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Preface

Since the early 1990s, when synchronization of chaotic communication systems
became a popular research subject, a vast number of scientific papers have been
published. However, most of today’s books on chaotic communication systems
deal exclusively with the systems where perfect synchronization is assumed, an
assumption which separates theoretical from practical, real world, systems.

This book is the first of its kind dealing exclusively with the synchronization
techniques for chaotic communication systems. It describes a number of novel
robust synchronization techniques for single and multi-user chaotic communica-
tion systems published in world’s leading journals in the area. In particular, it pre-
sents a solution to the problem of robust chaotic synchronization by presenting the
first fully synchronized, highly secure, chaos based DS-CDMA system. The book
fills a gap in the existing literature where a number of books exist that deal with
chaos and chaotic communications but not with synchronization of chaotic com-
munication systems. It also acts as a bridge between communication system theory
and chaotic synchronization by carefully explaining the two concepts and demon-
strating how they link into chaotic communication systems. The book also
presents a detailed literature review on the topic of synchronization of chaotic
communication systems. Furthermore, it presents the literature review on the gen-
eral topic of chaotic synchronization and how those ideas led to the application of
chaotic signals to secure chaotic communication systems. It therefore, in addition
to presenting the state of the art systems, also presents a detailed history of chaotic
communication systems.

Summary

In this book, sequence synchronization techniques for single and multiple-access
chaotic communication systems are investigated. In particular, the techniques of
sequence synchronization studied include those based on the principles of Pecora-
Carroll (PC) chaotic synchronization and those based on the principles of tradi-
tional direct sequence code division multiple access (DS-CDMA) synchronization.

Based on the principles of PC chaotic synchronization, novel approaches to
chaotic synchronization are proposed and used to design new single-user chaotic
communication systems. These new chaotic communication systems include those
based on the chaotic parameter modulation (CPM) and the initial condition modu-
lation (ICM) techniques. Furthermore, the principles of time division multiplexing
(TDM) are used to obtain the CPM and ICM based multi-user TDM systems. The
performance of all of the proposed and the existing systems is evaluated in terms
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of the bit error rate (BER) in the additive white Gaussian noise (AWGN) and the
Rayleigh fading channels. Furthermore, it is shown that by implementing certain
linear and wavelet filters, one can improve the BER performance of the ICM
based systems in the AWGN channel.

The sequence synchronization of chaotic communication systems based on the
DS-CDMA principles is then proposed. Both phases of the sequence synchroniza-
tion process, namely the code acquisition and the code tracking, are proposed and
investigated. It is shown that in terms of BER the chaos based DS-CDMA systems
outperform the CPM and ICM based TDM systems for low number of users in the
AWGN channel and vice-versa for large number of users. In addition, it is found
that the chaos based DS-CDMA systems outperform the ICM and CPM based
TDM systems in the Rayleigh fading channel. However, in the Rayleigh fading

channel, they all fail to satisfy the adopted highest acceptable BER level of 107°.

In addition to the CPM and ICM based TDM systems and the chaos based DS-
CDMA systems, the chaos based TDM system with the DS-CDMA correlator
receiver is also proposed. It is shown that this system outperforms the CPM and
ICM based TDM systems for any number of users. However, the system is outper-
formed by the chaos based DS-CDMA systems for low number of users and vice-
versa for large number of users.

In order to mutually exploit the DS-CDMA and TDM benefits, a generalized
chaos based TDM communication system with more than one DS-CDMA user per
TDM branch is proposed and evaluated in the AWGN channel. In this way, the
bandwidth efficiency of a DS-CDMA system is combined with the inter-user in-
terference immunity of a TDM system, to allow for an increased number of users
in the system while improving the BER performance.

In general, it is shown that the multi-user chaotic communication systems based
on the acquisition and tracking synchronization scheme, are more robust to
AWGN and Rayleigh fading than those based on the principles of chaotic syn-
chronization.

Finally, the security of the proposed, as well as of the existing chaotic commu-
nication systems, is evaluated in terms of the newly proposed measures termed the
‘Bit Power Parameter Spectrum’ (BPPS) and the ‘Bit Power Initial Condition
Spectrum’ (BPICS). Using these measures, it is shown that chaotic communica-
tion systems can be optimized in terms of security.

Outline

The book is organized into eleven chapters and an appendix. Chapter 1 gives a
thorough introduction to multi-user communication systems and presents methods
for their modeling and performance evaluation. It states the motivation of the book
by demonstrating the importance of synchronization among the transmitter and the
receiver. In chapter 2, chaotic signals and their synchronization methods within
secure communication systems are introduced. Chapters 3 and 4 investigate syn-
chronization of flows and maps, respectively, using tools from nonlinear control
theory and propose novel methods of achieving synchronization. In chapter 5, a
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novel mathematical analysis for predicting master-slave synchronization of cha-
otic systems is proposed and demonstrated on three different systems. Chapter 6
proposes a number of single user chaotic communications systems based on the
synchronization techniques of chapters 3-5. In chapter 7, the traditional DS-
CDMA synchronization technique is implemented within the multi-user chaos
based DS-CDMA (CBDS-CDMA) communication scheme proposing three highly
secure and robust PRBS and chaotic pilot based CBDS-CDMA systems. Chapter 8
proposes a chaos based TDM multi-user system based on the DS-CDMA syn-
chronization technique while chapter 9 proposes the chaotic synchronization based
multi-user TDM systems. Chapter 10 proposes techniques for the optimization of
security within chaotic communication systems. In chapter 11, the conclusions and
the future directions are outlined. Finally, the methods of de-noising chaotic
communication systems and thus improving their BER performance are proposed
and investigated in the appendix.
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Chapter 1
Introduction to Multi-user Mobile
Communication Systems

In this chapter, the brief history and the main categories of the multi-user (multiple
access) mobile communication systems, as well as some of their hybrids, are in-
troduced. Furthermore, the disturbances encountered within the physical transmis-
sion channel, such as noise and fading, are presented. The concept of the bit error
rate (BER), which is used to measure the effects of the channel imperfections on
the transmitted signal, is then outlined. The procedure of evaluating the bit error
rate is then demonstrated when noise and fading are present in the channel.
Finally, the motivation of the book is stated by demonstrating the importance of
synchronization among the transmitter and the receiver through its effect on the
BER performance of the system.

The three basic categories of multiple access techniques include those based on
frequency division multiplexing (FDM), time division multiplexing (TDM) and
code division multiplexing (CDM), that is, frequency division multiple access
(FDMA), time division multiple access (TDMA) and code division multiple ac-
cess (CDMA). These three basic techniques can be combined to form hybrid sys-
tems such as the combined frequency division and time division (FD/TDMA),
combined frequency division and code division (FD/CDMA), combined time divi-
sion and code division (TD/CDMA) and the combined frequency division, time
division, and code division (FD/TD/CDMA) [1,2]. Figure 1.1 illustrates the three
basic techniques and their relationship to the aforementioned hybrids. The hybrids
can then be further subdivided [1].

The concept of mobile communication systems for general use by the public
was introduced in the 1960s and 1970s by AT&T Bell Laboratories [3]. This con-
cept was based on dividing the operational area or coverage zone of the system
into small cells which could be reused by different users of the system. Accord-
ingly, such systems have also been termed cellular systems. Due to the lack of
technology these mobile cellular systems could not be developed until the late
1970s. The world’s first cellular system was implemented in Japan in 1979 by the
Nippon Telephone and Telegraph company (NTT) [3]. In 1983, Ameritech of
Chicago U.S.A., deployed the first U.S. cellular system, termed the Advanced
Mobile Phone System (AMPS) [3]. NTT and AMPS used the concepts of FDMA
to transfer information among users. In the U.S.A., AMPS was gradually phased

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 1
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FDMA
FD/TDMA

FD/CDMA FD/TD/CDMA <«— TDMA
TD/CDMA

CDMA

Fig. 1.1 The three basic categories of multiple access communication techniques and their
hybrids

out by the introduction of the U.S. Digital Cellular (USDC) system in 1991.
USDC implemented TDMA principles and offered three times the capacity of the
AMPS. A cellular system based on the principles of CDMA was developed by
Qualcomm, Inc. in 1993. It became standardized by the Telecommunications In-
dustry Association (TTIA) as an Interim Standard known as IS-95 [3]. The opera-
tion and the characteristics of the IS-95 mobile system have been described in
detail in [2]. Today, the most advanced CDMA based mobile communication sys-
tems implement technologies such as CDMA2000 and Wideband CDMA
(W-CDMA) [2].

1.1 Frequency Division Multiple Access (FDMA)

In FDMA, individual frequency bands, or channels, are assigned to individual

users during the transmission time. The frequency axis of a certain available

bandwidth is divided up into M discrete channels, as illustrated in Figure 1.2 [3].
Such division of the available bandwidth, denoted by B, allows each user in

the system to be allocated a unique frequency band. The available frequency

A
Power Available Bandwidth (Br)
Frequency Frequency Frequency Frequency
band 1 band 2 band 3 oo band M
< Be > A Frequency
B guard

Fig. 1.2 The available frequency bands (channels) within an FDMA communication system
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bands are assigned on demand to users who request service. Once a user has been
assigned the particular frequency band, no other user can access this frequency
band for the duration of the call. Furthermore, any frequency band which is not in
use cannot be used by other users to increase or share capacity [3]. An example of
a system which implements FDMA is the Advanced Mobile Phone System
(AMPS) [3]. In order to allow for the simultaneous two way conversation among
the users of the system, (ie. to be able to talk and listen simultaneously) AMPS
implements frequency division duplexing (FDD). In this scheme a user is allo-
cated a frequency band which is separated from the other user’s frequency band
by 45 MHz. Furthermore, in AMPS the guard bands separating the frequency
bands (channels) from each other typically have a value of B =10kHz , while

guard

the channel bandwidth is equal to B, =30kHz .

1.2 Time Division Multiple Access (TDMA)

Before describing a typical TDMA system, the general principles of time division
multiplexing (TDM) are first explained. Time division multiplexing involves sam-
pling a number of different waveforms and interleaving them into a single wave-
form before transmission across the channel takes place. Within the channel,
disturbances such as noise and fading, affect the transmitted signal. The input sig-
nals are sampled and interleaved by employing a multiplexing switch which sam-
ples the input signals sequentially, as illustrated in Figure 1.3a. The multiplexing
switch samples each of the M message signals m(f) from 1 to M. Once all the sig-
nals are sampled, the switch returns back to sample the user 1 again and repeat the
cycle. A waveform c(#), produced by sampling some arbitrary message signals
m(t), is shown in Figure 1.3b. The received signal r(¢) is decomposed into the
separate signals using a de-multiplexing switch.

Multiplexing Receiver
swjtch 7, (1) N

m, (t) ——» L )

o /7 r(t) Y. e
° ! Channel A
o - : .
2 Iy
N & (t) A
my, (t) > M—> muy (t)
Transmitter De-multiplexing

switch

Fig. 1.3a A simplified block diagram showing the TDM principle. The message signals

A
m(t) are transmitted across the channel and are received in the form of m(r) .
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Fig. 1.3b The sampling procedure of some arbitrary message signals m(#) and the transmit-
ted signal c(?).

Provided that all the input signals have the same message bandwidth W, the in-
puts should be multiplexed at the rate f_ =>2W . This results in the time separa-

tion between the successive samples of T, =1/ f <1/2W . In the TDM system,

the time interval 7' containing one sample from each input is called a frame [4].

The multiplexing and de-multiplexing switches of Figure 1.3a are most often real-
ised using electronic switching [4]. Their synchronization is of crucial importance
because each sample must be distributed to the correct output at the appropriate
time. A way of synchronizing the multiplexer and de-multiplexer is to devote one
time slot per frame to a distinctive marker sample which is known and expected
by the receiver. The drawback of the synchronization using markers is that an ex-
tra time slot is required per frame to accommodate them. Other synchronization
methods involve auxiliary pilot tone or the statistical properties of the TDM signal
itself [4].

Furthermore, for different TDM systems the transmitted signal may consist of
bursts of samples for each user rather than a single sample. The bursts can then be
ordered into frames with one burst for each active user.

In a typical TDMA system the users are allocated into M time slots which com-
prise one frame. On top of the time slots, the frame also consists of the preamble
and trail bits. These are used for the synchronization purposes and to eliminate any
possible interference among adjacent frames and time slots. They may also be
used for channel estimation and training of the data equalizer. A particular user is
allocated a particular time slot. Therefore, each user has access to the channel for
the duration of a time slot. Furthermore, each time slot contains the information
bits as well as the trail, synchronization and the guard bits. The composition of a
TDMA frame is shown in Figure 1.4 [3].
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< TDMA frame >
Preamble Information Trail Bits
Time slot 1 Time slot 2 Time slot 3 e e e | TimeslotM
Trail Bits | Synchron. Bits Information Guard Bits

Fig. 1.4 The general representation of one TDMA frame

An example of a system which implements TDMA is the Global System for
Mobile (GSM) [5,3]. In GSM, each frame consists of eight time slots. Each time
slot contains 156.25 bits and lasts for 0.577 ms [3]. Furthermore, in each time slot
there are two traffic bursts of 58 bits of data (information), while the remaining
40.25 bits are used as trail, synchronization and guard bits. In order to allow for
the simultaneous two way conversation among users of the system, GSM imple-
ments FDD.

1.3 Code Division Multiple Access (CDMA)

Unlike FDMA and TDMA systems, a CDMA system offers a certain level of se-
curity. This is achieved by spreading the spectrum of the message beyond its
minimum required transmission bandwidth. Therefore, the CDMA system is not
bandwidth efficient for a single user in the system. However, a CDMA system
becomes bandwidth efficient in a multi-user environment as the available band-
width can be shared among the users. There are two main kinds of CDMA, that is,
multi-user spread spectrum communication systems [3]. These are called fre-
quency hopped multiple access (FHMA) and the direct sequence code division
multiple access (DS-CDMA) systems.

1.3.1 Frequency Hopped Multiple Access (FHMA)

In an FHMA system a particular user is constantly assigned different frequency
bands during the duration of the transmission, as illustrated for a 3 user system in
Figure 1.5 [6].
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Fig. 1.5 A possible frequency hopping pattern within a 3 user FHMA system

It can be observed from Figure 1.5 that a particular user is assigned a particular
frequency band for a fixed amount of time, before being allocated a different fre-
quency band. For instance, at the end of time slot 1, user 1 hops from the fre-
quency band 1 into frequency band 3, while at the end of time slot 2 it hops from
the frequency band 3 into the frequency band 2. The order in which the user is
“hopped” across the frequency bands is determined by a pseudo random binary
sequence (PRBS) [6]. Therefore, for the successful communication of the message
across the channel, both, the transmitting and receiving parties, must have the
knowledge of the particular PRBS used. This pseudo randomness of the hopping
pattern provides for the increased security of transmission, as one must know the
exact initial conditions of the particular PRBS to accurately reproduce it.

Therefore, a FHMA system can be viewed as a hybrid combination of FDMA
and TDMA systems [6]. Like a FDMA system, FHMA system has frequency
bands. However, unlike a FDMA system, FHMA system does not continuously
transmit the information of one user using a single frequency band, but spreads it
all over the available bandwidth by hopping between frequency bands.

1.3.2 Direct Sequence Code Division Multiple Access
(DS-CDMA)

In a DS-CDMA system [2] a binary message is multiplied by a particular signal
whose bandwidth is a few magnitudes larger than the bandwidth of a message.
This process of multiplication spreads the spectrum of the binary message. There-
fore, the multiplying signal is termed the spreading signal. The spreading signal is
in general of a pseudo random nature, such as the PRBS. The PRBS time series is
generated by means of a feedback shift register, as illustrated in Figure 1.6. At the
start of operation the flip flops of the shift register are initialized to some arbitrary
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values (initial conditions). At every clock cycle a value in each of the flip flops is
shifted to the right with the first flip flop being assigned a new value generated by
the logic unit. In order to generate a pseudo random sequence, the feedbacks into
the logic unit must be precisely chosen for a given shift register length [6].

Thus, due to the pseudo random nature of PRBS time series, spreading intro-
duces security into the system. Each user in the system possesses its own distinct
PRBS code which is approximately orthogonal to every other PRBS code used to
spread other message signals. The fundamental property of the PRBS sequences
generated by the generator of Figure 1.6 is that they are periodic with a maximum

Logic R
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» 1 21— eoe —p m >Shift
i 7y \ register
Clock
pulses
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Unipolar nonreturn-to-zero PRBS output
A

T [ 1l ] .
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l
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: B O A
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14 N Time
T

c

A
\4

" -1)r.

Fig. 1.6 The pseudo random binary sequence (PRBS) generator
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period of 2™ —1, where m denotes the number of flip-flops in the shift register. In
any given period of the maximum length sequence the number of ones always
exceeds the number of zeros by one. A single point of the PRBS sequence is

termed a chip and its period is denoted by 7 . Therefore, a period of a maximum
length sequence is equal to (2’” - 1)Tc seconds.

The approximately orthogonal nature of the spreading PRBS codes is demon-
strated by low cross correlation of Figure 1.7a. The autocorrelation function of the
PRBS is presented in Figure 1.7b showing the dominant peak [6]. The length of
the PRBS used to produce Figures 1.7a and 1.7b is equal to 511 points (chips). In
Figures 1.7a and 1.7b ¢ denotes the time delay. Note that the correlation functions
have been normalized to the peak of the autocorrelation function, that is, to

2/71 _1 .

1 1 08
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t t

Fig. 1.7a Cross-correlation of PRBS time Fig. 1.7b Autocorrelation of PRBS time
series series. The close up is shown in the top
right hand corner

The orthogonal property of the spreading signals allows the receiver to decode
the transmitted message of each of the users by correlating the received signal by
the local copies of the spreading signals. Figure 1.8 shows the block diagram of a
DS-CDMA communication system. Within a DS-CDMA system different modu-
lation architectures can be implemented, such as the binary phase shift keying
(BPSK) [2] and quadrature phase shift keying (QPSK) [2] architectures. In
Figure 1.8, the most basic architecture, namely BPSK, is shown.

In Figure 1.8, x(#) denotes the spreading signals and A their amplitudes. The
spreading signals are multiplied by the binary message signals m(f) and their
products then summed up to produce the signal c(f) which is transmitted through
the channel. The received signal r(f) is correlated with the punctual despreading
codes. The process of correlation involves despreading, that is multiplying, the
received signal by the locally generated replica of the spreading sequence at
the receiver and then integrating the product over the bit period. Provided that the
power of the noise in the system is comparatively low to the power of the signal,
the correlation value produced at the output of each correlator is positive if the bit
1 is transmitted and negative if the bit O is transmitted. A way of synchronizing the
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Fig. 1.8 A DS-CDMA communication system, where the bit duration Tb = LTC and L

denotes the spreading factor, that is, the number of chips representing a single bit

spreading and despreading sequences is through the process of acquisition and
tracking [7,8,2,9-16]. The code acquisition [7,2,9,10,13,15,16], or the initial syn-
chronization phase, involves determining the time offset amidst the incoming sig-
nal and the basis function copy at the receiver to within a specified range known
as the pull-in region of the tracking loop [7,8,2,11,12,14]. Upon the successful
completion of the acquisition phase, the code tracking phase starts with the fine
alignment followed by the process of maintaining synchronization of the two sig-
nals. This type of synchronization, where the incoming and the local sequences are
synchronized, is known as the sequence synchronization and is the primary subject
of this book. Sequence synchronization may be achieved using techniques other
than acquisition and tracking, as shown in the subsequent chapters. Furthermore,
two other types of synchronization are required within a system such as that of
Figure 1.8. These are known as carrier and clock synchronization and are briefly
discussed in the last two sections of this chapter.

An example of a system which implements DS-CDMA is the IS-95 system [2].
In order to achieve further spreading, the IS-95 system implements the so called
Walsh functions which are perfectly orthogonal to each other. The IS-95 system
implements both the BPSK and QPSK modulation architectures. The bit duration
can be either 0.1042 ms or 0.0694 ms. In order to allow for the simultaneous two
way conversation among users of the system, IS-95 implements FDD.

1.4 The Hybrid Systems

In this section two hybrid spread spectrum multiple access techniques are de-
scribed. These are the hybrid FDMA/CDMA (FD/CDMA) system and the hybrid
TDMA/CDMA (TD/CDMA) system.
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1.4.1 The Hybrid FDMA/CDMA (FD/CDMA) System

In a FD/CDMA system the wide bandwidth of a DS-CDMA system is divided into
a number of narrower bandwidths, with each of the narrower bandwidths imple-
menting the DS-CDMA technique. The signals of the narrower bandwidths are
transmitted in one and only one sub-spectrum. All of the narrow bandwidths are
assumed equal [17], as shown in Figure 1.9.

The advantage of the FD/CDMA hybrid system over a wideband DS-CDMA
system is that the required bandwidth does not need to be contiguous and different
users can be assigned different narrow bandwidths.

Spectrum of wideband DS-CDMA

Spectrum of a hybrid FD/CDMA system, composed of
frequency divided narrowband DS-CDMA systems

Fig. 1.9 Schematic of a spectrum of wideband DS-CDMA system compared to a spectrum
of a frequency divided narrowband FD/CDMA hybrid system

1.4.2 The Hybrid TDMA/CDMA (TD/CDMA) System

In a TDMA/CDMA hybrid system the data of each of the users is spread in a
DS-CDMA fashion, however, the signals are then delayed in time instead of being
immediately summed. In this way the interuser interference is eliminated or mini-
mized [18], as compared to a DS-CDMA scheme, as the users’ data is transmitted
in different time slots. The general block diagram of a hybrid TDMA/CDMA sys-
tem is shown in Figure 1.10. The delay units of Figure 1.10 have a similar func-
tion to that of the multiplexing switch of Figure 1.3 in that they both separate user
signals in time to avoid interuser interference. A number of different hybrid sys-
tems combining the advantages of TDMA and CDMA schemes exist [19-21]. An
example of a system which uses the TD/CDMA hybrid, while implementing time
division duplexing (TDD), is the Universal Mobile Telecommunications System
(UMTS) [18].
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Fig. 1.10 A simplified block diagram showing a TD/CDMA hybrid system. The message

A
signals m(f) are transmitted across the channel and are received in the form of m(t) .

1.5 The Channel

In every communications channel noise is always present. Furthermore, other dis-
turbances which cause the transmitted signal to change, such as fading, may also
be present. In this section, additive white Gaussian noise (AWGN) and Rayleigh
flat fading are introduced. These two disturbances are used in subsequent chapters
to model the channel and evaluate the performance of the communication systems.

1.5.1 Additive White Gaussian Noise (AWGN)

In most cases, AWGN is used to evaluate the performance of a communication
system in a noisy channel. This is an idealized form of noise where the term addi-
tive refers to the fact that noise is added directly onto the transmitted signal. The
term white, denotes the fact that this type of noise is of theoretically infinite
bandwidth, with power spectral density of:

NO
, (1.5.1)

Sw(f): )

as illustrated in Figure 1.11a. The dimension of the parameter N, of equation

1.5.1 is watts per Hertz. N is usually referenced to the input stage of the re-

ceiver, and is expressed as:

N, =kT,, (1.5.2)

o e

where k is Boltzmann’s constant and 7, is the equivalent noise temperature of the

receiver.
The equivalent noise temperature of a system is defined as ‘the temperature at
which a noisy resistor has to be maintained such that, by connecting the resistor
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to the input of a noiseless version of the system, it produces the same available
noise power at the output of the system as that produced by all the sources of
noise in the actual system’ [6]. Finally, the term Gaussian refers to the fact that the
noise time series is of Gaussian distribution, as illustrated in Figure 1.12. Noting
that the autocorrelation function is obtained by taking the inverse Fourier trans-
form of the power spectral density, it is readily verifiable that the autocorrelation
function of AWGN is [6]:

R, (1) = %J(t) (1.5.3)

where 7 is a time delay and O(7) denotes the impulse function.

The autocorrelation function of AWNG is graphically illustrated in Figure
1.11b. It can be observed from Figure 1.11b that the autocorrelation function of

AWGN is an impulse function weighed by the factor N, /2. This implies that

any two different samples of white noise are uncorrelated regardless of how close
in time they are taken [6].

Sw(f)a Ry, ()
N
N,/2 ° 5(t)
2
0 f 0 t
Fig. 1.11a Power spectral density of Fig. 1.11b Autocorrelation function of
AWGN AWGN
25
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151
i
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< Z o
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Fig. 1.12 The Gaussian distribution of AWGN, where O denotes the standard deviation
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There are different methods which can be used to model AWGN, such as the
Box-Muller method [22,23], as well as a number of other methods [23].

1.5.2 Rayleigh Flat Fading

Different mechanisms of fading can be present in a mobile channel, such as the
long term, short term, frequency selective, time selective, and flat fading mecha-
nism [2]. In a flat fading channel [24-27] there are no dominant fading mecha-
nisms, but fading occurs from the random channel fluctuations. In order to
evaluate the performance of the communication systems in a fading environment
the Clarke and Gans flat fading model has been developed. The method of im-
plementing this model has been outlined in [24-26] and used to simulate a
multipath Rayleigh fading channel. This method is now briefly described. The
technique used to obtain the simulation of multipath propagation is achieved by
appropriately shaping the two independent Gaussian low-pass noise sources
[24,26]. The shaping filter used is given by equation 1.5.4 [24]:

|f = 1.

S.fm
S(f)=

(1.5.4)

0 otherwise

In equation 1.5.4, f

., denotes the maximum Doppler frequency shift caused by

the movement of the receiver with the respect to the transmitter, and vice versa.
The fL denotes the carrier frequency and the P. denotes the average received
power of the Rayleigh fading envelope. The maximum Doppler frequency shift,

fm , depends on the speed of the receiver, v, relative to the transmitter, as well as

the carrier frequency fC . This relation is given by equation 1.5.5:

£ = e (15.5)
C

where ¢ denotes the speed of light.

Upon shaping the random Gaussian noise sources the inverse fast Fourier trans-
form (IFFT) is performed on each of the shaped waveforms. The Rayleigh fading
envelope is then obtained from the two band limited noise sources, as shown in
equation 1.5.6 [24]:
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re () = \/|r, O +[r, [ (1.5.6)

In equation 1.5.6, r;(f) and r,(f) denote the in phase and quadrature compo-

nents of the Rayleigh envelope 7, (?) .

In Figure 1.13, the algorithm for the frequency domain implementation of the
Rayleigh fading envelope at baseband is outlined. It should be noted that the Fou-
rier transform of the Gaussian noise does not exist mathematically and thus most
often noise and fading generators are modelled in the time domain. However, it is
also possible by way of [24] to model fading using a frequency domain represena-
tation. The steps used to implement the simulator are now briefly described [24]:

(1) Specify the number of points over which the fading envelope, N, is to be
produced.

(2) According to a given v and fc, calculate fm, and thus determine the
frequency  spacing  between  adjacent  spectral  lines  as
Af =2f, I(N-1).

(3) Generate the frequency vector f =—f Af: f, .

(4) Produce the positive frequency components of the complex Gaussian line
spectra by generating a set of N/2 complex random numbers with Gaus-

sian distribution. Store those in a vector g 1 - Conjugate the vector g,
and flip the conjugated vector left to right to obtain a vector of negative
frequency components g, . Finally create the vector g, =[g,,,& pl]

containing the frequency components of the complex Gaussian line spec-
tra.

(5) Generate the second set of N/2 complex random numbers with Gaussian
distribution. Repeat step 4 to obtain the output of the second Complex

Gaussian noise source: g, =[g,,,8 ,, 1, of Figure 1.13.

(6) Generate the fading spectrum S( f') of size N, using the components of
the vector f.
(7) Take the square root of S(f) and multiply the square rooted value by

each of the complex Gaussian line spectra g,(f) and g,(f).

(8) Take the IFFT of both products.
(9) Introduce a 90 degree phase shift into the second product. The two re-

sulting time domain signals are the in phase, 7, (t), and quadrature,

1, (f) , components of the Rayleigh fading signal 7, (7).
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(10) Obtain the magnitude of r,(¢) and r,(¢) signals, square the magni-

tudes, and add them together. Take the root of the sum to obtain the
Rayleigh fading envelope 7, (?).

(11) Normalize the resulting Rayleigh envelope to 4/ rE2 [25]. This results
in the envelope of the average power of 1W. Finally adjust the average

power to the required average power I, by multiplying 7y (t) by

/P, . The final result is the Rayleigh fading envelope, 7, (f) .

Complex Gaussian |8 '(f) o
noise source 4’@’

A r, (t)

‘ JZ

I

Shaping filter

S(F) 0 0 % ag

I

of
-90°

Q‘:

Complex Gaussian % o
noise source X .

Fig. 1.13 The baseband implementation of a Rayleigh fading simulator

The impact of flat fading on the transmitted signal is determined by simply
multiplying the transmitted signal by the fading envelope [24].

1.6 The System Performance Analysis Using the Bit Error Rate
(BER)

In order to analyse the performance of the communication systems an evaluation
of the average probability of symbol error, or the bit error rate (BER), is often
used. In this section, the concept of BER is introduced and the method used to
obtain it described.

The average probability of symbol error is defined as ‘the probability that the
reconstructed symbol at the receiver output differs from the transmitted binary
symbol, on the average’ [6]. The bit error rate of a system is obtained by counting
the number of incorrectly received bits and dividing this number by the total
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number of bits transmitted. By incorrectly received bits it is meant that bit 1 was
received when bit 0 should have been received and vice versa. Therefore, the more
incorrectly received bits, the higher the bit error rate. When measuring the bit er-
ror rate, it is assumed throughout the book that all the bits in the original binary
message are of equal importance.

In every communication system it is the aim of a designer to minimise the bit
error rate as much as possible. The main causes of incorrectly received bits are the
channel disturbances, such as noise and fading. Therefore, the bit error rate can be
reduced, and thus the system optimized, by minimizing the effects of the channel
disturbances on the transmitted signal. A way of presenting the bit error rate is to

plot it against the signal energy to noise power spectral density ratio ( E, /N o)

A typical shape of the bit error rate curve, when plotted against the £, /N , Tatio,

resembles a “waterfall” curve [6], as illustrated in Figure 1.14.

A
BER 10° 7 The highest
acceptable BER
1074 level of 107 [22]
The lower 12| /!
the BER, the S/
better the \ /
performance 10~ ¥
The higher the
1074 E,/N,, the lower
the level of noise
1071
5 10 15 20 25 30 35 4

E,/N, (dB)

Fig. 1.14 A typical shape of a BER curve of a communication system plotted against the

Eb /NO ratio

It can be observed from Figure 1.14 that the higher the E, /N is, the lower

the BER of a system. When a sufficiently low E, /N level is reached, the re-

ceiver can no longer successfully decode the message, resulting in the BER level
of 0.5. For a system to have a satisfactory performance it is often required that the
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BER level not exceed 10~ [28,29]. In the example in Figure 1.14, the BER level
of 107 is reached when the E, / N, ratio is equal to 25 dB.

In order to demonstrate the BER evaluation of a communication system, the
performance of the simplest form of a binary phase shift keying (BPSK) system,
shown in Figure 1.15, is evaluated in noisy and Rayleigh fading channels.

Integrator Threshold

\ /unit

J'OT/z()dt I

r, (1) n(t)

> ()

A
Y \ Local

replica of
the carrier

Carrier

Transmitter Channel Receiver

Fig. 1.15 A bandpass BPSK communication system in a Rayleigh fading and AWGN chan-
nel, where: A =,/2F, /T, and y(t) =cos(27 f.t)

In Figure 1.15, A represents the amplitude of the sinusoidal carrier y(¢). The si-
nusoidal carrier is of frequency much higher than that of the message signal and is
used to up-convert the message signal to a higher frequency for the transmission
across the channel. Depending on the polarity of the binary message symbol m(?),
which takes on the values of 1 or -1, the sinusoidal carrier is modulated to produce
two possible outcomes:

2F
s,(1) = L cos(2r f.1) (1.6.12)
Tb
2F
5,(t)=— Tb cos(27 f.t) (1.6.1b)
b

where E, and T, denote the energy and time duration of one bit, respectively.

f.. denotes the carrier frequency.
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Note that equations 1.6.1a and 1.6.1b are orthogonal to each other. It should be
observed from equations 1.6.1a and 1.6.1b that there is only one basis function of
unit energy, expressed by equation 1.6.2:

@) = \/Tz cos(2r f.t) (1.6.2)

In terms of equation 1.6.2, equations 1.6.1a and 1.6.1b can be expressed in the
form of equations 1.6.3a and 1.6.3b:

5,()=AE,0,(1), 0<i<T, (1.6.3)

s,(t)=—E,0,(t), 0<t<T, (1.6.3b)

In this one-dimensional symbol space, shown in Figure 1.16, the coordinates of
the message points are represented by equations 1.6.4a and 1.6.4b:

T,
sy =] 500, dt = +|[E, (1.6.42)

T,
55 =["5:(09,(0dt =—E, (1.6.4b)

Decision: Bit 0 Decision: Bit 1

Region 22 ;L Region Zi
. 0 E . o,
Message point 2 E Message point 1

Decision boundary

Fig. 1.16 The symbol space of the system of Figure 1.15

If the received signal point falls in the region Z2 of Figure 1.16, the decision is
made that bit 0 was sent. Alternatively, the decision is made that bit 1 was sent if
the received signal point falls in the region Z1. If, however, bit O is sent but the
received signal point falls in the region Z1, due to the noise in the system, the re-
ceiver will incorrectly decide in favour of bit 1, thus causing an error of first kind.
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The incorrect decision of second kind is made if bit 1 is sent but the received sig-
nal point falls in the region Z2. In order to optimize the performance of the system
in the AWGN channel, it is important to separate the message points as far apart
as possible in their symbol space. In case of the system of Figure 1.15, the deci-
sion boundary, or threshold, is at zero. It is often the case, however, that the

threshold is not at zero, and furthermore, is not fixed, but varies with the E b /N v

ratio [30,6].

The mathematical procedure of obtaining the theoretical BER curve for the sys-
tem of Figure 1.15, but without fading in the channel, is now briefly demonstrated
[6]. The probability that the error of the first kind is made, is calculated in the fol-
lowing manner. Consider the decision region associated with bit 1 described by

Z 0 0<x <oo

where X, is related to the received signal x(¢) by equation 6:
T,
x =[x, (0di (1.6.5)

The conditional probability density function of random variable X, , given that bit
0 was transmitted, is defined by equation 1.6.6:

1 [
x 10)=——exp| ——(x, —5,,)°
Jx, (%, 10) N P No(l 21)}
- (1.6.6)

expl -y JE—)}

3

TN

The conditional probability that the receiver decides in favour of bit 1, given that
bit 0 was transmitted, is expressed by equation 1.6.7:

o=, fr (5 10)dx,

e BT o

| - (1.6.7)
"N b

Let the variable z be defined by equation 1.6.8:

Z:Q%TQ+JEj (1.6.8)



20 1 Introduction to Multi-user Mobile Communication Systems

Differentiating equation 1.6.8 with respect to X;, and making X, the subject of
the formula, equation 1.6.9 is obtained:

dx, =+/N, dz (1.6.9)

Equation 1.6.7 can now be written in the compact form of equation 1.6.10 by
changing the variable of integration from X, to z.

(1.6.10)

[ J‘,/E,,/N exp ]
Note the so-called ‘complementary error function’ defined by equation 1.6.11 [6]:
2 - 2
erfc(u) = TI exp(—z7)dz (1.6.11)
7z- u

Equation 1.6.10 can now be put into the form of equation 1.6.11, and expressed by
equation 1.6.12:

E
Do =%erfc N—” (1.6.12)

o

Due to the fact that the symbol space of Figure 1.16 is symmetrical about the ori-
gin, it follows that the expression for the incorrect decision of the second kind is
also described by equation 1.6.12, as shown by equation 1.6.13:

Por = 1erfc E, (1.6.13)
01— A I .6.
2 N

o

Averaging the conditional probabilities p,, and p,,, equation 1.6.14 is obtained.

Equation 1.6.14 represents the worst case probability of error, that is, the worst
case bit error rate for coherent BPSK in an AWGN channel when perfect synchro-
nization is assumed.

P =—erfc] | — (1.6.14)
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Furthermore, it is readily verifiable that in the Rayleigh fading channel, the
theoretical expression for the bit error rate is given by equation 1.6.15 [7]:

o

(1.6.15)
I+,

BER=E=l 1-
2

where ¥, = E{O{Z}- (E,/N,)=P -(E,/N,) and & is a Rayleigh random
variable [7].

The empirical and theoretical BER curves for the system of Figure 1.15, under
the influence of AWGN and Rayleigh fading, are presented in Figure 1.17. The
theoretical BER curves are obtained by evaluating equations 1.6.14 and 1.6.15.
From Figure 1.17, one can see a very close match between the empirical and theo-
retical curves in the presence of AWGN alone, as well as in the AWGN and
Rayleigh fading channel. This fact indicates that the AWGN and Rayleigh fading
simulators work correctly. Note that the speed of the receiver with respect to the
transmitter has been chosen to be v =355 km/h, and the carrier frequency

f. =900 MHz. Substituting these values into equation 1.5.5, it is readily verifi-
able that in this case the maximum Doppler frequency shift f, =45.83 Hz. It

can be observed from Figure 1.17 that the highest acceptable BER level of 107 is
reached at the E, /N , of approximately 7 dB for the system in the AWGN

channel only and at 24 dB for the system in the Rayleigh fading and AWGN
channel.

The system of Figure 1.15 has been analyzed at bandpass, meaning that the
transmitted data has first been up-converted to a higher frequency using a sinusoi-
dal carrier. It should be noted that the performance of the baseband systems,
where carrier is not included, is equivalent to those of the bandpass systems.
However the simulations performed at baseband are more economical on comput-
ing resources than simulations performed at bandpass [31]. Therefore, in most of
the analysis in the following chapters, unless otherwise specified, systems will be
analysed at baseband.

