Checking the Behavioral Conformance of Web Services
with Symbolic Testing and an SMT Solver

Lina Bentakouk!, Pascal Poizat"2, and Fatiha Zaidi®

1 LRI; Univ. Paris-Sud, CNRS, Orsay France
2 Univ. Evry Val d’Essonne, Evry, F-91000, France
{lina .bentakouk, pascal.poizat, fatiha. zaidi}@lri . fr

Abstract. Workflow-based service composition languages foster the rapid de-
sign and development of distributed applications. The behavioral verification of
service Compositions has widely been addressed at design time, using model-
checking. Testing is a complementary technique when it comes to check the be-
havioral conformance of a service implementation with respect to its specification
or to a user or a service need. In this paper we address this issue with an automatic
approach based on symbolic testing and an SMT solver.

Keywords: services, orchestration, formal testing, test-case generation,
WS-BPEL, transition systems, symbolic execution, SMT solver.

1 Introduction

Context. Web services are gaining industry-wide acceptance and usage as the main
implementation of the Service Oriented Architecture. As such, they support the con-
struction of distributed applications out of reusable heterogeneous and loosely coupled
software entities, namely services. WS-BPEL [1]] (BPEL for short) has been normalised
as the language for Web service orchestration, i.e., centralised service composition.
BPEL is twofold. It may be used to describe orchestration implementations. Abstract-
ing details and refereed to as Abstract BPEL (ABPEL), it may also be used to specify
orchestrations or to publish information about the behaviour of a service, i.e., the order-
ing in which its operations should be called.

Motivations. Since BPEL is a semi-formal workflow language, a significant research
effort has been produced in the last years in order to propose formal models for orches-
tration verification [2]]. Numerous work in this area have addressed model-checking, to
check if properties are verified by an orchestration specification. Still, in presence of a
black box implementation, one cannot retrieve a model from it. To help establishing the
conformance wrt. a specification, testing should be used. However, to the contrary of
model-checking, testing is incomplete. One rather focuses on generating the good test
cases to search for errors. Testing enables one to ensure both that sub-services partic-
ipating to an orchestration conform to their publicised behavioural interface, and that
the orchestration itself conforms to the behavioural interface to be publicised after its
deployment. Orchestration testing has mainly been addressed from a white-box per-
spective, assuming that the orchestration implementation source code is available. In
practise, the source code is often not available as it constitutes an added-value for the

M. Gogolla and B. Wolff (Eds.): TAP 2011, LNCS 6706, pp. 33450]2011.
(© Springer-Verlag Berlin Heidelberg 2011

34 L. Bentakouk, P. Poizat, and F. Zaidi

service providers. To overcome this limit, we propose a black-box conformance testing
approach to automate the conformance checking of composed services. We base our
approach on a symbolic treatment of data and on an efficient SMT solver.

Contributions. The contributions of our work are manifold. (i) Based on a behavioural
specification, we produce a formal model, namely a Symbolic Transition System (STS)
[3l4] by means of transformation rules written in a process algebraic style [S]. We han-
dle as well interfaces as behavioural parts of composed services. (ii) A particular accent
is put on the processing of structured data types in such a way that they will be handled
by a more powerful constraints solving tool compared to our previous work. (iii) The
testing process is based on the definition of requirements that allow a user to specify
the service behaviour to test. Based on requirements or user needs, the tester provides
test purposes. We suppose these are given as STS too, yet, it has been shown that such
transition system models could be obtained automatically either from abstract proper-
ties given in a temporal logic or from human-friendly descriptions such as sequence
diagrams. (iv) We support the test of a real service orchestrator, in which we use some
knowledge about the database of the partner services. This assumption is needed in
order to provide pertinent data input to the tested orchestrated service. (v) We clearly
explain our stepwise approach, which starts with the definition of a formal model of the
specification and of the test purposes. Afterwards, we produce by means of a symbolic
execution tree (SET) the test cases that cover the test purpose. The SET allows to avoid
the unfolding of the STS product that would yield state space explosion. Then, an online
oracle tester executes the test cases against the real implementation.

Outline. The remainder of the paper is structured as follows. The next section presents
the related work. Then a running example is provided in SectionBl A formal approach
is detailed in Section M in which we describe the use of test purposes. In Section
the automatic test case generation, based on the STS product and SET generation, is
explained. In Section [6] we present the tools chain with an emphasis on the use of a
solving tool. Finally Section [7]ends with conclusion and perspectives.

2 Related Work

Web service (WS) testing has been addressed differently depending on the available
service description level and on the testing generation approach [6]]. A simple but lim-
ited technique is to inject hand-crafted test cases on a service implementation using
tools such as soapUI or BPELUnit [[7]. However, these tools do not allow to do inten-
sive testing, since they require a manual instantiation of the test cases. When the WS
source code is available, white-box testing criteria can be used to generate test cases [8]].
Sometimes, only service signatures are available. Still, this enables to test WS by gen-
erating relevant input data for each operation [9/10]. In the later work, the control flow
for Java control flow code is also considered. Going beyond WSDL WS, composite
services, e.g., orchestrations, feature a behavioural interface. It is important to take this
information into account in the testing process.

In [[L1]], they have addressed grey-box testing using a BPEL to IF (Intermediate For-
mat) translation and extending the IF simulator to generate test cases given a test ob-
jective. A limitation is state space explosion in presence of complex data types. In [12]]

Conformance Testing of Service Orchestration Using an SMT Solver 35

the authors propose an approach for compliance testing of the specification wrt. the
implementation of a composed Web services, using Petri-nets. This approach allows to
automatically generate test cases. However, they did not address the problem of gener-
ating input data for test.

