading channels. It was shown that in 
terms of BER the chaos based DS-CDMA system of chapter 7, outperforms the 
CPM and ICM based TDM systems for low number of users in the AWGN 
channel. However, for larger number of users in the system, the BER curves of the 
chaos based DS-CDMA system flatten before reaching the highest acceptable 

BER level of 310− . In contrast to this, the BER curves of the CPM and ICM 
based TDM systems do not flatten and thus outperform the chaos based DS-
CDMA system for larger number of users. Furthermore, it was shown that the 
chaos based TDM communication system of chapter 8, outperforms the CPM and 

ICM based TDM systems for any number of users and any ob NE / . Finally, it 

was shown that the chaos based DS-CDMA system of chapter 7 and the chaos 
based TDM system of chapter 8; outperform the CPM and ICM based TDM 
systems in the Rayleigh fading channel. Therefore, it can be concluded that in 
general, the multi-user chaotic communication systems based on the acquisition 
and tracking synchronization scheme of chapter 7, are more robust to AWGN and 
Rayleigh fading than those based on the principles of chaotic synchronization of 
chapters 3, 5 and 6. 

In chapter 10, the security of the proposed, as well as of the existing chaotic 
communication systems, was evaluated in terms of the average power of the 
chaotic carriers of the bits transmitted. In order to do so, the two newly proposed 
measures were used. These were termed the ‘Bit Power Parameter Spectrum’ 
(BPPS) and the ‘Bit Power Initial Condition Spectrum’ (BPICS) measures. 
Initially, the method of implementing the synchronized master-slave system 
within a CPM based secure chaotic communication system was demonstrated on 
the two dimensional Burgers’ map. The nonlinear control laws were designed in 
such a way to force the synchronization among the master and slave systems using 
only one signal of the master system. This is of particular importance for 
communications as only one signal needs to be transmitted thus reducing the 
required bandwidth. 

The security of the Burgers’ and the Lorenz CPM, as well as of the Ueda ICM, 
chaotic communication systems was then evaluated. The security of the proposed 
and the existing systems was evaluated in terms of the average power of the 
chaotic carriers of the bits transmitted, that is, in terms of the BPPS and the 
BPICS. It was shown that due to the largest BPPS and BPICS overlap region of 
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the chaotic carriers of the transmitted bits, the Ueda ICM based chaotic 
communication system is more secure than the CPM based chaotic 
communication systems. Furthermore, it was shown that the BER performance of 
the CPM based chaotic communication system, implementing Burgers’ map 
system, can be optimized. The optimization is achieved by choosing the parameter 
sets, representing bits 0 and 1, to be as far apart as possible within the secure 
operating region. 

11.2   Future Directions 

Wide scale research into chaotic communications was triggered by the discovery 
that chaotic systems can be synchronized, which is a necessary requirement for 
many communication systems. However, due to the lack of sufficiently robust 
synchronization techniques, the chaotic communication systems have thus far only 
been of academic interest. In order for the chaotic communication systems to 
become of practical interest, more robust synchronization techniques must be 
developed for the future. In this book, the techniques for robust synchronization of 
chaotic communication systems have been developed, thus powering the way for 
future research in this area. 

Furthermore, with the development of secure communication techniques based on 
the concept of chaotic synchronization, eavesdropping techniques have also been 
developing. 

Eavesdropping techniques such as those based on the prediction attacks, short-
time zero-crossing rate (STZCR) attacks, generalized synchronization attacks, 
return map attacks, spectral analysis attacks, parameter estimation attacks, among 
other, highlight the lack of security in many of the proposed systems. For secure 
chaotic communication systems of the future it is also necessary to seriously 
address the practical issues of eavesdropping. 



 

Appendix 

This appendix investigates de-noising techniques in connection with chaotic 
synchronization based communication systems. An alternate version of the Ueda 
ICM based chaotic communication system of section 6.3.2, chapter 6, is proposed 
and evaluated in the presence of noise, demonstrating a significant improvement. 
It is then shown that the running average finite impulse response (FIR) filter, and 
the hard-threshold filtering techniques in Haar and Daubechies wavelet domain 
can be used to significantly improve performance of the proposed chaotic 
communication system. 