It is of crucial importance for the accurate retrieval of the bits transmitted at the
receiver that the carrier at the transmitter and its replica at the receiver are syn-
chronized. The standard techniques used to achieve carrier synchronization exist
[32-34]. Therefore, in case of Figure 1.15, the synchronization among the carrier
at the transmitter and its replica at the receiver has been assumed. In addition to
the carrier synchronization, clock synchronization, also known as timing/clock
recovery, must be achieved and maintained [32-34]. Clock synchronization in-
volves adjusting the clock of the receiver, which controls the integrator and the
sampling of the threshold unit of Figure 1.15, to the clock of the transmitter. In the
following section, the effect of inaccurate synchronization is investigated at base-
band and its adverse effect on the BER curve demonstrated.
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Fig. 1.17 The BPSK BER curves: (a) the dashed line is for the theoretical BPSK in AWGN
channel only; (b) the open circles are for the empirical BPSK in AWGN channel only; (c)
the solid line is for the theoretical BPSK in Rayleigh fading and AWGN channel; (d) the
asterisks are for the empirical BPSK in Rayleigh fading and AWGN channel.

1.7 The Synchronization Problem

In this section, the effect of synchronization error on the bit error rate of a BPSK
system is shown. The crucial importance of the accurate synchronization within a
coherent communication system is thus demonstrated. A coherent communication
system is a system which requires synchronization at the receiver in order to suc-
cessfully decode the information transmitted. In contrast to coherent systems, non-
coherent systems do not require synchronization at the receiver. However, these
systems are not the topic of this book and will therefore not be considered any
further.

The analysis is performed at baseband in an AWGN channel only. Figure 1.18
shows the equivalent system to the one of Figure 1.15 but at baseband and with no
Rayleigh fading.



1.7 The Synchronization Problem 23

| n)
s12(0) | /l\ Lx) [ )
m(t)—> 12 —()— > J‘() Odt | v F > ()
Transmitter E Channel E Receiver

Fig. 1.18 A baseband BPSK communication system in an AWGN channel

With non-ideal synchronization, the worst scenario probability of error of the
BPSK communication system of Figure 1.18 is expressed by equation 1.7.1. In

equation 1.7.1, 7 is the bit period and 7 is the signal time shift, that is, the off-

set due to the non-ideal synchronization.

T, -2 E
P, :lerfc M il (1.7.1)
2 T, N,

T
where: OST<7b.

Equation 1.7.1 is plotted in Figure 1.19 for the time shifts of 7=0, 7 =1,

T=2,7=3 and 7 =4 time units. The corresponding empirical curves are
also plotted for comparison. In the case of Figure 1.19, the duration of one bit has

been chosen to be 8 chips long, thatis 7, = nT, = 8T seconds, where T, is the

time duration of a single chip.

It should be observed from Figure 1.19 that the BER curves degrade ever more
significantly as the time delay 7 increases. Finally, at the time delay 7 equal to half
of the bit duration, the bit error rate reaches its maximum value of 0.5 and remains

there for any E, /N , - Therefore, it is most important to obtain, and maintain,

synchronization within the system.

The mathematical procedure, similar to that of section 1.6, of obtaining equa-
tion 1.7.1 is now briefly demonstrated [6]. Assuming non-ideal synchronization,
the coordinates of the message points are now represented by equations 1.7.2a and
1.7.2b:



24 1 Introduction to Multi-user Mobile Communication Systems

(T, —27) ¢1, (T, —27)
=] 0w =+ = E, (1.7.22)
T —27) ¢7, T —27
Sa1 :(bT—)IO Sz(t)¢1(t)df:_(bT—)\/ E, (1.7.2b)
b b

where §,(¢) , §,(f) and @,(f) are as defined in equations 1.6.1a, 1.6.1b and
1.6.2, respectively.

¢ Empirical
— Theoretical

10"‘ | | | 1?0 F=1 | T\=2 | | T\=3
0 2 4 6 8 10 12 14 16 18 20 22
Eb/No (dB)

Fig. 1.19 Theoretical (solid line) and empirical (asterisks) BPSK BER curves for different
synchronization errors in an AWGN channel
Note that when t = 0 equations 1.7.2a and 1.7.2b reduce to +./E, and

—+/E, , respectively. The conditional probability density function of random

variable X, given that bit O was transmitted, is now defined by equation 1.7.3:
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1 o
X 10)=——exp| ——(x, —5,,)*
fx, (x,10) N P Na(l 21)}

o (-

- (1.7.3)

2

T, -2

:#exp _L XI+M 'Eb
TN, N, T,

The conditional probability that the receiver decides in favour of bit 1, given that

bit 0 was transmitted, is then expressed by equation 1.7.4:

P = J.Ow fx, (x, 10)dx,
(17.4)

2
1 = 1 (T, —27)
:WL exp —N—o(xl +bT—b\/E_bj dx,

Let the variable z now be defined by equation 1.7.5:

1 (T, —27)
1=——| x, +—2—"2/E (1.7.5)
‘\lNu ( l Tb bj

Differentiating equation 1.7.5 with respect to X, and again making X, the subject
of the formula, equation 1.7.6 is obtained.

dx, =+/N, dz (1.7.6)

Equation 1.7.4 can now be written in the compact form of equation 1.7.7 by
changing the variable of integration from X, to z:

1 o
P = ﬁj(ﬂl—”) E,IN, /T, exp[— 2 ]dz 47

Keeping in mind that the complementary error function is defined by equation
1.6.11 [6], it is then readily verifiable that the worst case bit error rate, when syn-
chronization is not assumed, is expressed by equation 1.7.8:

T, -2 E
P, ~Lerte 4, -20) |E, (1.7.8)
2 T, N,
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The existence of the factor (T, —27)/T, of equations 1.7.2a and 1.7.2b is

now explained by considering, for simplicity, the baseband case of Figure 1.19.
Assuming ideal synchronization, the integrator at the receiver, sums up along a
single bit as shown in Figure 1.20, case 1. In case 1, the integration result (sum) is

therefore + A. However in case 2, when the receiver is out of synchronization,
3
the sum is +— A. Therefore, the shift of one discrete point results in the reduc-

tion of a bit by 25 %. Similarly, a shift of two discrete points results in the bit
reduction of 50 %. This behaviour is represented by the term (T, —27)/T, of

equations 1.7.2a and 1.7.2b. It has thus been demonstrated that the separation of
symbols in their symbol space, when 7 # 0, is reduced from its full potential as
compared to the situation when 7 = 0 and (7, —27)/7T, =1. The scenario of
Figure 1.20 is the worst case as every new bit transmitted has been assumed to be
different from the one preceding it, so that the bits follow the pattern: [0 1010 1
0...]. In this case equations 1.7.2a and 1.7.2b strictly hold. However, had the bit
pattern involved the stream of bits where the new bit can be the same as the one

preceding it, equations 1.7.2a and 1.7.2b and thus equation 1.7.1 (1.7.8), would
not be accurate.

+A/8 Case 1: In synchronization

—-A/8 .—O—O—O—Q—O—H—I l—.—H—H—O—O— t

+A/8

T_,_,_,_._,_._._| Case 2: Out of synchronization
—Al8 o—o—o—o—o—o—o—‘J l—o—o—o—o—o—o—o— t

Fig. 1.20 The ‘in’ synchronization and ‘out of’ synchronization cases for the baseband
BPSK communication system of Figure 1.18

The one-dimensional symbol space, with the synchronization factor
(T, —27)/T,, is shown in Figure 1.21. Clearly, the symbol space is reduced for

any value of 7 that is greater than 0, thus causing the degradation in the bit error
rate performance.
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Decision: Bit 0 Decision: Bit 1

Region 22 J‘ Region Zi
T,-2 : T, -2
_(bT T)\/ET E +(1,T T)m
"o 0 1 "o 9,
Message point 2 E Message point 1

Decision boundary

Fig. 1.21 The symbol space of the system of Figure 1.18 with the synchronization error
factor: (T, —27)/T,

The three main types of synchronization introduced in this chapter, namely
clock, carrier and sequence synchronization, are summarised within a general
structure of a digital communication system of Figure 1.22. The clock and carrier
synchronization techniques have been extensively studied [32-34] and are always
assumed within this book. The motivation of the book is to investigate the se-
quence synchronization properties of chaotic systems and their application to sin-
gle and multiple-access secure communications. The inherent properties of chaotic
systems, discussed in the next chapter, make them of prime interest in secure
communications. However, in order to implement chaotic systems within coherent
communication systems, one must be able to synchronize them.

\ \
1 1
Chaotic or PR 1 1
! ' Sequence
sequence ; : duen
generator : | > synch.
1 1 unit
1 1
: = a I
Linear : : Linear IT» ”
> — dr B o b
m(t)=> operator ] : operator 0 0 m(t)
: E 7
E E Carrier
1 1 synch. Clock
i 1 unit »  synch.
1 1 unit
1 1
Transmitter E E Receiver

Fig. 1.22 General structure of a digital communication system showing three different types
of synchronization. PR stands for pseudo random. The ‘Linear operator’ denotes either an
addition or multiplication operation.
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1.8 Conclusion and Book Organization

In this chapter, the three main categories of the multi-user (multiple access) mo-
bile communication systems, namely FDMA, TDMA and CDMA, as well as some
of their hybrids, have been introduced. Following this, the disturbances encoun-
tered within the physical transmission channel, namely the AWGN and the
Rayleigh fading have been presented. Furthermore, the concept of the BER, which
is used to measure the effects of the channel imperfections on the transmitted sig-
nal, has been described. Finally, the effect of synchronization error on the BER
performance has been demonstrated.

The remainder of the book is organized in the following manner. In chapter 2,
chaotic signals and their synchronization methods within secure communication
systems are introduced. In chapters 3-5 and 7 the concept of synchronization
within chaotic systems is studied and the novel methods of achieving it proposed.
In particular, chapters 3 and 4 investigate the synchronization of flows and maps,
respectively, using tools from nonlinear control theory and propose novel methods
of achieving synchronization. In chapter 5, a novel mathematical analysis for pre-
dicting master-slave synchronization of chaotic systems is proposed and demon-
strated on three different systems. Chapters 6-9 investigate synchronization of
chaotic signals within the single and multiple access chaotic communication sys-
tems and evaluate their performance in terms of BER. A number of novel chaotic
communication systems based on the principles of synchronization of chapters 3-5
and 7, are proposed in chapters 6-9. In particular, in chapter 6 single user systems
based on the synchronization techniques of chapters 3-5 are proposed whereas in
chapter 9 these are extended to TDM multiuser systems. In contrast to this, in
chapter 7, the traditional DS-CDMA synchronization technique is implemented
within the multi-user DS-CDMA chaotic communication scheme. In addition,
chapter 8 proposes a chaos based TDM multiuser system based on the DS-CDMA
synchronization technique. Furthermore, chapter 10 proposes techniques for the
optimization of security within chaotic communication systems. In chapter 11, the
conclusions and the future directions are outlined. Finally, the methods of de-
noising chaotic communication systems and thus improving their BER perform-
ance are proposed and investigated in the appendix.
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Chapter 2
Chaotic Signals and Their Use in Secure
Communications

This chapter introduces nonlinear dynamical systems known as chaotic systems
and describes their suitability for application to secure communications. A nonlin-
ear or chaotic signal is characterised by its high sensitivity to parameter and initial
condition perturbations, the random like nature and broadband spectrum [1]. From
a nonlinear dynamical perspective, chaotic motion is a motion which possesses at
least one positive Lyapunov exponent. Furthermore, for a given set of parameters
and initial conditions chaotic motion is highly deterministic. Among other applica-
tions, these properties make chaotic systems suitable for the application in secure
communications [2-9]. One of the main reasons for the increased security of
communication provided by the chaotic signals is their broadband nature. In many
cases the broadband nature of a chaotic system allows for the effective spectral
cover up of the message by the chaotic carrier. In addition, the high sensitivity of
chaotic signals to parameter and initial condition perturbations often can act as the
encryption keys. In this chapter, the distinguishing features of chaotic systems are
first presented and some approaches, used to identify chaotic behavior, are intro-
duced. Furthermore, the approaches and the suitability of chaotic systems to the
implementation within secure communication systems are examined. Finally,
some of the noise reduction techniques, used to filter chaotic communication sys-
tems, are introduced.

2.1 Chaotic Systems

One of the earliest observations of nonlinear behaviour was made in 1961 by the
Japanese electrical engineer, Yoshisuke Ueda. The observation occurred when
Ueda conducted analog computer simulations of the Duffing/Van der Pol mixed
type equation:

d*v
dr’
where: £ =0.2, y=8, B=0.35 and v=1.02.

—,u(l—}/vz)%+03 = Bcos(vt) 2.1.1)

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 31
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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The phenomenon output by the computer subsequently became known as chaos
[10]. At around the same time American meteorologist, Edward Lorenz, inde-
pendently discovered chaos in a third order autonomous system. Since then, a
large number of chaotic systems have appeared in the literature [1].

Chaotic systems can be divided into those described by differential equations,
known as flows, and those described by difference equations, known as maps
[1,11]. The dynamics of a chaotic system can be represented in the time domain as
time series or in phase space as a strange attractor [1,11]. The time series and the
corresponding “broken-egg” strange attractor, obtained by numerically integrating
equation 2.1.1, are shown in Figure 2.1a and Figure 2.1b, respectively.
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Fig. 2.1a The broken egg chaotic time series, Fig. 2.1b The broken egg strange attractor

u(t)

The time series graph of Figure 2.1a is obtained by simply plotting the ampli-
tude of the signal against time. On the other hand, the strange attractor is obtained
by plotting two or more of the state variables of the system against each other. The
state variables of the system are most often defined as the first or the second de-
rivative of the time series, or a combination of those. It is readily verifiable that
the system of equation 2.1.1 can also be represented in the state-space form of
equation 2.1.2:

x=y
;/z,uy—,uyxzy—x3 + Bcos(vz) (2.12)
=1

where X =V, y =0 and Z =1 are the state variables of the system.
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2.1.1 Chaotic Flows

The chaotic system of equation 2.1.1 (2.1.2) is an example of a chaotic flow. The
Lorenz chaotic flow, which is an example of another well known flow, is now
presented and its broadband nature and high sensitivity to parameter perturbations
demonstrated. Further examples of some of the well known flows, such as the
Rossler [12] and the Rucklidge flow [13], can be found in [1,12,13].

The dynamics of the Lorenz chaotic system, described by equation 2.1.3:

x=0(y-x)
y=rx—y—xz, (2.1.3)
z=-bz+xy

are shown in Figure 2.2 when the parameter ¢ =10, r =28 and b =8/3.

x(t)
y(H

% 5 10 15 20 25 30 35 20 305 5 0 5 o
Time x(t)

Fig. 2.2a The Lorenz chaotic time series, x(f) Fig. 2.2b The Lorenz strange attractor

The dynamics of the strange attractor of a chaotic flow are referred to as a tra-
jectory [1]. The trajectory of a chaotic flow is characterised by a smooth, continu-
ous nature. An example of a chaotic flow is a turbulent flow of water from a pipe
[1].

The broadband nature of the Lorenz chaotic flow can be observed from Figure
2.3 where the power spectral density of the Lorenz x signal has been plotted
against the normalized frequency. Furthermore, the high sensitivity of the Lorenz
chaotic flow to parameter perturbations is demonstrated in Figure 2.4. It can be
observed from Figure 2.4 that a small alteration to a parameter of the system
causes the system to generate an entirely different chaotic signal. It is shown in
chapter 6 how this property of chaotic signals can be used in the design of secure
chaotic communication systems.
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Fig. 2.3 The power spectral density (Px) of the Lorenz x signal versus the normalized fre-
quency
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Fig. 2.4 Sensitive dependence on the parameter perturbations within the Lorenz chaotic
flow
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2.1.2 Chaotic Maps
The dynamics of one of the most well known chaotic maps, the Hénon map:

X, =1-aX’+bY,
Y, =X

n+l n

2.1.4)

are shown in Figure 2.5 when the parameter @ =1.4 and b =0.3.
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Fig. 2.6 The power spectral density (Px) of the Hénon X , signal versus normalized

frequency.
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The broadband nature of the Hénon chaotic map can be observed from Figure
2.6 where the power spectral density of the Hénon X, signal has been plotted.

Furthermore, the high sensitivity of the Hénon chaotic map to parameter perturba-
tions is demonstrated in Figure 2.7. As for the Lorenz chaotic flow, it can be ob-
served from Figure 2.7 that a small alteration to the parameter of the Hénon map
causes the system to generate an entirely different chaotic signal.
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Fig. 2.7 Sensitive dependence on the parameter perturbations within the Hénon chaotic map

The logistic map is an example of another well known chaotic map. The logis-
tic map time series are generated using equation 2.1.5 [14].

X, =1-2X’ (2.1.5)

n+l

The dynamics of the logistic map are shown in Figure 2.8 [15]. Furthermore,
the dynamics of some of the other well known maps, such as the cusp, Lozi and
Chirikov chaotic map, can be found in [1].

The dynamics of the chaotic map are referred to as an orbit [1]. In contrast to
the trajectory of chaotic flows, the orbit of a chaotic map is characterised by a
non-smooth, discontinuous motion. It can be observed from Figures 2.5 and 2.8,
that each chaotic system has its own signature in phase space, that is, a unique
attractor characterising it. An example of a chaotic map is the non-periodic drop-
ping of water from a pipe [1].



2.2 Lyapunov Exponents 37

f

0.81
0.6[
05 0.41

0.2

B oo
x

-0.2r

05 1 -0.41
-0.61

- 1 -0.8F

0 10 2 30 4 5‘0 60 o 80 % 100 1 70‘8 70‘.6 0‘.4 70‘2 6 0‘2 0‘4 0‘.6 0‘8 1
n Xn
Fig. 2.8a The logistic chaotic time series, Fig. 2.8b The logistic map

n

2.2 Lyapunov Exponents

One of the main characteristics of chaotic systems is that they are deterministic,
but extremely sensitive to the starting points, that is, their initial conditions. By
high sensitivity to the initial conditions it is meant that the two trajectories (orbits),
starting from infinitesimally close initial conditions, quickly diverge in phase
space. This phenomenon is illustrated in Figures 2.9 and 2.10 on the Lorenz cha-
otic flow and the Hénon chaotic map time series, respectively. However, given the
knowledge of the exact initial conditions, chaotic systems are predictable. It is
shown in the next section how this property of chaotic signals can be used to hide
(encrypt) messages within a communication system.
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Fig. 2.9 Sensitive dependence on the initial conditions, denoted by x(0), ¥(0) and z(0),
within the Lorenz chaotic flow
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the Hénon chaotic map

The Lyapunov exponents of a system under consideration characterise the na-
ture of that particular system. They are perhaps the most powerful diagnostic in
determining whether the system is chaotic or not. Furthermore, Lyapunov expo-
nents are not only used to determine whether the system is chaotic or not, but also
to determine how chaotic it is. They are named after the Russian mathematician,
Aleksandr Mikhailovich Lyapunov, who introduced the idea around the turn of the
19" to the 20™ century [16,1]. The Lyapunov exponents characterise the system in

the following manner. Suppose that d, is a measure of the distance among two

initial conditions of the two structurally identical chaotic systems. Then, after
some small amount of time the new distance is:

d(t)=d, 2", 2.2.1)

where A denotes the Lyapunov exponent.
For chaotic maps, equation 2.2.1, is rewritten in the form of equation 2.2.2:

d,=d,2"", (222)

where A denotes the Lyapunov exponent and # a single iteration of a map.

The choice of base 2 in equations 2.2.1 and 2.2.2 is arbitrary [16]. The
Lyapunov exponents of equations 2.2.1 and 2.2.2 are known as local Lyapunov
exponents as they measure the divergence at one point on a trajectory (orbit). In
order to obtain a global Lyapunov exponent the exponential growth at many points
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along a trajectory (orbit) must be measured and averaged [16]. Therefore, the
global, or the largest, Lyapunov exponent is represented by equation 2.2.3:

ul d@)
Z (2.2.3)
N - k=1 d (tk 1)

Similarly, for chaotic maps, the global Lyapunov exponent is defined by equa-
tion 2.2.4:

N
—hm > log, df( ) (2.2.4)
n—eo N k_)m

where f(X,) =X,

A motion is said to be chaotic if the global Lyapunov exponent is greater than
zero [16,1]. A motion with a negative global Lyapunov exponent implies a fixed
point or a periodic cycle [1]. In certain cases it is possible to analytically evaluate
Lyapunov exponents of the system [1]. If, however, analytical evaluation is not
possible, one must resort to the numerical evaluation [16,1].

A chaotic system has as many Lyapunov exponents as it has dimensions. How-
ever, the global (largest) Lyapunov exponent is the most important one as its
evaluation determines whether the system is chaotic or not. For instance, the one-
dimensional logistic map of equation 2.1.5 (Figure 2.8) has a single positive
Lyapunov exponent. The two-dimensional Henon map of equation 2.1.4 (Figure
2.5) has two Lyapunov exponents, one negative and the other positive. Further-
more, the Lorenz chaotic flow of equation 2.1.3 (Figure 2.2) has three Lyapunov
exponents, one positive, one negative and one equal to zero.

Beside Lyapunov exponents, there are other techniques used to determine
whether a system under consideration is chaotic or not, such as the correlation
dimension [1] and the Kaplan-Yorke (or Lyapunov) dimension [1]. Unlike the
Lyapunov exponent, which measures the attractor’s average predictability, the
dimension of an attractor measures its complexity. The attractor dimension is less
than but not equal to the number of variables of a chaotic system. Furthermore, it
is not an integer, but a fraction. Thus the attractor dimension is also called the
fractal dimension.

2.3 Application of Chaos to Communications

Unlike pseudo random signals, which are limited in number and are periodic, cha-
otic systems can theoretically produce infinite numbers of chaotic signals which
are non-periodic. This property and the broadband nature of chaotic signals
make them of particular interest in secure communications. In this book, two
approaches to chaotic communication systems are investigated. The first ap-
proach, investigated in the sixth chapter, is that based on the principles of chaotic
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synchronization [17]. The second approach, investigated in the seventh chapter, is
that based on the classical synchronization techniques used within DS-CDMA
systems.

2.3.1 Chaotic Communication Systems Based on the Principles of
Chaotic Synchronization

The general block diagram which demonstrates the principles of chaotic synchro-
nization is presented in Figure 2.11. In Figure 2.11, the master chaotic system
transmits one or more of its signals to the slave system. The slave system is an-
other chaotic system, which in general, can be entirely different from the master
system. Depending on the nature of the master signal supplied to the slave system,
the slave system may or may not synchronize to the master system. If the master-
slave system does not synchronize for a given master signal(s), it is possible to
design a controller at the slave side which enforces synchronization. The princi-
ples of chaotic synchronization are thoroughly discussed in the next chapter.

The synchronized chaotic signals

> 4.

X X
Slave system |—»

pa—

Controller

\ 4

Master system

Fig. 2.11 General block diagram demonstrating the principles of chaotic synchronization,
A
where X denotes the master and X the slave signal

Once the master-slave synchronization has been achieved, it is possible to
design a communication system based on the principles of chaotic synchroniza-
tion. The general block diagram of such a communication system is illustrated in
Figure 2.12. The communication system of Figure 2.12 is therefore entirely based
on the principles of chaotic synchronization and an ideal synchronization within it
cannot be assumed. This is in contrast to DS-CDMA based systems where one can
assume perfect synchronization in order to evaluate the benchmark performance,
as was explained in the first chapter. In Figure 2.12, the sequence synchronization
unit and the linear operator have been specifically highlighted to clarify the rela-
tion of this chaotic synchronization based system to the general system of Figure
1.22. As will be shown in chapter 6, the message m of Figure 2.12 can be en-
crypted within the chaotic carrier x via the parameter or the initial condition per-
turbations, or by simply adding it directly onto the chaotic carrier.
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Fig. 2.12 General block diagram of the chaotic communication system based on the concept
of chaotic synchronization

2.3.2 Chaotic Communication Systems Based on the DS-CDMA
Principle

The implementation of chaotic signals within chaos based DS-CDMA systems is
possible due to the fact that the chaotic signals are approximately mutually or-
thogonal. In particular, this property is more dominant within signals generated by
chaotic maps than chaotic flows.

For instance, consider the logistic map, whose time series is generated using
equation 2.1.5 [14] and whose dynamics are shown in Figure 2.8 [15]. The two
different chaotic time series generated by the same logistic map, but with different
initial conditions, are highly orthogonal as is demonstrated in Figure 2.13a by the
cross-correlation function with no dominant peaks. The autocorrelation function of
the logistic map time series is presented in Figure 2.13b showing the dominant
peak. The length of the logistic map time series used to produce Figures 2.13a and
2.13b is equal to 511 points (chips). In Figures 2.13a and 2.13b ¢ denotes the time
delay. Also, note that the correlation functions have been normalized to the peak
of the autocorrelation function.

As opposed to the logistic map of equation 2.1.5, the Lorenz chaotic flow of
equation 2.1.3, for instance, has the correlation properties illustrated in Figures
2.14a and 2.14b. The length of the Lorenz flow time series used to produce
Figures 2.14a and 2.14b is equal to 2001 points (chips). In contrast to Figure 2.13a,
it can be observed from Figure 2.14a that the cross correlation function of the Lo-
renz flow contains dominant peaks which are strongly pronounced. Furthermore,
whereas the autocorrelation function of the logistic map resembles an impulse func-

tion, with a single dominant peak at 7 = 0, the autocorrelation function of the Lo-
renz flow does not. This can in particular be observed by comparing the close ups
of Figures 2.13b and 2.14b and observing that the logistic map autocorrelation

function has a sharp falloff from 1 to 0 at = 0 and ¢ = £1, whereas the Lorenz
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flow does not. This indicates that the logistic map time series is more orthogonal to
itself than the Lorenz flow time series. Therefore, in this book, only the logistic
map time series will be used within a DS-CDMA system for spreading.
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Fig. 2.13a Cross-correlation of logistic map Fig. 2.13b Autocorrelation of logistic map
time series time series. The close up is shown in the top
right hand corner
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Fig. 2.14a Cross-correlation of Lorenz flow Fig. 2.14b Autocorrelation of Lorenz flow
time series time series. The close ups are shown in the
top right and left hand corners

A DS-CDMA system where chaotic signals are used to spread data is termed
chaos based DS-CDMA system. A chaos based DS-CDMA communication sys-
tem with perfect sequence synchronization assumed is shown in Figure 2.15 [18].

In Figure 2.15, x(#) denotes the chaotic spreading signals which are multiplied

by the binary message signals m(#). The products are then summed to produce the
signal c(f) which is transmitted through the channel:

c(t) = imi (1A x, () (2.3.1)
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Fig. 2.15 The chaos based DS-CDMA system with perfect sequence synchronization
assumed

The received signal r(t) =c(¢)+n(¢t) is despread and correlated with the

A
punctual despreading codes to recover the message m, (t) of each of the M users
in the system:

my (1) =T, [ | :_T;LTC 1) A x, (1) dt}

kLT,

{f m, () A, x,(t) + n(t)} A,x, (1) dt}

(k=1)LT,

|
I [ om0 A2 @yr

(k=1)LT,

wr, U kLT,
o, 2mOAA, X Ox,Odi+] A, x, O dr

(k=DLT, &= .
i#q

(2.3.2)

where, T, [ ] is the signum function which denotes the thresholding operation and

assigns either a -1 or a 1 depending on whether the value in the brackets is nega-
tive or positive, respectively [19]. It is assumed that all the received signals have
the same average power.

Due to the mutually orthogonal properties of the chaotic spreading sequences
produced by the logistic map with different initial conditions, as demonstrated in
Figures 2.13a and 2.13b, equations 2.3.3a and 2.3.3b are expected to hold:

KLT, (Ot > 0 . | )
J.(k—l)LTL,mq(t) qxq(t) t> if m,(t) = (2.3.3a)
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J'kLTF (OA*X>()dt <0 if m (t)=-1 2.3.3b
m X l m = - J.
(k=1)LT, q q9 49 q ( )

Provided that the power of noise in the system and the interferences
among different users are comparatively low to the power of the signal,
the noise and the interferences terms of equation 2.3.2 are expected

kLT,
to be approximately equal to zero, that is: J. n(t)A,x,(t)di =0 and
(k=D)LT,

M

J-kLT(, Zmi (Z)AiAq X, (t) X, (1)dt =0, so that equation 2.3.2 takes on the

k-1)LT,
(k=DLT, &
i#q

form of equations 2.3.4a and 2.3.4b:
my()=1 if m(t)=1 (2.3.42)

moty==1 i m(t)=-1 (23.4b)

Therefore, by assigning the unique initial conditions to each of the M users
provides for the increased security of transmission as only the users with the same
initial conditions can decrypt the message at the receiver.

2.4 Noise Reduction within Chaotic Communication Systems

In the previous section, the two main approaches to the implementation of chaotic
systems to secure communications have been described. In this section, the tech-
niques of noise reduction by means of de-noising (or filtering) are now briefly
introduced.

Noise removal from chaotic time series has been attempted by a number of re-
searchers [20-27], among others, and is still an active area of research. Filtering
methods include linear filters [20,22] and different wavelet techniques [20,21,23-
25], among other. A potential application of chaotic filtering techniques lies in
chaotic communication systems [20,26,27]. In this book, the linear and wavelet
techniques have been developed and used to filter a newly proposed chaotic com-
munication system based on the principles of chaotic synchronization [20]. While
the general block diagram of a chaotic communication system with the filter em-
bedded inside the receiver is shown in Figure 2.16, the complete results are
presented in the appendix. The appendix should be read only after reading
chapters 3-6.

In Figure 2.16, the filter unit processes the received signal X, and produces its
filtered version X, . The filtered signal x, is then fed into the slave system. In

this book, three different kinds of filtering techniques have been developed and



2.5 Conclusion 45

Sequence synchronization unit

l

Master system

il

Filter

Linear
operator

Transmitter Channel Receiver N

Fig. 2.16 General block diagram of a chaotic communication system based on the concept
of chaotic synchronization with the filter unit incorporated

implemented within the chaotic communication system. The filtering techniques
include those based on the running average finite impulse response (FIR) filter [1]
and those within the Haar wavelet [28] and the Daubechies wavelet domain [28].
It has been shown, in terms of the bit error rate, that both linear and wavelet filters
significantly improve the noise performance of the system [20].

2.5 Conclusion

In this chapter, nonlinear dynamical systems, known as chaotic systems, have
been introduced and their suitability to the application to secure communication
systems outlined. Chaotic behaviour was recognised by the scientific community
in the early sixties. It was characterized by apparent random behaviour, high sensi-
tivity to parameter and initial condition perturbations and broadband spectrum.
These were some of the properties that led to the belief that chaotic signals could
be used within secure communications. Here, two different types of chaotic sys-
tems, known as flows and maps, have first been introduced and their broadband
nature and high sensitivity to parameter and initial condition perturbations demon-
strated. The Lyapunov exponents which are used to diagnose and characterize the
system have then been presented. Furthermore, the two different approaches of
implementing chaotic systems within secure communication systems have been
outlined. These include chaotic communication systems based on the principles of
chaotic synchronization and those based on the DS-CDMA principle. Finally,
some of the filtering techniques that can be used within chaotic communication
systems have been briefly introduced.
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Chapter 3
Chaotic Synchronization, Conditional Lyapunov
Exponents and Lyapunov’s Direct Method

In chapter 2, the underlying characteristic of chaos, such as their high sensitivity
to parameter and initial condition perturbations, the random like nature and the
broadband spectrum, were outlined. Due to these characteristics it was originally
thought that chaotic systems could not be synchronized and thus could not be used
as part of the coherent communication systems, where synchronization is an
integral part of operation. However, this was not the case and in this and the next
two chapters, synchronization of chaotic systems is investigated. In this chapter,
the basic concepts of chaotic synchronization are outlined. Its characteristics are
examined in terms of the conditional Lyapunov exponents and Lyapunov’s direct
method. Lyapunov’s direct method is then used to develop a general approach in
the design of synchronous chaotic systems.

The first to study the topic of chaotic synchronization were Yamada and
Fujisaka in 1983 [1], and Afraimovich et al. in 1986 [2]. However it was not until
1990 when Pecora and Carroll (PC) introduced their method of chaotic
synchronization [3] and suggested application to secure communications that the
topic started to arouse major interest. In the PC method one has a master system
and a slave system, with a single signal of the master system driving the slave
system [3,4-11]. Similar master-slave synchronization schemes have also been
investigated in [12,13]. Besides the PC synchronization method, numerous chaos
synchronization methods have been developed in the last decade and a half, such
as the Ott-Grebogi-York (OGY) based chaos synchronization method [14,15],
John and Amritkar (JA) synchronization method [16] and Pyragas’
synchronization method [17]. In more general terms the chaotic synchronization
phenomena can be divided into identical synchronization (IS) and general
synchronization (GS), among other types [18]. IS, as the name suggests, involves
two identical systems, whereas generalized synchronization is an extension of IS,
involving non-identical systems [18,19]. However, it has been shown that in fact
identical systems can also exhibit GS, thus proving that non-identity of the
systems is not a necessary condition for GS [18]. This chapter examines a number
of systems based on IS.

The motivation for the study of chaotic synchronization lies in its numerous
potential applications. The applications of chaotic synchronization range from

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 49
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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living systems applications [20,19] to the non-living systems applications [19,21].
The examples of applications of chaotic synchronization to living systems include
synchronization in neurobiology [19] and chemical reactions among pancreatic
cells [20], among other. The examples of applications of chaotic synchronization
to non-living systems include synchronization in earth sciences [19],
synchronization of chaotic electrochemical oscillators [22,23], synchronization in
communications [8,10,16,24-31] etc. The synchronization schemes presented in
this chapter are the backbone of many chaotic communication systems in the
literature today [26,30,8,10,32-39]. The application of chaotic synchronization to
secure communications is investigated in chapter 6.

In Section 3.1 the principles of chaotic synchronization based on the PC
scheme are presented. These are analysed in terms of the conditional Lyapunov
exponents (CLEs) in Section 3.2 and Lyapunov’s direct method in Section 3.3.
Furthermore, in Section 3.4, Lyapunov’s direct method is then used to
demonstrate a general approach in the design of synchronous chaotic systems.

3.1 Pecora-Carroll Chaotic Synchronization Method

The Pecora-Carroll (PC) synchronization scheme has often been described as a
“master-slave” system [7,37]. Essentially, a master-slave system consists of two
chaotic systems. The two systems are described by the same set of differential
equations, with the same parameter values. It was shown in [3] that for
synchronization to occur, the output from, at least, one of the coupled differential
equations of the first chaotic system must be made available to the second chaotic
system, as shown in Figure 3.1. Thus, one chaotic system is said to drive the other
chaotic system by the time-series signal generated from one of its differential
equations. The driving chaotic system is known as the master system and the
driven chaotic system is known as the slave system. As discussed in chapter 1, and
as will be demonstrated in chapter 6, the master-slave system can also be viewed
as the transmitter-receiver communication system.

The master system is made up of a driving master subsystem (u) with initial
conditions u(0) and a non-driving master subsystem (v) with initial conditions
v(0) which are independent of the master driving subsystem. The slave system is

A
made up of a driven slave subsystem ( W), which is identical to (u), and a non
A A
driven slave subsystem ( V), which has initial conditions v(0) # v(0) . Since the
driving master subsystem is fully available to the slave system it is said that the
master system drives the slave system with the driving master subsystem. The
A
non-driven slave subsystem (V) has initial conditions that are independent of
those of the master system.
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Fig. 3.1 Pecora-Carroll master-slave system divided into subsystems

In general, the master system of Figure 3.1 can be represented by equation
3.1.1:

s=f(ts) G.L1)

where S € 9{'1 , that is, S is a d-dimensional vector. The ‘dot’ above the variable
in equation 3.1.1 denotes the operation d/dt. Let the master system S be
decomposed into subsystems as shown in Figure 3.1. The driving and non-driving
master subsystems are then given by equations 3.1.2a and 3.1.2b [7]. The
corresponding driven and non-driven slave subsystems are given by equations
3.1.3a and 3.1.3b, respectively [7]:

u=h(,u,v) (3.1.2a) v=g(t,u,v) (3.1.2b)
u=u (3.1.32) v= g(t,u, Q) (3.1.3b)

In equations 3.1.2 and 3.1.3 u€ R™ and ve R", with the overall dimension
of the master system d =m+n.
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3.2 Conditional Lyapunov Exponents and the Pecora-Carroll
Chaotic Synchronization

The necessary and sufficient condition, for master-slave synchronization to occur,
is that the non-driven slave subsystem must be asymptotically stable [7].
Asymptotic stability can be theoretically proven via Lyapunov’s direct method
[7,8,37], or by evaluating the conditional Lyapunov exponents (CLEs) [4,11].
Lyapunov’s direct method involves finding the Lyapunov function of the system
under consideration and thus demonstrating that asymptotic stability exists. Its use
is demonstrated in the next section. Lyapunov’s direct method is one of the most
powerful tools in the nonlinear system stability analysis. However, it is often too
difficult to find the Lyapunov function of the particular system under
consideration. The ability to do so often depends on ones intuition and experience
[40]. Thus far, there is no systematic general procedure for the construction of the
Lyapunov functions [41]. Therefore, it is often desirable, if not necessary, to resort
to the CLEs. In order for the master-slave system to synchronize, all the CLEs of
the non-driven slave subsystem must be negative [4,11].

The procedure for obtaining the CLEs is now briefly discussed and
demonstrated on the simplest piecewise linear master-slave chaotic flow when the
master x signal drives [37]. The simplest piecewise linear chaotic flow is given by
equation 3.2.1:

X=Yy

y=z (3.2.1)

z=—Az—y+|x|—1
It is found that the system of equation 3.2.1 exhibits chaotic behaviour with the
parameter value A = 0.6 [42,37]. Its dynamics are shown in Figure 3.2. This
system is said to be the master system and is illustrated in Figure 3.3 [37]. The
slave system is driven by a single master signal, meaning that this particular

0 50 100
Time

Fig. 3.2a The simplest piecewise linear Fig. 3.2b The simplest piecewise linear
chaotic time series, x(f) strange attractor
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signals are generated using identical equations to those of the master system
except that the initial conditions are different. The ‘A’ (hat) above the variable
master signal is fully available to the slave system. The remaining two slave
denotes the slave variable. The ‘dot’ above the variable denotes differentiation
with respect to time.