To solve this problem out, we propose to rely on symbolic models and their symbolic
semantics. Symbolic testing approaches have been investigated for several years, e.g.,
in [13U14415]). Our test purpose driven test case generation is closely related to [13114].
However, except for [[15] (still, from a theoretical and generic point of view), the above
mentioned approaches have not addressed application to the component or service
composition domain. This application requires a comprehensive language-to-language
approach with, e.g., transformation rules supporting a workflow-based language with
complex data types and communication mechanisms. We have proposed in [4] a WS
symbolic testing approach based on specification coverage criteria. Here, this work is
extended to formally propose a more precise and stepwise approach driven by sym-
bolic test purpose which allows a user to test specific part of an orchestration. In other
words, the test purposes described in this paper refer to behavioral functionalities that
a tester wants to check. Further, in [4] we also used the UMLtoCSP [[16] tool to solve
constraints, which required a very fine tuning of the variables’ domains. Moreover, a
more complex model transformation between this tool and ours was needed, which is
no more the case with the Z3 SMT solver.

3 Running Example

In this Section we present our e-Conference case study. This medium-size orchestrated
service provides functionalities to researchers going to a conference such as information

ns0 <<interfaces>
eConfService
Conference Location ordersSetup(0Sin, 0S0ut)
name;string idguppie !
edition:int city:string addree(AFin} .
start:date cauntry:string validate(Vin, VOut)
end:date f =
Fee ConferenceService
getinfolGlin, GIOut) bookiBin, BOut)
r category:string . cancel(Cln,COut)
price-double properties = {ordersid}
nsl ns2 (cS5)] ns3 (egovs)]
<<message== | <<message=> <<message=> |[<<message=> |[=<=message==
FlightTicket FlightCode
9 N g Glin GlOout TAIn GOlin PVin
etkt:string code | company.string name:string country:string countrystring
price-double numbsrstring edition:int
dDate:date <<Message > CLMEs5age s> CEMES5A0e >
dTime:time ’_'rmm Airport = TAQut GOlout PVOut
aDate:date [conf hasAlert:boclean || ordersid-ink value-double
aTime:time to | citystring LLfrom nso] alertinfo:string
country:string riskLevel:int
ns4 (fS) ns5 (USER)]
<<message=> || <=messages> [FlightTicket| <<messages> Userinfo address Location
Bin BOut ekt rom sy || | OSIn * [trom nso1_|
arrival:date confName:string | UMD id:lang <=message>>
date TR di RSIn -
from surname:strin
Tirom ns1] L oaerng | LVIR <<property>>
o P Conference it ordersid
<<message=>> |[<<message== 050ut b Tirom Ta0) o o
Cin COut v AFIn <=message>> || psinfardersid
etkt:string status:string ordersicing 0. 1 kvu-- [FlightTicket| oeman: VOut AFinfordersid
—— ticket[irom ns1] fordersid

Fig. 1. e-Conference Example — Data and Service Architecture (UML Extended)

36 L. Bentakouk, P. Poizat, and F. Zaidi

gawm g0 SE
gan 22 20
573 58 :%
2 5 38 iR
"% 23
Z iR
£3
25
2
i
Q
=z =514
8 55N Y
i 5.8
SRR
iig
gt
b

BAL|

presapuQiabedo

chobaspd !

AL|

)

oS0 STuA,
BNAGLIBRIO =

Ga053md
yasn=id

i £

O TR IRAING

(5}

ey
AMFSsIapIo=do
HIsN=pd

nsdpan | Ve O50ut G St B E [Fmon |z [vene]s [vaoes
L) L1 L r L
H g8 § S83 8 i 2z
H i3 3 %3 3 £ iz
i anid |3 |
g tt t Tt
H] 3.3 t g 238
: PR [araeee] e L
H vhateos| €288 i i F]
sk G0 3 3 | g
!; Uy e | o
P £ 71 g
| g R d 3wz 3
hensz cnonn 2 1 L = Ll
| g L VT 5
ER | s Ll
T vt T |2 [msvoay |2 g
v\—l\sos-- io £l L Al .
H EAE 1
H t B 5
sim| |5 ti g
L B Mg |
g i 3 v

Fig.2. e-Conference Example — Orchestration Specification (Inspired and extended from
BPMN)

about the conference, flight booking and fees refunding. Parts of the orchestration, e.g.,
the e-governance rules, correspond to reality. Other parts, e.g., the sub-service used to
book plane tickets, represent a simplified yet realistic version of it.

e-Conference is based on three sub-services: ConferenceService, FlightService,
and e-govService. Its specification is as follows. A user starts the process by provid-
ing the conference name and edition, together with personal information (ordersSetup

Conformance Testing of Service Orchestration Using an SMT Solver 37

operation). Conference information is first retrieved using ConferenceService then
e-govService is invoked to check if any travel alerts exist in the conference country.
If there is one, the user is informed and the process stops. If not, an orders id is asked
to e-govService, a plane ticket is bought using FlightService and all gathered infor-
mation (orders id, conference and plane) is sent back to the user who may then go to
the conference. Upon return, the user may choose to be refunded from either a fees or
package basis (returnSetup operation). In both cases, the user will end by validating
the mission (validate operation) and e-Conference will reply with refunding informa-
tion. If fees basis has been chosen, the user will be able to send information on fees
(using addFee operation several times).

Figure [[lexhibits our extension of the UML notation corresponding to the
e-Conference orchestration. Within this diagram we highlight the stereotypes for mes-
sage types, correlations and properties to represent the orchestration architecture and the
imported data (XML schema files structured in namespaces ns,). Concerning orches-
tration specification shown in Figure[2] we take inspiration from BPMN, while adding
our own annotations supporting relation with BPEL. Communication activities are rep-
resented with the concerned partnerlink (USER for the user, ¢S, egovS, and fS for the
sub-services), operation, input/output variables, and, when it applies, information about
message correlation.

4 Formal Models for Test Case Generation

In this section we briefly present our formal model for service orchestration, the moti-
vations and steps that lead us to reuse the same model to represent test purposes.

