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Preface

The International Conference on Artificial Neural Networks (ICANN) is the
annual flagship conference of the European Neural Network Society (ENNS).
The idea of ICANN is to bring together researchers from two worlds: information
sciences and neurosciences. The scope is wide, ranging from machine learning
algorithms to models of real nervous systems. The aim is to facilitate discussions
and interactions in the effort toward developing more intelligent artificial systems
and increasing our understanding of neural and cognitive processes in the brain.

In 2011, ICANN returned to its roots after 20 years (for more information, see
the ENNS website www.e-nns.org). The very first ICANN in 1991 was organized
on the premises of Helsinki University of Technology on its beautiful campus
in Espoo, Finland. For ICANN 2011, we invited all neural network researchers
worldwide to join us in celebrating this 20th anniversary of ICANN and to see
the latest advancements in our fast progressing field.

ICANN 2011 had two basic tracks: brain-inspired computing and machine
learning research, with Program Committee chairs from both worlds and a thor-
ough reviewing system. The conference structure was built around plenary talks
given by renowned scientists described briefly in the following section.

– Thomas Griffiths (University of California, Berkeley, USA) is the Director of
the Computational Cognitive Science Lab and the Institute of Cognitive and
Brain Sciences at the University of California, Berkeley. They develop, for in-
stance, mathematical models of higher level cognition, including probabilistic
reasoning, learning causal relationships, acquiring and using language, and
inferring the structure of categories.

– Riitta Hari (Aalto University, Finland) is an internationally recognized and
respected neuroscientist. She was newly appointed as Academician of Sci-
ence, a title that can be held by only 12 scientists at a time in Finland.
She has developed methods and applications of human brain imaging and
contributed decisively to the progress of this branch of science. Prof. Hari’s
current focus is on the brain basis of social interaction.

– Geoffrey Hinton (University of Toronto, Canada), the first winner of the
David E. Rumelhart Prize, has provided many influential contributions to
the area of artificial neural networks and adaptive systems. A non-exhaustive
list of the areas where he has contributed substantial inventions includes
back-propagation algorithm, Boltzmann machines, distributed representa-
tions, time-delay neural networks, and mixtures of experts. Prof. Hinton
was the founding director of the Gatsby Computational Neuroscience Unit
at University College London.

– Aapo Hyvärinen (University of Helsinki, Finland) is widely known for his
contributions to the theory and applications of independent component anal-
ysis. His recent work also includes research on natural image statistics. He has
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published in the major journals in the areas of neural networks and machine
learning and his books have been translated into Japanese and Chinese.

– John Shawe-Taylor (University College London, UK) is Head of Department
of Computer Science, and the scientific coordinator of the Network of Excel-
lence in Pattern Analysis, Statistical Modelling and Computational Learning
(PASCAL). His main research area is statistical learning theory, but his con-
tributions range from neural networks and machine learning to graph theory.
He is the co-author of two very successful books on the theory of support
vector machines and kernel methods.

– Joshua Tenenbaum (Massachusetts Institute of Technology, USA) is a promi-
nent researcher in the area of computational cognitive science. With his
research group, he explores topics such as learning concepts, judging simi-
larity, inferring causal connections, forming perceptual representations, and
inferring mental states of other people.

A special plenary talk, shared with the co-located WSOM 2011, Workshop on
Self-Organizing Maps, was given by Teuvo Kohonen, Academician of Science. He
has introduced several new concepts to neural computing including theories of
distributed associative memory and optimal associative mappings, the learning
subspace method, the self-organizing maps (SOM), the learning vector quanti-
zation (LVQ), the adaptive-subspace SOM (ASSOM) in which invariant-feature
filters emerge. Academician Teuvo Kohonen was the initiator and Chair of the
first ICANN conference in 1991.

The technical program of ICANN 2011 consisted of 106 oral or poster pre-
sentations that highlighted key advances in the areas of neural networks and
statistical machine learning research. The overall quality of the contributions
can be considered high, also due to the high rejection rate. Approximately only
every fourth submission was accepted to be presented orally in the conference.
In addition to the regular conference sessions, one day was devoted to five work-
shops on topics related to theory and applications of brain-inspired computing
and statistical machine learning. Two of the workshops were related to special
challenges. A mind reading competition on MEG data was sponsored by the
PASCAL network of excellence. The META-NET network of excellence spon-
sored a workshop on the use of context in machine translation.

The organizers had a chance to welcome the participants to the new Aalto
University School of Science. From the beginning of 2010, the 100-year-old
Helsinki University of Technology changed its name and form. It merged with
Helsinki School of Economics and University of Art and Design Helsinki into
Aalto University, becoming the second largest university in Finland. The con-
ference was organized at Aalto University School of Science and the nearby
Dipoli Congress Center. Both are centrally located in Otaniemi, Espoo, 15 min-
utes west of Helsinki. Otaniemi features a unique mix of world-class research
organizations, academic institutions and over 800 companies from start-ups to
multinational corporations operating around a compact campus. Otaniemi has
been twice selected by the EU as one of the most innovative regions in Europe. It
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is a community of over 32,000 people with 16,000 students and 16,000 technology
professionals.

We warmly thank all the authors of the contributed papers, workshop or-
ganizers and presenters. We also gratefully acknowledge the contribution of the
plenary speakers whose presentations formed the backbone of the conference.
We express our gratitude to the highly respected international Area Chairs and
members of the Program Committee whose role was instrumental for the suc-
cess of the conference. The Area Chairs, Program Committee members and the
reviewers ensured a timely and thorough evaluation of the papers.

We are grateful to the members of the Executive Committee whose contri-
butions were essential in ensuring the successful organization of the conference.
Erkki Oja as the General Chair led the conference organizations with his great
experience. Amaury Lendasse, the Local Chair, kept all details of the organi-
zation under control. Mari-Sanna Paukkeri committed a lot of work to compile
the proceedings. Ilari Nieminen took care of numerous details in the arrange-
ments, especially related to the review process and compilation of the proceed-
ings. Laura Kainulainen efficiently handled the matters related to registrations
in collaboration with the Aalto University staff. Jaakko Peltonen, the Public-
ity Chair, made sure that the conference was announced in all major forums.
Alexander Ilin took good care of the workshop organizations. Francesco Corona
as the Finance Chair ensured that the budget stayed in balance. Yoan Miche
contributed in several practical areas in the arrangements including the Web.
Ricardo Vigário was responsible for the social program and, in particular, the
arrangements of the conference dinner. Tommi Vatanen organized the activities
of the conference assistants and helped in preparing the evening program.

We are grateful to Microsoft Research whose representatives provided us
with free access to their Conference Management Tool and helped in setting
up the system. Last but not least, we would like to thank Springer for their
co-operation in publishing the proceedings in the prestigious Lecture Notes in
Computer Science series.

April 2011 Timo Honkela
W�lodzis�law Duch

Mark Girolami
Samuel Kaski
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Kazushi Mimura (Japan) Sören Sonnenburg (Germany)
Tetsuro Morimura (Japan) Emilio Soria-Olivas (Spain)
Morten Mørup (Denmark) Alessandro Sperduti (Italy)
Alexander Mozeika (UK) Jochen Steil (Germany)
Christian Müller (Germany) Marc Strickert (Germany)
Shinichi Nakajima (Japan) Taiji Suzuki (Japan)
Sriraam Natarajan (USA) Csaba Szepesvari (Canada)
Tim Nattkemper (Germany) Ichiro Takeuchi (Japan)
Yizhao Ni (UK) Michael Tangermann (Germany)
Matthias Nickles (UK) Franck Thollard (France)
Nikolay Nikolaev (UK) Christian Thurau (Germany)
Ann Nowe (Belgium) Michalis Titsias (UK)
Ronald Ortner (Austria) Jussi Tohka (Finland)
Erhan Oztop (Japan) Ryota Tomioka (Japan)
Sebastian Pannasch (Germany) Antonios Tsourdos (UK)
Ulrich Paquet (UK) Koji Tsuda (Japan)
Il Park (USA) Laurens van der Maaten

(The Netherlands)
Emilio Parrado (Spain) Carmen Vidaurre (Germany)
Elzbieta Pekalska (UK) Ricardo Vigário (Finland)
Jaakko Peltonen (Finland) Silvia Villa (Italy)
Andrew Philippides (UK) Nathalie Villa-Vialaneix (France)
Justus Piater (Austria) Draguna Vrabie (USA)
Alex Pouget (USA) Shinji Watanabe (Japan)
Novi Quadrianto (Australia) Markus Weimer (Germany)
Sabrina Rabello (USA) Stefan Wermter (Germany)
Achim Rettinger (USA) Heiko Wersing (Germany)
Alexis Roche (Switzerland) Daan Wierstra (Switzerland)
Michael Rohs (Germany) Nick Wilson (UK)
Fabrice Rossi (France) Zhao Xu (Germany)
Volker Roth (Switzerland) Zenglin Xu (Germany)
Mert Sabuncu (USA) Makoto Yamada (Japan)
Jun Sakuma (Japan) Yoshihiro Yamanishi (Japan)
Scott Sanner (Australia) Zhirong Yang (Finland)
Ignacio Santamaria (Spain) Massimo Zancanaro (Italy)
Murat Saraclar (Turkey) Xinhua Zhang (Canada)
Jagannathan Sarangapani (USA) Shanfeng Zhu (China)



Table of Contents – Part I

Transformation Equivariant Boltzmann Machines . . . . . . . . . . . . . . . . . . . . 1
Jyri J. Kivinen and Christopher K.I. Williams

Improved Learning of Gaussian-Bernoulli Restricted Boltzmann
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

KyungHyun Cho, Alexander Ilin, and Tapani Raiko

A Hierarchical Generative Model of Recurrent Object-Based Attention
in the Visual Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

David P. Reichert, Peggy Series, and Amos J. Storkey

�1-Penalized Linear Mixed-Effects Models for BCI . . . . . . . . . . . . . . . . . . . . 26
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Abstract. We develop a novel modeling framework for Boltzmann ma-
chines, augmenting each hidden unit with a latent transformation assign-
ment variable which describes the selection of the transformed view of
the canonical connection weights associated with the unit. This enables
the inferences of the model to transform in response to transformed in-
put data in a stable and predictable way, and avoids learning multiple
features differing only with respect to the set of transformations. Ex-
tending prior work on translation equivariant (convolutional) models,
we develop translation and rotation equivariant restricted Boltzmann
machines (RBMs) and deep belief nets (DBNs), and demonstrate their
effectiveness in learning frequently occurring statistical structure from
artificial and natural images.

Keywords: Boltzmann machines, transformation equivariant represen-
tations, convolutional structures, transformation invariance, steerable
filters, image modeling.

1 Introduction

We consider the problem of using DBN architectures to model the structure
occurring in natural images. One of the desiderata for a computer vision system
is that if the input image is transformed (e.g. by a translation of two pixels
left), then the inferences made by the system should co-transform in a stable,
and predictable way; this is termed equivariance. This behavior has been moti-
vational in the development of steerable filters [1], and we argue that obtaining
such transformation equivariant representations is important for the architec-
tures that we are considering as well. Translational equivariance is readily built
in by a convolutional architecture as found in neural networks [2,3], and more
recently for RBMs see e.g. [4]. However, there are additional transformations
that should be taken into account: in this paper we focus on equivariance with
respect to in-plane rotations. Building in such property is important to avoid
the system having to learn rotated versions of the same patterns at all levels
in the network. For example in Fig. 2 of [4] many of the learned filters/ filter
combinations shown are rotated versions of each other. The goal of this paper

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J.J. Kivinen and C.K.I. Williams

is to build a DBN architecture that is translation and rotation equivariant. To
do this we introduce a novel kind of rotational/steerable unit for Boltzmann
machines, as described in section 2.

One of the inspirations for this paper is the work of Fidler and Leonardis
[5], in which conjunctions of edge and bar (sine and cosine) Gabor features are
built up into more complex patterns that occur frequently in the input image
ensemble. Their architecture is translation and rotation invariant. However, their
method does not define a generative model of images, but rather performs a
layerwise grouping of features from layer �− 1 to create features at layer �. This
means that it is heavily dependent on various thresholds used in the learning
algorithm, and also that it is unable to carry out bottom-up/top-down inference
in the face of ambiguous input or missing data. We show how such translation
and rotation invariant groupings arise naturally in a fully-specified multi-layer
generative model.

2 Building in Transformation Equivariance

We first discuss the rotation-equivariant restricted Boltzmann machine (STEER-
RBM) model which has one hidden layer; this hidden layer contains the ‘steer-
able’ units which are a particular feature of our architecture. Next in section
2.2 we describe a translation equivariant version of the model, and finally in
section 2.3 generalize this to a deep belief net, which is the multi-hidden-layer
generalization of the translation and rotation equivariant model.

2.1 Rotation Equivariant RBMs

The key feature of the STEER-RBM is the construction of the stochastic steer-
able hidden units, each of which combines a binary-valued activation variable
hj turning the unit on/off with an associated discrete-valued rotation variable
rj taking on possible states k = 1, . . .K, whose effect is to in-plane rotate the
weights of the unit by 360(k− 1)/K degrees. Let Wj(·, 1) be the canonical pat-
tern of weights connecting hidden unit hj to visible units v under no rotation.
The transformed weights Wj(·, k) for rotation k are derived from the canonical
view using geometrical knowledge of in-plane rotations, so that

Wj(·, k) = R(k)Wj(·, 1) ⇒ Wj(i, k) =
D∑

�=1

R(k)(i, �)Wj(�, 1), (1)

where R(k) is a fixed D×D transformation matrix applying an in-plane rotation
of 360(k− 1)/K degrees, and D denotes the number of pixels/visible units in v.
Note that by choosing K large we can approximate rotations to any desired ac-
curacy. An example of this rotation in action is shown in the top row of Figure 1.
In our implementation, we bilinearly interpolate the weights into their new loca-
tions, such that each of the elements in the rotated view is computed as a convex
combination of (maximally) four neighboring rotated canonical weights, each of
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which have been rotated about the center of the canonical weights plane1. Thus
each row of the rotation matrices contains maximally four non-zero elements
which sum to one.

Given this architecture, the joint probability density of a STEER-RBM model
consisting of visible units v and binary hidden units (h, r) is given by the
Boltzmann-distribution p(v,h, r | θ) ∝ exp {−E(v,h, r | θ)} with the following
energy, assuming continuous, conditionally Gaussian units:2

E(v,h, r | θ) =
∑

i

v2
i − 2avi

2σ2
−
∑

j

hjbj −
1
σ

∑
j

hj

∑
i

viWj(i, rj) (2)

where θ = {a,b,W, σ} consist of hidden unit biases b, visible unit biases a,
connection weights W, and the standard deviation of the Gaussian conditional
distributions of the visible units σ. The energy function for binary visible units
can be obtained by removing the quadratic term v2

i , and setting σ to unity. As
Wj(i, rj) =

∑K
k=1 δ(k, rj)Wj(i, k), the model defines a mixture of RBMs, but in

contrast with the implicit mixture RBM model of [6], there is parameter sharing
between the mixture components due to rotation equivariance. Although we have
described the RBMs of above, extensions of other energy-based models to use
rotational units could be also considered, such as conditionally full-covariance
Gaussian models [7].

2.2 Rotation and Translation Equivariant RBMs

To learn models for whole images, a translation equivariant extension of the
STEER-RBM is used, assuming a reduced connectivity structure so that a hid-
den unit hj is connected to a subset of visible units specified by a receptive
field system, and parameter sharing is used so that the responses of units to a
stimulus are translation equivariant. We call the hidden units sharing these pa-
rameters a feature plane. To extend convolutional RBMs, the STEER-RBM also
adds input rotation equivariance to hidden unit activation. Thus we consider a
weight kernel ωα for feature plane α, which is sufficient to define the connection
weights between the hidden units in feature layer α and the visible units. The
energy function for the convolutional STEER-RBM is then

E(v,h, r | θ) =
∑

i

v2
i − 2avi

2σ2
−
∑
α,j

hαj

⎛⎝bα +
1
σ

∑
�∈Nαj

v� ωα(d(j, �), rαj)

⎞⎠ (3)

where a is visible unit layer bias, bα is the bias for hidden unit feature plane α,
Nαj indexes the visible units within the receptive field of hidden unit hαj , σ de-
fines the standard deviation of the univariate Gaussian conditional distribution
1 To avoid boundary artifacts with non-circular receptive fields, one can zero pad the

canonical weights plane such that each of the rotated canonical weights are within
the boundaries defined by the extended plane for any rotation angle.

2 The joint probability density of the visible units conditional on the hidden units and
model parameters factorizes as a multivariate spherical-covariance Gaussian.
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p(vi | h, r, θ), and d(j, i) computes the spatial-offset dependent index of the weight
kernel weight that is used to connect hidden unit hj to vi.

2.3 Rotation and Translation Equivariant Deep Belief Nets

To learn higher-level patterns from images, we follow the DBN approach of [8],
stacking multiple layers of convolutional STEER-RBMs on top of each other.
In this model, each of the hidden units in a higher level STEER-RBM is con-
nected to a subset of the hidden units in each of the feature planes in the hid-
den layer below, again via by a receptive field system. As both the higher and
lower level units are rotational, we now need a triply indexed weight parameter
ω�α

�−1β
(j, m, k) which connects a unit in feature plane α in layer � to feature plane

β in layer � − 1 below. Here j denotes the spatial offset, while m and k index
the rotational states in the lower and higher layers respectively. Thus the energy
function between layers � and �− 1 is of the following form:

E
(
h�−1, r�−1,h�, r� | θ�

)
= −

∑
β

b�−1
β

∑
i

h�−1
βi −

∑
α

b�
α

∑
j

h�
αj

−
∑
α

∑
j

h�
αj

∑
β

∑
i∈N�

αj

h�−1
βi ω�α

�−1β
(d(j, i), r�−1

βi , r�
αj). (4)

The computation of the transformed weights for these higher hidden layers has
to be different from that of the first layer, since changing the rotational state of a
higher level pattern needs to rotate the lower level rotational states/patterns ac-
cordingly. The transformations for each feature can be again done by knowledge
using fixed transformation operators, by first in-plane rotating the lower-level
rotation-specific canonical weight matrix slices, and then circularly shifting the
dimensions of the resulting matrix. The non-canonical view of a level � weight
kernel can be thus written as follows:

ω�α

�−1β
(j, m, k) =

K∑
ρ=1

S(k)(ρ, m)
∑

δ

R(k)(j, δ)ω�α

�−1β
(δ, ρ, 1), (5)

where S(k) is a fixed K × K binary matrix applying a circular shift (of k − 1
shifts) forward to the columns of R(k)ω�α

�−1β
(·, ·, 1).

3 Inference and Learning in the Models

As with standard RBMs, the conditional distributions of the hidden units are
independent given v for the convolutional STEER-RBM. Thus we have for (3)
that p(h, r | v, θ) =

∏
α

∏
j p(hαj | v, θ) p(rαj | hαj ,v, θ), where

p(hαj | v, θ) =

∑K
k=1 exp

{
hαj

(
bα + 1

σ

∑
�∈Nαj

v�ωα(d(j, �), k)
)}

K +
∑K

k=1 exp
{

bα + 1
σ

∑
�∈Nαj

v�ωα(d(j, �), k)
} , (6)
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p(rαj | hαj = 1,v, θ) =
exp

{
bα + 1

σ

∑
�∈Nαj

v�ωα(d(j, �), rαj)
}

∑K
k=1 exp

{
bα + 1

σ

∑
�∈Nαj

v�ωα(d(j, �), k)
} . (7)

The key quantity in this computation is aαj(k) =
∑

�∈Nαj
v� ωα(d(j, �), k) which

computes the dot product of the visible variables in Nαj with weight kernel
wα at rotation k. (6) evaluates a nonlinear combination of these quantities
summed over k compared to K in order to compute p(hαj | v, θ). Similarly in (7)
p(rαj | hαj = 1,v, θ) is computed based on the relative strengths of the aαj(k)
terms. For a multi-layer network a crude approximation to full inference is to
sample from the learned STEER-RBMs layerwise from bottom to top. More so-
phisticated alternatives are possible, such as the up-down algorithm described
in [8], or e.g. some other Markov chain Monte Carlo sampling methods.

As usual with DBNs we learn the parameters of the models layer-wise. We
have used stochastic gradient-descent based methods to train the models in the
experiments, optimizing an objective function consisting of a data fit term, plus
a term that encourages sparsity3. For a datafit term based on the log likelihood
L, the gradient wrt a parameter θ is given by ∂L

∂θ = 〈∂E
∂θ 〉+ − 〈

∂E
∂θ 〉−, where 〈·〉+

denotes expectation with the training data clamped, and 〈·〉− the unclamped
phase. In fact we generally use the contrastive divergence CD-1 approximation
to the negative phase. To understand how the model learns under optimization,
it is instructive to consider the partial derivatives of the energy function with
respect to the canonical features. Assuming the model of (3), we have that

∂E(v,h, r | θ)
∂ωα(δ, 1)

= − 1
σ

∑
j

hαj

∑
�∈Nαj

v� R(rαj)(d(j, �), δ). (8)

This has the effect of multiplying the visible pattern in Nαj by (R(rαj))T . As
this is a close approximation to applying a reverse rotation, patterns which are
detected to be present in a non-canonical orientation, are rotated ‘back’ into
the canonical view, in which the feature-specific canonical statistics are then
updated. The learning is similar for the higher layer models, where the alignment
also takes into account the lower unit’s rotation assignment. Partial derivatives
with respect to the biases take the standard forms.

4 Experiments

We first learnt RBM models (3) from a set of whitened natural images [9] using
CD-1 learning4. Fig. 1 (left, top) shows the type of feature consistently learnt

3 Non-sparsity is penalized proportional to a sum of feature-plane specific cross-
entropies, each between a Bernoulli target distribution, and the distribution record-
ing the average probability of a unit being off or on at the plane, similar to [6].

4 σ was set close to the data standard deviation. The total target activation for sparsity
encouragement was 0.1.
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Rotational Views of a Feature 3 Features

Input Stimulus Most Likely States

Fig. 1. Left-top: Learned feature at various orientiations (with receptive field diameter
= 9). Left-bottom: Whitened natural image region, and most likely unit states (colour-
coded according to rotation). Right: Weights of the learned set of 3 features.

Activations (Feat. 1) Feature 1 Activations (Feat. 2) Feature 2

Fig. 2. Features learned from rotation colour-coded (→,↑,←,↓) artificial data contain-
ing rotated, randomly placed instances of two rotational shapes, in clutter. Panels 1
and 3 show the data, with the respective higher level features denoted by bounding
boxes of the units’ receptive field size centered on the unit location, and coloured ac-
cording to the rotation assignment. In panels 2 and 4 the 5×5 canonical weight kernels
are visualized using oriented black/white line segments, placed to start from an evenly
spaced grid. The grid locations denote the spatial offsets for the weight kernels weights,
the different orientations index the lower-level rotational states, the segment lengths
denote the weight magnitude, and colour denoting the sign with black denoting a neg-
ative, and white denoting positive a weight. (Essentially this extends the Hinton plot
to deal with (multi-way-)oriented weights).

as the most significant, at various rotations. This is an “edge detector”, similar
to the features found e.g. in [4] at various orientations. The bottom row shows
a natural image patch, and most likely states colour-coded according to orien-
tation, at each location. The responses occur at edge-like structures; notice the
steady rotational response change, e.g. while tracing the outline of the central
object. We have also trained this model with several feature planes; results using
three are shown (right). To validate the higher-layer learning we first consid-
ered modeling artificial rotational pattern data simulating first-layer responses.
Fig. 2 shows input patterns; the four colours denote four different orientation
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Fig. 3. (Top) The second layer weights (displayed as in Fig. 2) for 8 second-layer
features. (Bottom) The first panel shows the first-layer basis feature; the other panels
show the (linearly combined) first layer basis projections of the 8 features.

responses. There are two patterns in the noisy data, one consisting of 3 active
inputs, and the other of 2. These are successfully learned, see panels 2 and 4,
and the caption for more details. We have also applied the learning to the nat-
ural images, using the single edge-like feature in the first layer. The results (see
Fig. 3) show this yields higher-order conjunctions of this feature, such as ex-
tended and curved edges, and intersections. Note that these features are similar
to SIFT-descriptors [10], but in a generative framework.

5 Related Work

We have discussed above the work of Fidler and Leonardis [5]. The work of Zhu
et. al. [11] is similar to [5], except that there is a top-down stage to the learning
process (but not in the given the inference algorithm) to fill in missing parts of
the hierarchy. Both papers use hand-crafted algorithms for detecting groupings
of lower-level features, involving various thresholds. In contrast we formulate
the problem as a standard DBN learning algorithm, but build in transformation
equivariance. One advantage of the DBN is that it is naturally set up for bottom-
up/top-down inference in the face of ambiguity or missing data.

The orientation-adapted Gaussian scale mixture (OAGSM) model [12] de-
scribes how a Gaussian model for a wavelet coefficient responses corresponding
to an image patch can be augmented with latent variables to handle signal am-
plitude and dominant orientation. This allows e.g. modelling of oriented texture
at arbitrary rotations. The learned edge filters at the first level of our model
are analogous to the wavelet responses, while our second level units model the
correlations between the coefficients. However, note (i) that the OAGSM model
is only a model for patches not entire images, and (ii) that it does not pro-
vide a mixture model over the types of higher-level regularity, e.g. lines, corners,
T-junctions etc. On the other hand the real-valued modelling of wavelet coeffi-
cients by OAGSM is more powerful than the binary activations of units in the
STEER-DBN.

Our goal is to build in equivariance to known (translational and rotational)
transformations. In contrast Memisevic and Hinton [13] describe how to learn
transformations based on pairs of training images using factored 3-way Boltz-
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mann machines. Such a network could be used in to identify rotated versions of
a given pattern, e.g. by fixing a reference version of the pattern and inferring the
transformation. However, it seems rather excessive to learn the machinery for
this when it can be built in. Our work should not be confused with the directional
unit Boltzmann machine (DUBM) network of Zemel et al [14]. Although DUBM
units contain a rotational variable, this is not used to model relative rotations of
subcomponents. For example in [15] the authors present a convolutional archi-
tecture where the rotational variable denotes the phase of an oscillator, relating
to the theory of binding-by-synchrony.

6 Discussion

As we have shown, the STEER-DBN architecture handles translation and rota-
tion invariances. The other natural transformation to consider is image scaling.
However, this can be relatively easily handled by the standard computer vision
method of downsampling the input image by various factors, and applying the
similar processing to each scale. Higher layers at a given scale can also take in-
puts from various scales. Alternatively one could introduce scaling assignment
variables for each unit similar to the ones for rotation, scaling the features.

Other future work includes learning more hidden layers, and using more ex-
pressive bottom-layer models, such as those allowing dependent Gaussian distri-
butions for the visibles conditional on the hidden units [7].

Acknowledgements. JJK is partially funded by a SICSA studentship. This
work is supported in part by the IST Programme of the European Community,
under the PASCAL2 Network of Excellence, IST-2007- 216886. This publication
only reflects the authors’ views.
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Abstract. We propose a few remedies to improve training of Gaussian-Bernoulli
restricted Boltzmann machines (GBRBM), which is known to be difficult. Firstly,
we use a different parameterization of the energy function, which allows for
more intuitive interpretation of the parameters and facilitates learning. Secondly,
we propose parallel tempering learning for GBRBM. Lastly, we use an adaptive
learning rate which is selected automatically in order to stabilize training. Our ex-
tensive experiments show that the proposed improvements indeed remove most of
the difficulties encountered when training GBRBMs using conventional methods.

Keywords: Restricted Boltzmann Machine, Gaussian-Bernoulli Restricted
Boltzmann Machine, Adaptive Learning Rate, Parallel Tempering.

1 Introduction

Conventional restricted Boltzmann machines (RBM) [1,17] define the state of each neu-
ron to be binary, which seriously limits their application area. One popular approach to
address this problem is to replace the binary visible neurons with the Gaussian ones.
The corresponding model is called Gaussian-Bernoulli RBM (GBRBM) [8]. Unfortu-
nately, training GBRBM is known to be a difficult task (see, e.g. [9,11,12]).

In this paper, we propose a few improvements to the conventional training methods
for GBRBMs to overcome the existing difficulties. The improvements include another
parameterization of the energy function, parallel tempering learning, which has previ-
ously been used for ordinary RBMs [6,5,3], and the use of an adaptive learning rate,
similarly to [2].

2 Gaussian-Bernoulli RBM

The energy of GBRBM [8] with real-valued visible neurons v and binary hidden neu-
rons h is traditionally defined as

E(v,h|θ) =
nv∑
i=1

(vi − bi)2

2σ2
i

−
nv∑
i=1

nh∑
j=1

Wijhj
vi

σi
−

nh∑
j=1

cjhj, (1)

where bi and cj are biases corresponding to hidden and visible neurons, respectively,
Wij are weights connecting visible and hidden neurons, and σi is the standard deviation
associated with a Gaussian visible neuron vi (see e.g. [11]).

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 10–17, 2011.
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The traditional gradient-based update rules are obtained by taking the partial deriva-
tive of the log-likelihood function log

∑
h exp(−E(v,h|θ)) , in which the hidden neu-

rons are marginalized out, with respect to each model parameter. However, training
GBRBMs even using well-defined gradients is generally difficult and takes long time
(see, e.g., [11,12]). One of the main difficulties is learning the variance parameters σi,
which are, unlike other parameters, are constrained to be positive. Therefore, in many
existing works, those parameters are often fixed to unity [9,11,15].

3 Improved Learning of Gaussian-Bernoulli RBM

3.1 New Parameterization of the Energy Function

The traditional energy function in (1) yields somewhat unintuitive conditional distribu-
tion in which the noise level defined by σi affects the conditional mean of the visible
neuron. In order to change this, we use a different energy function:

E(v,h|θ) =
nv∑
i=1

(vi − bi)2

2σ2
i

−
nv∑
i=1

nh∑
j=1

Wijhj
vi

σ2
i

−
nh∑
j=1

cjhj . (2)

Under the modified energy function, the conditional probabilities for each visible
and hidden neurons given the others are

p(vi = v|h) = N

⎛⎝v | bi +
∑

j

hjWij , σ
2
i

⎞⎠ ,

p(hj = 1|v) = sigmoid

(
cj +

∑
i

Wij
vi

σ2
i

)
,

whereN (· | μ, σ2) denotes the Gaussian probability density function with mean μ and
variance σ2. The update rules for the parameters are, then,

∇Wij =
〈

1
σ2

i

vihj

〉
d

−
〈

1
σ2

i

vihj

〉
m

, (3)

∇bi =
〈

1
σ2

i

vi

〉
d

−
〈

1
σ2

i

vi

〉
m

, (4)

∇cj = 〈hj〉d − 〈hj〉m , (5)

where a shorthand notations 〈·〉d and 〈·〉m denote the expectation computed over the
data and model distributions accordingly [1].

Additionally, we use a different parameterization of the variance parameters: σ2
i =

ezi . Since we learn log-variances zi = log σ2
i , σi is naturally constrained to stay pos-

itive. Thus, the learning rate can be chosen with less difficulty. Under the modified
energy function, the gradient with respect to zi is

∇zi =e−zi

⎛⎝〈
1
2

(vi − bi)2 −
∑

j

vihjwij

〉
d

−
〈

1
2

(vi − bi)2 −
∑

j

vihjwij

〉
m

⎞⎠ .
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3.2 Parallel Tempering

Parallel tempering (PT) learning. However, applying the same methodology to GBRBM
is not straightforward: For example, a naive approach of multiplying σi with the tem-
perature results in the base model with zero variances for the visible neurons, or scaling
the energy function by temperature would yield infinite variances. Here, we follow the
methodology of [3].

In order to overcome this problem, we propose a new scheme for constructing the
intermediate models with inverse temperatures β such that

W
(t)
ij = βWij , b

(t)
i = βbi + (1− β)mi,

c
(t)
j = βcj , σ

(β)
i =

√
βσ2

i + (1 − β)s2
i ,

where Wij , bi and cj are the parameters of the current model, and mi and s2
i are the

overall mean and variance of the i-th visible component in the training data.
The intermediate model is thus an interpolation between the base model and the

current model, where the base model consists of independent Gaussian variables fitted
to the training data.

3.3 Adaptive Learning Rate

Many recent papers [2,16,7] point out that training RBM is sensitive to the choice of
learning rate η and its scheduling. According to our experience, GBRBM tends to be
even more sensitive to this choice compared to RBM. It will be shown later that, if the
learning rate is not annealed towards zero, GBRBM can easily diverge in the late stage
of learning.

The adaptive learning rate proposed in [2] addresses the problem of automatic choice
of the learning rate. The adaptation scheme proposed there is based on an approximation
of the likelihood that is valid only for small enough learning rates. In this work, we
use the same adaptive learning rate strategy but we introduce an upper-bound for the
learning rate so that the approximation does not become too crude.

4 Experiments

In all the experiments, we used the following settings. The weights were initialized to
uniform random values between ± 1

nv+nh
. Biases bi and cj were initialized to zero and

variances σi to ones. Adaptive learning rate candidates (see [2]) were {0.9η, η, 1.1η},
where η is the previous learning rate. In PT learning, we used 21 equally spaced β ∈
{0, 0.05, . . . , 1}, and in CD learning, we used a single Gibbs step.

4.1 Learning Faces

The CBCL data [13] used in the experiment contains 2,429 faces and 4,548 non-faces
as training set and 472 faces and 23,573 non-faces as test set. Only the faces from the
training set of the CBCL data were used.
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Fig. 1. (a)-(c): The reconstruction errors obtained by training GBRBM using a learning rate fixed
to 0.001 (a), with the adaptive learning rate while updating variances from the 650-th epoch using
CD learning (b) and using PT learning (c). (d): Visualization of the learned variances.