The motivation of this appendix is to investigate the performance of filtering 
techniques when applied to chaotic synchronization based communication systems 
[1]. Noise removal from chaotic time series has been attempted by a number of 
researchers [1-8], among others, and is still an active area of research. Filtering 
methods include linear filters [3] and different wavelet techniques [1,2,4-6], 
among other. In this appendix, the running average FIR filter and hard-threshold 
filtering (de-noising) technique in Haar and Daubechies wavelet domain [9,1] are 
presented. These are then applied to the proposed low complexity Ueda ICM 
based chaotic communication system similar to that of section 6.3.2 [10], but with 
only the master signal x transmitted [1]. It is shown in terms of the bit error rate 
that the filtering techniques presented significantly improve the performance of 
the proposed chaotic communication system [1]. Time series plots and phase 
space diagrams [11] are also used to pictorially represent the effect of the filtering. 

Sections A1 and A2 present the Haar and Daubechies wavelet transforms, 
respectively. The principle of hard-thresholding in wavelet domain is then 
introduced in section A3. Section A4 proposes a low complexity Ueda ICM based 
chaotic communication system with only the master signal x transmitted. 
Furthermore, the developed filters are then applied to the proposed 
communication system showing a significant improvement in terms of BER as 
compared to the same non-filtered system. 

A1   Haar Wavelet Transform 

A wavelet transform is based on the approximation of a time domain function ‘f’ 
in the time-frequency domain. The Haar wavelet transform uses two consecutive 
time domain values of function ‘f’ to represent them by one wider step and one 
wavelet [9,1] in the new domain, that is, time-frequency domain.  The wider step 
measures the average while the wavelet measures the difference between the two 
consecutive values and divides this difference by two. 

The forward Haar wavelet transform is given by equations A1.1a and A1.1b, 
and the inverse Haar wavelet transform by equations A1.2a and A1.2b [9,1]. 
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In equations A1.1 and A1.2, ‘a’ designates the average coefficients and ‘c’ the 

wavelet coefficients. The average and wavelet coefficients are organised into the 

Average and Wavelet matrices of the form shown below. 
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A2   Daubechies Wavelet Domain 

Unlike the Haar wavelet transform which exhibits jump discontinuities in the 
signal transformation, Daubechies wavelet transform is a smoother approximation 
based on the Daubechies basis function [9]. The forward Daubechies wavelet 
transform is given by equations A2.1a and A2.1b, and the inverse by equations 
A2.2a and A2.2b [1] (note that in [9] printing errors have caused erroneous 
equations, here they have been revised). 
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A3    Hard-Thresholding in the Wavelet Domain 

The underlying idea of the hard-threshold filtering technique is based on looking 
at the average power of the wavelet scales, that is, at each row of the Wavelet 
matrix. Hard-thresholding in the wavelet domain involves deletion of certain 
wavelet scales where noise exists, but signal does not [9]. In other words, provided 
that the pure signal does not contain significant average power in certain row of 
the Wavelet matrix, but when mixed with noise the average power increases in that 
particular row, then this row can be set to zero in its entirety. 

A4   Application to Communications 

A4.1   Overview of the Ueda ICM Based Chaotic Communication 
System 

In chapter 6 [10], a digital communication system based on the initial condition 
modulation of the chaotic carrier by the binary message to be transmitted was 
proposed. The demodulation process at the receiver is based on the 
synchronization of one of the master-slave signals. Due to the smooth nature of 
the transmitted signal at the bit transitions, it was argued in section 6.3.2 that the 
Ueda chaotic communication system is the most secure out of the systems 
examined.  In case of the Ueda chaotic communication system, when the master x 
signal drives, demodulation at the receiver is based on the chaotic synchronization 
properties of the master-slave y signals, governed by equation A4.1 [10]. 
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Again, in equation A4.1, ‘^’ above the y signal represents the slave y signal.  It 
has been shown in chapter 5, section 5.3 [10], that equation 5.1 settles to steady 
state behaviour, governed by its third term, as time tends to infinity. As the third 
term of equation A4.1 is governed by the initial conditions of the master-slave z 

signals, )0(z  and )0(
∧
z , respectively, it has been shown that equation A4.1 can be 

used to demodulate the received binary message, given that the binary message is 
represented by the difference of the master-slave z initial conditions [10]. 
Furthermore it has also been shown that the separation of the binary symbols in 
their symbol space is largest when the difference among the master-slave z initial 
conditions is equal to πn2±  and πn± , depending on whether binary 0 or 
binary 1 are transmitted, respectively. 
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In order to implement equation A4.1 at the receiver (slave) side, it is required to 
transmit both the driving transmitter (master) signal x, and the master signal y. 