4.1 Service Orchestration Model

Different models have been proposed to support behavioural service discovery, verifica-
tion, testing, composition or adaptation [2/17/11J18]]. They mainly differ in their formal
grounding (Petri nets, transition systems, or process algebra), and the subset of service
languages being supported. We base on [[19]] due to its wide coverage of BPEL language
constructs.

Moreover, its process algebraic style for transformation rules enables a concise yet
precise and operational model, which is, through extension, amenable to symbolic ex-
ecution. With reference to [19]], we support data (in computation, conditions and mes-
sages), message faults (enabling a service to inform its partners about internal errors),
message correlation (enabling BPEL engines to correlate messages in-between service
instances), flows (parallel processing) and the until activity. More specifically, support
for data yields grounding on (discrete time) Symbolic Transitions Systems and their
symbolic execution, rather than on (discrete time) Labelled Transition Systems. Unlike
the model described in [3] we have modified the WS-STS model to take into account
the specific characteristics of Web Services.

STS modelling. A Web Service Symbolic Transition System (WS-STS), is a tuple (D, V,
S, s0,T) where D is a set of domains (data type specifications), V is a set of variables
with domain in D, S is a non empty set of states, sg € .S is the initial state, and 7" is a

38 L. Bentakouk, P. Poizat, and F. Zaidi

(potentially nondeterministic) transition relation, 7' C S'x Tgoo1,p X Ev x seq(Act) x S,
with Tgoo1,y denoting Boolean terms possibly with variables in V, Ev a set of events
represents the messages communication. D and V are often omitted when clear from
the context (e.g., V are variables used in transitions). A reception or the return of an
invocation event noted pl.o?x corresponds to the reception of the input message = from
the partner pl of the operation o. We omit BPEL port types for simplicity reasons (full
event prefixes would be, e.g., pl.pt.o?x). Accordingly, we define a reply or invocation
event pl.olx corresponds to an emission of an output message. Ev’ (resp. Ev') is the
set of reception events (resp. emission events). Ex is the set of internal fault events, that
corresponds to faults possibly raised internally (not in messages) by the orchestration
process. We also introduce specific events: 7 denotes non-observable internal computa-
tions or conditions and 1/ denotes the termination of a conversation (end of a session).
For reasons of simplicity we denote Ev = Ev’ U Ev' U Ex U {T,/}. seq(Act) is a set
of actions denoting computation (data processing) that will be executed in a sequential
way (of the form v := ¢ where v € V is a variable and ¢t € Tp y is a term).

The transition system is called symbolic as the guards, events, and actions may contain

A A
variables. (s, g,e, A,s’) € T is also written s %T s' or simply s _lgle/A o

when clear from the context. The WS-STS moves from the state s to the state s’ if the
event e occurs and the guard g is satisfied and some actions can be performed. When
there is no guard (i.e., it is true) it is omitted. The same yields for the actions. We impose
that variables used in the WS-STS transitions are variables from BPEL and anonymous
variables used for interacting with other services. Notice that each data type (structured
or scalar) of BPEL corresponds to an element of D and each variable of BPEL corre-
sponds to a variable in V. An orchestration is built around a partnership, i.e., a set of
(partners) signatures corresponding to required operations and a set of signatures corre-
sponding to provided operations. In the sequel, we suppose, without loss of generality,
that an orchestration has only one of the later, named USER. STS have been introduced
under different forms (and names) in the literature [3]], to associate a behaviour with a
specification of data types that is used to evaluate guards, actions and sent values. This
role is played by D which is a superset of all partner’s domains. Transformation rules
from BPEL to WS-STS are provided in [S]].

Application. From the e-Conference specification (see Figure), we obtain the STS
in Figure 3] (49 states, 57 transitions) where tau (resp. term) denote 7 (resp. /). The
zoom (grey states) corresponds to fees Ioop. One may notice states 39 (while condi-
tion test) and 40 (pick). In states 41/45 it is checked if incoming messages (validate
or addFee) come from the same user than the previous ones in the conversation (Or-
dersSetup and returnSetup). When it is not the case (correlation failure) an exception
is raised (in state 26). Variables names, in our example are prefixed with namespaces
(e.g., vns5:VOut is the variable storing values of type ns5:VOut) to help the reader.

4.2 Test Purpose Model

A Test Purpose. (TP) is a set of functional properties allowed by the specification and
that one is interested to test. Usually, the formal model for TP follows the one used for
the system specification. Hence Labelled Transition Systems (LTS) is the most popular

Conformance Testing of Service Orchestration Using an SMT Solver 39

USER. validate Wh USER..addF ee fvansSAF In
1)

S wsSVIn=vars5Vin || {vsSAFIn=vars5AFIn

oS, packao/aue Nars3PVOLE
SsIPVOUE=vans3PVOULt

Fig. 3. e-Conference Example — Orchestration model (STS)

model for TP. However in our case it will be formalised as an STS according to the
specification model. Note that a TP can also be modelled using Linear Temporal Logic
(LTL) to be more abstract. The average user may prefer more user friendly notation
eg. MSC or UML sequence diagrams [20J21]] that describe the interactions between
system components. In both case we can get back to transition system model, LTL can
be transformed in Buchi automata [22]] while, MSC and UML sequence diagrams can
be transformed in LTS [23]].

To represent formally requirements as a test purpose we were inspired by the work of
[[13]]. However, the way to express a test purpose is simpler because we don’t need reject
states to specify an undesired behaviour. Thus the WS-STS resulting product contains
only the paths that run through an accept state.

TP models are defined according to the orchestration (specification) models they refer
to. Therefore, given an orchestration model B = (Dg, Vi, Sg, Soxz,18), a TP for B
is an WS-STS TP = (Drp,Vrp,Stp, Sorp, Irp) With some constraints. TP may
use a set of additional variables V; for expressiveness (see Application, below), disjoint
from B variables. Vrp = V; U Vi where V; N Vi = 0, accordingly Drp D Dg, with

Vt s _lslefvi= | s" € Trp v € Vy. Assignments in T'P can only operate on V.