In the first experiment, we trained two GBRBMs with 256 hidden neurons using both
CD and PT learning with the learning rate fixed to 0.001 while updating all parameters
including σ2

i . As can be observed from Fig. 1(a), learning diverged in both cases (CD
and PT learning), which is manifested in the increasing reconstruction error. This result
confirms that GBRBMs are sensitive to the learning rate scheduling. The divergence
became significant when the variances decreased significantly (not shown in Fig. 1(a)),
indirectly indicating that the sensitivity is related to learning the variances.

Learning Variances is Important. We again trained GBRBMs with 256 hidden neu-
rons by CD and PT learning. The upper-bound and the initial learning rate were set to
0.01 and 0.0001, respectively.

Initially, the variances of the visible neurons were not updated, but fixed to 1. The
training was performed for 650 epochs. Afterwards, the training was continued for 1000
epochs, however, with updating variances.

Fig. 2(a) shows the learned filters and the samples generated from the GBRBM after
the first round of training. The reconstruction error nearly converged (see the blue curve
of Fig. 1(b)), but it is clear to see that both the filters and the samples are very noisy.
However, the continued training significantly reduced the noise from the filters and the
samples, as shown in Fig. 2(b).

From Fig. 1(b), it is clear that learning variances decreased the reconstruction error
significantly. The explanation could be that the GBRBM has learned the importance, or
noisiness, of pixels so that it focuses on the important ones.

The visualization of the learned variances in Fig. 1(d) reveals that important parts
for modeling the face , for example, eyes and mouth, have lower variances while those
of other parts are higher. Clearly, since the important parts are rather well modeled, the
noise levels of corresponding visible neurons are lower.

Parallel Tempering. In order to see if the proposed scheme of PT learning works well
with GBRBM, an additional experiment using PT learning was conducted under the
same setting, however, now updating the variances from the beginning.

The observation of Fig. 1(c) suggests that learning variances from the beginning
helps. It is notable that the learning did not diverge as the adaptive learning rate could
anneal the learning rate appropriately.

The samples were generated from the trained GBRBM. Comparing the samples in
the right figures of Fig. 2(a)–(c) suggests that the GBRBM trained using PT learning
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(a) (b) (c)

Fig. 2. Example filters (left) and samples (right) generated by GBRBM trained using CD learn-
ing without updating variances (a), continued with updating variances (b), and trained using PT
learning with updating variances from the beginning (c). 12 randomly chosen filters are shown,
and between each consecutive samples 1000 Gibbs sampling steps were performed.

provides more variety of distinct samples, which indirectly suggests that the better gen-
erative model was learned by PT learning.

4.2 Learning Natural Images

CIFAR-10 data set [11] consists of three-channel (R, G, B) color images of size 32×32
with ten different labels.

Learning Image Patches. In this experiment, the procedure proposed in [14] is roughly
followed which was successfully used for classification tasks [11,12,4]. The procedure,
first, trains a GBRBM on small image patches.

Two GBRBMs, each with 300 hidden neurons, following the modified energy func-
tion were trained on 8 × 8 images patches using CD and PT learning for 300 and 200
epochs, respectively.

Fig. 3 visualizes the filters learned by the GBRBMs. Apparently, the filters with the
large norms mostly learn the global structure of the patches, whereas those with smaller
norms tend to model more fine details. It is notable that this behavior is more obvious
in the case of PT learning, whereas in the case of CD learning, the filters with the small
norms mostly learned not-so-useful global structures.

The learned variances σ2
i of different pixels i were distributed in [0.0308 0.0373] and

[0.0283 0.0430] in case of CD and PT learning. In both cases, they were smaller than
those of the training samples s2

i , lying between 0.0547 and 0.0697. This was expected
and is desirable [11].

Classifying Natural Images. The image patches were preprocessed with independent
component analysis (ICA) [10] and were transformed to vectors of 64 independent
components each. Then, they were used as training data for GBRBMs. GBRBMs had
200 or 300 binary hidden neurons, and were trained by persistent CD learning [18] with
a fixed learning rate η = 0.005 and variances fixed to one. The minibatch of size 20
was used, and we denote this model ICA+GBRBM.

Afterwards, 49 patches were extracted from each image in a convolutional way,
and the hidden activations were obtained for each patch. Those activations were con-
catenated to form a feature vector which was used for training a logistic regression
classifier.
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(a) CD learning (b) PT learning

Fig. 3. (a) two figures visualize 128 filters with the largest norms and 128 filters with the smallest
norms of the GBRBM trained using CD learning, and (b) same figures obtained from PT learning

The best classification accuracy of 63.75% was achieved with ICA+GBRBM having
64 independent components and 300 hidden neurons after training the GBRBM for
only about 35 epochs. The obtained accuracy is comparable to the accuracies from
the previous research. Some of them using the variants of RBM include 63.78% by
GBRBM with whitening [11], and 68.2% obtained by the mean and covariance RBM
with principal component analysis [14].

Also, slightly worse accuracies were achieved when the raw pixels of the image
patches were used. Using the filters obtained in the previous experiment, 55.20% (CD)
and 57.42% (PT) were obtained. This suggests that it is important to preprocess samples
appropriately.

Learning Whole Images. Due to the difficulty in training GBRBM, only data sets
with comparably small dimensions have been mainly used in various recent papers. In
case of CIFAR-10 the GBRBM was unable to learn any meaningful filters from whole
images in [11].

In this experiment, a GRBM with 4000 hidden neurons was trained on whole images
of CIFAR-10. It was expected that learning the variances, which became easier due
to the proposed improvements, would encourage GBRBM to learn interesting interior
features. CD learning with the adaptive learning rate was used. The initial learning
rate and the upper-bound were set to 0.001. The training lasted for 70 epochs, and the
minibatch of size 128 was used.

As shown in Fig. 4(a) the filters with the large norms tend to model the global fea-
tures such as the position of the object, whereas the filters with the smaller norms model
fine details, which coincides with the filters of the image patches. It is notable that the
visualized filters do not possess those global, noisy filters (see Fig. 2.1 of [11]).

This visualization shows that the proposed improvements in training GBRBMs pre-
vents the problem raised in [12] that a GBRBM easily fails to model the whole images
by focusing mostly on the boundary pixels only.

Also, according to the evolution of the reconstruction error in Fig. 4(c), the learning
proceeded stably. The red curve in the same plot suggests that the adaptive learning rate
was able to anneal the learning rate automatically.

Looking at Fig. 4(b), it is clear that the GBRBM was able to capture the essence
of the training samples. The reconstructed images look like the blurred versions of the
original ones while maintaining the overall structures. Apparently, both the boundary
and the interior structure are rather well maintained.
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Fig. 4. (a): Two figures visualize 16 filters each with the largest norms (left) and the least norms
(right) of the GBRBM trained on the whole images of CIFAR-10. (b): Two figures visualize
original images (left) and their reconstructions (right). (c): The evolution of the reconstruction
error and the learning rate.

5 Discussion

Based on the widely used GBRBM, we proposed a modified GBRBM which uses a
different parameterization of the energy function. The modification led to the perhaps
more elegant forms for visible and hidden conditional distributions given each other
and gradient update rules.

We, then, applied two recent advances in training an RBM, PT learning and the adap-
tive learning rate, to a GBRBM. The new scheme of defining the tempered distributions
for applying PT learning to GBRBM was proposed. The difficulty of preventing the di-
vergence of learning was shown to be addressed by the adaptive learning rate with some
practical considerations, for example, setting the upper bound of the learning rate.

Finally, the use of GBRBM and the proposed improvements were tested through the
series of experiments on realistic data sets. Those experiments showed that a GBRBM
and the proposed improvements were able to address the practical difficulties such as the
sensitivity to the learning parameters and the inability of learning meaningful features
from high dimensional data.

Despite these successful applications of GBRBM presented in this paper, training
GBRBM is still more challenging than training a RBM. Further research in improving
and easing the training is required.
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Abstract. In line with recent work exploring Deep Boltzmann Machines
(DBMs) as models of cortical processing, we demonstrate the potential
of DBMs as models of object-based attention, combining generative prin-
ciples with attentional ones. We show: (1) How inference in DBMs can
be related qualitatively to theories of attentional recurrent processing in
the visual cortex; (2) that deepness and topographic receptive fields are
important for realizing the attentional state; (3) how more explicit atten-
tional suppressive mechanisms can be implemented, depending crucially
on sparse representations being formed during learning.

1 Introduction

A Deep Boltzmann Machine (DBM) is a hierarchical, probabilistic, sampling
based neural network that learns representations from which it generates or pre-
dicts the data it sees, utilizing recurrent processing. Though introduced in a ma-
chine learning context [1], these properties make the DBM an interesting model
of processing in the cortex (cf. e.g. [2,3]). In earlier work, we showed how the
DBM can model homeostasis induced hallucinations [4]. Here, we demonstrate
in a proof of concept how aspects of object-based attention can be modeled with
a DBM as well – not in terms of saliency maps or eye movements, but in terms of
what happens throughout the cortical hierarchy during the act of paying atten-
tion to an object in a visual scene. In that sense, this work can be understood as
modeling in particular covert attention. It relates to approaches such as Selective
Tuning [5] and others (e.g. [6,7]), but is unique in capturing facets of attention
in a framework implementing aforementioned general properties.

We qualitatively elucidate on the following aspects of theories of attentional
processing in the cortex: First, the notion of a fast feed-forward (FF) sweep
followed by subsequent recurrent processing, the latter being essential for per-
ceiving objects when scenes are cluttered [8]; second, that, in directing attention
to an individual object in a scene, an attractor state is assumed which binds to-
gether and emphasizes aspects of that object represented throughout the cortical
hierarchy, suppressing representations of competing objects [9,5]; third, the hy-
pothesis that scene representations in the cortex are inherently such that higher
stages represent primarily one object at a time, unlike lower stages such as V1
where the whole image is encoded in terms of low-level features [10].

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 18–25, 2011.
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Our main focus is the biological application, but on the technical side we show
how deepness of the architecture and restricted receptive fields are important for
realizing the attentional state, making the DBM robust against noise not seen
in training. Finally, we explore additional suppressive attentional mechanisms
to cope with problems beyond toy data, and argue that sparse representations
could be critical to that end.

2 Setup

For brevity we only give a short overview of the model. See [1] on DBMs, and
[4] on our specific setup, including additional neuroscientific motivation.

A DBM consists of several layers of stochastic neuronal units x, usually with
binary states, connected via symmetric weights W, with no lateral connections
within a layer to simplify computations. The lowest layer x(0) contains the visible
units representing the data the model is trained on, such as images. Higher
layers x(k), k > 0, consist of hidden units which learn to represent and generate
the data. Together, these layers model the cortical stages of processing. The
probability for a unit i to switch on is given by a sigmoid activation function,

P (x(k)
i = 1|x(k−1),x(k+1)) =

1

1 + exp(−B
(k)
i − T

(k)
i )

, (1)

with bottom-up input B
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∑
l w

(k)
li x

(k−1)
l + b

(k)
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(k)
i :=∑

m w
(k)
im x

(k+1)
m + t

(k)
i , which includes biases b

(k)
i and t

(k)
i .1

The joint probability that the system assumes a state x is characterized by
an energy function E,

P (x) ∝ exp(−E(x)) with E(x) =
∑

k

−x(k)T W(k)x(k+1)−x(k)T (b(k) +t(k)).

(2)

2.1 Data Sets and Plain DBM vs. RRF-DBM

Basic training works such that each hidden layer learns to generate the activ-
ities of the layer below, utilizing simple local Hebbian weight updates. We use
the following data sets (Figure 1a-e): A toy dataset consisting of simple shapes
at random image positions (shapes), and two variations thereof containing ei-
ther multiple such shapes (multi-shapes) or clutter (shapes+clutter). And, the
MNIST data set of handwritten digits, popular in machine learning, and a clut-
ter variation (MNIST+clutter), using digits separated into 60,000 training and
10,000 test cases. We also compare two architectures: A plain DBM, and a more
biologically inspired version where weights are restricted to be localized, realizing
receptive fields that increase in size in higher hidden layers (dubbed RRF-DBM

1 Two sets of biases are obtained when training the DBM layer-wise. We do not merge
them as they contribute separately to bottom-up and top-down input in section 4.
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Fig. 1. (a-e) Data sets: (a and d for training). (a): shapes (squares, triangles
and upside-down triangles). (b): multi-shapes. (c): shapes+clutter. (d): MNIST. (e):
MNIST+clutter. (f ): Projections of internal states across hidden layers in the RRF-
DBM. The visibles are clamped to an image (bottom). After the initial bottom-up FF
sweep (left), lower layers represent most of the image and the highest layer’s state is
unspecific. After 50 recurrent cycles (right), the highest layer has assumed an object
specific state, and feed-back also biases the lower states toward the object.

for restrict. rec. field DBM).2 Finally, a softmax label unit was attached to the
top layer to allow for classification of the images [11].

3 Relation to Attentional Theories

Some theories pose that the aim of attentional processing is to form represen-
tations that are specific to one object at a time, especially in higher cortical
areas [10,5]. We thus trained the models on individual objects only (shapes or
digits), but then tested them on the various cluttered data sets to see whether
information about individual objects is retrieved in the highest hidden layer
even when scenes are complex in ways not seen in training. To decode what
is being represented in a hidden layer individually, we performed what we call
top-down projections [4]: Given the layer’s states, the activations of layers below
are computed subsequently in a pure feed-back manner until a reconstructed im-
age is obtained.3 Using the reconstructed image from the top layer and its label
unit, we analyzed whether the individual object was represented by computing
classification and squared reconstruction errors with regards to that object.

2 Three hidden layers. The RRF-DBM had its number of units increased as neces-
sary to compensate for the lower number of free parameters in the weights. No.
of units: Shapes data sets: 500/500/500 (plain DBM), 26x26/26x26/26x26 (RRF-
DBM). MNIST: 500/500/2000 (plain DBM), 28x28/28x28/43x43 (RRF-DBM). Re-
ceptive field sizes: 7x7/13x13/26x26. Pre-training: CD-1 for shapes, SAP (see [1])
for MNIST. No training of full DBM. Biases were initialized to -4, see section 4.

3 This corresponds to generating from the top module in a Deep Belief Net, applied
here in any hidden layer. Deterministic activations are used instead of samples.



A Hierarchical Generative Model of Recurrent Object-Based Attention 21

When the model is run (performing Gibbs sampling on the joint probabil-
ity), its state performs a random walk in the energy landscape along basins of
attraction, which embody meaningful representations obtained during training.
Because the latter are specific to individual objects by construction, the model
assumes (stochastic) attractor states representing the objects being attended to
[9,5], as shown below.

Finally, the notions of a fast FF sweep and subsequent recurrent processing
naturally fit into the DBM framework as well: During normal inference, process-
ing in a DBM is recurrent in that each hidden layer is sampled taking as input
the states of both adjacent layers (the top layer only receives input from below).
Hidden layers can be sampled sequentially in cycles spanning the hierarchy. For
the initialization however it makes sense to perform a pure bottom-up FF pass
[1], ignoring respective higher layer states, as initial states there are meaningless.
We found classification and reconstruction performance to be reasonable after
just the initial FF pass on non-cluttered data sets. For cluttered images however,
subsequent recurrent processing was important to achieve better object specific
representations, in line with what is suggested for the cortex [8,5].

3.1 Experiments: Inspection of the Hidden States

The plain DBM and the RRF-DBM were trained on the individual shapes or
digits data sets, and then tested on the variations. To elucidate on what happens
in the architecture during inference, an example case is displayed in Figure 1f.
Here, the RRF-DBM had learned to represent individual shapes and is now run
on an image of the multi-shapes set. Plotted are the decoded states of the three
hidden layers both after the initial FF sweep and after 50 recurrent cycles. It
becomes apparent that after the FF sweep, the hidden layer states are rather
noisy, but the subsequent recurrent processing enables the top layer to form a
clearer representation of an individual shape, allowing both for a localization of
the object in image space and an improved classification.

We indeed find a shift from representing most of the scene in lower layers
to representing the individual object in the highest layer. Representations are
biased towards the attended object even in lower layers, but this results from
feed-back from higher layers, as can be seen in the example by comparing the
reconstructions of the first two hidden layers after the FF sweep and after recur-
rent processing. Only after the latter has taken place, involving feed-back from
the topmost layer, are the representations biased toward the individual shape. In
fact, when we removed the topmost layer of the RRF-DBM, no object specific
state was assumed. This is partially because, due to the receptive field sizes,
only the topmost layer has learned that training images only ever contained one
shape. However, the deepness of the architecture plays a role in itself as well:
We found that even for the plain DBM, a model with two hidden layers instead
of three with the same total number of units performed worse (e.g. 43% vs. 22%
classification error on multi-shapes). We argue that, with higher layers being fur-
ther removed from the data in terms of processing steps, there is more flexibility
for the model to assume its preferred states when the data is noisy.
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Finally, we point out that while the presented effect has some resemblance
to how a Hopfield network can retrieve memories from noisy initializations, the
DBM is a much richer model than a Hopfield net, both in a biological and a
machine learning sense (see [4]). In particular, in the DBM, latent, hierarchical
representations are retrieved from a continuously presented image, rather than
memorized images from a noisy initialization.

3.2 Experiments: Quantitative Evaluation

To evaluate the object specificity of the top layer states, classification and re-
construction errors were computed for the plain and RRF-DBM on the various
cluttered data sets (Figure 2). For the multi-shapes set,4 which is complex and
novel relative to what the models had been trained on, the errors are rather high
after the FF sweep, but drop profoundly after subsequent recurrent processing
cycles (e.g. classification error drops from about 50% to about 20% for the plain
DBM). This is true for both plain and RRF-DBM, the latter performing some-
what worse. For the noisy shapes+clutter set, performance is even worse after
the FF sweep, with classification near chance. For the RRF-DBM, recurrent
processing again helps greatly. Conversely, the plain DBM basically fails com-
pletely for this data set to retrieve the shape from the clutter. We thus conclude
that at least for certain types of noise, restricted receptive fields make the DBM
decidedly more robust (independently reported also in [12]).

On the other hand, for the MNIST+clutter set, which is based on somewhat
more difficult data, recurrent processing barely improves the performance over
the FF sweep. This will be addressed in the next section.

4 Top-Down Suppression on Sparse Representations

Recurrent processing did not improve perception for MNIST+clutter. In ad-
dressing the underlying problem we can further clarify the issue of attentional
processing in the architecture. Basically, the recurrent interactions in effect en-
able the higher layers to override image content according to what they prefer to
represent. Having learned to represent individual objects, attentional selection
can take place of for example one shape and suppression of others in the multi-
shapes set. However, unlike simple toy shapes, the digits in MNIST vary much
more in appearance. When presented with, for example, a digit 9 among clutter,
the model should override the image representation in lower layers as to suppress
the clutter. However, another way of reconciling the higher layers’ expectation
with the image could be to ‘hallucinate’ additional clutter to make the 9 into an
8. Suppression or imagination of image content are equally possible, and we find
both when we decode the hidden states for MNIST+clutter (not shown).

Thus, while the top-down influence in the DBM can be seen as implementing
Hierarchical Bayesian Inference [2], for attentional top-down selection specifically
we need mechanisms that increase the signal-to-noise ratio (signal being what

4 Errors were computed w.r.t. whichever of the three shapes was reconstructed best.
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(b) shapes+clutter.

FF 10 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

cl
as

si
fic

at
io

n 
er

ro
r

FF 10 50
0

10

20

30

40

50

re
co

ns
tr

uc
tio

n 
er

ro
r

(c) MNIST+clutter.

Fig. 2. Classification and reconstruction errors from top layer states for the three test
sets. In each figure, scores are plotted for the plain DBM, RRF-DBM, and RRF-DBM
with attentional suppression (section 4), taken after the FF sweep and after 10 or
50 subsequent recurrent cycles. Dashed lines denote chance classification error (0.9
for MNIST). (a)+(b): For the shapes sets, recurrent processing improves performance
markedly, moreso with suppression. For the shapes+clutter set, the restricted receptive
fields of the RRF-DBM are essential to retrieve the shape. (c): For MNIST+clutter,
the additional suppressive mechanism is necessary to achieve improvement.

is being attended to) without necessarily changing the content of the signal
qualitatively, suppressing represented information related to the noise without
‘hallucinating’ additional content.

Two issues present in a standard DBM need to be overcome to that end: First,
in a completely distributed representation, where the image is essentially encoded
in the whole state vector x, it is not clear how x is to be modified to achieve a
suppression of image information localized to a certain part of image space. This
is addressed by virtue of using the localized receptive fields, ensuring that units
in lower layers only encode local information. The second issue is that switching
an individual unit off (or on) does not necessarily correspond to suppressing
information: For example, the unit could have inhibitory weights to the image.
Indeed, we observed that for RRF-DBMs initialized with zero mean weights and
biases, the learned representations are such that units tend to turn off when one
of the shapes/digits is in their receptive fields.

To overcome the second issue, we initialized the unit biases to negative val-
ues at the beginning of training. This lead to a breaking of symmetry between
units being on and off, and particularly to units being only sparsely activated
throughout training.5 In essence they thus learned representations where they
only turn on if something ‘out of the ordinary’ happens. In that sense, a unit

5 We found that this simple way of enforcing sparsity worked best for the problem at
hand, compared to e.g. using a regularization on the gradient.
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conveys much more information by being on than by being off, and suppression
of a unit can indeed be seen as effecting a suppression of represented informa-
tion. With negatively initialized biases, units would indeed only turn on when
some object (part) was in their receptive fields.6

With such sparse representations established, we explore a heuristic suppres-
sive mechanism to enhance the attentional processing: Where top-down input
T

(k)
i to a unit i in hidden layer k is suppressive, i.e. < 0., that input is multiplied

by a factor ζ(k) (≥ 1.). This effectively allows higher layers to suppress states in
lower layers if they do not match their predictions. The modified top-down input
T̃

(k)
i is thus = ζ(k)T

(k)
i if T

(k)
i < 0, = T

(k)
i otherwise, so that the probability for

a unit to switch on is now given as:

P (x(k)
i = 1|x(k−1),x(k+1)) =

1

1 + exp(−B
(k)
i − T̃

(k)
i )

. (3)

The RRF-DBM experiments were repeated with the suppressive mechanism
active in the intermediate hidden layers7 over 50 recurrent cycles (Figure 2). The
performance increased in all cases. Particularly, for MNIST+clutter, recurrent
processing with suppression now improved the scores markedly over the initial
FF sweep.

4.1 Spatial vs. Object-Based Attention

So far we have modeled object-based attention, where higher layers can make
use of learned patterns in the hidden states to emphasize object specific repre-
sentations. However, the topographic sparse representations in the RRF-DBM
also make it possible to apply suppressive spatial spotlights directly in the hid-
den layers, for example to control the internal state of the model to focus on
selected objects in the multi-shapes set. Shortly, testing the RRF-DBM with
Gaussian spotlights directed towards chosen shapes in the images, classification
error computed w.r.t. the selected shapes was 18%, which is comparable to the
scores reported in Figure 2 (plain DBM 22%, RRF-DBM + suppression 15%),
where the models were free to select any shape in an image. Hence, spatial
attention can be used to bias the internal state towards regions of the image.

5 Conclusion

We demonstrated in this proof of concept work how the DBM model, which
uniquely embodies several properties of interest in the computational neuro-
science community, can be related to theories of attentional recurrent processing
6 Of course, this results from pixels being mostly off in the images. However, in the

light of the argument, the images should themselves be understood as stand-ins for
sparse representations of images, for instance the output of edge detectors, rather
than as ‘black and white’ images.

7 ζ(k) adjusted manually for each data set and layer. Values ranged from 1 to 5.



A Hierarchical Generative Model of Recurrent Object-Based Attention 25

in the cortex. We also elucidated on a special role of sparse representations for
attentional information selection, which allowed us to explore novel mechanisms
for suppressing irrelevant information. In the long run, cortical models will need
to integrate sensory signals from multiple modalities with planning and mo-
tor control. We believe that accounting for attentional processing, which in the
broader sense organizes information into relevant and irrelevant and routes it
between cortical submodules in a task dependent fashion, will be crucial.
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2 ETH Zürich,Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract. A recently proposed novel statistical model estimates pop-
ulation effects and individual variability between subgroups simultane-
ously, by extending Lasso methods. We apply this �1-penalized linear
regression mixed-effects model to a large scale real world problem: by ex-
ploiting a large set of brain computer interface data we are able to obtain
a subject-independent classifier that compares favorably with prior zero-
training algorithms. This unifying model inherently compensates shifts
in the input space attributed to the individuality of a subject. In partic-
ular we are now able to differentiate within-subject and between-subject
variability. A deeper understanding both of the underlying statistical and
physiological structure of the data is gained.

1 Introduction

When measuring experimental data we typically encounter a certain inbuilt het-
erogeneity: data may stem from distinct sources that are all additionally exposed
to varying measuring conditions. Such so-called group, respectively individual ef-
fects need to be modeled separately within a global statistical model. Note that
here the data is not independent: a part of the variance may come from the
individual experiment, while another may be attributed to a fixed effect. Such
mixed-effects models [9] are known to be useful whenever there is a grouping
structure among the observations, e.g. the clusters are independent but within a
cluster the data may have a dependency structure. Note also that mixed-effects
models are notoriously hard to estimate in high dimensions, particularly, if only
few data points are available.

In this paper we will for the first time use a recent �1-penalized estimation
procedure [10] for high-dimensional linear mixed-effects models in order to es-
timate the mixed effects that are persistent in experimental data from neuro-
science. This novel method builds upon Lasso-type procedures [11], assuming
that the number of potential fixed effects is large and that the underlying true
fixed-effects vector is sparse. The �1-penalization on the fixed effects is used to
achieve sparsity.

We will study Brain Computer Interfaces (BCI) [5], where we encounter high
variability both between subjects and within repetitions of an experiment for the
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same subject. The novel approach splits up the overall inherent variance into a
within-group and a between-group variance and therefore allows us to model
the unknown dependencies in a meaningful manner. While this is a conceptual
contribution to adapt the mixed effects model for BCI, our paper also contributes
practically. Due to the more precise modeling of the dependency structure we
cannot only quantify both sources of variance but also provide an improved
ensemble model that is able to serve as a one-size-fits-all BCI classifier – the
central ingredient of a so-called zero-training BCI [6]. In other words we can
minimize the usually required calibration time for a novel subject – where the
learning machine adapts to the new brain – to practically zero.

2 Statistical Model

In this work we employ a so-called linear mixed-effects model [9], due to the
dependence structure inherent to the two sources of variability: within-subject
(dependence) and between-subject (independence). The classical linear mixed-
effects framework has two limiting issues: (1) it cannot deal with high-dimensional
data (i.e. the total number of observations is smaller than the number of ex-
planatory variables) and (2) fixed-effects variable selection gets computationally
intractable if the number of fixed-effects covariates is very large. By using a
Lasso-type concept [11] these limits can be overcome in the present method [10],
thus allowing application in the real world as we will see in the next sections.

2.1 Model Setup

Let i = 1, . . . , N be the number of subjects, j = 1, . . . , ni the number of ob-
servations per subject and NT =

∑
ni the total number of observations. For

each subject we observe an ni-dimensional response vector yi. Moreover, let Xi

and Zi be ni × p and ni × q covariate matrices, where Xi contains the fixed-
effects covariates and Zi the corresponding random-effects covariates. Denote
by β ∈ Rp the p-dimensional fixed-effects vector and by bi, i = 1, . . . , N the
q-dimensional random-effects vectors. Then the linear mixed-effects model can
be written as ([9])

yi = Xiβ + Zibi + εi i = 1, . . . , N , (1)

where we assume that i) bi ∼ Nq(0, τ2Iq), ii) εi ∼ Nni(0, σ2Ini) and iii) that
the errors εi are mutually independent of the random effects bi.

From (1) we conclude that

yi ∼ Nni(Xiβ, Λi(σ2, τ2)) with Λi(σ2, τ2) = σ2Ini + τ2ZiZ
T
i . (2)

It is important to point out that assumption i) is very restrictive. Nevertheless,
it is straightforward to relax this assumption and assume that bi ∼ Nq(0, Ψ) for
a general (or possible structured) covariance matrix Ψ . For the data described
in the next section, assumption i) seems to hold.
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2.2 �1-penalized Maximum Likelihood Estimator

Since we have to deal with a large number of covariates, it is computationally not
feasible to employ the standard mixed-effects model variable selection strategies.
To remedy this problem, in [10] a Lasso-type approach is proposed by adding
an �1-penalty for the fixed-effects parameter β. This idea induces sparsity in β
in the sense that many coefficients βj , j = 1, . . . , p are estimated exactly zero
and we can perform simultaneously parameter estimation and variable selection.
Consequently, from (2) we derive the following objective function

Sλ(β, σ2, τ2) := −1
2

N∑
i=1

{
log |Λi|+ (yi −Xiβ)TΛ−1

i (yi −Xiβ)

}
− λ

p∑
k=1

|βk| ,

(3)
where β1 is the unpenalized intercept and λ a nonnegative regularization param-
eter. Hence, estimating the parameters β, σ2 and τ2 is carried out by maximizing
Sλ(β, σ2, τ2):

β̂, σ̂2, τ̂2 = argmax
β,σ2,τ2

Sλ(β, σ2, τ2) . (4)

It is worth noting that Sλ(β, σ2, τ2) is a non-concave function, which implies
that we can not apply a convex solver to maximize (3).

2.3 Prediction of the Random-Effects

The prediction of the random-effects coefficients bi, i = 1, . . . , N is done by the
maximum a posteriori (MAP) principle. Given the parameters β, σ2 and τ2,
it follows by straightforward calculations that the MAP estimator for bi, i =
1, . . . , N is given by bi = [ZT

i Zi + σ2/τ2Iq]−1ZT
i (yi − Xiβ). Since the true pa-

rameters β, σ2 and τ2 are not known, we plug in the estimates from (4). Hence
the random-effects coefficients are estimated by

b̂i = [ZT
i Zi + σ̂2/τ̂2Iq]−1ZT

i (yi −Xiβ̂). (5)

2.4 Model Selection

The optimization problem in (4) is applied to a fixed tuning parameter λ. In
practice, the solution of (4) is calculated on a grid of λ values. The choice of the
optimal λ-value is then achieved by minimizing a criterion, i.e. a k-fold cross-
validation score or an information criteria. We use the Bayesian Information
Criterion (BIC) defined as

−2�(β̂, σ̂2, τ̂2) + log NT · d̂fλ , (6)

where d̂fλ = |{1 ≤ j ≤ p; β̂j �= 0}| denotes the number of nonzero fixed regres-
sion coefficients and �(β̂, σ̂2, τ̂2) denotes the likelihood function following from
the model assumptions in (1). The BIC works well in the simulation examples
presented in [10] and is computationally fast.
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2.5 Computational Implementation

With τ and σ fixed, the cost function (3) is equivalent to an �1-penalized linear
regression after whitening by the covariances Λi:

β̂ = argmin
β|τ,σ

N∑
i=1

∥∥∥Λ−1/2

i (Xiβ − yi)
∥∥∥2

2
+ 2λ

p∑
k=1

|βk| (7)

We solve the resulting convex optimization problem for β with fixed σ and τ
using the orthant-wise limited memory quasi-Newton algorithm [1]. As suggested
in [10], the optimization is performed over a grid of (σ2, τ2) to find the global op-
timum of all parameters. Preliminary analysis indicates that a so called random-
intercept (i.e. one bias per group) is appropriate for our data, i.e., Zi = 1ni and
bi ∈ R. Then, in the context of (1), σ2 corresponds to the within-subject vari-
ability and τ2 to the between-subject variability. By estimating σ2 and τ2 we are
able to allocate the variability in the data to these two sources.

3 Available Data and Experiments

We use two different datasets of BCI data to show different aspects of the valid-
ity of our approach. The first consists of 83 BCI experiments (sessions) from 83
individual subjects and each session consists of 150 trials. Our second dataset
consists of 90 sessions from only 44 subjects. The number of trials of a single
session varies from 60 trials to 600 trials. In other words, our first dataset can be
considered to be balanced in the number of trials per subjects and sessions per
subject. Our second dataset is unbalanced in this sense. As one may expect, the
balanced data is more suitable for building a zero-training classifier and enables
us to obtain a ’clean’ model. However, the unbalanced dataset enables us to
examine how individual sessions of the same subject affect the estimation of our
model and leads to a more thorough understanding of the underlying processes.
Each trial consists of one of two predefined movement imaginations, being left
and right hand, i.e. data was chosen such that it relies only on these 2 classes,
although originally three classes were cued during the calibration session, be-
ing left hand (L), right hand (R) and foot (F). 45 EEG channels, which are in
accordance with the 10-20 system, were identified to be common in all sessions
considered. The data were recorded while subjects were immobile, seated on a
comfortable chair with arm rests. The cues for performing a movement imagi-
nation were given by visual stimuli, and occurred every 4.5-6 seconds in random
order. Each trial was referenced by a 3 second long time-window starting at 500
msec after the presentation of the cue. The experimental procedure was designed
to closely follow [3].

3.1 Generation of the Ensemble

The ensemble consists of a large redundant set of subject-dependent common
spatial pattern filters and their matching classifiers (LDA). Each dataset is first
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Fig. 1. Two flowcharts of the ensemble method. The red patches in the top panel
illustrate the inactive nodes of the ensemble after sparsification.

preprocessed by 18 predefined temporal filters (i.e. band-pass filters) in parallel
(see upper panel of Figure 1). A corresponding spatial filter and linear classifier
is obtained for every dataset and temporal filter. Each resulting Common Spatial
Pattern (CSP)-Linear Discriminant Analysis (LDA) couple can be interpreted
as a potential basis function. Finding an appropriate weighting for the classifier
outputs of these basis functions is of paramount importance for the accurate
prediction. This processing was done by leave-one-subject-out cross-validation,
i.e. the session of a particular subject was removed, the algorithm trained on the
remaining trials (of the other subjects) and then applied to this subject’s data
(see lower panel of Figure 1).