In what follows, the synchronization properties of the system of Figure 3.3 are
investigated with no noise in the system. The noise performance of the system
such as that of Figure 3.3 is investigated in chapter 6. In chapter 6, a system is first
cast into the form of a communication system and its noise performance
investigated in terms of BER.

z(0) Master system: z,

¥(0) |ox=y A
Y=z

x(0) . X

> z=—Az—y+‘x‘—1 g

\—xp Slave system: A
Z
20 #z0) | T, A
- . y »
y=z A
yO) #y(0) | X A A *,
P z=—Az— y+|x|-1

Fig. 3.3 The block diagram of the simplest piecewise linear master-slave chaotic flow, with
the x signal driving. The parameter value: A = 0.6.

Let the difference among the non-driving master subsystem and the non-driven

slave subsystem be denoted by «x». When x drives this difference is given by

equation 3.2.2:

yr=p-p=|’ |= y_f (3.2.2)
—Z
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From Figure 3.3 and equation 3.2.2 one obtains equations 3.2.3 and 3.2.4:

. [ ] () 1_

y=|7 ={ {y} (3.2.3)
z -1 —A_ z

PO I I S

by { p o)
A -1 —-A
p 2

*
.

Differentiating both sides of equation 3.2.2 it should be noted that y = v_‘j .

It is then readily verifiable that by subtracting equation 3.2.4 from equation 3.2.3,
equation 3.2.5 is obtained:

ol ro 1Ty '
y =7 :{ }[y }:BP} (3.2.5)
* -1 —-A|Z 7

<

The conditional Lyapunov exponents are defined as the real parts of the
eigenvalues of the matrix B of equation 3.2.5. In the general case, provided that
the matrix B is a constant matrix, that is, the subsystems are linear, the CLEs can
be determined analytically. However if the matrix is not constant, that is, the
subsystems are non-linear, one must resort to the numerical evaluation of the

CLEs [11]. Let the eigenvalues of matrix B of equation 3.2.5 be denoted by /11

and /12 Then the two CLEs are determined by taking the real parts of the
eigenvalues of the matrix B:

CLE,, =Re{|/1 -B|=0}

=Re {ﬂoq /;)j_|:—01 _IA}:O , (3.2.6)

CLE, , = Re{A,, 4, =-0.3+ j0.954], (3.2.7)

resulting in:
CLE, = CLE, =Re{4 }=Re{1,}-0.3. (3.2.8)

Therefore, as both CLEs are negative, theoretically the master-slave system of
Figure 3.3 must synchronize. The numerical simulation, confirming the theoretical
result of the equation 3.2.8 is shown in Figures 3.4a and 3.4b. The time series
representation of Figure 3.4a demonstrates synchronization of the master-slave y
and z signals by showing that the two master-slave signals merge. In addition, the
phase space representation of Figure 3.4b, also demonstrates synchronization by
showing that the two trajectories of the master and slave chaotic attractors merge.
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Amplitude

— yhat(t)

Amplitude

0 5 10 15 20 25 30 35 40 45 50
Time

Fig. 3.4a Synchronization of the master-slave simplest piecewise linear chaotic signals,
with the x signal driving.

0.5

z(t), zhat(t)

Initial
Separation
0.5f
A
-1.51 Master trajectory / i
Slave trajectory Synchronization Achieved
2 | | | | | | |
2 15 1 05 0 05 1 15 2

y(t), yhat(t)

Fig. 3.4b Phase space representation of the synchronization of the master-slave simplest
piecewise linear chaotic signals, with the x signal driving.
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In [37] and chapter 5, Lyapunov’s direct method is used to show that the
simplest piecewise linear master-slave chaotic flow must synchronize when the
master x signal drives.

3.3 Lyapunov’s Direct Method and the Pecora-Carroll Chaotic
Synchronization

In this subsection, the use of Lyapunov’s direct method [40] is demonstrated.
Asymptotic stability via Lyapunov’s direct method is proven by finding the
Lyapunov function and showing that its derivative is negative semi-definite. By
definition, a Lyapunov function is a function which is positive definite except at
the origin where it equals zero, and its derivative is negative semi-definite [43]. A
function E(t, x) is said to be positive semi-definite with respect to x if

Et0) =0 and E(t,x) > 0.

If -E(¢, x) is positive semi-definite with respect to x, then E(z, x) is negative
semi-definite with respect to x [40].
Consider the Chua chaotic system, given by equation 3.3.1:

x=a(—x+y - f(2)

y=x—-y+z

z==Ly (3.3.1)

f(x)=bx+0.5(a—b)(|x+1—|x—1)

The system described by equation 3.3.1, exhibits chaotic behaviour with the
parameter values a = 10, f = 18, a = -4/3, b = -3/4 [44]. Its dynamics are shown in
Figure 3.5. By finding the Lyapunov function it is now shown that the Chua
master-slave system of Figure 3.6 must synchronize when x drives.

1

o8-
06
0.4f
02
12 o ‘
o2
oafil

0.6F N\

(
A b H 4 o a4 m e a

-0.81

) 10 20 30 40 50 60 70 80 -4 -3 2 Bl 0 1 2 3 4
Time (1)

Fig. 3.5a The Chua chaotic time series, x(f) Fig. 3.5b The Chua strange attractor
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2(0) Master system: z,
y(0) x=al—x+y—f(x) Y
—_——P »
y=x—y+z
x(0) . x
— =p >
f(x)=bx+0.5(a—b)(x+1-|x-1)

X
» Slave system: z
2(0) # z(0) A A
—¥ x=x y
A y=x—y+z A
YO #y©) | - X
z==fy

Fig. 3.6 The block diagram of the Chua master-slave chaotic system, with the x signal
driving. The parameter values: a = 10, =18, a=-4/3, b =-3/4.

As in the previous section the difference between the non-driving master
subsystem and the non-driven slave subsystem is denoted by ‘*’ and when x
drives is given by equation 3.3.2:

v*=v—v:[y*}: y_f (3.32)
< -2
The differential error is then expressed by equation 3.3.3 [37]:

*
.

.* _1 1 *
y =|Y :{ } Y (3.3.3)
y - 0|7

4

Now consider the Lyapunov function given by equation 3.3.4:

b= %((,By* BT AP (3.34)
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Differentiating equation 3.3.4 with respect to time, equation 3.3.5 is obtained:

E = (By" - z*)(ﬁf— z *)+ﬂy* ; + 1+ 8)z° : (3.3.5)

From equation 3.3.3, equations 3.3.6a and 3.3.6b are derived:

y =(y=-y)=-y +2 (3.3.62)
z =(z—2)=-py" (3.3.6b)

Substituting equations 3.3.6a and 3.3.6b into equation 3.3.5, equation 3.3.7 is
obtained:

h w2 %2 %2 %2 A A
E==f" -f" =-B0" +27)==p(y-y’+(z-2")<0
(3.3.7)
As the derivative of the Lyapunov function, shown in equation 3.3.7, is always
less than zero, the subsystem V is asymptotically stable (the equality sign applies
only at the origin) i.e. equation 3.3.7 is negative semi-definite. Therefore, as the
necessary and sufficient condition for synchronization is satisfied, theoretically the
system of Figure 3.6 must synchronize. The numerical simulation, confirming
the theoretical result of equation 3.3.7 is shown in Figures 3.7a and 3.7b. The time
series representation of Figure 3.7a, and the corresponding phase space
representation of Figure 3.7b, demonstrates synchronization by showing that the

master-slave trajectories merge.

15 T
i oy
11 — yhat(t) |
% \
S 05f| |
=
a
e 0
<C
-0.5
1 | | | | |
0 5 10 15 20 25 30
Time
10
o i
k]
=]
=
a
S
< -
(1)
‘ ‘ zhat(t)

|
5 10 15 20 25 30
Time

Fig. 3.7a Synchronization of the master-slave Chua chaotic signals, with the x signal
driving.
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Fig. 3.7b Phase space representation of the synchronization of the master-slave Chua
chaotic signals, with the x signal driving.

The PC chaotic synchronization properties of the Chua master-slave system
have been examined in [11] in terms of the CLEs. The synchronization properties
of the Chua chaotic system have been investigated by a number of researchers
[11,45,9,26].

3.4 Synchronization of Chaotic Flows via Lyapunov’s Direct
Method

Sections 3.1-3.3 considered the chaotic synchronization concept when a single
signal of the master system was supplied to the slave system. The general result of
this is that the master-slave system either synchronizes or does not [3,7,37]. In this
section the design of the nonlinear controllers for the chaotic flow master-slave
systems is presented [26,46]. In particular the linear feedback rigid body motion
(LFRBM), and the Rabinovich-Fabrikant chaotic systems are investigated. In this
way, the nonlinear controller design is demonstrated on the system with relatively
simple dynamical equations (LFRBM) and the system with more complex
dynamical equations (Rabinovich-Fabrikant), thus showing the versatility of this
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method. These controllers then ensure the synchronization among the master-slave
systems. The design is via the Lyapunov’s direct method, that is, Lyapunov’s
function is used to design the nonlinear control laws [46]. The nonlinear controller
design for the chaotic synchronization of maps is studied in the next chapter.

3.4.1 The Linear Feedback Rigid Body Motion (LFRBM) Chaotic
System

The LFRBM system [47] is given by equation 3.4.1:

x=-04x+y+10yz
y=—x—-04y+5xz (3.4.1)

Z=07-5xy

With the parameter & = (0.175 the system is chaotic. Figures 3.8a and 3.8b
show the time series and the chaotic attractor, respectively.

The design procedure of the synchronizing nonlinear control laws, using the
LFRBM master-slave chaotic system as an example, is now explained. Let the
error be defined by equations 3.4.2a, 3.4.2b and 3.4.2c:

e (t)= ;C(t) —x(1) (3.4.22)
e, (1) = y(t) = y(1) (3.4.20)
e, (1) = g(t) —-z(t) (3.4.2¢)

0250
08 1 02
04 0150
(13

0.2 1 0.05F

x(t)
y(H)

-0.051
-02 1 04k
04 -0.15
-02f

-0.6 1 20.25F

50 100 150
Time

S

Fig. 3.8a The LFRBM chaotic time series, Fig. 3.8b The LFRBM strange attractor
x(1) plotted in two dimensions
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x(0)

Master system: X
—»
y(0) ).c=—0.4x+ y+10yz y
—

y=—x—-04y+5xz

L %=az—5xy <

z(0) # z(0) | Slave system:

¥(0) # y(0) | Y=—04x+y+10y 24,

y=—x—04y+5xz+u,

(0) £ x(0)
T

A A A

A
Z=az=5xy+u, I

A A

ulu, Uy

Nonlinear control
laws:

Fig. 3.9 The LFRBM master-slave chaotic system. Note: ¢ = 0.175.

In general terms the LFRBM master-slave chaotic system can be represented by
Figure 3.9. Keeping in mind equation 3.4.2 the differential error, (the error
system), can then be represented by equation 3.4.3:

er=x—x=-04e +e, +10yz—10yz +u,

e»=y—y=-e —0.4e, +5xz-5xz+u, (3.4.3)

. A e A

A
es =z—z=0e, —5xy+5xy+u,
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Equation 3.4.3 can also be represented in terms of error of equation 3.4.2 by
equation 3.4.5, keeping in mind the identities of equation 3.4.4:

ANRAN A

yi=yr=2ze, T ye,

NN AN

XZ—XZ=2e +Xxe, (3.4.4)
ANRAN A

—Xytxy=-ye —xe,

e1 =x—x=-04e +e,+10ze, +10ye, +u,
ex=y—y=-—e —04e,+5z¢, +5xe, +u, (3.4.5)

. A .

A
e;=7—-7=0 e;—5ye, —5xe, tu,

Consider the candidate Lyapunov function given by equation 3.4.6:
_1 o, 2 2
V= E(e1 +e;, +e;) (3.4.6)

Differentiating equation 3.4.6 with respect to time, equation 3.4.7 is obtained:

V=ee+ere,t+ese, (3.4.7)

Substituting equation 3.4.5 into equation 3.4.7, and simplifying, equation 3.4.9
is obtained:
V =-04e +ee, +10ze,e, +10 ye,e, +e,u,
—ee, —0.4e; +5ze,e, +5xe,e, +e,i, (3.4.8)
+ae; —Syee, —5xe,e, +e,u,

V= —0.4812 —0.4€§ + a€32 +15ze,e, +10yee;, —5ye,e, (3.4.9)

+ e, + eu, + esU,
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For equation 3.4.6 to be a Lyapunov function, equation 3.4.9 must be negative
semi-definite. In order for equation 3.4.9 to be negative semi-definite, the terms:

A
ae;, 15zee,, 10 yee, and —5yee,, must be eliminated, and the term

2 . . .
—e; must be introduced. The control laws u:, u2 and us are designed in such a

manner to eliminate the unwanted terms, and introduce the missing necessary
terms. The control laws are given by equations 3.4.11, 3.4.13 and 3.4.16.

The design of the first control law u::

eu, +10yee, —5yee; =0 (3.4.10)

u, =—5e,(2 ;1— y)=-5¢;(2e, +y) (3.4.11)

The design of the second control law u2:

e,u, +15ze,e, =0 (3.4.12)
u, =—15ze, (3.4.13)

The design of the third control law us:

eju, +oe; =0 (3.4.14)
U, =—le, (3.4.15)

. . . 2 .
Besides the requirement for the control law us to eliminate the term ey, it

shall also be used to introduce the term — 832 , that is, the term — k632 where k is

a positive constant acting as the control parameter. Therefore, equation 3.4.16 is
obtained:

u, =—(a+k)e, (3.4.16)

It should be pointed out that the introduction of the control parameter k, within
the third control law us of equation 3.4.16, is optional. This control parameter is
usually fixed at 1, however, any other number greater than 0 can be used, for
synchronization to be achieved. The block diagram of this master-slave
synchronization system is given in Figure 3.10.
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x(0) Master system: X
¥(0) x=-04x+y+10yz | y
=

y=—x-04y+5xz

0 .
L, Z=0z7—5xy <

z(0) # z(0) | Slave system: z
T
y(0)# y(0) | x=—04x+y+10yztu, | ¥
A V=04 y+5x o+ A
x(0)# x(0) | YTTIUAYTIRIL
—_—» . A An
2= z-5xy+tu,
A A A
Uy | Uy
- y
Nonlinear control  [€
laws: 2
y
u; ==5e;(2y-y)
u, =—15ze, o “
u, =—(a+ke, [N

Fig. 3.10 The LFRBM master-slave chaotic system, where: o = 0.175.

The functionality of the control laws, given by equations 3.4.11, 3.4.13
and 3.4.16, is demonstrated in Figures 3.11a, 3.11b and 3.11c, when k = 1.
From Figure 3.11b it can be seen that the synchronization error for all three
master-slave chaotic signals tends to zero. This has also been demonstrated in
phase space in Figure 3.11c by showing that the trajectories of the master and
slave chaotic attractors merge. Note that when k is negative, for instance k = -0.3,
the master-slave system does not synchronize, as Figures 3.12a, 3.12b and 3.12¢
demonstrate.
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Fig. 3.11a Synchronization of the LFRBM master-slave chaotic signals when k = 1
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Fig. 3.11b Synchronization error of the LFRBM master-slave chaotic signals when k = 1
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Fig. 3.11c Phase space representation of the synchronization of the master-slave LFRBM
chaotic signals when k = 1
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Fig. 3.12a Synchronization of the LFRBM master-slave chaotic signals when k = -0.3
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Fig. 3.12b Synchronization error of the LFRBM master-slave chaotic signals when k = -0.3
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Fig. 3.12c Phase space representation of the synchronization of the master-slave LFRBM
chaotic signals when k = -0.3
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3.4.2 The Rabinovich-Fabrikant Chaotic System

In this subsection, the nonlinear controller design is demonstrated on the
Rabinovich-Fabrikant chaotic system whose dynamical equations are significantly
more complex than those of the LFRBM chaotic system. In this way, the
versatility of the nonlinear controller design using the Lyapunov’s stability theory
via Lyapunov’s direct method is demonstrated. The Rabinovich-Fabrikant chaotic
system is given by equation 3.4.17 [48,42]:

).c=y(z—1+x2)+}/x

V=xBz+1-x)+ 7y (3.4.17)

z=-2z(+ xy)

With the parameter & =1.1 and ¥ =0.87 the system is chaotic. Figures
3.13a and 3.13b show the time series and the chaotic attractor, respectively.

K 10 20 30 20 50 60 70 0% a8 e 14 2 4 08 06 04 02
Time ()

Fig. 3.13a The Rabinovich-Fabrikant Fig. 3.13b The Rabinovich-Fabrikant

chaotic time series, x(f) strange attractor plotted in two dimensions

Again, let the error of the master-slave system be defined by equations 3.4.18a,
3.4.18b and 3.4.18c:

e (1) = ;C(t ) — x(1) (3.4.182)
e,(t) = y(t) = y(1) (3.4.18b)
ey(t) = 2(1) - 2(t) (3.4.180)

Expanding equation 3.4.17 and keeping in mind equation 3.4.18, the
Rabinovich-Fabrikant master-slave chaotic system can be represented by Figure
3.14. The design procedure of the synchronizing nonlinear control laws, for the
Rabinovich-Fabrikant master-slave chaotic system of Figure 3.14, is now
explained.
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x(0) Master system: X
¥(0) | ox=yi-yet4yx y
y=3xz+x—x"+yy
2(0) . z
—¥ z=—"2az-2xy2
z(0) # z(0) | Slave system: z
A A AN A AAZ A -
y(O);ty(O) x:yz—y-}-y_x +7/_x+u] y
A An A A3 4
x(O);tx(O) y=3xz+x—x +yytu, X
—’ . ®-
z=-2az-2xyzt+u,
W) Uy| Uy
X
Nonlinear control laws: A
Y
» <
N B y
u, =—e (ye, +2xy)—(y+k)e,
u, =—e,(4z+xe, —Z;x)—()/-#kz)ez N
u, :—;el(l—21)—e2(3;—2xz)+2x;e3 e,
. e
. e

Fig. 3.14 The Rabinovich-Fabrikant master-slave system, where: & =1.1 and  =0.87.

The differential error, the error system, can then be represented by equation
3.4.19:

L4 ANAN /\/\2

A
el=X—X=Yyz—yi—e,+yx —yx’ +7¥e +u,

L4 /.\ . A A /\3
ex=y—y=3xz-3xz+e,—x + X’ +Ye, +u, (3.4.19)

es =7—7=-200e;—2xyz+2xyz+u,
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The equation 3.4.19 can also be represented by equation 3.4.21, keeping in
mind the identities of equation 3.4.20:

A A A
yi—yr=ze, tye;
A N2 A

yx —yx’ =yel +2xye, +x’e, =ye, (x+x)+x’e,
3xz—3xz=3ze, +3xe,

/\3 A
—x +x’ =—¢ —3xxe,
—2xyz+2xyz =-2zee, —2yee, —2xe,e, —2xye, —2xze, —2yze,
(3.4.20)

.
L4 A L4 A

A A
e1=x—x=ze,+ye,—e,+yel +2xye +x’e, +ye +u,

. A .

A A
ex=y—y=23ze, +3xe,+e,—e, —3xxe, +7e, +u,

. A .

A
e3 =z—7=-20e, —2zee, —2yee, —2xe,e, —2xye, —2xze, —2yze, +u,

(3.4.21)

Consider the candidate Lyapunov function given by equation 3.4.22:
V= %(ef te; +el) (3.4.22)
Differentiating equation 3.4.22 with respect to time equation 3.4.23 is obtained:
‘./ = ;1 e + éz e, + éa e, (3.4.23)

Substituting equation 3.4.21 into equation 3.4.23 and simplifying, equation
3.4.25 is obtained:

A A A
V=zee,+yee, —ee,+ye +2xyel +x’ee, +yel +eu,
A 3 A >
+3zee, +3xe,e, +ee, —ee, —3xxee, +ye; +e,u,

—2ae; —2zee,e, —2yees —2xe,e; —2xye; —2xze,e, —2yze e, + e,
(3.4.24)

V =yee,(1-22)+ee,(4z+xe, —2xx) + ye; +e,e,(3x—2x7)

—2xye;+2xyel +yel +ye; —2ae; +eu, +e,u, +eu,
(3.4.25)
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For equation 3.4.22 to be the Lyapunov function, equation 3.4.25 must be
negative semi definite. In order for the function of equation 3.4.25 to be negative

semi definite all its terms, except the term — 20{e32 , must be eliminated. Also, for

it to be negative semi definite, the terms — el2 and — 622 must be introduced. The

control laws u:, u2 and us3 are designed in such a manner to eliminate the unwanted
terms, and introduce the missing necessary terms. The control laws are given by
equations 3.4.28, 3.4.31 and 3.4.33.

The design of the first control law wu.:

e, +ye, +2xyel +yel =0 (3.4.26)
u, =-ye, —2xye, —ye, (3.4.27)
Besides the requirement for the control law us to eliminate the terms yel3 ,

A
2x yel2 and ¥ el2 it shall also be used to introduce the term — 612 , that is, the

term —klel2 where kl is a positive constant acting as the control parameter.
Therefore, equation 3.4.28 is obtained:

u, =—e(ye, +2xy)—(y+k)e (3.4.28)

The design of the second control law u2:

eu, +ee,(4z+xe, —2xx)+yes =0 (3.4.29)
u, =—e (4z+xe, —2xx)—ye, (3.4.30)
Besides the requirement for the control law wu2 to eliminate the terms

A
ee,(4z+xe, —2xx) and }/822, it shall also be used to introduce the term

—622 , that is, the term —kzeg where k2 is a positive constant acting as the
control parameter. Therefore equation 3.4.31 is obtained:

u, =—e (4z + xe, —2)ch)—(7/+l<2)e2 (3.4.31)

The design of the third control law us:

ey +yee,(1-22) +e,e;(3x—2x7) —2xye; =0 (3.4.32)

78 =—§€1(l—2z)—ez(3 - 2xz)+ 2x§e3 (3.4.33)
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The control parameters k, and k, can be fixed at 1, or any other number
greater than 0. They are left to be adjusted as they do not introduce any extra
complexity to the control laws us and u2. The control law us, of equation 3.4.33,
could also include the control parameter, however in this case it would introduce
extra complexity without any need for it. The control laws of equations 3.4.28,
3.4.31 and 3.4.33 are shown within the control unit of the master-slave system of
Figure 3.14.

The functionality of the control laws, given by equations 3.4.28, 3.4.31 and

3.4.33, is demonstrated in Figures 3.15a, 3.15b and 3.15c, when k; =1 and

k2 =1. From Figure 3.15b it can be seen that the synchronization error for all

three master-slave chaotic signals tends to zero. This has also been demonstrated
in phase space in Figure 3.15¢ by showing that the trajectories of the master and
slave chaotic attractors merge. When, for instance, the control parameters are
negative: k, =k, =—0.6, the master-slave system does not synchronize, as

Figures 3.16a, 3.16b and 3.16c demonstrate.

x(t)
7 — — — xhat(t)

Amplitude

“o 2 4 6 8 10 12 14 16 18 20

z(t)
— — — zhat(t)

0 2 4 6 8 10 12 14 16 18 20
Time

Fig. 3.15a Synchronization of the Rabinovich-Fabrikant master-slave chaotic signals when

k o=k, =1
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Fig. 3.15b Synchronization error of the Rabinovich-Fabrikant master-slave chaotic signals
when kl = k2 =1

Master trajectory
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z(t), zhat(t)
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Fig. 3.15c Phase space representation of the synchronization of the master-slave

Rabinovich-Fabrikant chaotic signals when k = k2 =1



74 3 Chaotic Synchronization, CLEs and Lyapunov’s Direct Method
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Fig. 3.16a Synchronization of the Rabinovich-Fabrikant master-slave chaotic signals when

k =k, =—0.6
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Fig. 3.16b Synchronization error of the Rabinovich-Fabrikant master-slave chaotic signals

when k, =k, =-0.6
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2(t), zhat(t)

Master trajectory
— — — Slave trajectory

y(t), yhat(t) ) x(t), xhat(t)

Fig. 3.16c Phase space representation of the synchronization of the master-slave
Rabinovich-Fabrikant chaotic signals when k1 = k2 =-0.6

3.5 Conclusion

The apparent random behaviour, high sensitivity to parameter and initial condition
perturbations and the broadband nature of chaotic systems originally led to the
belief that they cannot be synchronized. In this chapter, synchronization of chaotic
systems has been examined. The concept of the Pecora-Carroll chaotic
synchronization has been described and its properties examined in terms of the
conditional Lyapunov’s exponents and Lyapunov’s direct method. These
demonstrate two different, yet most common approaches to the analysis of chaotic
synchronization. Furthermore, Lyapunov’s direct method has then been used to
show a general approach to the design of nonlinear controllers for master-slave
chaotic systems.
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Chapter 4
Chaotic Synchronization of Maps

In chapter 3, the concept of chaotic synchronization was introduced on flows, as is
most often done in the literature [1]. However, the principles of chaotic
synchronization presented in sections 3.1 and 3.2 [1] are also equally applicable to
chaotic maps [2]. In contrast to section 3.4 [1], this chapter proposes a method of
designing nonlinear control laws for the synchronization of chaotic map master-
slave systems. The general approach to the master-slave chaotic map

synchronization is demonstrated on the one dimensional, R' , cubic map master-
. . 2 .
slave system, the two dimensional, R°, tinkerbell map master-slave system and

the Lorenz three dimensional, R’ , chaotic map master-slave system. It is shown
that it is always possible to achieve instant synchronization within a single
iteration of the master-slave system for all three systems. The requirement for
instant synchronization is that the error system matrix be reduced to zero [3].
Within PC synchronization, the master-slave system either synchronizes or
does not, depending on the nature of the system and the driving signal. In contrast
to PC synchronization, it has been shown in chapter 3 that is possible to design
controllers to enforce synchronization within the master-slave systems [1]. Such
design techniques have been investigated for both chaotic flows [1,4,5] and
chaotic maps [6-18]. In a number of cases it has been shown that these techniques
can be applied to chaotic communications [1,7,9,10,12-14]. In [6] the in-phase and
anti-phase synchronization of chaotic maps has been investigated. Furthermore, in
[71, chaotic map synchronization method of [6] was used to synchronize a chaotic
communication system similar to that of Parlitz and Ergezinger [19]. Here, the
authors of [7] investigated the possibility of regenerating the chaotic spreading
sequences at the receiver through the process of chaotic synchronization of [6]. In
this way the necessity of assuming perfect synchronization among the chaotic
spreading sequences of the transmitter and the receiver was avoided. In [8,9] the
synchronization of piecewise linear chaotic maps in a master-slave configuration
was investigated. In particular, finite time synchronization of a chaotic map
master-slave system was considered and the conditions for it discussed. It was
shown that by setting the eigenvalues of the error system matrix to zero the finite
time synchronization could be achieved. The general significance of the results in
relation to the secure chaotic communications was also discussed. The

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 79—
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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synchronization of coupled one dimensional chaotic maps in the noisy
environment, as well as the conditions for robust synchronization, have been
investigated in [15]. Some of the most recent advances in the synchronization of
chaotic maps can be found in [16-18]. In [16], generalized-type synchronization
(called Q-S synchronization) of chaotic maps was investigated using discrete
Lyapunov functions. It was demonstrated how this approach could be used to

synchronize two R* chaotic maps in the master-slave configuration. In [17], a
method termed the “slide and match algorithm” was proposed to synchronize a
master-slave system of identical chaotic maps using almost any scalar function of
the driving master system.

A similar method to that of the master-slave map synchronization of [18] is
proposed here [3]. In our method, the general approach to the master-slave
synchronization of chaotic maps is presented and the requirements for
synchronization outlined. It is shown that the synchronization is achieved by
keeping the eigenvalues of the error system matrix within the unit circle in the z
domain. Using this method it is demonstrated that it is always possible to achieve
instant synchronization, within a single iteration of the master-slave system. This
is achieved when the control laws are designed in such a way to reduce the error
system matrix to zero. Furthermore, the method of implementing the synchronized
master-slave system within a chaotic parameter modulation (CPM) based secure
chaotic communication system is demonstrated in chapter 6 with further
elaboration in chapter 10.

In Section 4.1, the design of the nonlinear control laws for the synchronization
of the chaotic map master-slave systems is proposed. In Sections 4.2, 4.3 and 4.4

this method is demonstrated on the R' cubic map, the R? tinkerbell map and the

3 . .
Lorenz N~ chaotic map master-slave systems, respectively.

4.1 A Design Procedure for the Synchronization of Chaotic
Maps

In this section, a general approach in the design of the synchronized chaotic maps
is proposed. In the subsequent sections, the method is then applied to the R'

cubic, R* tinkerbell and Lorenz R’ chaotic map, demonstrating the controller
design on three dimensionally different chaotic maps of increasing complexity.
These controllers then ensure the synchronization among the master-slave
systems. The design of the nonlinear control laws is via the following two
theorems:

Theorem 1
Suppose: e,,, =Be, ,¥ n 20, |eig(B)| <1.

Then: ||en|| —0,asn—>o,V e, € R".



4.1 A Design Procedure for the Synchronization of Chaotic Maps 81

The theorem states that the equilibrium 0, of the error system e is globally

n+l’
asymptotically stable if and only if all eigenvalues of B have magnitude less than
one [20].

Special cases also exist when matrix B is a function of n, and the equilibrium 0, of

the error system e remains globally asymptotically stable.

n+l

Special case: If the matrix B is a function of n, then the condition that

”Bn 4 — B, ” remains bounded must also be satisfied.

Proof for the special case:

Since: e, =B.e,
Then: e,., =B, €.,
€., =B,.,B,e,
e, =B,.B,..- Be, Vi>l @.1.1)

To ensure that the system represented by equation 4.1.1 remains bounded, that is,

to ensure global asymptotic stability of the equilibrium 0 of the error system e, ,, ,

it must be ensured that all the matrix components of B, ;B, .  ...B,e, remain

bounded, that is, the condition that ”Bn a—B

.|| remains bounded, must be

satisfied.
Theorem 1 is now manipulated to obtain Theorem 2 [3], which is suitable for
the synchronization of chaotic maps.

Theorem 2

Suppose: e,,, =A,e, +U e ¥V n=0, |eig(An +U,)

n-n’

=leig(B)| < 1.
Then: ||en|| —0,asn—>o,Ve,eR".

The theorem states that the equilibrium 0, of the error system e is globally

n+l’
asymptotically stable if and only if all eigenvalues of B=A +U, have

magnitude less than one.

Special case: If the matrix B is a function of n, then the condition that

”BnJrl -B, ” remains bounded must also be satisfied.

In the above theorems brackets | | denote the magnitude of the eigenvalues of a
matrix, and the brackets |l Il denote the Euclidian norm. In the following sections
Theorem 2 is used for the purpose of synchronizing one, two and three

dimensional master-slave chaotic maps.
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4.2 Synchronization of the R' Cubic Map Master-Slave
Systems

In this section, the master-slave synchronization of a one dimensional map, the
cubic map, is considered.
The cubic map [21] is given by equation 4.2.1:

X, = AX,(1-X}) 4.2.1)

With the parameter A =3 the system is chaotic. Figures 4.1a and 4.1b show
the time series and the chaotic map, respectively.

< 0 E o
x
0.5 -0.5|
1 1
% 10 20 % m 50 & 70 o 3s E 05 0 05 1 15
n Xn
Fig. 4.1a The cubic map chaotic time series, Fig. 4.1b The cubic map

n

Using the 9! cubic map master-slave system as an example, the design

procedure of the nonlinear control laws required for synchronization is now ex-
plained. In general terms, the cubic map master-slave system can be represented in
the form of a block diagram of Figure 4.2. Let the error be defined by equation
4.2.2:

en :Xn_X

The difference error, (the error system), can then be represented by equation 4.2.3:

4.2.2)

n

A A /\3
ey =Xun—X,,, =AX.—AX, —AX.+AX] +u, (4.2.3)

Keeping in mind the identity of equation 4.2.4, equation 4.2.3 can also be repre-
sented by equation 4.2.5:
3

~X.tX) =—e (e +3X. X,) (4.2.4)

e, =Xm—X,, =A1-3X.X,—ee, +u, (4.2.5)
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X, Master system: X,

Xn+1 :AXn(l_er)

A Slave system:
Xo# X,

A A A2
Xn+l =AX;1(1_Xn)+M”

Nonlinear control laws:

u

n

Fig. 4.2 The cubic map master-slave system, where: A=3.

With theorem 2 in mind equation 4.2.6 is now formed:
e, =Ae, +U,e, (4.2.6)

Modifying equation 4.2.5 to fit the form of equation 4.2.6, equation 4.2.7 is
obtained:

e =A1-3X,X, —ee +U e 42.7)
where: A, = A(1—3)A(n X, —e)andu,=U,e,.
Therefore:
B=A +U =A(1-3X,X, —e))+U, 42.8)
From theorem 2 it is required that the magnitude of eigenvalues of equation

4.2.8 be less than unity (ie. be within the unit circle in the z domain). As B of
equation 4.2.8 is a 1x1 matrix, that is a scalar, it is then required that it be in the
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range -1 < B < 1, that is IBl < 1. This condition is now used to formulate the condi-
tions upon U, . When satisfied, they globally asymptotically stabilise the system

of equation 4.2.7, and thus synchronize the master-slave system of Figure 4.2.
It is readily verifiable that equation 4.2.8 is in the range -1 < B < 1 when:

U =A-A1-3X, X, —¢)  where: —1<A<1 4.2.9)

From equation 4.2.9, it can be observed that U, =-A(1-3X, X, —ef) is the

optimal solution as it reduces equation 4.2.8 to zero and thus causes the fastest
possible synchronization between the master and slave systems of Figure 4.2.

Therefore, the control law u,, is given by equation 4.2.10 and incorporated into

Figure 4.2 to produce Figure 4.3.

u,=U,e, =—A(1-3X, X, —e)e, (4.2.10)
X, Master system: X,
—>
Xn+l = AXn (1_ an)
A Slave system: A
Xo#X, X
—

2

Xn+1 :AXn(l_Xn)+un

un
X
Nonlinear control laws: <
Xl’l
u,=—A1-3X, X, —ee, |
eﬂ

Fig. 4.3 The cubic map master-slave system, where: A =3.
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Figure 4.4 demonstrates that the system does not synchronize when A =1, that

A
is, when: u, =(1-A(1-3X, X, —e2)e,
in this case the synchronization error among the master-slave signals is constant.

. It can be observed from Figure 4.4 that

When A =0.99, that is when: u, =(0.99-A1-3X, X,
slave system synchronizes, as Figure 4.5 demonstrates. However, in this case, the
system is on the border of synchronization and it takes approximately 500 itera-
tions for the system to synchronize. It should be noted that here the slave signal
asymptotically approaches the master signal. The instant synchronization,
achieved by the control law of equation 4.2.10, is demonstrated in Figure 4.6. It
can be observed from Figure 4.6 that the master-slave system synchronizes in a
single iteration.

- en2 ))e, , the master-
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Fig. 4.4 Synchronization of the master-slave cubic chaotic signals, when A =1.
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Fig. 4.5 Synchronization of the master-slave cubic chaotic signals, when 4 =0.99 .
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Fig. 4.6 Synchronization of the master-slave cubic chaotic signals, when 4 =0 .
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4.3 Synchronization of the R° Tinkerbell Map Master-Slave
Systems

In this section, the complexity is increased to R Here, the master-slave syn-
chronization of a two dimensional map, the tinkerbell map, is considered.
The tinkerbell map [21] is given by equation 4.3.1:

Xn+l = Xj _Yn2 +aXn +an
Y. =2XY +cX, +dY,

n+l

4.3.1)

With the parametera = 0.9, b =-0.6, ¢ =2 and d = 0.5 the system ex-
hibits chaos. Figures 4.7a and 4.7b show the time series and the chaotic map,
respectively.

0.4F

0.2

< 04 £ 03]
0.6
At
-0.8
1 -1.5]
1.2 L L L ! 1 1 L L L | L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 94 -1.2 -1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
n Xn
Fig. 4.7a The tinkerbell map chaotic time se- Fig. 4.7b The tinkerbell map
ries, X

n

The design procedure of the nonlinear control laws necessary for synchroniza-
tion of the tinkerbell map master-slave system of Figure 4.8 is now explained. Let
the error be defined by equation 4.3.2:

e, =Xn—X (4.3.2)

n

e,, =Y.—Y (4.3.2b)

n

The difference error, (the error system), can then be represented by equation 4.3.3:
A A 2 A 2 A A
ey =Xm—X,=X—X-Yut+tY' +aX.,—aX,+bY.—bY, +u,,
62n+l = Yn+1_Yn+1 = 2Xn Yn_ZXnYn +CXn_CXn +dYn_dYn +u2n
(4.3.3)
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X, Master system: X,
—

_v2 2

Y, X, =X2-Y?+aX, +bY, Y,
——> v, =2X,Y, +cX, +dY,

Yo7, Slave system: Y.

— |

A A2 A2 A A A
Xo#X, Xwn=Xn—Yut+taXa.+tbYutu, | X,

—> A A A A A
Yii =2XuYutcXut+dYutu,,

uln uZn
A
. YVI
Nonlinear control laws:
n
A
u, =—(a+X.+X,e, N
A X}l
—(b-Y.=Y))e,, X,
u,, =2Y,e, —2Xne,, | “in
e2n

Fig. 4.8 The tinkerbell map master-slave system, where: a=0.9, b=-0.6, c=2 and

d=05.