The events labelling TP transitions correspond to the 3 ones. More specifically, we
impose for simplicity sake that variables used in message exchanges (events of the form
pl.op . ..) correspond to the ones in B. This constraint can be lifted using substitutions.
TP also introduce a specific event, *. Transitions labelled with * may neither have a
guard, nor actions, and are used to abstract in TP one or several B3 transitions that are
not relevant for the expression of the requirement. A TP defines a specific set of states,

40 L. Bentakouk, P. Poizat, and F. Zaidi

5:RS. “package’](au / n:=0 0y N, USER validate ! vanss:VOut o [vans5:VOut/value< Hll!(ljl'au@
[\'xni AFIn/fee>=10 Jtau / n:=n+1 "\ [n=NJUSER addFee ? vans5:AFIn

Fig. 4. e-Conference Example - Test Purposes (STS)

Accept (Accept C Stp), that denotes TP satisfaction. Those states have transitions
labelled by an event #. Finally, we impose that T'P is consistent with B, i.e., TP
symbolic traces are included in B ones. This can be checked using symbolic execution
(see Sect.[5.2), where we also have to check that the path condition corresponding for
the T'P trace implies the path condition of the B trace.

Application. Let us assume one wants to focus on testing refunding on a fees basis.
Possible TPs are given in Figure @l In the first TP, one may note the use of the addFee
transition, leading to an acceptance state (Labelled with #). This specifies addFee must
be part of the generated test cases. Several transitions in the specification could be done
before and after the addFee one, therefore, the two TP states are equipped with a
* loop. The * loop is interpreted as being the execution of any other communication
messages (including calls to sub-services), except those explicitly expressed. The first
TP requires that there is at least one addFee in the test cases. One may want to take
also into account the case where there are none. This can be specified as in the second
TP. There, one relies on the returnSetup transitions that carry user requests relative
to the return mode (package or fees basis). In order to specify it is the later which is
required, a guarded transition is used (choice should be different from ‘package’).
Note that the guard is put on a 7 transition after the reception in order to be consistent
with (symbolic) execution semantics: the guard can only be evaluated once the variable
has been received. The last TP, used in the sequel, is more realistic and demonstrates
TPs expressiveness with four requirements: (i) return is on a fees basis, (ii) each fee is
greater or equal to 10, (iii) the total amount for the mission is less than 1000, and (iv)
there are at most N fees added. The later requires to use a TP additional variable, n, to
count addFee iterations.

5 Automatic Test Case Generation
5.1 WS-STSs Product

To generate test cases we have to take into account constraints specified both in the
specification and in the TPs. This is achieved using WS-STS (symbolic) product.
Given a specification model B = (Dg, Vg, Si, Sos, 1), and a test purpose TP =
(Drp,Vrp, Stp, Sorp, TTp), their product, Prod = B® TP, is the WS-STS (Dpyod,
VProds SProd, S0preqs LProd) Where Dproq = Drp, Veroa = Vrp, Sproda C SB X
STP, $0p,r0q = (S0gs Sorp)s and Tprog is built using four rules:

Conformance Testing of Service Orchestration Using an SMT Solver 41

o Ve € {1, x, 1}, eVec Ev' UEV UEzU{{/},
lgsle/AB /
Shs
lgle/A lgrple/Arp ,
spp—————Tpspp STP *TP STp
(SB,STP)M)PTUd(sts'/TP) (sB,sTP) wstorrple/Are s Prod (8,87 p)
o Ve e {7, x, 1}, eVec Ev' UEV UErU{{/},
lgsle/As /

Sp —————B Sp»

* !
STP — TP STp,
lgrple/Arp

A /
SBL)BS/B /H STP TP STp
lglT/A lagle/Ap
(88,5TP) 7 Proa(siz,sTP) (sB,s7P)——————Prod(55,5p)

The two rules on the left side denote that T'P (resp. 1) evolves independently for
non observable events. The first rule on the right side corresponds to synchronising
between T'P and B. Finally, the second rule on the right side defines the * semantics. It
corresponds to observable events but for the ones that are captured by the first rule on
the right side. To enforce the acceptance states semantics, the product is cleaned up by
pruning states (and related transitions) that are not co-reachable from acceptance states,
i.e., any s such that As’ = (si, s p) € Sproa . s — *s' As’ € Accept. Notice that a
cleaning of the WS-STS product is performed to keep only the paths that pass through
an accept state.

Application. The product of the orchestration (Figure [3)) with the third TP (Figure [)
is given in Figure [5 It has 68 states and 85 transitions (89 states and 119 transitions
before pruning). Its set of symbolic traces is a subset of TP one (hence also of the
orchestration one). One may note for example that receiving addFee is possible only
if done less than NV times (see guard [n<N] in the transition outsourcing from state 45),
and that the condition on fee values is also taken into account (states 48/54/61/67).

5.2 Symbolic Execution Tree

Symbolic execution [24] (SE) has been originally proposed to overcome the state ex-
plosion problem when verifying programs with variables. SE represents values of the
variables using symbolic values instead of concrete data [[25]. Consequently, SE is able
to deal with constraints over symbolic values, and output values are expressed as a func-
tion over the symbolic input values. More recently these techniques have been applied
to the verification of interacting/reactive systems, including testing [25.26.14].

