

Lecture Notes in Computer Science 6759
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Danilo Caivano
Markku Oivo
Maria Teresa Baldassarre
Giuseppe Visaggio (Eds.)

Product-Focused
Software Process
Improvement

12th International Conference, PROFES 2011
Torre Canne, Italy, June 20-22, 2011
Proceedings

13

Volume Editors

Danilo Caivano
University of Bari, Department of Informatics
Via E. Orabona 4, 70126 Bari, Italy
E-mail: caivano@di.uniba.it

Markku Oivo
University of Oulu, Department of Information Processing Science
P.O. Box 3000, 90014 Oulu, Finland
E-mail: markku.oivo@oulu.fi

Maria Teresa Baldassarre
University of Bari, Department of Informatics
Via E. Orabona 4, 70126 Bari, Italy
E-mail: baldassarre@di.uniba.it

Giuseppe Visaggio
University of Bari, Department of Informatics
Via E. Orabona 4, 70126 Bari, Italy
E-mail: visaggio@di.uniba.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21842-2 e-ISBN 978-3-642-21843-9
DOI 10.1007/978-3-642-21843-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011929368

CR Subject Classification (1998): D.2, K.6, J.1, H.3-4, C.2.4, J.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the PROFES Organizing Committee we are proud to present the
proceedings of the 12th International Conference on Product-Focused Software
Process Improvement (PROFES 2011), held in Torre Canne, Italy. Since 1999
PROFES has grown in the software engineering community and has become a
premium conference that brings together both academia and industry.

The roots of PROFES lie in the professional software process improvement
motivated by product, process and service quality needs. The conference retains
its high quality and focus on the most relevant research issues by addressing
both perspectives, research and practice, from an academic and industrial point
of view.

Today’s software products and services are perceived as strategic assets for
empowering business sectors at every level of the value chain, from strategic to
operative. In this scenario, and considering the current global economic down-
turn, the challenge for developing software products and services consists in
managing process diversity in order to reuse strategic software assets in various
fields and environments quickly and cost effectively. This was the special theme
for PROFES 2011.

In the last few years, many approaches and techniques have been proposed for
managing diversity: experience bases for collecting and sharing knowledge and
experiences; software development processes able to rearrange common assets in
diverse products; process patterns as an instrument for filling the gap between
process definition and the amount of customizations needed; estimation and
calibration techniques that deal with the different processes in use; parametric
and goal-oriented quality models; project management techniques able to fulfil
the project goals in spite of project characteristics; cloud computing and service
orientation for managing the diversity of hardware and software platforms. All
these innovations provide exciting opportunities to make significant progress in
understanding and facing real-world challenges.

This year’s technical program featured invited talks, research papers, and
experience reports on the most relevant topics in the focus area. We received
54 papers submitted from 22 nations, with each paper receiving at least three
reviews. After a thorough evaluation, the Program Committee selected 24 techni-
cal full papers. The topics addressed in these papers indicate that the PROFES
theme is a vibrant research area, but is also of high interest for industry as
demonstrated by several papers that report on case studies or experience gained
in industry.

We were proud to have two top keynote speakers: (1) Dennis Smith – Se-
nior Member of the Technical Staff at Carnegie Mellon University’s Software
Engineering Institute and (2) David J. Kasik – Senior Technical Fellow, Visu-
alization and Interactive Techniques, The Boeing Company. It also featured a

VI Preface

short-paper session, two workshops, Managing the Client Value Creation Process
in Agile Projects (VALOIR) and Project and Knowledge Management Trends
(PKMT), one tutorial, Establishing and Improving Project Management Using
Assessment Models for Process Capability and Organizational Maturity, and a
Doctoral Symposium.

We wish to thank the University of Bari, the University of Oulu, the com-
petence center Driving Advances of ICT in South Italy-Net (DAISY-NET), the
Project Management Institute Southern Italy Chapter (PMI-SIC) and Software
Engineering Research and Practices s.r.l. (SER&Practices) – spin-off of the Uni-
versity of Bari – for supporting the conference. We are also grateful to the authors
for their high-quality papers and the Program Committee for their hard work in
reviewing the papers.

June 2011 Danilo Caivano
Markku Oivo

Maria Teresa Baldassarre
Giuseppe Visaggio

Organization

PROFES 2011 was organized by the University of Bari and University of Oulu.

General Chair

Giuseppe Visaggio University of Bari and Daisy-Net, Italy

Program Co-chairs

Danilo Caivano University of Bari and SER&Practices, Italy
Markku Oivo University of Oulu, Finland

Organizing Chair

Maria Teresa Baldassarre University of Bari and SER&Practices, Italy

Publicity Chair

Matias Vierimaa VTT, Oulu, Finland

Publicity Co-chair Asia

Katsuro Inoue Osaka University, Japan

Publicity Co-chair Australia

Emam Hossain NICTA, Australia

Publicity Co-chair Europe

Luigi Buglione ETS / Engineering Group, Italy

Publicity Co-chair South America

Guilherme H. Travassos COPPE/UFRJ Federal University of Rio de Janeiro,
Brazil

Short Papers and Poster Chairs

Guilherme H. Travassos COPPE/UFRJ Federal University of Rio de Janeiro,
Brazil

Per Runeson Lund University, Sweden

VIII Organization

Doctoral Symposium Chairs

Marcela Genero University of Castilla la Mancha, Spain
Emilia Mendes University of Auckland, New Zealand

Workshops and Tutorials Chairs

Alberto Sillitti Free University of Bolzano, Italy
Felix Garcia University of Castilla la Mancha, Spain

Web Chair

Giovanni Bruno University of Bari, Italy

Program Committee

Zeiad Abdelnabi Garyounis University - IT College, Libya
Silvia Abrahão Universidad Politécnica de Valencia, Spain
Muhammad Ali Babar ITU of Copenhagen, Denmark
Pasquale Ardimento University of Bari, Italy
Maria Teresa Baldassarre University of Bari, Italy
Stefan Biffl Technical University of Vienna, Austria
Andreas Birk SWPM - Software.Process.Management, Germany
Luigi Buglione ETS / Engineering Group, Italy
Danilo Caivano University of Bari, Italy
Gerardo Canfora University of Sannio, Italy
Jeffrey Carver Alabama University, USA
Marcus Ciolkowski Fraunhofer Institute for Experimental Software

Engineering, Germany
Dave Cliff University of Bristol, UK
Reidar Conradi Norwegian University of Science and Technology,

Norway
Beniamino Di Martino Second University of Naples, Italy
Torgeir Dingsøyr SINTEF, Norway
Tore Dyb̊a SINTEF, Norway
Davide Falessi University of Rome“Tor Vergata”, Italy and Simula,

Norway
Raimund Feldmann Fraunhofer Center Maryland, USA
Rudolf Ferenc University of Szeged (SZTE), Hungary
Alfredo Garro University of Calabria, Italy
Paul Gruenbacher Johannes Kepler University Linz, Austria
Jens Heidrich Fraunhofer Institute for Experimental Software

Engineering, Germany
Frank Houdek Daimler AG, Germany
Martin Höst Lund University, Sweden

Organization IX

Hajimu Iida NAIST, Japan
Michel Jaring Universtiy of Helsinki, Finland
Natalia Juristo Universidad Politécnica de Madrid, Spain
Janne Järvinen F-Secure, Finland
Yiannis Kanellopoulos Software Improvement Group, Amsterdam,

The Netherlands
Petri Kettunen University of Helsinki, Finland
Pasi Kuvaja University of Oulu Finland
Lech Madeyski Wroclaw University of Technology, Poland
Kenichi Matsumoto Nara Institute of Science and Technology, Japan
Makoto Matsushita Osaka University, Japan
Maurizio Morisio Politecnico di Torino, Italy
Mark Mueller Robert Bosch GmbH, Germany
Juergen Muench Fraunhofer IESE, Germany
Haruka Nakao Japan Manned Space Systems Corporation, Japan
Risto Nevalainen FiSMA ry, Finland
Mahmood Niazi Keele University, UK
Linda Northrop Software Engineering Institute, Carnegie Mellon

University, USA
Markku Oivo University of Oulu, Finland
Paolo Panaroni INTECS, Italy
Dietmar Pfahl Lund University, Sweden
Minna Pikkarainen VTT, Finland
Teade Punter Embedded Systems Institute (ESI), Netherlands
Austen Rainer University of Hertfordshire, UK
Daniel Rodriguez University of Alcalá, Spain
Barbara Russo Free University of Bolzano-Bozen, Italy
Outi Salo Nokia, Finland
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Michael Stupperich Daimler AG, Germany
Christos Tjortjis Univ. of Ioannina, Greece and University of

W. Macedonia, Greece
Guilherme Travassos COPPE/UFRJ, Brazil
Markku Tukiainen University of Joensuu, Finland
Mark Van Den Brand Eindhoven University of Technology,

The Netherlands
Rini Van Solingen Delft University of Technology, Netherlands
Sira Vegas Universidad Politecnica de Madrid, Spain
Aaron Visaggio University of Sannio, Italy
Hironori Washizaki National Institute of Informatics, Japan

X Organization

Additional Reviewers

A

AcuÃa, Silvia T.

D

Dieste, Oscar

F

Fernandez, Adrian
Fgri, Tor Erlend
Ficco, Massimo
Fushida, Kyohei

G

González-Huerta, Javier

H

Haugset, Brge
Hegedűs, Péter

K

Kakuja-Tóth, Gabriella
Klabbers, Martijn

M

Massollar Da Silva, Jobson Luiz

N

Nicolau De França, Breno Bernard

O

Ohkura, Kimiharu

S

Scheinholtz, Lauri Ann

Y

Yoshida, Norihiro

Table of Contents

Keynote Addresses

The Impact of Emerging Software Paradigms on Software Quality and
User Expectations . 1

Dennis B. Smith

Acquiring Information from Diverse Industrial Processes Using Visual
Analytics . 2

David J. Kasik

Agile and Lean Practices

Monitoring Bottlenecks in Agile and Lean Software Development
Projects – A Method and its Industrial Use . 3

Miroslaw Staron and Wilhelm Meding

Applying Agile and Lean Practices in a Software Development Project
into a CMMI Organization . 17

Miguel Morales Trujillo, Hanna Oktaba, Francisco J. Pino, and
Maŕıa J. Orozco

Adopting Agile Practices in Teams with No Direct Programming
Responsibility – A Case Study . 30

Kirsi Korhonen

Cross-Model Quality Improvement

Proposing an ISO/IEC 15504-2 Compliant Method for Process
Capability/Maturity Models Customization . 44

Jean Carlo Rossa Hauck, Christiane Gresse von Wangenheim,
Fergal Mc Caffery, and Luigi Buglione

Homogenization, Comparison and Integration: A Harmonizing Strategy
for the Unification of Multi-models in the Banking Sector 59

César Pardo, Francisco J. Pino, Félix Garćıa, Mario Piattini,
Maria Teresa Baldassarre, and Sandra Lemus

Supporting Audits and Assessments in Multi-model Environments 73
Andre L. Ferreira, Ricardo J. Machado, and Mark C. Paulk

XII Table of Contents

Global and Competitive Software Development

Scrum Practices in Global Software Development: A Research
Framework . 88

Emam Hossain, Paul L. Bannerman, and Ross Jeffery

Towards the Competitive Software Development . 103
Andrzej Zalewski and Szymon Kijas

Defect Detection Effectiveness and Product Quality in Global Software
Development . 113

Tihana Galinac Grbac and Darko Huljenić

Managing Diversity

Managing Process Diversity by Applying Rationale Management in
Variant Rich Processes . 128

Tomás Mart́ınez-Ruiz, Félix Garćıa, and Mario Piattini

Usage of Open Source in Commercial Software Product Development –
Findings from a Focus Group Meeting . 143

Martin Höst, Alma Oručević-Alagić, and Per Runeson

Identifying and Tackling Diversity of Management and Administration
of a Handover Process . 156

Ahmad Salman Khan and Mira Kajko-Mattsson

Product and Process Measurements

A Process Complexity-Product Quality (PCPQ) Model Based on
Process Fragment with Workflow Management Tables 171

Masaki Obana, Noriko Hanakawa, and Hajimu Iida

Using Web Objects for Development Effort Estimation of Web
Applications: A Replicated Study . 186

Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and
Federica Sarro

Applying EFFORT for Evaluating CRM Open Source Systems 202
Lerina Aversano and Maria Tortorella

Product-Focused Software Process Improvement

A Factorial Experimental Evaluation of Automated Test Input
Generation: Java Platform Testing in Embedded Devices 217

Per Runeson, Per Heed, and Alexander Westrup

Table of Contents XIII

Automating and Evaluating Probabilistic Cause-Effect Diagrams to
Improve Defect Causal Analysis . 232

Marcos Kalinowski, Emilia Mendes, and Guilherme H. Travassos

A Genetic Algorithm to Configure Support Vector Machines for
Predicting Fault-Prone Components . 247

Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and
Federica Sarro

Requirement Process Improvement

A Systematic Approach to Requirements Engineering Process
Improvement in Small and Medium Enterprises: An Exploratory
Study . 262

Edward Kabaale and Josephine Nabukenya

Understanding the Dynamics of Requirements Process Improvement:
A New Approach . 276

A.S. (Aminah) Zawedde, M.D. (Martijn) Klabbers,
D. (Ddembe) Williams, and M.G.J. (Mark) van den Brand

Precise vs. Ultra-Light Activity Diagrams - An Experimental
Assessment in the Context of Business Process Modelling 291

Francesco Di Cerbo, Gabriella Dodero, Gianna Reggio,
Filippo Ricca, and Giuseppe Scanniello

Software Process Improvement

If the SOK Fits, Wear It: Pragmatic Process Improvement through
Software Operation Knowledge . 306

Henk van der Schuur, Slinger Jansen, and Sjaak Brinkkemper

Critical Issues on Test-Driven Development . 322
Sami Kollanus

On the Difficulty of Computing the Truck Factor . 337
Filippo Ricca, Alessandro Marchetto, and Marco Torchiano

Author Index . 353

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Impact of Emerging Software Paradigms on
Software Quality and User Expectations

Dennis B. Smith

Carnegie Mellon University/ Software Engineering Institute
United States

dbs@sei.cmu.edu

This talk will discuss emerging approaches to software development and evolution
that enable organizations to respond quickly to new business needs while maintaining
their legacy applications. These approaches include:

- Service oriented architecture (SOA) which is a way of designing, developing,
deploying, and managing systems where coarse-grained services represent reus-
able functionality, and service consumers compose applications or systems using
the functionality provided by these services through standard interfaces. This ap-
proach enables the flexible composition and evolution of new services. Major
barriers include lack of a long term strategy, lack of effective governance, unre-
alistic expectations, and inappropriate technical strategy.

- Cloud computing which is a “a large-scale distributed computing paradigm that
is driven by economies of scale, in which a pool of abstracted, virtualized, dy-
namically-scalable, managed computing power, storage, platforms, and services
are delivered on demand to external customers over the Internet [1]. This ap-
proach enables consumer organizations to have access to state of the practice
hardware and software without making many of the upfront infrastructure in-
vestments. The main drivers for cloud computing adoption include scalability,
elasticity, virtualization, cost, mobility, collaboration, and risk reduction. Major
barriers include security, interoperability, control and performance.

- Enterprise architecture planning and development which develops a comprehen-
sive plan for using business functionality across an enterprise and building ap-
plications from shared resources. Because it takes a perspective that crosses an
entire enterprise, it enables the breaking down of barriers that take place within
individual organizations. Major barriers include lack of long term commitment,
and a focus on completeness rather than practicality.

The combination of these three approaches offers potentials for both success and
failure. They can enable rapid responses to new business situations through the shared
use of common resources, as well as the discipline to use a common plan for imple-
menting enterprise wide priorities. However, the use of these approaches has often
been over-hyped, resulting in failure. This talk uses lessons learned from current
adoption efforts to identify the core concepts of these approaches, what their poten-
tials are, as well as common misconceptions and risks.

Reference

1. Foster, I., Zhau, Y., Ioan, R., Lu, S.: Cloud Computing and Grid Computing: 360-Degree
Compared. In: Grid Computing Environments Workshop (2008)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, p. 2, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Acquiring Information from Diverse Industrial Processes
Using Visual Analytics

David J. Kasik

Senior Technical Fellow, Visualization and Interactive Techniques
The Boeing Company, United States
david.j.kasik@boeing.com

Visual analytics is an emerging technology that provides another technique to derive
better information from data. As a technology, visual analytics is a new approach
that complements more traditional methods in business intelligence, information visu-
alization, and data mining. The basic concept is to provide highly interactive visual
techniques that let people explore multiple heterogeneous data sets simultaneously.
The key aspect is interactivity, which lets people follow paths to seek answers to
questions normally unasked. The visual aspect allows people to detect the expected
and discover the unexpected.

The intelligence community in the United States and Europe began investing in
and using visual analytics after the events of September 11, 2001. Boeing is a leader
in exploring the application of visual analytics in industry. One of the primary attrac-
tions for visual analytics is the technology’s applicability to data gathered from
diverse processes. This talk will provide a glimpse of the highly complex business in
a global aerospace company, an overview of visual analytics, Boeing’s overall ap-
proach to visual analytics, and specific cases studies from multiple process domains,
including bird strikes, industrial safety, and software system interrelationships.

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 3–16, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Monitoring Bottlenecks in Agile and Lean Software
Development Projects – A Method and Its Industrial Use

Miroslaw Staron1 and Wilhelm Meding2

1 Department of Computer Science and Engineering
University of Gothenburg

miroslaw.staron@ituniv.se
2 Ericsson SW Research

Ericsson AB
wilhelm.meding@ericsson.com

Abstract. In the face of growing competition software projects have to deliver
software products faster and with better quality – thus leaving little room for
unnecessary activities or non-optimal capacity. To achieve the desired high
speed of the projects and the optimal capacity,bottlenecks existing in the
projects have to be monitored and effectively removed. The objective of this
research is to show experiences from a mature software development organiza-
tion working according to Lean and Agile software development principles. By
conducting a formal case study at Ericsson we were able to elicit and automate
measures required to monitor bottlenecks in software development workflow,
evaluated in one of the projects. The project developed software for one of the
telecom products and consisted of over 80 developers. The results of the case
study include a measurement system with a number of measures/indicators
which can indicate existence of bottlenecks in the flow of work in the project
and a number of good practices helping other organizations to start monitoring
bottlenecks in an effective way – in particular what to focus on when designing
such a measurement system.

1 Introduction

Global software supply chain and competition contributes to adopting the principles
of Lean in many software development organizations[1-3]. The organizations adopt
the principles with hopes on achieving high development speed, reduction of unnec-
essary work (waste) and better alignment with customer needs (generate customer
value). Such organizations often realize that the flows of software development are
unlike flows of work in manufacturing and that the practice shows existence of bot-
tlenecks unlike the ones in manufacturing. Complexity of large software development
projects and the fact that each software development project is different from
the previous ones cause the methods proven manufacturing to fail in Lean software
development. In particular it is harder to identify, monitor and, above all, remove
bottlenecks which hinder the efficiency of the software development projects as soft-
ware is developed and not manufactured. In this paper we explore methods used at
one of mature adopters of Lean software development– Ericsson AB– and observe

4 M. Staron and W. Meding

how they interpret and apply concepts related to bottlenecks. By conducting a formal
case study we were able to observe and study the methods of monitoring bottlenecks
at one of the units which develops large and complex telecommunication network
products. The goal of the research project underlying our study was to identify and
monitor bottlenecks that hinder efficient software development according to Lean
principles. In particular the project addressed the following research question:

How can we identify and monitor bottlenecks in software development projects
in order to prevent inefficiency?

Despite this problem being hard to tackle in general, the organization managed to
simplify it by applying certain core concepts of Value Stream Mapping and Lean
production systems: throughput and queue. Throughputwas defined as the number of
units that are processes by a given phase or activity per unit of time, and queue as the
number of units remaining to be developed/processed by a given phase or activity. In
order to address this research question a set of measurement tools was combined into
a dedicated measurement system which monitored the throughput and queue in a
number of phases in the studied software project.

In short, our results show that (i) monitoring of bottlenecks can be effectively done
using compound, yet abstract workflow models instead of commonly used process
models, (ii) measures used to monitor the flow do not need to be very complex, and
(iii) by changing the perception of well-known phenomena (e.g. using throughput
instead of productivity) the development of the measurement system is straightfor-
ward and is not prone to spun conflicts. .

The remaining of the paper is structured as follows. Section 2 presents an overview
of the work that has been done in this area to date. Section 3 presents the design of
our research study. Section 4 presents the results of the study - the method and its
realization at Ericsson. Finally section 5 presents the conclusions from our research.

2 Related Work

Petersen and Wohlin [4] used measurements of flow – cumulative flow diagrams – to
identify bottlenecks. Their approach was based on identifying patterns in the flow
diagrams and therefore point to the potential bottlenecks. The difference to our work
is that we did not intend to measure flow since we recognized the fact that elements in
the flow are not of equal size (something assumed by Petersen and Wohlin). We were
also able to use measures which are automatically collected (as opposed to Petersen
and Wohlin) which makes the method more efficient. Traces of measures related to
flow, similar to Petersen and Wohlin, can also be found in [5].

Höst et al. [6] used discrete event simulation to explore bottlenecks in requirements
engineering. Their approach was based on building a model of requirements engineer-
ing phase and using simulations to identify where bottlenecks appear. We used similar
concepts as Höst et al. – in particular the concept of capacity – since our goal was also
to use automated tools and measures.

Another example of using quantitative methods for identifying bottlenecks in a
specific case is the work of Jasmine and Vasantha [7] who used graphs in order to
identify reuse bottlenecks. Their approach is different from ours w.r.t. the use of
mathematical tools behind the measures – matrices and vectors.

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 5

Theory of constraints [8, 9] was used in our work in order to initiate the discus-
sions around the concepts of throughput and queue. In the future we intend to use this
theory after we establish the criteria and thresholds for the measures of queue and
throughput (planned for the future work) and in this way monitor bottlenecks in broad
software product development (compared to the focus of one product only we intend
to focus on the organization developing a number of products).

Ericsson’s realization of the Lean principles combined with Agile development
was not the only one recognized in literature. Perera and Fernando [10] presented
another approach. In their work, Perera and Fernando, presented the difference be-
tween the traditional and Lean-Agile way of working. Based on our observations, the
measures and their trends at Ericsson were similar to those observed by Perera and
Fernando.

3 Case Study Design

In this section we shortly describe the design of our case study: industrial context,
research questions, and units of analysis.

3.1 Context

The context of the case study was one of the software development organizations of
Ericsson AB. The organization and the project within Ericsson, which we worked
closely with, developed large products for the mobile telephony network. The size of
the organization was several hundred engineers and the size of the projects can be up
to 200 engineers. Projects were more and more often executed according to the prin-
ciples of Agile software development and Lean production system referred to as
Streamlinedevelopment (SD) within Ericsson [3]. In short, the principles of Stream-
line development postulated that software development was organized as a series of
activities centered around the product and executed mainly in cross-functional teams
responsible for the design, implementation and partially testing of their part of the
product (e.g. a feature) [11]. This was found to be rather typical process design that
addressed market pull in Lean development [12].

A noteworthy fact observed in our study was that in SD the releases of new soft-
ware versions to customers were frequent and that there was always a release-ready
version of the system: referred to as Latest System Version [3]. It is the defects exist-
ing (and known) in that version of the system that were of interest for the project
and product management. Ideally the number of known defects in that version of the
system should be 0, however, during the development (i.e. between releases) this
number might vary as there might be defects which are discovered during the process
of integrating new features (parts of code) into the latest system version. In practice
there are almost always defects being fixed as integration and testing is continuous.
However, at release times the main branch was frozen with the purpose of removing
all defects – this removal was the responsibility of the release project, which was a
project aimed at packaging the product and preparing it for the market availability.

In order to achieve the speed in releasing the software [2] and be able to quickly
respond to changes (new features and requirements) the software development

6 M. Staron and W. Meding

organization needed to constantly operate at an optimal capacity1. This means that
there should be no bottlenecks that hinder adding new features to software late in
the process (i.e. agile response to change) and that such late changes do not postpone
the releases of the software.

The capacity of this type of development was limited at any time by a given set of
constraints which result in bottlenecks. Examples of constraints could be an amount
of test equipment available, resources available for development of features, integra-
tion slots for the main branch, amount of resources available for defect removal after
the internal testing processes.

The constraints were always present in the organization, but at certain points of
time they were triggered and thus result in bottlenecks. For example if too many de-
fects were discovered in the internal testing the resources available for defect removal
might not be sufficient and therefore defect handling would become a bottleneck at a
particular time.

The requirement from the studied organization for this research project was to estab-
lish a measurement system which would provide an overview of the phases in software
development and monitor flow of work in the development process. Measured drops in
the flow of work should warn the stakeholders about potential bottlenecks.

3.2 Research Questions and Units of Analysis

The research question presented in this section wasestablished together with Ericsson
after a number of discussions with the organization in question. The main research
question was:

How can we effectively identify and monitor bottlenecks in a Streamline software
development project in order to assure efficiency of the process?

The scope of the research project was deliberately limited to identifying and moni-
toring of bottlenecks excluding the aspects of how to handle the bottlenecks (i.e. how
to remove constraints).

The unit of analysis was a single release of the product developed in the studied
project. We decided to follow the project from the point of time when the previous
release was ready (i.e. the release project took over) until the same point of time for
the next release. The time between releases was a number of weeks, although due to
confidentiality reasons we cannot provide the exact duration.

Our analyses consisted of both analyses of contemporary measurement systems
used at Ericsson, documents (in particular documents related to the ways of working
and requirements for quality of products), and analyses of interviews with stake-
holders of the contemporary measurement systems as well as key persons from the
project management team. The subjects of the interviews were: team leader of one of
the development teams in the project, integration leader for the project, deputy project
manager responsible for handling of defects during development, system test leader
and network integration test leader. All of the subjects were senior software engineers
with a number of years of experience in their fields. Three of them were also involved
in our previous research studies.

1 In this paper we can define the capacity as a total number of software features developed (i.e.

analyzed, designed, implemented, tested and validated) in one release.

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 7

During the discussions within the studied organization we noticed that despite our
initial goal to measure the flow and capacity in the organization, we should focus on a
smaller and easier problem – monitoring throughput and queue. The simplification
was dictated by the fact that the goal was to find bottlenecks, which can be found by
observing falling/dropping throughput in phases after the bottleneck and growing
queue before the phase where the bottleneck is located over time.

Our research process consisted of three parts:

1. Development of models of workflow in the software development projects organ-
ized according to the principles of Streamline development. The models simplified
the view of the stakeholders about their ways of working, which in general could
be different than the prescribed process view.

2. Development of measurement systems for measuring throughputs and queues for
each phase in the workflow model.

3. Instantiation of the measurement systems for one project with the goal to evaluate
the method.

4. As one could observe, we put effort on the actual ways of working and the percep-
tion of those by our stakeholders, rather than analyses of process descriptions.

The first two steps were done through interviews. For the development of models we
asked the stakeholders to characterize their way of working in this phase. The inter-
views were also aimed to find measures and indicators for monitoring throughput and
queue. In order to elicit these measures we asked the following two main questions:

• If you were supposed to notify the responsible stakeholder for the phase after yours
about potential problems with the overflow of work – what kind of indicator would
you like to use? – to elicit measures of throughput.

• If you were supposed to notify the responsible stakeholder for the phase before
yours about potential “shortage” of work in your phase – what kind of indicator
would you like to use? – to elicit measures of queue.

These questions were broken down into a number of aspects for discussion during the
interviews.

4 Monitoring Throughput and Queue

In this section we present the results of the case study – description of how bottle-
necks can be monitored using two main concepts: throughput and queue. We also
present the results of the evaluation of our method in the project at Ericsson.

4.1 Definitions

In order to proceed towards the realization of measurement systems we needed to
establish the basic vocabulary used in the project. It was interesting to observe that
even the definition of the main concept – bottleneck – was different for different
stakeholders in the project. The definitions shown below are taken from a number of
sources and discussed with the organization.

8 M. Staron and W. Meding

• Bottleneck: A bottleneck is a phenomenon where the performance or capacity of
an entire system [auth: software project] is limited by a single or limited number of
components or resources.

• Flow: A flow is the motion characteristic of elements or functionality under devel-
opment in a software project, see also [5].

• Throughput: Throughput is defined as the number of elements processed during a
time period. For example number of test cases executed per week.

• Queue: Queue is defined as the number of elements to be processed (to flow)
through a specific phase or a software project. For example number of test cases to
be executed until the end of a given week.

• Capacity: Capacity is a total number of software features developed (i.e. analyzed,
designed, implemented, tested and validated) in one release.

The general definitions of the concepts above are used to describe elements of soft-
ware development process used at the studied unit of Ericsson.

4.2 Realization at Ericsson

As described in section 3.2, in order to identify and monitor bottlenecks we needed to
establish a measurement system (see [13-15]). However, in order to establish this
measurement system we needed to describe the process of software development in a
model which allows monitoring of flows – e.g. similar to Value Stream Mapping[16]
models using in Lean Development in other domains than software development. An
example of such a model is presented later in the paper.

Figure 1 shows an overview model of process of developing software products in a
similar way as describing production systems in Lean manufacturing. The boxes rep-
resent “stations” where a number of activities take place and the overview model
presents those phases which we worked with during the study (the phases were de-
fined by the stakeholders’ responsibility areas). The process was drawn as a sequence,
since the dependencies between stations are sequential; however, the whole Stream-
line development process at Ericsson was parallel. The teams developed new features
in parallel; TR handling was done in parallel to development and integration, etc. The
sequential dependencies meant that bottlenecks in one of these stations could influ-
ence stations after – i.e. that there are sequential causal relationships between these
phases.

Each phase contained a number of stations, presented in detail in section 4.3. The
model was created together with the stakeholders by asking them to characterize the
work which they conduct and iterating the model a number of times in order to find
the appropriate abstraction level for the description.

Fig. 1. Overview model of development process and related measurement systems

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 9

After describing the process model we needed a number of interviews to validate
the model – in particular that it described the de-facto ways-of-working in the studied
project. We also needed to perform a number of interviews with the goal to define the
main concept of flow for each identified phase and throughput and queue for each
phase.

4.3 Results

The results from our case study contain both the model of the workflow in the devel-
opment connected to measurement systems (Figure 1) and the realization of the
measurement systems visualized in a web page updated daily (Figure 6).

The model was created using the notation presented in our previous study [15] and
dedicated for modeling measurement systems. The notation was complemented with
Value Stream Mapping model of workflow in the development process. The model
was intentionally created quite abstract as its purpose was to provide the stakeholders
with the overview of the whole development flow. The overview was meant to inform
the stakeholders what kind of main activities were executed at each phase. The meas-
ures and indicators were linked to the activities captured the notions of throughput
and queue for each phase.

The measurement system for monitoring bottlenecks was realized by connecting
together a number of measurement systems – one for each phase as it is presented
in Figure 1.

The measures for throughput and queue identified during the interviews for the
measurement systems are presented in Table 1.

Table 1. Measures for queue and throughput per phase

Phase Throughput Queue
Development
team

of function test cases
developed per week

of function test cases
planned for the whole feature
(but not yet developed)

Integration # of features integrated per
week

of features planned for
integration up to date in the
integration plan (but not yet
integrated)

Defect handling # of defect reports entering
the state “Closed” per week

of defect reports that are
not in state “Closed”

System test no indicator was created for
this phase2

of test cases planned for
execution up to a given week
(but not executed yet)

Network integra-
tion test

of test cases executed per
week

of test cases planned for
execution up to a given week
(but not executed yet)

2 Due to the process changes in the organization we were not able to define this indicator. Po-

tentially (or theoretically) it could be a similar indicator to the one for network integration test
phase.

10 M. Staron and W. Meding

The measures summarized in the table were collected manually for the develop-
ment team and automatically for all other phases. The reason for the manual collec-
tion was the fact that this information was not available in a form which could be
automatically processed.

The rationale behind the measures, as a result of interviews, is presented in the fol-
lowing subsections.

4.3.1 Development Team
The measures defined for the development team were elicited in two interviews with a
team leader and a senior system engineer working in the team. In the studied organi-
zation, the teams are usually formed by a number of specialists from a number of
fields – e.g. designers, programmers, system engineers, function testers, object leaders
– and are thus called cross-functional teams. Each team is responsible for the com-
plete development of one feature at a time and is able to integrate the feature into the
main code branch after it is tested.

The test cases are developed directly before execution (although they are planned
in advanced) and in sequence. Therefore the most effective way to monitor the
throughput of work in the team is to monitor the number of test cases developed and
the most effective way of monitoring the queue was to monitor the changes in the

Fig. 2. Stations/activities, measures and indicators in the Development Team

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 11

number of test cases planned. The three stations that were identified for this phase are:
(i) requirements engineering, (ii) design and implementation, and (iii) test analysis.
The model of the flow and the related indicators and measures are presented in
Figure 2. The figure shows also how we modeled the work flow in detail and how we
linked the activities in the workflow with the measures and indicators for monitoring
bottlenecks.

The lower part of the model is the flow model and the upper part is the model of the
measurement system according to ISO/IEC 15939 [17] and our own modeling notation
[15, 18]. In this flow model the test analysis is drawn in parallel to the requirements
engineering and implementation. The reason for this is that there was no sequential
dependency between these stations although the implementation and test analysis end
simultaneously. The test analysis could influence the queue for this whole phase, i.e.
the number of test cases to be developed. If there was a bottleneck in this phase, then
the team would not be able to test and develop the test cases as planned.

4.3.2 Integration
When the teams were ready with the development of the feature assigned to them, the
feature was integrated into the code at the main branch. This integration was a man-
aged and planned process driven by two main principles: (i) the integration time slots
should be used as efficient as possible (meaning that all integration slots should
be occupied) and (ii) the integration of features should be spread during the whole
project, not gathered in the end (i.e. to avoid big-bang integration).

The integration plan was the basis for the integration and was an electronic docu-
ment frequently updated. The number of features in the integration plan are planned
(but not yet integrated) up to a given week form the queue for this phase. The number
of features integrated forms the throughput measure.

The rationale behind the queue was that if there were delays in the integration, it
would grow since the features would not be integrated, but remain as planned in the
plan. The queue would grow if the throughput drops in case there is a bottleneck in
the integration phase since the teams would still deliver new code to be integrated.

If the queue dropped suddenly, it would indicate that there was a bottleneck in the
phase before (development team) and therefore the integration process did not operate
at the desired/planned capacity.

4.3.3 Defect Handling
During the function testing in the teams or in the integration process, a number of
defects might have been reported. Before proceeding with the testing, these defects
needed to be removed. The process of assessing the severity of the defect, assignment
to the development team and verifying that the defect has been removed needed to
finish. There were three main stations that were identified: (i) defect assessment, (ii)
defect removal, and (iii) defect verification and closing.

Based on this process the measurement for the throughput was quite straightfor-
ward – it was the number of defects that were closed per week. The queue was then
the number of defects that were still open and remained to be closed.

If there was a bottleneck in this phase then the queue would raise and it would
eventually stop the whole development chain as no features would be ready for the
delivery because of insufficient quality.

12 M. Staron and W. Meding

If there was a bottleneck in the previous phase then the number of open defect
would drop significantly meaning that the test cases were not executed or that no new
features were ready for integration.

4.3.4 System Test
System test (ST test) was the first phase where the source code integrated into the
main branch was tested as a whole. The phase consisted of two main activities – test
planning and ST testing (i.e. ST test execution), the measures for throughput and
queue were therefore

• the number of test cases planned to be executed (and not yet executed) up to date –
measure of queue.

• the number of test cases executed – the measure of throughput. Please note that this
is an indicator proposed based on a similar indicator in the forthcoming phase.
We were not able to verify this indicator since the internal testing processes were
different.

If there was a bottleneck in this phase then the queue would raise while the through-
put would drop. A growing queue also indicated an existence of a bottleneck in the
ST test phase.

4.3.5 Network Integration Test
Network integration test phase (NIV testing) was the phase when the software prod-
ucts were tested in their target environment and at the target platforms. The function
and system test cases were used to test the software in new configurations and there-
fore it mainly consisted of the test execution itself (defect handling was captured in a
separate phase as described before). Test planning was then only limited to planning
when different test cases should be executed and, according to the stakeholder, should
not be distinguished from the test execution phases as both planning, re-planning and
execution were conducted continuously and in parallel.

The two measures were:

• the number of test cases planned to be executed (and not yet executed) up to date –
measure of queue.

• the number of test cases executed – the measure of throughput.

If there was a bottleneck in this phase then the throughput would drop as the number
of test cases executed would decrease. An example of a constraint causing a bottle-
neck could be the access to the test equipment or the need to reconfigure the equip-
ment more than planned.

4.4 Industrial Validation

The measurement system for bottlenecks was used in one project so far and resulted in
identifying an efficient way of monitoring the flow of work in the project as presented
in Figure 33. The measurement system contributed to the identification of problems

3 Please note that the numbers in the figure are only an example and do not show the real data

from the organization due to the confidentiality agreements with the company.

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 13

with the last phase of the flow, which were forecasted based on the indicators from the
previous phases. The throughput of the test process for the network integration test
phase was shown to be insufficient to handle the growing number of features to be
delivered. The release of the product was postponed as a result of this insufficient
throughput. The future projects took another approach to testing in order to increase
the throughput of that phase.

Fig. 3. Realization of the measurement system for monitoring bottlenecks

In Figure 3 we present how we realized the measurement system in practice. Be-
hind the web page shown in the figure we used 5 measurement systems collecting the
data from a number of systems, which together form an important tool for monitoring
bottlenecks. Although we cannot show the real data, we illustrated dependencies be-
tween measures which we observed in the project – the most important one being the
dependency between throughput and queues. We can also observe that the phase with
the most stable flow of work is the integration phase, which is caused by the fact
that the integrated code is usually divided into parts of equal size and that the builds
usually take a constant period of time (as the merge, compile, etc. time does not sig-
nificantly depend on the size of the integrated functionality).

In our further work we intend to investigate whether there are indeed bottlenecks in
the flow of work and whether these are measured accurately by the measurement
system. As one could observe from Figure 3, at this point of time there seem to be no
bottlenecks in the flow.

4.5 Good Practices

While developing and deploying the measurement system we observed a number of
good practices which helped the organization to be effective in monitoring bottlenecks.

1. Monitor throughput, not productivity. Although monitoring of productivity is
tempting in a context like this (i.e. identifying bottlenecks), it was much harder to

14 M. Staron and W. Meding

achieve consensus on how the productivity should be measures and how it should
be compared. As productivity in general is perceived related to humans, the con-
sensus might even be impossible for larger organizations (e.g. productivity of
designers and testers cannot be easily compared). However, since throughput is re-
lated to the number of items processed per time unit, the focus is on the items
processed – hence consensus can be achieved more easily.

2. Monitor capacity, not speed. For a similar reason as above one should avoid
measuring speed. Since speed is usually related to humans, the consensus is harder
to obtain as no one wished to be “the slowest one”. Capacity, on the other hand is a
property of the organization and increasing speed is only one of the possible
solutions (another one is to increase the number of person-hours in the project)
and therefore it shifts the focus from individuals to collective responsibility of the
project.

3. Focus on measuring flow, not constraints. When asked about potential bottle-
necks in the organization, the stakeholders in our project could sometimes point to
constraints which limited the flow. An example of such a constraint could be
knowledge of particular technology. Although commonly referred to a bottleneck
such a phenomenon is constraint that limits the capacity of the organization (or
speed of individuals who has to learn instead of performing). In addition to that it
is often not possible to measure such a constraint. However, if a throughput drops
in one of the monitored phases, one could easily identify this constraint and decide
to remove it – it is also more important to remove the constraint than to measure it.

4. Do not forget about velocity of items flowing through the system. When focus-
ing on monitoring the flow the organization might forget that flow is not the only
aspect important to monitor. The fact that the project or organization operates at
the optimal capacity does not mean that the items are develop fast enough – it
might still take a long time between the idea of the feature and its delivery to the
customer. Therefore the organization also should measure whether the velocity of
the flow is sufficient, since it is often important to be the first one to market with
new features, not only the one with reasonable price.

The observed good practices seem to be rather generic and straightforward to use at
other companies than Ericsson. They have shown themselves to be important when
establishing and deploying the measurement systems.

4.4 Validity Discussion

In order to evaluate the validity of our study we have used the framework presented
by Wohlin et al. [19].

The main threat to the external validity of our study is the fact that we have studied
only one software development project. Although this threat is real, we still believe
that the concepts of throughput and queue could be defined operatively for other
projects.

The main threat to the internal validity is the fact that our study used the process
description which was elicited in the study itself. This bears the risk that if we
had another process description, then the results of our study would be different.
However, since we explicitly asked about the measures during the interviews, the risk
for it is minimized.

 Monitoring Bottlenecks in Agile and Lean Software Development Projects 15

The main threat to the construct validity of our study is the fact that we have based
the identification of our measures on interviews and not on statistical data analysis. In
particular we have not used Principal Component Analysis to find related measures or
time-series analysis. Since the period of the study was short and the measures were
new we were not able to construct a valid statistical support.

5 Conclusions

In this paper we presented a new method for identifying and monitoring of bottle-
necks in the flow of work in Lean software development. We conducted a case study
at one of the software development units of Ericsson in order to develop the method
together with the stakeholders in our project.

The results of our study show that in order to identify bottlenecks one can monitor
throughputs and queues at a number of phases in software development. We also
identified one bottleneck in the last phase of the development project, which provided
the basic evidence that our method can effectively identify and monitor bottlenecks.
Therefore we can conclude that monitoring of bottlenecks in software development
projects can be done when we can use two crucial concepts - throughput and queue.

Our future work is planned to apply this method for other software development
programs and to monitor bottlenecks there. We also plan to generalize this method
and find “thresholds” for queues and throughputs that could be reused (something that
requires collecting a significant amount of statistical data over longer period of time).

Acknowledgements

We would like to thank SoftwareArchitectureQualityCenter at Ericsson and IT Uni-
versity of Gothenburg for their support in the study. We would also like to thank all
managers and stakeholders at EricssonAB for their contributions, insight and support
for the project.

References

[1] Staron, M., et al.: A method for forecasting defect backlog in large streamline software
development projects and its industrial evaluation. Information and Software Technol-
ogy 52, 1069–1079 (2010)

[2] Mehta, M., et al.: Providing value to customers in software development through lean
principles. Software Process: Improvement and Practice 13, 101–109 (2008)

[3] Tomaszewski, P., et al.: From Traditional to Streamline Development - Opportunities and
Challenges. Software Process Improvement and Practice 2007, 1–20 (2007)

[4] Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Software:
Practice and Experience, n/a–n/a(2010)

[5] Oppenheim, B.W.: Lean product development flow. Syst. Eng. 7, 2 (2004)
[6] Höst, M., et al.: Exploring bottlenecks in market-driven requirements management proc-

esses with discrete event simulation. Journal of Systems and Software 59, 323–332
(2001)

16 M. Staron and W. Meding

[7] Jasmine, K.S., Vasantha, R.: Identification Of Software Performance Bottleneck Compo-
nents In Reuse based Software Products With The Application Of Acquaintanceship
Graphs. In: International Conference on Software Engineering Advances, ICSEA 2007, p.
34 (2007)

[8] Dettmer, H.W.: Goldratt’s theory of constraints: a systems approach to continuous im-
provement. ASQC Quality Press, Milwaukee (1997)

[9] Dettmer, H.W.: The logical thinking process: a systems approach to complex problem
solving. ASQ Quality Press, Milwaukee (2007)

[10] Perera, G.I.U.S., Fernando, M.S.D.: Enhanced agile software development - hybrid para-
digm with LEAN practice. In: International Conference on Industrial and Information
Systems (ICIIS), pp. 239–244 (2007)

[11] Akg, A.E., et al.: Antecedents and consequences of team potency in software develop-
ment projects. Inf. Manage. 44, 646–656 (2007)

[12] Liker, J.K.: The Toyota way: 14 management principles from the world’s greatest manu-
facturer. McGraw-Hill, New York (2004)

[13] Staron, M., et al.: A Framework for Developing Measurement Systems and Its Industrial
Evaluation. Information and Software Technology 51, 721–737 (2008)

[14] Staron, M., Meding, W.: Predicting Weekly Defect Inflow in Large Software Projects
based on Project Planning and Test Status. Information and Software Technology, p.
(available online) (2007)

[15] Staron, M., Meding, W.: Using Models to Develop Measurement Systems: A Method and
Its Industrial Use. Presented at the Software Process and Product Measurement, Amster-
dam, NL (2009)

[16] Dolcemascolo, D.: Improving the extended value stream: lean for the entire supply chain.
Productivity Press, New York (2006)

[17] International Standard Organization and International Electrotechnical Commission,
ISO/IEC 15939 Software engineering – Software measurement process, International
Standard Organization/International Electrotechnical Commission, Geneva (2007)

[18] Meding, W., Staron, M.: The Role of Design and Implementation Models in Establishing
Mature Measurement Programs. Presented at the Nordic Workshop on Model Driven En-
gineering, Tampere, Finland (2009)

[19] Wohlin, C., et al.: Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publisher, Boston (2000)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 17–29, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Applying Agile and Lean Practices in a Software
Development Project into a CMMI Organization

Miguel Morales Trujillo1, Hanna Oktaba1, Francisco J. Pino2,3, and María J. Orozco4

1 Graduate Science and Engineering Computing, National Autonomous University of Mexico
Mexico City, Mexico

{migmor,hanna.oktaba}@ciencias.unam.mx
2 IDIS Research Group

Electronic and Telecommunications Engineering Faculty, University of Cauca
Calle 5 No. 4-70, Popayan, Colombia
fjpino@unicauca.edu.co

3 Alarcos Research Group
Institute of Information Technologies & Systems, University of Castilla-La Mancha

Paseo de la Universidad 4, Ciudad Real, Spain
francisco.pino@uclm.es

4 Ultrasist
Miguel Ángel 28, Mexico City, Mexico
mjorozcom@ultrasist.com.mx

Abstract. This paper presents an approach based on a practical experience in ap-
plying agile and lean practices in a software development process performed into
an organization evaluated CMMI level 5. As a result of a theoretical review on
agile and lean practices, and the organization’s needs, an integrated proposal be-
tween these practices and CMMI was found and was also put into practice. The
work carried out by the organization using this proposal led to a successful inte-
gration experience in order to innovate, improve product quality, get clients’
satisfaction, and the most important, show the feasibility of coexisting of CMMI
and agile practices resulting in a significant improvement for the organization.

Keywords: Agile practices, Lean practices, SCRUM, CMMI, Software Devel-
opment Process.

1 Introduction

In a software developer organization, the need to improve their capabilities is manda-
tory. One way to reach that goal is to adopt the best practices from a process reference
model which guides the organizational improvement.

A world known reference model is the Capability Maturity Model Integrated
(CMMI), it provides an approach to improvement in which processes and improve-
ments to them are supported by the organization [1].

It is a strong belief that agile development methods and CMMI best practices
are orthogonal with each other. The experience presented in this work is intended to

18 M. Morales Trujillo et al.

clarify and highlight the benefit from using both of them resulting into an improved
business performance, as has been suggested by [1]. Furthermore, according to [2] the
agile methods can support some success factors involved in improving organizational
processes.

The main contribution of the practical experience discussed in this paper is to show
how an organization assessed CMMI level 5 has integrated their software develop-
ment process with agile and lean practices in order to inject agility, simplicity and
refreshment into the processes, increasing the quality of the software product and the
client’s satisfaction. In this respect, this work reports a successful experience of
melting agile practices into a CMMI level 5 organization. However it is important to
highlight that it is not the purpose to present a new model or methodology, neither to
create a new agile method. Clearly speaking, our approach is based on a selection of
agile and lean practices suitable for a particular project in order to improve the proc-
ess, but not to replace it.

The paper is organized as follows: in part 2 we present the background, part 3
shows the context of the organization and the project that we present as experience.
The experience report is shown in part 4, and finally we conclude and mention the
future work.

2 Background

Several solutions to improve software development processes are suggested, many of
these suggestions have come from experienced practitioners, who have labeled their
methods as agile software development [3].

Agile methods have been demonstrated to enhance customer value, improve organ-
izational morale, and provide step improvement in product quality [4]. For that reason
numerous organizations have chosen this particular path to improve; however the big
problem is to find the right balance between agility and discipline.

According to [5], for a company in transition towards agile software development
there is a need for practices and guidance for implementing and supporting an agile
approach across the organization. Besides, taking into account the organizational
context helps eliminate the suspicion about agility [6].

Another area of conflict for mature organizations will be the problem of consider-
ing how or to what extend agile processes will affect their ratings with respect to
CMMI, ISO, or other process standards [7]. However, agile methods are in line with
many CMMI level 5 concepts, mainly regarding continuous improving of processes
performance, thus, instead of acting like a barrier, the agile methods impulse those
CMMI concepts.

On the other hand, talking about their limitations, most agile methods do not sup-
port the degree of documentation and infrastructure required for lower-level certifica-
tion; it might, in fact, make agile methods less effective [7].

From that point of view, the difficulty stands in filling the gap between the tradi-
tional development and the agile development, for that reason it is a favorable alterna-
tive to try to transform or remove particular aspects of the processes to make the most
of each one. Lean software development [8] [9] promotes removing waste as one of

 Applying Agile and Lean Practices in a Software Development Project 19

its principles. According to [10], extra or unnecessary functionality, slow internal
communication, task switching and bureaucracy fall into the category of “waste”.
However, complexity science seems to show that waste can have various functions; in
complex systems things that look like waste can actually be a source for stability and
innovation [11].

In order to preserve stability into the processes, approaches like [7] suppose to help
the integration of agile practices into the traditional process, firstly, by conducting an
analysis of existing and proposed processes to identify mismatches in process re-
quirements and expectations. Secondly, by taking into account the project’s needs,
there builds up a process with indispensable components, and specific responsibilities
are defined to address with the agile approach, establishing the milestones to better fit
an iterative approach.

Later on, the integration continues by implementing agile practices that support ex-
isting processes or new organizational priorities, like prioritizing requirements to keep
on a schedule when new requirements emerge, or test-first and continuous integration
to find problems beforehand.

An improvement seeking organization wants to assess the impact of process
changes before introducing them to improve the way of working, however in devel-
opment projects the change proposal is evaluated in a real situation [21]. A case of
study is suitable for industrial evaluation of software engineering methods, according
to [21], one way to arrange a case study, it’s to make a comparison of results of using
a new method against a company base-line, then is possible to compare both.

In this context, to develop the projects reported in this paper, which seek to incor-
porate agile and lead practices in the development process of a CMMI level 5 organi-
zation, the approach mentioned above was taken into account. This work reports the
qualitative experience of transitioning from the traditional development to the agile
development, by means of two projects carried out for this purpose, within an organi-
zation that has used CMMI as reference model to define its software development life
cycle. Likewise it presents challenges faced by the project teams, as well as the bene-
fits of using agile practices, and practical recommendations for those starting and
facing similar challenges.

3 Context of the Software Development Project

This work was developed at Ultrasist [12], a Mexican organization certified with
CMMI level 5 version 1.2 since March 2009. Ultrasist is oriented to develop applica-
tions through a work environment based on processes and international standards of
quality. At the time of the experience presented, the organization was made up by 83
employees.

Innovation is a main objective of the organization, for that reason it created a
weekly workshop called Research Seminar, where the members propose new ideas,
methodologies, solutions and improvement opportunities in order to optimize the
group of processes and performance of the organization.

20 M. Morales Trujillo et al.

One of the concerns at the workshop was introducing agile practices into the proc-
ess with the objective of improving particular aspects. The existence of agile practices
at the organization was not new, but they were merely focused on internal processes
and activities, for example, as a result of this workshop, a technique based on Pair
Programming and called eXtreme Analysis was developed. It is executed during the
Analysis phase in order to improve the definition of the requirements, alongside with
carrying out the Peer Review in every phase.

In this case, three factors were identified to be improved: customer’s satisfaction,
work team communication and, the most ambitious, reduction of the release time of a
product.

At that moment a new project was required by a frequent client; thus, the High
Management approved to search a set of practices that could be applied by the work
team assigned to that project. The software products associated with those projects
were related to receipt, control and administration of funds. For privacy reasons we
will not mention the client’s name and it will be simply referred to as “the client” and
the projects involved as “PAL” (acronym for Projecting Agile & Lean).

After the ending of PAL1, the client asked for another product and we will call the
corresponding project as PAL2. In general terms, when we mention PAL projects we
will be referring to both PAL1 and PAL2 projects.

In order to speed up PAL projects, the organization assigned two resources (PAL
team) from the Process Group, one of them being the first author of this paper. The
PAL team was given the task to identify specific processes or activities candidates to
be replaced or improved by agile and lean practices. Subsequently, those resources
developed the necessary material, on one hand to apply the selected practices into the
development process and, on the other hand, to train the work team to apply the re-
quired knowledge and achieve the desired objectives.

3.1 Project Description

The PAL projects involved the phases of Analysis, Design, Construction and Tests
together with the resources specialized in each of those phases. The organization
manages its resources in two levels: horizontal and vertical. The horizontal level con-
sists in a group controlled by a specialist called Technical Leader, for example, the
Specification Leader manages all the people with the role of Analyst, and the Test
Leader is in charge of all the testers.

At the vertical level the main role is played by the Project Manager who is in
charge of a team made up by people working on a particular project. Therefore, a
person, who has issues associated with the technical part, should inform their Techni-
cal Leader; on the other hand, if he has issues associated with the management of the
project, he should contact the Project Manager in charge of that project.

The nature of the projects required developing of all the Testing phases at the cli-
ent’s facilities. For that reason there have existed historically communication issues
between the Test leader who stays at Ultrasist and the testers’ team that has to be at
the client’s, as well as between the Construction leader and the programmers’ team.

The work team assigned to the projects was composed by 7 members: 1 Project
Manager, 2 Analysts, 1 Designer, 2 Programmers and 1 Tester, where it is important
to observe that those are the official roles that they play in the organization normally.

 Applying Agile and Lean Practices in a Software Development Project 21

However, for the purpose of the PAL projects their functions and responsibilities were
not limited to those roles. The size of each project was given in use-case points, being
235 use-case points for PAL1 and, 270 for PAL2, respectfully. The estimated delivery
dates were for PAL1 March 19th totalizing 35 estimated working days and, for PAL2
May 14th totalizing 40 working days, both developed during 2010. See Table.

Table 1. Estimated dates, use-case points and hours of each project

Contract Dates Project name
Beginning Closing

Use-case points Effort (in hours)

PAL 1 February 1st March 19th 235 603.50
PAL 2 March 22nd May 14th 270 628.45

The client’s satisfaction was a hard issue to deal with because of their high demand

and low commitment, with almost none chances for communication after the contract
is signed and ever-changing requirements on road.

4 Experience Report

To perform the introduction of agile and lean practices into the organization proc-
esses, the PAL team in the first place identified the specific processes or activities
necessary to be replaced or improved by agile and lean practices.

Later it developed the necessary material to apply the selected practices into the
development process and finally introduced the work team to the new practices. The
PAL team work is described below to more detail.

4.1 Project Execution

In order to make clearer the structure and the execution, the project was divided into
five steps. Each step having a specific purpose, the first four steps were developed
only by the PAL team, and the last one developed in conjunction with the work team.

Step 0 had as its objective the selection of agile and lean concepts. Those concepts
were selected mainly from SCRUM [13], Lean and Test Driven Development [14].
Some of the concepts selected were:

• Self directed and self organized team.
• Daily meetings are carried out to listen to the progress feedback and to trou-

bleshoot impediments.
• Short iterations.
• Quantifiable measurements of progress.
• Design for change and respond to change.
• Bring decisions forward, Planning and responding.
• Design test first and test in short cycles.
• Fuzz the distinction between requirements and tests.

SCRUM was chosen as based on the approach described in [15], where an adaptation
of SCRUM to a traditional software development process is presented.

22 M. Morales Trujillo et al.

Additionally, the SCRUM process flow, see Figure 1, provides guidance for effi-
cient project management in a certain way that allows high flexibility and adaptabil-
ity, and CMMI provides insight into what processes are needed to maintain discipline
[16]. Thus, an accurate mix is obtained from both of them to start the improvement
focused on the main objectives.

Fig. 1. SCRUM process flow

At Step 1, there was created a cookbook according to the organization processes
and the agile and lean practices stemmed from the concepts selected in Step 0. More-
over, a couple of presentations and a guide were produced to introduce those selected
items to the work team during the next steps. One presentation was based fully on
SCRUM and its principles, benefits, requirements and practices for project manage-
ment. The other presented the objectives of the organization that pursue agility and
lean introduction.

The cookbook was divided into three parts, where the first one describes the actual
software development process of the organization and the candidate practices to be
replaced or improved; the next section shows the agile and lean practices selected,
mainly for the project management and the test phase; and the last one presents the
method of introduction and application of these new practices, including activities,
roles customization and guidelines for tailoring the process. In Table 2 a fragment of
the cookbook is shown.

The cookbook’s contents focus on three major aspects: Planning: arrangement of
the activities and scheduling tasks, Coordination & Communication: organizing and
matching up the team, and Testing: improving the activities in the Test phase of the
existing software development process. The agile and lean practices included came
from [17] [18] [19], and can be summarized as follows:

• Parallelization of the Testing activities with the Design and Programming
traditional activities.

• Planning and designing tests before coding.
• Merging the testing team within the development team at early stages.
• Avoiding giving a formal track to the discovery of defects.
• Making a best estimate of activities including the perspective of each mem-

ber of the developing team.

 Applying Agile and Lean Practices in a Software Development Project 23

Table 2. Fragment of the cookbook (left: old activity, right: proposed new activity)

Software Development Process
A.7 Test Phase

Previous Activities PAL Activities

1. Distribute tasks to team
members according to their roles.

Avoid...Test department.
Sometimes the test department assigns the
testers at the end of the iteration, this is
not recommended.

2. Design the Test Cases.

Avoid...Assuming testing means
testing.
Testing does not start after coding is
completed; specify the system behaviour
by writing the test cases.

3. Check the Test Cases.

Try...Simple testing classifications.
The test design should be guided by an
expert, concentrating the efforts of the
testing in business-critical requirements.

4. Fix the System Test Cases based
on the Verification Report.

-

5. Validate System Test Cases.

Try...Test the walls.
Sketch the design of the test cases on a
whiteboard. This promotes collaboration
and team review.

6. Fix and adapt, if needed, the
System Test Cases based on the
Validation Report.

Avoid...Separating development and
testing.
Tracking this kind of development
involves merging the test team within the
development team, another direct
consequence of this action is a better
planning and allocation of activities.

7. Execute tests into the test
environment.

-

8. Register defects into the Defect
Tracking System.

Avoid...Using defect tracking systems
during the iteration.
If it takes a lot of time and effort, a task
on the Sprint Backlog is created.

9. Perform System Acceptance
Testing.

-

10. Correct the defects found.

Try… Zero tolerance on open defects.
This prevents from spending effort on
tracking and prioritizing them, and from
delays caused by waiting to fix them.

11. Verify and close defects. -

The introduction of new practices was guided to accomplish the objectives covered

by the previous activities. Each new practice responds to a necessity of changing the
way of how to do it, not what to do, that is, the old set of practices is equivalent to the
new one in terms of achieving the CMMI requirements and goals, because every new

24 M. Morales Trujillo et al.

practice proposed is associated with an old practice, consequently, both of them
achieve the same goal and objective. Due to the fact that the old set of practices cov-
ered the CMMI requirements, the new practices do too.

Once the practices had been identified and validated, the PAL team started the
creation of templates and their customization, being this Step 2. The templates are
based on SCRUM products: the Product Backlog, the Burn Down Chart and the
Sprint Backlog managed into an excel spreadsheet. It is worth mentioning that the
election of a spreadsheet rests in two main factors: the first one is that it eases the
customization in the first application, and the most important is that the work team
does not have access to the web when they stay at the client’s facilities.

The Sprint Backlog is the prioritized list of tasks to be completed during the sprint,
in this case the template also considered who selected each task and their status. In the
same template the hours estimated for each task and their daily progress were re-
corded. See Figure 2.

Fig. 2. Fragment of the Sprint Backlog customized template

Taking into account the status and the hours left from each task, the section Graph-
ics had three charts, one showing the daily progress of tasks done, another screening
the estimated hours left to the end of the sprint, alike Burn Down Chart, see Figure 3,
and the last one presenting the hours left to the end of the sprint of each work team
member.

The Product Backlog template was a list of each requirement, with the addition of
three values: the name and number of tasks into which the requirement was decom-
posed, the estimated done date and the sum of estimated hours assigned to it.

Step 3 focused on presenting the principles of agile and lean practices to the work
team. Also, a mapping between SCRUM roles and organization’s roles, see Table 3,
the cookbook and the templates was presented. For that purpose a couple of one-hour
sessions with the work team were held. In those sessions the PAL team reinforced the
organizational guidelines for tailoring the process.

 Applying Agile and Lean Practices in a Software Development Project 25

Fig. 3. Fragment of the Burn Down Chart

Table 3. Mapping between roles

Normally played role SCRUM role
Technical Leader / PAL team SCRUM Master
Analists
Designers
Programmers
Testers
Project Manager

Team

Client Product Owner

To conclude, Step 4 started when the application of the practices and the data col-

lection began. Taking into account that an often-overlooked difference between agile and
traditional engineering processes is the way everyday business is conducted [7], during the
first project, PAL1, the work team was helped every day to guide the SCRUM meet-
ing, to introduce the new practices and to collect the data into the templates.

For the second project, PAL2, the work team applied the cookbook by themselves,
but the PAL team attended the SCRUM meetings, monitoring and supporting the
application of the cookbook.

It is worth mentioning that the effort in hours invested by the two members of the
PAL team in the execution of the five steps was 186 hours, starting in the middle of
January and finishing about the middle of May, the major part of hours concentrated
in the first half of this period.

4.2 Data Collection

The data collection was developed using Participant Observation, a systematical and
unobtrusive technique defined in [22], through SCRUM meetings and concentrated in
the templates. A SCRUM meeting was held every morning, asking the team three

26 M. Morales Trujillo et al.

simple questions by the SCRUM Master: What have you done since yesterday’s
meeting? What are you planning to do today and how many hours will it take you?
Do you have any problems preventing you from accomplishing your goal?

For practical reasons the SCRUM Master was played by the Technical leader
supported by a member of the PAL team if needed. Having the answers to these ques-
tions, the PAL team collected hours, effort and task selection data.

In order to provide a self-contained spreadsheet, the tab Config controls specific
values like: work team members’ name, starting date, status names, phase names and
number of sprints.

The tabs Obstacles Board and Hours Board were added, the first one to describe
and manage the obstacles reported by the work team at the SCRUM meetings, such as
their type, reporting date, solving date, impact and priority; and the second one, to
control the hours assigned to the project by phases and by tasks. The use of those tabs
was optional.

4.3 Results

At the end of the PAL projects the goals set initially were fully obtained. To recall,
the objectives initially proposed were: increase the customer’s satisfaction, improve
the work team communication and the bonus of reducing product release time.

Some metrics were collected across the project, but some information had to be ob-
tained by means of direct questions to the involved people. For that purpose, at the
end of each PAL projects two Retrospective Meetings took place. The first one was
held together with the PAL projects work team, the PAL team, the High Management
and the Process Group. At the second one only the presence of the PAL projects work
team and the PAL team was required.

These meetings are similar to the Sprint Retrospective meeting in SCRUM, and
they had the purpose of reflecting on the past project, identifying what went well
during the project, what could be improved, and mainly for our interest, detecting and
perceiving the feelings of the team and the client.

Firstly we expand on the communication in the work team. This issue had the most
important impact internally; the team members were integrated every day during the
SCRUM meetings, managing to achieve direct communication of their needs and
concerns and overcoming obstacles together.

There is no metric to show this improvement, but facts like simplicity and early
feedback where mentioned constantly in the Review Meetings. In the work team’s
own words “The solution to our problems (obstacles) is found at the end of the day,
instead of at the end of the week!”.

Besides, not only the communication at work team level was improved, but also
the feeling of being heard and supported by the High Management level increased.

Secondly, the constant change of the requirements was managed considerably bet-
ter. To be more explicit, Figure 4 shows a graphic of pending tasks with variables of
working days and tasks number in similar projects, where a sudden appearance of
new tasks in the middle of a project is clearly observed.

On the contrary, Figure 5 presents the number of pending tasks in PAL2 project,
where the planning and estimation of tasks was enhanced, by taking into account new

 Applying Agile and Lean Practices in a Software Development Project 27

practices in order to mitigate, since the beginning of the project, the impact of sudden
unexpected tasks.

Thirdly, the reduction of the product release time was achieved, in PAL1 project
the product was released 6 working days before planned, and in PAL2 5 days earlier.
This fact brings about a considerable reduction of the effort invested and a higher
motivation. In addition, according to the quality assurance metrics the PAL projects
achieved lower defect densities than the historical metrics.

All together it resulted in the increase of the client’s satisfaction, demonstrated by a
phone call to the High Management praising the great job done and early signing of
the delivery agreement.

Fig. 4. Task graph of a similar project

Fig. 5. Task graph of PAL2 project

5 Conclusions and Future Work

Nowadays, many organizations run agile software development projects alongside
their traditional ones [20]. For this reason, the experience presented in this work is
one more effort intended to clarify and highlight the benefits from using both.

28 M. Morales Trujillo et al.

We demonstrated the viability of merging CMMI best practices with agile and lean
practices, in order to improve the capacity and maturity of the processes developed by
the organization, always trying to preserve stability and helping the integration of
agile and lean practices into the traditional process.

An analysis of existing and proposed practices was conducted to identify the pro-
ject’s needs and indispensable process components to be addressed by the agile
approach, thus a balanced process was found to substitute the existing one.

As a result of this work, we provided a controlled and guided introduction of agile
and lean practices into the organization processes, improving factors like:

• The client’s satisfaction increased significantly; we even received a con-
gratulation phone call.

• The work environment of the work team was enhanced, the team’s profes-
sional and personal development was given a boost, the results obtained
were better and the feeling of being heard and taken into account by the
High Management increased and was motivating.

• The communication protocols and channels were improved and shortened,
which motivated the team to be more collaborative and participating.

• The quality of the final product was improved.
• The estimation and selection of tasks were improved, obtaining better esti-

mations and balanced workloads onto the work team members.

On the other hand, some aspects related to the change resistance were faced, in par-
ticular, the mistrust in agile practices caused by the work team members’ unaware-
ness. This skepticism was gradually solved by introducing the agile concepts in the
workshops and clarifying doubts constantly, but mainly, the team was convinced by
the results obtained day by day during the development of the projects.

Another problem was the feeling of “having more work to do”, as the introduction
of the new practices really required extra time and effort spent by the members in-
volved. So, at the beginning, with the assistance of the PAL team that feeling was
controlled, thereafter, the direct benefits obtained from that “more work” convinced
the team that the outcome is worth the effort.

Finally through these projects, we highlight and foster the feasibility of integrating
of agile and lean practices into traditional practices at an organization certified CMMI
level 5. We encouraged success factors involved in improving organizational proc-
esses, work environment and product quality.

For future work, we consider the migration of the final customized templates to a
tool that minimizes the effort and maximizes the portability. Refining and adapting
the cookbook’s contents in order to extend its scope to more processes are also con-
sidered as useful and beneficial for the organization.

Acknowledgements

This work has been possible thanks to Ultrasist’s rising spirit of innovation and its
desire to improve. Special thanks to the Process Group Leader: Claudia Alquicira
Esquivel and the Process Specialist: Hugo García Figueroa. As well as to all the work
team members involved in the PAL projects. We also acknowledge the assistance of

 Applying Agile and Lean Practices in a Software Development Project 29

the following projects: PEGASO-MAGO (TIN2009-13718-C02-01, FEDER and
MEC of Spain) and Agreement Unicauca-UCLM (4982-4901273). Francisco J. Pino
acknowledges to the University of Cauca where he works as Assistant Professor.

References

1. Glazer, H., Dalton, J., Anderson, D., Konrad, M., Shrum, S.: CMMI or Agile: Why Not
Embrace Both! CMU/SEI-2008-TN-003 (2008)

2. Pino, F., Pedreira, O., García, F., Rodríguez, M., Piattini, M.: Using Scrum to Guide the
Execution of Software Process Improvement in Small Organizations. Journal of Systems
and Software 83(10), 1662–1677 (2010)

3. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A systematic re-
view. Inform. Softw. Technol. (2008)

4. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131–133 (2001)

5. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed.
Pearson Education, London (2004)

6. Lepmets, M., Nael, M.: Balancing scrum project management process. In: Sillitti, A., Mar-
tin, A., Wang, X., Whitworth, E. (eds.) XP 2010. Lecture Notes in Business Information
Processing, vol. 48, pp. 391–392. Springer, Heidelberg (2010)

7. Boehm, B., Turner, R.: Management Challenges to Implementing Agile Processes in Tra-
ditional Development Organizations. IEEE Software, 30–39 (2005)

8. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addi-
son-Wesley, Reading (2003)

9. Lean Software Institute, http://www.leansoftwareinstitute.com/
10. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From

Concept to Cash. Addison-Wesley, Reading (2006)
11. Appelo, J.: Complexity vs. Lean, the Big Showdown. In: Lean Software and Systems Con-

ference 2010, Helsinki (2010)
12. Ultrasist, http://www.ultrasist.com.mx/
13. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall,

Englewood Cliffs (2001)
14. Beck, K.: Test-Driven Development by Example. Addison-Wesley, Reading (2003)
15. Dávila, M., Oktaba, H.: Especialización de MoProSoft basada en el Método Ágil Scrum

(MPS-Scrum). In: SIS 2009 (2009) (in press)
16. Jakobsen, C., Johnson, K.: Mature Agile with a twist of CMMI. In: Agile 2008 Confer-

ence, pp. 212–217 (2008)
17. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development. Addison-

Wesley, Reading (2010)
18. Larman, C.: Agile & Iterative Development: A Manager’s Guide. Addison-Wesley, Read-

ing (2004)
19. Coplien, J., Bjornvig, G.: Lean Architecture. Wiley, Chichester (2000)
20. Salo, O., Abrahamsson, P.: Integrating Agile Software Development and Software Process

Improvement: a Longitudinal Case Study. In: International Symposium on Empirical Soft-
ware Engineering 2005, pp. 193–202 (2005)

21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic Publishers, Dordrecht
(2000)

22. Shull, F., Singer, J., Sjoberg, D.: Guide to Advanced Empirical Software Engineering.
Springer, Heidelberg (2010)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 30–43, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Adopting Agile Practices in Teams with No Direct
Programming Responsibility – A Case Study

Kirsi Korhonen

 Nokia Siemens Networks,
Hatanpäänvaltatie 30, 33100 Tampere, Finland

kirsi.korhonen@nsn.com

Abstract. To respond to the need for flexibility in reacting to customer needs,
the agile practices have been introduced in the software development organiza-
tions. In order to get full benefit of agile, it is proposed that the agile and lean
practices should be adopted organization wide. Agile practices are mainly used
by programmers, but in large companies, there can be different work roles and
tasks which do not directly include programming of the product but are support-
ing the software development in the system level, such as system level testing
and testing environment maintenance. In this study, the goal was to provide
information on the progress of agile transformation in teams with no direct pro-
gramming responsibility in a large-scale, distributed software development
organization. A survey was done to collect data during the first year of agile
adoption about agile practices utilisation within three different teams: the
developers, the system level testers and people in test laboratory support. The
results show that certain agile practices were adopted in the teams with no
direct programming responsibility, and there were differences between the
teams.

Keywords: agile software development, agile transformation, distributed
development, large scale.

1 Introduction

Changing the software development method from plan-based to Agile is a challenge
to any organization. Especially a large ([14], [19]) and distributed ([16], [12]) organi-
zation has been reported as one of the issues requiring further attention in agile adop-
tion. In large organization the change may take time, and the lack of visibility to the
changes may cause e.g. motivation decrease [13]. In order to get full benefits out of
the agile, everyone in the organization should work in agile and lean way [21]. But
the goal of agile transformation for the whole organization might be unclear as the
agile practices are mostly used by software developers. So how should the agile prac-
tice adoption proceed among teams with no direct programming responsibility?

In this study, the goal was to explore how the adoption of agile practices pro-
gresses within team that do not have direct programming responsibility in a large,
distributed software development organization. The effect was studied by comparing
the progress of agile adoption of two teams with no programming responsibility with
progress of a team that had direct programming responsibility. The main sources of

 Adopting Agile Practices in Teams 31

the data were two surveys conducted with six months interval after the transformation
was started, and information collected from feedback discussions after both surveys.

The analysis showed that both the groups which were not directly involved in pro-
gramming were adopting agile practices related to daily organization of the work (e.g.
short iterations), and team work (e.g. Scrum). The team responsible for programming
was most advanced in agile practice adoption, and in addition to the daily work and
team practices, they adopted also the more technical, programming related practices
(e.g. refactoring). The encountered problem areas varied between the teams, and were
closely related to the work responsibility area of the team.

Based on the results it is proposed that while planning the agile transformation it is
essential that an organization analyses the expected outcome of agile transformation
within different teams in the organization, and defines the goals for the transformation
accordingly. It does make a difference on what practices to adopt if the team has or
has not direct programming responsibility, and it is good to share that expectation
with the teams. Additionally workshops are recommended to go through the possible
problem areas during the early stage of the agile transformation to clarify unclear
issues, and to agree on the way forward. Team involvement is essential when plan-
ning the goals for the transformation, as it makes the change more concrete and helps
to follow up the progress which in turn improves the motivation and supports people
in their transformation.

The rest of this paper is organized as follows: Section 2 provides background in-
formation for agile transformation in general, and the research setup is described in
Section 3. The empirical results are presented in Section 4 for the agile experience,
for the adoption of agile practices in Section 5 and in Section 5 for the identified
problem areas. The results are discussed in Section 6, and the paper is concluded with
final remarks.

2 Background

2.1 Characteristics of Plan-Driven and Agile Development

Based on the summary on the advantages and disadvantages of the different develop-
ment models done by Petersen and Wohlin [19], in plan-driven models the main cause
for failure is related to poor requirement handling. According to their analysis, this
has resulted as problems e.g. in integrating the overall system in the end and testing it
[11]. Making any changes in later phases is very difficult, which has lead to a situa-
tion where customers’ current needs are not addressed by the end of the project [9],
and many of the features implemented are not used [10].

To respond more flexible to the customer needs, Agile methods propose to work in
short (max 4 weeks), time-boxed iterations [24] [21], where the customer involvement
is mandatory both in the beginning, and at the end. The purpose is to receive timely
feedback both on the requirements and the end result of the time-boxed software de-
velopment. This makes it easier to implement the changes, and improves the customer
satisfaction [3], [26].

Though there are clear advantages in agile methods, there are also some issues as
listed by Petersen and Wohlin [19]: architecture usually does not have enough atten-
tion [15], [22], and the agile development does not scale well [5]. Additionally, the

32 K. Korhonen

implementation of continuous testing is difficult due to different platforms and system
dependencies [27], and testing can even become a bottleneck due to the need of test-
ing and development ongoing at the same time [29].

2.2 Agile Transformation

Initial experiences with the adoption of agile practices can be tough, as problems be-
come painfully visible and changes are required in the working habits and mindsets of
individuals, teams and organizations alike. The changes do not take place overnight, and
it is tempting to blame the agile methodology for all and any problems [4]. This might
even result as abandoning the new practices that challenge the team most [2]. Especially
in a large multisite organization there can be additional challenges caused by for exam-
ple dependencies between teams on different sites [16], problems with communication
[20,8], or misunderstandings on defect management practices [9].

Agile practices are reported to help improve product quality. For example results
of the case studies at Microsoft and IBM [17] indicate that the TDD practice im-
proved code quality. A set of agile practices was selected for a pilot at Ericsson [1]
instead of trying to implement a completely agile process. These practices included
pair programming, collective code ownership, the planning game and the on-site cus-
tomer. At Primavera [23], basic agile practices, including cross-functional, self-
managed teams and time-boxed iterations, were applied and the organization experi-
enced increase in quality which was further improved with TDD implementation.
However, these studies focus on the impact to developers work, and not on the impact
of the agile adoption on other groups related to the software development.

There are structured approaches available to guide organizations in taking the agile
practices into use. These include e.g. assessing organizational readiness for agile
transformation [25], and identifying the set of agile practices and tools to be taken
into use [25], [18], and [12]. These practices are presented in general level and not
specifically to some group of people with certain responsibility. The main reason
might be that the basic assumption in agile is that the scrum teams are self-organizing,
co-located teams with all needed competencies available within the team [24]. In
large organizations, where the system is big and there are several layers of integration
needed, there are also other groups of people involved in the software development
than just the code developer scrum teams.

Another survey made at Nokia Siemens Networks [28] summarizes that “basic”
agile practices include short time-boxed iterations [24], product backlog [24], con-
tinuous integration [7], retrospectives [24] and self-organizing teams [18]. “Interme-
diate” agile practices add to basic practices refactoring [7], TDD, or acceptance test
driven development (ATDD) [7], or tests written at the same time as code. More prac-
tices than that would be equated to a “fully agile” organization. In large organizations,
getting to the fully agile level can take a few years [28, 2], and patience is required.

3 Research Design

This research was done as an industrial case study [6], and the main source of infor-
mation were two surveys which were conducted in the organization. Additional
information was collected from feedback sessions after the surveys.

 Adopting Agile Practices in Teams 33

3.1 Context

The organization in the study was large, with more than 150 experts working in the
studied projects, distributed in several locations globally. Most of the people in the
organization had several years of experience from traditional software development,
and some had even previous experience from agile and lean software development
gained from working in other parts of the company. The software development pro-
jects produced new versions of an existing product in the telecommunications do-
main.

The plan-driven approach used in the study organization before agile transforma-
tion reflects the main characteristics of the so called Waterfall-model [19]. There was
a detailed plan done for the whole software development phase consisting of three
main phases: specification, development and system level testing. The desired func-
tionality of the software and the architecture were specified in high detail in the
beginning. Any change afterwards required strict change process management. Pro-
gramming and testing work in development phase were done by the people in the
Developer team, and the system level testing was done in the end of the project by the
SLT team. Support group provided laboratory support for both of these teams. The
issues were known disadvantages to waterfall development model [19]: long cycle
time to respond to customer needs and integration problems.

Based on the analysis of existing issues, a set of agile practices were selected and
introduced organization wide. These practices included e.g. short time-boxed itera-
tions, product backlogs, self-organizing teams and basic scrum team practices. The
Scrum team practices included e.g. sprint planning sessions, demo at the end of the
sprint, retrospectives and team level sprint backlogs.

3.2 Research Questions

The agile practices are mostly utilised by people directly involved with the software
code development. On the other hand, in order to work to its full benefit, the whole
organization needs to be agile [21]. When the agile adoption started, some of the
selected practices were more targeted to developers, such as TDD, but there were also
non-technical practices such as retrospectives and scrum, which could be taken into
use even if the team does not have programming responsibility.

The primary goal in this study was to explore agile practise adaptation in teams
which have no direct programming responsibility, and to compare the results with
teams having the programming responsibility. The team with direct programming
responsibility is called the Developers. The developers are responsible for implemen-
tation, programming and end to end functionality testing of their component in the
software system. The teams with no direct programming responsibility are from sys-
tem testing organization, and from an organization providing laboratory support for
the other two organizations. The product in question has different levels of integra-
tion, and SLT people are verifying that the whole software system works as one entity
once individual components have been integrated together. They also verify that the
non-functional requirements (for example system level security or redundancy) have
been fully implemented and are working according to expectations. People in the
Support group are responsible to maintain the environments for the other two groups
and thus support the software development and verification activities. These three

34 K. Korhonen

teams were selected as they work very closely together, and the assumption is that if
one group changes their way of working, it has an impact on the other two as well.

The practices are divided into three groups: 1) Daily work practices, 2) Team prac-
tices and 3) Programming practices. Daily work practices are non-technical practices
which set up the boundaries how the daily work of the team should be organized:
time-boxed iterations, user stories and product backlog. Team practices are non-
technical team level practices: retrospectives, Scrum and self-organized teams. Fi-
nally, the Programming practices are those more technical, code development related
practices: continuous integration, tests written same time as code, refactoring, collec-
tive code ownership, pair-programming and TDD.

 The first hypothesis of this study is that the teams with direct programming re-
sponsibility would proceed well in adopting the practices in all of these three groups
of practices during the first year of agile transformation. The second hypothesis is that
there is some progress in adopting the Daily work practices and team level practices
also in the teams with no direct programming responsibility, but not so much progress
is taking place with adopting the Programming practices.

To explore and compare the impact of the agile practice adoption between these
three groups, the following research questions were defined: 1) how did the agile
practices implementation proceed in the organization during the first year in the dif-
ferent groups, 2) was there a difference in adopting the practices between the teams
who have and who do not have direct programming responsibility.

Third hypothesis was that the change in the working practices would have a clear
impact on the daily work, and the biggest problems would be related to the early
phase of the agile adoption indicating that practices are not familiar or not fully util-
ised. Due to the different responsibility areas of the teams, the encountered problems
in the agile practice adoption might be of different nature. To explore this further, and
to understand better the progress of agile adoption in the three study teams, a third
research question was added: 3) what were the biggest problems in the teams during
the agile transformation.

3.3 Data Collection and Analysis

While the agile transformation proceeded, the management wanted to collect feed-
back on the progress from the project personnel with a survey. The survey consisted
of open-ended questions and closed-ended questions offering a number of defined
response choices.

From the survey, four questions were analysed for this study. First, to analyse the
progress of agile adoption within the teams, the following survey questions were
analysed: 1. How long experience do you have with agile development? (Response
choices: I don't have any experience, 1-3 months, 4-6 months, 6-12 months, 1-2
years, 3-4 years, more than 4 years.) 2. What Agile methods and practices are used in
your team OR in your product currently (select all options that are in use to your
knowledge): Short (max. 4 weeks) time-boxed iterations, Continuous Integration
(min. daily build), Self-organized, co-located, cross-functional teams, Product
backlog, TDD (Test Driven development), Tests written at the same time as code,
Refactoring, Pair-programming, Collective code ownership, Scrum, User stories,
Retrospectives.

 Adopting Agile Practices in Teams 35

Second, to find out the problems in the teams related to the agile practice adoption,
two open-ended questions were added to the survey: 3. What are the biggest obstacles
or challenges in your agile transformation? and 4. What do you think are the biggest
wastes currently in your work? (waste = activity which does not bring value to cus-
tomer or enhance our learning).

The survey was conducted twice, with 6 months interval, in two main locations of
the unit, as the personnel in those locations had experience on both the traditional
projects and the new way of working. There were no big changes in the personnel on
these two locations during the study period. From the first survey, 96 responses were
collected, and from the latter one 122. After both surveys, a feedback session was
arranged in the organization to go through the results, and to collect further data on
the possible reasons behind the results. The comments from the discussions were
recorded, and were used together with the responses to open-ended questions to pro-
vide further insight to the results.

The survey responses were analysed separately for the Developer team, the system
level testing (SLT) team and the Support team. Survey results were analysed in detail
to draw comparisons between the teams and over the time. The results were summa-
rized from open-ended questions and from the notes done during the feedback discus-
sions with individuals and teams after the surveys. Due to the qualitative nature of the
data no separate statistical analysis was done.

3.4 Threats to validity

Majority of the survey results are based on opinions, which as such do not provide
clear facts on the progress and changes due to agile transformation. On the other
hand, opinions of the people in the transformation cannot be neglected. Even if all
metrics would provide evidence on the successful agile transformation, it is not really
a success if the people in the organization do not see the change and are not satisfied
with the results.

The impact of the agile transformation can differ from the results in this paper due
to few reasons. One important issue to consider is the procedure the agile practices are
adopted within the organization. The organization in this study started from practices,
which are more focusing on the team practices instead of coding practices. If the first
thing which is introduced to the organization is related to coding practices, TDD, as in
[17], the results among the different groups might be different.

4 Agile Experience in the Organization

Before analysing the impact of practice adoption in the teams, a background study
was made to analyse the previous agile experience level in the teams. The goal was to
evaluate the starting point for the agile practice adoption, did the teams have previous
experience on agile practices, or were the teams starting the adoption from the
scratch. The agile experience is measured in months and the responses from the sur-
vey have been grouped into three categories: less than half a year experience, 6-12
months of experience, and over 12 months of experience. The experience is presented
separately for the Developer team and SLT team in figure 1, and, respectively, for the
Support team in figure 3.

36 K. Korhonen

Fig. 1. Agile experience in the Developer team (chart on left) and SLT team (chart on right) 6
months (white bars) and 12 months (black bars) after starting the agile transformation

In the Developer group there were some people with previous agile experience be-
fore the agile transformation officially started, as over 40% of the respondents
reported to have at least one year experience on agile practices after six months of the
transformation start. Majority of the people though reported to have less than 12
months of experience, and there was no one with any agile experience at all.
12 months after starting the agile adoption, the highest number of responses is at over
12 months of experience, which is an expected result as the transformation had been
ongoing half a year since the previous survey.

In the SLT group, there was no one claiming to have no agile experience at all.
Majority of the people reported to have 6 months or less experience in agile at the six
months’ measurement point. The adoption of agile practices has proceeded in next six
months, as at twelve moths’ measurement point more people report to have 6-12
months of experience.

When comparing the results from people in the Support group with results in De-
velopers group, the difference is even bigger (figure 2). At six months measurement
point, 30% of respondents claim to have no experience of agile, and after 12 months,
still nearly 20% felt they had no experience at all in agile. This result comes even if
the people in the Support group are working directly with the people in Developer and
SLT groups. But some experience is developing also within the Support group as
there are more people at 12 months measurement point (23,5%) responding to have
6-12 months of experience than at 6 months measurement point (11.8%).

Fig. 2. Agile experience in the Support team 6 months (white bars) and 12 months (black bars)
after starting the agile transformation

 Adopting Agile Practices in Teams 37

5 Adopting the Agile Practices

The responses about practices in use are analysed separately for the three practice
groups: Daily work practices, Team practices and Programming practices. The results
are presented for the Developers team in figure 3, SLT team in figure 4 and respec-
tively, for the Support team in figure 5.

Fig. 3. Agile practices in use in the Developer team 6 months (white bars) and 12 months
(black bars) after starting the agile transformation. First chart: Daily practices, second chart:
Team practices and third chart: Programming practices.

As displayed in figure 3, during the first six months (white bars) after starting the
agile adoption, all the Daily work practices, user stories (85%), product backlogs
(79%) and iterations (89%), and most of Team practices, scrum (89%) and retro-
spectives (85%) - were taken widely in use in the Developers group. Adopting the
Programming related practices was also progressing with e.g. continuous integration
(61.7%) and tests written same time as code (46.8%). One key element, self-
organizing teams, was in use according to less than 40% of the respondents, and fur-
ther development with Programming related practices would be expected to get full
benefit of being in agile.

In the SLT team (figure 4), the adoption of Daily work practices had progressed by
taking the product backlog (59.4%%) and iterations (62.5%%) into use. User stories
were not that much in use yet (31.2%). From team practices, the scrum and retrospec-
tives were more widely in use, but again, the self-organizing teams was not reported to
be as much in use (34.4%). As expected, Programming related practices were not in use.

During the next six months the situation had clearly advanced in both Developer
and SLT teams. Time-boxed iterations, retrospectives, scrum teams, product backlog
and user stories were reported to be used by all in the Developers group, and 98% in
the SLT group. According to the responses, self-organizing teams were also in place
after 12 months of agile transformation.

After 12 months of starting the agile transformation, the respondents in the Devel-
oper team utilized more practices which support directly the software development
itself, such as refactoring, pair programming and test-driven development (TDD).
These practices are also reported by the system level verification group (figure 4), but
great utilization of these practices was not even expected as the practices supporting
code development are not used in the system level testing as such. But these can be

38 K. Korhonen

Fig. 4. Agile practices in use in the SLT team 6 months (white bars) and 12 months (black bars)
after starting the agile transformation. First chart: Daily practices, second chart: Team practices
and third chart: Programming practices.

used e.g. when preparing test automation. Getting continuous integration into use on
the software development project level had improved significantly during the latter 6
months which is a clear sign that the organization was progressing to be more agile
than just adopting the very basics.

Among the people in the Support team there were comments that agile practices do
not fit to supportive work, because it is meant for software programming and the work
in the Support team is too different from that. This is visible also from the results
(figure 5), where the team level practices are being used quite well 6 months after
starting the agile transformation, but the Daily work practices and Programming prac-
tices are reported to be in use only by a few numbers of users. Interesting detail is
that the self-organizing teams is more in use in the Support team (58.8%) than in the
other two teams after 6 months.

Fig. 5. Agile practices in use in the Support team 6 months (white bars) and 12 months (black
bars) after starting the agile transformation. First chart: Daily practices, second chart: Team
practices and third chart: Programming practices.

After 12 months, the agile practice adoption has made significant progress in the
Support team. Scrum is in use by all respondents, and working in short, time-boxed
iterations have been taken into use according 80% of the respondents compared to
around 10% after 6 months. Same rapid development goes with the product backlog
from 17.6% 6 months after to 81.2% 12 months after starting the agile transformation.
So it seems that the support team was able to find their way of working with the agile,
and they adopted daily work practices, except user stories, and all Team practices

 Adopting Agile Practices in Teams 39

6 Feedback on the Agile Transformation

In the survey there were questions included to evaluate what were the biggest obsta-
cles or concerns due to the agile transformation in respondent’s work. The main find-
ings varied between the teams. The main findings were selected from the survey
responses when the same topic was mentioned by several people, and the percentage
indicates how many of the respondents mentioned the topic.

6.1 Developer Team

At the developer side, one concern was related to collective code ownership (8%).
With collective code ownership, the code development would be on the whole team’s
responsibility, and some people were concerned that the code ownership would be
lost resulting so that nobody would care about the good quality of the code. During
the feedback sessions one respondent proposed that collective code ownership would
still require some people to steer the code development and be responsible for that.

Second concern was related to insufficient specification, requirements and user sto-
ries (17%). This is clearly a result of change in the way of working. Previously, in
plan-based software development there were detailed specifications done before the
implementation was started. In agile mode, the high level plans were available, but
the details were added later on, when the development was ongoing and the require-
ments at that moment were known. The idea in agile is to decide as late as possible so
that the implementation can be aligned with the latest information on the required
content. The survey responses reflect this change, as there were comments that the
specification was not detailed enough, and requirements were insufficient. Also the
big plan and long term visibility was not clear to everyone. One proposal was that
guidelines on how to do the implementation would be still required, for example what
third party components can be used. Additionally there were respondents who felt
that the user stories were written in a too generic way, making it difficult to have
realistic estimations on work effort needed.

6.2 System Level Testing Team

In the SLT group the main finding (reported by 28 %) was the increased amount of
new meetings and need for status reporting. Implementing scrum practices does bring
a set of new meetings - planning meetings in the beginning of the sprint, retrospec-
tives, demos and daily scrum meetings, which in the beginning might feel over-
whelming compared to the previous way of working. The point of these meetings is to
plan and to solve impediments, not status reporting. But it may take time to find out
how these can benefit the team in question.

Some respondents were concerned that the testing procedures in agile were not
clear for them in the beginning (25%). During the feedback discussions it came up
that some respondents saw that the length of the sprint created bigger pressure to get
testing done in shorter time than before. Some testers felt that there were too many
test cases to be run manually in this short time, and there was a proposal that test
automation should be enhanced to speed up the testing further.

40 K. Korhonen

One concern among the testers was the parallel work, where code development and
testing is done at the same time (15 %). Even though the SLT team installed the soft-
ware as soon as it was available, by the time the installation was completed, the soft-
ware was already “too old”. During the installation time, the development teams had
developed new code, implemented new functionality and fixed bugs in the software.

6.3 Support Team

Analysis of the responses from the Support group revealed that there were quite many
who felt that the agile practices do not fit to the lab support kind of work (39% of the
respondents). Some respondents were concerned on how should the practices be im-
plemented when the support requests are coming in randomly, and the support work is
usually needed immediately (17%).

Based on the feedback during the survey result discussion sessions with the Sup-
port group, there were two solutions identified, which helped the team to go forward
with agile adoption. At first the people felt that using the general backlog tool was not
really bringing any additional value. But later on they found that the tool they
had been already using for maintaining the support requests in fact was already serv-
ing them as a backlog tool, and only minor enhancements were needed to the tool.
Second solution was related to problem with sprint cycle. The sprint length made the
sprint planning an impossible task as the support requests were pouring in daily with
critical status. The sprint length was changed to be only one week for the support
team, which helped the people in this group to plan their work for the sprint and keep
the commitments.

7 Discussion

By implementing the agile practices, the organization started a big change process.
According to the results, all three study teams: Developers, System level Testers and
Support team, were adapting to agile way of working. Though the adoption proceeded
in all the groups, there were differences. One year after starting the agile transforma-
tion, the Developer team was most advanced in all the practices with 100% utilization
of the basic practices [28] and over 40% of the more technical. Based on this result
the Developer team is above the Intermediate level of agile adoption. This is an ex-
pected result as the agile practices are well suited for the programming tasks.

SLV team implemented well the Team level and Daily work practices having al-
most 100% utilization of all the basic practices. In the support group, the scrum
teams, time-boxed iterations, retrospectives and product backlog were seen most
useful, and were reported to be in use by at least 80% of the team members.

Based on these results, the teams with no direct programming responsibility would
be able to adopt the agile practices related to organizing the daily work and team
practices. On the other hand, some practices especially related to programming, will
not be useful at all thus there would be no progress to adopt those. Therefore the defi-
nition of when a group of people is fully agile could be tied to practices which are
relevant or applicable for the team to adopt. In this case, the SLT and Support teams
could be considered to be fully agile when they have in use all the Team practices and

 Adopting Agile Practices in Teams 41

Daily work practices as defined in this study. For the Developer team, being fully
agile would mean adopting practices from all three groups: Daily work practices,
Team practices and Programming practices.

The encountered problems in the teams were different and closely related to their
specific responsibility area at work. The developers were concerned if the collective
code ownership would result as quality drop, and the change in specifying the work was
unclear. In System level testing team the main concern was the increased number of
meetings. Additionally the time-boxed iterations made more pressure to run the testing.
The biggest concern in the Support team was that how can they take agile practices into
use when the practices are not meant for the kind of work they were doing.

Based on these results it is proposed that any organization planning to start the ag-
ile transformation would go through the different teams involved in the software de-
velopment, and align the expectation of agile transformation based on whether or not
the team has direct programming responsibility. This study has provided information
on agile practices to be adopted within the different teams as well as some examples
of possible obstacles and challenging areas for Developers, Testers and Support team.
It is proposed that the possible areas of concern are separately discussed with the
teams e.g. in workshops during the initial starting phase of the agile transformation to
agree on the way of working and to help the teams proceed in their transformation
more smoothly towards the team specific goals.

8 Conclusions and Future Work

The contribution of this paper lies in providing empirical evidence on how adopting
agile methods proceeds in teams with no direct programming responsibility. In this
paper the agile adoption is analyzed from the work responsibility area point of view
for three different groups: developers, system level testers and lab support people. As
expected, the developer team had adopted wider range of practices but the agile
adoption was progressing also in the teams with no direct programming responsibility

Based on the results it is proposed that any organization planning to start agile
adoption would agree on agile adoption goals for the individual teams with respect to
whether the team has direct programming responsibility or not. These goals would
clearly define what practices can be expected to be adopted by the team. Many of the
practices can be adopted even if the team is not directly writing the code, and to sup-
port these teams in their agile transformation it is good to make the expectations for
the practice adoption clear from the beginning.

In future research the survey results are studied in more detail to analyze whether
there are further differences between these groups, for example on the perception
on the change in code quality or impact of agile compared to traditional way of
working.

Acknowledgements. The author thanks Kai Koskimies, Erik Hiltunen and Hannu
Korhonen for comments, and Nokia Foundation for funding the manuscript writing.

42 K. Korhonen

References

1. Auvinen, J., Back, R., Heidenberg, J., Hirkman, P., Milovanov, L.: Improving the engi-
neering process area at Ericsson with Agile practices. A Case Study. TUCS Technical re-
port No 716 (October 2005)

2. Benefield, G.: Rolling out Agile in a Large Enterprise. In: Proceedings of the 41st Annual
Hawaii International Conference on System Sciences, p. 462 (2008)

3. Ceschi, M., Sillitti, A., Succi, G., Panfilis, S.D.: Project management in plan-based and
agile companies. IEEE Softw. 22(3), 21–27 (2005)

4. Cloke, G.: Get your agile freak on! Agile adoption at Yahoo!Music. In: Agile 2007: Pro-
ceedings of the AGILE 2007. IEEE omputer Society, 240–248 (2007)

5. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. In: Advances in
Computers. Elsevier, Amsterdam (2004)

6. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Thousand Oaks
(1994)

7. Crispin, L., Gregory, J.: Agile testing. A Practical guide for testers and agile teams. Addi-
son-Wesley, Reading (2009)

8. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, dependencies, and
delay in a global collaboration. In: Proceedings of the ACM Conference on Computer
Supported Cooperative Work, pp. 319–328. ACM Press, New York (2000)

9. Jarzombek, J.: The 5th annual jaws s3 proceedings (1999)
10. Johnson, J.: Keynote speech: build only the features you need. In: Proceedings of the 4th

International Conference on Extreme Programming and Agile Processes in Software Engi-
neering (XP 2002) (2002)

11. Jones, C.: Patterns of software systems: failure and success. International Thomson Com-
puter Press, Boston (1995)

12. Korhonen, K.: Migrating defect management from waterfall to agile software development
in a large-scale multi-site organization: A case study. In: Abrahamsson, P., Marchesi, M.,
Maurer, F. (eds.) Agile Processes in Software Engineering and Extreme Programming.
Lecture Notes in Business Information Processing, vol. 31, pp. 73–82. Springer, Heidel-
berg (2009)

13. Korhonen, K.: Exploring defect data, quality and engagement during agile transformation
at a large multisite organization. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.)
XP 2010. Lecture Notes in Business Information Processing, vol. 48, pp. 88–102.
Springer, Heidelberg (2010)

14. Larsson, A.: Making sense of collaboration: the challenge of thinking together in global
design teams. In: Proceedings of the International ACM SIGGROUP Conference on Sup-
porting Group Work, pp. 153–160. ACM Press, New York (2003)

15. McBreen, P.: Questioning extreme programming. Pearson Education, Boston (2003)
16. Misra, S., Kumar, U., Kumar, V., Grant, G.: The organizational changes required and the

challenges involved in adopting agile methodologies in traditional software development
organizations. In: Digital Information Management, pp. 25–28 (2006)

17. Nagappan, N., Maximilien, e.M., Bhat, T., Williams, L.: Realizing quality improvement
through test driven development:results and experiences of four industrial teams. Empir.
Software Eng. 13, 289–302 (2008)

18. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48(5) (2005)

19. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental soft-
ware development approach with agile practices. An industrial case study. Empir. Software
Eng. 15, 654–693 (2010)

 Adopting Agile Practices in Teams 43

20. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile prac-
tices on communication in software development. Empir. Software Eng. 13, 303–337
(2008)

21. Poppendieck, M., Poppendieck, T.: Lean Software development. Addison-Wesley, Read-
ing (2007)

22. Stephens, M., Rosenberg, D.: Extreme programming refactored:the case against XP.
Apress, Berkeley (2003)

23. Schatz, B., Abdelshafi, I.: Primavera Gets Agile: A Succesful Transition to Agile Devel-
opment. Software 22, 36–42 (2005)

24. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice-Hall, Engle-
wood Cliffs (2002)

25. Sidky, A., Arthur, J.: A disciplined approach to adopting agile practices: the agile adoption
framework. In: Innovations in Systems and Software Engineering, pp. 203–216. Springer,
Heidelberg (2007)

26. Sillitti, A., Ceschi, M., Russo, B., Succi, G.: Managing uncertainty in requirements: a
survey in documentation-driven and agile companies. In: Proceedings of the 11th IEEE
International Symposium on Software Metrics (METRICS 2005), p. 17 (2005)

27. Svensson, H., Höst, M.: Introducing an agile process in a software maintenance and evolu-
tion organization. In: Proceedings of the 9th European Conference on Software Mainte-
nance and Reengineering (CSMR 2005), pp. 256–264 (2005)

28. Vilkki, K.: Impacts of Agile Transformation. Flexi Newsletter (January 2009)
29. Wils, A., Van Baelen, S., Holvoet, T., De Vlaminck, K.: Agility in the avionics software

world. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp.
123–132. Springer, Heidelberg (2006)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 44–58, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Proposing an ISO/IEC 15504-2 Compliant Method for
Process Capability/Maturity Models Customization

Jean Carlo Rossa Hauck1,2, Christiane Gresse von Wangenheim3,
Fergal Mc Caffery2, and Luigi Buglione4

1 Graduate Program in Knowledge Engineering and Management - Federal University of Santa
Catarina – Brazil

2 Regulated Software Research Group & Lero - Dundalk Institute of Technology – Ireland
3 Graduate Program in Computer Science (PPGCC) - Federal University of Santa

Catarina – Brazil
4 ETS/Engineering.IT - Rome - Italy

{jeanhauck,gresse}@gmail.com,
fergal.mccaffery@dkit.ie, luigi.buglione@eng.it

Abstract. The customization of software process capability/maturity models
(SPCMMs) to specific domains/sectors or development methodologies
represents one of the most discussed and applied trends in ICT organizations.
Nonetheless, little research appears to have been performed on how
theoretically sound and widely accepted SPCMMs should be developed to high
quality. The aim of this paper is therefore to elicit the state-of-the-art regarding
the processes adopted to develop such models and to propose a systematic
approach to support the customization of SPCMMs. Such an approach is
developed based on ISO/IEEE standard development processes integrating
Knowledge Engineering techniques and experiences about how such models are
currently developed in practice. Initial feedback from an expert panel indicates
the usefulness and adequacy of the proposed method.

Keywords: Maturity Models, Standards, Knowledge Engineering, SPCMM,
ISO/IEC 15504.

1 Introduction

Various Software Process Capability/Maturity Models (SPCMMs [1]) have been
developed by the software engineering community, such as, CMMI-DEV [2] and
ISO/IEC 15504 [3], and their use for software process improvement and assessment is
well established in practice. These generic models have been customized to specific
contexts [4] because diverse software development domains have specific process
quality needs that should be addressed. Regulated software development domains
have specific standards, such as in health care, which must be covered by the software
development process in order to provide the necessary alignment to these domain-
specific standards. Consequently, there is a current trend to the development of
customizations of those generic process models for specific domains, such as
SPICE4SPACE [5], OOSPICE [6] Automotive SPICE [7], etc. Despite this trend,
most of the SPCMMs customization initiatives do not adopt a systematic approach for

 Proposing an ISO/IEC 15504-2 Compliant Method 45

the customization of those generic standards and models [8]. Furthermore, literature
detailing how SPCMMs are developed / evolved / adapted is also extremely rare [9].
Standardization organizations, like ISO or IEEE, define high-level generic processes
for developing and publishing standards. However, they do not describe how to
customize existing models or provide detailed technical support for the specific
development of SPCMMs. The contribution of this paper is the proposal of a method
for customization of SPCMMs, based on an analysis of how existing customizations
have been performed, integrating standard development procedures from a
Knowledge Engineering viewpoint and aligned to the requirements of ISO/IEC
15504-2 for Process Reference Models (PRM) and Process Assessment Models
(PAM).