Keeping in mind the identities of equation 4.3.4, equation 4.3.3 can also be repre-

sented by equation 4.3.5:

/\2 A

2 _
Xn_Xn —Xneln+Xneln

A 2 A
Y. +Y! =-Yue, —Ye,, (4.3.4)

A

X" Y”_XnYn :Yneln +X”62n
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e, ,=Xm—X,,,=¢ (a+X.+X,)+te, b-Y.=Y)+tu,

N R (4.3.5)
ey =Yum=Y,  =¢e (c+t2Y)+te, (d+2X,)+u,,
With theorem 2 in mind matrix equation 4.3.6 is formed:
e, =Ae, +U,e, (4.3.6)

In matrix notation equation 4.3.6 takes the form of equation 4.3.7:
a a u u
_ | %11 12n 11n 12n
€, = e, + e, 4.3.7)
Ay, Oy, Uri, Up,

a a u u e
1 12 1 12 1
where: A= " "1, U= " " |and e, = "
ay, Ay, Uryy Uy, €,

Modifying equation 4.3.5 to fit the matrix form of equation 4.3.7, equation
4.3.8 is obtained:

en+1 -

A A
a+Xn+Xn b_Yn_Yn uin uiin
e, +
u

R }en (4.3.8)
c+2Y, d+2Xn

iin Wivy

where: u, =u;e, +u; e, and U, =Uy €, +uivneZn'
Therefore:
B A A
B=A +U, = a+X.+X, b—Yn—AYn +[”in uiin:|
c+2Y, d+2X, Yiiin iy

- (4.3.9)
a+X.+ X, +u, b-Y.-Y +u;,

A
i c+2Y, +uy, d+2Xa+u,,

Following theorem 2, the control laws can be chosen in the following manner to
obtain a constant matrix B:

uin =—(a+Xn+Xn)

uy, =—(b-Y.-Y,) (4.3.10)
Uy, =—2Y,
u. =_2)A(n

wvn

With the control laws of equation 4.3.10, equation 4.3.9 takes the form of equation

4.3.11:
B{O 0} 43.11)
c d
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From theorem 1, it is then required that the magnitude of eigenvalues of the
matrix B be less than one (ie. be within the unit circle in the z domain). The ei-
genvalues are given by equation 4.3.13, where I is the 2X2 identity matrix and A
is the scalar denoting the eigenvalues:

A
det[AI — B] = de‘{ } =AA-d)=0 4.3.12)
c A-d
A=0 and A=d=05 (4.3.13)

As with cubic map, the eigenvalues are within the unit circle in z domain, thus
making the system of equation 4.3.8 globally asymptotically stable. Therefore, the

control laws u#,, and u,  are given by equations 4.3.14 and 4.3.15, respectively,

and incorporated into Figure 4.8.

u, =u; e +u; e =—(at+X,+X ) —(b-Y,~Y )e, (43.14)

iin

U, =u

n iiip

e, tu, e =-2Ye —2X,e, (4.3.15)

1Vn

The control law performance, given by equations 4.3.14 and 4.3.15, is demon-
strated in Figure 4.9 from which one can observe that the master-slave system
synchronizes. In particular, it should be observed that in the case of the master-

slave signals Y, the slave signal ¥ asymptotically approaches the master signal Y.
It should be noted that the control laws of equations 4.3.14 and 4.3.15 are not
the only possible control laws which cause the master-slave system of Figure 4.8
to synchronize. For instance, the control laws of equations 4.3.16 and 4.3.17:
u, =u; e +u; e, =—(a+X.+X)e —(b-Y,—Y )e, (43.16)

iin

e, tu, e, =-2Ye —(d+2X,)e,,, (4.3.17)

n Vn

Uy = Ui,
cause both eigenvalues of the matrix B to be equal to zero.

The performance of the control laws of equations 4.3.16 and 4.3.17 is illus-
trated in Figure 4.10, demonstrating finite time synchronization of the master-
slave system. It can be observed from Figure 4.10, that the master-slave X signals
synchronize within one time step. However, it requires two time steps to synchro-
nize the master-slave Y signals. In order to achieve the fastest possible (instant)
synchronization it would be required to redesign the control laws of equation
4.3.10 to reduce the matrix B of equation 4.3.9 to zero. This would not cause a
significant increase in the complexity of the control laws of equations 4.3.14 and
4.3.15 as only constants need to be introduced into the control laws of equation
4.3.10, as demonstrated by equations 4.3.18 and 4.3.19:

u, =u; e +u; e, =—(at+X,+X ) —(b-Y,—Y, )e, (43.18)

in

u, =uy e, +u, e, =—(c+2Y ) —(d+2X.)e,, (4.3.19)

iii
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The performance of the control laws, given by equations 4.3.18 and 4.3.19, is
shown in Figure 4.11. Observe the instant synchronization within one time step.
Setting the eigenvalues of the system to zero, results in the synchronization
time faster than for any other eigenvalues, within the unit circle in the z domain.
However, as can be seen from figure 4.10, setting the eigenvalues to zero does not
guarantee instant synchronization within one time step. In order to achieve instant
synchronization in one time step, it is required to design the control laws in such a
way to reduce the matrix B to zero. The proof of this is trivial and is obtained by
substituting the ultimate control laws of equations 4.3.18 and 4.3.19 into the slave
equations of Figure 4.8, respectively, and showing that the slave equations reduce
to the master equations:
A A 2 A 2 A A A A
X =X—Y,taX,+bY,—(a+X.+X )e, —(b-Y,-Y, e, (4.3.20)

Yn+l :2Xn Yn+CXn+dYn_(C+2Yn)eln _(d+2Xn)e2n

Xwi=X,,=X}-Y +aX, +bY,
(4.3.21)

Yn+l = Y

n

a4 =2XY, +cX, +dY,

Xn, Xhat n

- Xn n
— — — Xhatn

15 I I I I I
0 5 10 15 20 25 30

Yn, Yhat n

\ ~— ~— ~ Yhatn

Fig. 4.9 Synchronization of the master-slave tinkerbell chaotic signals with the control laws
of equations 4.3.14 and 4.3.15, that is, when one of the eigenvalues is equal to zero while
the other is equal to 0.5
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Fig. 4.10 Finite time synchronization of the master-slave tinkerbell chaotic signals with the
control laws of equations 4.3.16 and 4.3.17, that is, when both eigenvalues are equal to zero

0.5 T

Xn, Xhat n

Yn, Yhat n

Fig. 4.11 Instant synchronization of the master-slave tinkerbell chaotic signals using the

control laws of equations 4.3.18 and 4.3.19, that is, when matrix B is equal to zero



4.4 Synchronization of the Lorenz 9{3 Chaotic Map Master-Slave Systems 93

4.4 Synchronization of the Lorenz R’ Chaotic Map
Master-Slave Systems

In this section the chaotic map complexity is further increased to R°. The master-
slave synchronization of a three dimensional map, the Lorenz three-dimensional
chaotic map, is considered.

The Lorenz three-dimensional chaotic map [21] is given by equation 4.4.1:

Xn+l :XnYn _Zn

Y, =X, (4.4.1)
Zn+1 = Yn

Figures 4.12a and 4.12b show the time series and the chaotic map, respectively.

Fig. 4.12a The Lorenz R* chaotic map  Fig. 4.12b The Lorenz R chaotic map
time series, X,

. . . 1
The same procedure for designing nonlinear control laws, as that in the R~ and
9{2 cases, is now used to demonstrate the design of the nonlinear control laws of

the Lorenz R chaotic map master-slave system of Figure 4.13. Let the error be
defined by equation 4.4.2:

e, =Xu—X, (4.4.22)
e, =Y.V, (4.4.2b)
e, =Zn—2, (4.4.2¢)
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Note the extra error term introduced as the dimension increases, highlighted in
equation 4.4.2¢ and Figure 4.13.

X .
0 Master system:
YO Xn+1 :XnYn_Zn
—>
Yn+] = Xn
Z

—> Zn+l = Yn

Zo #Z,| Slave system:

A A

YOiYO Xn+l=XnYn_Zn+u1n

A A
N Yn =Xn+u
XozX,| " 2n

A A
Zn+l :Yn+u3n

4 A 4

uln u2n u3n
Nonlinear control %
laws: "
u]n _Yneln
I/tzn 61" eln
u;, =0

Fig. 4.13 The Lorenz three-dimensional chaotic map master-slave system.

The difference error, (the error system), can then be represented by equation
4.4.3:

eln+l :Xn+l_Xn+1 :Xn Yn_X Y —Zn+Z +M1n
eszrl :Yn+l_Yn+1 :Xn_X +u2n (443)

A A
e3n+1 :Z”+1_Zn+l :Yn_Y
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Keeping in mind the identities of equation 4.4.4, equation 4.4.3 can also be repre-
sented by equation 4.4.5:

Xn Y”_XnYn :Yneln +Xn ezn (444)

A

A
e,y =Xm—X ,=Ye +Xue, —e; +u,
A
62n+l = Y"+1_ Yn+1 = eln + uzn (445)

A
63n+1 = Z"+1_Zn+1 = eZn + u3n

With theorem 2 in mind matrix equation 4.4.7 is formed:

e, =Ae +U,e, (4.4.6)
Ay, G, Gz, Uy, Up, Ug,
€1 =| a1, Ay, Gy, |€, T Uy, Uy, Uy, €, (4.4.7)
as, Az, 43y, Uz, Uz, Us,
where:
ay,  Ap, 4, Uy, Up, Ups,
A, =\ay, ayp, Ay, |, U, =luy, Uy, Uy, and
dz, Az, 43, Uz, Uz, Us,
€,
en = ezn
€,

Modifying equation 4.4.5 to fit the matrix form of equation 4.4.7, equation 4.4.8 is
obtained:

Yn )A(” _1 uin O O
e..=|1 0 Ol +|u;, 0 Ole, (4.4.8)
0 1 0 u 00

where: uln = uineln ’ u2n = uiin
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Therefore:
Y, Xo -1| [u, 0 0] |V, +u, X. -1
B=A+U,=|1 0 0 |+lu;, 0 O|=[1+u, 0 0
0 1 0 u 0 0 u 1 0

(4.4.9)

Following theorem 2 the control laws can be chosen in the following manner:

u, ==Y, +k
u;, =—1 (4.4.10)
u. =0

iii n

where k is the parameter to be determined.

With the control laws of equation 4.4.10, equation 4.4.9 takes the form of equa-
tion 4.4.11:

k )/\(n _1
B,=|0 0 0 4.4.11)
0O 1 0

From theorem 2, it is then required that the magnitude of the eigenvalues of the

matrix Bn be less than one (ie. be within the unit circle in the z domain). This
condition is now used to formulate the conditions upon k, that is, upon u;, . The

eigenvalues of the matrix B, are obtained by evaluating equation 4.4.12, where /

is the 3X3 identity matrix and A is the scalar denoting the eigenvalues:

Aok =Xy 10 0o o |0 4
det{Al - B,|=det| 0 A 0l=(A-k) +X, +1 =
-1 A 0 A 0 -1
0o -1 2
(4.4.12)

AP (A-k)=0 (4.4.13)
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From equation 4.4.13 it is observed that two out of three eigenvalues are always at
zero, whereas the third eigenvalue is equal to zero provided k is equal to zero.

Keeping in mind the condition of theorem 1 (2) that |ﬂ| = |eig(B )| <1, itis evi-
dent from equation 4.4.13 that k must be kept within the unit circle in z domain:
|k | < 1. Clearly, in this case, choosing k = 0 is the optimal solution as it forces the

third eigenvalue of equation 4.4.13 to zero, so that:

u =-Y (4.4.14)

Therefore, the control laws u, , u, and u, are given by equations 4.4.15,
n n n

4.4.16 and 4.4.17, respectively, and incorporated into Figure 4.13.

u, =u;e, =-Ye, (4.4.15)
u2n = uiineln = _eln (4416)
Uy, =uy,e, =0 4.4.17)

With such control laws, the eigenvalues of the matrix B, of equation 4.4.11 are

equal to 0 and the matrix B, takes the form of equation 4.4.18:

0 X. -1
B,=|0 0 0 (4.4.18)
0 1 0

However, theorem 2 requires matrix B to be constant. As the matrix B is a

remains bounded to

function of n, it must also be ensured that ”BnJrl -B,
guarantee global asymptotic stability which is the requirement for synchroniza-
tion. The fact that ”Bn 4~ B, ” remains bounded is demonstrated by equation

4.4.19 (4.4.20):

0 Xwo —1[0 Xuwu —1]0 X, —1] [0 0 0
B.B.B =0 0 00 0o ofo o o0|={00 0
0o 1 ofo 1 ofo 1 ol oo o0
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That is:

0 Xwi —1]0 Xmin —1] |0
B,.B,.,.Be=0 0 00 0 0|.]o 0 o0]=0
o 1 oo 1 ol |o 1

(4.4.20)
for i =3.

In Figure 4.14, synchronization of the master-slave system is demonstrated when
the control parameter k is a complex number within the unit circle, that is,

k=0.64 jO.5. It can be observed from Figure 4.14 that the master-slave
system synchronizes. Furthermore, it should be observed that in the case of the

A
master-slave signals X, the slave signal X asymptotically approaches the master

signal X. The performance of the control laws when k =0, given by equations
4.4.15-4.4.17, is demonstrated in Figure 4.15. From Figure 4.15, one can observe
the finite time synchronization among the master-slave signals.

In order to achieve instant synchronization, the control matrix U, of equation

4.4.8 must be redefined to obtain the matrix equation 4.4.21:

A
Y" X" _1 uin uiVn uvn
en+l = Anen +Unen = 1 O O en + uiin O O en (4421)
0 1 0 Uy, Uy 0
where:  u,, =u; e +u, e +u e U, =u;. e, and

Us, =y, e, tu, e, .

To reduce the matrix B to zero, and thus achieve instant synchronization, the
control laws u; to u ; mustbe chosen in the following manner:

uin :_Yn
uiin __1
Uy, =0
A s 4.4.22)
uiv" = _Xn
vn :1
=-1
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Then, the control laws u, , Uy, and Uy, take the form of equations 4.4.23,
4.4.24 and 4.4.25, respectively:

A

u, =—Ye —Xne, +e; (4.4.23)
u2n = _eln (4424)
Uy, =—e,, (4.4.25)

The performance of the control laws of equations 4.4.23-4.4.25 is demonstrated in
Figure 4.16, from which instant synchronization of all three master-slave signals

can be observed.
It has thus been demonstrated that by following theorem 2 it is possible to

achieve synchronization for 9{1, R* and R’ master-slave chaotic maps. Fur-
thermore, by reducing the error system matrix B to zero, it has been shown that all
master slave signals synchronize instantly, that is, within one time step. The im-
portant advantage of instant synchronization on the performance of a chaotic
communication system is demonstrated in chapter 6.

2 T T T T T
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e
X
>% - Xn N
| | | | | (|~~~ Xhatn
2
0 5 10 15 20 25 30 35 40
2 T T T T T
c
®
Kt
= i
c
>
40
c
T
< al
N
c
N

40

Fig. 4.14 Synchronization of the master-slave Lorenz 9{3 chaotic signals when two of the
eigenvalues are equal to zero while the third one is equal to 0.6+ ] 0.5, where j denotes

the complex number
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the control laws

time synchronization of the master-slave Lorenz R chaotic signals with

of equations 4.4.15-4.4.17, that is, when all eigenvalues are equal to zero
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Fig. 4.16 Instant synchronization of the master-slave Lorenz %3 chaotic signals using the
control laws of equations 4.4.23-4.4.25, that is, when matrix B is equal to zero
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4.5 Conclusion

In this chapter a method of designing the nonlinear control laws for the synchroni-
zation of the chaotic map master-slave systems has been proposed. The nonlinear
control laws are designed in such a way to ensure that the eigenvalues of the error
system matrix always fall within the unit circle in the z domain. This ensures the
global asymptotic stability of the error system and thus causes the master-slave
system of any complexity to synchronize. The general approach to the master-

slave chaotic map synchronization has been demonstrated on the R' cubic map
master-slave system, the R* tinkerbell map master-slave system and the Lorenz

R* chaotic map master-slave system. Furthermore, it has been shown that it is
always possible to achieve instant synchronization, within a single iteration of the
master-slave system, when the control laws are designed in such a way to reduce
the error system matrix to zero.
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Chapter 5
A Novel Mathematical Analysis for Predicting
Master-Slave Chaotic Synchronization

In this chapter, a novel mathematical analysis for predicting master-slave chaotic
synchronization is presented. In most situations when examining this type of syn-
chronization one considers the asymptotic stability of the particular system via
Lyapunov’s direct method, or conditional Lyapunov exponents are considered.
Initially, in this chapter, Lyapunov’s direct method is used to show the asymptotic
stability within the simplest piecewise linear master-slave chaotic flow. However,
primarily the master-slave synchronization properties of the simplest quadratic
chaotic flow and Ueda chaotic system are examined directly by means of mathe-
matical manipulation of their dynamical equations, where possible, as well as via
numerical simulations. In order to achieve this, numerical simulations and theo-
retical analysis are made use of in conjunction. In this way, it is shown that the
synchronization error of the two aforementioned chaotic master-slave systems can
indeed be predicted for certain driving signals, without the need for either analyti-
cal or numerical evaluation of the conditional Lyapunov exponents or employment
of Lyapunov’s direct method.

In [1], it has been demonstrated that the necessary condition for PC master-
slave synchronization to occur is for the sub-Lyapunov exponents, (later renamed
conditional Lyapunov exponents [2]), of the non-driving/non-driven subsystem to
be less than zero. In particular, this has been shown for the Lorenz and Rossler
chaotic systems [1]. The necessary and sufficient condition for master-slave syn-
chronization to occur is that the part of the slave system not being driven by the
master system must be asymptotically stable [3]. As shown in chapter 3, asymp-
totic stability of a system can be demonstrated via Lyapunov’s direct (or second)
method [4] by demonstrating the existence of the Lyapunov function. This
method was used in [3] to show that the Lorenz master-slave systems must syn-
chronize when the master x signal drives the slave system. Using the methodol-
ogy from [3] a similar proof was derived for the Van der Pol Duffing oscillator in
[5]. In this chapter, initially the existence of the Lyapunov function is briefly
demonstrated, following the procedure of section 3.3, for the simplest piecewise
linear chaotic flow, when the x signal drives. The simplest piecewise linear cha-
otic flow is easily realizable in the form of an electronic circuit [6]. However, the
main emphasis of this chapter is on the master-slave synchronization via direct
mathematical analysis of the dynamics of the simplest quadratic master-slave

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 103
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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chaotic flow and the Ueda master-slave chaotic system [7]. These systems have
been selected for the analysis due to it being possible, as shown in this chapter [7],
to analyze their PC synchronization properties without the use of Lyapunov’s sta-
bility theory or the need to obtain the conditional Lyapunov exponents. Numeri-
cal simulations are used to further support the analysis. Unlike the Lyapunov’s
stability theory which describes the general behaviour of the system, the novel
mathematical analysis presented in this chapter [7] describes the system’s behav-
iour using the strict mathematical equations. It therefore gives a deeper insight
mathematically into what dynamically occurs. A secure communication system
based on the chaotic synchronization phenomena presented here is presented in
chapter 6.

In Section 5.1 it is shown that the asymptotic stability, which is a necessary and
sufficient condition for synchronization, exists within the simplest piecewise lin-
ear master-slave chaotic flow, when the master x signal drives the slave subsys-
tem. This is followed by the numerical simulations and a mathematical analysis
of the simplest quadratic master-slave chaotic flow in Section 5.2 and the Ueda
master-slave chaotic system in Section 5.3.

5.1 Synchronization and Asymptotic Stability of the Simplest
Piecewise Linear Master-Slave Chaotic Flow

The simplest piecewise linear chaotic flow is given by equation 3.2.1, repeated
below for convenience as equation 5.1.1:

X=y
;:Z .1.1)
;=—Az—y+|x|—1

The system of equation 5.1.1 exhibits chaotic behaviour with the parameter value
A =0.6 [6]. As outlined in section 3.1 of chapter 3, this system is said to be the
master system [1,3] which drives the slave system by one of its signals. The re-
maining two slave signals are generated using identical equations to those of the
master system except that the initial conditions are different.

5.1.1 Master-Slave System with the Master x Signal Driving

The simplest piecewise linear master-slave chaotic flow when the master x signal
drives has been presented in Figure 3.3 of chapter 3. As in chapter 3, the slave
variables are denoted by ‘*’ (hat), while the ‘dot’ above the variable denotes the
operation d/dt. The parameter values of the master and slave systems are identi-
cal. Initial conditions of x, y and z signals are denoted as x(0), y(0) and z(0).
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In the top graph of Figure 5.1 the difference between the output signal y of the

master and the output signal y of the slave system are shown. The difference

between the two signals decreases in time, becoming negligible after approxi-
mately 10 time units, when the master and slave systems synchronize. This dif-
ference between the master and slave signals is defined as the synchronization
error. It can be observed from Figure 5.1 that the synchronization error tends to
zero for both, the master-slave signals y and the master-slave signals z.

Error = y(t) - yhat(t)
T T

0.6 T T
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Fig. 5.1 Upper graph: The error of the simplest piecewise linear master-slave y signals.
Lower graph: The error of the simplest piecewise linear master-slave z signals.

It is now shown, via the Lyapunov’s direct method, that the simplest piecewise
linear master-slave chaotic flow must synchronize when x drives. The difference
between the non-driving master subsystem and non-driven slave subsystem is de-
noted by “*’, and when x drives it is given by equation 5.1.2:

y =y-p=|" |= y_f (5.12)
-z

For the master-slave system of Figure 3.3 the differential error is expressed by
equation 5.1.3:
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S 0 17y
y =7, |= Y (5.1.3)
1 —A| ¢

<
Now consider the Lyapunov function given by equation 5.1.4:
2 b 1
E=y t52 +§(Ay +2°)° (5.1.4)

Differentiating equation 5.1.4 with respect to time, equation 5.1.5 is obtained:

o

E=2y"y +Z*Z.+(Ay*+z*)(Ay'+z ) (5.1.5)

o* ¥

Substituting the expressions for y and z of equation 5.1.3 into equation 5.1.5,
equation 5.1.6 is obtained:

E=-Ay" - Az" ==AG T+ =—A( -1  +(c-0) <0 (.16)

As the derivative of the Lyapunov function, shown in equation 5.1.6, is always
A
less than zero, the subsystem V is asymptotically stable (the equality sign applies
only at the origin), i.e. equation 5.1.6 is negative semi-definite. Therefore, as the
necessary and sufficient condition for synchronization is satisfied, theoretically the
system of Figure 3.3 must synchronize.

5.1.2 Master-Slave System with the Master y Signal Driving

With the master y signal driving, the master-slave z signals do not synchronize,
while the synchronization error of the master-slave x signals is governed by
equation 5.1.7:

x—x=x(0)—x(0) = J (5.1.7)

The numerical simulation confirming the result of equation 5.1.7 is shown in the
upper graph of Figure 5.2. It can be observed from the upper graph of Figure 5.2
that the synchronization error is indeed constant and equal to the difference among
the master slave x initial conditions. The lower graph of Figure 5.2 shows
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Error = x(t) - xhat(t)
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Fig. 5.2 Upper graph: The error of the simplest piecewise linear master-slave x signals.
Lower graph: The error of the simplest piecewise linear master-slave z signals.

that the master-slave z signals do not synchronize as the synchronization error is
non-zero for all time.

5.1.3 Master-Slave System with the Master z Signal Driving
With the master z signal driving, the synchronization error of the master-slave y

signals is governed by equation 5.1.8, while the synchronization error of the mas-
ter-slave x signals is governed by equation 5.1.9:

y=y=y0)—-y0)=K (5.1.8)

x = x = (x(0) = X(0)) + (»(0) = Y(O)t = L+ K1 (5.19)

The results of equations 5.1.8 and 5.1.9 are confirmed by the numerical simula-
tions presented in Figure 5.3. In the next section, the mathematical procedure of
obtaining equations analogous to equations 5.1.7-5.1.9 will be presented.
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Error = x(t) - xhat(t)
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Fig. 5.3 Upper graph: The error of the simplest piecewise linear master-slave x signals.
Lower graph: The error of the simplest piecewise linear master-slave y signals.

5.1.4 Summary of the Synchronization Properties

Overall, for the simplest piecewise linear master-slave chaotic flow it has been
shown that when x drives, the master-slave system synchronizes. When y drives,
the synchronization error of the master-slave x signals is constant while the mas-
ter-slave z signals do not synchronize. Finally, when z drives, the synchronization
error of the master-slave y signals is constant while the error of the master-slave x
signals increases linearly.

5.2 The Simplest Quadratic Master-Slave Chaotic Flow

The simplest quadratic chaotic flow is given by equation 5.2.1:

e
Il
<

(5.2.1)

= e
Il
|

z=—Az+y2—x
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The system of equation 5.2.1, exhibits chaotic behaviour with the parameter value
A =2.017 [6].

5.2.1 Master-Slave System with the Master z Signal Driving

Figure 5.4, shows the simplest quadratic master-slave chaotic flow when the mas-
ter z signal drives.

In Figure 5.5a, the synchronization of the master-slave signals when z drives is
shown. From Figure 5.5b, one can see that the error is constant for y signals, and
that the error is linearly increasing (in the negative sense) for x signals. The initial
conditions of the master system are chosen to be x(0) = -0.01, y(0) = -0.001, z(0) =

0.01. The initial conditions of the slave system are chosen to be ;(()) =-0.5,

(0)=0.9.
Z(O)—> Master system: <,
¥(0) x=y L >,
EAGE— "
y=z
x(0) * 2 2EN
7=—Az+ y —x "
\_Z, Slave system: .
z
BUETORESS :
x=y Y
A y=z X
x(0) #x(0) | >
T,
z2=12

Fig. 5.4 The block diagram of the simplest quadratic master-slave chaotic flow, with the z
signal driving. The parameter value is A =2.017.
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conds.: x(0)=-0.01(-0.5), y(0)=-0.001(0.9), z(0)=zhat(0)=0.01
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Fig. 5.5a Synchronization of the master-slave simplest quadratic chaotic signals, with the z
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The constant error of the master-slave y signals, observed in Figure 5.5b, lower

graph, can be determined in the following manner. Keeping in mind that y = 2

A

and y = 7, equation 5.2.2 is obtained:

y=Jy (5.2.2)
Integrating both sides of equation 5.2.2, and assuming unequal initial
conditions,

[ydi=yar

equation 5.2.3 is obtained:
y+D=y+C or y-D=y-C
y-y=A or y—y=A (5.2.3)

where A=C— D = y(0) = y(0) = —0.001-0.9 = —0.901. The second version

AN
of equation 5.2.3 (y — y = A) suits the situation more, as in this case it precisely

describes the lower graph of Figure 5.5b — it does not just indicate the constant
difference between the master-slave y signals. In [8] the constant error among
master-slave signals was predicted by demonstrating that one or more of the con-
ditional Lyapunov exponents (CLEs) are zero and none are positive. In contrast, it
has been shown here that this constant error can be determined by direct mathe-
matical manipulation of the master-slave equations. This technique will also be
further used in this chapter.

With z as the driving signal, and keeping in mind that y —y = A, equations
5.2.4 and 5.2.5 are obtained:

xX=y (5.2.4)

(from y —y = A, equation 5.2.3) (5.2.5)

= >
Il
< >
Il
<
|
o
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x=y=x—A (from equation 5.2.4 and 5.2.5) (5.2.6)
x=xt+A (from equation 5.2.6) (5.2.7)

Integrating both sides of equation 5.2.7, and assuming unequal initial
conditions,

det = det +IAdt
equation 5.2.8 is obtained:
X+ E=x+F+At or x—E=x-F+ At

x—x=B-At or x—x=B+ At (5.2.8)

where B = E— F = x(0) — x(0) = 0.49 (recall A=C D = y(0)— y(0) = -0.901).

A
The second version of equation 5.2.8 (x—x = B+ At) suits the situation
more, as in this case it precisely describes the upper graph of Figure 5.5b — it does
not just indicate the general behaviour of master-slave x signals.

5.2.2 Master-Slave System with the Master y Signal Driving

When the y signal drives, the simplest quadratic master-slave chaotic flow is rep-
resented by Figure 5.6.

In Figures 5.7a and 5.7b, the situation when the y signal drives is investigated.
The initial conditions of the master system are chosen to be x(0) = -0.01, y(0) = -
0.001, z(0) = 0.01. The initial conditions of the slave system are chosen to be

A A
x(0)=-0.5, z(0)=-2.

From Figure 5.7a, one can see that as time tends to infinity the master and slave
systems do not synchronize. Figure 5.7b shows that the error is always constant,
with a value of 0.49, for master-slave x signals. For master-slave z signals, the
error settles to a constant value of -0.2429 as time tends to infinity.
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Fig. 5.6 The block diagram of the simplest quadratic master-slave chaotic flow, with the y
signal driving. The parameter value is A = 2.017.
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Error = x(t) - xhat(t)
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Fig. 5.7b Upper graph: The error of the simplest quadratic master-slave x signals. Lower
graph: The error of the simplest quadratic master-slave z signals.

The constant error observed in Figure 5.7b, upper graph, is determined in the
same manner as in the previous case and is given by equation 5.2.9:

X—XxX=0 5.2.9

where: a = x(0) — x(0) =0.49.
The behaviour of the synchronization error of the master-slave z signals (Figure
5.7b, lower graph) is now considered. With the y signal driving, equations 5.2.10a

and 5.2.10b are obtained by making y2 the subject of the formulae (see Figure
5.6):

y =z+Az+x (5.2.10a)
y=z+Az+x (5.2.10b)

Equating equations 5.2.10a and 5.2.10b and rearranging terms, equation 5.2.11 is
obtained, which expresses the differential error of the master-slave z signals:

7—72=—-A(z—-2)—-(x—x) (5.2.11)
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Substituting equation 5.2.9 into equation 5.2.11, equation 5.2.12 is obtained:

7—z7=-A(z-2)—« (5.2.12)

Integrating both sides of equation 5.2.12, one obtains equation 5.2.13:
[G-2dt=-A[ -2t - [a-di
A ! AN
z—z=5—AI(z—z)dl—a-t (5.2.13)
0

where J is the constant of integration.

At a particular time ¢ = fo equation 5.2.13 can be rewritten in the form of equa-
tion 5.2.14:

z(t,) - g(t,,) =0- AI:[” (z(t) - g(t))dt —a-t, (5.2.14)

From the lower graph of Figure 5.7b, it is observed that the synchronization error
of the master-slave z signals tends to a constant as time tends to infinity, which is
expressed by equation 5.2.15:

lim(z(¢) — g(t)) = constant (5.2.15)

Therefore equation 5.2.14, which represents this error, must tend to a constant as
time 7, tends to infinity. Since the only isolated constant in equation 5.2.14 is 0,

it must be the case that equation 5.2.14 tends to O as time tends to infinity.
Therefore, as time tends to infinity equation 5.2.14 takes the form of equation
5.2.16, and equation 5.2.15 can be rewritten as equation 5.2.17:

lim(2(1,) — 2(,) = lim(§- A[ " (z(0) - 2OV —r-1,) =6 (52.16)

m(z(t) — 2(1)) = & (52.17)

Keeping in mind that the behaviour of 7 — z after the transients have died down
is required, equation 5.2.17 is substituted into equation 5.2.16 to obtain equation
5.2.18:

lim(z(t,) - 2,) = im(@ - A[ " 8- di-r-1,)=8 5218
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Evaluating the definite integral of equation 5.2.18 one obtains equation 5.2.19:
lim(2(t,) ~ 2(t,)) = im(§ = AS 1, —-1,) = & (5.2.19)
Equation 5.2.19 can also be rewritten as equation 5.2.20:
,lifl(z(’o) — ;(fg ) = lli_l‘)l}q(& —(Ad+a)-t)=0 (5.2.20)

In order for equation 5.2.20 to be true, equation 5.2.21 must be true:
(Ad+a)-t,=0 (5.2.21)

Rearranging equation 5.2.21 one obtains equation 5.2.22:
o=—— (5.2.22)

Therefore, O is equal to the negative difference in initial conditions of the master-
slave x signals, divided by the A parameter of the chaotic system. Equation 5.2.22
therefore represents the constant value to which the synchronization error of the
master-slave z signals tends as time tends to infinity.

It is known that in the case of the systems used to obtain Figure 5.7b, lower
graph, the constants A and (¢ are as given below:

A=2017 and = x(0)—x(0)=—0.01——0.5=0.49

Substituting the above values for A and & into equation 5.2.22 one sees that,
in  fact, the  constant  synchronization error is  equal to
0=—0a/A=-0.49/2.017 =—-0.2429 . This value is indeed returned by the

computer simulation used to form Figure 5.7b, lower graph. This confirms the
validity of equation 5.2.22.

5.2.3 Master-Slave System with the Master x Signal Driving

In Figures 5.8a and 5.8b, the synchronization when the x signal drives is investi-
gated. The initial conditions of the master system are chosen to be x(0) = -0.01,
¥(0) =-0.001, z(0) = 0.01. The initial conditions of the slave system are chosen to

be y(0) = 0.8. 2(0)=—3.
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signal driving.
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From Figure 5.8a, one can see that as time tends to infinity the master and slave
systems appear to synchronize. However, Figure 5.8b reveals that the synchroni-
zation is not exact, as the minimal, periodic-like, error always remains and is al-
ways in the very close vicinity of zero.

5.2.4 Summary of the Synchronization Properties

Overall, for the simplest quadratic master-slave chaotic flow it has been observed
that when x drives, the master-slave system synchronizes. When y drives, the
synchronization error of the master-slave x signals is a constant while the error of
the master-slave z signals settles to a constant value. Finally when z drives, the
synchronization error of the master-slave y signals is constant while the error of
the master-slave x signals increases linearly.

5.3 The Ueda Master-Slave Chaotic System

Consider the Ueda chaotic system, given by equation 5.3.1 [9]:

x=y
y=-x’ —ky+ Bcos(z) (5.3.1)
z=1

The system described by equation 5.3.1 exhibits chaotic behaviour with the pa-
rameter values k = 0.05, B="7.5 [6].

5.3.1 Master-Slave System with the Master x Signal Driving

Figure 5.9 shows the Ueda master-slave system when the master x signal drives.
In Figures 5.10a and 5.10b, synchronization when the x signal drives is investi-
gated. The initial conditions of the master system are chosen to be x(0) = 1, y(0) =

0, z(0) = 0. The initial conditions of the slave system are chosen to be y(0) =2,

A

z(0) =1. From Figure 5.10a, one can see that the master-slave signals do not
synchronize; however, Figure 5.10b reveals that the error of the master-slave y
signals seems to settle to a periodic behaviour as time tends to infinity, and that
the error of the master-slave z signals is constant.
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y(0) x=y Y
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Fig. 5.9 The block diagram of the Ueda master-slave chaotic system, with the x signal driv-
ing. The parameter values are k = 0.05, B="7.5.

The fact that the error of the master-slave z signals is constant can be explained
in the same fashion as in the previous cases above, and it is given by equation
53.2:

z—z=C-D=« (5.3.2)

where: ¢ =C—D = z(0)—z(0) =-1.
The fact that the error of the master-slave y signals seems to settle to a periodic

behaviour is now explained. By manipulating equation 5.3.2 and introducing the

term — 2 Z to allow for the expression for Z + 7, equation 5.3.4 is obtained:
z+z7z-2z=C-D (5.3.3)

z+z=C-D+2z¢ (5.3.4)
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Fig. 5.10a Synchronization of the master-slave Ueda chaotic signals, with the x signal

driving.

Error = y(t) - yhat(t)

0 10 20 30 40 50 60 70 80 90 100
Time
Error = z(t) - zhat(t)
-1 T T T
ak B
ez(t) 1| -
-1
ak B
a4k B
A | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Time

Fig. 5.10b Upper graph: The error of the Ueda master-slave y signals. Lower graph: The

error of the Ueda master-slave z signals.



5.3 The Ueda Master-Slave Chaotic System 121
From Figure 5.9 it is also observed that equations 5.3.5a and 5.3.5b hold:

.
. A

z=1 (5.3.5a) z=1 (5.3.5b)

Integrating equation 5.3.5a, equation 5.3.6a is obtained; integrating equation
5.3.5b, equation 5.3.6b is obtained:

z=t+C (5.3.6a) z=t+D (5.3.6b)

Substituting equation 5.3.6b into equation 5.3.4, equation 5.3.7 is obtained:

24+2=C—D+2(t+D)
+7=C+D+2 (5.3.7)

Plotting, in Figure 5.11, 7+ Zz, it can be seen that equation 5.3.7 holds. Note that
C+D=0+1)=1,sothat 7+ z=1+2f, as is shown in Figure 5.11.

From master and slave systems of Figure 5.9 equations 5.3.8 and 5.3.9 are
obtained:

—x’= ;;+ky—Bcos(z) (5.3.8)

—x’ = y+k y— Bcos(z) (5.3.9)

Equating equations 5.3.8 and 5.3.9 and rearranging terms, equation 5.3.10 is ob-
tained. Manipulating and solving equation 5.3.10 for the error of the master-slave
y signals, one proceeds to eventually obtain equation 5.3.19 by following the steps

given below:

;i— ; =—k(y— ;) + B(cos(z) — cos(g)) (5.3.10)

A
Note that cos(z) and cos(z) represent two cosines of the same frequency, but

starting at different initial conditions, (C and D), as shown by equations 5.3.6a and
5.3.6b, respectively.
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Sum of master and slave z signals
" T T T T

1
25 3 35 4 45 5
Time

o
o
3
o
N

Fig. 5.11 Sum of the master and slave z signals, represented as: z + 2 =1+2t.

Integrating both sides of equation 5.3.10, and using standard trigonometric
identities, equation 5.3.11 is obtained:

[ =)t =~k [ (y = y)di + B (cos(2) ~ cos(2)di

A A

+z].]z2—
Lre sin —ZZZ dt (5.3.11)

= k[ (y~ y)dt 2B | sin

A
But from equation 5.3.2 it is known that Zz—Zz is a constant

(z—z=C-D=a).