The SE of a program is represented by a symbolic execution tree (SET), where nodes,
NsgT, are tuples 7; = (s, 7, o) made up of the program counter, s, the symbolic values
of program variables, o, and a path condition, 7. Let Viymp be a set of (symbolic)
variables (representing symbolic values), disjoint from the program variables, V (V N
Vsymb = 0). o is amap V — Vsymp. The path condition (PC) is a Boolean formula with
variables in Vsym1,. The PC accumulates constraints that the symbolic variables must
fulfill in order to follow a given path in the program. Since we apply SE to an WS-STS
product, the program counter is an WS-STS state, and V corresponds to the WS-STS
product variables. The edges of the SET, Esgr, are elements of NsgT X Evgymn X NseT

42 L. Bentakouk, P. Poizat, and F. Zaidi

Fig. 5. e-Conference Example - Product (STS)

(may be non deterministic), where Fvgymp, corresponds to the WS-STS product events
(Ev) with symbolic variables in place of variables. Each feasible path of a SET (i.e.,
each path in this SET with a PC that can be solved) represents a possible test case.

5.3 SET Computation

The SET is computed in a BFS fashion as follows. The root is (s, true, o) where sg
is the WS-STS product initial state and o is the mapping of a fresh variable for each
variable of the WS-STS (o¢ : Vv € V,v — newVar) and my = true. Each transition

A ’
I then corresponds to an edge (s, m,0) — (s',7',0’), computed as
described in [4].

1. guard: 7% = 7 A go (7€ = 7 if there is no guard)

pl.o?v,olv — v, if e = pl.o?v

pl.olo(v),o if e = pl.olv

e, otherwise

with vs = new(Vsymn, o). If e is a sub-service invocation return (¢ = pl.oTvgys
Apl # USER), we set 7 = 7(0)[0F (vin)/in, vs/out], where e = pl.olv;, is
the label of the (unique) transition before the one we are dealing with, to take into

account the operation specification (7(0)). Else, 7% = €.

2. event: ¢/, o =

3. actions (A = {x;/path; :=ti}; icq1,..n})*

7TzA = ”TzA—l A (vsmi/pathi =1 [O—E(Uj)/vj}'l}je’ullTS(tj))

Conformance Testing of Service Orchestration Using an SMT Solver 43

with A = {z € V | (z/path; := t;) € A}, {vs, }rea = new??Veymp, o),
o' = oP{[vs, /2] }sen, 7y = 7F, and ' = 7.

where vars denotes the variables in a term, new™ (Vsymn,) denotes the creation of n
new (fresh) symbolic variables wrt. o, t[y/xz]| denotes the substitution of by y in ¢,
and o[z — x5] denotes o where the mapping for x is overloaded by the one from z to
xs. A is the set of variables that are modified by the assignments. For each of these, we
have a new symbolic variable. Note that we suppose without losing of generality that in

practise one assign with parallel instructions is executed sequentially.
L , lglplolv/A
*77

We denote may(n), n € Nsgr, the set {pl.olv | In n}
with L a sequence of labels such that the corresponding word (keeping only the event
in labels), contains only non observable events or communication events with partners
VU {ploxv | x € {21} A pl # USER}). This set will be used later on for
the test verdict emission.

Pruning infeasible paths. Edges with inconsistent path conditions are cut off while
computing the SET. For this, we check when computing a new node 7 if 7(n) is sat-
isfiable (there exists a valuation of variables in 7 such that 7 is true, if not, we cut the
edge off). This is known to be an undecidable problem in general. Therefore, if the con-
straint solver does not yield a solution (or a contradiction) in a given amount of time,
we cut the edge off and we issue a warning specifying that the test process is to be
incomplete.

Pruning redundant paths. A WS-STS product may contain loops that would cause
SET unboundedness. To solve this issue out, we propose two compatible techniques.
We can first take into account a path length criterion while computing the SET. Given
a constant k, we stop the SET computation at some node whenever this node is at k
edges from the SET root, this technique is inspired by the k bounded model check-
ing [27]. The user can re-start the SET computation process with k 4 1 for more test
cases.

A complementary approach is to use the inclusion criterion as proposed by [14]].
Let us consider n = (s, m, o), a reachable node in the SET. Solving the associate path
condition 7 means that there exists at least a value for each symbolic variable satisfying
the constraint with regards to the ¢ mapping (V' — Vsymp). Such constraint allows
several interpretations (combinations of possible values). ./\/l); represents the set of all
the possible interpretations for the variables V' of the node 7. Consider now, an other
node ' = (s,7’,0’) which has the same state as 7. We say that 7’ is included in 7
(' € n), when /\/l}]’, - M}; That means that the set of interpretations of the variables
of V belonging to 7 is bigger than the one belonging to 7, so 7'’ = 7o. If the two
nodes are on the same branch, we can prune the sub-tree associated to the node 7’ as it
is included in the sub-tree of the node 7. We can then stop the generation of the SET at
the node 7/’.

Application. Among the 85 paths in the SET (k = 15) of the product STS (see Fig-
ure[3)), there are 7 complete paths corresponding to the coverage of the last test purpose
described in Section 4.2l A path example is:

44 L. Bentakouk, P. Poizat, and F. Zaidi

USER.ordersSetup?vs36 tau(x2) cS.getInfo!vs40
cS.getInfo?vsdl tau(x2) egovS.travelAlert!vsd4d
egovS.travelAlert?vsd5 tau(x2) egovS.getOrdersId!vsd7
egovS.getOrdersId?vs48 tau(x2) fS.book!vs51
£S.book?vs52 tau(x2) USER.ordersSetup!vs55
USER.returnSetup?vs58 tau(x5) USER.addFee?vs69
tau(x4) USER.validate?vs74 tau(x3) USER.valivate!vs77
tau(x2) term.

6 Tools Support and Experimentations

Figure [6] exhibits the different steps of our approach that are supported by tools. In
step 1: from a specification represented as a BPEL file we use the BPEL2STS tool to
generate an STS model. Followed by step 2: the produced model and a test purpose STS
(in the same format) are provided as inputs files to our STSprod tool that computes the
product. In step 3: the STS2SET tool takes as input the STS product and uses the
7.3 solver [28] to compute the SET. Finally in step 4: using the SET paths we execute
the test cases as described in the test cases realisation with an automated call to Z3
but the oracle algorithm is exercised manually. All intermediate formats follows the
Aldebaran format (.aut) which supports a graphical representation with the CADP
tool [29].