The μ-rhythm (9-14 Hz) and synchronized components in the β-band (16-22
Hz) are macroscopic idle rhythms that prevail over the postcentral somatosen-
sory cortex and precentral motor cortex, when a given subject is at rest. Imagi-
nations of movements as well as actual movements are known to suppress these
idle rhythms contralaterally. However, there are not only subject-specific differ-
ences of the most discriminative frequency range of the mentioned idle-rhythms,
but also session differences thereof. We identified 18 neurophysiologically rele-
vant temporal filters, of which 12 lie within the μ-band, 3 in the β-band, two
in between μ- and β-band and one broadband 7− 30Hz. In all following perfor-
mance related tables we used the percentage of misclassified trials, or 0-1 loss.
Common spatial patterns (CSP) is a popular algorithm for calculating spatial
filters, used for detecting event-related (de-) synchronization (ERD/ERS), and
is considered to be the gold-standard of ERD-based BCI systems [2]. The CSP
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algorithm maximizes the variance of right hand trials, while simultaneously min-
imizing the variance for left hand trials. Given the two covariance matrices Σ1

and Σ2, of size channels × concatenated timepoints, the CSP algorithm returns
the matrices W and D. W is a matrix of projections, where the i-th row has a
relative variance of di for trials of class 1 and a relative variance of 1 − di for
trials of class 2. D is a diagonal matrix with entries di ∈ [0, 1], with length n, the
number of channels: WΣ1W

T = D and WΣ2W
T = I−D. Best discrimination is

provided by filters with very high (emphazising one class) or very low eigenval-
ues (emphazising the other class), we therefore chose to only include projections
with the highest 2 and corresponding lowest 2 eigenvalues for our analysis.

3.2 Validation

The subject-specific CSP-based classification methods with automatically,
subject-dependent tuned temporal filters (termed reference methods) are vali-
dated by an 8-fold cross-validation, splitting the data chronologically. The chrono-
logical splitting for cross-validation is a common practice in EEG classification,
since the non-stationarity of the data is thus preserved [5]. To validate the qual-
ity of the ensemble learning we employed a leave-one-subject out cross-validation
(LOSO-CV) procedure, i.e. for predicting the labels of a particular subject we
only use data from other subjects.

4 Results

4.1 Subject-to-Subject Transfer

As explained in Section 3, we use our first balanced dataset to find a zero-training
subject-independent classifier. The left part of Figure 2 shows the results of
fitting an �1-regularized least-squares regression model to fit a) a linear model
with one bias and b) a mixed-effects model with one bias per subject. We are
able to enhance the classification by use of the mixed-effects model.

As can be seen in Figure 3 (left panel) the LMM method needs less features
per subject (NLMM ≈ 310) as compared to estimating only one bias (N�1 ≈ 500).
Besides from selecting less features in total, the LMM chose a higher fraction of
features with low self-prediction errors. This is shown in the top panel, where
we display the cumulative sum of features, sorted by increasing self-prediction
accuracy. To visualize differences between weight vectors resulting from the
LOSO-CV procedure, the right panel displays these vectors, projected to two
dimensions. The matrix of Euclidean distances between all pairs of weights was
embedded into a 2×83-dimensional space and projected onto the resulting point
cloud’s first two principal axes for visualization. In the middle part of Figure 3
we compare the performance of our method on the basis of individual subjects
with other methods and perform t-tests to examine their statistical significance.
The p-values are included within the figure. As the most simple baseline we chose
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Fig. 2. The figures show the mean classification loss over subjects for the balanced
dataset (left) and the unbalanced dataset (right) as a function of the regularization
strength λ. The linear mixed-effects (LMM) approach is compared to classical �1 reg-
ularized least squares regression (one bias). LMM-subj estimates one bias per subject
and LMM-exp one bias per experiment (session).

broadband (7 − 30 Hz) filtered and Laplacian filtered power features of motor
related channels. As can be seen on the top left side of Figure 3 our method per-
forms very favorably. LMM improves classification performance for 89.2% of the
subjects considered with high significance. Furthermore, we compare with a re-
cently proposed second-generation zero-training procedure [6] and achieve a sig-
nificant improvement. Finally, we compare our method to the subject-dependent,
cross-validated classifier loss, derived from the data themselves. A per se unfair
comparison. Given that the subject-dependent classifier is not significantly bet-
ter (p = 0.93), we may state, that we are on par.

4.2 Session-to-Session Transfer

To investigate how the results of the method can be understood in terms of indi-
vidual subjects and their (possibly multiple) sessions, we validated the method
in two ways. First we allow each experiment to have an individual bias. In
the second approach, we allow only one bias per subject, i.e. multiple experi-
ments/sessions from the same subject will be grouped. The results are shown in
the right panel of Figure 4. They indicate a substantially higher between-group-
variability if we allow biases for each experiment. This does not only confirm
knowledge from previous publications, that the transfer of classifiers from ses-
sions to sessions required a bias correction [8], but also underlines the validity of
our approach in the sense that we are able to capture a meaningful part of the
variability which would otherwise be ignored as noise. As can be seen in Fig-
ure 4, a substantial fraction of the variability can be attributed to within-subject
differences.
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Fig. 3. Top: Scatter plots, comparing LMM with various baselines on a subject level.
center left: histogram of the number of active features for all subjects. center middle:
cumulative sum of features, sorted by ’self prediction’. center right: Variability between
classifier weights b of the two models for each of the N = 2× 83 LOSO-training runs
using the best regularization strength. Bottom: The three scatterplots show relations
between σ.2, τ 2 and the baseline cross-validation misclassification for every subject. cc
stands for correlation coefficient and p stands for paired t-test significance.

4.3 Relation of Baseline Misclassification to σ2 and τ2

Using standard methods for ERD-related BCI decoding [4], we obtain a mean
classification loss for each subject within our balanced dataset, based on the
cross-validation of band-pass and spatially filtered features. In lowest part of
Figure 3 we examine the relationship between this baseline loss and the within-
subject variability σ.2 and between-subject variability τ.2. The baseline loss and
σ2 have a strong positive correlation, with high significance. This makes intuitive
sense: a dataset that is well classifyable should also exhibit low variance of its
residuals. We furthermore examine the relation of τ2 and σ2 and find a strong
positive relation. Interestingly we do not find a significant relation between the
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Fig. 4. The figure shows the magnitude of between-subject variability as a fraction
of total variability. On the left: Results for the first balanced dataset. One the right:
Results for the unbalanced dataset. subj stands for estimating one bias per subject and
exp for estimating one bias per experiment.

baseline loss and τ2. In other words it is not possible to draw conclusions about
the quality of a subject’s data by the variance of its assigned biases.

5 Discussion and Conclusions

When analyzing experimental data, it is of generic importance to quantify vari-
ation both across the ensemble of acquired data and within repetitions of mea-
surements. In this paper we have applied a recent sparse modeling approach
from statistics [10] based on a so-called �1-penalized linear mixed-effects model
and proposed its first time use for a large real world data set, leading to a novel
BCI zero-training model (see also [8,6]). The novel statistical model not only
gave rise to a better overall prediction, but it furthermore allowed to quantify
the differences in variation more transparently and also interpretably. By at-
tributing some of the total variability, in other methods considered as noise, to
differences between subjects, we are now able to obtain a solution that is sparser
and at the same time superior in prediction accuracy. Our statistical framework
can be applied to a large number of scientific experiments from many different
domains, where inter-dependencies of input space exist. We have shown that our
approach leads to more robust feature selection, is superior in its classification
accuracy and may well find its way into a broader scientific context (for more
details, please refer to [7]).
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Abstract. The unsupervised signal decomposition method Slow Fea-
ture Analysis (SFA) is applied as a preprocessing tool in the context
of EEG based Brain-Computer Interfaces (BCI). Classification results
based on a SFA decomposition are compared to classification results ob-
tained on Principal Component Analysis (PCA) decomposition and to
those obtained on raw EEG channels. Both PCA and SFA improve clas-
sification to a large extend compared to using no signal decomposition
and require between one third and half of the maximal number of compo-
nents to do so. The two methods extract different information from the
raw data and therefore lead to different classification results. Choosing
between PCA and SFA based on classification of calibration data leads
to a larger improvement in classification performance compared to us-
ing one of the two methods alone. Results are based on a large data set
(n=31 subjects) of two studies using auditory Event Related Potentials
for spelling applications.

Keywords: Slow Feature Analysis, SFA, Dimensionality Reduction,
EEG, Brain-Computer Interface, BCI, Principal Component Analysis,
PCA, Event-Related Potentials, ERP, Auditory Evoked Potentials, AEP.

1 Introduction

The analysis of Event Related Potentials (ERP) of the human Electroencephalo-
gram (EEG) provides introspection into the attentional status of the processing
of internal or external events. For Brain-Computer Interfaces (BCIs), the on-
line analysis of ERPs with machine learning methods [2] is a means to distin-
guish attended target stimuli from non-attended (non-target) stimuli. By focus-
ing his/her attention to a subset of all e.g. visual or auditory stimuli presented,
a BCI user performs a multiclass decision in order to control e.g. a text entry
system or other applications.

Compared to other application domains, the signal-to-noise ratio (SNR) of
EEG data used for BCI is rather poor. As the dimensionality of EEG data is
rather large and the number of training samples available for the estimation of

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 36–43, 2011.
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good hyperparamters is typically low, the machine learning problems in BCI
are challenging. As dimensionality reduction methods can alleviate this prob-
lem, they are widely used in BCI [2] and EEG research in general [6]. Widely
used methods are the Principal Component Analysis (PCA) and variants of the
Independent Component Analysis (ICA) [5]. Applied for the spatial filtering of
EEG, they can reduce the signal dimensionality enormously.

A relatively new decomposition method, Slow Feature Analysis (SFA) [8],
is motivated by the idea that different processes in the human brain act on
distinctively different time scales. SFA decomposes a multivariate signal with
respect to its temporal variation. The result of SFA is a set of purely spatial
filters that each extract a univariate signal that is decorrelated from the signals
of all other filters and varies with a different speed compared to the others.
Blaschke et. al. [3] have shown that SFA can be regarded as a special case of
temporal ICA.

As this work is the first application of SFA to EEG data, its suitability for
spatial filtering of EEG is tested and compared to PCA preprocessing. Offline
evaluation is performed for data from 31 subjects that participated in an auditory
ERP paradigm for a BCI speller.

2 Methods

2.1 Data

The EEG data used for analysis stems from two separate auditory oddball ERP
BCI studies [4] [7], (PASS2D data set and AMUSE data set, respectively).

In both studies EEG was recorded using a 63 channel layout and 1000 Hz
sampling rate. The data was low-pass filtered to 40 Hz and down sampled to
100 Hz prior to analysis. Epochs were extracted between -150 ms and 800 ms
relative to stimulus onset.

Both experiments consisted of a calibration phase and an online spelling phase.
Experimental details of the PASS2D study (with corresponding AMUSE values
given in parenthesis) are as follows: number of stimulus epochs in calibration
phase = 3402 (4320), number of stimulus epochs in online phase = 11987 (8100),
target to non-target ratio 1:8 (1:5), number of participants = 10 (21).

2.2 Decomposition Methods

The basic EEG model assumes that the surface potential measured on the scalp
at a time t, denoted by x(t), is a linear superposition of a number of components
with individual time courses si(t) and fixed field patterns:

x(t) = As(t) + n(t), (1)

where s(t) = (s1(t), s1(t), . . .)T contains the time course of the components,
A = (a1,a2, . . .) contains the respective field patterns in the columns, and n(t)
is noise. The index i runs from 1 to the number of recording channels.
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This model can be inverted to yield a decomposition of the recorded data into
an estimate of the component time courses and field patterns:

ŝ(t) = WTx(t), (2)

where the estimated component time courses are extracted with spatial filters
contained in the columns of W = [w1,w2, . . .], i.e. ŝi(t) = wT

i x(t). An estimate
of the field patterns can be obtained from W as well.

The generative model allows for a back projection of selected components
from component space to EEG sensor space. If one splits up ŝ(t) into the time
courses of the discriminative, respectively non-discriminative, components such
that ŝ(t) = ŝd(t) + ŝnd(t), then it follows that

x(t) = Â (ŝd(t) + ŝnd(t)) = xd(t) + xnd(t), (3)

i.e. one obtains the separation into discriminative and non-discriminative EEG
in the original sensor space (xd(t) and xnd(t)). ŝd(t) is obtained from ŝ(t) by
replacing the non-discriminative component time courses with zeros. ŝnd(t) is
created accordingly.

Typically the vectors wi are selected to maximize (or minimize) a certain ob-
jective function. Different objectives have led to different decomposition meth-
ods, such as the well known PCA and the relatively new SFA [8].

PCA finds a set of filters that maximize the variance of the decomposed signal.
The spatial filters wi found by PCA are the eigenvectors of the data covariance
matrix C. PCA can be computed very fast and is a simple, yet powerful, tool in
data exploration and dimensionality reduction.

SFA in its linear form finds a set of filters that minimize the temporal variation
of the decomposed signal. In other words, SFA maximizes temporal slowness, or
smoothness, of the components. However, it does so without temporal filter-
ing, i.e. no smoothing in the time domain is allowed. Appropriate constraints
ensure that the component signals are mean-free, have unit variance, and are
decorrelated. The temporal variation is defined as the mean variance of the first
temporal derivative of the SFA components. Thus, SFA minimizes the following
measure: 〈

˙̂s
2

i

〉
t

=
〈
(wT

i ẋ)2
〉

t
= wT

i Ċwi, (4)

where Ċ is the second moment matrix of the time derivative of the data. Includ-
ing the unit variance constraint in the objective leads to the wi as the solution
of the generalized eigenvalue problem [1]

Ċwi = λiCwi. (5)

The resulting SFA components are ordered according to temporal variation from
slowest to fastest. For this linear case of SFA, the computation of the SFA compo-
nents is very fast, because the problem reduces to an eigenvalue decomposition.
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2.3 Component Selection, Feature Extraction and Classification

PCA and SFA decompositions were estimated on the raw EEG post-stimulus
epochs of the calibration data. The time course of a PCA/SFA component epoch
was reduced to three samples by averaging over three non-overlapping intervals
within the epoch. The borders of these intervals were determined automatically
for each time course via a simple heuristic that uses class labels.

The number of components used for further feature extraction and classifi-
cation, here denoted by Nc, was determined using a 10-fold chronological split
cross-validation on the calibration data. Within each fold, the training data was
used to estimate the PCA/SFA components and to select intervals of their time
courses. Then the components were sorted in descending order according to their
class discriminability. Classification performance of the test data was assessed
for Nc running from 1 to 63. In order to keep the input dimensionality low and
to avoid over-fitting, not the Nc with maximal performance was chosen but the
Nc that sufficed to reach 95% of maximal classification performance.

Thus, the final dimensionality of the classifier input is given by 3 · Nc. The
classifier we applied was regularized Fisher Discriminant Analysis (shrinkage
FDA) on extracted features [2].

We compared four different preprocessing conditions for ERP classification:
raw EEG channels (i.e. no preprocessing), PCA, SFA, and best x-val. The method
best x-val is a combination of the PCA and SFA condition: We first computed
classification performance on the calibration data for PCA and the SFA sepa-
rately. Then the decomposition method that yielded the best performance on
the calibration data was applied to the online-data. The procedures for fea-
ture extraction and classification were the same in all conditions. Estimation
of PCA/SFA components, selection of components (selection of raw channels in
condition 1), selection of intervals, and classifier training was done on the cal-
ibration data. The resulting decompositions, component subsets, intervals, and
classifier weights were fixed and applied to the online data.

3 Results

Figure 1 shows the field patterns and ERPs of the two most class-discriminative
PCA and SFA components of subject VPob. The increase in classification perfor-
mance was highest for this subject (over 30% absolute increase for PCA and SFA
compared to raw channels). Note that because the polarity of the weight vectors
wi is arbitrary, the sign of the field patterns and time courses is arbitrary too.
Here we corrected the sign such that the maximum response for target stimuli is
positive. The units of the time courses are arbitrarily scaled and therefore omit-
ted. The two most discriminative ERPs of the PCA/SFA components show the
largest class difference late in their time courses (i.e. with peaks between 400 and
500 ms). However, also early discriminative intervals are present in PCA as well
as SFA components. The field patterns tend to have their foci in central regions
of the scalp. One has to be careful with their interpretation, because the indi-



40 S. Dähne et al.

Fig. 1. Most discriminative components obtained by PCA and SFA, and their class-
wise average responses (ERPs) for one subject. The blue line is the response for targets,
the green line for non-target stimuli.

vidual PCA/SFA components not necessarily correspond to physiological EEG
components. See section 4 for further notes on this point.

In figure 2 we depict the online-spelling data classification results of the dif-
ferent methods in several scatter plots. Each point in a scatter plot in the figure
corresponds to the classification performances obtained for a single subject. The
color of each point in plots a to c indicates Nc (the number of components) of
the method on the y axis for this particular subject, as determined by cross-
validation. Black stars indicate significant differences between the methods on
the x and y axis when compared with a t-test, one star for p < 0.05 and two stars
for p < 0.01. P-values are also given in upper left corner of each scatter plot.

In scatter plots a and b of figure 2 we compare the classification performance
of the decomposition methods PCA and SFA (y axis, respectively) to classifica-
tion using raw EGG channels (x axis). Both methods applied as preprocessing
show a large performance increase compared to using no preprocessing. PCA,
for example, improves classification performance for 26 out of 31 (84%). SFA
yielded an improved classification in all but one subject (97%). In plot c of the
same figure, we compare the performance of PCA with that of SFA. Here no
statistically signifcant improvement for one method over the other can be ob-
served. SFA worked better in 13 subjects, while PCA was better in 15 out of the
31 subjects. For 3 subjects the performance was the same.

The scatter plots d, e, and f of figure 2 compare the method best x-val to raw
channels, PCA, and SFA. The color code used in these scatter plots indicates
whether PCA or SFA was chosen as the best x-val method. For best x-val versus
raw channels, we found that performance was better for 29 of the 31 subjects and
equally good in the remaining two. In the ideal case, in which the calibration
data performance accurately predicts the performance on the online data, all
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Fig. 2. Online classification performance. See text for detailed description.

points in scatter plots e and f should either lie above the diagonal or directly on
it. However, for some subjects (9 out of 31) the choice for either PCA or SFA was
wrong. The respective other method yielded better online classification. Those
subjects are the red points underneath the diagonal in scatter plot e and the
blue points underneath the diagonal in plot f of figure 2.

In figure 3 we show the grand average ERPs of the original EEG signal (x(t))
and the EEG signal that would be observed for the discriminative subset of
PCA/SFA components (xd(t), see also equation 3). The average was taken over
the subjects of the PASS2D study (mean over N=10 subjects). In this figure
xd(t) was created using the method best x-val and the set of components that
was chosen after cross-validation. For x(t) and xd(t), the figure shows the grand
average target and non-target ERP time course of the central electrode Cz, scalp
distribution of voltage averaged over three consecutive intervals separately for
target and non-target stimuli, and discriminative power of the same intervals
(AUC). Corresponding plots and scalp maps have the same color scale. The in-
tervals from which the scalp plots were created are indicated with differently
colored background in the time course of Cz. The figure shows that on aver-
age xd(t) contains almost all of the event-related structure that was originally
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Fig. 3. Grand average ERPs and discriminative power of x(t) and xd(t) (a and b,
respectively). See equation 3 and text for detailed explanation.

contained in the original signal x(t). While the average amplitude is slightly
lower for target epochs in xd(t), the discriminative power has actually increased
somewhat as can be observed in the scalp plots in the bottom rows of the plots.

4 Discussion

We have shown, that a subset of the extracted PCA/SFA components suffices
to capture the ERP structure very well. However, it is generally not the case
that any single PCA/SFA component corresponds to physiologically known EEG
components, such as the P300 for example. By definition, the number of compo-
nents obtained from any linear decomposition technique is equal to the number
of EEG recording channels. This and the fact that physiological EEG compo-
nents are likely to change in various aspects over the course of an experiment
(latency and amplitude of time courses, shape of the field pattern, etc.) leads to
an artificial break-up of physiological EEG components into several PCA/SFA
components if they can be detected at all. Hence one has to be careful when
interpreting obtained field patterns like the ones shown in figure 1.

After projecting discriminative PCA/SFA components back into EEG channel
space, we found that the class-discriminability of the back projected EEG signal
is elevated compared to the class-discriminability of the original EEG recordings.
Hence, classification would be better when performed on the back projected
EEG channels. However, doing the classification in the discriminative subspace
of the decomposition method is even more beneficial because the number of
dimensions is greatly reduced and thus features of the class distributions (such
as their covariance structure) can be approximated better. The employed linear
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classifier LDA relies on an estimate of class-specific covariance structure and can
therefore perform better if input dimensionality is reduced.

One other interesting question that needs to be investigated is why exactly
SFA works for some subjects better than PCA and vice-versa. So far we have not
been able to find consistent evidence which would aid in answering this question.
This is still a matter of ongoing research.

In our analysis we have replicated the course of action that was taken dur-
ing the actual BCI experiments: components were estimated, features extracted,
and classifiers trained on calibration data only. The data of which classification
results are reported was not used in model selection or training. Therefore we be-
lieve that our results bear strong relevance for future BCI studies. This however,
remains to be shown with upcoming experiments.
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Abstract. The artificial neural networks that are used to recognize
shapes typically use one or more layers of learned feature detectors that
produce scalar outputs. By contrast, the computer vision community
uses complicated, hand-engineered features, like SIFT [6], that produce
a whole vector of outputs including an explicit representation of the pose
of the feature. We show how neural networks can be used to learn features
that output a whole vector of instantiation parameters and we argue that
this is a much more promising way of dealing with variations in position,
orientation, scale and lighting than the methods currently employed in
the neural networks community. It is also more promising than the hand-
engineered features currently used in computer vision because it provides
an efficient way of adapting the features to the domain.

Keywords: Invariance, auto-encoder, shape representation.

1 Introduction

Current methods for recognizing objects in images perform poorly and use meth-
ods that are intellectually unsatisfying. Some of the best computer vision systems
use histograms of oriented gradients as “visual words” and model the spatial
distribution of these elements using a crude spatial pyramid. Such methods can
recognize objects correctly without knowing exactly where they are – an ability
that is used to diagnose brain damage in humans. The best artifical neural net-
works [4,5,10] use hand-coded weight-sharing schemes to reduce the number of
free parameters and they achieve local translational invariance by subsampling
the activities of local pools of translated replicas of the same kernel. This method
of dealing with the changes in images caused by changes in viewpoint is much
better than no method at all, but it is clearly incapable of dealing with recog-
nition tasks, such as facial identity recognition, that require knowledge of the
precise spatial relationships between high-level parts like a nose and a mouth.
After several stages of subsampling in a convolutional net, high-level features
have a lot of uncertainty in their poses. This is generally regarded as a desire-
able property because it amounts to invariance to pose over some limited range,
but it makes it impossible to compute precise spatial relationships.

This paper argues that convolutional neural networks are misguided in what
they are trying to achieve. Instead of aiming for viewpoint invariance in the
activities of “neurons” that use a single scalar output to summarize the activities
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of a local pool of replicated feature detectors, artifical neural networks should
use local “capsules” that perform some quite complicated internal computations
on their inputs and then encapsulate the results of these computations into a
small vector of highly informative outputs. Each capsule learns to recognize
an implicitly defined visual entity over a limited domain of viewing conditions
and deformations and it outputs both the probability that the entity is present
within its limited domain and a set of “instantiation parameters” that may
include the precise pose, lighting and deformation of the visual entity relative
to an implicitly defined canonical version of that entity. When the capsule is
working properly, the probability of the visual entity being present is locally
invariant – it does not change as the entity moves over the manifold of possible
appearances within the limited domain covered by the capsule. The instantiation
parameters, however, are “equivariant” – as the viewing conditions change and
the entity moves over the appearance manifold, the instantiation parameters
change by a corresponding amount because they are representing the intrinsic
coordinates of the entity on the appearance manifold.

One of the major advantages of capsules that output explicit instantiation
parameters is that they provide a simple way to recognize wholes by recognizing
their parts. If a capsule can learn to output the pose of its visual entity in a vector
that is linearly related to the “natural” representations of pose used in computer
graphics, there is a simple and highly selective test for whether the visual entities
represented by two active capsules, A and B, have the right spatial relationship
to activate a higher-level capsule, C. Suppose that the pose outputs of capsule A
are represented by a matrix, TA, that specifies the coordinate transform between
the canonical visual entity of A and the actual instantiation of that entity found
by capsule A. If we multiply TA by the part-whole coordinate transform TAC

that relates the canonical visual entity of A to the canonical visual entity of C,
we get a prediction for TC . Similarly, we can use TB and TBC to get another
prediction. If these predictions are a good match, the instantiations found by
capsules A and B are in the right spatial relationship to activate capsule C and
the average of the predictions tells us how the larger visual entity represented by
C is transformed relative to the canonical visual entity of C. If, for example, A
represents a mouth and B represents a nose, they can each make a prediction for
the pose of the face. If these predictions agree, the mouth and nose must be in the
right spatial relationship to form a face. An interesting property of this way of
performing shape recognition is that the knowledge of part-whole relationships is
viewpoint-invariant and is represented by weight matrices whereas the knowledge
of the instantiation parameters of currently observed objects and their parts is
viewpoint-equivariant and is represented by neural activities [12].

In order to get such a part-whole hierarchy off the ground, the “capsules” that
implement the lowest-level parts in the hierarchy need to extract explicit pose
parameters from pixel intensities. This paper shows that these capsules are quite
easy to learn from pairs of transformed images if the neural net has direct, non-
visual access to the transformations. In humans, for example, a saccade causes
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Fig. 1. Three capsules of a transforming auto-encoder that models translations. Each
capsule in the figure has 3 recognition units and 4 generation units. The weights on the
connections are learned by backpropagating the discrepancy between the actual and
target outputs.

a pure translation of the retinal image and the cortex has non-visual access to
information about eye-movements.

2 Learning the First Level of Capsules

Once pixel intensities have been converted into the outputs of a set of active,
first-level capsules each of which produces an explicit representation of the pose
of its visual entity, it is relatively easy to see how larger and more complex visual
entities can be recognized by using agreements of the poses predicted by active,
lower-level capsules. But where do the first-level capsules come from? How can
an artificial neural network learn to convert the language of pixel intensities
to the language of pose parameters? That is the question addressed by this
paper and it turns out that there is a surprisingly simple answer which we call a
“transforming auto-encoder”. We explain the idea using simple 2-D images and
capsules whose only pose outputs are an x and a y position. We generalize to
more complicated poses later.

Consider the feedforward neural network shown in figure 1. The network is
deterministic and, once it has been learned, it takes as inputs an image and
desired shifts, Δx and Δy, and it outputs the shifted image. The network is
composed of a number of separate capsules that only interact at the final layer
when they cooperate to produce the desired shifted image. Each capsule has its
own logistic “recognition units” that act as a hidden layer for computing three
numbers, x, y, and p, that are the outputs that the capsule will send to higher
levels of the vision system. p is the probability that the capsule’s visual entity is
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Fig. 2. Left: A scatterplot in which the vertical axis represents the x output of one
of the capsules for each digit image and the horizontal axis represents the x output
from the same capsule if that image is shifted by +3 or −3 pixels in the x direction.
If the original image is already near the limit of the x positions that the capsule can
represent, shifting further in that direction causes the capsule to produce the wrong
answer, but this does not matter if the capsule sets its probability to 0 for data outside
its domain of competence. Right: The outgoing weights of 10 of the 20 generative
units for 9 of the capsules.

present in the input image. The capsule also has its own “generation units” that
are used for computing the capsule’s contribution to the transformed image. The
inputs to the generation units are x + Δx and y + Δy, and the contributions
that the capsule’s generation units make to the output image are multiplied by
p, so inactive capsules have no effect.

For the transforming auto-encoder to produce the correct output image, it is
essential that the x and y values computed by each active capsule correspond to
the actual x and y position of its visual entity and we do not need to know this
visual entity or the origin of its coordinate frame in advance.

As a simple demonstration of the efficacy of the transforming auto-encoder,
we trained a network with 30 capsules each of which had 10 recognition units
and 20 generation units. Each capsule sees the whole of an MNIST digit image.
Both the input and the output images are shifted randomly by -2, -1, 0, +1, or
+2 pixels in the x and y directions and the transforming auto-encoder is given
the resulting Δx and Δy as an additional input. Figure 2 shows that the capsules
do indeed output x and y values that shift in just the right way when the input
image is shifted. Figure 2 shows that the capsules learn generative units with
projective fields that are highly localized. The receptive fields of the recognition
units are noisier and somewhat less localized.

2.1 More Complex 2-D Transformations

If each capsule is given 9 real-valued outputs that are treated as a 3 × 3 ma-
trix A, a transforming auto-encoder can be trained to predict a full 2-D affine
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Fig. 3. Top: Full affine transformations using a transforming auto-encoder with 25
capsules each of which has 40 recognition units and 40 generation units. The top row
shows input images; the middle row shows output images and the bottom row shows
the correctly transformed output images. Bottom: The output weights of the first 20
generation units of the first 7 capsules for this transforming auto-encoder.

transformation (translation, rotation, scaling and shearing). A known transfor-
mation matrix T is applied to the output of the capsule A to get the matrix TA.
The elements of TA are then used as the inputs to the generation units when
predicting the target output image.

2.2 Modeling Changes in 3-D Viewpoint

A major potential advantage of using matrix multiplies to model the effects of
viewpoint is that it should make it far easier to cope with 3-D. Our preliminary
experiments (see figure 4) used computer graphics to generate stereo images of
various types of car from many different viewpoints. The transforming auto-
encoder consisted of 900 capsules, each with two layers (32 then 64) of rectified
linear recognition units [8]. The capsules had 11x11 pixel receptive fields which
were arranged on a 30x30 grid over the 96x96 image, with a stride of 3 pixels
between neighbouring capsules. There was no weight-sharing. Each capsule pro-
duced from its layer of 64 recognition units a 3x3 matrix representation of the
3-D orientation of the feature that it was tuned to detect, as well as a probability
that its implicitly defined feature was present. This 3x3 matrix was then multi-
plied by the real transformation matrix between the source and target images,
and the result was fed into the capsule’s single layer of 128 generative rectified
linear units. The generation unit activities were multiplied by the capsule’s “fea-
ture presence” probability and the result was used to increment the intensities in
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Fig. 4. Left: Input, output and target stereo-pairs for training data. Right: Input,
output and target stereo-pairs for car models not seen during training.

a 22x22 patch of the reconstructed image centered at the center of the capsule’s
11x11 receptive field. Since the data consisted of stereo pairs of images, each
capsule had to look at an 11x11 patch in both members of the stereo pair, as
well as reconstructing a 22x22 patch in both members.

3 Discussion

Using multiple real-values is the natural way to represent pose information and
it is much more efficient than using coarse coding[3], but it comes at a price:
The only thing that binds the values together is the fact that they are the
pose outputs of the same capsule so it is not possible for a capsule to represent
more than one instance of its visual entity at the same time. It might seem
that the inability to allow several, simultaneous instances of the same visual
entity in the same limited domain is a serious weakness and indeed it is. It
can be ameliorated by making each of the lowest-level capsules operate over
a very limited region of the pose space and only allowing larger regions for
more complex visual entities that are much less densely distributed. But however
small the region, it will always be possible to confound the system by putting
two instances of the same visual entity with slightly different poses in the same
region. The phenomenon known as “crowding” [9] suggests that this type of
confusion may occur in human vision.

From a pure machine learning perspective, providing the network with addi-
tional external inputs that specify the way in which the image has been trans-
formed may appear unnecessary because this information could, in principle,
be computed from the two images [7]. However, this information is often read-
ily available and it makes the learning much easier, so it is silly not to use it.
Specifying a global transformation of the image is much easier than explicitly
specifying the poses of features because it can be done without making any
committment to what visual entity should be extracted by each capsule or what
intrinsic coordinate frame should be used when representing the pose of that
visual entity.
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A capsule bears some resemblance to a local pool of units in a convolutional
neural network, because many of the recognition units have quite similar re-
ceptive fields in slightly different positions. There is a very important difference,
however, in the way in which the outputs of all the recognition units are encapsu-
lated for use by higher levels. In a convolutional pool, the combined output after
subsampling is typically the scalar activity of the most active unit in the pool
[11]. Even if the location of this unit is used when creating the reconstruction
required for unsupervised learning, it is not used by higher levels [5] because the
aim of a convolutional net is to make the activities translation invariant. Also,
even if the location that is used for reconstruction were to be passed to higher
levels, it would only have integer-valued coordinates. A capsule makes much bet-
ter use of the outputs of the recognition units by using them to compute precise
position coordinates which are accurate to a small fraction of a pixel. In this re-
spect it resembles a steerable filter [2], but unlike most steerable filters it learns
the receptive fields of the recognition units to optimize the accuracy of the com-
puted coordinates and it also learns what visual entity to represent. Replicated
copies of exactly the same weight kernel are far from optimal for extracting the
pose of a visual entity over a limited domain, especially if the replication must
cover scale and orientation as well as position.

Transforming auto-encoders also have an interesting relationship to Kalman
filters. The usual way to apply Kalman filters to data in which the dynamics is
a non-linear function of the observations is to use an “extended” Kalman filter
that linearizes the dynamics about the current operating point. This often works
quite well but it is clearly a hack. If we view the input and desired output images
as temporally adjacent, the transforming auto-encoder is a more principled way
to use a linear dynamical model. The recognition units learn to map the input
to a representation in which the dynamics really are linear. After the poses of
the capsules have been linearly transformed, the generation units map back to
the observation domain. By measuring the error in the observation domain, we
avoid the need to compute determinants that keep track of the extent to which
errors have been compressed or expanded in moving between domains.