In section 2, the requirements for SPCMMs are presented. Section 3 presents
methods for SPCMMs development. In section 4, the method is proposed, and section
5 presents the first results from its pilot application. Conclusions are presented in
section 6.

2 Requirements for SPCMMs

Different sets of requirements have been proposed for models expressing the capacity
and/or maturity of processes. Becker et al. [10] propose seven criteria including: (i)
comparison with existing models, (ii) iterative development, (iii) model evaluation,
(iv) multi-methodological procedure, (v) identification of the relevance of problem,
(vi) problem definition, (vii) published results and (viii) scientific documentation;
based on the guidelines for design science. According to Matook & Indulska [9],
reference models for software process quality must meet the following requirements:
generality, flexibility, completeness, usability and comprehensibility.

Regarding their structure, generally speaking, software process capability maturity
models (SPCMMs), have different characteristics. Lahrmann & Marx [11] propose a
basic rationale of the structural characteristics of this type of model, as shown in
Table 1.

Table 1. SPCMMs characteristics [11]

Criteria Characteristics
Dimensions One-dimensional Multidimensional Hierarchic
Representation Continuous Staged
Audience Unique Multiple
Assessment
approach

Qualitative Quantitative

The requirement that characterizes the structure of software process standards and

reference models (to enable classification as SPCMMs) is the fact that they have at
least two dimensions: the process and dimension of capability/maturity dimension.

In a more specific way than these generic requirements, the ISO/IEC 15504-2
standard [3] establishes specific requirements for the development dimensions of the
process (PRM – Process Reference Model) and capacity (PAM – Process Assessment
Model) of SPCMMs, which can be summarized as follows:

46 J.C.R. Hauck et al.

PRM
• R1 - Declaration of the specific domain and community of interest, including

aspects of consensus achievement;
• R2 - Description of processes including: unique title, purpose and outcomes;
• R3 - Presentation of the existent relationships between processes;
PAM
• R4 - Statement of scope and coverage of the model;
• R5 - Indication of the capability levels selected from a measurement framework

for the processes, starting at level 1;
• R6 - Mapping for the selected processes of the chosen PRM(s) ;
• R7 - Details of performance indicators of the processes, mapped to the purposes

and outcomes of selected the processes of PRM(s);
• R8 - Detailed process attributes of measurement framework;
• R9 - Objective evidence that the requirements are fulfilled.

The next section attempts to identify approaches that can possibly meet the existing
proposed requirements for a SPCMM.

3 Existing Methods for SPCMMs Customization

This section presents three perspectives in an attempt to establish an overview of the
development and customization of SPCMMs: proposals for approaches that support
this type of development, process of standards development and main steps and
techniques used in practice.

3.1 Existing Methods for the Development of Capability/Maturity Models

Although diverse software process capability/maturity model customizations have
already taken place [8], research on how to perform such customizations in a systematic
way is sparse. One of the few works in such direction was proposed by de Bruin et al.
[14], introducing a six-step sequence for the development of Maturity Assessment
Models. Although their work considers specific domain needs, it does not address in
detail the customization of domain-specific best practices from generic models.

Mettler [15] performs a deeper analysis on the fundamentals of process maturity
models, putting the main phases described in [14] under a design science research
perspective. In this context, the phases are compared to a model user perspective of the
maturity models, indicating a need for more formal methods and studies. Maier, Moultie
& Clarkson [16] define a guide for development of Maturity Grids that consists of tools
to assess the required abilities of an organization to deliver a product or a service. The
purpose of the guide covers a wider range of models, not focusing on SPCMMs.

Salviano et al. proposed the generic framework PRO2PI [17] for the development of
process capability/maturity models, based on the authors’ previous experiences of
developing diverse models with a 7-step process. However, no details are provided in
relation to the research activities and techniques that would be required to provide
support for the customization of SPCMMs. Matook and Indulska [9] proposed a
QFD-based approach for reference modeling incorporating the voice-of-the-reference-
model users, presenting a measure for the quality of such models. Becker et al. [10]

 Proposing an ISO/IEC 15504-2 Compliant Method 47

also proposed a general process for the development of Maturity Models that aim to
cover a set of defined requirements. However, the work did not address the question
of the evolution of the model after its publication.

As it can be seen, from the few existing approaches for developing models of
maturity and/or process capability, none of them is specifically targeted to meeting
the requirements of the ISO/IEC 15504-2 standard. Furthermore, they are not
specifically targeted to SPCMMs customization.

3.2 Processes for the Development of Standards

Some SPCMMs have been developed in the form of standards, supported by some
regulatory body or group of international standards [12]. Standards are, in general,
developed according some principles [13]: (i) consensus: in the development of a
standard wide range of interests are taken into account: manufacturers, vendors, users,
governments, research organizations, etc; (ii) industry wide: standards must provide
global solutions for industries and customers worldwide; (iii) voluntary:
standardization is an activity based on voluntary involvement of all interests in the
community. For instance, ISO standards are developed in a three-phase process [13]:

• Phase 1: in general, the perceived need for a new standard comes from an
industry sector, which communicates this need for a national member body. This
need is then evaluated and, once approved, the scope of the new standard is set,
involving working groups composed of experts from different countries.

• Phase 2: this is the phase of consensus-building. After defining the scope, it
begins the negotiation between group members to detail the contents of the
standard.

• Phase 3: final approval and generation of draft standard is given at this phase,
where it needs to receive the approval of at least two-thirds of all members of the
group and 75% of those voting. After this process of ballot, the first version of
the standard is published.

Since being first proposed for publication a standard goes through a series of 9 stages
and 7 related sub-stages of development1, from the preliminary till the withdrawal
stage.

3.3 Development of SPCMMs in Practice

In order to complete the elicitation of the state-of-the-art in this context through the
analysis of how SPCMMs are developed, a systematic literature review (SLR) was
performed [12]. This review was performed to systematically investigate and
synthesize the existing literature relating to the subject of software process
capability/maturity models (SPCMMs), focusing on this research question: How are
software process capability/maturity models created? Details on the SLR can be
found in the Web Appendix of [12].

1 www.iso.org/iso/standards_development/processes_and_procedures/

stages_description/stages_table.htm

48 J.C.R. Hauck et al.

As a result of the SLR, 52 software process capability/maturity models were
identified. Besides the evolution of new versions of existing models (such as, the
evolution of the CMM/CMMI framework), there exists a clear trend toward the
specialization of models to specific domains. Currently, a large variety of specific
models exist for diverse domains, including, for example, small and medium
enterprises, security engineering, knowledge management, automotive systems, XP
(eXtreme Programming), etc2.

Furthermore, it was observed that these models are developed using diverse
approaches. Some models, typically the ones published as standards, have been
developed by following a high-level process defined by the standardization
organization. These processes involve the standards community in different stages and
with varying degrees of participation [13]. However, in general, it was surprising to find
very little information on how SPCMMs are currently developed. Only 21% of the
papers found in the SLR [12] presented detailed information on the model development,
27% contained superficial model development information and 52% did not provide any
substantial information on this aspect. The activities and techniques discovered in the
detailed papers of the SLR were used within the method presented in section 4.

3.4 Discussion

The SLR demonstrated that a large variety of software process capability/maturity
models have been developed and customized. However, in general there appears to be
a lack of methodological support for the development and customization of such
models. Therefore, in order to assist with the development and customization of
models representing collections of best practices within a specific domain the
processes used to develop and customize these models should be better understood
and clearly presented. Access to standard processes for the development of such
models could greatly assist the systematic development of such models and enable
such models to be validated.

4 A Proposal for a Method for the Customization of SPCMMs

In order to promote the alignment of the customization of SPCMMs to the ISO/IEC
15504-2 requirements and to increase their quality, as well as their adoption rate in
practice, a KE-based approach presented in this section was developed. The approach
is based on an analysis of four elements: (i) standard development procedures; (ii)
existing methods for the development of maturity models/grids; (iii) the way such
customizations are currently performed; and (iv) KE techniques. From a KE
viewpoint, the customization of such models relates to knowledge acquisition,
collecting best practices of a specific domain by customizing generic SPCMMs to
domain-specific models. A generic life cycle for KE includes [30]: (i) knowledge
identification; (ii) knowledge specification and (iii) knowledge refinement. Currently,
there exist several methodologies, frameworks and approaches that provide detailed
support for the KE development life cycles, such as e.g., CommonKADS [31].
Furthermore, the usage and evolution of knowledge models is typically not covered

2 Another list – regularly updated is available at this webpage:

www.semq.eu/leng/proimpsw.htm#quinto

 Proposing an ISO/IEC 15504-2 Compliant Method 49

by SPCMMs developed to date [12]. In addition, KE techniques have so far, not yet
been applied for the customization of generic SPCMMs knowledge to specific
domains. The proposed method is structured in five phases:

• Phase 1 - Knowledge Identification: The main objective of phase 1 is to achieve
familiarization with the target domain and a characterization of the context for
which the SPCMM will be customized;

• Phase 2 - Knowledge Specification: During this central phase, a first version of
the customized model is developed;

• Phase 3 - Knowledge Refinement: Within this phase, the draft model is
validated, balloted and refined to develop a model approved by a majority of
respective community;

• Phase 4 - Knowledge Usage: After its publication, the model is put into use and
results of its usage are collected and analyzed;

• Phase 5 - Knowledge Evolution: It is necessary to provide methodological
support for the continuous evolution of the model once the model has been
implemented in the target domain.

Table 2. Techniques used in each method phase

Method Phase Basic Technique(s)

1. Knowledge Identification Ontology Development [32] [33] [34]

Glossary Development [35] [36]
Literature Review [37] [38] [39]
Systematic Literature Review [40]

Goal Question Metric [41] [42]
Expert Selecting [43] [44] [45]
Delphi [43] [44] [45]

Focus Groups [46] [47]

2. Knowledge Specification Delphi [43] [44] [45]

Perspective-Based Reading [59] [60] [61]
Checklist-based Reading [62][63]

Semantic Mapping [20] [21] [22] [23] [24]
Domain quality requirements elicitation [53] [54] [55]
Focus groups [46] [47]

Structured Interview [31]
Nominal group [56] [57]
Software Process Quality Function Deployment [54] [53] [58]

Process Selection [34]

3. Knowledge Refinement Expert Selecting [43] [44] [45]

Delphi [43] [44] [45]
Guidelines of Modeling [35] [36]

Behavior Engineering [64] [65] [66]
Interrater Agreement [67]
Checklist-based Reading [62] [63]

4. Knowledge Usage Goal Question Metric [41] [42]

Practical Software and Systems Measurement [68] [69] [70]

5. Knowledge Evolution Model change request management [71] [14] [72]

50 J.C.R. Hauck et al.

Each phase is composed by a set of activities that are not necessarily sequentially
executed using different techniques identified as relevant both from literature and
from real developing SPCMMs experiences. The activities of the various phases of
the method are aligned standard 15504-2 [3], providing coverage to the requirements
for PRM and PAM (see Annex 1). Table 2 shows the stages and techniques used in
the method, including key references for each technique.

A detailed technical report describing the proposed method is available in [73].

5 First Results and Discussion

The proposed method for SPCMM customization has been developed in parallel with
the customization of a SPCMM for the Software as a Service (SaaS) domain [74] and
Medi SPICE [75]. So it has been applied as an Exploratory Case Study. Exploratory
Case Study is a short case study, undertaken as a first step before a larger
investigation. Its function is to develop the evaluation questions, measures, design and
analytical strategy for a possible larger study. It is particularly useful when there is
some considerable uncertainty about processes, goals and results are achieved due to
the embryonic state of research [76]. Thus, for this evaluation, an exploratory case
study was defined as the study design.

5.1 A Model for Software as a Service (SaaS) Domain

SaaS is a software solution offered as a service and is developed using SOA. As the
SaaS scenario requires specific quality needs, such as, security, availability and
service continuation, due to its characteristics of distributed software products as
services, a customization of SPCMMs has been done. The SaaS SPCMM [74] has
been developed by a group of researchers at the UFSC – Federal University of Santa
Catarin (Brazil), involving experts from both the SaaS and SPI domains. The model
was developed through adopting phases 1 to 3 of this method. To date, phases 4 and 5
have still not been performed.

During the development, the SaaS domain was characterized and the specialists
were identified. Generic SPCMMs were also analyzed and identified as a basis for the
customized model. SaaS experts were interviewed in order to analyze quality and
performance needs. The results were validated in a second step through a survey.
Then, SPI experts identified relevant processes and basic practices with respect to the
identified quality and performance needs by mapping them. The result was a draft
version of the process model.

5.2 Medi SPICE

In this second exploratory case study the method was applied during the development
of the Medi SPICE 3 Process Reference Model (PRM). Medi SPICE is an
international project involving the Regulated Software Research Group in Dundalk
Institute of Technology, the SPICE User Group (developers of ISO/IEC 15504 and
related software process domain models), representatives from international medical

3 http://medispice.ning.com

 Proposing an ISO/IEC 15504-2 Compliant Method 51

device industry and representatives from the international standards community with
the aim to develop a SPCMM containing software engineering best practices for the
development and maintenance of medical device software [77].

Software development for medical devices has several characteristics that
differentiate it from software development in other areas, especially as in order to
market a medical device it is first essential to gain regulatory approval for the device
within the particular region in which the device will be marketed. Due to these factors
the software development activity in this area is heavily regulated by various bodies,
through standards such as: AAMI / IEC 62304, FDA and European guidelines, ISO
14971, IEC 60601-1-4, ISO 13485, etc. Therefore, due to both the growth of software
within the medical device industry and the revised definition of a medical device
within the Medical device directive [78] there is now real need for Medi SPICE to
assist software development organizations to put regulatory compliant software
processes in place within the medical device industry.

The method was applied in the development of the Medi SPICE PRM during the
period of January to December 2010. During this period phases 1 to 3 were also
performed.

5.3 Observed Results

These experiences allowed us to identify strengths and weaknesses of initial versions
of the proposed method in practice. One of its strengths is the involvement of
specialists, although we also identified that in order to stimulate a wide adoption of
the model, a much stronger involvement of the community is also required. Other
strength is the methodological support which typically, for standard developments, is
not available. We also observed several improvement opportunities:

• Support for a systematic mapping and harmonization of existing models;
• Better methodological support for consensus building among community

representatives throughout the models development and not just elicitation of their
knowledge;

• More systematic and formal support for the validation of the models.
• Integration of data-based input to the models if available in the specific domain in

order to complete the expert’s knowledge.

In addition, we are currently performing a systematic validation of the method
through an expert panel. The main objective of this validation is to evaluate the
method's ability to produce valid models (presenting generality, flexibility,
completeness, usability and comprehensibility) and models aligned to the
requirements of ISO/IEC 15504-2, from the point of view of specialists in maturity
models in the context of an Expert Panel.

Experts discovered in the SLR [12] were invited to evaluate the method. To date, we
have obtained responses from 12 SPI experts that have participated in the
development of 17 different SPCMMs, with 55% having more than 10 years of
experience in SPI.

A first preliminary analysis of the responses indicates that the method, in the
opinion of 72% of the experts, has the potential ability to produce valid models

52 J.C.R. Hauck et al.

(presenting generality, flexibility, completeness, usability and comprehensibility). We
also observed that 82% of the respondents felt that the method provides enough
support for developing SPCMMs and adequately represents what is necessary to
customize a SPCMM. All respondents felt that usage of the method could produce
models aligned to the requirements of the ISO/IEC 15504-2 (for PRM and PAM).

6 Conclusions

In this paper, we outlined an approach for SPCMM customization by integrating a
Knowledge Engineering (KE) perspective, customization experiences from literature
and standard development processes. A first application of the proposed approach for
the customization of a SaaS SPCMM provided a first indication that the approach can
be useful for the customization of such models as well as enabling the identification
strengths and weaknesses. Based on the feedback, we are currently evolving and
refining the proposed approach as well as continuing its application in parallel for the
customization of SPCMMs, such as, for medical devices as well as digital
convergence.

Acknowledgements

This work was supported by the CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior), both entities of the Brazilian government focused on scientific and
technological development. The Medi SPICE part of this research is supported by the
Science Foundation Ireland (SFI) Stokes Lectureship Programme, grant number
07/SK/I1299, the SFI Principal Investigator Programme, grant number 08/IN.1/I2030
and supported in part by Lero - the Irish Software Engineering Research
Centre (http://www.lero.ie).

References

[1] Salviano, C.F., Figueiredo, A.M.C.M.: Unified Basic Concepts for Process Capability
Models. In: 20th Int Conf on Sw. Eng. and Knowledge Eng (SEKE 2008), San Francisco,
USA, pp. 173–178 (2008),
http://pro2pi.wdfiles.com/local–files/publicacoes-sobre-a-
metodologia/SalvianoandFigueiredo-2008-PRO2PI-SEKE-
article.pdf

[2] CMMI Product Team. CMMI for Development (CMMI-DEV), Version 1.3, Technical
Report, CMU/SEI-2010-TR-033, Software Engineering Institute (2010),
http://www.sei.cmu.edu/cmmi/tools/cmmiv1-3/

[3] International Organization for Standardization (ISO) / International Electrotechnical
Commission (IEC) ISO/IEC, ISO/IEC 15504: Information Technology Process
Assessment - Part 1 to 5, International Organization for Standardization (ISO) /
International Electrotechnical Commission (IEC), ISO/IEC International Standard (2005)

[4] Beecham, S., Hall, T., Rainer, A.: Building a Requirements Process Improvement Model,
Faculty of Engineering and Information Sciences, University of Hertfordshire,
Hertfordshire, Technical Report 378 (2003),

 Proposing an ISO/IEC 15504-2 Compliant Method 53

https://uhra.herts.ac.uk/dspace/bitstream/2299/986/1/S67.pdf
[5] Cass, A., Volcker, C.: SPICE for SPACE: A method of Process Assessment for Space

Projects. In: SPICE 2000 Conference (2000)
[6] Torgersson, J., Dorling, A.: Assessing CBD - What’s the Difference? In: 28th Euromicro

Conference, Dortmund, Germany, pp. 332–341 (2002)
[7] Automotive SIG. The SPICE User Group Automotive Special Interest Group,

Automotive SPICE Process Reference Model (2010),
http://www.automotivespice.com

[8] Wangenheim, C.G., Hauck, J.C.R., Salviano, C.F., Wangenheim, A.: Systematic
Literature Review of Software Process Capability/Maturity Models. In: Proceedings of
the 10th SPICE Conference 2010, Pisa, Italy (2010)

[9] Matook, S., Indulska: Improving the quality of process reference models: A quality
function deployment-based approach. Decision Support Systems 47, 60–71 (2009),
http://espace.library.uq.edu.au/eserv/UQ:161303/Matook_Indul
ska_DDS_2009.pdf

[10] Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing Maturity Models for IT
Management – A Procedure Model and its Application. Business & Information Systems
Engineering 1(3), 213–222 (2009),
http://www.bise-journal.org/index.php,do=show/site=wi
/sid=16424296734d2251f9628a7985168360/alloc=17/id=2429

[11] Lahrmann, G., Marx, F.: Systematization of maturity model extensions. In: Winter, R.,
Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 522–525. Springer,
Heidelberg (2010)

[12] Wangenheim, C.G., Hauck, J.C.R., Mccaffery, F., Wangenheim, A.: Creating Software
Process Capability/ Maturity Models. IEEE Software 27(4) (2010)

[13] International Organization for Standardization (ISO). How are Standards Developed,
http://www.iso.org/iso/standards_development/processes_and_p
rocedures/how_are_standards_developed.htm

[14] de Bruin, T., Rosemann, M., Freeze, R., Kulkarmi, U.: Understanding the Main Phases of
Developing a Maturity Assessment Model. In: 16th Australasian Conference on
Information Systems, Sydney (2005),
http://www.followscience.com/library_uploads/ceba558bded879c
cc0b45cd2c657e870/123/understanding_the_main_phases_of_devel
oping_a_maturity_assessment_model.pdf

[15] Mettler, T.: A Design Science Research Perspective on Maturity Models in Information
Systems, Universität St. Gallen, St. Gallen, Switzerland, Technical Report BE
IWI/HNE/03 (2009),
http://www.alexandria.unisg.ch/export/DL/67708.pdf

[16] Maier, A.M., Moultrie, J., Clarkson, P.J.: Developing maturity grids for assessing
organisational capabilities: Practitioner guidance. In: 4th International Conference on
Management Consulting, Academy of Management (MCD 2009), pp. 11–13 (2009),
http://www.iff.ac.at/oe/full_papers/Maier%20Anja%20M._Moultr
ie%20James_Clarkson%20P.%20John.pdf

[17] Salviano, C.F., Zoucas, A., Silva, J.V.L., Alves, A.M., von Wangenheim, C.G., Thiry,
M.: A Method Framework for Engineering Process Capability Models. In: 16th European
Systems and Software Process Improvement and Innovation, Alcala, Spain, pp. 6.25–6.36
(2009)

[18] Lee, J.-H., Lee, D.H., Kang, S.: An overview of the business process maturity model
(BPMM). In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C.,
Wang, H. (eds.) APWeb/WAIM 2007. LNCS, vol. 4537, pp. 384–395. Springer,
Heidelberg (2007)

[19] Beecham, S., et al.: Defining a Requirements Process Improvement Model. Software
Quality Journal 13(3), 247–279 (2005)

54 J.C.R. Hauck et al.

[20] Beecham, S., et al.: Using an Expert Panel to Validate a Requirements Process
Improvement Model. Journal of Systems and Software 76(3), 251–275 (2005)

[21] Paulk, M.C., et al.:Capability Maturity Model for Software, Version 1.1, Technical
Report, CMU/SEI-93-TR-024, Software Engineering Institute (February 1993),
http://www.sei.cmu.edu/reports/93tr024.pdf

[22] Cass, A., et al.: SPiCE in Action - Experiences in Tailoring and Extension. In: 28th
Euromicro Conference, Dortmund, Germany (2002)

[23] Bovee, M., et al.: A Framework for Assessing the Use of Third-Party Software Quality
Assurance Standards to Meet FDA Medical Device Software Process Control Guidelines.
IEEE Transactions on Engineering Management 48(4), 465–478 (2001)

[24] Niazi, M., et al.: A Maturity Model for the Implementation of Software Process
Improvement: An Empirical Study. Journal of Systems and Software 74(2), 155–172
(2005)

[25] April, A., Coallier, F.: Trillium: A Model for the Assessment of Telecom Software
System Development and Maintenance Capability. In: 2nd IEEE Software Engineering
Standards Symposium, Montreal, Canada (1995)

[26] Burnstein, I., et al.: Developing a Testing Maturity Model, Part II, Crosstalk (September
1996)

[27] TMMI Foundation, TMMI - Test Maturity Model Integration,
http://www.tmmifoundation.org/html/tmmiorg.html

[28] Kyung-A, Y., Seung-Hun, P., Doo-Hwan, B., Hoon-Seon, C., Jae-Cheon, J.: A
Framework for the V&V Capability Assessment Focused on the Safety-Criticality. In:
13th IEEE International Workshop on Software Technology and Engineering Practice,
Budapest, Hungary, pp. 17–24 (2005),
http://spic.kaist.ac.kr/~selab/html/Publication/IntJournal/A
%20framework%20for%20the%20V&V%20capability%20assessment%20f
ocused%20on%20the%20safety-criticality.pdf

[29] McCaffery, F., Pikkarinan, M., Richardson, I.: AHAA – Agile, Hybrid Assessment
Method for Automotive, Safety Critical SMEs. In: Proc: International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany (2008)

[30] Schreiber, A.T., Wielinga, B.J.: Knowledge Model Construction. In: 11th Workshop on
Knowledge Acquisition, Modeling and Management, Voyager Inn, Banff, Alberta,
Canada (1998),
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/schreiber/

[31] Schreiber, G., Akkermans, H., Anjewierden, A., De Hoog, R., Shadbolt, N., Van De
Velde, W., Wielinga, B.: Knowledge Engineering and Management - The
CommonKADS Methodology. The MIT Press, Cambridge (2000) ISBN 978-0262193009

[32] Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, Technical Report, KSL 93-04, Knowledge Systems Laboratory, Stanford
University, Palo Alto, CA, USA (1993), http://www-
ksl.stanford.edu/knowledge-sharing/papers/

[33] Noy, N., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and
Stanford Medical Informatics Technical Report SMI-2001-0880 (March 2001),
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html

[34] Hsieh, S.H., Hsien-Tang, L., Nai-Wen, C., Kuang-Wu, C., Ken-Yu, L.: Enabling the
development of base domain ontology through extraction of knowledge from engineering
domain handbooks. In: Advanced Engineering Informatics (2010) (in press),
http://dx.doi.org/10.1016/j.aei.2010.08.004

[35] Government of South Australia. Developing a Thesaurus Guideline Version 1.2, State
Records of South Australia (2002),
http://www.archives.sa.govol.au/files/management_guidelines_
developingthesaurus.pdf

 Proposing an ISO/IEC 15504-2 Compliant Method 55

[36] Sikorski, M.: A Framework for developing the on-line HCI Glossary: Technical Report,
Technical University of Gdansk (2002), http://www.org.id.tue.nl/IFIP-
WG13.1/HCIglossary.PDF

[37] Mongan-Rallis, H.: Guidelines for writing a literature review,
http://www.duluth.umn.edu/~hrallis/guides/researching/litrev
iew.html

[38] Galvan, J.: Writing literature reviews: a guide for students of the behavioral sciences, 3rd
edn. Pyrczak Publishing, Glendale (2006) ISBN 978-1884585661

[39] Cronin, P., Coughlan, M., Frances, R.: Undertaking a literature review: a step-by-step
approach. British Journal of Nursing 17(1) (2008),
http://lancashirecare.files.wordpress.com/2008/03/2008-
undertaking-a-literature-review-a-step-by-step-approach.pdf

[40] Kitchenham, B.A.: Guidelines for performing Systematic Literature Reviews in Software
Engineering. Version 2.3 Technical report, University of Durham, Keele, UK (2007),
http://www.elsevier.com/framework_products/promis_misc/infso
f-systematic%20reviews.pdf

[41] Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach, 2nd edn.
Encyclopedia of Software Engineering. John Wiley & Sons, Chichester (1994),
http://www.cs.umd.edu/~basili/publications/technical/T89.pdf

[42] Wangenheim, C.G., et al.: Software Measurement for Small and Medium Enterprises - A
Brazilian-German view on extending the GQM method. In: 7th International Conference
on Empirical Assessment ion Software Engineering, Keele, UK (2003)

[43] Okoli, C., Pawlowski, S.D.: The Delphi method as a research tool: an example, design
considerations and applications. Inf. Manage (2004),
http://chitu.okoli.org/images/stories/bios/pro/research/meth
ods/OkoliPawlowski2004.pdf

[44] de Bruin, T., Rosemann, M.: Using the Delphi Technique to Identify BPM Capability
Areas. In: 18th Australasian Conference on Information Systems, vol. 42, pp. 15–29
(2007), http://www.acis2007.usq.edu.au/assets/papers/106.pdf

[45] Powell, C.: The Delphi technique: myths and realities. Journal of Advanced
Nursing 41(4), 376–382 (2003),
http://rachel.org/files/document/The_Delphi_Technique_Myths_
and_Realities.pdf

[46] Kontio, J., Lehtola, L., Bragge, J.: Using the Focus Group Method in Software
Engineering: Obtaining Practitioner and User Experiences. In: International Symposium
on Empirical Software Engineering, pp. 271–280 (2004),
http://www.sbl.tkk.fi/jkontio/Papers/
FocusGroup_ISESE_web.pdf

[47] Free Management Library. Basics of Conducting Focus Groups,
http://managementhelp.org/evaluatn/focusgrp.htm

[48] Mutafelija, B., Stromberg, H.: Process Improvement with CMMI v1.2 and ISO Standards.
Auerbach, Boca Raton (2008) ISBN 978-1420052831

[49] Thiry, M., Zoucas, A., Tristão, L.: Mapeando Modelos de Capacidade de Processo no
Contexto de Avaliações Integradas de Processo de Software. In: II Workshop on
Advanced Software Engineering, pp. 35–42 (2009)

[50] Wangenheim, C.G., Thiry, M.: Analyzing the Integration of ISO/IEC 15504 and CMMI-
SE/SW, Universidade do Vale do Itajaí, São José, Technical Report LQPS001.05E (2005)

[51] Wangenheim, C.G., et al.: Best practice fusion of CMMI-DEV v1.2 (PP, PMC, SAM)
and PMBOK 2008. Information and Software Technology 52(7), 749–757 (2010)

[52] Beel, J., Gipp, B.: Link Analysis in Mind Maps: A New Approach To Determine
Document Relatedness. In: Proceedings of the 4th International Conference on
Ubiquitous Information Management and Communication (ICUIMC 2010). ACM, New
York (2010),
http://www.sciplore.org/publications/2010-LAMM–preprint.pdf

56 J.C.R. Hauck et al.

[53] Cancian, M.H., Hauck, J.C.R., von Wangenheim, C.G., Rabelo, R.J.: Discovering
software process and product quality criteria in software as a service. In: Ali Babar, M.,
Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 234–247. Springer,
Heidelberg (2010),
http://www.das.ufsc.br/~maiara/files/profes_maiara.pdf

[54] Richardson, I.: SPI Models: What Characteristics are Required for Small Software
Development Companies. Software Quality Journal, 101–114 (2002),
http://portal.acm.org/citation.cfm?id=650270

[55] Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model.
Software Quality Journal 13(3), 247–279 (2005)

[56] Sample, J.A.: Nominal Group Technique: An Alternative to Brainstorming. Journal of
Extension 22(2) (1984), http://www.joe.org/joe/1984march/iw2.php

[57] CDC. Gaining Consensus Among Stakeholders Through the Nominal Group Technique.
Evaluation Briefs (7) (2006),
http://www.cdc.gov/HealthyYouth/evaluation/pdf/brief7.pdf

[58] Matook, S., Indulska, M.: Improving the Quality of Process Reference Models: A Quality
Function Deployment-Based Approach. Decision Support Systems 47 (2009),
http://espace.library.uq.edu.au/eserv/UQ:161303/Matook_Indul
ska_DDS_2009.pdf

[59] Basili, V.R., et al.: The Empirical Investigation of Perspective-Based Reading. Empirical
Software Engineering, Kluwer Academic Publisher 1, 133–164 (1996),
http://www.cs.umd.edu/~basili/publications/journals/J63.pdf

[60] Shull, F., Rus, I., Basili, V.: How perspective-based reading can improve requirements
inspections. Computer 33(7), 73–79 (2000)

[61] Robbins, B., Carver, J.: Cognitive factors in perspective-based reading (PBR): A protocol
analysis study. In: 3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM 2009), pp. 145–155 (2009)

[62] McMeekin, D.A., et al.: Checklist Based Reading’s Influence on a Developer’s
Understanding. In: 19th Australian Conference on Software Engineering (2008),
http://www.computer.org/portal/web/csdl/doi/10.1109/ASWEC.20
08.7

[63] Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM
Systems Journal 15(3), 182–211 (1976),
http://www.cs.umd.edu/class/spring2005/cmsc838p/VandV/fagan.
pdf

[64] Behaviour Engineering, http://www.behaviorengineering.org/
[65] Dromey, R.G.: From Requirements to Design: Formalizing the Key Steps. In: 1st

International Conference on Software Engineering and Formal Methods, Australia (2003)
[66] Tuffley, D., Rout, T.P.: Applying Behavior Engineering to Process Modeling. In:

Proceedings of the Improving Systems and Software Engineering Conference, ISSEC
(2009), http://www98.griffith.edu.au/dspace/handle/10072/31748

[67] Emam, K.E.: Benchmarking Kappa for Software Process Assessment Reliability Studies.
Empirical Software Engineering 4(2), 113–133 (2004)

[68] Practical Software and Systems Measurement, http://www.psmsc.com
[69] DoD, Department of Defense & US Army. PSM - Practical Software and System

Measurement, A foundation for Objective Project Management, Version 4.0b,
Department of Defense & US Army (2003), http://www.psmsc.com

[70] ISO/IEC. ISO/IEC 15939:2007 Systems and software engineering - Measurement
process. International Organization for Standardization (2007)

[71] CMMI Change Requests, http://www.sei.cmu.edu/cmmi/tools/cr/
[72] Enterprise Spice SPICE Change Request,

http://www.enterprisespice.com/page/publication-1

 Proposing an ISO/IEC 15504-2 Compliant Method 57

[73] Hauck, J. C. R., Wangenheim, C. G., Wangenheim, A.: A Knowledge Engineering Based
Method for SPCMMs customization, Technical Report RT_GQS_0_9, INCoD Software
Quality Group (2010),
http://www.inf.ufsc.br/~jeanhauck/method/RT_GQS_01_SPCMMs_De
v_Method_v_0_9.pdf

[74] Cancian, M.: Process Reference Model for SaaS. Technical Report. UFSC,
Florianopolis/Brazil, http://www.gsigma.ufsc.br/~cancian/guide/

[75] McCaffery, F., Dorling, A.: Medi SPICE Development. Software Process Maintenance
and Evolution: Improvement and Practice Journal 22(4), 255–268 (2010)

[76] GAO - United States General Accounting Office. Case Study Evaluations, Technical
Report GAO/PEMD-91-10.1.9. Program Evaluation and Methodology Division (1990),
http://www.gao.gov/special.pubs/10_1_9.pdf

[77] McCaffery, F., Dorling, A., Casey, V.: Medi SPICE: An Update. In: Proceedings of the
10th International SPICE Conference, Italy (2010)

[78] European Council. Council Directive 2007/47/EC (Amendment). Official Journal of The
European Union, Luxembourg (2007),
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2007:247:0021:0055:en:PDF

58 J.C.R. Hauck et al.

A
nn

ex
 1

:
M

ap
pi

ng
 t

o
IS

O
/I

E
C

 1
55

04
-2

 [
3]

 r
eq

ui
re

m
en

ts
 o

f
P

R
M

 a
nd

 P
A

M
 t

o
th

e
m

et
ho

d
ac

ti
vi

ti
es

C
od

e
R

eq
ui

re
m

en
t

A1.1

A1.2

A1.3

A1.4

A2.1

A2.2

A2.3

A2.4

P
ro

ce
ss

 R
ef

er
en

ce
 M

od
el

6
.2

.3
.1

-a

A
 P

ro
ce

ss
 R

ef
er

en
ce

 M
o
d

e
l
sh

al
l

co
n

ta
in

 a
 d

ec
la

ra
ti

o
n

 o
f

th
e

d
o

m
ai

n
 o

f
th

e
P

ro
ce

ss
 R

ef
er

en
ce

 M
o
d

el

X

X

6
.2

.3
.1

-b

a
d

es
cr

ip
ti

o
n

,
m

ee
ti

n
g
 t

h
e
 r

eq
u

ir
em

en
ts

 o
f

6
.2

.4
 o

f
th

is
 I

n
te

rn
a
ti

o
n

al
 S

ta
n

d
ar

d
,
o
f

th
e

p
ro

ce
ss

es
 w

it
h

in
 t

h
e

sc
o
p
e

o
f

th
e

P
ro

ce
ss

R
ef

e
re

n
ce

 M
o
d
el

X

X

6
.2

.3
.1

-c
a

d
es

cr
ip

ti
o
n

 o
f

th
e

re
la

ti
o
n

sh
ip

 b
et

w
ee

n
 t

h
e

P
ro

ce
ss

 R
ef

er
en

ce
 M

o
d
el

 a
n

d
 i

ts
 i

n
te

n
d
ed

 c
o
n

te
x
t

o
f

u
se

X
X

X

6
.2

.3
.1

-d
a

d
es

cr
ip

ti
o
n

 o
f

th
e

re
la

ti
o
n

sh
ip

 b
et

w
ee

n
 t

h
e

p
ro

ce
ss

es
 d

ef
in

ed
 w

it
h

in
 t

h
e

P
ro

ce
ss

 R
e
fe

re
n

ce
 M

o
d

el
X

6
.2

.3
.2

T

h
e

P
ro

ce
ss

 R
ef

e
re

n
ce

 M
o
d

el
 s

h
a
ll

 d
o

cu
m

en
t

th
e

co
m

m
u

n
it

y
 o

f
in

te
re

st
 o

f
th

e
m

o
d

e
l
an

d
 t

h
e
 a

ct
io

n
s

ta
k
e
n

 t
o

 a
ch

ie
v
e

co
n

se
n

su
s

w
it

h
in

 t
h

at
 c

o
m

m
u

n
it

y
 o

f
in

te
re

st

X

X

X

6
.2

.3
.2

-a

th
e

re
le

v
an

t
co

m
m

u
n

it
y
 o

f
in

te
re

st
 s

h
a
ll

 b
e
 c

h
a
ra

ct
er

iz
e
d

 o
r

sp
ec

if
ie

d

X

X

X

6
.2

.3
.2

-b

th
e

e
x
te

n
t

o
f

ac
h

ie
v
em

en
t

o
f

c
o
n

se
n

su
s

sh
al

l
b
e

d
o
cu

m
en

te
d

X

X

X

6
.2

.3
.2

-c
if

 n
o

 a
c
ti

o
n

s
ar

e
 t

ak
en

 t
o

 a
ch

ie
v
e
 c

o
n

se
n

su
s,

 a
 s

ta
te

m
en

t
to

 t
h

is
 e

ff
ec

t
sh

al
l

b
e

d
o

cu
m

e
n

te
d

X

6
.2

.3
.3

T

h
e

p
ro

ce
ss

e
s

d
ef

in
ed

 w
it

h
in

 a
 P

ro
ce

ss
 R

e
fe

re
n
ce

 M
o
d

el
 s

h
a
ll

 h
av

e
u

n
iq

u
e

p
ro

ce
ss

 d
es

cr
ip

ti
o
n

s
an

d
 i

d
en

ti
fi

ca
ti

o
n

X

X

6
.2

.4
-a

a

p
ro

c
es

s
sh

a
ll

 b
e

d
es

cr
ib

ed
 i

n
 t

e
rm

s
o
f

it
s

p
u

rp
o
se

 a
n

d
 o

u
tc

o
m

es

X

X

6
.2

.4
-b

in

 a
n

y
 p

ro
ce

ss
 d

e
sc

ri
p
ti

o
n

 t
h

e
se

t
o
f

p
ro

ce
ss

 o
u

tc
o
m

es
 s

h
a
ll

 b
e

n

ec
es

sa
ry

 a
n

d
 s

u
ff

ic
ie

n
t

to
 a

ch
ie

v
e

th
e

p
u

rp
o
se

 o
f

th
e
 p

ro
ce

ss

X

6
.2

.4
-c

p
ro

ce
ss

 d
es

cr
ip

ti
o
n

s
sh

al
l

b
e
 s

u
ch

 t
h

at
 n

o
 a

sp
ec

ts
 o

f
th

e
 m

ea
su

re
m

en
t

fr
am

e
w

o
rk

 a
s

d
es

cr
ib

ed
 i

n
 C

la
u

se
 5

 o
f

th
is

 I
n

te
rn

at
io

n
al

S
ta

n
d
ar

d
 b

e
y
o
n

d
 l

ev
e
l

1
 a

re
 c

o
n

ta
in

ed
 o

r
im

p
li

ed

X

X

P
ro

ce
ss

 A
ss

es
sm

en
t

M
od

el

6
.3

.2
.1

A

 P
ro

ce
ss

 A
ss

es
sm

en
t

M
o
d

el
 s

h
a
ll

 r
el

at
e
 t

o
 a

t
le

a
st

 o
n

e
p
ro

ce
ss

 f
ro

m
 t

h
e

sp
ec

if
ie

d
 P

ro
c
es

s
R

ef
er

en
c
e

M
o
d

el
(s

).

X

X

6
.3

.2
.2

A

 P
ro

ce
ss

 A
ss

es
sm

en
t

M
o
d

el
 s

h
a
ll

 a
d

d
re

ss
,
fo

r
a

g
iv

e
n

 p
ro

ce
ss

,
a
ll

,
o

r
a
 c

o
n

ti
n

u
o
u

s
su

b
se

t,
 o

f
th

e
 l

ev
e
ls

 (
st

ar
ti

n
g

 a
t

le
v
e
l

1
)

o
f

th
e

m
ea

su
re

m
en

t
fr

a
m

ew
o
rk

 f
o
r

p
ro

ce
ss

 c
ap

ab
il

it
y
 f

o
r

ea
ch

 o
f

th
e

p
ro

ce
ss

es
 w

it
h

in
 i

ts
 s

co
p
e.

X

X

6
.3

.2
.3

A

 P
ro

ce
ss

 A
ss

es
sm

en
t

M
o
d

el
 s

h
a
ll

 d
ec

la
re

 i
ts

 s
co

p
e

o
f

co
v
er

ag
e

X

X

6
.3

.2
.3

-a

 t
h

e
se

le
ct

ed
 P

ro
c
es

s
R

ef
e
re

n
ce

 M
o
d

el
(s

);

X

X

X

6
.3

.2
.3

-b

 t
h

e
se

le
ct

ed
 p

ro
c
es

se
s

ta
k
e
n

 f
ro

m
 t

h
e

P
ro

ce
ss

 R
ef

er
en

ce
 M

o
d
el

(s
);

X

X

X

6
.3

.2
.3

-c

 t
h

e
ca

p
ab

il
it

y
 l

e
v
e
ls

 s
e
le

ct
ed

 f
ro

m
 t

h
e
 m

ea
su

re
m

en
t

fr
am

ew
o
rk

.

X

X

6
.3

.3

A
 P

ro
ce

ss
 A

ss
es

sm
en

t
M

o
d

el
 s

h
a
ll

 b
e
 b

as
ed

 o
n

 a
 s

et
 o

f
in

d
ic

at
o

rs
 t

h
a
t

ex
p

li
ci

tl
y
 a

d
d

re
ss

es
 t

h
e

p
u
rp

o
se

s
an

d
 o

u
tc

o
m

es
,
as

 d
e
fi

n
e
d

 i
n

th
e

se
le

ct
e
d

 P
ro

ce
ss

 R
ef

er
e
n
ce

 M
o
d
el

 o
f

a
ll

 t
h

e
p
ro

c
es

se
s

w
it

h
in

 t
h

e
sc

o
p
e

o
f

th
e

P
ro

c
es

s
A

ss
e
ss

m
en

t
M

o
d

el
;

an
d

 t
h

at
 d

em
o
n

st
ra

te
s

th
e

a
ch

ie
v
em

en
t

o
f

th
e

p
ro

ce
ss

 a
tt

ri
b
u

te
s

w
it

h
in

 t
h

e
ca

p
a
b
il

it
y
 l

ev
e
l

sc
o
p
e
 o

f
th

e
P

ro
ce

ss
 A

ss
es

sm
e
n

t
M

o
d

e
l.

 T
h

e
 i

n
d

ic
at

o
rs

 f
o
c
u

s

at
te

n
ti

o
n

 o
n

 t
h

e
im

p
le

m
en

ta
ti

o
n

 o
f

th
e

p
ro

ce
ss

es
 i

n
 t

h
e

sc
o
p
e
 o

f
th

e
m

o
d

e
l.

X

6
.3

.4

T
h

e
m

a
p
p

in
g

 s
h

a
ll

 b
e
 c

o
m

p
le

te
,
c
le

ar
 a

n
d

 u
n
am

b
ig

u
o
u

s.

X

X

6
.3

.4
-a

th

e
p
u

rp
o
se

s
an

d
 o

u
tc

o
m

es
 o

f
th

e
p
ro

c
es

se
s

in
 t

h
e
 s

p
ec

if
ie

d
 P

ro
ce

ss
 R

ef
er

en
ce

 M
o
d

e
l;

X

X

6
.3

.4
-b

th

e
p
ro

ce
ss

 a
tt

ri
b
u

te
s

(i
n

cl
u

d
in

g
 a

ll
 o

f
th

e
re

su
lt

s
o
f

ac
h

ie
v
e
m

en
ts

 l
is

te
d

 f
o
r

ea
ch

 p
ro

ce
ss

 a
tt

ri
b
u

te
)

in
 t

h
e
 m

ea
su

re
m

en
t

fr
a
m

ew
o
rk

.

X

X

6
.3

.5

A
 P

ro
ce

ss
 A

ss
es

sm
en

t
M

o
d

el
 s

h
a
ll

 p
ro

v
id

e
a

fo
rm

a
l
a
n

d
 v

e
ri

fi
ab

le
 m

ec
h

an
is

m
 f

o
r

re
p
re

se
n

ti
n

g
 t

h
e
 r

es
u

lt
s

o
f

an
 a

ss
es

sm
e
n

t
as

 a
 s

et

o
f

p
ro

ce
ss

 a
tt

ri
b

u
te

 r
a
ti

n
g
s

fo
r

ea
ch

 p
ro

ce
ss

 s
el

ec
te

d
 f

ro
m

 t
h

e
sp

e
ci

fi
ed

 P
ro

ce
ss

 R
ef

er
en

ce
 M

o
d

el
(s

).

X

X

7
.2

T

h
e

p
ar

ty
 p

er
fo

rm
in

g
 v

e
ri

fi
c
at

io
n

 o
f

co
n

fo
rm

it
y
 s

h
a
ll

 o
b
ta

in
 o

b
je

ct
iv

e
ev

id
en

ce
 t

h
at

 t
h

e
 P

ro
ce

ss
 R

ef
er

en
ce

 M
o
d

el
 f

u
lf

il
s

th
e

re
q
u

ir
em

en
ts

 s
et

 f
o
rt

h
 i

n
 6

.2
 o

f
th

is
 p

ar
t

o
f

IS
O

/I
E

C
 1

5
5
0
4

.
O

b
je

ct
iv

e
ev

id
en

ce
 o

f
c
o
n

fo
rm

a
n

ce
 s

h
al

l
b
e

re
ta

in
ed

.

X

7
.3

T

h
e

p
ar

ty
 p

er
fo

rm
in

g
 v

e
ri

fi
c
at

io
n

 s
h

al
l

o
b
ta

in
 o

b
je

ct
iv

e
 e

v
id

en
ce

 t
h

at
 t

h
e

P
ro

ce
ss

 A
ss

es
sm

e
n

t
M

o
d

e
l

fu
lf

il
s

th
e

re
q
u

ir
em

en
ts

 s
e
t

fo
rt

h
 i

n
 6

.3
 o

f
th

is
 p

ar
t

o
f

IS
O

/I
E

C
 1

5
5

0
4

.
O

b
je

ct
iv

e
 e

v
id

en
c
e

o
f

c
o
n

fo
rm

a
n

ce
 s

h
al

l
b
e

re
ta

in
ed

.

X

X
 -

 I
nd

ic
at

es
 t

ha
t

th
e

im
pl

em
en

ta
ti

on
 o

f t
hi

s
ac

ti
vi

ty
 g

en
er

at
es

, e
ve

n
pa

rt
ia

lly
, t

he
 c

ov
er

ag
e

re
qu

ir
em

en
t

in
 t

he
 f

in
al

 d
oc

um
en

t

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 59–72, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Homogenization, Comparison and Integration:
A Harmonizing Strategy for the Unification

of Multi-models in the Banking Sector

César Pardo1,2, Francisco J. Pino1,2, Félix García2, Mario Piattini2,
Maria Teresa Baldassarre3, and Sandra Lemus2,4

1 IDIS Research Group
Electronic and Telecommunications Engineering Faculty,

University of Cauca, Calle 5 No. 4 - 70.
Kybele Consulting Colombia (Spinoff)

 Popayán, Cauca, Colombia.
{cpardo,fjpino}@unicauca.edu.co

2 Alarcos Research Group
Institute of Information Technologies & Systems,

University of Castilla-La Mancha, Paseo de la Universidad 4, Ciudad Real, España
{Felix.Garcia,Mario.Piattini}@uclm.es

3 Department of Informatics, University of Bari.
SER&Practices, SPINOFF, Via E. Orabona 4, 70126, Bari, Italy

baldassarre@di.uniba.it
4 Superintendencia de Bancos de Guatemala,

9 avenida 22-00 zona 1, Ciudad de Guatemala, Guatemala
slemus@sib.gob.gt

Abstract. Information Technologies (IT) play a crucial role in the development
of the business processes in organizations. Acquiring the best technologies is
quickly becoming as important as understanding and improving the business
model of organizations. As a result, many (inter)national standards and models
for IT Management, IT Government and IT Security have been developed. This
situation allows organizations to choose and improve their processes, selecting
the models that best suit their needs. Since several relationships between these
models can be found, carrying out the harmonization of their similarities and
differences will make it possible to reduce the time and effort involved in im-
plementing them. In this paper, we present a harmonization strategy which has
been defined to harmonize COBIT 4.1, Basel II, VAL IT, RISK IT, ISO 27002
and ITIL V3. This work intends to support organizations which are interested in
knowing how to carry out the harmonization of these models. Furthermore, as a
result of the execution of the harmonization strategy we have defined, a unified
model for Banking, called ITGSM, is presented. It resolves the conflicts be-
tween the models mentioned above and provides a useful reference model to
organizations that are planning to adopt them.

Keywords: Multi-model, Harmonization, IT Management, IT Government, IT
Security, Homogenization, Comparison, Integration.

60 C. Pardo et al.

1 Introduction

There is a wide range of standards and models to support the process improvement of
organizations. These benefit of international recognition and, according to [1], the
models provide the descriptions and/or best practices for different spheres, such as
software development, quality management, security, amongst others. In addition to
these areas, many organizations are increasingly becoming interested in improving
their business processes through IT management and IT security models such as CO-
BIT, ITIL, ISO 27002 (also known as ISO 17799), amongst others. This is the case
now more than ever.

Since Information Technologies (IT) are important for the development of almost
all operations and activities of organizations, many organizations are showing an
ever-growing interest in them. As in the case of other approaches, there is an abun-
dance of good practices related to security, management and governance of IT. It has
already been said that the good thing about standards is that there are so many of them
[2], because when there many standards, organizations can use a particular one or
choose several of them in a certain situation.

This situation allows organizations to select and complement their processes from
the models which fit their contexts well, e.g. if a model focusing on Computer Secu-
rity, like the NIST Handbook [3] is not suitable, an organization can go for the im-
plementation of ISO 27002. Organizations can also implement more than one model,
as well as improve more than one specific subject of their business processes, e.g.
providing support for the risks of IT and managing IT investment, using models such
as RISK IT [4] and VAL IT [5].

According to [2], experts and practitioners should use the better parts of existing
standards as building blocks and be prepared to deconstruct standards. However,
professional skills alone are not enough. The people involved need a map or guideline
to tell them how to carry out the harmonization of multiple standards. This makes it
possible to decrease the costs associated with the implementation of models, by not
implementing each one separately [1]. For instance, the PO4 (Plan and Organize)
practice of COBIT 4.1 in charge of the task “defines and implement process in an
organization” is closely related to the VG2 (Value Governance) practice defined in
VAL IT V2.0. The process engineers can take advantage of those relationships and
incorporate them into a single management practice, which can fulfill the require-
ments of both models, thereby reducing the time and effort which would have been
involved in implementing two practices. At present, some proposals related to the
harmonization of multiple models have been defined [1]. They do not, however, pro-
vide formal toolkits such as techniques, methods, processes or methodologies, which
make it easier to discover “how to” carry out the harmonization of multiple models.

Given the benefits that can be obtained from harmonization of multiple IT models,
it is important to have information on how the practices of different models can be put
in harmony with each other. In that sense, this article presents the harmonization
strategy designed to harmonize the latest versions of COBIT 4.1, Basel II, VAL IT,
RISK IT, ISO 27002 and ITIL V3, thus giving support to multiple regulations that the
banking sector is subject to. The harmonization strategy is accomplished by means of
three techniques: homogenization, mapping and integration, which have been joined
together in a single strategy and give support to certain considerations: (i) resolving

 Homogenization, Comparison and Integration: A Harmonizing Strategy 61

the issues related to structural differences, (ii) mapping between multiple models and
(iii) unifying process entities from a formal integration criterion.

This paper proceeds as follows. Section 2 presents related work. Section 3 gives an
overview of the harmonization framework and harmonization strategy that has been
designed. A summary of the execution of the harmonization strategy and the unified
model obtained is presented in Section 4. Lastly, some relevant discussion is set out,
along with the conclusions we have drawn and the future work we have planned.

2 Related Work

The literature presents some work that involves comparisons and mappings between
different models. Among these pieces of work, those related to IT Management or IT
Government are:

− In [6] a mapping between ITIL V3 and COBIT 4.1 is described.
− In [7] the relationships between COBIT 4.1, ITIL V3 and ISO/IEC 27002 are set

out.

Similarly, the following studies have been conducted regarding the identification
and analysis of the importance of different models in relation to the financial sector:

− In [8], a study aiming to identify to what extent Governance practices have been
implemented in the financial sector in Romania is presented. It is a comparative
study, with respect to the data presented by the IT Global Governance Status Re-
port - 2006 of the ITGI. The models identified were: COBIT, BASEL II, BSC,
ITIL and ISO 17799.

− In [9], we find an empirical study which made it possible to explore the importance
and implementation of COBIT processes in Saudi organizations.

− In [10], a methodology, based on the COBIT processes, to bring about regulatory
fulfillment of legislations like SOX and BASEL, is discussed.

− In [11], a study which investigates the way in which the companies of the financial
sector of Belgium are applying IT Governance is presented; its aim is also to verify
how this practice supports the alignment between IT and business.

− In [2], a study whose aim was to identify in a general way the family of standards
that support IT Governance is described, along with their relationships and the
value that each of these standards contributes to the management. The family of
standards found was: COBIT, ITIL, ISO 13569, ISO 13335, MOF, ISO 17799, ISO
9001, BS 15000, COSO, PRINCE 2, PMBOK and PAS56.

As it can be seen from the work presented above, the most widely-used models in
mapping and comparisons are: COBIT, BASEL II and ITIL. However, from the
analysis of these studies it has been possible to find that the process entities (PEs)
involved in the comparisons or mappings are of high-level abstraction, that is, they do
not carry out the analysis of PEs, such as activities or tasks. Moreover, it has not been
possible to find an integrated model which would harmonize multiple approaches to
support IT Governance. Such a harmonization could reduce the effort and costs asso-
ciated with the implementation of a new integrated model, which unifies the multiple
regulations that the banking sector is subject to.

62 C. Pardo et al.

According to [1], we can note that there are few studies that provide solutions such
as, amongst other elements: methodology, process, framework, activities, tasks, steps,
for supporting the harmonization of multiple models. Moreover, most of them have
been designed to give support to the harmonization of software models, and although
some proposals do support a wider range of models, such as ITIL and COBIT, these
are currently proposals within a formal method and validation. Taking that into ac-
count, in this article we provide the definition of a harmonization strategy obtained
from the execution of a harmonization process. This is composed of three techniques
or processes: homogenization, comparison and integration, which have made it possi-
ble to carry out: (i) An in-depth analysis of the models involved, (ii) Comparison and
identification of relationships and differences between them and (iii) Integration and
definition of an IT governance model for banking. The latest versions of models and
standards such as COBIT [6], ITIL [12], RISK IT [4], VAL IT [5], ISO 27002 [13]
(ISO 17799), and BASEL II [14] were used. These techniques have also been used in
other harmonization projects that we have carried out (homogenizations of ISO
9001:2000, CMMI ISO/IEC 12207, CMMI-ACQ V1.2, COMPETISOFT, COBIT 4.0
and PMBOK [15] and comparisons of ISO 9001 and CMMI [16], CMMI-ACQ and
ISO/IEC 12207:2008 [17], and between CMMI-ACQ and ISO/IEC 15504 [18]).

A detailed summary of the strategy followed to harmonize the models involved is
presented in the next Section.

3 Configuration of the Harmonization Strategy

The management of the harmonization of models involved was supported by means
of the execution of a harmonization process. This process provides a guideline that
makes it easier to manage the tasks related to the definition and configuration of a
suitable harmonization strategy for carrying out the harmonization of multiple models
(see Figure 1). The goal is also to ensure the generation of a standard format for the
documentation obtained. The harmonization strategy is made up of techniques and/or
methods, which are configured according to the particular objectives and needs of the
organization. Both the harmonization process and the harmonization strategy are
elements of the Harmonization Framework defined to support the harmonization of
multiple models. These and other elements that make up the Framework, together
with their application in real case studies, are presented in [19]. A more detailed ver-
sion of the harmonization process using SPEM 2.0 and edited with the EPF Composer
can be seen in [20].

A harmonization strategy was obtained as the main work product of the execution
of the harmonization process. It is made up of three techniques, which are part of the
Harmonization Framework:

(i) Homogenization, to provide the tools which are suitable for setting in harmony
the models involved, adding their information by means of a Common Schema or
Common Structure of Process Entities (CSPE).

(ii) Comparison, to carry out the identification of differences and similarities between
multiple models.

(iii) Integration, to give necessary support for combining and/or unifying the best
practices of multiple models.

 Homogenization, Comparison and Integration: A Harmonizing Strategy 63

Fig. 1. Activity diagram of the harmonization process followed to obtain the harmonization
strategy

The process carried out to perform the harmonization between COBIT, ITIL, RISK
IT, VAL IT, ISO 27002, and BASEL II is described in the following lines. The pur-
pose of this process was to provide a suitable harmonization strategy (or guideline)
from the union and coupling of the three different techniques, aiming to guarantee the
reliability of results obtained between them. Incorporating these techniques allowed
us to carry out the step-by-step harmonization of the models involved. In order to
organize and manage the people and activities throughout the strategy, this process
establishes two roles: the performers and the reviewers, along with three stages:

− Stage 1. Homogenization. This stage involved the tasks: (i) acquisition of knowl-
edge about the models involved, (ii) structure analysis and terminology, (iii) identi-
fication of requirements and (iv) correspondence.

− Stage 2. Comparison. This stage involved the tasks: (i) designing the mapping, (ii)
carrying out the mapping, (iii) presenting the outcomes of the mapping and (iv)
analyzing the results of the mapping.

− Stage 3. Integration. (i) designing the integration, (ii) establishing an integration
criteria, (iii) carrying out the integration, (iv) analyzing the results of the integra-
tion and (v) presenting the integrated model.

Homogenization, comparison and integration are harmonization techniques which
make up the Harmonization Framework. A detailed summary of these techniques can
be seen in [12] and [19], respectively.

Figure 1 shows the activity diagram of the harmonization strategy described previ-
ously, which uses SPEM 2.0 notation and includes the main activities, tasks, roles and
work products.

64 C. Pardo et al.

Fig. 2. Activity diagram of the harmonization strategy defined

4 Execution of the Harmonization Strategy

4.1 Homogenizing the Models

Before carrying out the execution of the harmonization strategy, an analysis of each
model was performed with respect to some of their elements and/or attributes, e.g.
approach, size (number of pages), organization developer and processes or practices
that make up the models and obtain the reference document. Since each reference
model defines its own structure of PEs, the performer carried out the homogenization
of his/her structures through a CSEP template, which is defined and executed through
a homogenization technique (see [15]). Homogenization of the models’ structures
made it easier to compare them, due to the fact that that they were structured under
the same PEs during the execution of the comparison stage. We have performed the
homogenization by means of an iterative and incremental procedure, in order to iden-
tify which specific practices of each model are supported by the CSEP template. This
iterative and incremental approach has allowed us to manage the complexity where
PEs of low-level abstraction are involved.

The homogenization of the PEs of each model allowed to prepare the models for
the next stage. It also made it possible to carry out an initial comparison of the models
at a high level of abstraction. This initial comparison permitted us to know if a model
defines similar process entities or not, taking the entities process described in the
CSEP as a basis. Table 1 shows an example of the CSEP and the homogenization of
the PO1 process, which describes the best practices related to defining a strategic IT
plan according to COBIT 4.1.

 Homogenization, Comparison and Integration: A Harmonizing Strategy 65

Table 1. Homogenization of the PO1 process defined in COBIT 4.1

Homogenization of PO1: Define a strategic IT plan
Domain Plan and organize

ID PO1
Name Defines a strategic IT plan
Purpose To manage and drive all the IT resources in accordance with the

particular strategy and priorities of the business.

Process

Objective To improve the understanding of the main stakeholders as regards
the opportunities and limitations of IT. In addition, to assess pre-
sent performance and identify the capacity and requirements of
human resources, as well as to clarify the level of research needed.

Activities
PO1.1 IT Value Management: Work with the business, to guarantee that the IT investment
portfolio of the firm contains programs with solid business cases. The task of accounting of
profits and of cost-control is clearly assigned and monitored.
PO1.2 Business-IT Alignment: Ensure that the goal of the business to which the IT is being
applied is well understood. The business and IT strategies should be integrated, thereby
creating a relationship between the goals of each, recognizing the opportunities, as well as
the limitations in the present capacity. Broad-based communication should take place.
PO1.3 Assessment of Current Capability and Performance: Assess the performance of the
existing plans and of the information systems in terms of their contribution to the business
objectives, their functionality, stability, complexity and costs, as well as their strengths and
weaknesses.
PO1.4 IT Strategic Plan: Create a strategic plan which, in cooperation with the relevant
stakeholders, defines how IT will contribute to the firm’s strategic objectives (goals), while
also setting out costs and related risks. The strategic plan of the IT should include an esti-
mate of the investment/operation, the sources of funding, the strategy to obtain as well as the
legal and regulatory requirements.
PO1.5 IT Tactical Plans: Produce a portfolio of tactical IT plans which are a by-product of
the IT strategic plan. These tactical plans should describe the initiatives and requirements of
resources demanded by the IT, as well as how the use of resources will be monitored, along
with the profits gained.
PO1.6 IT Portfolio Management: Actively administer, in conjunction with the business, the
portfolio of IT investment programmes which is needed in order to achieve business goals.

4.2 Comparing the Models

Since the homogenization allowed us to harmonize the models at the level of their
structures and PEs, the performer, along with the reviewer, carried out the comparison
of the models at the level of two PEs: processes and activities. This stage also followed
an iterative and incremental approach. We say “iterative and incremental”, because the
comparison was carried out completely on one BASEL principle and COBIT processes,
and then on the other BASEL principles. The result of this comparison was taken as a
basis for carrying out the comparisons with the processes of other models involved. In
each iteration, the comparisons of the descriptions of each PE were performed through a
semantic analysis. Semantic analysis allowed us to identify the common features, dif-
ferences and relationships at a low level of abstraction between the compared PEs. This
consisted of studying the relationships between the descriptions of PEs that were being

66 C. Pardo et al.

compared. Figure 3 shows the tasks diagram of the comparison iterations, displaying the
comparison iterations, work products, outcomes, role, directionality of the comparisons
and quantity of relationships identified.

From a first comparison between BASEL II and COBIT 4.1, 44 relationships (or
18 related processes of COBIT) were found; these relationships were compared with
the other models involved. The results found in each comparison iteration can be
summarized as follows:

− 44 relationships (or 18 processes) found between: BASEL II (10 principles) and
COBIT (34 processes),

− 35 relationships found between: COBIT (18 processes) and VAL IT (34 proc-
esses),

− 33 relationships found between: COBIT (18 processes) and RISK IT (9 processes),
− 108 relationships found between: COBIT (18 processes) and ISO 27002 (39 proc-

esses),
− and 112 relationships found between: COBIT (18 processes) and ITIL V3 (37

processes).

Given the space limits, it is not possible to show all comparisons performed; a de-
tailed summary of the relationships found during the comparison between Basel II
and COBIT 4.1 is set out in Annex 1.

4.3 Integrating the Models

On the basis of the results obtained in the comparison stage, the work group, com-
prised of the performer and reviewer, carried out the integration of relationships
found between BASEL II and COBIT and after that, the integration of the relation-
ships found in the other comparison iterations. That being so, the integrated model is
based on the integration of the set of comparisons of the models involved; its process
entities structure is comprised of 44 COBIT processes related to the operational risk
principles defined in BASEL II. The integration of relationships (or related processes)
found was carried out by (i) analyzing the results obtained in the comparison itera-
tions and (ii) analyzing and identifying the activities needed to fulfill each purpose
described in the 44 processes.

In each iteration, the integration was performed at the level of the PEs compared
(processes and activities) in them. In addition, this stage followed an iterative and
incremental approach. That made it possible to carry out the systematic management
of the PEs involved and reduce the complexity coming from the integration of the
descriptions of each model. Figure 4 shows the tasks diagram of the integration itera-
tions performed.

In an effort to make the integration of descriptions between PEs easier, a set of
rules or integration criteria was defined. It allowed us to know how to merge the
descriptions in certain situations, e.g. (i) when the description of the process/activity
which has less detail is supported and contained within the description of the proce-
dure/activity that has greater detail and (ii) when the description of the proce-
dure/activity with greater or less detail is not contained in the other process/activity.
To apply these suitably, previous knowledge of the models involved and experience
in the supervision of the banking sector of the performer were fundamental.

 Homogenization, Comparison and Integration: A Harmonizing Strategy 67

Fig. 3. Activity diagram of the comparison iterations

As a result of the execution of the harmonization strategy presented, a unified IT
Governance Model for Banking, called ITGSM, has been obtained. It complies with
operational risk principles established by BASEL II. In this way, ITGSM also
consolidates the governance model proposed from the perspectives of: (i) Investment
management IT - VAL IT, (ii) IT Risk Management - IT RISK, (iii) Management of
information security - ISO 27002 and (iv) Life cycle management services - ITIL V3.
Figure 5 shows the approaches, models and relationships that make up ITGSM.
ITGSM defines 22 processes initially, which support the various approaches unified.
We cannot show the unified model in its complete form here, due to limits on
space. In Table 2, however, we present an extract, giving an overview of the structure
of ITGSM. A detailed summary of ITGSM is presented in [21].

Although ITGSM’s structure is oriented in one direction or another, according to
the particular approach of each model, that itself makes it easy to maintain it if inter-
national bodies provide new versions of the integrated models. It will also be easy to
adopt its practices and reflect the changes in the organizations’ processes.

68 C. Pardo et al.

Fig. 4. Activity diagram of the integration iterations

Fig. 5. IT Governance Model for Banking - ITGSM

 Homogenization, Comparison and Integration: A Harmonizing Strategy 69

5 Discussion and Conclusions

This paper has presented the harmonization strategy which has been designed to de-
fine an IT Governance Model for Banking, called ITGSM. The harmonization strat-
egy has helped to organize and manage the work performed to obtain ITGSM through
the configuration of three techniques: homogenization, comparison and integration,
which have been joined in such a way as to take into account the harmonization ob-
jectives and specific needs of this research project. The systematic configuration of
these techniques has allowed us to know “what to do”, as well as “how to harmonize”
BASEL II, VAL IT, RISK IT, ISO 27002, ITIL V3 and COBIT 4.1. To increase the
reliability of results, this harmonization strategy used a reviewer who was present in
each stage, who also helped to validate the results obtained and to resolve disagree-
ments with the performer. The harmonization strategy has also made it possible to
overcome some issues which arise when multiple models are integrated; these are:

(i). There are different structures. Since a harmonization strategy described a homog-
enization stage, it was possible to harmonize the structural differences between the
integrated models and prepare them for the execution of other stages or techniques,
in this case, to run comparison and integration techniques. Having the same struc-
ture of PEs between models involved has allowed us to carry out the comparisons
and integrations between similar process entities. It has not been necessary to
define rules of comparison to address the issues concerning structural differences.

Table 2. Structure of ITGSM (Extract)

PR Process

Activities

IT
governance

Management
the IT

investment

Specific risk
management

IT

Management of
information

security

Management the
service lifecycle

PR 1

P1
PO4.2,
PO4.3

VG1.4,
VG1.5, PM1

RG2.1 Clauses 5.1, 6.1,
6.2, 8.1.1, 8.2.1,
15.1, 15.2

SD2.4.2, SS6.1,
SO3.2.4

P2

PO9.1,
PO9.2

IM1.2 RG1.5, RG1.7,
RG1.8, RG3.3,
RG3.4, RE1.1,
RR1.3, RR3.4

Clauses 4.1, 5.1,
13.1, 14.1.1

SS9.5

P3 ME4.2 VG1, VG2.1,
VG5

RG1, RG2 Clauses 5.1, 6.1.2,
10.1

SD3.10

PR 2
P ME2.1,

ME3.2
--NA-- RG1, RE2,

RR1.2, RR1.3
Clauses 5.1, 6.1.8,
15.2, 15.3

--NA--

P5 ME3.1,
ME3.3

--NA-- --NA-- Clause 15.1 --NA--

PR3

P6

PO1.2,
PO1.4

VG1.5,
VG2.1, VG4,
PM1, PM6

RG1, RG2 --NA-- SS2.1, SS2.3,
SS3.3, SS4.1,
SS4.2, SS4.4,
SS5.5

P7
PO4.1,
PO4.8

VG2.4,
VG2.6

RG1.2, RG2.4,
RE1.1, RE3.1

Clauses 6.1, 6.2.1,
7.2, 8.1, 8.2, 8.3,
9.1, 9.2, 10.1.2

SS2.6, ST4,
SO4

BASEL COBIT 4.1 VAL IT RISK IT ISO 27002 ITIL V3

(1) BASEL II: PR= Principle, (2) COBIT 4.1: PO= Plan
and Organize, ME= Monitor and Evaluate, DS= Deliver
and Support, (3) VAL IT: PM= Portfolio Management,
IM= Investment Management, VG= Value Governance.

(4) RISK IT: RG= Risk Governance, RE= Risk Evaluation,
RR= Risk Response, (5) ITIL V3: SD= Service Design,
SS= Service Assets, SO= Service Operations,
CSI=Continual Service Improvement, ST=Service
Transition, (6) NA= Not Applicable

70 C. Pardo et al.

(ii). The confusion caused by many-to-many comparisons. The comparison technique
used has allowed us to make the correspondences and identify the relationships
clearly and concisely. We adjust the mapping template of [18] to establish the
comparisons performed to define the integrated model.

(iii). Complexity of harmonization. Since six models at a low level of abstraction had
to be integrated, using an iterative and incremental approach has made it possible
to: (i) manage and reduce the complexity and scope iterations of each stage of the
harmonization strategy that has been designed, (ii) carry out supervision by the
reviewer in each iteration, (iii) obtain feedback quickly, (iv) measure the progress
in short periods of time and (v) integrate the results obtained in each iteration
continuously. The total effort spent during the execution of the harmonization
strategy was 9880 minutes. This effort was expended between the performer and
reviewers.

This work intends to support and guide organizations in homogenizing, comparing
and integrating multiple models. Currently, we are working on the definition of a
widespread harmonization strategy (WHS), which will offer companies a generic
strategy to harmonize multiple models, regardless of their approach. It will be defined
from the harmonization strategy presented in this article. It will likewise be imple-
mented in other case studies, to validate its generality and adaptation according to
needs in other contexts.

As a result of the execution of the harmonization strategy defined, ITGSM cur-
rently defines 22 processes and gives support to five different approaches: (i) IT Gov-
ernance, (ii) investment management IT, (iii) IT risk Management, (iv) management
of information security and (v) life cycle management services. In that sense, IGTSM
can be useful for organizations which are planning to adopt practices concerning IT
Management, IT Governance and Information Security Management, even if the
organization does not have a BASEL certification. In the future, we will evaluate this
model empirically in a case study, in an attempt to confirm its efficiency and assess
the way in which information technology supports business and operational risk man-
agement.

Acknowledgments. This work has been funded by the projects: ARMONÍAS (JCCM
of Spain, PII2I09-0223-7948) and PEGASO/MAGO (MICINN and FEDER of Spain,
TIN2009-13718-C02-01). Acknowledgements by Francisco J. Pino to the University
of Cauca where he works as Associate Professor.

References

1. Pardo, C., Pino, F.J., García, F., Piattini, M., Baldassarre, M.T.: Trends in Harmonization
of Multiple Reference Models. In: Evaluation of Novel Approaches to Software Engineer-
ing. LNCS, Springer, Heidelberg (2011) (in press) (Special edition best papers ENASE
2010, extended and updated paper)

2. Oud, E.J.: The Value to IT of Using International Standards. Information Systems Control
Journal 3 (2005)

3. NIST: National Institute of Standards and technology, NIST (2011),
http://csrc.nist.gov/

 Homogenization, Comparison and Integration: A Harmonizing Strategy 71

4. ITGI: Risk IT: Framework for Management of IT Related Business Risks. IT Governance
Institute (2009), http://www.isaca.org/

5. ITGI: VAL IT Framework 2.0. IT Governance Institute, EEUU (2008)
6. ITGI: COBIT Mapping: Mapping of ITIL V3 with COBIT 4.1. Technical report, IT Gov-

ernance Institute (ITGI) and Office of Government Commerce, OGC (2008)
7. ITGI: Aligning Cobit 4.1, ITIL V3 and ISO/IEC 27002 for Business Benefit. Technical re-

port, IT Governance Institute (ITGI) and Office of Government Commerce, OGC (2008)
8. Gheorghe, M., Nastase, P., Boldeanu, D., Ofelia, A.: IT governance in Romania: A case

study. Technical report, International Trade and Finance Association (2008)
9. Abu-Musa, A.: Exploring the importance and implementation of COBIT processes in

Saudi organizations: An empirical study. Information Management & Computer Secu-
rity 17, 73–95 (2009)

10. Kulkarni, B.: Banking Industry Regulatory Challenges: Moving From Regulation-based to
process based Compliance. In: LNCS, pp. 4–8 (2009)

11. Haes, S.D., Grembergen, W.V.: An Exploratory Study into IT Governance Implementa-
tions and its Impact on Business/IT Alignment. Inf. Sys. Manag. 26, 123–137 (2009)

12. ITIL: Information Technology Infrastructure Library V3 (2010),
http://www.itil-officialsite.com/

13. ISO: Information technology -security techniques- code of practice for information secu-
rity management - ISO 27002:2005. International Organization for Standardization (2005),
http://www.iso.org/

14. BIS: International Convergence of Capital Measurement and Capital Standards - Basel II.
Bank for International Settlements (2004), http://www.bis.org

15. Pardo, C., Pino, F., García, F., Piattini, M.: Homogenization of Models to Support multi-
model processes in Improvement Environments. In: 4th International Conference on Soft-
ware and Data Technologies, Sofía, pp. 151–156 (2009)

16. Baldassarre, M.T., Caivano, D., Pino, F.J., Piattini, M., Visaggio, G.: A strategy for
painless harmonization of quality standards: A real case. In: Ali Babar, M., Vierimaa, M.,
Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 395–408. Springer, Heidelberg
(2010)

17. Pino, F.J., Baldassarre, M.T., Piattini, M., Visaggio, G., Caivano, D.: Mapping software
acquisition practices from ISO 12207 and CMMI. In: Maciaszek, L.A., González-Pérez,
C., Jablonski, S. (eds.) ENASE 2008/2009. Communications in Computer and Information
Science, vol. 69, pp. 234–247. Springer, Heidelberg (2010)

18. Pino, F., Balssarre, M.T., Piattini, M., Visaggio, G.: Harmonizing maturity levels from
CMMI-DEV and ISO/IEC 15504. Journal of Software Maintenance and Evolution: Re-
search and Practice 22, 279–296 (2009)

19. Pardo, C., Pino, F.J., García, F., Piattini, M., Baldassarre, M.T.: A Process for Driving the
Harmonization of Models. In: The 11th International Conference on Product Focused Soft-
ware Development and Process Improvement (PROFES 2010). Second Proceeding: Short
Papers, Doctoral Symposium and Workshops, Limerick, pp. 53–56 (2010)

20. ARMONÍAS: A Process for Driving Multi-models Harmonization, ARMONÍAS Project
(2009), http://alarcos.esi.uclm.es/armonias/

21. Lemus, S.M., Pino, F.J., Piattini, M.: Towards a Model for Information Technology Gov-
ernance applicable to the Banking Sector. In: V International Congress on IT Governance
and Service Management (ITGSM 2010), pp. 1–6. Alcalá de Henares (2010)

72 C. Pardo et al.

Annex 1: Extract of Mapping between COBIT 4.1 and VAL IT

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 73–87, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Supporting Audits and Assessments in Multi-model
Environments

Andre L. Ferreira1, Ricardo J. Machado1, and Mark C. Paulk2

1 Departamento de Sistemas de Informação
Universidade do Minho, Campus de Azurém 4800 - 058 Guimarães , Portugal

{andre.ferreira,rmac}@dsi.uminho.pt
2 Institute for Software Research

Carnegie Mellon University, Pittsburgh, PA, USA
mcp@cs.cmu.edu

Abstract. Software development organizations are adopting multiple improve-
ment technologies to guide improvement efforts. A recent trend is the simultane-
ous adoption of CMMI and ISO models into a single environment originating
multi-model process solutions. Some of these models address similar areas of
concern and share similar quality goals. Reusing organizational implemented
practices is an opportunity to establishing compliance with multiple models and
reduce implementation costs.

Audits and assessments can take advantage of practices reuse if information
characterizing similarities between quality goals of different models is main-
tained. This paper proposes a conceptual model to support management of
quality goals information in support of multi-model audits and assessments.
An example is described of applying the proposed model in supporting the gen-
eration of data collection checklists to perform, in a single effort, a multi-model
audit process. The conceptual model is being applied in a Portuguese software
house with a multi-model process solution compliant with several improvement
technologies.

Keywords: Multimodel Environments, Software Process Audits, Process
Assessment, Software Process Improvement.

1 Introduction

Software organizations are adopting several improvement technologies to improve
their overall performance. Improvement technologies is used in this paper as short-
hand for reference models, quality standards, best practices or any type of practice
based improvement technology. Adoption of these improvement technologies is
driven by several reasons, namely: market pressure, the need to comply with regula-
tions and performance improvement. A multi-model process solution results from
adopting several improvement technologies into a single organizational environment.
A recurrent combination is the simultaneous adoption of the best practice model
CMMI-DEV [1] and the ISO9001 standard [2] into a single environment, originating
a multi-model process solution.

74 A.L. Ferreira, R.J. Machado, and M.C. Paulk

Some improvement technologies often address similar domains of concern defin-
ing similar expected practices and outcomes (hereafter referred as quality require-
ments). In a recent study the authors concluded that an high level of shared scope
exists between improvement technologies frequently adopted in the software domain
[3]. When this is the case, implementing practices to assure compliance with shared
quality requirements is an opportunity to reduce costs of implementing multiple im-
provement technologies (hereafter also referred as quality models).

A related concern is that quality models change and evolve. As result organiza-
tions inevitably need to change their practices by adopting new or dropping obsolete
practices. Evolution is a natural result of new releases of quality models, changes
in regulatory requirements or even the decision to address new markets, which require
market specific practices. In a managerial prescriptive, assuring traceability between
implemented practices and quality requirements is a good practice, it assures that
changes are traced back to implemented practices and manage the potential impact.
However, assuring this type of alignment and, at the same time, take advantage of
shared scope between adopted quality requirements is not straightforward. It requires
identifying similarities between quality requirements and then manage how imple-
mented practices related to quality requirements. An ad-hoc approach is prone to
inefficiencies that can jeopardize compliance objectives and cost effective implemen-
tations of multiple models.

Thus, an approach is needed to help improvement groups in assuring traceability
between multiple quality models and manage their change and evolution. Organiza-
tions in these scenarios are left with the challenge of assuring traceability of imple-
mented practices with quality requirements from different quality models and manage
information related to shared scope between quality requirements.

Siviy et.al. introduced the concept of harmonization in response to some chal-
lenges identified in multi-model environments [4]. A harmonization framework is
outlined describing the general steps needed to choose, compose and implement mul-
tiple quality models. Specifically, one of the opportunities identified in harmonizing
multiple quality models is to optimize costs in audits and assessments for operational
units and projects. This paper addresses this issue considering that, if quality models
share scope of concern, implemented practices and resulting outcomes can be used to
establish compliance with multiple quality models. Audits and assessments will bene-
fit from systematizing this information with the purpose of, in a single effort, collect-
ing evidence to evaluate compliance to multiple quality models implementation.

The paper is organized as follows: Section 2 discuses related work in the area of
harmonization and multi-model comparison and composition. Section 3 analyses
background information related to assessment, audits and appraisals, and describes
relevant considerations in the process of mapping models. Section 4 proposes a con-
ceptual model to systemize information relevant to support multi-model audits and
assessments. Section 5 describes an example of applying the proposed model and
Section 6 concludes and outlines future work.

2 Related Work

Multi-model environments challenges and opportunities were documented by Siviy
et.al. in [4]. Competition between improvement initiatives using several improvement
technologies, when implemented separately, becomes costly and benefits are eroded

 Supporting Audits and Assessments in Multi-model Environments 75

when compared to benefits of single efforts. Harmonization is introduced as a general
approach to align different model into a single environment by means of a harmoniza-
tion framework composed of four steps: 1) alignment of organizational and improve-
ment objectives and identify improvement technologies, 2) categorize improvement
technologies strategically, 3) design the improvement solution and 4) implement the
multi-model solution and measure results.

One recurrent technique applied in multi-model scenarios is the model mapping
technique. It is used to compare quality models with the purpose of finding associa-
tions between quality models by using a mapping function. Model mappings can be
used, in the harmonization context, in support of selection and composition of quality
models. The semantic associated to the mapping function determines the type of
model comparison and composition. In recent literature, the most recurrent type of
comparison, involves comparing model in terms of purpose and expected outcomes,
also denominated what/what comparisons and named as degree of relation or support
in [5] or mapping confidence in [6] and characterizes the amount of shared scope
between models. Examples of these mapping exercises are provided by Pino et.al in
[7-9].

In [10], Siviy et.al. identify tactical combinations between Six Sigma and CMMI-
Dev 1.2 (hereafter shortened to CMMI). Elements of each considered improvement
approach are compared and mapped to identify possible tactical combinations to drive
process improvement. The semantics of the mapping function is now centered in
identifying synergies between elements of process improvement initiatives, also de-
nominated what/how combinations. The focus is on finding similarities in addressable
scope by identifying synergies between improvement approaches.

Audits and assessments in multi-model environments will benefit from identifying
similarities concerning purpose and expected outcomes of considered quality models.
The model mapping technique can be used to obtain this type of information. To our
knowledge, previous research has not considered how information on identified
shared scope between quality requirements can be operationalized to support multi-
model audits and assessments. That is the subject of this research work.

3 Multi-model Audits and Assessments

When organizations adopt a quality model, practices and requirements are interpreted
according to organizational specific context and needs. Organizational specific prac-
tices are implemented aligned with adopted quality models. If a more formal approach
is used to define organizational practices, e.g., to satisfy CMMI maturity level 3
goals, practices definitions need to be formalized using process models and/or process
modeling languages, e.g., SPEM (Software & Systems Process Engineering Meta-
model Specification version 2.0) [11] specification provides relevant process con-
cepts for process definition. The result is an OSSP (Organizational Set of Standard
Processes) that provides a collection of process and practices definitions to be enacted
by the organization. From this set, project or organizational units define specific proc-
esses considering tailoring guidelines if applicable.

When organizations adopt several quality models, the sequence of model adoption
becomes an issue that must be considered. One may choose a first model for adoption,

76 A.L. Ferreira, R.J. Machado, and M.C. Paulk

carry out an implementation of the chosen model and then choose a second model for
implementation, following the implementation of the first model. Other possibility is
to choose more than one model and plan a joint implementation. When adopting more
than one quality model, harmonizing is beneficial to improve efficiency of joint im-
plementations [4]. Harmonizing focuses on finding possible similarities and synergies
of chosen models to facilitate and improve efficiency of joint implementations.

Multi-model environments will benefit from an explicit step for harmonizing
models before practices are incorporated in the organizational environment. Fig. 1
depicts a high level interpretation (not exhaustive on concerns related to harmoniza-
tion) of the harmonization framework introduced by Siviy et.al. in [12].

Fig. 1. High level process supporting harmonization

In the Select and Compose phase a Mapping Models task produces a mapping ta-
ble by receiving as input different quality models. Quality requirements from consid-
ered quality models are compared and a mapping table is produced. The mapping
table can be used as input to an engineering process to support development of a
multi-model process solution. In the Implement (Develop and Transition) step, simi-
larities and difference are identified and used to design practices and associated out-
puts alighted with harmonized quality requirements.

In designing our approach to support multi-model audits and assessments we con-
sidered the model mapping technique and the organizational scenario where an OSSP
exists, providing detailed definitions on how the organization processes should be
performed. This means the sequence in Fig. 1 has completed at least one iteration.
The motivation to consider such scenario is twofold: first, although model mappings
are subjective in nature, we considered publically available mappings by Mutafelija
and Stromberg [13] [14] has a good example in identifying shared scope between ISO
and CMMI quality models, due to their level of detail and completeness of compari-
son. The second reason is the fact research is being carried out in the context of a
Portuguese software house with a multi-model process solution. Critical Software
S.A. that recently achieved a CMMI maturity level 5 rating and complies with stan-
dards like ISO9001, Aerospace Standards 9100 and 9006 and ISO12207[15]. Our
approach is based on the following assumptions: a mapping between quality models
that considers shared scope as the semantic associated to the mapping function can
provide a first level guidance on identifying possible reuse points for joint audits
and/or assessments. Further, if an OSSP provides the necessary detail on how prac-
tices should be performed and these practices are aligned with one or more quality
models, OSSP elements can be reused to improve efficiency of data collection tasks
facilitating the implementation of audits and/assessments on a single effort.

 Supporting Audits and Assessments in Multi-model Environments 77

The following subsections detail concerns related to model mappings and some
considerations regarding audits, assessments and appraisals that will support the de-
sign of our conceptual model.

3.1 Model Mappings Considerations and Implications

One purpose of a model mapping exercise is to find similarities and differences between
a pair of improvement technologies. A mapping involves pairs of models and a mapping
function that relates entities of both models to deliver a mapping result. A mapping
result is a set of relations categorized by the mapping function between every entity of
one model to every entity of the second model. When mapping models, differences in
structure need be considered to produce the mapping e.g., CMMI defines specific prac-
tices within process areas, ISO12207 uses activities and tasks and ISO 9001 uses shall
statements. We are not considering a specific mapping between models so we abstract
these structural differences and refer to them as quality requirements.

When executing a mapping with objective of providing support to joint audits and
assessments, the following considerations assume central relevance:

1) A quality requirement from a quality model can share a “scope of concern”
with one or more quality requirements from other models. The degree of the
sharing or similarity can be characterized quantitatively or qualitative, e.g., a
CMMI practice can share, with different degrees of similarity, scope with
several ISO9001 shall statements. In practice, the mapping defines how
much of one quality requirement when implemented can be re-used to sup-
port the implementation of a mapped quality requirement

2) The degree of similarity of scope between quality requirements of different
models is not reflexive (à priori) – e.g., stating that a CMMI practice is re-
lated in a certain degree to an ISO 9001 shall statement is not the same as
stating the mentioned ISO9001 shall statement is related to the CMMI prac-
tice in the same degree. This fact has been also mentioned in [7].

The first consideration assumes that a relation can be established between quality
requirements to characterize the degree of shared scope. Whatever the scale used for
characterizing the degree of relationship, the semantic associated should be how re-
lated are intended purpose and expected outcomes of compared quality requirements
(product or service), e.g., the contents of the output can be used as evidence to dem-
onstrate, partially or totally, the fulfillment of the compared quality requirement.

Fig. 2 depicts this relation where a quality requirement can be related to multiple
quality requirements from different origins and each relation is characterized by a
coverage value that translates the aforementioned semantic. The mapping between
quality requirements defines dependencies between quality requirements, allowing
identifying possible reuse points for evidence collection.

Fig. 2. Coverage between quality requirements

78 A.L. Ferreira, R.J. Machado, and M.C. Paulk

The second consideration states the self-association (Coverage) in Fig. 2 is not re-
flexive. This is a direct result of the type of semantic associated with the considered
mapping. When relating a quality requirement to a second quality requirement from a
different model and analyzing the degree of similarity of the intended output, one needs
to consider that one quality requirement is fully implemented and compare how it re-
lates to the mapped quality requirement, e.g., when comparing a CMMI specific prac-
tice purpose and expected output, one may assert that, if fully implemented, it can be
used as evidence to satisfy an ISO 9001 shall statement. In this case CMMI assumes the
role of reference model and ISO 9001 as the mapped model. The degree of similarity is
characterized as the amount of reuse of the output of the CMMI implemented practice is
expected to provide to satisfy the compared ISO 9001 shall statement.

When comparing quality requirements to identify shared scope the following sce-
narios may occur: in Fig. 3, the first Venn diagram from the left shows how a mapped
requirement (transparent circle) can be partially (70 out of 100) covered by using a
subset of the outcome of a reference quality requirement (grey circle).

The second from the left represents an example where full coverage is attained but
the reference requirement can be said more extent in the scope it defines. The third
diagram represents an example where the comparison can be considered reflexive; the
scopes are similar and the outcomes are similar. Therefore, association between two
requirements cannot be considered bi-directional à priori and is defined as unidirec-
tional in Fig. 2. In the fourth Venn diagram no scope is shared between quality
requirements.

When defining mappings to support a joint audit and/or assessments, choosing a
quality model that provides the most detailed and most alighted requirements with
organizational business needs may be considered a logical decision, e.g., a software
company may consider CMMI as the reference model and ISO 9001 and ISO12207 as
secondary models. Thus, the mapping should be established using as reference model
CMMI and ISO9001 and ISO12207 as mapped models.

Fig. 3. Quality requirements mappings

3.2 Tracing Quality Requirements to Implemented Practices

Audits and assessments require objective evidence to establish conformance of im-
plemented practices with reference standards, regulations, plans, specifications and
capability frameworks and other relevant reference guidelines. Objective evidence is
any result or byproduct of implementation or institutionalization of practices. Objec-
tive evidence is mentioned in ISO1028 IEEE Standard for Software Reviews and
Audits [16], Standard CMMI Appraisal Method for Process Improvement [17] and
ISO15504-2 - Process assessment [18] to represent any relevant work product that
may be used to evaluate conformance.

 Supporting Audits and Assessments in Multi-model Environments 79

In the previous section we discussed that quality requirements provide guidance
for defining and implementing needed organizational practices. We also considered
that quality requirements from different models may be compared by relating their
expected outcomes and characterize then according their degree of similarity. This
section discusses how implemented practices can be linked back to quality require-
ments for the purpose of supporting audits and assessments in multi-model environ-
ments.

According to IEEE Standard 1028 [18] the purpose of a software audit is to pro-
vide an independent evaluation of conformance of software products and processes to
applicable regulations, standards, guidelines, plans, specifications, and procedures.
Concerning evidence collection for evaluation purposes, the standard makes reference
to interviews, examination of documents and witnessing processes as means to gather
objective evidence of non-conformance or exemplary conformance. Audit observa-
tions are documented based on these objective evidence and are classified as major or
minor. It does not provide any detail on how and where objective evidence should be
looked for.

According to ISO 15504 [16] process assessments have two primary contexts for
their use: process improvement and process capability determination. Process assess-
ments aim to find strengths, weaknesses and risks inherent to processes providing
drivers for improvement of processes. Process capability is determined by analyzing
organizational processes against a capability profile. A capability profile is based on a
measurement framework that defines a set of attributes that characterize the capability
of a process to fulfill its goals.

Three entities are relevant in performing process assessments:

 A measurement framework provides the capability profile and is used to de-
rive a capability rating.

 A process reference model or models e.g., CMMI or ISO 12207, provide the
necessary process descriptions that will be used as frame of reference for or-
ganizational practices capability determination.

 An assessment model defines elements to relate processes of the process ref-
erence model(s) chosen as reference and the measurement framework proc-
ess attributes to produce a capability rating. According to ISO 15504-5 - An
exemplar Process Assessment Model, elements of the assessment model can
be indicators of performance and capability.

A process assessment model forms a basis for the collection of evidence and rating of
process capability. It requires to establish a mapping between organizational proc-
esses to be assessed and the process reference model(s) process definitions [16].
ISO15504-2 refers to the suitability of a process model as a function of the degree of
focus of assessment model indicators on observable aspects of process enactment and
the assessment model degree of alignment with relevant process reference model [19].

An appraisal is defined as an examination of one or more processes using as ref-
erence an appraisal reference model as a basis for determining, as a minimum,
strengths and weaknesses [17]. It can be considered a type of assessment if it is per-
formed internally by the organization. One underpin of the SCAMPI (Standard
CMMI Appraisal Method for Process Improvement) appraisal method is the link
between CMMI process goals and implemented organizational practices. Goals are

80 A.L. Ferreira, R.J. Machado, and M.C. Paulk

satisfied by gathering objective evidence of each generic and specific practice imple-
mentation. Objective evidence is expected to be from different types e.g., oral affir-
mations must be collected to support objective evidence concerning practices imple-
mentation. The SCAMPI method defines the concept of practice implementation
indicator to support the evaluation of practices implementation. A practice is consid-
ered implemented when direct artifacts, indirect artifacts and affirmation are gathered
that provide substantiate evidence of practices implementation. Direct and indirect
artifacts can be documents and affirmations are oral or written statements that result
from interviews presentation or demonstrations.

Based on the analysis of audits and assessments approaches the concept of indica-
tor and the concept objective evidence assume a central importance. Indicators are an
abstract representation to group objective evidence of organizational practices imple-
mentation and establish the association between performed processes and measure-
ment attributes, if a capability assessment is to be performed. Also, affirmations are
obtained manly from interviews and are required to substantiate and provide objective
evidence of implemented practices. Based on this highlighted concepts, the next sec-
tion elaborates on a model that relates relevant entities in support of multi-model
audits and assessments.

4 Multi-model Audits and Assessments

As discussed in the previous sections, quality requirements of different model can be
related by the amount of shared scope. Purpose and expected outcomes are compared
to characterize their degree of similarity. Quality requirements also provide motiva-
tion and guidance to define organizational practices. Those are interpreted considering
organizational context and needs to define the most adequate set of practices in
achieving desired business goals.

In the context of multi-model environments, performing an evaluation of areas of
concern related to different quality models in a single audit or assessment can reduce
costs and improve efficiency of audits and assessments. e.g., in a single exercise
evaluate process compliance to ISO12207 and CMMI by reusing collected evidence.
In order to reuse collected evidence one needs to identify which artifacts are shared
among different quality requirements. This is possible by defining maps between
organizational practices and quality requirements, allowing to list artifacts relevant to
a specific quality requirement implementation. By considering coverage associations
between quality requirements it allows identify which artifacts can be shared among
related quality requirements.

The meta-model in Fig. 4 introduces relevant entities and how these relate to each
other in support of audits and assessments in multi-model environment. A QualityRe-
quirement is associated to zero or more QualityRequirement entities of different ori-
gin, e.g., one can map an ISO9001 shall statement to several CMMI specific prac-
tices. The association between quality requirements is set by Coverage association,
defining the degree of shared scope between QualityRequirement instances. As an
example, in a mapping between ISO9001 and CMMI , an ISO shall statement, Estab-
lish QMS, maps to 29 specific practices of CMMI with different coverage values,
defined by a scale of comparison that can assume values of 0,30,60,100.

 Supporting Audits and Assessments in Multi-model Environments 81

Considering that a formal definition of organizational practices is provided, e.g.,
an OSSP describing with detail performed practices and expected artifacts, one can
use this information and establish an association between quality requirements and
artifacts defined in the OSSP. An Artifact refers to any tangible process element used
to describe or maintain process related information, e.g., an artifact can be a Work
Product Definition, Task Definition and other process constructs if e.g., SPEM speci-
fication is used as a modeling language to define an OSSP.

An Indicator is used to group relevant process related artifacts defined in the
OSSP, which are expected to provide objective evidence of quality requirements
implementation. This step requires that a mapping between artifacts and related qual-
ity requirements is established, e.g., in support of specific practices of CMMI process
areas, a set of relevant work products and task descriptions are identified that are
expected to provide evidence of practice implementation, when these are enacted by
project or organizational units.

With mappings established between OSSP artifacts and quality requirements with
coverage associations between quality requirements defined, artifacts used as evi-
dence for a quality requirement implementation can be reused also as evidence for
mapped quality requirements, e.g., artifacts associated with CMMI specific practices
implementation can be reused to provide objective evidence of ISO9001 shall state-
ments which are mapped to CMMI specific practices.

Fig. 4. Traceability between quality requirements and implemented practices

Both audit and assessment standards make reference to the need of having sup-
porting oral of performed practices from practice implementers. The element Affirma-
tion is associated to Artifact to emphasize that artifacts require oral or written state-
ments as supporting objective evidence. An affirmation is a type of objective evidence
to confirm artifact related evidence. An Affirmation instance is expected mainly as
result of interviews when assessments and audits are performed.

The proposed model includes the concept of Scope to make explicit the notion that
audit and assessment may consider different scopes. A Scope instance has always an
associated Indicator instance which is always associated to a Quality Requirement
instance. By choosing relevant quality requirements from different quality models,
associated indicators are automatically identifiable, whether these are obtained di-
rectly by the Indicator/QualityRequirement association or indirectly by the Coverage
association defined between QualityRequirement instances.

82 A.L. Ferreira, R.J. Machado, and M.C. Paulk

An Affirmation instance can be associated to multiple scopes. This allows defining
different affirmation instances related to a same artifact, providing flexibility in defin-
ing different elements to support collection of oral or written statements for different
scope scenarios.

Fig. 5 depicts an example of a generic joint multi-model audit scenario based in
the perspective of the model proposed in Fig. 4. The two left columns depict six qual-
ity requirements (QR) considered for a desired scope (not shown in the diagram). The
first column represents mapped quality requirements and the second column repre-
sents quality requirements from a reference model. Coverage (C) associations are
established between selected quality requirements. The quality requirements in the
second column have associated indicators (I) defined. Each indicator results from
identifying relevant artifacts (A) that are expected to provide objective evidence of
implemented practices. Indicators are represented in the third column with associated
artifacts. It is possible to verify that different indicators may reuse artifacts as evi-
dence for different quality requirements implementation. This is possible as it de-
pends how practices and expected outcomes are implemented in the organizational
environment.

From the mappings defined between quality requirements it is possible to identify
QR(1), QR(2) and QR(3) from the mapped model have coverage associations defined
to QR(4) and QR(5) of the reference model, respectively. Five coverage associations
are defined with values of C(100), C(100), C(100) and C(60). The notation C(X) is
used to describe the Coverage association instead of an actual object to simplify the
object diagram. QR(1) and QR(2) can reuse artifacts from indicators I1 and I2 of
QR(4) and QR(5) respectively. QR(3) has only a portion of reused scope with QR(5)
and requires an indicator (I3) that identifies the set of artifacts to assure full compli-
ance coverage of QR(3).

The fourth column represents affirmations instances associated to artifacts for
each indicator. Questions are a possible type of affirmations that can be defined and
maintained by internal quality teams or process improvement groups, to use in obtain-
ing required oral or written statements as support of objective evidence, e.g., obtain
statements if a work product or activity description is implemented as expected.

In support of software audits, the model in Fig. 4 can be used to define multiple
audit scenarios, e.g., in performing project or process audits one may define different
types of audits and chose different scopes for each type. The scope of the audit is
defined by identifying relevant indicators which are associated to quality require-
ments from multiple quality models. Question can be maintained as instances of af-
firmation which can be associated to multiple different scopes

In the specific context of assessments and using as example the assessment model
proposed in ISO 15504-5 [19], an assessment model indicator is refined into perform-
ance and capability indicators. We opted to not include this level of refinement in the
conceptual model by considering that it depends on the method defined for the as-
sessment model. By considering solely the concept of indicator we leave the possibil-
ity of extending the concept of indicator to support possible different assessment
methods, e.g., by considering different measurement frameworks and associated ca-
pability indicators.

 Supporting Audits and Assessments in Multi-model Environments 83

Fig. 5. Generic joint audit or assessment scenario

5 Multi-model Process Audit Example

This section details the use of the conceptual model presented in the previous section
in support of a joint audit exercise. An organizational scenario is provided to describe
how it can be applied. ISO12207, ISO9001 and CMMI are considered to exemplify a
multi-model process environment and highlight the benefits of considering models
similarities in support of multi-model audits.

The model presented can be used in the context of QM (Quality Management) ac-
tivities and in the scope of Audit Process activities. In the scope of a QM process one
expects to identify possible similarities between quality models and then proceed to
identifying which OSSP process assets can be used in the process of determining
compliance with considered quality models. Fig. 6 depicts example QM related tasks
of Model Mapping and OSSP and QR mapping defined using SPEM 2.0 notation. The
output of the Model Mapping task are mapping tables where quality requirements
from different quality models are mapped and a coverage function is used to charac-
terize their relationship, considering their similarity in terms of purpose and out-
comes. To perform this task one needs to determine one of the quality models as the
reference model. By choosing a reference quality model the direction of the relation-
ship for the mapping function is determined. As an example CMMI will be consid-
ered as the reference model and ISO12207 and ISO9001 the mapped models. The
mappings between ISO12207 and ISO9001 to CMMI in [13, 14] provide output ex-
amples of the Model Mapping task for this type of scenario.

84 A.L. Ferreira, R.J. Machado, and M.C. Paulk

Fig. 6. Quality Management process

The resulting mapping tables are used as input to OSSP and QR mapping task
along with process definition related information. The expected output is an informa-
tion system based on the conceptual model described in the previous section.

The OSSP and QR mapping task includes the following steps:

1) The mapping tables are used to create QualityRequirement and Coverage in-
stances. First, all specific practices of CMMI, ISO12207 activity and tasks and
ISO9001 shall statements originate a QualityRequirement instance. The map-
pings resulting from the previous task are used to define Coverage instances be-
tween QualityRequirement instances.

2) For all QualityRequirement instances of the model considered as reference, an
Indicator instance is defined by identifying relevant Artifacts in the OSSP, e.g.,
if SPEM is used as process modeling language to define the OSSP, SPEM con-
structs like Task Definition, WorkProduct Definition, Activity, among others, can
be used as instances of type Artifact to define indicators for each specific prac-
tice of CMMI.

3) For all remaining QualityRequirement instances, not belonging to the reference
model, an analysis is required to evaluate if QualityRequirement related in-
stances (defined by a Coverage instance) do include all relevant artifacts in the
OSSP that can be useful in supporting desired compliance. This is a vital point
in the process of mapping quality requirements with OSSP process entities. It al-
lows reusing most of information regarding mapped quality requirements and
takes full advantage of shared scope between adopted models. If mapped quality
requirements do not provide full coverage, additional indicator instances need to
be defined identifying missing relevant OSSP artifacts, e.g., if an ISO12207 ac-
tivity is fully covered by related CMMI specific practices it can reuse artifacts
identified by the indicators associated to CMMI specific practices and still re-
quire extra artifacts to support full compliance for the activity considered.

Fig. 7 depicts an example (not exhaustive) of a QR/OSSP Traceability Information
System, describing associations on shared scope between quality requirements and
OSSP process related entities. The first and second columns represent quality
requirements from ISO9001 and ISO12207 respectively, along with their coverage
association with CMMI practices, which are represented in the third column.

 Supporting Audits and Assessments in Multi-model Environments 85

Fig. 7. QR/OSSP Traceability Information System example

The QR/OSSP Traceability Information System can be used to support the joint
model audit process. As an example, an audit scope can be defined to include, among
others, evaluation of CM (Configuration Management) process area of CMMI and
CM process from ISO12207. Checking the mapping table in [14] used to originate QR
and the QR/OSSP Traceability Information System, (see Fig. 6) it is possible to check
that all ISO 12207 CM activities and tasks have full coverage by CMMI CM specific
practices. Indicators defined to support CMMI CM practices data collection could be
reused to guide data collection for compliance with ISO12207 CM process. Within a
scope set to include CM practices from CMMI and ISO12207 an audit checklist tem-
plate for data collection can be easily defined in an audit planning task. The checklist
is defined by selecting the Configuration Management Scope, which lists the audit
questions and expected artifacts that could provide evidence of practices implementa-
tion (see Fig. 7).