SMT Solver Use during the SET construction. Our approach relies on a symbolic
execution semantic of our WS-STS. Compared to work that enumerate the possible val-
ues of variables [[L1]] for the test cases, we rely on a solving tool to instantiate the path
condition. Enumeration techniques can be faced to the state space explosion problem
and false verdicts can be emitted as explained later on. In our case we can overcome
the state space explosion problem by avoiding the unfolding of the WS-STS and with
our on line testing algorithm we can obtain the possible values by a call to the solving
tool and hence instantiate the values by interacting step by step with the service under

N STS™. SET™ ﬁ
.aut aut

pecification 1 \ T l 1 l

! R

BPEL25TS STSProd STS25ET

| » 1 Ml
STSMh, STSM <:::} —

.aut .aut Z3
Model Test Purpose
1 2 3 4

Fig. 6. Overview of the tools chain

Conformance Testing of Service Orchestration Using an SMT Solver 45

test. To solve the constraints we use an efficient SMT (Satisfiability Modulo Theories)
solving tool, i.e. Z3. Z3 allows a direct use of arithmetic in Boolean formulae. Z3 is
called by a satisfiability function. First when we compute a node 7 of the SET related
to a path condition 7 that has been augmented by a condition because of a guard in the
WS-STS (an i f or a while), a call to the satisfiability function is performed. An SMT
file is built to be given to Z3. For the inclusion criterion depicted above for the pruning
of redundant paths, we also call this function to check the satisfiability of 7'c’ = 7o
and the complexity is on the number of edges from 7 to 7’.

Symbolic test case extraction. Symbolic test cases correspond to the SET paths. How-
ever, it may be relevant to test only paths leading to orchestration termination (,/) even
if it is not strongly required for Web services since different instances are run for each
test case. Due to our k path length criterion in the SET computation, it follows that
symbolic test cases have a length n < k. Notice that we can increase the value of k if
we did not find errors during the execution of tests.

Online realisation with a constraint solving tool. Since Web services are reactive
systems, test case realisation has to be performed step by step, by interacting with the
Service Under Test (SUT). This is to avoid emitting erroneous verdicts. Take a path
pl.o?x.pl.oly, with o = {x — vs,,y — vs, } and T = v5, > 2Avs, > vs,. Realisation
all-at-once would yield a realised path p?vs,, plvs, with, e.g., {vs, — 3,vs, — 4}.
Suppose now we send message p with value 3 to the SUT and that it replies with value
5. We would emit a Fail verdict (5#4), while indeed 5 would be a correct reply (5> 3).
Concretely, the tester is implemented as a reactive process that mirrors the observable
behaviour of the test case. We begin with the PC in the last state of the SET path
corresponding to the test case. Whenever the tester has to send a message to the SUT
(USER.0? in the test case), PC is solved to get correct data values to send. Whenever
the tester has to receive a message from the SUT (USER.o! in the test case) a timeout
is run. If it ends before we receive the message there is an Inconclusive verdict. If we
receive the message from the SUT, data is extracted from it and the PC is updated with a
correspondence between the reception variable(s) and the data, and PC is then checked
to see if the data is correct or not. In both cases, we rely on a constraint solving tool,
the Z3 solver.

Call of the Z3 Solver for the Online Realisation. We present in the following how
the solving function based on the call of the Z3 tool is used by the online algorithm
to retrieve values in order to execute the tests. The solving function takes as inputs
variables and their types, a predicate represented as a conjunction of clauses and a set
of words that will be used as a small database to assign a string to a string variable.
This function supports the use of the following datatypes: boolean (Bool) integer (Int)
double (Real) and string (String). For sake of simplicity we use only the type Int in
the sequel. First, the function builds for each variable its associated tree. Each tree is
constructed according to its variable type. Hence, if it is a simple type variable then the
associated tree will be reduced to a simple type leaf. Else if it is a complex type vari-
able, then an isomorphic tree will be constructed. We need to manipulate tree types to be
compliant with simple or complex types of XSD schema. Let us assume a variable z, a

46 L. Bentakouk, P. Poizat, and F. Zaidi

variable y and a complex type named 77 . T} consists of a part @ and another part b, both
are integer. We provide the following annotation for this complex type: 77 : {a : Int,
b : Int}. The variables = and y have the following types: x :: Int and y :: Ty. The
corresponding tree for will be reduced to an integer leaf and the one associated to y
is a tree with an integer leaf through a and an integer leaf through b. Notice that we use
the term Labels to refer to a or b (the label a and the label b). We give below a graphical
view of the trees.

CAC
Once the trees are constructed, a new variable is assigned to each leaf of the tree.
These new variables will be used as pointers when the instantiation of variables of

complex type will be performed. In fact, each path of the tree starting from the root to
a leaf is represented with a unique variable as shown below:

Once the previous step is achieved, we process the predicate. As we said above a pred-
icate is a conjunction of clauses. Theses clauses may represent an equivalence opera-
tions between variables or/and paths of trees as well as arithmetic and logic operations.
A path in predicate clause is represented with an X Path expression. If we consider the
same previous variables = and y and the following predicate: x = 3+ 4 A y/b = z, the
clause y/b = x expresses the equivalence between the value of the variable = and the
value of the location pointed by the path y/b.

If the X Path expression y/b does not correspond to a leaf, but to a sub-tree then a
new variable is created to represent this sub-tree. We would like to point out that if the
X Path expression leads to a leaf, then the path is replaced by its associated variable.
Let us consider z an input variable (as and y) and a new complex type 1> where:
Ty : {a : Int, b : Ty} and 2z :: Ts. The associated predicate to those variables is
specified as: x = 3+4 Ay/b = x Az/b =y, in this case a new variable will be created
by the program to represent z/b. The graphical view is given below.