A4.2   Low Complexity Ueda ICM Based Chaotic Communication 
System with Only x Transmitted 

It is now shown how the Ueda chaotic communication system of section 6.3.2 [10] 
can be reduced in complexity, while at the same time improving the noise 
performance. In section 6.3.2 [10], demodulation of the received signal is 
achieved by observing the synchronization error of the master-slave y signals.  If 
this error tends to zero, it is concluded by the receiver that bit 0 was sent.  It is 
concluded that bit 1 was sent if the steady state error is sinusoidal, that is, not zero. 
Here it is graphically shown (Figure A2) that it is sufficient to only observe the 
behaviour of the slave signal y in order to successfully discriminate among the 
binary symbols 0 and 1.  In this case it is required to only transmit the driving 
transmitter (master) signal x, thus reducing the required bandwidth. Such a 
communication system is presented in Figure A1. 

In Figure A1 the message m is varied among 2π and π, depending on whether 
bit 0 or bit 1 is to be transmitted, respectively.  In order to ensure continuity of the 
smooth nature of the transmitted signal x, as well as to avoid periodicity of chaotic 
sequences representing bit 0 and bit 1, the initial conditions of x (y), for every new 
bit transmitted, are chosen as the final values of the chaotic carrier (signal) of the 
preceding bit [10].  Note that in Figure A1, n represents the additive white 
Gaussian noise (AWGN). 
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Fig. A1 The Ueda chaotic communication system, based on the initial condition modulation 
of [10], but with only x transmitted [1]. 
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The transmitted signal x and the squared slave signal 
∧
y  are shown in Figures 

A3a and A2, respectively, when m = [2π, 2π, π, 2π, π, π, 2π, π, 2π, π], or in  
binary terms: message = [0 0 1 0 1 1 0 1 0 1]. From Figure A3a, observe the 
smooth nature of the transmitted signal x.  In Figure A2 the dominant peaks 
represent bits 1. 
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Fig. A2  Slave signal 
∧
y  squared 

In order to compare the performance of the Ueda chaotic communication 
system of Figure A1 to the Ueda chaotic communication system of Figure 6.22, 
chapter 6, an empirical BER curve has been produced and shown in Figure A5 by 
the open circles. As in the evaluation of most binary modulation techniques, clock 
synchronization among the transmitter and receiver has been assumed [10]. The 
spreading factor, that is, the number of chaotic points representing each bit has 
been chosen to be 400 [10].  For comparison, the BER curves of the Lorenz CPM 
based system of Figure 6.7, as well as of the BPSK system, have been produced 
and denoted by the crosses and the solid line, respectively.  
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Fig. A3 (a) Transmitted signal x, (b) 
Received signal xr at Eb/No = 25 dB, (c) 
FIR filtered signal xf, (d) Haar filtered 
signal xf, (e) Daubechies filtered signal xf 

Fig. A4 Ueda strange attractor: (a) Clean, 
(b) at Eb/No = 25 dB, (c) FIR filtered, (d) 
Haar filtered, (e) Daubechies filtered  
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Fig. A5 The BER curves: (a)  the solid line is for the theoretical BPSK, (b) the pentagram 
stars are for the running average FIR filtered system of Figure A1, (c)  the asterisks are for 
the Haar filtered system of Figure A1, (d)  the solid squares are for the Daubechies filtered 
system of Figure A1, (e) the open circles are for the non filtered system of Figure A1, (f) 
the solid circles are for the Ueda initial condition modulation system introduced in [10], (g) 
the crosses are for the Lorenz chaotic parameter modulation system introduced in [1]. 

A4.3   Running Average FIR Filtering 

In [3] it has been reported that the linear filters can be used to filter non-linear 
systems.  It is now shown that the noise performance of the system proposed in 
subsection A4.2 can be further improved by using the running average finite 
impulse response (FIR) filter [12] to filter the received signal xr(t). 

The noisy Ueda chaotic signal x at ob NE /  of 25 dB is shown in Figure A3b. 

The corresponding filtered signal is shown in Figure A3c. The Ueda strange 
attractor is shown in Figure A4a, followed by the noisy and filtered Ueda strange 

attractor at ob NE /  of 25 dB in Figures A4b and A4c, respectively. 