Further, to optimize the audit process, questions can be added by internal auditors
concerning a specific scope to help gathering objective evidence on performed prac-
tices. These questions become instances of type Affirmation, which become associ-
ated to artifacts of the OSSP and the scope defined for a specific type of audit or
assessment. This association allows defining different questions for different scopes
relative to a same artifact. By maintaining information regarding Scope and Affirma-
tion instances it becomes simple to manage data collection checklists in support of
multi-model audits and/or assessments.

This section provided a small example on how joint audits can be performed reus-
ing most of the effort of evidence collection. In [3] a quantitative evaluation is
performed based on the mappings considered for this example that allowing to con-
clude that ISO9001 and ISO12207 share with CMMI 83% and 74% of their scope

86 A.L. Ferreira, R.J. Machado, and M.C. Paulk

respectively. This provides a measure on the amount of effort that could be optimized
when performing full compliance evaluations for multiple quality models. Our con-
ceptual model is designed to dispose information concerning shared scope between
quality requirements and how, in the presence of OSSP formal definition, process
related artifacts are being used in support of QRs implementation. By maintaining
information aligned with the proposed conceptual model, one can improve quality
management activities in multi-model environments by:

 Precisely identify which OSSP related artifacts are involved in quality re-
quirements implementation.

 Define indicators that operationalize the information related to shared scope
between quality requirements from different quality models.

 Identify which quality requirements are affected by possible changes in proc-
ess related artifacts.

 Identify which organizational practices can be dismissed by dropping spe-
cific quality requirements

 In the context of a project enactment system based on OSSP definitions, pro-
ject audits and capability assessments can be partially automated. This is
possible by monitoring process enactment of by collecting objective evi-
dence of performed practices.

6 Conclusions

In this paper a conceptual model to support management of information related to qual-
ity requirements of multiple improvement technologies was presented. The main goal is
to support audits and assessments of multiple improvement technologies in a single
effort. The underlining motivation is that different improvement technologies often
share scope of concern providing the opportunity to reuse evidences of organizational
practices implementation in evaluating compliance to multiple quality models.

The proposed conceptual model is based on the model mapping technique and in
the concept of performance indicator. The mapping is used to compare quality re-
quirements from different improvement technologies and evaluate their degree of
similarity concerning purpose and expected outcomes. The concept of indicator is
used to group organizational process entities involved in quality requirements imple-
mentation, which can be used to guide the collection of objective evidence of their
execution.

The model aims to help improve internal quality management capability in manag-
ing multi-model internal audits and assessments. An external multi-model certifica-
tion scheme is impossible as certification bodies yet do not acknowledge certifications
from other certification bodies.

A small example of using the concepts introduced in this paper is provided to ex-
emplify how the model can be useful in providing support to a joint process audit
considering ISO9001, ISO12207 and CMMI. The conceptual model is currently being
implemented in a Portuguese software house, Critical Software S.A., with the objec-
tive to improving the efficiency of conducting project and organizational audits. A
series of experiments are in progress to further validate the proposed model.

 Supporting Audits and Assessments in Multi-model Environments 87

References

1. Chissis, M.B., Konrad, M.: CMMI for Development, V1.2. Addison-Wesley, Reading
(2006)

2. ISO, ISO 9001:2000 Quality Management Systems - Requirements (2000)
3. Ferreira, A.L., Machado, R.J., Paulk, M.C.: Quantitative Analysis of Best Practices Models

in the Software Domain. In: 2010 17th Asia Pacific in Software Engineering Conference,
APSEC (2010)

4. Siviy, J., et al.: Maximizing your Process Improvement ROI through Harmonization
(2008), http://www.sei.cmu.edu/process/research/prime.cfm(accessed
February 2011)

5. Baldassarre, M., et al.: A Strategy for Painless Harmonization of Quality Standards: A
Real Case. In: Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) Product-Focused Software
Process Improvement, pp. 395–408. Springer, Heidelberg (2010)

6. Mutafelija, B., Stronberg, H.: Systematic Process Improvement Using ISO 9001:2000 and
CMMI. Artech House, Boston (2003)

7. Pino, F.J., Baldassarre, M.T., Piattini, M., Visaggio, G., Caivano, D.: Mapping Software
Acquisition Practices from ISO 12207 and CMMI. In: Maciaszek, L.A., González-Pérez,
C., Jablonski, S. (eds.) ENASE 2008/2009. Communications in Computer and Information
Science, vol. 69, pp. 234–247. Springer, Heidelberg (2010)

8. Pino, F.J., et al.: Harmonizing maturity levels from CMMI-DEV and ISO/IEC 15504.
Software Process: Improvement and Practice (2009)

9. Baldassarre, M.T., et al.: Comparing ISO/IEC 12207 and CMMI-DEV: Towards a
mapping of ISO/IEC 15504-7. In: ICSE Workshop on Software Quality, WOSQ 2009
(2009)

10. Siviy, J., Penn, M., Stoddard, R.W.: CMMI and Six Sigma Partners in Process Improve-
ment. Addison-Wesley, Reading (2008)

11. Object Management Group, Software & Systems Process Engineering Metamodel Specifi-
cation (SPEM) (2008)

12. SEI, Siviy, J., et al.: The Value of Harmonizing Multiple Improvement Technologies
(2008)

13. Mutafelija, B., Stromberg, H.: ISO 9001:2000 to CMMI v1.2 Map (2009),
http://www.sei.cmu.edu/cmmi/casestudies/mappings/cmmi12-
iso.cfm (accessed February 2011)

14. Mutafelija, B., Stromberg, H.: ISO 12207:2008 to CMMI v1.2 Map, SEI, Editor (2009)
15. ISO/IEC 12207 - Systems and software engineering - Software life cycle processes.

ISO/IEC and IEEE (2008)
16. ISO, ISO/IEC 15504-2 Software engineering — Process assessment — Part 2: Performing

an assessment in ISO/IEC(2004)
17. SEI, Standard CMMI Appraisal Method for Process Improvement (SCAMPISM) A,

Version 1.2: Method Definition Document (2006)
18. IEEE, IEEE Standard for Software Reviews and Audits, in IEEE STD 1028-2008 (2008)
19. ISO, ISO/IEC 15504-5 Information Technology — Process assessment — Part 5: An

Exemplar Process Assessment Model (2006)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 88–102, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Scrum Practices in Global Software Development:
A Research Framework

Emam Hossain, Paul L. Bannerman, and D. Ross Jeffery

NICTA, Australian Technology Park, Sydney, Australia
UNSW, The University of New South Wales, Sydney, Australia

{Emam.Hossain,Paul.Bannerman,Ross.Jeffery}@nicta.com.au

Abstract. Project stakeholder distribution in Global Software Development
(GSD) is characterized by temporal, geographical and socio-cultural distance,
which creates challenges for communication, coordination and control. Practi-
tioners constantly seek strategies, practices and tools to counter the challenges
of GSD. There is increasing interest in using Scrum in GSD even though it
originally assumed collocation. However, empirically, little is known about
how Scrum practices respond to the challenges of GSD. This paper develops a
research framework from the literature as a basis for future research and prac-
tice. The framework maps current knowledge and views on how Scrum prac-
tices can be used to mitigate commonly recognized challenges in GSD. This
research is useful as a reference guide for practitioners who are seeking to un-
derstand how Scrum practices can be used effectively in GSD, and for research-
ers as a research framework to validate and extend current knowledge.

1 Introduction

Global Software Development (GSD) is a major trend in software engineering. Rapid
advances in computer networks, telecommunications, internet technologies and col-
laboration tools have provided enough infrastructures to enable firms to take advan-
tage of high-skilled, low-cost offshore resources in developing and maintaining new
software. It is claimed that GSD can reduce time to market, increase productivity,
improve quality, and provide cost efficiencies for software developing organizations
[28]. However, as well as expected benefits, GSD challenges have also been identi-
fied [29]. In particular, GSD is usually characterized by engagements with different
national and organizational cultures in different geographic locations and time zones,
using various traditional and IT-enabled means to collaborate. Such arrangements
may encounter major difficulties in team communication, coordination, control, infra-
structure compatibility, conflicting expectations, achieving shared understanding and
building trust [8]. Therefore, GSD practitioners need to employ suitable context-
specific mechanisms to mitigate these problems. Various solutions have been pro-
posed, such as dividing work into separate well-specified independent modules to
minimize communications between sites [30]. However, in practice, practitioners still
experience significant issues and continue to look for more effective mechanisms to
mitigate inherent GSD challenges and risks [31].

 Scrum Practices in Global Software Development: A Research Framework 89

Agile methods are gaining popularity in software development contexts character-
ized by high uncertainty. They promise handling requirements changes throughout the
development lifecycle; promote extensive collaboration between customers and de-
velopers; and support early and frequent delivery of products [32]. However, an issue
for GSD is that the design of Agile methods assumes collocated development teams
whereas GSD assumes distributed teams. Notwithstanding this, practitioners have
begun to adapt Agile practices to GSD to leverage the advantages of both approaches
[33]. Among the current Agile methods, Scrum practices are increasingly being con-
sidered and trialled in GSD projects. Initial empirical findings suggest that using
Scrum practices in GSD can improve communication, trust, motivation and product
quality [1]. Also, industry experience suggests that Scrum practices may promote
communication, collaboration, frequent product delivery, and reduce some GSD chal-
lenges and risks [8, 24].

We acknowledge that GSD challenges apply to any software development method
used in GSD projects, including non-Agile methods, and that Scrum may share some
mitigation mechanisms, including complementary enabling tools, with other methods.
However, our focus in this study is solely on Scrum practices, not other methods or
the relative capabilities of Scrum versus other software development methods.

Little empirical research has been done on how Scrum practices can mitigate the
challenges presented by the distributed nature of GSD projects [34]. A small number
of case studies discuss the benefits and difficulties of using Scrum practices in GSD
[1, 2], but most reports in the literature record only industrial experiences. Therefore,
a knowledge gap exists. There is a need for more empirical studies on how Scrum is
being used in GSD and how Scrum practices might be applied and with what tool
support to overcome the challenges encountered in GSD.

To begin to address this gap, we propose a research framework that maps current
literature-based prescriptions on how Scrum practices might mitigate commonly rec-
ognised GSD challenges. The framework draws on views from 27 primary papers that
were identified in a Systematic Literature Reviews (SLR), following the guidelines
prescribed in [35].

Since most current software engineering literature on the topic comprises industry
experience reports, the proposed framework offers two main contributions: first, it
provides a consolidated representation of current views on how Scrum practices might
be applied to overcome the recognized challenges of GSD, and; second, it provides an
integrated set of initial propositions about the potential role of Scrum practices in
GSD that can be validated in subsequent empirical studies and used to guide practice.

The remainder of this paper is organized as follows. Section 2 overviews the litera-
ture and describes the framework development. Section 3 describes the research
framework. Section 4 then discusses the contribution and future research before con-
cluding in the last section.

2 Research Background

This section overviews the literature on GSD challenges and Scrum practices in GSD
as background to describing the development of the proposed research framework.

90 E. Hossain, P.L. Bannerman, and D.R. Jeffery

2.1 GSD Challenges

There is a growing body of literature that focuses on challenges in GSD. Communica-
tion, coordination and control challenges are recognised to arise due to geographic,
temporal and socio-cultural distances encountered in GSD [33]. A recent literature
review also identified group awareness, knowledge management, coordination, col-
laboration, project and process management, process support, and risk management as
likely issues in distributed software development [28].

Temporal distance may create communication issues such as reduced hours of col-
laboration, difficulties in holding synchronous meetings, and response delays [40]. As a
result, GSD coordination processes may also be significantly affected [33]. Geographic
distance makes communication difficult because of the reduced ability to hold face-to-
face meetings [32]. Lack of face-to-face meetings reduces informal contact and this can
lead to a lack of critical task awareness, lack of “teamness” and reduced trust [32, 37].
Therefore, a fundamental GSD problem is that many of the mechanisms that function to
coordinate work in a collocated setting are absent or disrupted [12]. Socio-cultural dis-
tance may create issues relating to inconsistent work practices, different perceptions of
authority, and lack of mechanisms for creating shared understanding and avoiding mis-
understandings and reduced cooperation [1, 32, 33, 38, 44].

Several GSD issues frameworks and models already exist in the literature [24, 33,
34, 39, 40]. For example, one maps communication, coordination and control process
issues against temporal, geographical and socio-cultural distance dimensions [33];
others present risk frameworks for the use of Agile practices in GSD [24, 31]; and
another presents a model of how remote communication and knowledge management,
cultural diversity and time differences negatively impact requirements engineering in
GSD [39]. Our proposed framework integrates the GSD issues classification scheme
of [33] as one dimension and uses Scrum practices [1] as the other dimension.

2.2 Scrum Practices in GSD

Scrum is an iterative, time-boxed, incremental project management method based on
a simple “inspect and adapt” framework [29]. A major reason for the success of
Scrum is the physical collocation of development team members [32]. However, the
literature also reports instances of success in using Scrum practices in GSD [34]. For
example, a recent study found that using Scrum practices in GSD improves communi-
cation, trust, motivation and quality [1]. Some reports also claim that some Scrum
practices can mitigate some of the recognized GSD challenges [8, 24]. For example,
based on experience, one report claims that Scrum practices such as daily scrum,
scrum of scrums, sprint planning and retrospective meetings engage distributed team
members in collaboration, help visualization of hidden problems, develop trust and
increase team spirit [23]. Similarly, [8] claims that sprint planning provides shared
visualization of project activities and increases “teamness”. Furthermore, [21] sug-
gests that daily scrum meetings bring transparency and encourage informal communi-
cation among distributed stakeholders; sprints provide frequent offsite work monitor-
ing opportunities; sprint planning meetings provide shared understanding of common
goals and improve task awareness, and; sprint ‘demos’ bring transparency to stake-
holders and prevent problems early.

Our proposed research framework draws on the Scrum practice set identified in
one of the few empirical studies of the use of Scrum in GSD, namely [1].

 Scrum Practices in Global Software Development: A Research Framework 91

2.3 Research Framework Development

In sum, a review of the developing literature on the use of Scrum practices in GSD
indicates encouraging results [34]. However, there is a paucity of empirical studies in
the literature. Most current studies are industry experience reports so there is a need
for further empirical research.

An initial way forward is to construct a research framework from the current re-
ports as a basis on which to empirically validate and build on current knowledge and
experience. The framework is intended to integrate current literature-based results and
views about how Scrum practices have been found to be effective (or are expected to
contribute) in mitigating the challenges that arise in GSD. We propose such a frame-
work and approach in the remainder of this paper.

The framework, in Table 4, shows GSD challenges as rows and Scrum practices as
columns. The rows list challenges facing software development in global contexts
identified in [33] and [40]. Twelve GSD challenges were identified from [33] and
[40] in three broad categories (communication, coordination, and control), each relat-
ing to a particular source characteristic (temporal, geographical or socio-cultural dis-
tance). These challenges are summarized in Table 1, adapted from [33] (and each
challenge is further described in [40]). For example, reduced opportunities for syn-
chronous communication are attributed to communication and feedback delays due to
offset time zones between locations (refer to [40] for the remainder).

Table 1. Summary of GSD challenges

Process
Category Challenge Source Category

Reduced opportunities for synchronous communication Temporal distance

Face to face meetings difficult Geographical distance Communication

Cultural misunderstandings Socio-cultural distance

Increased coordination costs Temporal distance

Reduced informal contact can lead to lack of critical task
awareness

Geographical distance

Inconsistent work practices can impinge on effective
coordination

Socio-cultural distance
Coordination

Reduced cooperation arising from misunderstanding Socio-cultural distance

Management of project artefacts may be subject to delays Temporal distance

Difficult to convey vision and strategy Geographical distance

Perceived threat from training low-cost ‘rivals’ Geographical distance

Different perceptions of authority can undermine morale Socio-cultural distance

Control

Managers must adapt to local regulations Socio-cultural distance

The columns in the reference framework in Table 4 list seven Scrum practices

identified in an empirical study of the use of Scrum in GSD [1]. These are: sprint
planning meeting, sprints, daily scrum, scrum of scrums, sprint demo (or review),
retrospective meeting, and backlog (refer to [1] for a description of these practices).

The table cells are populated from our literature review, with the literature-based
challenge mitigation mechanisms summarized in categories. The categories, described
in Tables 2 and 3, were derived as follows. The initial SLR [34] and a subsequent

92 E. Hossain, P.L. Bannerman, and D.R. Jeffery

search using the same protocol found 27 primary papers [1-27]. These papers were
examined for empirical evidence, unsupported theory, and/or observations from ex-
perience indicating how Scrum practices might mitigate GSD challenges. The search
resulted in 202 scrum-related mechanisms being identified. Due to the large number,
the mechanisms were then examined to find common themes, which enabled them to
be clustered into eight categories. The categories are described in Table 2. The pri-
mary papers that identified one or more mechanisms within a category are marked
with an X in Table 3 (a spreadsheet of the full detailed list of practices, reference
sources and categorizations is available from the first author upon request).

The search protocol, paper selection and practice extraction and categorisation
were enacted, validated and cross-checked by two researchers.

Table 2. GSD Challenge Mitigation Mechanism Categories

Category ID Description

Synchronized
work hours

GSD_P1
Increase overlapping working hours between sites to enable synchronous communi-
cation for meetings; for example, adjust working hours at sites to create some over-
lap or participate in meetings from home

ICT-mediated
synchronous
communication

GSD_P2
Practices that enable synchronous formal or informal communication between
teams; for example, use individual or conference phone calls, teleconference, video
conference, web conference, or application

ICT-mediated
asynchronous
communication

GSD_P3
Practices that enable asynchronous communication between team members; for
example, email, Instant Messaging, or Wiki

Visit GSD_P4
Face-to-face meeting made possible by travelling between sites. Two main kinds:
seeding visits to build relationships, and; maintaining visits to sustain relationships

Frequent (or
Improved)
communication

GSD_P5
Enable frequent formal and informal communication among team members through
tools and/or face-to-face meetings

Iteration GSD_P6
Activities that involve cyclical repetition enable multiple incremental opportunities
to monitor progress and resolve issues

Review GSD_P7
Formal or informal activities that enable reflection on prior activities, assessment of
completed work, and the opportunity for stakeholders to provide feedback to the
teams

Planning GSD_P8
Activities that establish the scope of work, resourcing, scheduling, and the processes
to be employed

The categories described in Table 2 reflect a range of approaches found in the lit-
erature to overcome challenges arising from the temporal, geographical, and socio-
cultural distances encountered in GSD. For example, mechanisms to address temporal
distance include adjusting working hours [37], increased use of asynchronous col-
laboration tools [39] and use of bridging across sites [40]. To address geographical
distance, mechanisms include using synchronous and asynchronous communication
tools [39], visits (travel) [40] and modularization of work [38]. To address socio-
cultural distance, mechanisms include liaisons [40], increased use of asynchronous
tools [39], and planned rotations (visits) [39]. While these mechanisms appear to be
generic (that is, they are equally applicable to any development method), the underly-
ing principles of Agile methods imply that Scrum practice may leverage additional
benefits from their use. For example, the last four categories (GSD_P5 to GSD_P8),
represent mechanisms that reflect inherent characteristics of many Scrum practices
themselves (that it, the Scrum practices themselves may mitigate the GSD challenge).

 Scrum Practices in Global Software Development: A Research Framework 93

Table 3. GSD challenge mitigation mechanism categories referenced in the literature

Mechanism
Categories

Paper
Reference

GSD_P1 GSD_P2 GSD_P3 GSD_P4 GSD_P5 GSD_P6 GSD_P7 GSD_P8

[1] X X X X X X X
[2] X X X X
[3] X X X X X X X
[4] X X X X X
[5] X X X X X
[6] X X X X X X X X
[7] X
[8] X X X X
[9] X X X X
[10] X X X
[11] X X X
[12] X X X X
[13] X X X X
[14] X X X X X
[15] X X X X X X
[16] X X X X X X
[17] X X X X X
[18] X X X
[19] X X X X X
[20] X X X X X
[21] X X X X X X X X
[22] X X
[23] X X X X
[24] X X X
[25] X X X X X X X
[26] X X X
[27] X X

The findings on how Scrum practices might contribute to overcoming each GSD

challenge are described in the next section. Empty cells in Table 4 indicate that no
mitigation mechanism was found relating to that combination of variables in the lit-
erature. The framework contributes an integrated summary of the literature-based
findings and expectations of how common Scrum practices might mitigate (minimize
or reduce to zero) the distance-based challenges that can arise in developing software
in dispersed global locations.

The research framework provides value as an independent research outcome, as a
reference guide to inform current practice, and as a basis upon which to conduct fur-
ther empirical research (starting with validation of the literature-based views con-
tained within it).

3 Research Framework

This section describes the proposed research framework.

3.1 Communication Challenges

According to the literature, temporal, geographical and socio-cultural distance may
impact GSD communication processes by creating three main challenges: reduced

94 E. Hossain, P.L. Bannerman, and D.R. Jeffery

opportunities for synchronous communication; face-to-face meeting [are] difficult,
and; cultural misunderstandings (Table 1). The mechanisms that may mitigate each
challenge, summarised by category in Table 4, are discussed following.

Reduced opportunities for synchronous communication (due to temporal distance):
The effect of time zone offsets can be so great that there is little or no opportunity for
direct contact between dispersed team members. The literature suggests that Scrum
practices can mitigate this challenge by synchronizing work hours (GSD_P1) and/or
ICT-mediated asynchronous communication (GSD_P3). For example, Scrum team
members may participate in daily scrums in common working hours or outside nor-
mal hours by adjusting working hours, or by emailing answers to the three questions
before the meeting (What did I do yesterday? What will I do today? What impedi-
ments are in my way?), and reviewing minutes emailed back after the meeting. Simi-
larly, for most (if not all) of the other meeting practices, team members from each site
may synchronize work hours to achieve a suitable meeting time and/or use various
asynchronous communication tools (such as wiki or email).

Face-to-face meetings difficult (due to geographical distance): Due to developers
being located in different countries, it can be difficult to hold face-to-face meetings.
The literature suggests that this challenge can be met by using ICT-mediated synchro-
nous communication (GSD_P2) to hold meetings online. It also suggests, in the case
of sprint planning, that ICT-mediated asynchronous communication (GSD_P3),
and/or visits (GSD_P4) can be used, and; in the case of sprints, that the challenge can
be mitigated by visits (GSD_P4) to another site. Distributed teams may use a wide
range of ICT-mediated synchronous communication tools to support their Scrum
practices, such as: teleconference; videoconference; web-conferencing; audio/video
Skype; Microsoft Office Communicator with Live Meeting; and/or desktop sharing
and Microsoft Net Meeting for application sharing. Similarly, ICT-mediated asyn-
chronous communication tools such as email, Internet Relay Chat (IRC), and Wiki
may be used to support meetings. Distributed team members may also physically visit
a counterpart site to plan and/or conduct a sprint as a collocated team; or, in some
cases, when new knowledge needs to be transferred, some offshore team members
may visit the onshore site to work for a few sprints.

Cultural misunderstandings (due to socio-cultural distance): With developers lo-
cated in different countries, misunderstandings can occur due to language and cultural
differences. The literature suggests that Scrum practices may reduce cultural misun-
derstandings by using: ICT-mediated asynchronous communication (GSD_P3); visits
(GSD_P4), and/or; frequent (or improved) communication (GSD_P5). For example,
distributed Scrum team members could post answers to the three Scrum questions into
a wiki (an ICT-mediated asynchronous communication tool) which can help to reduce
misunderstandings. Similarly, visits by distributed team members to other sites for
sprints can also increase familiarization and understanding between teams, and; fre-
quent participation by distributed teams in daily scrums and sprint planning meetings
can provide many communication opportunities to break down cultural barriers and
increase cultural awareness.

 Scrum Practices in Global Software Development: A Research Framework 95

Table 4. Research Framework: GSD Challenge Mitigation Mechanisms by Categories

 Scrum practice

GSD challenges
Sprint

Planning Sprint
Daily

Scrum
Scrum of
Scrums

Sprint
Review

Retro-
spective Backlog

Temporal: Reduced opportuni-
ties for synchronous communi-
cation

GSD_P1,
GSD_P3

 GSD_P1,
GSD_P3

GSD_P1 GSD_P1,
GSD_P3

GSD_P1,
GSD_P3

Geographical: Face to face
meetings difficult

GSD_P2,
GSD_P3,
GSD_P4

GSD_P4 GSD_P2 GSD_P2 GSD_P2 GSD_P2

C
om

m
un

ic
at

io
n

Cultural: Cultural misunder-
standings

GSD_P5 GSD_P4 GSD_P3,
GSD_P5

Temporal: Increased coordina-
tion costs

GSD_P1,
GSD_P3

 GSD_P1,
GSD_P3

GSD_P1 GSD_P1,
GSD_P3

GSD_P1,
GSD_P3

Geographical: Reduced infor-
mal contact can lead to lack of
critical task awareness

GSD_P2,
GSD_P8

GSD_P4,
GSD_P6

GSD_P3,
GSD_P5,
GSD_P7,
GSD_P8

GSD_P5,
GSD_P7,
GSD_P8

GSD_P2,
GSD_P7

GSD_P3,
GSD_P7

GSD_P3,
GSD_P7,
GSD_P8

Cultural: Inconsistent work
practices can impinge on
effective coordination

 GSD_P6 GSD_P5

C
oo

rd
in

at
io

n

Cultural: Reduced cooperation
arising from misunderstandings

GSD_P3,
GSD_P5,
GSD_P8

GSD_P4,
GSD_P6

GSD_P5 GSD_P5 GSD_P5,
GSD_P7

GSD_P5,
GSD_P7

Temporal: Management of
artifacts may be subject to
delays

Geographical: Difficult to
convey vision and strategy

 GSD_P4,
GSD_P8

GSD_P5,
GSD_P8

 GSD_P7

Geographical: Perceived threat
from training low cost ‘rivals’

Cultural: Different perceptions
of authority can undermine
morale

GSD_P5 GSD_P5 GSD_P5

C
on

tr
ol

Cultural: Managers must adapt
to local regulations

3.2 Coordination Challenges

According to the literature, temporal, geographical and socio-cultural distance may
impact GSD coordination by creating four main challenges: increased coordination
costs; reduced informal contact, leading to a lack of critical task awareness; inconsis-
tent work practices that can impinge on effective coordination, and; reduced coopera-
tion arising from misunderstandings (Table 1). The mechanisms that may mitigate
each challenge, summarised by category in Table 4, are discussed following.

Increased coordination costs (due to temporal distance): The effect of time zone
differences can be so great that project coordination complexity and costs increase. As
for the communication challenge, the literature suggests that Scrum practices can be
used to mitigate coordination costs by: synchronizing work hours (GSD_P1), and/or;
using ICT-mediated asynchronous communication (GSD_P3). For example, distrib-
uted team members may adjust work hours to participate in Scrum meetings, thereby

96 E. Hossain, P.L. Bannerman, and D.R. Jeffery

improving project coordination by enabling progress to be reviewed, work to be
planned and open issues resolved between sites in a cost effective manner. Costs may
also be reduced by distributing relevant material before and/or after meetings via
asynchronous means (such as email, audio and video recordings, and wikis).

Reduced informal contact can lead to lack of critical task awareness (due to geo-
graphical distance): Due to geographical dispersion, lack of close interaction be-
tween developers may reduce team awareness. The literature suggests that Scrum
practices can mitigate this challenge by: ICT-mediated synchronous (GSD_P2) and/or
asynchronous communication (GSD_P3); frequent (or improved) communication
(GSD_P5); iteration (GSD_P6); review (GSD_P7), and/or; planning (GSD_P8). For
example, distributed team members may use synchronous communication tools such
as video-conferencing to increase their sense of presence in meetings with other team
members. They may also use ICT-mediated asynchronous communication in support
of meetings to increase task awareness. For example, for retrospectives, one approach
is to implement a transition backlog into which distributed team members can record
and save ad-hoc improvement ideas. A significant benefit of the Scrum model is that
all practices offer the opportunity to review what is required and/or what is being
done, which increases task awareness. Similarly, the iterative nature of sprints and
work planning also provide opportunities for, and encourage, informal interactions as
well as formal contacts that can improve task awareness within the distributed teams.

Inconsistent work practices can impinge on effective coordination (due to socio-
cultural distance): Due to developers being located in different countries, there may
be differences in national culture, language, motivation and work ethics that can im-
pede effective project coordination. The literature suggests that daily scrum and sprint
practices can mitigate this challenge through frequent (or improved) communication
(GSD_P5) and/or iteration (GSD_P6), respectively. For example, regular participa-
tion of distributed team members in daily scrum meetings can help to maintain consis-
tent work practices between sites. Similarly, iterations of sprints reinforce practice
consistency and improve coordination between distributed sites.

Reduced cooperation arising from misunderstandings (due to socio-cultural dis-
tance): Similarly, team member cooperation might be reduced due to cultural and
language differences creating misunderstandings. The literature suggests that Scrum
practices can mitigate this challenge by: ICT-mediated asynchronous communication
(GSD_P3); visits (GSD_P4); frequent (or improved) communication (GSD_P5); it-
eration (GSD_P6); review (GSD_P7), and/or; planning (GSD_P8). For example,
sprint planning meetings may be recorded by a web-conferencing tool and played
back by the offshore team to reinforce its understanding. Distributed team members
may also travel to other sites to participate in a few sprints as a collocated team to
develop their understanding and increase cooperation and team coordination. Also,
participation of distributed team members in Scrum meetings and reviews can provide
frequent opportunities for communication to reduce misunderstandings between team
members and improve cooperation and coordination. Similarly, the iteration of sprints
and related meetings enables misunderstandings to be identified and resolved early,
thereby reinforcing ongoing cooperation and improving project coordination.

 Scrum Practices in Global Software Development: A Research Framework 97

3.3 Control Challenges

Finally, according to the literature, temporal, geographical and socio-cultural distance
may impact GSD control processes by creating five main challenges: management of
project artefacts may be subject to delays; difficulty in conveying vision and strategy;
perceived threat from training low cost rivals; different perceptions of authority that
undermine morale, and; managers must adapt to local regulations (from Table 1). The
mechanisms that may mitigate each challenge, summarised by category in Table 4,
are discussed following.

Management of project artefacts may be subject to delays (due to temporal dis-
tance): When a project involves members from different sites, enforcing process and
artefact standards can be particularly important in maintaining consistency and inter-
operability. There was no evidence in the literature, however, of the use of Scrum
practices to mitigate this specific GSD challenge.

Difficult to convey vision and strategy (due to geographical distance): Due to stake-
holders being located in different countries, it can be difficult for onshore-based
managers to convey the project vision and strategy to offshore sites. The literature
suggests that Scrum practices can variously mitigate this challenge by: visit
(GSD_P4); frequent (or improved) communication (GSD_P5); review (GSD_P7),
and/or; planning (GSD_P8). For example, daily scrums enable team members to
communicate frequently, enabling the project’s vision and strategy to be reinforced
within the project. In sprint reviews, offshore team members are able to ask product-
and project-related questions of the onshore team and, in some cases, the product
owner or customer, thereby increasing their understanding of the project’s mission.
Also, distributed team members may visit the onshore site and/or participate in a
Sprint “zero” (project kickoff Sprint), which can develop an understanding of the
product vision and strategy and project goals.

Perceived threat from training low cost ‘rivals’ (due to geographical distance): Em-
ployees in higher cost economies can feel that their jobs are under threat from re-
sources sourced from lower cost economies. However, there was no evidence in the
literature of the use of Scrum practices to mitigate this specific GSD challenge.

Different perceptions of authority can undermine morale (due to socio-cultural
distance): Perception of authority in a team environment can vary between cultures.
For example, in some cultures (e.g. Irish), developers may require their superiors to
earn their respect and in others (e.g. US culture) give more unquestionable respect to
figures of authority [40]. The literature suggests that Scrum practices can mitigate this
challenge by frequent (or improved) communication (GSD_P5). For example, partici-
pation of onshore and offshore teams in daily scrums, sprint planning and review
meetings can help members develop a sense of individual worth and value as a team
member. These meetings can also clearly establish the boundaries of responsibility for
the sprint within and outside the Scrum team.

Managers must adapt to local regulations (due to socio-cultural distance): When
working in a global setting, onshore-based managers must be aware of the limitations
that local regulations can bring to the project. There was no evidence in the literature,
however, of the use of Scrum practices to mitigate this specific GSD challenge.

98 E. Hossain, P.L. Bannerman, and D.R. Jeffery

4 Discussion

Industry experience suggests that use of Scrum practices can provide communication,
coordination and control benefits in GSD. As a result, there is increasing interest in
using Scrum practices for GSD. However, empirical research on Scrum practices in
GSD is scarce. Therefore, a knowledge gap exists on the use of Scrum in GSD in re-
search and practice. Based on findings and experiences reported in the literature, we
have proposed a research framework as a basis for developing further understanding.
The framework integrates current results and views on how Scrum practices mitigate
the challenges of distributed and global software development. The mechanisms were
found to fit into eight categories. The framework contributes a research outcome in
itself, a reference guide for current practice, and a basis for future empirical validation
and investigation for research.

Examining the table overall, the literature appears to suggest that Scrum practices
have no distinctive advantage over other development methods in mitigating temporal
distance-based challenges (since adjusting working hours for meetings and using ICT-
mediated asynchronous communications tools are available to any method). However,
while communication tools (which are common mechanisms) are also prescribed to
mitigate geographical challenges, these other challenges appear to also be mitigated
by mechanisms such as frequent communication, iteration, planning and review that
are distinctively inherent in Scrum practices.

4.1 Limitations

The proposal has some limitations. First, the framework is a theoretical contribution
that remains to be empirically validated. Since few of the source articles from the lit-
erature are empirical studies (indeed, most are industry experience reports), the
framework represents mostly theoretical propositions that need to be empirically vali-
dated. This work is proceeding in related research.

Second, it may be possible, in some instances, that the researchers misinterpreted
an author’s intent. For example, the researchers may have incorrectly interpreted an
effect of a Scrum practice on a GSD challenge that is inferred in a paper rather than
explicitly stated. The use of two researchers reviewing the papers reduced the likeli-
hood of this occurring. Furthermore, subsequent use of the framework in empirical
testing will validate its legitimacy from the perspectives of both the researchers who
developed it and the authors of the papers on which it was based.

Third, the challenges and mechanisms contained in the framework are not exhaus-
tive so may not be complete. For example, relevant studies may also exist in the sys-
tems engineering and/or information systems literatures, which were not included in
this study. Also, this is an evolving field in software engineering; other studies may
have emerged since the literature review was completed. The framework, however, is
easily extendible to take on new challenges and mitigation mechanisms as new re-
search emerges.

Finally, the framework implicitly assumes a generic GSD context so it may ob-
scure project-specific variations in mechanisms. GSD takes many forms, depending
on contextual factors, which may heavily influence how and which Scrum practices
are used [42]. For example, contextual variables such as team size, collaboration

 Scrum Practices in Global Software Development: A Research Framework 99

mode, number of distributed sites, degree of overlap in time zones, and degree of
socio-cultural-economic compatibility will influence the configuration of a particular
GSD project. Our expectation is that the framework will evolve to encompass a base
set of challenges and mitigation mechanisms that will be relevant in most GSD pro-
jects using Scrum practices.

4.2 Implications

This review and the framework it has produced raise implications for research and
practice. First, for research, questions arise from some initial observations of the
framework:

1. Three challenges (in the Control section of Table 4) are not mitigated by any
mechanisms in the literature. Is this because of gaps in the literature? Are these
challenges invalid? or Is Scrum unable to respond to these challenges at all?

2. Two other control challenges are mitigated by only a few mechanisms. Does this
mean that these challenges are significant threats to the use of Scrum in GSD?

3. Six of the nine rows that contain mitigating mechanism categories, include one or
more mitigation mechanism from categories GSD_P5 to GSD_P8. This implies
that for these GSD challenges, the nature of the Scrum practice itself is sufficient
to mitigate the challenge. For example, the literature suggests that the challenge
“Inconsistent work practices can impinge on effective coordination” can be miti-
gated by the fact of holding daily (frequent) scrums and/or iterative sprints. Does
this mean that Scrum practices are particularly effective in mitigating these chal-
lenges?

4. Maintaining backlogs appears to have a limited role in reducing GSD challenges.
Alternatively, does this represent a gap in the practice and research literature?

These observations point to areas for future research.
Second, at a higher level of thinking, the framework reinforces the contingency

theory view of development methodologies that there is no one “ideal” method for
every context [43]. Every development context is different, requiring an adapted
method and, to be practically useful, every method needs to be adaptable to different
development contexts. Scrum was originally conceived for Agile development in col-
located teams. However, with some support and enablement of various tools and
mechanisms, Scrum may also be directly or indirectly effective in developing soft-
ware in globally distributed team environments.

Third (and more concretely), the framework raises other questions for ongoing
software engineering process research. For example, given that it may be possible to
use Scrum in GSD, is this approach more effective than other development methods?
What comparative set of GSD challenges does Scrum mitigate in contrast to other
methods? What (if any) differences exist in the toolsets used (or needed)? What can
each approach learn from the other? Does it matter which approach is used?

Finally, for practice, the framework provides practitioners with an initial under-
standing of how Scrum practices may be used effectively in mitigating some of the
challenges in developing software collaboratively across borders. It can serve as a
reference framework of current knowledge and experience to guide practices in cur-
rent and future projects.

100 E. Hossain, P.L. Bannerman, and D.R. Jeffery

4.3 Future Work

Related and future research will conduct multiple case studies in real life industry
settings to validate and extend the framework. Due to the scale of the framework,
these studies may focus separately on challenge-based sections of the framework.
Based on these studies and other emergent findings in the literature, we will modify
and extend the framework as a reference map for research and practice.

For example, work is underway on qualitative analysis of four case studies of GSD
projects using Scrum practices from three internationally known corporations involv-
ing industrial, telecommunications and software engineering applications. This study
is focusing on validating the prescriptions for the four coordination challenges in
Table 4. Data was analysed and coded using NVivo. First the data was examined for
evidence of the four coordination challenges (which was found in each case) and then
for evidence of how Scrum practices were used to mitigate each challenge (mitigation
mechanisms were found for each practice/challenge combination; that is, for each cell
in this section of the table, thus potentially extending the framework). Currently, the
case-based findings are being compared to the literature-based prescriptions.

5 Conclusion

Software engineering cannot escape the trend towards globalisation that faces many
business endeavours today. To effectively and efficiently develop and maintain high
quality products collaboratively across borders, traditional software development and
project management processes need to be re-examined and re-thought. Agile methods
such as Scrum need to be sufficiently ‘agile’ to adapt to new usage domains for them
to continue to be relevant and to survive. GSD needs adaptable processes to overcome
the significant challenges that can arise in this environment. Practice is likely to con-
tinue to inform research as software developers try out different ways of succeeding
in GSD projects. As presented in this paper, the literature indicates that there is a sub-
stantial need for research to “catch up” and support the needs of practice. In addition
to offering an integrated view of the current literature to support practitioners, the
literature-based analysis and resulting framework presented in this paper offers some
forward directions for this research.

References

1. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed agile development: Using
Scrum in a large project. Software Process Improvement and Practice 13(6), 527–544
(2008)

2. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed Scrum: Agile project
management with outsourced development teams. In: Proceedings of HICSS-40, p. 274
(2007)

3. Sutherland, J., Schoonheim, G., Rijk, M.: Fully distributed Scrum: Replacing local produc-
tivity and quality with offshore teams. In: Proceedings of HICSS-42, pp. 1–8 (2009)

4. Cho, J.: Distributed Scrum for large-scale and mission-critical projects. In: Proceedings of
AMCIS 2007 (2007)

 Scrum Practices in Global Software Development: A Research Framework 101

5. Williams, W., Stout, M.: Colossal, scattered, and chaotic (planning with a large distributed
team). In: Proceedings of Agile 2008, pp. 356–361 (2008)

6. Drummond, B., Unson, J.F.: Yahoo! Distributed Agile: Notes from the world over. In:
Proceedings of Agile 2008, pp. 315–321 (2008)

7. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of Scrum practices within a global company.
In: Proceedings of ICGSE 2008, pp. 22–226 (2008)

8. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile practices reduce dis-
tance in global software development. Information Systems Management, 7–26 (Summer
2006)

9. Vax, M., Michaud, S.: Distributed Agile: Growing a practice together. In: Proceedings of
Agile 2008, pp. 310–314 (2008)

10. Smits, H.: Implementing Scrum in a distributed software development organization. In:
Proceedings of the Conference on Agile 2007, pp. 371–375 (2007)

11. Jensen, B., Zilmer, A.: Cross-continent development using Scrum and XP. In: Proceedings
XP 2003, pp. 146–153 (2003)

12. Kussmaul, C., Jack, R., Sponsler, B.: Outsourcing and offshoring with agility: A case
study. In: Proceedings of XP/Agile Universe, pp. 147–154 (2004)

13. Sureshchandra, K., Shrinivasavadhani, J.: Adopting Agile in distributed development. In:
Proceedings of ICGSE 2008, pp. 217–221 (2008)

14. Danait, A.: Agile offshore techniques: A case study. In: Proceedings of Agile Develop-
ment, pp. 214–217 (2005)

15. Summers, M.: Insights into an Agile adventure with offshore partners. In: Proceedings of
Agile 2008, pp. 333–338 (2008)

16. Therrien, E.: Overcoming the challenges of building a distributed agile organization. In:
Proceedings of Agile 2008, pp. 368–372 (2008)

17. Berczuk, S.: Back to basics: The role of Agile principles in success with a distributed
Scrum team. In: Proceedings of Agile 2007, pp. 382–388 (2007)

18. Karsten, P., Cannizzo, F.: The creation of a distributed Agile team. In: Proceedings of XP
2007, pp. 235–239 (2007)

19. Cottmeyer, M.: The good and bad of Agile offshore development. In: Proceedings Agile
2008, pp. 362–367 (2008)

20. Paasivaara, M., Lassenius, C.: Could global software development benefit from Agile
method? In: Proceedings of ICGSE 2008, pp. 109–113 (2006)

21. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed Agile development: Using
Scrum in a large project. Proceedings of ICGSE 2009, 195–204 (2009)

22. Bondi, A.B., Ros, J.P.: Experience with training a remotely located performance test team
in a quasi-Agile global environment. In: Proceedings of ICGSE 2009, pp. 254–261 (2009)

23. Hansen, M.T., Baggesen, H.: From CMMI and isolation to Scrum, Agile, Lean and col-
laboration. In: Proceedings of Agile 2009, pp. 283–288 (2009)

24. Hossain, E., Babar, M.A., Verner, J.: How can agile practices minimize global software
development co-ordination risks? In: O’Connor, R.V., Baddoo, N., Cuadrago Gallego, J.,
Rejas Muslera, R., Smolander, K., Messnarz, R. (eds.) EuroSPI 2009. Communications in
Computer and Information Science, vol. 42, pp. 81–92. Springer, Heidelberg (2009)

25. Lee, S., Yong, H.: Distributed agile: project management in a global environment. Empiri-
cal Software Engineering 15(2), 204–217 (2010)

26. Sutherland, J., Schoonheim, G., Kumar, N., Pandey, V., Vishal, S.: Fully Distributed
Scrum: Linear Scalability of Production between San Francisco and India. In: Proceedings
of the Agile Conference 2009, pp. 277–282 (2009)

102 E. Hossain, P.L. Bannerman, and D.R. Jeffery

27. Therrien, I., Lebel, E.: From Anarchy to Sustainable Development: Scrum in Less Than
Ideal Conditions. In: Proceedings of the Agile Conference 2009, pp. 289–294 (2009)

28. Jimenez, M., Piattini, M., Vizcaino, A.: Challenges and improvements in distributed soft-
ware development: A systematic review. Advances in Software Engineering, Article ID
710971, 1-14 (2009)

29. Herbsleb, J., Moitra, D.: Global software development. IEEE Software 18(2), 16–20
(2001)

30. Herbsleb, J., Grinter, R.: Architectures, coordination, and distance: Conway’s law and be-
yond. IEEE Software 16(5), 63–70 (1999)

31. Hossain, E., Babar, A.M., Paik, H., Verner, J.: Risk identification and mitigation processes
for using Scrum in global software development: A conceptual framework. In: Proceeding
of the Asia Pacific Software Engineering Conference, APSEC 2009, pp. 457–464 (2009)

32. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development meth-
ods: review and analysis. Technical Report # 408, VTT Publications, Espoo (2002)

33. Ågerfalk, P.J., Fitzgerald, B.: Flexible and distributed software processes: old petunias in
new bowls? Communication of the ACM 49(10), 27–34 (2006)

34. Hossain, E., Babar, A.M., Paik, H.: Using Scrum in global software development: A sys-
tematic literature review. In: Proceedings of ICGSE 2009, pp. 175–184 (2009)

35. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. EBSE Technical Report, EBSE-2007-01 (2007)

36. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, dependencies, and de-
lay in a global collaboration. In: Proceeding of CSCW 2000, pp. 319–327 (2000)

37. Moe, N.B., Šmite, D.: Understanding a lack of trust in global software teams: A multiple-
case study. Software Process Improvement and Practice 13(3), 217–231 (2008)

38. Carmel, E.: Global software teams: Collaborating across borders and time zones. Prentice-
Hall, NJ (2009)

39. Damian, D., Zowghi, D.: Requirements engineering challenges in multi-site software de-
velopment organizations. Requirements Engineering Journal 8(1), 149–160 (2003)

40. Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., O’Conchuir, E.: A
framework for considering opportunities and threats in distributed software development.
In: International Workshop on Distributed Software Development 2005, pp. 47–61 (2005)

41. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall, Upper
Saddle River (2001)

42. Hossain, E., Ali Babar, M., Verner, J.: Towards a Framework for Using Agile Approaches
in Global Software Development. In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P.
(eds.) PROFES 2009. Lecture Notes in Business Information Processing, vol. 32, pp. 126–
140. Springer, Heidelberg (2009)

43. Avison, D., Fitzgerald, G.: Information Systems Development: Methodologies, Techniques
and Tools, 4th edn. McGraw-Hill, Maidenhead (2006)

44. Krishna, S., Sahay, S., Walsham, G.: Managing cross-cultural issues in global software
outsourcing. Communication of the ACM 47(4), 44–47 (2004)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 103–112, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards the Competitive Software Development

Andrzej Zalewski and Szymon Kijas1

1 Warsaw University of Technology,
Institute of Automatic Control and Computational Engineering

{a.zalewski,s.kijas}@elka.pw.edu.pl

Abstract. The concept of competitive software development is founded on the
observation that the system’s owner and development companies have not only
common interests, but also conflicting interests as well. This is particularly true
in the case of large-scale software systems. Competitive development is an
answer to the syndrome of large-scale software systems evolution and mainte-
nance being monopolised by the companies that originally developed these
systems. Competitive development is founded on the idea that the entire system
is divided into smaller units, which are independently developed by different
companies, i.e. no co-operation is assumed between various development or-
ganisations and there is no communication between them. However, strong and
efficient co-ordination has to be performed on behalf of the system’s owner in
order to make such an approach successful. These assumptions are radically dif-
ferent to the typical collaboration assumption for agile development. This pre-
vents one software company from making a system owner entirely dependent
on its services. We show that such demonopolisation can save large sums of
money, making the prices of software development considerably lower than
they would be in the case of a single software development company. Our ex-
periments show that, if efficiently co-ordinated, such a distributed, competitive
development requires a similar effort to traditional approaches.

Keywords: Software process, software process improvement, empirical studies.

1 Introduction

This paper has been inspired by the work done for Public Procurement Office in
Poland, supervising purchases for public or publicly-owned institutions. One of its
responsibilities is to ensure that public money is spent on services rendered and goods
supplied by competing contractors. Large-scale software systems are a very specific
subject of public procurement.

These are the largest and the most complex systems, tailored to the specific re-
quirements of a commissioning organisation. Their evolution and maintenance be-
comes usually monopolised by the company that originally developed the system.
This enables them to act in the condition of limited competition, allowing them to
expand their profit margins above the market average, which is exactly the situation
that every company is striving for.

104 A. Zalewski and S. Kijas

Such a monopolisation syndrome occurs whenever any part of the system becomes
too large, i.e. too complex to freely hand over its development to some other devel-
opment company (competitor). This is studied in detail in part 2. We argue that, to
prevent monopolisation, an antimonopoly function should be included in the devel-
opment, maintenance and evolution processes for large-scale software systems.

This approach is the core concept presented in this paper – part 3. Its aim is to en-
able competing software companies to work independently on the decoupled parts
(macro components) of the same software system, while assuring necessary co-
ordination. No co-operation is assumed between different software development
companies. The process has been validated experimentally, as described in part 4. The
impact of such a novel approach on the various aspects of software development and
its cost have been discussed in parts 5 and 6 respectively. A summary of results and
ideas for further research are given in part 7.

2 The Software Monopolisation Syndrome

From a business point of view, software products are supposed to overcome market
competitors, attract clients, gain a certain market share, and retain and attract clients
to buy newer and newer versions or other software from a given company. At the
same time, they should be hard to substitute by market competitors. What makes a
software product successful depends on lots of factors such as the target group of the
product, the software properties, market conditions etc. etc.

Large-scale software systems are a very specific kind of software product in this
context. They are built at the commission of a single entity and tailored to its specific
requirements. There is usually no other organisation that could use that system. Their
extreme complexity makes them very difficult to substitute by a system provided by
another software company. They are also difficult to evolve by making changes and
extensions. This effect has theoretically been described in [1], [2], [3] and attributed
to the high level of coupling between system components.

As a result, such systems are typically perceived as a kind of a natural monopoly
(similar to water supply and sewage system) in which maintenance and further devel-
opment can only be carried out by the company that originally developed the system.
The lack of pressure from competition results, as with any other monopoly, in the ex-
pansion of profit margins and increased cost of software maintenance and evolution.

The tendency of large IT systems to become monopolised comes from:

• the very nature of software systems i.e. their complexity, enhanced by the architec-
tures dominating modern business applications designs,

• the inefficiency of system documentation and the means of knowledge manage-
ment,

• the lack of motivation to minimise the monopoly,
• legal / regulatory / policy issues (e.g. intellectual property rights, special purpose

systems like military ones).

We now delve deeper into details of the first three reasons, leaving behind the legal
ones. To modify any IT system the developers need to know its construction in suffi-
cient detail. Monopolisation is generally caused by the inability to obtain or transfer
design knowledge on complex software systems efficiently in terms of time and cost.

 Towards the Competitive Software Development 105

This, in turn, is a result of the limitations of software documentation [4] and design
knowledge management methods and tools [5], which, despite many years of re-
search, have not yet been overcome.

If the given organisation does not have a team of its own shadowing the activities
of the developing company, knowledge on the system and software design can only be
obtained from system documentation, configuration and source code. If a system is kept
small enough, the owner can always (given sufficient intellectual property rights to the
source code and documentation) change the current developer with negligible distur-
bances to the system’s operation. In such a case, knowledge on the system construction
can be obtained by the new developers within a short time and at minimal cost.

However, when a system becomes too big, design knowledge cannot be obtained
within a reasonable time and money by the new developers. This means that distur-
bances in the system operation cannot be avoided when the developing company is
replaced with another one, or the necessary preparations would take a very long time
(tens of months) and cost a lot (reports indicate 50% or even more of the entire main-
tenance cost [4]) before the change takes place. Even if the owner succeeds, the sys-
tem is monopolised again – this time by the new developers. Another important factor
is that, in the case of large-scale software systems, such a step is generally very risky
in business and technical terms. Thus there is no real incentive for the owner to under-
take such a challenge. If the system becomes too large, the owner cannot avoid the
monopolisation of maintenance and evolution.

The problems of over-dependence on a certain system, and its developers, have not
passed unnoticed. It currently takes two extreme forms:

• A single subsystem becomes too complex – this is the basic version of the
syndrome presented above – companies try to resolve the problem by acquiring
systems from various vendors (often overlapping existing functionality!) and inte-
grating them with EAI solutions such as Enterprise Service Bus or Process
Management Systems;

• An integration system (e.g. ESB) becomes too complex – this is the opposite situa-
tion encountered by companies that exaggerated with the extent and complexity of
an integration solution – it is clear that integration solutions can easily be monopo-
lised by the companies that developed them as the system becomes too complex
and its owner grows too dependent on its operation.

3 Demonopolising Software Development

To draw up a remedy for the monopolisation syndrome we need to look more into the
technical details of the monopolisation problem. The extreme cases of the monopoli-
sation syndrome indicate that the source of the problem is located in a common com-
ponent of a system on which large parts of the software depend. It was an integration
solution in one of the extreme cases. However, in most cases, such a component is
usually a database on which most of the components of a given software system de-
pend. Most of the modern business systems use a layered architecture, which is im-
posed by all the most popular implementation technologies, like J2EE or .NET.
Hence, modern business software is built on the foundation of a common database.
This means that a change made to a single component can possibly impact all the
other components, as illustrated in fig. 1.

106 A. Zalewski and S. Kijas

Fig. 1. Coupling in a three-tier software system

To eliminate, or at least to minimise, the possibility of monopolisation, we need to
decouple strongly coupled components. It means that software should be split into
parts that plug into an existing database without altering its structures common to a
greater number of software units (components, etc.). Such macro components (appli-
cations, subsystems) could be developed independently of the work done by the de-
velopers of the other subsystems. Obviously changes to common database structures
cannot be entirely avoided, but a careful consideration of the database can minimise
such needs and their impact. Developing organisations can develop data structures of
their own, but they should be treated as private unless the owner decides to include
them in a common database schema.

This task has to be allocated to a skilful team, known as a “co-ordinating team”,
which should work on the system owner’s behalf to ensure conditions in which vari-
ous development teams can work independently without excessive interference. The
organisation of competitive development has been illustrated in fig. 2. Its interesting
property is that the teams can use different development processes.

The co-ordination team’s role comprises:

• Common database management – the development and maintenance of the
database structures common to larger parts of the system, negotiating changes to
database structures with the software development companies and assessing their
impact, providing information on the common database structures;

• Development organisation and co-ordination – this is part of the co-ordination
effort needed to define and manage system decomposition, to place all the inde-
pendently parts together, to create software releases, and to co-ordinate independ-
ent work;

 Towards the Competitive Software Development 107

• Integration management – the implementation of integration solutions necessary to
integrate subsystems resulting from splitting subsystems that have grown too large,
or from purchases of ready-to-use configurable systems (such as ERP);

• Complexity control – this means that whenever any part of the system becomes too
complex, it is split into manageable, independently developable parts (this is a
typical antimonopoly action similar to those undertaken by state competition pro-
tection agencies), or when co-ordination becomes too complex then separate sys-
tems could be merged.

Fig. 2. Competitive development

4 Experimental Assessment

An experiment was performed to show that separated teams working independently
under central co-ordination will not increase the amount of work done by the pro-
grammers compared to a single team working on the same project. The experiment
was performed on the modular system for managing studies at our faculty. This sys-
tem comprised three modules using the same database:

• Module one: Student module – an application used by the students for semestral
declaration, course registration, browsing results, etc.

• Module two: Teacher module – web application used by teachers for subject de-
scriptions, grading etc.

• Module three: Dean and dean’s office module – GUI application used for configu-
ration, approval for course registration, student promotion, final exam procedures
support etc.

108 A. Zalewski and S. Kijas

Fig. 3. Scheme of system developed by a single big team

Fig. 4. Scheme of system developed by four small teams

These modules share database structures and their functionality partially overlaps.
Two teams of eight students were chosen for every time the experiment was con-

ducted. One team was working together to develop the required functionality (fig. 3)
without a predefined internal structure, but with a certain amount of co-ordination
ensured by an early draft of a common data model. The other team (fig. 4) was di-
vided into small teams consisting of two people each. Three of the sub-teams were
assigned to the development of selected modules (one independent module for each
group) and one became the co-ordinating group (responsible for co-ordinating the
work and managing the common database structure).

 Towards the Competitive Software Development 109

All of the teams used Extreme Programming. The experiment was supposed to last
for three working days (24 hours per person - which makes 192 man-hours alto-
gether). The development times of individual modules and the entire system were
measured and compared.

Table 1. Results of the experiment

First measurement
 Module 1 Module 2 Module 3 Total
One large
development team

49 man-hours 55 man-hours 98 man-hours 202 man-hours

Developing in small
teams

55 man-hours 58 man-hours 107 man-hours 220 man-hours

Second measurement

 Module 1 Module 2 Module 3 Total
One large
development team

51 man-hours 49 man-hours 97 man-hours 197 man-hours

Developing in small
teams

43 man-hours 51 man-hours 95 man-hours 189 man-month

The development effort measured during the experiments is presented in table 1.

The analysis of the results and of monitoring the teams’ activities revealed the follow-
ing observations:

• General observation:
• The level of effort required to develop the whole functionality turned out to

reach similar levels in both approaches. This indicates that competitive de-
velopment should not increase effort compared to conventional approaches
(agile, RUP, waterfall).

• Observations concerning the single team exercise:
• Weak co-ordination of work on the database structure was a large problem,

due to many clashes between changes introduced by different people.
• Team members trying to reuse code developed by the others lost a lot of time

on debugging immature solutions of their colleagues. In many cases it re-
quired more time than developing the whole thing from scratch.

• Observations concerning the independent teams exercise:
• Independently working teams turned out to be less effective in the first run of

the experiment, because of the poor quality of co-ordination and database
structure developed by the co-ordination team. This improved considerably
during the second run. This indicates that the efficiency of competitive de-
velopment depends strongly on the quality of co-ordination, and in particular
on careful database design;

• Team separation eliminated clashes on the changes to database structures, as
well as error propagation resulting from the reuse of poorly verified
software.

110 A. Zalewski and S. Kijas

5 Discussion: The Impact of Competitive Development

The idea of a number of teams working together on the same project under some sort
of co-ordination is obviously nothing new. It can easily be related to current achieve-
ments of global software development [7], [8], which raises issues of efficient com-
munication and co-ordination between geographically separated teams.

However, the idea of competitive development is based on quite opposite assump-
tions: instead of striving to resolve the challenge of multi-party communication be-
tween separate teams [6], it assumes that this should not take place, as all the conflicts
should be resolved by the co-ordinator. This obviously makes sense only for strongly
cohesive and large enough modules like applications or even subsystems, otherwise
the co-ordinator has the heaviest task and has to make the greatest effort.

The proposed approach assumes that the interests of the organisation commissioning
the system and the interests of the developing companies are partially conflicting and
only partially consistent. This is far removed from the agile approaches, which assume
close co-operation between the parties and implicit sharing of the same interests. This
synergy does not necessarily take place in the case of large-scale software systems.

Competitive development apparently ignores the advantages of reusing code,
though this applies only to the reuse of code created during systems development,
which in many cases turns out to be error prone. At the same time, each of the sepa-
rate development teams can reuse proven COTS or libraries.

6 The Savings from Software Demonopolisation

Competitive development is designed for the development and evolution of large
scale software systems. Modern IT systems evolve perpetually throughout their whole
lifetime, never reaching a stable state. Market surveys show that the cost of system
maintenance and evolution incurred during the entire life cycle is often twice or even
three times as high as the initial cost of system construction. Table 2 contains a sam-
ple of large-scale software systems developed for public organisations in Poland over
the past 10 years. They belong to the group of the largest systems developed in our
country and across Central and Eastern Europe, and are all affected by the software
monopolisation syndrome.

Table 2. A Sample of Large-scale Software Systems Developed for Public Organisations in
Poland

Name of the system or application domain Approximate Development
and Maintenance Costs
Incurred so far
(in USD)

Comprehensive System for Social Security $1.2 bln
Integrated Administration and Control System
(IACS) /Agricultural Aid Programmes
Administration and Supervision (IACS)

$0.6 – $1 bln

Cars and driving licences register $80 mln (development only)
Energy Market $50 mln
EU Aid Management (SIMIK) $6 mln

 Towards the Competitive Software Development 111

Different internet sources, like [9], indicate that increased levels of competition can
make prices in groceries cheaper even by about 10%, for electronic devices it can
even be 30% off [10]. As the profit margins assumed in the software industry are
rather high, due to the high level of risk, we expect that it should be possible to save
at least 20% of the development cost if competition is properly ensured. In the case of
the largest systems mentioned in table. 1, i.e. systems Nos 1 and 2, it means that at
least $20 mln could be saved each year on maintaining each of these systems (assum-
ing an annual maintenance cost of $100 mln for each of these systems).

7 Conclusion

Large-scale software systems are a kind of natural monopoly (like water supply or
sewage system) in the genre of IT. Recent history shows that some natural monopo-
lies were broken by splitting up large organisations into a number of smaller ones, or
through the introduction of some sophisticated co-ordination of common resources
usage as in the case of the electric energy market. The concept of competitive devel-
opment is assumed to be the first step toward breaking monopolies on the develop-
ment of large scale software systems.

Competitive development supports development process diversity, as different
processes can co-exist in the development of the whole system. This approach is radi-
cally different to the existing ones, as it assumes conflicting interests rather than con-
sistent interests of the parties taking part in the development of large-scale software
systems.

The further development of this concept should include mechanisms of efficient
co-ordination of independent developments, demonopolisation activities undertaken
by the co-ordinator, as well as the techniques of efficient management of common
databases. Obviously, further validation on a greater number of development cases is
needed and is planned for the future.
Acknowledgement. This research has been supported by a grant from the Ministry of
Science and Higher Education of the Republic of Poland under grant No
5321/B/T02/2010/39.

References

1. Simon, H.A.: The Architecture of Complexity. Proceedings of the American Philosophical
Society 106(6), 467–482 (1962)

2. Ethiraj, S.K., Levinthal, D., Roy, R.R.: The Dual Role of Modularity: Innovation and Imi-
tation. Management Science 54(5), 939–955 (2008)

3. Ethiraj, S.K., Levinthal, D.: Modularity and Innovation in Complex Systems. Management
Science 50(2), 159–173 (2004)

4. Corbi, T.A.: Program understanding: Challenge for the 1990s. IBM Systems Journal 28(2),
294–306 (1989)

5. Ali Babar, M., et al.: Architecture knowledge management. Theory and Practice. Springer,
Heidelberg (2009)

6. Lanubile, F., Ebert, C., Prikladnicki, R., Vizcaino, A.: Collaboration Tools for Global
Software Engineering. IEEE Software 27(2), 52–55 (2010)

112 A. Zalewski and S. Kijas

7. Damian, D., Moitra, D.: Global Software Development: How Far Have We Come? IEEE
Software 23(5), 17–19 (2006)

8. Boden, A., Nett, B., Wulf, V.: Operational and Strategic Learning in Global Software
Development. IEEE Software 27(6), 58–65 (2010)

9. Jarman, M.: Grocery competition brings shopper savings,
http://www.azcentral.com/community/westvalley/articles/2010/
10/12/20101012arizona-food-prices-decline.html

10. Tough Competition Brings Down Smart Phone Prices,
http://www.iwabs.com/content/tough-competition-brings-down-
smart-phone-prices

Defect Detection Effectiveness and Product

Quality in Global Software Development

Tihana Galinac Grbac1 and Darko Huljenić2

1 Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka,
Croatia

tihana.galinac@riteh.hr
2 Ericsson Nikola Tesla, Krapinska 45, HR-10000 Zagreb, Croatia

darko.huljenic@ericsson.com

Abstract. Global software development (GSD) has become a common
practice in the software development industry. The main challenge or-
ganizations have to overcome is to minimize the effect of organizational
diversity on the effectiveness of their GSD collaboration. The objective
of this study is to understand the differences in the defect detection ef-
fectiveness among different organizations involved into the same GSD
project, and how these differences, if any, are reflected on the deliv-
ered product quality. The case study is undertaken in a GSD project
at Ericsson corporation involving nine organizations that are commonly
developing a software product for telecommunication exchanges. Com-
paring the effectiveness of defect detection on the sample of 216 software
units developed by nine organizations, it turns out that there is statisti-
cally significant difference between defect detection effectiveness among
organizations. Moreover, the defect density serves better as a measure of
defect detection effectiveness than as a measure of the product quality.

Keywords: Global software development, defect detection effectiveness,
defect density, software quality.

1 Introduction

Global Software Development (GSD) is becoming a common practice in the
modern software industry, involving software development teams from the orga-
nizations that are distributed around the globe to develop a common software
product. The main drivers for globalization of software development is in cost
benefits, entrance into global market and access to a large multi-skilled resource
pool. On the other hand, the main challenge the organizations working in the
GSD environment have to overcome is to minimize the influence of its diversity
onto GSD project success. The software development project success is highly
dependent on the software project team effectiveness in executing the project
processes to achieve the project goals. The main identified barriers for teams in
GSD environment are coordination, communication and control [11].

The researchers and practitioners effort have been focused on defining general
processes and providing guidelines to overcome these barriers. Besides having

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 113–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

114 T. Galinac Grbac and D. Huljenić

implemented the general processes that are highly supported with collaboration
tools and following guidelines for distributed work, the main concern is whether
the impact of the organizational distribution is significant or not. The objec-
tive of this study is to explore differences in the defect detection effectiveness
among different organizations involved into the same GSD project and how these
differences, if any, are reflected on the delivered product quality.

The rest of the paper is organized as follows. In Section 2 the metrics used for
evaluating the defect detection process is introduced. In Section 3 the related
work is reviewed. Section 4 describes the research context and methods used in
the case study. The results of the study are presented in Section 5. Finally, in
Section 6 the results are discussed, and we conclude the paper in Section 7.

2 Metrics

There exists a variety of metrics defined for measuring software quality [9], [10],
[13]. Still, the most dominant metric that is used in the empirical studies for
evaluation of software quality is the number of detected defects [3], [5]. The
size of software, on which the number of defects in reported, is used for the
comparison purposes. The defect density is defined in [12] as the ratio of the
number of defects found and the software size involved into defect detection.
The aim of defect detection activities is to deliver software product with zero
remaining defect density. Therefore, the defect density is also considered as a
measure for defect detection effectiveness [17].

The defect detection effectiveness may be used as a process control measure.
Comparing this measure with the average from the history projects or with the
project goal, one could bring decision about additional investment into defect
detection process, as suggested for example in [8], [7] for the purpose of software
inspection. The problem with defect density as a defect detection effectiveness
measure lies in the fact that it is hard to distinguish if the number of defects
identified by defect detection process is due to bad design, coding or good defect
detection process. A number of defect injection and defect detection factors have
been identified in [21]. Nevertheless, a number of studies have used defect density
measure for the purpose of comparison of defect detection technique effectiveness
in a given environment. The defect seeding technique is commonly used in these
cases to increase the reliability of the study. Furthermore, the defect density
considered “in time”, that is as a function of invested testing effort, is used in
reliability growth modelling [14]. The control of defect detection process is based
on the trend of the defect density curve.

In this study we are neither interested into reasons for the amount of defects
detected, nor to control the defect detection process. Instead we are analyzing
the differences in the effectiveness of completed defect detection activities among
distributed organizations that were supposed to apply the same general defect
detection process for GSD project. Therefore, in this study the defect density was
used as measure to determine differences in defect detection effectiveness among
organizations involved into GSD and influence of the organizational diversity on
the defect detection effectiveness and the product quality.

Defect Detection Effectiveness and Product Quality in GSD 115

3 Related Work

One of the main motivator for the organizational movement into global software
development is in its cost benefits. This implies access to larger and well–skilled
resource pool at lower cost [4]. On the other hand, dislocation of development
teams has been identified as the main challenge for effective communication,
coordination and control that may have significant impact on the project per-
formance and software quality.

A number of studies have questioned the performance ability of GSD along
with the resulted software product quality. The empirical evaluation of GSD
effect is hard to isolate from other effects, and requires well defined and consistent
measurement system in all organizations involved into GSD. This is hard to
achieve in practice resulting with limited related work in this area.

In [3] the post–release defects and software unit attributes are compared be-
tween software units developed by distributed versus collocated teams. Compar-
ison of mean values for the number of post–release defects detected per software
unit, has resulted with slightly more, but statistically significant, defects in GSD.
Moreover, if the number of developers is included into analysis, the significance
of the conclusion that larger number of post–release defects is affected by GSD
becomes even smaller. Another analysis performed in [3], compared software
unit attributes, such as code churn, complexity, dependency, and test coverage,
measured per software unit. It turns out that there is no significant difference
between software units developed in GSD and collocated environment.

A number of metrics have been evaluated as possible predictors of software
unit defect–proneness. The aim of these is to control and predict software qual-
ity, and thus, better direct future verification efforts. In [15] the organizational
complexity is proposed as a predictor of software quality, where the software
quality is measured as the amount of post–release defects. The metrics scheme
for organizational complexity qualification, as proposed in [15], consists of eight
measures that are representing organizational distance of the developers, the
number of developers involved into software unit development, the developers
level of multi–tasking, and the amount of organizational involvement into soft-
ware unit change. Using the proposed metrics scheme on the data obtained
from the Windows Vista development resulted with the conclusion that such
organizational complexity measure is a statistically significant predictor of the
defect–prone software units. Moreover, the results showed that the suggested
metrics scheme is better predictor for post–release defects than traditionally
used metrics such as static code attributes, coverage, and pre–release defects.

Another approach to evaluating the impact of GSD on the software quality
is by using the process maturity levels as defined in [6]. The study performed
in [5] analyzed the impact of the process maturity level on the software quality,
where the software quality is measured as the number of defects reported during
the integration and system testing for each software unit. The analysis resulted
with the conclusion that the process maturity level and the level of distribution
have significant impact on the quality of software units. Moreover, the process

116 T. Galinac Grbac and D. Huljenić

maturity impact on software quality becomes more significant as development
becomes more distributed.

The code size, level of distribution and pre–release defect density are used to
evaluate the experiences working within GSD in [2]. Comparing the pre–release
defect densities for several completed projects working in GSD and the average
defect density reported for US industry (2.6 defects per 1000 Lines of Code) the
paper concludes that GSD has not increased the defect density.

4 A Case Study

In this section we define and explain the context of the research study, research
questions, methods and strategy used for the data collection and analysis.

4.1 Context of the Study

The context of the study is the defect detection process used in globally dis-
tributed software development (GSD) within Ericsson corporation.

The software product is developed for telecommunication exchanges, in partic-
ular, the Mobile Switching Center (MSC) node that is one of the network nodes
within next generation core telecommunication network. The software product
is developed in the product line [1] fashion, in which the product releases are
following the Core Network evolution strategy as prescribed by [19]. A product
release is the outcome of a GSD project. The smallest self contained administra-
tive unit of the software product is called a software unit. The size of a software
unit is small enough so it can be understood and managed by humans. The soft-
ware product we considered in this paper consisted of 216 software units that
were impacted by some modifications. The total volume of impacted software
units was 1.5 M volume of code with included modification of over 400 k volume
of code. The volume of code is a measure obtained as a sum of the kilo pro-
gramming statements, the number of kilo Assembler instructions multiplied by
factor 0.3, and the amount of data storage. Each software unit is in responsibility
of a software developer as suggested in [16], and according to its affiliation the
software units are assigned to organizations involved into GSD project.

The software development process is an evolved version of the V–model with
incremental delivery strategy and feature based development. Waterfall sequence
of development phases such as analysis, design, coding, testing is kept on the
feature level. Moreover, the classical project management model based on Toll-
gate concept [18] is used but with rather flexible tollgate criteria. For example,
a requirement for passing a project Tollgate between two consecutive project
phases could be that at least 60% of the features is already in the later phase.
The process evolves from project to project, as best practices and lessons learned
are incorporated into the new revision of software development process that is
used in further software development projects. Since the process is used in GSD
for years, it is very well supported by a standard toolbox, which is also updated
with all process improvements. Collaboration tools are also incorporated into
the standard toolbox, and the majority of existing software development tools
are adapted for collaboration purposes.

Defect Detection Effectiveness and Product Quality in GSD 117

The software development is a case of global software development where
multiple partner organizations are involved into Software Design and Software
Verification projects. The software design project is performed by nine Software
Design (SD) organizations that are globally distributed and develops together the
same software product (software for the MSC node). The software development
work is divided among these SD organizations following the product ownership
criteria, which follow the software product architecture, as suggested in [16]. All
SD organizations participate in the same software development process phases,
such as analysis, design, coding, and part of testing that are tailored for GSD.

All defect detection activities performed by SD organizations will be called
early defect detection (EDD). The EDD includes software code inspections, code
reviews, basic test, and those function tests that are performed in the simulated
environment, simulating the rest of the software product. In the study, we com-
pare the EDD effectiveness of different SD organizations that participate in the
same software design project. They are supposed to follow the same early defect
detection process prescribed by the GSD project.

The software verification project is performed by the Network Integration and
Verification (NIV) organizations that are also globally distributed. However, un-
like SD organizations, their work is divided mostly with respect to the specific
market/customer. Since our study is concentrated only at two customer refer-
ences, that are related to the basic node system test and basic integration and
verification test, only one NIV organization is involved.

All defect detection activities performed by the NIV organization will be re-
ferred to as late defect detection (LDD). The LDD activities are performed
on the software units delivered from the SD organizations. The whole software
product is under test, without any simulations within the software product. The
processes followed by the NIV organization are also standardized within their
organization and they evolve with projects. In the study we compare the LDD
effectiveness between software units developed by different SD organizations.
The NIV organization is completely independent from SD organization, with
separated resources. Nevertheless, as a best practice it is customary to borrow
resources, but only as the support personnel during the hand–over processes. The
results of the NIV organization, when analyzed between different SD organiza-
tions, could be a useful indicator of the impact of GSD organizations distribution
on the delivered product quality. The LDD effectiveness could be also a measure
of product quality.

4.2 Research Hypotheses

The main objective of our research study was to understand how the organiza-
tional diversity influences the early defect detection effectiveness, the late defect
detection effectiveness and the software product quality. As already explained in
Section 2, the defect density is used as the metric for this investigation. Therefore
we selected the following research hypotheses:

HA0 : The mean values of defect density in early defect detection for samples
of different SD organizations within the same GSD project are equal.

118 T. Galinac Grbac and D. Huljenić

HB0 : The mean value of defect density in late defect detection for samples
coming from different SD organizations within the same GSD project are
equal.

The alternative hypotheses are that the mean values considered in the corre-
sponding null hypothesis are not all equal.

4.3 Data Collection

The selected software design and software verification projects for which data
collection is performed are one of the history projects where all software de-
velopment activities are finalized. All data were collected per software unit as
presented in Table 1 and are associated to the relevant SD organizations.

For each software unit, the main data collection questions, that are related to
the research hypotheses, are as follows:

– What is the volume and modified volume of the software unit?
– What is the number of defects detected in the software unit during early

defect detection process?
– What is the number of defects detected in the software unit during late

defect detection process?
– Which SD organization is responsible for the software unit?

The random variables associated to these questions are listed in Table 1.
The measurements for all random variables in Table 1 except the one count-

ing the defects in LDD were collected from the Quality Report documents that
are stored in the project repository through the standard Ericsson Clear Case
tool. This is a mandatory document required at TollGate3, at which the soft-
ware product is handed–over from the software design project to the software
verification project. All software units that were included into Quality Report
documents, and that have reported modification volume, were included into this
data collection procedure.

In order to verify the reliability of the collected data for random variable
counting the defects in EDD, the data were additionally collected from the cor-
porate Change Notification database, which is Ericsson’s official database for
reporting defects detected during early defect detection process. The software
units in which data inconsistency is identified were removed from the sample.

Table 1. Measured random variables

Name Description

SWU Size Volume of respective SWU
SWU Modification Size Modified volume of respective SWU
SWU Defects in EDD Count of defects detected in EDD per SWU
SWU Defects in LDD Count of defects detected in LDD per SWU

Defect Detection Effectiveness and Product Quality in GSD 119

The measurements for the random variable that counts defects in LDD were
collected from the corporate Modification Handling database. For all software
units in which the modification is made in the considered software design project
(according to the Quality Reports mentioned above), the number of defects
reported in the database were counted. Note that we considered only defects
that were analyzed and answered with correction, and ignore all enhancements
and market adaptations. Moreover, our analysis was limited only on defects
reported by the NIV project with two customer references, that are related to the
node system test and basic configuration of the network test. Analyzing only the
customer that is common for all SD organizations, we secure the same treatment
in late defect detection process for all observed SD organizations. Note that, due
to the product line development, the same software unit can be present in several
product releases, as well as a number of node configurations intended to serve in
several markets and customer sites. So, the number of different customers that
can be involved into modification handling vary among the software units, and it
is not necessarily that only one customer is involved into modification handling
process of all SWUs that were treated by SD organizations within selected GSD
project.

4.4 Threats to Validity

Since we perform an empirical case study, it suffers from a number of threats to
validity. According to [20] there are four different aspects of validity: internal,
external, conclusion, and construct validity.

In our study we identified the following threats to validity. The threat to exter-
nal validity is the fact that the study is performed only within one GSD project
and that the study was not performed on the random sample of software units.
However, the company where the study is performed is ISO certified and six
participating organizations are on the CMM level 2 and three on the CMM level
3. Hence, it is quite possible that the findings generalize to such organizations.

The stated conclusions are based on the data collection from the well defined
tools that are used for a long time by the organization’s personnel. Eventual bias
caused by data collection in the considered critical case is eliminated by using
two sources of data collection as already explained in Section 4.3. Moreover,
large sample of the data collected increases the reliability of the study.

The construct validity examines whether the selected measures are represen-
tative for the considered research questions. Effectiveness is a common measure
used for the evaluation of defect detection techniques. In our case, we are com-
paring the effectiveness of early defect detection, performed by different organi-
zations that are supposed to follow the same process. We used them as a measure
of organizational impact. On the other hand, the defect detection process is not
so strict and may involve various defect detection techniques depending on the
defined defect detection strategy. So, the differences in the early defect detec-
tion process may be caused by differences in the chosen detection strategy, and
not by the organizational diversity. In the case of the study, the defect detec-
tion strategy in early phases is defined independently for each SWU by the

120 T. Galinac Grbac and D. Huljenić

development team. Thus, taking a large sample of software units solves this is-
sue. Also, the effect of the software unit difficulty is assumed to be minimized
by takeing a sample of software units large enough per organization.

5 Results

In this section, the results of the statistical analysis of the collected data re-
garding the defect detection process are explained. In the first subsection the
descriptive statistics is presented for all collected and derived variables used in
the study. In the rest of the section we deal only with the defect density.

5.1 Descriptive Statistics

The main concern of the statistical analysis is the random variable measuring the
defect density as defined in Section 2. We consider separately the defect density
of early and late defect detection denoted, respectively, by X0 and X1. For both
random variables X0 and X1, as explained in Section 4.3, we have collected nine
samples, one for each of nine SD organizations involved in the software design
and maintenance projects. These SD organizations and associated samples are
denoted by upper case letters A to I.

Table 2. Descriptive statistics for random variable X0

SD org. N Mean Std. dev. 95% C.I. Min. Median Max.

A 13 11.740 12.893 [3.949, 19.531] 1.177 7.485 45.281
B 9 10.441 7.616 [4.587, 16.295] 3.333 6.536 25.779
C 33 17.279 19.793 [10.261, 24.298] 0.799 8.972 82.192
D 17 16.211 14.125 [8.949, 23.473] 2.515 12.176 47.393
E 34 8.088 6.512 [5.816, 10.360] 0.528 5.855 28.221
F 5 10.275 5.231 [3.780, 16.771] 5.199 8.523 18.692
G 45 10.478 12.485 [6.727, 14.229] 0.128 5.583 62.500
H 11 18.083 24.104 [1.890, 34.276] 1.916 9.332 86.752
I 49 22.957 27.955 [14.927, 30.987] 1.268 12.976 151.163

The descriptive statistics of the defect density random variables X0 and X1

measured per SWUs in each of nine SD organizations are summarized in Table
2 for X0 and in Table 3 for X1. In the tables the column labels “N”, “Mean”,
“Std. dev.”, “95% C.I.”, “Max.”, “Median”, and “Min” stand for the number
of observations, mean value, standard deviation, 95% confidence interval, maxi-
mum, median, and minimum of the sample, respectively.

Observe that the sample measured in SD organization F consists of only five
SWU. Since this sample size is insufficient for a significant statistical analysis,
we removed it from further analysis. In the remaining samples we removed the
outliers. The descriptive statistics given in the tables is for the samples in which
the outliers are removed.

Defect Detection Effectiveness and Product Quality in GSD 121

Table 3. Descriptive statistics for random variable X1

SD org. N Mean Std. dev. 95% C.I. Min. Median Max.

A 13 14.547 13.838 [6.185, 22.909] 0.657 9.543 41.147
B 9 16.218 17.496 [2.769, 29.666] 1.669 9.757 57.143
C 33 8.855 8.377 [5.885, 11.825] 1.268 6.247 37.500
D 17 10.228 12.960 [3.564, 16.891] 0.846 6.827 47.847
E 34 18.241 22.179 [10.502, 25.979] 2.253 11.389 114.755
F 5 8.186 4.065 [3.138, 13.233] 4.422 6.490 14.521
G 45 12.960 19.269 [7.171, 18.748] 0.385 4.785 85.386
H 11 17.017 18.275 [4.740, 29.294] 2.874 12.273 65.476
I 49 17.399 21.857 [11.121, 23.677] 0.856 12.622 142.857

5.2 Normality Tests

The parametric hypothesis tests are more robust and reliable than non–para-
metric tests. However, a general assumption for all parametric tests is that the
analyzed data samples are normally distributed. Hence, in order to justify the
use of parametric tests for our research hypotheses, we need to check whether
the samples follow the normal distribution.

Table 4. Normality test for transformed random variable X0

SD org. Kolmogorov–Smirnov Shapiro–Wilk
d statistic p–value W statistic p–value

A 0.165 > 0.20 0.961 0.768
B 0.178 > 0.20 0.915 0.355
C 0.129 > 0.20 0.954 0.173
D 0.096 > 0.20 0.958 0.600
E 0.096 > 0.20 0.963 0.302
F 0.165 > 0.20 0.983 0.950
G 0.078 > 0.20 0.974 0.390
H 0.154 > 0.20 0.968 0.869
I 0.091 > 0.20 0.982 0.632

The standard tests for normality are the Kolmogorov–Smirnov and Shapiro–
Wilk test. We apply both tests to the nine samples for each of the defect density
random variables X0 and X1. However, it turns out that none of the samples
follows the normal distribution. This result was expected, since several authors
investigating the defect density in software defect detection process already re-
ported that the defect detection random variable follows the log–normal distribu-
tion. Hence, we transformed all the samples by applying the natural logarithm,
and applied the Kolmogorov–Smirnov and Shapiro–Wilk test to the transformed

122 T. Galinac Grbac and D. Huljenić

samples. The results of the normality tests on the transformed samples of random
variables X0 and X1 are given in Table 4 and Table 5, respectively. From the
tables we read that all the tests are significant (p–value > 0.05), which means
that all the transformed samples follow the normal distribution.

Table 5. Normality test for transformed random variable X1

SD org. Kolmogorov–Smirnov Shapiro–Wilk
d statistic p–value W statistic p–value

A 0.153 > 0.20 0.919 0.240
B 0.145 > 0.20 0.969 0.886
C 0.085 > 0.20 0.964 0.331
D 0.115 > 0.20 0.973 0.870
E 0.112 > 0.20 0.946 0.094
F 0.215 > 0.20 0.962 0.819
G 0.098 > 0.20 0.968 0.253
H 0.182 > 0.20 0.941 0.532
I 0.096 > 0.20 0.964 0.144

As a consequence of these conclusions, we are free to apply parametric statis-
tics for the further analysis.

5.3 Hypothesis Testing

The research hypotheses are stated in Section 4.2. In order to test these research
hypothesis we applied one–way ANOVA on transformed random variables X0

and X1. The assumptions for applying ANOVA is that the dependent variables
are normally distributed and that the groups have approximately equal vari-
ance on the dependent variable. The normality of the transformed samples was
confirmed in Section 5.2. To verify the homogeneity of variances of the trans-
formed samples we use Levene’s and the Brown–Forsythe test. The results of
these tests are given in Table 6. It turns out that for X0 both tests show that
the assumption of homogeneity of variances between samples should be rejected
(p–value < 0.05). On the other hand, for X1 both test confirm the homogeneity
of variances. Thus, the assumptions for applying ANOVA are satisfied only for
random variable X1.

Consider first the random variable X0. Since the assumptions of ANOVA are
not satisfied, we performed the non–parametric tests for equality of means to test
the research hypothesis HA0. These tests are the Kruskal–Wallis ANOVA and
median test. The results are given in the first row of Table 7. The conclusions
of the two tests are not consistent. The Kruskal–Wallis ANOVA would imply
that HA0 should be rejected (p–value < 0.05), while the median test implies
that it should not (p–value 0.05). Since the p–value for the median test equals
p = 0.055, which is very close to the critical value 0.05, we conclude that we
should reject the hypothesis HA0.

Defect Detection Effectiveness and Product Quality in GSD 123

Table 6. Homogeneity of variance tests

Transformed Var. Levene Brown–Forsythe
F statistic p–value F statistic p–value

X0 3.158 0.003 2.829 0.008
X1 1.861 0.078 1.592 0.140

Afterwards, we also performed ANOVA, and the results are given in the first
row of Table 8. The column labels “SS”, “df”, “MS”, “F”, and “p” stand for
the sum of squares, degrees of freedom, mean squares (SS

df), F statistic, and
p–value, respectively. The results show that the equality of means hypothesis
should be rejected (p–value < 0.05). Although this conclusion should not be
taken seriously, since the assumptions for ANOVA are violated, it provides more
evidence in favor of our conclusion that the hypothesis HA0 should be rejected.

Table 7. Non–parametric tests

Transformed var. Kruskal–Wallis ANOVA Median Test
H statistic p–value χ2 statistic p–value

X0 20.170 0.005 13.803 0.055
X1 12.786 0.078 10.309 0.172

Consider now the random variable X1. In that case the assumptions of ANOVA
for the eight considered samples are satisfied. Hence, we apply ANOVA, and the
results are given in the second row of Table 8. The conclusion is that the equality
of means hypothesis HB0 could not be rejected (p–value > 0.05). Thus, we may
assume that the means of the eight samples for the late defect detection density
are equal.

Table 8. ANOVA tests

Transformed var. SS df MS F p

X0 25.157 7 3.594 3.069 0.004
X1 16.337 7 2.334 1.921 0.067

In order to confirm this finding, we additionally performed non–parametric
tests. The results are presented in the second row of Table 7. They also show
that the hypothesis HB0 could not be rejected (p–value > 0.05). This confirms
our conclusion that the means of X1 samples are equal.

124 T. Galinac Grbac and D. Huljenić

6 Discussion

The study is performed on samples of software units that are grouped, by or-
ganizational responsibility, into nine software design organizations that were
responsible for the software unit design. For software units, the effectiveness of
defect detection process has been measured in two consecutive phases, early and
late defect detection. The early defect detection of a particular software unit is
performed by the same organization that performed the software design. The
late defect detection is performed by the verification organization for the com-
plete software system, which is composed of all the analyzed software units. The
main outcome of the defect detection process is a number of defects that are
identified and reported per each software unit. So, the effectiveness of defect
detection process is measured per software unit as defect density, that is the
number of identified defects per software unit’s volume of code.

In the analysis, one of the research goals was exploring the difference in the
early defect detection effectiveness among the software design organizations in-
volved into the same global software development project. The results of the
analysis indicate that there is a significant difference in the effectiveness of early
defect detection among the software design organizations. Note that the same
organization was responsible for design and early defect detection on software
unit. One may conclude that software design organizations are not equally effec-
tive in early defect detection process, but this conclusion might be misleading.
The differences in early defect detection effectiveness may be a result of the dif-
ferences in organizational defect injection process as result of less experience,
more complex part of functionality for implementation or other factor identified
in [21], although that is also performed by the same organizations.

The other research goal was to understand the influence of the software de-
sign organizational distribution on the late defect detection effectiveness and the
product quality. The research hypothesis was testing the significance of differ-
ences in late defect detection effectiveness for the groups of software units with
aforementioned software design responsibilities. Note that late defect detection
is performed for all software units by a single verification organization, that is
different from the software design organizations. Surprisingly, the result of the
analysis was that there is no significant difference in the effectiveness of late
defect detection between the software units that were grouped according to the
software design responsibility. One may conclude that late defect detection was
equally effective for all groups of software units, that were developed and early
verified by different software design organizations. In other words, the diversity
in early defect detection effectiveness is not statistically significantly reflected in
diversity in late defect detection effectiveness.

From these results, we may argue that the defect density is a good effective-
ness measure in this context. The finding that late defect detection was equally
effective for all software units no matter of effectiveness achieved in early de-
fect detection may be followed by the conclusion that there is no relationship
between early and late defect detection effectiveness. Moreover, the diversity of

Defect Detection Effectiveness and Product Quality in GSD 125

early defect detection performed within software design organization does not
influence the later defect detection effectiveness.

These conclusions should be taken with caution and should be analyzed in
the light of the previous work. For example, in a number of studies the early
defect detection is identified as a good predictor of late defect detection and
remaining defect density in the system. On the other hand, in [9] and [10], it is
empirically identified that units with many defects identified in the early defect
detection phases have small number of defects in late defect detection phases,
and units with majority of defects in late defect detection phases have been the
units with small number of defects in early defect detection phases. From these
conclusions we may expect that variation in the early defect density is repeated
for late defect density that does not happen in our case.

Note that in this study the organizational influence participating in the GSD
on the effectiveness of defect detection process and product quality is evaluated.
For a proper valuation of the quality produced by development organization the
evaluation of outliers is also an interesting indication. Generally, when evaluating
organizational influence on the product quality the analysis of the number of
faults should not be excluded although one should be aware that the number of
faults depends on software size and the relation is not linear.

7 Conclusion and Future Work

The importance of the study presented in this paper lies in its empirically based
evaluation of the influence of software development distribution on the global
software development. Many challenges have been identified by researchers and
practitioners in the global software development, but still a limited empirical
evidence is presented. This study is a step in that direction.

In the context of this study, the diversity of early defect detection effectiveness
has not influenced the late defect detection effectiveness. On the other hand,
the early defect detection was performed by different organizations in the GSD
project, while the late defect detection is performed by the same verification
organization. This suggests that the defect density is better as the measure of the
organizational effectiveness than as the measure of product quality. However, the
presented study should be replicated in different contexts so that such conclusion
could be generalized.

Another direction for future work is to explore defect detection effectiveness
diversity among different GSD projects in the same context of the study. The
results of these analysis could bring conclusions on the impact of GSD process
evolution on diversity of defect detection effectiveness.

Finally, to get clear picture of the defect detection effectiveness impact on
product quality, the defect density over the software unit life–cycle and failure
density on the customer site should be also analyzed. Furthermore, the influ-
ence of organizational diversity on the severity of defects is also an issue to
explore.

126 T. Galinac Grbac and D. Huljenić

References

1. Ajila, S., Dumitrescu, R.: Experimental Use of Code Delta, Code Churn, and Rate
of Change to Understand Software Product Line Evolution. J. Syst. Softw. 80(1),
74–91 (2007)

2. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in
Global Software Development. IEEE Softw. 18(2), 70–77 (2001)

3. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does Distributed De-
velopment Affect Software Quality? An Empirical Case Study of Windows Vista.
In: 31st International Conference on Software Engineering ICSE 2009, pp. 518–528.
IEEE Computer Society, Washington DC (2009)

4. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global
Software Development. IEEE Softw. 18(2), 22–29 (2001)

5. Cataldo, M., Nambiar, S.: On the Relationship between Process Maturity and Geo-
graphic Distribution: an Empirical Analysis of their Impact on Software Quality. In:
7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering ESEC/FSE
2009, pp. 101–110. ACM, New York (2009)

6. Chrissis, M., Konrad, M., Shrum, S.: CMMI: Guide for Process Integration and
Product Improvement. Addison-Wesley, Boston (2004)

7. Ebenau, R.G., Strauss, S.H.: Software Inspection Process. McGraw Hill, Working-
ham (1994)

8. Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Develop-
ment. IBM Syst. J. 15(3), 575–607 (1976)

9. Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Com-
plex Software System. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)

10. Fenton, N., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Trans.
Softw. Eng. 25(5), 675–689 (1999)

11. Herbsleb, J.D.: Global Software Engineering: the Future of Socio–technical Coor-
dination. In: 2007 Future of Software Engineering FOSE 2007, pp. 188–198. IEEE
Computer Society, Washington DC (2007)

12. Institute of Electrical and Electronics Engineers (IEEE): Software Verification and
Validation. IEEE Standard 1012–2004, Software Engineering Standards Committee
of the IEEE Computer Society (2005)

13. International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC): Software Engineering – Product Quality – Part 1: Quality
model. ISO/IEC Standard 9126–1, Geneva (1997)

14. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability Measurement, Predic-
tion, Application. McGraw-Hill, New York (1987)

15. Nagappan, N., Murphy, B., Basili, V.: The Influence of Organizational Structure
on Software Quality: an Empirical Case Study. In: 30th International Conference
on Software Engineering ICSE 2008, pp. 521–530. ACM, New York (2008)

16. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules.
Commun. ACM 15(12), 1053–1058 (1972)

17. Pfleeger, S.L.: Software Engineering, Theory and Practice. Prentice-Hall, New York
(2001)

18. Project Management Institute (PMI): A Guide to the Project Management Body
of Knowledge (PMBOK Guide). PMI, Newtown Square (2004)

Defect Detection Effectiveness and Product Quality in GSD 127

19. Third Generation Partnership Project (3GPP): Technical Performance Objectives.
3GPP, Technical Specification Group Core Network (2005)

20. Wohlin, C., Höst, M., Henningson, K.: Empirical Research Methods in Software
Engineering. In: Conradi, R., Wang, A.I. (eds.) ESERNET 2003. LNCS, vol. 2765,
pp. 7–23. Springer, Heidelberg (2003)

21. Jacobs, J., van Moll, J., Kusters, R., Trienekens, J., Brombacher, A.: Identification
of factors that influence defect injection and detection in development of software
intensive products. Inf. Softw. Technol. 49(7), 774–789 (2007)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 128–142, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Managing Process Diversity by Applying Rationale
Management in Variant Rich Processes

Tomás Martínez-Ruiz, Félix García, and Mario Piattini

Alarcos Research Group, Institute of Information Systems and Technologies,
Escuela Superior de Informática, University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071 Ciudad Real, Spain
{tomas.martinez,felix.garcia,mario.piattini}@uclm.es

http://alarcos.esi.uclm.es

Abstract. Process diversity arises as software processes are influenced by or-
ganization, project and other contextual factors. Managing this diversity con-
sists of considering how these factors actually modify the process. Variant rich
processes offer support for process tailoring, but they do not currently link these
changes with the business factors motivating them. The lack of decision trace-
ability signifies that variant rich processes are not suitable for addressing proc-
ess diversity. This article aims to fill this gap by applying rationale management
to supporting decision-making when tailoring processes. Rationale management
has become one of the main assets in variant rich process tailoring, since it han-
dles how context-related factors are transformed into real variations in the
tailoring process, as a consequence of well-reasoned and traceable steps. An
application study shows how rationale provides useful mechanisms with which
to tailor a process according to its context of enactment.

1 Introduction

Software processes are implemented in organizations whose characteristics, teams
and people affect how the software process will actually be instantiated [1]. Software
processes therefore diverge over time according to the projects or teams to which they
are applied [2], while they are strongly based on international process standards [3].
Software process development organizations must therefore handle the diversity of
processes by means of considering how they vary from the standard process, and
more specifically, what exact variations standard processes experience to allow them
to be adapted according each context.

Variability in software processes supports tailoring, and these therefore meet diver-
sity in their enactment context. In previous works we have developed the Variant
Rich Process Paradigm (VRP), which supports software process variability by follow-
ing the Product Line Engineering (SPLEs) and Aspect Oriented Software Engineering
(AOSE) approaches [4, 5]. The paradigm has been implemented in vSPEM notation
[6, 7], which enhances SPEM 2.0 to support the modelling of Variant-Rich Processes.
vSPEM is also the core notation of SPRINTT, a framework to support the institution-
alization of software processes [8]. This framework can help users to define and insti-
tutionalize process variations and therefore supports the management of process

 Managing Process Diversity by Applying Rationale Management 129

diversity, but the framework lacks support to link these variations with the real causes
in the context motivating the change. This lack actually signifies two main disadvan-
tages: variations are neither traceable nor justifiable, and knowledge cannot be ex-
tracted from them, since the decisions about variation in a process are human-based
activities.

Human based decisions have been supported in software engineering by means of
Rationale Management [9]. Rationale management deals with managing all the rea-
soning that goes into determining the design of an artifact [9]. In fact, stored and re-
trieved information about decisions during the creation of a software product is useful
in other different phases of this development or maintenance. This information may
also be useful in making similar decisions in similar projects. In fact, design Rationale
has been successfully implemented in software engineering approaches such as prod-
uct lines [10], and is also used in software process evolution [11]. As a result of both
successful implementations, it may be applied to variant rich processes.

This paper tackles the inclusion of Rationale Management in the previously devel-
oped Variant Rich Process Paradigm and in the vSPEM notation. Rationale is consid-
ered as the cornerstone that connects the process’ context, the variant rich processes
and all the tailored processes created from them. As it contextualizes variations, it
also supports the combination of context and project performance knowledge in insti-
tutionalizing processes with SPRINTT.

This paper is organized as follows. Section 2 summarizes the state of the art with
regard to rationale and knowledge storing in software engineering. Section 3 shows
how rationale can contribute to process institutionalization in the SPRINTT frame-
work. The approach for managing rationale in variant rich processes is presented in
Section 4. Section 5 shows the application of rationale in tailoring a software process
in a company. Finally, conclusions and future work are presented in Section 6.

2 State of the Art

Rationale management is widely defined in [9]. Schneider [12] proposes to use it in a
manner which is as embedded as possible in the actually tasks with the aim of mini-
mizing effort, and considers the benefits to be higher than the effort involved in creat-
ing it. In addition, Lee [13] describes the six main issues concerned with managing
rationale, including the different storing layers and elements. As a result, it has been
used in software engineering [14], and has been specially applied in deciding varia-
tions of product lines. Knodel and Muthig [10] propose a five-step approach for
documenting variations. However, previous to these works, there were some ap-
proaches for managing traceability in product lines [15, 16]. All of them have the
same main objective: linking variations with the actual causes motivating them, and
offering the best support with regard to deciding variations, but they do not provide
mechanisms with which to support variation knowledge reuse.

On the other hand, some approaches apply rationale to software processes.
Ocampo et al. [11] propose using rationale for process evolution. Nkwoka et al. [17]
also use rationale in an environment for process improvement. Both approaches focus

130 T. Martinez-Ruiz, F. García, and M. Piattini

on enhancing processes by means of rationale, so all of them evolve or improve proc-
esses by using well-defined variations from variant rich processes.

With regard to the management of Process Diversity, it is important to note that
this is not a new topic in software processes, as it has already been applied to support
development and maintenance activities. In fact, Sutton et al. suggested it in 1996
when they discussed the programming of software processes, since programmed
processes diverge each other [18]. In the field of process tailoring some works can be
considered such as Simidchieva et al. [19], Barreto et al. [20]. These works tackle
diversity but they lack of specific support for linking variations with actual causes and
learning from variations generated knowledge. Caivano et al. propose the use of pat-
terns in making decisions about the processes and solving diversity [21], which
strongly link modifications with the causes that originate them. Henninger [22] uses
the experience factory approach from Basili [23] to design a process diversity knowl-
edge storing system in which adaptations are strongly performed by means of rules.

In summary, the related works are mainly focused on applying variability mecha-
nisms for process tailoring or applying rationale to processes, but they do not tackle
both approaches in an integrated manner. Moreover, they do not consider that process
tailoring could benefit from rationale management just as much as products do, since
product and process tailoring are similarly managed. The work presented herein aims
to enhance the VRP tailoring approach with rationale for driving variations with the
intention of obtaining advantages such as traceability, justification of variations or
knowledge reuse, and of therefore optimizing variations when tailoring variant rich
processes.

3 Rationale in the SPRINTT Institutionalization Framework

Institutionalization constitutes the superlative degree of process tailoring. It implies
process adaptation from the organization’s standard processes. The SPRINTT envi-
ronment was designed to provide support in process institutionalization [8], as it al-
lows feedback in a continuous four step cycle (tailoring, execution, analysis and stan-
dardization), and thus helps to determine which variations are better than others and
promote their re-use: they are validated.

A comparison of processes with cars may help the reader to understand the ration-
ale needed. Hire car companies do not classify cars according to the elements of
which they are composed (engine, battery…) or by names, since this would not be
logical However, if we wished to make a long journey, a car hire company would
offer us a private car, if we had a large family they would give us a mono van, and if
we were moving house they would offer us a removal van. This does not mean that
any of these models is always better than the others, but all of them fit particular us-
age circumstances better than the others.

Similarly, variants in a variant rich process need to be stored according to their
context. SPRINTT proposes to validate the variations by comparing tailored process
definition with execution logs, but a good variation in a process may be clearly bad in
the case of readapting the same variant rich process in order to fit the characteristics
of another totally different context. Rationale management therefore plays a principal
role in linking and justifying variations with their application context, and then
providing validated and contextualized variants. The context knowledge is therefore

 Managing Process Diversity by Applying Rationale Management 131

stored with any other project or process knowledge. Moreover, tailoring new
processes based on the knowledge base also takes into account the fact that the varia-
tions were well enacted in processes tailored to similar contexts.

Fig. 1 describes the main elements in the SPRINTT cycle, and how these interact
with rationale in order to define the contextualized variants. If we start from the proc-
ess adaptation step, both rationale and the tailored process are created by taking char-
acteristics from the enactment context, and they are both stored. Process is enacted in
the corresponding project (process enactment step), within its context, and is also
stored. The post-mortem analysis step retrieves tailored processes and projects, and
decides the validated variations, i.e. those whose changes were correct. At this point,
the validated variants are those which are well enacted. As these are identified, they
could be realized again, but when and how can they be satisfactorily reused?

The standardization step takes the validated variations and contextualizes them by
using the previously stored rationale (including context and justification). That is, it
specifies the context in which the validated variations were used, and supports the
reuse of the variations in similar contexts.

Context

Enacted Projects

Process
Adaptation

Analysis

Variations
Standardization

Project

a

Tailored Process

Rationale
(Variations= context

+ justification)

Process
Enactment

Organiza
tion

Culture

Laws

Standarized Variants

Rationale

Tailored Process

Validated and
Contextualized Variations

Fig. 1. SPRINTT Institutionalization Cycle with Rationale Management

Tailoring support in the sprint environment is based on controlled and scoped varia-
tions. In previous works we have developed the vSPEM notation, which adds the new
package Variations to SPEM, supporting on-point and crosscutting variations in soft-
ware processes. On-point variations are defined by means of variation points and
variants of the process composing elements by applying the Software Product Lines
(SPLEs). Crosscutting variations are defined by applying the Aspect Oriented Soft-
ware Engineering (AOSE) approach, and they support the encapsulation of several of
these on-point variations in process aspects, providing the capability of crosscutting
tailoring software processes.

132 T. Martinez-Ruiz, F. García, and M. Piattini

4 Rationale in Tailoring Variant Rich Processes

Rationale is the basis by which to optimally tailor software process from the view-
point of variant-rich processes. vSPEM supports it through its inclusion in a new
package, the VRichProcess, which is focused on tailoring software processes by
means of variant rich processes (based on the variability elements in the Variation
package) with rationale to handle how to carry out variations.