X y b4
’ AN OANE v
U1 (%) U3 é

V4 Vs

The next step is to submit the predicate using the new variables instead of the X Path
expressions to the Z3 solver. The function generates an SMT input file for Z3. This input
file represents a problem to be submitted to Z3 and has to satisfy the following BNF
rules (note that we use the teletype font to indicate the part that will appear in
the Z3 input file).

Conformance Testing of Service Orchestration Using an SMT Solver 47

Problem ::= Prefix Theory Var-Declaration Constraint-Formula Suffix

Prefix ::=" (benchmark data”

Theory 1= Labels-Declaration String-Declaration Tree-Declaration
Var-Declaration =" :extrafuns (" (variableName variableType)t)”
Constraint-Formula ::= ”: formula (and ” variable-Structure constraintClauses™)”
Suffix =)

Labels-Declaration ::=" :datatypes ((label” Labels*”)”

String-Declaration ::=" (String ("word’ | ’noString)”)

Tree-Declaration ::="(tree (nil) (IntLeaf (val Int))
(RealLeaf (val Real)) (StringLeaf (val String))
(BoolLeaf (val Bool))
(cons (firstChildLab label) (firstChild tree)
(siblingChilds tree))))”

A problem is divided into three main sub-parts: the Theory, the Var-Declaration and
the Constraint-Formula. The Theory is used to specify the string words allowed as a
given database and also to specify the structure of a complex type variable. The second
part, i.e. the Var-Declaration, allows to declare each variable and its type. The different
types can be: Int, Real, Bool or a tree type. Finally the Constraint-Formula sub-
part allows to represent at first the structure of a complex variable type as specified by
the theory (this corresponds to the “variable-Structure” in the rules above). Secondly
the predicate (or the constraint), presented as a conjunction of clauses, will be written
into a particular form (this corresponds to the constraintClauses in the rules above).
To explain this last point, if we consider the very simple example x = 3 + 4, the
corresponding constraint with the concrete syntax of Z3 will be written as follows:
(=x(+34)).

The Labels™* represent the set of tree labels of complex type variables, there is no
labels for simple type variable. word™ represent the words given as input to the pro-
gram. The Tree-Declaration defines a tree structure. We give below an example of a
tree given as an input to the solving function and how we encode it with the concrete
syntax of Z3. We give a linear representation of the tree, with the label connected to its
ancestor, its first children with its descendants and all the siblings of this children and
their descendants. The nil constructor represents an empty tree.

Example. Let us consider the variable w with a tree as graphically represented below.
The associated translation in the concrete syntax of Z3 is as follows. We give also the
graphical representation of the encoding of the tree in Z3. Let us note that in the Z3
graphical representation we have the nil symbol associated to w for the empty tree for
the sibling of the root w. Nevertheless, in the constraints below we simplify the struc-
ture by avoiding the nil for w as we are interested in the tree accessible through the
label connected to w.

(= w (cons a (IntLeaf vg) (cons b (cons d (IntLeaf v1) (cons e (IntLeaf vs)
(nil)))(cons ¢ (cons f (IntLeaf vs) (cons g (IntLeaf vg) (nil)))) (nil))))

48 L. Bentakouk, P. Poizat, and F. Zaidi

W @@ L L

Once the SMT input file for Z3 is generated, we submit it to the solver. This one
can return an instantiation of variables if the predicate is satisfiable (sat), an unsatisfi-
able answer (unsat) otherwise. An other answer could be given which is the unknown
response (unknown) if the solver cannot give a response in a given amount of time.
The solving function retrieves the values returned by the solver and assigns them to the
variables. In the case of variables represented as trees, the leaves variables will receive
the different values and thus complete the construction of trees. The instantiated vari-
ables will be used during the test case execution. The function can be easily extended to
interact with different solving tool such as Alt-Ergo [30] for instance. We need to add
some methods for the dumping of the problem to be solved in the syntax accepted by
the tool and also to add a method to retrieve the responses of this tool.

Observability and controllability. When the tester receives an unexpected message
(USER.o! in the test case), it does not always corresponds to an error (and hence, to a
Fail verdict). This is due first to non-controllability of the SUT outputs (one cannot pre-
vent a SUT to send a message). Moreover, due to non observable events ({7, x, v/}) and
internal communications with sub-services in orchestrations, the state we are in the test
case execution, say 7, does not always correspond to the state in which a correct imple-
mentation may have evolved. Therefore, whenever we receive an unexpected message,
we check if it is in may(n). If it is the case, we produce an Inconclusive verdict, else a
Fail verdict. Notice that the Inconclusive verdict related to may(n) is a consequence of
the reception of an event related to the test of another branch of the test purpose. The
conformance relation considered is a symbolic input-output trace inclusion as defined
in [[14].

Application. For the example e-Conference (see Section [3), we have defined five test
purposes that allow to cover the different functional behaviour of the service. One is
related to a demand of a user with a country having a high alert. Two others are related
to an order with a country with no alert and with either a fees or package refund. The
two last are related to orders with fees refund and a variation on the number of addfee.
For each test purpose, we have produced several test cases, and only one can be executed
with an uniformity hypothesis on the different values of the variables. In this work, we
focus on generating test cases and solving constraints in order to first compute the SET
then use the instantiate data returned by the solver to interact with the implementation.
The interaction with the implementation can be done using the soapUI tool as depicted
in [4].