Now define a new constant ¢ :
o
o= =—=— (5.3.12)
2

Substituting equation 5.3.7, ie. (z+2=C+ D+2t), as well as equation
5.3.12, into equation 5.3.11, equation 5.3.13 is obtained:
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C+D

| (y= y)di = —k [ (v = »di ~2Bsin(p)| sin[ + tjdt (5.3.13)

Now define a constant @:

_C+D o+2D
2 2

0

¢+D (5.3.14)

Substituting equation 5.3.14, into equation 5.3.13, equation 5.3.15 is obtained:

[t ==k [ (y= ydi ~2Bsin(@)[sin(@+ )t~ (5.3.15)

Again using the trigonometric identities, it can be seen that equation 5.3.15 can be
written in the form of equation 5.3.16:

j (y— y)dt = —k j (y - y)dt —2Bsin(¢) j (sin(6) cos(t) + cos(6) sin(r) )dt
(5.3.16)
Simplifying equation 5.3.16 and evaluating the integrals, equation 5.3.17 is ob-
tained. It must be noted that in equation 5.3.17 the first term of equation 5.3.16

becomes a definite integral. Equation 5.3.17 represents a general case at some
time fo:

y(,) - ;(to) =A- kJ-:" (y(t)— )A/(t))dt +2B sin((z))(— sin(@)sin(z, ) + cos(6) cos(t, ))
(5.3.17)

where A is the constant of integration.
The trigonometric identity given by equation 5.3.18 will be used in what
follows:

asin(t) +bcos(t) = Rsin(t + Q) (5.3.18)
where R =+a’+b’ and sinQ:%, CosQ:%.

Relating part of  the third term of  equation 5.3.17
(— sin(@)sin(z, ) +cos(6) COS(t())) to equation 5.3.18, it is seen that it can be put

into the form of equation 5.3.18 in the following manner:
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a=-sin@

b=cos@ sinQ = ~sing

1

and cosQ =

R =+/sin”@+cos? 8 =1

Therefore, to find Q one must satisfy both sinQ=cosfd and
cos Q =—sin@. Clearly, this condition is satisfied for Q =6+ /2, as then
sinQ) =sin(@+ 7 /2) =cos@ and cosQ =cos(@+7x/2)=—sinf.

Therefore, equation 5.3.17 can be rewritten in the form of equation 5.3.19:

¥(t,) = y(2,) = A= k[ " (y(0) = y@)dr + 2Bsin(@)sin(r, +Q)  (53.19)

where: Q=60+7/2.

A
Therefore, it can be seen that the error Yy — y depends on three terms, namely

the offset A, the definite integral and the sinusoidal component. From the upper
graph of Figure 5.10b it is observed that soon after the start the third term of equa-
tion 5.3.19 seems to dominate and fully control the system. Using numerical
simulations this has been observed for very small values of %, that is, for the val-
ues of k near zero. The results of equation 5.3.19, and equation 5.2.22 of previous
section, are both important findings as they describe the synchronization error
using the strict mathematical equations.

The theoretical finding expressed by equation 5.3.19 is now verified by com-
paring the theoretical results to the results obtained by numerical simulation. Note
that in the case of Figures 5.10a and 5.10b:

A

z—z C-D 0-1_
2 2 2

_C+D

-0.5 and 0 =0.5 radians

¢=

Therefore, in the case of Figures 5.10a and 5.10b, the amplitude and phase of the

dominating third term of equation 5.3.19 are given by

Amplitude =[2Bsin(¢)| =[2-7.5-sin(=0.5)| =|-2-7.5-sin(0.5)| = |- 7.19| = 7.19
From (5.3.19), Q=0+7/2=05+7/2=2.0708 . Therefore,

Phase =2.0708 — 7 =—-1.0708 radians or Phase = —61.35°.

Finally, the constant A is now determined for the case of Figures 5.10a and
5.10b, that is, for those particular initial conditions. From Figure 5.10b, top graph,
enlarged in Figure 5.12, one can see that the function of the error of the master-
slave y signals starts from -2 at # = 0. This is as expected since the difference in
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the initial conditions between the master-slave y signals is y(0) — y(0) =-2.

Also, at ¢ = 0 the second and third terms of equation 5.3.19 are equal to O and -
6.3110 as shown by equations 5.3.20 and 5.3.21, respectively:

t=t,=0 A
_ kLO (y(t)— y(t))dt =0 (5.3.20)
2Bsin(¢) sin(to +Q)=2-7.5-sin(-0.5) - sin(0 + 2.0708) = -6.3110  (5.3.21)

Therefore, constant A can now be found by substituting equations 5.3.20 and
5.3.21 into equation 5.3.19:

YO) = y0)= A+0-63110 = -2=A+0-6311 = A=43110

Therefore, equation 5.3.19, in terms of initial conditions from Figures 5.10a
and 5.10b, can now be rewritten as equation 5.3.22:

Y(t,)— y(t,) = 431-0.05- [ - Y()di +7.19 sin(r, —61.35°) (5.3.22)

Error = y(t) - yhat(t)

T T T T

Time

Fig. 5.12 Enlargement of Figure 5.10b. Note that time and angle scales are equal, as
@ =1 radians/second, where @ would be the angular frequency of the cosine term of
equation 5.3.1.
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Equation 5.3.22 tells us that the sinusoid of the function is in fact a sinusoid
lagging by 61.35°. This fact is indeed confirmed by observing Figure 5.12. Note
that at # = O the function is not a perfect sinusoid and thus the indication of the
phase lag is approximate.

The error between the master-slave y signals is now investigated further. One
can see that equation 5.3.19 goes to zero if its third term is made to go to zero. To
make the third term go to zero, the initial conditions of the master-slave z signals
must be chosen such that:

sin(¢@) = sin < ; . sin(C;D) =0 (5.3.23)

To make equation 5.3.23 true, equation 5.3.24 must be satisfied:
¢p=1tnx (where n is any integer) (5.3.24)

To make equation 5.3.24 true, equation 5.3.25 must be satisfied:
20=2nr=C—-D (5.3.25)

where 7 is any integer and C and D are initial conditions of the master and slave z
signals, respectively.

Therefore, according to equation 5.3.19, one must have a difference between

the master-slave z initial conditions of 217 for the synchronization of the mas-
ter-slave y signals to occur. This fact is confirmed by numerical simulations, pre-
sented in Figures 5.13a and 5.13b, when the x signal drives. The initial conditions
of the master system are chosen to be x(0) = 1, y(0) = -3, z(0) = z. The initial con-

ditions of the slave system are chosen to be ;(O) =2, 2(0) =-T.

From Figure 5.13a, one can see that as time tends to infinity the master-slave y
signals synchronize. Figure 5.13b shows that the error of the master-slave y sig-
nals tends to zero.

Also it is important to mention that the error between the master-slave y signals
is at its maximum when equation 5.3.26 is satisfied (see equation 5.3.19):

sin(¢) = sin < ; 2= sin[C_TDJ =41 (5.3.26)

To make equation 5.3.26 true, equation 5.3.27 must be satisfied:

p=1

n
5 v/ (where n is any odd integer) (5.3.27)
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Synchronisation of y, master is y, slave is yhat; master(slave) init. conds.: x(0)=xhat(0)=1, y(0)=-3(2), z(0)=pi(-pi)
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Fig. 5.13a Synchronization of the Ueda master-slave chaotic signals, with the x signal driv-

ingand g =71 .
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Fig. 5.13b The error tends to zero as time tends to
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To make equation 5.3.27 true, equation 5.3.28 must be satisfied:
20=tnnx=C-D (5.3.28)

where 7 is any odd integer and C and D are initial conditions of the master and
slave z signals, respectively. Therefore, according to equation 5.3.19, one must
have a difference between the master-slave z initial conditions of * 1, where n
is odd, for the maximum error of the master-slave y signals to occur. This fact is
confirmed by numerical simulations, presented in Figures 5.14a and 5.14b, when
the x signal drives. The initial conditions of the master system are chosen to be
x(0) =1, ¥(0) = -2.5, z(0) = 2z. The initial conditions of the slave system are cho-

sen to be ;(0) =24, z(0) =~
Therefore, in the case of Figures 5.14a and 5.14b, the amplitude and phase of
the dominating third term of equation 5.3.19 are given by

Amplitude = [2Bsin(¢)| =|2-7.5 sin(%) =[15-1=15
Phase = Q =6’+£ = 2tz +£= 27 radians
2 2
180

or:  Phase=Q=2r)-— =360°=0°
T

The enlargement of Figure 5.14b is presented in Figure 5.14c showing the zero
phase. Also, in the case of Figures 5.14a and 5.14b the constant A of equation
5.3.19 is found to be equal to -4.9 so that equation 5.3.19 takes the form of equa-
tion 5.3.29:

¥(1,) = ¥(2,) =-4.9-005- [ " (y() - y)dr +15-sin(r,)  (53.29)

From Figure 5.14a, one can see that as time tends to infinity the master-slave y
signals do not synchronize. Figure 5.14b shows that the amplitude of the syn-
chronization error of the master-slave y signals indeed tends to 15.

Note that it has also been observed that making the difference between the ini-

tial conditions of the master-slave y signals near to — ‘ZB sin(¢)‘ makes the syn-

chronization error settle into periodic behaviour more quickly.
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Synchronisation of y, master is y, slave is yhat; master(slave) init. conds.: x(0)=xhat(0)=1, y(0)=-2.5(2.4), z(0)=2"pi(pi)
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Fig. 5.14a Synchronization of the Ueda master-slave chaotic signals, with the x signal driv-

ingand ¢g=7/2.
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Error = y(t) - yhat(t)
T T

Time
Fig. 5.14c¢ Enlargement of Figure 5.14b showing the zero phase of equation 5.3.29.
5.3.2 Master-Slave System with the Master y Signal Driving

When the y signal drives, the synchronization error is constant for both master-
slave x and master-slave z signals, and it is governed by equations 5.3.30 and
5.3.31, respectively. This is easily shown in the same fashion as for the previous
cases presented above.

x—x=x(0)—x(0)= A (5.3.30)
z—z=2(0)—z(0)=B (5.3.31)

5.3.3 Master-Slave System with the Master z Signal Driving

Finally, when the z signal drives, the master-slave system does not synchronize, as
Figure 5.15 demonstrates.
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Synchronisation of x, master is x, slave is xhat; master(slave) init. conds.: x(0)=1(2), y(0)=0(1), z(0)=zhat(0)=0
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Fig. 5.15 Synchronization of the Ueda master-slave chaotic signals, with the z signal
driving.

5.3.4 Summary of the Synchronization Properties

Overall, for the Ueda master-slave chaotic system it has been shown that when x
drives, the synchronization error of the master-slave y signals is sinusoidal while
the error of the master-slave z signals is constant. The master-slave y signals syn-
chronize only when the difference between the master-slave z signals’ initial con-

ditions is *2n7 , where n is any integer. When y drives, the synchronization
error is constant for both master-slave x and master-slave z signals. Finally, when
Z drives, the master-slave system does not synchronize.

5.4 Conclusion

In this chapter it has been demonstrated, via Lyapunov’s direct method, that the
simplest piecewise linear master-slave chaotic flow synchronizes when the master
x signal drives. However, when the system does not synchronize and Lyapunov’s
direct method cannot be used, it has been shown that the novel mathematical
analysis presented here can often be used to predict the system’s synchronization
error.

In this chapter, primarily the master-slave synchronization properties of the
simplest quadratic chaotic flow and Ueda chaotic system have been investigated
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by direct mathematical analysis. It has been shown that when the z signal drives,
the synchronization error of the simplest quadratic master-slave y signals is con-
stant whereas the synchronization error of the master-slave x signals increases
linearly. Using numerical simulations, in conjunction with mathematical analysis,
it has been demonstrated that the simplest quadratic master-slave chaotic flow
does not synchronize when the y signal drives; however, the synchronization error
of the master-slave z signals tends to a constant value which is predictable and can
be expressed as a combination of the master-slave x signals’ initial conditions and
the system’s parameter value. It has also been found that the simplest quadratic
master-slave chaotic flow synchronizes when the x signal drives.

The analysis has then been performed on the Ueda master-slave chaotic system.
It has been shown that the Ueda master-slave system does not synchronize when
the master y or master z signal drives. However, it has been shown here that the
master-slave y signals do synchronize under certain conditions when the master x
signal drives. When the signal x drives, mathematical manipulation of the sys-
tem’s dynamics allows one to determine a useful mathematical expression for the
error of the master-slave y signals. This expression, along with the numerical
simulations, allows one to predict that if the difference between the master-slave z

signals’ initial conditions equals * 271/, the master-slave y signals will always
synchronize. When the y signal drives, the synchronization error is constant and
has been mathematically expressed. In this way it has been demonstrated that the
novel mathematical analysis presented describes the system’s behaviour using the
strict mathematical equations what is in contrast to Lyapunov’s stability theory
which describes the general behaviour of the system. The novel analysis therefore
gives a deeper insight mathematically into what dynamically occurs.

In general, it can be concluded that the synchronization properties of chaotic
systems, in particular Pecora - Carroll synchronization properties, do not necessar-
ily have to be investigated by Lyapunov’s stability theory, or by evaluation of
conditional Lyapunov exponents. Instead, an alternative direct mathematical
analysis can be used in certain cases, as has been demonstrated in this chapter for
the simplest quadratic chaotic flow and Ueda chaotic system. The work of this
chapter has been published in [7].
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Chapter 6
Application of Chaotic Synchronization to
Secure Communications

In chapters 3, 4 and 5 the phenomenon of chaotic synchronization has been stud-
ied. In this chapter, a popular application of chaotic synchronization in the area of
secure communications is presented. Several chaotic communication systems with
the receiver based on the chaotic synchronization concept are described. It is
shown how a general approach to synchronization of chaotic flows via
Lyapunov’s direct method and chaotic maps via the theorems of chapter 4 can be
used for the development of chaotic communication systems. The communication
schemes examined include those of chaotic masking, chaotic modulation and the
newly developed chaotic communication scheme of initial condition modulation.
Finally, the noise performance of the chaotic parameter modulation and the initial
condition modulation are compared in terms of the bit error rate. It is shown that
the newly developed initial condition modulation scheme outperforms the chaotic
parameter modulation scheme.

Since the onset of chaotic synchronization research, a number of demodulation
techniques based on chaotic synchronization have been proposed for potential
communication systems [1-13]. Of those, the following are based on the Pecora-
Carroll synchronization method [1,2,4-6,8-11,13].

Pecora and Carroll’s (PC) original paper on chaotic synchronization [14], sug-
gested the application of chaotic synchronization in communications, and shortly
after Oppenheim et al. presented a communication system based on the PC syn-
chronization method [4]. The method of [4], termed “chaotic masking”, was
experimentally demonstrated in [5] using Chua’s circuit. In this method, the in-
formation signal is added onto the chaotic carrier directly, and transmitted. The
requirement of this method is that the power of the information signal has to be
significantly lower than the power of the chaotic carrier [4]. In contrast to chaotic
masking, a technique of “chaotic modulation™ incorporates the message into the
dynamical equations producing the chaotic carrier. Chaotic parameter modulation
is an example of the chaotic modulation technique where a binary message modu-
lates one or more of the system’s parameters [8,9]. Other forms of chaotic modu-
lation involve techniques where one or more of the state variables is modulated by
the message [2,11,13]. As opposed to chaotic modulation, the technique of “initial
condition modulation” introduces the binary message into the system through its
initial conditions [10,15,16].

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 135
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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Communication methods based on chaotic synchronization other than PC syn-
chronization have also been proposed. For instance in [7] chaotic masking and
Pyragas’ synchronization method have been used to transmit and receive informa-
tion, whereas in [3] chaotic modulation and John and Amritkar (JA) synchroniza-
tion method have been used.

Section 6.1 presents the communication technique of chaotic masking. The
communication techniques based on chaotic modulation are presented in section
6.2. In addition, it is shown how a general approach to chaotic synchronization of
flows via Lyapunov’s direct method and chaotic synchronization of maps via the
theorems of chapter 4 can be used in the design of chaotic communication
systems. In section 6.3, a recently developed technique of initial condition modu-
lation is presented. Finally, section 6.4 evaluates and compares the noise perform-
ance of the presented systems in terms of the bit error rate. It is shown that the
initial condition modulation technique exhibits better noise performance than the
chaotic parameter modulation technique.

6.1 Chaotic Masking

Chaotic masking (CM) was one of the earliest chaotic communication techniques
proposed [4,5,8]. It is based on the principles of PC synchronization. It primarily
involves the transmission of analog signals [4].

6.1.1 Principles of Chaotic Masking

Chaotic masking involves the addition of a message signal m to a chaotic carrier
signal x, before the transmission of the sum of the two signals takes place [4]. The
block diagram illustrating the principles of chaotic masking is shown in Figure 6.1
[16].

Master system

Slave system

Transmitter Channel Receiver

Fig. 6.1 General block diagram of the chaotic communication system based on the chaotic
masking concept
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In Figure 6.1 n denotes the additive white Gaussian noise (AWGN) component
introduced by the channel and X, denotes the received signal affected by AWGN.

A
The slave system of the receiver generates a signal x which is expected to be
synchronized with the corresponding master signal x of the transmitter. Assuming
that the AWGN component is near zero, and that sufficient amount of time has
A
passed for x and X to synchronize, the transmitted message m can be recovered in

A

the form of m :

m=x,—x=(m+x)—x=m (6.1.1)

The requirement of a chaotic masking scheme is for the power of the information
signal to be significantly lower than the power of the chaotic carrier.

6.1.2 Chaotic Masking within the Lorenz Master-Slave System

Chaotic masking within the Lorenz master-slave system has been demonstrated in
[4,8, 9]. The system has been designed using the Lorenz x signal as the driving
signal. Lyapunov’s direct method has been used in [8] to show that using the x
signal as the driving signal the master-slave system synchronizes. It has then also
been shown that by adding a small amplitude speech signal onto the chaotic car-
rier one is able to recover the speech signal at the receiver. The communication
system based on chaotic masking, while implementing the Lorenz master-slave
system, is shown in Figure 6.2. An ability to recover the transmitted information is
demonstrated under noiseless conditions in Figure 6.3 by processing the word
“Oak” through the system. By comparing the top and the bottom graphs of Figure
6.3 one can see that the transmitted original message has been recovered with
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(Master system)

x=c(y—x)

x=0(y-2) m

A A A

=rX—y—Xxz
Y Y Y=TX —Yy—X, 2

z=-bz+xy Channel

tr 1

x(0) ¥(0) z(0)

A A A
z==bz+x,y

1t 1

X0)  y(0) z(0)

Fig. 6.2 The Lorenz based communication system implementing chaotic masking
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reasonable accuracy. In the case of Figure 6.3 the chaotic parameter values of the

system of Figure 6.2 have been set to: 0 =16, r =45.6 and b =4. An evi-
dent difference in power between the chaotic carrier and the speech signal can be
observed in Figure 6.3. The transmitted signal of Figure 6.3 has been plotted in
phase space in Figure 6.4. The small ripple, observed on the strange attractor of
Figure 6.4, is caused by the message m embedded within it.

6.2 Chaotic Modulation

In the chaotic masking scheme, described above, information is added directly
onto the chaotic carrier without the influence of the message on the dynamical
equations producing the carrier. In contrast to chaotic masking, chaotic modula-
tion incorporates the message into the dynamical equations producing the chaotic
carrier.

6.2.1 Chaotic Parameter Modulation

As opposed to chaotic masking which is primarily used for analog transmission,
chaotic parameter modulation (CPM) is used for transmission of binary
information.

6.2.1.1 Principles of Chaotic Parameter Modulation

A block diagram of a chaotic communication system based on the CPM concept is
shown in Figure 6.5 [16]. As for the CM scheme, a requirement for the CPM
scheme is for the master-slave system to synchronize for a given driving signal, as
outlined in sections 3.1-3.3.

m

l

i i "
[ 1 xr X
Master system : : Slave system
i i Detector
Transmitter + Channel Receiver A
i i m

Fig. 6.5 A block diagram of the chaotic communication system based on the parameter
modulation concept
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In Figure 6.5, the message m varies between the two particular values, depend-
ing on whether a binary O or a binary 1 is to be transmitted. The message is incor-
porated into a certain modulating parameter of the master system causing it to
change its value with the change in the message. The parameters of the slave sys-
tem are fixed at all time. When the master-slave parameters are identical synchro-
nization occurs. This forces the synchronization error to zero, indicating that bit 0
has been transmitted. Alternatively, with the master-slave parameter mismatch the
system does not synchronize, indicating that bit 1 has been transmitted. Therefore,
this is a form of on-off keying. This concept is illustrated in Figure 6.6. The choice
of the modulating parameter of the master chaotic system must be chosen with
care to ensure the chaotic properties of the system at all time. This ensures the
increased security within the communication system.

. Master-Slave synchronization error
T .- Master signal

oW In_ :
’/;U \/ Time V Time

- Slave signal

BIT 0:

Parameter match = Synchronization occurs ——» Synchronization error tends to zero

Master-Slave synchronization error

H Master signal
BIT 1: A& N\ [
r\§//\\/\—j \) Time ‘ w UTime

V- Slave signal

Parameter mismatch = No synchronization C—» Non zero synchronization error

Fig. 6.6 The chaotic parameter modulation concept

6.2.1.2 Chaotic Parameter Modulation within the Lorenz Master-Slave
System

The concept of parameter modulation is now demonstrated on the Lorenz master-
slave chaotic system [8,9]. In [8] the binary message is used to alter the parameter
b of the master (transmitter) Lorenz chaotic system between 4 and 4.4 depending
on whether a bit 0 or bit 1 is to be transmitted. However, at the slave (receiver)
side the parameter b is fixed at 4 for all time. Thus, the synchronization either oc-
curs or does not, depending on the state of the parameter b at the transmitter
(master) side. The parameters ¢ and r are fixed at 16 and 45.6, respectively. For
these parameter values the system is chaotic. In order to implement the CPM
scheme the authors of [8] have scaled the Lorenz chaotic system to allow for the
limited dynamic range of the operational amplifiers. This system, based on the PC
synchronization concept, is presented in Figure 6.7.
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Fig. 6.7 The Lorenz based communication system implementing chaotic parameter modula-
tion. The parameter values: o =16, r =45.6 and b=4.

The transmitted signal x, of Figure 6.7, is shown in Figure 6.8 when the series
of 10 bits is transmitted, that is, when m = [0, 0, 0.4, 0, 0.4, 0.4, 0, 0.4, 0, 0.4], or
in binary terms: message =[00 101 10 1 0 1]. Figure 6.8 also shows the corre-

. L 2 . -
sponding squared synchronization error, €, under noiseless conditions. The re-

ceived bits are detected by squaring and integrating the error e . The output of

the integrator is then compared to the predetermined threshold and the decision is
made whether a bit 0 or a bit 1 was sent. The behaviour of the system, correspond-
ing to the master-slave parameter match (bit 0) and mismatch (bit 1), can also be
illustrated in phase space. In Figure 6.9 the strange attractors corresponding to the
third, fourth, fifth and sixth transmitted bit have been plotted. It can be observed
from Figure 6.9 that in the case of the third, fifth and sixth bit the master-slave
trajectories do not synchronize, but follow their own separate paths [16]. This is as
expected due to the master-slave parameter mismatch. However, in the case of the
fourth bit, the master-slave parameters match, causing the trajectories to synchro-
nize. Note that the spreading factor of 400 has been used to represent one bit. By
definition the spreading factor denotes the number of discrete sample points
(chips) contained within one information bit. It is the ratio of a bit period to a chip
period [17]. A spreading factor that is too small may be insufficient for synchroni-
zation to take place and thus make it more difficult to decode the transmitted in-
formation. Alternatively, a spreading factor that is too large may be impractical
from the bandwidth point of view. A transient period of 1000 chips has been
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allowed for the case of Figure 6.8. During the transient period there is no data
transmission taking place.

6.2.2 General Approach to Chaotic Parameter Modulation

In this subsection, a general approach to chaotic parameter modulation is devel-
oped. It involves the design of the nonlinear controller via Lyapunov’s direct
method, as outlined in section 3.3. In contrast to the CPM scheme presented in
subsection 6.2.1, the scheme presented here does not rely on the inherent synchro-
nization properties of the master-slave system for a given drive signal. It instead
enforces synchronization upon the master-slave system by designing the control
laws which ensure asymptotic stability within the system.

6.2.2.1 Principles of the General Approach to Chaotic Parameter
Modulation

Consider a general block diagram, given in Figure 6.10 [16], of the chaotic com-
munication system based on the parameter modulation concept.

m

i

Master system

Slave system

u

.| Controller

Transmitter Channel Receiver

>

Fig. 6.10 General block diagram of the chaotic communication system based on the pa-
rameter modulation concept

In Figure 6.10, the binary message m is introduced into the system by varying
one or more of the parameters of the master system. As in subsection 6.2.1, the
parameters of the slave system are fixed at all time. Therefore, synchronization
occurs or not, depending on the state of the parameters at the transmitter side. The
controller of Figure 6.10 is designed via Lyapunov’s direct method, as outlined in
section 3.3. The controller output, u, then ensures the synchronization of the mas-
ter-slave system when the master-slave parameters match. Note that, in general,
the signal x may be an interleaved version of more than one signal of the master
system [10], such as in a TDM system, as discussed in chapters 8 and 9.
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6.2.2.2 Chaotic Parameter Modulation within the Ueda Master-Slave System

Here the control law for the Ueda master-slave chaotic system, with the master
signal x driving, is designed. The system is then applied to a CPM based commu-
nication system. In order to justify a design of a controller for the Ueda master-
slave chaotic system its inherent synchronization properties without the controller
must first be investigated. Figure 6.11, shows the Ueda master-slave chaotic sys-
tem with the master signal x driving. The dynamics of the Ueda master chaotic
system are shown in Figure 6.12. In Figure 6.11, the initial conditions of the mas-
ter-slave z signals have been set to an equal value. As will be shown, with the ini-
tial conditions so chosen the controller design is significantly simplified. In Figure
6.13, the synchronization errors for the x, y and z master-slave chaotic signals are
shown. These errors demonstrate that the master-slave x signals of the system of
Figure 6.11 do not synchronize and thus the system warrants a controller design.
Note that the master-slave system synchronization error has been defined by
equation 6.2.1:

e,(t) = x(t) = x(1). e, (1) = Y1)~ ¥(1). 6’3(I)=Z(t)—g(t)~ (6.2.1)

2(0) .| Master system: Z,
(0) x=y Y,
; =—x —ky + Bcos(z)
x(0) . X
» =1 d
Lx» Slave system: 2
A0)=2(0) | . ”
N =Y Y »
0)# y©0) | ~ A A g
Y(0) # ¥( )> y=—x"—k y+ Bcos(z) N
. x g
x(0) # x(0) |z =1

Fig. 6.11 The block diagram of the Ueda master-slave chaotic system, with the x signal
driving. The parameter values are k = 0.05, B =7.5. Note that this system differs from

A

that of Figure 5.9 of chapter 5 in that x # x .
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Fig. 6.13 Inherent synchronization error of the Ueda master-slave chaotic signals without
the controller

Consider the CPM Ueda communication system of Figure 6.14. The constants f
and g of the master system can be of any value and are chosen so that the parame-
ters k and B take on the appropriate values for a given m.



146 6 Application of Chaotic Synchronization to Secure Communications

m

l Controller
Transmitter n Receiver “
(Master system) (Slave system)
. ‘x xr N
x=y >

xX=y+u

V= —x' = (k+ fim)y
+ (B + gm)cos(z)

y= —,\‘,x —k y+ Bcos(z) +u,

z=1 =1

(I P11

x(0) y(0) z(0) 0) ¥(0) 2(0)=2(0) "

N>

Fig. 6.14 The Ueda chaotic communication system based on the parameter modulation
concept

In order to demonstrate the design of the controller of Figure 6.14 assume no
noise in the system. It follows then that: X, = X, so that the slave system, includ-
ing the control laws, takes the form given by equation 6.2.2:

x=y+u,
y=—x"—k y+ Bcos(z) + u, (6.2.2)
z=1

The differential synchronization error of the master-slave system of Figure 6.14 is
then given by equation 6.2.3:

N A
e1=x—x=y—y—u,

e2=y—y=—ky+k y+Bcos(z)—Bcos(z) —u, (6.2.3)
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The difference between the master-slave z signals is governed by equation 6.2.6
[10]:

7=z (6.2.4)
J.%dt = J‘gdt (6.2.5)
z—z=2(0)—2z(0) (6.2.6)

Given that the master-slave z initial conditions are equal to each other, or that their
difference is equal to *2nx, where n is any integer, equation 6.2.6 can be re-
duced to equation 6.2.7 [10]:

z—z=2nrx 6.2.7)

Using the standard trigonometric identities, equation 6.2.3 can be rewritten in the
form of equation 6.2.8:

.
] ] A A

el =X—X=Yy—y—u,

- e A ~ lzt+z| .| z-
e> =y—y=—ky+ky+2Bsin Z2Z sin Z2Z -u, (6.2.8)
e;=2z—2=0

Substituting equation 6.2.7 into equation 6.2.8, equation 6.2.9 is obtained:

. ] A A

e =x—x=y—y—u,

Z+z

e» =y—y=—ky+k y+2Bsin sin(i nﬁ)— U, (6.2.9)
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Finally simplifying equation 6.2.9, equation 6.2.10 is obtained:

€L =€, —U
er =—ke, —u, (6.2.10)
e3 =0

In order to design the controller for this particular master-slave system, consider
the candidate Lyapunov function given by equation 6.2.11:

1% =%(el2 +e;) 6.2.11)

Differentiating equation 6.2.11 with respect to time equation 6.2.12 is obtained:

V=ee+ere, (6.2.12)

Substituting equation 6.2.10 into equation 6.2.12 and simplifying, equation 6.2.13
is obtained:

V =ee, —eu, —ke; —e,u, (6.2.13)

For equation 6.2.11 to be the Lyapunov function, equation 6.2.13 must be negative
semi-definite. In order for equation 6.2.13 to become negative semi-definite the
term e,e, must be eliminated, while the term — 612 must be introduced. It is read-

ily verifiable that this is achieved with the control laws of equations 6.2.15 and
6.2.17:

—eu = —ef (6.2.14)
u =e, (6.2.15)
—e,u, +ee, =0 (6.2.16)

u, =e 6.2.17)
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From equations 6.2.15 and 6.2.17 it can be seen that the control laws are identi-
cal, as shown in Figure 6.14. The functionality of the control laws of equations
6.2.15 and 6.2.17 is demonstrated in Figure 6.15 from which it can be observed
that all of the master-slave signals synchronize.
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Fig. 6.15 Synchronization error of the Ueda master-slave chaotic signals with the controller

In Figure 6.14 the master system parameter set of k = 0.05 and B = 7.5 has been
chosen to represent a bit 0. The master system parameter set of k = 0.1 and B = 10
has been chosen to represent a bit 1. Thus, the constants f and g of the master sys-
tem of Figure 6.14 are set at 0.05 and 2.5, respectively. This allows for the ad-
justment of parameters k and B when bit 1 is to be transmitted. The slave system
parameters are set for all time at k = 0.05 and B = 7.5, so that synchronization at
the receiver side signals a bit O and de-synchronization signals a bit 1. Both pa-
rameter sets, k = 0.05, B = 7.5 and k = 0.1, B = 10 generate chaotic behaviour
within the system [18].

The transmitted signal x is shown in Figure 6.16 when the series of 10 bits is
transmitted, that is, when m = [0 0101 1 0 1 O 1]. Figure 6.16 also shows the

. o 2 . .
corresponding squared synchronization error, €, under noiseless conditions. As

for the Lorenz based CPM scheme, the spreading factor of 400 has been used.
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Fig. 6.16 The transmitted signal x and the squared synchronization error ef

6.2.2.3 Chaotic Parameter Modulation within the Cubic Map Master-Slave
System

The method of implementing the synchronized chaotic map master-slave system
of chapter 4 within a CPM based communication system is now demonstrated on
the R' cubic map. It is thus shown that one can apply either a flow or a map to a
CPM based communication system when the nonlinear control laws are designed
in such a way to cause synchronization among the master and slave systems. Fur-
thermore, it is shown that the instant synchronization, as defined in chapter 4,
within CPM based communication systems is of particular importance. In chapter
10, the CPM based communication system is demonstrated on the %* Burgers’
chaotic map and its security evaluated and compared to the other chaotic commu-
nication systems.

The CPM based chaotic communication system implementing the cubic map
master-slave system and the nonlinear controller of Figure 4.3, section 4.2, is
shown in Figure 6.17.
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Fig. 6.17 The cubic map chaotic communication system based on the parameter modulation
concept

In Figure 6.17, the master system parameter A = 2.9 has been chosen to repre-
sent a bit 0. The master system parameter A =3 has been chosen to represent a
bit 1. The message m of Figure 6.17 takes on the values of O and 1 depending on
the polarity of a bit transmitted. The slave system parameter A is set for all time at
A =2.9, so that synchronization at the receiver side signals a bit 0 and de-
synchronization signals a bit 1. Both parameter values, A =2.9 and A =3, gen-
erate chaotic behaviour within the system.

The transmitted signal X | is shown in Figure 6.18 when the series of 10 bits is
transmitted, that is, whenm =[0 010110 1 0 1]. Figure 6.18, also shows the

. o 2 . .
corresponding squared synchronization error, €, , under noiseless conditions, that

. .. 2 . .
is, when n = 0. The squared synchronization error, €, , is shown for the three dif-

ferent cases, that is, when the eigenvalues are equal to 1, 0.99 and 0. As for the
Lorenz and Ueda CPM based schemes, the spreading factor of 400 has been used.
A transient period of 10 chips has been allowed for the case of Figure 6.18.

It can be observed from Figure 6.18c that the system exhibits the worst per-
formance when the eigenvalue of the system is equal to 1. This is to be expected
as when the eigenvalue is outside the unit circle in the z domain the system does
not synchronize even when the master-slave parameters match. Thus, in this case,
the receiver cannot discriminate among bits O and 1. In contrast to this, it can be
observed from Figure 6.18d that when the eigenvalue is just within the unit circle,
that is, at 0.99, the system synchronizes for bits 0 and does not for bits 1. How-
ever, as can be seen from Figure 6.18d, the time it takes to synchronize is long and
thus affects the performance of the system by impeding with the time period of the
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next bit. Finally, with the eigenvalue at 0, that is, with the error system at 0, in this
R, case, synchronization with the matched parameters is instant. As can be seen

by comparing Figures 6.18c, d and e, this allows for the most efficient discrimina-
tion among bits 0 and 1.

6.2.3 Other Forms of Chaotic Modulation

In the case of chaotic parameter modulation, the binary message is introduced into
the dynamical equations of the system through one or more of the system’s
parameters. Alternatively, it is also possible to introduce the message into the dy-
namical equations of the system by incorporating it into one or more of the
system’s state variables. For instance, in [11,2] a binary message has been incor-
porated into the dynamics of the Chua master-slave system. Also, in [11], a cha-
otic communication system with a sinusoidal message incorporated into the
dynamics of the Lorenz master-slave chaotic system has been presented. Further-
more, Lyapunov’s direct method has been used to prove that the master-slave sys-
tem must synchronize in the presence of the message. Using a similar approach to
the one of [11,19], the authors of [13] introduce the message into the system
through the x state variable. However, in this case, the message is recovered
through an extra, purpose designed, state variable of the system.

The principles of operation of the Lorenz based chaotic communication system
of [11], are now briefly demonstrated. The system is shown in Figure 6.19. Note
that the Lorenz chaotic system has been modified here by introducing the parame-
ter A . The asymptotic stability within the master-slave system of Figure 6.19 has

been demonstrated in [11], by showing the existence of the Lyapunov function:

Vzl(lef +e§+efj (6.2.18)
2\o ’

where: e (1) =x(t)—x(t), e,(t)=y@)—y(t), e3(t)=2z(t)—2z().
Therefore, under noiseless conditions, the master-slave x signals must synchro-
nize for a given drive signal X, = X+ m . Assuming that the sufficient amount of

A
time has passed for x and X to synchronize, the transmitted message m can then
A
be exactly recovered in the form of 1 :

m=x,—x=(x+m)—x=m (6.2.19)
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Fig. 6.19 The Lorenz based chaotic communication system of [11]. The parameter values:
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Figure 6.20 demonstrates the operation of the system in a noiseless environ-
ment when: m=A, sin(2x f,), and: A =0.01, f, =1.8/x [11]. The upper

graph of Figure 6.20 shows the transmitted signal X + m . From the lower graph
of Figure 6.20 it can be observed that as the transients die out the sinusoidal mes-
sage remains.

6.3 Initial Condition Modulation

This section presents a recently developed chaotic communication technique
based on the initial condition modulation (ICM) of the chaotic carrier by the bi-
nary message, published in [10,16]. The chaotic modulation techniques of section
6.2 introduce the message into the system by incorporating it into the dynamical
equations of the system. In contrast to those, the ICM technique introduces the
message into the system through the system’s initial conditions. The ICM tech-
nique is based on the principles of the novel mathematical analysis for predicting
master-slave synchronization presented in chapter 5 [10].