If we eliminate the extra input that gives the transforming auto-encoder di-
rect knowledge of the transformation, we can model the small transformations
between adjacent time-frames as zero-mean Gaussian noise. This reduces the
transforming auto-encoder to a much less powerful learning method that is only
able to find “slow features” that do not change much between successive images.

A model proposed in [1] uses a very different learning procedure to learn a
similar representation to the transforming auto-encoder. The locally invariant
probabilities that capsules compute resemble the outputs of their complex cells
and the equivariant instantiation parameters resemble the outputs of their simple
cells. They learn without using knowledge of transformations, but they only learn
instantiation parameters that are linear functions of the image.

A transforming auto-encoder can force the outputs of a capsule to repre-
sent any property of an image that we can manipulate in a known way. It is
easy, for example, to scale up all of the pixel intensities. If a first-level capsule
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outputs a number that is first multiplied by the brightness scaling factor and then
used to scale the outputs of its generation units when predicting the brightness-
transformed output, this number will learn to represent brightness and will allow
the capsule to disentangle the probability that an instance of its visual entity
is present from the brightness of the instance. If the direction of lighting of
a scene can be varied in a controlled way, a capsule can be forced to output
two numbers representing this direction but only if the visual entity is complex
enough to allow the lighting direction to be extracted from the activities of the
recognition units.
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Abstract. We present a novel convolutional auto-encoder (CAE) for
unsupervised feature learning. A stack of CAEs forms a convolutional
neural network (CNN). Each CAE is trained using conventional on-line
gradient descent without additional regularization terms. A max-pooling
layer is essential to learn biologically plausible features consistent with
those found by previous approaches. Initializing a CNN with filters of a
trained CAE stack yields superior performance on a digit (MNIST) and
an object recognition (CIFAR10) benchmark.

Keywords: convolutional neural network, auto-encoder, unsupervised
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1 Introduction

The main purpose of unsupervised learning methods is to extract generally use-
ful features from unlabelled data, to detect and remove input redundancies, and
to preserve only essential aspects of the data in robust and discriminative rep-
resentations. Unsupervised methods have been routinely used in many scientific
and industrial applications. In the context of neural network architectures, un-
supervised layers can be stacked on top of each other to build deep hierarchies
[7]. Input layer activations are fed to the first layer which feeds the next, and
so on, for all layers in the hierarchy. Deep architectures can be trained in an
unsupervised layer-wise fashion, and later fine-tuned by back-propagation to be-
come classifiers [9]. Unsupervised initializations tend to avoid local minima and
increase the network’s performance stability [6].

Most methods are based on the encoder-decoder paradigm, e.g., [20]. The in-
put is first transformed into a typically lower-dimensional space (encoder), and
then expanded to reproduce the initial data (decoder). Once a layer is trained,
its code is fed to the next, to better model highly non-linear dependencies in the
input. Methods using this paradigm include stacks of: Low-Complexity Coding
and Decoding machines (LOCOCODE) [10], Predictability Minimization lay-
ers [23,24], Restricted Boltzmann Machines (RBMs) [8], auto-encoders [20] and
energy based models [15].

In visual object recognition, CNNs [1,3,4,14,26] often excel. Unlike patch-
based methods [19] they preserve the input’s neighborhood relations and
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spatial locality in their latent higher-level feature representations. While the
common fully connected deep architectures do not scale well to realistic-sized
high-dimensional images in terms of computational complexity, CNNs do, since
the number of free parameters describing their shared weights does not depend
on the input dimensionality [16,18,28].

This paper introduces the Convolutional Auto-Encoder, a hierarchical unsu-
pervised feature extractor that scales well to high-dimensional inputs. It learns
non-trivial features using plain stochastic gradient descent, and discovers good
CNNs initializations that avoid the numerous distinct local minima of highly
non-convex objective functions arising in virtually all deep learning problems.

2 Preliminaries

2.1 Auto-Encoder

We recall the basic principles of auto-encoder models, e.g., [2]. An auto-encoder
takes an input x ∈ Rd and first maps it to the latent representation h ∈ Rd′

using
a deterministic function of the type h = fθ = σ(Wx + b) with parameters θ =
{W, b}. This “code” is then used to reconstruct the input by a reverse mapping
of f : y = fθ′(h) = σ(W ′h + b′) with θ′ = {W ′, b′}. The two parameter sets
are usually constrained to be of the form W ′ = WT , using the same weights for
encoding the input and decoding the latent representation. Each training pattern
xi is then mapped onto its code hi and its reconstruction yi. The parameters
are optimized, minimizing an appropriate cost function over the training set
Dn = {(x0, t0), ..., (xn, tn)}.

2.2 Denoising Auto-Encoder

Without any additional constraints, conventional auto-encoders learn the iden-
tity mapping. This problem can be circumvented by using a probabilistic RBM
approach, or sparse coding, or denoising auto-encoders (DAs) trying to recon-
struct noisy inputs [27]. The latter performs as well as or even better than
RBMs [2]. Training involves the reconstruction of a clean input from a partially
destroyed one. Input x becomes corrupted input x̄ by adding a variable amount v
of noise distributed according to the characteristics of the input image. Common
choices include binomial noise (switching pixels on or off) for black and white im-
ages, or uncorrelated Gaussian noise for color images. The parameter v represents
the percentage of permissible corruption. The auto-encoder is trained to denoise
the inputs by first finding the latent representation h = fθ(x̄) = σ(Wx̄+b) from
which to reconstruct the original input y = fθ′(h) = σ(W ′h + b′).

2.3 Convolutional Neural Networks

CNNs are hierarchical models whose convolutional layers alternate with sub-
sampling layers, reminiscent of simple and complex cells in the primary visual
cortex [11]. The network architecture consists of three basic building blocks
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to be stacked and composed as needed. We have the convolutional layer, the
max-pooling layer and the classification layer [14]. CNNs are among the most
successful models for supervised image classification and set the state-of-the-art
in many benchmarks [13,14].

3 Convolutional Auto-Encoder (CAE)

Fully connected AEs and DAEs both ignore the 2D image structure. This is not
only a problem when dealing with realistically sized inputs, but also introduces
redundancy in the parameters, forcing each feature to be global (i.e., to span the
entire visual field). However, the trend in vision and object recognition adopted
by the most successful models [17,25] is to discover localized features that re-
peat themselves all over the input. CAEs differs from conventional AEs as their
weights are shared among all locations in the input, preserving spatial locality.
The reconstruction is hence due to a linear combination of basic image patches
based on the latent code.

The CAE architecture is intuitively similar to the one described in Sec. 2.2,
except that the weights are shared. For a mono-channel input x the latent rep-
resentation of the k-th feature map is given by

hk = σ(x ∗ Wk + bk) (1)

where the bias is broadcasted to the whole map, σ is an activation function (we
used the scaled hyperbolic tangent in all our experiments), and ∗ denotes the
2D convolution. A single bias per latent map is used, as we want each filter to
specialize on features of the whole input (one bias per pixel would introduce too
many degrees of freedom). The reconstruction is obtained using

y = σ(
∑
k∈H

hk ∗ W̃k + c) (2)

where again there is one bias c per input channel. H identifies the group of latent
feature maps; W̃ identifies the flip operation over both dimensions of the weights.
The 2D convolution in equation (1) and (2) is determined by context. The convo-
lution of an m×m matrix with an n×n matrix may in fact result in an (m + n−
1)× (m+n−1) matrix (full convolution) or in an (m−n+1)× (m−n+1) (valid
convolution). The cost function to minimize is the mean squared error (MSE):

E(θ) =
1

2n

n∑
i=1

(xi − yi)2. (3)

Just as for standard networks the backpropagation algorithm is applied to com-
pute the gradient of the error function with respect to the parameters. This can
be easily obtained by convolution operations using the following formula:

∂E(θ)
∂W k

= x ∗ δhk + h̃k ∗ δy. (4)

δh and δy are the deltas of the hidden states and the reconstruction, respectively.
The weights are then updated using stochastic gradient descent.
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3.1 Max-Pooling

For hierarchical networks in general and CNNs in particular, a max-pooling layer
[22] is often introduced to obtain translation-invariant representations. Max-
pooling down-samples the latent representation by a constant factor, usually
taking the maximum value over non overlapping sub-regions. This helps improv-
ing filter selectivity, as the activation of each neuron in the latent representation
is determined by the “match” between the feature and the input field over the
region of interest. Max-pooling was originally intended for fully-supervised feed-
forward architectures only.

Here we introduce a max-pooling layer that introduces sparsity over the hid-
den representation by erasing all non-maximal values in non overlapping sub-
regions. This forces the feature detectors to become more broadly applicable,
avoiding trivial solutions such as having only one weight “on” (identity func-
tion). During the reconstruction phase, such a sparse latent code decreases the
average number of filters contributing to the decoding of each pixel, forcing filters
to be more general. Consequently, with a max-pooling layer there is no obvious
need for L1 and/or L2 regularization over hidden units and/or weights.

3.2 Stacked Convolutional Auto-Encoders (CAES)

Several AEs can be stacked to form a deep hierarchy, e.g. [27]. Each layer receives
its input from the latent representation of the layer below. As for deep belief
networks, unsupervised pre-training can be done in greedy, layer-wise fashion.
Afterwards the weights can be fine-tuned using back-propagation, or the top
level activations can be used as feature vectors for SVMs or other classifiers.
Analogously, a CAE stack (CAES) can be used to initialize a CNN with identical
topology prior to a supervised training stage.

4 Experiments

We begin by visually inspecting the filters of various CAEs, trained in various
setups on a digit dataset (MNIST [14]) and on natural images (CIFAR10 [13]).
In Figure 1 we compare 20 7 × 7 filters (learned on MNIST) of four CAEs of
the same topology, but trained differently. The first is trained on original digits
(a), the second on noisy inputs with 50% binomial noise added (b), the third
has an additional max-pooling layer of size 2 × 2 (c), and the fourth is trained
on noisy inputs (30% binomial noise) and has a max-pooling layer of size 2× 2
(d). We add 30% noise in conjunction with max-pooling layers, to avoid loss of
too much relevant information. The CAE without any additional constraints (a)
learns trivial solutions. Interesting and biologically plausible filters only emerge
once the CAE is trained with a max-pooling layer. With additional noise the
filters become more localized. For this particular example, max-pooling yields
the visually nicest filters; those of the other approaches do not have a well-defined
shape. A max-pooling layer is an elegant way of enforcing a sparse code required
to deal with the overcomplete representations of convolutional architectures.
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(a) (b)

(c) (d)

Fig. 1. A randomly selected subset of the first layer’s filters learned on MNIST to
compare noise and pooling. (a) No max-pooling, 0% noise, (b) No max-pooling, 50%
noise, (c) Max-pooling of 2x2, (d) Max-pooling of 2x2, 30% noise.

(a)

(b)

(c)

(d)

Fig. 2. A randomly selected subset of the first layer’s filters learned on CIFAR10 to
compare noise and pooling (best viewed in colours). (a) No pooling and 0% noise, (b)
No pooling and 50% noise, (c) Pooling of 2x2 and 0% noise, (d) Pooling of 2x2 and
50% noise.
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When dealing with natural color images, Gaussian noise instead of binomial
noise is added to the input of a denoising CAE. We repeat the above experiment
on CIFAR10. The corresponding filters are shown in Figure 2. The impact of a
max-pooling layer is striking (c), whereas adding noise (b) has almost no visual
effect except on the weight magnitudes (d). As for MNIST, only a max-pooling
layer guarantees convincing solutions, indicating that max-pooling is essential.
It seems to at least partially solve the problems that usually arise when training
auto-encoders by gradient descent. Another welcome aspect of our approach is
that except for the max-pooling kernel size, no additional parameters have to be
set by trial and error or time consuming cross-validation.

4.1 Initializing a CNN with Trained CAES Weights

The filters found in the previous section are not only interesting in themselves
but also biologically plausible. We now train a CAES and use it to initialize a
CNN with the same topology, to be fine-tuned for classification tasks. This has
already shown to alleviate common problems with training deep standard MLPs,
[6]. We investigate the benefits of unsupervised pre-training through comparisons
with randomly initialized CNNs.

We begin with the well established MNIST benchmark [14] to show the effect
of pre-training for subsets of various sizes. Classification results in Table 1 are
based on the complete test set and the specified numbers of training samples.
The network has 6 hidden layers: 1) convolutional layer with 100 5x5 filters per
input channel; 2) max-pooling layer of 2x2; 3) convolutional layer with 150 5x5
filters per map; 4) max-pooling layer of 2x2; 5) convolutional layer of 200 maps
of size 3x3; 6) a fully-connected layer of 300 hidden neurons. The output layer
has a softmax activation function with one neuron per class. The learning rate
is annealed during training. No deformations are applied to MNIST to increase
the “virtual” number of training samples, which would reduce the impact of
unsupervised pre-training for this problem that is already considered as good
as solved. We also test our model on CIFAR10. This dataset is challenging be-
cause little information is conveyed by its 32 by 32 pixel input patterns. Many
methods were tested on it. The most successful ones use normalization tech-
niques to remove second order information among pixels [5,12], or deep CNNs
[3]. Our method provides good recognition rates even when trained on “raw”

Table 1. Classification results on MNIST
using various subsets of the full data

1k 10k 50k

CAE [%] 7.23 1.88 0.71
CNN [%] 7.63 2.21 0.79

K-means (4k feat) [5]a - - 0.88

a We performed this experiment using
the code provide by the authors.

Table 2. Classification results on CI-
FAR10 using various subsets of the full
data; comparison with other unsupervised
methods

1k 10k 50k

CAE [%] 52.30 34.35 21.80
CNN [%] 55.52 35.23 22.50

Mean-cov. RBM [21] - - 29.00
Conv. RBM [12] - - 21.10

K-means (4k feat) [5] - - 20.40
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pixel information only. We add 5% translations only for supervised fine-tuning,
and re-use the MNIST CNN architecture, except that the input layer has three
maps, one for each color channel. Results are shown in Table 2. On CIFAR10 we
obtain, to our knowledge, the best result so far for any unsupervised architecture
trained on non-whitened data. Using raw data makes the system fully on-line
and, additionally, there is no need to gather statistics over the whole training set.
The performance improvement with respect to the randomly initialized CNN is
bigger than for MNIST because the problem is much harder and the network
profits more from unsupervised pre-training.

5 Conclusion

We introduced the Convolutional Auto-Encoder, an unsupervised method for hi-
erarchical feature extraction. It learns biologically plausible filters. A CNN can
be initialized by a CAE stack. While the CAE’s overcomplete hidden represen-
tation makes learning even harder than for standard auto-encoders, good filters
emerge if we use a max-pooling layer, an elegant way of enforcing sparse codes
without any regularization parameters to be set by trial and error. Pre-trained
CNNs tend to outperform randomly initialized nets slightly, but consistently.
Our CIFAR10 result is the best for any unsupervised method trained on the raw
data, and close to the best published result on this benchmark.
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Abstract. We develop a learning rule for networks of spiking neurons
where signals are encoded using fractionally predictive spike-coding. In
this paradigm, neural output signals are encoded as a sum of shifted
power-law kernels. Simple greedy thresholding can compute this encod-
ing, and spike-trains are then exactly the signal’s fractional derivative.
Fractionally predictive spike-coding exploits natural statistics and is con-
sistent with observed spike-rate adaptation in real neurons; its multiple-
timescale properties also reconciles notions of spike-time coding and
spike-rate coding. Previously, we argued that properly tuning the de-
coding kernel at receiving neurons can implement spectral filtering; the
applicability to general temporal filtering was left open. Here, we present
an error-backpropagation algorithm to learn these decoding filters, and
we show that networks of fractionally predictive spiking neurons can then
implement temporal filters such as delayed responses, delayed match-to-
sampling, and temporal versions of the XOR problem.

1 Introduction

Real biological neurons compute in continuous time via the exchange of electrical
pulses or spikes, and algorithmic descriptions of neural information processing
in terms of spikes likely holds the key to resolving the scientific question of how
biological spiking neurons work. The interest in the computational properties
of spiking neurons was boosted in particular by findings from experimental and
theoretical neuroscience [12,16], which suggested that the precise timing of in-
dividual spikes can be important in neural information processing. This has led
to great debate, as the general assumption in neuroscience has always been that
it is the neuron’s spike rate that encodes information.

The notion of neural spike-time coding has resulted in the development of a
number of spiking neural network approaches demonstrating that spiking neu-
rons can compute using precisely times spikes similar to traditional neurons in
neural networks [14,4,13]. Still, in spite of the successes of spiking neural net-
works, and the theoretical appeal of spike-time coding, it has remained a chal-
lenge to extend spike-based coding to computations involving longer timescales.
Recurrent spiking neural network approaches can achieve longer memory, though
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Fig. 1. (A) Power-law kernel (dashed blue) for β = 0.8, and Guassian components κk

(B) Signal (black) approxiamated with a sum of power-law kernels (dashed blue)

they are notoriously hard to train [21]; edge-of-stability dynamical systems meth-
ods like reservoir computing show promise [11,5], although they require many
neurons and spikes, and mostly disregard notions of spike-time coding.

Based on recent neuroscience findings [10], and reconciling the notions of both
spike-time coding and spike-rate coding, we proposed a novel scheme for spike-
based neural coding based on the observation that a mild derivative – a fractional
derivative – of a signal can under certain conditions be a series of spikes [3]. In
this framework, neural spiking is a statistically efficient means of encoding time-
continuous signals. It does so by approximating the internally computed neural
signal as sum of shifted kernels, where these kernels decay following a power-law
(e.g. figure 1A). Power-law kernels provide much longer traces of past signals as
compared to exponentially decaying kernels [7], and are thus much more suitable
for computing temporal functions over behaviorally relevant timescales.

In this paper, we exploit key properties of the fractional-spike coding frame-
work to learn functions over behaviorally relevant timescales. We capitalize
on the fact that power-law kernels can be approximated for example using a
weighted sum of exponential functions. We show that useful temporal filters can
be learned by adapting these composite weights when decoding spike-trains at
the receiving synapse. For this task, we derive error-backpropagation in the frac-
tional spike-coding paradigm. With this learning rule we show that networks
of fractionally predictive neurons can learn functions through time like delayed
timer-functions and recall tasks like delayed-match-to-sample.

2 Fractionally Predictive Spiking Neurons

Starting from the standard Linear-nonlinear neuron model [2], an artificial neu-
ron j computes an internal variable yj(t) as a function over the weighted sum of
filtered inputs xj(t): yj(t) = F(xj(t)) and xj(t) =

∑
i∈J wijfi(yi(t)), where J is

the set of presynaptic neurons i to neuron j, and fi(yi(t)) denotes the (temporal)
filter that computes (fi yi)(t).

As defined in [3], a fractionally predictive spiking neuron j approximates the
internal signal yj(t) with ŷj(t) as a sum of shifted power-law kernels centered at
spike-times {ti}:



62 S.M. Bohte

yj(t) ≈ ŷj(t) =
∑
tj<t

κ(t− tj).

The fractional derivative of order α of this approximation ŷj(t) is just the spike-
train {ti} when the kernel κ(t) decays proportional to a power-law κ(t) ∝ t−β

when α = 1− β [3]:
∂αŷj(t)

∂tα
=
∑
tj<t

δ(t− tj).

Such signal approximation ŷj(t) can be achieved by computing the difference
between the current signal estimation and the (emitted) future estimation (pre-
diction) ŷ(t), adding a spike ti when this difference exceeds a threshold ϑ:

z(t) = y(t)− ŷ(t)
ti = t if z(t) > ϑ

With a single, positive threshold only positive signal deviations are transmit-
ted, and for negative deviations the transmitted signal decays as t−β (closely
matching actual spiking neuron behavior [15]). Such signal approximation is
shown in figure 1B, where the height of the kernel κ is set to two times the
threshold ϑ. Alternatively, the signal approximation can be precise up to ϑ if
we use positive and negative spikes to signal respectively positive and negative
deviations, for instance using two tightly coupled spiking neurons [3].

We use the fact that a power-law kernel κ(t) can be approximated as a sum
(or cascade) of different, weighted exponentially decaying functions κk(t) [7]:

κ(t) ≈
∑

k

κk(t),

as illustrated in figure 1A. This lets us rewrite ŷi(t) as a sum of components
yk

i (t):

ŷi(t) =
∑
ti<t

∑
k

κk(t− ti) =
∑

k

yk
i (t).

At a receiving neuron j, a temporal filter κij of the signal ŷj(t) from neuron
j can then be created by weighing these components with weights wk

ij at the
receiving synapse:

κij(t) =
∑

k

wk
ijy

k
i (t).

and the neuron’s input is thus computed as:

xj(t) =
∑
i∈J

∑
ti<t

κij(t− ti) =
∑
i∈J

wk
ijy

k
i (t),

Note that for wk
ij = wij∀ k, the input at neuron j decodes a weighted version of

the output of presynaptic neurons i.
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3 Learning in Networks of Fractionally Predictive
Spiking Neurons

We consider a standard fully connected feedforward neural network, with input
layer I, hidden layer H, and output layer O, populated with neurons i, j and
m. We derive standard error-backpropagation learning rules for adjusting the
components wk

ij of the filtering kernels κij(t) for each connection in the network.
Given desired output activation pattern sk(t) for each output neuron k, we

define a standard quadratic error measure in terms of the output ŷ:

E(t) =
∑

m∈O
(sm(t)− ŷm(t))2

The goal is to adjust each weight wk
ij (and wk

jm) in the network so as to minimize
the error over some time-period [T, T ′]:

Δwk
ij ∝ −

∂
∑T ′

t=T E(t)
∂wk

ij

=
T ′∑

t=T

∂E(t)
∂wk

ij

,

(as the error-contributions are conditionally independent).
For the output layer, we have:

∂E(t)
∂wk

jm

=
∂E(t)
∂ŷm(t)

∂ŷm(t)
∂xm(t)

∂xm(t)
∂wk

jm

= (sm(t)− ŷm(t))F ′(xm(t))yk
j (t),

where F ′(xm(t)) denotes the derivative ∂ŷm/∂xm(t).
For weights in the hidden layer, the error-contributions become:

∂E(t)
∂wk

ij

=
∑
m∈O

∂E(t)m

∂ŷm(t)
∂ŷm(t)
∂xm(t)

∑
k′

∂xm(t)
∂yk

j (t)
∂yk

j (t)
∂ŷj(t)

∂ŷj(t)
∂xj(t)

∂xj(t)
∂wk

ij

=
∑
m∈O

[
(sm(t)− ym(t))F ′(xm(t))

∑
k′

wk′
jm

]
F ′(xj(t))yk

i (t).

Here, we take the transfer-function ŷ = F(x(t)) to be piece-wise linear, with
F(x(t)) = 0 for x(t) < 0, and F(x(t)) ≈ αx(t) otherwise; a lack of input signals
then automatically maps to a lack of output signals.

4 Experiments

We illustrate the efficacy of the derived error-backpropagation learning rule with
some examples of behaviorally relevant temporal computations. Given a de-
fined input-output relationship, we computed the respective approximation ŷ(t)
with power-law kernels, obtaining corresponding input-output spike-trains. We
trained the network to minimize the error between the actual output and the
desired output, both in terms of the respective power-law kernel approximation.
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Fig. 2. Neural timers. Left: learning a 300ms delay directly from input. Top: input-
target spike pattern. Bottom: Learned response after 400 epochs, with the kernel ap-
proximation ŷ(t) matching the target output. Target (green dashed) and internal signal
y(t) (solid black) and signal kernel approximation ŷ(t) (dashed blue). Right: learning a
larger response at Δt = 1000ms, with an additional hidden neuron. Top: input-target
spike pattern. Bottom: Learned response after 900 epochs, for the hidden neuron (cen-
ter) and the output neuron (right). Shown in red is the developed temporal filter.

In all experiments, we use a power-law kernel with β = 0.8 (after [10]), which
we approximate with 40 Gaussians, with centers μk distributed evenly over the
log of the timeframe [5, 10000]ms, increasing variance σk as μk/5. We used a
greedy search heuristic to find the weighing of the individual gaussians such
that their sum closely approximated the desired power-law decay. The learning
rate was set at 0.01, and we considered the error over a time range of (0, 2000]ms
(as all relevant patterns were defined within this range). It should be noted that
in both hidden and output layer, the signal-approximation incurs a delay on the
computed signal approximation equal to the rise-time of the kernel; in all figures
(and in the error-computations), we subtracted this fixed delay for clarity. Setting
the maximum kernel height κM = 0.1, we used a threshold ϑ = 0.5κM . Weights
were initialized such that input elicited some spikes in each hidden neuron. We
trained the networks until the error was less than one “misplaced” spike.

Spiking neuron as timer. In figure 2, we show how a single fractionally predic-
tive neuron can learn to give a precise delayed response. Given three input spikes
at the start of the trial, the neuron responds with three carefully timed spikes
some 300ms later. Such a direct input-output relation however was not sufficient
to learn a precise mapping for substantially larger delays, such as 1,000ms. In
the center and right figure, we show how the addition of a hidden neuron can
help the output neuron to learn a delayed precise response. The hidden neuron
computes a broad delay of about 900ms, and the output neuron then derives a
much more precise response. Shown in red are also the effective temporal input
filters that the respective neurons develop.
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Fig. 3. Learning delayed match-to-sample. (A)-(D): the output neuron in a 2-4-1 net-
work correctly learns the spike-responses ŷ(t) to the four input-output patterns (inset
boxes), in about 2000 epochs. (E)-(F): hidden neuron responses for patterns 3 and 4.

Delayed Match To Sample. Many behavioral tasks in some way require an
animal to remember something it had experienced earlier: delayed match-to-
sample tasks. We taught a simple version of this task. One of two input neurons
emits a few spikes, and when the same input neuron spikes some 200ms later,
the output neuron has to respond with an additional 200ms delay (see insets in
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figures 3A-D); if the other input neuron spikes, the output neuron has to remain
silent. A network using four hidden neurons can successfully learns this task
(figure 3), also for variations with more spikes and longer delays (not shown).

Delayed XOR. We were also able to train the network on various delayed
temporal XOR problems similar to those in [4] (not shown for lack of space).

5 Discussion

We developed a learning algorithm for supervised learning in networks of spiking
neurons using the fractionally predictive spike-coding paradigm from [3]. This
coding paradigm allows for a natural signal encoding over multiple timescales,
consistent with the self-similar statistical properties of natural signals [22]. It also
allows for a natural reconciliation of spike-time coding and spike-rate coding as
expressions of fractionally predictive spike-coding at different timescales. Within
this paradigm, decoding of the fractional spike-code amounts to summing power-
law kernels. As we noted in [3], such decoding allows for straightforward spectral
filtering, as power-law kernels can be decomposed as a sum of exponential ker-
nels with different time-constants; spectral filtering is achieved by decoding only
certain parts of such composite kernels. The open question was whether this
could also be exploited for learning temporal patterns.

The derived error-backpropagation algorithm shows that temporal filters can
be learned in networks of fractionally predictive spiking neurons, for a number of
tasks, over behaviorally relevant time-courses. Effectively, the exponentials that
can be composed to a power-law kernel are used as time-delays. Such delays have
been explored before in the context of spike-time coding [14,4,18], but only over
small time-courses (tens of milliseconds), consistent with biologically observed
axonal delays between neurons. Behaviorally relevant tasks operate typically
over substantially longer timescales; and it is interesting to note that models of
reinforcement learning [20,9] in fact similarly employ neurons receiving multiple
delayed inputs to allow standard neural networks to learn sequential tasks, with
some recent experimental results supporting this notion as well [1].

Neural coding over longer timescales is implicit in the fractionally predictive
spike-coding paradigm, and corresponds at the encoding side to the physiolog-
ically well-established phenomenon of spike-rate adaptation. Our learning rule
effectively conjectures that similar multiple-timescale machinery is effective and
tunable at the receiving part of individual synapses. To some degree this must
be true, as real neurons often have complex temporal receptive field dynamics,
and many neurons exhibit sustained activity in response to a brief activation [8].

The learning rule presented here allows for learning input-output relations
over different timescales: at short timescales, we can exactly learn relative
spike-times; at longer timescales, we are no longer able to learn exact spike-
times but instead learn approximate instantaneous spike-rates.

We used a single positive threshold spiking neuron model to approximate the
internally computed signal into a sum of power-law kernels. This arrangement
by necessity cannot encode signal decreases that are faster than the decay of the
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sum of power-law kernels. This could be remedied by arranging two neurons such
that the signal is effectively approximated using both a positive and a negative
threshold, as we did in [3]. We did not use such an arrangement here for three
reasons, the first being simplicity. Secondly, power-law decay of a signal is, under
certain conditions, consistent with an optimal Bayesian observer model [19], and
thirdly the corresponding asymmetric detection of signal changes up versus down
is well known in the psychophysical literature [6].

Having a standard supervised learning algorithm will allow us to further ex-
plore the fractionally predictive spike-coding paradigm in the context of recur-
rent neural networks, in particular reservoir computing. We are also working on
developing the paradigm for reinforcement learning, as that is how most animals
learn, and, as noted, that is also where the closest comparable modeling work has
already taken place. Importantly, in the latter paradigm, methods like attention-
gated reinforcement learning on average compute the error-backpropagation gra-
dient [17], suggesting a direct link to the presented work.
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14. Natschläger, T., Ruf, B.: Spatial and temporal pattern analysis via spiking neurons.
Network: Computation in Neural Systems 9(3), 319–332 (1998)

15. Pozzorini, C., Naud, R., Mensi, S., Gerstner, W.: Multiple timescales of adapta-
tion in single neuron models. In: Front. Comput. Neurosci. Conference Abstract:
Bernstein Conference on Computational Neuroscience (2010)

16. Rieke, F., Warland, D., Bialek, W.: Spikes: Exploring the Neural Code (1999)
17. Roelfsema, P., Van Ooyen, A.: Attention-gated reinforcement learning of internal

representations for classification. Neural Computation 17(10), 2176–2214 (2005)
18. Schrauwen, B., Van Campenhout, J.: Extending spikeprop. In: Proceedings IJCNN

2004, vol. 1, IEEE, Los Alamitos (2005)
19. Snippe, H., van Hateren, J.: Recovery from contrast adaptation matches ideal-

observer predictions. JOSA A 20(7), 1321–1330 (2003)
20. Suri, R., Schultz, W.: Learning of sequential movements by neural network model

with dopamine-like reinforcement signal. Exp. Brain Res. 121(3), 350–354 (1998)
21. Tino, P., Mills, A.: Learning beyond finite memory in recurrent networks of spiking

neurons. Neural Computation 18(3), 591–613 (2006)
22. Van Hateren, J.: Processing of natural time series of intensities by the visual system

of the blowfly. Vision Research 37(23), 3407–3416 (1997)



 

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 69–76, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

ESN Intrinsic Plasticity versus Reservoir Stability 

Petia Koprinkova-Hristova1 and Guenther Palm2 

1 Bulgarian Academy of Sciences, Institute of System Engineering and Robotics,  
Sofia, Bulgaria 

pkoprinkova@icsr.bas.bg 
2 Institute of Neural Information Processing, University of Ulm, Ulm, Germany 

guenther.palm@uni-ulm.de 

Abstract. The work presented in this paper was inspired by similarities be-
tween intrinsic plasticity (IP) pre-training of the ESN reservoir and the common 
RNN stability conditions derived from nonlinear control theory. The common 
theoretical stability conditions were applied to the ESN structure. It was proven 
that in fact IP training achieves a balance between maximization of entropy at 
the ESN output and the concentration of that output distribution around the  
pre-specified mean value. Thus the squeezing of the neuron nonlinearities is 
produced not only by nonzero biases and translation of the ESN equilibrium 
state but also by the chosen output distribution mean value. The numerical  
investigations of different random reservoirs showed that the IP improvement 
stabilizes even initially unstable reservoirs. 

Keywords: Echo state network, intrinsic plasticity, stability. 

1   Introduction 

Nowadays applications of neural networks to modeling of complex dynamical sys-
tems and dependencies require fast and stable trainable recurrent neural network 
(RNN) structures. Such a structure named “Echo state network” (ESN) [2, 3, 5] has 
recently been proposed. It incorporates a dynamic recurrent reservoir and easily train-
able output neurons. The ESN reservoir structure is randomly generated. There are no 
universal recipes for reservoir generation [5] and all works in this direction are task 
dependent. The only restriction is that it has to have so called “echo state property” 
that means: the effect of its previous state and input to its output should vanish gradu-
ally in time, i.e. asymptotic stability. The usual recommendation for achieving the 
echo state property is to generate a reservoir weight matrix with spectral radius below 
one. However as it was mentioned in many works [5] this condition will not guaranty 
ESN stable behavior in general. Another way to obtain proper behavior of the reser-
voir is to use a bias term [2, 6] that will move the operating point of the system in the 
desired direction. In search of achieving rich reservoirs with a large diversity of states, 
Ozturk et al. [6] proposed a method for placing the poles of the linearized ESN in 
order to assure its stable behavior having at the same time a spectral radius close to 
the stability boundary. This approach is based on average entropy maximization at the 
ESN output. Another direction of work, also aimed at maximization of information 
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transmission trough the ESN (equivalent to its output entropy maximization), is called 
“intrinsic plasticity” (IP) [7, 8]. It is related to known biological mechanisms that 
change neural excitability according to the distribution of the stimuli. The authors 
proposed a gradient method for adjusting the biases and an additional gain adjustment 
aimed at achieving the desired distribution of outputs. 