Fig. 2 shows the new elements defined in the VRichProcess package and their rela-
tionships. The elements, which inherit from the Variations package, are represented
with white boxes. The new elements allow us to describe the context in which a tai-
lored process is applied, which is used to tailor it (elements filled in grey), and to
manage the rationale from the tailoring in order to determine how to transform the
characteristics of a context into the optimal variations in the variant rich process (ele-
ments marked with bold border). These elements apply the storage layers defined by
Lee [13], and their intention is to capture information as it is produced, from the prob-
lem description (project and variant rich process) to the solution (tailored process to
that project), that is from the elements on the left to those on the right of the model
shown in Fig. 2. They also elicit the main assets in consistently building the solution.

-TextualDescrip
-OrganizationCharac
-ProyectCharac
-ExternalCharac
-Market

Context
(vSPEM::VRichProcess)

implies

1

n

-Origin
-Description

Requirements
(vSPEM::VRichProcess)

implies

1

n

based on

1

1

-Description
-Advantages
-Disadvantages
-Dependences

Alternative
(vSPEM::VRichProcess)

solved by

1

n

assess
n

n

generates

n

0-1

-Mark
-Comments

Assesment
(vSPEM::VRichProcess)

uses n
n

assess
n

n

-Description
-Metrics
-Weght

Arguments
(vSPEM::VRichProcess)

assesed by

n

1

uses n
n

-Description
-Domain
-RefModel
-MaxAdaptGrade
-MinAdaptGrade

VRProcess
(vSPEM::VRichProcess)

based on

1

1

contains

1

n

-Description
-Type

Variation
(vSPEM::VRichProcess)

tailored by

implies

1

n

includes1-2

1

-Description
-FitingRate

TProcess
(vSPEM::VRichProcess)

in context of

n

tailored by

-Description
-UseFrec
-SubDomain

VElement
(vSPEM::VRichProcess)

contains

1

n

includes1-2

1

-Disccusion
-Justification
-ReuseDegree

Resolution
(vSPEM::VRichProcess)

generates

n

0-1

in context of

n

resolves

1

1

triggers

1

n

implies

1

n

-Question
-Description
-Status
-Discusion

TailoringIssue
(vSPEM::VRichProcess)

assesed by

n

1

resolves

1

1

triggers

1

n

based on

1

1

based on

1

1

solved by

1

n

-TextualDescrip
-OrganizationCharac
-ProyectCharac
-ExternalCharac
-Market

Context
(vSPEM::VRichProcess)

-Origin
-Description

Requirements
(vSPEM::VRichProcess)

-Description
-FitingRate

TProcess
(vSPEM::VRichProcess)

-Description
-Domain
-RefModel
-MaxAdaptGrade
-MinAdaptGrade

VRProcess
(vSPEM::VRichProcess)

-Description
-UseFrec
-SubDomain

VElement
(vSPEM::VRichProcess)

-Question
-Description
-Status
-Discusion

TailoringIssue
(vSPEM::VRichProcess)

-Disccusion
-Justification
-ReuseDegree

Resolution
(vSPEM::VRichProcess)

-Description
-Advantages
-Disadvantages
-Dependences

Alternative
(vSPEM::VRichProcess)

-Description
-Metrics
-Weght

Arguments
(vSPEM::VRichProcess)

-Mark
-Comments

Assesment
(vSPEM::VRichProcess)

-Description
-Type

Variation
(vSPEM::VRichProcess)

1

1

1

1

1-2

1

1

n

1

n

1

n

n
n

n

1

1

n

n

0-1

n
n

1

n

1

1

n
implies

1

n

contains

1

n

based on

1

1

based on

1

1

solved by

1

n

assesed by

n

1

in context of

n

generates

n

0-1

uses n
n

assess
n

n

resolves

1

1

triggers

1

n

tailored by

implies

1

n

includes1-2

1

Fig. 2. Elements supporting rationale in the vSPEM notation

 Managing Process Diversity by Applying Rationale Management 133

The white and non-marked classes in Fig. 2 inherit from homonymous classes in
the Variations package and they support the process variability definition and their
usage in tailoring processes. They also add some new attributes to support rationale,
as Tables 1 and 2 show.

Table 1. Description of the elements defining variability in processes

Element Description
VRPro-
cess

Represents a process with variability (variants, variation points, process
aspects). Attributes: Domain, which defines the domain the variant rich
process is designed in (real time software, systems, management, embod-
ied, Artificial Intelligence, etc); Description allows the broad definition of
the variant rich process; RefModel specifies the reference models the
variant rich process is based on, if any; MaxAdaptGrade and MinAdapta-
tionGrade indicate the maximum or minimum adaptation grade of the
variant rich process. The former corresponds with the maximum number
of variation points defined into the variant-rich process plus the maximum
number of process aspects that could be used in the VRP; the latter corre-
sponds with the mandatory number of variation points included in the
variant-rich process.

Velement Variable element in a variant rich process. There are three types: varia-
tion points and variants (for on-point variations) and process aspects
(for crosscutting variations). It includes three attributes: the SubDomain
it is designed for, if any; a long description; and a ratio of frequency of
use, UseFrec.

Table 2. Description of the elements defining tailored processes

Element Description
Variation Describes the variations (both on-point and crosscutting). Attributes: The

Type differentiating the on-point and crosscutting variations; a detailed
description of the ‘how to’ of the variation.

Tailored
Process

Represents the tailored process created from the variant rich process with
the characteristics of the context. It includes a detailed Description, and a
FittingGrade signifying how well the tailored process fits the context.

The VRichProcess package include the Context and Description elements (filled in

grey) with which to include knowledge about the context in which the processes are
enacted, and supports in a high abstraction level of the goals involved in tailoring any
process (Table 3).

Specific support for Rationale is provided by means of five elements detailed in
Table 4. These elements are consistent with the explicit representation of the decision
sub-layer proposed in [13]. They are also the core of the VRichProcess package
(marked with a bold border).

In summary, the rationale elements included in the VRichProcess package specify
the way in which the tailoring knowledge is created and used in the process institu-
tionalization cycle (see Fig. 1). Three main objectives are fulfilled by means of these

134 T. Martinez-Ruiz, F. García, and M. Piattini

Table 3. Description of the elements in the Context description area

Element Description

Require-

ment

Process tailoring requirements which the variant rich process need to

achieve in order to fit the context as well as possible. Attributes: a de-
scription and origin, which indicates whether the requirement is owing

to the project, the organization or external characteristics.

Context Represents the context in which the process will be executed. Attributes:

TextualDescription of the organization. OrganizationChar specifies any

characteristic of the organization affecting the process enactment (such

as the segment they work, the number of employees…); ExternalChars
defines the context in which the organization is, but which cannot be

controlled or changed (laws, culture etc); ProjectChars includes the

project plan; Market indicates the type of market the organization uses to

develop software (healthcare, army…).

Table 4. Description of the elements in the Rationale set

Element Description

Tailoring

Issue

Represents a tailoring issue of the variant rich process, which is a

change in the variant rich process in order for the tailored process to

meet one specific requirement. Attributes the question should satisfy;

a complete description; the status (open or closed) of the tailoring

issue; and any discussion needed to decide about the tailoring issue.

Alternatives Proposals for resolving the tailoring issue. Attributes: a long Descrip-

tion; the set of Advantages and Disadvantages; and a list of the De-
pendences it could generate. Since variations are not independently

executed, variability mechanisms also consider dependences between

them [6, 7], and these dependences are therefore included in the

documentation of all the alternatives. In fact, the dependences of an

alternative are an important point when it is assessed.

Arguments Criteria for deciding how good the alternatives are. Attributes: a long

Description; a Metric for assessing and comparing the alternatives;

and the Weight, defining the different significance of the arguments.

Assessment Represents the assessment of each argument in each alternative. It

includes two attributes: the Mark (how well the alternative to that

argument is satisfied) and the Comments about the assessment.

Resolution Selected alternative to resolve the tailoring issue by means of some

variations. Attributes: the discussion about analyzing alternatives, and

the justification of why the alternative must be selected; ReuseDegree,
indicating from 0 to 1 to what extent the resolution is based on pre-

vious ones. When the alternative becomes a resolution, its depen-

dences become new triggered tailoring issues to ensure consistence.

mechanisms: traceability from end to end (context and variations, respectively); justi-
fiability, since through rationale it would be possible to ensure that each variation is

 Managing Process Diversity by Applying Rationale Management 135

created as the best solution after assessing all the alternatives, making the variant rich
process fit the process context; knowledge reusing since the approach allows the
knowledge to be extracted from the variations and managed.

5 Application Study

An application study is being conducted on the use of the vSPEM notation (including
the rationale management) as the core mechanisms for applying the MEDUSAS me-
thodology [24] in a given project. MEDUSAS is an environment containing the proc-
esses, which aims to support the evaluation and improvement of the Usability, Secu-
rity and Maintainability of software products. To achieve its purpose, MEDUSAS is
composed of a methodology to guide organizations in carrying out the quality assur-
ance process and metrics, indicators and guidelines to support the evaluation process.

The methodology includes the quality assessing and support processes, clearly defin-
ing who, what and how quality is assessed. It contains three processes, the Quality As-
sessment Process, which is the main process and is composed of four phases (Planning
to establish the assessment contract and specify the assessment plan; Specification to
determine the scope of the quality assessment project, and what to assess from the prod-
ucts; Execution which includes all the assessment activities; and Ending which is fo-
cused on realizing the assessment report); and the Quality Assessment Management, and
the Infrastructure Management processes, which support the first process.

There are two ways in which to apply MEDUSAS: by considering the methodology
as another asset in the client organization and guaranteeing alignment between its proc-
esses and those from the development cycle (on-site mode), or by applying MEDUSAS
to ensure the quality of the artefacts that a third organization is developing for the client
(external assessment mode). Table 5 shows a description of the variant rich process of
MEDUSAS developed according to the rationale structure presented in Section 4. This
VRP provides mechanisms for tailoring MEDUSAS methodology according to the
different contexts in which it could be used. The defined variations are focused on two
main points: the first is to provide the methodology with the profile, in accordance with
the assessment type (internal or external); this is managed by means of two process
aspects dealing with crosscutting variations; each of them varies some activities and
tasks in all three processes, in accordance with the type of implementation. The second
includes tailoring support depending on whether certain roles take part in the project, the
standards they use, and the list of evaluating work products, among other aspects. All
these are on-point variations and are defined by means of variation points and variants.
Table 6 lists some of the variation elements included in the variant rich process, These
are variants, variation points and process aspects. However, a detailed description of
them is not provided here owing to space limitation (a definition of these concepts ap-
pears in [6, 7]). This study presents the first occasion on which the variants were used to
tailor a process by applying the rationale steps.

Table 5. Description of the MEDUSAS Variant-rich process

Description Presented above
Domain Quality Assessment
Reference Model ISO/IEC 29119, ISO/IEC 25020, ISO/IEC 25000
MaxAdapGrade 17 (15 variation points +2 process aspects)
MinAdaptGrade 8

136 T. Martinez-Ruiz, F. García, and M. Piattini

5.1 Description of the Tailoring Context

The MEDUSAS Variant Rich Process is applied in the context of a Spanish organiza-
tion focused on ensuring quality in the field of software testing, mainly to other enter-
prises or public institutions. It works in nearshoring mode since its offices are in
Ciudad Real (Spain). It must apply some Spanish laws, such as the Personal Data
Protection Law (LOPD), or the Information Society Services Law (LSSI).

The project in which the MEDUSAS will be applied is that of ensuring the quality
of the software that a third organization is developing for a client. Table 7 resumes the
information about the context, according to the context structure Section 4 presents.
Based on the previously described context, some requirements for process tailoring
appear, and these are listed in Table 8.

Table 6. Set of variability elements in the MEDUSAS variant rich process

Id Description Use Freq Subdom.
1 Process Aspect “On-site”. First Use n/a
2 Process Aspect “External”. First Use n/a
3-5 Role variation point in some activities. First Use n/a
6-8 Role variants concerning the “Client Team”, “Quality

Responsible” and “External Team” roles.
First Use n/a

9 Work product variation point related to the “Deciding
Assessment Model” activity.

First Use n/a

10 Work product variant “Standard X”. First Use n/a
11,12 Activity variation points in the Specification Phase. First Use n/a
13,14 Variants of some optional activities. First Use n/a

Table 7. Characterization of the context in which the Variant Rich Process is applied

Textual Desc. Presented above
Organization
Characteristics

It works ensuring software quality in the field of software testing. It
includes computer experts from the UCLM.

Project
Characteristics

It focuses on assessing the quality of the software that a third or-
ganization is developing for the client.
It is realized from the organization’s offices (externalized mode).

External Char. Projects must meet Spanish laws such as LOPD and LSSI.
Market External Quality Assessment

Table 8. Set of requirements for a process meeting the organization’s needs

Id Origin Description
1 Project It must be adapted to be applied in an externalized context.
2 Organization The complexity of the methodology must be simplified.
3 Organization The number of roles involved must be minimized.
4 Project The number of activities and tasks must be reduced, if possible.
5 Project Any adaptation must affect the quality of the methodology.
6 Project &

external
The project and external laws force the standard for quality as-
sessment X to be used.

 Managing Process Diversity by Applying Rationale Management 137

5.2 Rationale in Tailoring MEDUSAS to the Organization

If we consider the requirement the context of the Organization presents, then the
variant rich process of MEDUSAS needs to be tailored. The matching of the tailoring
requirements (Table 6) with the variability elements in the variant rich process
(Table 8) generates certain Tailoring Issues, as Table 9 details. These tailoring issues
propose the use of some of the variability elements in the MEDUSAS VRP in order to
fit the requirements to the specific context that the executing project demands.

Satisfying the tailoring issues presented in the Table 9 generates some alternatives,
as Table 10 lists; the resolution of the tailoring issue is obtained from these. Table 10
does not show certain details regarding the application of the variability elements
owing to confidentiality constraints, but it depicts the different options that could be
used when tailoring the software process. These alternatives are assessed according to
the arguments presented in Table 11.

Table 9. Tailoring Issues for tailoring the variant rich process to the Organization

Id Req. Question Description Status Discussion
1 1 The possibility of using the proc-

ess aspects to adapt the method-
ology according to the execution
mode.

The VRP
contains some
aspects to….

Open It might be
interesting
to…

2 2, 3,
5

The possibility of reducing those
optative roles

Some roles
are optative...

Open It might be a
good idea…

3 5, 6 The possibility of assessment
using the standard X

The standard
used may…

Open …

4 2, 4,
5

The possibility of reducing opta-
tive tasks and activities

Removing the
optative ac-
tivities…

Open …

Table 10. Description of the alternatives for solving the previous tailoring issues

Id Description Adv. /Disad Dep.
1.a Uses the process aspect “On-site”. Confidential None
1.b Uses the process aspect “external”. “ “
1.c Does not use the process aspects. “ “
2.a Considers the role, “Client Team”. “ “
2.b Does not consider the role “Client Team”. “ “
2.c Considers the role, “Quality Responsible”. “ “
2.d Does not consider the role “Quality Responsible”. “ “
2.e Considers the role, “External Team”. “ “
2.f Does not consider the role “External Team”. “ “
3.a Considers using the standard “X”. “ “
3.b Considers using the standard “Y”. “ “
3.n Considers not using standards. “ “
4.a Considers carrying out some optative tasks “ “
4.b Considers not using these optative tasks. “ “

138 T. Martinez-Ruiz, F. García, and M. Piattini

Alternatives are assessed by means of arguments, resulting in a matrix. Table 12
summarizes this matrix, showing alternatives in rows and arguments in columns.
Because of confidentiality constraints, we show an estimation of how good they are.
As a result, we assess them by using linguistic tags: high, medium and low.

As a result of the evaluation of alternatives, some are selected to solve each tailor-
ing issue. These alternatives, and the tailoring issue they solve, are described in Table
13. Owing to space constraints, any of the presented resolutions triggers a new Tailor-
ing Issue.

Table 11. Description of the Arguments for assessing the Alternatives

Id Description Metrics Weight
a The variations do not remove func-

tionality.
The functionality is reallocated
throughout the process

0,75

b The Assessment’s Quality and Con-
fiability are not affected.

Variations do not affect the
assessment quality

1

c The process is complete. No mandatory variation points
are empty.

1

d Alternatives fit the assessment
client’s necessities as much as possi-
ble.

The characteristics of the alter-
native meet the context require-
ments.

0,5

Table 12. Overview of the assessment of the alternatives by means of the arguments

 a b c d a b c d
1.a low low high low 3.a med. high high med.
1.b med. high high med. 3.b low low high low
1.c low low low low 3...
2.a med. high high low 3.n low low high low
2.b med. high high med. 4.a med. low high low
2.c med. high high low 4.b med. high high med.
2.d med. high high med. 4.c med. high high low
2.e med. high high med. 4.d med. low high med.
2.f low low high med.

Table 13. Resolutions created after assessing the alternatives

Tailoring
Issue

Alternatives
Selected

Justification

1 1.b The process aspect meets the context requirements
2 2.b, 2.d, 2.e The “Client Team“ and “Quality Responsible” optative

roles can be deleted, but the “External Team“ cannot,
because it ensures the quality…

3 3.a The variant rich process allows precisely the standard the
context requires to be used.

4 4.b, 4.c One optative activity is not included, but the other is in-
cluded, as it ensures the quality of the assessments.

 Managing Process Diversity by Applying Rationale Management 139

5.3 Tailored Process from the MEDUSAS Variant Rich Process

As a consequence of the Tailoring issues described in Table 9, and the solution de-
scribed in Table 13, some variations are realized. The Organization’s tailored MEDU-
SAS process effectively considers the enactment context. The principal asset is that the
“External aspect” is used, signifying that the methodology has been explicitly config-
ured to carry out external validations, which is the main characteristic of the enactment
context. In addition, some roles, such as the “External Team” have been configured
according to factors such as the quality assurance level, or the human resources avail-
able in the Organization. Both of them clearly influence the enactment, and not taking
them into account may compromise the entire project execution. Some other adaptations
regarding the standards used, or skipping certain activities, influence whether the result-
ing process is or is not in accordance with external laws and the budget.

All of the above signifies that the tailored process fits the enactment context to a
high degree. It is therefore possible to ensure that the enactment consistence is higher
than if the process to be enacted was the standard (and strict) version of MEDUSAS.
The variations are listed in Table 14 and configure the process described in Table 15.

Table 14. Variations realized as a consequence of the resolutions

Resolution Variable
Elements

Type Description

1 2 Crosscut. The External Aspect is activated.
2 5,8 On-point The role variant “External Team” is placed in the

role variation point, in the corresponding activity.
3 8,10 On-point The work product variant “Standard X” is placed in

the work product variation point related to the
“Deciding Assessment Model” activity.

4 12,14 On-point The optative activity variant is placed in the corre-
sponding activity variation point.

Table 15. Tailored process configured by using the MEDUSAS VRP and the context

Textual
Description

Described above.

Fitting Rate High.

5.4 Lessons Learned from the Proposal of Application Study

Tables 6 to 16 show an excerpt of the use of rationale in tailoring a software process.
These details meet the three main objectives that rationale management supports.
Firstly, the excerpt shows easy tracing from the inputs in the process tailoring (the
variant rich process and the context) to the resulting tailored process. Secondly, after
eliciting alternatives and comparing them, it justifies each variation as the best solu-
tion for solving each tailoring issue. Thirdly, rationale allows knowledge to be stored
and permits us to learn from what the variations realize based on the context and the
variant rich processes.

140 T. Martinez-Ruiz, F. García, and M. Piattini

The application study also provides us with some other advantages we had not pre-
viously considered. Firstly, as rationale elements are built based on others, rationale
offers the sequence steps with which to consistently tailor a software process. These
steps really define a process tailoring activity. The sequence of steps also provides
another advantage in that they are well defined and could be easily included in a tool
giving support to process tailoring. This could transparently manage rationale from
the user viewpoint.

In addition, since elements supporting rationale are well defined and well related,
the tailoring steps may be easily recomputed in the case of input change. New varia-
tions are then obtained after any improvement or update is made in the context or the
variant rich process. To sum up, we have shown how rationale management optimizes
variant rich process variations, and software processes therefore meet process diver-
sity challenges.

6 Conclusions and Future Work

Process diversity is as real in software processes as they enact and it is as important as
using a capable process. Managing process diversity is therefore essential in attempt-
ing to perform good process enactments, and this therefore implies ensuring that
processes meet the characteristics of their context. That implies tailoring the process
by considering several context factors. Variability has typically been used for the
consistent and easy tailoring of software processes, but totally exploiting variability
mechanisms is not possible unless they are suitably managed. Tailoring not only im-
plies realizing certain variations in the software process, but also needs to ensure that
the variations make the process fit its context; these variations actually come up to
and meet the tailoring objectives. Moreover, this knowledge needs to be used again in
tailoring other processes and in improving the process tailoring activity.

Designing a process variability notation, such as vSPEM or the Variant Rich Proc-
ess (VRP) paradigm, supports half of the problem of tailoring processes. But this
notation is not fully usable since it does not relate tailoring causes to tailoring results,
from end to end. Rationale Management can be used to solve this problem since it
supports relationships between the process context and the actual variations, it allows
each variation to be justified not only as a good variation, but ensures that all the
variations are the best ones for tailoring the whole process. It also implies that knowl-
edge about the tailoring is stored when it is produced, and retrieved again if it is nec-
essary. Applying rationale in process tailoring implies executing several well-defined
steps and documenting them. This extra work might initially be viewed as a disadvan-
tage; however it forces structured software process tailoring in the same way that
software processes structure software development. The advantages of applying this
rationale therefore compensate for the extra work that it involves.

Rationale management has been merged with previous variability mechanisms in
the VRP paradigm and notation. This also qualitatively improves the process institu-
tionalization framework, as tailored processes are linked with the problem they actu-
ally solve. The application study shows that rationale management supports the
achievement of all the advantages that were assumed, and offers other advantages. In
addition, it structures and makes the whole tailoring activity consistent by dealing
with improving this activity itself.

 Managing Process Diversity by Applying Rationale Management 141

Future work is focused on validating the vSPEM language, considering that ration-
ale is now the cornerstone of the variability mechanisms, and the most important asset
in tailoring processes. This will provide us with feedback in order to improve our
approach. We are carrying out some other case studies in the context of real variant
rich processes tailoring and we hope to develop a tool to support the vSPEM lan-
guage, as was mentioned in the section concerning the lessons learned. This tool will
helps us to carry out the case studies automatically, thus reducing the effort needed in
documentation and assisting during the decision making process.

Acknowledgments

This work is partially supported by the Program FPU of the Ministerio de Educación,
and by the INGENIOSO (JCCM, PEII11-0025-9533), MEDUSAS (CDTI (MICINN),
IDI-20090557), PEGASO/MAGO (MICINN and FEDER, TIN2009-13718-C02-01),
and ALTAMIRA (JCCM, Fondo Social Europeo, PII2I09-0106-2463) projects.

References

1. Lindvall, M., Rus, I.: Process Diversity in Software Development. IEEE Software, 14–18
(2000)

2. Siebel, N.T., Cook, S., Satpathy, M., Rodríguez, D.: Latitudinal and Longi-tudinal process
diversity. Journal of Software Maintenance and Evolution: Research and Practice 9, 9–25
(2003)

3. Deck, M.: Managing Process Diversity While Improving Your Practices. IEEE Software,
21–27 (2001)

4. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.
Addison-Wesley, Boston (2004)

5. Clements, P., Northrop, L.: Software Product Lines. Practices and Patterns. Addison-
Wesley, Boston (2002)

6. Martínez-Ruiz, T., García, F., Piattini, M.: Towards a SPEM v2.0 Extension to Define
Process Lines Variability Mechanisms. In: Lee, R. (ed.) SERA. SCI, vol. 150, pp.
115–130. Springer, Praga (2008)

7. Martínez-Ruiz, T., García, F., Piattini, M.: Framework to the Standardization and Institu-
tionalization of Software Processes. (2008)

8. Martínez-Ruiz, T., García, F., Piattini, M.: Process Institutionalization using Software
Process Lines. In: Cordeiro, J., et al. (eds.) ICEIS 2009. ISAS, pp. 359–362 (2009)

9. Dutoit, A.H., McCall, R., Mistrík, I., Paech, B.: Rationale Management in Software
Engineering: Concepts and Techniques. In: Dutoit, A.H., et al. (eds.) Ra-tionale Manage-
ment in Software Engineering, pp. 1–45. Springer, Heidelberg (2006)

10. Knodel, J., Muthig, D.: The Role of Rationale in the Design of Product Line Architectures
– A Case Study from Industry. In: Dutoit, A.H., et al. (eds.) Rationale Management in
Software Engineering, pp. 297–312. Springer, Heidelberg (2006)

11. Ocampo, A., Münch, J.: Rationale Modeling for Software Process Evolution. Software
Process Improvement and Practice 14, 85–105 (2008)

12. Schneider, K.: Rationale as a By-Product. Rationale Management in Software Engineering,
91–110 (2006)

13. Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12, 78–86
(1997)

142 T. Martinez-Ruiz, F. García, and M. Piattini

14. Dutoit, A.H., mcCall, R., Mistrík, I., Paech, B.: Rationale Management in Software
Engineering. Springer, Heidelberg (2006)

15. Mohan, K., Ramesh, B.: Ontology-based Support for Variability Management in Product
and Service Families. In: Proc. of the HICSS 2003 (2003)

16. Kumar Thurimella, A., Wolf, T.: Issue-based Variability Modelling. In: GREW 2007, pp.
11–22 (2007)

17. Nkwoca, A., Hall, J., Raspanotti, L.: Design Rationale Capture for Process Improvement
int he Globalised Enterprise: An Industrial Study. Faculty of Mathematics and Computing.
The Open University, Milton Keynes (2010)

18. Sutton, S., Osterweil, L.J.: PDP: Programming a Programmable Design Process. In: 8th
Int. Workshop on Software Specification and Desing, pp. 186–190 (1996)

19. Simidchieva, B.I., Clarke, L.A., Osterweil, L.J.: Representing Process Variation with a
Process Family. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470,
pp. 121–133. Springer, Heidelberg (2007)

20. Silva Barreto, A., Murta, L., Rocha, A.R.: Software Process Definition: a Reuse-Based
Approach. In: XXXIV Conferencia Latinoamericana de Informática, Santa Fe, Argentina,
pp. 409–418 (2008)

21. Caivano, D., Visaggio, C.A.: Process Diversity and how Practitioners Can Manage It.
Novatica V (2004)

22. Henninger, S.: An Environment Supporting Software Process Standardization and
Innovation

23. Basili, V., Caldiera, G., Rombach, D.: The Experience Factory. In: Marciniak, J. (ed.)
Encyclopedia of Software Engineering, pp. 469–476. John Wiley, Chichester (1994)

24. Torre, D., Blasco, B., Genero, M., Piattini, M.: CQA-ENV: An integrated environment for
the continuous quality assessment of software artifacts. In: The 8th International Confer-
ence on Software Methodologies, Tools and Techniques (SoMeT), Praga, vol. 199, pp.
148–164 (2009)

Usage of Open Source in Commercial Software

Product Development – Findings from a Focus
Group Meeting

Martin Höst, Alma Oručević-Alagić, and Per Runeson

Department of Computer Science, Lund University
P.O. Box 118, SE-211 00 Lund, Sweden

{martin.host,alma.orucevic-alagic,per.runeson}@cs.lth.se

http://serg.cs.lth.se/

Abstract. Open source components can be used as one type of software
component in development of commercial software. In development using
this type of component, potential open source components must first be
identified, then specific components must be selected, and after that
selected components should maybe be adapted before they are included
in the developed product. A company using open source components
must also decide how they should participate in open source project
from which they use software. These steps have been investigated in a
focus group meeting with representatives from industry. Findings, in the
form of recommendations to engineers in the field are summarized for
all the mentioned phases. The findings have been compared to published
literature, and no major differences or conflicting facts have been found.

Keywords: open source, industrial, off-the-shelf components.

1 Introduction

Open source software denotes software that is available with source code free
of charge, according to an open source license [1]. Depending on the license
type, there are possibilities to include open source components in products in
the same way as other components are included. That is, in a large software
development projects, open source software can be used as one type of component
as an alternative to components developed in-house or components obtained from
external companies.

There are companies that have experience from using well known open source
projects. Munga et al. [2], for example, investigate business models for companies
involved in open source development in two case studies (Red Hat and IBM)
and concludes that ”the key to their success was investing resources into the
open source development community, while using this foundation to build stable,
reliable and integrated solutions that were attractive to enterprise customers”.
This type of development, using open source software, is of interest for several
companies. If open source components are used in product development there are

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 143–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://serg.cs.lth.se/

144 M. Höst, A. Oručević-Alagić, and P. Runeson

a number steps that the company needs to go through, and there are a number
of questions that need to be solved for each step.

First potential components must be identified, which can be done in several
ways. That is the company must decide how to identify components. Then, when
potential components have been identified, it must be decided which component
to use. In this decision there are several factors to consider, and the company
must decide how to make this decision. Using the components there may be
reasons to change them, which gives rise to a number of questions on how this
should be done and to what extent this can be recommended. A company working
with open source components must also decide to what extent to get involved
in the community of an open source project.

There is some research available in this area [3], although there is still a need
to collect and summarize experience from companies working in this way. In
this paper, findings are presented from a workshop, in the form of a focus group
meeting, where these topics were analyzed by industry representatives.

The outline of this paper is as follows. In Section 2 the methodology of the
research is presented, and in Section 3 the results are presented. The results are
compared to results presented in the literature in Section 4, and in Section 5 the
main conclusions are presented.

2 Methodology

2.1 Focus Group

The workshop was run as a focus group meeting [4,5]. At the workshop, partici-
pants informally presented their experience from development with open source
software, for example from using open source components in their product de-
velopment, or from participating in open source communities. The intention was
to give all participants both an insight into how others in similar situations work
with these issues, and to get feedback on one’s own work from other organiza-
tions. The result of a similar type of workshop was presented in [6].

Invitations to the workshop were sent to the network of the researchers. This
includes earlier participants at a seminar on ”research on open source in indus-
try” where rather many (≈ 50) people attended, and mailing lists to companies
in the region. This means that the participants cannot be seen as a representative
sample of a population and generalizations cannot be made in traditional statis-
tical terms. Instead analysis must be made according to a qualitative method,
e.g. as described by Fink [7, p. 61-78]. This is further discussed in Section 2.4.

2.2 Objectives and Discussion Questions

The main research questions for the study were:

– How should open source components for inclusion in products be selected?
Is there a need to modify selected components, and if so, how should this be
done?

Usage of Open Source in Commercial Software Product Development 145

– To what extent is code given back to the open source community, and what
are the reasons behind doing so?

Discussion questions could be derived from the objectives in different ways. One
possibility would be to let the participants focus on a specific project and discuss
issues based on that. The advantage of this would be that it would probably be
easy for the participants to know what actually happened since it concerns a
specific project. The difficulties with this approach are that there is a risk that
participants have valuable experience from more than one project and therefore
cannot express all experiences they have since they should focus on one specific
project. There is also a risk that data becomes more sensitive if it is about a spe-
cific project. Another alternative is to ask about more general experience from
the participant and let them express this in the form of advice to someone work-
ing in the area. That is, the participants use all the experience and knowledge
they have, without limiting it to a specific project or presenting details about
projects, customers, etc. This was the approach that was taken in this research.

Based on the objectives of workshop, the following discussion questions were
phrased:

1. How should one identify components that are useful, and how should one
select which component to use?

2. How should one modify the selected component and include it in ones prod-
uct?

3. How should one take care of updates from the community?
4. How should one handle own modifications/changes? What are the reasons

for giving back code (or not giving back code)?

In order to get a good discussion, where as many relevant aspects as possible
were covered, it was monitored in the following way. For each discussion question,
the participants were given some time to individually formulate an answer, or
several answers, on a Post-it note. When individual answers had been formulated
each participant presented their answer to the others, and the notes were posted
on the wall. During the discussions, the researchers also took notes.

2.3 Analysis Procedure

The main data that was available for analysis were the notes formulated by
the participants (”P-notes” below) and the notes taken by the researchers (”R-
notes” below). The analysis was carried out in a number of steps, which are
summarized in Figure 1 and explained below.

First all P-notes were transcribed into electronic form. In this step one note
was transformed into one line of text. However, in some cases the participants
wrote lists with more than one note at each piece of paper. In these cases this
was clearly marked in the transcript. When interpreting the notes, the researcher
were helped by the fact that the participants had presented the notes at the
meeting earlier.

The R-notes were derived by dividing a longer text into single notes. After
this the P-notes and the R-notes were on the same form.

146 M. Höst, A. Oručević-Alagić, and P. Runeson

Transcribe into
electronic form

Sort notes under
phases

Develop
summaries for

each phase

P-notes R-notes

Divide into shorter
notes

Participants review
summaries

meeting

participants

report

Fig. 1. Main analysis steps

After this a set of phases were defined, based on the lifecycle phases in software
development. These phases were based on the areas covered by the questions,
but not exactly the same. Then, all notes could be sorted under the phases in
which they are relevant.

Next, all notes were grouped in related themes within phases, and based on
these summaries were developed. This means that one presentation summary was
developed for each phase. The final version of these summaries are presented in
Section 3.

Based on this, a report was developed with the summaries. The participants
were given the possibility to review and adapt the summaries in the report. This
resulted only in minor changes.

This procedure results in a summary, as presented in Section 3. The results
were given back to the participants in the form of a technical report. This result
is also compared to the literature in Section 4 of this article.

2.4 Validity

Since the collected data is analyzed qualitatively, the validity can be analyzed
in the same way as in a typical case study, which in many cases also is analyzed

Usage of Open Source in Commercial Software Product Development 147

qualitatively. Validity can for example be analyzed with respect to construct
validity, internal validity, external validity, and reliability [4,8].

Construct validity reflects to what extent the factors that are studied really
represent what the researcher have in mind and what is investigated accord-
ing to the research questions.

In this study we believe that the terms (like ”open source”, ”compo-
nent”, etc.) that are used are commonly used terms and that the risk of not
meaning the same thing is low. It was also the case that the participants
formulated much of the notes themselves, which means that they used terms
that they fully understood. Besides this, the researchers participated in the
whole meeting, which means that it was possible for them to obtain clarifi-
cations when it was needed. Also, the report with the same material as in
Chapter 3 of this paper was reviewed by the participants.

Internal validity is of concern when causal relations are examined. In this
study no causal relations are investigated.

External validity is concerned with to what extent it is possible to generalize
the findings, and to what extent the findings are of interest to other people
outside the investigated case.

The study was conducted with a limited set of participants from a limited
set of organizations. This means, of course, that the results cannot automat-
ically be generalized to other organizations. Instead it must be up to the
reader to judge if it is reasonable to believe that the results are relevant also
for another organization or project. The results are compared and validated
to other literature and the type of results is not intended to be specific for a
certain type of results.

It should also be noticed that the findings from the focus group are based
on the opinions of the participants. There may be a risk that the opinions are
very specific for one participant or for the organization he/she represents.
The nature of a focus group meeting helps avoiding this problem. According
to Robson there is a natural quality control and participants tend to provide
checks and react to extreme views that they do not agree with, and group
dynamics help in focusing on the most important topics [4, Box 9.5].

Reliability is concerned with to what extent the data and the analysis are
dependent on the specific researchers.

In order to obtain higher validity with respect to this, more than one
researcher were involved in the design and the analysis of the study. Also, as
mentioned above, the report with the same material as in Chapter 3 of this
paper was reviewed by the participants.

Another aspect that is relevant to this is how the questions were asked
and what type of data the participants are asked to provide. In order to
avoid problems with confidentiality, the participants were asked to formulate
answers more as advice to someone who is working in the area than as
concrete experiences from specific (and named) projects. We believe that
this makes it easier to provide data for this type of participants.

148 M. Höst, A. Oručević-Alagić, and P. Runeson

3 Results from Focus Group Meeting

3.1 Participants

At the workshop the following participants and organizations participated:

A. Four researchers in Software Engineering from Lund University, i.e. the au-
thors of this paper and one more person

B. One researcher in Software Engineering from another university
C. Two persons from a company developing software and hardware for embed-

ded systems.
D. One person from a company developing software and functionality based on

an embedded system
E. One person from an organization developing software and hardware for em-

bedded systems with more than 10 years tradition of using open source
software

F. One person from an organization with the objective of supporting organiza-
tions in the region to improve in research, innovation and entrepreneurship
in mobile communications

That is, in total 10 persons participated, including the authors of this paper.

3.2 Identification

Previously, companies were used to choose between making components them-
selves or to buying them. Now the choice is between making or buying, or using
an open source component. That is, there is one more type of component to take
into account in the identification process. It should also be pointed out that it is
a strategic decision in terms of whether the product you are developing should
be seen as a closed product with open source components or as an open source
product.

When components are identified it is important that this is based on a need in
the development and that it maps to the product requirements. When it comes
to the criteria that are used when identifying components, they should preferably
be identified in advance.

In the search process, the advice is to start with well-known components
and investigate if they fulfill the requirements. There is also a lot of knowledge
available among the members in the communities, so if there are engineers in
the organization that are active in the community, they should be consulted. A
further advice is to encourage engineers to participate in communities, in order
to gain this kind of experience. However, the advice to consult engineers in the
organization is not depending on that they are members of the communities. A
general knowledge and awareness of existing communities is also valuable.

The next step is to search in open source forums like sourceforge and with
general search engines like google. The advice here is to use technical terms for
searching (algorithm, protocols, standards), instead of trying to express what
you try to solve. For example, it is harder to find information on ”architectural
framework” than on specific techniques for this.

Usage of Open Source in Commercial Software Product Development 149

3.3 Selection

The more general advises concerning the selection process is to, again, use pre-
defined criteria and recommendations from colleagues. It is also possible to con-
duct a basic SWOT-analysis in the analysis phase.

A more general aspect that is important to take into account is if any of the
identified components can be seen as an ”ad hoc standard”, meaning that they are
used in many products of that kind and if it will increase interoperability and the
ease communication with other components. One criterion that is important in this
selection concerns the legal aspects. It is necessary to understand the constraints
posed by already included components and, of course, other aspects of the licenses.

Other more technical criteria that are important include programming lan-
guage, code quality, security, and maintainability and quality of documentation.
It is necessary to understand how much effort is required to include the com-
ponent in the architecture and it is necessary to understand how the currently
used tool chain fits with the component. A set of test cases is one example of an
artifact that is positive if it is available in the project.

A very important factor concerns the maturity of the community. It is nec-
essary to investigate if the community is stable and if here is a ”backing orga-
nization” taking a long-term responsibility. It is also important to understand
what type of participants in the community that are active. The roadmap of the
open source project is important to understand in order to take a decision that
is favorable for the future of the project.

3.4 Modification

First it should be emphasized that there are disadvantages of making changes to an
own version of the components. The disadvantages are that the maintenance costs
increase when updates to new versions of the components are made, and it is not
possible to count on extensive support for specific updates from the community.
So, a common recommendation is to do this only if it is really necessary.

There are some reasons why modifications must be made. Especially adap-
tation to specific hardware is needed, but also optimizations of different kind.
When these changes are made it is in many cases favorable to give back to the
community as discussed in the next section but if this is not possible an alterna-
tive is to develop ”glue software” and in that way keeping the API unchanged.

If changes should be made it is necessary to invest effort in getting a deep
knowledge of the source code and architecture, even if a complete set of docu-
mentation is not available.

3.5 Giving Back Code

It is, as discussed in the previous section, in many cases an advantage to commit
changes to the open source project instead of working with an own forked version.
In this way it is easier to include updates of the open source component. In order
to manage this it is in many cases an advantage to become an active member
of the community, and maybe also take a leading role in it. When modifying an

150 M. Höst, A. Oručević-Alagić, and P. Runeson

Identification

Selection

Modification

Giving back

- Take "ad-hoc standards" into account
- Consider legal constraints
- Consider technical aspects (language, code quality)
- Assess needed changes to product
- Take community status into account

- Base identification on needs/requirements
- Investigate well-known components
- Talk to engineers
- Search in open source forums and google, use technical terms

- Try to avoid changes, but maybe necessary e.g. due to hardware
- If component is modified, deep knowledge is necessary
- If changes are needed consider making "glue software"

- An advantage to give back if you need to modify
- Become active member in the community, and even take leadership
- IPR issues and competencies main reasons not to give back code
- Complementing material, such as test cases, can be supplied

Fig. 2. Main findings from workshop

open source component it is, of course, an advantage if ones own changes can be
aligned with the future development of the open source component.

However, there are some reasons not to give back changes too. The most im-
portant reason is probably that you want to protect essential IPR’s and core
competences in the organization. That is, key competence must in some situa-
tions be hidden from competitors. It should, however, be noticed that there may
be requirements from the license to give back code. Also, after some time, all
software will be seen as commodity, which means that this kind of decision must
be reconsidered after a while. Another reason not to make changes public is that
possible security holes can be made public. In some cases it is easier to get a
change accepted if test cases are supplied.

3.6 Summary of Results

The main findings from the workshop, in terms of recommendations for the four
phases, are summarized in Figure 2.

4 Comparison to Literature

The area of open source in product development has been investigated in the
literature, and it is therefore possible to compare the results in the workshop to
the results reported in literature.

The two first authors conducted a systematic review of open source in com-
mercial organizations [3]. In that work it was found that presented research in
the area could be divided into four main areas:

Usage of Open Source in Commercial Software Product Development 151

1. Company participation in open source development communities
2. Business models with open source in commercial organizations
3. Open source as part of component based software engineering
4. Using the open source process within a company

Of these different topics, the first one about company participation in open
source projects, and the third one about open source as one type of components
are the most relevant for this study.

4.1 Company Participation in Open Source Development
Communities

There is company participation in many open source projects. For example,
Bonaccorsi et al. [9] report that in a third of the most active projects on Source-
Forge there is or was some kind of company participation. Companies can partic-
ipate as project coordinator, collaborator in code development, and by providing
code etc. This can be compared to the related result of this study, where it was
argued by the participants that it is important to become an active member of
the community and even take leadership.

Hauge et al. [10] identify one additional role, which is more concerned with
integration of open source components. The need for this role can also be con-
firmed in this study, since the participants acknowledge the need to use the
components without changing them too much. That is, it can be seen as it is
better to integrate components than to change them.

For example Hauge et al. [10] emphasize that in case software should be
provided to a community it is important to provide enough documentation and
information to get the community members going. This was not really discussed
at the meeting, but the recommendation to get involved in the community and
maybe even to take a lead in the open source project do also point at the
importance of taking part in developing the community of a project.

From the data presented by Lundell et al. [11] and Robles et al. [12] it is
clear that that a rather large part of the open source code has been provided by
commercial organizations, and that those commercial organizations play crucial
roles in open source projects. This is especially clear in the larger and more
active projects. This can, of course, not be confirmed in a statistical way by
a small sample like in this study, but it can be noted that the involvement in
open source projects was seen as important by the participants. The amount
of participation can be summarized as follows: It is suggested that a significant
number of the companies marginally participate in open source community, al-
though the participation has increased especially in SME, compared to earlier
conducted studies. Of the companies that use open source projects, 75% can
be said to have ”symbiotic relationship” with the OS community [11]. This can
be compared to the investigation presented by Robles et al. [12] that show that
6-7% of the code in Linux Debian GNU distribution over the period 1998-2004
has been contributed by corporations.

One risk that is identified by companies is that people working in the orga-
nization would reveal too much information to the outside of the organization

152 M. Höst, A. Oručević-Alagić, and P. Runeson

if they work with an open source community. However, the revealing behavior
of this kind of software engineers was investigated by Henkel [13] and it was
found that even if the engineers identified with the community they were signifi-
cantly less identified and ideological about open source than the control group of
non-commercial developers. The conclusion from that research is that there are
indicators of commercially harmful behavior in this kind of development. In the
focus group it was found that intellectual property is important, which points
in the same direction as the results presented by Henkel [13].

4.2 Open Source as Part of Component Based Software Engineering

The report from Arhippainen [14] presents a case study conducted at Nokia on
the usage of the OTS components. The report presents an analysis on usage of
third party components in general, and discusses advantages of using proprietary
over open source components and vice versa. The results of the presented case
study focus to some extent on development of ”glue software”, which is also in
line with the results of the focus group meeting, that is, if changes are needed
do this through glue software.

Li et al. [15] present the results of a set of surveys in the form of 10 facts
about development with off-the-shelf (OTS) components, of which open source
components is one type. Various aspects, and more details, have also been pre-
sented in other articles by the authors. The results of this study are compared
to the 10 facts below. Note that the study by Li et al. has a broader scope than
this study, e.g. since it investigates all sorts of OTS and not only open source,
which is one reason why all identified facts have not been investigated in this
study.

1. ”Companies use traditional processes enriched with OTS-specific activities
to integrate OTS components”: In this study we did not investigate the
development in detail, although there was nothing in this study that argued
against the fact.

2. ”Integrators select OTS components informally. They rarely use formal selec-
tion procedures”: The aspects that were discussed at the focus group meeting
were rather ”high level”, like ”take ’ad-hoc standards’ into account” and tak-
ing legal aspects into account. Research-based formal processes for selection
were not mention. Even if this does not mean that this kind of methods is
not used, in many cases more ad-hoc methods are probably used. It is prob-
ably important to be able to take many different factors of different nature
into account when selecting components.

3. ”There’s no specific development process phase in which integrators select
OTS components. Selecting components in early phases has both benefits and
challenges”: In the study presented in this paper we did not investigate this
aspect in detail. However there was nothing in the study that argued against
this fact. It could also be noted that the participants could use separate
phases of working with open source components, like identification, selection,
modification, and giving back code, in the discussion. This means that it is
possible to divide the work with open source components in different phases.

Usage of Open Source in Commercial Software Product Development 153

4. ”Estimators use personal experience when estimating the effort required to
integrate components, and they’re usually inaccurate. Stakeholder-related
factors will dramatically affect estimates’ accuracy.”: In the study presented
in this paper we did not investigate this aspect in detail. However there was
nothing in the study that argued against this fact. However, it was seen
as advantage to have good knowledge of the open-source project, which of
course affects the possibility to estimate effort for adaption of components.

5. ”OTS components only rarely have a negative effect on the overall system?s
quality.”: Since this concerns more the result of using open source com-
ponents than how to work with them, this was not discussed during the
meeting.

6. ”Integrators usually use OSS components in the same way as commercial
components – that is, without modification”: OSS was not compared to
COTS at the meeting. However, the participants recommended not to make
changes if it is not absolutely necessary. That is, the result of the meeting
supports this fact.

7. ”Although problems with OTS components are rare, the cost of locating and
debugging defects in OTS-based systems is substantial”: The participants
pointed out the importance of involving themselves in the open source
projects in order to be informed of all aspects of the project. It was not
discussed, but the knowledge that is gained through this can be useful in
this type of debugging.

8. ”The relationship with the OTS component provider involves much more
than defect fixing during the maintenance phase”: The participants pointed
out the importance of involving themselves in the open source projects, and
maybe even taking the leadership of open source projects. That is, the result
of the meeting clearly supports this fact.

9. ”Involving clients in OTS component decisions is rare and sometimes infea-
sible”: This was not discussed at the meeting.

10. ”Knowledge that goes beyond OTS components’ functional features must be
managed”: The participants pointed out the importance of involving them-
selves in the open source projects in order to be informed of all aspects of
the project, not only technical aspects. That is, the result of the meeting
supports this fact.

In general it can be concluded that the facts presented by Li et al. [15] are in
line with this study. No data in this study pointed against the facts, and some
facts, like facts 2, 8, and 9, were directly supported by this study.

5 Conclusions

We believe that many of the recommendations from the participants are impor-
tant to take into account in research and in process improvement in other compa-
nies. The most important findings from the workshop are summarized below. The
findings are in line with presented research in literature as described in Section 4,
although the details and formulations are specific to the results of this study.

154 M. Höst, A. Oručević-Alagić, and P. Runeson

In the identification phase it is important to take the needs and the require-
ments into account, and to investigate well-known components. It is also ad-
vised to discuss the needs with engineers in the organization, since they can
have knowledge of different components and communities. When forums are
searched, an advice is to use technical terms in the search string. When select-
ing which components to use it is important to, besides taking technical aspects,
like programming language, into account, also consider legal constraints and ”ad-
hoc standards”. It is important to investigate the status of the community of a
project, and the future of the project, which for example depends on the com-
munity. In general it can be said that changing components should be avoided if
possible. If it is possible to make adaptations with ”glue-code” this is in many
cases better since less effort will be required in the future when components are
updated by the community. However, there are situations when it is necessary
to make changes in the components.

Even if there may be issues with property rights, it is in many cases an advan-
tage to provide code to the community if changes have been made. In general
it can be said that it is advised to become an active member in open source
projects.

The findings from the focus group meeting were compared to published liter-
ature, and no conflicting facts were found.

Together with further research on the subject it will be possible to formu-
late guidelines for software project managers on how to work with open source
software.

Acknowledgments

The authors would like to thank the participants for participating in the study.
This work was funded by the Industrial Excellence Center EASE – Embedded

Applications Software Engineering, (http://ease.cs.lth.se).

References

1. Feller, J., Fitzgerald, B.: Understanding Open Source Software Development.
Addison-Wesley, Reading (2002)

2. Munga, N., Fogwill, T., Williams, Q.: The adoption of open source software in busi-
ness models: A Red Hat and IBM case study. In: Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists,
pp. 112–121 (2009)

3. Höst, M., Oručević-Alagić, A.: A systematic review of research on open source soft-
ware in commercial software product development. In: Proceedings of Evaluation
and Assessment in Software Engineering, EASE (2010)

4. Robson, C.: Real World Reserach, 2nd edn. Blackwell Publishing, Malden (2002)

5. Kontio, J., Bragge, J., Lehtola, L.: The focus group method as an empirical tool
in software engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering, Springer, Heidelberg (2008)

http://ease.cs.lth.se

Usage of Open Source in Commercial Software Product Development 155

6. Engström, E., Runeson, P.: A qualitative survey of regression testing practices. In:
Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp.
3–16. Springer, Heidelberg (2010)

7. Fink, A.: The Survey Handbook, 2nd edn. Sage, Thousand Oaks (2002)
8. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering 14, 131–164 (2009)
9. Bonaccorsi, A., Lorenzi, D., Merito, M., Rossi, C.: Business firms’ engagement in

community projects. empirical evidence and further developments of the research.
In: First International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS 2007: ICSE Workshops 2007) (2007)

10. Hauge, Ø., Sørensen, C.F., Røsdal, A.: Surveying industrial roles in open source
software development. In: International Conference on Open Source Systems
(OSS), pp. 259–264 (2007)

11. Lundell, B., Lings, B., Lindqvist, E.: Perceptions and uptake of open source
in Swedish organizations. In: International Conference on Open Source Systems
(OSS), pp. 155–163 (2006)

12. Robles, G., Dueñas, S., Gonzalez-Barahona, J.M.: Corporate involvement of libre
software: Study of presence in debian code over time. In: International Conference
on Open Source Systems (OSS), pp. 121–132 (2007)

13. Henkel, J.: Champions of revealing–the role of open source developers in commer-
cial firms. Industrial & Corporate Change 18(3), 435–472 (2009)

14. Arhippainen, L.: Use and integration of third-party components in software devel-
opment. Technical Report 489:84, VTT (2003)

15. Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M.:
Development with off-the-shelf components: 10 facts. IEEE Software (2009)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 156–170, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Identifying and Tackling Diversity of Management and
Administration of a Handover Process

Ahmad Salman Khan and Mira Kajko-Mattsson

KTH School of Information and Communication Technology,
Forum 120, 164 40, Kista, Sweden
{askhan, mekm2}@kth.se

Abstract. Software handover is a de facto process in all software organizations.
It is one of the most business critical and complex processes. It is also one of the
most diverse processes, and thereby, one of the most difficult processes to de-
fine. Despite this, software handover is not well recognized within the acade-
mia. Right now, there are no software handover process models whatsoever al-
though software organizations desperately need guidelines for how to perform
this important and critical task. To aid them in defining their handover process
models, we are in the process of creating Evolution and Maintenance Manage-
ment Model (EM3): Software Handover focusing on handover (alias transition)
of a software system from developer to maintainer. In this paper, we evaluate
one of the EM3 components, Management and Administration (MA), addressing
activities for planning and controlling the transition process, its schedule, budget
and resources. We do it within 29 organizations. Our primary goal is to find out
whether the component is realistic and whether it meets the needs and require-
ments of the software industry today. Using the feedback from the industry, we
tackle process diversity using the Context-Driven Process Orchestration Method
(CoDPOM).

Keywords: Transition, transition plan, transition schedule, diversity.

1 Introduction

Handing over a software system from developer to maintainer is a very complex and
critical process. Hence, to assure its success, it must be treated with great care and
caution, and thereby, it must be properly organized and managed. This implies that
one must handle and direct it with the right degree of skill, experience, and caution. If
not properly managed, it may lead to a communication gap between developer and
maintainer, low quality maintenance service provision and customer dissatisfaction
with the system. At its worst, it may lead to a delivery failure and loss of customer
credibility to both developer and maintainer. For this reason, software organizations
must have a solid and well-defined software handover process model in place.

Recently, software handover has become one of the most business critical proc-
esses within many software organizations. Due to its diversity, however, it is very
challenging to define and implement it. Its design strongly depends on the business
context, process lifecycle, product complexity, and customer needs. For instance, its
context may range from handing over a software system from developer team to a

 Identifying and Tackling Diversity of Management and Administration 157

maintainer team within one and the same company, to handing over from a developer
team in one partner company to another maintainer team in another partner company,
and finally, to outsourcing the system to a totally unknown party in the clouds [8].

Despite the great importance and business criticality, there are no software hand-
over process models whatsoever. To the knowledge of the authors of this paper, there
exist a handful of publications dealing with software handover [1, 2, 5, 6, 7]. These
are either old or they deal with handover on a very general level. Neither do they
suggest how to approach the diversity of a handover process that the companies meet
today. Hence, they do not fulfill current needs of the software industry which today is
in a strong need of a well-defined handover process model.

To aid software organizations in developing their handover models, we are in the
process of creating Evolution and Maintenance Management Model: Software Hand-
over (EM3: Software Handover) with the objective to provide guidelines on how to
successfully handover (alias transition) a software system from developer to main-
tainer and guidelines for how to approach its wide diversity. On our way towards this
journey, as an initial step, we have come up with seven components including classes
of activities that are significant for a successful software transition and put them into
EM3 Taxonomy of Handover Activities [4]. One of its components, Management and
Administration (MA), addresses activities for planning and controlling the transition
process, its schedule, budget and resources. In this paper, we evaluate it within 29
organizations. Our primary goal is to find out whether it is realistic and whether it
meets the needs and requirements of the software industry today. Using the feedback
from the industry, we identify diversity indicators whose feedback we then use for
visualizing how the diversity of the process may be tackled using the Context-Driven
Process Orchestration Method (CoDPOM) [9].

The remainder of this paper is as follow. Section 2 describes our research method.
Section 3 presents the EM3 Taxonomy of Handover Activities. Section 4 evaluates the
component using industrial feedback. Finally, Section 5 identifies diversity indicators
and visualizes how to tackle the process diversity with the aid of CoDPOM.

2 Research Steps

Our research method consisted of three major steps. These were (1) questionnaire
design, (2) data collection and (3) data analysis. In the questionnaire design step, we
created a very simple and semi structured questionnaire consisting of only five ques-
tions to be asked for each activity in our taxonomy. These were: (1) Is this activity
performed? (2) Who does exactly perform this activity? (3) When in the lifecycle of
the system is it performed? (4) How is it performed? (5) Is any activity missing in this
component? By stating these questions for each activity, we wished to gain under-
standing of the activity and its context.

In the data collection step, we used students to conduct interviews. The students
were attending an international master program at KTH. Just because the students
came from different countries, we were aware that it might be difficult for them to get
in touch with the Swedish companies. For this reason, they were free to choose their
organizations and they were encouraged to select them in the countries of their origin.
The organizations could be large, medium, small, private or public. The only prereq-
uisite was they must have a transition process in place.

158 A.S. Khan and M. Kajko-Mattsson

Finally, in the data analysis step, we scrutinized the collected data and searched for
missing or ambiguous answers. We asked students to clarify the problems, if required.
We then analyzed the collected data and drew conclusions. It is these collected data
and conclusions that we are presenting in this paper.

This study includes data collected from 29 organizations within eight countries
such as Sweden, Russia, Pakistan, Iran, Bangladesh, Mexico, UAE and Nepal. Out of
these 29 organizations, 15 are based in Sweden. The organizations studied are small,
medium and large in size with the smallest organization having only eight employees
and the largest one having 400000 employees. Their business domains are diverse
ranging from ERP, B2B applications, Telecom, CRM systems, SAP applications, web
based applications, financial products and E-commerce applications.

All case studies encounter validity threats. Regarding external validity, our data
sample consisted of 29 small, medium and large organizations working in diverse
domains and located in various parts of the world. Although we cannot claim that
results of our study are generalizable, still due to the diverse nature of our sample we
can say with confidence that our results are in the context of the organizations studied.

Regarding the construct validity, the risk was that the students might misinterpret
the transition process and its results. To minimize this threat, we prepared students for
conducting interviews. First, we gave one lecture on transition. We then presented the
questionnaire and its purpose and we provided counseling hours. To ensure that all
the questions were answered for each transition activity, we created templates listing
each question for each activity and arranging space to be filled in with the answers. In
this way we ensured the uniformity of the data and the completeness of all the an-
swers. Finally, to enable additional validation of the answers, we requested that the
students provided the contact details of their interviewees.

3 EM3 Handover Taxonomy

In this section, we first describe all the components in EM3: Software Handover. We
then focus on the MA component. Due to space restrictions, we cannot fully describe
EM3: Software Transition. We only list its components and briefly describe them.
Interested readers are however welcome to study them in [4].

3.1 EM3: Software Handover

Right now, EM3: Software Handover contains types of activities required for transfer-
ring the software system from a development team to a maintenance team. As

Fig. 1. EM3 and its components

 Identifying and Tackling Diversity of Management and Administration 159

shown on the left side of Fig. 1, it has seven components where each component in-
cludes a set of highly cohesive activities having a common goal in the transition proc-
ess. The components are the following:
• Management and Administration listing activities required for managing and

administrating a transition process. It includes activities for identifying a mainte-
nance team, establish a transition team and develop a transition plan.

• Maintenance Environment containing activities required for establishing a main-
tenance environment at the maintainer’s site.

• Version and Configuration Management listing activities for tracking the changes
made to the software system during transition.

• Deployment encompassing activities required for installing the system on the
acquirer site.

• Training comprising activities for providing training on system, maintenance
process, support process and training on new technology.

• Documentation listing activities needed for developing and transferring docu-
ments necessary for future maintenance.

• Maintainability Management including activities required for assessing the sys-
tem and data maintainability.

3.2 Management and Administration (MA)

The Management and Administration (MA) component includes activities required
for handling and controlling transition. As shown on the right side of Fig. 1, they
concern identification of maintenance organization and transition team, creation of a
transition plan and of management plans. Before describing the activities, we wish to
point out that we present their role within a handover process. We do not present their
sequence. These activities may or may not be performed in sequence or in parallel.

Maintenance team is responsible for evolving and maintaining a software system
after transition. Its organizational membership and formation varies in different con-
texts. Overall, maintenance either stays with the development where it is delegated to
one or several individuals or it is transferred to another team within the same organi-
zation, or it is transferred to a totally separate organization. To manage this wide
spectrum of the maintenance actors, we refer to them all as maintenance teams.

It is important that the maintenance team be identified as early as possible (Activity
MA 1). According to [6], it should be identified before contract writing. Only then the
maintenance team members are prepared for taking over the new system.

All critical processes require authorities for managing and administrating them. If
such an authority is not in place, then the risk is that one may fail to implement the
process. This applies to all types of activities, and handover is no exception here.
Hence, a handover process must be handled by a team specifically dedicated to man-
aging and administrating it. In the context of EM3, we call it a transition team.

To create a transition team is not trivial. Its role portfolio should include a repre-
sentative set of stakeholders coming from all the organizations involved, such as
developer, maintainer, acquirer and COTS suppliers. One should see to it that the
stakeholders possess right capabilities, responsibilities, and experience. However, one
should always keep in mind that the stakeholders may have different organizational
cultures, processes, languages, working hours and workload. Therefore, a transition

160 A.S. Khan and M. Kajko-Mattsson

team must be established in such a way so that all its members can work together in
an as effective way as it is possible. In our model, we include the establishment of a
transition team in Activity MA 2 in Fig. 1.

All software engineering activities, whether complex or not, should have a plan for
achieving their objectives. Transition is no exception here as well. It should have a
plan worked out beforehand for the successful accomplishment of the handover from
developer to maintainer. The EM3 transition plan maps out transition budget, transi-
tion schedule, procedures for realizing the transition and for defining maintenance
resource requirements (Activity MA 3 and its sub-activities in Fig. 1).

The cost of transition varies depending on the system size, complexity and the
number of the parties involved [3]. In complex cases, it may cost almost 40% of the
overall development cost [3]. If the budget is not determined in advance, then the risk
is that too few resources will be assigned to it, and thereby, the overall transition re-
alization may fail. For this, reason, the determination of the budget is very important
and critical for the success of a transition process (Activity MA 3.1).

A transition plan should have a schedule (Activity MA 3.2). To create it, however,
is not always easy. First, scheduling in general is a very time-consuming activity.
Second, it is always a challenge to balance the needs of a process and the availability
of the roles involved in the process. In the context of transition, it is an extremely
challenging task. This is because multiple parties participate in transition and these
parties may be geographically distributed. Moreover, they are highly experienced
professionals involved in many critical tasks in their respective organizations. Transi-
tion is only one of the many tasks they are engaged in. Hence, their availability, al-
though crucial for the transition, may be significantly limited. Therefore, it is always
difficult to develop a transition schedule so that all the important transition team
members can participate in and contribute to the transition project in a timely manner.

A transition plan should establish transition procedures listing all the major transi-
tion activities, their sequence and communication channels (Activity MA 3.3). Estab-
lishing transition procedures is extremely important bearing in mind the fact that the
transition team members may belong to organizations having diverse individualistic,
collectivist and organizational cultures. All of them may have their own views and
understanding of the transition procedures. In order not to fail, one must make sure
that they have all agreed upon the common transition procedures.

A transition plan should define transition resource requirements (Activity MA 3.4).
These requirements include (1) definition of maintenance manpower requirements
(Activity MA 3.4.1) and (2) definition of maintenance facility requirements (Activity
MA 3.4.2). Regarding the first requirement, a maintenance team must include a right
number of personnel to handle and manage customer requests. Their number depends
upon the size and complexity of the transitioned system. Regarding the second re-
quirement, maintenance team cannot perform their duties without adequate resources.
Hence, a transition team should determine the appropriate hardware and software
facilities for maintaining the system such as hardware and software suites, system
software baseline and support suites for maintaining the system.

Handover is not a standalone activity. It intersects with many other process areas,
where each such area should be planned and managed as well. For this reason, their
management plans should be in place before the implementation of a handover proc-
ess starts. These plans include software configuration management plan, training

 Identifying and Tackling Diversity of Management and Administration 161

program plan, test plan, quality control plan, and many other plans that may be rele-
vant for enabling and/or facilitating the transition process (Activity MA 4).

4 Component Evaluation

In this section, we report on the evaluation of the MA activities. When presenting each
activity, we follow the order of our questionnaire.

4.1 Identify Maintenance Organization (MA 1)

All the twenty nine organizations studied identify maintenance teams or maintenance
organizations. However, the identification process strongly varies depending on its
timing within the software lifecycle and the roles involved in it.

In five organizations (17%), maintenance stays with the development team (Fig.
2.a). These companies have limited manpower resources and they cannot afford to
have separate development and maintenance teams. Eight organizations (28%) transi-
tion their systems to separate maintenance teams within their respective companies.
The complexity of their organizational structures and systems require full time main-
tenance teams dedicated to resolving the problems. Seven organizations studied
(24%), transfer maintenance responsibilities to a separate organization.

The remaining nine organizations (31%) do not follow any specific pattern. They
make their transition decisions by analyzing four parameters: (1) system size, (2)
system criticality, (3) number of manpower resources available to maintain the sys-
tem, and (4) outsourcing cost. Maintenance of large and critical systems is always
dedicated to separate maintenance teams. Maintenance of small systems, on the other
hand, is always delegated to developers. Here, the organizations do not make any
distinction between development and maintenance teams. They assign maintenance
responsibilities based upon development and maintenance workload.

The time point in the lifecycle and the roles involved for identifying maintenance
teams vary. Regarding the roles, project manager is the main actor when identifying
maintenance teams. However, as shown in Table 1, he is supported by other roles.

The time point when the organizations designate maintenance teams varies. As
shown in Fig. 2.b, fifteen organizations (52%) perform this activity during the devel-
opment phase, three other organizations (10%) do it during the system testing

Fig. 2. Lifecycle phases for maintenance and transition teams formation. (DP= Deployment)

162 A.S. Khan and M. Kajko-Mattsson

phase, one organization (3%) performs it in the acceptance testing phase, and three
organizations (10%) designate maintenance teams during the deployment phase. Six
organizations (21%) consider maintenance team formation to be a continuous activity
starting during development and continuing till the maintenance phase. Finally, one
organization (3%) identifies maintenance team during development, however, the
final structure and members of the team are determined in the deployment phase.

Summing up, the organizations studied designate maintenance teams during devel-
opment at the earliest and during deployment at the latest. All the organizations, how-
ever, preliminarily decide upon the choice of the maintenance team during the system
planning phase. The choice is only preliminary because of many uncertainties in-
volved such as system size, criticality and the number of available resources. The
final choice is made later as soon most of these uncertainties are removed.

4.2 Establish Transition Team (MA 2)

All but three organizations (10%) studied establish a transition team. The three or-
ganizations do not do it because they wish to cut down project expenditure. They still,
however, perform transition activities.

Ways of establishing transition teams strongly vary depending on who does main-
tenance. In case when maintenance stays with development (two organizations, 7%),
the team consists of a project manager and a few key developers. In case when main-
tenance is delegated to a separate team within the organization (eight organizations,
28%), the team mainly consists of development manager, maintenance manager and
project manager. Depending on the context at hand, other roles may be involved as
well, such as, for instance, acquirer. However, the key role is played by the project
manager who creates, manages and coordinates the team. Five organizations (17%)
establish a separate maintenance team only for large projects. They establish a transi-
tion team headed by the project manager. For small projects, maintenance stays with
development team and no transition team is formed.

Three organizations (10%) either delegate the maintenance responsibilities to
internal maintenance teams or they outsource maintenance services to separate or-
ganizations. In the previous case, they establish an internal transition team comprising
project manager, developers and maintainers. In the latter case, they establish a transi-
tion team comprising project manager, developers and acquirer. Finally, in one or-
ganization (3%) maintenance stays with development and, therefore, they do not
establish any transition team. In some special cases, however, they may

Fig 3. Lifecycle phases for transition plan activities (MA 3). Dev= Development, DP= De-
ployment, ST= System Testing, AT= Acceptance Testing.

 Identifying and Tackling Diversity of Management and Administration 163

feel forced by their acquirers to delegate maintenance responsibilities to other organiza-
tions and, thereby, to establish transition teams. The point in time when the organiza-
tions studied form the transition team varies. As shown in Fig. 2.c, seven organizations
(26%) form a transition team during the development phase. Six organizations (22%)
establish a transition team during the system testing phase, while one organization (3%)
does it during the acceptance testing phase. Six organizations (22%) establish a transi-
tion team in the deployment phase and two organizations (7%) do it at the beginning of
the maintenance phase. Two organizations studied (7%) establish a transition team in
the project planning phase, however, they reassess its constellation during the deploy-
ment phase. They include or exclude team members based upon the system complexity
and the workload of the team members. Finally, two organizations (7%) consider transi-
tion team formation as a continuous activity. They start this activity during the devel-
opment phase and continue to evolve it till the start of maintenance.

4.3 Establish a Transition Plan (MA 3)

All the organizations studied develop a transition plan. Twenty three organizations
(79%) develop an independent transition plan while six organizations (21%) include
transition plan as part of their overall project plan.

The structure of a transition plan considerably varies from case to case. It is a sim-
ple document when the same development team continues with maintenance activi-
ties. Here, usually a project manager together with developers analyzes the completed
percentage of a project and discusses the software modules to be delivered.

Transition plan is a comprehensive document in cases when transition takes place
between separate development and maintenance teams and organizations. It includes:
(1) deliverables including software packages and documentation, (2) schedule for
handing over deliverables, (3) identification of the transition tasks, (4) identification
of task owners, (5) start date, end date, priority and status of each task, (6) estimated
time for completing each task, (7) sequence of tasks and their dependencies, and (8)
estimated time span for the transition process.

Creation of a transition plan is not a one-off activity within the organizations stud-
ied. Only 17% of the organizations continuously review their transition plans and
make appropriate modifications, if need arises. The point in time when the most
changes are done is right before the deployment. This is where new conditions usually
arise and force organizations to revise their transition plans.

The time point in the system lifecycle phase for establishing a transition plan varies
for the organizations studied (see Fig. 2.d). Fifteen organizations (52%) establish
transition plans during the development phase. One organization (3%) does it in sys-
tem testing phase while another one (3%) establishes it during the acceptance testing
phase. Two organizations (7%) do it in the deployment phase and four organizations
(14%) develop it at the beginning of the maintenance phase. One organization (3%)
starts performing this activity in the development phase and continues working on it
till the maintenance phase. Four organizations (14%) develop a transition plan during
the development phase but they finalize it during system testing. Finally, one organi-
zation (3%) develops or modifies it on an annual basis. Regardless of whether transi-
tion is internal or external, a project manager emerges as the main role responsible for
establishing a transition plan (17 organizations, 69%).

However, as shown in Table 1, he is assisted by twelve different roles.

164 A.S. Khan and M. Kajko-Mattsson

4.3.1 Determine Transition Budget (MA 3.1)
All but two organizations have stated that they determine transition budget. The inter-
viewees from the two organizations were software engineers and they did not have
insight into the project budget estimation process. Regarding the remaining 27 or-
ganizations (93%), they either treat transition budget as part of the overall project
budget (3 organizations, 10%) or they treat it separately (24 organizations, 83%).

As shown in Table 1, the organizations studied have identified seventeen different
roles participating in transition budget determination. Usually, however, project man-
agers and finance department representatives are the major players in determining the
transition budget. Development, maintenance and QA team representatives estimate
the resource requirements for transition and share their estimation results with the
project managers, who then calculate the overall transition budget. Their estimations
are mainly based upon previous experience. Management board then finally approves
the budget. In cases when the system is transitioned to another organization, the sales
representatives from development organizations and product owners from customer
organizations also participate in deciding on the budget.

The point in time when transition budget gets established varies within the studied
organizations. As shown in Fig. 3.a, 17 organizations (63%) determine transition
budget in the development phase. One organization (3%) does it during the system
testing phase and another organization (4%) determines transition budget in the de-
ployment phase. Four organizations (15%) determine transition budget at the begin-
ning of maintenance phase. In case of a standard product development, two organiza-
tions (7%) estimate transition budget at the beginning of the project while negotiating
the contract. But for the customized products, they discuss it in detail before the de-
ployment phase. At this point, the transition budget may be renegotiated for providing
extra services like training, changing features and scope of installation. Finally, two
organizations (7%) determine transition budget in the development phase but they
reassess and readjust it during the system testing phase.

Table 1. Roles participating in Management and Administration component

 Identifying and Tackling Diversity of Management and Administration 165

4.3.2 Create a Transition Schedule (MA 3.2)
All the organizations studied create a transition schedule. However, three of them do
not develop a separate transition schedule. They treat it as part of a project schedule.
The transition schedule specifies tasks with their start date, end date, description and
priority. It also includes fixed dates for delivering software packages and documenta-
tion and dates for providing training.

The organizations studied have identified eleven roles participating in the creation
of a transition schedule. They are shown in Table 1. However, in 69 % of the organi-
zations, it is the project manager that develops a transition schedule. He is usually
supported by experienced developers, maintainers and support personnel. He creates
the schedule of the tasks to be performed and informs the concerned staff to work
according to the scheduled tasks.

Transition schedule is created at the same time when the transition plan is being
created by the project management. Initially, however, it only defines deadlines for
the main transition activities to be completed. The schedule details are then handled
by development and maintenance teams that setup a time to complete each activity.
Regarding the point in time in the software lifecycle, as shown in Fig. 3.b, thirteen
organizations (45%) develop transition schedule during the development phase, four
organizations (14%) do it in the system testing phase, one organization (3%) does it in
the acceptance testing phase, two organizations (7%) do it in the deployment phase,
and finally, six organizations (21%) perform this activity at the beginning of the
maintenance phase. One organization (3%) develops transition schedule in the devel-
opment phase but readjusts it according to project complexity in the acceptance test-
ing phase. Another organization (3%) develops it in the development phase as well.
However, it readjusts it in the deployment phase. Finally, one organization (3%) de-
velops transition schedule on an annual basis.

Fig. 4. Lifecycle phases for transition resource requirements and management plans. Dev=
Development, DP= Deployment, ST= System Testing, AT= Acceptance Testing

4.3.3 Establish Transition Procedures (MA 3.3)
All the organizations studied have stated that they establish procedures for imple-
menting a transition process. They either define general procedures to be then fol-
lowed by all projects (65% organizations) or they define separate procedures for each
project (35% organizations). Usually, the procedures concern installation, deploy-
ment, acceptance testing, contract signing, documentation, and reporting on problems

166 A.S. Khan and M. Kajko-Mattsson

and accomplishments of the transition tasks. They are realized in form of breakdown
structures for each of the major transition task.

As shown in Table 1, the organizations studied have identified ten roles participat-
ing in the establishment of transition procedures. Out of those, it is the project man-
ager and management board who are the key players in defining the procedures. It is
the project manager who creates the procedures in consultation with developers,
maintainers and customer representatives and it is the management board who finally
accepts them.

The point in time for establishing transition procedures varies for the organizations
studied. As shown in Fig. 3.c, eleven organizations (38%) establish transition proce-
dures in the development phase, two organizations (7%) in the system testing phase,
six organizations (20%) in the deployment phase and six organizations (20%) at the
beginning of the maintenance phase. Two organizations (7%) develop transition
procedures in the development phase but reassess and modify them during system
testing. Finally, two organizations (7%) start developing transition schedule in the
development phase and continue improving it till the start of the maintenance phase.

4.3.4 Define Transition Resource Requirements (MA 3.4)
All the organizations studied define resource requirements for transition. Resource
requirements are an important part of the transition plan. They vary with respect to
each project. If maintenance is performed within the same organization then the only
resource would be manpower. In other cases, it may include hardware and software
resources. Irrespective of the case, decisions on the resource requirements are based
on previous experience.

Project manager and acquirer representatives discuss and decide on the resources
needed. Acquirer representative belongs to the support department on the acquirer
side. The decision is then sent to management board for final approval. Support team
manager chooses the right candidate for performing maintenance and support activi-
ties. The right candidate must possess technical expertise and experience of working
with the transitioned system. Project manager, development and maintenance team
representatives discuss and finalize the resource requirements. In case when there is
need for extra manpower resource requirements on the acquirer side, an acquirer rep-
resentative also participates in the discussion.

Define maintenance manpower requirements (MA 3.4.1)
All the organizations studied define manpower requirements for maintenance and
estimate them. Their estimations are based on project complexity and previous ex-
perience with similar projects. For instance, maintenance personnel are selected based
on their skills, expertise and knowledge about the transitioned system.

It is mainly project manager’s responsibility to estimate and decide upon personnel
resources. He may however do it in consultation with the representatives from devel-
opment and maintenance teams. He evaluates the personnel skill and knowledge, and
workload while making the final decision.

 A number of maintenance team members are selected based upon the maintenance
workload and priority of maintenance tasks. New maintenance team members are
recruited only if the maintenance budget permits. In case when the development team
continues with the maintenance, no special manpower requirements are needed. In
case when the system is transitioned from development team to maintenance team,

 Identifying and Tackling Diversity of Management and Administration 167

both people from development and maintenance teams participate in the transition
process. In addition, support team and QA team members are also involved. The team
should include at least one person with complete system knowledge.

As shown in Fig. 4.a, eleven organizations (38%) determine maintenance man-
power requirements in the development phase, three (10%) do it in the system testing
phase, two (7%) in the acceptance testing phase, three (10%) in the deployment
phase, and five (17%) at the beginning of the maintenance phase. Three organizations
(10%) perform this activity during the whole lifecycle of the project. One organiza-
tion (4%) estimates maintenance manpower requirements during the project planning
phase. However, according to the complexity of the system, they reassess it during the
system testing phase, if required. Finally one organization (3%) determines mainte-
nance manpower requirements in the development and deployment phases. The or-
ganizations studied have identified twelve roles involved in defining maintenance
manpower requirements. These are shown in Table 1.

Define maintenance facility requirements (MA 3.4.2)
All but four organizations studied (86%) define maintenance facility requirements.
The requirements include software development tools, database servers and hardware.
Regarding the four organizations (14%) that do not define maintenance facility re-
quirements, three of them have already well-established maintenance facilities and
one of them installs and maintains the system by remote online access.

The roles that are mainly involved in defining the facility requirements are project
manager, system architect and configuration manager. After having created a list of
requirements, the project manager gets feedback from development, maintenance and
QA teams for defining additional software or hardware needs. Acquirer may also be
involved in this process if maintenance and support activities are performed on the
acquirer site. In such a case, project manager and acquirer representative discuss extra
hardware and software resource requirements that are needed at the acquirer site.

Regarding the time point in the lifecycle, nine organizations (31%) define mainte-
nance facility requirements in the development phase, two in the system testing phase
(8%), one in the acceptance testing phase (4%), one in the deployment phase (4%)
and three (12%) at the beginning of the maintenance phase. Five organizations (20%)
start this activity in the development phase and continue with it till the end of the
project lifecycle. Finally, four organizations (18%) define facility requirements during
the development phase, but they finalize them in the deployment phase.

4.4 Develop Management Plans (MA 4)

All but two organizations studied develop management plans. These plans include
project management plan, stress test plan, deployment plan, software configuration
management plan, software quality program plan, software test plan, training program
plan, transition plan, data migration quality plan, quality assurance plan, risk identifi-
cation plan, communication plan, software test plan, and acceptance test plan. Each
plan is developed by utilizing previous experience.

As shown in Table 1, the organizations studied have identified eleven different
roles participating in developing and continuously revising management plans. These
plans are then included in the project plan by the project manager. Project manager
consults the configuration manager, development team, manager operations, data

168 A.S. Khan and M. Kajko-Mattsson

manager and system administrator to revise the management plans. The management
plans are discussed and agreed upon with the acquirer

Regarding time point in software lifecycle, 17 organizations (61%) develop man-
agement plans in the development phase (see Fig. 4.c), one organization (3%) does it
in the system testing phase, one (4%) does it in the acceptance testing phase, and five
organizations (17%) develop management plans at the beginning of the deployment
phase. Finally, five organizations (18%) consider it as a continuous activity. They
start developing management plans in the development phase and finalize them at the
beginning of the maintenance phase.

5 Final Remarks

In this paper, we have evaluated the Management and Administration component in
29 organizations. Our results show that almost all the activities are implemented by
the organizations. Those that are not implemented are usually not right for the con-
text. Many times, their implementation depends on the complexity of the transitioned
system, transition type and the like. Our results also show strong diversity in the im-
plementation of the MA activities, their placement within a lifecycle and the roles
involved. They have helped us to identify the following diversity indicators:

Fig. 5. CoDPOM method for EM3: Software Handover definition

• Transition complexity depends on the transition type: Transition process complex-
ity strongly varies depending on who transfers to who. It may range from merely a
handful of activities to very monumental processes.

• Choice of maintainer depends on the software lifecycle the software system is in:
In cases when an existing software system has been evolved and maintained, the
maintainer is already known in advance. Hence, it is not an issue to identify him.
In case of new development, there is a need to identify the future maintainer.

• Choice of maintainer depends on the context change: Even if about 50% of the
organizations studied identify their maintenance teams early in the development
phase, they are still not certain whether the identified maintainer is the right one.
They may realize later in the project that the system has become more or less
complex or that they cannot afford to let maintenance stay in house, and therefore,
they may have to decide to transition to a separate maintenance organization.

 Identifying and Tackling Diversity of Management and Administration 169

• The constellation of the transition team changes with time: Even if the transition
teams are created early, they are still not fixed. The constellation of its members
change as there is need for more roles to be involved in the transition with time.

• Roles responsible for MA activities strongly vary: Even if project manager is the
key person, still the set of roles responsible for performing MA activities varies
depending on the type of transition and system complexity and criticality.

The above-listed diversity indicators show evidence that it is not easy to create a ge-
neric handover process model. The diversity is visible in almost every aspect of the
MA component. For this reason, when will use assistance of Context-Driven Process
Orchestration Method (CoDPOM) when defining EM3: Software Handover [9]. Due to
space restrictions, we cannot describe the CoDPOM method herein. Instead, we advise
our reader to study [9]. Below, however, we give a flavor of how the diversity may be
managed using the CoDPOM method.

As shown in Fig. 5, the overall handover process will be based on a process back-
bone and practices. The backbone (see the upper greyish part of Fig. 5) is a container
of the core elements – practices that are choreographed for a specific context at hand.
In our case, the MA component would constitute one practice and the other EM3 com-
ponents would constitute the other practices.

The overall process design would be created using the tools for choreographing the
practices and for orchestrating the process. As can be seen at the bottom left hand side
of Fig. 5, the design of a process and practice is made using various process attributes
whose contents is dependent on the first two attributes which are context and formal-
ity level. Depending on them, we then choose the right set of activities to be per-
formed, the set of data and documents to be managed and created, and so on. Because
this paper only focuses on the MA component, we cannot illustrate how the whole
transition process instance will be orchestrated. However, we may illustrate how the
simplest MA practice may be adapted to the right context at hand. Using feedback on
the process diversity and practice description tool, we may now arrive at different
practice instances. The black box in Fig. 5 illustrates one instance of the simplest
possible practice. It is adapted to the context of an in-house transition and late main-
tenance phase where developer transfers the system from self to self, the formality
levels of the process are semi-formal and the transition procedure covers only the
minimal set of activities required for the transition. This, in turn, impacts the amount
of information managed, measurements to be made and documentation to be created.
Finally, in the context of an in-house transition, no external expertise is needed to
manage the process and no major experience is required except for the fact that pro-
ject manager and key developers must be involved in it.

References

1. April, A., Abran, A.: Software Maintenance Management, Evolution and Continuous Im-
provement, pp. 169–174. John Wiley & Sons, Chichester (2008)

2. International Organization for Standardization: ISO/IEC Standard 14764, Standard for
Information Technology (2006)

3. Kajko-Mattsson, M., Khan, A.S., Tyrberg, T.: Evaluating a Taxonomy of Handover Activi-
ties in One Swedish Company. In: 36th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, Lille, France (SEAA 2010), pp. 342–349 (2010) ISBN:
978-0-7695-4170-9

170 A.S. Khan and M. Kajko-Mattsson

4. Khan, A.S., Kajko-Mattsson, M.: Taxonomy of Handover Activities. In: Software Mainte-
nance Maturity Model Workshop, S3M 2010, Limerick, Ireland, pp. 131–134 (2010)

5. MIL-HDBK-347: Military Handbook, Mission critical computer resource software support
(1990)

6. Pigoski, T.: Practical Software Maintenance, pp. 117–162. John Wiley & Sons, Chichester
(1997)

7. Vollman, T.: Transitioning from development to maintenance. In: Software Maintenance
Conference, San Diego, CA, USA (1990) ISBN 0-8186-2091-9

8. Kajko-Mattsson, M., Gustafsson, L.: Cloud outsourcing requires a proper handover process.
In: 6th International Conference on Advance Information Management and Service (IMS
2010), Seoul, Korea, pp. 142–146 (2010) ISBN: 978-1-4244-8599-4

9. Kajko-Mattsson, M.: Maturity is also about the capability to conform the process to the
right context. In: Workshop on Future of Software Engineering Research (FSE/SDP), pp.
181–185. ACM, New York (2010) ISBN: 978-1-4503-0427-6

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 171–185, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Process Complexity-Product Quality (PCPQ) Model
Based on Process Fragment

with Workflow Management Tables

Masaki Obana1, Noriko Hanakawa2, and Hajimu Iida1

1 Nara Institute science and Technology,630-0192
8916-5 Takayama-cho, Ikoma, Nara Japan
{masaki-o,iida}@is.naist.jp

2 Hannan University,Information management,580-8502
5-4-33, Amami-Higashi, Matsubara, Oasaka Japan

hanakawa@hannan-u.ac.jp

Abstract. In software development projects, large gaps between planned devel-
opment process and actual development exist. A planned process is often grad-
ually transformed into complicated processes including a base process and
many process fragments. Therefore, we propose a metric of process complexity
based on process fragments. Process fragments mean additional and piecemeal
processes that are added on the way of a project. The process complexity de-
pends on three elements; the number of group of developers, the number of si-
multaneous process, and ratio of an executing period for a period of the whole
project. The process complexity was applied to six industrial projects. As a re-
sult, changes of process complexities in the six projects were clarified. In addi-
tion, we propose a procedure of making a PCPQ (Process Complexity-Product
quality) model that can predict post-release product quality on the way of a pro-
ject. As a result of making a PCPQ model using the six projects, a post-release
product quality was able to be predicted.

1 Introduction

In software development projects, large gaps between planned development processes
and actual executed development processes exist[1]. Even if a development team has
originally selected a waterfall model unplanned small processes are often triggered as
shown the following examples.

i. One activity of waterfall-based process is changed into new iterative process
because of urgent specification changes.

ii. Developers design GUI using a new prototype development process at design
phase.

iii. In an incremental development process, developers correct defects in the
previous release while developers are implementing new functions in current
release.

That is, the waterfall-based process at planning time is often gradually transformed
into the combination of the original waterfall-based process and several unplanned

172 M. Obana, N. Hanakawa, and H. Iida

small processes (hereinafter referred to as process fragments). In consequence, actual
development processes are more complicated than planned one (see also Figure 1).

In this paper, we firstly assume that complicated process decreases product qual-
ity, and then propose a new metric for process complexity based on the number of
unplanned process fragments, the number of simultaneous execution processes, and
the number of developers' groups. It can be used to visualize how process complexity
increases as actual development process proceeds.

An aim of measuring process complexity is to prevent software from becoming
low quality product. A process complexity is derived from a base process and process
fragments. A base process means an original process that was planned at the begin-
ning of a project. Process fragments mean additional and piecemeal processes that are
added to the base process on the way of a project. Process fragment occurs by urgent
changes of customers’ requirement, or sudden occurrence of debugging faults. Proc-
ess fragments can be extracted from actual workflow management tables which are
popular in Japanese industrial projects [2]. We especially focus on simultaneous exe-
cution of multiple processes to model the process complexity. Simultaneous execution
of multiple processes is caused by adding process fragments on the way of a project.
Finally, we propose a “process complexity – product quality” (PCPQ) model for pre-
dicting final product quality. We perform an industrial case study in order to show the
usefulness of PCPQ model. In this case study, we found that PCPQ model was able to
indicate the degree of post-release faults.

Section 2 shows related work about process metrics, and risk management. The
process complexity is proposed in section 3. Section 3 also describes how the pro-
posed complexity would be used in industrial projects. Case studies of six projects are
shown in section 4. In section 5, we propose a PCPQ model to predict post-release
product quality. Summary and future works are described in Section 6.

2 Related Work

Many software development process measurement techniques have been proposed.
CMM [3] is a process maturity model by Humphrey. Five maturity levels of organiza-
tions have been proposed in CMM. When a maturity level is determined, various
values of parameters (faults rate in total test, test density, review density) are col-
lected. In addition, Sakamoto et al. proposed a metrics for measuring process im-
provement levels [4]. The metrics were applied to a project based on a waterfall proc-
ess model. Theses process measurement metrics’ parameters include the number of
times of review execution and the number of faults in the reviewed documents. The
aim of these process measurement techniques is improvement of process maturity of
an organization, while our research aims to measure process complexity of a project,
not organization. Especially, changes of process complexity in a project clearly are
presented by our process complexity.

Many researches of process modeling techniques have been ever proposed. Cugola
et al. proposed a process modeling language that describes easily additional tasks [5].
Extra tasks are easily added to a normal development process model using the model-
ing language. Fuggetta et al. proposed investigated problems about software devel-
opment environments and tools oriented on various process models [6]. These process

 A Process Complexity-Product Quality (PCPQ) Model Based 173

modeling techniques are useful to simulate process models in order to manage pro-
jects. However, these process modeling techniques make no mention of process com-
plexity in a project.

In a field of industrial practices, Rational Unified Process (RUP) has been
proposed [7]. The RUP has evolved in integrating several practical development proc-
esses. The RUP includes Spiral process model, use-case oriented process model, and
risk oriented process model. Moreover, the RUP can correspond to the latest
development techniques such as agile software development, and .NET framework
development. Although problems of management and scalability exist, the RUP is an
efficient integrated process for practical fields[8]. The concept of the various proc-
esses integration is similar to our process fragments integration, while the RUP is a
pre-planned integration processes. The concept of our process complexity is based on
more flexible model considering changes of development processes during a project
execution. Our process complexity focuses on changes of an original development
process by process fragments, and regarded as a development processes change.

Garcia et al. evaluated maintainability and modifiability of process models using new
metrics based on GQM [9]. They focus on additional task as modifiability. The focus of
additional task is similar to our concept of process complexity. Although their research
target is theoretical process models, and our research target is practical development
processes. In this way, there is few studies for measuring complexity of process during a
project. Therefore, originality of our proposed complexity may be high.

3 Process Complexity Based on Process Fragment

3.1 Process Fragment

In software development, a manager makes a plan of a single development process
like a waterfall process model at the beginning of a project, because developers and
managers yet not have sufficient information about the development system at plan-
ning phase of a project. However, the planned single process usually continues to
change until the end of the project. For example, at the beginning of a project, a man-
ager makes a plan based on a waterfall process model. However the original process
is changed to an incremental process model because several functions’ development is
shifted to next version’s development. Moreover, at the requirement analysis phase,
prototyping process may be added to an original process in order to satisfy customers’
demands. If multiple releases like an incremental process model exist, developers
have to implement new functions while developers correct faults that were caused in
the previous version’s development. In this paper, we call the original process “a base
process”, we call the additional process “a process fragment”. While an original
process is a process that was planned at the beginning of a project, a process fragment
is a process that is added to the original process on the way of a project. “Fragment”
means piecemeal process. Process fragments are simultaneously executed with a base
process. Process fragment does not mean simple refinement of a base process, but
rather may separately executes from a base process execution.

174 M. Obana, N. Hanakawa, and H. Iida

Analysis Design Implement Test A base
Process

A part of function is next version.

Process
fragments

The re-design, the re-implement, and
the re-test are executed for the
performance improvement.

A part of function is developed
by the prototype.

A fragment
process

Re-design by requirement
definition mistake.

A coordinated design with other
systems is executed. later.

Process
fragments

Analysis Design Implement Test

Analysis Design Implement Test

Analysis Design Implement Test

Process
fragments

Plan phase

Analysis phase

Design phase

Implement
phase

A part of function to the next
version for the delivery date.

Analysis Design Implement Test

A part of function is re-designed and
re-implemented by the requirement
definition mistake.

Process
fragments

Test phase

Fig. 1. A concept of process fragments

Figure1 shows an example of process fragment. At the planning phase, it is a sim-
ple development process that consists of analysis activity, design activity, implemen-
tation activity, and testing activity. In many cases, because of insufficient information,
a manager often makes a rough simple process (macro process) rather than a detailed
process (micro process) [10]. However, information about software increases as a
project progresses, and the original simple process changes to more complicated proc-
esses. In the case of Figure 1, at the analysis phase, an unplanned prototype process
was added to the original process because of customers’ requests. As a result of
analysis phase, implementations of some functions were shifted to next version de-
velopment because of constraints of resources such as time, cost, and human. The
process fragments were shown at the Figure1 as small black boxes. In the design
phase, because customers detected miss-definitions of system specifications that were
determined in the previous analysis phase, a process for reworking of requirement

 A Process Complexity-Product Quality (PCPQ) Model Based 175

A
B
C
D
E
F

current

Activity Apr.1 May 1 Jun.1 Jul.1

A
B
C

A table on Apr. 1 A table on Jun. 1

Added on
May 1

Base
process

Activity Apr.1 May 1 Jun.1 Jul.1

current

Fig. 2. Extracting process fragments from configuration of a workflow management table

analysis was added to the development process. Moreover, the manager shifted the
development of a combination function with the outside system when the outside
system was completed. During the implementation phase, several reworks of designs
occurred. In the test phase, reworks of designs occurred because of low performance
of several functions.

Process fragments are caused by urgent customers’ requests, design errors, combi-
nation with outside systems on the way of development. Various sizes of process
fragments exist. A small process fragment includes only an action such as document
revision. A large process fragment may include more activities for example, a series
of developing activities; design activity, implementation activity, and test activity.

3.2 Calculation of Process Complexity

3.2.1 Extracting Process Fragments
Process complexity is calculated based on process fragments. Process fragments are
identified from a series of workflow management table. That is a continuator revised
along the project. Figure 2 shows two versions of a workflow management table.
Each column means a date, each row means an activity. A series of A, B, C activities
is a base process. D, E, F activities are added to the base process on May 1. Therefore,
D, E, F activities are process fragments. On Jun. 1, the base process and three process
fragments are simultaneously executed. In this way, process fragments can be identi-
fied from configuration management of a workflow management table. Difference
between current version and previous version of a workflow management table means
process fragments. Of course, the proposed complexity is available in various devel-
opment processes such as an agile process as long as managers manage process frag-
ments in various management charts.

3.2.2 Definition of Process Complexity
Process complexity is defined by the two following equations.

∑
=

××=
)_(

1
)()()(_)()_(

accumulatetN

i
itititacummulatet termLdevNumPC (1)

176 M. Obana, N. Hanakawa, and H. Iida

∑
=

××=
)_(

1
)()()(_)()_(

momenttN

i
itititmomentt termLdevNumPC (2)

PC(t)_accumulate: process complexity on time t including finished processes
PC(t)_moment: process complexity on just time t
N(t_accumulate): the total number of process on time t including finished processes
N(t_moment): the total number of process on just time t
Num_dev(t)i: the number of group of developers of the i-th process fragment on time t
L(t)i: the number of simultaneous processes of the i-th process fragment on time t. But the

i-th fragment is eliminated from these multiplications in L(t).
term(t)i: ratio of an executing period of the i-th process fragment for the whole period of the

project on time t, that is, if term(t)i is near 1, a executing period of the process frag-
ment is near the whole period of the project.

Basically, we have two type process complexities. PC(t)_accumulate is process complexity

is accumulation of all process fragments including finished processes. PC(t)_moment is a
process complexity is on just time t not including finished processes. Finished process
means that all tasks of the process already are completed. The reason of the two type
complexities is based on different management viewpoints. If a manager wants to see
the whole project characteristics, PC(t)_accumulate is useful because the value of the com-
plexity presents total accumulation of all process fragments. If a manager wants to see
change of process on every day, PC(t)_moment can be useful for grasping change of com-
plexity on every day. For example, many process fragments occur at the first half of a
project. Even if the process fragments have finished, the fragments’ executions may
harmfully influence products and process at the latter half of the project. In this man-
agement view, a manager uses a value of PC(t)_accumulate . On the other hand, tasks of every
day change. The change of tasks of every day can be controlled by a value of PC(t)_moment

Theses process complexities basically depend on three elements; the number of
group of the i-th process fragment on time t: Num_dev(t)i, the number of simultaneous
processes of the i-th process fragment on time t: L(t)i, and ratio of an executing period
of the i-th process fragment for the whole period of project time t: term(t)i. Granularity
of group of developer(Num_dev(t)i) depends on the scale of process fragments. If a
process fragment is in detail of every hour, a group simply correspond to a person. If
process fragment is large such as design phase, a group unit will be an organization
such as SE group and programmer group. The granularity of group of developer will
be carefully discussed in future research. The ratio of an executing period of the i-th
process fragment for the whole period of project time t (term(t)i) means impact scale of
a process fragment. If a process fragment is very large, for example an executing
period of the process fragment is almost same as the whole period of a project, the
process fragment will influence largely the project. In contrast, if a process fragment
is very small, for example an executing period is only one day, the process fragment
will not influence a project so much.

In short, when more and larger scale process fragments are simultaneously exe-
cuted, a value of process complexity becomes larger. When fewer and smaller scale
process fragments simultaneously are executed, a value of process complexity be-
comes smaller. Values of the parameters of equation (1) and (2) are easily extracted
from configuration management data of a workflow management table.

 A Process Complexity-Product Quality (PCPQ) Model Based 177

3.3 Setting a Base Process and Extracting Process Fragments

At the beginning of a project, a base process is determined. If a planned schedule is
based on a typical waterfall process model such as the base process in Figure 1, the
parameters’ values of process complexity are t=0, N(�)=1, Num_dev (�)=3 (SE group
developer group, customer group), L(�)=1, and term (�)=1. Therefore the value of
process complexity PC(0) =3.

As a project progresses, unplanned process fragments are occasionally added to the
base process at time t1. A manager registers the process fragments as new activities to
the workflow management table. The manager also assigns developers to the new
activities. Here, we assume that the planned period of a base process is 180 days. A
manager adds two activities to the workflow management table. The period of each
additional activity is planned as 10 days. Therefore the total number of process N (t1) =
3, and the process complexity is calculated as follows;

 (1) for i = 1 (a base process)
• Num_dev(t1) = 3
• L(t1)1 = 3
• term(t1)1 = 180/180 = 1.0

(2) for i = 2 (the first process fragment)
• Num_dev(t1)2 = 1
• L(t1)2= 3
• term(t1)2 = 10/180 = 0.056

(3) for i = 3 (the second process fragment)
• Num_dev(t1)3 = 1
• L(t1)3 = 3
• term(t1)3= 10/180 = 0.056

Finally, a value of process complexity at t=t1 can be calculated as PC(t1)_moment = 9.000
+0.168+ 0.168 = 9.336. In this way, the value of process complexity at time t can be
calculated based on workflow management table.

Kick off Requirement analysis UI design Programming Combination test System test Operations test Process1

Process1
November

PrototypeProcess2 Four functions are made by the prototype.

Analysis Design Programming Test Process3

Process4Two functions were redeveloped.

Process5The connect functions redeveloped.

Time

Kick off Requirement analysis UI design Programming

Process1
PrototypeProcess2

Kick off Requirement analysis UI design Programming

Analysis Design Programming Test

January

Analysis Design Programming Test Process3

Process4

Process1
PrototypeProcess2

Kick off Requirement analysis UI design Programming

Analysis Design Programming Test

February

Analysis Design Programming Test

October

Combination test System test Operations test

Combination test System test Operations test

Combination test System test Operations test

Fig. 3. A variation of development process of the HInT V2 project

178 M. Obana, N. Hanakawa, and H. Iida

4 Application to Six Industrial Projects

The process complexity has been applied to six practical projects; two versions of
HInT project [13] and four versions of p-HInT project [11][12]. These projects exe-
cuted by a same organization of a system development company. One of the 6 pro-
jects is presented at the following subsection.

4.1 The HInT V2 project

The version 2 of HInT project developed a web-based educational portal system. The
development began from October 2007, the release of the HInT was April 2008. Be-
cause the workflow management table was updated every week, 20 versions of the
workflow management table are obtained. At the beginning of the project, the number
of activities in the workflow table was 20. At the end of the project, the number of
activities reached to 123. Each activity had a planned schedule and a practice result of

0

10

20

30

40

50

1 3 5 7 9 111315 171921232527293133

HInT V1
PC(t) accumulate

week 0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25

HInT V2
PC(t)_accumulate

week

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V1PC(t)_accumulate

week
0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V2PC(t)_accumulate

week

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V3PC(t)_accumulate

week
0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V4PC(t)_accumulate

week

Fig. 4. Changes of values of process complexities (accumulate version) of 6 projects

execution. Figure 3 shows a rough variation of development process of the project. At
the beginning of the project, the shape of the development process was completely a
waterfall process. However, at the UI design phase, a prototype process was added to
the waterfall process. In the prototype process, four trial versions were presented to
customers. At the combination test phase, developers and customers found significant

 A Process Complexity-Product Quality (PCPQ) Model Based 179

0

10

20

30

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40

HInT V1
PC(t)_moment

week

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 2325 27

HInT V2

week

PC(t)_moment

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V1PC(t)_moment

week

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V2

week

PC(t)_moment

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V3PC(t)_moment

week

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23

p-HInT V4PC(t)_moment

week

Fig. 5. Changes of values of process complexities (moment version) of 6 projects

errors of specifications and two process fragments were added to the development
process in haste. Reworks such as re-design, re-implement, and re-test for the specifi-
cation errors continued until the operation test phase. At the system test phase, an
error of a function connecting with an outside system occurred and a new process
fragment was introduced to the development process. The introduced process
fragment consists of various activities such as investigating network environments,
investigating specification of the outside system, and revising the programs. These
activities continued until the delivery timing.

4.2 Changes of Process Complexities of the 6 Projects

Figure 4 shows the changes of process complexities (accumulate version) of the 6
projects. Figure 5 shows the changes of process complexities (moment version) of the
6 projects. The highest value of process complexity (accumulate version) is 44.4 of
the p-HInT V2 project. A minimum value of process complexity (accumulate version)
is 15.4 of the p-HInT V4 project. Therefore, the p-HInT V2 project included a com-
plicated base process and many process fragments. The p-HInT V4 project consisted
of a simple base process and few process fragments.

On the other hand, the changes of process complexities (moment version) in Figure
5 present different trends. Process complexities (moment version) of HInT V1 and p-
HInT V2 were relatively high during the projects. That is, many fragment processes
concurrently executed in HInT V1 and p-HInT V2. HInT V1 project was a new

180 M. Obana, N. Hanakawa, and H. Iida

development system. Because customers could not image the new system, customers’
requests frequently changed. Therefore, developers should concurrently execute vari-
ous development activities including activities for customers’ new requests. In con-
trast, process complexities of HInT V2 keep low during the project. Customers could
easily image new functions because customers mastered the original system. In p-
HInT project, process complexities of p-HInT V2 were high. In the p-HInT V2, many
system troubles occurred. The troubles were caused by development of p-HInT V1.
Therefore, developers should concurrently execute not only development of new
functions of version2 but also debugging activities of the errors. The p-HInT V2 pro-
ject had complicated processes with many process fragments. After that, in p-HInT
V3, the manager decided a product refactoring without developing new functions.
Process complexities were relatively low in the p-HInT V3. Because the product
refactoring executed smoothly in the p-HInT V3, process complexities of p-HInT V3
and p-HInT V4 did not become so high during the projects.