6.3.1 Principles of Initial Condition Modulation

A general block diagram of a chaotic communication system based on the initial
condition modulation concept is shown in Figure 6.21. The binary message m is
introduced into the system through an initial condition (/C) of one of the master
signals. The choice of the initial condition depends on the synchronization proper-
ties of the particular master-slave system under consideration. Using the mathe-
matical analysis of chapter 5 [10], it is often possible to show that the mathemati-
cal expression for the synchronization error of the master-slave signals can be ex-
pressed in terms of the initial conditions of the system. The communication sys-
tem is then designed by choosing two different sets of initial conditions to repre-
sent binary symbols 0 and 1. To represent a bit 0 the master-slave initial condi-
tions are so chosen to cause the system to synchronize, that is, to cause the syn-
chronization error to go to zero. Alternatively, to represent bit 1, the master-slave
initial conditions are so chosen to inhibit synchronization. Therefore the operation
of the ICM scheme resembles that of the CPM scheme in that they both rely on the
state of the synchronization error at the receiver. However, the ICM scheme oper-
ates in accordance with the mathematical expression for the synchronization error.
In general, the signal x may be an interleaved version of more than one signal of
the master system [10].
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Fig. 6.21 A block diagram of the chaotic communication system based on the initial condi-
tion modulation concept

6.3.2 Initial Condition Modulation within the Ueda Master-Slave
Chaotic System

Consider the Ueda master-slave chaotic system of Figure 5.9, section 5.3, when
the master signal x drives. It has been shown in section 5.3 that in this configura-
tion equation 5.3.19, repeated below as equation 6.3.1, governs the synchroniza-
tion error of the master-slave y signals [10]:

V(1) = y(t,) = A— INCOE V(0)dt +2Bsin(@)sin(t, + Q) (63.1)

i=2 _ 20)-(0)
2 2

where: e _Q=¢+2(0)+§.

In addition, it has also been shown in section 5.3 [10] that as time tends to in-
finity equation 6.3.1 settles to the steady state behaviour governed by its third
term. Furthermore, note that the third term of equation 6.3.1 is governed by the
initial conditions of the master-slave z signals. By observing equation 6.3.1 it is
then readily verifiable that the error of the master-slave y signals tends to zero
when the difference among the master-slave z initial conditions is equal to
t2n7; (where n is any integer). Alternatively, when the difference is equal to
tnm, (where n is any odd integer), the error of the master-slave y signals
reaches its maximum possible value. These two chaotic synchronization properties
of the Ueda master-slave chaotic system have been utilized to construct the com-
munication system of Figure 6.22. The master initial condition of the z signal is
varied according to the value of the bit to be transmitted, bit O being represented
by m =27z and bit 1 by m = . In this way, the overall difference among the
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master-slave z initial conditions entering the transmitter and the receiver is equal
to either 7z or 27z . Therefore, under noiseless conditions, the system either syn-
chronizes or does not [10].

As explained in chapter 1, for optimal performance of the system in the AWGN
channel, it is essential that the symbols (bits) are as far apart as possible in their
symbol space [20]. For the communication system of Figure 6.22 the separation of
symbols 0 and 1 in their symbol space is largest when the difference among the
master-slave z initial conditions is equal to * 212 (where n is any integer) and
tnz, (where n is any odd integer), respectively. These two properties of the
Ueda master-slave chaotic system are expressed by equations 5.3.25 and 5.3.28
and illustrated by Figures 5.13b and 5.14b of section 5.3.

m
z(0)=1
Y,
Transmitter n Receiver
(Master system) X (Slave system)
I 2yl
- 4 Ky v, o A +
ff— Y iy J X =X, y —
:v=7x’ —ky + Bcos(z) T ? ;:7x,,37k;'+Bcos(2)
z=1 . e
< A ¥y
z=1
¥O)  x(0) 20)=1  y(0)=2

Fig. 6.22 The Ueda chaotic communication system based on the initial condition
modulation

In order to evaluate e, at the receiver, both master signals x and y, must be

transmitted. Therefore, in Figure 6.22, the transmitted signal s is a signal com-
posed of x and y master signals interleaved in the fashion described by Eqgs. 6.3.2
and 6.3.3, respectively [10]:

N
0= 58 -2m+1)  (632) ()= y,8(-2m)  (633)
i=1

i=1
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In equations 6.3.2 and 6.3.3 O(¢) is the impulse function and N is the spreading
factor, that is, the number of x () chaotic points representing a single bit.
The x, and y, signals, at the receiver side of Figure 6.22, represent the noisy

x and y signals of the transmitted signal, where n denotes AWGN, composed of
the two components represented in time domain by equations 6.3.4 and 6.3.5:

N
n )=y n, 6@—2i+1) (6.3.4)
i=1
N
n,(1)=>n,, 6(t—2i) (6.3.5)
i=1

The X, and Yy, signals are represented by equations 6.3.6 and 6.3.7, respectively:

x,()=xt)+n ()= i(x[ +n,,)0(t—-2i+1) (6.3.6)

i=1

y, () =y®) +n, ()= ﬁ(y, +n,,)8(t—2i) (6.3.7)

i=1

In order to avoid periodicity of chaotic sequences representing bit O (or bit 1), it is
essential to alter x(0) and y(0) with every new bit sent. Also, in order to ensure the
continuity of the smooth nature of the signals at the transition of the transmitted
bits, the initial conditions of x and y for every new bit transmitted are chosen as
the final values of the chaotic carrier of the preceding bit. The interleaved trans-
mitted signal s is shown in Figure 6.23 when the series of 10 bits is transmitted,
that is, when m = 2z, 27, n, 2%, @, @, 2%, @, 2z, 7], or in binary terms: message =
[001011010 1]. Figure 6.23 also shows the corresponding squared synchroni-

zation error, ef , under noiseless conditions. The spreading factor of 400 has been

used.

In order to demonstrate the performance of the Ueda ICM based communica-
tion system of Figure 6.22, an empirical BER curve has been produced and com-
pared to the BER curve of the BPSK communication system [20,21]. In addition,
an empirical BER curve of the Lorenz based CPM scheme presented above [8] has
also been produced [21]. The results of the BER analysis are displayed in Figure
6.24. From Figure 6.24 it is observed that it requires 13-14 dB less energy per bit
to achieve the same probability of error using the Ueda ICM based system of
Figure 6.22 as compared to the Lorenz CPM based system of [8]. The empirical
BER curves have been obtained in the following manner. The bit energy
was obtained by first determining the average power of the chaotic carrier and
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multiplying it by the bit period [10,20]. Then for specified bit energy to noise
power spectral density ratio (E, /N ), the required power (variance) of noise
was calculated and thus white Gaussian noise of that power generated. Finally for
each E b /N , the probability of error, that is the bit error rate, was determined.

Transmitted signal s(t), composed of interleaved x(t) and y(t) signals

8 T T T T T
6L i
4k i
ol |
= of
(%]
.2 = -
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B6F i
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Time
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. . . . L 2
Fig. 6.23 The interleaved transmitted signal s, and the squared synchronization error € y

It should be pointed out that the scheme of Figure 6.22 is not the only possible
configuration of implementing the system presented. For instance, in order to
avoid transmission of both x and y master signals across the channel, it is possible
to introduce a differentiator at the receiver side and pass the received x signal
through it to obtain an estimate of the master y signal, as from equation 5.3.1, sec-

tion 5.3, it is observed that in fact x = y. Such a configuration has the advantage

from the aspect of the reduced bandwidth requirement by transmitting a single
signal instead of two interleaved signals. However, in this case, the robustness to
noise of the system is significantly reduced as is demonstrated by the open squares
BER curve of Figure 6.24.

Yet another, more robust scheme which shows how to implement the Ueda
ICM scheme by transmitting only the master signal x is proposed. This scheme is
outlined in the appendix [15]. In this particular configuration it is shown that the
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A
transmitted bits can be recovered by only observing the slave signal y thus

eliminating the requirement of transmitting the master signal y as well.

Similar ICM based communication systems can also be constructed as is dem-
onstrated in the next two subsections on the simplest quadratic and the simplest
piecewise linear master-slave chaotic flows.

10°

10 F

10°%F

BER

10°k

-4
10 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Eb/No (dB)

Fig. 6.24 The BER curves: (a) the solid line is for the theoretical BPSK, (b) the solid cir-
cles are for the Ueda ICM based system of Figure 6.22, (c) the crosses are for the Lorenz
CPM based system of Figure 6.7 [8], (d) the open squares are for the Ueda ICM based sys-
tem of Figure 6.22 but with the differentiator and only x transmitted, (e) the solid squares
are for the simplest quadratic ICM based system of Figure 6.25, (f) the open circles are for
the simplest piecewise linear ICM based system of Figure 6.27.

6.3.3 The Communication System Implementing the Simplest
Quadratic Master-Slave Chaotic Flow

In Figure 6.25 the communication system implementing the simplest quadratic
master-slave chaotic flow is outlined.
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Fig. 6.25 The simplest quadratic chaotic communication system based on the initial condi-
tion modulation

The transmitted signal s is a signal composed of y and z master signals, inter-
leaved in the same fashion as signals x and y of the previous section. The signals

Y, and Z,, are described by equations 6.3.8 and 6.3.9, respectively:

y,(O)=y@®)+n,(1)= ZN:(y, +n,,)0(r—2i+1) (6.3.8)

i=1

N
Z, () =z +n, ()= (z,+n,,) 6 —2i) (6.3.9)

i=1

The operation of the communication system of Figure 6.25 is based on the syn-
chronization error of the master-slave z signals. It has been shown in section 5.2
[10] that after the transients die down, the synchronization error of the master-

slave z signals is governed by equation 5.2.22, repeated below as equation 6.3.10
for convenience:

s=-% (6.3.10)
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Recall that in equation 6.3.10, o = x(0) —x(0) =x—x, and A is the system

parameter.
The master initial condition of the x signal is varied according to the value of

the bit to be transmitted, bit 1 being represented by m =8.9 and bit 0 by

m =0. Such choice of m ensures that the distance of symbols (bits) in their
symbol space is large, while still maintaining the chaotic properties of the system.
The symbol space of this system is limited by the basin of attraction of the initial
conditions of the simplest quadratic chaotic flow and therefore care must be taken
in the choice of the initial conditions [22] to avoid the system going off to infinity.

To avoid periodicity of chaotic sequences representing bit O (or bit 1), it is es-
sential to alter y(0) and z(0) with every new bit sent. However, in this case, the
initial conditions of y and z for every new bit transmitted have not been chosen as
the final values of the chaotic carrier of the preceding bit, due to the limited basin
of attraction of the initial conditions. Instead, they have been randomly assigned
within the basin of attraction for every new bit transmitted. This ensures the cha-
otic properties of the system; however, it may jeopardize the security of the
system as compared to the system of Figure 6.22, due to the non-smooth bit transi-
tions and the more restricted choice of initial conditions. The interleaved transmit-
ted signal s is shown in Figure 6.26 when the series of 10 bits is transmitted, that
is, when m = [2x, 2%, &, 2x, @, @, 27, @, 2@, «], or in binary terms: message = [0 0 1
011010 1]. Figure 6.26 also shows the corresponding squared synchronization
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50 T
40 : .
Bit 1 Bit 0
= 30 / \
= \
N
O 20
‘ el lawiiaiNia
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0 500 1000 1500 2000 2500 3000 3500 4000
Time

Fig. 6.26 The interleaved transmitted signal s, and the squared synchronization error ef
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€rTor, ef , under noiseless conditions. The spreading factor of 400 has been used.

From Figure 6.26 one can observe that the transmitted signal diverges to infinity
if the chosen initial conditions of a particular bit are not within the basin of
attraction.

The result of the BER analysis for the simplest quadratic ICM based system of
Figure 6.25 is displayed in Figure 6.24 by the curve marked by solid squares.
From Figure 6.24 it is observed that it requires 11-12 dB less energy per bit to
achieve the same probability of error using the simplest quadratic ICM based sys-
tem of Figure 6.25 as compared to the Ueda ICM based system of Figure 6.22.

6.3.4 The Communication System Implementing the Simplest
Piecewise Linear Master-Slave Chaotic Flow

In Figure 6.27 the communication system implementing the simplest piecewise
linear master-slave chaotic flow, where the transmitted signal s is composed of the
interleaved signals y and x, is outlined.

m
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Transmitter n Receiver r
(Master system) y (Slave system)
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. 7 S v i
xX= y :"4 ¥ x= y’
. —» —» .
y=z X X, y=y
z=—Az-y+x-1 L A

T 1

¥(0) 2(0) Y0)=0 2(0)=0 ]

Fig. 6.27 The simplest piecewise linear chaotic communication system based on the initial
condition modulation



164 6 Application of Chaotic Synchronization to Secure Communications

The signals y, and Xx,, are described by equations 6.3.11 and 6.3.12,

respectively:
N
y, )=y +n,(0)=Y (y,+n,) 6t —2i+1) 6.3.11)
i=1
N
x, () =x(t)+n, () =) (x, +n,,) 5 —2i) (6.3.12)

i=1

The operation of the communication system of Figure 6.27 is based on the syn-
chronization error of the master-slave x signals, represented by equation 5.1.7, and
repeated below as equation 6.3.13 for convenience:

x—x=x(0)—x(0) = J 63.13)

The initial condition of the master signal x is varied according to the value of the

bit to be transmitted, bit 1 being represented by #2 =1 and bit 0 by m2 = 0. Such
a choice of m ensures that the separation of symbols (bits) in their symbol space is
relatively large, while still maintaining the chaotic properties of the system, that is,
preventing the system from going off to infinity. In order to preserve smoothness
of the transmitted chaotic sequence y, as well as to avoid periodicity, the initial
condition of y for every new bit transmitted is chosen as the final value of the cha-
otic carrier of the preceding bit. The disadvantage of this system is that the initial
conditions of the master signal x modulate the message to be transmitted while at
the same time transmitting the master signal x, thus jeopardizing the security of
the information transmitted as compared to the systems of Figure 6.22 and Figure
6.25. The interleaved transmitted signal s is shown in Figure 6.28 when the series
of 10 bits is transmitted, that is, when m = [2x, 2%, =, 2z, 7, 7, 2n, @, 27, 7], or in
binary terms: message =[00101 101 0 1]. Figure 6.28 also shows the corre-

sponding squared synchronization error, ei , under noiseless conditions. The
spreading factor of 400 has been used. From Figure 6.28 one can observe that the
transmitted signal does not diverge to infinity at any time if the chosen initial con-
ditions of a particular bit are within the basin of attraction.

The result of the BER analysis for the simplest piecewise linear ICM based sys-
tem of Figure 6.27 is displayed in Figure 6.24 by the curve marked by open cir-
cles. From Figure 6.24 it is observed that it requires 6-9 dB more energy per bit to
achieve the same probability of error using the simplest piecewise linear
ICM based system of Figure 6.27 as compared to the Ueda ICM based system of
Figure 6.22.
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Fig. 6.28 The interleaved transmitted signal s, and the squared synchronization error €

6.3.5 Discussion

In this section the three chaotic communication systems, based on the initial con-
dition modulation of the message to be transmitted, have been presented. They are
now discussed in terms of their performance.

The communication system based on the simplest quadratic master-slave cha-
otic flow exhibits the best performance in terms of the bit error rate, as compared
to the other two systems, due to the largest relative separation of the bits transmit-
ted in their symbol space at the receiver. Due to having the smallest relative sepa-
ration of the bits transmitted in their symbol space, the communication system
based on the simplest piecewise linear master-slave chaotic flow exhibits the
worst bit error rate performance.

From the security point of view, the communication system based on the Ueda
master-slave chaotic system may offer the most security out of the three systems
presented, as this system is not limited by the basin of attraction. This allows for
the widest range of initial conditions for the message modulation, that is, it en-
ables for the smooth nature of the transmitted signal at the bit transitions. The
communication system based on the simplest piecewise linear master-slave cha-
otic flow uses the error of the master-slave x signals to demodulate the message
while at the same time the initial conditions of the transmitted master signal x
modulate the message. This can be seen from equation 6.3.13 and Figure 6.27.
Therefore the security of this system is jeopardized as compared to the other two
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systems whose demodulation, that is, steady state synchronization error, equations
are independent of their own initial conditions, but depend on the modulating ini-
tial conditions of the signal not transmitted. This can be seen from equations 6.3.1
and 6.3.10, and Figures 6.22 and 6.25, respectively.

6.4 Performance Evaluation in the Presence of Noise

In this section, the noise performance of the binary modulation techniques of sec-
tions 6.2 and 6.3 is examined and compared in terms of the bit error rate.

In Figure 6.29 the BER performance of the Lorenz, Ueda and cubic CPM sys-

tems is compared to that of the ICM systems of section 6.3. Furthermore, the BER
curve of the filtered and plain Ueda ICM system with only x transmitted [15],
(outlined in the appendix), is also presented.
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Fig. 6.29 The BER curves: (a) the solid line is for the theoretical BPSK, (b) the solid
squares are for the simplest quadratic ICM system of Figure 6.25 [10], (c) the open penta-
gram stars are for the Filtered Ueda ICM system of the appendix [15], (d) the open dia-

monds are for the Ueda ICM system of the appendix [15], (e) the solid circles are for the
Ueda ICM system of Figure 6.22 [10], (f) the open circles are for the simplest piecewise

linear ICM system of Figure 6.27 [10], (g) the open squares are for the Ueda CPM system
of Figure 6.14 [16], (h) the crosses are for the Lorenz CPM system of Figure 6.7 [8], (i) the

open pentagram stars are for the cubic CPM system of Figure 6.17.
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While evaluating the BER curves of Figure 6.29 it has been assumed that the
clock synchronization among the clock at the transmitter and the clock at the re-
ceiver has already been achieved. As discussed in chapter 1, this assumption is
used in most cases when evaluating the performance of binary modulation tech-
niques [20,10].

From Figure 6.29 it is observed that it requires 7-10 dB less energy per bit to
achieve the same probability of error using the Ueda ICM system as compared to
the Ueda CPM system. Furthermore, it requires 4-6 dB less energy per bit
to achieve the same probability of error using the Ueda CPM system as compared
to the Lorenz CPM system. Therefore, the Ueda ICM system exhibits better noise
performance than the Ueda CPM system which in turn exhibits better noise per-
formance than the Lorenz CPM system. However, most importantly, it should be
observed that all of the ICM based systems developed here outperform the CPM
based systems. In particular, the best performance is exhibited by the simplest
quadratic ICM based system and the worst by the cubic CPM based system. Al-
though the simplest quadratic ICM based chaotic communication system exhibits
the best performance in terms of BER it has been argued in section 6.3 that it may
not be the most secure system. Similarly, it was argued that Ueda ICM based sys-
tem exhibits the best overall performance in terms of security and BER. Therefore,
the further 4-5 dB BER improvement exhibited by the Ueda ICM based system
with only the master signal x transmitted over the Ueda ICM based system with
both master x and y signals transmitted (Figure 6.22) is of particular importance.
Furthermore, it has been shown in the appendix [15] that by applying filters to the
received signal x further improves the performance of the system by 3-4 dB. How-
ever, it can be observed from Figure 6.29 that even the simplest quadratic ICM
based system which exhibits the best BER performance, out of all of the chaotic
synchronization based systems examined, is still outperformed by the BPSK sys-
tem by approximately 14 dB. In the next chapter, a robust synchronization unit for
the chaos based DS-CDMA systems is proposed. It is shown that in terms of BER
it outperforms the communication systems based on the principle of chaotic syn-
chronization presented and examined in this chapter.

It should be noted that all of the communication systems presented in this chap-
ter are inherently single user systems. It will be shown in chapter 9, how principles
of TDM can be used to allow these systems to become multi-user systems. Their
performance will be examined in both AWGN and Rayleigh fading channels. Fur-
thermore, it will be shown that by using different receiver architectures BER per-
formance can be improved in certain cases.

6.5 Conclusion

In this chapter, several chaotic communication systems with the receiver based on
chaotic synchronization have been described. These include the chaotic communi-
cation schemes of chaotic masking, chaotic modulation and the new chaotic com-
munication scheme of initial condition modulation.
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It has been shown how Lyapunov’s direct method presented in chapter 3 can be
used in the design of CPM based communication systems. In particular, this has
been shown on the Ueda master-slave chaotic system.

Furthermore, a method of implementing the synchronized chaotic map master-
slave system of chapter 4 within a CPM based secure communication system, was
demonstrated on the R' cubic map. It was shown that instant synchronization
within the chaotic map CPM based communication system allows for the highest
level of discrimination among bits 0 and 1.

On the basis of findings of chapter 5, a secure communication system based on
the initial condition modulation of the chaotic carrier by the binary message was
then presented. In particular, this system utilizes a novel approach to the master-
slave synchronization properties of the three chaotic flows investigated. The
empirical BER curves for the presented communication systems have then been
produced and compared to the empirical BER curve of the Lorenz CPM based
communication system of [8], demonstrating a significant improvement. It has
been shown that the communication system based on the simplest quadratic mas-
ter-slave chaotic flow exhibits the best performance in terms of BER, as compared
to the other two presented systems based on the Ueda and the simplest piecewise
linear master-slave chaotic flows. From the security point of view it has been ob-
served that the communication system based on the Ueda master-slave chaotic
system may be the most secure of the three systems presented.

Finally, the overall performance of the chaotic parameter and initial condition
modulation techniques has been examined and compared in the presence of
AWGN. It has been shown in terms of BER that the ICM based chaotic communi-
cation systems exhibit better noise performance than the CPM based ones. There-
fore, most importantly, it can be concluded that all of the chaotic synchronization
ICM based systems presented here outperform the presented CPM based systems.
Furthermore, it has been shown on the Ueda ICM based chaotic communication
system that the denoising techniques can be used to further improve the BER per-
formance. The details of the denoising techniques developed have been described
in the appendix. The work of this chapter has been published in [10,16,15].
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Chapter 7

A Robust Sequence Synchronization Unit for
Multi-user Chaos Based DS-CDMA
Communication Systems

This chapter demonstrates two ways of achieving and maintaining sequence syn-
chronization in multi-user chaos based direct sequence code division multiple ac-
cess (CBDS-CDMA) communication systems. In both cases, synchronization is
achieved and maintained through code acquisition and code tracking phases, re-
spectively. The performance of the proposed systems is evaluated in the presence
of additive white Gaussian noise and interuser interferences as well as in a
Rayleigh fading channel. A pseudo random binary sequence (PRBS) and a logistic
chaotic map are used as the synchronizing periodic, and non-periodic, pilot signals
within the multi-user chaotic communication system. In addition, the Bernoulli
chaotic map is also used as the pilot signal in the investigation of the code acquisi-
tion performance. The code acquisition circuit is evaluated in terms of the
probability of detection and probability of false alarm. The corresponding results
demonstrate an ability to achieve initial synchronization. Furthermore, it is shown
that in terms of code acquisition the PRBS outperforms the logistic and Bernoulli
chaotic maps when used as pilot signals. The mathematical models of the code
tracking loops are then developed and their validity demonstrated by means of a
simulation for both PRBS and chaotic pilot based CBDS-CDMA systems. From
the models, the control laws for the generation of time offset estimates are de-
rived. The robustness of the synchronization units is then demonstrated in terms of
the bit error rate. It has been shown that for the PRBS based system, in an AWGN
channel, for the case of 1, 2, 3, 4, and 5 users the bit error rate goes below the
maximum acceptable limit of 107 at the bit energy to noise power spectral den-
sity ratio of approximately 8, 9, 9.5, 11 and 12 dB, respectively. The chaotic pilot
based CBDS-CDMA systems exhibit marginally better performance for a single
user plus a chaotic pilot signal than the corresponding PRBS pilot based CBDS-
CDMA system at the BER level of 10~ and below. In particular, at the BER level

of 107, this improvement in performance is approximately equal to 0.175 dB.
Their BER performances match for more than one user in the system. It has also
been shown that the periodic and non-periodic chaotic pilot based CBDS-CDMA
systems’ BER performances match for any number of users in the system. Fur-
thermore a gradual degradation in performance, above the maximum acceptable

B. Jovic: Synchronization Techniques for Chaotic Commun. Syst., SCT 5, pp. 171
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bit error rate limit, is demonstrated for the increasing number of users for all sys-
tems. Finally, it is shown that although the systems are robust to the influence of
AWAGN and interuser interferences, they all fail to satisfy the maximum allowable

bit error rate limit of 107 in the Rayleigh fading channel. By introducing a cha-
otic pilot signal in place of a PRBS signal, the CBDS-CDMA system is made fully
chaotic. In this way, the CBDS-CDMA systems’ security is significantly improved
by eliminating an inherently different PRBS pilot signal.

As mentioned in chapter 3, the synchronization of chaotic systems was first
studied by Yamada and Fujisaka in 1983 [1], and Afraimovich et al. in 1986 [2].
However it was not until 1990 when Pecora and Carroll (PC) introduced their
method of chaotic synchronization (CS) [3] and suggested application to secure
communications that the topic started to arouse major interest. The chaotic syn-
chronization of [3] is most often established by employing Lyapunov’s direct
method [4-6] or by considering the conditional Lyapunov exponents [7-9], leading
to the design of the chaotic communication systems. Alternatively, the synchroni-
zation techniques of traditional spread spectrum communication systems [10-15]
achieve synchronization between the transmitter and receiver in two distinct
phases. These are called the code acquisition and the code tracking phase [10-21].
The code acquisition [11,10,13,14,15,18,20,21], or the initial synchronization
phase, involves determining the time offset amidst the incoming signal and the
basis function copy at the receiver to within a specified range known as the pull-in
region of the tracking loop [11,12,10,15-17,19]. Upon the successful completion
of the acquisition phase, the code tracking phase starts with the fine alignment
followed by the process of maintaining synchronization of the two signals. Due to
the mutually orthogonal properties of some chaotic signals [22-25] the synchroni-
zation techniques of the traditional code division multiple access (CDMA) spread
spectrum communication systems have a potential to be applied to the chaotic
communication systems [24,26-36]. In most cases, when evaluating the sequence
synchronization of the chaos based DS-CDMA systems the code acquisition is
analysed only [24,26,27,29-35]. In [26,27] Setti et. al. investigate the acquisition
procedure of a chaos based DS-CDMA system and briefly discuss the possible
general model for the tracking operation. The tracking model of [26,27] is essen-
tially based on a continuance of the acquisition procedure and it does not deal with
the synchronization within the chip level which is required for the fine alignment
between the received and the despreading sequences. It has been suggested in
[26,27] that the Bernoulli and the Tailed Shift chaotic maps may in fact yield
somewhat better performance during the code acquisition phase than the classical
spread spectrum sequences such as m (PRBS) and Gold sequences. Furthermore,
in [29], the authors use the Gaussian approximation for the self-interference term
to show its effect on the acquisition performance. In [30] the moments approach is
used to obtain a more accurate characterization of the self-interference term.
Throughout [26,27,29,30] the noise has not been included in the system in order to
study the effects of the interuser interferences on the acquisition performance.
However in any real communication system noise is an inevitable part of opera-
tion and is thus included here in the study of the system performance. In [32,34]
the authors look at the acquisition performance of Markov chaotic sequences
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when used as the spreading codes within a DS-CDMA system. It is shown in [34]
that the bit error rate and code acquisition performance of the Markov based DS-
CDMA systems are superior to that of the independent and identically distributed
(i.i.d.) based DS-CDMA systems. In [33], the distribution of self-interferences of
an incompletely synchronized, (to within a fraction of a chip), Markov based DS-
CDMA system is considered. It is shown that Markov codes show promise in this
regard; however, no tracking circuit is proposed to completely synchronize the
system. In addition, in [36], the author investigates the generation of spread spec-
trum chaotic sequences via Markov chains whose autocorrelation values always
take real numbers. Due to the reduction in the number of unknown parameters, it
is argued that the synchronization of such sequences is simpler than the synchro-
nization of Markov chain sequences whose autocorrelation values take complex
values. A more recent advance in the synchronization of chaotic CDMA systems
combines the interior penalty method of optimization theory and chaotic synchro-
nization theory to achieve detection at the receiver [37].

Studies into the optimal spreading sequences for DS-CDMA systems have been
conducted in [24-27,32-35,38-45], and it has been found that in many instances
chaotic time series are the optimal spreading sequences [24,26,27,34,35,38-45].
For instance, in [24,43], it has been shown that quantized chaotic spreading codes
can be generated for any number of users and exhibit generally better performance
than the classical, m and Gold, sequences. Alternatively, in [38] an estimation
technique for the minimum achievable interference in DS-CDMA systems is pro-
posed and used in [42] to find the autocorrelation function resulting in the mini-
mum possible interference-to-signal ratio. Furthermore, it has been shown in
[39-41], that in terms of capacity, where capacity is defined as the maximum rate
at which information can be transmitted without error, the suitably chosen chaotic
spreading sequences outperform the classical spreading sequences. Quantization
of chaotic time series is recognised as one of the possible practical problems in the
generation of the spreading sequences as it may affect the security and the system
performance [23,44]. In [44] a practical implementation of the optimal real-valued
Chebyshev chaotic spreading sequence is investigated in terms of the finite preci-
sion representation. It is shown that the bit error rate performance of a 31 bit pre-
cision machine matches that of a double precision machine. Therefore, a 31 bit
precision machine is sufficient for the practical implementation of some chaotic
sequences within DS-CDMA systems. The digital signal processors (DSPs) are
the devices commonly used to investigate the implementation of chaotic commu-
nication systems [46-51]. Under the assumption of perfect synchronization the
chaos based DS-CDMA system of [22] has been investigated in [51] on a 32 bit
precision TigerSHARC DSP chip by Analog Devices. It has been shown that the
quantization of the logistic map at this precision does not affect the bit error rate
performance of the system.

Broadly speaking, chaotic communication systems can be classified into those
that require sequence synchronization at the receiver, the coherent systems, and
those that do not, the non-coherent systems. However, in many cases when study-
ing coherent chaotic communication systems perfect synchronization between the
spreading code at the transmitter and its replica, or copy, at the receiver is
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assumed [52,22,23,51,53,54-56]. Such analyses only provide the benchmark per-
formance of the system [53]. In [57] it was reported that the PC chaotic synchro-
nization method of [3] is insufficiently robust for the implementation within the
practical chaotic communication systems. In order for the CDMA multi-user cha-
otic communication systems to become of practical and not just academic interest
robust synchronization techniques must be developed [57,53,54,58-61,62]. The
motivation for the work of this chapter was to develop a robust and secure syn-
chronization technique for the multi-user DS-CDMA chaotic communication sys-
tem of [22] using the traditional techniques of sequence synchronization within
the CDMA systems.

In this chapter, the code acquisition and tracking phase of the sequence syn-
chronization system are implemented within the multi-user DS-CDMA chaotic
communication scheme of Parlitz and Ergezinger [22]. The proposed systems are
evaluated in the presence of additive white Gaussian noise (AWGN) and the inter-
user interferences as well as in the Rayleigh fading channel. The synchronization
systems utilize a pseudo random binary sequence (PRBS) pilot signal and a peri-
odic and non-periodic logistic map chaotic pilot signals within the multi-user cha-
otic communication system to achieve and maintain synchronization. Under the
assumption of perfect synchronization the benchmark performance of the system
of [22] has already been investigated in the presence of noise and interuser inter-
ferences in [22,55] as well as in the Rayleigh fading channel of [56], demonstrat-
ing the potentially robust nature of this system. Also under the assumption of
perfect synchronization the security of the system of [22] has been evaluated in
[62], demonstrating some weaknesses of the system to the return map and correla-
tion function attacks.

Section 7.1, presents the entire system, consisting of the system in [22] and the
sequence synchronization system proposed. The interconnections of the two sys-
tems are explained. In section 7.2, the code acquisition circuit is presented and
analysed in terms of the probability of false alarm and the probability of detection.
The ability to achieve initial synchronization in the presence of noise and interuser
interferences is demonstrated. The mathematical model of the code tracking loop
for a PRBS pilot based CBDS-CDMA system is presented in section 7.3. The con-
trol law used for the generation of the time offset estimates is then derived. This is
followed by the investigation into the overall noise performance of the system in
terms of the bit error rate for different numbers of chaotic users in an AWGN
channel. Furthermore, the performance of the system proposed is compared to the
initial condition modulation (ICM) scheme of chapter 6 [63] based on the princi-
ples of PC synchronization. Finally, the performance of the system is evaluated in
the Rayleigh fading channel with AWGN and interuser interferences present. In
section 7.4, the periodic and non-periodic chaotic pilot based CBDS-CDMA sys-
tems are proposed and evaluated in AWGN and Rayleigh fading channel. The
mathematical model of the code tracking loop is presented for both chaotic pilot
based CBDS-CDMA systems. The control laws used for the generation of the time
offset estimates are derived. This is followed by the investigation into the overall
noise and fading performance of the systems in terms of the bit error rate for dif-
ferent numbers of chaotic users and comparison of the results to those of PRBS
pilot based CBDS-CDMA system.
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7.1 The Chaotic Communication System with the
Synchronization Unit

Figure 7.1 shows the ‘DS-CDMA communication scheme based on the chaotic
dynamics’ introduced in [22], with the synchronization unit proposed here. Thus,
the system of Figure 7.1 does not assume perfect sequence synchronization. The
mathematical model of the chaos based DS-CDMA communication system of
Figure 7.1 with perfect sequence synchronization assumed has been presented in
chapter 2 [52].
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Fig. 7.1 DS-CDMA chaotic communication system with the synchronization unit
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In Figure 7.1, x(¢) denotes the chaotic spreading signals which are multiplied by
the binary message signals m(f). The products are then summed up to produce the

signal ¢() which is transmitted through the channel. X, (t) denotes the pseudo

random binary sequence (PRBS) which acts as the periodic pilot signal used for
synchronization purposes. Provided that the power of the noise in the system is
comparatively low to the power of the signal, the synchronization unit uses the
received signal r(¢) to generate the despreading codes which are punctually syn-
chronized to the spreading codes at the transmitter. In order for the spreading
waveform generator at the receiver to produce punctual despreading codes the
initial conditions of the spreading codes of each of the M users at the transmitter
must be available to it. The received signal r(¢) is then correlated with the punctual
despreading codes. For sufficiently low noise levels in the system the correlation
value produced at the output of each correlator is positive if the bit 1 is transmitted
and negative if the bit O is transmitted [22]. Note that the correlator receiver of
Figure 7.1 has been represented by integrals, rather than sums as in [22], in order
to conform to the continuous time domain which is used in this chapter.

The synchronization unit of Figure 7.1 is composed of two interconnected
units, namely the acquisition or the initial synchronization unit and the tracking
unit which includes everything but the initial synchronization unit. For the com-
munication between the transmitter and the receiver to take place the synchroniza-
tion between the chaotic spreading codes x(7) at the transmitter and their replicas
at the receiver must be established and maintained. The synchronization is estab-
lished through the acquisition or the initial synchronization unit [11,10,13,14] by
acquiring the time offset of the received signal r(f) to within a certain fraction of

the chip period 7. Once the synchronization has been established it is continu-

ously maintained by the tracking unit [11,12,10] by ensuring that the incoming

time offset is matched by the estimated time offset 7T 4, as explained in section
7.3. Synchronization using the PRBS signal as the pilot signal within the chaotic
communication system is possible due to the fact that the PRBS signal and the
chaotic signal used, the logistic map [22] shown in phase-space [62] in Figure 7.1,
are highly orthogonal as is demonstrated in Figure 7.2a by the cross-correlation
function with no dominant peaks. The autocorrelation function of the logistic map
time series is presented in Figure 2.13b, repeated below as Figure 7.2b, showing
the dominant peak. The logistic map time series has been generated using the
equation 2.1.5, repeated below for convenience as equation 7.1.1 [22]:

X, =1-2X (7.1.1)

The length of the logistic map time series used to produce Figures 7.2a and 7.2b is
equal to 511 points (chips). The dynamic range of the logistic map time series is
confined to =1 [22]. In Figures 7.2a and 7.2b ¢ denotes the time delay. Also, note
that the correlation functions have been normalized to the peak of the autocorrela-
tion function.
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7.2 The Code Acquisition

In this section, the first phase of the sequence synchronization process known as
the code acquisition or the initial synchronization phase is presented [15,64].