In fact maximization of entropy in both cases could be related to an increase of the 
ESN system stability since it is well known that any stable stationary state has a local 
maximum of entropy [4]. In the huge area of stability analysis of complex nonlinear 
systems there are theoretical developments that could be applied only by simulations, 
but they are not able to give mathematical rules for the construction of stable nonlin-
ear systems as a whole. RNN stability was theoretically investigated in [1]. The au-
thors proved that addition of a bias term to the neural activation functions allows 
restricting the sector of their nonlinearities thus improving system stability. Another 
common conclusion is that reservoir connection weights should be decreased. These 
two main results from [1] correspond very well to what was done in practice by the IP 
method [7, 8], although its motivation was slightly different. However all the works 
on IP reported that reservoir spectral radius increases thus causing danger to corrupt 
stability of the ESN. But in fact simulation investigations in this direction [8] showed 
much more stable behavior of IP pre-trained reservoirs in comparison to randomly 
generated ones. 

The work presented in this paper was inspired by similarities between IP pre-
training of ESN reservoir and the RNN stability conditions derived in [1]. The com-
mon stability conditions from [1] were applied to the ESN structure. It was proven 
that in fact IP training achieves balance between maximization of entropy at the ESN 
output and the concentration of the output distribution around the pre-specified mean 
value. Thus the squeezing of the neurons' nonlinearity sectors is provoked not only  
by nonzero biases and translation of the ESN equilibrium state, but also by the  
chosen output distribution mean value. The simulation investigations with different 
random reservoirs showed that the IP improvement stabilizes even initially unstable 
reservoirs. 

2   Problem Statement 

2.1   Echo State Networks as a Special Structure RNN 

ESNs are a kind of recurrent neural networks that arise from so called “reservoir 
computing approaches” [5]. Their dynamics is describes as follows: 
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Here, u(k) is a vector of network inputs, r(k) a vector of the reservoir neuron states; 

fout is usually the identity function, Wout is a trainable )( rnunoutn +×  matrix (here 
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nout, nu and nr are the dimensions of the corresponding vectors out, u and r); Win and 

Wres are unrn ×  and rnrn ×  matrices that are randomly generated and are not train-

able. The neurons in the reservoir have a simple sigmoid output function fres that is 
usually tanh. 

Since the linear superposition of stable subsystems is also stable, here we’ll con-
sider only internal reservoir dynamics of (1). Following the state space transformation 
as in [1] the undisturbed dynamics (i.e. with zero input u) of the reservoir with addi-
tion of matrices for bias b and gain a terms as in [7] becomes: 
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Here a1 and b1 are diagonal matrices with rnrn ×  size containing the gains and 

biases of reservoir neurons. In matrix equation form system (2) becomes: 
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For the system (3) in [1] theoretical stability conditions related to the sectors to 
which the nonlinearities ξ belong, and a special form of linear matrix inequality that 
includes matrices from (4), were proposed. Since the IP improvement of the reservoir 
influences only the matrices a and b we’ll investigate further how this improvement 
influences the stability conditions for the system (3). 

2.2   Intrinsic Plasticity Adaptation and Its Relation to ESN Reservoir Stability 

The IP reservoir improvement proposed in [7, 8] is based on minimization of the 
Kullback-Leibler divergence DKL as a measure for the difference between the actual 
p(r) and the desired pd(r) distribution of reservoir neuron outputs r. Since the com-
monly used transfer function of neurons is the hyperbolic tangent, the proper target 
distribution that maximizes the information at the output according to [7] is the Gaus-
sian one: 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−=
2

2

2
exp

2

1

σ
μ

πσ
r

rpd  (5) 

with the expected value μ and variance σ. Thus the DKL becomes: 
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Here H(r) is entropy, the last term is constant and the second one determines the 
deviation of the output from the desired mean value μ scaled by a constant propor-
tional to the variance σ. Thus minimization of (6) will lead to compromise between 
entropy maximization and minimization of distance between μ and r. Since in [7] it 
was recommended to use Gaussian distribution with zero mean, in practice applica-
tion of IP training gradient rules will tend to concentrate around zero and squeeze into 
the interval [-3 σ, 3 σ] the reservoir outputs. This is done by adjustment of gain ma-
trix a1 and bias matrix b1 in (2). 

In [1] it was theoretically proven that a nonzero bias b1 leads to squeezing of the 
sectors of nonlinearities ξ from (3) and thus improves the stability of the system. 
Another stability condition from [1] is that the connection weights should be de-
creased. IP reservoir improvement rules in fact can do exactly this by adjustment of 
the bias and gain matrices. Of course it is hard to investigate theoretically the effect of 
IP on the reservoir parameters but numerical investigations of different randomly 
generated reservoirs in section 4 will definitely show that IP improves their stability. 

3   Theoretical Stability Conditions for ESN 

In order to investigate stability of the system (3) we first must find its equilibrium 
point z as follows: 

( )bzBAzz +Θ+= tanh  (7) 

So if b=0 the equilibrium is at the origin of the coordinate system in the state 
space. Otherwise it is moved in dependence on the vector b. 

Hence for the nonzero biases we need to transform the system (7) into a new coor-
dinate system g=x-z with equilibrium at its origin as follows: 
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According to [1] the nonlinearity η(k) belongs to a narrower sector in comparison 
to the initial one of ξ(k). 

Following the stability criteria in [1], the system (8) is stable if we can find such 
positive definite matrices H and Γ=diag{Γi} that fulfill the following linear matrix 
inequality (LMI): 

( ) ( )
( ) ( ) 0<Θ−Γ−Θ

+−++

yNyM

HyyBAgHBAg
T

TT

ηη

ηη
 (9) 



 ESN Intrinsic Plasticity versus Reservoir Stability 73 

 

Here the matrices M=diag(mi) and N=diag(ni) contain the upper and lower bounds 
of the nonlinearities ηi. Following the results of [1] the values of mi are obtained as 
follows: 
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Having in mind that IP improvement tries to squeeze the output values of the res-
ervoir into the interval [-3 σ, 3 σ] we can conclude that the corresponding total neuron 
input must be in the interval [arctanh(-3 σ),  arctanh(3 σ)]. Having in mind that be-
cause of nonzero bias the new coordinate system of i-th neuron nonlinearity ηι is 
moved to the point (ci, tanh(ci)) we can determine the new working interval of that 
nonlinearity to be [ci- arctanh(-3 σ),  ci+ arctanh(3 σ)]. Hence following the formulas 
from [1] we can easily calculate the lower nonlinearity bounds ni as follows: 
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Having in mind the special form of matrices (4) that are related to the ESN struc-
ture, the LMI (9) could be transformed into the form: 
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Since H is a symmetrical matrix and diagonal matrices M and N are also symmet-
ric, they all can be divided into four block matrices as follows: 
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Hence the matrix L from (12) and its corresponding LMI (12) becomes: 
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The above matrix L can be presented as sum of two matrices L1 and L2 as follows: 
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Since H is positive definite by definition the first matrix L1 is negative definite. 
Hence the ESN will be stable if we can find such positive definite matrices H and 
Γ1=diag(γi) that fulfill the following LMI: 
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Practically the IP training procedure influences the matrices a1 and b1. The first one 
is included in the above LMI and its influence on the ESN stability can be investi-
gated directly. The second one influences in a more complex manner the upper and 
lower bounds of the nonlinearity sectors (i.e. diagonals of matrices M1 and N1) as 
follows: the bias term moves the working sector of neurons nonlinearities influencing 
the vector c from equations (8); further elements of vector c take part in equations 
(10) and (11) that calculate diagonal elements of these matrices. One possible way to 
investigate the overall influence of IP training on the ESN stability condition (16) is 
to solve that LMI with variable a1, M1 and N1 thus finding their allowed stability re-
gions. These regions can be compared with the obtained after IP training matrices a1, 
M1 and N1. Another possible way is to train ESN with IP procedure and after that to 
compare stability of initial and trained ESNs. From the theoretical investigations in 
[1] it was concluded that the common recommendation for improving the RNN stabil-
ity is to try to decrease the weights and to “squeeze” the sectors to which neurons 
nonlinearities belong, i.e. to decrease the values of a1 and of the difference M1-N1. In 
the next section we’ll investigate by simulations how IP improvement of the reservoir 
influences the ESN stability following the recommendations from [1]. 

4   Numerical Investigations of ESN stability 

We generated several random reservoirs with four neurons, two inputs and different 
spectral radii (SR) varying from stable (0.6 and 0.9) to unstable (1.2) ones.  

Table 1. Nonlinearities sector width change trough IP iterations 

 SR=0.6 SR=0.9 SR=1.2 
It. neuron No neuron No neuron No 
No 1 2 3 4 1 2 3 4 1 2 3 4 
0 0.50 0.62 0.51 0.58 0.56 0.61 0.61 0.72 0.48 0.58 0.53 0.59 
1 0.21 0.25 0.23 0.27 0.20 0.17 0.23 0.19 0.26 0.30 0.08 0.23 
2 0.15 0.15 0.13 0.16 0.12 0.10 0.14 0.11 0.17 0.21 0.06 0.15 
3 0.14 0.13 0.11 0.13 0.10 0.10 0.12 0.10 0.15 0.20 0.06 0.14 
4 0.13 0.12 0.10 0.13 0.10 0.10 0.12 0.10 0.14 0.21 0.06 0.13 
6 0.13 0.12 0.10 0.13 0.10 0.10 0.12 0.10 0.14 0.21 0.06 0.13 

Table 2. Diagonals of matrices a1 after IP training 

SR=0.6 SR=0.9 SR=1.2 
neuron No neuron No neuron No 

1 2 3 4 1 2 3 4 1 2 3 4 
0.39 0.31 0.35 0.28 0.35 0.46 0.27 0.33 0.35 0.47 0.66 0.29 
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Fig. 1. Simulation of initial reservoir (left) with spectral radius 0.6 and IP trained reservoir 
(right) after 3rd iteration 
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Fig. 2. Simulation of initial reservoir (left) with spectral radius 0.9 and IP trained reservoir 
(right) after 3rd iteration 
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Fig. 3. Simulation of initial reservoir (left) with spectral radius 1.2 and IP trained reservoir 
(right) after 3rd iteration 

The two inputs were randomly generated in the interval [-1, 1]. We used recom-
mended in [7] mean and variance of the Gaussian distribution to be μ=0 and σ=0.1 
respectively. IP reservoir improvement was done in 5 iterations. We observed that 
after the 3rd iteration there are no significant parameter changes. Table 1 summarizes 
changes of sector nonlinearity widths. It can be seen that they become significantly 
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narrow after the first IP iteration and after the 3rd iteration there are no considerable 
changes. Table 2 presents diagonal elements of matrices a1 obtained after IP training. 
Their values below 1 guarantee decreasing of reservoir connection weights. The simu-
lation results before and after 3rd iteration are shown on Figures 1, 2 and 3. As can be 
seen even highly unstable initial reservoirs become quite stable after IP improvement. 

5   Conclusions  

In the present paper we find a close relationship between IP improvement of ESN 
reservoir and stabilization of undisturbed reservoir dynamics. We showed that al-
though IP training is aimed at maximization of entropy at ESN reservoir output and in 
spite of the concerns about increasing its spectral radius, in practice it stabilizes even 
initially unstable reservoirs. This is due to the two main necessary stability conditions 
for RNN derived in [1]: squeezing of the neurons' nonlinearity sectors and decreasing 
of the connection weights. The derived stability condition in the form of a linear ma-
trix equation for the ESN structure as a special RNN allows numerical investigations 
of reservoir stability. 
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Abstract. This paper presents an adaptive Network-on-Chip (NoC) router, 
which forms part of an embedded mixed signal Spiking Neural Network (SNN) 
architecture called EMBRACE (Emulating Biologically-inspiRed ArChitectures 
in hardware). The novel adaptive NoC router provides the inter-neuron connec-
tivity for EMBRACE, maintaining router communication and avoiding dropped 
router packets by adapting to router traffic congestion. The router also adapts to 
NoC traffic congestion or broken NoC connections (faults) by reconfiguring the 
routing topology to select an alternative route. Performance, power and area 
analysis of the proposed adaptive router using Synopsys Design Compiler (for 
TSMC 90nm CMOS technology) indicates a router throughput of 3.2Gbps on 
each of 5 available router channels, low router power consumption (1.716mW) 
and small router area (0.056mm2). Router adaptive behaviour in the presence of 
applied real-time traffic congestion has been demonstrated on a Virtex II Pro 
Xilinx FPGA for a 4x2 router array. Results indicate the feasibility of using the 
proposed adaptive NoC router within a scalable EMBRACE hardware SNN  
architecture. 

Keywords: Spiking neural networks, network-on-chip, inter-neuron scalability, 
EMBRACE architecture, adaptive routing, fault-tolerant, brain-inspired  
computing. 

1   Introduction 

Understanding and emulating the behaviour of the brain has received much attention 
not only from neuroscientists, but also from engineers and computer scientists [1]. 
Whilst neuroscientists are interested in biophysical models, engineers and computer 
scientists are more interested in harnessing the brain’s powerful signal processing 
capability. The brain can provide extraordinary computational performance with low 
power consumption, compared to traditional computer paradigms such as the von 
Neumann computing approach. Neural processing is based on computational neuron 
models known as spiking neural networks (SNNs) [2]. 
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SNNs communicate by transmitting short transient pulses or spikes between neu-
rons, via weighted synaptic connections. Synapses can have either an excitatory or 
inhibitory effect on a neuron’s internal membrane potential. A spiking neuron  
will emit a spike when its potential exceeds a neuron-specific membrane potential 
threshold value. The computational power of SNNs is realised by the synaptic  
connections between neurons, the weights on these connections and the internal  
membrane potential threshold of each neuron. The brain is highly efficient in how it 
processes information and tolerates faults. Thus, the aforementioned attributes make 
SNNs suitable for implementing resilient classifiers and control applications, e.g. 
robotics controllers, due to their ability to provide a good solution in the presence of 
imprecise or unseen data. 

The hope is to harness this efficiency and build artificial neural systems that can 
emulate the key information processing principles of the brain. However, existing 
approaches cannot provide the dense interconnect for the billions of neurons and 
synapses that are required. Software approaches are too slow to execute large scale 
SNN-based algorithms and do not scale efficiently to ever increasing neuron density. 
Therefore, it is necessary to look to new custom hardware architectures to address this 
scalability issue and to enable the deployment of brain-like embedded systems proc-
essors. A detailed review regarding artificial neural network hardware implementation 
can be found in [3]. 

Recently, the Network-on-Chip (NoC) interconnect paradigm [4] was introduced 
as a promising solution to solve the on-chip communication problems experienced in 
Systems-on-Chip (SoC) computing architectures, where generally high throughput 
and high interconnect capability is required. In general, NoC architectures are com-
posed of a set of shared processing elements (PEs), routers and channels, which are 
arranged in a topology depending on the application. In the context of SNNs, these 
PEs refer to the neuron models attached to the NoC routers placed throughout the 
network. Channels are analogous to the synapses/axons of spiking neurons. The SNN 
topology in this case refers to the way spiking neurons are interconnected across the 
network. In this regard, the authors have investigated and proposed EMBRACE 
(Emulating Biologically-inspiRed ArChitectures in hardware) [5], [6], a scalable 
embedded hardware SNN device. The EMBRACE reconfigurable mixed-signal 
hardware SNN, which is still to be realised, incorporates a low-area/power, CMOS-
compatible analogue neuron/synapse cell architecture and implements inter-neuron 
connectivity through the use of a digital, packet-based NoC communication architec-
ture, which provides flexible, time-multiplexed communication channels, scalable 
interconnect and reconfigurability (see Fig. 1). 

This paper presents an adaptive NoC router which provides the inter-neuron connec-
tivity within the EMBRACE architecture. The novel adaptive NoC router maintains 
SNN communication and avoids dropped SNN packets by adapting to SNN traffic 
congestion in large scale hardware neural network-based computing systems. The 
router also adapts to NoC router congestion and broken router connections (faults) by 
reconfiguring the routing topology to select an alternative route. Performance, power 
and area analysis of the proposed adaptive router using Synopsys Design Compiler (for 
TSMC 90nm CMOS technology) indicates the feasibility of using the proposed adap-
tive NoC router within a scalable EMBRACE hardware SNN architecture. 
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Fig. 1. EMBRACE Architecture: (a), (b) show a regular n x m topology and its corresponding 
2D NoC implementation using EMBRACE. (c) shows the neural tile composed of a digital 
router and an analogue neural cell with its correspondent synapses (spikeIn) and axon  
(spikeOut). 

The remainder of this paper is organised as follows: Section 2 details the proposed 
adaptive NoC router architecture. Section 3 presents experimental results obtained 
based on simulation and validated on a FPGA hardware implementation of the pro-
pose router. Finally, Section 4 concludes the paper. 

2   Adaptive NoC Router Architecture 

This section presents the proposed adaptive NoC router architecture. An adaptive 
NoC router is beneficial when network traffic patterns are highly irregular  [2]. The 
proposed NoC router is composed of 4 ports to facilitate north, east, south and west 
inter-router connectivity, and a fifth NoC-neural tile port.  

The novelty of the proposed adaptive NoC router is its adaptive scheduler and rout-
ing scheme (see Fig. 2a). These two capabilities offer the following advantages over 
traditional non adaptive routers: a) an adaptive arbitration policy module combines 
the fairness policy of the round-robin arbiter and the priority scheme of a first-come 
first-serve approach. This enables improved router throughput according to the traffic 
behaviour presented across the network, b) an adaptive routing scheme which facili-
tates router adaptation, based on spike traffic patterns and a channel congestion detec-
tor (CCD) to avoid traffic congestion. 

Adaptive arbitration policy: A key property of an arbiter is its fairness in providing 
equal service to different network traffic requests. A spiking neuron traffic pattern is 
highly asynchronous and non-uniform [1]. The proposed adaptive router uses a hybrid 
arbitration policy which combines the strong fairness policy of the round-robin arbiter 
and the priority scheme of a first-come first-serve approach. The proposed adaptive 
arbitration policy uses a spike event register to store information regarding each  
spike event for each router input buffer, and five distributed control units, i.e. one for 
each port. 

 



80 S. Carrillo et al. 

 

The proposed approach allows the scheduler to manage thread communication 
without incurring task-switching overhead. Only the input buffers that contain infor-
mation are serviced, thus avoiding wasted clock cycles. Similarly when a heavy load 
traffic scenario occurs, all ports are serviced, based on the same approach as the 
round-robin. 

 

 

Fig. 2. Adaptive NoC router architecture overview 

Adaptive routing module: The proposed adaptive routing scheme is composed of 
three main components, as follows (see Fig. 2): a) an XY routing algorithm, which 
receives the packet from the adaptable arbitration policy module, b) a channel conges-
tion detector (CCD) which, based on the information received from neighbouring 
routers, selects an output port direction and passes this information to c) the adaptive 
routing decision module. The CCD provides a means of detecting the current state of 
traffic in any given direction. Three status types exist for each direction: Free (input 
FIFO is empty), Busy (by default this flag indicates that the input FIFO is half-full, 
but the user can setup a threshold for triggering the flag) or Congested (input FIFO is 
full). The CCD module can detect whether forward N, E, S or W channels are free, 
busy or congested. The adaptive routing decision module uses the output port direc-
tion provided by the XY routing algorithm, the state information provided by  
the CCD, and the output FIFO availability, to select an appropriate output port (see 
Fig. 2c). 
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3   Experiments and Results 

This section presents results on the throughput capability, area utilisation and power 
consumption of the proposed adaptive router for varied SNN traffic loads, and 
benchmarks its performance against existing approaches. Additionally, experimental 
results for a 4x2 array of adaptive routers implemented on a Virtex II Pro Xilinx 
FPGA are also presented. A VHDL implementation of the proposed adaptive router 
architecture has been created in order to evaluate its performance. The testbench setup 
was inspired by [7] and verified in [6]. This setup proposed the attachment of terminal 
instruments such as counters and generators at each router port (see Fig. 3). The spike 
event generator defines the traffic pattern, packet length and the spike injection rate 
(i.e. the time between spike events). The spike event counter measures the SNN out-
put spike rate and deduces the spike throughput and the number of unsuccessfully 
routed (dropped) spike packet. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Spike generator and spike counter internal architecture, NoC router connection ports and 
configuration interface 

3.1   Traffic throughput 

Several experiments have been carried out to assess the throughput of the proposed 
router. Fig. 4 illustrates the average adaptive router packet throughput with varying 
Spike Injection Rate (SIR), for a range of router channel formats. In addition, router 
performance has been compared to that of an earlier non-adaptive EMBRACE NoC 
router, which uses a round-robin scheme [4]. The main advantages of the proposed 
approach are in the following operational scenarios: 

The first scenario is a situation where router ports are idle and the adaptive router 
is able to skips the idle ports. This avoids wasted clock cycles and provides increased 
packet throughput compared to the round-robin approach. For example, results shown 
in Fig. 4 illustrate equal performance, when either one or three ports are used at the 
same time, for both adaptive and non-adaptive at SIR = 20 (i.e. spike packet generated 
every 20 clock cycles). However, for SIR = 2, the proposed adaptive router achieves 
almost double the throughput compared to the non-adaptive router, as the proposed 
adaptive arbitration policy along with the adaptive routing scheme are able to handle 
the incoming packets, ignoring the idle ports. The previous scenario represents a typi-
cal traffic pattern for spiking neurons firing in burst mode [1]. 
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Fig. 4. Throughput for the proposed adaptive NoC router as a function of the spike injection 
rate under different traffic loads using different number of channel at the same time 

The second scenario is when all router ports are busy, as the advantage in using the 
proposed adaptive router arises when the SIR is less or equal to the number of ports 
that need to be serviced before the arbiter grants the priority to the same port that 
emitted the spike previously. In addition, for both of the above scenarios, when the 
SIR value is less than or equal to the number of ports minus one (i.e. SIR = 4), the 
non-adaptive router reaches a maximum saturation level, i.e. the highest level of de-
mand for which spike packet throughput equals demand. The spike packet generation 
frequency (SIR) becomes faster than the time given to the router to process the in-
coming packets. As demand is increased beyond saturation, the non-adaptive router 
can no longer handle all packets and it becomes impossible for the round-robin arbiter 
to service all ports efficiently. Thus, the unserviced router ports drop packets and the 
throughput remains constant [7]. 

3.2   Router Performance, Power and Area  

Table 1 summarises the results of performance, power and area analysis of the pro-
posed adaptive router, performed using Synopsys Design Compiler (for TSMC 90nm 
CMOS technology). Assumptions are an EMBRACE spike packet width is 32-bits, 
100MHz system frequency, and a very high neuron firing rate causing a fully loaded 
NoC router. Results indicate a router throughput of 3.2Gbps on each of 5 available 
router channels (aggregate throughput of 16 Gbps), low router power consumption 
(1.716mW) and small router area (0.056mm2). Table 1 also shows the trade-off  
between the depth of the input FIFO and the maximum throughput per router. In addi-
tion, Table 2 compares the performance of the proposed router with other existing 
approaches [8], [9], [10]. Table 2 highlights a high throughput of 16Gbps for the pro-
posed adaptive NoC router whilst exhibiting a low power overhead of 1.716mW. 
Results for the proposed adaptive router offer an improvement of 11% and 93%, for 
packet throughput and power consumption respectively, compared to the state of the 
art [8]. 
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Table 1. Synthesis summary for the proposed router based on the TSMC 90nm CMOS 

Input  
FIFO 

[Depth] 

Dynamic  
Power 
[mW] 

Leakage  
Power  
[mW] 

Total  
Power 
[mW] 

Area 
Utilisation  

[mm2] 

Throughput  
per Channel  

[Gbps] 
1 0.846 0.070 0.916 0.028 2.688 
2 1.096 0.083 1.179 0.035 2.816 
3 1.269 0.097 1.366 0.042 2.944 
4 1.422 0.116 1.538 0.050 3.072 
5 1.591 0.125 1.716 0.056 3.200 

Table 2. Comparison of the proposed router against other existing approaches 

Project  
Reference 

Quality of  
Service (QoS) 

Congestion 
Mechanism 

Throughput  
[Gbps] 

Power  
[mW] 

This work Best Effort Yes 16.000 1.716 
Spinnaker [8] Best Effort Yes 14.400 27.000 

Facets [9] Best/Guaranteed Effort No 6.100 NA 
Theocharides. et al [10] Best Effort No 0.100 NA 

3.3   Performance of FPGA-Based Adaptive NoC Router  

A 4x2 array of the proposed adaptive NoC routers has been prototyped and demon-
strated on a Virtex II Pro Xilinx FPGA device. The router maintains SNN communi-
cation and avoids dropped SNN packets by adapting to traffic congestion. Due to the 
adaptive decision module, the router also adapts to injected network faults (broken 
NoC connections) by reconfiguring the routing topology to select an alternative route. 
The FPGA hardware testing has demonstrated real-time traffic congestion control and 
a resulting sustained aggregate router throughput of 16 Gbps. Fig. 5 illustrates an 
FPGA prototype test scenario, with no congestion on the network. Router R[1,2] 
neural tile transmits spikes to the R[4,1] neural tile (using an XY routing algorithm). 
Fig 5 also illustrates two alternative routing topologies, configured by the adaptive 
router when the R[1,2] to R[4,1] link is congested or where a link fault is introduced. 

 

 

Fig. 5. A 4x2 array of NoC routers prototyped on a Virtex II Pro Xilinx FPGA to validate the 
proposed traffic congestion mechanism for the adaptive NoC router 
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4   Conclusion 

The brain is highly efficient in how it processes information and tolerates faults. The 
basic processing units are neurons and synapses that are interconnected in a complex 
pattern. Computer scientist and engineers aim to harness this efficiency and build 
artificial neural systems that can emulate the key information processing principles of 
the brain. However, existing approaches cannot provide the dense interconnect for the 
billions of neurons and synapses that are required. In this regard, this paper has pre-
sented a novel adaptive NoC router architecture, to be used as an interconnection 
architecture within the mixed signal EMBRACE brain-inspired computation platform. 
Router adaptive behaviour in the presence of applied real-time traffic congestion has 
been demonstrated on a Virtex II Pro Xilinx FPGA for a 4x2 router array. Results  
are promising and establish the motivation to continue using the NoC paradigm  
as a way to overcome the interconnection problems for large scale hardware SNN 
implementation. 
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Abstract. This paper presents a self-organizing map approach for the
multi-goal path planning problem with polygonal goals. The problem is
to find a shortest closed collision free path for a mobile robot operating in
a planar environment represented by a polygonal mapW. The requested
path has to visit a given set of areas where the robot takes measure-
ments in order to find an object of interest. Neurons’ weights are consid-
ered as points in W and the solution is found as approximate shortest
paths connecting the points (weights). The proposed self-organizing map
has less number of parameters than a previous approach based on the
self-organizing map for the traveling salesman problem. Moreover, the
proposed algorithm provides better solutions within less computational
time for problems with high number of polygonal goals.

1 Introduction

A problem of finding a collision-free path for a mobile robot such that the robot
visits a given set of goals is called the multi-goal path planning problem (MTP).
The problem arises in various robotic tasks and one of them is an inspection
task in which model of the robot work space is a priori known. A model can be a
building plan that can be represented as the polygonal domain, i.e., a polygonal
map with obstacles. In such a map, a goal can be a single point or a polygonal
region. Goals represent places in the environment where a mobile robot takes
measurements. A practical motivation for this type of problems are searching
missions where a mobile robot has to inspect the environment to find an object
of interest, e.g., victims in search&rescue missions [7].

The planning problem for point goals can be formulated as the well-known
traveling salesman problem (TSP), and for which many self-organizing map
(SOM) approaches have been proposed since the first work of Angéniol and
Fort. In the case of polygonal goals, the problem formulation can be found as
the safari route problem [8], or the zookeeper problem [2]. These problems can
be solved in a polynomial time for particular restricted problem formulations,
e.g., problems without obstacles, with a given starting point, and polygonal goals
attached to the boundary. However, these problem variants can be formulated
as the traveling salesman problem with neighborhoods (TSPN) [6]. Although
approximation algorithms for restricted variants of the TSPN exist [3,1], in gen-
eral, the TSPN is APX-hard and cannot be approximated with a factor 2 − ε,
where ε > 0, unless P=NP [9].

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 85–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



86 J. Faigl and L. Přeučil

Here, it is worth to mention that SOM approaches for the TSP are focused
on its Euclidean variant, i.e., distances between nodes and goals are determined
as the Euclidean distances between two points. The main difference of the MTP
is that a path between two goals (or node–goal path) has to be collision free;
thus, geodesic paths (distances) avoiding the collision with obstacles have to be
considered in the self-organizing procedure, which increases the complexity of
the adaptation process.

In this paper, new SOM adaptation procedure for the MTP with polygo-
nal goals is proposed. The approach follows standard SOM adaptation schema
for the TSP that has been extended to the polygonal domain using approxi-
mate shortest path in [5]. The adaptation uses new winner selection procedure
that finds and creates new neurons using a distance to a segment of the goal.
Moreover, practical aspects of the adaptation process in the polygonal map are
considered to decrease the computation burden of the adaptation. In addition,
simplified adaptation rules based on [11] are used and together with the novel
winner selection procedure they lead to less number of adaptation parameters.
The proposed procedure is also able to deal with point goals. As such, it provides
a unified way to solve various modifications of the MTP, which includes safari
route problem and also the watchman route problem as a variant of the MTP
where goals are polygons of a convex cover set of W [4].

2 Self-Organizing Map for Multi-Goal Path Planning
with Polygonal Goals

The problem addressed in this paper can be defined as follows. Having a polyg-
onal map W and a set of goals G = {g1, . . . , gn}, the problem is to find a
closed shortest path such that the path visits at least one point of each goal
gi ∈ G. A goal can be a single point, or a polygonal region, and all goals
entirely lie in W . A polygonal goal g is represented as a sequence of points
g = (pg

1, . . . , p
g
k), which forms a border of g represented as a set of straight line

segments δg = {sg
1, s

g
2, . . . , s

g
k}, where sg

i is a straight line segment inside W ,
sg

i = (pg
i , p

g
i+1) for 0 ≤ i < k, and sg

k = (pg
k, pg

1).
The proposed adaptation procedure is based on two-layered competitive neu-

ral network. The input layer consists of two dimensional input vector. An array
of output units is the second layer, and it forms a uni-dimensional ordered struc-
ture. The neuron’s weights represent coordinates of a point inW , which is called
node, and denoted as ν in this paper. Connected nodes form a ring that rep-
resents the requested path. In SOM for the TSP (for example [10]), goals are
presented to the network in a random order and neurons compete to be the
winner using the Euclidean distances between them and the goal. Then, the
winner node is adapted towards the presented goal. However, in the MTP, a
collision free path has to be determined because of obstacles in W . The adapta-
tion process may be considered as a node movement along the node–goal path
towards the goal, i.e., the node (neuron’s weights) is placed on the path closer
to the goal while it travels distance according to the neighbouring function f .
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An approximation of the shortest path may be used for the node–goal path
determination [5].

Novel winner selection procedure is proposed to address polygonal goals. The
procedure is based on consideration of the ring as a sequence of straight line
segments in W . Again, due to obstacles in W , such a sequence is found using an
approximate shortest path between two points (point–point path) in W [4].

Let the ring r be a sequence of line segments r = (sr
1, s

r
2, . . . , s

r
l ). The winner

node is found as a “closest” point of the ring to the set of segments representing
the goal g. The exact shortest path between two segments inW is substituted by
the following approximation. First, the Euclidean distance between the segments
sr

i and sg
j is determined; thus, two points on the segments are found, pr ∈ sr

i

and pg ∈ sg
j . The point–point path for these points is found to approximate the

shortest path between two segments in W . So, a pair (pr, pg) with the minimal
length of the approximate shortest path between pr and pg is the result of the
winner selection procedure. The point pr is used for creating new node if a node
with the same coordinates is not already in the ring. The found point pg at the
goal segment is used as a point goal towards which nodes are adapted using the
point–point path. In the case of a point goal g, a similar procedure is used for
approximating shortest segment–point path and pg is the point goal itself.

The adaptation is an iterative stochastic procedure starting with an initial
creation of m nodes, where m = 2n and n is the number of goals. The neurons’
weights are set to form a small circle around the first goal g1, or around the
centroid of g1 for the polygonal goal. The used neighbouring function is f(σ, d) =
exp(−d2/σ2) for d < 0.2m, and f(σ, d) = 0 otherwise, where σ is the learning
gain (the neighbouring function variance) and d is the distance of the adapted
node from the winner node measured in the number of nodes (the cardinal
distance). The adaptation process performs as follows.

1. Initialization: For a set of n goals G and a polygonal mapW , create 2n nodes
around the centroid of the first goal. Let the initial value of the leaning gain
be σ = 10, and adaptation parameters be μ = 1, β = 10−5, and i = 1.

2. Randomizing: Create a random permutation of goals Π(G).
3. Winner Selection: For a goal g ∈ Π(G) and the current ring r as a path

in W find the pair (pr, pg) using the proposed winner selection procedure.
Create a new node ν with coordinates pr if such a node does not already
exist. A node at the coordinates pr is the winner node ν�.

4. Adapt: If g is a point goal or ν� is not inside the polygonal goal g:
– Let the current number of nodes be m, and N be a set of ν�’s neighbor-

hoods in the cardinal distance less than or equal to 0.2m.
– Move ν� along approximate shortest path S(ν�, pr) towards pr by the

distance |S(ν�, pr)|μ, where |S(., .)| is the length of the approximate
path.

– Move nodes ν ∈ N for which μf(σ, d) < β towards pr along S(ν, pr) by
the distance |S(ν, pr)|μf(σ, d), where f is the neighbouring function and
d is the cardinal distance of ν to ν�.