4.3 A Trial Tool for Visualizing Process Complexity

We have developed a trial tool for visualizing changes of process complexity (mo-
ment version) during a project. Figure 6 shows images of the changes in three pro-
jects; HInT V1, p-HInT V2, p-HInT V3. One block means one process fragment. A
size of block means complexity of a process fragment. A big block is more compli-
cate than a small block. In addition, X axis means time, Y axis means accumulated
values of L(t) of equation (2) at time t, Z axis means accumulated values of Num_dev(t)
of equation (2) at time t. That is, if a block is long X-axially, the process fragment
has long development time. If a block is long Y-axially, the process fragment has to
execute concurrently with many other processes. If a block is long Z-axially, the
process fragment has to execute with many development groups. In HInT V1, many
fragment processes concurrently executed on the latter half of the project. Therefore,
many blocks were piled, moreover, the blocks were long Y-axially. However because
the blocks of HInT V1 is short X-axially, the process fragments finished quickly. In
addition, concurrent executed process fragments of HInT V1 are more than one of p-
HInT V2 and p-HInT V3. The piled process fragments of HInT V1 are higher than the
piled process fragments of p-HInT V2 and p-HInT V3. In this way, characteristics of
process complexity of each project are visualized in the tool.

Y

Z X

Y

ZX

Y

Z X

HInT V1 p-HInT V2 p-HInT V3

Fig. 6. Visualized images of changing process complexities

 A Process Complexity-Product Quality (PCPQ) Model Based 181

5 Process Complexity – Product Quality (PCPQ) Model

We propose a Process Complexity – Product Quality (PCPQ) model. A PCPQ model
is built by pairs of a final process complexity and specific gravity of failure in several
projects. A final process complexity means a value of process complexity (accumu-
late version) at the ending of project. A specific gravity of failure means a product
quality based on importance and the number of post-release failures. A PCPQ model
is built on each organization because a way of creating workflow management tables
and management of post-release failure is different. For example, a manager of an
organization creates a daily workflow management table. In this case, processes are
divided into small process fragments. Scale of process depends on a management way
of each organization. In addition, a way of management of failures is different among
organizations. For example, a manager decides that a system-down error is a most
important failure. Another manager decides that requirement analysis error is a most
important failure. The way of deciding importance of failures is different on each
organization. Therefore, a PCPQ model is built by each organization.

After building a PCPQ model, a manager can predict a post-release product quality
even if the project is not finished. On the way of a project, a value of process com-
plexity (accumulate version) can be calculated based on a scheduled workflow man-
agement table. When a manage remake a plan for process fragments, a post-release
product quality can be predicted based on the PCPQ model.

5.1 A Procedure of Building a PCPQ Model

A PCPQ model is built in the following procedure;

Step1: Preparing several finished projects in a same organization.
Step2: Calculating a value of final process complexity (accumulate version) of each

project from workflow management tables.
 Step3: Collecting post-release failures, deciding importance of the failures.
Step4: Calculating a value of specific gravity of failure by each project.
Step5: Making an approximate value curve of the relation between the process com-

plexities and the specific gravity of failures.

The approximate value curve of the relation between the process complexities and the
specific gravity of failures means a PCPQ model. The next subsection shows an ex-
ample of making a PCPQ model based on the 6 projects of section 4.

5.2 An Example of Making a PCPQ Model

Step1:We prepare six finished projects; HInT V1, HInT V2, p-HInT V1, p-HInT V2,
p-HInT V3, p-HInT V4 in a same organization.

Step2:Six final process complexities (accumulate version) are calculated. Table 1
shows the values of the final process complexities.

Step3:We collected post-release failures. Each failure’s importance was decided. The
Table 1 also shows the number of the failures with importance ranks; SS, S, A, B, C.

182 M. Obana, N. Hanakawa, and H. Iida

In the organization, the failures are categorized into 5 ranks. SS rank means system-
down level error. S rank means errors of missing important functions and perform-
ance. A rank means errors of missing middle important functions, B rank means low
quality of user-interface, C rank means errors of presentation such as messages and
button names. The failures were accumulated on failure management tables on each
project after release. The importance rank of each failure is decided by the manager
and customers.

Step4:We calculated values of specific gravity of failures. The specific gravity of the
failures is a value that multiplied the number of failures and the importance rank. In
the calculation, we set up that a constant of SS is 5, a constant of S is 4, a constant of
A is 3, a constant of B is 2, and a constant of C is 1. For example, a value of specific
gravity of HInT V1 is calculated by “5*4 + 4*4 + 3*6 +2*9 + 1*11”. The value is 83.
In the same way, the specific gravity of failure of HInT V2 is 66, one of p-HInT V1 is
82, and one of p-HInT V2 is 82, one of p-HInT V3 is 88, one of p-HInT V4 is37, and
one of p-HInT V5 is 28.

Step5:We plotted relations between process complexities and specific gravity of fail-
ures. Figure 7 shows the relations and an approximate value curve. The approximate
value curve is as a follow;

y = -0.0105x3 + 0.9069x2 - 22.017x + 189.69
R² = 0.9138

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Process complexity -
Specific gravity of failure
ProjectA

Process complexity

Specific gravity of failures

Fig. 7. An approximate value curve of relation between process complexities and specific
gravities of failures

69.189017.229069.00105.0 23 +−+−= XXXy

 y: a value of specific gravity of failures
 x: a value of final process complexity (accumulate version)

(3)

Equation (3) is a PCPQ model of the organization. Coeffient of determination (R-
squared) is 0.9138. Of course, if a value of coeffient of determination is too small,

 A Process Complexity-Product Quality (PCPQ) Model Based 183

the PCPQ model is meaningless. Although the PCPQ model is based on a polynomial
expression, the relation can present using linear approximation, logarithm approxima-
tion, and exponential approximation.

5.3 Predicting Product Quality Based on the PCPQ Model

Using the PCPQ model of Figure 7, product quality of another project is predicted. A
target project is “Project A” developing an e-learning system in the same organiza-
tion. Of course Project A is different from the six projects. Change of process com-
plexity is shown Figure 8. At the thirteenth week, the value of process complexity is
25.21. The value of the process complexity is applied to the PCPQ model (Equa-
tion(3)). Therefore, a value of specific gravity of failure is calculated as 42.78. There-
fore, the manager can predict post-release product quality as not better than p-HInT
V3, and better than HInT V2.

The prediction of Project A is evaluated using real failure data. The number of
post-release failure of Project A is 20. The number of failure with SS and S rank is 0,
the number of failure with A rank is 8, the number of failure with B rank is 9, and the
number of failure with C rank is 3. The value of specific gravity of failure is 45. The
prediction value based on the PCPQ model is 42.78, the real value is 45. A plot “*” in
Figure 7 is a relation between the process complexity and the specific gravity of fail-
ure of the Project A. We may judge that the product quality prediction of Project A at
the thirteenth week is useful.

Table 1. Parameter values of a PCPQ model

Importance of failure Project Final process
complexity

Specific gravity
of failures SS S A B C

HInT V1 43.0 83 4 4 6 9 11
HInT V2 28.0 66 2 1 6 10 13
p-HInT V1 35.4 82 2 3 19 1 1
p-HInT V2 44.4 88 10 6 4 1 0
p-HInT V3 26.3 37 3 3 2 1 2
p-HInT V4 15.4 28 0 0 7 3 1

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25

Project APC(t)_accumulate

week

Here

Fig. 8. Change of process complexity (accumulate version) of Project A

184 M. Obana, N. Hanakawa, and H. Iida

6 Summary

We propose a metric of process complexity based on process fragments. the process
complexity has three elements; the number of group of developers, the number of
simultaneous process, and ratio of an executing period for a period of the whole pro-
ject. Process complexity can present changes of development processes with addi-
tional and piecemeal process fragment during a project. Process complexity is applied
to six industrial projects. We could grasp how the development processes of the six
projects became complicated as the projects progressed. In addition, we also proposed
a way of making a PCPQ (Product Complexity-Product Quality) model. A PCPQ
model is useful to predict post-release product quality on the way of a project. The
PCPQ model is an approximate curve of a relation between process complexity and
product quality. The model is built using process complexity and actual product qual-
ity of finished projects. A PCPQ model using the six projects’ data was built. As a
result, a post-release product quality was able to be predicted by the PCPQ model.

In future, we will evaluate several PCPQ models. A PCPQ models is built every
organization because management ways of workflow management tables and post-
release product quality are different among organizations. Therefore, we need build-
ing PCPQ models in different organizations. Then usefulness of PCPQ models will be
evaluated.

References

1. Royce, W.: Software Project Management: A unified Framewaork. Addison-Wesley
Professional, USA (1998)

2. Guide to the Software Engineering Body of Knowledge (SWEBOK),
http://www.computer.org/portal/web/swebok

3. Humphrey Watts, S.: Managing the software process. Addison-Wesley Professional, USA
(1989)

4. Sakamoto, K., Tanaka, T., Kusumoto, S., Matsumoto, K., Kikuno, T.: An Improvement of
Software Process Based on Benefit Estimation (in japanese). IEICE Trans. Inf. &
Syst. J83-D-I(7), 740–748 (2000)

5. Cugola, G.: Tolerating Deviations in Process Support Systems via Flexible Enactment of
Process Models. IEEE Transaction of Software Engineering 24(11), 982–1001 (1998)

6. Fuggetta, A., Ghezzi, C.: State of the art and open issues in process-centered software
engineering environments. Journal of Systems and Software 26(1), 53–60 (1994)

7. Kruchten, R.: The Rational Unified Process. Addison-Wesley Professional, USA (2000)
8. Manzoni, L.V., Price, R.T.: Identifying extensions required by RUP (rational unified proc-

ess) to comply with CMM (capability maturity model) levels 2 and 3. IEEE Transactions
on Software Engineering 29(2), 181–192 (2003)

9. Garcia, F., Ruiz, F., Piattini, M.: Definition and empirical validation of metrics for soft-
ware process models. In: Proceedings of the 5th International Conference Product Focused
Software Process Improvement, pp. 146–158 (2004)

10. Obana, M., Hanakawa, N., Yoshida, N., Iida, H.: Process Fragment Based Process Com-
plexity with Workflow Management Tables. In: International Workshop on Empirical
Software Engineering in Practice, pp. 7–12 (2010)

 A Process Complexity-Product Quality (PCPQ) Model Based 185

11. Hanakawa, N., Yamamoto, G., Tashiro, K., Tagami, H., Hamada, S.: p-HInT: Interactive
Educational environment for improving large-scale lecture with mobile game terminals. In:
Proceedings of the16th International Conference on Computers in Education, pp. 629–634
(2008)

12. Hanakawa, N., Obana, M.: Mobile game terminal based interactive education environment
for large-scale lectures. In: Proceeding of the Eighth IASTED International Conference on
Web-based Education, pp. 7–12 (2010)

13. Hanakawa, N., Akazawa, Y., Mori, A., Maeda, T., Inoue, T., Tsutsui, S.: A Web-based in-
tegrated education system for a seamless environment among teachers, students, and ad-
ministrators. International Journal of System & Computer in Japan 37(5), 14–24 (2006)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 186–201, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using Web Objects for Development Effort Estimation of
Web Applications: A Replicated Study

Sergio Di Martino1, Filomena Ferrucci2, Carmine Gravino2, and Federica Sarro2

1 University of Napoli “Federico II”, 80126, Napoli, Italy
sergio.dimartino@unina.it

2 University of Salerno, Via Ponte Don Melillo, 84084, Fisciano (SA), Italy
{fferrucci,gravino,fsarro}@unisa.it

Abstract. The spreading of Web applications has motivated the definition of
size measures suitable for such kind of software systems. Among the proposals
existing in the literature, Web Objects were conceived by Reifer specifically for
Web applications as an extension of Function Points. In this paper we report on
an empirical analysis we performed exploiting 25 Web applications developed
by an Italian software company. The results confirm the ones obtained in a pre-
vious study and extend them in several aspects, showing the robustness of the
measure with respect to the size and technologies of the applications, and to the
employed estimation techniques.

Keywords: Web applications, Size measure, Effort estimation technique,
Empirical studies.

1 Introduction

Even if Web applications are becoming the de-facto standard in many domains, such
as B2B [7], software engineering is still missing to fully support their development.
Among others, there is to date the need of suitable measures to size this kind of appli-
cations and support critical management activities, such as cost/effort estimation,
quality control, and productivity assessment. Indeed, size measurement methods,
conceived and widely accepted for traditional software systems, such as the Function
Point Analysis (FPA) [14], can fail to capture some specific features of Web applica-
tions [25]. Some measures have been defined so far (see e.g., [10][11][26]), and
among them, Web Objects were introduced by Reifer [26] by adding four new Web-
related components (namely Multimedia Files, Web Building Blocks, Scripts, and
Links) to the five function types of the FPA method. In his original formulation
[26][27], Reifer reported improved prediction performances of Web Objects over
Function Points, but no details were provided about the empirical analysis he per-
formed. In [29][30] Ruhe et al. described two studies assessing the effectiveness of
Web Objects for estimating Web application development effort, by exploiting a
dataset of 12 industrial Web applications. In the first analysis [30], they applied Ordi-
nary Least Squares Regression (OLSR) [24], a widely used estimation technique,
while in the second analysis [29] they employed Web-COBRA that is an extension for

 Using Web Objects for Development Effort Estimation of Web Applications 187

Web applications of the COBRA1 method proposed by Briand et al. [4].
Web-COBRA can be considered a composite method, according to a widely accepted
taxonomy [3], since it exploits expert’s opinions, gathered in a controlled fashion,
together with other cost drivers, within an algorithmic approach. To assess the ob-
tained estimations, authors applied a leave-1-out cross validation, highlighting that
Web Objects performed well and better than Function Points. It is obvious that, as the
authors themselves pointed out, there is the need of replicated studies to further assess
the measure with different (and possibly) larger datasets and to generalize the results
in different contexts [2]. To this aim, in this paper we report on a replication of Ruhe
et al.’s studies [29][30] performed by exploiting data on 25 Web applications devel-
oped by an Italian software company. This analysis also extends Ruhe et al.’s studies,
since, in addition to OLSR and Web-COBRA, we applied an Artificial Intelligence
prediction method, namely Case-Based Reasoning (CBR) [1], and exploited a differ-
ent validation method. In particular, we performed a hold-out cross by using 15
applications as training set and 10 further applications as test set. We applied this
validation since it is considered theoretically the best option in specific cases, e.g.,
when using projects started after a certain date as hold-out, as in our case [16]. More-
over the split reflects the real outcoming of the software company development
process since the observations included in the test set were developed after the ones
included in the training set. Moreover, the 25 Web applications used in our study are
more recent, thus exploiting newer technologies, development environments, etc..,
and are much bigger than those used in [29].

The remainder of the paper is organized as follows. In Section 2 we report on the
experimental method we exploited to establish whether Web Objects can be used to
predict the development effort of Web applications. The results of the empirical
analysis are reported and discussed in Section 3, while a discussion about the empiri-
cal study validity is presented in Section 4. Section 5 reports on the related work
while Section 6 concludes the paper giving some final remarks.

2 Experimental Method

This section presents the design of the empirical study carried out to assess the effec-
tiveness of Web Objects for sizing Web applications2. The research question we ad-
dressed is:
[RQ1] Can the Web Objects measure provide good estimations of Web applications

development effort when used in combination with OLSR / CBR / Web-
COBRA?

It is worth noting that our experimental settings allowed us to gain insight on two
consequent research questions:

[RQ2] Are the estimates obtained using Web Objects statistically superior to the
estimates obtained using Function Points?

1 COBRA is a trademark of the Fraunhofer Institute - http://www.fraunhofer.de/
2 Details on the design of the case study can be find in the technical report available at:

http://www.dmi.unisa.it/people/gravino/www/work/Report_WO_Gravino2011-01-
18/TechReport_WO_Gravino2011-01-18.pdf

188 S. Di Martino et al.

[RQ3] Which estimation method, among OLSR, CBR, and Web-COBRA, provides
the best predictions, when used in combination with Web Objects?

2.1 The Dataset

Data for our empirical study were provided by an Italian medium-sized software
company, whose core business is the development of enterprise information systems,
mainly for local and central government. Among its clients, there are health organiza-
tions, research centers, industries, and other public institutions. The company is spe-
cialized in the design, development, and management of solutions for Web portals,
enterprise intranet/extranet applications (such as Content Management Systems, e-
commerce, work-flow managers, etc.), and Geographical Information Systems. It has
about fifty employees, it is certified ISO 9001:2000, and it is also a certified partner
of Microsoft, Oracle, and ESRI.

The company first provided us data on 15 projects, and then data on further 10 ap-
plications. These two sets include e-government, e-banking, Web portals, and Intranet
applications, developed between 2003 and 2008, and are quite homogeneous in terms
of adopted technologies and development teams. In particular, all the projects were
developed by exploiting SUN J2EE or Microsoft .NET technologies. Oracle has been
the most commonly adopted DBMS, but also SQL Server, Access, and MySQL were
employed in some of these projects.

Table 1 reports some summary statistics on these 25 projects, aggregated on the
two datasets. The variables employed in our empirical analysis are EFH, i.e. the ac-
tual effort, expressed in terms of person/hours, WO, expressed in terms of number of
Web Objects, and FP, expressed in terms of number of Function Points. Further de-
tails on how these data were collected are discussed in Section 4.

Table 1. Descriptive statistics of EFH, WO, and FP for the study

Dataset Var Min Max Mean Median Std. Dev.
EFH 1176 3712 2677.867 2792 827.115
WO 465 2258 1464.867 1389 543.986

I
(15 observa-

tions) FP 110 601 360.200 355 167.009
EFH 782 4537 2511.778 2498 1265.208
WO 323 3078 1503.000 1271 960.927

II
(10 observa-

tions) FP 175 973 459.600 327.5 273.612

2.2 The Web Objects Method

The Web Objects method was proposed by Reifer to measure the size of Web applica-
tions [26]. In particular, Reifer added four new Web-related components, namely
Multimedia Files, Web Building Blocks, Scripts, and Links, to the five predictors of
the FPA method. A detailed description of these components can be found in the
Reifer “white paper” explaining the counting conventions of the Web Objects method
[27].

To size a Web application accordingly to the method, a Measurer has to compute
the Function Points in the traditional way. Then he/she has to identify the Web-related
components that have not yet counted. Similarly to FPA, the further step is to

 Using Web Objects for Development Effort Estimation of Web Applications 189

determine the complexity of the identified instances of the nine components. To sup-
port this task, Reifer provided a calculation worksheet in [65] that was subsequently
modified by Ruhe [28]. We used this latter version, since we were interested in repli-
cating Ruhe’s studies. Thus, the application size in terms of Web Objects is obtained
by adding the identified component instances taking into account the weights that are
related to each component.

2.3 The Employed Effort Estimation Methods

Several techniques have been proposed in the literature to be employed for effort
estimation [3]. In our empirical analysis, we applied OLSR [24][23] and Web-
COBRA [29], since they have been applied in previous studies to assess the effective-
ness of Web Objects in estimating Web application development effort [29][30].
Furthermore, we also employed CBR [1] since, together with OLSR, it is one of the
most diffuse techniques in the industrial context and in several researches to estimate
Web application development effort (see e.g., [10][11][19][21]).

OLSR. It is a statistical technique that explores the relationship between a depend-
ent variable and one or more independent variables [24][23], providing a prediction
model described by an equation

y = b1x1 + b2x2 + ... + bnxn + c (1)

where y is the dependent variable, x1, x2, ..., xn are the independent variables, bi is
the coefficient that represents the amount the variable y changes when the variables xi
changes 1 unit, and c is the intercept. In our empirical study we exploited OLSR to
obtain a linear regression model that use the variable representing the effort as de-
pendent (namely EFH) and the variable denoting the employed size measure (namely
WO) as independent. Once the prediction model is constructed, the effort estimation
for a new Web application is obtained by sizing the application in terms of Web
Obejcts, and using this value in the obtained model.

Web-COBRA. It is an adaptation of COBRA, proposed to estimate the development
effort of Web applications, taking into account “the needs of a typical Web applica-
tion company” [29]. In the following we describe only the key aspects of this method;
the interested reader can consult [28][29] for further details.

To apply Web-COBRA, two key aspects have to be setup for a specific environ-
ment:

1. The set of external factors that can lead to a rise of the cost for an application
within the specific domain. These factors are modeled by introducing the
concept of cost overhead, defined as “the additional percentage on top of the
cost of an application running under optimal conditions” [4].

2. The relationship between cost overhead and effort.

The first aspect is captured by a causal model, i.e. a list of all the cost factors (and
their relationships) that may affect a development cost within a specific domain. This
conceptual, qualitative model is obtained through the acquisition of experts’ knowl-
edge. Then, the experts are asked to “quantify” the effect of each of these identified
factors on the development effort, by specifying the percentage of overhead above an
“optimal” application that each factor may induce. Since different experts may

190 S. Di Martino et al.

provide different estimations of these percentages, basing on their previous experi-
ence, these factors are modeled as uncertain variables requiring a minimal, most
likely, and maximal values. For example, experts may agree that the factor “safety of
the Web application” may affect the development effort ranging from 10% (minimal),
through 50% (most likely), to 80% (maximal). Then, a triangular distribution of these
cost overheads is calculated. It is worth noting that the range of the distribution pro-
vides an indication on how uncertain the experts are about the overhead inducted by
the specific cost factor [29].

As for the second step, the relationship between the cost overhead and the devel-
opment effort is modeled by using the OLSR and employing past data of the com-
pany. The causal model and the determined relationship between effort and cost over-
head are used to obtain the effort estimations for new applications. In this step a
Monte Carlo simulation can be run to provide a distribution from where an estimate
of the effort can be obtained by taking the mean of the distribution [29].

CBR. It is an Artificial Intelligence technique that allows us to predict the effort of
a new Web application (target case) by considering some similar applications previ-
ously developed (case base) [1]. In particular once the applications are described in
terms of some features (such as the size), the similarity between the target case and
the others in the case base is measured, and the most similar ones are selected, possi-
bly with adaptations, to obtain the estimation. To apply the method, a Measurer has to
choose an appropriate similarity function, the number of analogies to select the pro-
jects to consider for the estimation, and the analogy adaptation strategy for generating
the estimation. Some supporting tools can help doing these tasks.

2.4 Validation Method and Evaluation Criteria

In order to validate the obtained effort estimation models we performed a hold-out
cross validation approach [16], employing datasets I and II of Table 1. Dataset I
(training set) was used to train the effort estimation techniques while dataset II (test
set) was used to validate the obtained models.

To assess the derived estimations, we used some summary measures, namely
MMRE, MdMRE, and Pred(25) [8]. In the following, we briefly recall their main
underlying concepts.

The Magnitude of Relative Error (MRE) [8] is defined as

MRE = |EFHreal − EFHpred|/EFHreal (2)

where EFHreal and EFHpred are the actual and the predicted efforts, respectively.
MRE has to be calculated for each observation in the test set. Then, the MRE values
have to be aggregated across all the observations. We used the mean and the median,
giving rise to the Mean of MRE (MMRE), and Median of MRE (MdMRE), where the
latter is less sensitive to extreme values [20]. According to [8], a good effort predic-
tion model should have a MMRE≤0.25, to denote that the mean estimation error
should be less than 25%.

The Prediction at level l%, also known as Pred(l), is another useful indicator that
measures the percentage of estimates whose error is less than l%, where l is usually
set at 25% [8]. It can be defined as

 Using Web Objects for Development Effort Estimation of Web Applications 191

Pred(25) = k/N (3)

where k is the number of observations whose MRE is less than or equal to 0.25,
and N is the total number of observations. Again, according to [8], a good prediction
approach should present a Pred(25) ≥ 0.75, meaning that at least 75% of the predicted
values should fall within 25% of their actual values.

Moreover, we tested the statistical significance of the obtained results, by using ab-
solute residuals, in order to establish if one of employed estimation measures provides
significantly better results than the other [18][20]. In particular, we performed statisti-
cal tests (i.e., T-Test or Wilcoxon signed rank test when the distributions were not
normally distributed) to verify the following null hypothesis: “the two considered
populations have identical distributions”. This kind of test is used to verify the hy-
pothesis that the mean of the differences in the pairs is zero.

To have also an indication of the practical/managerial significance of the results we
verified the effect size [15]. Effect size is a simple way of quantifying the difference
between two groups. Employing the Wilcoxon test and the T-test, the effect sizes is
determined by using the formula: r = Z-score/sqrt(N), where N is the number of ob-
servations. In particular, we first calculated the effect size and then compared it to the
Cohen's benchmarks [6]: so r=0.20 indicates a small effect, r=0.50 indicates medium
effect, and r=0.80 indicates a large effect.

Finally, as suggested in [21], we also analyzed the values of the summary statistics
MMRE, MdMRE, and Pred(25) obtained by employing the mean effort (MeanEFH)
and the median effort (MedianEFH) of the training set as estimated effort. Indeed, if
the prediction accuracy obtained with complex measures/techniques is comparable
with those got with the mean or median effort, then a software company could simply
use the mean or the median effort of its past applications rather than dealing
with complex computations of software sizes, such as Web Objects, to predict
development effort.

3 Empirical Results

The following subsections present the results of the empirical analysis we carried out
to establish whether the Web Objects measure is a good indicator of Web application
development effort, when used in combination with OLSR, Web-COBRA, or CBR.
As benchmark, we compared the predictions with those obtained with traditional
Function Points.

3.1 Obtaining Estimates with OLSR

We performed the OLSR analysis to build the effort estimation model by using the
training set of 15 Web applications (i.e., dataset I of Table 1). We applied OLSR two
times: as independent variable we used in the first one WO, while in the second run
FP. In both the cases, we preliminarily carried out an outlier’s examination to remove
potential extreme values which may influence the models, and then we verified the
assumptions underlying the OLSR analysis. Table 2 shows the results of the OLSR
applied with WO, in terms of R2 (an indication of the goodness of the model), F-value
and the corresponding p-value (denoted by Sign. F), whose high and low values,

192 S. Di Martino et al.

respectively, denote a high degree of confidence for the estimation. Moreover, we
performed a t statistic and determined the p-value and the t-value of the coefficient
and the intercept for the obtained prediction model, to evaluate its statistical signifi-
cance. A p-value lower than 0.05 indicates we can reject the null hypothesis that the
variable is not significant in the considered model, with a confidence of 95%. As for
the t-value, a variable is significant if the corresponding t-value is greater than 1.5. As
we can see from Table 2, both the criteria are matched.

Table 2. The results of the OLSR analysis with WO

 Value Std. Err t-value p-value
Coefficient 1.246 0.241 5.162 0.000
Intercept 851.912 375.814 2.267 0.041

R2 Adjusted R2 Std. Err F Sign. F
0.672 0.647 491.513 26.645 0.000

The results of the application of the OLSR with FP are reported in Table 3. Even if

the coefficient and the intercept can be considered accurate and significant as from the
t statistic, the R2 and F values are lower than those obtained with WO, pointing out a
weaker correlation between FP and EFH.

To understand the effectiveness of these models in predicting the development ef-
fort, their accuracy has been evaluated on a test set of 10 Web applications (i.e., data-
set II of Table 1). The results are reported in Table 4.

Table 3. The results of the OLSR analysis with FP

 Value Std. Err t-value p-value
Coefficient 3.853 0.863 4.464 0.001
Intercept 1290.121 340.651 3.787 0.002

R2 Adjusted R2 Std. Err F Sign. F
0.605 0.575 539.3 19.93 0.001

Based on the commonly accepted thresholds provided in [8], even if the value of

Pred(25) is slightly less than 0.75, we can conclude that WO is a good indicator of
Web application development effort, when used in combination with OLSR. Further-
more, we can note that the estimates obtained using WO are much better than those
obtained with FP, with about half the mean and median error. Also the T-test con-
firmed the superiority of WO, highlighting that their estimations are significantly
better than those obtained with FP (p-value=0.008). Finally we computed the effect
size, whose analysis revealed a medium effect size (r=0.54), according to the widely
used Cohen’s benchmarks [6].

Table 4. The results of OLSR

 MMRE MdMRE Pred(25)
OLSR with WO 0.21 0.15 0.70
OLSR with FP 0.46 0.28 0.40

 Using Web Objects for Development Effort Estimation of Web Applications 193

3.2 Obtaining Estimates with Web-COBRA

To apply the Web-COBRA method, the following steps were conducted:

1) Identification and quantification of cost factors.
2) Data collection for the Web applications involved in the case study.

As for 1) it is worth noting that a large number of cost drivers may affect the devel-
opment cost of software applications. However, for each domain, only a subset of
these factors turns out to be relevant [4][29]. We drafted an initial list including the
cost factors identified in [28][29] that was submitted to five experts of the software
company involved in our empirical study. Then a Delphi method [18] was adopted
until they agreed on the final set of cost drivers. They were asked to comment, bas-
ing on their experience, on the clarity of the factors (to avoid that different project
managers could interpret them in different ways), on their completeness (to avoid
that some key factors might not be considered), and on relevance for the Web appli-
cation development domain, working also to reduce as much as possible redundan-
cies and overlaps. A final list of 10 cost drivers was devised. They are reported in
Table 5. It is worth noting that this list includes four cost factors employed by Ruhe
et al. in [28][29]: Novelty of Requirements, Importance of Software Reliability,
Novelty of Technology, and Developer’s Technical Capabilities3. Then, the experts
were asked to quantify the cost factors, specifying their minimal, most likely, and
maximal inducted overhead (see Table 5). Again, a Delphi method was used to
obtain a single representative triple for each cost factor. Subsequently, for each
Web application p, the corresponding project manager specified the influence of the
cost factors on p by a value in the range 0..3, where 0 means that no influence was
due to that factor, and 3 represents the highest impact. Thus, the information on the
cost overhead for each project p was obtained by the sum of all the triangular distri-
butions of cost factors specified for p, taking into account their minimal, most
likely, and maximal values of Table 6.

Table 5. Identified cost factors and their influence

Cost Factor Minimal Most Likely Maximal
Novelty of Requirements (CF1) 10% 35% 70%
Importance of Software Portability (CF2) 7% 25% 60%
Importance of Software Reliability (CF3) 5% 20% 60%
Importance of Software Usability (CF4) 7% 30% 65%
Importance of Software Efficiency and Performance (CF5) 7% 20% 50%
Novelty of Technologies (CF6) 5% 25% 65%
Integration/Interaction with legacy systems (CF7) 20% 35% 70%
Temporal Overlap with other projects (CF8) 10% 35% 60%
Productivity of the adopted technological platform (CF9) 15% 45% 65%
Developer’s Technical Capabilities (CF10) 10% 35% 65%

3 Importance of Software Reliability was not included in the final list selected by the project

managers in the experiment presented in [29].

194 S. Di Martino et al.

The information on Effort (namely EFH), Size (expressed in terms of WO or FP),
and co_overhead obtained from cost factors was exploited to build a model and vali-
date it. Observe that Web-COBRA assumes that the relationship between effort and
size is linear [29]. We have performed the required statistical tests to verify this line-
arity in our dataset. The obtained equation is:

Effort = 0.477 · WO*co_overhead + 1095.89 (4)

Moreover, the size of a Web application is modeled as an uncertain variable, which
underlies a triangular distribution and an uncertainty of 5% was considered in [29].
Then, we applied a hold-out cross validation, by employing the training and the test
sets in Table I. Moreover, we run a Monte Carlo simulation (considering 1000 itera-
tions) that allowed us to use the relationship between cost overhead and effort to-
gether with the causal model to obtain a probability distribution of the effort for the
new project [29]. Then, the mean value of the distribution was used as the estimated
effort value. Table 6 shows the results of the validation we obtained in terms of
MMRE, MdMRE, and Pred(25), by applying Web-COBRA in combination with WO
and FP (this latter analysis was not performed by Ruhe et al. in [29]).

Again we got a superiority of WO, whose predictions fit the acceptable threshold
defined in [8]. This does not hold for FP. Also statistical tests highlight that the esti-
mates obtained with WO are significantly better than those obtained with FP (p-
value=0.003) with a medium effect size (r=0.71).

Table 6. The results of Web-COBRA

 MMRE MdMRE Pred(25)
Web-COBRA with WO 0.18 0.12 0.80
Web-COBRA with FP 0.29 0.25 0.50

3.3 Obtaining Estimates with CBR

To apply CBR, in our empirical study we exploited the tool ANGEL [31] [30]. It im-
plements the Euclidean distance as similarity function, using variables normalized
between 0 and 1, and allows users to choose the relevant features, the number of
analogies, and the analogy adaptation technique for generating the estimations. Since
we dealt with a not so large dataset, we used 1, 2, and 3 analogies, as suggested in
many similar works [20]. To obtain the estimation, once the most similar cases were
determined (exploiting information on the size, i.e., Web Objects), we employed three
widely adopted adaptation strategies: the mean of k analogies (simple average), the
inverse distance weighted mean [20], and the inverse rank weighted mean [31]. So,
we obtained 10 estimations and the corresponding residuals, for each selection of the
number of analogies and of the analogy adaptation techniques. Since we carried out a
hold-out cross validation, each estimation was obtained by selecting a target observa-
tion from the test dataset, and by considering as case base the observations in the
training dataset. Table 7 shows the best results in terms of MMRE, MdMRE, and
Pred(25), for both WO and FP. These results are the best we got, being obtained by
employing 2 analogies and the mean of k analogies as adaptation strategy.

 Using Web Objects for Development Effort Estimation of Web Applications 195

Table 7. The results of CBR using ANGEL

 MMRE MdMRE Pred(25)
CBR with WO 0.22 0.12 0.70
CBR with FP 0.49 0.17 0.60

As for OLSR and Web-COBRA, WO outperformed FP also with CBR. In particu-

lar, the MMRE and MdMRE values satisfy the usual acceptance thresholds of [8],
while Pred(25) value is slightly less than 0.75. In contrast with the results achieved
with OLSR and Web-COBRA, the statistical tests revealed that the estimates with
WO are not significantly superior to those obtained with FP (p-value = 0.072), with a
small effect size (r=0.42).

4 Discussion and Comparison

In this section we discuss the results we have gathered and compare them with those
achieved by Ruhe et al. in [29][30].

The MMRE, MdMRE, and Pred(25) values reported in Table 4, Table 6, and Table
7 suggest that the Web Objects measure is a good indicator of Web application size,
when used in combination with the prediction techniques we considered. These re-
sults also highlight that Web Objects outperforms Function Points in terms of predic-
tion accuracy. This is a confirmation to an expected result, since the Web Objects
method was conceived to overcome the limitations of FPA when dealing with Web
applications. Moreover, we can observe that Web-COBRA provided slightly better
results than OLSR and CBR, in terms of MMRE, MdMRE, and Pred(25).

The above results corroborate what suggested by the common sense: Web-
COBRA, taking into account also many non-functional aspects of the software proc-
ess and product, provides improved estimations than the two other techniques relying
only on the Web Objects size measure. On the other hand, it is very interesting to
point out that Web-COBRA applied with FP provided worse results than OLSR with
WO. This means that the four new components sized by the Web Objects method are
much more correlated to the effort than the non-functional factors handled by Web-
COBRA. This is also confirmed by the fact that there is no statistically significant
difference between the three techniques.

As designed, we compared the predictions with those obtained by the simple mean
or median of the effort of the whole training set. These predictions are very poor, as
reported in Table 8, since they do not satisfy the typical acceptance thresholds [8].
Moreover, predictions obtained with WO and FP based models are significantly better
than those obtained using MeanEFH and MedianEFH.

Table 8. The results of MeanEFH and MedianEFH

 MMRE MdMRE Pred(25)
MeanEFH 0.63 0.37 0.40

MedianEFH 0.68 0.34 0.40

196 S. Di Martino et al.

Summarizing, regarding the research questions RQ1, RQ2, and RQ3, the results of
the performed empirical analysis suggest that:

[RQ1] The Web Objects measure resulted to be a good indicator of Web application
development effort, when used in combination with OLSR, CBR, and Web-
COBRA, since the values of summary measures are very close or match the
thresholds usually adopted in this domain [8].

[RQ2] The estimates obtained with Web Objects turned out to be statistically supe-
rior to the ones achieved with Function Points in combination with OLSR
and Web-COBRA.

[RQ3] Even if Web-COBRA provided slightly better results than OLSR and CBR in
terms of summary measures there is no statistically significant difference in
the estimations obtained by applying the three methods in combination with
Web Objects.

It is worth mentioning that the present study confirmed and extended two our previ-
ous studies employing a different validation method and using a larger dataset. In
particular, in [13] we assessed the effectiveness of Web Objects as indicators of de-
velopment effort, when used in combination with OLSR, by employing dataset I of
Table 1 (of 15 Web applications) as training set and further 4 Web applications as test
set. The results revealed that the Web Objects measure is a good indicator of the de-
velopment effort since we obtained MMRE=0.14, MdMRE=0.06, and Pred(25)=0.75.
Moreover, in [12] we assessed the use of Web Objects in combination with Web-
COBRA, using only dataset I of Table 1, with a leave-1-out cross validation, obtain-
ing MMRE=0.11, MdMRE=0.10, and Pred(25)=0.93.

4.1 Comparison with Ruhe et. al. Analyses

Ruhe et al. [29][30] carried out empirical analyses based on a dataset of 12 Web ap-
plications developed between 1998 and 2002 by an Australian software company,
with about twenty employees. The most of these projects were new developments,
even if there were also enhancements, and re-development projects. The Web Objects
measure was used as size metrics in combination with OLSR and Web-COBRA and a
leave-1-out cross validation was exploited to validate the obtained estimation tech-
niques. Ruhe et al. also employed summary measures MMRE, MdMRE, and Pred(25)
and statistical test (T-test) to evaluate the accuracy of the obtained estimates.

Table 9 reports on the values of the summary statistics on the estimation accuracy
obtained in [29][30]. We can observe that the summary values we obtained in our
empirical analyses are slightly better than those obtained by Ruhe et al. Thus, the
study reported in the present paper is confirming the results of the previous researches
showing the effectiveness of Web Objects. Moreover, in all the three studies, the
performed statistical tests (i.e., T-test) revealed that the estimates achieved with Web
Objects significantly outperformed the estimates obtained with Function Points. As
for comparison of the employed estimation techniques, the statistical analysis also
suggested that the estimates obtained with OLSR and Web-COBRA are comparable,
i.e., there is no significant difference between them.

 Using Web Objects for Development Effort Estimation of Web Applications 197

Table 9. Ruhe et al.’s results reported in [29][30]

 MMRE MdMRE Pred(25)
OLSR with FP 0.33 0.33 0.42

OLSR with WO 0.24 0.23 0.67
Web-COBRA with WO 0.17 0.15 0.75

The results we obtained extend the ones of Ruhe et al. in several aspects. Indeed,

besides the techniques employed in their case study, we also exploited CBR, still
obtaining good results, thus showing a sort of robustness of Web Objects with respect
to the employed techniques. As for the performed empirical analysis, we exploited
further benchmarks (i.e., MeanEFH and MedianEFH) and more tests (i.e., effect size).

From a managerial point of view, our results extend the ones provided by Ruhe et
al., showing the scalability of the Web Objects measure, in terms of technologies and
size of the considered projects. Indeed, the 25 Web applications used in our empirical
study are more recent, being developed between 2003 and 2008, thus exploiting
newer technologies, development environments, etc.. Moreover, they are much bigger
than those used in [29]. Table 10 provides some descriptive statistics about the set of
Web applications we employed in our case study and the dataset considered by Ruhe
et al. in their study [29]. In particular, we reported on the size, the actual effort (in
terms of person/hours), and the peak staff. We can observe that the mean effort of our
dataset is about three times the one of the dataset used in [29] and applications are
characterized also by a bigger size in terms of Web Objects (about five times bigger
than those in [29]). It is interesting to note that the number of Function Points is not
so different among the two datasets, since in our case the applications are about 1.5
times bigger than those of Ruhe et al., in terms of this size measure. A possible inter-
pretation we gave to this phenomenon is that our applications highly exploit Web
Building Blocks and Multimedia elements, which are considered by the Web Objects
method but not by the FPA method.

Table 10. Descriptive statistics of EFH, WO, and Peak Staff

Our study
 Min Max Median Mean Std. Dev.
WO 323 3,078 1366 1480 720.602
EFH (person/hours) 782 4537 2686 2577 988.136
Peak Staff 6 7 6 6.2 0.4

Ruhe et al.’s study
 Min Max Median Mean Std. Dev.
WO 67 792 Unknown 284 227
EFH (person/hours) 267 2,504 Unknown 883 710
Peak Staff 2 6 Unknown 3 1.5

5 The Empirical Study Validity

It is widely recognized that several factors can bias the construct, internal, external,
and conclusion validity of empirical studies [17] [20]. As for the construct validity,
the choice of the size measure and how to collect information to determine size

198 S. Di Martino et al.

measure and actual effort represent crucial aspects. Regarding the selection of the size
measure, we employed a solution specifically proposed for Web applications by
Reifer [26] and used in the previous case studies we have replicated. The software
company uses timesheets to keep track of effort information, where each team mem-
ber annotates his/her development effort and weekly each project manager stores the
sum of the efforts for the team. To calculate the size measure, the authors defined a
form to be filled in by the project managers. To apply the Web Objects method they
employed the counting conventions of the FPA method [14] and followed the sugges-
tions provided by Reifer in his “Web Objects White Paper” [27]. One of the authors
analyzed the filled forms in order to cross-check the provided information. The same
author calculated the values of the size measure. As for the collection of the informa-
tion on the cost factors, we defined a questionnaire together with some company
experts. Then, this questionnaire was submitted to the project managers of the consid-
ered Web applications. Thus, the data collection task was carried in a controlled and
uniform fashion, making us confident on the accuracy of the results.

With regards to internal validity no initial selection of the subjects was carried out,
so no bias has been apparently introduced. Moreover, the Web applications were
developed with technologies and methods that subjects had experienced. Conse-
quently, confounding effects from the employed methods and tools can be excluded.
Moreover, the questionnaires used were the same for all the Web applications and the
project managers were instructed on how to use them. Instrumentation effects in gen-
eral did not occur in this kind of studies. As for the conclusion validity we carefully
applied the statistical tests, verifying all the required assumptions. Biases about exter-
nal validity were mitigated by considering as dataset a representative sample of
modern Web applications. However, it is recognized that the results obtained in an
industrial context might not hold in other contexts. Indeed, each context might be
characterized by some specific project and human factors, such as development proc-
ess, developer experience, application domain, tools, technologies used, time, and
budget constraints [5].

6 Related Work

Besides the Web-COBRA method and the Web Objects measure, other estimation
techniques and size measures have been proposed in the literature to be employed for
estimating Web applications development effort.

The COSMIC [9] method has been applied to Web applications by some research-
ers in the last years [10][19]. In particular, Mendes et al. applied it to 37 Web systems
developed by academic students, by constructing an effort estimation model with
OLSR [19]. Unfortunately, this model did not provide good estimations and replica-
tions of the empirical study were highly recommended. Subsequently, an empirical
study based on the use of 44 Web applications developed by academic students, was
performed to assess the COSMIC approach [10]. The effort estimation model ob-
tained by employing the OLSR provided encouraging results.

 Using Web Objects for Development Effort Estimation of Web Applications 199

Some authors investigated the usefulness of size measures specific for Web appli-
cations such as number of Web pages, media elements, internal links, etc., [11], [20].
Among them, Mendes et al. also built the Tukutuku database [21], which aims to
collect data from completed Web sites and applications to develop Web cost estima-
tion models and to benchmark productivity across and within Web Companies. Sev-
eral studies were conducted to investigate and compare the effectiveness of these
measures in combination with estimation techniques like OLSR, CBR, Regression
Tree (RT), and Bayesian Networks (BN). In particular, in [20] a dataset of 37 Web
systems developed by academic students was exploited and the empirical results sug-
gested that Stepwise Regression (SWR) provided statistically significant superior
predictions than the other techniques when using length size measures, such as num-
ber of Web pages, number of new media. On the contrary, a study exploiting a dataset
containing data on 15 Web software applications developed by a single Web company
(the ones also employed in the empirical study presented in this paper) revealed that
none of the employed techniques (i.e., SWR, RT, and CBR was statistically signifi-
cantly superior than others [11]. Recently, Mendes and Mosley investigated the use of
Bayesian Networks for Web effort estimation using the Web applications of the Tu-
kutuku database [22]. In particular, they employed two training sets, each with 130
Web applications, to construct the models while their accuracy was measured using
two test sets, each containing data on 65 Web applications. The analysis revealed that
Manual SWR provided significantly better estimations than any of the models ob-
tained by using Bayesian Networks and is the only approach that provided signifi-
cantly better results than the median effort based model.

7 Conclusions

In this paper, we investigated the effectiveness of the Web Objects measure as indica-
tor of Web application development effort. In particular, we replicated the two studies
carried out by Ruhe et al. [29]. The contribution of our work to the body of knowl-
edge can be summarized as in the following:

- we confirmed the effectiveness of the Web Objects measure as indicator of Web
application development effort, when used in combination with OLSR and Web-
COBRA, and verified that this holds also using CBR;

- we confirmed that the Web Objects method provides statistically superior results
than the FPA method when used in combination with OLSR and Web-COBRA;

- we showed that there are no statistically significant differences in the results
obtained with OLSR, CBR, and Web-COBRA, i.e., the approaches are compara-
ble when using the Web Objects measure.

Of course, the experimental results here presented hold only with respect to the data-
set took into account and they should be assessed on further data as soon as they are
available. However, they are surely interesting enough to suggest the use of the Web
Objects measure as indicator of Web application development effort, also because
confirm the results of Ruhe et al.. In the future, we intend to further assess Web Ob-
jects by considering a different context.

200 S. Di Martino et al.

References

[1] Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communication 7(1), 39–59 (1994)

[2] Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Transactions on Software Engineering 25(4), 435–437 (1999)

[3] Briand, L., Wieczorek, I.: Software resource estimation. In: Encyclopedia of Software
Engineering, pp. 1160–1196 (2002)

[4] Briand, L.C., Emam, K.E., Bomarius, F.: COBRA: a hybrid method for software cost es-
timation, benchmarking, and risk assessment. In: Proceedings of the International Confer-
ence on Software Engineering, pp. 390–399. IEEE Computer Society, Los Alamitos
(1998)

[5] Briand, L.C., Wust, J.: Modeling Development Effort in Object-Oriented Systems Using
Design Properties. IEEE Transactions on Software Engineering 27(11), 963–986 (2001)

[6] Cohen, J.: Statistical power analysis for the behavioral science. Lawrence Erlbaum, Hills-
dale (1998)

[7] Conallen, J.: Building Web Applications with UML. Addison-Wesley, Reading (1999)
[8] Conte, D., Dunsmore, H., Shen, V.: Software Engineering Metrics and Models. The Ben-

jamin/Cummings Publishing Company, Inc. (1986)
[9] COSMIC (2007), http://www.cosmicon.com

[10] Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: A
COSMIC-FFP approach to Predict Web Application Development Effort. Journal of Web
Engineering 5(2) (2006)

[11] Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: Effort
Estimation Modeling Techniques: A Case Study for Web Applications. In: Proceedings
of the International Conference on Web Engineering, pp. 161–165. ACM Press, New
York (2006)

[12] Di Martino, S., Ferrucci, F., Gravino, C.: An Empirical Study on the Use of Web-
COBRA and Web Objects to Estimate Web Application Development Effort. In: Gaedke,
M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 213–220.
Springer, Heidelberg (2009)

[13] Ferrucci, F., Gravino, C., Di Martino, S.: A Case Study Using Web Objects and COSMIC
for Effort Estimation of Web Applications. In: Proceedings of Euromicro Conference on
Software Engineering and Advanced Applications (SEAA 2008), pp. 441–448 (2008)

[14] I. F. P. U. G., Function point counting practices manual, release 4.2.1
[15] Kampenes, V., Dyba, T., Hannay, J., Sjoberg, D.: A systematic review of effect size in

software engineering experiments. Information & Software Technology 49(11-12), 1073–
1086 (2007)

[16] Kitchenham, B., Mendes, E., Travassos: Cross versus Within-Company Cost Estimation
Studies: A systematic Review. IEEE Transactions on Software Engineering 33(5), 316–
329 (2007)

[17] Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case Studies for Method and Tool Evalua-
tion. IEEE Software 12(4), 52–62 (1995)

[18] Kitchenham, B., Pickard, L.M., MacDonell, S.G., Shepperd, M.J.: What accuracy statis-
tics really measure. IEE Proceedings Software 148(3), 81–85 (2001)

[19] Mendes, E., Counsell, S., Mosley, N.: Comparison of Web Size Measures for Predicting
Web Design and Authoring Effort. IEE Proceedings-Software 149(3), 86–92 (2002)

[20] Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I.: A Comparative Study of
Cost Estimation Models for Web Hypermedia Applications. Empirical Software Engi-
neering 8(23) (2003)

 Using Web Objects for Development Effort Estimation of Web Applications 201

[21] Mendes, E., Kitchenham, B.: Further Comparison of Cross-company and Within-
company Effort Estimation Models for Web Applications. In: Proceedings of Interna-
tional Software Metrics Symposium, pp. 348–357. IEEE press, Los Alamitos (2004)

[22] Mendes, E., Mosley, N.: Bayesian Network Models for Web Effort Prediction: A Com-
parative Study. IEEE Transactions on Software Engineering 34(6), 723–737 (2008)

[23] Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost
Estimation. Journal of Systems and Software 77(2), 157–172 (2005)

[24] Montgomery, D., Peck, E., Vining, G.: Introduction to Linear Regression Analysis. John
Wiley and Sons, Inc., Chichester (1986)

[25] Morisio, M., Stamelos, I., Spahos, V., Romano, D.: Measuring Functionality and Produc-
tivity in Web-based applications: a Case Study. In: Proceedings of the International Soft-
ware Metrics Symposium, pp. 111–118. IEEE press, Los Alamitos (1999)

[26] Reifer, D.: Web-Development: Estimating Quick-Time-to-Market Software. IEEE Soft-
ware 17(8), 57–64 (2000)

[27] Reifer, D.: Web Objects Counting Conventions, Reifer Consultants (March 2001),
http://www.reifer.com/download.html

[28] Ruhe, M.: The Accurate and Early Effort Estimation of Web Applications, PhD Thesis,
Fraunhofer IESE 2002 (2002)

[29] Ruhe, M., Jeffery, R., Wieczorek, I.: Cost estimation for Web applications. In: Proceed-
ings of International Conference on Software Engineering, pp. 285–294. IEEE press, Los
Alamitos (2003)

[30] Ruhe, M., Jeffery, R., Wieczorek, I.: Using Web Objects for Estimating Software Devel-
opment Effort for Web Applications. In: Proceedings of the International Software Met-
rics Symposium (2003)

[31] Shepperd, M., Schofield, C.: Estimating software Project Effort using Analogies. IEEE
Transactions on Software Engineering 23(11), 736–743 (2000)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 202–216, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Applying EFFORT for Evaluating CRM Open Source
Systems

Lerina Aversano and Maria Tortorella

Departement of Engineering, University of Sannio
Via Traiano,

82100 Benevento, Italy
{aversano,tortorella}@unisannio.it

Abstract. Free Open Source Software (FlOSS) for Customer relationship
management (CRM) represents a great opportunity for small and medium en-
terprises as they can significantly impact their competitiveness. These software
solutions can be adopted with success, whatever the size, and offer customized
solutions for clients, even with few people working of it. This paper presents an
analysis of the quality of CRM FlOSS systems using a predefined quality mod-
el. The analysis focuses on the main relevant aspect of both open source domain
and application domain proposing a trade off assessment among these.

Keywords: FlOSS Free/Open Source Software, Software quality, Software Me-
trics, CRM Systems, Standard.

1 Introduction

Customer relationship management (CRM) systems are software systems aiming to
support enterprises to automate many services from sales to marketing to customer
services. They are efficient solutions that, however, were mainly used from big
enterprises which could provide deep pockets and time to undertake these huge im-
plementation projects. Nevertheless, even small business organizations can consider
the introduction of CRM. The problem is that CRM is too expensive and difficult to
be properly implemented, and it seemingly requires radical change. Actually, Small
and Medium Enterprises – SMEs – have to deal with major difficulties as they have
few resources to dedicate to selection, acquisition, configuration and customization of
such complex systems. Moreover, enterprise software systems are generally designed
to fit needs of big companies.

Adoption of Free/Open Source Systems – FlOSS – partially fill up this gap. FlOSS
CRM systems are actually available to any business, whatever the size, and offer
customized solutions for clients, even with few people that can be up and running in
two to three weeks. This problem was already faced with reference to ERP systems
and even in that case the adoption of a FlOSS ERP was proved to be very advanta-
geous for SME [2, 3]. As an example, the possibility of really trying the system
(not just using a demo), reduction of vendor lock-in, low license cost and possibility
of in-depth personalization are some of the advantages.

 Applying EFFORT for Evaluating CRM Open Source Systems 203

Likewise ERP systems, even adopting a Customer Relationship Management sys-
tems could represent an important competitive advantage for a company, but it could
also be useless or even harmful if the system does not adequately fit the organization
needs. Then, the selection and adoption of such a kind of system cannot be faced in a
superficial way and evaluation supports are needed. Many quality models for evaluat-
ing FlOSS systems have been proposed in literature [10-16]. Nevertheless, they do
not cover all the relevant aspects of quality and operative context of such systems and
are not always applicable to operative contexts. An evaluation of these models is
provided in [1].

This paper proposes a framework for a quantitative evaluation of the quality of
FlOSS CRM systems. The framework is defined by specializing a more general one,
called EFFORT – Evaluation Framework for Free/Open souRce projects – defined for
evaluating open source software projects [1]. The EFFORT framework was already
assessed for ERP Systems [5]. It is conceived to properly evaluate FlOSS projects and
was defined on the basis of the Goal Question Metric (GQM) paradigm [6].

The rest of the paper is organized as follow: Section 2 presents EFFORT that is a
necessary background for discussing the quantitative analysis of the CRM systems;
Section 3 provides the specialization of EFFORT for evaluating CRM system; Section
4 presents a case study, regarding the evaluation of 4 open source CRM FlOSS
projects: SugarCRM (www.sugarcrm.com), CreamCRM (http://sourceforge.net/
projects/cream-crm/), Concursive ConnectCRM (www.concursive.com), VTigerCRM
(www.vtiger.com). Concluding remarks are given in the last section.

2 Background

EFFORT is a framework defined for evaluating FlOSS systems [1]. In this paper. it is
considered as a base framework to be specialized to the context of CRM systems.

As told in the introduction, EFFORT was defined on the basis of the GQM para-
digm [6]. This paradigm guides the definition of a metric program on the basis of
three abstraction levels: Conceptual level, referred to the definition of the Goals to be
achieved by the measurement activity; Operational level, consisting of a set of Ques-
tions facing the way the assessment/achievement of a specific goal is addressed; and
Quantitative level, identifying a set of Metrics to be associated to each question.

The GQM paradigm helped to define a quality model for FlOSS projects, provid-
ing a framework to be actually used during the evaluation. It considers the quality of a
FlOSS project as synergy of three main elements: quality of the product developed
within the project; trustworthiness of the community of developers and contributors;
and product attractiveness to its specified catchment area.

Figure 1 shows the hierarchy of attributes that composes the quality model. In cor-
respondence of each first-level characteristic, one Goal was defined. Then, the
EFFORT measurement framework included three goals. Questions, consequentially,
mapped second-level characteristics, even if, considering the amount of aspects to
take into account, Goal 1 was broken up into sub-goals, because of its high complexi-
ty. For question of space, the figure does not present the third level related to the
metrics used for answering the questions.

204 L. Aversano and M. Tortorella

Fig. 1. Hierarchy of the quality model

The following subsections summarily describe the three goals providing their for-
malization, incidental definitions of specific terms and the list of questions. The listed
questions can be answered through the evaluation of a set of associated metrics. For
reason of space, the paper does not present all the metrics, and includes some refer-
ences to them in the final subsection that discusses how the gathered metrics can be
aggregated for quantitatively answering the questions.

2.1 Product Quality

One of the main aspects that denotes the quality of a project is the product quality. It
is unlikely that a product of high and durable quality was developed in a poor quality
project. So, all the aspects of the software product quality were considered, as defined
by the ISO standard [8, 9].

Goal 1 was defined as follows:

Analyze the software product with the aim of evaluating its quality, from the software
engineer’s point of view.

Table 1 shows all the sub-goals and questions regarding Goal 1. As it can be
noticed almost all the attributes that the questions reference regards the ISO 9125
standard.

Free/Open Source Project

Quality

Software Product
Quality

Community
Trustworthiness

Product
Attractiveness

Usability

Functionality

Reliability

Maintainability

Portability

Efficiency

Legal reusability

Cost effectiveness

Diffusion

Functional Adequacy

Documetation

Support services

Support tools

Community activity

Developers

 Applying EFFORT for Evaluating CRM Open Source Systems 205

Table 1. Questions about Product Quality

GOAL 1- PRODUCT QUALITY

Sub-goal 1a: Analyze the software product with the aim of evaluating it with reference to
portability, from the software engineer’s point of view

Q 1a.1 What degree of adaptability does the product offer?
Q 1a.2 What degree of installability does the product offer?
Q 1a.3 What degree of replaceability does the product offer?
Q 1a.4 What degree of coexistence does the product offer?
Sub-goal 1b: Analyze the software product with the aim of evaluating it with reference to

maintainability, from the software engineer’s point of view
Q 1b.1 What degree of analyzability does the product offer?
Q 1b.2 What degree of changeability does the product offer?
Q 1b.3 What degree of testability does the product offer?
Q 1b.4 What degree of technology concentration does the product offer?
Q 1b.5 What degree of stability does the product offer?
Sub-goal 1c: Analyze the software product with the aim of evaluating it with reference to

reliability, from the software engineer’s point of view
Q 1c.1 What degree of robustness does the product offer?
Q 1c.2 What degree of recoverability does the product offer?
Sub-goal 1d: Analyze the software product with the aim of evaluating it with reference to

functionality, from the software engineer’s point of view
Q 1d.1 What degree of functional adequacy does the product offer?
Q 1d.2 What degree of interoperability does the product offer?
Q 1d.3 What degree of functional accuracy does the product offer?
Sub-goal 1e: Analyze the software product with the aim of evaluating it with reference to

usability, from the user’s point of view
Q 1e.1 What degree of pleasantness does the product offer?
Q 1e.2 What degree of operability does the product offer?
Q 1e.3 What degree of understandability does the product offer?
Q 1e.4 What degree of learnability does the product offer?
Sub-goal 1f: Analyze the software product with the aim of evaluating it with reference to

efficiency, from the software engineering’s point of view
Q 1f.1 How the product is characterized in terms of time behaviour?
Q 1f.2 How the product is characterized in terms of resources utilization?

2.2 Community Trustworthiness

With Community Trustworthiness, it was intended the degree of trust that a user give
to a community, regarding the offered support. Support could be provided by the
communities by means of: good execution of the development activity; use of tools,
such as wiki, forum, trackers; and availability of services, such as maintenance, certi-
fication, consulting and outsourcing, and documentation.

Goal 2 was defined as follows:

Analyze the offered support with the aim of evaluating the community with reference
to the trustworthiness, from the (user/organization) adopter’s point of view.

Questions regarding Goal 2 are shown in Table 2.

206 L. Aversano and M. Tortorella

Table 2. Questions about Community Trustiworthiness

GOAL 2- Community Trustiworthiness
Id question Question

Q 2.1 How many developers does the community involve?
Q 2.2 What degree of activity has the community?
Q 2.3 Support tools are available and effective?
Q 2.4 Are support services provided?
Q 2.5 Is the documentation exhaustive and easily consultable?

2.3 Product Attractiveness

The third goal had the purpose of evaluating the attractiveness of the product within
its application area. The term attractiveness indicates all the factors that influence the
adoption of a product from a potential user, who perceives convenience and useful-
ness to achieve his scopes.

Goal 3 was related to product attractiveness and formalized as follows:

Analyze software product with the aim of evaluating it with reference to the
attractiveness from the (user/organization) adopter’s point of view.

Two elements to be considered for evaluating a FlOSS product were functional
adequacy and diffusion. The latter could be considered as a marker of how the product
was appreciated and recognized as useful and effective. Other factors that could be
considered were cost effectiveness, estimating the TCO (Total Cost of Ownership) [7],
and the type of license.

Questions for Goal 3 are shown in Table 3; while, as an example, Table 4 lists the
metrics related to question 3.2.

Table 3. Questions regarding Product Attractiveness

GOAL 2- Community Trustiworthiness
Id question Question
Q 3.1 What degree of functional adequacy does the product offer?
Q 3.2 What degree of diffusion does the product achieve?
Q 3.3 What level of cost effectiveness is estimated?
Q 3.4 What degree of reusability and redistribution is left by the license?

Table 4. Metrics related to question Q 3.2

Id Metric Metric
M 3.2.1 Number of thread per year
M 3.2.2 Index of unreplied threads
M 3.2.3 Number of forums
M 3.2.4 Average of threads per forum
M 3.2.5 Average of posts per year
M 3.2.6 Degree of internationalization of the forum
M 3.2.7 Number of trackers
M 3.2.8 Wiki volume
M 3.2.9 Number of frequently asked questions

 Applying EFFORT for Evaluating CRM Open Source Systems 207

2.4 Data Aggregation and Interpretation

Once data were collected by means of the metrics, it was necessary to aggregate them,
according to their interpretation, for answering the questions and obtaining useful
information. Aggregation of answers gives an indication regarding the achievement of
the goals.

In doing aggregation, some issues needed to be considered. These are listed below:

• Metrics have different types of scale, depending on their nature. Then, it was not
possible to directly aggregate measures. After the measurement was done and to
overcome that problem, each metric was mapped to a discrete score in the [1-5] in-
terval, where: 1 = inadequate; 2 = poor; 3 = sufficient; 4 = good; and, 5 = excellent.

• An high value for a metric could be interpreted in either positive or negative way,
according to the context of the related question; even the same metric could
contribute in two opposite ways in the context of two different questions. So, the
appropriate interpretation was provided for each metric.

• As questions did not have the same relevance in the evaluation of a goal, a relev-
ance marker was associated to each metric in the form of a numeric value in
interval [1-5]. Value 1 is associated to questions with the minimum relevance,
while value 5 means maximum relevance. The definition of the relevance markers
depended on the experience and knowledge of the software engineer and the
organizational needs and requirements.

The aggregation function for Goal g was defined as follows:
ሺ݃ሻݍ ൌ ቎ ෍ ௜ௗݎ כ ݉ሺ݅݀ሻ௜ௗ אொ೒ ቏ / ෍ ொ೒א ௜ௗ௜ௗݎ

where:
rid is the relevance associated to question id (sub-goal for goal 1);
Qg is the set of questions (sub-goals for goal 1) related to goal g.
m(q) is the aggregation function of the metrics of question q, defined as:

݉ሺݍሻ ൌ ቐ ෍ ݅ሺ݅݀ሻ כ ሺ݅݀ሻݒ ൅ ሾ1 െ ݅ሺ݅݀ሻሿ כ ሾݒሺ݅݀ሻ ݉6 ݀݋ሿ௜ௗ א ெ೜ ቑ |௤ܯ|/
where v(id) is the score obtained for metric id and i(id) is its interpretation. In particular:

݅ሺ݅݀ሻ ൌ ൜0 ݂݅ ݊݋݅ݐܽݐ݁ݎ݌ݎ݁ݐ݊݅ ݁ݒ݅ݐ݅ݏ݋݌ ݏ݄ܽ ܿ݅ݎݐ݁݉ ݄݁ݐ ݂݅ 1݊݋݅ݐܽݐ݁ݎ݌ݎ݁ݐ݊݅ ݁ݒ݅ݐܽ݃݁݊ ݏ݄ܽ ܿ݅ݎݐ݁݉ ݄݁ݐ

and Mq is the set of metrics related to question q.

3 EFFORT Specialization

CRM solutions are enterprise software systems whose goal is to learn more about
customers' needs and behaviors in order to develop stronger relationships with them,
and facilitate acquiring, enhancing and retaining of customers. Although CRM has
emerged as a major business strategy for e-commerce, little research was conducted in

208 L. Aversano and M. Tortorella

Table 5. Integration of the EFFORT specialization

EFFORT Integration for Goal 1

Id
Question

Question Id
Metric

Metric

1a.1
What degree of adaptability
does the product offer?

1a.1.2 Number of Application Servers supported

1a.3
What degree of replaceability
does the product offer?

1a.3.1
Availability of functionality for creation of data
backup

1a.3.2
Availability of functionality for restoration of data
backup

1a.3.3 Availability of backup services
1a.3.4 Number of file formats for the reporting
1a.3.5 Number formats per the importing of data

1b.1
What degree of analyzability
does the product offer?

1b.1.3 Number of Package
1b.1.4 Number of Class
1b.1.6 Methods for Class
1b.1.7 Javadoc density (MB)/NOC

1b.2
What degree of changeability
does the product offer?

1b.2.1
Lack of methods cohesion, as defined by
Henderson-Sellers

1b.2.2 Efferent coupling
1b.2.3 Afferent coupling
1b.2.5 Average value of the number of methods per class

1b.3
What degree of testability
does the product offer?

1b.3.2 Average value of the height of the inheritance tree
1b.3.3 Average of the Number of subclass for class
1b.3.6 Average of the Number of attribute for class

1b.3.7
Average of the Number of override method for
class

1b.3.8
Average number of test drivers respect to the
number of classes

evaluating the available CRM solutions. In particular, in the best of the authors’
knowledge, research did not propose either comparative analyses of open source solu-
tions or analyses of the quality of such a kind of products. With the aim of overcom-
ing this lack, the EFFORT framework was specialized to this specific application
context.

As already stated in the previous section, EFFORT needs to be specialization to the
context of the CRM systems before being applied for evaluating such a kind of sys-
tems. The specialization tasks was performed at the level of questions or goals. The
first kind of task regarded the integration of additional metrics for answering some
baseline EFFORT questions; while the intervention at the goal level concerned the
extension of some goals with the adding of further questions.

In particular, with reference to the integration, Table 5 shows all the metrics
that were added for answering some baseline questions. A large part of integration
was performed with reference to Goal 1 and all the choices are explained by the stra-
tegic role played in the context of the CRM systems by both data and necessity of
integrating an application with the information system of an organization. Therefore,
additional metrics were considered for evaluating the Adaptability and Replaceability
(and, consequentially, Portability), as it can be evicted from Table 5. In fact,
the Number of Application Servers supported was considered for the adaptability

 Applying EFFORT for Evaluating CRM Open Source Systems 209

characteristic. Whereas, Availability of functionality for backup and restore data,
Availability of backup services and Numbers of reporting formats were taken into
account for the Replaceability characteristic. Evaluating the Analysability required
the addition of a Javadoc density metric as all the analysed CRM systems were based
on the Java technology. Moreover, as the analysed software systems were based on
the object-oriented paradigm, metrics relate to this paradigm were considered. This
required the instantiation of the measurement framework with the adoption of the
specific object-oriented metrics.

With reference to Goal 3, Table 6 contains the integration performed for under-
standing the economical advantage when a CRM FlOSS system is adopted. This ad-
vantage does not depend just on the license costs, but also on those costs to be spent

Table 6. Integration for instantiating EFFORT for Goal 3

EFFORT Specialization of Goal 3
Id

Question
Question Id

Metric
Metric

Q 3.3
What degree of economical
advantages is estimated?

3.3.5 Cost of migration among different versions
3.3.6 Cost of system population
3.3.7 Cost of system configuration
3.3.8 Cost of system customization

Q 3.5
What degree of support for
migration between different
releases is it offered?

3.5.1
Availability of functionality for creation of data
backup

3.5.2
Availability of functionality for restoration of data
backup

3.5.3 Availability of backup services

3.5.4
Availability of documentation of migration between
versions

3.5.5 Availability of automatic migration tools

3.5.6
Availability of documentation for migrating the
database

Q 3.6
What degree of support for
population of the system is it
offered?

3.6.1 Number of standard formats for importing data

Q 3.7
What degree of support for
configuration of the system is it
offered?

3.7.1 Availability of a wizard for configuring the system
3.7.2 Number of supported languages

3.7.3
Availability of documentation for supporting the
starting setup

3.7.4
Availability of documentation for supporting
language configuration

Q 3.8
What degree of support for
customization of the system is
it offered?

3.8.1
Availability of functionality for installing an
extension from the user interface

3.8.2
Availability of functionality for creating a new
module from the user interface

3.8.3
Availability of functionality for customization of the
user interface

3.8.4
Availability of functionality for creating customized
report

3.8.5 N° of standard template for the creation of report

3.8.6
Availability of documentation for the product
customization

210 L. Aversano and M. Tortorella

for both adapting the adopted software system to own needs and maintaining it by
installing updated versions or adoption of new releases.

Goal 3 mainly regarded the way a software system should be used for being attrac-
tive. Then, it strongly depended on the application domain of the analysed software
system and needs a customization to the specific context. Therefore, in the CRM
context, the EFFORT framework was extended and customized taking into account
additional specific attraction factors by considering additional questions referred to
Goal 3. In particular the following aspects were considered:

 Migration between different versions of the software, in terms of support provided
for switching from a release to another one. In the context of CRM systems, this
cannot be addressed like a new installation, as it would be too costly, taking into
account that such a kind of system is generally customized and hosts a lot of data.

 System population, in terms of support offered for importing big volumes of data
into the system.

 System configuration, intended as support provided, in terms of functionality and
documentation, regarding the adaption of the system to specific needs of the com-
pany, such as localization and internationalization: higher the system configurabil-
ity, lower the start-up time.

 System customization, intended as support provided, without direct access to the
source code, for doing alteration of the system, such as the definition of new mod-
ules, installation of extensions, personalization of reports and possibility of creat-
ing new workflows. This characteristic is very desirable in CRM systems.

Table 6 shows questions that extend Goal 3. As it can be noticed, the new questions
are referred to the listed characteristics.

During the instantiation of EFFORT, a relevance regarding the CRM context was
associated to each metric by using numeric values of the [1-5] interval. The EFFORT
relevance factors that were additionally considered are the following:

− rFlOSSid, representing the relevance indicator in the FlOSS context associated
with question id or sub-goal id of Goal 1;

− rCRMid, indicating the relevance indicator in the CRM context associated with
question id or sub-goal id of Goal 1;

− Qg, the set of questions (or sub-goals for Goal 1) related to Goal g;

Then, the aggregation function for evaluating Goal g is defined as follows:

q(g) =
[∑id ϵ Qg(rFlOSSid + rCRMid) * m(q)]

 ∑id ϵ Qg(rFlOSSid + rCRMid)

where m(q) is the aggregation function of the metrics of question q.

4 Results

After specializing the EFFORT framework, an analysis of CRM FlOSS was per-
formed. It permitted to choose the following four CRM systems considered for being
evaluated: SugarCRM (www.sugarcrm.com), CreamCRM (http://sourceforge.net/

 Applying EFFORT for Evaluating CRM Open Source Systems 211

projects/cream-crm/), Concursive ConnectCRM (www.concursive.com), VTigerCRM
(www.vtiger.com). These systems were selected from the top ten classification of
open source CRM systems [4].

SugarCRM is an open source Customer Relationship Management (CRM) software
that runs on Windows/Linux. SugarCRM is web-based and can be accessed with a
web browser locally connected or set up for the internet access by any machine with a
browser and an internet connection. SugarCRM for Microsoft Windows requires the
open source software Apache Web Server, MySql Database and PHP. Functionality
includes sales force automation, marketing campaigns, support cases, project man-
agement, calendaring, documents and more.

Cream CRM is a multilingual application designed for supporting the following
services: tracks sale orders, payments, shipments, services, online and print subscrip-
tions, and the effectiveness of promotional campaigns. Modules allow communication
with customers via newsletters, email and a Web interface. Cream CRM runs on
FreeDSB, Linux and Windows 2000/XP. It is written in Java and JavaScript.

vTiger CRM is built upon the LAMP/WAMP (Linux/Windows, Apache, MySQL
and PHP) architecture, with the main development team based in Chennai, India.
vTiger CRM includes SFA (Sales Force Automation), customer-support and -service,
marketing automation, inventory-management, multiple database support, security-
management, product-customization, calendaring and email-integration features. It
also offers add-ons and support for other add-ons. Vtiger is written in JavaScript, PHP
and Visual Basic. It is compatible with ADOdb, MySQL and PostgreSQL databases.

Concursive offers two robust products that enable businesses and other organizations
to harness the power of collaboration, leverage social networks and manage their
activities. ConcourseConnect is a platform that enables the creation of true commer-
cial networks. Commercial networks are the intersection of social networking, web
2.0 collaboration and sales and marketing tools. ConcourseConnect enables organiza-
tions to create dynamic communities to connect various stakeholders and manages the
entire ecosystem with an integrated management console and backend CRM tools.

Figure 2 and 3 show the results regarding the product quality obtained by applying
the specialized framework. In particular, Figure 2 shows that vTiger CRM exhibits
the best product quality. This results are also graphically confirmed by Figure 3 hig-
hlighting the detailed results regarding each characteristic of Goal 1. The higher value
of the Portability was achieved by SugarCRM, that is 3.4. Indeed, all the portability
metrics achieved good values for this system. On the contrary, the portability value
reached by Cream CRM was 1.83 that is relatively low. This fact mainly depended on
the lack of functionality for the creation and backup of data, deficiency of installation
manuals, and customization of installation procedures that assumed a default value in
just the 25% of cases for the data import/export. The value of Concursive was me-
dium, 2.7. This was mainly due to the high values of metrics M1a3.1, M1a3.2,
M1a3.3, M1a3.4, M1a3.5, related to the software replaceability and data import ex-
port, and to the low value of metrics, related to question Q1a2, regarding the know-
ledge required about the third part software system and guide effectiveness.

212 L. Aversano and M. T

Fig. 2. Overall result

Fig. 3. Detailed result

With reference to the M
that was higher than the val
Methods per Class (M1b1.6
value 3 obtained by the ind
tainability was very low for
bility (Q1.b.2), testability (Q

Reliability generally ac
Cream CRM. These results
and bug tracker, that influe

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Goal 1 - Produ
Specialized O

Maintainab
ility

Relia

Goal 1 Compar
among the Ques

Tortorella

ts obtained with reference to the Goal 1- Product Quality

ts obtained with reference to the Goal 1- Product Quality

Maintainability, the value achieved by SugarCRM is 2
lue 3 obtained by CreamCRM. This was due to the value
6), that was very high in CreamCRM, and even to the go
dex of LOC evaluated in Q1b3. As it can be noticed, Ma
r vTiger CRM, as it exhibited a very low value of modi
Q1.b.3) and technology concentration (Q1.b.4).
chieved low values: value 2 for SugarCRM; value 1.7
s were essentially penalized by the lack of backup servi
ence the values of the metrics related to Q1c. In any ca

uct Quality
OSS+CRM

Sugar CRM

Concursive
Connect CRM
Cream CRM

vTiger CRM

0.00

1.00

2.00

3.00

4.00

5.00

Portability

bility
Functionali

ty

Usability

rison
stions

Sugar CRM

Concursive
Connect
CRM
Cream CRM

5.00

4.00

3.00

2.00

1.00

0.00

2.5,
e of
ood
ain-
ifia-

for
ices
ase,

 Applyi

Fig. 4. Comparing the results
Baseline Framework

Reliability reached a high
recoverability.

The best value regardin
that is 3.33; while the lowe
tially due to the lack of web

Similar values of Usabi
the worst value was still tha
documentation and videos a

Fig. 5. Comparing the re

2.69
2.51

2.22

EFFORT
specializ

version

Goal 1

Comm
Activ

Su

Goal 2 Com
among the

ing EFFORT for Evaluating CRM Open Source Systems

of the Product Quality between the Specialized Framework

value for vTiger for the high capability of robustness

g the Functionality characteristic was reached by vTi
est value was reached by Cream CRM, that is 1.97, ess
b services support.
ility were reached by SugarCRM and vTiger CRM; wh
at one obtained by Cream CRM, mainly due to the limi
available for the training of the product.

esults of the Community Trustworthiness for each question

2.90

2.39
2 2.17

3.13
3.28

T
ed

n

EFFORT baseline
version

1 (Specialized Vs Baseline Version)

Sugar CRM

Concursive Connect
CRM

Cream CRM

vTiger CRM

0.00

1.00

2.00

3.00

4.00

5.00

Developers
Number

unity
vity

upport Tools Support Serivces

Documentation

mparison
Questions

Sugar CRM

Concursive
Connect CRM
Cream CRM

Vtiger CRM

5.00
4.00
3.00
2.00
1.00
0.00

213

and

and

iger
sen-

hile
ited

214 L. Aversano and M. T

Fig. 6. Comparing the result
Framework and Baseline Fram

Overall, observing Figu
best results is vTiger CRM
worst results are those of Cr

Moving to the Goal 2, r
firm the outcomes above.
reference to Goal 2; while
tains the value 1.2. The rea
services and poor use of the

Figure 6 shows that vTi
lized version instead of the
obtained for those aspects h

Results of Goal 3, relate
Figure 8. In this case, the
CRM systems are less rele
CRM achieved the best valu

Fig. 7. Comparing th

2.87

1.67
1.20

EFFORT specialized

Goal

Legal Reusabilit

Goal 3 Compa
among the Que

Tortorella

ts of the Community Trustworthiness between the Speciali
mework

ure 4, it can be noticed that the CRM system achieving
M, even with the EFFORT specialized version. While
ream CRM, as emerged by the data analysed for Goal 1
regarding the Community Trustworthiness, the results c
Indeed, vTiger CRM obtains the best results even w
the worst value is achieved by Cream CRM that just

ason of this result is mainly due to the lack of support
e forums, as shown in Figure 5.
iger CRM achieved better results with the EFFORT spec
e baseline one. Actually, this was due to the better res
having an higher relevance score in the specialized versi
ed to the Product Attractiveness, are shown in Figure 7
e differences among the results obtained by the differ
vant. Nevertheless, the overall results confirm that vTi
ues, and the lowest values are again those of Cream CRM

he results of the Product Attractiveness for each question

2.80

1.79
0 1.21

3.24

1.70

d version EFFORT baseline version

l 2 (Specialized Vs Baseline Version)

Sugar CRM

Concursive
Connect CRM
Cream CRM

Vtiger CRM

0

2

4

6

Functional
Adequacy

Diffusion

Cost
Effectiveness

ty

arison
estions Sugar CRM

Concursive Connect
CRM

Cream CRM

ized

the
the
.

con-
with
ob-
ting

cia-
ults
on.
and
rent
iger
M.

 Applyi

Fig. 8. Comparing the results
and Specialized Framework

Some reasons of the low
regarding the Functional A
modules work correctly; qu
due to the few visibility on
assumed a low value mainl
data backup.

5 Conclusion

The introduction of an open
increase of its productivity
not carefully faced. The av
porting the process of evalu

The work presented in
framework for the evaluatio
the CRM software system
attractiveness characterizati

The proposed framewor
fact, it considers all of cha
but in-use quality. Moreove

The usefulness of the fra
deed, EFFORT was used
among the most diffused F
uct quality and product attr
munity trustworthiness. The
to the adopting enterprise’s

3.33
2.97

EFFORT bas

Goal

Sugar C

Cream C

ing EFFORT for Evaluating CRM Open Source Systems

of the Product Attractiveness between the Baseline Framew

w results of CreamCRM are the following: question Q
Adequacy achieved a very low value because not all
uestion Q 3.2, regarding the diffusion, reached a low va
n the net; question Q 3.5, regarding the migration supp
ly for the lack of support for automating the migration

n source CRM system into an organization can lead to
, but it could also be an obstacle, if the implementation
vailability of methodological and technical tools for s
uating and adopting a CRM system is desirable.
n this paper is related to the application of EFFORT
on of FlOSS projects, after its specialization to explicitly

domain. The specialization mainly regarded the prod
ion.
rk is compliant to the ISO standards for product quality
aracteristics defined by the ISO/IEC 9126 standard mo
er, it considers major aspects of FlOSS projects.
amework is described through its concrete application.
for evaluating four CRM open source systems, selec

FlOSS CRM. The obtained results are quite good for pr
ractiveness. They are less positive with reference the co
e interpretation of the obtained results is strictly connec
environment, needs and requirements.

3.71

2.71
2.32

2.02

3.58 3.55

seline version EFFORT specialized version

3 (Baseline Vs Specialized Version)

RM Concursive Connect CRM

CRM vTiger CRM

215

work

3.1
the

alue
port,
and

the
n is
sup-

T, a
y fit
duct

y. In
del,

 In-
cted
rod-
om-
cted

216 L. Aversano and M. Tortorella

Future investigation will regard the integration in the framework of a questionnaire
for evaluating customer satisfaction. This obviously includes more complex analysis.
In particular, methods and techniques specialized for exploiting this aspect will be
explored and defined.

In addition, the authors will continue to search for additional evidence of the use-
fulness and applicability of the EFFORT and customizations, by conducting addi-
tional studies also involving subjects working in operative realities. In particular,
EFFORT will be extended for better considering evolution aspects.

References

1. Aversano, L., Pennino, I., Tortorella, M.: Evaluating the Quality of FREE/OPEN Source
Project. In: ENASE (Evaluation of Novel Approaches to Software Engineering) Confe-
rences, INSTICC (2010)

2. Hyoseob, K., Boldyreff, C.: Open Source ERP for SMEs. In: ICMR 2005. Cranfield Uni-
versity (2005)

3. Wheeler, D. A.: How to evaluate open source software/free software (OSS/FS) programs
(2009), http://www.dwheeler.com/oss_fs_eval.html#support

4. Hakala, D.: The Top 10 Open-Source CRM Solutions. Focus Expert Network (2009),
http://www.focus.com/briefs/crm/top-10-open-source-crm-
solutions/

5. Aversano, L., Tortorella, M.: Evaluating the quality of free/Open source systems: A case
study. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2010. Lecture Notes in Business Information
Processing, vol. 73, pp. 119–134. Springer, Heidelberg (2011)

6. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. Encyclope-
dia of Software Engineering. Wiley Publishers, Chichester (1994)

7. Kan, S.H., Basili, V.R., Shapiro, L.N.: Software quality: an overview from the perspective
of total quality management. IBM Systems Journal (1994)

8. International Organization for Standardization, 2001-2004. ISO standard 9126: Software
Engineering – Product Quality, part 1-4. ISO/IEC

9. International Organization for Standardization, ISO standard ISO/IEC 25000:2005, Soft-
ware Engineering – Software product Quality Requirements and Evaluation, SQuaRE
(2005)

10. Golden, B.: Making Open Source Ready for the Enterprise: The Open Source Maturity
Model. In: Succeeding with Open Source, Addison-Wesley Publishing Company, Reading
(2005)

11. Kamseu, F., Habra, N.: Adoption of open source software: Is it the matter of quality?
PReCISE PReCISE, Computer Science Faculty, University of Namur, rue Grandgagnage,
Belgium (2009)

12. OpenBRR. Business Readiness for Open Source. Intel (2005)
13. QSOS. Method for Qualification and Selection of Open Source software. Atos Origin

(2006)
14. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model: mea-

surement based open source software evaluation. In: IFIP 20th World Computer Congress,
Working Group 2.3 on Open Source Software, OSS 2008, Springer, Heidelberg (2008)

15. Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P.J., Samoladas, I., Sta-
melos, I.: Evaluating the Quality of Open Source Software. Electr. Notes Theor. Comput.
Sci., vol. 233, pp. 5–28. Springer, Heidelberg (2009)

16. Sung, W.J., Kim, J.H., Rhew, S.Y.: A quality model for open source selection. In: Sixth
International Conference on Advanced Language Processing and Web Information Tech-
nology, China, pp. 515–519. IEEE Press, Los Alamitos (2007)

A Factorial Experimental Evaluation of

Automated Test Input Generation

– Java Platform Testing in Embedded Devices

Per Runeson, Per Heed, and Alexander Westrup

Department of Computer Science, Lund University
Box 118, SE-211 00 Lund, Sweden

http://serg.cs.lth.se/

Abstract. Background. When delivering an embedded product, such
as a mobile phone, third party products, like games, are often bundled
with it in the form of Java MIDlets. To verify the compatibility be-
tween the runtime platform and the MIDlet is a labour-intensive task,
if input data should be manually generated for thousands of MIDlets.
Aim. In order to make the verification more efficient, we investigate
four different automated input generation methods which do not require
extensive modeling; random, feedback based, with and without a con-
stant startup sequence. Method. We evaluate the methods in a facto-
rial design experiment with manual input generation as a reference. One
original experiment is run, and a partial replication. Result. The re-
sults show that the startup sequence gives good code coverage values for
the selected MIDlets. The feedback method gives somewhat better code
coverage than the random method, but requires real-time code coverage
measurements, which decreases the run speed of the tests. Conclusion
The random method with startup sequence is the best trade-off in the
current setting.

1 Motivation

Many embedded devices, like mobile phones, come with a Java execution platform.
The platform runs third party applications, like games as the most common type,
in the form of Java MIDlets. Some applications are bundled with the embedded
device or possible to download from the supplier’s web site. Hence it is important
for the user’s impression of the product quality, that the platform supports run-
ning the applications, or at least does not crash the embedded device.

Thousands of applications may be downloaded, and hundreds of versions and
variants of the embedded devices are developed. Hence, in order to get a cost
efficient verification of the platform’s interaction with the applications, an au-
tomated approach to input generation must be used, without requiring specific
input modeling for each application. Further, the installation and execution of
the MIDlets must also be efficient. Typically, there is a certain time frame of
hours or days to spend on this particular type of testing, and thus there is a
trade-off between how much time should be spent on running each application,

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 217–231, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://serg.cs.lth.se/

218 P. Runeson, P. Heed, and A. Westrup

and how many applications may be run within the given time frame to test the
platform. Before starting this study, only heuristics were used in the company
under study, when deciding which MIDlets to download and which input se-
quences to generate. It was a feasible approach when the number of MIDlets
was limited, but with the growth of applications available, a systematic and
automated method was needed.

We designed four different input generation methods, 1) random selection of in-
put keys, 2) random with a pre-defined startup sequence, 3) feedback based max-
imizing code coverage, and 4) feedback based with a predefined startup sequence.
In order to evaluate the effectiveness of the generated input sequences, we moni-
tored the code coverage of the MIDlets. The input generation methods were evalu-
ated using ten different applications. We designed and executed a factorial design
experiment [1] to evaluate the performance of each input generation method.

The paper is organized as follows. In Section 2 we present some related work on
Java platform testing and input sequence generation. In Section 3 the technical
context of the research is presented and in Section 4 we define the research
questions and methods. The results are reported in Section 5 and discussed in
Section 6. The paper is concluded in Section 7. More details can be found in a
technical report [2].

2 Related Work

One approach to testing Java platforms in general, is to design specific MIDlets
which stress tests a certain function of a Java platform [3]. This technique is
aimed at testing one function at the time whereas the method presented in this
paper is focused on testing the entire platform at once. Similarly, there exist
benchmark MIDlets, for example JBenchmark [4] that focuses on graphics and
gaming. These MIDlets use functions that are performance critical and do time
measurements of how long a function or a sequence of functions take to execute.

Automatic generation of input sequences for testing was early researched in
the software reliability community. Musa presented operational profile testing
[5] and others proposed similar approaches of usage based testing [6] or random
testing [7]. The principle is to model the intended usage of a system and gen-
erate input sequences from that model. Our approach is similar to this, except
that we aim for code coverage rather than usage coverage. Recent developments
of random testing include adaptive random testing [8] which selects among can-
didate next test cases in order to find a test case which is most different from
the previous one. Our feedback based approaches are somewhat related to this,
although their approach is based on failure patterns, rather than code coverage.

The area of model based testing (MBT) has grown significantly during the last
decade, although rarely acknowledging the origins in the reliability community.
In MBT, a model is defined using some formalism, and test cases are generated
from the model. Models may be external or internal [9] i.e. modeling the system
behavior or user behavior, respectively. The approach under investigation in this
paper can be seen as a model based approach, where the user behavior model

A Factorial Experimental Evaluation of Automated Test Input Generation 219

defines the keys of the device, and the system behavior model is that the Java
platform is expected not to crash.

3 Experiment Setup

3.1 Input Generators

We wanted to come up with an effective and efficient input generator that covers
as much as possible of the MIDlet, in order to verify the stability of the Java
platform. Since the MIDlets are third party software, we had no access the source
code, nor to specifications. A typical MIDlet has a startup screen, where the user
may select new game, high scores, settings, help and exit. The game is controlled
by the joystick, arrow keys or numeric pad keys, see Figure 1. The MIDlets
are fed with input from the keyboard, or from a test driver connected to the
embedded software.

We defined four different approaches to automatic input generation and used
manual input generation as a reference.

Manual (M). A tester running the applications manually. The tester tries to
achieve as high code coverage by exploring as much of the functions of the
application as possible.

Random (R). The next key to push during testing is selected randomly from
the input key set.

Startup random (SR). The application is first executed with a predefined
startup sequence that starts the application. After the startup sequence is done,
the input generation is performed as for the random input generator. The startup
sequence typically selects new game by two down arrow clicks and a confirm key
click. The game is then fed by randomly generated key strokes.

Feedback based (F). The input is generated based on feedback from the debug
information. First, the input generator selects the next key to push randomly
from the current subset. During execution, the generator observes code coverage
change and if it is below a threshold, it switches to a different key subset. Key
subsets also have a predefined minimum number of key presses before the gen-
erator should change key subset to prevent the input generator from changing
key subsets too often. A maximum value is also defined to prevent unwanted
behavior.

Startup feedback based (SF). This input generator works in the same way
as the feedback based input generator but has a predefined startup sequence.
The startup sequence is the same as for the startup random input generator.

3.2 Testing Environment

The system under test is the Java execution platform on a mobile phone from
Sony Ericsson. It runs in an embedded device, as a part of the embedded soft-
ware. On top of the Java execution platform, Java MIDlets may be downloaded
and executed. The phone has input keys as defined in Figure 1.

220 P. Runeson, P. Heed, and A. Westrup

Fig. 1. The embedded device and its input keys

For the feedback based method, the keys are grouped into three subsets which
have different use in most applications, 1) Joystick keys, 2) Soft keys, and 3)
Numeric pad keys. Depending on the characteristics of the key sets, different
number of keys are chosen from the sets. From the joystick set, a minimum of
10 keys and maximum of 50 keys are selected; from the soft keys, two keys are
selected; and from the numeric pad set, five to 30 keys are selected.

The phone may be connected to a computer with an USB cable; hence the
computer may act as the test driver. Then an Attention (AT) [10] connection is
established between the program running on the computer and the phone. AT
commands can the be sent to the phone, for example “Start MIDlet X” and
“Press key 1”. Since the processing speed is higher on the computer than on
the embedded device, commands may be sent faster from the computer than the
phone can process. In this case, commands are put in a queue until the queue
overflows. We decided to send one key stroke every five seconds to minimize the
risk for queue overflow, which is far from an optimal solution, but sufficient for
the evaluation purposes.

To be able to access the phone’s file system to, for example, transfer and
delete files, an Object Exchange (OBEX) connection is needed [11]. A Java MI-
Dlet is executed on the phone according to the following automated procedure.
First the MIDlet is transferred using the OBEX connection. Once the MIDlet is
transferred to the phone, it is installed and initiated by sending AT commands to
the phone. When the MIDlet is running, input can be given with AT commands
simulating key presses, also debug info is sent from the phone to the computer.

This environment allows us to automate the installation and de-installation
of applications, entering input sequences to the phone and analyzing the debug
information.

In order to evaluate the code coverage of the application during test, which
is used both for evaluating the tests, and guiding the feedback based input
generation, we needed code coverage measurements. However, since most of the
applications came from third party suppliers, only Java bytecode was available.

A Factorial Experimental Evaluation of Automated Test Input Generation 221

Table 1. Bytecode injection example. Injected rows are marked with an expression
mark (!) at the start.

Original bytecode Bytecode after injection

public final example()V

FRAME FULL [] []

ALOAD 0

GETFIELD h.f : Z

IFNE L0

RETURN

L0 (6)

RETURN MAXSTACK = 3

MAXLOCALS = 3

public final example()V

! L0 (0)

! LINENUMBER 1 L0

FRAME FULL [] []

ALOAD 0

GETFIELD h.f : Z

IFNE L2

! L1 (5)

! LINENUMBER 2 L1

RETURN

L2 (6)

! LINENUMBER 3 L2

RETURN MAXSTACK = 3

MAXLOCALS = 3

Tools for monitoring code coverage require the Java code be compiled with a
debug flag, which enables the insertion of monitoring instructions. Hence we
could not use the publicly available tools.

To solve the problem, we extended the test tool to inject bytecode into class
files inside a jar file. As we do not know which bytecode lines correspond to a
source code line, we measure bytecode coverage rather than source code coverage.
When the application is running on the phone, the Java VM sends an event to
the test tool at every line counting instruction. In order to not impact on the real-
time performance too much, we tried to have as few line counting instructions as
possible while still being able to get accurate results. An example of the injection
is shown in Table 1.

3.3 Selected Application

Ten applications were selected for our experiments out of the thousands avail-
able. Each application out of the thousands is not unique, rather there are dif-
ferent groups of similar kind. We identified ten different categories of games, and
selected one representative for each. The selected applications are listed below
with a short description.

3D Need For Drift is a car game where the car auto accelerates and the user
only has to steer the car.

NHL represents a classic hockey or football game where the user may control
all players and pass and shoot the puck or ball.

222 P. Runeson, P. Heed, and A. Westrup

Pro Golf is a golf game where the user aims with the joystick and then presses
a key twice to determine the power of the stroke.

Karpov 2 is a chess game that represents many games under the board game
category.

Tetris Pop is a classic Tetris game where the blocks fall automatically and the
user only has to rotate and move the blocks.

Indiana Jones is an adventure, platform game where the user moves the player
horizontally and make him jump by pressing upwards.

Cooking Mama represents games with many smaller games in it and the con-
trols are different depending on the mini game.

Virtua Fighter is a 3D fighting game where the user steers the player in three
dimensions and tries to defeat an opponent by using different attacks.

Prehistoric Tribes represents strategy games where the user controls a lot of
units and can move them around and give them orders.

IQ Booster is a sort of quiz game where the user is given a question and
different answer alternatives.

4 Research Methods and Question

4.1 Research Question

The problems involved in this study concern how to use third party applications
with no access to source code, to test the stability of a runtime platform. The
testing should be as effective as possible and test as much of the platform as
possible in as little time as possible. Our goal was stated as a research question.

RQ. How can input sequences be effectively generated to the applications run-
ning on the platform? Is it good enough to give random input or do we need
to implement some sort of intelligence, possibly based on feedback from the
application?

By effective we mean the trade-off between the six criteria, performance, porta-
bility, run speed, cost, scalability, and applicability, as defined in Table 2.

Table 2. Description of the evaluation criteria

Criteria Description

Performance Average code coverage value an input generator is able to reach.
Portability The amount of work needed to make the input generator work with a

different embedded device and possibly different types of applications.
Run speed The input generation method might require additional information

from the phone that will decrease the performance of the embedded
device and thus reduce the run speed of the application.

Cost Labor cost to run a test.
Scalability How the cost scales when running multiple tests at the same time.
Applicability The type of applications the input generation method can handle.

A Factorial Experimental Evaluation of Automated Test Input Generation 223

4.2 Research Methods

First, we piloted execution of the input generators to evaluate the execution time
for each of the applications. The applications were executed during 20 minutes,
with an input keystroke every 5 seconds. The code coverage grew steadily during
the first 10 minutes and then flattened out. To have a safety buffer we decided
to set the time for each run in the input generator performance test up to 15
minutes. Note, however, that the application may quit earlier due to a generated
key stroke sequence that quits the application.

We designed a factorial design experiment to evaluate the performance of the
proposed input generation methods [1]. The factors are four input generation
methods and ten applications. The setup was primarily limited by the duration of
the test; they were designed to be executed during two weeks on two parallel test
environments. First, a full factorial design was executed, and then a fractional
replication was executed to resolve identified interactions.

In the first experiment, we executed 20 input sequences on each of the ten
applications with each of the four input generation methods, split on the two test
environments, which took 20 ∗ 10 ∗ 4 ∗ 15/60/2 = 100 hours, i.e. four days. Then
in the replication, we selected a fraction of input generators (i.e. two of the four)
and executed additionally 30 input sequences on each of the ten applications
with two input generators, to resolve the interaction between input generators
and applications. These tests lasted 30 ∗ 10 ∗ 2 ∗ 15/60/2 = 75 hours, i.e. three
days.

4.3 Threats to Validity

We analyze threats to the validity of the study and report countermeasures taken
to reduce them. The definitions follow Wohlin et al. [12].

Conclusion validity is concerned with the statistical analyses underpinning the
conclusions. The statistical technique of fractional factorial designs is robust.
The test environment allows us to generate sufficiently large data sets to get
significant results.

Internal validity is about the risk for other factors impacting on the relation
between what is manipulated and the outcome. The four input generation meth-
ods are well defined and are not biased by any human intervention, and hence
the internal validity is good. The manual approach is only used as a reference
and is hence not critical.

Construct validity is concerned with the alignment between what is measured
and what is the underlying construct. Byte code coverage was used to monitor
how well the MIDlets were covered. This is a threat to the construct validity,
which is due to the lack of access to 3rd party code. However, since all compar-
isons are relative, using the same measurement, it is not critical for the study
validity.

External validity is related to generalizability of the results. The use of ten
different applications adds to the external validity, while the single platform
increases the threat to the external validity. Similarly, the applications are only

224 P. Runeson, P. Heed, and A. Westrup

of game type, which reduces the external validity. If planning to apply the results
to another context, a replicated study is recommended to validate the results
before launching the approach widely.

5 Results

In this section, we first report the pilot executions, then the descriptive statistics
of the main execution, and finally the statistical analysis of the factorial design
experiments.

5.1 Pilot Execution

The pilot execution of the input generators lead us to the conclusion that the
largest growth in code coverage is achieved during the first 10 minutes. Analysis
of the outcome shows the average byte code coverage over time for all appli-
cations and input generators. Longer tests were executed as well, but the code
coverage did not increase much for the automated input generators, indicating
that the limit of 15 minutes for each application run is sufficient.

5.2 Main Execution – Descriptive Statistics

The main execution comprises 20 input sequences on each application for the
random and feedback based input generators, 20 plus 30 sequences for the startup
random and startup feedback based input generators, which were replicated, and
4 sequences for the manual input generation. Each sequence is 15 minutes long,
processing 180 key strokes, one every five seconds.

In Figure 2 the average execution time for each combination of application
and input generator is reported. Note that all executions are stopped after 15
minutes, if it not stopped before by a generated key stroke sequence selecting
the ‘quit’ option of the MIDlet.

The code coverage of the same data is shown in Figure 3. The manual approach
gives the highest average, still increasing over the whole 15 minute period. Among
the automated input generators, the startup feedback based is best, followed by
startup random, feedback based and random.

It is however worth noticing that these are average figures for all applications
together. For individual applications, the results may be different. For example,
for the Virtua Fighter game, presented in Figure 4, two of the automated gen-
erators have higher coverage than the manual during the initiation, and for this
game, both feedback based generators give higher code coverage than the random
approaches.

The average and standard deviation for code coverage of all the runs are
tabulated in Tables 3 and 4 respectively. As noted from Figure 3, the manual
approach gives highest code coverage on average, and also for all individual
applications. However, the variation is large across the applications, from 32
to 75% code coverage. The variation across applications is clearly visible in
the standard devisions, which vary across programs. Statistical analyses to find
significant patterns among the variations are presented in the next section.

A Factorial Experimental Evaluation of Automated Test Input Generation 225

Fig. 2. Average run time for the applications and input generators. The execution is
stopped by the test tools after 15 minutes.

5.3 Main Execution – Statistical Analysis

The first round of the experiment comprised 20 input sequences for each combi-
nation of application and input generator, summing up to 800 data points. The
results of the variance analysis results of the first round are presented in Table 5.
Tabulated F statistics for the actual values are: F0.01,3,760 = 3.78; F0.01,9,760 =
2.41; F0.01,27,760 = 1.79.

Since all F0 values are larger than the values from the F statistics, we conclude
that there are significant differences between both factors and their interaction
at the level of 0.99. This means that the code coverage values depend on which
applications are run, which input generator is used and also the combination
of application and input generator. Further calculations have to be made to
determine how they impact.

We conducted Tukey’s test to identify which of the comparison that are sig-
nificant. The test statistics for the comparison between all the input generators
are presented in Table 6. The test values are the average code coverage of the
first input generator for the specific application, subtracted by the average code
coverage of the second input generator. If the absolute value of the result is
above a threshold, defined by the student T distribution, there is a significant
difference. The threshold is T0.05 = 8.38 for 95% significant results.

In Table 6 four different cases can be observed.

1. For 3D Need For Drift and Prehistoric Tribes the significant difference is be-
tween the two input generatorswith the startup sequence and the two without.

2. For Indiana Jones and Karpov 2 the random input generator is significantly
worse than the other three input generators.

3. For Virtua Fighter Mobile 3D the two input generators with feedback based
behavior are significantly better than the two random.

4. For the rest of the games there is no significant difference between the input
generators at all.

226 P. Runeson, P. Heed, and A. Westrup

Fig. 3. Average code coverage for input generators for all applications

Fig. 4. Average code coverage for input generators for the Virtua Fighter application

A Factorial Experimental Evaluation of Automated Test Input Generation 227

Table 3. Average percentage value of code coverage

Manual Feedback Random Start feed Start rand All

3D Need for Drift 74.63 42.54 40.97 61.82 62.19 56.91
AMA IQ Booster 71.92 63.34 61.75 65.26 63.73 64.19
Cooking Mama 48.25 18.17 15.60 20.32 19.57 19.49
Indiana Jones 39.88 27.80 15.45 28.04 26.20 26.09
Karpov 2 60.55 37.19 21.51 40.36 39.20 36.97
NHL 5 on 5 33.92 23.56 24.74 29.61 28.47 27.77
Prehistoric Tribes 33.92 14.15 11.77 29.62 29.21 26.07
Pro Golf 46.90 28.43 27.27 27.33 25.57 27.38
Tetris Pop 32.53 21.05 21.92 23.84 20.57 22.25
Virtua Fighter Mobile 3D 67.30 55.34 42.03 57.33 39.55 48.98

All 51.45 33.13 27.15 38.16 34.70 34.99

Table 4. Standard deviation of percentage value of code coverage

Manual Feedback Random Start feed Start rand All

3D Need for Drift 2.64 24.83 26.89 3.28 2.36 16.34
AMA IQ Booster 4.29 2.34 2.18 2.21 2.31 2.88
Cooking Mama 3.96 4.20 4.22 1.57 1.66 5.55
Indiana Jones 0.73 7.89 9.79 8.82 7.08 9.33
Karpov 2 2.43 15.02 8.34 5.56 4.96 10.86
NHL 5 on 5 12.26 10.59 11.33 7.56 7.44 8.95
Prehistoric Tribes 2.04 8.89 8.75 1.60 1.58 8.19
Pro Golf 1.88 10.93 9.20 10.10 9.75 10.31
Tetris Pop 1.32 3.90 5.38 3.12 3.92 4.44
Virtua Fighter Mobile 3D 0.69 15.32 19.18 13.02 19.38 18.56

All 15.82 19.50 18.45 17.24 16.51 17.99

To be able to make a better distinction between the two highest performing
input generation methods an additional 30 input sequences on each of the ten
applications were executed in a fractional replication of the experiment. The
results from calculations with these additional runs are presented in Table 7,
where we thanks to the fractional factorial design, may use all the 20 plus 30 in-
put sequences in the analysis. F-tables give: F0.01,1,980 = 6.63; F0.01,9,980 = 2.41.

As all F0 values are larger than the F statistics value, we conclude that there
are significant differences between all three factors at the level of 0.99. This means
that the code coverage values depend on which applications are run, which input
generator is used, and also the combination of application and input generator.
Further calculations needs to be made to determine in what way they impact.
Since the interaction is significant there is a need to compare the input generators
for each application individually.