Conformance Testing of Service Orchestration Using an SMT Solver 49
7 Conclusion and Perspectives

The emergence of business models based on service composition calls for dedicated
verification techniques. In this paper we have presented a formal testing framework
addressing this issue. Formal models are retrieved from a real service composition lan-
guage, WS-BPEL, thanks to a comprehensive set of transformation rules. Using sym-
bolic models and their symbolic execution semantics, model state space explosion can
be avoided. We do not only address test case generation but also tackle the way test cases
are run against a service implementation. Using symbolic test purposes, the designer of
an orchestration, or anyone interested in reusing it in a value-added composition, may
have the testing process focus on functional properties of interest. Our framework is au-
tomated using prototypes. Our framework has been applied to realistic-size case studies.
The main perspective of this work is to go beyond a pure black-box approach, defining
an off-context testing approach where the test oracle would simulate orchestration part-
ners. We also plan to define a language based on workflow (like BPMN) to express the
test purposes.

Acknowledgement. This work was supported by the project “WEB service MOdelling
and Validation” (WEBMOV) of the French National Agency for Research.

References

1. OASIS: Web Services Business Process Execution Language (WSBPEL) Version 2.0. Tech-
nical report, OASIS (April 2007)

2. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composition.
Annals of Mathematics, Computing & Teleinformatics 1(5), 1-10 (2007)

3. Poizat, P., Royer, J.C.: A Formal Architectural Description Language based on Symbolic
Transition Systems and Modal Logic. JUCS 12(12), 1741-1782 (2006)

4. Bentakouk, L., Poizat, P., Zaidi, F.: A Formal Framework for Service Orchestration Testing
based on Symbolic Transition Systems. In: Proc. of TESTCOM, pp. 16-32 (2009)

5. Bentakouk, L., Poizat, P., Zaidi, F.: A Formal Framework for Service Orchestration Testing
based on Symbolic Transition Systems. Long version, in P. Poizat Webpage (2009)

6. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services: A Survey. Technical report,
King’s College London (2010)

7. Mayer, P.: Design and Implementation of a Framework for Testing BPEL Compositions. PhD
thesis, Leibnitz University, Germany (2006)

8. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web
services compositions: Perspectives and examples. In: de Lemos, R., Di Giandomenico,
F., Gacek, C., Muccini, H., Vieira, M. (eds.) Architecting Dependable Systems V. LNCS,
vol. 5135, pp. 298-325. Springer, Heidelberg (2008)

9. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Towards automated WSDL-based test-
ing of web services. In: Bouguettaya, A., Krueger, 1., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 524-529. Springer, Heidelberg (2008)

10. Hallé, S., Hughes, G., Bultan, T., Alkhalaf, M.: Generating interface grammars from wsdl
for automated verification of web services. In: ICSOC/ServiceWave, pp. 516-530 (2009)
11. Lallali, M., Zaidi, F., Cavalli, A., Hwang, I.: Automatic Timed Test Case Generation for Web

Services Composition. In: Proc. of ECOWS (2008)

50

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Bentakouk, P. Poizat, and F. Zaidi

Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services. In:
ICSOC Workshops, pp. 6678 (2008)

Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on approximate
analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 349-364.
Springer, Heidelberg (2005)

Gaston, C., Le Gall, P, Rapin, N., Touil, A.: Symbolic execution techniques for test purpose
definition. In: Uyar, M.U., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964,
pp. 1-18. Springer, Heidelberg (2006)

Frantzen, L., Huerta, M., Kiss, Z., Wallet, T.: On-The-Fly Model-Based Testing of Web Ser-
vices with Jambition. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194. Springer,
Heidelberg (2010)

Cabot, J., Clariso, R., Riera, D.: UMLtoCSP: a Tool for the Formal Verification of UML/OCL
Models using Constraint Programming. In: Proc. of ASE, pp. 547-548.

Kovécs, M., Varrd, D., Gonczy, L.: Formal analysis of BPEL workflows with compensation
by model checking. Int. Journal of Computer Sciences & Engineering, 35-49 (2008)
Mateescu, R., Poizat, P.,, Salaiin, G.: Adaptation of service protocols using process algebra
and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, 1., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 84-99. Springer, Heidelberg (2008)

Mateescu, R., Rampacek, S.: Formal Modeling and Discrete-Time Analysis of BPEL Web
Services. In: Advances in Enterprise Engineering I, vol. 10. LNBIP, pp. 179-193 (2008)
Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios. IEEE
Trans. Softw. Eng. 29(2), 99-115 (2003)

Ziadi, T., Hélouét, L., Jézéquel, J.M.: Towards a uml profile for software product lines. In:
Proc. of Software Product-Family Engineering, pp. 129-139 (2003)

Gastin, P., Oddoux, D.: Fast LTL to Biichi Automata Translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer, Heidelberg (2001)

Pickin, S., Jard, C., Jéron, T., Jézéquel, J.M., Traon, Y.L.: Test synthesis from uml models of
distributed software. IEEE Trans. Software Eng. 33(4), 252-269 (2007)

King, J.C.: Symbolic Execution and Program Testing. Communications of the ACM 19(7),
385-394 (1976)

Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for model check-
ing and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553—
568. Springer, Heidelberg (2003)

Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-Based Test-
ing. In: Proc. of FATES/RV (2006)

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 118-149 (2003)

de Moura, L., Bjgrner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg (2008)

Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 158-163. Springer, Heidelberg (2007)

Conchon, S., Contejean, E., Kanig, J.: Ergo: a theorem prover for polymorphic first-order
logic modulo theories (2006), http://ergo.lri.fr/papers/ergo.ps

http://ergo.lri.fr/papers/ergo.ps

	Checking the Behavioral Conformance of Web Services with Symbolic Testing and an SMT Solver
	Introduction
	Related Work
	Running Example
	Formal Models for Test Case Generation
	Service Orchestration Model
	Test Purpose Model

	Automatic Test Case Generation
	WS-STSs Product
	Symbolic Execution Tree
	SET Computation

	Tools Support and Experimentations
	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