Remove g from the permutation, Π(G) = Π(G) \ {g}, and if |Π(G)| > 0 go
to Step 3.
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5. Ring regeneration: Create a new ring as a path in W using only the winner
nodes of the current adaptation step, i.e., remove all other nodes. Make
nodes from the endpoints of sr ∈ r that do not correspond to the winners,
i.e., nodes correspond to the sequence of path’s vertices.

6. Update adaptation parameters: Set i = i+1, σ = (1−0.001i)σ, and μ = 1/ 4
√

i.
7. Termination condition: If all polygonal goals have particular winner inside

the polygonal goal, and if all point goals have the winner in a sufficient
distance, e.g., less than 10−3, or σ < 10−4 Stop the adaptation. Otherwise
go to Step 2.

8. Final path construction: Use the last winners to determine the final path
using point–point approximate path in W .

It is clear that the proposed adaptation procedure considering ring as a collision
free path inW with the closest ring–goal segments selection is more computation-
ally demanding than a consideration of node–goal points, which does not require
determination of shortest path between two nodes. The adaptation performed
only if μf(σ, d) < β (called β − condition rule) decreases the computational
burden without significant influence to the solution quality. Also the used evo-
lution of σ, μ [11] provides fast convergence. However, it decreases the solution
quality in few cases in comparison to Somhom’s parameters [10] used in [5,4].
An experimental comparison of these algorithms is presented in Section 3.

Regarding the necessary parameters settings the main advantage of the pro-
posed procedure is that it does not require specific parameters tuning. Based
on several experiments the procedure seems to be insensitive to changes of
the initial values of σ and μ. Also the used size of the winner neighborhood
(0.2m) provides the best trade-off between the solution quality and computa-
tional time.

It is worth to mention that the used approximation of the shortest path be-
tween two points (described in [4]) is more computationally demanding, and it
is less precise than the node–goal path approximation. However, it requires less
memory. It is because precomputed shortest paths from all map vertices to the
goals are used in the node–goal path queries. Thus, lower memory requirements
and a faster initialization are additional advantages of the proposed method.

3 Experiments

The proposed adaptation procedure has been experimentally verified in two sets
of problems with polygonal goals, and compared with the SOM approach for
the watchman route problem (WRP) [4]. The first set represents a “general-
ized” safari route problem, where convex polygonal goals, possibly overlapping
each other, are placed in W . The second set represents the WRP with re-
stricted visibility range presented in [4]. Moreover, the proposed procedure has
been compared with the SOM approach for the TSP in W [5] where goals are
points.
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(a) dense5-A (b) h25-A (c) jh4-A (d) potholes2-A

Fig. 1. Selected solutions of the safari route problems, light polygons are goals, small
disk at convex goal are the last winner nodes, black lines are found paths

The WRP algorithm adapts nodes towards centroids of the convex polygonal
goals1. An alternate point is determined at the polygon border using node–
centroid path to avoid placement of nodes too close to the polygon centroid, i.e.,
the node movement towards the centroid is stopped at the border. For the safari
route problem, the WRP algorithm has been modified to do not consider the ring
coverage, and to adapt nodes towards the determined alternate points. Besides,
the WRP and the TSP algorithms has been modified to use the β − condition
rule and the Euclidean distance for pre-selection of winner nodes candidates,
i.e., approximate node–goal path is determined only if the Euclidean node–goal
distance is less than the distance of the current winner node candidate to the
goal. These two modifications are technical, as they do not affect the solution
quality; however, they decrease the computational burden several times.

The examined algorithms have been implemented in C++, compiled by the
G++ 4.2.1 with the -O2 optimization, and executed within the same computa-
tional environment using single core of the i7-970 CPU at 3.2 GHz, and 64-bit
version of the FreeBSD 8.2. Thus, the presented average values of the required
computational times T can be directly compared.

The SOM algorithms are randomized, and therefore, each problem has been
solved 50 times, and the average length of the path L, the minimal found path
length Lmin, and the standard deviation in percents of L denoted as sL% are used
as the quality metrics. Reference solutions from [4,5] are used for the WRPs and
the TSPs, and the solution quality is measured as the percent deviation to the
reference path length of the average path length, PDM = (L−Lref)/Lref ·100%,
and as the percent deviation from the reference of the best solution, PDB =
(Lmin−Lref )/Lref ·100%. All presented length values are in meters. The number
of goals is denoted as n in the presented tables.

The experimental results for the safari route problems are presented in Ta-
ble 1 and selected best solutions found by the proposed algorithm are depicted
in Figure 1. The proposed procedure provides better solutions for most of the
problems. The procedure is more computationally demanding for complex envi-
ronments like the problem h25-A because shortest paths have many segments.
This is also the case of the jh10-coverage problem, which is an instance of the
WRP with many overlapping convex goals.

1 In [4], triangles of a triangular mesh are used to support determination of ring
coverage, which is not necessary for safari route problems.
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Table 1. Experimental results for the safari route problems

Problem n
SOM for WRP [4] Proposed

L sL% Lmin T [s] L sL% Lmin T [s]

dense-small 35 114.2 3.45 105.63 0.34 113.7 3.99 102.80 0.98

dense5-A 9 62.6 1.96 60.66 0.14 59.0 2.77 58.05 0.23

h25-A 26 407.2 0.98 399.34 1.22 405.2 0.88 396.07 2.12

jh-rooms 21 88.3 0.76 87.84 0.13 88.1 0.10 87.83 0.15

jh10-doors 21 67.6 1.34 66.11 0.16 63.7 1.43 61.99 0.15

jh10-coverage 106 106.9 1.34 103.89 1.49 97.9 6.20 92.99 2.66

jh4-A 16 61.1 1.86 58.71 0.33 57.3 1.32 56.59 0.32

jh5-corridors 11 65.8 1.87 62.77 0.14 59.7 0.35 59.53 0.20

pb5-A 7 275.8 4.47 265.29 0.31 271.7 4.36 264.70 0.31

potholes2-A 13 71.9 1.91 70.37 0.04 71.6 2.08 70.09 0.08

Table 2. Experimental results for the WRP

Map
d

n
Lref SOM for the WRP [4] Proposed

[m] [m] PDM PDB sL% T [s] PDM PDB Lmin sL% T [s]

jh inf 100 207.8 -52.67 -53.39 1.53 1.45 -53.71 -54.17 95.27 2.78 2.40

jh 10.0 108 207.3 -51.84 -53.02 3.27 1.95 -50.65 -54.02 95.30 6.89 2.64

jh 5.0 130 216.4 -48.67 -51.75 3.39 1.27 -51.54 -53.06 101.56 4.18 5.75

jh 4.0 169 219.9 -43.48 -46.34 3.22 2.97 -48.38 -49.42 111.22 2.71 9.21

jh 3.0 258 225.5 -27.92 -30.60 1.61 5.18 -35.04 -37.04 142.01 2.27 13.12

jh 2.0 480 281.9 -8.99 -11.09 1.06 20.68 -17.25 -19.85 225.91 1.64 23.16

jh 1.5 852 350.3 -3.81 -5.51 1.02 109.81 -14.56 -15.68 295.39 0.74 100.40

jh 1.0 1800 470.8 3.96 2.36 0.59 430.88 -9.06 -10.25 422.50 0.55 452.03

pb inf 52 533.3 -18.11 -22.26 4.98 1.44 -16.18 -23.18 409.69 5.70 1.28

pb 10.0 111 612.7 -12.48 -14.86 3.92 2.57 -15.46 -17.94 502.78 4.73 3.46

pb 5.0 262 682.9 -7.35 -9.34 2.45 5.56 -7.01 -10.62 610.38 4.45 15.23

pb 4.0 373 720.1 -6.17 -8.78 3.25 16.80 -7.46 -10.09 647.41 3.16 20.37

pb 3.0 714 774.8 -5.62 -6.72 0.55 42.52 -3.04 -9.54 700.81 6.95 114.08

pb 2.0 1564 901.9 -2.88 -4.41 1.02 244.72 -0.30 -9.40 817.12 4.53 373.74

pb 1.5 2787 1115.9 1.03 0.07 0.54 997.68 -9.12 -12.12 980.59 2.27 1078.42

pb 1.0 6188 1564.2 2.55 1.90 0.41 5651.06 -12.52 -13.89 1346.87 0.78 3276.43

ta inf 46 203.6 -30.99 -31.48 0.52 0.28 -33.67 -33.94 134.52 1.69 0.76

ta 10.0 70 202.6 -28.11 -28.80 0.28 0.41 -28.36 -28.89 144.08 1.45 1.63

ta 5.0 152 254.1 -15.68 -17.97 1.81 1.26 -19.61 -20.35 202.39 0.83 6.39

ta 4.0 209 272.2 -7.39 -9.91 1.36 3.69 -15.70 -16.65 226.90 0.85 11.64

ta 3.0 357 315.0 -6.28 -8.75 1.61 12.61 -13.46 -14.42 269.57 1.30 15.58

ta 2.0 757 408.3 1.09 -1.20 0.87 66.48 -10.97 -12.52 357.18 1.00 59.00

ta 1.5 1320 522.1 1.06 -1.18 0.97 194.25 -12.81 -13.63 450.92 0.59 251.08

ta 1.0 2955 743.6 5.21 3.80 0.57 1398.71 -12.45 -13.54 642.89 0.57 987.77

The results for the WRP are presented in Table 2, where d denotes the
restricted visibility range. Also in this type of problems, the proposed proce-
dure provides better solutions. Although the procedure is more computationally
demanding for small problems, it provides significantly better results with less
required computational time for problems with d=1 m, which have many convex
polygons. The results indicate that the proposed procedure scales better with
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Table 3. Experimental results for the TSP

Problem n
Lref SOM for the TSP [5] Proposed

[m] PDM PDB sL% T [s] PDM PDB sL% T [s]

jari 6 13.6 0.36 0.00 0.55 0.01 0.23 0.00 0.15 0.01

complex2 8 58.5 -0.00 -0.00 0.00 0.01 0.47 -0.00 1.60 0.02

m1 13 17.1 0.31 0.00 1.15 0.02 0.17 0.00 0.20 0.03

m2 14 19.4 9.52 0.00 3.50 0.03 10.76 5.32 3.16 0.04

map 17 26.5 5.92 0.73 4.39 0.05 6.87 0.73 4.37 0.07

potholes 17 88.5 4.58 2.37 2.17 0.06 5.56 2.37 2.48 0.06

a 22 52.7 0.89 0.31 1.00 0.09 1.58 0.31 2.37 0.11

rooms 22 165.9 1.02 0.00 0.86 0.11 0.12 0.00 0.11 0.15

dense4 53 179.1 15.04 8.33 3.16 0.68 18.17 9.00 2.38 0.68

potholes2 68 154.5 6.12 2.50 2.01 0.65 7.54 3.11 2.23 0.35

m31 71 39.0 6.71 2.29 1.53 1.41 8.72 4.80 1.64 1.00

warehouse4 79 369.2 5.97 2.42 2.13 1.92 8.47 2.87 2.68 0.81

jh2 80 201.9 1.94 0.48 0.64 0.95 2.04 0.67 0.66 0.71

pb4 104 654.6 1.06 0.01 1.34 1.53 1.95 0.51 3.05 0.84

ta2 141 328.0 2.97 1.69 0.69 2.27 3.69 2.19 0.75 1.11

h25 168 943.0 2.85 2.00 0.60 8.75 2.42 1.65 0.53 6.70

potholes1 282 277.3 6.84 4.91 1.02 10.47 6.97 4.19 0.91 2.71

jh1 356 363.7 4.02 2.74 0.56 22.29 4.32 3.23 0.46 7.05

pb1.5 415 839.6 2.60 1.12 2.25 24.13 10.40 1.47 5.21 6.62

h22 568 1 316.2 2.81 1.87 0.51 87.61 3.00 1.97 0.46 32.19

ta1 574 541.1 5.51 4.63 0.41 38.11 6.39 4.88 0.73 10.86

increasing number of goals. The reason for this is in the number of involved neu-
rons. While the algorithm [4] derives the number from the number of goals, the
proposed procedure dynamically adapts the number of neurons using shortest
path inW . Thus, for very large problems in the same map, additional neurons do
not provide any benefit, and only increase the computational burden. The worse
average results for the map pb, d=3 and d=2 are caused by the used point–point
shortest path approximation, which provides unnecessary long paths in several
cases. Nevertheless, the proposed procedure is able to find significantly better
solutions, regarding the PDB, than the WRP algorithm [4].

The results for the TSP are presented in Table 3. The proposed procedure
provides competitive results to the algorithm [5]. Worse average solutions are
found for several problems. In these cases, the point–point path approximation
provides longer paths than the point–goal path used in the TSP algorithm. The
used schema of parameters evolution [11] leads to faster convergence, which
“compensates” the more complex winner selection. However, the schema is the
main reason for the worse performance of the proposed procedure than the TSP
algorithm [5] with parameters’ evolution [10].

4 Conclusion

Novel winner selection procedure for self-organizing maps has been proposed in
this paper. The proposed adaptation procedure is able to deal with variants of
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the multi-goal path planning problem including the TSP, the WRP and the safari
route problem. Moreover, the procedure can be considered as parameterless, as
the number of neurons is determined during the adaptation process. It provides
a unified approach to solve various routing problems in the polygonal domainW .

Although the proposed algorithm provides outstanding results in many cases,
both the required computational time and the solution quality may be improved
as the former algorithms for the WRP and the TSP provide better results in
particular problems. Both these aspects are related to the evolution of the adap-
tation parameters, e.g., σ, μ, or size of the winner node neighborhood. Besides,
the utilized approximation may be improved. Shortest path approximation and
investigation of adaptation schemata with different evolution of parameters are
subjects of the further work.
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Abstract. An agent moving in a real environment perceives it by nu-
merous noisy sensors which provide some high dimensionality data with
unknown topology. In order to interact in this complex and changing
environment, according to the active perception theory, the agent needs
to learn the correlations between its actions and the changes they in-
duce in the environment. In the perspective of a bio-inspired architecture
for the learning of multi-modal correlations, this article focuses on the
ability to forget some previously learned selectivity in a model of per-
ceptive map which spatially codes the sensor data. This perceptive map
combines the Bienenstock Cooper Munro (BCM) learning rule, which
raises a selectivity to a stimulus, with the neural field (NF) theory, which
provides spatial constraints to self-organize the selectivities at the map
level. The introduction of an unlearning term in the BCM learning rule
(BCMu) improves the BCM-NF coupling by providing plasticity to the
self-organization.

Keywords: BCM learning rule, dynamic neural fields, self-organization,
unlearning, plasticity, multi-modality.

1 Introduction

Gibson has defined the notion of affordances which corresponds to the possible
actions that an agent can perform with an object [7]. An object is then defined
by the set of its affordances. The idea that actions take an essential part in the
notion of object is also developed by O’Regan and Noë [14], who define an object
as a sensory-motor invariant.

Human beings perceive the world by spatially distant sensors. However, their
processing are interacting with each other, as illustrated in the ventriloquist
effect [3] or in the Mc Gurk effect [12]. Merging the senses allows the brain to
form a consistent perception of the world and to reduce the global noise of the
sensors. For example, human reaction time is quicker for a consistent audio-visual
stimulus than for a visual or an audio stimulus alone [9].

At a mesoscopic level, the cortex shows a generic structure all over its sur-
face, composed of cortical columns (see [13] for an overview). In the functional
view of the cortex, it is made up of several areas dedicated to a specific work.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 93–100, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (right) Example of use of the modular architecture with two sensors and one
actuator. (left) Generic architecture of a cortical column in a perceptive map. The
sensitive layer receives the feed-forward flow coming from the sensor, the cortical layer
is connected to the associative map providing feedback from the multi-modal context
and the perceptive layer codes the current perception by an activity bump, resulting
from a lateral competition.

Perceptive areas compute a specific sensory flow, providing a spatial coding by
self-organization, meaning that close neurons are sensitive to close stimuli, as
the orientation coding in visual areas [4] or the tonotopic organization in the
auditory cortex [15]. Associative areas merge perceptive flows and influence per-
ceptions by feedback. This hierarchical view explains activities observed during
the ventriloquist effect [3] but is questioned as multi-modal neurons were recently
found in perceptive areas [5].

We have designed a multi-modal architecture to learn sensory-motor contin-
gencies [11]. In this architecture, perceptive maps self-organize to map the sensor
data topology in a two dimensional spatial coding, which is influenced to be con-
sistent with the other perceptions. This self-organization is based on the coupling
of neural fields with the BCM (Bienenstock Cooper Munro) learning rule. In this
article, we focus on the addition of an unlearning term in the BCM equation to
improve the efficiency of the neural field modulation and bring plasticity to the
self-organization in order to better adapt to the multi-modal constraints.

In section 2, we briefly describe the main features of our multi-modal archi-
tecture and our perceptive map (for more details refer to [11,10]). In section 3,
we introduce an unlearning term in the BCM equation that provides the for-
getting of the discriminated stimulus if the modulation is not consistent. We
illustrate the self-organization plasticity provided by the unlearning term in the
experiment of section 4.

2 Model

2.1 General Architecture

Our architecture consists of interconnected perceptive and associative maps
(see figure 1 right). Motor actions are represented by a perceptive map, that
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corresponds to the related proprioception. All maps have a generic two dimen-
sional structure, to respect the cortex topology, composed of cortical columns
with multiple layers. All computations and learning rules have local, continuous,
decentralized and unsupervised properties.

Perceptive maps receive a sensory flow and provide a spatially localized activ-
ity bump representing the current perception. Sensor data topology is learned
with a self-organization mechanism that provides generalization when coupled
with the spatial coding. The associative map merges all perceptions to create a
multi-modal context that, in return, influences each perception to be consistent.
Thus, each perceptive map maps its sensor data flow so that its self-organization
is consistent with the other maps. A sensory-motor correlation is represented by
the set of the activity bump localizations, that is learned in the weights of the
inter map connections.

2.2 Perceptive Map

Our model of perceptive map is composed of multilayer cortical columns (see
figure 1 left). The sensitive layer uses the bio-inspired BCM learning rule [2],
which is based on an hebbian rule with a sliding threshold between long term
potentiation (LTP) and long term depression (LTD). This LTP/LTD sliding
threshold induces competition between inputs, so that, applied to a stimuli flow,
this rule has the property to autonomously develop a selectivity to one stimulus.
The cortical layer is connected to the associative map and its activity represents
the multi-modal influence. The perceptive layer uses neural fields [1,16] to filter
its input, corresponding to the cortical and the sensitive informations. The per-
ceptive activity represents the membrane potential of a discrete manifold, which
evolves with a differential equation summing the input term with a lateral term,
corresponding to an intra map connectivity with a difference of Gaussian shape,
and a decay term, to suppress the activity in case of missing input. This lat-
eral connectivity induces spatial competition that raises an activity bump where
the input is spatially and temporally consistent. These spatial constraints are
propagated to the organization of the sensitive layer, with the modulation of the
sensitive activity by the perceptive one.

Thus, the coupling of the sensitive layer with the perceptive layer provides
a self-organization of the selectivities of the sensitive layer that maps the sen-
sor data topology. This self-organization can be influenced, by modifying the
perceptive activity, to be consistent with the multi-modal context.

3 Unlearning

3.1 Motivation

The self-organization of the sensitive layer results from its continuous interaction
loop with the perceptive layer. Although, the dynamic appears as a sequential
process as the modulation can appear only when the sensitive layer begins to
develop a selectivity. The perceptive modulation of the sensitive activity modifies
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Fig. 2. Compared evolution dynamic of the activity for each stimulus (A), of the per-
centage of influenced neurons by an additive modulation as a function of its beginning
time without unlearning (B) or with unlearning (C). These data are generated with
ten orthogonal stimuli with a uniform probability of apparition.

the basins of attraction of the BCM learning rule to favor a specific stimulus.
However, solutions of the BCM equation are stable so that the modulation is
efficient only if the BCM equation is far from convergence. Thus, the efficiency
of the sensitive activity modulation depends on the time of apparition of the
perceptive activity (see figure 2).

More technically, the dynamic of the BCM learning rule can be split into three
steps. In the first phase (1), the neuron have random weights so that activities
are similar for each stimulus and the modulation is efficient. During the second
phase (2), the threshold value increases and induces competition between inputs.
As a consequence, the difference between the response value to the discriminated
stimulus and the other one increases, leading to a decreasing efficiency of the
modulation. The third phase (3) corresponds to a neuron that has developed a
selectivity to the discriminated stimulus with a value equal to the inverse proba-
bility of its apparition. This selectivity is stable, and the modulation is no more
efficient because of the important and stimulus dependent gap between activities
(a neuron has 10% chance to be influenced, which corresponds to random chance
as there are ten uniformly distributed stimuli).

Once the BCM learning rule has converged, this equilibrium is stable, so that
the modulation has no more effect on it. This means that at the map level, the
obtained self-organization is stable whatever the modulation. However, the self-
organization needs to be plastic to adapt to the multi-modal constraints. More-
over, these constraints may change over time in case of addition, suppression or
deterioration of a perceptive map. The idea is to modify the BCM learning rule,
so that the selectivity of a stimulus is no more a stable point if the modulation
is not consistent with its selectivity.

3.2 Equations

In the BCM learning rule, the activity u of a neuron is equal to the weighted sum
of the stimulus x (equation (1)). The LTP/LTD sliding threshold θ is computed
as the recent expectation of the square of the neuron activity (equation (2)).
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The weight evolution is based on an hebbian rule using the LTP/LTD threshold
(equation (3)).

u = w.x (1)
θ = Eτ [u2] (2)

Δw = ηxu(u− θ) (3)

To influence the neuron selectivity, its activity is modulated by an increasing
function m of the perceptive layer activity s (equation (4)) [8]. The modulation is
additive to be more efficient on non discriminated stimuli, whose neuron activity
are nearby 0. We add an unlearning term in the evolution equation of w (equation
(7)). The function f̂ is a sigmoid that detects the lack of modulation (1 for no
modulation and tending to 0 for a high one). Thus, the f̂(s)u2 term detects
inconsistency between the current selectivity and modulation. β is a constant
and χ is the recently expected modulation, so that unlearning is active only if
the perceptive layer raises activity bumps. w × x stands for the term-by-term
multiplication of the weight vector with the input vector. Thus, if the neuron
is modulated and its selectivity is inconsistent with the modulation, its weights
will decrease especially for the current stimulus.

u = w.x + m(s) (4)
θ = Eτ [u2] (5)
χ = Eτ ′ [s] (6)

Δw = η(xu(u − θ)− βχf̂(s)u2w × x) (7)

3.3 Properties

The BCM equation with unlearning (BCMu) has three solutions that correspond
to a non discriminated stimulus and to a discriminated one with or without con-
sistent modulation. The stability of each nine couples of these three solutions is
tested by adding a small perturbation of the weights and analyzing its evolu-
tion. This mathematical analysis1 shows that the only stable points of the BCMu
equation correspond to a selectivity to one stimulus that can be modulated or
not. In the case of a modulated stimulus, the unlearning term is equal to 0 so
that the stable point is the same as in the BCM learning rule (see [6] for more
details). However, in the case of a non modulated stimulus, its value is limited
by a fixed value. Thus, this stable point is no more stable if another stimulus
is sufficiently modulated because of the competition between stimuli introduced
by the LTP/LTD sliding threshold.

Practically, the BCMu learning rule raises a selectivity to a stimulus, that
is forgotten if it does no longer fit the modulation. Thus, the selectivity be-
comes consistent with the modulation, whenever it appears and shows some

1 See www.loria.fr/~lefortma/recherche/icann/annexes.pdf for the equations.

www.loria.fr/~lefortma/recherche/icann/annexes.pdf
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spatio-temporal continuity (see figure 2 (C)). At the map level, the sensitive
self-organization is still stable but is plastic to the changes of the perceptive
modulation that represents a consensus between the local sensation and the
multi-modal constraints.

4 Results

The perceptive activity is artificially fixed, independently of the sensitive activ-
ity, and is equal to the spatial coding of the current stimulus corresponding to a
specified self-organization (see figure 3). This activity may represent a consen-
sus between local sensation and multi-modal constraints. This self-organization
changes over time, representing a change in multi-modal constraints.

Figure 4 shows the comparative results between the self-organization that
determines the perceptive activity and the obtained self-organization of the sen-
sitive layer, using the BCM or the BCMu learning rule. The first self-organization
is correctly learned by the perceptive map, with or without the unlearning term,
meaning that the modulation is efficient on the sensitive self-organization. We
can notice that the self-organization is slightly smoother with the use of the
unlearning term.

Visually, the self-organization of the sensitive layer without unlearning ap-
pears ’frozen’, whereas the BCMu rule succeeds in self-organizing the layer
in accordance with the modulation changes (see figure 4 (A)). The value of
the difference with respect to the fixed self-organization remains high when
using the BCM rule, whereas it decreases with the BCMu rule until reach-
ing a value close to the one obtained for the first fixed self-organization (see
figure 4 (B)).

Fig. 3. Protocol used to test the plasticity of the self-organization to the multi-modal
constraints. The multi-modal context is the current sensor data spatially coded by a
defined self-organization.
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Fig. 4. (A) The selectivity of a column is represented in gray scale. Successive fixed self-
organizations that provide the perceptive activity are shown in the first row. Sensitive
self-organizations using the BCM learning rule (respectively BCMu) are in the second
(respectively third) row. (B) Evolution of the sum over all columns of the difference
between the selectivities of the fixed self-organization and the sensitive one. The peaks
correspond to the change of fixed self-organization.

5 Conclusion

This article presents a forgetting mechanism for the BCM learning rule that
consists in adding an unlearning term. This term induces a decreasing activity
for the discriminated stimulus, if it is not consistent with the modulation received
until it is limited by a constant term. Thus, with an efficient modulation, the
only stable solution of this learning rule is the discrimination of a single stimulus
which is consistent with the received modulation.

Our model of perceptive map for multi-modal association is based on the cou-
pling of a sensitive layer which raises sensitive information with a perceptive layer
which filters this information to raise a spatially localized activity, consistent
with the other perceptions. The use of the BCM learning rule with unlearning
(BCMu) in our perceptive map model provides plasticity to the self-organization
of the sensitive layer. This plasticity is useful to adapt to the multi-modal con-
straints of a changing environment.
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Computationnelles - Neurocomp 2010, Lyon France (October 2010)

11. Lefort, M., Boniface, Y., Girau, B.: Self-organization of neural maps using a modu-
lated BCM rule within a multimodal architecture. In: Proceedings of Brain Inspired
Cognitive Systems 2010, Madrid Espagne (August 2010)

12. Mcgurk, H., Macdonald, J.: Hearing lips and seeing voices. Nature 264(5588), 746–
748 (1976)

13. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(4), 701
(1997)
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Abstract. It is known that neurons can project topographically to their
target area, and reciprocal projections back from the target area are typ-
ically aligned with the forward projection. However, the wide terminal
arbors of individual axons limit the precision of such anatomical reci-
procity. This leaves open the question of whether more precise reciprocal
connectivity is obtainable through the adjustment of synaptic strengths.
We have found that such a sharpening of projections can indeed result
from a combination of biologically plausible mechanisms, namely Heb-
bian learning at synapses, continuous winner-take-all circuitry within
areas, and homeostatic activity regulation within neurons. We show that
this combination of mechanisms, which we refer to collectively as “sharp
learning”, is capable of sharpening inter-area projections in a variety of
network architectures. Sharp learning offers an explanation for how pre-
cise topographic and reciprocal connections can emerge, even in early
development.

Keywords: Self-organization, Early development, Recurrent networks.

1 Introduction

A recurring theme of inter-areal projections is that they are topographic in
nature [1, 2], meaning that the relative positions of the terminal axonal arbors
in the target area are arranged similarly to the relative positions of the somas in
the source area. However, the terminal arbors often overlap significantly, with a
single arbor covering from 5% to 30% of the total target area [3].

A natural question is whether the synaptic connections might provide more
precise topographic connectivity than one would assume just by examining the
morphology and assuming random connectivity [4] within the axonal and den-
dritic arbor regions.

� The authors are listed in alphabetic order.
�� Supported by EU Project Grant FET-IP-216593.

� � � Supported by ETH Research Grant ETH-23 08-1.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 101–108, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



102 M. Cook, F. Jug, and C. Krautz

Note that a precise projection does not necessarily imply small arbors. Even if
non-precise connections are pruned during development, the remaining, precise
synapses will still be distributed throughout the area where the original axonal
arbor overlapped with dendritic arbors of target cells, as in Fig. 1(a,b). Thus
the morphology alone cannot indicate whether such a sharpening process has
occurred or not, and current anatomical knowledge does not yet include sufficient
information on synaptic specificity of inter-areal projections [5, 6], leaving the
question open.

The biologically plausible mechanisms that we use are Hebbian learning at
synapses, continuous winner-take-all circuitry within areas, and homeostatic

(a) (b) (c) (d)

Fig. 1. (a) A precise projection between two areas (grey ellipses) without small arbors.
The synapses (black dots) can be distributed throughout the area where the projecting
cell’s axonal arbor (left, red) overlaps with the dendritic arbor (right, blue) of the target
cell. Although the arbors have a chaotic and unfocused morphology, the projection is
in fact perfectly topographic, one-to-one connectivity. (b) The same picture with most
arbors grayed out. Here it is easier to see how the synaptic connections are providing a
perfectly precise projection. (c) When one area projects to another, the terminal axonal
and dendritic arbors (symbolized as shaded triangles) allow each projecting neuron
to reach a range of targets (three shown). (d) Learning mechanisms can effectively
sharpen the projection by strengthening some synapses and weakening others. This is
symbolized here by showing the connection of the most-aligned units as strengthened,
while other connections are weakened, yielding the connectivity of (a). For visual clarity,
these diagrams (a)-(d) are vast simplifications of real arbors, which contain thousands
of synapses in three dimensions, often centered around the target soma. In reality a
projection would not have to be one-to-one to be considered precise, but it would need
to use synaptic specificity to prefer localized targets.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h) (i)

Fig. 2. Examples of inter-areal architectures where sharp learning is successful, in-
cluding feed-forward paths and cycles (a,c,g,d,h), bidirectional paths and cycles (e,b,f),
and an arbitrary complex structure (i)
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(a) (b) (c) (d)

Fig. 3. Various types of connections. (a) Shows disordered connectivity, as would be
expected with randomly connected synapses. Such randomness is often assumed when
considering connectivity on a scale smaller than a dendritic arbor [4, 5]. (b) Shows
skewed connectivity, as would be almost inevitable from a developmental program of
chemotaxic axon growth attempting to form reciprocal connections. (c) Shows recip-
rocal connectivity, which is achieved by sharp learning. (d) Shows how this idea can
be generalized to cycles of length three or more. Again, aligned connectivity is shown,
as achieved by sharp learning. The arrows in each diagram represent the strongest
connection. Nearby connections (not shown) are also present but weaker.

long-term activity regulation within neurons, as shown in Fig. 4. We find that
this combination of mechanisms, which we refer to collectively as sharp learning,
is capable of sharpening inter-areal projections in a variety of network architec-
tures, such as those in Fig. 2. Furthermore, in networks with recurrently con-
nected areas, sharp learning results in sharpened back projections being aligned
with sharpened forward projections, as shown in Fig. 3(c,d).

Over the last decades, there have been countless models examining the train-
ing of weights between layers in a network. Our results are most closely related
to the pioneering work of Willshaw and Malsburg, who modeled the development
of unidirectional topographic retino-tectal projections in the frog [7].

2 Methods

Sharp learning takes place in the context of interacting groups of units that we
refer to as populations or areas. The large-scale architecture of a network lies in
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Fig. 4. Components of sharp learning: Hebbian learning (HL) between areas, winner-
take-all (WTA) within areas, and homeostatic activity regulation (HAR) within units
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the projections between these populations. These projections can be shown in
a projection diagram, such as those shown in Fig. 2. One well-known projection
diagram is that of Felleman and van Essen, showing the connectivity between
cortical areas in the visual pathway of the macaque [8].

The populations are composed internally of units, which can be considered
as corresponding either to an individual neuron, to a small neural microcircuit
in the cortex [5], or to a tightly connected group of cells such as a cortical
microcolumn [9].

Sharp learning is a combination of three strategies, as shown in Fig. 4 and
Fig. 5. Synaptic connections between areas are controlled by Hebbian learn-
ing (HL), so that the weights reflect the correlation of typical network activ-
ity [10]. Local connections within an area (lateral connections) support contin-
uous winner-take-all (WTA) dynamics [11], so neighboring units within an area
exhibit similar activity patterns and noisy input is smoothed. Homeostatic activ-
ity regulation (HAR) within each unit modulates the Hebbian learning so that
a unit does not become permanently active or inactive, but maintains a desired
average activity level [12]. This makes sure that every unit is used, and that each
unit is used in moderation.

It is worth noting that the presented components work on quite different time
scales. The WTA dynamics operate on a short time scale, allowing the network
to converge quickly. HAR and HL operate on a longer time scale, averaging over
many inputs.

Winner-Take-All. The units within each of the populations are laterally inter-
connected so that each population is effectively a continuous winner-take-all
circuit [11], meaning that the dynamics lead to a localized region of activity,
similar to the encoding of a value by a population code [13]. The connection
weight wi,j between units i and j is defined as

wi,j = γ · e− 1
2 (d(i,j)/σ)2 − δ , (1)

Sharp Learning Algorithm

1: initialize inter-areal weights randomly
2: loop
3: initialize units with random activity
4: draw and feed noisy input to A
5: repeat
6: do WTA update (eq. 1)
7: until change in unit activities < ε
8: do HL (eq. 2) and HAR (eq. 3)
9: end loop

Fig. 5. The main loops in the sharp learning algorithm. The three-population ring
architecture of Fig. 2(d) is shown, but the procedure is the same for all architectures.
If lines 7 and 8 are swapped, then we refer to the modified algorithm as the “continuous
learning” form of the algorithm.
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where d(i, j) = min{|i − j|, n − |i − j|} gives the distance d between i and j,
with n being the number of units in the population. In order to avoid boundary
effects we let the distance measure wrap around. The parameters γ, σ, and δ
specify the amplitude, the width, and the vertical displacement (i.e. the amount
of lateral inhibition) of the Gaussian shape of the connection weights profile.