From these a clear improvement in the filtered signal can be noticed as 
compared to the noisy one. The effect of this filtering technique on the 
communication system of Figure A1 is demonstrated in Figure A5 by the bit error 
rate (BER) curve marked by the pentagram stars. Comparing this BER curve to 
the BER curve of the system of Figure A1 without filter (marked by the open 
circles), an improvement of 3-4 dB can be observed. 
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A4.4   Filtering in the Haar Wavelet Domain 

Figure A6 shows the Ueda chaotic signal x in the Haar wavelet domain, for three 
different noise levels, and for the case when there is no noise.  From Figure A6, it 
can be seen that the first five rows of the Wavelet matrix can be hard-threshold to 

zero at bit energy to noise power spectral density ratio ( ob NE / ) of 20 dB and 15 

dB and the first four rows at ob NE /  of 25 dB.  

The Haar filtered Ueda chaotic signal xf is shown in Figure A3d. The Haar 
filtered Ueda strange attractor is presented in Figure A4d. The prominent edge 
effects can be observed in Figure A4d. These edge effects can be explained in the 
following manner.  Each row of the Wavelet matrix is a rough approximation of 
the row above it, for example, second row is a rough approximation of the first 
row. Hard-threshold to zero of the first four rows of the Wavelet matrix allows 
lower rows to estimate the upper rows. 

In Figure A5 the BER curve of the system of Figure A1, when filtered in the 
Haar wavelet domain, is represented by the asterisks. It demonstrates an 
improvement of about 3-4 dB as compared to the non-filtered one (open circles). 
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A4.5   Filtering in the Daubechies Wavelet Domain 

Figure A7 shows the Ueda chaotic signal x in Daubechies wavelet domain, for 
three different noise levels, and for the case when there is no noise.  From Figure 
A7 it can be seen that for the Ueda chaotic signal x the first five rows of the 

Wavelet matrix can be hard-threshold to zero at ob NE /  of 20 dB and 15 dB, and 

the first four rows at ob NE /  of 25 dB. 

The Daubechies filtered time series and the corresponding chaotic attractor are 
shown in Figures A3e and A4e, respectively. As with Haar, using the Daubechies 
filtering technique to filter xr(t), and thus produce xf(t), improves the BER curve of 
the system of Figure A1 by 3-4 dB, as is demonstrated in Figure A5 by the curve 
marked by the solid squares. 
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Fig. A7 Average power of the coefficients in each row of the Daubechies Wavelet matrix 

for the noise polluted signal, where ob NE /  is 25 dB, 20 dB and 15 dB, and for the clean 

Ueda chaotic signal x 

A4.6    Results and Discussions 

The bit error rate curves demonstrating the noise performance of the 
aforementioned communication systems are displayed in Figure A5. The Ueda 
initial condition modulation chaotic communication system with only the master 
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signal x transmitted (open circles), exhibits an improvement in the BER curve of 
approximately 5 dB as compared to the Ueda chaotic communication system of 
section 6.3.2 [10] (full circles). The three filtering techniques presented above all 
improve the BER curve of the non-filtered system of Figure A1 by 3-4 dB with 
the running average FIR filter exhibiting marginally better performance than the 
Haar and Daubechies filtering techniques. 

From Figure A5 it is noted that for the Ueda chaotic communication system of 
Figure A1 (open circles) it requires 18-19 dB less energy per bit to achieve the 
same probability of error as compared to the Lorenz based chaotic parameter 
modulation system of Figure 6.7, section 6.2.1 [13] (crosses). Filtering techniques 
improve the performance even further. The system of Figure 6.7 could not be 
efficiently filtered, using the aforementioned filtering techniques, due to the very 
low levels of noise in its operating region, with an attempt at filtering worsening 
the performance. 

A5   Conclusion 

It has been shown that the herein proposed alternative of the secure Ueda ICM 
based chaotic communication system of section 6.3.2, but with only x transmitted, 
exhibits a significant improvement in terms of the bit error rate.  The running 
average FIR filter and the hard-threshold wavelet de-noising techniques, in Haar 
and Daubechies wavelet domain, have been described. Furthermore, these have 
then been applied to the proposed secure communication system, demonstrating 
another significant improvement in the bit error rate curve. In [3], it has been 
mentioned that the linear filters can be used to filter non-linear systems.  Here, this 
has been demonstrated by applying the running average FIR filter within a chaotic 
synchronization based communication system.  It has also been shown that smooth 
chaotic time-series of the Ueda chaotic communication system can be successfully 
filtered in wavelet domain, using hard-threshold to zero filtering technique. 
Despite the fact that filtering in wavelet domain introduces edge effects the 
dynamics of the strange attractor seem to be well preserved.  Filtering in 
Daubechies wavelet domain exhibits smoother edge effects on the strange attractor 
than filtering in Haar wavelet domain. 
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