228 P. Runeson, P. Heed, and A. Westrup

Table 5. ANOVA for the first experiment: four input generators with startup sequence,
ten applications and 20 input sequences on each application

Source of Varia-
tion

Sum of
Squares

Deg of
Free

Mean
Square

F0 P-Value

Application 171224.75 9 19024.97 178.53 << 0.01
Input generator 11343.01 3 3781.00 35.48 < 0.01
Interaction 14650.14 27 542.60 5.09 < 0.01
Error 80989.61 760 106.57
Total 278207.51 799

Table 6. Test statistics for comparison of all input generators over all applications,
first round, ten applications and 20 input sequences for each application. Significant
differences at 95% level in favor of the first input generator is marked in bold and in
favor of the second generator is marked in italics.

SF vs SR SF vs F SF vs R SR vs F SR vs R F vs R

3D Need for Drift -0.79 18.49 20.06 19.28 20.86 1.57
AMA IQ Booster 1.55 2.44 4.03 0.89 2.48 1.58
Cooking Mama 0.96 2.27 4.79 1.31 3.83 2.52
Indiana Jones 3.07 1.96 14.55 -1.12 11.46 12.60
Karpov 2 1.67 4.14 18.64 2.47 16.98 14.51
NHL 5 on 5 2.37 6.70 6.12 4.33 3.75 -0.58
Prehistoric Tribes 0.47 15.36 18.62 14.89 18.15 3.26
Pro Golf 4.57 0.07 0.89 -4.50 -3.68 0.82
Tetris Pop 1.21 2.98 2.81 1.77 1.61 -0.17
Virtua Fighter Mobile 3D 16.01 0.32 12.60 -15.68 -3.40 12.28

Table 7. ANOVA for the replication: two input generators with startup sequence, ten
applications and 50 input sequences on each application

Source of Varia-
tion

Sum of
Squares

Deg of
Free

Mean
Square

F0 P-Value

Application 234694.25 9 26077.14 477.61 << 0.01
Input generator 2347.12 1 2347.12 42.99 < 0.01
Interaction 6320.37 9 702.26 12.86 < 0.01
Error 53507.48 980 54.60
Total 296869.23 999

A Factorial Experimental Evaluation of Automated Test Input Generation 229

Table 8. Test statistics for comparison of two input generators over all applications.
Significant differences at 95% level in favor of the first input generator is marked in
bold.

SF vs SR

3D Need for Drift -0.56
AMA IQ Booster 1.70
Cooking Mama 0.76
Indiana Jones 2.97
Karpov 2 1.08
NHL 5 on 5 1.00
Prehistoric Tribes 0.36
Pro Golf 2.41
Tetris Pop 3.14
Virtua Fighter Mobile 3D 17.78

Table 9. Comparison of input generators for the chosen criteria. Ranking position in
parentheses

Manual Random Start rand Feedback Start feed

Performance Very good Very poor (4) Medium (2) Poor (3) Good (1)
Portability Good Good (1) Medium (2) Bad (3) Very bad (4)
Run speed Fast Fast (1) Fast (1) Slow (3) Slow (3)
Cost Expensive Cheap (1) Cheap (1) Cheap (1) Cheap (1)
Scalability Bad Good (1) Good (1) Good (1) Good (1)
Applicability Everything Games (1) Games (1) Games (1) Games (1)

The comparison between the two startup input generators is presented in
Table 8. The test values are the average code coverage of the first input generator
for the specific application subtracted by the average code coverage of the second
input generator. If the absolute value of the result is above a threshold, defined
by the student T distribution, there is a significant difference. The threshold is
T0.05 = 2.89 for 95%.

In Table 8 it can be seen that the startup feedback (SF) performs better
in three games and that there are no significant difference in the other seven.
This means that the startup feedback input generator is significantly better than
startup random (SR) on two more games compared to the leftmost data column
of Table 6.

6 Discussion

To answer the research question in Section 4.1 we discuss the results related
the criteria presented in Table 2. From the analysis, it is concluded that there
are significant performance differences between input generators. The manual
approach gives the best performance by far, however the problem with manual
is, as stated before, that it is very costly and does not scale up.

230 P. Runeson, P. Heed, and A. Westrup

An important issue is the reduction of run speed when running in debug mode
to get code coverage calculations. The manual and random generation methods
do not require debug mode execution, while the feedback based input genera-
tion requires code coverage calculations. In our case the debug mode reduced
the performance significantly, but this might very well differ depending on the
specific implementation and amount of information gathered in the debug mode.

For the automated input generators we notice that the startup sequence helps
providing good performance (code coverage) values. We used the same startup
sequence for all applications and it worked well in most cases. However, in one
application the soft key usage was switched compared to all other games, which
for our startup sequence meant that the game was terminated directly. This
indicates that the startup sequence must be checked manually for each of the
applications under test.

When comparing the two input generators with startup sequence to those
without, it is clear that the feedback based approach gives slightly better perfor-
mance, however at the cost of reduced run speed due to the use of debug mode
execution.

The portability is best for the fully random input generator, since porting
only means redefining the key set. For the generators with startup sequence, it
has to be redefined when porting to a new device, and at least checked for each
application. When you move on to the feedback based input generation you also
need to define the key subsets, as well as implementing the feedback connection
from the code coverage monitor.

Table 9 presents all the pros and cons with each input generation technique.
For each criterion (see Table 2) the ranking position for each input generator
is presented in parenthesis, manual has no position as it is only included as
reference. Our recommendation in this case is to use the startup random input
generator. It performs well for most applications tested and does not require the
applications to be run in debug mode.

7 Conclusions and Further Work

The presented study aims at investigating automated input generation strategies
to test a Java platform in an embedded device through executing MIDlets on
it. We defined four input generation approaches and conclude that for most of
the tested applications, it is important to make sure the startup sequence is
critical to get high code coverage. However, for the continued input modeling
the random generation is feasible for the MIDlet under study.

Depending on the performance of the execution system, the random or the
feedback based method may be most efficient. The feedback based method re-
quires the embedded device be executing in debug mode and if the performance
of the device drops a lot in debug mode, it is probably not worth running the
feedback based approach but the less computational random method.

Future work includes replicating the study with applications with access to
the Java code. This would enable better code coverage analysis, which might

A Factorial Experimental Evaluation of Automated Test Input Generation 231

improve the adaptivity of the input generation as well as the test monitoring.
Further, other types of applications than games, as well as different embedded
platforms, should be investigated in improve the external validity of the results.

Acknowledgment

The authors would like to thank Mr Erik André at Sony Ericsson for guidance
and cooperation. The work is partly funded by the Swedish Research Council
under grant 622-2004-552 for a senior researcher position in software engineering.

References

1. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York
(2001)

2. Heed, P., Westrup, A.: Automated platform testing using input generation and code
coverage. Technical report, Dept. of Computer Science, Lund University (2009)

3. Mazlan, M.A.: Stress test on J2ME compatible mobile device. Innovations in In-
formation Technology, 1–5 (2006)

4. Jbenchmark, http://www.jbenchmark.com/index.jsp
5. Musa, J.D.: Operational profiles in software reliability engineering. IEEE Software,

14–32 (1993)
6. Wohlin, C., Runeson, P.: Certification of software components. IEEE Transactions

on Software Engineering 20(6), 494–499 (1994)
7. Hamlet, R.: Random testing. In: Encyclopedia of Software Engineering, pp. 970–

978. Wiley, Chichester (1994)
8. Chen, T.Y., Kuo, F.-.C., Merkel, R.G., Tse, T.H.: Adaptive random testing: The

ART of test case diversity. Journal of Systems and Software 81(1), 60–66 (2010)
9. Malik, Q., Jaaskelainen, A., Virtanen, H., Katara, M., Abbors, F., Truscan, D.,

Lilius, J.: Model-based testing using system vs. test models – what is the differ-
ence? In: 17th IEEE International Conference and Workshops on Engineering of
Computer Based Systems, pp. 291–299 (2010)

10. Sony Ericsson (AT commands online reference),
http://developer.sonyericsson.com

11. Infrared Data Association, IrDA: (Object exchange protocol (IrOBEX). ver. 1.4,
http://www.irda.org

12. Wohlin, C., Höst, M., Ohlsson, M.C., Regnell, B., Runeson, P., Wesslén, A.: Ex-
perimentation in Software Engineering: An Introduction. International Series in
Software Engineering. Kluwer Academic Publishers, Dordrecht (2000)

http://www.jbenchmark.com/index.jsp
http://developer.sonyericsson.com
http://www.irda.org

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 232–246, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Automating and Evaluating Probabilistic Cause-Effect
Diagrams to Improve Defect Causal Analysis

Marcos Kalinowski1,2, Emilia Mendes1,3, and Guilherme H. Travassos1

1 COPPE/UFRJ – Federal University of Rio de Janeiro,
68511 Rio de Janeiro, Brazil

2 UVA-RJ – Veiga de Almeida University,
68507 Rio de Janeiro, Brazil

3 Computer Science Department – The University of Auckland,
92019 Auckland, New Zealand

mkali@cos.ufrj.br, emilia@cs.auckland.ac.nz,
card@computer.org, ght@cos.ufrj.br

Abstract. Defect causal analysis (DCA) has shown itself an efficient means to
obtain product-focused software process improvement. A DCA approach,
called DPPI, was assembled based on guidance acquired through systematic
reviews and feedback from experts in the field. To our knowledge, DPPI repre-
sents an innovative approach integrating cause-effect learning mechanisms
(Bayesian networks) into DCA meetings, by using probabilistic cause-effect
diagrams. The experience of applying DPPI to a real Web-based software pro-
ject showed its feasibility and provided insights into the requirements for tool
support. Moreover, it was possible to observe that DPPI's Bayesian diagnostic
inference predicted the main defect causes efficiently, motivating further inves-
tigation. This paper describes (i) the framework built to support the application
of DPPI and automate the generation of the probabilistic cause-effect diagrams,
and (ii) the results of an experimental study aiming at investigating the benefits
of using DPPI’s probabilistic cause-effect diagrams during DCA meetings.

Keywords: Bayesian Networks, Defect Causal Analysis, Defect Prevention,
Defect Prevention-based Process Improvement, DPPI, Probabilistic Cause-
Effect Diagrams, Product Focused Process Improvement.

1 Introduction

Causal analysis and resolution encompasses the identification of causes of defects and
other problems, and ways to prevent them from recurring in the future. Many popular
process improvement approaches (e.g., Six Sigma, CMMI, and Lean) incorporate
causal analysis activities.

Defect causal analysis (DCA) [1] represents the application of causal analysis and
resolution to a specific type of problem: defects introduced in software artifacts
throughout a software lifecycle. Thus, DCA can be seen as a process to discover and
analyze causes associated with the occurrence of specific defect types, allowing the
identification of improvement opportunities for the organization’s process assets, and

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 233

the implementation of actions to prevent the recurrence of those defect types in future
projects. Effective DCA has helped to reduce defect rates by over 50% in organiza-
tions such as IBM [2], Computer Science Corporation [3], and InfoSys [4].

However, despite its benefits and industrial adoption, there are still numerous un-
answered questions concerning DCA implementation in software organizations, in
addition to a small number of related publications [5]. Thus, in practice, the causal
analysis process and techniques are often taught to staff, but little guidance is
provided on how to apply them. Consequently, the application of causal analysis
becomes ad-hoc [5]. Therefore, in order to provide guidance on how to efficiently
implement DCA in software organizations, a systematic review (SR) was conducted
in 2006 and replicated in 2007, 2009, and 2010. The results allowed producing and
updating guidance on how to implement DCA in software organizations and the iden-
tification of opportunities for further investigation [6]. For instance, “the DCA state of
the art did not seem to include any approach integrating learning mechanisms regard-
ing cause-effect relations into DCA meetings”. This means that, in the approaches
found, the knowledge on cause-effect relationships gathered during each DCA session
was only used to initiate actions to improve the process, and afterwards discarded.

To our knowledge, the first effort to bridge this gap is reported in the initial con-
cept of a DCA approach described in [7]. In this initial concept, the integration of
knowledge gathered in successive causal analysis events as means to assemble a
deeper understanding of the defects’ cause-effect relations by using Bayesian net-
works is suggested. This integration aims at facilitating the creation and maintenance
of common causal models to be used to support defect cause identification in each
DCA event. Such causal models can help answering questions during DCA meetings,
such as: “Given the past projects within my organizational context, with which prob-
ability does a certain cause lead to a specific defect type?”. Additionally, in order
to allow the usage of the Bayesian diagnostic inferences during DCA meetings, the
traditional cause-effect diagram [8] was extended into a probabilistic cause effect
diagram [7].

Later this initial concept was evolved and tailored into the DPPI (Defect Preven-
tion-Based Process Improvement) approach [9]. Besides using and feeding Bayesian
networks to support DCA meetings with probabilistic cause-effect diagrams, DPPI
addresses all the specific practices of the CMMI CAR (Causal Analysis and Resolu-
tion) process area, described in [10]. The experience of applying DPPI to a real
Web-based software project indicated its usage feasibility and provided insights into
its required tool support [9]. Moreover, during this experience DPPI's Bayesian
diagnostic inference predicted the main defect causes efficiently, motivating further
investigation.

Given this context, in this paper we extend our research by describing the computa-
tional framework built to support the application of DPPI and the results of an ex-
perimental study conducted to evaluate DPPI's main innovation, using probabilistic
cause-effect diagrams during DCA meetings. The remainder of this paper is organized
as follows. In Section 2, an overview of DPPI is provided with examples of how its
activities could be performed in a real software project. In Section 3, the computa-
tional framework built to support the application of DPPI is described. In Section 4,
the design and results of the experimental study are presented. Final considerations
are given in Section 5.

234 M. Kalinowski, E. Mendes, and G.H. Travassos

2 DPPI: Defect Prevention-Based Process Improvement

DPPI represents a practical approach for defect prevention. Its main innovation is the
integration of knowledge gathered in successive causal analysis events in order to
provide a deeper understanding of the organization’s defect cause-effect relations.
Such integration allows establishing and maintaining common causal models (Bayes-
ian networks) to support the identification of causes in each causal analysis event.
Those causal models support diagnostic reasoning, helping to understand, for similar
projects of the organization, which causes usually lead to which defect types.

Additionally, DPPI follows the guidance for implementing DCA in software or-
ganizations [7] in order to tailor the defect prevention activities into specific tasks,
providing further details on the techniques to be used to accomplish these tasks effi-
ciently. Moreover, it integrates defect prevention into the measurement and control
strategy of the development activity for which defect prevention is being applied,
allowing one to observe whether the implemented improvements to the development
activity brought real benefits. This is done by defining defect-related metrics to be
used to measure and control the development activity.

Given that DPPI aims at continuous improvement, it was designed to take place
right after the inspection of each main development activity artifacts. Note that the
inspection process expects the correction of defects by the author [11]. Thus, when
the DPPI is initiated the defects corresponding to the development activity have
already been corrected.

Fig. 1. DPPI Approach Overview

DPPI includes four activities: (i) Development Activity Result Analysis; (ii) DCA
Preparation; (iii) DCA Meeting; and (iv) Development Activity Improvement. The
main tasks for each of these activities, as well as the roles involved in their execution,
are depicted in Fig. 1. Note that the software development activity itself and its
inspection are out of DPPI’s scope.

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 235

Fig. 1 also shows the development activity’s causal model. DPPI considers those
causal models to be dynamically established and maintained by feeding and using
Bayesian networks. Pearl [12] suggests that probabilistic causal models can be built
using Bayesian networks, if concrete examples of cause-effect relations can be gath-
ered in order to feed the network. In the case of DPPI the examples to feed the Bayes-
ian network can be taken from each DCA meeting results.

A brief description of the four DPPI activities and their tasks, with examples of
how they could be performed in a real software project, is provided in the following
subsections. Further details can be found in [9].

2.1 Development Activity Result Analysis

The Development Activity Result Analysis aims at quantitative measurement and
control of the development activity. It comprises two tasks to be performed by the
DPPI moderator. Further details on these tasks follow.

Analyze Development Activity Results. This task aims at analyzing the development
activity’s defect-related results by comparing them against historical defect-related
results for the same development activity in similar projects. Therefore, the number of
defects per unit of size and per inspection hour should be analyzed against historical
data using a statistical process control chart. As suggested by [13], the type of the
statistical process control chart for those metrics should be a U-chart, given that de-
fects follow a Poisson distribution. Those charts can indicate if the defect metrics of
the development activity are under control by applying basic statistical tests. An ex-
ample of a real project U-chart for defects per inspection hour is shown in Fig. 2.

Fig. 2. Defects per Inspection Hour U-Chart

Establish Quantitative Improvement Goals. This task involves establishing
improvement goals for the development activity. A typical example of quantitative
improvement goal is: “reducing the defect rate per inspection hour (or per unit of size)
by X percent”.

If the development activity is out of control the focus of the causal analysis meet-
ing becomes revealing assignable causes and the improvement goal should be
related to stabilizing its behavior. If it is under control the focus is on finding
the common causes and the improvement goal should be improving its performance
and capability.

236 M. Kalinowski, E. Mendes, and G.H. Travassos

2.2 DCA Preparation

This activity comprises the preparation for defect causal analysis by selecting the
samples of defects to be analyzed and identifying the systematic errors leading to
several of those defects.

Apply Pareto Chart and Select Samples. This task refers to finding the clusters of
defects where systematic errors are more likely present. Systematic errors lead to
defects of the same type. Thus, Pareto chart can be used to find those clusters, by
using the defect categories as the discriminating parameter. In DPPI the samples
should be related to the defect categories that contain most of the defects. An example
of a real project Pareto chart is shown in Fig. 3. It shows that most defects were of
type incorrect fact, and that the sum of incorrect facts and omissions represents about
60% of all defects found.

Fig. 3. Defect Pareto Chart

Find Systematic Errors. This task comprises analyzing the defect sample (reading
the description of the sampled defects) in order to find its systematic errors. Only the
defects related to those systematic errors should be considered in the DCA meeting.
At this point the moderator could receive support from representatives of the
document authors and the inspectors involved in finding the defects.

2.3 DCA Meeting

In this activity the moderator is supported by mandatory representatives of the authors
and of the software engineering process group (SEPG). A description of the two tasks
involved in this activity follows.

Identifying Main Causes. This task represents the core of the DPPI approach. Given
the causal model elaborated based on prior DCA meetings for the same development
activity considering similar projects (by feeding the Bayesian network with the identi-
fied causes leading to the defect type related to the analyzed systematic error), the
probabilities for causes to lead to the defect types related to the systematic errors
being analyzed can be calculated (using the Bayesian diagnostic inference).

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 237

Fig. 4. DPPI’s Probabilistic Cause-Effect Diagram

Afterwards, those probabilities can be used to support the DCA meeting team in
identifying the main causes. Therefore, probabilistic cause-effect diagrams for the
type defects related to the systematic errors being analyzed can be used. The probabil-
istic cause-effect diagram was proposed in [7] and extends the traditional cause-effect
diagram by (i) showing the probabilities for each possible cause to lead to the ana-
lyzed defect type, and (ii) representing the causes using grey tones, where the darker
tones are used for the causes with higher probability. This representation can be easily
interpreted by causal analysis teams and highlights the causes with greater probabili-
ties of causing the analyzed defect type.

Fig. 4 shows the probabilistic cause-effect diagram for defects of type “incorrect
fact” for a real project. In this diagram it can be seen that, in this project, typically the
causes for incorrect facts are “lack of domain knowledge” (25%), “size and complex-
ity of the problem” (18.7%), and “oversight” (15.6%). Fig. 5 shows the underlying
Bayesian network and its diagnostic inference for defects of type “incorrect fact”.

We believe that showing such probabilistic cause-effect diagrams could help to ef-
fectively use the cause-effect knowledge stored in the Bayesian network to support
the identification of causes during DCA meetings. In the particular experience de-
scribed in [9], the identified causes for the analyzed systematic errors were “lack of
domain knowledge”, “size and complexity of the problem”, and “oversight”. Those
causes correspond to the three main causes of the probabilistic cause-effect diagram
and were identified by reading the defect descriptions and involving the author, in-
spectors, and SEPG members. Thus, the probabilistic cause-effect diagram showed
itself helpful in this case, motivating further investigation.

According to DPPI, at the meeting end the Bayesian network should be fed with
the resulting causes for the defect type, so that the probabilities of the causes can be
dynamically updated, closing a feedback cycle for the next DCA event based on the
consensus result of the team on the current DCA event. The framework that allows

238 M. Kalinowski, E. Mendes, and G.H. Travassos

Fig. 5. Bayesian network inference for incorrect facts

automating this dynamic feedback cycle is a new contribution described in Section 3
of this paper. The further investigation on the use of the resulting probabilistic cause-
effect diagrams during DCA meetings is described in Section 4.

Propose Actions to Prevent Causes. In this task, actions should be identified to
improve the process assets in order to prevent the identified causes. Examples of
actions proposed during a real project, addressing the causes “lack of domain knowl-
edge” and “size and complexity of the problem”, are: (i) studying the domain and the
pre-existing system; and (ii) modifying the functional specification template by creat-
ing a separate session for the business rules, listing them all together.

2.4 Development Activity Improvement

Finally, the action proposals should be implemented by a dedicated team and man-
aged until their conclusion. After implementation, the changes to the process should
be communicated to the development team. The conclusion of the actions and the
effort of implementing them should be recorded.

The next section presents the computational framework built to support the appli-
cation of DPPI in industrial contexts.

3 DPPI Framework

Institutionalizing DPPI and keeping all the related documentation (e.g., improvement
results and goals, main defect categories, systematic errors, identified causes, and
action proposals) without any tool support, has shown itself a complex task during the
experience of applying it to a real Web-based project [9].

Therefore, the purpose of building a computational framework supporting the ap-
plication of DPPI was to facilitate its usage by the industry providing a step by step
support that embeds DPPI’s suggested DCA practices. Additionally, the resulting
framework should automate the proposed DCA feedback cycle, allowing establish-
ing and maintaining the Bayesian network’s learning cases and generating the

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 239

probabilistic cause-effect diagram. The support provided by the framework to each
DPPI activity is described in detail hereafter. The data shown in the screens is the
data of the experience described in [9], when no tool support was available. This data
was used to enact the framework’s usage as an informal proof of concept.

Considering the framework’s input, defect data of the current project/module can
be imported. Therefore it has to follow a specific XML schema format, which is the
same for importing defect data as in the ISPIS inspection support framework [14]. To
transform other XML formats into the required one the XMapper integration tool
described in [15] may be used, avoiding manual XML transformation. Once the
project is characterized and the defects where imported DPPI can be launched.

The screen for supporting DPPI’s first activity, Development Activity Analysis, is
shown in Fig. 6 (a). In it, the moderator analyzes the U-charts defined in DPPI (de-
fects per unit of size and defects per inspection hour). The framework allows export-
ing defect data so that the U-charts can be generated by using one of the registered
external statistical tools and the resulting chart uploaded as an image to be analyzed.
After analyzing the charts the moderator records the improvement goal.

The next DPPI activity is the DCA meeting. In it each systematic error’s main
causes should be identified. Therefore, the framework allows reading the associated
defects and generates a probabilistic cause-effect diagram for the defect type to which
the systematic error is related. After identifying the causes, action proposals to ad-
dress them can be recorded. The DCA Meeting screen is shown in Fig. 7.

To enable the dynamic generation of the probabilistic cause-effect diagrams, the
WEKA java API [16] is used internally to handle the Bayesian network learning and
inference. The learning cases are the causes related to defect types, according to re-
sults of prior DCA meetings conducted for the same development activity on similar

(a) (b)

Fig. 6. Support for the Development Activity Analysis (a) and DCA Preparation (b) activities

240 M. Kalinowski, E. Mendes, and G.H. Travassos

Fig. 7. DCA Meeting Support

projects. This activity allows the framework to automate DPPI’s proposed dynamic
feedback cycle, since, at the end of the meeting the newly recorded causes automati-
cally become learning cases (one learning case for each defect associated to the ana-
lyzed systematic error) for the next DCA meetings concerning projects with similar
characterization.

Finally, the development activity improvement screen (Fig. 8) allows managing the
proposed actions until their conclusion and registering how the communication of
changes to the project team happened. Optionally, the actions and their estimated due
dates may be exported as a project data interchange XML to be managed using exter-
nal project management tools. At the end a report on the complete DPPI session may
be generated.

Fig. 8. Development Activity Improvement Support

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 241

The framework closes DPPI’s proposed automated learning case feedback cycle,
allowing generating probabilistic cause-effect diagrams (reflecting Bayesian diagnos-
tic inferences). However, the benefits of using such diagrams during DCA meetings
had not been evaluated objectively; although it showed promising results during the
experience of applying DPPI manually to a specific software project [9]. The experi-
mental study described hereafter addresses this evaluation.

4 Experimental Study

4.1 Experimental Study Design

Three hypotheses where stated in the experimental study plan to evaluate benefits
(regarding effectiveness, effort and usability) of using the probabilistic cause-effect
diagrams (DPPI’s approach) to identify causes of defects:

• H1: The use of DPPI’s approach to identify causes of defects results in more
effective cause identification, when compared to ad-hoc cause identification.

• H2: The use of DPPI’s approach to identify causes of defects reduces the effort
of cause identification, when compared to ad-hoc cause identification.

• H3: The use of DPPI’s approach to identify causes of defects improves user
satisfaction in identifying causes, when compared to ad-hoc cause identification.

The experimental study design had to handle several constraints, since it was planned
to happen in the context of a real software project and its real development team. The
decision to conduct the experimental study in a real context was to eliminate con-
founding factors and bias regarding defect causes that could easily happen in the con-
text of toy problems with students.

The scope of this project was to develop a new information system to manage the
activities of a Foundation that manages research and development initiatives. The
project involved several departments, such as: human resources, financial, account-
ability, protocol, project monitoring, among others. The system to be implemented
was modularized and developed in an iterative and incremental lifecycle, allowing the
gradual substitution of the existing information system. Software inspections were
performed on each of the modules’ functional specifications, using the ISPIS frame-
work [14]. By the end of the project, all inspection data were available, including
details on the defects found and removed from the functional specifications before the
actual implementation.

Given this context, the experimental design used one factor (identifying causes of
defects), two treatments (using DPPI’s approach and using an ad-hoc approach), and
two objects (the defects of two functional specification activities performed on two
consecutive modules of the project).

To instrument the experimental study DPPI’s DCA preparation activity was
performed by the researchers, plotting the Pareto chart in order to identify the main
defect categories and identifying the systematic errors and their related defects.
For each module 5 systematic errors were identified. At all, the instrumentation en-
compasses a consent form, a subject characterization form, the task, and a follow-up
questionnaire.

242 M. Kalinowski, E. Mendes, and G.H. Travassos

The task was to identify up to three main causes for the systematic errors, given the
set of related defects. All subjects participated in the inspection meetings in which the
set of defects was discussed throughout the project. Thus, they were familiar with the
modules (for effective DCA they should be [2]). On the other hand, the constraint of
using subjects familiar with the modules limited the amount of possible subjects to 5.

Another constraint of performing the study in the context of a real development
project was that the researchers could not know the correct causes in advance. This
issue was addressed by using one of the 5 possible subjects to, for each systematic
error, based on the set of causes identified by the others, select the up to three most
relevant ones. For this role the most experienced subject, which was also the inspec-
tion moderator of those modules, was chosen. Being the inspection moderator, he was
very familiar to those defects, since during the inspection meetings he was responsible
for leading the discussion of those defects that led to their categorization according to
the defect natures described in [17]. When choosing the most relevant causes for each
systematic error he did not know that the provided set of causes was assembled by
joining all the different causes cited by the other 4 subjects. Moreover, to avoid any
bias, his choices were reviewed by the CTO responsible for the project, which partici-
pated in weekly status report meetings, where the project’s main issues, risks and
schedule were discussed.

Hence, only 4 subjects were available to conduct the experimental study. But how
could it be possible to observe something relevant with only 4 subjects? Thus, we
studied possible arrangements of those subjects to lower the impact of this threat to
validity. The resulting arrangement for the study design is shown in Fig. 9. Each sub-
ject accomplished the task of identifying the main causes for the sets of defects in three
separate experimental study trials. The first two trials were consecutive, the third hap-
pened three months later. The observation scenarios are depicted by the arrows.

Fig. 9. Experimental Study Design

In the first trial, the performance of subject A was compared with the performance
of subject D, since both applied different treatments on the same object, not being, at
this moment familiar to the task to be performed. In the second trial, the performance

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 243

of subject B was compared to the performance of subject C, again both used different
treatments, but this time they were already aware of the task to be accomplished,
since they performed it ad-hoc in the first trial on another module.

Thus, joining the two trials, the confounding factor “training” (trial 1 without train-
ing and trial 2 with training) and “individual ability to identify causes” (trials 1 and 2
used different subjects) would be someway isolated. However, given the limited
amount of subjects, the results would still be strongly dependent on the subjects and
those trial’s results would only allow an initial understanding of possible effects of
using one treatment instead of the other one.

Therefore, the plan involved a third trial, three months after the two initial ones,
changing the treatment for the same subject acting on the same object. The aim was
to afterwards compare the results of the subject’s in trials 2 and 3, using a crossed
design [18].

The crossed design took place between trials 2 and 3 on module 1, where one sub-
ject B applied first the ad-hoc treatment and subject C applied first the DPPI treat-
ment. In this way, the confounding factor “using one treatment before the other” was
treated. Still regarding this confounding factor, the pause of three months between
trial two and three was to assure that short term memory could not be used by the
subjects to relate the main causes to each of the five systematic errors to be analyzed.
Therefore, the subjects were interviewed to assure that they did not remember the
main causes for the systematic errors. All of them mentioned not to remember, but
even if they did, for the analysis of the results for module 1 this factor was isolated by
the crossed design. For the analysis of the results for module 2, however, the short
term memory could eventually benefit the ad hoc treatment.

During the operation phase of each experimental study’s trial, subjects were asked
to fulfill the consent and characterization forms and afterwards to identify up to three
main causes for each systematic error, by reading the related defects. One of the re-
searchers monitored them while performing the task. At the end the follow-up ques-
tionnaire had to be fulfilled to gather the effort (time in minutes) and qualitative data
on their satisfaction in performing the task.

Participants of the ad-hoc treatment received the 5 systematic errors and the related
defects, and the cause categories suggested by the guidance (input, method, people,
tools, and organization) [6]. Participants of the DPPI treatment instead of the cause
categories received the probabilistic cause-effect diagrams for the types of defects
being analyzed. Those cause-effect diagrams were built by the researchers associating
197 defects of 4 prior modules to causes (possible causes were brainstormed with the
project team before this association to facilitate this task), building the Bayesian net-
work and performing the diagnostic inference for the analyzed defect types. Partici-
pants of both treatments were encouraged to list any causes they considered relevant.
The obtained results are described in the following subsection.

4.2 Experimental Study Results

The quantitative results of the three trials for each subject are shown in Table 1. This
table shows the effectiveness (percentage of main causes found) for each systematic
error, the average effectiveness and the effort (time spent in minutes to identify the
causes).

244 M. Kalinowski, E. Mendes, and G.H. Travassos

Table 1. Quantitative results of the three trials for each subject

Effectiveness
Subj. Trial Module Treat.

1.1 1.2 1.3 1.4 1.5 Avg.
Effort
(min.)

A 1 1 ad-hoc 33.3% 0% 33.3% 66.7% 33.3% 33.3% 45
A 2 2 DPPI 66.7% 66.7% 66.7% 33.3% 66.7% 60.0% 20
A 3 2 ad-hoc 66.7% 33.3% 33.3% 0.0% 33.3% 33.3% 27
B 1 2 ad-hoc 66.7% 33.3% 0% 0% 0% 20% 95
B 2 1 DPPI 33.3% 33.3% 66.7% 33.3% 0% 33.3% 30
B 3 1 ad-hoc 33.3% 33.3% 33.3% 0% 0% 20.0% 75
C 1 2 ad-hoc 33.3% 0% 33.3% 66.7% 66.7% 40.0% 50
C 2 1 ad-hoc 33.3% 33.3% 33.3% 0% 66.7% 33.3% 45
C 3 1 DPPI 33.3% 66.7% 66.7% 33.3% 33.3% 46.7% 30
D 1 1 DPPI 66.7% 66.7% 66.7% 33.3% 0% 46.7% 30
D 2 2 DPPI 66.7% 33.3% 66.7% 0% 33.3% 40.0% 20
D 3 2 ad-hoc 0% 33.3% 33.3% 0% 33.3% 20.0% 25

Some observations concerning the hypotheses and the experimental study results
could be made:

• H1: The use of DPPI’s approach to identify causes of defects results in more ef-
fective cause identification, when compared to ad-hoc cause identification.

o Trial 1. Comparing the two treatments for Module 1 the effectiveness of the
subject that used the DPPI treatment was 40% higher.

o Trial 2. Comparing the two treatments for Module 1, the effectiveness of the
subjects was the same.

o Trial 3. Comparing trials 2 and 3 it is possible to observe that all subjects
were more effective when applying the DPPI treatment. This result supports
the alternative hypothesis H1. For module 1, subjects B and C had higher ef-
fectiveness with the DPPI treatment (66.7% and 40% higher, respectively).
For module 2, subjects A and D also had higher effectiveness with the DPPI
treatment (80% and 100% higher, respectively).

• H2: The use of DPPI’s approach to identify causes of defects reduces the effort
of cause identification, when compared to ad-hoc cause identification.

o Trial 1. Comparing the two treatments for Module 1 the effort of the subject
that used the DPPI treatment was 33.3% lower.

o Trial 2. Comparing the two treatments for Module 1, again the effort of the
subject that used the DPPI treatment was 33.3% lower.

o Trial 3. Comparing trials 2 and 3 it is possible to observe that all subjects
were required less effort when applying the DPPI treatment. This result sup-
ports the alternative hypothesis H2. For module 1, subjects B and C had re-
quired less effort to perform their task with the DPPI treatment (60% and
33.3% less, respectively). For module 2, subjects A and D also required less
effort with the DPPI treatment (25.9% and 20% less, respectively).

• H3: The use of DPPI’s approach to identify causes of defects improves user sat-
isfaction in identifying causes, when compared to ad-hoc cause identification.

 Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve DCA 245

o Based on the qualitative results obtained from the follow up questionnaires,
nothing could be observed regarding this hypothesis. In fact, all subjects kept
or increased their user satisfaction degree in performing the task throughout
the three trials, independent of the adopted treatment.

An interesting analysis is combining the effort and effectiveness results to allow ob-
serving that on average the DPPI treatment required less effort to produce more accu-
rate results. Even though the results suggest a significant improvement for the DPPI
treatment, we would like to state that the study’s design doesn’t allow any external
validity inferences, since it was performed in the context of one specific Web-based
software project with its real context. Actually, because of the limited amount of
subjects there is also no conclusion validity, since no significant statistical tests could
be applied. However, the arrangement of the study allowed us to provide several
arguments that could serve as a preliminary indication of benefits of using DPPI’s
probabilistic cause-effect diagrams to support DCA meetings.

5 Conclusions

DCA is an effective software process improvement practice, as shown in success
cases reported in several industrial environments [2][3][4]. DPPI [9] represents an
approach for conducting, measuring and controlling DCA in order to use it efficiently,
assembled based on unbiased DCA guidance obtained from SRs [6] and on feedback
gathered from experts in the field. According to the results of our SRs, and to our
knowledge, it represents the only approach that integrates cause-effect learning
mechanisms (Bayesian networks) into DCA meetings. In order to facilitate the use of
such Bayesian network to support DCA meetings a graphical representation, called
probabilistic cause-effect diagram, was designed [7]. The experience of applying
DPPI manually to a real Web-based software project indicated its feasibility and pro-
vided insights into the required tool support [9]. During this experience DPPI's prob-
abilistic cause-effect diagram supported the identification of the main defect causes
efficiently, motivating further investigation.

In this paper we extended this research by presenting the computational framework
built to support DPPI’s systematic application. This framework automates the pro-
posed DCA feedback cycle, by establishing and maintaining the Bayesian learning
cases (relations of causes to defect types, obtained as a result of each DCA event),
without requiring additional effort, and generating the probabilistic cause-effect dia-
gram based on the Bayesian diagnostic inference results for a given defect type.

Additionally, the benefits of using such probabilistic cause-effect diagrams during
DCA meetings to support the identification of the causes were evaluated through an
experimental study conducted on a real problem with software professionals. The
preliminary results indicated benefits regarding both, effectiveness and effort. More-
over, the study’s design reduced the effect of confounding factors such as the human
influence and the learning bias. However, we are aware that the specific context for
which the study was conducted and the limited amount of subjects are threats to the
study’s external and conclusion validities. Therefore, despite the benefits observed in
our experimental study results, we are aware that further investigation is needed.

246 M. Kalinowski, E. Mendes, and G.H. Travassos

Acknowledgments. We would like to thank David N. Card for his contributions to
our research. We would also like to Lucas Paes for his software implementation ef-
forts to get the framework ready and functional. And finally, thanks to CAPES,
CNPq, the subjects involved in the experimental study, and the COPPETEC Founda-
tion, without their support this paper would not have been possible.

References

1. Card, D.N.: Defect Causal Analysis Drives Down Error Rates. IEEE Software 10(4), 98–
99 (1993)

2. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with Defect Preven-
tion. IBM Systems Journal 29(1), 4–32 (1990)

3. Dangerfield, O., Ambardekar, P., Paluzzi, P., Card, D., Giblin, D.: Defect Causal Analysis:
A Report from the Field. In: Proceedings of International Conference of Software Quality,
American Society for Quality Control (1992)

4. Jalote, P., Agrawal, N.: Using Defect Analysis Feedback for Improving Quality and Pro-
ductivity in Iterative Software Development. In: 3rd ICICT, Cairo, pp. 701–713 (2005)

5. Card, D.N.: Defect Analysis: Basic Techniques for Management and Learning. In: Ad-
vances in Computers, vol. 65, ch. 7, pp. 259–295 (2005)

6. Kalinowski, M., Travassos, G.H., Card, D.N.: Guidance for Efficiently Implementing De-
fect Causal Analysis. In: VII Brazilian Symposium on Software Quality (SBQS), Flori-
anópolis, Brazil (2008)

7. Kalinowski, M., Travassos, G.H., Card, D.N.: Towards a Defect Prevention Based Process
Improvement Approach. In: 34th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA 2008), Parma, Italy, pp. 199–206 (2008)

8. Ishikawa, K.: Guide to Quality Control. Asian Productivity Organization, Tokyo (1976)
9. Kalinowski, M., Mendes, E., Card, D.N., Travassos, G.H.: Applying DPPI: A defect causal

analysis approach using bayesian networks. In: Ali Babar, M., Vierimaa, M., Oivo, M.
(eds.) PROFES 2010. LNCS, vol. 6156, pp. 92–106. Springer, Heidelberg (2010)

10. SEI: CMMI for Development (CMMI-DEV), Version 1.3. CMU/SEI-2010. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University (2010)

11. Fagan, M.E.: Design and Code Inspection to Reduce Errors in Program Development. IBM
Systems Journal 15(3), 182–211 (1976)

12. Pearl, J.: Causality Reasoning, Models and Inference. Cambridge University Press, Cam-
bridge (2000)

13. Hong, G., Xie, M., Shanmugan, P.: A Statistical Method for Controlling Software Defect
Detection Process. Computers and Industrial Engineering 37(1-2), 137–140 (1999)

14. Kalinowski, M., Travassos, G.H.: A Computational Framework for Supporting Software
Inspections. In: Int. Conf. on Automated Soft. Eng. (ASE 2004), Linz, Austria, pp. 46–55
(2004)

15. Spínola, R.O., Kalinowski, M., Travassos, G.H.: Uma Infra-Estrutura para Integração de
Ferramentas CASE (in portuguese). In: XVIII Brazilian Symposium on Software Engi-
neering, Brasilia, Brazil, pp. 147–162 (2004)

16. WEKA: WEKA - Open Source Machine Learning Software in Java (2011),
http://www.cs.waikato.ac.nz/ml/weka/ (last accessed at February 15, 2011)

17. Shull, F.: Developing Techniques for Using Software Documents: A Series of Empirical
Studies. Ph.D. thesis, University of Maryland, College Park (1998)

18. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-
tion in Software Engineering – An Introduction. Kluwer Academic Publishers, Dordrecht
(2000)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 247–261, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Genetic Algorithm to Configure Support Vector
Machines for Predicting Fault-Prone Components

Sergio Di Martino1, Filomena Ferrucci2, Carmine Gravino2, and Federica Sarro2

1 University of Napoli “Federico II” Via Cinthia, 80126 Napoli, Italy
sergio.dimartino@unina.it

2 University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
{fferrucci,gravino,fsarro}@unisa.it

Abstract. In some studies, Support Vector Machines (SVMs) have been turned
out to be promising for predicting fault-prone software components. Neverthe-
less, the performance of the method depends on the setting of some parameters.
To address this issue, we propose the use of a Genetic Algorithm (GA) to
search for a suitable configuration of SVMs parameters that allows us to obtain
optimal prediction performance. The approach has been assessed carrying out
an empirical analysis based on jEdit data from the PROMISE repository. We
analyzed both the inter- and the intra-release performance of the proposed
method. As benchmarks we exploited SVMs with Grid-search and several other
machine learning techniques. The results show that the proposed approach
let us to obtain an improvement of the performance with an increasing of the
Recall measure without worsening the Precision one. This behavior was espe-
cially remarkable for the inter-release use with respect to the other prediction
techniques.

Keywords: Fault prediction, Support Vector Machines, Genetic Algorithm.

1 Introduction

Software testing is one of the most expensive phases of the software development life
cycle and at the same time it is very critical for the quality of a product. Thus, it is
valuable for the competitiveness of a software company to have tools able to better
support this phase. A huge amount of research in Software Engineering has been
devoted to improve the efficiency of testing. Among these, considerable efforts have
been aimed towards the definition of techniques able to predict the components of a
software system that more likely will contain faults (e.g., [8, 13, 18, 19, 23, 26]). The
rationale is that, once identified these potentially defective components, project man-
agers can better decide how allocate resources to test the system concentrating their
testing efforts to fault-prone components. As a result, the reliability, the quality, and
the cost/effectiveness of the software product can be improved.

Usually the approaches for predicting fault-prone components exploit statistical
models able to relate some software structural metrics with the probability of the
presence of faults. Typical employed metrics are the Lines of Code (LOCs), the Hal-
stead measures [15], or the Chidamber and Kemerer (CK) metrics for Object-Oriented

248 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

systems [7]. Among the machine learning techniques, Neural Networks, Bayesian
Networks, Logistic Regression, and Decision Tree algorithm C4.5 are widely used
[1, 8, 11, 17, 25, 29].

Many efforts have been devoted to understand what are the most explicative met-
rics for the phenomenon at the hand, and to tailor machine-learning techniques in
order to provide more accurate identification of the defective components (e.g., [1]).
In this context, some studies have reported a good performance of Support Vector
Machines (SVMs) to predict fault-prone components (see e.g., [8, 12]).

SVMs are supervised learning methods that can be applied to classification tasks;
i.e., given a set of data, each marked as belonging to one of two groups, a model is
constructed to predict whether a new item falls into one group or the other. SVMs
have turned to be a powerful tool in several contexts. Nevertheless, the application of
the technique is not straightforward since some parameters must be carefully set to get
more accurate classifications. Moreover, the suitable values of such parameters de-
pend on the characteristics of the dataset, thus no rule of thumb can be defined, but a
search technique has to be employed. The most of the studies presented in the litera-
ture adopts a “Grid-search” [6] approach, whose grain is very coarse.

To overcome these limitations, in this paper we propose a solution for the identifi-
cation of error-prone components, based on the combination of a Genetic Algorithm
(GA) and SVMs. In particular, a GA is exploited to search for a suitable SVM pa-
rameter setting exploiting a fitness function. Each criterion that is used to determine
the performance of fault prediction methods can be used as fitness function.

The proposed approach has been assessed by an empirical analysis meant to verify
the effectiveness of the approach to configure SVMs. As datasets, we have employed
data on jEdit, a well-known text editor written in Java, whose information in terms of
metrics and faults are available in the PROMISE database [24] for different releases.
This has allowed us to analyze both the inter- and the intra-release performance of the
method. In particular, we used a 10 fold cross-validation for the intra-release analyses,
and a hold-out validation for an inter-release assessment, thus replicating with the
latter validation a situation that typically arises in real software testing context, where
data from the former releases are exploited to train the model that is used to predict
faults for a new release. As benchmarks we employed SVMs in combination with the
use of Grid-search for parameter selection [6] and six other widely used machine
learning techniques, namely Logistic Regression, Decision Tree Algorithm C4.5,
Naïve Bayes, Multi-Layer Perceptrons, K-Nearest Neighbor, and Random Forest. As
measures to compare performance, we have employed Accuracy, Precision, Recall,
and F-Measure. All these measures were also experimented as fitness function of GA.

The remainder of the paper is structured as follows: in Section 2 we describe the
proposed approach reporting the main concepts of SVMs and GA and illustrating
the key aspects of the defined GA. Section 3 is devoted to present the planning of the
empirical analysis, in terms of the investigated research goals, the employed datasets,
and the adopted validation method and evaluation criteria. In Section 4 we report and
discuss the results, while in Section 5 we analyze the threats to the validity of the
empirical study. A review of the related work is presented in Section 6, while some
final remarks conclude the paper.

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 249

2 Support Vector Machines and Genetic Algorithms

In the following, we provide a brief description of Support Vector Machines and
Genetic Algorithms, and how we tailored a Genetic Algorithm to configure Support
Vector Machines.

2.1 Support Vector Machines

Support Vector Machines (SVMs) are a classification technique developed by Vapnik
at the end of ’60s [28, 29]. Since then the technique has been deeply improved, being
applied in many different contexts. SVMs are known as maximum-margin classifiers,
since they find the optimal hyperplane between two classes, defined by a number of
support vectors [13]. The well-known generalization feature of the technique is
mainly due to the introduction of a penalty factor, named C, that allows us to prevent
the effects of outliers by permitting a certain amount of misclassification errors.

Although the original technique was able to provide only linear classification,
thanks to the use of the kernel trick, SVMs can handle also non-linear problems. In-
deed, in this case a kernel function is used to implicitly map the data points into a
higher-dimensional feature space. Consequently, every dot product is replaced by the
nonlinear kernel function, allowing the technique to find the maximum-margin hyper-
plane in a transformed, higher dimensional space. The rationale is that data is more
likely to be linearly separable in the higher feature space [16]. A lot of kernel func-
tions have been proposed in the literature. Among them, the ones based on Radial
Basis Functions (RBF) are widely employed. In this study we decided to employ the
RBF kernel since it was previously used in defect prediction context [13, 26, 27] and
usually yields better performance than other kernels [5, 16].

When SVM is used with the RBF kernel, two parameters, C and γ, have to be set
by the user. The selection of appropriate values for these parameters is crucial to ob-
tain good classification performance. As described before, C is the penalty factor for
misclassified points. If it is too large, a higher penalty for non-separable points is
added, leading to store too many support vectors and thus over fit. On the other hand,
if C is too small, an underfitting can occur. The γ parameter specifies the radius of the
RBF, also having a strong impact on the accuracy.

A suitable combination of C and γ is often selected by a Grid-search with exponen-
tially growing sequences of values, as done in LibSVM [6], one of the most em-
ployed, freely available library for SVMs. However, this approach has a twofold
problem: 1) it has a very coarse grain, and thus it is likely to miss optimal values; 2)
always the same couples of values for C and γ are explored, without taking into ac-
count the problem at the hand. In other contexts, the use of some search-based ap-
proaches [16] has been investigated to address the problem. For instance, in [5] Tabu
Search (TS) has been employed to configure Support Vector Regression (SVR), i.e.,
the regression version of SVM, for software development effort estimation. TS is a
meta-heuristic relying on adaptive memory and responsive exploration of the search
space that has been used to address several optimization problems [10]. The results of
the case study presented in [5] revealed that TS was able to suitably set the parameters

250 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

of SVR. In this paper, to configure SVMs for fault prediction we investigate the use
of another search-based approach, namely a Genetic Algorithm. In the next subsection
we detail the approach.

2.2 A Genetic Algorithm to Configure SVMs

Genetic Algorithms [11] belong to the family of evolutionary algorithms that, inspired
by the theory of natural evolution, simulate the evolution of species emphasising the
law of survival of the strongest to solve, or approximately solve, optimisation prob-
lems. The idea of exploiting this method to configure SVMs for fault prediction is
based on the observation that the setting of SVMs can be formulated as an optimisa-
tion problem. As a matter of fact, among the possible configurations (solutions), we
have to identify the one which leads to the optimal SVMs performance.

A typical Genetic Algorithm (GA) creates consecutive populations of individuals
(i.e., chromosomes), considered as feasible solutions for a given problem, to search
for a solution which gives the best approximation of the optimum for the problem
under investigation. To this end, a fitness function is used to evaluate the goodness
(i.e., fitness) of the chromosomes and genetic operators based on selection and repro-
duction are employed to create new populations (i.e., generations). Despite of a num-
ber of variations, the elementary process of a GA is the follows: (i) first a random
initial population, i.e., a set of chromosomes, is generated; (ii) then, new individuals
(i.e., offspring) are created by applying genetic operators (i.e., crossover and muta-
tion) and a selection based on individual’s fitness value is applied to determine who
will survive among the offspring and their parents; (iii) the second step is repeated
until either the fitness of the best solution has converged to the optimal value or if the
optimal is not knew until a certain number of generations have been made. The indi-
vidual that gives the best solution in the final population is taken in order to define the
best approximation to the optimum for the problem under investigation. The analysis
of this process suggests that the following design choices have to be made for tailor-
ing GA to a given optimisation problem [11]:

1. defining the chromosome for representing a solution (i.e., solution encoding)
and the number of initial solutions (i.e., population size);

2. choosing the criterion (i.e., fitness function) to measure the goodness of a
chromosome;

3. defining the combination of genetic operators to explore the search space;
4. defining the stopping criteria.

In the following we provide the details regarding the choices we made for points 1-4
to design a GA for configuring SVMs. Concerning the solution encoding, since a
solution has to represent an SVM configuration, the corresponding chromosome is
composed by two genes, i.e., one for each SVM parameter, and the values for the
genes are selected in the ranges [0.01, 32000] and [1.0E-6, 8] for the genes represent-
ing C and γ, respectively. These ranges are the same adopted in the Grid-search in-
cluded in LibSVM [6]. The initial population is composed by 100 chromosomes that
are created assigning random values to each gene. To assign the fitness value, the
goodness of chromosomes is evaluated by running SVMs with the configuration

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 251

represented by each chromosome and employing as fitness function some widely used
performance measures (i.e., Accuracy, F-measure, Precision, and Recall) which are
described in section 3.3. As for the genetic operators, we employed a single point
crossover which combines two individuals (i.e., parents) to form a new individual by
randomly selecting a point of cut and swapping all genes beyond that point in either
parent. Concerning the mutation operator, it selects a random gene of the chromo-
some and randomly changes the associated value. Crossover and mutation rates are
fixed to 0.5 and 0.1, respectively. To determine the individuals that are included in
the next generation (i.e., survivals) we employed the tournament selector, where only
the best n solutions are copied straight into the next generation.

The evolutionary process is terminated according two stopping criteria, i.e. after
300 generations or if the fitness value of the best solution does not change after 30
generations.

3 Case Study Planning

In this section, we present the design of the empirical study we performed to get an
insight on the use of the proposed GA to configure SVMs for fault prediction. In
particular, to verify the effectiveness of the combination of GA and SVMs described
in the previous section, we compared the obtained predictions with those achieved
using SVMs configured with the Grid-search provided by LIBSVM [6]. Since the
choice of the fitness function can play a crucial role in the application of a GA we
have also experimented the impact of using different fitness functions. Furthermore,
to understand the actual effectiveness of the proposed approach with respect to other
methods we have also investigated some techniques available in the Weka tool [14],
i.e., Logistic Regression (LR), Decision Tree Algorithm C4.5 (C4.5), Naïve Bayes
(NB), Multi-Layer Perceptrons (MLP), K-Nearest Neighbor (KNN), and Random
Forest (RF).

To perform this analysis we employed two datasets, namely jEdit: 4-0-final_4-2-
final (in the following jE1) and jEdit: 4-2-final_4-3-pre12 (in the following jE2)1,
obtained from different releases of the same software (jEdit) and included in the
PROMISE repository [24]. In particular, we carried out two kinds of analysis: intra-
release and inter-release similarly to [30].

Thus, the research questions of our study can be outlined as follows:

- RQ1: Can the choice of the fitness function affect the prediction performance
of the combination of GA and SVMs?

- RQ2: Is the proposed GA able to effectively configure SVMs parameters for
fault prediction?

- RQ3: Is the fault prediction performance of the combination of GA and SVMs
superior to the ones obtained by other techniques?

- RQ4: Are there differences in the performance of the considered techniques
for intra- and inter-release fault prediction?

1 jE1 and jE2 are available at http://promisedata.org/?p=74 and http://promisedata.org/?p=73,

respectively.

252 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

3.1 Dataset

To carry out the empirical evaluation of the proposed technique, we selected two
datasets from the PROMISE repository, which contains data made publicly available
in order to encourage repeatable, verifiable, refutable, and/or improvable predictive
models of software engineering [24].

The datasets we employed are related to versions 4.0, 4.2 and 4.3 of the jEdit sys-
tem, a well-known text editor written in Java. They contain data for the Chidamber
and Kemerer (CK) metrics [7], a suite of six complexity metrics widely employed to
measure product attributes of Object Oriented software systems and described in
Table 1 together with Number of Public Methods and Number of Lines of Code.

Metrics data were computed by exploiting Understand IDE, a tool able to measure
many characteristics of a software application. As for the fault data, they were ob-
tained from SVN log files (where "true" means fault existence and "false" means fault
nonexistence) [24]. In particular, for dataset jE1 the metric data were computed based
on jEdit release 4-0-final, while fault data were extracted between releases 4-0-final
and 4-2-final. Similarly, for dataset jE2 the metrics data were computed based on
jEdit release 4-2-final, while fault data were extracted between releases 4-2-final and
4-3-pre12. The descriptive statistics of the metrics and fault data for the employed
datasets are reported in Tables 2 and 3.

3.2 Validation Method

To assess the effectiveness of the fault predictions obtained using the techniques de-
scribed herein, we have employed a k-fold cross validation for the intra-release analy-
ses and a hold-out validation for the inter-release analysis.

Table 1. Metrics of the employed datasets

Name Definition
Weighted Methods per
Class (WMC)

The WMC metric represents the number of methods in the class
(assuming unity weights for all methods).

Depth Inheritance Tree
(DIT)

The DIT metric provides for each class a measure of the
inheritance levels from the object hierarchy top.

Number Of Children
(NOC)

The NOC metric measures the number of immediate
descendants of the class.

Coupling Between
Object Classes (CBO)

The CBO metric represents the number of classes coupled to a
given class.

Response For Class
(RFC)

The RCF metric measures the number of different methods that
can be executed when an object of that class receives a message.

Lack of Cohesion
Metric (LCOM)

The LCOM metric counts the sets of methods in a class that are
not related through the sharing of some of the class fields.

Number of Public
Methods (NPM)

The NPM metric counts all the methods in a class that are
declared as public. The metric is known also as Class Interface
Size (CIS).

Lines Of Code (LOC) The LOC metric is the number of instructions in each method of
the class.

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 253

Table 2. Descriptive statistics for the employed datasets

Dataset Variable Min Max St.dev Mean
jE1 WMC 0 407 31.2 11.73
 DIT 0 7 1.98 2.50
 NOC 0 35 3.1 0.72
 CBO 0 105 14.13 12.64
 RFC 0 843 269.59 174.98
 LCOM 0 100 33.52 46.24
 NPM 0 193 17.12 7.78
 LOC 3 6191 529.66 206.21
jE2 WMC 0 351 26.46 11.66
 DIT 0 8 2.01 2.4
 NOC 0 38 3.04 0.71
 CBO 0 125 14.34 13.46
 RFC 0 862 268.58 169.98
 LCOM 0 100 33.66 48.86
 NPM 0 214 16.60 7.68
 LOC 3 5317 478.13 225.28

Table 3. Existence of faults

Dataset # Elements with No Faults # Elements with Faults
jE1 140 134
jE2 165 204

Cross validation is widely used in the literature to validate prediction models when

dealing with medium/small datasets (see e.g., [4]). In particular, the k-fold cross vali-
dation is applied by partitioning each original dataset into k training sets, for model
building, and test sets, for model evaluation. This is done in order to avoid optimistic
predictions [20]. The errors from applying a given prediction technique are summa-
rized using several performance measures (described in the following). In our study,
we applied a 10-fold cross validation on the selected datasets, thus obtaining k=10
randomly test sets, and then for each of them, the remaining observations formed the
training set to build the prediction model. As for the hold-out validation we have
employed the first dataset, i.e., jE1, as training set and the second dataset, i.e., jE2, as
test set.

3.3 Evaluation Criteria

Concerning the evaluation of the predictions obtained with the analyzed methods, we
have used the following widely employed performance measures: Accuracy, Recall,
Precision, and F-measure [1, 3]. In order to calculate them, we have exploited the con-
cepts of True Positive (TP), False Negative (FN), False Positive (FP), and True Nega-
tive (TN). This classification is represented in the Confusion Matrix reported in Table 4.

Accuracy is defined as the ratio between the number of components correctly pre-
dicted (i.e., classified as TP and TN) and the total number of components (i.e., the
sum of TP, TN, FP, and FN).

254 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

Table 4. The confusion Matrix

 Predicted
 Defective Non Defective

Defective True Positive False Negative
A

ct
ua

l

Non Defective False Positive True Negative

Precision is defined as the ratio between the number of components classified as

TP and the number of components classified as TP or FP.
Recall is defined as the ratio between the number of components classified as TP

and the number of components classified as TP or FN.
This means that Precision concerns the correctness of the responses provided by

the method, while the completeness of the responses is measured by employing Re-
call. It is easily understandable that in the context of fault prediction, the consequence
of low Recall is far more important than low Precision [22]. Thus, it is fundamental to
employ a technique able to maximize Recall [30]. Indeed, in this way, the technique is
able to detect all the potential defective components, even at the cost of a lower Preci-
sion, in order to avoid that potential defective components are missed. In this sce-
nario, a subsequent manual check is responsible of deleting false positives inserted in
this step. On the other hand, having a too low Precision requires an excessive post-
processing, making the technique useless. A measure that provides an indication of a
balance between correctness and completeness is the harmonic mean of Precision and
Recall (or F-measure), defined as:

recallprecision

recallprecision
measureF

+
=− *

*2

(1)

A key advantage of GA is that it allows project managers to select the preferred
criterion to drive the search for the prediction model and try to optimize a given per-
formance measure (see e.g., [9, 17]).

4 Results and Discussion

The following subsections present and discuss on the results achieved in the empirical
study.

4.1 Fitness Function Impact and Effectiveness of GA to Configure SVMs

In this section, we consider the first and the second research questions. The results of
the application of the combination of GA and SVMs (GA+SVM in the following) for
the inter- and the intra-release analysis and related to each of the investigated fitness
functions (i.e., Accuracy, Precision, Recall, and F-measure) are reported in Table 5.
These results suggest that the performance of GA+SVM are affected by the specific
fitness function employed. In particular, the best value for each criterion has been
obtained in almost all the cases using such a criterion as fitness function. Moreover,

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 255

there are some fitness functions that pay this with a worsening of the other criteria. In
particular, the fitness function Recall was not able to provide high scores in terms of
Accuracy and Precision. This is an expected result since it is widely recognized that
any attempt to improve Recall is often paid back by a decreasing of Precision because
it gets increasingly harder to be precise as the sample space increases [3]. Neverthe-
less, this phenomenon is not observed for all the fitness functions. Indeed, the best
overall performances on both datasets jE1 and jE2 have been obtained by using F-
measure as fitness function. Indeed, it has allowed us to obtain Recall and Precision
values very close to the best ones. Furthermore, the fitness function F-measure has
also provided the best Accuracy value in the case of the first dataset and a value close
to the best one for the second dataset.

The results for the hold-out validation related to the inter-release assessment are
also reported in Table 5. As expected these results are worse than those achieved by
the intra-release analysis. Nevertheless, similarly to intra-release prediction models,
we can observe that the best overall results were obtained using F-measure as fitness
function. Thus, we can positively answer the research question RQ1 outlined in Sec-
tion 3, i.e., the choice of the fitness function affected the accuracy of the prediction
models built using GA+SVM.

In order to answer the research question RQ2 we compared the results achieved
with GA+SVM with those obtained by applying SVMs configured with Grid-search
of LIBSVM [6] (SVM-Grid in the following). The obtained results are shown in
Table 6 together with the ones obtained with the other considered techniques and
discussed in the next subsection. To facilitate the comparison in Table 6 we have also
reported the results obtained with GA+SVM using F-measure as fitness function
(since it provided the best performance).

The analysis of these results reveals that, for the first dataset, GA+SVM has al-
lowed us to obtain better predictions than SVM-Grid in terms of Accuracy (c.a.,
0.7%), Recall (c.a., 11.2%), and F-measure (c.a., 5%), while it has produced almost
the same results in terms of Precision. With regard to the second dataset, GA+SVM

Table 5. Results using the combination of GA and SVMs with different fitness functions (the
best results are in bold)

Dataset Fitness Results
 function Accuracy Precision Recall F-measure
jE1 Accuracy 0.719 0.677 0.813 0.739
 Precision 0.723 0.704 0.746 0.725
 Recall 0.635 0.582 0.903 0.708
 F-measure 0.741 0.701 0.821 0.756
jE2 Accuracy 0.637 0.610 0.951 0.743
 Precision 0.648 0.635 0.853 0.728
 Recall 0.572 0.564 1 0.721
 F-measure 0.629 0.601 0.980 0.745
jE1&jE2 Accuracy 0.580 0.616 0.637 0.627
(inter-release) Precision 0.588 0.626 0.632 0.629
 Recall 0.591 0.604 0.755 0.671
 F-measure 0.615 0.609 0.848 0.709

256 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

Table 6. Results for the employed prediction techniques

Dataset Technique Results
 Accuracy Precision Recall F-measure
 GA+SVM F-measure 0.741 0.701 0.821 0.756
 SVM-Grid 0.712 0.704 0.709 0.706
jE1 LR 0.715 0.719 0.687 0.715
 C4.5 0.708 0.696 0.716 0.706
 NB 0.693 0.784 0.515 0.622
 MLP 0.701 0.676 0.746 0.709
 KNN 0.723 0.730 0.687 0.708
 RF 0.748 0.721 0.791 0.754
 GA+SVM F-measure 0.629 0.601 0.980 0.745
 SVM-Grid 0.648 0.657 0.754 0.702
jE2 LR 0.634 0.658 0.706 0.681
 C4.5 0.612 0.660 0.618 0.638
 NB 0.531 0.763 0.221 0.342
 MLP 0.607 0.632 0.691 0.660
 KNN 0.661 0.691 0.701 0.696
 RF 0.653 0.673 0.725 0.698
jE1&jE2 GA+SVM F-measure 0.615 0.609 0.848 0.709
(inter-release) SVM-Grid 0.553 0.602 0.564 0.582
 LR 0.561 0.615 0.549 0.580
 C4.5 0.534 0.575 0.598 0.587
 NB 0.501 0.585 0.338 0.429
 MLP 0.542 0.579 0.627 0.602
 KNN 0.537 0.588 0.539 0.563
 RF 0.558 0.596 0.623 0.609

scored better than SVM-Grid for Recall (c.a., 22.6%) and F-measure (c.a., 4.3%),
while it has produced worse results than SVM-Grid for Accuracy (c.a., 1.9) and Preci-
sion (c.a., 0.1%). As for the inter-release prediction, GA+SVM was able to outper-
form SVM-Grid for all the considered measures, with an impressing improvement in
terms of Recall of more than 28%, having at the same time also a slight improvement
in Precision (c.a., 0.7%). Consequently, the F-measure value growth of almost 13%.

The above results suggest that the use of GA to configure SVMs allowed us to
obtain better results than SVM-Grid. This improvement is particularly evident and
significant for Recall and is paid back by a little decrease in the values of Precision
(only for jE2). Moreover, if the project manager is particularly interested in maximiz-
ing Recall also accepting a decrease of Precision, he/she can even exploit Recall as
fitness function.

Thus, we can also positively answer the research question RQ2 outlined in Section 3,
i.e., GA is able to effectively set SVMs configuration parameters for fault prediction.

4.2 Comparison of GA+SVM with other Estimation Techniques and between
Intra- and Inter-release Prediction Performance

In this section, we report the results related to the research questions RQ3 and RQ4
and obtained by comparing the predictions provided by the combination of GA and

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 257

SVMs with the ones achieved by using other classification techniques available in the
Weka tool [14], i.e., LR, C4.5, NB, MLP, KNN, and RF. Preliminarily, we compare
the results obtained with these other techniques and reported in Table 6. We can ob-
serve that the best performance for the intra-release analysis was obtained with RF
while NB provided the best Precision value but also the worst Recall and F-measure
values. Regarding the results for the inter-release analysis, we can observe that the
best Recall and F-measure values were obtained with RF and MLP, while the best
Accuracy and Precision values were achieved with LR and RF. The results also sug-
gest that NB provided the worst Precision, Recall, F-measure, and Accuracy values.

Concerning the comparison between the results we achieved with GA+ SVM and
those obtained using the above techniques we can observe that GA+SVM, exploiting
F-measure as fitness function, allowed us to get the best results in terms of Recall and
F-measure for all the considered experimental settings.

Regarding the results obtained for the inter-release analysis (see Table 6), we can
observe that among the prediction techniques we employed only the predictions ob-
tained with GA+SVM with F-measure are very similar to the ones achieved in the
intra-release assessment. Indeed, the predictions provided by the other techniques are
worse than the ones obtained in the intra-release context. Moreover, also in this case
GA+SVM with F-measure yielded to the best results in terms of Accuracy, Recall,
and F-measure and comparable results in terms of Precision with respect to the other
techniques we employed.

Thus, we can positively answer to research question RQ3, i.e. the predictions ob-
tained by using the combination of GA and SVMs are superior to the ones obtained
by the other techniques. As for RQ4 there are differences in the performance achieved
with intra- and inter-release prediction for all the considered techniques except for
GA+SVM using F-measure as fitness function.

5 Validity Evaluation

Several factors can bias the validity of empirical studies. Here we consider three types
of validity threats: Construct validity, related to the agreement between a theoretical
concept and a specific measuring device or procedure; Conclusion validity, related to
the ability to draw statistically correct conclusions; External validity, related to the
ability to generalise the achieved results. As highlighted by Kitchenham et al.[20], in
order to satisfy construct validity a study has “to establish correct operational meas-
ures for the concepts being studied”. Thus, the choice of the measures and how to
collect them represents the crucial aspects. We tried to mitigate such a threat by
evaluating the employed prediction methods on publicly available datasets from the
PROMISE repository [24], that have been previously used in other empirical studies
(see e.g., [19, 25, 30]). In relation to the conclusion validity, we carefully calculated
the employed performance measures and the obtained data was cross-checked by two
authors. Finally, observe that also the fact of having used open source software
systems could affect the results of the presented study. This means that we cannot
conclude that the results of this study promptly apply to other software development
settings. This could represent an important external validity threat that can be miti-
gated only replicating the study on other datasets. Accordingly, we plan to conduct a
further investigation on commercial software systems.

258 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

6 Related Work

Fault prediction is a very active research field within Software Engineering and many
studies have addressed this key issue using a variety of different methods. Some in-
teresting literature reviews are available in [1, 2]. For sake of space, we limit our
description to the research that employed Support Vector Machines (SVMs) and
Genetic Algorithms (GA) for fault prediction.

SVMs were used in many works together with other classification techniques,
obtaining different results. In [8] SVMs were compared against eight modeling tech-
niques in terms of several performance measures (i.e., Accuracy, Recall, Precision,
and F-measure) using four datasets from the NASA Metrics Data Program Repository
(MDPR) [21]. The results revealed that none of the employed techniques was signifi-
cantly better than the others. On the other hand, Gondra [12] reported that, on the JM1
dataset in the NASA MDPR [21], SVMs significantly outperformed an Artificial
Neural Network, achieving a percentage of correct classifications on the validation set
of 87.4%, versus the 72.61% got by the Artificial Neural Network, thus suggesting
that SVMs could be a promising technique for predicting fault-proneness software
components.

Gray et al. [13] also carried out an empirical study employing SVMs on eleven
NASA datasets but with a different purpose. Indeed, they aimed to analyze the per-
formance of this technique when only static code metrics were used. Moreover, in this
paper a data-preprocessing step was performed including selection of instances and
variables, data normalization, and balancing of faulty and non faulty classes. The
obtained results, evaluated only in terms of Accuracy, showed that SVMs yielded at
an average Accuracy of 70% on the employed datasets. Similarly, Singh et al. [26]
exploited SVMs on the KC1 NASA dataset [21] with the goal to analyze the relation-
ship between the Objected-Oriented metrics given by Chidamber and Kemerer [7] and
fault proneness by means of many indicators, such as Precision, Recall, and Receiver
Operating Characteristic (ROC) analysis. The results revealed that some metrics (i.e.,
CBO, RFC, and SLOC) were significantly related to fault proneness. The authors
replicated the study applying SVMs to jEdit [27], unfortunately, authors did not pro-
vide enough information to replicate the settings of the experiment, neither in terms of
dataset (version, validation, etc.), nor in terms of the SVMs setting employed.

A variation of the regression version of SVMs (namely SVR) for fault prediction
was presented in [18]. Indeed, the authors proposed the use of a Fuzzy SVR (FSVR)
for predicting software fault number and analyzed whether the fuzzification of the
input allowed SVRs to handle unbalanced software metrics datasets. The results ob-
tained employing the MIS and the RSDIMU datasets revealed that FSVR yielded to a
lower Mean Squared Error and higher Accuracy respect to the use of SVR.

As we can observe the majority of the above works employed datasets contained
in the NASA Metrics Data Program Repository [21]. This is a useful database for
fault prediction empirical analyses, but almost all the contained projects are highly
unbalanced, since non-faulty components are many times more than the faulty ones.
As a consequence, the most of the studies about the use of SVMs employed a
random undersampling of the datasets, making impossible for us to replicate the
experimentations or compare the results we achieved in this study. We do not know
other studies that have addressed the problem of configuring SVMs parameters for

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 259

fault prediction: usually the parameter Grid-search feature included in LibSVM has
been employed (e.g., [13, 26]). We recall that this feature represented the baseline
for our experimental study.

The use of a GA for the fault prediction problem is presented in [25], where the au-
thors reported on the results of, the application of GA to dataset jEdit 4.0. Again, no
details at all are provided, either on the employed GA, either on the assessment proto-
col. Moreover, only a cumulative Accuracy of 80.14% is reported, but it is not clear
how it was computed.

Finally, we want to highlight that we applied an intra-release prediction analysis
and an inter-release prediction analysis and employed the same two datasets of the
study presented in [30]. In particular, Watanabe et al. [30] exploited the algorithm
C4.5 of Weka and a 10-fold cross validation. The results we have achieved using C4.5
on dataset jE2 are different from those presented in [30] and maybe this is due to the
different folds employed for the 10-fold cross validation. As expected, the same re-
sults were instead achieved when performing the inter-release prediction analysis. We
observe that also RF was applied in the past on dataset jE1 [19], however the authors
did not declare what implementation of RF they employed and what k they used for
the k-fold cross validation. Nevertheless, the RF results we achieved are very close to
the ones they reported.

7 Conclusions

To improve software quality, it is fundamental to be able to predict defective software
components. To address this issue, in this paper we have presented an approach that
exploits a Genetic Algorithm (GA) to configure Support Vector Machines (SVMs) for
predicting fault-prone software components, on the basis of some structural metrics.
In this way, it is possible to fully exploit the potentiality of SVMs, whose perform-
ances depend on the configuration of parameters.

The proposed approach has been assessed in an empirical analysis, based on the
jEdit data from the PROMISE repository. In particular, we have performed an inter-
and an intra-release assessment of the proposal. The latter setting is the most realistic
one, since it replicates the typical software development scenario, where data from
previous releases are used to predict fault components in a newer version of the soft-
ware under development. As benchmarks we exploited SVMs with the Grid search
provided by LibSVM, and six other techniques frequently used in the context of fault
prediction, namely Logistic Regression, Decision Tree Algorithm C4.5, Naïve Bayes,
Multi-Layer Perceptrons, K-Nearest Neighbor, and Random Forest.

With respect to the four research questions addressed in the empirical analysis, the
results reported in the paper show that:

- the prediction performance of GA+SVM is affected by the choice of the fit-
ness function. The approach represents a flexible tool to support the strategies
of project managers that might prefer to maximize a specific performance
criterion (for instance Recall rather than Precision);

- GA is able to effectively set SVMs parameters in order to improve fault
predictions;

260 S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro

- the fault predictions performance of GA + SVM was superior to the ones ob-
tained by the other techniques;

- the improvement of GA+SVM with respect to the other investigated prediction
techniques was especially remarkable for the inter-release use.

As we have mentioned in Section 5, we cannot promptly apply these results to other
software systems different from the ones we employed. To address this issue, in the
future we intend to replicate the performed analysis using other datasets. This is the
only way to get better confidence on the generalizability of the results.

References

1. Arisholm, E., Briand, L., Johannessen, B.: Data mining techniques, candidate measures
and evaluation methods for building practically useful fault-proneness prediction models.
Simula Research Laboratory Technical Report, 2008-06

2. Arisholm, E., Briand, L., Johannessen, B.: A systematic and comprehensive investigation
of methods to build and evaluate fault prediction models. Journal of Systems and Soft-
ware 83, 2–17 (2010)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Read-
ing (1999)

4. Briand, L., Langley, T., Wiekzorek, I.: A Replicated Assessment and Comparison of
Common Software Cost Modeling Techniques. In: Procs of the International Conference
on Software Engineering, pp. 377–386. IEEE press, Los Alamitos (2000)

5. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How Effec-
tive is Tabu Search to Configure Support Vector Regression for Effort Estimation? In:
Procs of the International Conference on Predictive Models in Software Engineering, p. 4
(2010)

6. Chang, C.C., Lin, C.-J.: LIBSVM: a library for support vector machines, (2001), Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

8. Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector
machines. Journal of Systems and Software 81(5), 649–660 (2008)

9. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Genetic Programming for Effort Estima-
tion: an Analysis of the Impact of Different Fitness Functions. In: Procs of the 2nd Interna-
tional Symposium on Search Based Software Engineering, pp. 89–98. IEEE Computer So-
ciety, Los Alamitos (2010)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
11. Goldberg, E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-

son-Wesley, Reading (1989)
12. Gondra, I.: Applying machine learning to software fault-proneness prediction. Journal of

Systems and Software 81, 186–195 (2008)
13. Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Using the Support Vector Ma-

chine as a Classification Method for Software Defect Prediction with Static Code Metrics.
In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds.) EANN 2009.
Communications in Computer and Information Science, vol. 43, pp. 223–234. Springer,
Heidelberg (2009)

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

15. Halstead, M.H.: Elements of Software Science. Elsevier North-Holland, New York (1977)

 A Genetic Algorithm to Configure SVMs for Predicting Fault-Prone Components 261

16. Harman, M., Jones, B.F.: Search based software engineering. Information and Software
Technology 43(14), 833–839 (2001)

17. Harman, M., Clark, J.A.: Metrics Are Fitness Functions Too. IEEE Metrics, 58–69 (2004)
18. Yan, Z., Chen, X., Guo, P.: Software Defect Prediction Using Fuzzy Support Vector Re-

gression. In: Procs of the International Symposium on Neural Networks, pp. 17–24 (2010)
19. Kaur, A., Malhotra, R.: Application of Random Forest in Predicting Fault-Prone Classes.

In: Procs of the International Conference on Advanced Computer Theory and Engineering
20. Kitchenham, B., Pickard, L., Peeger, S.: Case studies for method and tool evaluation. IEEE

Software 12(4), 52–62 (1995)
21. NASA – Metrics data program, http://mdp.ivv.nasa.gov/
22. Ostrand, T.J., Weyuker, E.J.: How to measure success of fault prediction models. In: Procs

of the Fourth Workshop on Software Quality Assurance, pp. 25–30 (2007)
23. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the Location and Number of Faults in

Large Software Systems. IEEE Trans. Software Eng. 31(4), 340–355 (2005)
24. PROMISE Repository of empirical software engineering data,

http://promisedata.org
25. Sandhu, P.S., Dhiman, S.K., Goyal, A.: A Genetic Algorithm Based Classification Ap-

proach for Finding Fault Prone Classes. World Academy of Science, Engineering and
Technology 60 (2009)

26. Singh, Y., Kaur, A., Malhorta, R.: Software Fault Proneness prediction Using Support
Vector Machines. In: Procs of the World Congress on Engineering, vol. I, pp. 240–245
(2009)

27. Singh, Y., Kaur, A., Malhorta, R.: Application of Support Vector Machine to Predict Fault
Prone Classes. ACM SIGSOFT Software Engineering Notes 34(1) (2009)

28. Vapnik, V., Chervonenkis, A.Y.: Theory of Pattern Recognition (1974) (in Russian)
29. Vapnik, V.: The nature of Statistical Learning Theory. Springer, Heidelberg (1995)
30. Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a Fault Prediction Model to Allow Inter

Language Reuse. In: Procs of the International Conference on Predictive Models in
Software Engineering, pp. 19–24 (2008)

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 262–275, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Systematic Approach to Requirements Engineering
Process Improvement in Small and Medium Enterprises:

An Exploratory Study

Edward Kabaale1 and Josephine Nabukenya2

1 Makerere University Business School, P.O.Box 1337, Kampala, Uganda
2 School of Computing and Informatics Technology, Makerere University, P.O.Box 7062,

Kampala, Uganda
ekabaale@mubs.ac.ug, josephine@cit.mak.ac.ug

Abstract. Requirements Engineering (RE) studies have demonstrated that re-
quirements errors affect the quality of software developed, making software
requirements critical determinants of software quality. Requirements Engineer-
ing Process Improvement (REPI) models have been provided by different
authors to improve the RE process. However, little success has been achieved in
Small and Medium Enterprises (SMEs) software companies especially in transi-
tional countries such as Uganda. This study reports on an exploratory study
which provides insights into current RE practices in four Ugandan SME
software companies, critical success factors and challenges that impede REPI.
As a result a Systematic Approach to REPI has been designed following the de-
sign science approach. It provides guidelines and steps for SMEs in improving
their RE processes.

Keywords: Requirements Engineering, Process Improvement, Software
Process Improvement.

1 Introduction

Fast changing technology coupled with increased competition is placing a lot of pres-
sure on software development process [9]. One of the most crucial parts of the soft-
ware development process is requirements engineering (RE); and the process of
developing new software products always starts with some kind of needs or wishes.
The wishes and needs can be of help in finding the requirements that describe the
properties and functions of the new software product. Discovering, documenting and
maintaining requirements are often described as requirements engineering [31].
Effective RE lies at the heart of an organization’s ability to produce software products
that can meet the needs of the customers yet keeping pace with the rising wave of
complexity [9]. The software industry in most countries is composed of Small and
Medium Enterprises (SMEs) [18]. This study focused on SMEs mainly because they
form the biggest number of software companies in developing countries and yet they
produce important products for their clients [24]. Because SMEs are small in nature,
then process improvement can easily be achieved through SMEs’ flexibility, fast

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 263

reaction time and enhanced communication between members. In the Ugandan con-
text a Small Enterprise is defined “as an enterprise employing maximum 50 people,
annual sales/revenue turnover of maximum Ugandan Shillings 360 million and total
assets of maximum Ugandan Shillings 360 million”; while a Medium Enterprise is
defined as an “enterprise employing more than 50 people, annual sales/revenue
turnover of more than Ugandan shillings 360 million and total assets of more than
Ugandan Shillings 360 million” [29]. In the software industry, a small organization is
defined as one with fewer than 50 software developers and a small project is one with
fewer than 20 developers [18]. RE is a very important phase of the software process
as errors at this phase inevitably lead to later problems in the system design and im-
plementation [15]. RE can lead to better quality in software and systems development
processes [16, 26]. It’s only with efficient RE that the development process can be
controlled and directed in terms of appropriateness and cost-effectiveness of the solu-
tion produced [9]. The main aim of a RE process is to come up with a set of neces-
sary, verifiable and attainable requirements, which are acceptable to all the relevant
stakeholders [26, 19].

The need to improve the RE process has been recognized for some time now and
RE community has witnessed the emergency of models and standards for Require-
ments Engineering Process Improvement (REPI) and assessment. For example, the
Good practice guide [27] gives basic guidelines on how to improve the RE process.
However, even when the framework has been useful, it was intended for safety-
critical domain project, hence lacking adaptation to different domains [30]. It is also
too general and complex for SME software companies. The Flexible and Pragmatic
RE framework for SMEs [22] aimed at providing a framework for RE improvement in
SMEs that is more adaptable to support more domains and improve support for small,
incremental improvements of the RE process. The Requirements-Capability Maturity
Model [1] suggests key requirements practices within a maturity framework. Its main
objective is to guide software practitioners to relate processes to goals in order to
prioritize their requirements process improvement activities. However little progress
has been registered in SMEs using these models in improving their RE process as
witnessed by the continued failures in these companies

To this end there is a need for SMEs to access a systematic and reliable approach
to REPI. In other words, what are the challenges for REPI in SME software compa-
nies, and how can these be used to derive recommendations and requirements that can
be used to design a systematic approach to REPI in SME software companies?
[33] define Systematic process improvement as a goal-oriented measurement and
controlled way of introducing process change, with predictable outcome in terms of
quality, time and productivity

Thus, to put our research in context, we looked at the state of art of SMEs in sec-
tion 2. In section 3, we describe the research approach followed in order to undertake
the exploratory study and later the design of the systematic approach. . In section 4,
we describe the exploratory study in which the current practices with respect to REPI
in Ugandan SME software companies were investigated and analyzed. We also pre-
sent the derived requirements that lead to the design of the actual systematic approach
to REPI for SMEs in section 5, and finally provide a way forward on future prospects
of this research.

264 E. Kabaale and J. Nabukenya

2 State of the Art

There is scanty literature about RE processes in SMEs; this is because they posse
unique characteristics that originate from their make and ownership. For example [14]
argues that requirements practices in SMEs are dependent on individuals implement-
ing them. SMEs have got specific problems due to their size and the budget con-
straints under which they operate, their maturity level in software engineering is very
low, little resources to consider quality and process improvements, very few SMEs
document their requirements and there are no clear ways of RE process verification
and validation [10]. [28] state that SMEs do not emphasis training, have pressing
deadlines and so little time is spared for process improvement, SMEs have a simpli-
fied software process lifecycle where emphasis is put on development and testing
only, SMEs also lack control procedures, project management and planning skills as
well as risk management. [18] argues that SMEs cannot measure the process progress
and benefits that accrue from such processes.

Many SME software companies are interested in improving their RE processes be-
cause of their confidence that RE can be the key to developing successful software
systems [18]. However, SMEs find it difficult to implement these process improve-
ments because they cannot bear the cost of implementing these REPIs as well as the
limited resources and the strict time constraints in which they operate [18]. A survey
of twelve SMEs in Finland reveal that SMEs management are not aware of the avail-
able REPI methods but there is desire to start them [20]. [22] argues that where
SMEs have in place RE process, it’s always very difficult to improve such practices
because it has an economic implication to the organization. [10] found out that the
most relevant topics to SMEs were requirements modeling, improvement of require-
ments document, inspections, and tools. In [16] field study, seven key factors were
identified as critical to a successful RE process improvement effort and these are
package consideration, managing the level of detail of functional process models,
examining the current system, user participation, managing uncertainty, benefits of
case tools and project management capability . The driving factors in SMEs for RE
process improvements are the problems with testing and ISO 9001 certification as
well as competing for big contracts with bigger software companies and yet the prob-
lems hindering effective RE process improvement in SMEs are the small budgets and
tight project schedules. Demonstrated benefits of RE process improvement like the
ones in [2] are a fundamental step towards encouraging SMEs to start RE process
improvements [10].

Software development processes in Ugandan SMEs are still low with a few cases
elaborating the RE processes. Therefore the situation and challenges facing Ugandan
SMEs is not different from that discussed above. But perhaps it may even be worse in
some cases.

3 Research Approach

In order to understand the REPI current practices in Ugandan SMEs from which the
systematic approach to REPI was designed; we followed the design science (DS)
approach. Design science is fundamentally a problem solving paradigm and therefore

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 265

seeks to produce constructs (vocabulary and symbols), models (abstractions and rep-
resentations), methods (algorithms and practices), and instantiations [8]. The created
artifacts extend the boundaries of human problem solving within organizational capa-
bilities [8] and are tangible recommendations that enable IT researchers to tackle
the problems inborn in developing and deploying information systems within organi-
zations. We chose design science research method because of its ability in solving
practical problems that have besieged the Information system arena for some time by
creating successfully IT artifacts [23]. To achieve our research goal, we followed
the design science research process model suggested by [23]. This model was used
because it provides a nominal design science research process with a template for
conducting applicable and precise design science research with six clear steps and it
was tested and verified using RE case studies, the subject matter of this research [23].
The suggested six steps for conducting and evaluating good design-science research
that were used in this research are;

Problem identification and motivation; The problem in this research was the lack
of a systematic approach to RE process improvements in SMEs. This is due to the
inadequate RE processes being used. Objectives of a solution; The main objective of
this research was to understand the challenges impeding REPI in SMEs and come up
with requirements from which we developed a systematic approach for improving RE
processes and practices in SMEs. Design and development; in this step a literature
review was conducted and corroborated with data from the field studies in the se-
lected cases. These led to appropriate requirements for the design of the systematic
approach to RE process improvement for SMEs. Demonstration and Testing; We
planned to demonstrate the systematic approach to the selected cases and get their
feedback about the new approach. Evaluation and validation; We planned to evaluate
and validate the systematic approach in the selected cases against recommended de-
sign science value criteria. Questionnaires and interviews will be used in evaluation
and validation of the new approach. Communication; Presentation of findings and the
systematic approach other relevant audiences like SMEs’ management, conferences
and different reports.

Our exploratory study findings and analyses are based on the data collected
through interviews, questionnaires and existing requirements documents. The cases
for this study were purposively selected so as to represent different application do-
mains, experiences in software development and company sizes in Uganda. These
cases are operating in a wide range of application domains and have been in business
between 5 to 10 years which gives them the necessary experience in the RE area. The
respondents were software developers, system analysts, project managers as well as
system administrators. These SMEs employ five to thirty people.

Case 1: Makerere University Business School (Socket works project). This project
aimed at developing an Education Information Management System to be used by the
school. Its key areas included; requirements elicitation, analysis, design and imple-
mentation. It provided respondents in these specific areas of RE. Case 2: Department
of Innovations and Software Development (DISD), Faculty of Computing and Infor-
mation Technology, Makerere University. It focuses on the growth of software
conception, design and development capacity at the Faculty. DISD believes in the
development of local capacity to build and exploit ICT innovations in the Country. It

266 E. Kabaale and J. Nabukenya

is also involved in different external and internal projects ranging from Business
Information Systems to web based systems.

Case 3: Crystal Clear Software Ltd. Its mission is to deliver high quality, user
friendly and tailor made business software for her clients. It is the sole developer of
Loan Performer software. This software is a database for recording and evaluating
microloans. Case 4: Software Factory Ltd. It deals in a range of solutions from Busi-
ness Information Systems to Web Based Systems. RE is one of the areas emphasised
in this SME in order to develop quality software for their clients.

4 Field Study and Analysis of RE Process and Practices in
Ugandan SMEs

The findings of this study are based on the data collected through observations, inter-
views and questionnaires that were issued to the different experts in the area of re-
quirements engineering. The purpose of the interviews was to gain more information
on how practitioners defined and managed requirements in practice as well as the
strengths and weaknesses of the existing RE practices and the challenges they faced in
REPI. Fifty (50) questionnaires were given out to purposively selected respondents
and only 30 informants responded giving a 60% response in the four SME software
companies selected. Collected data was categorized, quantified, coded and arranged in
themes according to RE practices, REPI challenges and recommendations.

4.1 Current RE Processes and Practices in Ugandan SMEs

To get an overview of current RE practices and improvement needs, interviewees
with a company-wide role and knowledge of high level RE practices and involvement
were sought. The outcomes were assessed using standard RE process practices sug-
gested in the Requirements Engineering Adaptation and IMprovement for Safety and
dependability (REAIMS) maturity model [27] and Flexible and Pragmatic RE frame-
work for SMEs [22] due to the fact that they spell out the main activities of a RE
process.

Table 1. Current RE processes and Practices in Ugandan SMEs

RE Processes and Practices Frequency Percent

Elicitation 8 26.7
Elicitation, analysis, specification, validation 3 10.0
Elicitation, analysis, specification, validation, verification 2 6.7

Elicitation, analysis, specification 8 26.7

Elicitation & analysis 6 20.0
Requirements documentation 1 3.3
Requirements negotiation 2 6.7

Total 30 100.0

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 267

From table 1, the results revealed that SMEs were involved more in requirements
elicitation, analysis and specification (26.7%) as compared to documenting their re-
quirements (3.3%). This shows that these SMEs were acquainted with the first four
stages of RE process suggested in [32, 22]. We also observed that there were no
SMEs involved in requirements traceability and requirements change management.
This implies that the SMEs could not validate the requirements against their sources
nor in a clear position to manage requirements that keep changing during the course
of the RE process. As it’s always the case with SMEs, little documentation (3.3%) of
requirements was found in the case studies. This is in line with [10] where require-
ments documentation is among the priority topics for the workshop. This implies that
SMEs did not prepare requirement documents; this may be due to their tight schedules
and lack of resources and skills to document the requirements. No SMEs were found
to be using automated tools to support the RE process. This was attributed to lack of
awareness (knowledge) about the availability and use of such tools; some SMEs
thought that these tools were for large organizations and expensive for small ones.
This is divergent from [20] who had SMEs with similar roles but were using auto-
mated tools to support their RE processes. These results revealed that the Ugandan
SMEs were still at the lowest level of the RE process maturity, where the RE process
is not explicitly defined, no standards for requirements documentation and require-
ments description [27]. The preceding observations were further analyzed to establish
whether SMEs had a defined REPI approach as seen in table 2. . From table 2, we
observed that majority of the SMEs (66.7%) didn’t have a defined REPI approach;
and when asked why majority (53.3%) responded that they were not aware (knowl-
edge) of how to define one (see table 3). Meanwhile, 33.3% had a defined RE process
approach; though it was customized by respective organizations.

Table 2. Defined REPI Approach

Approach Frequency Percent

Yes (Defined Approach) 10 33.3

No (Not defined Approach) 20 66.7
Total 30 100.0

Majority of the SMEs (66.7%) did not have any specific approach to REPI. This

was largely caused by lack of knowledge of the improvement models available for
use. This further indicates low levels of RE process maturity in these SMEs. This
situation is consistent with [10] study in which REPI was among the top topics ranked
by the respondents from different SMEs in Germany.

Table 3. Awareness of REPI Models

Awareness of RE process Improvement Models Frequency Percent
Yes (Aware) 14 46.7
No (Not aware) 16 53.3
Total 30 100.0

268 E. Kabaale and J. Nabukenya

Respondents reported that management was not aware of any available REPI mod-
els (53.3%) despite their interest in improving the RE processes. Surprisingly the
respondents were aware of the benefits of REPI and willing to start any process im-
provement in order to tap the benefits. However they did not know any REPI models
available in practice and a few were using customized models to help in the im-
provement of the RE process. This was in disagreement with SMEs in [20, 10, and
30] who have used one or two REPI models in their process improvements despite
their low levels of software maturity.

4.2 Challenges and Recommendations to Successful REPI in SMEs

Based on the above results, we observed that the Ugandan SMEs did have less to
none understanding of REPI (see tables 1-3), and thus becoming important to investi-
gate the hindrances and would-be recommendations to their success as represented in
tables 4 and 5 respectively. While in table 5, training (36.7%) was reported as the
most favored solution to these challenges.

Table 4. Challenges to REPI in Ugandan SMEs

From table 4, we observed that ambiguous requirements from the clients were the
biggest challenge (30%) faced by the respondents while on the other hand a few re-
spondents (3%) were faced with resistance to change and changing requirements as
obstacles to REPI. Summarized, the challenges that face SMEs include:

Lack of user involvement; affects the acceptability of the new process in organiza-
tions. This study revealed that users are not fully involved in REPIs instead they are
imposed on the users. This concurs with [15] who looked at user involvement in proc-
ess improvement as a very important factor for user acceptance of new processes.

Lack of Management support; This challenge affects the availability of the facili-
ties that support any process improvement efforts in any organization [15]. The study
revealed that support from management was lacking towards REPI. This was hinder-
ing Process Improvements in these SME software companies. This concurs with [11]

Challenges Frequency Percent

Lack of User's Involvement 5 16.7

Lack of management support 5 16.7

Lack of Skills 2 6.7

Changing Requirements 1 3.3

Resistance to change 1 3.3

Ambiguous Requirements 9 30.0

Lack of proper Documentation 2 6.7

Measurement of RE benefits 2 6.7

Expensive 3 10.0

Total 30 100.0

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 269

were sustainable changes across an organization require management commitment
and support at all levels.

Lack of Skills; There are generally low levels of REPI awareness in SMEs. SMEs
lack the people with the right skills to carry out proper process improvements that can
yield benefits to such organizations and yet they cannot use consultants because of
their budget constraints [15]. In this study, it was established that SMEs lacked the
necessary skills to start process improvements within their organizations despite their
interest to start process improvements. This view is also shared by [11] who argues
that a process improvement initiative is at risk if the developers, managers, and proc-
ess leaders do not have adequate skills to carry out process improvement. Ambiguous
Requirements; Requirements from users are never clear or complete, so the develop-
ers are always occupied with correcting and understanding requirements than starting
process improvements in the organization. It’s reported in [2] that prior to a REPI
initiative; requirements were not clearly defined nor fully understood by developers.
This was because clients were ambiguous in stating their requirements. In this study,
it was established that clients did not state exactly what they wanted from the new
system, thus they keep on changing their requirements from time to time. Expensive;
Given the tight budgets of SME software companies, it’s always difficult to spare
some funds for process improvements. The study revealed that majority could not
carry out REPI because it was very expensive and it concurs with [10] who high-
lighted small budgets as the main obstacles to REPI in SMEs. Measurement of RE
process benefits; measurement of the REPI benefits to the organizations implement-
ing the improvement is a problem to SMEs. Its argued in [30] that it’s very difficult to
measure the benefits of REPI because there is a long time lag between the require-
ments phase and system delivery to pinpoint how specific RE techniques contribute to
a system’s success or failure. Resistance to change; this can threaten the success of
any new REPI. It’s stated in [17] that there is a direct relationship between resistance
to change and the total amount of change required of individuals. It’s pointed out in
[12] that people resist change because change initiatives are introduced too quickly
and frequently.

The challenges above have impeded successful REPI in Ugandan SMEs; yet can be
critical success factors if well handled. It’s argued in [15] that managing the above
challenges can lead to better management of REPI in software companies.

Table 5. Recommendations to REPI Challenges in Ugandan SMEs

Recommendations Frequency Percent

Workshops & RE process Documentation 2 6.7

Training 11 36.7

Management Support & Documentation 2 6.7

User involvement 5 16.7

Project Management Skills & planning 4 13.3

RE improvement strategy 2 6.7

Management of changing requirement 4 13.3

Total 30 100.0

270 E. Kabaale and J. Nabukenya

From Table 5 above, it was established that most of the respondents thought train-
ing (36%) would provide the necessary skills that are lacking in most of the cases
visited for REPI. On the other hand, a few respondents opted for management support
and improvement strategies to bring about successful REPI in their organizations.
Summarized, the recommendations that SMEs suggested include:

Training; [28] emphasis the need of training in process improvement in their
OWPL model for software process improvement in SMEs. According to [5] education
and training helps to promote the good understanding of the RE process to all the
people involved in the improvement process and it’s considered to be one of the criti-
cal success factor for any RE improvement process. Therefore, there is need to ade-
quately train all people involved in the RE process improvement in order to ensure
sustained change. [11] suggests that training helps the organization’s members to
have a common vocabulary and understanding of how to assess the need for change
and how to interpret specialized concepts of the improvement model being used as
well as to achieve a common understanding of the improvement process. Manage-
ment Support and Commitment; Management support to process improvement can be
in form of funding, encouragement, allocation of staff and providing a conducive
environment for working [15]. Raising the management awareness and support of RE
practices would make it easier to start RE process improvement efforts in organiza-
tions and thus eventually raise the RE process maturity in companies [19]. [15]
concur that management commitment process is a fundamental requirement for a
successful improvement in RE process.

Change Management; can help to manage resistance to change by employees dur-
ing the RE process improvement. This is in line with [2] who suggested change man-
agement as a very important factor for RE process improvement where acceptance of
new RE practices can be one of the key challenges in RE process improvement.

User involvement in the RE process is very important to the success and institu-
tionalization of any system process improvement. Among the stakeholders from
whom requirements are elicited are the potential users of the new system and this
helps to come up with a useful system that will meet the needs of the users as well as
acceptance of such systems [15]. Several authors have also pointed out that RE proc-
ess improvement should be a team effort (See for example [2, 26]).

Use an evolutionary improvement strategy; [26] points out that it is not realistic to
expect organizations to invest a lot of time and money in process improvements
whose value is difficult to assess. Therefore, they recommend organizations to intro-
duce small-scale improvements with a high benefit/cost ratio before expensive new
techniques. [11] aligns with these statements and points out that, instead of aiming at
perfection, it is important to develop a few improved procedures and to get started
with implementation.

5 Design of the Systematic Approach to REPI in Ugandan SMEs

Many scholars have emphasized the importance of critical success factors in enabling
any process improvement [15, 25]. Therefore these can help to overcome the chal-
lenges from the exploratory study. In performing the REPI, the existing generic steps
suggested by [4] are followed to manage/effect the SAREPI requirements, more so

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 271

they are considered important in the REPI plan as shown in figure 1. While improving
RE process the company (in our case SMEs) should follow the following steps to
accelerate change and RE process acceptance across the company [4].

Challenges Derived Requirements Adopted step Output

Lack of user
involvement

Support User involvement Define a simple RE
process

Simple and easy
RE processes

Expensive Use of evolutionary REPI
strategy

Pilot the new RE
process

Unnecessary
project risks
avoided

Resistance to change Support change manage-
ment

Adapt the new RE
process

Tailored RE
process adapted

Lack of skills Provide training and
education

Create awareness and
promotion of the new
RE process

New RE process is
promoted in the
organization

Lack of Management
support

Encourage management
support and commitment

Integrate new RE
process within the
software product
development lifecycle

RE process
integrated in the
organization

5.1 Requirements for the Systematic Approach

The requirements for the design of the proposed approach to systematic REPI in
Ugandan SMEs were derived from the challenges and recommendations observed in
the exploratory study. These requirements could be used as measures to overcome the
challenges presented in the preceding section. Apart from the derived requirements
from the results presented in the preceding sections, we also adopted the steps from
the existing generic REPI suggested by [4] to manage the requirements. This is be-
cause they are considered important in the REPI plan.

Support user involvement – There is a need to support user involvement in REPI if
the new process is to succeed and be institutionalized [11]. User should be involve in
the assessment of the current state of the RE process in terms of its strengths and
weaknesses. This can serve as starting point for REPI. The assessment made we users
build a shared understanding of the improvement goals, planning and practical actions
for these SMEs [13]. Users should also be involved while defining RE processes –
This step follows the assessment of the current RE processes and practices. Simplicity
and ease of use in REPI can be a determining factor for any RE process improvement
efforts. Involving users in defining simple processes and practices makes it very easy
for users to learn and work with the new improved processes, as well as integrating
new processes incrementally and gradually.

Use evolutionary improvement strategy – [27] recommend organizations to intro-
duce small-scale improvements with a high benefit/cost ratio before expensive new
techniques. Where SMEs are budget constrained then small incremental processes can
help in alleviating the problem. This is enabled through piloting the new small RE
process, i.e. use the evolutionary improvement strategy while piloting the new RE
processes in the organization. This will help in avoiding unnecessary project risks
that may be caused by rapid changes in the organization. Improved processes and

272 E. Kabaale and J. Nabukenya

practices should be introduced gradually and blended with existing practices. This
will help to create RE process acceptance throughout the organization.

Support change management –It’s important to manage change so as to minimize
employee resistance to new and improved RE processes. This can be done by adapt-
ing the new RE process, i.e. tailor the improved process to the organization. There is
need to set clear, quantifiable and measureable REPI benefits if the process is to
succeed [2]. The benefits of the improved process should be known to all the team
members involved in the software development process through a proper change
management plan. The new RE process should be adapted to the needs of the organi-
zation and be integrated in the daily routines of the organization.

Support training and education – education and training helps to promote the good
understanding of the RE process to all the people involved in the improvement proc-
ess [5]. It’s considered to be one of the critical success factors for any RE improve-
ment process. This can be enabled by creating awareness and promoting the new RE
process. This involves usage of the new RE process benefits to promote its use in the
organization and persuading software product development teams to adopt the new
RE process and secure the support of senior management. Communicate these prac-
tices through face-to-face discussions, staff meetings and newsletters so that everyone
in the organization is informed. Organize training and education about the new RE
processes to the employees so as to eliminate any chances of resistance to change to
the new RE processes.

Encourage management commitment and support – Management support to proc-
ess improvement can be in form of funding, allocation of staff and providing a condu-
cive environment for working [15]. This can be done by promoting systematic use of
the new processes throughout the organization.

Fig. 1. Systematic Approach to RE Process Improvements (SAREPI)

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 273

6 Conclusion and Future Work

In this study we looked at the RE process practices and how these can be improved in
order to minimize the number of information system development failures as a result
of the RE process. This lead us to look at the current state of SMEs from which we
established the challenges they face in RE process improvement, majority of which
come from the size and characteristics of SMEs as small budgets, tight deadlines, lack
of skills and trained personnel, management reluctance to support the endeavor as
well as unclear requirements from users that keep on changing from time to time. We
also established recommendations from the SMEs which we used to derive require-
ments (support user involvement, use evolutionary improvement strategy, support
change management, encourage training and education and encourage management
support) for the design of the systematic approach to REPI in SMEs that has been
lacking for some time now and especially in Uganda. To operationalise the REPI
requirements, we also co-opt the REPI steps as seen in the discussion above which
should, if well addressed lead to effective output(s). This approach is a methodical
approach that is learnable and understandable through a step by step procedure.
Therefore it is very important to SMEs that are unable to improve their RE processes
due to different reasons, thus should enable these companies to improve their RE
processes systematically. However, during the exploratory study we noted that most
of the cases visited had little to none defined RE process, though some SMEs were
using customized ways of requirements development. It was hard to assess such cases
using the more common known RE improvement and assessment models. More so
this research focused on exploring possible approach to systematic improvement of
requirements engineering processes in SME, thus far as future research, we propose to
empirically validate the designed systematic approach in order to verify if it indeed
improves the RE process in SMEs.