Hebbian Learning. The update of the weights wt
i,j depends on (i) the activities

at
i and at

j of units i and j at time t (incremented in the outer loop of Fig. 5), and
(ii) two global parameters αl and αd. The Hebbian learning rate αl regulates
the speed at which connections get learned and is usually set to a value smaller
then αd, the weight decay rate. The weights are updated according to:

wt+1
i,j = (1− αd) · wt

i,j + αl · at
i · at

j . (2)

We perform Hebbian learning only on inter-areal weights. To speed up the run-
ning time of simulations it suffices to do these updates only after the WTA
converged.

Homeostatic Activity Regulation. We use the following update formula for the
homeostatic activity terms:

ht
j = −c · (āt

j − atarget) , (3)

where c is a scaling constant, atarget sets the desired activity level, and āt
j is a

running average of the activity of unit j, defined by

āt
j = (1− ω)āt−1

j + ωat
j (4)

where ω is the inverse time constant of the averaging.

Neural Units and Update Dynamics. At each discrete time step τ in the inner
loop of Fig. 5, we update the activity level aτ

j of each unit j. To do this, we
first sum the activity levels of all units connected to unit j, weighted by their
connection strengths. This sum includes both the lateral connectivity within the
population as well as the connections coming from other populations. This sum
is corrected by the homeostatic activity regulation term ht

j . Finally we apply
a non-linear function θ that restricts the activity level to the range [0, 1]. This
yields

aτ+1
j = θ(ht

j +
∑

i∈Γ in
j

wt
i,j · aτ

i ) , (5)

where Γ in
j is the set of units connected to unit j, and θ is a logistic function

θ(x) =
1

1 + e−m(x−s)
(6)

parameterized by m and s.
Note that the time τ in Equation 5 refers to iterations of the inner loop

(lines 5-7 of Fig. 5), while the time t in Equations 2-4 refers to iterations of the
outer loop (lines 2-9 of Fig. 5).
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3 Results

We show in Fig. 6 the results of sharp learning applied to the network of Fig. 2(d),
as described in Fig. 5. Below each connection matrix shown in Fig. 6 is a di-
agram of the projection represented by that matrix, showing an arrow to the
strongest target for each projecting unit. As described above, the populations
in the simulation use a wrap-around topology for the lateral connectivity (the
continuous winner-take-all), which is the only place we induce any topology into
the network. Using a wrap-around topology allows an arbitrary displacement to
arise in each projection, while still being precisely topographic. One can also see
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Fig. 6. The weight matrices of the example network of Fig. 5. (a) shows the random
initial state of the network, (b) and (c) show the state of the network during learning,
and (d) shows the state after learning has converged. The matrices are shown with
low values dark and high values white. Below each matrix is a mapping showing which
target element each source element is most strongly connected to. In (a-d), the first
matrix shows the weights from population A (row) to population B (column), the
second from B to C, and the third from C to A. The goal of our algorithm, as reached
in (d), is that neighbors within a source population should project to neighboring
destinations, and the circular path starting from any unit should come back to that
unit. Three examples of such paths are highlighted in different colors.
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Fig. 7. Evolution of quality value q for the network of Fig. 5. The q-values give the
mean squared error compared to a perfect topographic mapping between all connected
populations of a network.

Table 1. Quality of sharp learning for the network architectures shown in Fig. 2. The
quality q of a result is the root-mean-squared error in the position of the activity in
each layer of the network, averaged over all possible positions of the peak of the input
acitvity. The position of the activity in a layer is determined by considering the position
of best fit of a Gaussian kernel, measured such that the size of the entire layer is 1. Due
to the wrap around topology of the populations, the error is always between 0 and 0.5.

Networks shown in Fig. 2 (a) (b) (c) (d) (e) (f) (g) (h) (i)

Quality of sharp learning (q) 0.006 0.013 0.005 0.012 0.014 0.011 0.010 0.023 0.025

that the second and third matrices, once sharp learning has progressed, invert
the ordering of the units within the population. The apparent discontinuities
in the pattern of paths shown in Fig. 6(d) are in fact continuous, due to the
wrap-around nature of the populations.

In Table 1 we compare the results of sharp learning for the network archi-
tectures shown in Fig. 2. For simulation each population contained 200 units.
The q-values in the table give the mean squared error compared to a perfectly
topographic mapping between all connected populations of a network.

Fig. 7 shows how the q-value evolves over the course of sharpening the projec-
tions in a network, for the network shown in Fig. 5. Other networks, even with
layers of unequal size, behave comparably (data not shown).

4 Discussion

We have shown that sharp learning is able to effectively sharpen inter-areal
projections in a variety of circumstances, using a combination of biologically
plausible mechanisms.

To further confirm the biological plausibility of sharp learning it will be nec-
essary to investigate the robustness of sharp learning with respect to inhomo-
geneities in the lateral connectivity within an area, as well as with respect to
inhomogeneities in the homeostatic activity regulation and other parameters.
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Another step towards biological plausibility would be to replace the mean-
rate nodes used in our simulations by spiking units. This would require the
transformation of the learning rules into a spike based equivalent.

We treat sharp learning here as a developmental process. We have also shown
that a very similar procedure can learn data relationships fed to two populations
in a network similar to the ones discussed here [14].

Since sharp learning can (i) help to create precise topographic connections,
and (ii) subsequently be used to learn relationships by simply observing input
fed to the network, we believe that sharp learning is a capable model of learning
whose power has only started to be explored.
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Abstract. In this paper, we propose a new type of information-theoretic method
called ”weighted cooperative learning.” In this method, two networks, namely,
cooperative and uncooperative networks are prepared. The roles of these net-
works are controlled by the cooperation parameter α. As the parameter is in-
creased, the role of cooperative networks becomes more important in learning. In
addition, the importance of input units or variables is incorporated in the learn-
ing in terms of mutual information. We applied the method to the housing data
from the machine learning database. Experimental results showed that weighted
cooperative learning could be used to improve performance in terms of quanti-
zation and topographic errors. In addition, we could obtain much clearer class
boundaries on the U-matrix by the weighted cooperative learning.

1 Introduction

In this paper, we propose a new type of information-theoretic method called ”weighted
cooperative learning.” In this method, two networks, namely, cooperative and coopera-
tive networks interact with each other. The uncooperative networks try to imitate coop-
erative networks as much as possible. Then, the roles of two networks are controlled by
the cooperation parameter α. As the parameter α is increased, the role of cooperative
networks becomes dominant. In addition, the importance of input units is considered
by computing mutual information between competitive units and input patterns with
attention to a specific input unit.

The computational procedure is composed of two phases. The first phase is compa-
rable to the self-organizing maps (SOM), because we pay attention only to cooperation
among neurons. One of the main difference is that our method is based upon soft com-
petition among neurons and the degree of competition can freely be controlled. This
property is essential to produce clearer class structure. In the conventional SOM, there
have been many visualization techniques [5] to clarify class structure. One of the well-
known techniques is the U-matrix [3] which is good at detecting the class boundaries
visually. However, even if we use those conventional visualization techniques, it is dif-
ficult to see clear class boundaries on the map, in particular when the problems become
complex. In our method, competition is freely controlled for different purposes. In this
paper, we control the competition for better interpretation.

In the second phase, the degree of cooperation is controlled. This means that the
roles of cooperative and uncooperative networks can be changed for different purposes.
Our objective is to make class structure as clear as possible and for this purpose, the

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 109–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Concept of uncooperative (a) and cooperative (b) network with the cooperation
parameter α

degree of cooperation is controlled. In addition, we take into account the importance of
input units or the information of input units for clearer representation. The importance
is measured in terms of mutual information of input units and obtained information is
used to make class structure as clear as possible.

2 Theory and Computational Methods

2.1 Cooperative Learning

Figure 1 shows a concept of cooperative learning, in which an uncooperative network or
network without cooperation between units (a) tries to imitate the cooperative network
or network with cooperation (b). In an uncooperative network, the firing probability of
the jth competitive unit is defined by

p(j | s) =
exp

{
− 1

2 (xs −wj)TΛ(xs −wj)
}∑M

m=1 exp
{
− 1

2 (xs −wm)TΛ(xs −wm)
} , (1)

where xs and wj denote the L-dimensional input and weight vectors and the klth ele-
ment of the scaling matrix (Λ)kl is defined by

(Λ)kl = δkl
p(k)
σ2

, (2)

where p(k) denotes the firing probability of the kth input unit and σ is a spread
parameter.

For the cooperative network, we borrow the computational methods developed for
the conventional self-organizing maps, and then we use the ordinary neighborhood
kernel used for SOM, namely,
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hjc = exp
(
‖rj − rc‖2

2σ2
nh

)
, (3)

where rj and rc denotes the position of the jth and cth unit on the output space. The
cooperative outputs can be defined by the summation of all neighboring competitive
units

ys
j =

M∑
c=1

hjc exp
{
−1

2
(xs −wc)TΛcp(xs −wc)

}
, (4)

where M is the number of competitive units and the klth element of the scaling matrix
(Λcp)kl is given by

(Λcp)kl = δkl
p(k)
σ2

cp

, (5)

where σcp is the spread parameter for the cooperative network. The conditional prob-
ability q(j|s) of the firing of the jth competitive unit, given the sth input pattern, can
be obtained by normalizing the competitive unit outputs ys

j . To imitate cooperative net-
works by uncooperative ones, we must decrease the following KL divergence measure

IKL =
S∑

s=1

M∑
j=1

p(s)p(j | s) log
p(j | s)
q(j | s)

, (6)

where S is the number of input patterns. It is possible to directly differentiate this equa-
tion to have update rules. However, the final update rules become complicated. Instead
of the direct differentiation, we introduce the free energy. The free energy can be defined
by

F = −2σ2
S∑

s=1

p(s) log
M∑

j=1

q(j|s) exp
{
−1

2
(xs −wj)T Λ(xs −wj)

}
. (7)

Then, the free energy can be expanded as

F =
S∑

s=1

p(s)
M∑

j=1

p∗(j | s)‖xs −wj‖2 + 2σ2
S∑

s=1

p(s)
M∑

j=1

p∗(j | s) log
p∗(j | s)
q(j | s)

,(8)

where

p∗(j | s) =
q(j | s) exp

{
− 1

2 (xs −wj)T Λ(xs −wj)
}∑M

m=1 q(m | s) exp
{
− 1

2 (xs −wm)TΛ(xs −wm)
} , (9)

Now, it is easy to differentiate the free energy to have update rules. Suppose that input
patterns are given with the same probabilities, and then we have

wj =
∑S

s=1 p∗(j | s)xs∑S
s=1 p∗(j | s)

. (10)
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2.2 Weighted Cooperation

Now, we must compute the firing probability of the kth input unit p(k). One of the
easiest way is to suppose that all input units fire equally, namely,

p(k) =
1
L

. (11)

This type of learning is called ”normal cooperation.” On the other hand, it is quite
natural to take into account the actual firing probabilities of input units. For this purpose,
we use the procedure of information enhancement [1]. The information enhancement
procedure has been used to compute mutual information between competitive units and
input patterns with attention paid to a specific component.

Let us compute mutual information when the tth input unit is a target for enhance-
ment, we have competitive unit outputs vs

jt computed by

vs
jt ∝ exp

{
−1

2
(xs −wj)TΛt(xs −wj)

}
, (12)

where the klth element of the scaling matrix (Λt)kl is defined by

(Λt)kl =
δklδkt

σ2
. (13)

We can normalize these outputs for probabilities,

p(j | s; t) =
exp

{
− 1

2 (xs −wj)T Λt(xs −wj)
}∑M

m=1 exp
{
− 1

2 (xs −wm)TΛt(xs −wm)
} . (14)

And we have

p(j; t) =
S∑

s=1

p(s)p(j | s; t). (15)

By using these probabilities, we have enhanced information for the tth input unit

It =
S∑

s=1

M∑
j=1

p(s)p(j | s; t) log
p(j | s; t)
p(j; t)

. (16)

We normalize this enhanced information by

r(t) =
It∑L
l=1 Il

. (17)

As this enhanced information is increased, the tth input variable contributes more to
the organized responses of competitive units to input patterns. We use this normalized
enhanced information to approximate the firing probability of input units, namely,

p(k) = r(k). (18)

Because the distances between input patterns and connection weights are weighted by
p(k), the learning is called ”weighted cooperation learning.”
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2.3 Controlling Cooperation and Computational Procedures

Because the uncooperative network tries to imitate the cooperative network, we con-
sider the spread parameter σcp for the cooperative network as the base parameter. Then,
by using a parameter α, we define the relation between two networks

σ = ασcp. (19)

For simplicity reason, the parameter α is supposed to be larger than or equal to one,
and the parameter is called ”cooperation parameter.” When the cooperation parameter
is one, the cooperative and uncooperative network are controlled by the same value
of the spread parameter. As the cooperation parameter is increased, the effect of the
cooperative networks becomes more apparent.
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Fig. 2. Quantization errors (a) and topographic errors (b) as a function of the parameter β for
the housing data

The computational procedure is composed of two phases1. In the first phase, only
cooperation is considered where we try to obtain an optimal value of the spread pa-
rameter σcp. We suppose that uncooperative networks have no influence on learning.
This situation can be described when the spread parameter σ becomes infinity and then
the probability p∗(j | s) becomes equivalent to q(j | s) before learning. The actual
parameter for the cooperation is the spread parameter σcp and it is defined by

σcp =
1
β

, (20)

where β is larger than zero. When the parameter β is increased gradually, the spread
parameter σcp becomes gradually decreased and has a possibility to reach its stable
points, because the increment becomes smaller. When the parameter β is larger, the
competition becomes more like the winner-take-all; and when the parameter is small,
the competition becomes soft competition.

1 In the cooperative network, the other parameter σnh in the neighborhood kernel should be
determined. For simplicity reason, the neighborhood parameter is independently controlled.
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(a) SOM (b) Beta=30 (c) Beta=60 (d) Beta=100

Fig. 3. U-matrices obtained by the conventional SOM (a) and the information-theoretic cooper-
ative method (b)-(h) for the housing data

In the second phase, with the fixed value of the parameter β, we try to change the co-
operation parameter α to obtain feature maps for better interpretation. The cooperation
parameter α is larger, competitive units in the uncooperative networks respond more
uniformly to input patterns and the cooperation networks play a more important role in
learning.

3 Results and Discussion

We present experimental results on the housing data from the machine learning
database2 to show the good performance of our method. The number of input units and
patterns are 14 and 506, respectively. We use the SOM toolbox developed by Vesanto
et al. [4], because it is easy to reproduce final results in the present paper by using this
package. The quantization error is simply the average distance from each data vector to
its BMU(best-matching unit). The topographic error is the percentage of data vectors
for which the BMU and the second-BMU are not neighboring units [2].

In the first place, we present the results in the first phase of learning. Figure 2(a)
shows quantization errors as a function of the parameter β. As the parameter is in-
creased, qunatization errors are gradually decreased and finally the error reaches its
lowest point of 0.079 when the parameter β is 116. On the other hand, the error by the
conventional SOM is 0.081. Thus, slight improvement can be seen by the cooperative
learning, comparing with SOM. Figure 2(b) shows topographic errors as a function of
the parameter β. The topographic errors fluctuate greatly when the parameter β is small.
Then, the errors become lower than that by the conventional SOM. The lowest error of
the cooperative learning is 0.014, when the parameter β is 54. Thus, the topographic
errors are significantly reduced.

Figure 3 shows U-matrices by the conventional SOM and cooperative learning. Fig-
ure 3(a) shows the U-matrix by the conventional SOM. We can see boundaries in
warmer color on the upper and left hand side of the matrix, though they are rather
ambiguous. Figure 3(b) shows the U-matrix when the parameter β is 30. The wide
boundary in warmer color on the upper side of the matrix appears. When the parameter
is increased to 60 in Figure 3(c), the wide boundary become slimmer. Finally, when

2 http://archive.ics.uci.edu/ml/
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Fig. 5. U-matrices obtained by the normal learning (a) and the weighted learning (b)

the parameter is 100 in Figure 3(d), boundaries on the matrix show more clearly the
boundaries obtained by the conventional SOM in Figure 3(a).

In the second phase of learning, the cooperation parameter α is changed with the
fixed value of the other paramter β. Figure 4(a) shows quantization errors as a function
of the cooperation parameter α in the second phase of learning. As can be seen in the
figure, the errors are increased as the parameter is increased for both methods. How-
ever, we can see that errors by the weighted method are much lower than those by the
normal method. Figure 4(b) shows topographic errors as a function of the parameter α.
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The topographic errors fluctuate greatly compared with the quantization errors. Though
the lowest error of 0.010 is obtained by the weighted method, the errors are almost
equivalent for both methods.

Figures 5(a) and (b) show the U-matrices by the normal and weighted learning, re-
spectively. As shown in the figure, by the both methods, obtained boundaries become
clearer than those by the conventional SOM and the cooperative learning in Figure 3.
However, we can say that class boundaries obtained by the weighted learning are much
more explicit that those by the normal learning. When the cooperation parameter is five
in Figure 5(a1), there are several minor boundaries around the major boundaries by
the normal learning. However, with the weighted learning in Figure 5(b1), only major
boundaries in warmer colors remain. When the cooperation parameter is ten in Figure
5(a1) and (a2), minor boundaries obtained by the normal learning disappear and only
major boundary are clearly shown by the weighted learning. As the cooperation pa-
rameter is further increased from 15 in Figure 5(a3) and (b3) to 30 in Figure 5(a4) and
(b4), the boundaries in warmer color become obscure by the normal learning, but by
the weighted method, clear boundaries remain to be stable.

4 Conclusion

In this paper, we have proposed a new type of information-theoretic method called
”weighted cooperative learning.” In the method, uncooperative networks try to imitate
cooperative networks as much as possible. The roles of cooperative and uncooperative
networks are controlled by the cooperation parameter α. As the cooperation param-
eter is increased, the role of cooperative network become dominant. In addition, the
importance of input units or variable is included by computing mutual information for
each input unit. The method is applied to the housing data from the machine learning
database. Experimental results showed that the cooperative and weighted cooperative
learning show better performance than the conventional SOM in terms of quantization
and topographic errors. In particular, the weighted cooperative learning succeeded in
producing much clearer class boundaries for better interpretation.
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Abstract. Many classification problems of high technological value are
multiclass. In the last years, several improved solutions based on the
combination of simple classifiers were introduced. An interesting kind of
methods creates a hierarchy of sub-problems by clustering prototypes
of each one of the classes, but the solution produced by the clustering
stage is heavily influenced by the label’s information. In this work we
introduce a new strategy to solve multiclass problems that makes more
use of spatial information than other methods. Based on our previous
work on imbalanced problems, we construct a hierarchy of subproblems,
but opposite to previous developments, based only on spatial information
and not using class labels at any time. We consider different clustering
methods (either agglomerative or divisive) for this task. We use an SVM
for each sub-problem (if needed, because in several cases the clustering
method directly gives a subset with samples of a single class). Using
publicly available datasets we compare the new method with several
previous approaches, finding promising results.

1 Introduction

Several interesting machine learning tasks can be posed as the problem of as-
signing a given example to one of a finite set of classes, usually known as a
multiclass classification problem. For example, a handwritten recognition sys-
tem has to read a series of strokes in a device and to assign them to one of the
valid entries to the system. Other classical examples include text and speech
categorization [3], object recognition in machine vision [9] or cancer diagnosis
based on gene expression data [17]. Unfortunately, some of the most efficient
classifiers available nowadays were designed to handle only two classes (binary
classifiers), as for example Adaboost [8] or the Support Vector Machines (SVM)
[6]. The problem of extending these binary classifiers to multiclass problem ef-
ficiently has been the subject of several publications on the last years. For a
complete review see for example Lorena et al. [14].

Although the method discussed in this work can be applied to any binary clas-
sifier, we concentrate on its use with SVM, the classifier with more applications
� Work supported by ANPCyT grant 237.
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in the last years. For SVM in particular some direct extensions to multiclass
problems have been introduced, but unfortunately they do not produce accurate
classifiers in most cases. For example, Weston and Watkins [21] proposed a new
formulation of the SVM (WW–SVM from here on) that can solve a multiclass
problem as a single optimization task. Crammer and Singer [5], on the other
side, introduced a generalized notion of the margin of multiclass problems, with
which they cast them as constrained optimization tasks with a quadratic objec-
tive function, leading to multiple optimization problems of reduced size. We call
that method the CS–SVM.

Most published efficient strategies are based on reducing the multiclass prob-
lem to a set of binary ones. A kind of these methods is based on the principle that
all classes are equivalent (we call them “flat strategies”) and, in order to make a
decision, each class is compared to all others in the same way. The most simple
method is the “One–vs-All” or OVA method [18], in which a k–class problem
is decomposed into k binary sub-problems consisting in separating one of the
classes from the rest. Hastie and Tibshirani [10] suggested a different approach
in which all k(k−1)/2 pairs of classes are compared to each other. This approach
is called “One–vs-One” or OVO, and is usually considered to be more effective
than the OVA approach [11], in particular for SVM.

Flat methods are simple to understand and implement, but they ignore useful
information when solving the problem. For example, it is easy to see that some
classes in a given problem could be so distant in the feature space that there is no
need to train a particular classifier on them. Hierarchical strategies (HS) attempt
to use some of the spatial information in the problem at hand. HS methods build
a decision tree (or a decision directed acyclic graph [16]) with a binary classifier
at each node, and one class at each leaf. HS methods differ in the way in which
each binary classifier is created [7,20]. For example, Liu et al. [13] at each step
split the classes in two subsets using the k-means clustering method [15] applied
to the centroids of each class, and then train an SVM to learn to discriminate
both groups. The procedure is iterated until each node contains a single class.
The idea behind this method (called Adaptive Hierarchical Multi-class SVM or
AHM–SVM) is to look at each step for the split with the biggest separation
between both subsets. The number of binary classifiers created by AHM–SVM
is low, k− 1. Benabdeslem and Bennani [4] introduced a very similar procedure
(which we will call ALHC–SVM), in which the k-means clustering is replaced
with the average linkage hierarchical clustering method [12].

Both HS methods described before create a hierarchy of sub-problems based
on prototypes of each one of the k classes. According to this, the solution pro-
duced by the clustering stage is heavily influenced by the label’s information.
Furthermore, they use a single prototype for each class, assuming that all classes
are compact structures in the feature space. Unfortunately, real world datasets
usually do not have this property, as we will show in some examples. In this
work we introduce a new strategy to solve multiclass problems that makes use
of even more spatial information than traditional HS methods. Based on the
general idea of our previous algorithm for imbalanced problems [1], we construct
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a hierarchy of sub-problems, but opposite to previous developments, based only
on spatial information and not using class labels at any time or a single proto-
type for each class. Our goal is to split the problem into a series of simple and
natural sub-problems using a given clustering method (either agglomerative or
divisive). Following, we apply an SVM to each sub-problem (if needed, because
in several cases the clustering method directly gives a subset with samples of a
single class).

2 The Unsupervised Partitioning Method for Multiclass
Problems

The unsupervised partitioning method (UPM, from now on) follows the same
principle that our previous REPMAC development for imbalanced problems [1]:
To divide the multiclass problem intelligently into several sub-problems (clusters)
in order to translate a big multiclass problem into a set of simpler and smaller
sub-problems. The general strategy is simple, we first use a clustering method in
order to produce a hierarchy of subproblems and then we train classifiers, when
needed, to solve the simpler problems at the leaves of the decision tree.

2.1 Hierarchy Construction

In order to create the hierarchy of subproblems we applied in this work two
different hierarchical clustering methods.

Divisive Clustering: On one side, following our previous work, we used a
divisive method, recursively splitting the dataset in two with the well-known
k-means clustering method [15] (KM from here on). Divisive clustering methods
usually have a stopping criteria for the recursive process. In this case we stop
the recursion if: i) all the datapoints in a clusters belong to the same class or ii)
there are only two classes in the cluster or iii) there are less than Sp points in the
cluster (Sp = 15 in this work). The first two conditions are easy to understand,
the last one stops the splitting if the cluster has only a few datapoints and a
further split should leave us with less points than needed to train efficiently a
classifier at the given node.

Table 1. Details of the 4 datasets used in this work. The k column shows the number
of classes, p column shows the number of inputs, train and test columns show the
corresponding number of datapoints in each set.

Dataset k p train test

Pendigits 10 16 7494 3498
Letters 26 16 16000 4000
Satimage 6 36 4435 2000
Yeast 10 8 1113 371
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Agglomerative Clustering: On the other side, we applied two well-known
hierarchical clustering methods [19], which are agglomerative in nature: the Av-
erage Linkage (AL) and the Single Linkage (SL) strategies. In this case, the
method builds a full hierarchy, starting from individual datapoints and ending
with all the dataset in a single cluster. In order to use this hierarchy in the learn-
ing process we need to prune the resulting tree with the aim of having problems
that can be solved at each leaf. According to this, starting from the root, we
go down the tree and check at each node if any of the three stopping criteria
explained above is met. When this is the case, we prune the tree at that node
and replace the subtree with a leaf containing all the points in it.

Classifiers: At the final step, we use an appropriate method to assign classes
to all the points at each leaf. If the cluster has only one class (criteria i was met)
then we obviously assign that class to the leaf. If criteria ii was met (a binary
problem) we fit directly a binary SVM [6] to the datapoints in the cluster. Finally,
in the few cases in which the leaf was created by criteria iii we fit an OVO-SVM
to the leaf.

Outliers Handling: Outliers, which by definition are isolated points of one
class, are usually a problem for HS methods. At this first development stage we
choose to ignore outliers: If at a given cluster there are less than Omin datapoints
of a given class (Omin = 4 in this work) we consider them as outliers and do not
count them when evaluating stopping criteria or training an SVM.

2.2 Classification of New Datapoints

Once we have the full decision tree, a new example is classified according to
the following procedure: At each level of the tree (starting from the root), the
example is assigned to one of the branches, according to the rules of the clustering
method (for example, for divisive KM, looking for the nearest centroid or looking
for the nearest neighbor for SL). The procedure is iterated until a leaf is reached,
where the example is classified using the decision function associated to that leaf
(a given class for pure nodes or an SVM in other cases).

3 Experimental Results

We evaluated the performance of the new UPM method using 4 different datasets,
all obtained from the UCI repository [2]. In Table 1 we show their main char-
acteristics. All 4 problems have several classes and different number of sam-
ples/features. Two datasets (Pendigits and Letters) are well balanced while the
other two show classes with a low fraction of samples.

Experimental Setup: We selected for comparison several multiclass SVM
methods that were already discussed in the Introduction. First, we included
two direct multiclass SVM methods, the WW-SVM and the CS-SVM. Then we
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Table 2. Comparison of the classification error for the four datasets used in this work

WW CS OVO ALHM AHM KM SL AL

Pendigits 0,078 0,081 0,048 0,135 0,127 0,050 0,029 0,067
Letters 0,283 0,253 0,144 0,285 0,271 0,156 0,130 0,140
Satimage 0,160 0,174 0,138 0,153 0,162 0,110 0,139 0,124
Yeast 0,402 0,512 0,394 0,412 0,461 0,434 0,442 0,431

Table 3. Number of SVMs used by each method

OVO ALHM AHM KM SL AL

Pendigits 45 9 9 35 6 14
Letters 325 25 25 280 199 203
Satimage 15 5 5 42 8 36
Yeast 45 9 9 31 9 33

considered a flat method, the OVO strategy. Finally, we included two HS meth-
ods, the AHM–SVM and the ALHC–SVM. In the case of the new UPM method
we used the three clustering strategies discussed before, KM, SL and AL. In all
cases we used linear SVMs as classifiers, with the C parameter selected by an
internal CV using only the corresponding training data. As we have fixed exter-
nal test sets for evaluation, for each dataset we produced a single run of each
method, training with the corresponding subset and then applying the classifier
to the test set.

Results: In Table 2 we show the corresponding error levels for all methods. In
three out of four problems one of the versions of UPM gives the best result and
in the Yeast dataset only the OVO strategy outperforms our new method. It is
interesting to note that the traditional OVO method works better than all other
previous methods in the four datasets.

Comparing the results of the three different strategies for constructing the
hierarchy of subproblems in UPM, the divisive KM is superior in two cases and
the agglomerative SL in the other two, while AL ends in between of both methods
in 3 out of 4 cases.

In Table 3 we show the number of SVMs used by each method. The ALHM and
AHM method use less classifiers than all UPM versions, but their performance is
limited, as was shown in Table 2. On the other hand, UPM usually produces less
classifiers than the OVO method. In particular, the SL strategy has the property
of producing small clusters that usually have only one class (no classifier needed),
leading always to the hierarchy with the minimum number of classifiers. Again,
the AL strategy produces a solution that is located in the middle of the two
other UPM strategies.
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Fig. 1. PCA visualization of the Pendigits datasets. Top left: Full dataset. Others:
Detail of three different classes.

Analysis: In Figure 1 we show the Pendigits dataset projected on the two first
PCA components. In the top right panel we show the detail of a typical compact
class (4), which has the spatial distribution that is assumed by the other HS
strategies. However, as we show in the bottom panels of the same figure, classes
5 and 7 have a very different structure, with two well defined clusters each one.
In Table 4 we show the error levels for some individual classes in this problem.
For simple classes like 3 or 4 all methods show similar results. On the other
hand, for more complex classes like 5 and 7 the new UPM strategy (in all 3
versions) clearly outperforms previous HS methods. In order to add evidence in
this direction, we produced a new problem derived from the Pendigits dataset by
joining classes 0 and 1 (the two most separated classes in Figure 1) in a unique
class (called “0+1”) and keeping the rest of the dataset unchanged. In the last
row of Table 4 we show the results of all methods for the new combined class.
It is clear from the table that previous HS methods have increased considerably
their error levels while the UPM strategy can easily cope with this problem.

The same effect can be seen in the Letters dataset. In Figure 2 we show PCA
projections for two particular classes. In Table 5 we show the corresponding error
levels for all methods. Again, it is clear from the table that the complex classes
do not degrade the performance of UPM methods as they do with previous HS
methods.
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Table 4. Pendigits dataset: detail of error levels for some classes. Also, error level for
an artificial class created by joining samples from classes 0 and 1.

Class WW CS OVO ALHM AHM KM SL AL

0 0.110 0.105 0.085 0.143 0.077 0.058 0.030 0.041
1 0.121 0.091 0.047 0.404 0.135 0.071 0.041 0.025
3 0.021 0.021 0.012 0.024 0.021 0.018 0.012 0.086
4 0.019 0.022 0.011 0.025 0.069 0.047 0.025 0.115
5 0.057 0.107 0.027 0.269 0.266 0.063 0.039 0.054
7 0.168 0.170 0.118 0.173 0.247 0.118 0.085 0.091

0 + 1 0.226 0.199 0.109 0.287 0.354 0.066 0.032 0.037
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Fig. 2. PCA visualization of the Letters datasets, for two different classes, “A” (left)
and “J” (right)

Table 5. Letters dataset: detail of error levels for classes A and J

Class WW CS OVO ALHM AHM KM SL AL

A 0.152 0.171 0.038 0.196 0.190 0.108 0.057 0.133
J 0.221 0.188 0.087 0.248 0.228 0.114 0.107 0.087

4 Conclusions

In this work we introduced UPM, a new strategy to deal with multiclass prob-
lems. The method has two steps, first it uses a clustering algorithm to construct
a hierarchy of easier subproblems, and then it trains several SVMs to solve each
individual subproblem. One of the advantages of the new method is that it usu-
ally produces clusters containing only one class, where no classifiers are needed.

Using four datasets we compared our new algorithm with 5 previous methods
for multiclass problems. UPM showed the best results in 3 datasets, being second
in performance in the fourth case.

We evaluated three different strategies for constructing the hierarchy, one di-
visive and two agglomerative. Overall, the AL strategy seems to be the most
useful, as it shows good results in all cases with a limited number of classifiers.



124 H.C. Ahumada, G.L. Grinblat, and P.M. Granitto

However, when working with big datasets, the SL strategy could be preferred
due to its low complexity compared with the other UPM methods.

We also showed that the UPM’s unsupervised strategy is more efficient when
facing the problem of classes with complex spatial structures than previous meth-
ods, like for example some classes of the Pendigits and Letters datasets.

We are currently extending the evaluation of the UPM method, including
other datasets and classifiers.
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Abstract. Approximation of solutions of integral equations by networks
with kernel units is investigated theoretically. There are derived upper
bounds on speed of decrease of errors in approximation of solutions of
Fredholm integral equations by kernel networks with increasing numbers
of units. The estimates are obtained for Gaussian and degenerate kernels.

Keywords: Radial and kernel networks, approximation of solutions of
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1 Introduction

Fredholm integral equations play an important role in many problems in ap-
plied science. For example, they arise as restatements of differential problems
with auxiliary boundary conditions in physics, particularly in potential theory
and elasticity (see, e.g., [1, Chapter 4]). Although under reasonable assumptions
there exists a formula describing their solutions, such formula is seldom of prac-
tical use. Instead of searching for exact solutions, many satisfactory techniques
have been developed solving integral equations approximately (see, e.g., [2]).
These techniques use various sets of approximating functions such as wavelets
and radial-basis functions. Recently, perceptron networks [3] and Gaussian and
multiquadric radial-basis functions (RBF) [4,5] have been used to find approxi-
mations of solutions of inhomogeneous Fredholm integral equations. In [5], the
collocation method based on discretization of the domain was used to construct
a cost functional, which was minimized over networks with incrementally in-
creasing numbers of Gaussian radial units. The authors mentioned that in their
numerical experiments “by increasing the number of RBFs (hidden-layer units),
it is expected that a better approximation of the solution can be achieved, but
the cost of computations will be increased.”