7.2.1 Theoretical Model of the System

In Figure 7.3, the circuit diagram of the code acquisition circuit is shown [15]. The
following mathematical analysis of the acquisition circuit is performed at band-

pass, as is the common practice when dealing with this kind of circuitry
[65,10,11].
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Fig. 7.3 Code acquisition circuit
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The physical description of the circuit is as follows. The input signal (), is
composed of the M user signals combined together and up converted, as well as
the noise component introduced by the channel. Among the user signals is the
pilot signal which is used for the sequence synchronization purposes of the com-

munication system. The (), r,(t) pair are the baseband signals produced by
down converting the signal r(f). The X » (t — ) is the copy of the pilot signal
with some arbitrary time offset ©. The time offset U can be represented as

U = jAT,, where j is an integer and A any value between zero and one depend-
ing on the search strategy employed [66]. The X, (t — V) copy of the pilot signal

is used to despread the r,(f), r,(¢) pair. The despread signals are then inte-
grated over the period of the pilot signal X, () equal to NT, units of time. The

decision variables Z, j and Z, ; are squared and summed to produce the decision

variable Z i which is used to decide whether the time offset has or has not been
acquired by comparing it to the predetermined threshold. If the time offset has not
been acquired the despreading pilot signal is shifted by further ATC and the new
decision variable produced. The procedure is repeated until the approximate time
offset, (to within = ATC ), is determined. The reason of having two branches is to

eliminate the influence of the carrier component from the decision making [15]. It
is assumed that the clock and carrier synchronization between the transmitter and
the receiver has already been achieved and is maintained throughout the acquisi-
tion procedure, so that the system has the knowledge of where the chips start and
end. As discussed in chapter 1, this assumption is used in most cases when evalu-
ating the performance of binary modulation techniques [67,63]. In the bandpass
case the received signal of Figure 7.1, r(¢), is assumed to be of the up converted
form given by equation 7.2.1:

() = i A x.(t = 1) m, (t = N2 cos(w,1 + @) + n(1)

i=p

= i A x,(t=1)m, (t = N2 (cos(w,.1) cos() —sin(w, 1) sin(p)) 72D

i=p

+ \/En, (t)cos(w,.t) — \/EnQ (t)sin(w, 1)

where: n(r) =/2n, (1) cos(@,1) —2n, (1) sin(,)
In equation 7.2.1, A, represents the amplitude of the transmitted signals, X;

the spreading waveforms and #1; the information signals, with 7} denoting some

arbitrary time offset of the received signal. The limit of the sum M denotes the M
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users of the system, with p corresponding to an extra user ( p =0), that is, the

pilot signal, as illustrated in Figure 7.3. The terms 7, (¢) and n, () denote the
in phase and quadrature components of the noise signal n(f). The angular fre-
quency of the carrier is denoted by @), and its phase by ¢ . The signal X, of
Figure 7.3 is expressed by equation 7.2.2:

X, (1) =r(t) - N2 cos(a,t)

M 7.2.2
=ZA,- X, (t=m)m,(t —7])2(cos2(a)(t) cos(¢) —sin(w. 1) cos(w,t) sin((p)) ( )

+2n,(t) cos’ (@.1) —2n, () sin(@,1) cos(@, 1)

Rearranging equation 7.2.2, equation 7.2.3 is obtained:

X, () =f A, x.(t—=17)m,(t —)(cos(¢) + cos(2 @, 1) cos(@) — sin(2 @, 1) sin(¢))
+n,(t)+n,(t)cosQaw,t)—n, (t)sin(2@,t)
(7.2.3)

Upon low pass filtering signal X |, signal 7,(#) is obtained:

h (t) = [Xl ([)]LPF = ZAZ X; (t _77) m,; (t _77) COS(¢) + n; (t) (7.2.4)

i=p
R()= A x, (t—ym (—meos@)+ S A x (t—pym, (¢ —pycosig) +ny (1) T2

In equation 7.2.5, the first term is the wanted signal, the second terms are the in-
terferences of other users and the third term is the noise component. Keeping in

mind that it is so chosen that m, () =1 for all time [10,15], equation 7.2.5 is

rewritten as equation 7.2.6:

n)=A,x,(t—mn)cos(p)+n (1) (7.2.6)

where: n,(t) = iAi x,(t—n)m,(t —n)cos(p)+n,(t)
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In a similar manner, equation 7.2.7 is obtained:

r, (1) = A, x, (t—1)sin(@) +n, (1) (72.7)

where: 1, (1) = Y A, x;(t —1)m,(t —=1)sin() +n,, (1)
i=1

The decision variable Z j is expressed by equation 7.2.8:

= rl(t)x (t—v)dt

B -[ (j- l)NT XP (t—=m)cos(@)+n, (t)]xp (t—v)dt

-1 x, (r—v)dr+j L (0x, (1= v)dr
(7.2.8)

= A, cos(o)

~1)NT, p

Keeping in mind that 77 and U are some arbitrary time offsets with respect to

each other, let 7 represent the overall time offset between the received signal and
the despreading replicas at the receiver. In this case equation 7.2.8 can be rewrit-
ten as equation 7.2.9:

B JNT. JNT. 729
z; = A, co5@) 1, () x, (=i [ (0x, (- v)dr (7:2.9)

Note that for periodic waveforms the general expression for the autocorrelation
function R(7) is defined by equation 7.2.10 [10], where the pilot signal period

T =NT.:
L +7)d
mn_TLxmﬂLj)t (7.2.10)

The decision variable Z ; can then be expressed by equation 7.2.11:
Z,,=A,cos(@)TR,(1)+ N, (72.11)
In equation 7.2.11 Nlj is expressed by equation 7.2.12:

JNT.
N, = J.(j—l)NT(. n, (1) x, (t = v)dt (7.2.12)
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In a similar manner, equation 7.2.13 is obtained:

Z,;=A,sin(@)TR () + N, (7.2.13)
In equation 7.2.13 sz is expressed by equation 7.2.14:

JNT.
N, = J.(j—l)NT[. ny (1) x, (t —v)dt (7.2.14)

7.2.2 Theoretical Upper Bound on the Probability of Detection

In this subsection, the theoretical expression for the upper bound probability of
correctly acquiring the time offset between the received signal and the despread-

ing replicas at the receiver is given. The statistical properties of /N, are now
briefly analysed. Expanding equation 7.2.12 and noting that the phase of the noise

term 71, () relative to the pilot signal is arbitrary, equation 7.2.15 is obtained:

Nyy=7,+1;

VL J JNT, M A J
=y Ox, =D+ j(HWTL_{; X, (ym, () }cos(@) x,, (t — T)dt
i#p

(7.2.15)

In general, N, is composed of the white Gaussian noise term ( ) and the inter-
ferences term (/ ). The mean value of the white Gaussian noise term ¥ is equal to
zero, and its variance can be expressed by equation 7.2.16 [11,10]:

NT, o+NT,| ] NT,
Var[y]:J.0 J.O N_TO n,(On,(w)dt |x,(t—7)x,(u—7)dtdu

NI, ¢ NT, ————
= [ On, 6 x, =) x, =D drdu

NT, ¢NT, |
:J.o J.o ENUB‘S(I_“)XP(I—T)X,,(M—T)dtdu

1 N, 1
- ENOBIO X (t=2)dt =_N,BNT,
(7.2.16)
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In equation 7.2.16 B denotes the bandwidth of the intermediate frequency (IF)
filter (not explicitly shown), so that the noise component is the baseband white

Gaussian noise process with two-sided power spectral densities N, /2 over the
frequency range |f| < B/2 [11]. Therefore ¥ is a Gaussian random variable of

zero mean and N BNT, /2 variance, and can be represented by equation 7.2.17:

Y= G(O,%NOBNTC) (7.2.17)

The interference term, /, is expected to always be close to zero due to the orthogo-
nal relationship among the chaotic interferences and the PRBS pilot signal, as
demonstrated in Figure 7.2a, with certain variance not equal to zero. With this in
mind, equation 7.2.18 is assumed to hold [10]:

oY 5
I = Iu—wvn {; A, x,(t)ym, () }cos(@) x, (t = T)dt = 0 (7.2.18)

i#p

Therefore, N , is the Gaussian random variable of zero mean and variance

N U BNT. /2, where N, U denotes the effective noise power spectral density that
is due to both the receiver noise and the interferences [10,15]. Variance
N U BNT. /2 thus includes both the variance of ¥ and / terms. Overall equation
7.2.19 holds:

| B
N, =G(0.2N,BNT,) (7.2.19)
Now the general expressions for the decision variables Z, i and Z, j can be
re-expressed in the form of equations 7.2.20 and 7.2.21:
1 .
Z, =A, cos(p)TR(7) + G(0, 5 N, BNT,)

=G(A, cos(p)TR(7), % N,BNT,) (7.2.20)

1 . A
= ENOBNT(, G| ——=L——cos(¢)TR(7),1
wfiNa'BNTC
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Z,=A, sin(p)TR(7) + G(O,%N JBNT.)

=G(A, sin(go)TR(r),%No'BNT(’.) (7.2.21)

‘ A
= ‘/%NOBNT[ -G I—Psin(qo)TR(r),l
,/END'BNTC

Keeping in mind that at bandpass A, =/2E_ /T, , where E, denotes the en-

ergy of a single PRBS chip, equations 7.2.20 and 7.2.21 are rewritten as equations
7.2.22 and 7.2.23, respectively:

.. NE
Z,=,|=N,BNT. -G| 2 |—=cos(¢)R(7),1 7.2.22)
i \/2 , [ \/N B (P)R(7) J (

o

o

1 . NE
Z,=.,|—N_BNT. -G|2 —sin(@)R(7),1 7.2.23

1.
Therefore, the decision variable Z i = Z f s Z i j s EN ,BNT, times a non-

central chi-squared random variable with two degrees of freedom, and the non-
centrality parameter is given by equation 7.2.24 [10]:

NE, ’ NE, . ’
A= {2 B cos(go)R(T)} + {2 B sm((o)R(T)}

o o

(7.2.24)

2
NE E
=|2 | —<R(r) | =4NR*(1)——
N,B N,B

o o

The probability density function (PDF) for Z j is given by equation 7.2.25

[10,11], where 0 :%NO'BNTC:
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1 z
L) [ [Az
p.(2)=120> ¢ IO( o’ 220 (7.2.25)

0 otherwise

where [ is the modified Bessel function of the first kind of order zero.

The initial synchronization test can be viewed as a hypothesis test. Let H| be
the hypothesis that the incoming and local signals are aligned to within one chip
length, (by choosing the search strategy with A =1), and let H; be the hypothe-

sis that they are not. These hypotheses are represented by equations 7.2.26 and
7.2.27 [10]:

H : |I7I<T, -  R(1)>0, N,=N, (7.2.26)

H,: I71>T, —  R(1)=0, N, >N, (7.2.27)

The PDF, conditioned on the hypotheses above, takes the form of equations 7.2.28
and 7.2.29:

1 -
P, Hy) = e Mo BT (7.2.28)
), s
1 2 lN(,BNT(
p.(zlH)= ~BNT ¢ 2 ) (7.2.29)

From equations 7.2.28 and 7.2.29, the single run probability of detection and false
alarm are now evaluated by integrating the PDF. The false alarm threshold is de-
noted by 3, . Provided that this threshold is equalled or exceeded by the decision

variable Z ;j» the system assumes that the time offset has been acquired and

switches to the tracking circuit which maintains the acquired time offset. If the
noise in the system is too high, or the sequence period over which the integration
is performed is too short, the threshold maybe exceeded by the decision variable,
when in fact it should not be so. In such a case the time offset is falsely acquired

and the false alarm occurs. The threshold ﬂT , for a particular noise level and se-

quence length, can be determined from the false alarm probability. The false
alarm probability is given by equation 7.2.30:
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P.(j=1)=P(Z,>f, | H,)
:j; p. (z1Hy)dz
- _ L e (7.2.30)
# N BNT,
_ < - _ Br
_ N, BNT, _ N,BNT,
=|—e€ =e
Br

From equation 7.2.30 expression for the threshold ,BT , for a certain probability of
false alarm, can be expressed as shown by equation 7.2.31

B, ==N,BNT,In(P.(j =1))

(7.2.31)
The probability of detection is given by equation 7.2.32
PD(jzl):Pr(Zj >ﬁT |H1)
= Iﬂ p. (zIH)dz (7.2.32)
. 2
l A+ z
- 1 20 Ly vt
e
# N,BNT
Consider the Marcum’s Q-function given by the integral of equation 7.2.33
(a,B)=Pr{r>py={ ze“ "1 (az)dz (7.233)
ﬂ o

Equation 7.2.32 is now transformed into the form of the Marcum’s Q-function of

1
equation 7.2.33. Let z = ENUBNT,)CZ, so that dz = N, BNT xdx . Substi-

tuting z and dz into equation 7.2.32, equation 7.2.34 is obtained

P,(j=1)= jzﬂrmw bl 1 (7 x)dx (7.2.34)
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Equation 7.2.34 is in the form of equation 7.2.33 and is now compactly expressed

as shown in equation 7.2.35:

P,(j=1)=0(4. 2B, /(N,BNT)) (7.235)

Substituting equations 7.2.24 and 7.2.31 into equation 7.2.35, equation 7.2.36 is
obtained:

NE N
P (j=1)=0|2.|—<R(1), .|-2—=In(P.(j =1 7.2.36
»(j=1)=0 N'B (7) \/ N (P-(j=D) ( )

where R(7)< R(0)=1.

The expression for the upper bound on detection probability is then obtained by
assuming that N{,' =N, and R(7) = R(0) =1 [10], and is expressed by equa-
tion 7.2.37:

P(j=1)<0Q|2 /xEB , {=2In(P. (j=1) (7.2.37)

In summary, in equation 7.2.37 P, stands for the probability of false alarm given
P
. N,BNT,
by P.(j=1)=e """ where 3, denotes the false alarm threshold level.

Using the Gaussian Q-function [10] to approximate Marcum’s Q-function,
equation 7.2.37 can be accurately estimated by equation 7.2.38:

NE
P,(j=D)<Q,|-2In(P,(j=1) -2 o (7.2.38)

where Q;, denotes the Gaussian Q-function.

7.2.3 Empirical Evaluation of the Probability of False Alarm and
the Probability of Detection

A way of obtaining the empirical expressions for the probability of false alarm and
the probability of detection is now briefly presented [15]. Assume that at a certain
level of noise in the system the output of the acquisition circuit is as given in
Figure 7.4.
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A
Zj

aniiinl IR

J

Fig. 7.4 Output Z i of the code acquisition circuit of Figure 7.3

Then at this certain level of noise the decision variable Z i will exceed the

threshold value six times and in any of those times synchronization will be de-
clared. However, in only one of those six times (denoted by a circle in Figure 7.4)

the incoming signal r(#) and the basis function x,(f — ¥) will actually be syn-

chronized, while in the other five times (denoted by the crosses) the two will not
be synchronized. Therefore, the circle in Figure 7.4 corresponds to the case when
the two are indeed synchronized while crosses correspond to the cases when they
are not synchronized but the threshold is exceeded. The probability of one event
occurring while another has in fact occurred is termed conditional probability and
is represented by equation 7.2.39:

P(AIB)= % (7.2.39)

Equation 7.2.39 states that the probability of event A given that event B has oc-
curred is equal to the probability of both A and B occurring divided by the prob-
ability of event B. The equation 7.2.30 which represents the probability of false
alarm can therefore also be written as equation 7.2.40:

P(Z,>f, NH,)

(7.2.40)
P.(H,)

P.(j=0)=P(AIB)=P(Z;>f, 1 H,)) =

The expression for the numerator term P (Z P> By N H,) of equation 7.2.40
is given by equation 7.2.41:

P(Z,>p, nH,)= }me[gj (7.2.41)
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In equation 7.2.41 k represents the number of crosses in Figure 7.4, that is, the

number of decision variables Z; exceeding the threshold value [, when in fact
they should not. S represents the total number of decision variables Z Iz

The expression for the denominator term P, (H 0) of equation 7.2.40 is given

by equation 7.2.42:

P.(H,) = }LIE(ST_I) (7.2.42)

Substituting equations 7.2.41 and 7.2.42 into equation 7.2.40, equation 7.2.43 is
obtained:

. . k
P.(j=1) }5‘30(5 ~ J (7.2.43)

Saying that § is unlimited implies that the synchronization time is unlimited. In
order to obtain an accurate result, when S is limited, the experiment must be run a
number of times, that is, a large number of synchronization bits (periods) must be
processed. Processing a large number, m, of bits, while keeping S limited permits
an accurate estimation of the probabilities, for a limited size of the synchroniza-
tion bit. Running the experiment m number of times leads to the expression for
the probability of false alarm given by equation 7.2.44:

n=1

Also equation 7.2.32 which represents the probability of detection can be written
as equation 7.2.45:

P.(Z,> B, NH))
P (H))

PD(j=1)=Pr(Zj>ﬂT|H1)= (7.2.45)

The expression for the numerator term P (Z i B, N H,) of equation 7.2.45

has only two outcomes, depending on whether the threshold ,B r has been ex-

ceeded or not. These two outcomes are given by equation 7.2.46:

. (1 1

P(Z,>p,nH))= }Eﬂ[%] =0 otherwise
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The expression for the denominator term P_(H ) of equation 7.2.45 is given by
equation 7.2.47:

P.(H)) = }me[éJ (7.2.47)

Substituting equations 7.2.46 and 7.2.47 into equation 7.2.45, equation 7.2.48 is
obtained:

lim| —
P(Z;>p,nH,) S‘“[S)
P,(j=1= ! = =1 Zj>,BT
)
(7.2.48)
P(Z >p, "H
P,(j=1= 2, > P 1): 0 =0 otherwise

P.(H,) hm( 1 j

S\ §

From equation 7.2.48 it is clear that to obtain the expression for the probability of
detection one must run the experiment over more than a single synchronization
bit, regardless of the length of the synchronization bit, that is, the synchronization
bit period. Running the experiment m number of times leads to the expression for
the probability of detection given by equation 7.2.49:

Py(j=D=1lim) (M) (7.2.49)
=1

m—»oo = m

where P, (j=1), €{0,1}.

7.2.4 Theoretical and Numerical Simulation Results

The theoretical and empirical performance of the code acquisition circuit of Figure
7.3 is now examined in terms of the probability of detection and the probability of
false alarm. In particular, the system performance is examined when the ratio of

the chip energy to the noise power spectral density, E./N , is equal to -15 dB

[10], and the chaotic interferences and the period of the synchronizing pilot signal
vary. It has been found that the theoretical upper bound on the probability of de-
tection (equation 7.2.37) matches the empirical upper bound on the probability of
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detection when B =12/7 . Note that the empirical upper bound on the probabil-
ity of detection is obtained by simply eliminating chaotic users from the system
and processing only the pilot signal. Figure 7.5a, shows the theoretical upper
bound on the probability of detection, (equation 7.2.37), when

E./N,=-15dB, N =255 and B =12/7, followed by the corresponding

no interference empirical curve. The subsequent empirical curves associated with
the increasing number of users in the system, demonstrate the expected degrada-
tion in the system performance with the increasing level of interference. For in-
stance, one can see from Figure 7.5a that an integration time equivalent to 255
chips is required to achieve a detection probability of approximately 94 % while

maintaining a false alarm probability of 5 % when E_ /N, =—15dB and the

total interference is equivalent to an interference encountered within a 5 user sys-
tem. On the other hand for a 20 user system, when E_ /N 6 =-15dB and

N =255, one is only able to achieve a detection probability of approximately
75.5 % while maintaining the same false alarm probability of 5 %.

By increasing the length of the pilot signal from N =255 to N =383 chips
and N =511 chips, while keeping £, /N, B and the interferences unaltered,

the results shown by Figures 7.5b and 7.5c are obtained, respectively. From
Figures 7.5b and 7.5c one can see that by increasing the integration time of the
integrators of Figure 7.3 the effect of the noise and the interferences is reduced
resulting in a higher probability of detection. However, increasing the integration
time inevitably increases the overall initial synchronization time [15]. Therefore,
there is a trade off between the time it takes to search the possible pilot time off-
sets and the reliability of acquiring the correct time offset. Thus, the choice of the
particular integration time will depend on the nature of the application. Note that
although the cross correlation between the chaotic signal generated by the logistic
map and the PRBS pilot signal is very low (Figure 7.2a), the variance caused by
the interuser interferences (equation 7.2.18) cannot be ignored in the analytical
model, especially for the case when the number of users is large.

The acquisition performance of the chaotic maps, in particular the Bernoulli
shift map [68], has been investigated in a noiseless environment in [26,27]. In or-
der to evaluate and compare the acquisition performance of the PRBS pilot signal
in a chaotic DS-CDMA system, Figures 7.5d and 7.5e show the results obtained
when the logistic and Bernoulli chaotic map sequences are used as the pilot signal,

respectively. It can be seen from Figure 7.5d that for £, /N, =—15dB and

N =255 the logistic map pilot signal exhibits virtually the same performance as
the PRBS pilot signal for the first five users. However, when the number of users
increases to 10, 15 and 20 the performance of the system with the PRBS pilot sig-
nal is better. Furthermore, it can be seen from Figure 7.5e that when the Bernoulli
chaotic sequence is used as the pilot signal, in a logistic map based DS-CDMA
system, the acquisition performance deteriorates by a non-negligible margin for
any number of users in the system. Therefore, the acquisition performance of the
logistic map based DS-CDMA system in a noisy environment is better when the
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Fig. 7.5a The probability of detection vs. the probability of false alarm for
E. /N, =-15dB, N =255 and varying levels of interference when the PRBS is used as

the pilot signal.
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Fig. 7.5b The probability of detection vs. the probability of false alarm for
E /N,=-15dB, N =383 and varying levels of interference when the PRBS is used

as the pilot signal. The close up is shown in the lower right-hand corner.
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the probability of false alarm for

—15dB, N =511 and varying levels of interference when the PRBS is used

as the pilot signal. The close up is shown in the lower right-hand corner.
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the probability of false alarm for

—15dB, N =255 and varying levels of interference when the logistic map is

used as the pilot signal. The close up is shown in the lower right-hand corner.
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Fig. 7.5e The probability of detection vs. the probability of false alarm for
E /N, =-15dB, N =255 and varying levels of interference when the Bernoulli map

is used as the pilot signal. The close up is shown in the lower right-hand corner.

PRBS is used as the pilot signal than the logistic and Bernoulli chaotic maps. This
could be due to better correlation properties.

7.3 Code Tracking with a PRBS Pilot Signal

In this section the second phase of the sequence synchronization process known as
the code tracking phase is presented. Once the initial synchronization circuit of
Figure 7.1, has established the correct time offset to within the pull-in region of
the tracking circuit, the tracking circuit is able to take over the synchronization
process. Note that the pull-in region of the tracking circuit is defined as the range
of the time offset error that can be successfully corrected by it [66]. The function
of the tracking circuit is to fine align the approximate time offset acquired be-
tween the received and despreading sequences and to maintain the synchronization
from this point onward [11,12,10,66]. In this section, the code tracking loop with
a pull-in region of half a chip length is considered. Therefore, to this end it is as-
sumed that the search parameter A of the initial synchronization circuit of Figure

7.3 is equal to a ¥2. This ensures that the acquired time offset of Figure 7.1, T, is

accurate to within half a chip length of the exact time offset enabling the tracking
circuit to correct the inaccuracy and maintain the correct time offset. Thus, we
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redefine the incoming time offset 77, of section 7.2 as T, , indicating that the ac-

quisition phase has been finished and that the synchronization unit now has the
approximate knowledge of the correct time offset to within half a chip length:

12 <(T, =T, )< Tel2 (73.1)

7.3.1 Theoretical Model of the System

The tracking circuit examined here is known as the delay lock loop (DLL)
[11,12,10,17] and it includes the entire synchronization unit of Figure 7.1 except
for the initial synchronization unit. The early work on DLL circuits can be found
in [17]. The ultimate function of the synchronization unit of Figure 7.1 is to pro-
duce the punctual codes for despreading the received signal (¢). This is achieved
by correlating the early and late replicas of the pilot signal by the received signal
r(f), subtracting their difference, and ensuring that the resulting error signal e(?) is
constantly forced to zero. In Figure 7.1, VCO stands for the “Voltage controlled
oscillator” whose function is to increase or decrease the clock frequency depend-

ing on the current value of e(¢) [11]. The term O of Figure 7.1 is defined as the

normalized difference among the incoming time offset 7, of r(z) signal and the

tracking circuit time offset estimate 7T 4 , that is, O = (T, —=Ta)/T.. The loop

filter of Figure 7.1 is essentially an averaging integrator, integrating over the
PRBS pilot signal period:

NT, /2

1
e(r) = ﬁjm ,E(,0)dr (7.3.2)

Provided that one is already synchronized to within half a chip period, after suc-
A
cessful acquisition, it is now shown how a punctual time offset 7 ¢, which

matches the received signal time offset 7T, , is obtained at discrete time instances.

With a correct estimate of 7, , the receiver is able to accurately despread the re-

ceived signal. The following mathematical analysis is performed at baseband and
is based on the circuit of Figure 7.1. Therefore, the received baseband signal r(f)
can now be represented by equation 7.3.3:

r(t)=c(®)+n() = i A x,t=T,)m,(t=T,)+n(t) (7.3.3)

i=p
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The received signal r(¢) is composed of the transmitted signal c(f) and the additive
white Gaussian noise component n(f). The transmitted signal c(#) is in turn com-
posed of the mixture of signals of different users as well as the pilot signal.

The signal y, (t) of Figure 7.1 is then expressed by equation 7.3.4:

WO =rOAx, (t~T o+ 7;")

M A T A T
=24 % (=T )my=T,) A, (=T a4 =) 1) A, x, (¢ =Ta+ =)
i=p

(7.3.4)

Equation 7.3.4 can be rewritten as equation 7.3.5:

T

M A
WO =D Ax-T)me-T)A, x,t—Ta+ 2”)+nl(t) (1.3.5)

i=p
A T
where: n,(t) = n(t) A,x, (1 —Td+?L)

Evaluating equation 7.3.5, equation 7.3.6 is obtained:

AT
WO = AL x, (¢ =T))x, (=Ta+ )

T (7.3.6)

M A
+Y A X (=T )m (1 =T)A, x,(t-Ta+ 2“)+n1(t)

i=1
i#p
Recall that the term m, (t —Td) disappears, since it is so chosen that

m ,(t) =1 for all time [15]. The second and the third term of equation 7.3.6 are

the interference and noise terms, respectively, and can be written in a joint form so
that equation 7.3.6 takes the form of equation 7.3.7:

A T
O =A x,(t-T))x, (I—Td+?c)+nel(t) (7.3.7)

M A T
where: n, ()= Y A x,(t=T)m,(t=T)A, x,(t —Td+?") +n,(f)
i=l

i#p
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In the similar fashion equation 7.3.8, representing y, (#), is obtained:
2 - Tc
yz(t)=Ap xp(t—Td)xp(t—Td—?)+nez(t) (7.3.8)

T

M A
where: n, ()= A x,(t=T)m,(t—=T,)A, x,(t=Ta— 2")+n2(t),

i=1
i#p

)
and: () =n() A, x, (1 =Ta=2).

Subtracting equation 7.3.7 from equation 7.3.8, equation 7.3.9 is obtained:

£(t,8) = y,() - y, (1) = A xp(t—Td)(xp(t—YA"d—];)—xp(t—f"d+7;)j+ne(t)

(7.3.9)
where:
n,()=n, (1)—n, (1)
M A ]"L A Tc
= ZAI. xi(t—T[,)mi(t—T[,)Ap xp(t—Td—E)+n(t)Ap .Xp(t—Td_?
i=1

i#p

A

u T. AT
_;Ai X (=T, (t=T))A, %, (t=Ta+ =) =n(OA, x, (=T a+-)

i#p

M A T A T
=D A A x,(t=T,)m,(t=T,) xp(t—Td—?”)—xp(t—Td+?”)
i=1
i#p

~ T ~ T
+Apn(l‘)()€l7 (I—Td—zp)—xp (t—Td+2c)j

It is important to note that the term A n(t) [xp (t— 7A"d — Q) —x, (- f“d + Tc)j
2 2

is white but not Gaussian [11]. It possesses a two sided power spectral density
given by equation 7.3.10:
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1
Sp(F)=N, 0+ (7.3.10)

where N is the number of chips in one PRBS period.
Equation 7.3.9 is now integrated over the PRBS period 7' = NT to obtain
equation 7.3.11:

A2 o _—
e(?) _N_TC w2 Y (t-T,)x, (I—Td—?)df
A2 NT. /2 A T
J— p ¢ _ _ Le
NT. J.—NT(,/ZXR" =T, Xp (t=Ta+ > )dt (7.3.11)
1 penri2
- NT J-NT./2 e (r)dt

Equation 7.3.11 can be rewritten in the form of equation 7.3.12:

B A; NT. /2 T 7A1 T. i
E(I)—N—T _NLI2 xp(t)xp(t+ d - d—7) t

P

NT.
1 NT./2

+ _
NT, J-N1./2

A NT, /2 A T
[ %@ x,(+T, =Tax2)di (7312

-NT, 12 P

n,(t)dt

Using the general form of equation 7.2.10, let the autocorrelation now be defined
by equation 7.3.13 [11]:

1 L7
R, (0)=C (D=— [ x,0x,¢+0di (73.13)

In terms of C (7), equation 7.3.12 can also be expressed by equation 7.3.14:

Al 1 1 1 enr2
- r|c S—-T |l-c S+)T I dr (1.3.14)
e(t) NT{ [( = j (( ) ﬂ+ v L e

c
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Figure 7.6 shows the plots of ¢ [(5_1)]" j and C [(5.,.1)]" j functions,
X, 2 c X, 2 c

and their difference, as well as the plot of C, (5 TC) . Note that the peak of the

autocorrelation function is given by equation 7.3.16, and its minimum by equation
7.3.17:

C, (0T, =0)= .[ONT" A x, (DA, x,(t)dt = NA'T, (7.3.16)
C, (OT. =4T,) = J.ONT" Ax, (A x, (T, )dt = —A;TC (7.3.17)

A

c, () AL(N+1DT,

1
CXP ((5_ 5) 71()

- —NAT,

1 1
C, ((5 - ch— C, ((5+ > ch

Fig. 7.6 Plot of the early, late, and on time PRBS correlation functions

Assuming that the PRBS pilot signal is tracked over its entire period the gradi-
ent in the linear region is then expressed by equation 7.3.18:
AX(N +10T,

=2A%(N +1 7.3.18
12 L ( ) ( )

Therefore, in the linear region the operation of the delay lock tracking loop is
governed by equation 7.3.19:
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C, ((5—;)2)— C, ((5+ ;)ch =mST, =242 (N +1)(T, =T.4) (13.19)

Rearranging equation 7.3.19 to make T 4 the subject of the formula, equation
7.3.20 is obtained:

c, [(5—;>Tc)—cxp ((5+;>ch

T.=T, - 5
2A, (N +1)

(7.3.20)

The numerator of the second term of equation 7.3.20 is determined by the DLL,

A
and according to that error, T4, which is the estimate of the time offset 7, , is

determined. Although T, and T4 are not shown explicitly to be time varying

they are [11]. In order to implement equation 7.3.20 digitally 7, and 7« must

be represented as time variables. Assuming that the DLL executes a cycle, that is,
1 1
calculates new values of C ((5—5) TC) and C ((54—5) ch every T,

seconds, equation 7.3.20 can be re-represented by equation 7.3.21:

C,(nT,)~ C,(nT,)
2A2(N +1)

Ta(T)=T,(nT.)~ (7.321)

where: C, = Cxp ((5+%)ch and C, = Cxp [(5—%)7}}

Equation 7.3.21 cannot be implemented in practice since it requires the knowl-
AN
edge of the time offset 7, in order to calculate the estimate T4 of that time offset

in the same time instant. Under the assumption that the time offset has been ac-
quired successfully to within half a chip period, as denoted by equation 7.3.1,
every new subsequent value of the time offset estimate can then be calculated
based on its previous estimate in the following manner. Assuming that at the mo-
ment of the tracking phase start-up 7, =7, and substituting it into equation

7.3.21, yields equation 7.3.22:

Ta(T)~T, = —Cj_—cl (73.22)
| 247 (N +1)
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Provided that indeed at the tracking phase start-up 7, =T,, Ta(T.) takes
the value of 7, since the numerator of the right hand side of equation 7.3.22 goes

to zero (refer to Figure 7.6). If, however, Ta * Td, when it was assumed that

T,=T,, then Tu(T,) takes on the actual value of T, at the start-up of the
tracking phase, as the right hand side of equation 7.3.22 generates the difference
among the acquired and the actual time offset: 7, —7T,, so that equation 7.3.22

takes the form of Ta (T.) =T, =—(T, —T,) , resultingin Ta(T,) =T, .
With this thought in mind equation 7.3.22 can be rewritten as equation 7.3.23:

C,(nT.)—C,(nT.)

YA" nT. +T. =7A" nT.)—
(T + 1) =Ta(nT.) 247 (N +1)

(7.3.23)

A
where the initial condition is setas: T4 (0) =T, .

Figures 7.7a and 7.7b demonstrate the operation of the tracking loop model de-
veloped at no noise and no interferences present. The tracking loop was set to

execute 50 cycles, with the incoming time offset 7, varied for the first 35 cycles

and set to a constant value, equal to the one of the previous cycle, thereafter. The
figures demonstrate the optimal performance of the tracking loop governed by the
control law of equation 7.3.23. In this particular case the pilot period has been set

equal to 511-7, seconds with T, represented by 8 time units. Choosing the

simulation parameters in this way allows one to observe the ability of the tracking
loop to actively track the changes in the incoming time offset for the first 35 cy-
cles. Furthermore, when the time offset stabilises for the following 15 cycles, the
tracking loop also stabilises its estimate at this particular value, as demonstrated in
Figures 7.7a and 7.7b.

In order for the tracking loop to remain operational and thus ensure the transfer
of data between the transmitter and the receiver of Figure 7.1, the range of equa-
tion 7.3.24 must be satisfied at all times:

~T./2% (fd (nT.)~T, (nT. )J <T /2 (7.3.24)

Equivalently, in terms of equation 7.3.23, the range of equation 7.3.25 must be
satisfied at all times:

—TC/ZS[YA"d(nTC +TC)—7A"d(nTC)jSTC/2 (7.3.25)
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With the range of equation 7.3.24 (7.3.25) not satisfied the tracking circuit of
Figure 7.1 will no longer be able to track the incoming time offset and the connec-
tion among the transmitter and the receiver will inevitably be lost. In this case the
time offset will need to be re-acquired by the initial synchronization unit, as out-
lined in section 7.2, before the successful data transfer can take place again.

5000

- C1(nTc)

Amplitude

C2(nTc)

10 20 30 40 50
nTc

-50000

A
Fig. 7.7a Plot of T;(nT,) and —T4(nT.) Fig. 7.7b Plot of C,(nT,)-C(nT,) vs.

VS. nTC nTc

7.3.2 Performance Evaluation of the System with AWGN and
Interuser Interferences

In this subsection, the performance of the system, highlighted in Figure 7.1, is
examined under the influence of AWGN and interuser interferences during its
tracking mode of operation. The performance is evaluated for different numbers
of chaotic users with bit error rate curves [66] for the specified range of the bit

energy to noise power spectral density ratio ( E, /N ,)- The spreading factor of

73 chips has been used to represent a single information bit transmitted. Tracking
is conducted over the synchronization period of the pilot signal which has been
chosen to be 511 chips long, that is, seven times the duration of the information
bit. The general transmission structure of the signals is plotted in Figure 7.8. The
code acquisition is required only at the beginning of the transmission, and when
the system is no longer able to track.

The empirical BER curves for the system of Figure 7.1 are presented in Figure
7.9 for 1-5, 10, 15 and 20 chaotic users on top of the system’s PRBS pilot signal.

The incoming time offset 7/, has been uniformly varied within the boundaries of

equation 7.3.24.
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Pilot signal

Information signal

Transmitted signal

o
U
ool + ¢ ¢4 4|

Information bit

Pilot signal period

Fig. 7.8 General transmission structure of the signals

Note that with the perfect synchronization assumed, the theoretical bit error rate
curves of the system of [22] have been shown to be governed by equation 7.3.26
[55]:

-1 >
BERzlerfc 20, 2M =D LBy (7.3.26)
2 L L N

o

where, erfc denotes the complementary error function [55], and Q is defined as
the variance of the chaotic signal squared divided by the square of the average
power of the same chaotic signal, and is expressed by equation 7.3.27:

_var[xf]_var[xf]_ _Var[xfl]
P P pr

s s s

Q (7.3.27)

In addition to the empirical BER curves of the system of Figure 7.1, Figure 7.9
also presents the perfect synchronization theoretical BER curves obtained by
evaluating equation 7.3.26 for 1-5, 10, 15 and 20 chaotic users without the sys-
tem’s pilot signal. Note that these theoretical BER curves should be used as a
guide only since equation 7.3.26 is somewhat inaccurate [55], especially at the
low values of BER.
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From Figure 7.9 it can be observed that without assuming perfect synchroniza-
tion the noise performance of the system introduced by Parlitz and Ergezinger [22]

degrades by approximately 1-2 dB for the single user case. Fora given E, /N,

the single user plus the pilot signal exhibit the best performance due to the lowest
interference at the receiver which subsequently causes the tracking unit of Figure
7.1 to generate least error in the time offset estimates. As the number of users in-
creases the interuser interference inevitably increases, causing further degradation
in the performance of the tracking unit, what in turn further degrades the bit error

the

interuser interference dominates, causing the constant bit error rate characterised
by the flattening of the BER curves of Figure 7.9.

rate. With the decreasing levels of noise, that is with increasing E, / N

0’

BER

— Perfect synch.
—+—1 User + pilot
—e—2 Users + pilot
—*—3 Users + pilot
—8—4 Users + pilot
——5 Users + pilot
—=—10 Users + pilot |=
—e— 15 Users + pilot
—v—20 Users +pilot|” ——————~— "\
10 ‘ . 1user 2, } }
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Eb/No (dB)

= HIH

13; | e

Fig. 7.9 The empirical BER curves of the system of Figure 7.1 (marked curves), with Td

varied within the boundaries of equation 7.3.24. The corresponding theoretical curves with
perfect synchronization assumed are shown by unmarked curves.

By assuming that the highest acceptable level of BER equals 107 [69,70], it
can be observed from Figure 7.9 that the E, / N, ratio for which the system per-

formance is satisfactory for the case of 1, 2, 3, 4, and 5 users is equal to approxi-
mately 8, 9, 9.5, 11 and 12 dB, respectively. In the case of 10, 15 and 20 users the

BER curves flatten before reaching the BER level of 107 . This is unacceptable
in practice. However, as seen from Figure 7.9, in the case of 10, 15 and 20 users,
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even the perfect synchronization BER curves exceed the BER of 107. A possi-
ble method to improve the performance in this case would be to use the filters
specially designed for the chaotic time series [71]. The clock synchronization
between the transmitter and the receiver is assumed, as is in most cases when
evaluating the performance of binary modulation techniques [67,12,63].

In Figure 7.10, the BER curves for 7, varied within and beyond the bounda-

ries of equation 7.3.24 are plotted. With the boundaries of equation 7.3.24 violated
the tracking loop operates outside the linear region of Figure 7.6 and can no longer

estimate the incoming time offset 7, . As seen from Figure 7.10 this results in the

significant increase in the bit error rate for a given E, / N . In the case of Figure

7.10 it has been assumed that the time offset is immediately reacquired so that the
tracking loop can accurately execute the subsequent cycles, provided that equation
7.3.24 is now satisfied.

BER

— Perfect synch.
——1 User + pilot
—e—2 Users + pilot
—*— 3 Users + pilot
—8—4 Users + pilot
—a—5 Users + pilot
—=—10 Users + pilot
—e— 15 Users + pilot
. ——20 U‘sers + pilot fuser 2 | | |
0 10 15 20 25 30
Eb/No (dB)

A — I —

—I= HHI—

&
o=

Fig. 7.10 The empirical BER curves of the system of Figure 7.1 (marked curves), with Td

varied within and beyond the boundaries of equation 7.3.24. The corresponding theoretical
curves with perfect synchronization assumed are shown by unmarked curves.