References

1. Beecham, S., Hall, T., Rainer, A.: Building a requirements process improvement model,
Technical Report No. 378 of the department of Computer Science, Faculty of Engineering
and Information Sciences. University of Hertfordshire, Centre for Empirical Software
Process Research (2003)

2. Damian, D., Zowghi, D., Vaidyanathasamy, L., YogendraPal: An industrial case study of
immediate benefits of requirements engineering process improvement at the Australian
Center for Unisys Software. Empirical Software Engineering Journal (2003)

3. Davey, B., Cope, C.: Requirements Elicitation – What’s missing? Issues in Informing Sci-
ence and Information Technology (2008)

4. Dominic, T.: Seven steps to achieving better requirements engineering in your organiza-
tion IBM. Requirements engineering to support your business objects. Rational Software
(2009)

5. Francisco, A., Pinheiro, C., Julio, C., do Prado Leite, S., Castro, J.F.B.: Requirements En-
gineering Technology Transfer: An Experience Report. Journal of Technology Trans-
fer 28, 159–165 (2003)

6. Gonzalez, R.A.: Validation of Crisis Response Simulation within the Design Science
Framework. In: ICIS 2009 Proceedings (2009)

274 E. Kabaale and J. Nabukenya

7. Hakim, C.: Research Design: Strategies and Choices in the Design of Social Research. In:
Bulmer, M. (ed.) Contemporary Social Research: 13, Routledge, London (1987)

8. Hevener, R.A., March, T.S., Park, J., Ram, S.: Design Science in information systems Re-
search. Management Information Systems Quarterly (2004)

9. Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer, Heidelberg
(2004) ISBN 1-85233-879-2, Business Media, http://springeronline.com

10. Kamsties, E., Hormann, K., Schlich, M.: Requirements Engineering in Small and Medium
Enterprises: State-of-the-Practice, Problems, Solutions, and Technology Transfer. In: Pub-
lished at a Conference on European Industrial Requirements Engineering (CEIRE 1998),
London, UK (1998)

11. Wiegers, K.E.: SoftwaREPI: Ten Traps to Avoid. Process Impact. Software development
(1996), http://www.processimpact.com

12. Wiegers, K.E.: Why Is Process Improvement So Hard? Process Impact. Software devel-
opment (1999), http://www.processimpact.com

13. Kauppinen, M., Kujala, S.: Starting Improvement of Requirements Engineering Processes:
An Experience Report (2001)

14. Kauppinen, M., Tapani, A., Kujala, S., Laura, L.: Introducing Requirements Engineering:
How to Make a Cultural Change Happen in Practice; Helsinki University of Technology;
Software Business and Engineering Institute (2001)

15. Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S., Sulonen, R.: Implementing require-
ments engineering processes throughout organizations: success factors and challenges. In-
formation and Software Technology 46, 937–953 (2004)

16. Khaled, E., Nazim, H.M.: A Field Study of Requirements Engineering Practices in Infor-
mation Systems Development. In: Proceedings of the Second IEEE International Sympo-
sium on Requirements Engineering, York, England (1995)

17. MCfeeley, B.: IDEAL: a user’s guide for softwaREPI, Handbook CMU/SEI-96-HB-001,
Software Engineering Institute, Carnegies Mellon University, Pittsburgh, PE, USA (1996)

18. Mishra, D., Mishra, A.: SoftwaREPI in SMEs: A Comparative View. ComSIS 6(1) (2009)
19. Niazi, M.K.: Improving the Requirements Engineering Process through the Application of

a Key Process Areas Approach. In: Australia Workshop on Requirements Engineering
(2002)

20. Nikula, U., Sajaniemi, J., Kälviäinen, H.: A State-of-the-Practice Survey on Requirements
Engineering in Small- and Medium-Sized Enterprises. Telecom Business Research Center
Lappeenranta. Research Report (2000)

21. Nikula, U., Sajaniemi, J., Kalviainen, H.: Management View on Current Requirements
Engineering Practices in Small and Medium Enterprises. In: Proceedings of The Australian
Workshop on Requirements Engineering (2000)

22. Olsson, T., Doerr, J., Koenig, T., Ehresmann, M.: A Flexible and Pragmatic Requirements
Engineering Framework for SME. In: Proceedings of SREP 2005, Paris, France (2005)

23. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Published in Journal of Management In-
formation Systems 24(3) (2007)

24. Pino, F.J., Garcia, F., Piattini, M.: SoftwaREPI in small and medium software enterprises:
a systematic review. IEEE, Los Alamitos (2007)

25. Qadir, M., Asghar, I., Ghayyur, A.K.: Scaling of Critical success factors for Requirements
engineering in the development of Large Scale Systems. International Journal of Reviews
in Computing (2009)

26. Sawyer, P., Sommerville, I., Viller, S.: Improving the Requirements Process. Cooperative
Systems Engineering Group Technical Report Ref. In: The Fourth International Workshop
on Requirements Engineering: Foundation for Software Quality, Pisa, Italy (1998)

27. Sawyer, P., Sommerville, I., Viller, S.: Requirements Process Improvement through the
Phased Introduction of Good Practice. SoftwaREPI and Practice (1997)

A Systematic Approach to RE Process Improvement in Small and Medium Enterprises 275

28. Simon, A., Alain, R., Naji, H.: OWPL: A Gradual Approach for Software Process Im-
provement In SMEs. In: Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO-SEAA 2006) (2006)

29. Small and Medium Enterprises (SMEs) Business Guide. Uganda Investment Authority
(March 2008)

30. Sommerville, I., Ransom, J.: An Empirical Study of Industrial Requirements Engineering
Process Assessment and Improvement. ACM Transactions on Software Engineering and
Methodology 13(1), 85–117 (2005)

31. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley, Reading (2001)
32. Sommerville, I.: Integrated Requirements Engineering: A Tutorial. IEEE Software (2005)
33. Wohlin, C., Gustavsson, A., Höst, M.: A Framework for Technology Introduction in Soft-

ware Organizations. In: Proceedings SoftwaREPI Conference, Brighton, UK, pp. 167–176
(1996)

Understanding the Dynamics of Requirements

Process Improvement: A New Approach

A.S. (Aminah) Zawedde1, M.D. (Martijn) Klabbers2, D. (Ddembe) Williams3,
and M.G.J. (Mark) van den Brand4

1 Faculty of Computing and Informatics Technology, Makerere University, Uganda
2 LaQuSo, Laboratory for Quality Software, Eindhoven University of Technology

3 Decision Innovation Systems, Limited, Uganda
4 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands
sazawedde@gmail.com, M.D.Klabbers@laquso.com,

ddembe.williams@gmail.com, m.g.j.v.d.brand@tue.nl

Abstract. Many software development organizations invest heavily in
the requirements engineering process programmes, and with good reason.
They fail, however, to maximize a healthy return on investment.

This paper explores factors that influence requirements process im-
provement (RPI) with the aim to explain how the attributes of the un-
derpinning process affect both the quality and associated costs of the
requirements specification delivered to the customer. Although several
tools and techniques have been proposed and used for RPIs, many lack
a systematic approach to RPI or fail to provide RPI teams with the
required understanding to assess their effectivity.

The authors contend that the developed quality-cost RPI descriptive
model is a generic framework, discipline and language for an effective ap-
proach to RPI. This descriptive model allows a systematic enquiry that
yields explanations and provides RPI stakeholders with a common deci-
sion making framework. The descriptive model was validated by practic-
ing process improvement consultants and managers and makes a contri-
bution towards understanding of the quality-cost dynamics of RPI. To
address the acknowledged deficiencies of RPI, the authors further suggest
a generic RPI model and approach that integrates statistical process con-
trol (SPC) into system dynamics (SD). The approach enables RPI teams
to steer for a cost-effective and successful RPI.

Keywords: cost, quality, Requirements process improvement, system
dynamics, statistical process control.

1 Introduction

Software systems project failures are partly a result of an inefficient require-
ments process improvement (RPI). RPI in such projects is characterized by ever
changing requirements throughout the development process [8,20]. Requirements
engineering (RE) practitioners are faced with the challenge of making informed

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 276–290, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Understanding the dynamics of RPI: A New Approach 277

decisions on the effectiveness of carrying out any process improvement. Recent
practical experience indicates that RPI process attributes are interlinked and
dynamic, and should be analyzed in the context of the whole process instead of
analyzing them in pairs. The objective of such analysis is to identify the inter-
dependence and feedback structure amongst the process attributes [3,24,20].

It is important to note that methods currently used by practitioners for RPI do
not capture the feedback relationships amongst RPI attributes. Many RPI prac-
titioners instead focus on dominant requirements relationships while the under-
lying structure that gives rise to requirements volatility behavior is not explored
[8,3,24]. This may result in deterioration of the end product’s performance, and
hence leads to software project failure or escalated post implementation system
costs.

This paper builds a case for integrating System Dynamics (SD) and Statisti-
cal Process Control (SPC) to enhance the understandability and practicability of
RPI of measuring the effectiveness of RPI over time. SD has been acknowledged
for its ability to facilitate the understanding of the behavior of complex dynamic
problems [9,24] while SPC is used by many process improvement practitioners to
monitor and control the process variability [2]. The complementary advantages of
combining the two methods lie in their ability to visualize feedback through the use
of analytical tools in SD and control charts supported by SPC. The visualization
enables the process stakeholders to talk about and discuss the emerging system
behavior as a basis for process improvement. Visualizing these feedback interac-
tions is a prerequisite in helping the RE stakeholders gain shared understanding of
the decisions made in achieving effective requirements for process improvement.

The rest of the paper is structured as follows: Section 2 provides an overview of
the methods currently used for process improvement and highlights the success
factors of RPI; Section 3 is a discussion of the interactions amongst the factors
that influence RPI; Section 4 discusses the field findings from RPI in regard
to the RPI variables used in practice; Section 5 explains the dynamics of RPI
through a practical case study; and Section 6 discusses further research directions
and the suggested benefit of combining SD and SPC for enhancing RPI.

2 State of Practice in Process Improvement

A number of process improvement models exists, namely: Requirements Capabil-
ity Maturity Model (R-CMM) [3], Software Capability Maturity Model (CMM)
[17], Capability Maturity Model Integrated (CMMI) [11], Requirements Engi-
neering Process Improvement Model (REPSIM) [24], Bootstrap [16], Trillium
[1], and Software Process Improvement and Capability Determination (SPICE)
[7]. However apart from R-CMM, CMMI and REPSIM, all the models that have
been mentioned above are software process improvement models. The review
of the literature reveals that the SPI models have both workable and economic
potential for software process improvement but they do not adequately address
requirements process improvement [16]. This paper will only discuss R-CMM,
CMMI and REPSIM that are relevant for RPI.

278 A.S. Zawedde et al.

R-CMM and CMMI use a capability based approach for process improve-
ment. Although these models have been used in large organizations for process
improvement, they are generalized and can not be used to define the actual ben-
efits gained from the improvements for a specific organization[15]. It is therefore
considered to be superficial for smaller organizations and the improvements are
usually difficult to measure or implement [4,15]. In practice real systems are
complex and their RE processes are also complex and dynamic; process variables
interact amongst each other depicting feedback relationships that cut across all
levels of organizational processes [24]. In addition, R-CMM is heavily depen-
dent on organizational learning and therefore organizations that are at an initial
stage of learning may not be able to measure the effectiveness of RPI. Given
this scenario, there is need for an approach that is able to improve the analytical
strengths of R-CMM and CMMI. Coupled with the above drawback, Ojala [16]
asserts that capability based improvement only is not enough to start process
improvement work. To be effective, process improvement methods also need to
take into account costs created in processes and the need to measure capability
and effectiveness of processes.

REPSIM [24] was used to predict cost, understand the cause and effect be-
tween processes and explain the impact of the resulting interrelationship, how-
ever, like [3] its supporting dynamic prescriptive model was not developed. Even
though REPSIM is a more promising model for enhancing into a generic tool
for RPI systems than R-CMM and CMMI due to its ability to model the RE
process in a holistic manner and cutting across all levels of the organizational
maturity, it has not been applied in an industrial setting. The term holistic anal-
ysis is drawn from the concept of Holism which stipulates that the properties of
a given system can not be determined by its component parts alone; the system
as a whole determines how the parts behave [18].

Given the relative strengths and deficiencies in the current RPI models, to
successfully achieve a better understanding, an appropriate RPI model should
primarily have the ability to capture feedback resulting from interaction amongst
the requirements engineering processes. Secondly, the model should be able to
support evaluation and synthesis of the requirements processes in a manner that
promotes explanation and insight into the problem under investigation in order
to improve communication amongst the requirements engineering stakeholders.
Thirdly, given the above two conditions, the model should carry out a holistic
analysis of the RPI process variability. This holistic analysis is key to under-
standing the dynamics of RPI and achieving a cost-effective state of the system
under development.

2.1 System Dynamics Modeling

System Dynamics (SD) is an approach for modeling and simulation of dynamic
behavior of complex systems over time[9,13]. The complexity of a system is
defined by feedback loops, non-linearity and time delays that often affect the
system behavior. System dynamics models being a representation of real world
situations are well suited to offer explanation and generate insights into the root

Understanding the dynamics of RPI: A New Approach 279

causes of the behavior of complex systems. The insights generated can facilitate
informed decision making before any improvements can be implemented [21,6].
SD adopts the big picture strategic viewpoint in capturing the overall system
structure rather than that of the individual parts of the system [13,18]. Various
techniques and methods have been used to model complexity but their main
drawback is that analysis becomes complex with large models [6].

System dynamics analytical tools have the ability to handle large models,
identify independent loop sets within models that determine particular behavior
resulting from the interaction among model components [6,10,9]. SD has an ad-
vantage over statistical models because of its ability to incorporate in the model
important soft variables, and also yield explanation and foster understanding of
systematic problems [21].

2.2 Statistical Process Control

Statistical Process Control (SPC) is a statistical technique used in monitoring
processes that are in control using means and ranges in a chronological order
and shows how the values change over time. SPC determines the stability or
instability of a process by discriminating between common cause variation and
assignable cause variation. Common cause variations result from normal interac-
tions among people, machines, environment, or techniques used while assignable
cause variations arise from events that are not part of the process and make it
unstable [5,2]. By using few data points, SPC is able to dynamically determine
an upper and lower control limit of acceptable process performance variability.
These control limits act as signals or decision rules, and give process improve-
ment teams information about the process and its state of control. SPC has
been shown to be effective in manufacturing contexts and has been extended
successfully to software processes as well [2,17,5]. SPC uses several control charts
together with their indicators through visualization to: establish operational lim-
its for acceptable process variation; monitor and evaluate process performance
evolution in time.

The control charts aid in suggesting whether corrective action can be taken
to improve quality or in assurance that a process has the satisfactory quality
[10]. The output from the control charts helps stakeholders in predicting results
which enable preparation of achievable plans, meeting cost estimates, scheduling
commitments and delivering the required product quality within the acceptable
limits [5].

3 Factors that Influence Requirements Process
Improvement

To be able to demonstrate the plausibility of combining SD and SPC, the factors
that influence the RPI were identified and relationships among them defined.
The reference model of factors influencing RPI is based on the requirements
engineering and process improvement literature [23,24,19]. Eight (8) commonly

280 A.S. Zawedde et al.

used variables were identified that influence RPI: (a) Productivity of Engineers,
(b) Process Capability Index, (c) Process Improvement Capability, (d) Process
Effectiveness, (e) Process Improvement Costs, (f) Errors Observed, (g) Perceived
Effectiveness, and (h) Process Rigor. The importance of the preceding variables
and why they were considered key for the reference model for RPI is justified
below. Rico [19] asserts that to attain effective process improvement, it is in-
evitable to ignore productivity gains. The same author asserts that there is a
strong relationship between productivity and process rigor. He goes further to
emphasize that without improving process rigor, there will be minimal produc-
tivity gains. He however, acknowledges that improving productivity is a complex
process that goes beyond process rigor.

Rico [19] and Starz [23] note that higher numbers of errors observed result
into very high process improvement costs but can be improved by enhancing
productivity of requirements engineers. Williams [24] and Starz [23] argue that
practitioners, as a way of decreasing process improvement costs and increasing
process effectiveness have to ensure that the RE processes that they use are
capable of carrying out an activity. This therefore makes the process capabil-
ity index and process improvement capability key to ensuring minimization of
process improvement costs and enhancing process and perceived effectiveness.

All the three authors [23,24,19] concur that it is those eight variables discussed
above that are most important for requirements process improvement consider-
ing that process improvement is a factor of cost, time and resources and it is
these variables that determine these factors.

Process Improvement
Capability

Process Capability
Index Errors Observed

Productivity of
Engineers

Process
effectiveness

Perceived
effectiveness

Process
Improvement Cost

Process Rigor

Fig. 1. A Reference Model of the Factors that influence RPI

Figure 1 is a visualization of the interrelationship amongst the RPI variables
that are mentioned. A brief description of the RPI variables is as follows:

Understanding the dynamics of RPI: A New Approach 281

– (a) Productivity of Requirements Engineers: This is the rate at which re-
quirements engineers deliver requirements specifications as agreed upon by
the requirements engineering stakeholders [24].

– (b) Process Capability Index: This is the potential of a process to meet its
specifications. The higher the index, the more capable the process is.

– (c) Process Improvement Capability: The extent to which a process can meet
customer requirements, specifications or product tolerances.

– (d) Process Effectiveness: The is the measure of the extent to which the
process goals and objectives are met.

– (e) Process Improvement Cost: This refers to the total cost of resources in
terms of wages, documentation, training technology and initial set-up costs.

– (f) Errors Observed: This is the total number of defects identified by the
requirements engineering stakeholders during the review process.

– (g) Perceived Effectiveness: This is the level of effectiveness achieved by the
RPI team.

– (h) Process Rigor: This is the level of thoroughness adhered to established
standards when carrying out or implementing process improvements.

The validity of the reference model projected in Figure 1 was tested through
interviews of ten (10) requirements process improvement experts from different
companies. The objective of the interviews was to confirm the relevance of the
quality-cost variables considered for RPI in practice as summarized in Table
1. The identity of the companies has not been disclosed due to non disclosure
agreements.

In the next section the results of validation of the RPI factors in Figure 1 are
presented.

4 Modeling Requirements Process Improvement
Dynamics

Validation of the model allows a large number of data collection techniques. For
this research we used a semi-structered interview technique because it is the
most efficient method when the number of experts to be interviewed is small (0
to 20) and the topic that is to be investigated is not multi-disciplinary [12]. It
was considered that a consultation through interviews was the most efficient way
of gathering information for validation of the model of RPI factors due to the
limited number of available experts in requirements process improvement and
given that the nature of the research is still in its infancy.

Semi-structured interviews were used as a strategy for data collection. Discus-
sions with the RPI experts were conducted in a setting of maximal 2 hour inter-
views. Respondents included quality managers, process improvement managers,
and system analysts among others, and they all had experience with require-
ments engineering. The interviews included questions about the methods used
for RPI in practice, problems faced in using existing methods and techniques,
the parameters considered for RPI in practice, as well as the measurements for
the RPI parameters.

282 A.S. Zawedde et al.

The above validation process took into consideration the threats to model
validity. Some practitioners may not appreciate the value of combining the the-
oretical grounding of RPI with that of systems thinking and complexity theory.
The practice has been to use work breakdown structures and the capability ma-
turity models. To mitigate this factor, the assumptions made for the proposed
approach are firmly grounded in RPI. Furthermore, changes in the interview
instrument may produce changes in the outcome. This was mitigated by having
a uniform agenda for the meetings with the RPI experts as well as standardizing
the interview guides.

Table 1 shows the level of importance perceived by each expert in relation to
RPI variables as experienced and used in practice. The positive signs (+) indicate
that the expert acknowledged the variable as relevant for RPI in practice whereas
the negative signs (-) indicate that the experts did not acknowledge the variable
as important for RPI in practice.

Table 1. Summary of results from RPI Experts

RPI Experts’ Job Descriptions Er
ro

rs

O
bs

er
ve

d

Pr
oc

es
s

Ef
fe

ct
iv

en
es

s

Pe
rc

ei
ve

d
E f

fe
ct

iv
en

es
s

Pr
oc

es
s

Im
pr

ov
em

en
t

Co
st

Pr
od

uc
tiv

ity
 o

f

En
gi

ne
er

s

Pr
oc

es
s

Im
pr

ov
em

en
t

Ca
pa

bi
lit

y

Pr
oc

es
s

Ca
pa

bi
lit

y
In

de
x

Pr
oc

es
s R

ig
or

Cu
st

om
er

Sa

tis
fa

ct
io

n

M
an

ag
em

en
t

Co
m

m
itm

en
t

1. Senior Scientist at A + - - + + - - - + +

2. Quality Manager at B - + - - - - - - + +

3. Senior consultant at C - - - - - - + + - +

4. Group Leader Software Testing &
SDE at D

- - - - - - + + - +

5. Consultant quality and process
improvement at E

+ - - + + - + + + -

6. Software Development Manager at F + + - - - + + - + +

7. Managing Consultant at G + + - + +/- - - - + +

8. System Analyst
at H

+ - - - - - - - + -

9. Process Improvement Manager at I + - - - - - + + + -

10. Change Manager at J - - - - - - - - - +

Total number of positives 6 3 0 3 2.5 1 3 4 7 7

Out of the 8 high level factors that were tested in the field, 6 variables were
found to be essential in the RPI practice. Management Commitment and Cus-
tomer Satisfaction were raised by all the interviewed RPI experts, as variables
for RPI but they were not among the variables that were captured from RPI
literature. Customer Satisfaction (70%), Management Commitment (70%) and
Errors observed (60%) are the most influential parameters considered for RPI.
These were followed by Process Rigor (40%), Process effectiveness (30%), Pro-
cess Capability Index (30%) and Process Improvement Cost (30%). However,
most experts considered Process Effectiveness as a component within Process
Capability Index. Therefore for this research, Process Effectiveness will not be
considered as one of the key variables for RPI. Productivity of Engineers (25%)

Understanding the dynamics of RPI: A New Approach 283

and Process Improvement Capability (10%) are of less importance in RPI ac-
cording to the specialists.

Results from field studies indicate that Customer satisfaction, Management
Commitment and Errors Observed are the most relevant variables for RPI in
practice.

4.1 Descriptive Model for RPI

A descriptive model is a qualitative representation of the RPI process map that
will in future work be translated into quantitative functional relationships using
mathematical equations. The validated model of factors influencing RPI as pre-
sented in Table 1 facilitated the development of the feedback descriptive model
by redefining the relationships among factors as well as determining their mea-
sures and values. Table 2 presents the measures for all variables considered and
indicates the variables that were obtained from field studies and those that were
obtained from RPI literature.

It should be noted that Customer satisfaction: the degree to which customers
expectations of a product are met or surpassed and Management Commitment:
the continuous support and involvement of executive management based on ac-
knowledged benefits in the implementation and maintenance of a system under
development, were not captured in RPI literature as important variables for RPI.
This research adopts these two variables as some of the most relevant variables
for RPI based on the field studies findings.

Figure 2 provides a systemic and descriptive view of the variables that influ-
ence decision making of teams during the RPI. It illustrates the revised descrip-
tive model of the key variables that experts confirmed they considered important
when carrying out RPI. In system dynamics a descriptive model is a causal loop
diagram indicating the direction and polarity (+/-) of each loop [24]. The revised
descriptive model has three (3) Balancing loops and six (6) Reinforcing loops.
A Reinforcing feedback loop (R) represents growth or declining actions while a
balancing feedback loop (B) is a goal seeking loop that seeks stability or return
to control [24]. The loops show the interrelationship between the variables and
how they link to each other. The linkages depict how the loop structures drive
system behavior and the variables involved for each loop structure impacting on

Table 2. Measure of RPI variables for the revised descriptive model

Variables Measure Units Variable obtained from Field
(Yes/No)

Productivity of Engineers No. of specifications/Engineer/Day No. of Specifications No

Process Capability Index Unitless 0-1 No

Management
Commitment

Unitless 0-1 Yes

Process Improvement
Cost

Currency US Dollars No

Process Rigor Unitless 0-1 No
Customer Satisfaction Unitless 0-1 Yes

Errors Observed Errors Errors No

284 A.S. Zawedde et al.

Process Capability
Index (B)

Errors Observed
(G)

Productivity of
Engineers (A)

Management
Commitment (C)

Customer
Satisfaction (E)

Process Improvement
Cost (D)

Process Rigor (F)

-

+

+

+

+ +

+

-

+

-

-

-+

+
B1

R1

+

B2 R2

R3

R4

R5

R6

B3

Fig. 2. The Descriptive Feedback Model for RPI

the system. Analyzing the behavior of each of these loops is key to understand-
ing the impact of changes in one or more variables on system behavior and the
limits within which cost effectiveness can be achieved for a set of variables.

An example of one of the loops that illustrates RPI is R6 that goes through A-
B-F-G-D-C-A. It is a reinforcing loop where an increase in the the Productivity
of Engineers (A) will cause an increment in the Process Capability Index (B)
which in turn will increase the Process Rigor (F). An increase in the Process
Rigor will cause a reduction in the Errors Observed (G) which will in turn reduce
the Process Improvement Cost (D). The reduction in costs will in turn trigger the
interest of Management Commitment (C) feeding back into further increasing
the process productivity of requirements engineers (A).

This demonstrates the need to analyze these feedback loop structures in a
holistic manner. The double line marks on some of the relationship arrows in
Figure 2 indicate that there is a time delay between the variables. These indicate
that the effect of that relationship is obtained over time. For continuous process
improvement the reinforcing feedback loops have to be balanced by the balancing
loops to avoid causing a system burn out or end in chaos.

The descriptive model in Figure 2 demonstrates that System dynamics uses
feedback loops and time delays to represent complex systems. Causal loop dia-
grams representing feedback loops are used for conceptualizing the system struc-
ture of a complex system and for communicating model-based insights. These
feedback descriptive models have explanatory power and insight to aid under-
standing to RE stakeholders.

Despite the difficulty in most approaches to convert qualitative data into
quantitative information, this is a key strength of the system dynamics method-
ology. Inherent to the system dynamics methodology is the ability to convert
qualitative data into quantitative values to aid better understanding [24] and
this has been seen over the years as the key strength and advantage of us-
ing the system dynamics methodology [9]. System dynamics techniques [9] and

Understanding the dynamics of RPI: A New Approach 285

procedures make it possible to effectively model quantitative data based on qual-
itative models. This is done methodically starting with mental models through
causal link relationships and then use of reference modes.

Analysis of the descriptive model offers a useful basis for identifying a number
of propositions that can be drawn from it and suggests how they may be tested.

4.2 Propositions Derived from the Model

A system dynamics descriptive model offers a basis for capturing the mental
models of process improvement teams and facilitates the understanding of their
decision making strategies during the process improvement. There is no theory
or research that may relate directly to the mental model of process improvement
teams nor to the impact of process improvement on the mental models of process
improvement teams [24].

As a tool the model can be used by practicing RPI managers and researchers
in a training and learning situation. The model presented in Figure 2 offers a
useful basis for research on RPI. Review of the process improvement literature
suggests that differences in organizational culture may influence the nature of
process improvement. Coupled with management commitment, process improve-
ment teams who feel empowered to make decisions are less likely to experience a
decline in engineer productivity than teams that feel isolated and unempowered.
The following propositions can be derived from Figure 2.

Proposition1: The errors observed in the requirements specification are likely
to increase during the process improvement.

During the RPI period, both the customers and process improvement teams
have to take time to scrutinize the correctness of the requirements specification.
According to the model, the period of time taken between reviews produces a
temporary increase in errors observed.

Proposition2: The more process rigor in the organization’s process improve-
ment, the greater the decline of errors observed.

The more standards are strictly applied and novel technological tools and meth-
ods are applied during the process improvement the less the errors are observed
in the process improvement document.

Proposition3: The extent of decline in the process capability index is depen-
dent on the productivity of engineers and the level of management commitment.

The more requirements engineers are knowledgeable of tools and applied stan-
dards, the level of the resulting process capability index will be dependent on
the productivity of engineers and the level of management commitment.

Proposition4: The extent of decline in the productivity of engineers will be
moderated by the technological rigor of tools and commitment from senior man-
agers with the organization.

286 A.S. Zawedde et al.

The productivity of engineers will decline during their training for new meth-
ods or techniques. However, this decline will be mitigated by the technological
support and motivation as a result of management commitment.

Proposition5: The extent of decline in management commitment to RPI will
be dependent on the process improvement costs, and the productivity of engi-
neers and feedback from customer satisfaction.

The decline in management commitment to RPI is dependent on process
improvement costs, productivity of engineers and feedback from customer
satisfaction.

Proposition6: The extent of decline in process improvement costs is dependent
on the number of errors observed and productivity of engineers.

During the period of process improvement, the decline in process improvement
costs is dependent on number of errors observed and productivity of requirements
engineers.

Proposition7: The extent of decline in customer satisfaction is dependent on
errors observed during a review and the level of process capability index.

The process improvement team in organizations that learn from their past project
experiences are likely to have a higher process capability index and therefore
higher process capability level. This leads to capturing errors included in the
requirements specification during the review process. On the reverse customer
satisfaction is likely to be low if the requirements engineers (process improvement
team) encounters an increment in the number of errors observed.

In order to illustrate the above propositions and to show how the descriptive
model can be applied, we will demonstrate it in a real life case study. In the
following section we discuss a practical case study in relation to RPI. In order to
actually validate the model and test feedback relationship, the authors intend to
carry out a programme of research to confirm or reject the above propositions
in the near future.

5 A Practical Case Study

In order to illustrate the applicability of the proposed feedback approach and
to confirm some of the propositions in section 4.2, a practical case study was
undertaken through a post mortem analysis of a real case study. The case study,
a small project for a management information system receives a seemingly suc-
cessful RPI and shows the consequences of lack of insight in RPI.

A consultancy firm’s RE process is embedded in an iterative project based
software development process. In a number of iterations the business require-
ments are detailed into user requirements and use-cases and further refined
in a design, implementation, and tests phases. Where possible, design, imple-
mentation and tests are offshored. Dependent on the customer’s input for the

Understanding the dynamics of RPI: A New Approach 287

specific project, RE steps can be skipped. The input, however, is always checked
and improved where necessary. Generally, the first iteration produces an ini-
tial architecture which guides the primary assignment of articulating business
requirements to the next specific iterations.

The firm decided to apply RPI that should result in (1) better quality assur-
ance (QA), (2) generate insight into the traceability of business requirements
to design, (3) be compliant to the firm’s interpretation of the ISO 9126 non-
functionals, and (4) understandable use cases for the customer. The QA was
supported by a strict set of guidelines and related checklists.

This case study is one of the first projects executed with the improved RE
process; an offshored project aimed at replacing an existing Dutch Government
Budget Distribution System. The firm detailed the user requirements as deliv-
ered by the customer using 3 iterations into a set of complex use-cases. The
in-company offshore team, implemented and tested the system, based on trans-
lated use cases and the existing distribution system, including source code and
documentation. Finally, the system was tested and accepted by the customer.

After the system’s deployment the project was evaluated using unstructured
interviews with the RE stakeholders including the customers, and assessment
of the requirements’ quality. The interviews included a number of fixed RPI
variables described in Figure 2. Furthermore, we assessed the number of errors
using LaQuSo’s Software Product Certification Model (LSPCM [14]). LSPCM
is a check based rule method for assessing defects in software artifacts. Similar
to the Independent Verification and Validation (IV&V) techniques it provides a
stable basis to solve conflicts of interest and does not immediately suffer from
a weakened analysis outcome due to time pressure. LSPCM checks technical
aspects of software artifacts, but leaves the assessor (in this case computer science
students) freedom to determine the appropriate, elegant, and fastest way of
executing the check rules [22]. Note that LSPCM is also a fruitful addition to
our proposed approach.

Based on the firm’s intended improvements and the firm’s approved assess-
ment techniques in this project, the test cases focused on 5 of the 7 RPI vari-
ables of the descriptive model in Figure. 2. These variables are measured as
follows: (A)Productivity of REs the delivered use cases and non-functionals as
requested by the customer/stakeholders measured through the documents’ trace-
ability and customer’s and REs’ statements about the use-cases in the interviews;
(C)Management Commitment Support and involvement of executive manage-
ment as experienced by REs through the interviews. (D)Process Improvement
Costs as additional hours for the required improvements; (F)Process Rigor in
what standards and templates the IT experts at the firm were using as stated in
the interviews. (G)Errors Observed as the defects in the requirements (assessed
by using LSPCM) and reported bugs.

Figure 2 shows the 5 RPI variables and related loops that they form. Their paths
are resp.: (B1):A-D-C-A,(B2):A-D-E-C-A, (B3):A-B-F-A, (R1):A-G-D-C-A,
(R2):A-G-E-C-A, (R3):A-B-E-C-A, (R4): F-G-D-C-F, (R5): B-E-C-B, (R6): B-
F-G-D-E-C-B. Note that there are 3 balancing loops and 4 reinforcement loops. In

288 A.S. Zawedde et al.

a real case these loops are important to monitor because they give an early insight
where important bottlenecks are that endanger the success of the RPI. Balancing
loops are the most demanding since they typically include variables operating be-
tween lower and upper boundaries, whereas reinforcement loops only deal with
minimum or maximum boundaries hence the usefulness of the proposed integra-
tion with SPC. Below we demonstrate what we found on the evaluated variables:

– ad.(A) in B1,B3,R1,R2,R3,R5 LSPCM assessments showed that traceabil-
ity matrices were incomplete, use cases were as stated by the customer
”too complex”, and non-functional requirements like maintainability were
not specified. Productivity did not score highly;

– ad.(C) in B1,B2,R1,R2,R3,R4,R5,R6 Requirements engineers (REs) did not
report any executive management involvement in the interviews other than
the explicit focus on accuracy of the system. Reason was that wrong budget
calculations would have resulted in a large claim against the firm;

– ad.(D) in B1,B2,R1,R6 The additional process improvement costs were es-
timated and realized to be no more than a small percentage (1%);

– ad.(F) in B3,R4,R6 The interviews with the project’s expert REs revealed
that the new firm’s standards were perceived as guidelines for novice REs;
skilled REs could deviate from them, provided that the documents were
uniform and understandable to RE and developers. Time pressure made the
customer countersign the use cases without understanding them. Budget
constraints prohibited QA to find these anomalies.

– ad.(G) in R1,R2,R6 In addition to observation in (A), LSPCM revealed
errors in the use cases and non-functionals. The customer observed at least
one major bug in the little extra functionality that was added to the existing
system.

The customer perceived the project as a success in delivered functionality and
time/costs in the short-term. An explanation for this success can be found in the
fact that the offshored development had full access to the existing system; both in
source code and in produced results. Furthermore, the set of new functionalities
was very small hence the lack of return on investment in process improvement.
In the long-term, maintainability of the system could become a problem leading
to system failure or escalating maintenance costs. One of the indicators to this
was that later, the tender for the system’s maintenance was assigned to the firm
which had the lowest bid. In addition, the Dutch Government declared to look
into maintainability more critically in response to the high maintenance costs of
governmental software systems. Nevertheless, the belief of a successful RPI was
not contradicted by any feedback and it was generally accepted within the firm.

With the proposed approach, an early warning system based on empirical
boundaries and thresholds would have shown a number of problems: RE pro-
ductivity (A) did not increase, against expectations, the higher number of er-
rors observed (G) in the requirements by using LSPCM. A low productivity (A)
could have been acceptable in (B1) because it would provide lower costs (D).
However, the reinforcement loop R2 without (A) should show progress, but be-
cause of the errors (G), that would not be the case. The combination of both

Understanding the dynamics of RPI: A New Approach 289

measuring RPI variables and providing a visual feedback to REs and managers,
would have given them the real insight to the successfulness of the RPI and the
opportunity to adjust it accordingly.

6 Summary and Further Research Directions

The contribution of this paper has been fourfold; (i) a literature survey that
helped identify the gap that exists with current RPI tools in capturing the
feedback interaction amongst systems requirements engineering processes; (ii)
the proposal of a new approach to understanding the dynamics of RPI; (iii)
validating the key variables for RPI in practice and the emerging feedback loops;
and (iv) using a Practical case study to demonstrate the importance of holistic
analysis to RPI and to verify some of the propositions stated in this paper.

At this initial stage we have been able to identify key variables and their
feedback loops that are responsible for the software systems project behavior.
In the immediate future, work on a full fledged system dynamics model will be
developed to be able to determine the strengths of the relationships and thus
the relative importance of each key variable discussed in this paper. We have
further proposed how the gap with existing RPI tools can be closed by building
a case for combining SD and SPC to attain an effective process improvement
framework.

SPC can augment SD’s ability to identify variability in requirements engi-
neering process variables during process improvement [10]. Combining SD and
SPC has been done for manufacturing [10] and software processes [5] but not in
the requirements process improvement context.

Integrating SPC within SD is expected to help RE stakeholders gain insights
about the RPI feedback structure. Furthermore, it is also expected to help carry
out assessment of the potential effects of the high leverage points on the stability
of the interacting requirements processes directly from the control charts lead-
ing to attainment of cost effective systems under development. More still, RE
stakeholders will have ownership of the RPI process together with its results,
and implement the changes recommended by the tool [10]. This will enhance the
understanding of the causes of the process variations [5,10].

Further research direction will endeavour to integrate SPC within SD through
initially creating a system dynamics model, then integrating the process of
quality-cost variances and determining control limits using control charts in SPC.

References

1. April, A.A., Coallier, F.: Trillium V3.0: A Model for the Assessment of Telecom
Software System Development Capability. In: 2nd International SPICE Symposium
ASQRI, Griffith University, Australia, pp. 79–88 (1995)

2. Baldassarre, M.T., Boffoli, N., Caivano, D., Visaggio, G.: Managing software pro-
cess improvement (SPI) through statistical process control (SPC). In: Bomarius,
F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 30–34. Springer, Heidelberg
(2004)

290 A.S. Zawedde et al.

3. Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement
Model. Software Quality 13, 247–279 (2005)

4. Brinkkemper, S., van de Weerd, I., Saeki, M., Versendaal, J.: Process improvement
in requirements management: A method engineering approach. In: Rolland, C.
(ed.) REFSQ 2008. LNCS, vol. 5025, pp. 6–22. Springer, Heidelberg (2008)

5. Caivano, D.: Continuous Software Process Improvement through Statistical Pro-
cess Control. In: Proceedings of 9th European CSMR 2005 (2005)

6. Clempner, J.: A Hierarchical Decomposition of Decision Process Petri nets for
Modeling Complex Systems. Int. J. Appl. Math. and Comp. Science 20(2), 349–
366 (2010)

7. Dorling, A.: SPICE: Software Process Improvement and Capability Determination.
Software Quality Journal 2(4), 209–224 (1993)

8. Ferreira, S., Collofello, J., Shunk, D., Mackulak, G.: Understanding the effects of
requirements volatility in software engineering by using analytical modeling and
software process simulation. Systems and Software 82(10), 1568–1577 (2009)

9. Forrester, J.W.: System Dynamics and a lesson for 35 years. Sloan School of Man-
agement. MIT, Cambridge (1991)

10. Georgantzas, N., Fraser, J., Tugsuz, E.: Bipartisan process improvement in polymer
coating: Combining SD with SPC. System Dynamics 2, 502–511 (1995)

11. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based
Process Improvement. Pittsburgh, SEI (August 2006)

12. Gustafsson, T., Ollila, M.: Expert consultation in the preparation of a national
technology programme. Systems Analysis Laboratory, Helsinki University of Tech.
(September 2003)

13. Harris, B., Williams, B.: System Dynamics Methodology. W.K. Kellogg Foundation
(2005)

14. Heck, P., Klabbers, M.D., Van Eekelen, M.: A software product certification model.
Software Quality Journal 18(1), 37–55 (2010)

15. Linders, B.: Building Process Improvement Business Cases Using Bayesian Be-
lief Networks and Monte Carlo Simulation,Tech. Report, CMU/SEI-2009-TN-017
(2009)

16. Ojala, P.: Combining Capability Assessment and Value Engineering: A BOOT-
STRAP Example. In: 5th Int. Conference of Profes, Kansai City, Japan (2004)

17. Paulk, M.C.: Applying SPC to the Personal Software Process. Proc. 10th Intl.
Conf. Software Quality (October 2001)

18. Rafferty, M.: Reductionism, Holism and System Dynamics. In: 8th SD PhD Collo-
quium (2007)

19. Rico, D.F.: ROI of Software Process Improvement: Metrics for Project Manaers
and Software Engineers (2004) ISBN 1-932159-24-X

20. Ruhe, G., Eberlein, A., Pfhal, D.: Quantitative WinWin- A New Method for De-
cision Support in Requirements Negotiation. In: SEKE, Italy (July 2002)

21. Saurabh, K.: Software Development and Testing: A System Dynamics Simulation
and Modeling Approach. In: 9th WSEAS-SEPADS, UK, February 20-22 (2010)

22. Serebrenik, A., Mishra, A., Delissen, T., Klabbers, M.D.: Requirements certifica-
tion for offshoring using LSPCM. In: 7th IEEE Computer Society’s QUATIC 2010,
September 29-October 2 (2010)

23. Statz, J.: Measure of Process Improvement. Technical Report on Practical Software
and Systems Measurement (2005)

24. Williams, D.: Challenges of System Dynamics to Deliver RE Projects: faster, better
and cheaper. In: 21st Int. Conf. of the System Dynamics Society (2003)

Precise vs. Ultra-Light Activity Diagrams -

An Experimental Assessment in the Context of
Business Process Modelling

Francesco Di Cerbo1, Gabriella Dodero1, Gianna Reggio2,
Filippo Ricca2, and Giuseppe Scanniello3

1 CASE, Libera Università di Bolzano-Bozen, Italy
{francesco.dicerbo,gabriella.dodero}@unibz.it

2 DISI, Università di Genova, Italy
{filippo.ricca,gianna.reggio}@disi.unige.it

3 Dipartimento di Matematica e Informatica, Università della Basilicata, Italy
giuseppe.scanniello@unibas.it

Abstract. UML activity diagrams are a commonly used notation for
modelling business processes in the field of both workflow automation
and requirements engineering. In this paper, we present a novel precise
style for this notation. Further, the effectiveness of this style has been in-
vestigated in the context of the modelling of business processes through a
controlled experiment conducted with master students in Computer Sci-
ence at the Free University of Bolzano-Bozen. The results indicate that
the subjects achieved a significantly better comprehension level when
business processes are modelled using the precise style with respect to a
“lighter” variant, with no significant impact on the effort to accomplish
the tasks.

Keywords: Business Process modelling, UML activity diagrams,
Controlled experiment, Precise and Ultra-light styles.

1 Introduction

In the last years, many organizations have been changing their business pro-
cesses to be competitive in the global market [8]. In this context, modelling,
management, and enactment of business processes are considered relevant to
support organizations in their daily activities. Concerning the modelling of busi-
ness processes, a number of process definition languages have been proposed
in the literature, based on several formalisms such as BPMN (Business Process
Modeling Notation) [17], event-condition-action mechanisms [1], graph rewriting
mechanism [11], Petri Nets [2], etc. More recently, some authors have suggested
exploiting UML (Unified Modeling Language) [19] to model business processes
[14,16].

UML represents a natural choice for modelling business processes since it
has been conceived for the communication among people and then can be eas-
ily understood and used by customers, managers, and developers [16]. Process

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 291–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

292 F. Di Cerbo et al.

modelling also plays an important role in the requirement engineering field [10].
It is an essential mechanism for specifying the processes to be supported by a
software system as well as for communication with customers and end-users, who
have to understand and possibly review these processes [9]. In this scenario UML
activity diagrams are a commonly used notation for business process modelling.

In favour of the UML notation is its flexibility allowing the modeller to choose
the preferred degree of precision/abstractiveness to build models. Concerning the
business process modelling, different options are available ranging from “light”
styles, where nodes and arcs of the activity diagrams are simply decorated by
natural language text, to more rigorous ones, where for example nodes and arcs
are expressed in a formal language. “Light” activity diagrams are simple to
write/use but their inherent ambiguity complicates the communication among
participants. On the other hand, more precise/rigorous notations are more com-
plex to use but limit ambiguity and have the good quality to be more easily
transformed into executable models (e.g., expressed in BPEL).

In this paper, we sketch our precise UML activity diagrams to model business
processes. This style has been proposed and used in the context of the TEC-
DOC project1 along with other variants: ultra-light, light, precise and conceptual
precise2. The effectiveness of the precise style has been investigated through a
controlled experiment conducted with master students in Computer Science at
the Free University of Bolzano-Bozen. Indeed, we compared the comprehension
of the subjects on business processes specified by using precise and ultra-light
(the “lightest” variant) UML activity diagrams.

The remainder of the paper is organized as follows: Sect. 2 introduces both
the precise and the ultra-light styles. Sect. 3 presents the design of the con-
trolled experiment, while Sect. 4 shows and discusses the achieved results. Sect.
5 presents relevant related literature concerning experiments in the use of UML
models in comprehension tasks, while final remarks conclude the paper.

2 Process Modeling with UML: Ultra-Light and Precise
Styles

In this section we present the two styles for business process modelling that we
intend to contrast with respect to comprehension level and comprehension effort.

We will use the following terminology: – the basic activities in a business
process are the basic task of the process; – the process objects are the entities
over which the activity of the process are performed, obviously these entities
are passive, i.e., they are not able to do such activities by themselves; – the
active entities that perform the various tasks are process participants (entities
1 Funded in the framework of research activities of Ligurian Technology District SIIT

(Integrated Intelligent Systems and Technologies), the TECDOC project aimed to
define methodologies to efficiently schedule, coordinate, monitor and manage the
different operational activities related to the management of Complex Organizations.

2 See http://softeng.disi.unige.it/tech-rep/TECDOC.pdf for the complete TECDOC
document.

Precise vs. Ultra-Light Activity Diagrams 293

playing a certain role in a domain), and whenever it will be relevant, we will
distinguish the human participants from those corresponding to software and
hardware systems.

2.1 Ultra-Light Style

The ultra-light style is the one currently used in the industry for UML busi-
ness process modelling, see e.g., [15]. Following the ultra-light style a process is
modelled by a UML activity diagram, where the nodes (activity and object) and
the guards on the arcs leaving the decision nodes are decorated by natural lan-
guage text, which follows neither rules nor patterns. Notice that it may happen
that the sentences defining the activities may be either in active or passive form
(e.g., “Clerk fills the form” and “’Form is filled”) and that the entity executing
the activity may be precisely determined or left undefined (e.g., “Form becomes
filled”). It is also possible that nominal sentences are used instead of verbal
phrases (“Filling the form”). Also, the objects over which the process activities
are performed may be described in different ways, for example by a noun (e.g.,
“Form”, “The form”) or by a qualifying sentence (e.g., “Client form”, “Filled
form”, “Sent form”).

Participants of the process may be modelled only by introducing swim-lanes
and titles of the various lanes. The objects produced and consumed by the ac-
tivities of a business process may optionally be made explicit by using object
nodes.

Fig. 1. Ultra-light model of Process Order

In Fig. 1, we present the ultra-light UML model of the business process Process
Order, namely one of the objects used in the experiment. It is a parametric
activity diagram that receives as input the Requested Order (see the node at the
boundary of the activity diagram) for an on-line shop. Tasks are represented
in the model as rounded rectangles, while the produced objects are depicted
as rectangles. The activity diagram describes how the order is managed by the
on-line shop. It is quite easy to understand and there is no need to further
comment it.

294 F. Di Cerbo et al.

2.2 Precise Style

The participants and the objects of a business process modelled by the precise
style are explicitly listed and precisely modelled with UML by means of classes.
The behavioural view of the process is given by an activity diagram where actions
and conditions will be written by using respectively the language for the action
of UML and OCL [18], the textual language for boolean expressions part of the
UML. Whenever the object nodes will be used, they should be typed by UML
classes and data types; and if swim-lanes are used, they should be given titles
by participants.

Thus the UML precise model of a business process consists of a class diagram,
introducing the classes needed to type its participants and objects, a list of its
participants and objects, and an activity diagram representing its behaviour:

– Classes in the class diagram may be stereotyped by �object� (process ob-
jects), �businessWorker� and �system� (process participants distinguishing
between human beings and hardware/software systems). For readability the
stereotype �businessWorker� is usually omitted. Elements of those classes
may be described using the many tools offered by the UML, for example
constraints and behavioural diagrams, and their mutual relationships will
be expressed by associations and specializations. Dependency (visually de-
picted by a dashed arrow) will be used to represent the fact that participants
of a given class will act over objects of another given class.

– Participants will have a name and will be typed by a class with stereotype
either �businessWorker� or �system�, and objects also will have a name and
will be typed by a class stereotyped by �object�. Notice that participants/
objects are roles for the entities taking part to the process, and not specific
individuals. Constraints might be imposed on participants and objects of a
process.

– Basic tasks in the activity diagrams are modelled by UML actions (i.e., calls
to class operations, belonging to those classes describing types of participants
and objects, and the standard statements, e.g., assignment, creation and
destruction of objects). Nodes in the activity diagram will correspond to
basic tasks, and thus they will be action nodes, and the conditions on arcs
leaving the decision nodes will be OCL expressions (e.g., ORDER.acceptable
in Fig. 2). Participants and objects will freely appear both in the actions
and in the conditions.

Fig. 2 shows the precise model of the Process Order case. In this process we have
two participants (i.e., human being) the Client and the Company, and three busi-
ness objects: Order, Payment and Invoice. The three objects are related among
them as shown by the constraints in the participants/objects box (see the box
on the bottom of Fig. 2). The flow of the business object Order is shown by
using its name in the various actions nodes, whereas the flow of Invoice has been
emphasized by using an object node. The class diagram in Fig. 2 introduces the
classes typing the participants and the objects with their relevant operations
and attributes, together with their mutual relationships. For example we can

Precise vs. Ultra-Light Activity Diagrams 295

see that a Payment and an Invoice are relative to exactly one Order. The dashed
arrows, i.e., the dependency relationships denote that the Company may work
on the payments, the invoices and the orders, whereas the Client only on the
Payment and the Order. Constraints may be used to finely describe the various
classes; for example the constraint on the operation receives of class Company
(see the note in Fig. 2) expresses that an Order is considered acceptable by the
company if it is well-formed and available.

Fig. 2. Precise model of Process Order (activity and class diagram)

3 Experimentation Setup

In this section we present the design of the experiment. We followed the guide-
lines proposed in [13,24]. For replication purposes, the experimental package (in
English) and the raw data are made available on the Web3.

3.1 Context

The main experiment was conducted with 26 master students in Computer Sci-
ence at the Free University of Bolzano-Bozen. In addition, 14 bachelor students
from the same University took part in a pilot experiment, useful to assess the
material, which was executed before the main experiment.
3 www.scienzemfn.unisa.it/scanniello/BPM/ (please cut and past this URL into your

web browser).

296 F. Di Cerbo et al.

The main experiment represented an optional educational activity of two Soft-
ware Engineering courses: Infrastructures for Open Service Oriented Architec-
tures and Requirements and Design of Software Systems. The pilot experiment
was an optional activity for the Business Information Systems course, attended
by third-year bachelor students. As mandatory laboratory activity of the course
Infrastructures for Open Service Oriented Architectures, students had previously
developed Web services using specification documents that included UML mod-
els in terms of class, sequence, and activity diagrams. Students of the course
Requirements and Design of Software Systems had already made use of full
UML specifications in the design of non-trivial software systems. This year the
assignments were defined in cooperation with the Italian National Transplant
Organization (CNT): students redesigned the CNT’s IT infrastructure accord-
ing to the SOA paradigm. Note that all the students (master and bachelor) had
also previously attended courses on basic and advanced object oriented program-
ming, before carrying out the main experiment and the pilot.

The specifications of two different business processes were considered for the
experiment. The business processes refer to application domains in which the
subjects are familiar with. The first (i.e., Process Order) is in charge of processing
orders for an on-line shop. In particular, this process takes as input an order. The
order is accepted and info is filled, payment processing and shipment are done.
Finally, the order is closed (see Fig. 1). Instead, the second business process
(i.e., Document Management Process) is a business process for managing the
on-line review process of any kind of documents. First a document is created
by the author and then it is reviewed by a reviewer. Finally, a document is
approved (if its quality satisfies the constraints imposed). Note that documents
can also be updated and archived. The two business processes are comparable
both in complexity and in size as well as in the number of activities and classes.
Furthermore, they are small enough to fit the time constraints of the experiment
but at the same time they are realistic for small/medium sized comprehension
tasks.

3.2 Hypotheses Formulation

The perspective of this study is twofold. From the point of view of researchers,
it is an investigation of the effectiveness of using precise activity diagrams in
the specification of business processes; and from the point of view of project
managers, it is an evaluation of the possibility of adopting this style. Accordingly,
we have defined and tested the following null hypotheses:

– Hlo: The use of precise activity diagrams does not significantly improve
the comprehension level of the subjects to perform a task.

– Hto: There is no significant difference in terms of effort when using precise
or ultra-light activity diagrams to perform a comprehension task.

The objective of the statistical analysis is to reject the defined null hypotheses,
thus accepting the corresponding alternative ones that admit a positive effect
and so can be easily derived. It is worth mentioning that the null hypothesis Hl0

Precise vs. Ultra-Light Activity Diagrams 297

is one tailed since we expect a positive effect of the precise activity diagrams on
the subject performance. On the other hand, Ht0 is two-tailed since we cannot
postulate an expectation of a difference in terms of effort.

3.3 Design

We adopted a counterbalanced design [24] as shown in Table 1. We considered
four groups: A, B, C, and D. Each group was formed by subjects randomly se-
lected (precisely: 7 subjects for groups A and D; 6 for groups B and C). Each
subject worked on two comprehension Tasks (i.e., Task 1 and Task 2) on the
following two experimental Objects : Process Order (PO) and Document Manage-
ment Process (DMP). Each time subjects used the precise or ultra-light activity
diagrams. For example, the subjects within the group A started to work in Task
1 on PO using the precise activity diagram and then they used the ultra-light
activity diagram to perform Task 2 on DMP.

Table 1. Experiment design

A B C D

Task 1 PO Precise PO Ultra-light DMP Precise DMP Ultra-light
Task 2 DMP Ultra-light DMP Precise PO Ultra-light PO Precise

3.4 Selected Variables

The control group indicates the students working with the ultra-light activity
diagram, while the treatment group indicates the students working with the
precise activity diagram. Thus, the only independent variable is Treatment, which
is a nominal variable that admits two possible values: Precise and Ultra-light.
On the other hand, we selected the following dependent variables to investigate
the defined null hypotheses: comprehension level and comprehension effort.

The comprehension level dependent variable is used to measure the compre-
hension of the subjects on each business process. Similarly to [21], the subjects
were asked to answer a comprehension questionnaire (it is equal for both the
treatments but different by objects) composed of multiple choice questions. In
particular, on each considered business process the questions were 12, each ad-
mitting the same number of possible answers (i.e., 5), with one or more correct
answers. Fig. 3 shows a sample question (question 1) regarding the comprehen-
sion questionnaire of the PO object. The goal of this question is to investigate
whether the subjects understood who are the business process participants. Cor-
rect answers are the first and the third ones.

Correctness and completeness of the provided answers have been measured,
similarly to [21], using an information retrieval based approach. To this end, we
defined as: As,i, the set of answers provided by the subject s on the question
i, and Ci, the correct set of answers of the question i. The correctness and the

298 F. Di Cerbo et al.

Fig. 3. Question 1 of the comprehension questionnaire for PO

completeness of the answers have been measured using, respectively, precision
and recall:

precisions,i =
|As,i ∩ Ci|

|As,i| recalls,i =
|As,i ∩ Ci|

|Ci|
In order to get a single value representing a balance between correctness and
completeness, we used the harmonic mean between precision and recall:

F−Measures,i =
2 · precisions,i · recalls,i

precisions,i + recalls,i

For example, if a student had answered Question 1 of the PO task (Fig. 3)
picking the first, second and fifth answer, her precision will be 0.33 (three answers
given and only one correct) while her recall will be 0.5 (one correct answer out
of two). Instead, her F-measure will be 0.39.

The overall comprehension level achieved by each subject has been computed
using the overall average of the F-Measure values of all the questions. This
average assumes a value ranging from 0 to 1. A value close to 1 indicates a very
good understanding of the business process, while a value close to 0 indicates a
very bad comprehension level.

The comprehension effort dependent variable measures the time, expressed in
minutes, that each subject spent to accomplish a task. We got this value using
the start and stop times the subjects were asked to record.

3.5 Experimental Material, Pilot and Execution

In order to assess the experimental material (mainly the comprehension ques-
tionnaire) and get an estimation of the time needed to accomplish the task a
pilot experiment with 14 bachelor students was accomplished before the main
experiment.

Regarding the main experiment, the subjects were asked to use the following
procedure to execute both the tasks: (i) specify name and start-time in the com-
prehension questionnaire; (ii) answer the questions by consulting the provided
material; (iii) mark the end-time.

To perform the experiment the subjects were provided with the following
hard copy material: (i) a summary of the modelled business process, (ii) the
comprehension questionnaires and the models of the business processes, (iii) a
unique post-experiment questionnaire to be filled in after the two tasks.

Precise vs. Ultra-Light Activity Diagrams 299

The post-experiment questionnaire aimed at gaining insights about the sub-
jects’ behaviour during the experiment. The post-experiment questionnaire was
composed of 5 questions concerning the availability of sufficient time to complete
the tasks, the clarity of the experimental material and objects, and the ability of
subjects to understand the business processes used in the experimentation. The
questions expected answers according to the following five point Likert scale:
(1) strongly agree, (2) agree, (3) neutral, (4) disagree, (5) strongly disagree. For
space reasons, results of the post-experiment questionnaire are only marginally
discussed in the following.

4 Analysis and Results

In this section, after a brief summary of the pilot experiment, results of the
data analysis of the main study are presented with respect to the defined null
hypotheses (Sect. 3.2). In all the performed statistical tests, we decided (as it
is customary) to accept a probability of 5% of committing Type-I-error [24],
i.e., rejecting the null hypothesis when it is actually true. We conclude the sec-
tion discussing the effect of the co-factors (i.e., Object, Task and Group) and
sketching the potential threats to validity.

4.1 Pilot Experiment

All students completed both comprehension tasks of the pilot experiment in 50
minutes. This let us conclude that the pilot was well suited for bachelor/master
students. Minor changes were made to improve the comprehension question-
naires. A simplified data analysis showed that students with precise activity
diagrams outperformed (the mean comprehension level was 0.69) in comprehen-
sion students with ultra-light ones (the mean comprehension level was 0.59).
Concerning the effort, students with precise diagrams employed more or less the
same time that students with ultra-light diagrams (median for both groups was
19 minutes).

4.2 Comprehension Level - Main Experiment

Table 2 reports some descriptive statistics (i.e., mean, median, and standard
deviation) of comprehension level and the results of statistical analysis conducted
on the data of the main experiment. Because of the sample size (26 subjects) and
mostly non-normality of the data we adopted non-parametric tests to test the
first null hypothesis. In particular, we selected Mann-Whitney test for unpaired
analysis and Wilcoxon test for paired analysis. We used these tests since they
are very robust and sensitive [13,24].

The overall comparison (i.e., without partitioning by object) is visually pre-
sented in Fig. 4 by means of boxplots. From them, it appears that students
with precise activity diagrams outperformed in comprehension students with
ultra-light ones. We evaluate the first hypothesis overall. The one-way unpaired
Mann-Whitney test (p − value < 0.001) and the one-way paired Wilcoxon

300 F. Di Cerbo et al.

test (p − value < 0.001) provide evidence that there exists a significant dif-
ference in terms of comprehension level between the two treatments. Therefore,
we can reject the null hypothesis Hl0. The mean comprehension level improve-
ment achieved with precise diagrams is of 17 points (see means of the “All” row
in Table 2), i.e., 27,41%4. Similar results can be observed for the primary mea-
sures. For space reasons, we report only results of Mann-Whitney tests: precision
(p − value < 0.001) and recall (p − value < 0.001) and for both objects, DMP
(p − value = 0.005) and PO (p − value = 0.003).

Table 2. Descriptive statistics of comprehension level and the statistical test results

Precise Ultra-Light
Object mean med σ mean med σ MW test Wilcoxon test

All 0.79 0.84 0.11 0.62 0.66 0.14 < 0.001 < 0.001

DMP 0.76 0.74 0.10 0.64 0.64 0.10 0.005 -

PO 0.80 0.84 0.11 0.58 0.69 0.19 0.003 -

Precise Ultralight

0.
2

0.
4

0.
6

0.
8

Treatment

F
−

M
ea

su
re

Fig. 4. Comprehension level

Precise Ultralight

20
30

40
50

Treatment

T
im

e

Fig. 5. Comprehension effort

4.3 Comprehension Effort - Main Experiment

Fig. 5 shows the boxplots of comprehension effort versus the treatments. Appar-
ently, students with precise diagrams employed more time that students with
ultra-light diagrams (see the two medians). Means and medians are respec-
tively: 22’16” and 20 minutes for precise diagrams; 22’12” and 19’50” minutes for
ultra-light diagrams. A two-tailed unpaired Mann-Whitney test returned 0.9 as
p− value. A similar value is returned by paired Wilcoxon test (p− value = 0.6).

4 The percentage comes from the following equation: 0.62+0.62*x%=0.79.

Precise vs. Ultra-Light Activity Diagrams 301

Therefore, we cannot reject the overall null hypothesis Ht0. Even analysing the
two objects separately no significant difference was found. The results of the
unpaired two-tailed Mann-Whitney test were 0.56 and 0.57 for DMP and PO,
respectively.

4.4 Co-factors and Post Questionnaire Results - Main Experiment

We have analysed the effects of the co-factors on both comprehension level and
effort, to find possible interactions with the treatments. This kind of analysis can
be also useful to discover possible learning, fatigue, and order effects that could
“contaminate” the obtained results. For this task, we used a two-way Analysis
of Variance (ANOVA) [13,24]. Even if all the assumptions/conditions for using
ANOVA were not checked, this test is quite robust. On the overall data set, we
found no significant effect of object on comprehension level (p−value = 0.77) and
no interaction with treatment (p−value = 0.22). Similarly, no significant results
were obtained analysing the effects (and interactions) of the co-factors task and
group on the comprehension level. Alike, we found no significant effect of objects
on effort (p−value = 0.78) and no interaction with treatment (p−value = 0.44).
Instead, an interaction (p−value = 0.003) was observed between treatment and
task (without effect of task alone). Finally, we found a significant effect of group
on effort (p−value = 0.01) but no interaction with treatment (p−value = 0.79).
Looking more in details at the data, we found that students in group A used
more time and put more effort than students in other groups. The cause of this
difference will be investigated in future.

We computed medians of subjects perception, collected through the perceived
agreeing level of the post-experiment questionnaire. Students judged sufficient
the time to complete the task , they also found clear: the objectives of the exper-
iment (median=2), comprehension questions (median=2) and answers given as
possible options (median=2). Finally they found the exercise useful (median=2).

4.5 Threats to Validity - Main Experiment

Threats to validity that could affect our results belong to four categories [24]:
internal, external, construct, and conclusion.

The counterbalanced design adopted in this experiment enabled us to miti-
gate internal validity threats. It is well-known that this design balances possible
learning, fatigue, and order effects. This was also confirmed by the analysis of
the co-factors (see Sect. 4.4). Another issue concerns the information exchanged
among the subjects. This was prevented as much as possible by monitoring the
students while performing the tasks. In addition, students were not evaluated
on their performance to avoid apprehension.

External validity may be threatened when experiments are performed with
students, throwing into doubt the representativeness of the subjects with respect
to software professionals. However, performed tasks do not require high level of
industrial experience, so we believe that this experiment can be considered ap-
propriate, as suggested in the literature [3]. Another possible threat concerns the

302 F. Di Cerbo et al.

size and complexity of the tasks. Hence, we plan to replicate the experiment with
more complex tasks. Replications with different and more experienced subjects
(e.g., professionals and PhD. Students) are planned as well.

In this study, the construct validity threats are related to the metrics used to
get a quantitative evaluation of the subjects’ comprehension and effort. We used
questionnaires to assess the comprehension level of the subjects, and answers
were evaluated using an information retrieval based approach (as in [21]), in
order to avoid as much as possible any subjective evaluation. Furthermore, the
comprehension questionnaires were defined to be complex enough without being
too obvious. The comprehension effort was measured by means of proper time
sheets, and it was validated qualitatively by researchers, who were present during
the experiment.

Conclusion validity concerns data collection, reliability of measurements, and
validity of statistical tests. Statistical non-parametric tests (Mann-Whitney and
Wilcoxon) were used to reject the null hypotheses. Two-way ANOVA was used
to detect possible co-factors effects and interactions between each co-factor and
the main factor. Even if all the assumptions/conditions for using ANOVA were
not checked, this test is quite robust and has been extensively used in the past
to conduct analyses similar to ours (see, e.g., [23]).

5 Related Work

Out of the huge body of literature that is based on UML, we highlight in this
section just a few papers, that provide useful terms of comparison for our work.

The UML activity diagrams provide an intuitive and easy to learn visual for-
malism to model business process [7,16,12]. For example, Di Nitto et al. [16]
propose an approach to process modelling by using a subset of UML diagrams,
including UML activity diagrams with object flow to model the control and data
flow, class diagrams to model structural properties of the process, and state dia-
grams to model the behaviour of activities. The XMI standard representation of
these models produced using a UML CASE tool can then be translated into an
executable process description for the OPSS Workflow Management System [5].
Several are the differences between our approach and theirs. The most remark-
able ones are that OCL is not used in the process modelling and the validity of
the proposal has not been assessed through controlled experiments.

In [7] a case study is presented, mapping UML activity diagrams with object
flow on the process definition language of the GENESIS environment [1]. The
authors showed that UML activity diagrams do not support all the control flow
and data flow rules of the GENESIS process definition language. As a conse-
quence, the syntax and semantics of this type of UML diagrams often need to
be extended to make them suitable for modelling business processes in workflow
management systems. Similarly, De Lucia et al. in [6] present a system offering
a visual environment, based on an extension of UML activity diagrams, that
allows to graphically design a process model, and to visually monitor its en-
actment. The main difference with respect to notations used in this experiment

Precise vs. Ultra-Light Activity Diagrams 303

is that participants and objects are not explicitly considered. Furthermore, the
behavioural conditions are not formally specified.

Differently from us, all the approaches discussed above do not assess the va-
lidity of the proposed formalism by means of controlled experiments. To our
knowledge, only a few other studies perform empirical evaluations in business
process formalisms comparisons. For instance, Peixoto et al., [20] compare UML
and BPMN (Business Process Modelling Notation) [17], with respect to their
readability in expressing Business Processes. Their analysis is motivated by the
consideration that many different stakeholders are interested in the results of
a business process modelling. Given their different background, and their need
to understand the results of modelling, it is very important that all stakehold-
ers are able to understand business process diagrams. Peixoto et al. expected
BPMN models to be easier to understand than UML 2.0 activity diagrams, as
BPMN is a specialized language, designed for modelling business process and
with the primary goal of being understandable by all business stakeholders [17].
However, an experiment with 35 undergraduate students of Computer Science,
unskilled in business process modelling, could not confirm their initial hypothe-
sis, therefore UML activity diagrams and BPMN seem to be equivalent in terms
of understandability.

Gross and Doerr [10] conducted two experiments, comparing the UML activ-
ity diagrams and Event-driven Process Chains [22] with different perspectives.
First, they considered the business processes specification from a requirements
engineer perspective with a focus on model creation. Second, their attention was
on model understandability, seen from a customer’s or end user’s point of view.
The used methodology was in both cases a blocked subject-object study: partic-
ipants were partitioned in two groups, each of them receiving an assignment in
one of the considered formalisms. The authors found evidence that activity dia-
grams performed better than EPCs from a requirements engineer’s perspective.
When considering end users, no significant difference was identified between the
two methods.

With different objectives, Coman and Sillitti [4] conducted an empirical study
on the possibility of mapping low-level to high-level software development activ-
ities in an automatic way. The method is based on low level data automatically
collected, that are used in order to identify high-level activities. The context of
the experiment is similar to ours, as, among other commonalities, the analysed
data was related to software systems similar to the one proposed in this work.

6 Conclusion

In this paper, we propose a variant of UML activity diagrams. This variant has
been defined in the context of business processes modeling and its effectiveness
has been investigated with respect to a less rigorous visual formalism. To this
end, a controlled experiment with 26 master students has been conducted and
the results have been presented and discussed in this paper. The data analysis
indicated a significant effect of the more rigorous style on the comprehension of

304 F. Di Cerbo et al.

business processes (+27.61%). Conversely, the effect of the effort to accomplish
comprehension tasks is not statistically significant.

Acknowledgements. We would like to thank the students that took part in both
the pilot and the main experiment.

References

1. Aversano, L., De Lucia, A., Gaeta, M., Ritrovato, P., Stefanucci, S., Villani, M.L.:
Managing coordination and cooperation in distributed software processes: the gene-
sis environment. Software Process: Improvement and Practice 9(4), 239–263 (2004)

2. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Supporting cooperation in the spade-1
environment. IEEE Trans. Softw. Eng. 22, 841–865 (1996)

3. Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of experi-
ments. IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

4. Coman, I.D., Sillitti, A.: An empirical exporatory study on inferring developpers’
activities from low-level data. In: Proceedings of International Conference on Soft-
ware Engineering and Knowledge, pp. 15–18. Knowledge Systems Institute Grad-
uate School (2007)

5. Cugola, G., Di Nitto, E., Fuggetta, A.: The jedi event-based infrastructure and
its application to the development of the opss wfms. IEEE Trans. Softw. Eng. 27,
827–850 (2001)

6. De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Distributed workflow man-
agement based on UML and web services. In: Encyclopedia of E-Commerce, E-
Government, and Mobile Commerce, pp. 217–222. IGI Global (2006)

7. De Lucia, A., Francese, R., Tortora, G.: Deriving workflow enactment rules from
uml activity diagrams: a case study. In: Symposium on Human-Centric Computing
Languages and Environments, pp. 211–218 (2003)

8. Eriksson, H.E., Penker, M.: Business Modelling with UML. Wiley Computing Pub-
lishing, Chichester (2000)

9. Gonzalez, J.D., Diaz, J.S.: Business process-driven requirements engineering: a
goal-based approach. In: Proc. of the 8th Workshop on Business Process Modeling
Development and Support, pp. 1–9. Tapir Academic Press, London (2007)

10. Gross, A., Doerr, J.: EPC vs. UML activity diagram - two experiments examining
their usefulness for requirements engineering. In: Proceedings of Requirements En-
gineering Conference, pp. 47–56. IEEE Computer Society, Washington, DC, USA
(2009)

11. Heimann, P., Joeris, G., Krapp, C., Westfechtel, B.: Dynamite: Dynamic task nets
for software process management. In: Proceedings of the International Conference
on Software Engineering, pp. 331–341 (1996)

12. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object flow defini-
tion for refined activity diagrams. In: Proceedings of the 12th International Con-
ference on Fundamental Approaches to Software Engineering, pp. 49–63. Springer,
Heidelberg (2009)

13. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Dordrecht (2001)

14. Marshall, C.: Enterprise modelling with UML: Designing successful software
through business analysis. Addison-Wesley, Reading (2000)

Precise vs. Ultra-Light Activity Diagrams 305

15. Monfared, R., West, A., Harrison, R., Weston, R.: An implementation of the busi-
ness process modelling approach in the automotive industry. Journal of Engineering
Manufacture 216(11), 1413–1428 (2002)

16. Nitto, E.D., Lavazza, L., Schiavoni, M., Tracanella, E., Trombetta, M.: Deriving ex-
ecutable process descriptions from UML. In: Proceedings of the 22rd International
Conference on Software Engineering, pp. 155–165 (2002)

17. OMG. Business process model and notation (BPMN) Version 2.0. OMG Final
Adopted Specification, Object Management Group (2006)

18. OMG. Object constraint language (OCL) specification, version 2.2. Technical
report, Object Management Group (February 2010)

19. OMG. Unified modeling language (UML) specification, version 2.3. Technical
report, Object Management Group (May 2010)

20. Peixoto, D., Batista, V., Atayde, A., Borges, E., Resende, R., Pádua, C.: A Com-
parison of BPMN and UML 2.0 Activity Diagrams. In: VII Simposio Brasileiro de
Qualidade de Software (2008)

21. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The role of expe-
rience and ability in comprehension tasks supported by uml stereotypes. In: 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, 2007, May 20-26, pp. 375–384 (2007)

22. Scheer, A.: ARIS-business process modeling. Springer, Heidelberg (2000)
23. Torchiano, M., Ricca, F., Tonella, P.: Empirical comparison of graphical and

annotation-based re-documentation approaches. IET Software 4(1), 15–31 (2010)
24. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)

If the SOK Fits, Wear It:

Pragmatic Process Improvement
through Software Operation Knowledge

Henk van der Schuur, Slinger Jansen, and Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
{h.schuur,s.jansen,s.brinkkemper}@cs.uu.nl

Abstract. Knowledge of in-the-field software operation is nowadays ac-
quired by many software-producing organizations. Vendors are effective
in acquiring large amounts of valuable software operation data to im-
prove the quality of their software products. For many vendors, however,
it remains unclear how their actual product software processes can be
advanced through structural integration of such information. In this pa-
per, we present a template method for integration of software operation
information with product software processes, and present four lessons
learned that are identified based on a canonical action research study of
ten months, during which the method was instantiated at a European
software vendor. Results show that the template method contributes to
significant software quality increase, by pragmatic but measurable im-
provement of software processes, without adhering to strict requirements
from cumbersome maturity models or process improvement frameworks.

1 Introduction

Nowadays, software vendors are continuously striving for refinement and im-
provement of their software processes to achieve and extend competitive advan-
tage. Simultaneously, software vendors are experienced in acquiring in-the-field
operation data from their software products and services. It has become com-
mon practice, for example, to monitor software operation and identify operation
failures by means of acquired operation information [5,12].

A wealth of software operation knowledge (SOK), gained from operation in-
formation analysis, can improve basically any software process in a product
software company, such as software maintenance, software product management
and customer support [11]. For many vendors, however, it remains unclear how
software processes can be improved through integration of such information. As a
consequence, acquired operation information is left untouched during execution
of product software processes.

The research question we attempt to answer in this paper is ‘How can product
software processes effectively be improved with acquired information of in-the-
field software operation? ’. To answer this question, we introduce a template

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 306–321, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 307

method for integration of software operation information with product soft-
ware processes, and present four lessons learned that are identified based on
a canonical action research study of ten months, during which the method was
instantiated at a European software vendor. Several prescriptive ‘one-size-fits-all’
software process improvement (SPI) approaches, such as the Capability Matu-
rity Model Integration (CMMI) and ISO/IEC 15504 (SPICE), are considered
as too large, too extensive and too expensive to comprehend and implement
effectively within small and medium-sized companies [1,8,10,13]. As opposed to
those approaches, the SOK integration template method presented is pragmatic
and inductive, i.e., potential resulting improvements are based on the particular
situation of an organization. The template method particularly describes what
are typical operation information integration activities and concepts; a method
instantiation describes how these activities should take place and how related
concepts are involved, specific to a vendor’s situation.

This paper continues with placing our work in context. Next, the research ap-
proach is detailed, after which the SOK integration template method is presented
(section 4). Section 5 details in-the-field instantiation of the method, as well as
an valuation of integration experiences, resulting lessons learned and research
limitations. Finally, conclusions and future work are presented (section 6).

2 Related Work

Many research efforts cover the subject of software process improvement, but
only few consider knowledge of in-the-field software operation as an instrument
for improving product software processes.

For instance, Pettersson et al. [10] have proposed iFLAP, a process improve-
ment framework that is to some extent similar to the SOK integration template
method we presented: the framework is inductive in nature and draws on knowl-
edge that is already residing in the organization to improve processes. However,
as opposed to our method, the framework is specifically directed towards, and
evaluated with, requirements engineering processes. Miler and Górski [9] report
on a case study in which they apply a risk-driven software process improvement
framework in a real-life software project. Case study results demonstrate that
the proposed framework is able to reveal new, previously undetected risks that
provide important input for process improvement. Although various undetected
risks were identified, the framework requires a high level of process descrip-
tion detail to be applied effectively. Iversen et al. [7] proposed a framework for
understanding risk areas and resolution strategies within software process im-
provement, as well as a corresponding risk management process. Although both
the framework and the process are comprehensive and detailed, the framework
was not evaluated through empirical studies and practical use. Moreover, it was
left unclear how and to which extent vendors over time actually benefit from
it. Also, many efforts are directed to demonstrating the effectiveness of software
process improvement by means of CMM(I) [2,4]. For example, Dangle et al. [4]
analyze the role of process improvement in the context of small organizations

308 H. van der Schuur, S. Jansen, and S. Brinkkemper

through an extensive case study in which CMM is applied. Based on this study,
lessons learned are identified. Although one lesson is somewhat analogous to one
of the lessons we have identified, it is left unclear to which extent the lessons
learned of Dangle et al. are generalizable to vendors that have implemented a
different maturity model, or no maturity model at all.

In this paper, we demonstrate pragmatic but measurable improvement of
product software processes, and identify lessons learned that are generalizable
to similar product software vendors.

3 Research Approach

To investigate how product software processes can be effectively improved with
acquired information of in-the-field software operation, we designed a template
method for integration of such information with product software processes,
following a combination of design research and canonical action research prin-
ciples [6,3]. We conducted an extensive action research study at a European
software vendor, during which the method was used to integrate software op-
eration information acquired by the vendor with the vendor’s product software
processes, and therewith improve those processes. Based on study results, lessons
learned are identified that may serve as a guiding substrate for similar vendors
in integrating operation information with their product software processes.

3.1 Research Site

The action research study presented in this paper was carried out at CAD-
Comp1, a European software vendor founded in 1990. The vendor develops an
industrial design application, CADProd, which is targeted on the Microsoft Win-
dows platform and is used daily by more than 4,000 customers in five countries.
Since the start of its development in 1995, four major versions of the applica-
tion have been released. Currently, CADComp employs about 100 people and
is established in the Netherlands, Belgium and Romania. From December, 2009
to September, 2010, we were present at the vendor’s main development site to
integrate acquired SOK in the vendor’s product software processes.

Before our study commenced, CADComp already acquired data of the in-the-
field operation of its software product CADProd in the form of customized error
reports. However, these data were not structurally analyzed, no software oper-
ation information was extracted from these data and no operation information
was integrated with CADComp’s existing product software processes.

3.2 Canonical Action Research

The canonical action research method described by Davison et al. [3] was used to
structure the research activities. We attempted to satisfy each of their ‘canonical
action research principles’:
1 Note that for reasons of confidentiality, the names of the vendor and its software

products have been anonymized.

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 309

1. Principle of the Researcher-Client Agreement. The study was con-
ducted at the European software vendor CADComp. Both the researchers and
the vendor agreed on the action research approach; the vendor indicated that it
is in need of an approach for improving its product software processes with the
use of acquired operation data. We have agreed on a research plan that contains
an overview of the shared research objectives as well as the data that was to
be collected during the study (e.g. software architecture specifications, process
descriptions, memos, semi-structured interviews, etc.)
2. Principle of the Cyclical Process Model. The cyclical process model [3],
originally proposed by Susman and Evered [14], served as a basis for our work
at the vendor. Structuring research activities by means of this model ensures
adequate action planning, action taking and evaluation, as well as specifying
what other vendors and researchers could learn from our study.
3. Principle of Theory. According to Davison et al. [3], action research theory
takes the following form: in situation S with salient features F1, . . . , Fn, outcomes
O1, . . . , On are expected from actions A1, . . . , An. Our (grounded) theory, as
reflected by the formulated research question, is consistent with this form: we
expect vendors that acquire but not analyze or integrate operation information
(S), to improve their product software processes (O) by means of implementing
an instantiation of the SOK integration template method (A).
4. Principle of Change through Action. As stated by principle 1 and 3,
both the researcher and the vendor were motivated to change the situation at
the vendor in terms of operation data and information use. Planned actions were
designed and taken to achieve the defined objectives (see section 5).
5. Principle of Learning through Reflection. Both the observations made
as well as the actions taken were reported to, and evaluated with the vendor’s
employees and management. The researcher and vendor reflected outcomes of
the study by means of semi-structured interview sessions (see section 5).

Adhering to these principles assisted us in establishing pure validity of our re-
search approach, which contributes to realistic repetition of the study at similar
software vendor sites.

4 SOK Integration

We have developed a template method to facilitate integration of acquired SOK
into existing product software processes (target processes). The method is de-
signed to guide vendors in (1) identification of relevant and valuable operation
information, (2) analysis of target processes and their integration environment,
(3) integration of selected information in, and transformation of, target processes
and (4) presentation of integrated operation information.

When applied successfully, the method enables software vendors to increase
the extent to which their practices, processes and tools are supported by SOK,
which may result in directed software engineering, informed management and
more intimate customer relationships. Figure 3 depicts the method as a Process-
Deliverable Diagram (PDD) [15].

310 H. van der Schuur, S. Jansen, and S. Brinkkemper

Identification of SOK
utilization goals and
associated operation
knowledge demands

Utilization PresentationIntegrationAcquisition Identification

Acquisition and mining of
software operation data,
resulting in software
operation information

Integration of operation
information in product
software processes
(e.g. integration method)

Presentation of (integrated)
software operation
information

Structural usage of
software operation
knowledge in software
processes

Fig. 1. Integration of operation information is part of the SOK life cycle [11]

In the context of the SOK framework [11], the SOK integration template
method is an implementation of the SOK integration process, following iden-
tification [11] and acquisition [12] processes, and preceding presentation and
utilization processes (see figure 1). In the SOK acquisition process, software op-
eration data are acquired, mined and analyzed, resulting in software operation
information that forms input of the method. After acquisition, operation infor-
mation is presented on carriers determined during application of the method;
software operation knowledge resulting from interpretation of such information
is used with the frequency determined during method application.

Activity A

CONCEPT λ

relation ρ

Template Method M

Activity A'

Sub activity α'

CONCEPT μ'

relation ρ'

Template Method Instantiation M'

«instantiate»

Sub activity β

Sub activity β'1

Sub activity β'2

CONCEPT λ'2

n

m
1

0..*

1

1..*

Sub activity α

CONCEPT μ

CONCEPT λ'1

Fig. 2. Template method instantiation

4.1 Instantiation

The SOK integration template method can be used by software vendors that
attempt to integrate operation information with product software processes. For
each target process, a new method instance is created, each with corresponding
object and activity instantiations. The template method prescribes what (rather
than how) activities and concepts are to be implemented by software vendors.
Therefore, the method is only composed of open activities and concepts [15],
which should be instantiated with standard, open or closed equivalents. To an-
chor process improvement in the organization, vendors should instantiate both
template activities and concepts consciously and diligently, taking into account
daily practices. The method can be typically applied iteratively, continuously,
and potentially in parallel with other method instantiations. The method’s ap-
plication duration and frequency depend on integration resources and en-
vironment. One or multiple people are responsible for successful execution of
(sub) activities. We assume that both the software operation information
as well as one or more target processes are available and accessible, before
instantiating the method. An instantiation example is visualized in figure 2.

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 311

4.2 Concepts

The eight template concepts the SOK integration template method refers to,
depicted at the right side of the PDD (see figure 3), are detailed in table 1.

Table 1. Concepts of the SOK integration template method

Concept Name Concept Description

ACTOR
A human who demands and utilizes SOFTWARE OPERATION INFORMATION with a certain frequency, potentially visualized by a CARRIER, and
participates in one or more TARGET PROCESSes

CARRIER Medium that can convey and visualize SOFTWARE OPERATION INFORMATION

INTEGRATION

EVALUATION

A systematic determination of merit, worth, and significance of the performed integration of SOFTWARE OPERATION INFORMATION using
criteria against the set of defined INTEGRATION OBJECTIVEs involved

INTEGRATION

OBJECTIVE
Goal of integration of SOFTWARE OPERATION INFORMATION with a TARGET PROCESS involving one or more INTEGRATION REQUIREMENTs

INTEGRATION

REQUIREMENT
A SOFTWARE OPERATION INFORMATION integration necessity, demanding an amount of INTEGRATION RESOURCEs

INTEGRATION

RESOURCE
The (human) resources available for performing integration of SOFTWARE OPERATION INFORMATION

SOFTWARE

OPERATION

INFORMATION

Information resulting from data mining and abstraction of software operation data acquired from software operating in the field, possibly
presented on a CARRIER

TARGET

PROCESS

A collection of related, structured activities, tasks, tools and ideas that produce a specific service or product for (a) customer(s), possibly
dependent on other processes or activities, with which SOFTWARE OPERATION INFORMATION is integrated

Each of the concepts referred to by the method, corresponds to at least one
of the (sub) activities of which the template method is composed, which are
detailed in the next section.

4.3 Activities

The method’s activities and sub activities, depicted at the left side of the PDD
(see figure 3) are detailed below.

1. Operation information selection. In the first activity of the method,
a selection of relevant operation information resulting from data mining and
abstraction of software operation data is made. First, the target process is
analyzed (Analyze target process). Questions like ‘How does the process actually
work?’, ‘How is the process used?’, and ‘What are process dependencies?’ are
answered during this activity. Analyze target process may be performed from
a specific perspective (e.g. human interaction, data dependencies, etc.), which
results in a comprehensive view of the process. Based on this process analysis,
integration objectives are determined (Determine integration objectives). In
this activity, integration incentives and goals are identified, for example by defin-
ing the role and functioning of the target process after integration. Secondly,
software operation information demands of the vendor are identified (Identify
operation information demands). Next, operation information that is considered
relevant and valuable to integrate with the target process, is selected (Se-
lect relevant operation information)2, based on the process analysis results and
identified operation information demands.
2 If operation information is missing, application of the method can be interrupted to

first iterate through the identification and acquisition phases again (see figure 1),
and therewith make sure that desired information is available and accessible.

312 H. van der Schuur, S. Jansen, and S. Brinkkemper

TARGET PROCESS

SOFTWARE OPERATION
INFORMATION

Integrate operation
information

[integration objectives met][else]

advances *

1..*

demands, utilizes
with frequency
1..* *

integrates with

makes use of,
participates in

1..*

1..*

*

INTEGRATION
EVALUATION

1..*

involves

1..*

1..*

visualizes,
conveys

1

*

demands involves

1..*

1..*

Analyze target process

Determine integration
objectives

Identify operation
information demands

Select relevant
operation information

Identify SOK actors

Estimate SOK
utilization frequency

Determine operation
information carriers

Identify integration
requirements

Evaluate integration
results

CARRIER

INTEGRATION
REQUIREMENT

INTEGRATION
RESOURCE

INTEGRATION
OBJECTIVE

ACTOR

1..*

1..*
uses

1..*

1..*

Operation information selection

Integration requirements
identification

Operation information integration

Fig. 3. SOK integration template method

2. Integration requirements identification. First, current and future actors
involved with the target process and acquisition, integration or presentation
of operation information are identified (Identify SOK actors). Secondly, it is es-
timated how often SOK resulting from integration or presentation of operation
information will be used by actors within the target process after integra-
tion (Estimate SOK utilization frequency). Thirdly, carriers for presentation
of operation information integrated with the target process are determined
(Determine operation information carriers). Finally, based on the sub activities
prior to Identify integration requirements, integration resources and inte-
gration requirements for effective integration of acquired software oper-
ation information are determined. Resulting requirements serve as input for
the subsequent ‘Operation information integration’ activity.
3. Operation information integration. The target process is altered
to allow integration of relevant software operation information (Integrate
software operation information) selected in ‘Operation information selection’.
Integration of selected operation information is dependent on, and constrained

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 313

by, the available integration resources identified earlier (e.g. external data
sources, time, people, knowledge, etc.) Operation information integration results
are evaluated in the second activity (Evaluate integration results). If, based on
the subsequent integration evaluation, can be concluded that integra-
tion objectives are met, the result of this activity (and therewith of the SOK
integration template method) is a process that is effectively supported by ac-
quired operation information. Otherwise, the method is reinitiated by starting
the ‘Operation information selection’ activity.

In the following section, we demonstrate instantiation of the template method.

5 Three Pragmatic In-the-Field Method Instantiations

CADComp uses its own software operation data mining and analysis tool called
Denerr, to extract operation information from the acquired CADProd operation
data. Denerr was deployed on CADComp’s intranet, and is accessible to all
CADComp employees. The tool presents acquired error reports, and provides
comprehensive data filtering functionality allowing developers and maintainers
to define constraints on each of the error report properties, for example to analyze
a particular set of error reports. The SOK integration template method was
used to integrate operation information extracted by the Denerr tool in three of
CADComp’s product software processes: (1) software maintenance, (2) software
product management and (3) customer support. Each process was selected based
on CADComps needs expressed by its CEO, and corresponds to a particular SOK
framework perspective [11].

Tables 2 and 3 respectively list how the template activities and concepts of the
integration method were instantiated for each process. As part of the integration
process, adjustments were made to the Denerr tool and to CADComp product
software processes. CADComp employees involved in the target processes were
introduced to new Denerr functionality by means of e-mails describing the new
functionality, meetings of both software development and customer support de-
partments during which new functionality was presented, and short hands-on
evaluation sessions during which new functionality was demonstrated to and
evaluated by particular employees. The SOK integration template method ac-
tivities were performed in parallel. All integration activities were performed by
the researchers and were overseen by the CADComp CEO.

5.1 Observations

As stated in table 2, weekly one-hour ‘Denerr harvest meetings’ were introduced
to frequently analyze and delegate received error reports six months after ini-
tiation of our study. The meetings were organized with two maintenance team
leaders and one researcher, and were led by the product manager made respon-
sible for all Denerr-related issues. We attended the first three meetings in prepa-
ration of the interviews. With around 8200 error reports received since the start
of error report acquisition seven months earlier, aims of the first meeting were to

314 H. van der Schuur, S. Jansen, and S. Brinkkemper

T
a
b
le

2
.
T
em

p
la

te
a
ct

iv
it
y

in
st

a
n
ti
a
ti
o
n
s

Te
m

p
la

te
ac

ti
vi

ty

Ta
rg

et
p

ro
ce

ss
(c

or
re

sp
on

di
ng

pe
rs

pe
ct

iv
e)

S
o

ft
w

ar
e

m
ai

n
te

n
an

ce
(d

ev
el

op
m

en
t)

S
o

ft
w

ar
e

p
ro

d
u

ct
m

an
ag

em
en

t
(c

om
pa

ny
)

C
u

st
o

m
er

su
p

p
o

rt
(c

us
to

m
er

)
T

im
e

pe
ri

od
A

ct
iv

ity
in

st
an

tia
tio

n
T

im
e

pe
ri

od
A

ct
iv

ity
in

st
an

tia
tio

n
T

im
e

pe
ri

od
A

ct
iv

ity
in

st
an

tia
tio

n

A
n

al
yz

e
ta

rg
et

p
ro

ce
ss

12/09–01/10
S

of
tw

ar
e

m
ai

nt
en

an
ce

is
de

pe
nd

en
t

on
te

st
in

g,
cu

st
om

er
su

p-
po

rt
,c

us
to

m
er

tr
ai

ni
ng

an
d

sa
le

s
fe

ed
ba

ck
:e

rr
or

re
po

rt
s

ar
e

ju
st

ac
qu

ire
d

an
d

st
or

ed
,p

ro
gr

es
s

re
ga

rd
in

g
re

pa
ir

in
g

so
ft

w
ar

e
fa

il-
ur

es
du

ri
ng

so
ft

w
ar

e
m

ai
nt

en
an

ce
is

no
t

re
gi

st
er

ed
.

C
A

D
P

ro
d

de
ve

lo
pe

rs
ar

e
no

t
us

ed
to

in
vo

lv
in

g
en

d-
us

er
er

ro
r

re
po

rt
s

in
th

ei
r

m
ai

nt
en

an
ce

w
or

k

01/10

T
he

so
ft

w
ar

e
pr

od
uc

tm
an

ag
em

en
t

pr
oc

es
s

re
lie

s
on

op
er

at
io

n
in

fo
rm

at
io

n
st

or
ed

in
cu

st
om

er
su

pp
or

t(
C

R
M

)
so

ft
w

ar
e,

as
w

el
l

as
en

d-
us

er
fe

at
ur

e
re

qu
es

ts
an

d
bu

g
fix

w
is

he
s

re
po

rt
ed

by
sa

le
sm

en
in

pl
an

ni
ng

fe
at

ur
es

an
d

bu
g

fix
es

fo
r

up
co

m
in

g
re

-
le

as
es

.E
rr

or
re

po
rt

s
ar

e
no

tt
ak

en
in

to
ac

co
un

tb
y

pr
od

uc
tm

an
-

ag
em

en
ti

n
th

e
co

nt
ex

to
f

th
es

e
ac

tiv
iti

es

01/10

C
us

to
m

er
su

pp
or

t
is

us
ed

to
an

sw
er

en
d-

us
er

qu
es

tio
ns

,
ai

d
cu

st
om

er
s

w
ith

so
ft

w
ar

e
us

ag
e,

id
en

tif
y

so
ft

w
ar

e
fa

ilu
re

s
an

d
su

st
ai

n
cu

st
om

er
co

nt
ac

t.
C

us
to

m
er

su
pp

or
te

rs
ha

ve
lim

ite
d

kn
ow

le
dg

e
of

th
e

in
-t

he
-fi

el
d

op
er

at
io

n
of

th
ei

r
so

ft
w

ar
e

at
cu

s-
to

m
er

s,
an

d
ar

e
de

pe
nd

en
t

on
th

e
cu

st
om

er
’s

w
ill

in
gn

es
s

to
ex

-
pl

ai
n

its
si

tu
at

io
n

an
d

re
as

on
fo

r
ca

lli
ng

D
et

er
m

in
e

in
te

g
ra

ti
o

n
o

b
je

ct
iv

es

In
te

gr
at

io
n

ob
je

ct
iv

es
(e

.g
.

ac
ce

le
ra

te
d

so
ft

w
ar

e
m

ai
nt

en
an

ce
)

ba
se

d
on

an
al

ys
is

of
th

e
im

pe
rf

ec
tio

ns
of

th
e

cu
rr

en
t

so
ft

-
w

ar
e

m
ai

nt
en

an
ce

pr
oc

es
s

(e
.g

.p
ro

ce
ss

de
pe

nd
en

ci
es

sl
ow

in
g

do
w

n
th

e
m

ai
nt

en
an

ce
pr

oc
es

s)

In
te

gr
at

io
n

ob
je

ct
iv

es
(e

.g
.

di
re

ct
ed

so
ft

w
ar

e
pr

od
uc

t
(r

el
ea

se
)

m
an

ag
em

en
t)

w
er

e
ba

se
d

on
an

al
ys

is
of

th
e

im
pe

rf
ec

tio
ns

of
th

e
cu

rr
en

t
so

ft
w

ar
e

pr
od

uc
t

m
an

ag
em

en
tp

ro
ce

ss
(e

.g
.

lim
ite

d
us

e
of

op
er

at
io

n
in

fo
rm

at
io

n)

In
te

gr
at

io
n

ob
je

ct
iv

es
(e

.g
.

in
cr

ea
se

d
cu

st
om

er
in

tim
ac

y)
w

er
e

ba
se

d
on

an
al

ys
is

of
th

e
im

pe
rf

ec
tio

ns
of

th
e

cu
rr

en
t

cu
st

om
er

su
pp

or
tp

ro
ce

ss
(e

.g
.l

itt
le

a
pr

io
ri

kn
ow

le
dg

e
of

cu
st

om
er

’s
re

a-
so

n
fo

r
ca

lli
ng

)

Id
en

ti
fy

o
p

er
at

io
n

in
fo

rm
at

io
n

d
em

an
d

s

N
o

si
gn

ifi
ca

nt
de

m
an

d
id

en
tifi

ca
tio

n
w

as
pe

rf
or

m
ed

.
S

of
tw

ar
e

en
gi

ne
er

s
re

qu
es

te
d

fo
rm

ai
nt

en
an

ce
st

at
us

in
fo

rm
at

io
n

of
er

ro
r

re
po

rt
s

by
th

ei
r

ow
n

ef
fo

rt
s

D
ur

in
g

ev
al

ua
tio

n
of

th
e

D
en

er
r

to
ol

,
pr

od
uc

t
m

an
ag

er
s

an
d

C
E

O
re

qu
es

te
d

fo
r

ag
gr

eg
at

ed
op

er
at

io
n

in
fo

rm
at

io
n

an
d

so
ft

-
w

ar
e

op
er

at
io

n
tr

en
ds

T
hr

ou
gh

sh
or

t
ta

lk
s

w
ith

cu
st

om
er

su
pp

or
te

rs
,

op
er

at
io

n
in

-
fo

rm
at

io
n

su
pp

or
tin

g
id

en
tifi

ca
tio

n
of

pa
rt

ic
ul

ar
cu

st
om

er
s

w
as

id
en

tifi
ed

as
in

fo
rm

at
io

n
re

qu
es

te
d

fo
r

S
el

ec
t

re
le

va
n

t
o

p
er

at
io

n
in

fo
rm

at
io

n

E
rr

or
re

po
rt

m
et

a
in

fo
rm

at
io

n
w

as
id

en
tifi

ed
as

re
le

va
nt

in
fo

rm
a-

tio
n,

ba
se

d
on

in
fo

rm
at

io
n

de
m

an
ds

of
so

ft
w

ar
e

en
gi

ne
er

s
as

w
el

la
s

an
al

ys
is

of
th

e
cu

rr
en

ts
of

tw
ar

e
m

ai
nt

en
an

ce
pr

oc
es

s

A
gg

re
ga

te
d

er
ro

r
re

po
rt

pr
op

er
tie

s
an

d
so

ft
w

ar
e

op
er

at
io

n
tr

en
ds

w
er

e
id

en
tifi

ed
as

re
le

va
nt

op
er

at
io

n
in

fo
rm

at
io

n
ba

se
d

on
in

fo
rm

at
io

n
de

m
an

ds
of

pr
od

uc
tm

an
ag

er
s

as
w

el
la

s
an

al
y-

si
s

of
th

e
cu

rr
en

ts
of

tw
ar

e
pr

od
uc

tm
an

ag
em

en
tp

ro
ce

ss

O
pe

ra
tio

n
in

fo
rm

at
io

n
w

hi
ch

en
ab

le
s

id
en

tifi
ca

tio
n

of
cu

st
om

er
s

w
as

id
en

tifi
ed

as
re

le
va

nt
op

er
at

io
n

in
fo

rm
at

io
n

ba
se

d
on

in
fo

r-
m

at
io

n
de

m
an

ds
of

cu
st

om
er

su
pp

or
te

rs
as

w
el

la
s

an
al

ys
is

of
th

e
cu

rr
en

tc
us

to
m

er
su

pp
or

tp
ro

ce
ss

Id
en

ti
fy

S
O

K
ac

to
rs

01/10

A
ct

or
s

w
er

e
se

le
ct

ed
fr

om
th

e
em

pl
oy

ee
s

th
at

re
qu

es
te

d
fo

r
op

-
er

at
io

n
in

fo
rm

at
io

n,
or

w
er

e
ap

po
in

te
d

by
C

A
D

C
om

p’
s

C
E

O

02/10

A
ct

or
s

w
er

e
se

le
ct

ed
fr

om
th

e
em

pl
oy

ee
s

th
at

re
qu

es
te

d
fo

r
op

-
er

at
io

n
in

fo
rm

at
io

n,
or

w
er

e
ap

po
in

te
d

by
C

A
D

C
om

p’
s

C
E

O

01/10–02/10

A
ct

or
s

w
er

e
se

le
ct

ed
fr

om
th

e
em

pl
oy

ee
s

th
at

re
qu

es
te

d
fo

r
op

-
er

at
io

n
in

fo
rm

at
io

n,
or

w
er

e
ap

po
in

te
d

by
C

A
D

C
om

p’
s

C
E

O

E
st

im
at

e
S

O
K

u
ti

liz
at

io
n

fr
eq

u
en

cy

B
y

an
al

yz
in

g
th

e
fr

eq
ue

nc
y

of
cu

rr
en

t
so

ft
w

ar
e

m
ai

nt
en

an
ce

pr
oc

es
s

ac
tiv

iti
es

,
it

w
as

es
tim

at
ed

th
at

S
O

K
w

ou
ld

be
us

ed
at

le
as

t
on

ce
a

w
ee

k

B
y

an
al

yz
in

g
th

e
fr

eq
ue

nc
y

of
cu

rr
en

t
so

ft
w

ar
e

pr
od

uc
t

m
an

-
ag

em
en

tp
ro

ce
ss

ac
tiv

iti
es

,i
tw

as
es

tim
at

ed
th

at
S

O
K

w
ou

ld
be

us
ed

at
le

as
te

ve
ry

S
cr

um
sp

ri
nt

B
y

an
al

yz
in

g
th

e
fr

eq
ue

nc
y

of
cu

rr
en

tc
us

to
m

er
su

pp
or

tp
ro

ce
ss

ac
tiv

iti
es

,
it

w
as

es
tim

at
ed

th
at

S
O

K
w

ou
ld

be
us

ed
po

te
nt

ia
lly

w
ith

ev
er

y
cu

st
om

er
su

pp
or

tc
al

l

D
et

er
m

in
e

o
p

er
at

io
n

in
fo

rm
at

io
n

ca
rr

ie
rs

B
as

ed
on

(m
et

a)
op

er
at

io
n

in
fo

rm
at

io
n

de
m

an
ds

an
d

fe
ed

ba
ck

fr
om

C
A

D
C

om
p

em
pl

oy
ee

s,
a

D
en

ne
r

er
ro

r
re

po
rt

lis
t

vi
ew

w
ith

st
at

us
in

fo
rm

at
io

n
w

as
se

le
ct

ed
as

ca
rr

ie
r

B
as

ed
on

(m
et

a)
op

er
at

io
n

in
fo

rm
at

io
n

de
m

an
ds

an
d

fe
ed

ba
ck

fr
om

C
A

D
C

om
p

em
pl

oy
ee

s,
a

D
en

ne
r

ag
gr

eg
at

ed
er

ro
r

re
po

rt
vi

ew
w

as
w

as
se

le
ct

ed
as

ca
rr

ie
r

B
as

ed
on

(m
et

a)
op

er
at

io
n

in
fo

rm
at

io
n

de
m

an
ds

an
d

fe
ed

ba
ck

fr
om

C
A

D
C

om
p

em
pl

oy
ee

s,
D

en
ne

r
cu

st
om

er
-s

pe
ci

fic
er

ro
r

re
-

po
rt

vi
ew

s
w

er
e

se
le

ct
ed

as
ca

rr
ie

r

Id
en

ti
fy

in
te

g
ra

ti
o

n
re

q
u

ir
em

en
ts

B
as

ed
on

re
su

lts
of

pr
ev

io
us

ac
tiv

iti
es

as
w

el
l

as
di

sc
us

si
on

s
w

ith
C

A
D

C
om

p’
s

C
E

O
,

cr
ea

tin
g

an
d

in
tr

od
uc

in
g

er
ro

r
re

po
rt

la
-

be
lin

g
fu

nc
tio

na
lit

y
w

er
e

id
en

tifi
ed

as
in

te
gr

at
io

n
re

qu
ire

m
en

ts
.

B
as

ed
on

re
su

lts
of

pr
ev

io
us

ac
tiv

iti
es

as
w

el
l

as
di

sc
us

si
on

s
w

ith
C

A
D

C
om

p’
s

C
E

O
.

A
ls

o,
it

be
ca

m
e

cl
ea

r
th

at
cr

ea
tin

g
an

d
in

tr
od

uc
in

g
er

ro
r

re
po

rt
ag

gr
eg

at
io

n
fu

nc
tio

na
lit

y
w

er
e

id
en

tifi
ed

as
in

te
gr

at
io

n
re

qu
ire

m
en

ts
.

A
ls

o,
it

be
ca

m
e

cl
ea

r
th

at
fr

eq
ue

nt
m

ee
tin

gs
ha

d
to

be
or

ga
ni

ze
d

fo
ra

na
ly

zi
ng

,d
is

cu
ss

in
g

an
d

de
l-

eg
at

in
g

ag
gr

eg
at

ed
er

ro
r

re
po

rt
s

E
xt

en
di

ng
th

e
er

ro
r

re
po

rt
fo

rm
at

an
d

D
en

er
r

fu
nc

tio
na

lit
y

w
ith

cu
st

om
er

-s
pe

ci
fic

el
em

en
ts

w
er

e
id

en
tifi

ed
as

in
te

gr
at

io
n

re
-

qu
ire

m
en

ts
,

ba
se

d
on

re
su

lts
of

pr
ev

io
us

ac
tiv

iti
es

as
w

el
l

as
di

sc
us

si
on

s
w

ith
C

A
D

C
om

p’
s

C
E

O

In
te

g
ra

te
o

p
er

at
io

n
in

fo
rm

at
io

n

02-10–03/10

D
en

er
r

w
as

ex
te

nd
ed

to
sh

ow
er

ro
r

re
po

rt
st

at
us

,
pe

op
le

re
-

sp
on

si
bl

e
w

er
e

as
si

gn
ed

an
d

te
am

le
ad

er
re

sp
on

si
bi

lit
ie

s
w

er
e

ex
pa

nd
ed

03/10–09/10

V
ar

io
us

gr
ap

hs
ha

ve
be

en
de

si
gn

ed
an

d
im

pl
em

en
te

d
(e

.g
.,

er
-

ro
r

ca
us

e
m

od
ul

es
,

er
ro

r
re

po
rt

su
bm

is
si

on
tim

e,
et

c.
),

as
w

el
l

as
an

ag
gr

eg
at

io
n

vi
ew

co
nt

ai
ni

ng
th

e
m

os
t

fr
eq

ue
nt

oc
cu

rr
in

g
er

ro
rs

.
A

ls
o,

‘D
en

er
r

ha
rv

es
t

m
ee

tin
gs

’w
er

e
in

tr
od

uc
ed

to
fr

e-
qu

en
tly

an
al

yz
e

an
d

de
le

ga
te

re
ce

iv
ed

er
ro

r
re

po
rt

s

02/10–06/10

IP
-b

as
ed

lo
ca

tio
n

de
te

rm
in

at
io

n
w

as
im

pl
em

en
te

d
by

m
ea

ns
of

IP
ge

ol
oc

at
io

n
lib

ra
ry

,
cu

st
om

er
-s

pe
ci

fic
er

ro
r

re
po

rt
an

al
ys

is
vi

ew
w

as
cr

ea
te

d,
in

te
gr

at
io

n
w

ith
ex

te
rn

al
to

ol
s

w
as

re
al

iz
ed

E
va

lu
at

e
in

te
g

ra
ti

o
n

re
su

lt
s

A
ft

er
de

pl
oy

m
en

t
of

ne
w

D
en

er
r

fu
nc

tio
na

lit
y,

sh
or

t
ev

al
ua

tio
n

ta
lk

s
w

er
e

he
ld

w
ith

th
e

in
vo

lv
ed

so
ft

w
ar

e
en

gi
ne

er
s

A
ft

er
de

pl
oy

m
en

t
of

ne
w

D
en

er
r

fu
nc

tio
na

lit
y,

sh
or

t
ev

al
ua

tio
n

ta
lk

s
w

er
e

he
ld

w
ith

th
e

in
vo

lv
ed

pr
od

uc
tm

an
ag

er
s

A
ft

er
de

pl
oy

m
en

t
of

ne
w

D
en

er
r

fu
nc

tio
na

lit
y,

sh
or

t
ev

al
ua

tio
n

ta
lk

s
w

er
e

he
ld

w
ith

th
e

in
vo

lv
ed

cu
st

om
er

su
pp

or
te

rs

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 315

Table 3. Template concept instantiations

Template
concept

Target process (corresponding perspective)
Software maintenance (development) Software product management (company) Customer support (customer)

ACTOR
2 software engineers, 4 team leaders,
3 product managers

3 product managers, CEO 3 customer supporters, 2 software engineers

CARRIER Error report list view with status information
Statistics, graphs, aggregation error reports
view

Customer-specific error report view, acquisi-
tion, mining and analysis of subjective opera-
tion information (e.g. end-user comments)

INTEGRATION

EVALUATION

Employees suggested that error reports
could (and should) be automatically be as-
signed a status, particularly when at least
95% of the equivalent error reports is as-
signed one and the same status, to stream-
line maintenance work and reduce repeti-
tive administration tasks. Also, it was sug-
gested to tighten integration of acquired op-
eration knowledge with the software mainte-
nance process by keeping track of error re-
ports status change(r)s over time, to analyze
past and delegate future maintenance tasks.
Both ideas were implemented. Finally, it was
suggested to integrate error report data with
bug tracking software, to align error reports
with identified bugs.

Initially, the graph- and aggregation views
were always generated for all error reports.
Later, it appeared that more specific queries
were requested for generating these views,
resulting in views generated for error re-
ports with a particular build number, status
or IP address. Therefore, both views were
implemented as a search result view. Also,
it appeared convenient to delegate errors to
teams using ‘error report bundle’ URLs in-
stead of URLs to individual reports: teams
are provided with insight in the scope and ‘in-
the-field severity’ of software failures. ‘Bun-
dle URLs’ were created to support this form
of communication.

A basic customer view was first accessible via
the detail view of each individual error report.
Supporters made very little use of this cus-
tomer view. A global customer search was im-
plemented to alleviate the task of associat-
ing customer support details with operation in-
formation and tighten integration of operation
information in the customer support process.
Also, it was suggested to extend CADComp’s
Salesforce ‘customer prepsheet’ with operation
information of the particular customer, to pro-
vide salesmen and supporters with insight in
the customer’s recent in-the-field software op-
eration

INTEGRATION

OBJECTIVE

Increase error report status awareness; en-
able error report status updating and moni-
toring; faster software maintenance

Gain insight in trending error report charac-
teristics; directed software product (release)
management

Gain insight in software operation at particular
customers; increased customer intimacy

INTEGRATION

REQUIREMENT

Labeling error reports upon receive with
‘New’ status, visualize labels within Denerr
tool, implement label update functionality

Adding aggregated error report view and
trending graphs to Denerr tool

Extending error report format and Denerr min-
ing, analysis and reporting functionality (include
customer profile and comment data)

INTEGRATION

RESOURCE

1 software engineer, 3 team leaders,
1 product manager

1 software engineer, 3 team leaders,
1 product manager

1 software engineer, 3 team leaders,
1 product manager

SOFTWARE

OPERATION

INFORMATION

Error report status labels
Aggregated operation information, software
operation trends

Operation information which enables identifica-
tion of customers, such as IP address, cus-
tomer and user name, license number, etc.

TARGET

PROCESS
Software maintenance Software product management Customer support

(1) investigate which error reports could be considered old or irrelevant and put
their status to ‘Ignore’, and therewith get a recent, realistic view of the status
of all error reports, (2) delegate each aggregated report in the resulting top 10
of aggregated error reports to a software development team, and (3) investigate
reports received in the last week to identify potential bugs introduced recently.

During the second and third meeting, respectively, the status of tasks identi-
fied during first harvest were discussed again with the team leaders, and reports
with automatically assigned statuses (see table 3) were verified to check if the
correct status was assigned. Based on our attendance of the meetings, three main
observations were made. First, during analysis of the error reports, employees
were surprised about the amount of reports being submitted, particularly from
versions that were considered old versions by the employees. As a consequence,
questions like ‘When can we ignore error reports originating from a particular
release build? ’ and ‘To which extent is it desirable to see the number of error
reports received from a new software product significantly increase month over
month? ’ were discussed. Secondly, although employees understood the signifi-
cance of the reports (‘Those error reports represent the unhandled exceptions
that are experienced by our end-users)’, occasionally, insufficient data was avail-
able to gain a clear understanding of an end-user’s software operation. As a
result, end-user comments accompanying the error reports were frequently an-
alyzed to identify the usage history and goals of end-users. Also, team leaders
formulated more accurate operation information demands. Thirdly, we observed
a demand for fine-grained report analysis. After aggregation and statistic views
were implemented for all error reports, employees desired to show these views

316 H. van der Schuur, S. Jansen, and S. Brinkkemper

only for reports originating from release builds, internal builds and per (build)
version. The aggregation view was used to quickly identify which bugs were not
under investigation for the current sprint. Bug fix work items were created, and
engineers were managed based on the aggregation view.

5.2 Experience Evaluation

Twelve semi-structured interviews consisting of 34 questions divided over seven
sections3 (Integration Objectives, Process Improvement, Integration Challenges,
Return On Investment, Future, Lessons Learned and Final Remarks), were per-
formed after application of the SOK integration template method. Interviews
were conducted with CADComp employees that are involved in a particular
product software process (see table 4), to reflect on the SOK integration process
and identify lessons learned. The method, tables 2 and 3 as well as observa-
tions of the attended Denerr harvest meetings served as input for the interviews.
The interviews took 1.5 hour on average and were conducted over a period of
68 days. Interview results of the first five sections are summarized in table 5;
lessons learned are presented separately in section 5.3.

Table 4. Interviewees per target process

Interviewee type Software
maintenance

Software product
management

Customer
support

Years experience
in IT (average)

Senior supporters 3 16.3

Senior software engineers 2 12

Team leaders 3 8.5

Product managers 3 16.5

CEO 1 25

Although increase of software quality was considered a significant return on
investment, a particular rival hypothesis regarding software quality increase was
postulated often during the action research study and the reflective interviews.
Various employees pondered over the actual cause of the decrease of received
error reports: had the software quality actually been improved, or was there
a random downward trend in software usage (or, more particularly, error re-
port submission)? Error report submission history (see figure 4) indicates that
software quality actually has been improved during period our study was con-
ducted. While the number of submitted error reports increased about linearly
from February, 2009 until June, 2010, this trend was broken in September, 2010
(the drop during July and August could well caused by summer vacation). In
this month, a new major release of CADProd was released and delivered to
customers, causing a slight increase in number of CADProd users.

5.3 Lessons Learned

The lessons learned listed below have been identified based on interview session
results as well as observations during our presence at the vendor.

3 Interview questions can be found at http://people.cs.uu.nl/schuurhw/sokintegration

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 317

Table 5. Interview results

Area Software maintenance Software product management Customer support

Integration
objectives

Quickly identify software failures most cus-
tomers are experiencing frequently, faster im-
prove software quality and performance, in-
crease customer satisfaction

Gain more precise insight in software failures
and weak spots in the software code base, ef-
ficiently increase software quality

Increase customer intimacy, increase effi-
ciency of product software processes, get in-
sight in software usage of customers that do
not call for support

Process
improvements

Software maintenance (e.g. bug prioritization):
time was saved because software failures
are faster reproducible, better insight in and
awareness of in-the-field software operation
and quality was gained

Software maintenance, software product man-
agement: processes have been accelerated
because software failures are bundled (clus-
tered) and prioritized automatically and dis-
cussed on a weekly basis (instead of manual,
subjective bundling)

Software maintenance, customer support:
more detailed information of in-the-field soft-
ware operation is available which helps to
faster determine failure causes in collabora-
tion with the software development depart-
ment

Integration
challenges

Procrastination of developers during identi-
fication and reparation of software failures
based on software operation information, cop-
ing with large amounts of acquired opera-
tion information (identifying what information
is most relevant in which situations and cope
with diversity of information during analysis)

Assigning responsibilities to employees in in-
volving operation information in product soft-
ware processes, while ensuring a balance be-
tween (1) the liberty of an employee and its
team, and (2) improving the performance and
efficiency of a department as a whole

Based on large amounts of acquired operation
information, correctly determine what are ac-
tual causes of software failures and what ad-
ditional (operation environment) information is
needed to do so if those causes can not be
correctly determined

Integration
side effects

Operation information can be used to con-
vince development management in taking re-
lease planning decisions, exception handling
mechanism of the software was extensively
refactored to increase software quality

Information on software usage is also gained,
e.g. insight in a customer’s software update
policy can be gained

Customers feel taken seriously, especially
when they are contacted after providing infor-
mation regarding their software operation

Return on
Investmenta

Software quality (robustness) increase of
25%, decrease of software maintenance time

of 50%b

Unhandled exception occurrence decrease of
40%, customer satisfaction increase of 25%

Customer support time decrease of 50%, soft-
ware quality increase of 25%

Main future
challenge

Knowing what are the functional requirements
of the main customer (end-user) types, and to
ensure that relevant, reliable operation infor-
mation is extracted while data acquisition in-
creases

Realizing a customer-specific approach in
terms of software licensing and customer sup-
port, and finding an optimal balance between
steering processes through operation informa-
tion, and sustaining a leading role in industry
by implementing a software product vision

Making sure that operation information is used
and prioritized as effective as possible, while
data acquisition sources and resulting opera-
tion data amounts increase

a
All percentages are averages of rough estimations made by interviewees.

b
Before operation information integration, software failures were frequently unreproducible and were never repaired.

1. Integration Processes Should be Lean. The effects of integrating oper-
ation information in product software processes should not be underestimated.
Additional processes with corresponding responsibilities may be required to en-
sure effective and continuous integration of acquired operation information (for
example, registering software maintenance tasks based this information and del-
egating those tasks to the right employee(s)). Vendors should ensure that addi-
tional (administrative) tasks caused by integration of operation information are
handled in a pragmatic and lean way: additional administration may negate the
time gain caused by integration of operation information.
2. Integration Responsibilities and Results Should Be Evangelized. An
internal manager that has affiliation and experience with development-, business-
and customer-related processes should be made responsible for integration of
acquired operation information with those processes, since acquired operation
information will not integrate automatically: during our action research study at
CADComp, we observed that making integration of operation information every-
one’s shared responsibility, is effectively equivalent to making no one responsible.
Inter alia, such a manager should ensure that the potential and results of the
‘SOK-supported’ process both are communicated clearly and frequently: this
increases awareness and acceptance of the new way of working, both among em-
ployees as well as at management level. Evangelism of SOK integration potential
and results is key in integrating operation information.

318 H. van der Schuur, S. Jansen, and S. Brinkkemper

Fig. 4. CADProd error report submission decrease of about 45% during our study

3. SOK Integration Opens Up Black Boxes. In line with expectations of
CADComp employees, integration of acquired operation information improved
software maintenance, software product management and customer support pro-
cesses: the time needed to reproduce software failures was decreased, deeper
insight into (and awareness of) in-the-field software operation and end-user be-
havior was gained, and customer satisfaction was increased. Operation infor-
mation is used for prioritization of fixes for software failures that are actually
experienced by end-users, which may decrease the time required for software
maintenance and customer support. However, as became clear after integrat-
ing CADProd operation information with CADComp processes, unanticipated
improvements may result from effective SOK integration. For example, since
developers are made aware of in-the-field software operation quality, SOK inte-
gration may result in a more customer-central, pro-active development mentality
(‘build what the customer will use, before the customer asked for it ’). Also, inte-
gration of operation information in product software processes may clarify and
speed-up interdepartmental communication as well as communication between
employees and management. Improvement areas that were unnoticed before, are
highlighted as such after (and potentially as a side effect of) SOK integration.
4. Continuous Refinement of SOK Integration Objectives and Re-
quirements Leads to Optimization of Integration Results. Integration
results are dependent on integration objectives and requirements. Since product
software processes and activities change, as well as software operation environ-
ments and customer demands, integration objectives and requirements should
be evaluated and refined continuously to correspond to both a vendor’s product
strategy as well as a vendor’s customers needs. On the long term, software ven-
dors should attain a balance between using operation information to steer their
product software processes, and adhering to their product vision and strategy.
These lessons learned may serve as a guiding substrate for similar vendors in
integrating information of in-the-field software operation.

5.4 Threats to Validity

The validity of the study results is threatened by several factors. First, construct
validity of our study is threatened by the fact that the researchers conducting

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 319

the study were involved in objects of study (e.g. product software processes
implemented at CADComp): observations or conclusions could be biased. This
threat is addressed by adhering to the principles for canonical action research
elicited by Davison et al. [3] (see section 3.2). For example, the researchers and
software vendor being studied agreed on a research plan describing the shared
objectives and data that was to be collected during the study. Also, both the
researcher and the vendor reflected upon the outcomes of the study by means of
semi-structured interview sessions.

Secondly, primary threat to the internal validity of the study is the relation
between the instantiation of the SOK integration template method at CAD-
Comp and the subsequent software quality increase perceived by CADComp
interviewees. Although it is a challenge to isolate the particular influence of
template method instantiation on improvement of CADComp’s product soft-
ware processes, we regard CADComp’s error report submission history (as ana-
lyzed in section 5) as representative of the extent to which CADComp’s software
maintenance, software product management and customer support processes are
improved through instantiation of the SOK integration template method.

Thirdly, external validity is threatened by the fact that the SOK integration
template method was instantiated at only one software vendor, during a lim-
ited period of time. While we acknowledge this threat, we regard the study as
repeatable with the same results, presuming similar circumstances (e.g. similar
operation information, processes, software vendors, etc.)

6 Conclusions and Future Work

All too often in industry, software vendors acquire large amounts of valuable
software operation data, without effectively using these data in advancement
of their processes. Operation information extracted from operation data is not
structurally integrated with product software processes, leaving vendors in the
dark regarding in-the-field software performance, quality and usage, as well as
end-user feedback. Vendors are in need of an approach that supports them in
accomplishing such integration.

We presented a template method that aids product software vendors in (1)
identification of relevant and valuable operation information, (2) analysis of
target processes and their integration environment, (3) integration of selected
information in, and transformation of, target product software processes, and
(4) presentation of integrated operation information. During an action research
study of ten months performed at a European software vendor, the template
method was instantiated to improve the vendor’s product software processes
through integration of acquired operation information.

Evaluation of the study shows that typical product software processes like soft-
ware maintenance, software product management and customer support benefit
from structural integration of operation information in terms of software qual-
ity, operation knowledge and customer intimacy. Based on this evaluation, four
lessons learned are identified that may serve as a guiding substrate for similar

320 H. van der Schuur, S. Jansen, and S. Brinkkemper

vendors, in integrating information of in-the-field software operation with their
product software processes. We regard the SOK integration template method
and lessons learned as an adequate early answer to the main research ques-
tion of this paper, ‘How can product software processes effectively be improved
with acquired information of in-the-field software operation? ’. We demonstrated
how product software processes can be improved pragmatically but measurably,
without adhering to strict requirements from cumbersome maturity models or
process improvement frameworks.

Future work will include additional action research or case studies to in-
stantiate and evaluate the SOK integration template method in industry, and
therewith further demonstrate its soundness and utility. Further research is also
needed to mature the identified lessons learned towards generic guidelines or
principles for effective integration of software operation information.

Acknowledgements

We would like to thank all CADComp employees for cooperating and contribut-
ing to our research by sharing their ideas and experiences.

References

1. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE
Softw. 19(4), 92–99 (2002)

2. Dangle, K.C., Larsen, P., Shaw, M., Zelkowitz, M.V.: Software Process Improve-
ment in Small Organizations: A Case Study. IEEE Software 22, 68–75 (2005)

3. Davison, R.M., Martinsons, M.G., Kock, N.: Principles of canonical action research.
Information Systems Journal 14, 65–86 (2004)

4. Fitzgerald, B., O’Kane, T.: A Longitudinal Study of Software Process Improve-
ment. IEEE Software 16(3), 37–45 (1999)

5. Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G.,
Grant, D., Loihle, G., Hunt, G.C.: Debugging in the (Very) Large: Ten Years of
Implementation and Experience. In: SOSP 2009: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pp. 103–116. ACM, New York
(2009)

6. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly 28(1), 75–105 (2004)

7. Iversen, J.H., Mathiassen, L., Nielsen, P.A.: Managing Risk in Software Process
Improvement: An Action Research Approach. MIS Quarterly 28(3) (2004)

8. Kuilboer, J.P., Ashrafi, N.: Software process and product improvement: an empir-
ical assessment. Information and Software Technology 42(1), 27–34 (2000)

9. Miler, J., Górski, J.: Risk-driven Software Process Improvement - a Case Study.
In: EuroSPI 2004: 11th European Conference on Software Process Improvement.
Springer, Heidelberg (2004)

10. Pettersson, F., Ivarsson, M., Gorschek, T., Öhman, P.: A practitioner’s guide to
light weight software process assessment and improvement planning. Journal of
Systems and Software 81(6), 972–995 (2008)

If the SOK Fits, Wear It: Pragmatic Process Improvement through SOK 321

11. van der Schuur, H., Jansen, S., Brinkkemper, S.: A Reference Framework for Uti-
lization of Software Operation Knowledge. In: SEAA 2010: 36th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 245–254.
IEEE Computer Society, Los Alamitos (2010)

12. van der Schuur, H., Jansen, S., Brinkkemper, S.: Reducing Maintenance Effort
through Software Operation Knowledge: An Eclectic Empirical Evaluation. Ac-
cepted for Publication in the Proceedings of the 15th European Conference on
Software Maintenance and Reengineering, CSMR 2011 (2011)

13. Smite, D., Gencel, C.: Why a CMMI Level 5 Company Fails to Meet the Deadlines?
In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009.
Lecture Notes in Business Information Processing, vol. 32, pp. 87–95. Springer,
Heidelberg (2009)

14. Susman, G.I., Evered, R.D.: An Assessment of the Scientific Merits of Action Re-
search. Administrative Science Quarterly 23(4), 582–603 (1978)

15. van de Weerd, I., Brinkkemper, S.: Meta-Modeling for Situational Analysis and De-
sign Methods. In: Handbook of Research on Modern Systems Analysis and Design
Technologies and Applications, pp. 38–58. Information Science Reference (2008)

Critical Issues on Test-Driven Development

Sami Kollanus

Faculty of Information Technology
University of Jyväskylä

Jyväskylä, Finland
sami.kollanus@jyu.fi

Abstract. During the last decade, Test-Driven Development (TDD) has
been actively discussed in the software engineering community. It has
been regarded as a useful and beneficial software development practice
as well in industry as in academia. After a decade of active research,
there is still very little critical discussion on TDD in the literature. This
paper is based on a literature review and it is focused on identifying
and introducing critical viewpoints on TDD. First, the current evidence
on TDD’s benefits is still weak and it includes several issues. Second,
the paper presents a number of other possible issues and challenges with
TDD that are referred in the literature. Finally, based on the findings, a
list of concrete research questions for the future research is presented.

1 Introduction

Test-first programming is not a new idea, but it has been in known at least from
the 1960s [9]. However, the concept has become well known in the software engi-
neering community just during the last decade, when Test-Driven development
(TDD) has been popularized as one of the key practices in eXtreme Program-
ming (XP) [5]. Later TDD has been discussed as a stand alone practice [3][6]
and there is already a decade of active research on the field.

The basic idea of TDD is simply to write tests before code in small iterations.
First, developer writes a test case that is just enough to define the next func-
tionality. The next step is to write code that is just enough to pass the test.
Finally, the code is refactored, if needed. These steps are iterated in short cycles
through the whole development process. Originally TDD was introduced as a
development, not a testing, method. [3][6]

TDD has been suggested to provide a variety of different benefits, such as
better productivity [21][32], better quality [20][47], high test coverage [7][31],
better program design [35][57] and improved developers’ confidence on their
code[20][35]. Regardless of the several suggested benefits, empirical evidence on
them is still weak [37]. And there is very little critical discussion on TDD in the
research literature.

This paper is focused on different critical viewpoints on TDD. The aim of
the study is to identify the critical questions that have to be further studied in
order to better understand TDD and its limitations in practice. The viewpoints

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 322–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Critical Issues on Test-Driven Development 323

presented in this paper are based on a systematic literature review that was
focused on the current empirical evidence on TDD’s benefits [37].

The following section 2 will include description of the conducted literature
review. Section 3 is focused on issues with the empirical evidence on TDD’s ben-
efits. Other possible issues, limitations and challenges with TDD are discussed in
section 4. Finally, sections 5 and 6 include discussion and the main conclusions.

2 Literature Survey

This paper is based on a systematic literature review, in which the initial purpose
was to evaluate the current empirical evidence on TDD. The main results of the
literature review have been published in another paper [37]. Therefore the focus
in this study is not on reporting the systematic literature review results, but
on introducing critical viewpoints on TDD that have been found during the
literature review process.

The review process was designed using the well known guidelines for system-
atic literature reviews on software engineering field [36]. In the beginning, a small
preliminary review was conducted in order to identify the typical terminology
and the potential sources of TDD related research. The following subsections
will describe how the actual review process (search, data extraction, analysis)
was conducted.

2.1 Sources

The search was limited to scientific journals, magazines and conference proceed-
ings. The first step was to list the potential journals and magazines that most
probably publish research on TDD. The list was created based on the preliminary
review and the author’s earlier experience on software engineering research. The
final list included 15 publication series focused on software engineering. The elec-
tronic archives of each journal were searched by using their own search engines.

The next step was to find the relevant conference proceedings. Three im-
portant electronic databases (IEEE Explorer, ACM Digital library, Springer
database) were included in the search. They were selected, because 1) they cover
most of the relevant conference proceedings, 2) most of the publications are peer
reviewed, and 3) they were easy to access.

Finally, the data extraction phase revealed several referred studies that were
not found in the original search. All possibly relevant new references were in-
cluded in the initial review data.

2.2 Search Procedure

Two searches were done on each of the sources using keywords: ”TDD” and
”test-driven development”. The search results were manually checked based on
tittles and abstracts, because most of the search results had nothing to do with
test-driven development. At this stage, all the potentially relevant articles that
are related to TDD were listed. The papers including empirical evidence were
identified later.

324 S. Kollanus

2.3 Data Extraction and Analysis

The initial list of articles included 229 papers. Each relevant article of the initial
list was read. Some of the papers were excluded, typically for three reasons.
First, the papers discussing acceptance test-driven development or some related
concept were excluded. Second, there were some XP papers that actually don’t
discuss anything about TDD. Third, there were also some publications that were
not research papers. All the conference proceedings were regarded as research
papers, but for example, short columns in IEEE Software were excluded. Finally,
the initial review data included 165 articles and the following data was recorded
of each paper.

– research question
– characteristics of the research method (e.g. empirical, controlled experiment,

number of participants, target group)
– brief description of the research
– main results
– evidence on TDD (if any)
– critical comments on TDD (if any)
– how TDD was introduced in the paper

At this stage, all the relevant TDD related papers were still included in the
material in order to create a broad view on the research field. During the data
extraction process, the reported empirical evidence on TDD was recorded. There
were finally 40 papers in the review data that included some kind of empirical
evidence on TDD’s benefits and this data was used in the systematic literature
review.

2.4 Evaluation

The following actions were done during the review process to control the quality
of the process and the results.

– A small preliminary review was conducted before the actual search phase to
ensure good design of the review.

– The data extraction protocol was first piloted with 10 good quality journal
articles. The plan was to revise the protocol after the pilot phase, but in this
research there was no need for changes during the review process.

– References of the articles were searched during the data extraction phase to
ensure that the review includes as many relevant articles as possible.

2.5 Role of Literature Review in This Paper

In order to identify different critical viewpoints on TDD, the literature review
data is used in two different ways. First, the results of the systematic literature
review were analyzed and found issues with the empirical evidence on TDD’s
benefits are introduced in section 3. Second, any critical comments on TDD were
recorded of each 165 papers in the initial review data. Many of these comments
are not based on empirical research, but more like anecdotal discussion in the
publications. The main viewpoints of the discussion are summarized in section 4.

Critical Issues on Test-Driven Development 325

3 Issues with Empirical Evidence on TDD

There is an earlier paper published of the same project [37]. The paper is focused
on reported empirical evidence of TDD. There was very limited number of critical
viewpoints reported in the empirical studies. This section includes a summary
of the analyzed empirical evidence as well as the few critical issues with TDD.

There were 40 papers in the review data that include some kind of empirical
evidence on TDD. These papers represent different research questions, methods
and varying quality. The main quality issue for the meta-analysis in the review
data is reporting. Many of the research reports provide very limited information
about the research setting. In a typical experiment, there is a group using TDD
and a control group that follows ”traditional development method”. Both TDD
and especially this traditional method are often very briefly (or not at all) de-
fined. This makes interpretation of the results difficult. The same issue appears
also in the case studies. They typically report some experiences of a TDD im-
plementation, but often give very little details about the development process
with TDD and the process used before TDD.

For the low number of high quality studies, all available evidence was included
in the review data that is summarized in this section. The review data discuss a
number of suggested benefits of TDD. However, most of the reported evidence
on TDD is related to three general topics: 1) external quality, 2) internal code
quality, and 3) productivity.

The following subsections 3.1-3.3 are focused on each of the main topics. They
include rhe main conclusions of empirical evidence and also the raised questions
about the suggested benefits of TDD.

3.1 External Quality

External code quality is measured using a couple of different metrics. Experiment
settings typically include a well defined programming task and acceptance tests
written by the researchers. In this kind of setting, external quality means number
of passed acceptance tests. In the case studies, external quality usually means
number of defects found before release or defects reported by customers.

There are 22 articles in the review data that include evidence on how TDD
affects external code quality. The results of these studies are summarized in
table 1. Most of the evidence (16 out of 22 studies) suggests that TDD improves
external quality. However, the results are much more contradictory, if research

Table 1. How TDD affects external quality?

Method Increase quality No difference Decrease quality

Contr. experiment [24][27] [21][30][46][48] [41]
Case studies [7][13][40][45][47]

[52][56][61][63]
[44]

Other [14][19][20][49][62]

Total number 16 5 1

326 S. Kollanus

method is taken into account. Almost all the case studies support better external
quality with TDD, whereas only two (out of 7) controlled experiments end up
with the same conclusion. Most of the controlled experiments didn’t find any
difference in external and in one experiment the TDD group passed even less
acceptance tests than the control group [41].

It may be concluded that the evidence provides weak support for better exter-
nal quality with TDD. The case studies are quite consistent in reporting about
better external quality after TDD implementation. However, the contradictory
results from the controlled experiments leave some questions about the actual
factors behind the improvement. For example, Huang and Holcombe [30] found
in their controlled experiment that the TDD group passed more acceptance
tests, but the trend was actually related to the time used for unit testing, not
the development method.

The raised issues with external quality can be summarized to the following
points:

– Case studies and controlled experiments give different results.
– In one of the experiments, TDD produced even less quality code.
– Are the reported quality improvements actually related to TDD or simply

time invested in unit testing?

3.2 Internal Quality

It is more difficult to interpret the evidence on internal code quality, because
there are so many different metrics used in the found 16 studies. The most
common metrics were test coverage and number of test cases, but also method
size, cyclomatic complexity, coupling and cohesion were measured in more than
one study. So, the results are not completely comparable, but the evidence is
summarized in table 2 based on the metrics used in each study. There may be
also different results in a single study. For example, Siniaalto and Abrahamsson
[54] found in their case studies that TDD improved test coverage, but suffered
for lack of cohesion. In addition, they found no difference in few other internal
code quality metrics. The study was classified in no difference category in the
summary table.

Most of the controlled experiments found no difference in internal quality
between TDD and a control group. For example, Madeyski [43] conducted a
controlled student experiment, in which the control group was also advised to
use iterative developments style and they were required to write unit tests after

Table 2. How TDD affects internal quality?

Method Increase quality No difference Decrease quality

Contr. experiment [11][21] [10][22][42][43][48]
Case studies [44][51] [54][55]
Other [25][31] [32][34] [60]

Total number 6 9 1

Critical Issues on Test-Driven Development 327

the code. Madeyski measured branch coverage and mutation score of the stu-
dents’ code, but found no difference between the two groups. Also a couple other
experiments have reported no difference in test coverage [48][22]. The two con-
trolled experiments that found TDD improving internal code quality, measured
simply number of written test cases [21][11]. They concluded that TDD may
motivate to write more tests.

There are only few case studies that include some evidence on TDD and in-
ternal code quality. Madeyski and Szala [44] report on an academic case project
that the team wrote less code per user story when using TDD. Rendel [51] con-
cludes in his industrial case study that TDD improved code cohesion, whereas
Siniaalto and Abrahamsson [54][55] found lack of cohesion in their case stud-
ies and their results on the other internal quality metrics were contradictory.
They concluded that TDD may produce less complex code, which is, however,
more difficult to maintain. They also question whether the suggested benefits of
TDD could be achieved just by emphasizing unit testing without the test first
approach.

The raised issues with internal quality can be summarized to the following
points.

– There are very few comparable studies, because the studies use different
metrics.

– Most of the studies didn’t find improvement with TDD.
– TDD may produce code that is more difficult to maintain.
– (again) Are the reported quality improvements actually related to TDD or

simply time invested in unit testing?

3.3 Productivity

Productivity here is discussed very broadly and it includes any metrics that are
related to development effort. In different studies, the used metric may be total
development effort [7], lines of code per hour [44] or number of implemented user
stories [21]. The evidence of the productivity is summarized in table 3.

As can be seen in table 3, there are very mixed empirical results of TDD’s
effect on productivity. The controlled experiments slightly support decrease in
productivity and the case studies report more coherent results of decreased pro-
ductivity. However, if all the studies are taken into account, majority (12 out
of 23) of the studies report on no difference or even improved productivity with
TDD. So, the evidence on productivity is not so clear and interpretation is even

Table 3. How TDD affects productivity?

Method Incr. productivity No difference Decr. productivity

Contr. experiment [21][27] [22][25][30][46] [10][11][23][24]
Case studies [44][61] [7][13][45][47][52][63]
Other [32][62][64] [31] [60]

Total number 5 7 11

328 S. Kollanus

more difficult. Several researchers (e.g. [47]) regard the reported increase in de-
velopment report as a beneficial investment in improved external quality.

The raised issues with internal quality can be summarized to the following
points:

– There are very few comparable studies, because the studies use different
metrics.

– TDD may increase needed development effort.
– (again) Are the reported quality improvements actually related to TDD or

simply time invested in unit testing? Especially several case studies report
on both increased development effort and better quality with TDD, but they
are not detailed enough to support further conclusions.

3.4 Summary of the Issues with the Empirical Evidence

The literature review revealed several issues with the empirical evidence on
TDD’s suggested benefits. Here are summarized the key issues.

Review data: The literature review data includes several issues for this kind
of meta analysis. The number of the found relevant articles was relatively low.
The found 40 articles represent different research questions, methods, metrics
and quality. There are very few really comparable results.

Weak evidence: There is some evidence on better quality, but increased devel-
opment effort with TDD. However, the reported results are contradictory and
therefore it is hard to interpret them.

Is TDD the actual factor?: Several researchers raise the same question about
the actual factors behind the claimed benefits of TDD (e.g. [30][39][55]). Better
external quality may be more related to unit testing than the test first approach.

4 Other Issues and Challenges with TDD

The previous focused on issues raised up from the empirical evidence on TDD’s
benefits. In addition, the literature discusses several possible issues, limitations
and challenges of TDD. The main points are introduced in the following subsec-
tions.

4.1 Lack of Design

One of the key ideas of TDD is the bottom-up approach with minimal upfront
design. Several papers refer to lack of design as one of the potential issues in
TDD [15][39][56]. For example, Kollanus and Isomöttönen found in their stu-
dent experiment that even participants with several years of working experience
suffered for lack of initial design in their relatively small assignments.

Lack of design may lead to other issues like heavy refactoring. Vodde and
Koskela [59] give a small concrete example of how TDD may lead to unexpected
refactoring. They don’t regard this as a problem in their case, but in the bigger
scale there may be more serious risk. The issue with TDD is not only refactoring

Critical Issues on Test-Driven Development 329

of production code, but also maintenance of the tests. Boehm and Turner [8]
note that rapid changes may break the existing tests.

TDD has been claimed to produce better design in terms of less coupled and
more cohesive code [4]. It was already discussed in the previous section that
there is very little empirical evidence on better design with TDD. Siniaalto and
Abrahamsson [55] found that TDD produced even less cohesive code. According
to Madeyski [42], TDD may improve code quality in a single class, but in his
experiment, TDD didn’t affect quality on package level. Sangwan and LaPlante
[53] suggest based on their experiences that TDD may work in the bigger scale,
but there must be more focus on upfront design and integration tests.

4.2 Applicability

Applicability of TDD depends on the context. In some cases tests are simply
too difficult write or writing them require too much effort. Beck [4] states that
writing user interfaces test-first is hard. Grenning [26] introduces the challenges
and possible solutions for TDD in embedded systems development. For example,
it may be impossible to run unit tests in the target hardware.

In some cases, applicability of TDD is a question of available tools. Without
proper tools, writing TDD may require too much effort. Test-driven database
development is a good example of this. Ambler [2] presents concepts for it, but
refers to challenges with the existing tools. Hamil et al. [28] have made the similar
conclusion about TDD in developing web services with the common tools (Java
+ JUnit).

4.3 Test Code Size

The typical ratio of test to production code is typically at least one-to-one
[16][53]. A couple of possible issues are related to size of test code. First, full
build may take too much time for TDD. Rasmussen [50] report in his case study
how developers finally ran only selected (not optimal) set of tests, because full
build took too much time. In their case the full build took 24 minutes at the
end of the project. In large projects it may take several hours. So, it is often not
possible to continuously run all the tests.

Another issue is maintenance of the test code. For example Rendel [51] presents
in his case study a typical bad scenario with TDD. The most crucial point in the
scenario is that refactoring work takes longer than expected, because also the
tests need refactoring. In time pressure, it may lead developers to abandon the
existing tests instead of maintaining them. So, if we rely on bottom-up devel-
opment approach with refactoring, it possibly means substantial extra work on
refactoring tests. Or possibly the skilled enough developers are able to minimize
the need for refactoring and don’t ever face this issue?

4.4 Required Skill Level

It has been claimed that TDD may need special skills and experience [15]. Kol-
lanus and Isomöttönen [39] refer to one possible explanation for this in their

330 S. Kollanus

student experiment. They found that the participants had no problems with
using TDD in an easy routine task, but with the more challenging task, the par-
ticipants were in trouble. They would have needed some upfront design before
the test-firsts programming. In TDD, the programmer must have the big picture
of the program (at some level) in order to write tests for it. The more experi-
enced programmers are able to form the design in their mind and therefore the
bottom-up design approach suggested with TDD may work for them while the
less advanced programmers end up with trouble.

Another viewpoint is type of the skills needed with TDD. Several studies
agree that testing skills are different from programming skills. Writing proper
test cases has been found as one of the most difficult issues with TDD[29][38][58].

4.5 Challenges in Adopting TDD

The most referred challenges in adopting TDD are learning curve and attitudes.
First, several authors agree that learning TDD is not a simple task [21][29][38].
For example, Hedin et al. [29] found TDD as the most difficult to learn of all
eXtreme Programming practices. Crispin [12] report in his case study that results
improved significantly even during the second year after adopting TDD in the
organization. So, learning TDD may take more effort and time than expected.

Second, the practitioners appear to intuitively have some negative attitudes
on TDD. For example, Maximilien and Williams [45] report in their case study
that many people both in development and management questioned productivity
TDD. They also describe that typically some of the developers resisted change
in their programming style.

Understanding the expected benefits of TDD may not be enough. Developers
may have positive attitude towards TDD, but still have weak motivation to
use it in practice, because they regard wring tests as extra effort on individual
level [33][1].

5 Discussion

There are several limitations in results presented in the previous sections 3 and
4. First, it must be understood that the purpose of this paper is not to give an
objective picture of TDD, but broadly introduce reported critical viewpoints on
it. Generally, most of the empirical evidence on TDD (section 3) is positive.

The main issue with the empirical evidence on TDD is quality of the primary
data. There are very few comparable studies in the review data. The data in-
cludes 40 papers that represent different research questions, methods, metrics
and quality. Often used methods and/or research setting are poorly introduced
and therefore it would be impossible to replicate the study or interpret the re-
sults. For example, a typical case study presents positive results from a project
that adopted TDD, but it does not describe in detail the changes in the devel-
opment process or discuss about the other factors that may have impacted the
results.

Critical Issues on Test-Driven Development 331

There are some issues to consider with generalizability of the empirical ev-
idence on TDD. Most of the participants in the reported experiments were
students or professionals with little or no experience on TDD. Can we make
conclusions based on these results about TDD in an experienced team? And
possibly the more important issue is typical research setting in the experiments,
in which the participants do a small programming assignment that can be done
within hours. What can we say about TDD’s actual benefits based on such small
programming task?

The mentioned issues with the empirical evidence on TDD appear to be more
general issues on software engineering field. Dyb̊a and Dingsøyr [18] systemati-
cally analyzed strength of evidence in their earlier systematic literature review
on agile practices [17]. They concluded that strength of empirical evidence on
agile practices is very low. The conclusion is based on similar issues that are
related to TDD research in this study.

It can be questioned why it is so hard to find critical studies on TDD (or
any other software engineering method). Of course, it is not an easy question
to answer, but here are some guesses that may explain at least part of the phe-
nomenon. First, companies don’t want to publish any negative results. Second,
also the researchers prefer publishing positive results. In many cases, it feels like
the authors were ”believers” of TDD (or some other method) and trying to proof
its superiority instead of critically studying it.

Third, natural development of research seems to be part of the explanation.
In order to publish a new software engineering method, the researchers have to
evaluate it and reason how it is better than the other competitive methods. So,
the first studies naturally present positive results. Then, for some reason, the
next stage (at least in TDD/agile case) includes both case studies and experi-
ments that report extremely positive results. It takes time, before more critical
viewpoints develop on the research field.

Fourth, the software engineering community publishes new methods all the
time and the research focus also moves on before a strong body of knowledge
develops on any method. Such progress is a characteristic of the software engi-
neering community. On individual level, most of the researchers are more moti-
vated on studying new methods than creating substantial body of knowledge on
a narrow research field.

6 Conclusions

This paper has discussed several critical viewpoints on test-driven development.
First, there are several issues with the current empirical evidence on TDD, which
was studied based on a systematic literature review. It was concluded that there
is some evidence on better quality but decreased productivity with TDD. How-
ever, the primary review data included very few comparable studies and overall
the empirical evidence on TDD is weak. In many cases, it can be questioned if
TDD is the actual factor behind the reported results.

332 S. Kollanus

Table 4. Suggested questions for further research on TDD

Benefits of TDD
How TDD affects external software quality?
How TDD affects productivity? What is the overall cost of TDD?
How TDD affects internal code quality in terms of complexity and maintainability?
How should TDD be used in practice to maximize the benefits?
Are the found benefits related to test-first approach or time used for unit testing?

Other practical questions
Is upfront design needed with TDD?
How can the challenges with test code size be managed?
What are the limitations in applicability? In which context TDD is (or is not)
applicable or beneficial?
What kind of skills are needed for effective use of TDD?
What kind of practical challenges (and solutions) are there in adoption of TDD?

Second, there are several other possible issues, limitations and challenges that
have been related to TDD in the literature. The following main themes of this
discussion were introduced in this paper.

– lack of design
– test code size
– applicability of TDD
– required skill level
– challenges in adopting TDD

The aim of this paper is not to question TDD as a software development practice,
but find the critical questions that have be studied for better understanding on
TDD in practice. There are some promising results of using TDD, but we need
a lot of further research in order to understand the actual benefits, limitations
and challenges of TDD. Table 4 includes some concrete research questions that
are listed based on the critical issues discussed this paper.

References

1. Abrahamsson, P., Hanhineva, A., Jäälinoja, J.: Improving Business Agility
Through Technical Solutions: A Case Study on Test-Driven Development in Mobile
Software Development. In: Business Agility and Information Technology Diffusion.
IFIP International Federation for Information Processing, vol. 180, pp. 227–243.
Springer, Boston (2006)

2. Ambler, S.W.: Test-driven development of relational databases. IEEE Soft-
ware 24(3), 37 (2007)

3. Astels, D.: Test Driven Development: A Practical Guide. Prentice Hall, Upper
Saddle River (2003)

4. Beck, K.: Aim, fire [test-first coding]. IEEE Software 18(5), 87 (2001)
5. Beck, K.: Extreme Programming Explained: Embrace Change, 1st edn., p. 224.

Addison-Wesley Professional, Reading (1999)

Critical Issues on Test-Driven Development 333

6. Beck, K.: Test-Driven Development: By Example. The Addison-Wesley Signature
Series. Addison-Wesley, Reading (2003)

7. Bhat, T., Nagappan, N.: Evaluating the efficacy of test-driven development: in-
dustrial case studies. In: ISESE 2006: Proceedings of the 2006 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering, pp. 356–363. ACM, New
York (2006)

8. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Per-
plexed. Addison-Wesley, Reading (2004)

9. Larman, C., Basili, V.R.: Iterative and incremental developments. a brief history.
Computer 36(6), 47–56 (2003)

10. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating ad-
vantages of test driven development: a controlled experiment with professionals.
In: ISESE 2006: Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering, pp. 364–371. ACM, New York (2006)

11. Canfora, G., Cimitile, A., Garćıa, F., Piattini, M., Visaggio, C.A.: Productivity of
test driven development: A controlled experiment with professionals. In: Münch,
J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 383–388. Springer,
Heidelberg (2006)

12. Crispin, L.: Driving software quality: How test-driven development impacts soft-
ware quality. IEEE Software 23(6), 70–71 (2006)

13. Damm, L.-O., Lundberg, L.: Quality impact of introducing component-level test
automation and test-driven development. In: Abrahamsson, P., Baddoo, N., Mar-
garia, T., Messnarz, R. (eds.) EuroSPI 2007. LNCS, vol. 4764, pp. 187–199.
Springer, Heidelberg (2007)

14. Desai, C., Janzen, D.S., Clements, J.: Implications of integrating test-driven de-
velopment into cs1/cs2 curricula. In: SIGCSE 2009: Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, pp. 148–152. ACM, New
York (2009)

15. van Deursen, A.: Program comprehension risks and opportunities in extreme pro-
gramming. In: Proceedings of the Eighth Working Conference on Reverse Engi-
neering (2001)

16. Deursen, A.V., Moonen, L., Bergh, A., Kok, G.: Refactoring test code. In: Proceed-
ings of the 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP 2001), pp. 92–95 (2001)

17. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50, 833–859 (2008),
http://portal.acm.org/citation.cfm?id=1379905.1379989

18. Dyb̊a, T., Dingsøyr, T.: Strength of evidence in systematic reviews in software
engineering. In: Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008, pp. 178–187.
ACM, New York (2008), http://doi.acm.org/10.1145/1414004.1414034

19. Edwards, S.H.: Using test-driven development in the classroom: Providing students
with automatic, concrete feedback on performance. In: Proc. Int”l Conf. Education
and Information Systems: Technologies and Applications, EISTA 20 03 (2003)

20. Edwards, S.H.: Using software testing to move students from trial-and-error to
reflection-in-action. In: SIGCSE 2004: Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, pp. 26–30. ACM, New York (2004)

21. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31(3), 226–
237 (2005), doi:10.1109/TSE.2005.37

http://portal.acm.org/citation.cfm?id=1379905.1379989
http://doi.acm.org/10.1145/1414004.1414034

334 S. Kollanus

22. Flohr, T., Schneider, T.: Lessons learned from an XP experiment with students:
Test-first needs more teachings. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006.
LNCS, vol. 4034, pp. 305–318. Springer, Heidelberg (2006)

23. George, B., Williams, L.: An initial investigation of test driven development in
industry. In: SAC 2003: Proceedings of the 2003 ACM Symposium on Applied
Computing, pp. 1135–1139. ACM, New York (2004)

24. George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46(5), 337–342 (2004)

25. Geras, A., Smith, M., Miller, J.: A prototype empirical evaluation of test driven
development. In: METRICS 2004: Proceedings of the Software Metrics, 10th In-
ternational Symposium, pp. 405–416. IEEE Computer Society, Washington, DC,
USA (2004)

26. Grenning, J.: Applying test driven development to embedded software. IEEE In-
strumentation Measurement Magazine 10(6), 20–25 (2007)

27. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-
ciency of the test driven development. In: First International Symposium on Empir-
ical Software Engineering and Measurement, ESEM 2007, pp. 285–294 (September
2007)

28. Hamill, P., Alexander, D., Shasharina, S.: Web service validation enabling test-
driven development of service-oriented applications. In: Proceedings of the 2009
Congress on Services - I, pp. 467–470. IEEE Computer Society, Washington, DC,
USA (2009), http://portal.acm.org/citation.cfm?id=1590963.1591598

29. Hedin, G., Bendix, L., Magnusson, B.: Teaching extreme programming to large
groups of students. Journal of Systems and Software 74(2), 133–146 (2005)

30. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of test
first programming. Information and Software Technology 51(1), 182–194 (2009)

31. Janzen, D., Saiedian, H.: Does test-driven development really improve software
design quality? IEEE Software 25(2), 77–84 (2008)

32. Janzen, D.S., Saiedian, H.: On the influence of test-driven development on software
design. In: CSEET 2006: Proceedings of the 19th Conference on Software Engineer-
ing Education & Training, pp. 141–148. IEEE Computer Society, Washington, DC,
USA (2006)

33. Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development ac-
ceptance. In: 29th International Conference on Software Engineering, ICSE 2007,
pp. 719–722 (May 2007)

34. Janzen, D.S., Turner, C.S., Saiedian, H.: Empirical software engineering in industry
short courses. In: 20th Conference on Software Engineering Education Training,
CSEET 2007, pp. 89–96 (July 2007)

35. Kaufmann, R., Janzen, D.: Implications of test-driven development: a pilot study.
In: OOPSLA 2003: Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 298–
299. ACM, New York (2003), doi:10.1145/949344.949421

36. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering. Tech. Rep. EBSE 2007-001, Keele University and
Durham University Joint Report (2007),
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf

37. Kollanus, S.: Test-driven development - still a promising approach? In: Proceedings
of the 7th International Conference on the Quality of Information and Communi-
cations Technology, pp. 403–408 (2010)

http://portal.acm.org/citation.cfm?id=1590963.1591598
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf

Critical Issues on Test-Driven Development 335

38. Kollanus, S., Isomöttönen, V.: Test-driven development in education: experiences
with critical viewpoints. In: Proceedings of the 13th Annual Conference on Inno-
vation and Technology in Computer Science Education, pp. 124–127. ACM, New
York (2008)

39. Kollanus, S., Isomöttönen, V.: Understanding tdd in academic environment: Ex-
periences from two experiments. In: Pears, A., Malmi, L. (eds.) 8th International
Conference on Computing Education Research, Koli Calling 2008, pp. 25–31 (2009)

40. Lui, K.M., Chan, K.C.: Test driven development and software process improvement
in china. In: Extreme Programming and Agile Processes in Software Engineering,
pp. 219–222 (2004)

41. Madeyski, L.: Preliminary analysis of the effects of pair programming and test-
driven development on the external code quality. In: Proceeding of the 2005 Confer-
ence on Software Engineering: Evolution and Emerging Technologies, pp. 113–123.
IOS Press, Amsterdam (2005)

42. Madeyski, L.: The impact of pair programming and test-driven development on
package dependencies in object-oriented design — an experiment. In: Münch, J.,
Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 278–289. Springer, Hei-
delberg (2006)

43. Madeyski, L.: The impact of test-first programming on branch coverage and mu-
tation score indicator of unit tests: An experiment. Inf. Softw. Technol. 52(2),
169–184 (2010)

44. Madeyski, L., Sza�la, �L.: The impact of test-driven development on software de-
velopment productivity — an empirical study. In: Abrahamsson, P., Baddoo, N.,
Margaria, T., Messnarz, R. (eds.) EuroSPI 2007. LNCS, vol. 4764, pp. 200–211.
Springer, Heidelberg (2007)

45. Maximilien, E.M., Williams, L.: Assessing test-driven development at ibm. In: Pro-
ceedings of the 25th International Conference on Software Engineering, pp. 564–569
(May 2003)

46. Muller, M.M., Hagner, O.: Experiment about test-first programming. Software,
IEE Proceedings 149(5), 131–136 (2002)

47. Nagappan, N., Maximilien, E.M., Bhat, T., Williams, L.: Realizing quality improve-
ment through test driven development: results and experiences of four industrial
teams. Empirical Softw. Engg. 13(3), 289–302 (2008)

48. Pancur, M., Ciglaric, M., Trampus, M., Vidmar, T.: Towards empirical evalua-
tion of test-driven development in a university environment. In: EUROCON 2003.
Computer as a Tool. The IEEE Region 8, vol. 2, pp. 83–86 (September 2003)

49. Rahman, S.M.: Applying the tbc method in introductory programming courses. In:
37th Annual Frontiers In Education Conference - Global Engineering: Knowledge
Without Borders, Opportunities Without Passports, FIE, pp. T1E–20–T1E–21
(October 2007)

50. Rasmussen, J.: Introducing xp into greenfield projects: lessons learned. IEEE Soft-
ware 20(3), 21–28 (2003)

51. Rendell, A.: Effective and pragmatic test driven development. In: Conference on
AGILE 2008, pp. 298–303 (August 2008)

52. Sanchez, J.C., Williams, L., Maximilien, E.M.: On the sustained use of a test-driven
development practice at ibm. In: AGILE 2007, pp. 5–14 (August 2007)

53. Sangwan, R.S., Laplante, P.A.: Test-driven development in large projects. IT Pro-
fessional 8(5), 25–29 (2006)

336 S. Kollanus

54. Siniaalto, M., Abrahamsson, P.: A comparative case study on the impact of test-
driven development on program design and test coverage. In: First International
Symposium on Empirical Software Engineering and Measurement, ESEM 2007,
pp. 275–284 (September 2007)

55. Siniaalto, M., Abrahamsson, P.: Does test-driven development improve the pro-
gram code? Alarming results from a comparative case study. In: Meyer, B.,
Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 143–156.
Springer, Heidelberg (2008)

56. Slyngstad, O.P.N., Li, J., Conradi, R., Rønneberg, H., Landre, E., Wesenberg, H.:
The impact of test driven development on the evolution of a reusable framework
of components - an industrial case study. In: ICSEA 2008: Proceedings of the 2008
The Third International Conference on Software Engineering Advances, pp. 214–
223. IEEE Computer Society, Washington, DC, USA (2008)

57. Steinberg, D.H.: The effect of unit tests on entry points, coupling and cohesion in
an introductory java programming course. In: XP Universe Conference 2001 (2001)

58. Tinkham, A., Kaner, C.: Experiences teaching a course in programmer testing. In:
ADC 2005: Proceedings of the Agile Development Conference, pp. 298–305. IEEE
Computer Society, Washington, DC, USA (2005)

59. Vodde, B., Koskela, L.: Learning test-driven development by counting lines. IEEE
Software 24(3), 74–79 (2007)

60. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven de-
velopment in an industry-sponsored capstone project. In: Sixth International Con-
ference on Information Technology: New Generations, ITNG 2009, pp. 229–234
(April 2009)

61. Williams, L., Maximilien, E.M., Vouk, M.: Test-driven development as a defect-
reduction practice. In: 14th International Symposium on Software Reliability En-
gineering, ISSRE 2003, pp. 34–45 (November 2003)

62. Xu, S., Li, T.: Evaluation of test-driven development: An academic case study.
In: Software Engineering Research, Management and Applications 2009. Studies
in Computational Intelligence, vol. 253, pp. 229–238 (2009)

63. Ynchausti, R.A.: Integrating unit testing into a software development team’s pro-
cess. In: Intl. Conf. eXtreme Programming and Flexible Processes in Software
Engineering, pp. 79–83 (2001)

64. Zhang, L., Akifuji, S., Kawai, K., Morioka, T.: Comparison between test driven
development and waterfall development in a small-scale project. In: Abrahamsson,
P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 211–212. Springer,
Heidelberg (2006)

On the Difficulty of Computing the Truck Factor

Filippo Ricca1, Alessandro Marchetto2, and Marco Torchiano3

1 DISI, Universitá di Genova, Italy
filippo.ricca@disi.unige.it

2 FBK-irst, Trento, Italy
marchetto@fbk.eu

3 Politecnico di Torino, Italy
marco.torchiano@polito.it

Abstract. In spite of the potential relevance for managers and even
though the Truck Factor definition is well-known in the “agile world”
for many years, shared and validated measurements, algorithms, tools,
thresholds and empirical studies on this topic are still lacking.

In this paper, we explore the situation implementing the only approach
proposed in literature able to compute the Truck Factor. Then, using our
tool, we conduct an exploratory study with 37 open source projects for
discovering limitations and drawbacks that could prevent its usage.

Lessons learnt from the execution of the exploratory study and open
issues are drawn at the end of this work. The most important lesson that
we have learnt is that more research is needed to render the notion of
Truck Factor operative and usable.

Keywords: Truck Factor, Collective Code Ownership, Exploratory
study.

1 Introduction

The Truck Factor (TF) of a project is defined as “the number of developers on
a team who have to be hit with a truck before the project is in serious trouble”1.
Clearly, “to be hit with a truck” is an extreme thought that can be substituted
with more realistic ones such as, for example, to go on vacation, to become
ill, to be out of the office or to leave the company for another. Ideally, to avoid
potential problems, as advocated by the Extreme Programming (XP) principle of
“collective code ownership” [1], the TF of a project should be as high as possible.
Indeed, if all the knowledge of a system is in the hands of few developers only
(the key contributors, also called Heroes [2]) and they decide to leave the project,
then the same project could suffer the consequences.

The TF can be used as: (i) a quick metric that will highlight potential prob-
lems in a project (“Having heroes on your team can be very beneficial but only
if you don’t become dependant on them. Truck factor is one metric that will
highlight your dependencies”1), (ii) an indicator of how expensive it will be to

1 http://www.agileadvice.com/archives/2005/05/truck factor.html

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 337–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 F. Ricca, A. Marchetto, and M. Torchiano

replace some developers in a project, and (iii) a way to measure the system’s
knowledge distribution in a team of developers.

In the best of our knowledge, in spite of the potential relevance for managers,
neither shared and validated measurements nor tools implementing algorithms
devoted to measure the TF exist. Moreover, no empirical studies exist on this
topic.

In this paper, we started filling this gap. First, we extensively consulted the
literature (Sect. 2) learning that few works exist about this topic. In particular,
only Zazworka et al. [3] propose an approach to compute the TF using informa-
tion about code ownership (Sect. 3). Second, following the approach by Zazworka
et al., we implemented a tool (already used in [4] but detailed here for the first
time) able to compute the TF starting from the code repository of a project
(Sect. 4). Finally, we used our tool to conduct an exploratory study analyzing a
large set of free and open source projects (Sect. 5) with the purpose of testing
the Zazworka et al.’s approach to find possible limitations and problems.

2 Related Works

This work investigates the TF measurement. It is hence related to the notion of
code ownership, given that the TF represents a way to evaluate code ownership.
Non-ownership [5] for the code of a software system exists when the system and
its sub-parts have no specific owners (i.e., developers responsible to implement
and maintain the code), and thus every developer can potentially change each
part of the system. Even if several projects de-facto apply such a non-ownership
model, it is well-recognized (e.g., [5] and [6]) that non-ownership can lead to: (i)
poor or missing documentation, (ii) unreadable source code due to mixtures of
styles and inconsistencies, and (iii) long cycles of bug fixing and code mainte-
nance. To face such problems, often, managers try to intentionally control the
code ownership during the software development and maintenance. Nordberg III
[5] identifies four models of code ownership: (1) product specialist, (2) subsys-
tem ownership, (3) chief architect and (4) collective ownership. In (1) and (2), a
developer is respectively the owner of the whole system or of a sub-part of it. In
(3) there is a developer responsible of the system helped by several assistants. In
(4) the code is owned by several developers and a developer that owns a piece of
code can be also a contributor for another piece of the software by collaborating
with other developers. The choice of the ownership model to apply is currently
a source of debate for the scientific community. Two major trends can be identi-
fied. Some works (e.g., [6]) support strong ownership (by applying models such
as (1), (2) and (3)) for motivating developers to produce high quality code and
specializing the code knowledge of each developer. Other works (e.g., [7]) support
collective code ownership (by applying the model (4)) for distributing software
knowledge and responsibility among the team developers.

To monitor, analyze and thus change the ownership policy during the soft-
ware life-cycle, adequate information and tools are needed. The major source
of information for computing and evaluating code ownership is, often, the code

On the Difficulty of Computing the Truck Factor 339

repository (e.g., SVN, CVS) and the activities (i.e., commits) performed by de-
velopers (i.e., committers) on code files and tracked in log files. These log files
mainly contain the list of activities performed by developers on the code and,
for each activity, some additional information (e.g., the version number of the
system in which the activity has been executed). Different approaches have been
proposed to measure the code ownership by analyzing these repositories. For
instance, Weyuker et al. [8] propose to compute the ownership at file level while
Girba et al. [9] propose a measure based on the percentage of source code lines
modified by a specific developer.

Several works (e.g., [10] and [11]) analyze code ownership and developer ac-
tivities tracked by code repositories for automatically identifying experts for a
particular portion or aspect of a system. These recommender systems are often
used to assign a developer (i.e., the more suitable) to a change request. These
tools make the implicit assumption that a code change performed by a developer
indicates the knowledge of the involved system portion for that developer. Fritz
et al. [11] perform an analysis of developer activities comparing them with the
actual knowledge of code achieved by developers. Their analysis confirms that
the frequency of the interaction of developers with the code mainly indicates
which portions of the system/code a given developer known.

In a previous short paper [4], we applied our tool to 20 open source projects
to answer two research questions concerning the notions of Heroes (i.e., tire-
less developers) and TF. During that experiment, we discovered some TF usage
problems addressed in this paper with new research questions (see Sect. 5.1). Pre-
liminary results of [4] showed that: Heroes are common in open source projects
and that the TF is in general low. In another paper [2], we used the same dataset
of this work to discover existing relationships between the presence of Heroes
and the time required to implement change requests. Preliminary results showed
that the presence of Heroes in a project seems to be beneficial because reduce
the time to implement change requests.

3 Truck Factor Usage Problems

3.1 No Shared and Validated Measurements

One of the biggest problems with TF is that there are not shared and validated
measurements/metrics to compute it. That constitutes a huge limitation on its
usage. The unique proposal, at least to the best of our knowledge, has been
carried out by Zazworka et al. [3] who proposed an initial idea in which the
TF is computed using the code ownership information inferred from a code
repository. Moreover, they applied that approach to five small projects written
by students to check the difference between the TF of XP/non-XP projects.
That preliminary experiment provides the first evidence that non-XP projects
have significant lower (i.e., worse) TFs than XP projects.

The core concept underlying their proposal is that a file in the repository
is considered collectively owned by all the developers who worked on it. The
assumption is that developers who edited the file have knowledge about it. In

340 F. Ricca, A. Marchetto, and M. Torchiano

Table 1. Jfreechart example

File (.java) Dev.Set File (.java) Dev.Set
SWTUtils {mungady, nenry} DefaultKeyedValues {mungady, taqua}
ChartColor {mungady} PolarChartPanel {mungady}

Table 2. Truck Factor example

TF: number of missing developers
File (.java) 0 1 1 1 2 2 2 3

{mungady} {taqua} {nenry} {mungady, {mungady, {nenry, {mungady,
taqua} nenry} taqua} taqua,

nenry}
SWTUtils + + + + + - + -
DefaultKeyedValues + + + + - + + -
ChartColor + - + + - - + -
PolarChartPanel + - + + - - + -

File Coverage % 100 50 100 100 25 25 100 0
Min. File Coverage % 100 50 25 0

this way, for each file ’f’ of a project, the developer set for ’f’ consists of the set
of developers that did at least one commit on ’f’.

To better explain their proposal we consider some files of Jfreechart as an
example. Table 1 and Table 2 show respectively details about the four consid-
ered files (i.e., SWTUtils.java, DefaultKeyedValues.java, ChartColor.java and
PolarChartPanel.java) and their TF computation.

For example, columns “File” and “Dev.Set” of Table 1 show that the set of
developers that did at least one commit on the file “SWTUtils” is {mungady,
nenry}. The first rows of Table 2 present the possible sets of developers poten-
tially “hit by a truck”. In particular, the second row of that Table indicates how
many developers would be missing (from 0 to 3), while the third row details ex-
actly who. In each Table cell, the sign “+” means that the remaining developers
(i.e., those developers in the Dev.Set that have not been “hit by a truck”) have
the knowledge of the corresponding file reported in the first column. Instead,
the sign “-” means that the developers “hit by a truck” were the only to know
that file. The penultimate row of the Table reports the preserved file coverage
(or residual knowledge) measured as percentage, precisely, the number of files
known by the remaining developers divided by the total number of files in the
project * 100. Finally, the last row reports the minimum file coverage per number
of missing developers. Let us consider, for example, the scenario in which the
developer mungady leaves the project (see the third column of Table 2). When
losing mungady the knowledge of “ChartColor” and “PolarChartPanel” is lost.
This implies that in such a case the remaining file coverage corresponds to 50%
(i.e., 2/4*100).

To identify the TF, a target threshold (e.g., 50%) that represents the critical
file coverage for a project has to be defined. Then, considering the minimum
file coverage (i.e., the worst case, where the set of developers with the most
exclusive knowledge leaves) computed for set of missing developers, it is possible

On the Difficulty of Computing the Truck Factor 341

Fig. 1. Truck Factor chart

to plot a curve and identify the actual TF for the project. Indeed, the TF can be
deduced from this plot by finding the intersection of the selected threshold with
the curve; if the obtained value is not an integer the point on the left must be
selected. Figure 1 represents the TF chart corresponding to Table 2 where the
threshold has been fixed at 50%, thus obtaining a TF of 1. Instead, considering
threshold = 70% the TF will be 0 and with threshold = 20% it will be 2. The
example shows that, with the approach proposed by Zazworka et al., the TF
of a project can also be 0. It corresponds to a critical situation in which the
developer with the most exclusive knowledge can not leave the project without
heavy consequences.

We think that the Zazworka et al. approach is very interesting and promising
but at this stage it has two main drawbacks that could prevent its usage. First,
the proposal is based on a really strong assumption: at least a commit on file
’f’ implies the knowledge of ’f’. In this way, a developer which has done one
commit is considered to have the same knowledge of a file than one that has
done more. This is clearly questionable; maybe the measurement should also
account of this aspect somehow. Second, the proposed approach does not come
with an algorithm describing the steps for computing the TF, nor with a tool
able to compute it.

3.2 No Reliable Thresholds

In the TF computation, thresholds are fundamental. As we have seen in the
approach proposed by Zazworka et al., the TF strictly depend on a threshold
that represents the critical file coverage for the target project. To compute the
TF such a threshold, given in percentage, has to be defined. In other words, the
TF is a parametric measurement depending on a threshold X (i.e., TFX%).

Moreover, to establish whether the TF is high or low we need another funda-
mental threshold. Without it, we can not infer/understand whether or not the
target project has low TF and thus risks to get in trouble.

342 F. Ricca, A. Marchetto, and M. Torchiano

So far, to the best of our knowledge, Siddharta Govindaray has been the
only one that tried to identify/propose some thresholds in this context. On his
blog2, he claims that: “Small teams of under 10 people usually target a TF of
4-5 for most parts of the system (that is around 40-50% of the team). Larger
teams will probably target a TF of around 8 (which would probably be around
20-25% of the team). This means that should a couple of critical people go on
vacation or leave the company, there are enough people in the team who can cover
for them.” Therefore, one can make the assumption that for a small team (i.e.,
≤ 10 developers) the TF can be considered low if it is ≤ 40% of the team size.
Instead, for a large team (i.e., > 10 developers) the TF can be considered low
if it is ≤ 20% of the team size. Unfortunately, Govindaray on his blog remained
vague on the other threshold (the threshold for file coverage) with the sentence
“for most parts of the system”.

The problem with those two thresholds is that we can not trust them. They
appeared on a non reliable source of information (a blog post) and it is not clear
how they have been deduced by Govindaray (expert opinion or by measurement
data from a representative set of projects?). Moreover, it is not clear which TF
measurement has used Govindaray to deduce the thresholds since the definition
of TF could permit different interpretations and measurements (in another blog,
we found the steps suggested by Govindaray to compute the TF: (1) Go through
each class, file or component; (2) Calculate the number of people in the team,
who understand that part of the system; (3) This give you the TF for that class
or component; (4) The smallest of all the component TFs is the TF for the
project). As a consequence, we have no guarantee that those thresholds can be
safely used with the Zazworka et al. approach.

3.3 No Tools

To the best of our knowledge, no tools exist for computing the TF of a project
(neither proprietary nor free tools) and no algorithms have been proposed for
this purpose in literature. To overcome this lack, we have proposed a naive
algorithm based on the Zazworka et al. approach and we have implemented it
in a tool available on-line3. The tool and the algorithm are explained in detail
in the next section.

3.4 No Empirical Evidence

To the best of our knowledge, no empirical studies exist on this topic. For ex-
ample, an interesting research question not addressed in the literature is the fol-
lowing: Does a low TF really increase the risk of project failure?. This research
question concerns the well-known XP principle of “collective code ownership” [1]
that can be summarized with the following phrase: to decrease the risk of project
failure the TF of a project should be high. Indeed, if all the knowledge of a sys-
tem is only in the hands of few developers and they decide to leave the project,
2 http://siddhi.blogspot.com/2005/06/truck-factor.html
3 http://selab.fbk.eu/marchetto/tools/tf/tf.zip

On the Difficulty of Computing the Truck Factor 343

then the same project could get in trouble. This reasonable principle has been
advocated by XP several years ago but ever since nobody has never tried to
empirically show its truth and adherence to reality. We believe that this is also
due to the lack of measurements, tools and thresholds on this topic.

With the aim of partially filling this gap, we have conducted the first ex-
perimental study concerning the TF with the purpose of testing the approach
proposed by Zazworka et al. on real projects (so far, it was tested only on stu-
dents’ projects). Given this state of uncertainty, we opted for an exploratory
study. It is well-known that an exploratory study does not draw definitive con-
clusions. An exploratory study is undertaken to better comprehend the nature of
a problem since very few studies have been considered in that area. The purpose
of an exploratory study is: “finding out what is happening, seeking new insights
and generating ideas and hypothesis for new research” [12].

4 Truck Factor Tool

The proposed tool takes in input a couple of values, the URL of the target SVN
code repository and the critical file coverage threshold, and returns the TF. It
is composed of three modules:

– Extractor. A script based on SVN client commands (“svn list” and “svn
log”) to traverse the code repository and extract logs for each code file;

– Scanner. A pattern-based string matching script able to analyze such logs for
extracting information about the committers. The output of this module is:
(1) the list of project committers, (2) the code files in the repository, (3) and
for each file the list of developers that performed at least one commit on it;

– Analyzer. A Java program that analyze the information produced by the
Scanner and compute the TF.

Figure 2 shows the pseudo-code of the Analyzer. The Analyzer takes in input (see
the declarative part of Figure 2): (1) the critical file coverage threshold (X), (2)
the list of project committers (Developers), (3) the files in the repository (Source-
Files), and (4) for each file the list of developers that performed at least one
commit on it (function DeveloperSet). Basically, for each possible combination of
committers (comb ∈ Comb(j, Developers), with 1 ≤ j ≤ developers number), the
corresponding percentage of the remaining file coverage (FileCoverage) is com-
puted dividing (see Table 2) the number of “+” (tot) by the total number of files
in the repository (SourceFiles.lenght()). Even if this file coverage is calculated for
each committers combination, only the minimum one (minFileCoverage) is stored
in minfilecoverageVector. Finally, the project TF is j-1.

Let ’n’ be the number of committers/developers of the target project and ’m’
the number of files in that project. Then, the worst case time complexity of the
above naive algorithm is given by:

T (n, m) = n ∗ ∑n
i=1

n!
i!(n−i)! ∗ m

344 F. Ricca, A. Marchetto, and M. Torchiano

-X: int
//Critical file coverage threshold, e.g., 50%, 60%
-Developers: List
//Project developers, e.g., {mungdy, nenry and taqua}
-SourceFiles: List
//Project files, e.g., {SWRUtils, ChartColor,...}
-DeveloperSet(f: File): Function
//It gives the list of committers for the file f,
//e.g., DeveloperSet(SWRUtils)= {mungdy, nenry}
-Comb(j: Number, Developers: List): Function
//It lists all the combinations of j developers,
//e.g., Comb(2, Developers)= {<mungady,taqua>, <mungady,nenry>, <nenry,taqua>}

for j:=1 to Developers.lenght()
minfileCoverage=100;
for each comb ∈ Comb(j, Developers)
tot=0;
for each f ∈ SourceFiles
if (DeveloperSet(f)− comb) �= null then tot=tot+1;
endFor
FileCoverage= tot

SourceF iles.lenght()∗100 ;

if FileCoverage≤ minFileCoverage then minFileCoverage=FileCoverage;
endFor
minfilecoverageVector[j]=minFileCoverage;
if minfilecoverageVector[j]<X then break;

endfor
print(‘‘TFX%=’’, j-1);

Fig. 2. Core algorithm for the Truck Factor computation

5 Exploratory Study

Using our TF tool, we conducted an experimental study with a selection of
open source projects taken from SourceForge4 and GoogleCode5. We randomly
selected some non-trivial projects with the following characteristics: number of
files > 35, number of committers ≥ 3 and number of commits > 40. We selected
both small and large projects (i.e., with more than 10 developers). Finally, the
objects of our study were 37 open source projects.6 Large projects are 1/3 of all
the projects.

This experimentation, conducted according to the guidelines proposed by
Wohlin et al. [13], aims at answering the following three research questions.

RQ1: Is the tool based on Zazworka et al approach applicable on real projects?.
This research question deals with the ability of the approach to find the TF in
real projects. So far, the approach has been tested only on small projects written
by students. Given the high complexity of the naive algorithm, we are interested
to empirically test its scalability.

RQ2: Are the obtained results sensible?. This research question investigates
whether the computed TFs are sensible or not. Picking randomly the open source

4 http://sourceforge.net/
5 http://code.google.com/intl/it-IT/
6 Raw data are available at http://selab.fbk.eu/marchetto/tools/tf/tf.zip

On the Difficulty of Computing the Truck Factor 345

projects we expect a more or less random distribution of the computed TFs.
Moreover, we expect that: (i) large projects have greater TF than small projects
and that (ii) diminishing the file coverage threshold of a project (e.g., from 60%
to 50%) its TF increases.

RQ3: Is the Govindaray’s threshold consistent with the Zazworka et al ap-
proach?. This research question investigates if the Govindaray’s threshold can
be applied to discriminate low/high TFs when the Zazworka et al. approach is
used. Indeed, the approach and the threshold have been independently proposed
and it is possible that a different measurement of TF has been used by Govin-
daray during the assignment process (or deduction) of the threshold (a shared
and validated measurement to compute the TF does not exist, see Sect. 3.1).

5.1 Execution and Results

Table 3 details some information about the 37 analyzed free and open source
projects. That Table reports: code repository (SourceForge or GoogleCode), ap-
plication’s name, number of files, lines of code (LOCs), number of committers
of the project, estimated dimension (small or large) and total number of ana-
lyzed system revisions (i.e., commits). In the analyzed sample, 24 projects are
classified as small and 13 as large (consistently with the Govindaray’s blog, we
considered as large the projects with more than 10 developers).

Is the tool based on Zazworka et al approach applicable on real
projects? We applied our tool to the applications listed in Table 3 obtaining
the results of Table 4 (the TF has been computed considering different values
of file coverage, i.e., 50%, 60% and 70%). The results of these first runs show
scalability problems of our tool. Computation time was acceptable for all the ap-
plications, it was in the range of few seconds/minutes on a desktop PC (i.e., with
an Intel(R) Core(TM) 2 Duo CPU working at 2.66GHz and with 3GB of RAM
memory) except for V8 and mantisbt (the largest projects of our dataset, respec-
tively 32 and 38 committers). In these last two cases the computation time took
some days and this is not acceptable from our viewpoint. In conclusion, the tool
implementing the idea proposed by Zazworka et al. seems applicable only when
the number of committers of the target project is ≤ 30. Overall, the number of
files of the project seems exert a smaller influence on the overall scalability.

Are the obtained results sensible? Table 4 reports the TFs computed con-
sidering different values of file coverage (i.e., 50%, 60% and 70%) and the Govin-
daray’s threshold (column threshold). Apparently, all the TFs are low (see the
complete distribution of TF50% in Figure 3 (a)) and in several cases the TF is
equal to zero (TF=0). Considering TR50% this is true for 12 out of 24 small
projects and for 6 out of 13 large projects. That high percentage of TF=0 in
both the categories is suspicious to us. In particular, this is strange for large
projects. In addition, observing Table 4 it is apparent that for several projects
the computed TF is lower than the threshold derived following Govindaray (it
means that those projects have low TF). Note that this is true even when we

346 F. Ricca, A. Marchetto, and M. Torchiano

Table 3. Randomly selected applications. From left to right: repository, selected appli-
cation, number of files, Lines Of Code, number of committers, dimension of the project
(large if > 10 committers) and number of commits.

Repository Software Files LOCs Committers Project Size Revisions
Google choscommerce 69 11016 4 small 224
Google closure-compiler 536 123660 4 small 200
Sourceforge cppunit 378 22646 6 small 582
Google cspoker 208 144111 4 small 1382
Google easycooking-fantastici4 141 15460 4 small 203
Sourceforge erlide 820 134753 5 small 3155
Google gdata 344 46805 19 large 982
Google gmapcatcher 77 7164 6 small 842
Google googlemock 55 56410 4 small 300
Sourceforge gtk-gnutella 723 248697 15 large 17424
Google h2database 722 125944 6 small 2628
Sourceforge htmlunit 3404 548666 10 small 5743
Sourceforge httpunit 354 39232 3 small 1062
Sourceforge jfreechart 1063 149727 3 small 2272
Google jpcsp 672 355728 20 large 1504
Google jstestdriver 438 32082 9 small 603
Sourceforge jtidy 174 30487 5 small 115
Google keycar 669 83936 4 small 465
Sourceforge mantisbt 641 3399759 38 large 5752
Google mobileterminal 43 8095 12 large 364
Google moofloor 39 10152 4 small 169
Google nettiers 267 108159 13 large 837
Google pagespeed 297 39069 6 small 845
Sourceforge phpwiki 537 118815 15 large 7370
Sourceforge remotes 289 35646 3 small 812
Google sqlitepersistentobjects 170 17727 8 small 138
Google testability 126 7282 4 small 151
Google toolbox 309 70805 4 small 344
Sourceforge tora 703 198512 17 large 3523
Google torrentpier 366 72781 8 small 447
Google unladenswallow 2815 863242 13 large 1158
Google v8 982 324042 32 large 4556
Sourceforge winmerge 862 172366 16 large 7149
Sourceforge xcat 156 145106 8 small 6257
Sourceforge zk1 1552 217337 17 large 14151
Google zscreen 627 98181 10 small 1685
Google zxing 1119 81501 19 large 1393

consider a relatively low file coverage, e.g., 50%. Looking more in detail the Ta-
ble, we have TR70% < threshold in 37 cases out of 37, TR60% < threshold in
37 cases out of 37 and TR50% < threshold in 33 cases out of 37. More precisely,
considering file coverage equal to 50%, we have high TF (or better non-low TF)
only in 2 small projects (easycooking-fantastici4 and testability) and in
2 large projects (V8 and mantisbt). That high proportion of low TF projects
along with the high number of TF=0 projects is strange. For this reason we
decided to look more in detail the SVN repositories of the selected projects. In
this analysis, we observed a set of facts (in the following called anomalies) that
could impact on the quality and reliability of the TF measurement (future works
will be devoted to understand their real impact on TF).

– Large commits [14]: in some projects we found commits that include a large
number of files. Such commits are usually devoted to: (i) update the project
to a new version, e.g., the first version or a new one produced off-line; and

On the Difficulty of Computing the Truck Factor 347

Table 4. Threshold to be overtaken to have non-low TF and the computed Truck
Factor for 50%, 60% and 70% of file coverage

Software threshold TF50% TF60% TF70%
choscommerce 1.60 1 0 0
closure-compiler 1.60 1 1 1
cppunit 2.40 0 0 0
cspoker 1.60 0 0 0
easycooking-fantastici4 1.60 2 1 1
erlide 2 1 1 0
gdata 3.80 0 0 0
gmapcatcher 2.40 0 0 0
googlemock 1.60 1 1 1
gtk-gnutella 3 1 1 1
h2database 2.40 0 0 0
htmlunit 4 1 1 0
httpunit 1.20 1 1 1
jfreechart 1.20 0 0 0
jpcsp 4 0 0 0
jstestdriver 3.60 2 2 1
jtidy 2 0 0 0
keycar 1.60 0 0 0
mantisbt 7.60 9 7 5
mobileterminal 2.40 0 0 0
moofloor 1.60 0 0 0
nettiers 2.60 0 0 0
pagespeed 2.40 0 0 0
phpwiki 3 1 1 1
remotes 1.20 0 0 0
sqlitepersistentobjects 3.20 0 0 0
testability 1.60 2 1 1
toolbox 1.60 1 1 0
tora 3.40 2 2 2
torrentpier 3.20 1 0 0
unladenswallow 2.60 0 0 0
v8 6.40 7 5 3
winmerge 3.20 3 1 0
xcat 3.20 1 1 0
zk1 3.40 0 0 0
zscreen 4 0 0 0
zxing 3.80 1 0 0

(ii) update the code of third-party software. For instance, the initial version
of the Zxing project (15% of the whole project files) has been uploaded
into the repository by a developer in the revisions r2/6 (from 2 to 6). In
the revision r1549 of Zxing, 20% of the repository files has been added (a
new library has been introduced). Another example is in the revision r1 of
Nettiers in which all the files of the first project version have been added
by one developer.

– Similar changes in several files: in some commits a large number of
repository files is modified with small and similar changes, often, related to:
(i) maintenance operations of the repository structure; (ii) the management
of software license and configurations (as highlighted in [15]); and (iii) the
management of project documentation and code comments. For instance, in
the revisions r1505/1506 of Zxing around 15% of the project files have been
changed by a developer only to update the license information. Moreover,
in the revisions r39/40 of Zscreen a developer imported in the repository

348 F. Ricca, A. Marchetto, and M. Torchiano

a set of files (32% of the whole project files) taken from the old project
repository. Zscreen, in fact, was initially supported by Sourceforge but then
it has been migrated to the Google code repository, thus its original code
has been migrated in some revisions.

– Developers with several accounts: in some cases some developers are
registered into the repository with more than one account using e.g., dif-
ferent email addresses. For instance, in the projects Zxing, Cspoker and
Jtestdriver respectively 2, 1 and 2 developers seem to have two accounts
each one. For example, in Zxing we have dswit@gmail.com and dswit@google-
.com.

– Brief history: some projects have a relatively brief history, and thus a
quite limited number of SVN revisions. For instance, Jtidy, Moofloor, and
Sqlitepersistentobjects have less than 200 SVN revisions.

– Few developers: in some projects few developers compose the working
team. Often, in such cases, the owner of the project plays a relevant role also
during the project evolution. For instance, Cspoker, Moofloor, and Remotes
have less than 4 developers working, on average, on 20k LOCs per project.
Another example is Jfreechart: one developer (Mungady) out of 3 modified
exclusively 98% of the Jfreechart code (he is a Hero [2]).

– Some developers are not committers: in some projects only a limited
number of developers, out of the whole working team, commit files on the
repository. The repository is managed by only few persons, hence, it does
not actually trace the activities performed by the project developers. For in-
stance, in Zscreen around 80% of the 1685 commits have been performed by
only two developers (flexy123 and mcored) out of 10 of the team. We believe
that flexy123 and mcored play the role of repository managers (i.e., persons
allowed to commit on the repository). Similarly in the project H2database
only one developer (thomas.tom.mueller), out of 6 of the project team, per-
formed around 85% of the commits.

Is the Govindaray’s threshold consistent with the Zazworka et al ap-
proach? Here we limit ourselves to a visual comparison (see scatter plot in
Figure 3 (b)) between the Govindaray threshold (straight blue line) and the
empirical TF values (TR60%) obtained in this work (circular points). Precisely,
each circular point in the scatter plot corresponds to the TF of a project in our
dataset. A regression line of all the 37 TFs (dotted red line) is shown to facili-
tate/ease the comparison; in some sense, it summarizes the trend of all the points.
From the Figure 3 (b) it is apparent that there is a huge difference between the
two curves. It could be the consequence of one of the following two facts (also
both): (1) the threshold suggested by Govindaray is overestimated with respect
to the Zazworka et al. approach or (2) data are not appropriate (they contain
too many anomalies, see the results of the previous research question). Given
that the presence of “anomalies” could constitute a possible confounding fac-
tor, we decided to compute the regression line deleting the projects with TF=0
(i.e., the more suspect values corresponding to the projects containing more

On the Difficulty of Computing the Truck Factor 349

0 1 2 3 4 5 6 7 8 9

Truck factor

nu
m

be
r

of
 s

ys
te

m
s

0
5

10
15

20

5 10 15 20 25 30 35

0
1

2
3

4
5

6
7

Team size

Tr
uc

k
fa

ct
or

Govindaray threshold
Linear Regression (all point)
Linear Regression (no TF=0)

Fig. 3. TF50% distribution (left) and Visual comparison between Govindaray threshold
and empirical values (rigth)

“anomalies”). The new regression line is represented with a green dashed line in
Figure 3 (b). Also in this case, there is a big difference between the two curves. It
lead us to believe that the threshold suggested by Govindaray is overestimated
with respect to the Zazworka et al approach.

5.2 Lesson Learnt and Open Issues

Here we summarize the lessons learnt from the execution of the exploratory
study and the open issues.

TF measurement. The TF measurement proposed by Zazworka et al. [3] is
sensible and practical even if based on a really strong assumption (developers
who edited at least once the file have knowledge about it). The measurement does
not account for the fact that a developer which has done a lot of commits should
have more knowledge of a file than one that has done very little. We believe that
more precise measurements keeping account of that should be devised/proposed.
In addition, we believe that the proposed measurement should be adequately
validated, for example using a framework for evaluating metrics as proposed
in [16].

TF algorithm. The conducted experiment revealed that the naive algorithm
based on the Zazworka et al. approach is applicable with small and medium-sized
projects but has scalability problems with real large projects (in particular when
the number of committers is > 30). Even if projects with 30 or more committers
are not so common, the algorithm should be improved in future.

Code repositories. The experiment has highlighted a possible threat to valid-
ity to the applicability of the approach. The code repositories (in our case SVN
repositories), which constitute the input of the approach, should be carefully

350 F. Ricca, A. Marchetto, and M. Torchiano

analyzed and filtered to avoid unreliable TF results due to “anomalous” commits
(e.g., updating the GPL license in every file’s header comment [15]) and other
problems (e.g., same committer with two or more nicknames/accounts). An open
issue is how determining whether a commit is “anomalous” (and then unusable in
the TF computation) or not. Clearly, manually inspecting the target repository
is not possible: a taxonomy of “anomalous” commits should be proposed and
some automatic strategies able to find anomalies should be devised. We think
that more empirical investigation is needed in this context.

Govindaray’s threshold. The study have experimentally shown, even if fur-
ther experiments should confirm it, that the threshold suggested by Govindaray
and used to decide if the TF is low or not is overestimated with respect to the
Zazworka et al. approach. While no solid conclusions can be drawn, it is apparent
that more investigation is needed to infer a reliable threshold. A supplementary
difficulty could also be that the threshold could depend on the context of the
applications (e.g., free vs. proprietary software). A possible method to derive
the threshold could be driven by measurement data (and not by expert opinion)
from a representative set of systems as proposed in [17].

6 Conclusion

In this paper, we have empirically investigated the well-known notion of TF.
First, we have extensively consulted the literature and discovered that there
exists only one proposal to compute the TF. Second, we have implemented it
in a tool. Third, using our tool, we have conducted an exploratory study with
37 open source projects to answer to three research questions concerning the
proposed approach.

The result of this study is that: the algorithm based on the approach proposed
by Zazworka et al. is applicable but with some heavy limitations that should be
resolved to render the notion of TF really operative and usable. Summarizing,
the TF measurement has not been validated and it based on a strong assumption.
The naive algorithm based on the Zazworka et al. approach is applicable only
with small and medium sized projects but has scalability problems with real
large projects. Moreover, the result of the tool strongly depends on the quality
of the SVN code repository given in input. Finally, the Govindaray’s threshold,
useful for the managers to understand that a project is getting in trouble, should
be used with great care, given that seems overestimated with respect to the
Zazworka et al. approach.

Future works will be devoted to continue the empirical validation and enhance-
ment of the tool presented in this work. We plan to extend the actual dataset
and to conduct additional experiments to infer a reliable threshold alternative to
the Govindaray’s threshold. We are also working on alternative measurements
of TF.

On the Difficulty of Computing the Truck Factor 351

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading (1999)

2. Ricca, F., Marchetto, A.: Heroes in FLOSS projects: an explorative study. In: IEEE
International Working Conference on Reverse Engineering, pp. 155–159 (2010)

3. Zazworka, N., Stapel, K., Shull, F., Basili, V., Schneider, K.: Are developers com-
plying with the process: an XP study. In: IEEE Symposium on Empirical Software
Engineering and Measurement (2010)

4. Ricca, F., Marchetto, A.: Are Heroes common in FLOSS projects? In: IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (2010)

5. Nordberg III, M.: Managing code ownership. IEEE Software, 26–33 (2003)
6. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on

software quality: an empirical study. In: IEEE International Conference on Software
Engineering (ICSE), pp. 521–530 (2008)

7. Beck, K.: Embracing change with extreme programming. IEEE Computer 32(10),
70–77 (1999)

8. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Do too many cooks spoil the broth? using
the number of developers to enhance defect prediction models. Empirical Software
Engineering 13(5), 539–559 (2008)

9. Girba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers drive software
evolution. In: International Workshop on Principles of Software Evolution (IW-
PSE), pp. 113–122 (2005)

10. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: International
Conference on Software Engineering (ICSE), pp. 361–370 (2006)

11. Fritz, T., Murphy, G.: E.Hill: Does a programmer’s activity indicate knowledge of
code? In: Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(ESEC/FSE), pp. 341–350 (2007)

12. Robson, C.: Real world research. Blackwell Publishing, Malden (2003)
13. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)
14. Hindle, A., German, D., Holt, R.: What do large commits tell us?: a taxonomical

study of large commits. In: International Working Conference on Mining Software
Repositories (MSR). IEEE, Los Alamitos (2008)

15. Alali, A., Kagdi, H., Maletic, J.I.: What’s a typical commit? a characterization
of open source software repositories. In: 16th IEEE International Conference on
Program Comprehension, pp. 182–191 (2008)

16. Kaner, C., Bond, W.: Software engineering metrics: What do they measure and
how do we know? In: 10th International Software Metrics Symposium (2004)

17. Alves, T., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark data.
In: 26th IEEE International Conference on Software Maintenance. IEEE, Los
Alamitos (2010)

Author Index

Aversano, Lerina 202

Baldassarre, Maria Teresa 59
Bannerman, Paul L. 88
Brinkkemper, Sjaak 306
Buglione, Luigi 44

Di Cerbo, Francesco 291
Di Martino, Sergio 186, 247
Dodero, Gabriella 291

Ferreira, Andre L. 73
Ferrucci, Filomena 186, 247

Galinac Grbac, Tihana 113
Garćıa, Félix 59, 128
Gravino, Carmine 186, 247

Hanakawa, Noriko 171
Hauck, Jean Carlo Rossa 44
Heed, Per 217
Hossain, Emam 88
Höst, Martin 143
Huljenić, Darko 113

Iida, Hajimu 171

Jansen, Slinger 306
Jeffery, Ross 88

Kabaale, Edward 262
Kajko-Mattsson, Mira 156
Kalinowski, Marcos 232
Kasik, David J. 2
Khan, Ahmad Salman 156
Kijas, Szymon 103
Klabbers, M.D. (Martijn) 276
Kollanus, Sami 322
Korhonen, Kirsi 30

Lemus, Sandra 59

Machado, Ricardo J. 73
Marchetto, Alessandro 337
Mart́ınez-Ruiz, Tomás 128
Mc Caffery, Fergal 44
Meding, Wilhelm 3
Mendes, Emilia 232
Morales Trujillo, Miguel 17

Nabukenya, Josephine 262

Obana, Masaki 171
Oktaba, Hanna 17
Orozco, Maŕıa J. 17
Oručević-Alagić, Alma 143

Pardo, César 59
Paulk, Mark C. 73
Piattini, Mario 59, 128
Pino, Francisco J. 17, 59

Reggio, Gianna 291
Ricca, Filippo 291, 337
Runeson, Per 143, 217

Sarro, Federica 186, 247
Scanniello, Giuseppe 291
Smith, Dennis B. 1
Staron, Miroslaw 3

Torchiano, Marco 337
Tortorella, Maria 202
Travassos, Guilherme H. 232

van den Brand, M.G. J (Mark) 276
van der Schuur, Henk 306

Wangenheim, Christiane Gresse von 44
Westrup, Alexander 217
Williams, D. (Ddembe) 276

Zalewski, Andrzej 103
Zawedde, A.S. (Aminah) 276

	Title
	Preface
	Organization
	Table of Contents
	Keynote Addresses
	The Impact of Emerging Software Paradigms on Software Quality and User Expectations
	Acquiring Information from Diverse Industrial Processes Using Visual Analytics

	Agile and Lean Practices
	Monitoring Bottlenecks in Agile and Lean Software Development Projects – A Method and Its Industrial Use
	Introduction
	Related Work
	Case Study Design
	Context
	Research Questions and Units of Analysis

	Monitoring Throughput and Queue
	Definitions
	Realization at Ericsson
	Results
	Industrial Validation
	Good Practices
	Validity Discussion

	Conclusions
	References

	Applying Agile and Lean Practices in a Software Development Project into a CMMI Organization
	Introduction
	Background
	Context of the Software Development Project
	Project Description

	Experience Report
	Project Execution
	Data Collection
	Results

	Conclusions and Future Work
	References

	Adopting Agile Practices in Teams with No Direct Programming Responsibility – A Case Study
	Introduction
	Background
	Characteristics of Plan-Driven and Agile Development
	Agile Transformation

	Research Design
	Context
	Research Questions
	Data Collection and Analysis
	Threats to validity

	Agile Experience in the Organization
	Adopting the Agile Practices
	Feedback on the Agile Transformation
	Developer Team
	System Level Testing Team
	Support Team

	Discussion
	Conclusions and Future Work
	References

	Cross-Model Quality Improvement
	Proposing an ISO/IEC 15504-2 Compliant Method for Process Capability/Maturity Models Customization
	Introduction
	Requirements for SPCMMs
	Existing Methods for SPCMMs Customization
	Existing Methods for the Development of Capability/Maturity Models
	Processes for the Development of Standards
	Development of SPCMMs in Practice
	Discussion

	A Proposal for a Method for the Customization of SPCMMs
	First Results and Discussion
	A Model for Software as a Service (SaaS) Domain
	Medi SPICE
	Observed Results

	Conclusions
	References

	Homogenization, Comparison and Integration: A Harmonizing Strategy for the Unification of Multi-models in the Banking Sector
	Introduction
	Related Work
	Configuration of the Harmonization Strategy
	Execution of the Harmonization Strategy
	Homogenizing the Models
	Comparing the Models
	Integrating the Models

	Discussion and Conclusions
	References

	Supporting Audits and Assessments in Multi-model Environments
	Introduction
	Related Work
	Multi-model Audits and Assessments
	Model Mappings Considerations and Implications
	Tracing Quality Requirements to Implemented Practices

	Multi-model Audits and Assessments
	Multi-model Process Audit Example
	Conclusions
	References

	Global and Competitive Software Development
	Scrum Practices in Global Software Development: A Research Framework
	Introduction
	Research Background
	GSD Challenges
	Scrum Practices in GSD
	Research Framework Development

	Research Framework
	Communication Challenges
	Coordination Challenges
	Control Challenges

	Discussion
	Limitations
	Future Work

	Conclusion
	References

	Towards the Competitive Software Development
	Introduction
	The Software Monopolisation Syndrome
	Demonopolising Software Development
	Experimental Assessment
	Discussion: The Impact of Competitive Development
	The Savings from Software Demonopolisation
	Conclusion
	References

	Defect Detection Effectiveness and Product Quality in Global Software Development
	Introduction
	Metrics
	Related Work
	A Case Study
	Context of the Study
	Research Hypotheses
	Data Collection
	Threats to Validity

	Results
	Descriptive Statistics
	Normality Tests
	Hypothesis Testing

	Discussion
	Conclusion and Future Work
	References

	Managing Diversity
	Managing Process Diversity by Applying Rationale Management in Variant Rich Processes
	Introduction
	State of the Art
	Rationale in the SPRINTT Institutionalization Framework
	Rationale in Tailoring Variant Rich Processes
	Application Study
	Description of the Tailoring Context
	Rationale in Tailoring MEDUSAS to the Organization
	Tailored Process from the MEDUSAS Variant Rich Process
	Lessons Learned from the Proposal of Application Study

	Conclusions and Future Work
	References

	Usage of Open Source in Commercial Software Product Development – Findings from a Focus Group Meeting
	Introduction
	Methodology
	Focus Group
	Objectives and Discussion Questions
	Analysis Procedure
	Validity

	Results from Focus Group Meeting
	Participants
	Identification
	Selection
	Modification
	Giving Back Code
	Summary of Results

	Comparison to Literature
	Company Participation in Open Source Development Communities
	Open Source as Part of Component Based Software Engineering

	Conclusions
	References

	Identifying and Tackling Diversity of Management and Administration of a Handover Process
	Introduction
	Research Steps
	EM3 Handover Taxonomy
	EM3: Software Handover
	Management and Administration (MA)

	Component Evaluation
	Identify Maintenance Organization (MA 1)
	Establish Transition Team (MA 2)
	Establish a Transition Plan (MA 3)
	Develop Management Plans (MA 4)

	Final Remarks
	References

	Product and Process Measurements
	A Process Complexity-Product Quality (PCPQ) Model Based on Process Fragment with Workflow Management Tables
	Introduction
	Related Work
	Process Complexity Based on Process Fragment
	Process Fragment
	Calculation of Process Complexity
	Setting a Base Process and Extracting Process Fragments

	Application to Six Industrial Projects
	The HInT V2 project
	Changes of Process Complexities of the 6 Projects
	A Trial Tool for Visualizing Process Complexity

	Process Complexity – Product Quality (PCPQ) Model
	A Procedure of Building a PCPQ Model
	An Example of Making a PCPQ Model
	Predicting Product Quality Based on the PCPQ Model

	Summary
	References

	Using Web Objects for Development Effort Estimation of Web Applications: A Replicated Study
	Introduction
	Experimental Method
	The Dataset
	The Web Objects Method
	The Employed Effort Estimation Methods
	Validation Method and Evaluation Criteria

	Empirical Results
	Obtaining Estimates with OLSR
	Obtaining Estimates with Web-COBRA
	Obtaining Estimates with CBR

	Discussion and Comparison
	Comparison with Ruhe et. al. Analyses

	The Empirical Study Validity
	Related Work
	Conclusions
	References

	Applying EFFORT for Evaluating CRM Open Source Systems
	Introduction
	Background
	Product Quality
	Community Trustworthiness
	Product Attractiveness
	Data Aggregation and Interpretation

	EFFORT Specialization
	Results
	Conclusion
	References

	Product-Focused Software Process Improvement
	A Factorial Experimental Evaluation of Automated Test Input Generation
	Motivation
	Related Work
	Experiment Setup
	Input Generators
	Testing Environment
	Selected Application

	Research Methods and Question
	Research Question
	Research Methods
	Threats to Validity

	Results
	Pilot Execution
	Main Execution – Descriptive Statistics
	Main Execution – Statistical Analysis

	Discussion
	Conclusions and Further Work
	References

	Automating and Evaluating Probabilistic Cause-Effect Diagrams to Improve Defect Causal Analysis
	Introduction
	DPPI: Defect Prevention-Based Process Improvement
	Development Activity Result Analysis
	DCA Preparation
	DCA Meeting
	Development Activity Improvement

	DPPI Framework
	Experimental Study
	Experimental Study Design
	Experimental Study Results

	Conclusions
	References

	A Genetic Algorithm to Configure Support Vector Machines for Predicting Fault-Prone Components
	Introduction
	Support Vector Machines and Genetic Algorithms
	Support Vector Machines
	A Genetic Algorithm to Configure SVMs

	Case Study Planning
	Dataset
	Validation Method
	Evaluation Criteria

	Results and Discussion
	Fitness Function Impact and Effectiveness of GA to Configure SVMs
	Comparison of GA+SVM with other Estimation Techniques and between Intra- and Inter-release Prediction Performance

	Validity Evaluation
	Related Work
	Conclusions
	References

	Requirement Process Improvement
	A Systematic Approach to Requirements Engineering Process Improvement in Small and Medium Enterprises: An Exploratory Study
	Introduction
	State of the Art
	Research Approach
	Field Study and Analysis of RE Process and Practices in Ugandan SMEs
	Current RE Processes and Practices in Ugandan SMEs
	Challenges and Recommendations to Successful REPI in SMEs

	Design of the Systematic Approach to REPI in Ugandan SMEs
	Requirements for the Systematic Approach

	Conclusion and Future Work
	References

	Understanding the Dynamics of Requirements Process Improvement: A New Approach
	Introduction
	State of Practice in Process Improvement
	System Dynamics Modeling
	Statistical Process Control

	Factors that Influence Requirements Process Improvement
	Modeling Requirements Process Improvement Dynamics
	Descriptive Model for RPI
	Propositions Derived from the Model

	A Practical Case Study
	Summary and Further Research Directions
	References

	Precise vs. Ultra-Light Activity Diagrams - An Experimental Assessment in the Context of Business Process Modelling
	Introduction
	Process Modeling with UML: Ultra-Light and Precise Styles
	Ultra-Light Style
	Precise Style

	Experimentation Setup
	Context
	Hypotheses Formulation
	Design
	Selected Variables
	Experimental Material, Pilot and Execution

	Analysis and Results
	Pilot Experiment
	Comprehension Level - Main Experiment
	Comprehension Effort - Main Experiment
	Co-factors and Post Questionnaire Results - Main Experiment

	Related Work
	Conclusion
	References

	Software Process Improvement
	If the SOK Fits, Wear It: Pragmatic Process Improvement through Software Operation Knowledge
	Introduction
	Related Work
	Research Approach
	Research Site
	Canonical Action Research

	SOKIntegration
	Instantiation
	Concepts
	Activities

	Three Pragmatic In-the-Field Method Instantiations
	Observations
	Experience Evaluation
	Lessons Learned
	Threats to Validity

	Conclusions and Future Work
	References

	Critical Issues on Test-Driven Development
	Introduction
	Literature Survey
	Sources
	Search Procedure
	Data Extraction and Analysis
	Evaluation
	Role of Literature Review in This Paper

	Issues with Empirical Evidence on TDD
	External Quality
	Internal Quality
	Productivity
	Summary of the Issues with the Empirical Evidence

	Other Issues and Challenges with TDD
	Lack of Design
	Applicability
	Test Code Size
	Required Skill Level
	Challenges in Adopting TDD

	Discussion
	Conclusions
	References

	On the Difficulty of Computing the Truck Factor
	Introduction
	Related Works
	Truck Factor Usage Problems
	No Shared and Validated Measurements
	No Reliable Thresholds
	No Tools
	No Empirical Evidence

	Truck Factor Tool
	Exploratory Study
	Execution and Results
	Lesson Learnt and Open Issues

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