7.3.3 Comparison and Discussion in AWGN Channel

In order to evaluate and compare the performance of the system of Figure 7.1
the BER curves for the binary phase shift keying (BPSK) and the CS based
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communications technique of initial condition modulation (ICM) of chapter 6
[63,72,71], have been produced in Figure 7.11 alongside the single user curves of
Figures 7.9 and 7.10. In this work, the ICM scheme [63] is of interest as it is
based on a different form of synchronization strategy [3] used within chaotic
communication systems.
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Fig. 7.11 The BER curves: (a) the solid lines are for the theoretical BPSK and chaotic DS-
CDMA system of [22] with the perfect synchronization assumed; (b) the inverted triangles

are for the system of Figure 7.1 with Td varied within the boundaries of equation 7.3.24;

(c) the asterisks are for the system of Figure 7.1 with Td varied within and beyond the

boundaries of equation 7.3.24; (d) the solid squares are for the CS ICM based system of
[63].

From Figure 7.11, it can be observed that the single user chaotic DS-CDMA
system of Figure 7.1 outperforms the ICM single user communications scheme
based on the principles of CS [63]. Therefore, the synchronization scheme pro-
posed and investigated here has been shown to be more robust to noise than the
Pecora — Carroll (PC) CS based ICM communication scheme, which in turn has
been shown in chapter 6 [63,72,71] to be one of the more robust PC CS communi-
cation schemes [63,72,71].
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7.3.4 Performance Evaluation of the System in a Rayleigh
Fading Channel with AWGN and Interuser Interferences

In this subsection, the performance of the system of Figure 7.1 is evaluated in a
Rayleigh fading channel with AWGN and interuser interferences present [19].
This system, with Rayleigh fading incorporated into Figure 7.1, is shown in Figure
7.12.

: A x (t : : : .
: 2%, (1) : ﬂ : Receiver :
. : map . .
tm, (1)

: : : KL, A
: : . dt .
: R RAC I OR: Q LH)LE 0 o :
: : Ax t—YA" . ° :
: m,(t) 0 0 0 : p A X, ( : a) : : :
: : : . :
. : : KLT, A :
: E i % me ()dr > ()}
Sy (1) : :
:  Transmitter ¢ i Avxu (0 =Ta) .

Synchronization Unit
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‘@ ¥, @) +
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E despreading . .

: Ax,(t—=Ta)

Fig. 7.12 DS-CDMA chaotic communication system with the synchronization unit in the
Rayleigh fading channel
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The empirical BER curves for the system of Figure 7.12 are shown in Figure
7.13 for 1, 5, 10, 15 and 20 users. The Rayleigh fading envelope, 7, (1), was gen-

erated for the velocity of the receiver relative to the transmitter of 55 km/h and the
carrier frequency of 900 MHz [73]. For comparison, the theoretical BER curves
for the Rayleigh fading channel with the perfect synchronization assumed [10] are
also shown. It can be seen from Figure 7.13 that in the Rayleigh fading channel

the system fails to satisfy the maximum allowable BER limit of 107 for any
number of users and any E, /N , - Furthermore, it can be observed from Figures

7.9 and 7.13 that the system performance in the Rayleigh fading channel degrades
more significantly when the perfect synchronization is not assumed than when the
perfect synchronization is not assumed without Rayleigh fading. Although the

system satisfies the BER level of 107 for 1-5 users in an AWGN channel it fails
for all users in a fading channel. Thus, in comparison, the system in the Rayleigh
fading channel is not practical for real world applications. In order to improve the
performance in the fading environment techniques used to disperse bursts of error
in time, such as block interleaving [10], could be employed.
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Fig. 7.13 The empirical BER curves of the system of Figure 7.12 in a Rayleigh faded,
AWGN channel (marked curves), with Td varied within the boundaries of equation 7.3.24.

The corresponding theoretical curves with perfect synchronization assumed are shown by
unmarked curves.
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7.4 Code Tracking with a Chaotic Pilot Signal

In this section the code tracking with a chaotic pilot signal in place of the PRBS
pilot signal is proposed. Figure 7.14 shows the CBDS-CDMA communication
system similar to that of Figure 7.1, but with the chaotic pilot based tracking unit
in place of the PRBS pilot based tracking unit.

As in Figure 7.1, x(#) of Figure 7.14 denotes the chaotic spreading signals of
amplitude A and spreading factor L, which are multiplied by the binary message
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Fig. 7.14 DS-CDMA chaotic communication system with the chaotic pilot based synchro-
nization unit
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signals m(#) and then summed up to produce the signal c(f) which is transmitted
through the channel. The spreading factor L is defined as the number of chaotic

points representing a single bit [63]. x (t) denotes the chaotic signal which acts

as the periodic or non-periodic, as explained in section 7.4.1, pilot signal used for
synchronization purposes. The mutually orthogonal chaotic signals used within
the CBDS-CDMA system of Figure 7.14, are produced by the logistic map of
equation 7.1.1 [22,15].

The fundamental difference among the proposed system of Figure 7.14 and the
corresponding system of Figure 7.1 [15,19] is that the system of Figure 7.14 im-
plements the chaotic pilot signal in place of the PRBS pilot signal.

7.4.1 Theoretical Model of the System

In this subsection the mathematical model of the chaotic pilot based code tracking
loop is developed and its validity demonstrated by means of a simulation. Once
the chaotic pilot based initial synchronization circuit of Figure 7.14, (as described
in section 7.2 [15]), has established the correct time offset to within the pull-in
region of the tracking circuit, the tracking circuit is able to take over the synchro-
nization process. As in section 7.3, the code tracking loop with a pull-in region of
half a chip length is considered. Therefore, to this end it is assumed that the search
parameter A of the logistic chaotic map based initial synchronization unit of Fig-

ure 1 is equal to a ¥2. This ensures that the acquired time offset of Figure 7.14, T,

is accurate to within half a chip length of the exact time offset enabling the track-
ing circuit to correct the inaccuracy and maintain the correct time offset. Thus, as
for PRBS pilot case above, we redefine the incoming time offset 77, of section 7.2

[15] as T, indicating that the acquisition phase has been finished and that the

synchronization unit now has the approximate knowledge of the correct time off-
set to within half a chip length, as shown in equation 7.3.1.

The tracking circuit examined here utilizes the logistic chaotic map pilot signal
in place of the PRBS pilot signal of [15] to produce punctual codes for despread-
ing the received signal 7(f). It includes the entire synchronization unit of Figure
7.14 except for the initial synchronization unit. As in section 7.3, the loop filter of
Figure 7.14 is essentially an averaging integrator, integrating over the chaotic pilot

signal integration period N7 :
1 NT, /2

e(t) = N -Nz,/zg(t’ o)dt (7.4.1)

where the term O is defined as the normalized difference among the received
A
signal time offset 7, and the tracking circuit time offset estimate 7 4, that is,
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0=(T,—Tu4)/T.. In equation 7.4.1, N denotes the number of chips in the
integration period NT.,.

By keeping in mind that with no fading in the system, (for simplicity of analy-
sis), the received signal 7(¢) is composed of the mixture of signals of different

users, the pilot signal and the noise component 7(?) :
M
r(t)=c(®)+n() = z A x,t=T,)m,(t-=T,)+n(t) (7.4.2)
i=p

it is then readily verifiable that equation 7.4.2, as in section 7.3, can be represented
as equation 7.4.3 [15]:

A’ 1 1 1 enE2
= —— - Bl | 7.4.3
e(t) NYP" |:Cx,, [(5 2)ij CX], ((5+ 2)TC ﬂ + NT S n,(t)dt ( )

c

where n,(f) denotes the AWGN component 72(#) and inter-user interferences
[15]. In equation 7.4.3, C (5 Tc) is defined to be the autocorrelation function
P

of the chaotic pilot signal multiplied by the integration period of the tracking loop
[15].

As for the PRBS pilot signal, the tracking unit produces punctual codes for de-
spreading the received signal by correlating the early and late replicas of the cha-
otic pilot signal by the received signal. It then subtracts the two and ensures that
the resulting error signal e(?) is constantly forced to zero [15,11]. It is now

A
shown how a punctual time offset 7 ¢, which matches the received signal time

offset Td , 1s obtained at discrete time instances. With a correct estimate of Td s

the receiver is able to accurately despread the received signal.

Due to the random like nature of chaotic and PRBS signals, spreading intro-
duces security into the system. However, the fundamental difference between a
PRBS signal and a chaotic signal is that a PRBS signal is inherently periodic
whereas a chaotic signal is non-periodic. Furthermore, whereas a PRBS signal has

only two values, = A , denoting a binary one and a zero, a chaotic signal theo-

retically may assume an infinite number of amplitudes in a given dynamic range.
In case of the logistic chaotic map, used as part of the CBDS-CDMA system pro-
posed here, the dynamic range is & 1. In any given period of the maximum length
PRBS the number of ones always exceeds the number of zeros by one. Because of
this inherent property of PRBS signals it is possible to theoretically determine
upper and lower bounds of the auto-correlation function of a maximum length
PRBS signal, as shown in Figure 7.6 [15]. However, due to the non-periodic
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nature of chaotic signals and their constantly changing amplitude, upper and lower
limits of the auto-correlation function cannot be determined theoretically and thus
need to be determined empirically for every new chaotic signal generated, as ex-
plained below.

Figure 7.15 shows the plots of Cxp ((5—%)ch and Cx,, [(54‘%)71}

functions of equation 7.4.3, and their difference, as well as the plot of

C. (5 TC) . It is important to note that plots of Figure 7.15 are valid for non-
P

periodic chaotic pilot signals only when the integration period of the tracking unit

[15] is sufficiently large so that C_ (T.)/C_(0)=C, (-T.)/C, (0), that is,

so that approximate symmetry of the correlation plots exists about the y axis. Fur-
thermore, for any periodic pilot signal, that is, any pilot signal (chaotic or other)
that reuses the same portion of a signal for every new pilot period, as in section

7.3 [15,19]: C, (=e2:0)=C, (0: o). Figure 7.6 shows similar plots to those
of Figure 7.15 for a maximum length PRBS pilot signal.

c, (0)-C, (T

/ 444444444444444444444 1_ (c O)-C, (T, ))
c, ((5 -2 Tc)— c, ((5 ) Tc]

Fig. 7.15 Plot of the early, late, and on-time, chaotic correlation functions

By comparing Figure 7.6 of section 7.3 [15] to Figure 7.15 above, the main dif-
ference that should be observed is that for every maximum length periodic PRBS

signal the terms C_ (0) and C_(T.) are constant and equal to NA;TC and
P p
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— AZTC, respectively, while they vary for chaotic signals with different initial

conditions. The following mathematical analysis shows the effect of this on the
operation of the tracking loop. For a given tracking period of a chaotic pilot signal,
the gradient in the linear region of Figure 7.15 is expressed by equation 7.4.4:

C, (0)-C, (T,
m=—2" ’ (7.4.4)
T./2

Therefore in the linear region, operation of the tracking loop is governed by equa-
tion 7.4.5:

C, (0)-C, (T,)

T —T,) (145)
I

c,(0-pr)-c,[@+Hr]-mor. -

Rearranging equation 7.4.5 to make 7 4 the subject of the formula, equation 7.4.6

is obtained:
T |C [(5—1)1 )—(: ((5+1)1 J
c Xp 2 Cc .)Cp 2 c

2le, -c, @)

Ti=T, - (7.4.6)

Assuming that the tracking circuit executes a cycle, that is, calculates new values
1 1

of C, ((5—5)7"6] , C, ((5+E)TCJ , C.(0) and C_ (T,) every T.

P P g P P g

seconds [15], equation 7.4.6 can be re-represented by equation 7.4.7:

T.[C,(nT.)—C,(nT,)]
2[C,(nT,) - Cy(nT.)]

To(nT.)=T,(nT.) - (7.47)

where: C, = Cxp (0), C = Cx,,[(é""%)TcJ .Gy = Cxp ((5_%)ch and

C3 = Cx,, (T‘L ) .

Equation 7.4.7 cannot be implemented in practice since it requires the knowl-
A
edge of the time offset 7/, in order to calculate the estimate 7 4 of that time offset

in the same time instant [15]. Equation 7.4.7 thus needs to be rewritten in a differ-
ent form. The procedure of section 7.3 [15] used to rewrite a similar PRBS pilot
signals equation in a different form is identical to that for chaotic pilot signals
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proposed here and is repeated below for convenience. Under the assumption that
the time offset has been acquired successfully to within half a chip period, as
denoted by equation 7.3.1 [15], every new subsequent value of the time offset es-
timate can then be calculated based on its previous estimate in the following man-

ner [15]. Assuming that at the moment of the tracking phase start-up 7, =T,
and substituting it into equation 7.4.7, yields equation 7.4.8:

TC [CZ — Cl]

(7.4.8)
2 [Co - C3]

To(T)~T, =—

Provided that indeed at the tracking phase start-up 7, =7 ,, T a(T.) takes the
value of T, since the numerator of the right hand side of equation 7.4.8 goes to

zero (refer to Figure 7.15). If however T #T,, when it was assumed that

T,=T,, then Tu(T,) takes on the actual value of T, at the start-up of the
tracking phase, as the right hand side of equation 7.4.8 generates the difference
among the acquired and the actual time offset: 7 —7,, so that equation 7.4.8

takes the form of Ta (T.) =T, =—(T, —T,) , resultingin Ta(T,) =T, .
With this thought in mind equation 7.4.8 can be rewritten as equation 7.4.9:

_T.[c,(nT)-C,(nT,)]
2[C,(nT,)— C,(nT)]

TanT. +T.)=Ta(nT.) (7.49)

A
where the initial condition is setas: 74 (0) =T, .
While for a non-periodic chaotic pilot signal the denominator terms C, and

C, of equation 7.4.9 vary and need to be calculated for every tracking period, in

case of a periodic chaotic pilot signal they are constant and need to be calculated
only once. Therefore, for a periodic chaotic pilot signal equation 7.4.9 can be re-
written as equation 7.4.10:

T,[C,(nT,)- C,(nT,)]
2 [Co - C3 ]
Figures 7.16a and 7.16b demonstrate the optimal performance of the periodic cha-

otic pilot based tracking loop model governed by the control law of equation
7.4.10 when no noise, no fading and no interferences are present. Furthermore, a

TanT.+T.)=Ta(nT,)-

(7.4.10)
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similar set of Figures demonstrating successful synchronization is also readily
obtainable by executing the control law of equation 7.4.9 for a non-periodic cha-
otic pilot signal. As in section 7.3 [15], the tracking loop was set to execute 50

cycles, with the incoming time offset 7, varied for the first 35 cycles and set to a
constant value, equal to the one of the previous cycle, thereafter. Also as in section
7.3 [15,19], the tracking loop integration period has been set equal to 5S11-7,

seconds with 7. represented by 8 time units. Choosing the simulation parameters

in this way allows one to observe the ability of the tracking loop to actively track
the changes in the incoming time offset for the first 35 cycles and then also stabi-
lize at the constant incoming time offset value for the next 15 cycles.

In order for the tracking loop to remain operational and thus ensure the transfer

of data between the transmitter and the receiver of Figure 7.14, the range of equa-

tion 7.4.11 must be satisfied at all times:
—Tc/2S(Td(nTc)—Td(nTc)jSTcM (7.4.11)

Equivalently, in terms of equations 7.4.9 and 7.4.10, the range of equation 7.4.12
must be satisfied at all times:

—TL,/ZS(YA"d(nTC +z.)—fd(nz.)jsz_/2 (7.4.12)

With the range of equations 7.4.11 and 7.4.12 not satisfied, the tracking circuit
will no longer be able to track the incoming time offset and the connection among
the transmitter and the receiver will inevitably be lost [15]. In this case the time
offset will need to be re-acquired by the chaotic pilot based initial synchronization
unit of section 7.2 [15] before successful data transfer can take place again.

3000
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C2(nTc) - C1(nTc)

,
205 I T T Y 30005 10 20 30 40 50
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Fig. 7.16a The plot of T,(nT.) and Fig. 7.16b The plot of C,(nT.)—C;(nT,)

~ vs. nT,
=TanT,) vs. nT, '
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7.4.2 BER System Performance within AWGN and Rayleigh
Fading Channels

In this section, the performance of the chaotic pilot based system of Figure 7.14 is
examined under the influence of AWGN, inter-user interferences and Rayleigh
multi-path fading during its tracking mode of operation. The performance is
evaluated for 1-5, 10, 15 and 20 chaotic users in the system with bit error rate
curves [66] for the specified range of the bit energy to noise power spectral den-

sity ratio ( E, /NU ). As in section 7.2 [15,19], the spreading factor of 73 chips

has been used to represent a single information bit transmitted with the tracking
loop integration period of 511 chips, that is, seven times the duration of the infor-
mation bit. Also, as in section 7.3, the Clarke and Gans flat fading model [73-75]
(described in chapter 2) has been used to simulate a multipath Rayleigh fading
channel for a velocity of the receiver relative to the transmitter of 55 km/h and a
carrier frequency of 900 MHz [73].

The empirical BER curves for the system of Figure 7.14 without Rayleigh
multi-path fading are presented in Figure 7.17 for 1-5, 10, 15 and 20 chaotic users
on top of the system’s periodic chaotic pilot signal whose tracking operation is
governed by equation 7.4.10. Similar empirical BER curves for the non-periodic
chaotic pilot signal, whose tracking operation is governed by equation 7.4.9, are
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107 —+—3 Users + per. ch. pilot
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/| 5 Users + per. ch. pilot
105 ——10 Users + per. ch. pilot
r| —®— 15 Users + per. ch. pilot
[ —%—20 Users + per. ch. pilot
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&

0 5

Eb/No (dB)

Fig. 7.17 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic
pilot signal (marked curves) is used. The corresponding theoretical curves with perfect
synchronization assumed are shown by unmarked curves.
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Fig. 7.18 The empirical BER curves of the system of Figure 7.14 when the non-periodic
chaotic pilot signal (marked curves) is used. The corresponding theoretical curves with
perfect synchronization assumed are shown by unmarked curves.

presented in Figure 7.18. In both cases, the incoming time offset 7, has been uni-

formly varied within the boundaries of equation 7.4.11. Figures 7.17 and 7.18 also
show the corresponding theoretical bit error rate curves without the synchronizing
pilot signal, that is, when the perfect synchronization is assumed [55].

Figures 7.17 and 7.18 show that the CBDS-CDMA systems utilising both peri-
odic and non-periodic chaotic pilot signals, respectively, experience degradation
in performance as compared to the case when perfect synchronization is assumed.
It must also be noted that the theoretical BER curves of Figures 7.17 and 7.18
should be used as a guide only since they are somewhat inaccurate [55], especially
at the low values of BER.

Furthermore, it can be observed from Figures 7.17 and 7.18 that for a given

E, | N, the single user plus the periodic chaotic pilot signal exhibit the best per-

formance due to the lowest interference at the receiver which subsequently causes
the tracking unit of Figure 7.14 to generate least error in the time offset estimates.
As the number of users increases the inter-user interference inevitably increases,
causing further degradation in the performance of the tracking unit, what in turn
further degrades the bit error rate. With the decreasing levels of noise, that is with

increasing E, /N . » the interuser interference dominates, causing the constant bit

error rate characterised by the flattening of the BER curves of Figures 7.17 and
7.18.
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In Figure 7.19, the BER curves of Figures 7.17 and 7.18 are plotted on the same
set of axes for easy comparison. Figure 7.19 shows that there is no noticeable dif-
ference in BER performance among the periodic and non-periodic chaotic pilot

based CBDS-CDMA systems for any number of users and any E, /N, . By as-

suming that the highest acceptable level of BER equals 107 [69,70], Figures
7.17,7.18 and 7.19 show that the E, /N , ratio for which the systems’ perform-
ance is satisfactory for the case of 1, 2, 3, 4, and 5 users is equal to approximately
8,9,9.5, 11 and 12 dB, respectively. In the case of 10, 15 and 20 users the BER
curves flatten before reaching the BER level of 10_3 . Identical behaviour, for the

BER level of 10~ and above, has also been observed in section 7.3 [15] for the
CBDS-CDMA system utilizing the periodic PRBS pilot signal. The flattening of

BER curves above the BER level of 10_3 in the case of 10, 15 and 20 users is
unacceptable in practice. However, as seen from Figures 7.17 and 7.18, even the

perfect synchronization BER curves exceed the BER of 107 for 10, 15 and 20
users. A possible method to improve the performance in this case would be to use
filters specially designed for the chaotic time series [71]. As in section 7.2, the
clock synchronization between the transmitter and the receiver is assumed, as is in

most cases when evaluating the performance of binary modulation techniques
[67,12,63].
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10 : :
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Fig. 7.19 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic
pilot signal (solid marked curves) is used, and when the non-periodic chaotic pilot signal
(dashed marked curves) is used.
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As stated above, the periodic and non-periodic chaotic pilot based CBDS-
CDMA systems proposed here exhibit identical behaviour as the periodic PRBS
pilot signal based CBDS-CDMA system of section 7.2 [15] at the BER level of
10~ and above. This behaviour is confirmed in Figures 7.20 and 7.21. However,
Figures 7.20 and 7.21 also reveal that both periodic and non-periodic chaotic pilot
based CBDS-CDMA systems exhibit marginally better performance for a single
user plus a chaotic pilot signal than the corresponding PRBS pilot based CBDS-
CDMA system at the BER level of 10™* and below. In particular, at the BER level

of 107, this improvement in performance is approximately equal to 0.175 dB. In
other words, for a single user in the system, it requires approximately 0.175 dB
more energy per bit to achieve the BER of 107 using the PRBS pilot based
CBDS-CDMA system than the chaotic pilot based CBDS-CDMA systems.
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Fig. 7.20 The empirical BER curves of the system of Figure 7.14 when the periodic chaotic
pilot signal (solid marked curves) is used, and when the periodic PRBS pilot signal (dashed
marked curves) of section 7.3 [15,19] is used.

The BER analysis results for the system of Figure 7.14 in the AWGN and
Rayleigh fading channel are shown in Figures 7.22-7.24. As above, the incoming

time offset 7, has been uniformly varied within the boundaries of equation
7.4.11. Figure 7.22 shows the empirical BER curves for 1, 5, 10, 15 and 20 users
plus the periodic chaotic pilot signal alongside the corresponding theoretical BER

curves with perfect synchronization assumed [19]. It can be seen from Figure
7.22 that in the Rayleigh fading channel the system fails to satisfy the maximum
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Fig. 7.21 The empirical BER curves of the system of Figure 7.14 when the non-periodic
chaotic pilot signal (solid marked curves) is used, and when the periodic PRBS pilot signal
(dashed marked curves) of section 7.3 [15,19] is used.
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Fig. 7.22 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded,
AWGN channel when the periodic chaotic pilot signal (marked curves) is used. The corre-
sponding theoretical curves with perfect synchronization assumed are shown by unmarked
curves.
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allowable BER limit of 10~ for any number of users and any E, /N, . In

Figure 7.23, the corresponding empirical BER curves for the non-periodic chaotic
pilot based CBDS-CDMA system are plotted on the same set of axes as the peri-
odic chaotic pilot based CBDS-CDMA system BER curves. It can be observed
from Figure 7.23 that the non-periodic chaotic pilot based CBDS-CDMA system
exhibits identical behaviour to that of the periodic chaotic pilot based CBDS-
CDMA system in the Rayleigh fading channel. Therefore, both chaotic pilot based

systems fail to satisfy the maximum allowable BER limit of 10~ for any number
of users and any E, /N, in the Rayleigh fading channel. Finally, Figure 7.24

shows the corresponding empirical BER curves for the PRBS pilot based CBDS-
CDMA system plotted on the same set of axes as the periodic chaotic pilot based
CBDS-CDMA system BER curves. It can therefore be observed from Figures 7.23
and 7.24 that both proposed chaotic pilot based CBDS-CDMA systems also match
the BER performance of the PRBS pilot based CBDS-CDMA system [19].
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Fig. 7.23 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded,
AWGN channel when the periodic chaotic pilot signal (solid marked curves) is used, and
when the non-periodic chaotic pilot signal (dashed marked curves) is used.

In addition, it can be observed from Figures 7.17-7.24 that the systems’ per-
formance in the Rayleigh fading channel degrades more significantly when the
perfect synchronization is not assumed than when the perfect synchronization is
not assumed without Rayleigh fading. Although both chaotic pilot based



7.5 Conclusion 221

0
10 === IT-——————4
r T T T

10

BER

10°

-| —— 1-20 users + PRBS pilot
~| ——1 User + per. ch. pilot

-| ——5 Users + per. ch. pilot
| ——10 Users + per. ch. pilot
- -| —®—15 Users + per. ch. pilot
—<— 20 Users + per. ch. pilot

10° ‘ ‘
5 0 5

Eb/No (dB)

Fig. 7.24 The empirical BER curves of the system of Figure 7.14 in a Rayleigh faded,
AWGN channel when the periodic chaotic pilot signal (solid marked curves) is used, and
when the periodic PRBS pilot signal (dashed marked curves) of section 7.3 [15,19] is used.

CBDS-CDMA systems satisfy the BER level of 10~ for 1-5 users in an AWGN
channel they both fail for all users in the fading channel. Thus, in comparison, the
system in the Rayleigh fading channel is not practical for real-world application.
To improve the performance in the fading environment, techniques used to dis-
perse bursts of error in time, such as block interleaving [10], could be employed.
Furthermore, specialized receiver architectures used to combat fading, such as the
rake receiver [10], could also be employed.

7.5 Conclusion

In this chapter, chaotic carriers have been embedded within a practical multi-user
DS-CDMA chaotic communication system and its performance evaluated in the
presence of noise and interuser interferences. The mutually orthogonal properties
between the chaotic time series produced by the logistic map and the PRBS pilot
signal have enabled the traditional ideas of the multi-user CDMA sequence syn-
chronization process to be utilized within the multi-user chaos based DS-CDMA
(CBDS-CDMA) system. Furthermore, the system has been taken one step further
by introducing a chaotic pilot signal in place of the PRBS pilot signal, thus mak-
ing the CBDS-CDMA system fully chaotic. In this way, the security of CBDS-
CDMA systems is significantly improved by eliminating the security threat posed
by an inherently different PRBS pilot signal used in the otherwise chaotic
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CBDS-CDMA systems. Both phases of the sequence synchronization process,
namely the code acquisition and the code tracking, have been proposed and
investigated.

The code acquisition phase has been evaluated in terms of the probability of de-
tection and the probability of false alarm at the chip energy to noise power spectral
density ratio of -15 dB for the three different pilot signals and varying number of
chaotic users in the system. The theoretical upper bound on the probability of de-
tection has been derived and compared to the empirically determined results with
the chaotic interferences present. The subsequent empirical curves associated
with the increasing number of users in the system have demonstrated the expected
degradation in the system performance with the increasing level of interference. In
addition, the expected increase of the probability of detection, with the increase in
the integration time, has been demonstrated. Furthermore, it has been shown that
the best code acquisition performance is achieved when the PRBS is used as the
pilot signal as compared to the logistic and Bernoulli chaotic maps.

The mathematical models for the investigation of the code tracking loops have
been presented and used to derive the control laws used for the generation of the
time offset estimates for PRBS and, periodic and non-periodic chaotic pilot sig-
nals. Their validity has then been demonstrated by means of a simulation. The
performance of the proposed code tracking circuits has been primarily evaluated
in terms of the bit error rate for varying levels of the chaotic interuser interfer-
ences, that is, for different numbers of chaotic users in the system. It has been
shown that the systems are reasonably robust to noise as compared to the perform-
ance under the assumption of perfect synchronization. The overall BER perform-
ance degradation in an AWGN channel for a multi-user system is characterised by
the flattening of the BER curves at low levels of noise due to the prevailing effects
of the interuser interferences.

Furthermore, it has been demonstrated that the CBDS-CDMA communication
systems implementing the proposed sequence synchronization schemes, with a
single user in the system, in general exhibit better noise performance in terms of
the bit error rate than the Pecora — Carroll CS based communication techniques. It
was also shown that although the systems are robust to the influence of AWGN
and interuser interferences, they all fail to satisfy the maximum allowable bit error

rate limit of 107 in the Rayleigh fading channel, exbhibiting identical BER
performance.

Finally, it has been shown that in terms of BER, in the AWGN channel only,
the proposed chaotic pilot based CBDS-CDMA systems outperform the PRBS

pilot based system for a single user in the system at the BER level of 10~ and
below. In particular, an improvement of 0.175 dB has been demonstrated at the

BER level of 1()76 . Therefore, in addition to the added security, it has been dem-
onstrated that by introducing the chaotic pilot based tracking unit in place of the
corresponding PRBS unit makes the CBDS-CDMA system more robust. The BER
performance of all systems has been shown to be identical for more than one user
in the system.
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Chapter 8
Chaos Based Multi-user TDM Communication
System

This chapter proposes a chaos based multi-user time division multiplexing (TDM)
communication system. Its performance is compared to the performance of chaos
based direct sequence code division multiple access (DS-CDMA) system in the
noisy and Rayleigh fading channels. Initially, the benchmark performance of the
systems is investigated in terms of the bit error rate under the assumption of
perfect synchronization. The chaotic spreading signals, used to encrypt the binary
messages, are generated using the logistic map. The degradation in performance of
the systems in the Rayleigh fading channel as compared to the noisy channel is
demonstrated. Furthermore, it is shown that in both noisy and Rayleigh fading
channels the chaos based multi-user TDM system outperforms the chaos based
DS-CDMA system for a larger number of users in the system, while the chaos
based DS-CDMA system yields better performance for low number of users in the
system. The sequence synchronization unit of chapter 7 is then adapted for the use
within the proposed chaos based multi-user TDM communication system and its
performance investigated without assuming perfect sequence synchronization.
Again, it is shown that the chaos based TDM system outperforms the chaos based
DS-CDMA system in the AWGN channel for a larger number of users and vice-
versa for low number of users in the system. As for the chaos based DS-CDMA
system, it is shown that the proposed chaos based TDM system fails in the
Rayleigh fading channel when perfect sequence synchronization is not assumed.
To obtain the full characterization of the system, the sequence synchronization is
also assumed with the PRBS pilot signal present on top of each signal. The effect
of the pilot signal on the performance of the system is thus demonstrated in
AWGN and Rayleigh fading channels. Finally, a generalized TDM -chaotic
communication system, which does not assume perfect synchronization, is
proposed and investigated when there is more than one DS-CDMA user per TDM
branch in the AWGN channel. In this way, it is shown that allocating more than
one DS-CDMA user per TDM branch yields a better BER performance while at
the same time increasing the total number of users.

As shown in chapter 6, in many cases when studying chaotic communication
systems only single user systems are considered [1-6]. Alternatively, multi-user
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chaotic communication techniques, based on the DS-CDMA principle, have been
studied in [7-14], demonstrating their robust nature to noise. However, these
systems suffer from the inevitable interuser interference which causes the
degradation in the bit error rate (BER) performance for a large number of users in
the system.

In contrast to chaos based DS-CDMA, chaos based time division multiplexing
(TDM) systems do not suffer from interuser interference, when one assumes
perfect synchronization between the transmitter and the receiver. Chaos based
TDM systems have been investigated in [15-21]. The principles of TDM from a
viewpoint of the chaos based spread spectrum communication systems have been
discussed in [15]. The synchronization among the multiplexing and de-
multiplexing switches of the transmitter and the receiver has been considered and
the method of achieving synchronization proposed [15]. In this method, the high
frequency signal for rotating the switch is extracted by applying the received
chaotic sequence to high pass or bandpass filters. Based on this method, the multi-
user chaos based TDM system was proposed in [16,17]. The system was
investigated for the two user case using the Pecora-Carroll (PC) self synchronizing
properties of the Chua master-slave systems. In [19,20], a chaotic communication
scheme based on the principles of chaotic masking was investigated and the
possibility of constructing a time division multiple access (TDMA) secure
communication system based on this scheme was suggested.

In this chapter, a chaos based TDM technique is proposed and used to transmit
the information of multiple users across the same channel [14]. The work
presented here is in contrast to [15-21], where the PC synchronization principle is
used to encode and decode information. Instead, here the information is encoded
and decoded using a correlator transceiver as used in DS-CDMA systems.
Synchronization among the spreading sequences between the transmitter and the
receiver is initially assumed and the benchmark performance of the system is
obtained in terms of the BER curves. It is demonstrated in terms of BER that the
chaos based TDM system proposed outperforms the chaos based DS-CDMA
system [7,12] for a large number of users in the system in both additive white
Gaussian noise (AWGN) and Rayleigh fading channels. Following this, the
proposed chaos based TDM system is investigated without the assumption of
perfect sequence synchronization in AWGN and Rayleigh fading channels. Again,
it is shown that in terms of BER it outperforms the chaos based DS-CDMA
system for a large number of users in the system whilst it is outperformed for low
number of users in the system. It is also shown that both chaos based TDM and
chaos based DS-CDMA systems are insufficiently robust in the Rayleigh fading
channel when perfect sequence synchronization is not assumed. Finally, a
generalized TDM communication system with more than one DS-CDMA user per
TDM branch is proposed and evaluated in the AWGN channel. In this way, the
bandwidth efficiency of a DS-CDMA system is combined with the interuser
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interference immunity of a TDM system, to allow for an increased number of
users in the system while improving the BER performance.

Section 8.1, proposes and presents a chaos based multi-user TDM system under
the assumption of perfect sequence synchronization. The principles of operation of
the system are explained and its performance evaluated in the AWGN and
Rayleigh fading channels. The performance of the system is then compared to that
of the DS-CDMA system, demonstrating the superior performance of the TDM
system for a large number of users in the system. Section 8.2, evaluates the
performance of the TDM system of Section 8.1 without assuming perfect
sequence synchronization. Its performance superiority over the corresponding DS-
CDMA system is again demonstrated for a large number of users in the system.
Finally, a generalized chaos based TDM system is proposed and investigated in
the AWGN channel in Section 8.3. It is shown that its bandwidth efficiency and
interuser interference immunity, allow for an increased number of users in the
system, while improving the BER performance.

8.1 Chaos Based TDM Communication System with Perfect
Sequence Synchronization Assumed

In this section, the chaos based TDM communication system is proposed and
evaluated in terms of BER in the presence of AWGN, interuser interferences and
Rayleigh fading. Its performance is evaluated under the assumption of perfect
synchronization within the system.

8.1.1 Chaos Based TDM Communication System

The proposed chaos based TDM communication system with the correlator
transceiver is shown in Figure 8.1 [14].

Ax (1)« , ﬂ Receiver
map
é () 1 (1) ur,

m, (t) ) [ o e b
E ! c(t) r) /" Ax ) . .
Ay x, () Sl . .
e @MI) Channel . % j:jﬂk()dt R —’_ _N%M(t)
Transmitter A, )?M ®)

Fig. 8.1 The chaos based TDM communication system
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In Figure 8.1, x(f) denotes the chaotic spreading signals which are multiplied by
the binary message signals m(f). The products p(f) are then multiplexed to produce
the signal c(#) which is transmitted through the channel. As in chapter 7, in order
for the spreading waveform generator at the receiver to produce punctual
despreading codes the initial conditions of the spreading codes of each of the M
users at the transmitter must be available to it. Provided that the chaotic generator
at the receiver is identical to that of the transmitter, the initial conditions provide
sufficient information to readily regenerate chaotic sequences at the receiver. The
received signal r(f) is then de-multiplexed and correlated with the punctual
despreading codes. Provided that the power of the noise in the system is low
compared to the power of the signal, the correlation value produced at the output
of each correlator is positive if the bit is 1, denoted by m(r) = 1, is transmitted and
negative if the bit is 0, denoted by m(z) = -1, is transmitted [7]. As in chapter 7,
the chaotic spreading signals have been generated using the logistic map time
series of equation 2.1.5, repeated below for convenience as equation 8.1.1 [7]:

X, =1-2X (8.1.1)

The logistic map time series is shown in phase-space [22] in Figure 8.1.
The multiplexing, or interleaving, operation at the transmitter side of Figure 8.1
can be represented by equation 8.1.2:

M
ct)=) p,(1) (8.1.2)
i=1
where:
P =m, () Ax,)=) p, 6t -M(j-1)—i) (8.1.3)
j=1

In equation 8.1.3 &(#) is the impulse function and L is the spreading factor, that

is, the number of chaotic points representing a single bit [6].
The received signal r(¢) is represented by equation 8.1.4:

r(t) = c(t) +n(r) (8.1.4)

where:

M L
n)=>>n, 6¢-M(-1)-i) (8.1.5)
i=l j=1
The individual, de-multiplexed, signals of each of the M users can then be
represented by equation 8.1.6:

L
@) =p,O+n =D (p,, +n,)0¢-M(G-D=i) (.16
j=1
The received message is recovered by first despreading and then correlating the
incoming de-multiplexed received signals by the basis function copy at the
receiver, as described by equation 8.1.7:
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A _ [ ¢ kLT,
mi(1)=T, Lk-m () A x,(t) dt}

= [ A x (O +n, (O Ax, (1) dt] (8.1.7)

(k=1)LT,

(k=D)LT,

_T [ (LT, A2 (D d kLT, A d
=1, I ml.(f) i X (t) t+j(k—1>Ln,ni(t) ixi(t) 4

where T} [ ] is the signum function which denotes the thresholding operation and
assigns either a -1 or a 1 depending on whether the value in the brackets is
negative or positive, respectively [14,23]. If the value in the brackets is equal to
zero, the receiver makes a random guess in favour of -1 or 1 [24].

Since the chaotic spreading sequences produced by the logistic map for
different initial conditions are highly orthogonal to each other, demonstrated by
near zero cross correlation and high autocorrelation in Figures 2.14a and 2.14b,
equations 8.1.8a and 8.1.8b hold:

[ moaZwd>0 i m@=1 (8.1.82)
(k-1)LT,
[ m@AZOd<0 i m@=-1 (8.1.8b)
(k-1)LT,

Provided that the power of noise in the sys