In this paper, taking the hint from the experimental studies [3,4,5] we the-
oretically investigate dependence of approximation accuracy on the number of
units in networks approximating solutions of Fredholm integral equations. We
explore the trade-off between the accuracy of such approximate solutions and
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the network complexity, by estimating the speeds of decrease of the approxi-
mation errors with increasing number of network units. We take advantage of
results from nonlinear approximation theory of so called “variable-basis type”
[6,7], which can be applied to networks with units from various “dictionaries”
used in neurocomputing [8,9,10,11,12].

We consider two types of approximating networks. The first one is a one-
hidden layer network with kernel units corresponding to the kernel of the equa-
tion; the second one has units generated by so-called “resolvent kernel”. Our
bounds show that the number of computational units required for a desired ac-
curacy of approximation depends on the VC-dimension of the dictionary formed
by such units, the Lebesgue measure of the domain where the solution is searched
for, and the L1-norm of the function defining the equation. We apply our esti-
mates to Gaussian and degenerate kernels, for which we estimate VC-dimensions
of corresponding dictionaries.

The paper is organized as follows. In Section 2, we recall basic concepts and
results on approximation by computational models with units from general dic-
tionaries. In Section 3 we introduces Fredholm integral equations and discusses
approaches to their approximate solutions. Sections 4 and 5 contain our estimates
of accuracy of approximate solutions for dictionaries defined either by kernels of
the equations or their associated resolvent kernels. Section 6 is a conclusion.

2 Approximation from a Dictionary

One-hidden layer networks with one linear output unit compute input-output
functions from sets of the form

spann G :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
, (1)

where the set G is sometimes called a dictionary [13] and n is the number of
hidden units. This number can be interpreted as a measure of model complex-
ity of the network. Often, dictionaries are parameterized families of functions
modelling computational units, i.e., they are of the form

GK(X, Y ) := {K(·, y) : X → R | y ∈ Y } , (2)

where K : X × Y → R is a function of two variables, an input vector x ∈
X ⊆ Rd and a parameter y ∈ Y ⊆ Rs. When X = Y , we write briefly GK(X)
and when X = Y = Rd, we write merely GK . In some contexts, K is called
a kernel. However, the above-described computational scheme includes fairly
general computational models, such as functions computable by perceptrons,
radial or kernel units, Hermite functions, trigonometric polynomials, and splines.
For example, with K(x, y) = K(x, (v, b)) = σ(v ·x+b) and σ : R→ R a sigmoidal
function, the computational scheme (1) describes one-hidden-layer perceptron
networks.
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Estimates of model complexity of one-hidden layer networks can be obtained
by inspection of upper bounds on rates of decrease of errors in approximation
of families of functions of interest by sets spannG with n increasing. Such rates
have been studied in mathematical theory of neurocomputing for various types
of computational units and norms measuring the errors such as Hilbert-space
norms [14,15,6], Lp-norms, p ∈ (1,∞) [16], and the supremum norm [17,18].
Typically, these estimates were derived for approximating sets of form

convn G :=

{
n∑

i=1

wigi |wi ∈ [0, 1],
n∑

i=1

wi = 1, gi ∈ G

}
(3)

and then extended to spann G.
We apply one of such upper bounds to the approximation of solutions of inte-

gral equations by kernel networks. To estimate accuracy of suboptimal solutions
over the whole input domain uniformly, we use an upper bound on approxima-
tion error in the supremum norm ‖ · ‖sup defined for a bounded function f on a
set X as ‖f‖sup = supx∈X |f(x)|.

The upper bound is formulated in terms of the VC-dimension of the dictionary.
Recall that the Vapnik-Chervonenkis dimension (VC-dimension) of a family F
of real-valued functions on a set X is the maximum cardinality h of a set of
points {yi ∈ X | i = 1, . . . , h} that can be separated into two classes H1 and
H2 in all 2h possible ways, by using functions of the form f(·) − α, with f ∈ F
and α ∈ R, resp. [19]. In particular, if f(yi) − α ≥ 0 , then we say that (f, α)
assigns yi to the class H1. Similarly, if f(yi) − α < 0 , then (f, α) assigns yi to
the class H2.

The next theorem is a slight reformulation of a theorem by Girosi [17]. It holds
for functions with certain integral representations. For a kernel K and a function
w in a space of functions on Y such that for each its element the integral (4) is
defined, we denote by TK the integral operator defined as

TK(w)(x) :=
∫

Y

w(y) K(x, y)dy. (4)

Theorem 1. Let X ⊆ Rd, K : X ×X → R be a bounded function with τK =
supx,y∈X |K(x, y)|, h be the VC-dimension of GK(X), and g a function such
that g = TK(w) for some w ∈ L1(X). Then for every positive integer n ≥ h/2∥∥g − ‖w‖L1(X)convn(GK(X) ∪ −GK(X))

∥∥
sup
≤ 4τK‖w‖L1(X)

√
h ln 2en

h +ln 4

n

and ‖g − spann GK(X)‖sup ≤ 4τK‖w‖L1(X)

√
h ln 2en

h +ln 4

n .

3 Approximate Solutions to Fredholm Integral Equations

Solving the inhomogeneous Fredholm integral equation of the second kind asso-
ciated with a subset X of Rd, λ ∈ R \ {0}, K : X × X → R, and f : X → R

consists in finding a continuous function φ : X → R such that

φ(x) − λ

∫
X

φ(y)K(x, y) dy = f(x) (5)
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for all x ∈ X . If both K and f are continuous and X is compact, then it is well-
known [20, Section 1.2] that the operator TK : C(X) → C(X) defined in (4) is
compact, so its sequence of eigenvalues 1/λi (ordered non increasingly) is either
finite or convergent to 0 for i → +∞. By the well-known Fredholm Alternative
Theorem (see, e.g., [20, Section 1.3]), when 1/λ is not an eigenvalue of TK , there
exists one and only one solution φ ∈ C(X), which has the expression

φ(x) = f(x)− λ

∫
X

f(y)RK(x, y, λ)dy , (6)

where RK : X×X× (R\{0}) is continuous and called resolvent kernel. For each
λ ∈ R \ {0}, the function RK(·, ·, λ) is bounded on X ×X . We denote by

GRK (X, λ) := {RK(·, y, λ) | y ∈ X} (7)

the dictionary generated by the resolvent kernel RK . Although (6) provides a
way to solve equation (5) for every f ∈ C(X), it is seldom of practical use for a
general kernel K. Several authors investigated approximation of solutions of (5)
by perceptron [3] and Gaussian radial-basis function networks [5]. These compu-
tational models are known to be universal approximators (see, e.g., [21,22]) and
thus any continuous solution of (5) on a compact domain in Rd can be arbitrar-
ily well approximated by input-output functions of these models with accuracy
increasing with growing model complexity.

For some kernels, in particular for the Gaussian one, even networks with
units having a fixed width are universal approximators [23]. For such kernels,
one can approximate arbitrarily well the solution of the equation (5) by input-
output functions of the form spann GK(X). As solutions φ of this equation can
be represented in terms of integrals with kernel K which can be approximated
by Riemann sums, the difference φ − f can be approximated arbitrarily well
by input-output functions of networks with units from the dictionary GK(X).
Theorem 1 estimates rates of this approximation.

We estimate sup-norm errors in approximation by computational models with
units from two types of dictionaries, considered in the next two sections, resp.:
1. the dictionary GK(X) generated by the kernel K of equation (5);
2. the dictionary GRK (X, λ) generated by the resolvent kernel RK associated
with K (for cases when RK has a simplified form).

To exploit Theorem 1, we need estimates of VC-dimensions of dictionaries
GK(X). We consider two types of kernels. The first one is the Gaussian kernel

K(x, y) = e−‖x−y‖2
,

for which the VC-dimension of GK(X) is bounded from above by d+1. For each
fixed width b, the VC-dimension of the dictionary generated by the Gaussian
with this width K(x, y) = e−b‖x−y‖2

is less than or equal to the VC-dimension
of Gaussian RBFs with varying widths and centers, which is equal to the VC-
dimension of set of balls in Rd. Dudley [24] proved that this VC-dimension is
equal to d + 1.
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The second type of kernels are degenerate kernels [25, Section 2.3]

K(x, y) =
m∑

j=1

ξj(x)ηj(y) , (8)

where m is finite and {ξj} and {ηj} are two sets of linearly-independent functions
on X . Degenerate kernels are of interest in applications because every L2 kernel
can be arbitrarily well approximated by a sequence of degenerate kernels (with
m increasing) [25, Section 2.6].

4 Bounds on Approximation Errors for Dictionaries
Generated by Kernels of Integral Equations

In this section, we derive estimates of decrease of errors in approximation of
solutions of integral equation by networks with units from dictionaries induced
by the kernels of the equations. By μ we denote the Lebesgue measure on R

d.

Theorem 2. Let X ⊂ Rd be compact, K : X ×X → R be a continuous kernel,
λ �= 0 be such that 1

λ is not an eigenvalue of TK and |λ| ‖
∫

X
|K(·, y)|dy‖sup < 1.

Then the solution φ of the equation (5) with f continuous satisfies
(i) for the Gaussian kernel K and n ≥ (d + 1)/2

‖φ− f − spann GK(X)‖sup

≤ 4 |λ|μ(X) ‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup

√
(d+1) ln(2en)+ln 4

n ; (9)

(ii) for a degenerate kernel K such that K(x, y) =
∑m

j=1 ξj(x)ηj(y) for all x, y ∈
X, τK = supx,y∈X |K(x, y)| and n ≥ (m + 1)/2

‖φ− f − spann GK(X)‖sup

≤ 4 τK
|λ|μ(X) ‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup

√
(m+1) ln(2en)+ln 4

n . (10)

Proof. The assumptions of Theorem 1 are satisfied with the choices g = φ− f ,

w = λφ . It is easy to show that ‖w‖L1(X) ≤ |λ|μ(X) ‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup
.

(i) in the case (i), the VC-dimension h of GK(X) is bounded from above by
d + 1 (see [24]) and from below by 1, as GK(X) is nonempty. Note that the
function β(h, n) = h ln 2en

h in the upper bound from Theorem 1 is not monotone
in h and bounded from above by (d + 1) ln(2en). Then by Theorem 1, we get∥∥∥φ− f − |λ|μ(X)‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup
convn (GK(X) ∪ −GK(X))

∥∥∥
sup

≤ 4τK
|λ|μ(X)‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup

√
(d+1) ln(2en)+ln 4

n . (11)

The statement follows by the inclusion

|λ|μ(X) ‖f‖sup

1− λ ‖
∫

X |K(·, y)|dy‖sup
convn (GK(X) ∪−GK(X)) ⊂ spannGK(X) . (12)
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(ii) In the case (ii), as the functions ηj are linearly independent, the set spanY,
where Y = {η1, . . . , ηm}, has the dimension m. By [26, Theorem 1], the VC-
dimension of spanY is bounded from above by m + 1. The VC-dimension h of
GK(X) is bounded from above by m + 1, as GK(X) ⊆ spanY, and from below
by 1, since GK(X) is nonempty. Note that the function β(h, n) = h ln 2en

h from
the upper bound from Theorem 1 is not monotone in h and bounded from above
by (m + 1) ln(2en). Then by Theorem 1 we get

∥∥∥φ− f − |λ|μ(X)‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup
convn (GK(X) ∪ −GK(X))

∥∥∥
sup

≤ 4τK
|λ|μ(X)‖f‖sup

1−λ ‖ ∫
X

|K(·,y)|dy‖sup

√
(m+1) ln(2en)+ln 4

n . (13)

The statement follows again by (12). �

Theorem 2 shows that model complexity of a kernel network with units from the
dictionary GK(X) approximating the difference between the solution φ of (5)
and the function f depends on λ, τK , m, the sup-norm of f , and the sup-norm
of the integral

∫
X
|K(·, y)|dy as a function of x. For every x ∈ X , this integral

is bounded from above by τK times μ(X). So if λ > 0 and λ τK μ(X) < 1, we
get 1

1−λ ‖ ∫
X

|K(·,y)|dy‖sup
≤ 1

1−λ τK μ(X) . Hence by Theorem 2 (i) we obtain the

upper bound ‖φ− f − spann GK(X)‖sup ≤ 4 τK
|λ|μ(X) ‖f‖sup
1−λ τK μ(X)

√
(d+1) ln(2en)+ln 4

n

and by Theorem 2 (ii) a similar estimate with d replaced by m.

5 Bounds on Approximation Errors for Dictionaries
Generated by Resolvent Kernels

In this section, we derive an upper bound on decrease of approximation error
with increasing number of computational units from the dictionary GRK (X, λ)
generated by the resolvent kernel RK associated with K and the parameter λ.

Theorem 3. Let X ⊂ Rd be compact, K : X ×X → R be a continuous degen-
erate kernel such that K(x, y) =

∑m
j=1 ξj(x)ηj(y) for all x, y ∈ X, λ �= 0 be such

that 1
λ is not an eigenvalue of TK, and RK be the resolvent kernel associated

with K. Then the solution φ of the equation (5) with f continuous satisfies for
every positive integer n ≥ (m + 1)/2

‖φ− f − spann GRK (X, λ)‖sup

≤ 4 supx,y∈X |RK(x, y, λ)| |λ| ‖f‖L1(X)

√
(m+1) ln(2en)+ln 4

n . (14)

Proof. The assumptions of Theorem 1 are satisfied with the choices g = φ− f ,
w = −λf , K = RK , and ‖w‖L1(X) = |λ|‖f‖L1(X) . To apply Theorem 1, we
estimate the VC-dimension h of the dictionary GRK (X, λ). As the kernel K of
the integral equation (5) is degenerate, by [25, Section 2.3]) we get RK(x, y, λ)
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= − 1
D(λ)

∑m
k=1[D1,k(λ)η1(y) + D2,k(λ)η2(y) + . . . + Dm,k(λ)ηm(y)]ξk(x) , where

the Di,k(λ) are coefficients depending on λ (see, e.g., [25, pp. 56-57] for their ex-
pressions for d = 1). By similar arguments as in the proof of Theorem 2, the VC-
dimension h of GRK (X, λ) is bounded from above by m+1 and from below from
1, so h ln 2en

h ≤ (m+1) ln(2en). Then, the statement follows from Theorem 1 and
the inclusion ‖f‖L1(X) convn(GRK (X, λ)∪−GRK (X, λ)) ⊂ spann GRK (X, λ). �

Theorem 3 shows that the model complexity of a kernel network with resolvent
kernel approximating the solution of the equation (5) depends on λ, the L1-norm
of the function f , the number m of functions in the spectral representation of the
degenerate kernel K, and on the supremum of RK on X ×X . These estimates
require a calculation of the resolvent kernel RK which may not be always feasible.

6 Conclusions

Several authors [3,4,5] made experimental studies of approximation of solutions
of Fredholm integral equations by neural networks. Taking the hint from such
studies, we investigated properties of such approximate solutions theoretically.
We derived estimates of speed of decrease of errors in approximation of solutions
by kernel networks with increasing numbers of computational units. The upper
bounds are formulated in terms of the VC-dimensions of dictionaries defined by
kernels. Our results show that with increasing number of units, an arbitrarily
close approximation can be achieved even if kernel models are not universal
approximators. The estimates show that both the supremum norm and the L1-
norm of the function f defining the integral equation φ(x)−λ

∫
X

K(x, y)φ(y)dy =
f(x) play crucial roles.
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Abstract. We introduce an O(ms+m log(m)) time complexity method
for training the linear ranking support vector machine, where m is the
number of training examples, and s the average number of non-zero fea-
tures per example. The method generalizes the fastest previously known
approach, which achieves the same efficiency only in restricted special
cases. The excellent scalability of the proposed method is demonstrated
experimentally.

Keywords: binary search tree, cutting plane optimization, learning to
rank, support vector machine.

1 Introduction

The ranking support vector machine (RankSVM) [7,8], is one of the most succes-
ful methods for learning to rank. The method is based on regularized risk min-
imization with a pairwise loss function, that provides a convex approximation
of the number of pairwise mis-orderings in the ranking produced by the learned
model. Related learning algorithms based on the pairwise criterion include meth-
ods such as RankBoost [5], and RankRLS [11], among others. RankSVM has
been shown to achieve excellent performance on ranking tasks such as document
ranking in web search [8,3]. However, the scalability of the method leaves room
for improvement. In this work we assume the so-called scoring setting, where
each data instance is associated with a utility score reflecting its goodness with
respect to the ranking criterion.

Previously, [9] has shown that linear RankSVM can be trained using cutting
plane optimization very efficiently, when the number of distinct utility scores
allowed is restricted. The introduced method has O(ms+m log(m)+rm) training
complexity, where m is the number of training examples, s the average number
of non-zero features per example, and r the number of distinct utility scores in
the training set. A similar approach having same training complexity was also
introduced by [3]. If r is assumed to be a small constant, the existing methods
are computationally efficient. However, in the general case where unrestricted
scores are allowed, if most of the training examples have different scores r ≈ m
leading to O(ms + m2) complexity. This worst scale quadratic scaling limits the
applicability of RankSVM in large scale learning.
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In this work we generalize the work of [9] and present a training algorithm
which has O(ms + m log(m)) complexity even in the most general case, where
arbitrary real-valued utility scores are allowed. The method is based on using
binary search trees [2,4] for speeding up the evaluations needed in the opti-
mization process. Our experiments show the excellent scalability of the method
in practice, allowing orders of magnitude faster training times than the fastest
previously known methods in case of unrestricted utility scores. Due to space
constraints more detailed description of the method and related proofs are left
to an upcoming journal extension of the work [1].

2 Learning Setting

Let D be a probability distribution over a sample space Z = Rn×R. An example
z = (x, y) ∈ Z is a pair consisting of an n-dimensional column vector of real-
valued features, and an associated real-valued utility score. Let the sequence
Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn according to D be a training set of m
training examples. X ∈ Rn×m denotes the n ×m data matrix whose columns
contain the feature representations of the training examples, and y ∈ R

m is a
column vector containing the utility scores in the training set.

Our task is to learn from the training data a ranking function f : Rn → R. In
the linear case such a function can be represented as f(x) = wTx, where w ∈ Rn

is a vector of parameters. Where the ranking task differs in the scoring setting
from that of simple regression is that the actual values taken by the ranking
function are typically not of interest. Rather, what is of interest is how well the
ordering acquired by sorting a set of new examples according to their predicted
scores matches the true underlying ranking. This is a reasonable criterion for
example in the web search engines and recommender systems, where the task
is to choose a suitable order in which to present web pages or products to the
end user. A popular way to model this criterion is by considering the pairwise
preferences induced by a ranking (see e.g. [6]). We say that an example zi is
preferred over example zj , if yi > yj . In this case one would require from the
ranking function that f(xi) > f(xj). The performance of a ranking function can
be measured by the pairwise ranking error defined as

1
N

∑
yi<yj

H(f(xi)− f(xj)) , (1)

where H is the Heaviside step function defined as

H(a) =

⎧⎨⎩
1, if a > 0
1/2, if a = 0
0, if a < 0

,

and N is the number of pairs for which yi < yj. The equation (1) counts the
number of swapped pairs between the true ranking and the one produced by f .
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In some learning to rank settings instead of having a total order over all exam-
ples, the sample space is divided into disjoint subsets, and pairwise preferences
are induced only from pairwise comparisons between the scores of examples in
the same subset. An example of an application settings where this approach is
commonly adopted is document retrieval, where data consists of query-document
pairs, and the scores represent the utility of the document with respect to the
associated user query [8]. Preferences are induced only between query-document
pairs from the same query, never between examples from different queries. In
such settings we can calculate (1) separately for each subset, and take the aver-
age value as the final error.

Minimizing (1) directly is computationally intractable, successful approaches
to learning to rank according to the pairwise criterion typically minimize convex
relaxations instead. The relaxation considered in this work is the pairwise hinge
loss, which together with a quadratic regularizer forms the objective function of
RankSVM.

3 Algorithm Description

The RankSVM optimization problem can be formulated as the unconstrained
regularized risk minimization problem

arg min
w∈Rn

1
N

∑
yi<yj

max(0, 1 + wTxi −wTxj) + λ‖w‖2, (2)

where w is the vector of parameters to be learned, N is the number of pairs
for which yi < yj holds true, and λ ∈ R

+ is a parameter. The first term is the
empirical risk measuring how well w fits the training data, and the second term
is the quadratic regularizer measuring the complexity of the hypotheses.

[9] proposed minimizing the RankSVM risk using cutting plane optimization.
A more general treatment of this optimization approach, together with improved
convergence analysis can be found in [12], where the method is known as the
bundle method for regularized risk minimization. The cutting plane method
needs O( 1

λε ) iterations to converge to ε-accurate solution for convex nonsmooth
loss functions, independent of the training set size [12]. By ε-accurate we mean
that the difference between the regularized risk for the found solution, and for
the optimal solution is smaller than a user defined parameter ε.

Due to space constraints detailed description of the cutting plane method
is not possible here, but the central insight necessary for implementing fast
training algorithms is as follows. On each iteration, given the current solution,
the cutting plane method needs the value of the empirical risk, as well as that of
its subgradient. For large dataset sizes it is these computations that dominate
the runtime, since none of the other computations needed in the optimization
are dependent on the sample size or dimensionality. To develop fast training
methods a necessary and sufficient condition is to have an efficient algorithm for
computing the risk, and its subgradient.
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At first glance, it would appear that computing the empirical risk requires
O(m2) comparisons between the training examples. However, as noted by [9,13],
we can rewrite the empirical risk as

1
N

∑
yi<yj

max(0, 1 + wTxi −wTxj) =
1
N

m∑
i=1

(ci − di)wTxi + ci (3)

where ci is the frequency how many times yi < yj and wTxi > wTxj−1, and di

is the frequency how many times yi > yj and wTxi < wTxj + 1. A subgradient
with respect to w can be calculated as

1
N

m∑
i=1

(ci − di)xi . (4)

Inner product evaluations, scalar-vector multiplications and vector summations
are needed to compute (3) and (4). These take each O(s) time.

Assuming that we know the values of ci, and di for all 1 ≤ i ≤ m, both the
empirical risk and the subgradient require O(ms) time.

[9] proposes an algorithm for computing these frequencies, and subsequently
the loss and the subgradient. However, the work assumes that the range of
possible utility score values is restricted to r different values, with r assumed
to be a small constant. The method has the computational complexity O(ms +
m log(m) + rm). If the number of allowed scores is not restricted, at worst case
r = m and the method has O(ms+m2) complexity, meaning quadratic behavior
in m. In this work we present a more general algorithm, for which the time
complexity of evaluating the loss and the subgradient is O(ms + m log(m)) also
in the most general case, where arbitrary real valued utility scores are allowed.

To formulate the algorithm we need for bookkeeping purposes a data structure
which stores floating point numbers as elements. What is required is that if h is
the current number of stored elements, it supports the following operations in
O(log(h)) time: insertion of a new element, and query to find out the number
of values in the data structure with a larger/smaller value than the given query
value. Finally, the data structure must allow the storage of duplicate values.

For logarithmic time insertion and computation of the desired order statistics,
a suitable choice is a self-balancing search tree. Our implementation is based on
the order statistics tree [4], which is a red-black tree [2] modified so that each
node stores the size of the subtree, whose root node it is. Further, we modify
the basic data structure to allow the insertion of several duplicate values to the
same node. The self-balancing property is crucial, as it guarantees logarithmic
worst case performance.

Algorithm 1 illustrates the O(ms+m log(m)) time calculation for calculating
the loss and the subgradient. First, the algorithm calculates the predicted scores
for the training examples using the current model w. Next, an index list π is
created, where the indices of the training examples are ordered in an increasing
order, according to the magnitudes of their predicted scores. Then, the algorithm
calculates the frequencies needed in evaluating (3) and (4). In lines 7 − 12 we
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Algorithm 1. Subgradient and loss computation
Input: X, y, w, N
Output: a, loss

1 p ← XTw;
2 c ← m length column vector of zeros;
3 d ← m length column vector of zeros;
4 π ← training set indices, sorted in ascending order according to p;
5 s ← new empty search tree;
6 j ← 1;
7 foreach i ∈ {1 . . . m} do
8 k ← π[i];
9 while (j ≤ m) and (p[k] − p[π[j]] > −1) do

10 s.insert(y[π[j]]);
11 j ← j + 1;

12 c[k] ←s.count larger(y[k]);

13 s ← new empty search tree;
14 j ← m;
15 foreach i ∈ {m . . . 1} do
16 k ← π[i];
17 while (j ≥ 1) and (p[k] − p[π[j]] < 1) do
18 s.insert(y[π[j]]);
19 j ← j − 1;

20 d[k] ←s.count smaller(y[k]);

21 loss← 1
N (pT(c − d) + 1Tc);

22 a ← 1
N X(c − d);

go through the examples in ascending order, as defined by the predicted scores.
When considering a new example xi, the examples are scanned further, in lines
9−11, to ensure that the true utility scores of such examples, for which, wTxi >
wTxj−1 holds true, are stored in the search tree. After this is ensured, the value
of ci is simply the number of scores in the search tree, for which yi < yj holds.
In lines 15 − 20 we go through the examples in a reversed direction, and the
values of di are calculated in an analogous manner. Once these values have been
calculated, the loss and the subgradient can be evaluated as in (3) and (4). These
operations are performed on lines 21 and 22 as vector-vector and matrix-vector
operations, 1 represents a column vector of ones.

The computational complexity of the operation XTw needed to calculate the
predicted scores is O(ms). The cost of sorting the index list π according to these
scores is O(m log(m)). The O(log(m)) time insertions on lines 10 and 18, as well
as the O(log(m)) time queries on lines 12 and 20 are each called exactly m times,
leading to O(m log(m)) cost.

The vector operations needed in calculating the loss have O(m) complexity,
and the matrix-vector multiplication necessary for computing the subgradient
has O(ms) complexity. Thus, the complexity of calculating the loss and the
subgradient is O(ms + m log(m)). The exact value of N can be computed in
O(m log(m)) by sorting the true utility scores of the training examples.

As discussed previously, in some ranking settings we do not have a global
ranking over all examples. Instead, the training data may be divided into sepa-
rate subsets, over each of which a ranking is defined. Let the training data set
be divided into R subsets, each consisting on average of m

R examples. Then we
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can calculate the loss and the subgradient as the average over the losses and
subgradients for each subset. The computational complexity becomes O(R ∗
(m

R s + m
R log(m

R )) = O(ms + m log(m
R )).

4 Computational Experiments

In the computational experiments we compare the scalability of the proposed
O(ms + m log(m)) time training algorithm to the fastest previously known ap-
proach. In addition, we compare our implementation to the existing publicly
available RankSVM solvers. The considered data set contains a global ranking,
and the utility scores are real valued. This means that r ≈ m, and the number
of pairwise preferences in the training sets grows quadratically with m.

We implement the proposed method, denoted as TreeRSVM, as well as a base-
line method PairRSVM, which iterates over all pairs to compute the loss and the
subgradient. The methods are implemented mostly in Python using the NumPy,
SciPy and CVXOPT libraries, the most computationally demanding parts of
the subgradient and loss computations are for both methods implemented in C
language due to efficiency reasons.

In addition, we compare our method to the fastest publicly available previous
implementations of RankSVM. The SVMrank software is a C-language imple-
mentation of the method described in [9]. In theory SVMrank and PairRSVM
implement the same method, though the use of different quadratic optimizers,
and the inclusion of certain additional heuristics within SVMrank, mean that
there may be some differences in their behavior. PRSVM implements in MAT-
LAB a truncated Newton optimization based method for training RankSVM [3].
PRSVM optimizes a slightly different objective function than the other imple-
mentations, since it minimizes a squared version of the pairwise hinge loss.

TreeRSVM has O(ms + m log(m)) training time complexity, whereas all the
other methods have O(ms+m2) training time complexity. Therefore, TreeRSVM
should on large datasets scale substantially better than the other implementations.
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Fig. 1. Average iteration cost (left), runtimes (middle), test error plots (right)
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Further, all the methods other than PRSVM have O(ms) memory complexity due
to cost of storing the data matrix. PRSVM has O(ms + m2) memory complexity,
since it also forms a sparse data matrix that contains two entries per each pairwise
preference in the training set. [3] also describe an improved version of PRSVM that
has similar scalability as SVMrank, but there is no publicly available implementa-
tion of this method.

The experiments are run on a desktop computer with 2.4 GHz Intel Core 2
Duo E6600 processor, 8 GB of main memory, and 64-bit Ubuntu Linux 10.10
operating system. For TreeRSVM, PairRSVM and SVMrank we use the termi-
nation criterion ε < 0.001, which is the default setting of SVMrank. For PRSVM
we use the termination criterion Newton decrement < 10−6, as according to [3]
this is roughly equivalent to the termination criterion we use for the other meth-
ods. SVMrank and PRSVM use a regularization parameter C that is multiplied
to the empirical risk term rather than λ, and do not normalize the empirical
risk by the number of pairwise preferences N . Therefore, we use the conversion
C = 1

λN , when setting the parameters.
We run scalability experiments on a data set constructed from the Reuters

RCV1 collection [10], which consists of approximately 800000 documents. Here,
we use a high dimensional feature representation, with each example having ap-
proximately 50000 tf-idf values as features. The data set is sparse, meaning that
most features are zero-valued. The utility scores are generated as follows. First,
we remove one target example randomly from the data set. Next, we compute
the dot products between each example and the target example, and use these
as utility scores. In effect, the aim is now to learn to rank documents accord-
ing to how similar they are to the target document. Similarly to the scalability
experiments in [3], we compute the running times using a fixed value for the
regularization parameter, and a sequence of exponentially growing training set
sizes. The presented results are for λ = 10−5, and the training set sizes are from
the range [1000, 2000, . . . 512000].

In Figure 1 are the experimental results. First, we plot the average time needed
for subgradient computation by the TreeRSVM and the PairRSVM. It can be
seen that the results are consistent with the computational complexity analysis,
the proposed method scales much better than the one based on iterating over
the pairs of training examples in subgradient and loss evaluations. Second, we
compare the scalability of the different RankSVM implementations. As expected,
TreeRank achieves orders of magnitude faster training times than the other
alternatives. PRSVM could not be trained beyond 8000 examples due to large
memory consumption. With 512000 training examples training SVMrank took
83 hours, and training PairRSVM took 122 hours, whereas training TreeRSVM
took only 18 minutes in the same setting. Finally, we plot the pairwise ranking
errors, as measured on an independent test set of 20000 examples. PairRSVM
is left out of the comparison, since it always reaches exactly the same solution
as TreeRSVM. The results show that TreeRSVM and SVMrank have similar
performance as expected, as does PRSVM which optimizes a squared version of
the pairwise hinge loss.
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5 Conclusion

In this work we have introduced an improved training algorithm for the linear
RankSVM, allowing efficient training also in case of unrestricted utility scores.
The experiments demonstrate orders of magnitude improvements in training
time on large enough data sets.
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Abstract. The definition of appropriate kernel functions is crucial for
the performance of a kernel method. In many of the state-of-the-art
kernels for trees, matching substructures are considered independently
from their position within the trees. However, when a match happens in
similar positions, more strength could reasonably be given to it. Here,
we give a systematic way to enrich a large class of tree kernels with this
kind of information without affecting, in almost all cases, the worst case
computational complexity. Experimental results show the effectiveness
of the proposed approach.

Keywords: kernel methods, tree kernels, machine learning.

1 Introduction

Kernel based methods are recognized to be very effective methods to cope with
data in non vectorial form. Indeed, many real world applications exist where data
are more naturally represented in structured form, including XML documents
for information retrieval tasks, protein sequences in biology, and parse trees in
natural language applications.

The design of this type of kernels is still a challenging problem as they should
be expressive enough (avoiding the loss of relevant structural information) while
remaining computationally not too demanding.

In this paper we focus on kernels for trees, for which several kernels have been
defined in the last few years. As an example, consider the Subtree kernel (ST)
[10] and the Subset tree kernel [2]: the former counts the number of matching
proper subtrees and the latter kernel extends this space by also considering
all subset trees. We noted that possibly relevant topological information about
the relative position in the trees of the matching substructures is not typically
taken into account in state-of-the-art kernels. In fact, common kernels for trees
can be considered position invariant kernels, that is, features represent parts of
the tree but do not maintain information about the position of the features in
the original tree. Our intuition is that a more satisfactory notion of similarity
on trees should give higher values to those structures which present the same
features also in the same positions. One example of a kernel that incorporates
this kind of information has been recently proposed in [1]. However, both the
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type of topological information and the local kernels involved are different from
the ones of the present paper (see section 3 for details).

Here we propose an operator which is applicable to a family of kernels for trees
and is able to enrich these kernels with topological information while maintaining
(with one exception) the same computational complexity in time. Experimental
results obtained by this operator demonstrate its ability to improve the perfor-
mance of baseline kernels on various datasets when topological information is
really relevant for the domain at hand. More importantly, enriching fast tree
kernels (such as the ST and SST kernels) allow them to reach accuracy values
comparable to the ones of slower but more expressive tree kernels, such as the
Partial Tree Kernel (PT) [7] even if enriched ST and SST kernels are faster to
compute than PT.

The paper is organized as follows: section 2 gives a brief survey of kernels for
trees. Section 3 describes an operator for extending tree kernels with topological
information. Section 4 explains how to efficiently compute the novel kernels.
Section 5 gives experimental evidence of the effectiveness of the extended kernels.
Section 6 draws some conclusions and propose future extensions of the paper.

2 Kernels for Trees

This section describes some well known kernels for trees focusing on three of them
which will be used as baselines in the experimental section: ST [10], SST [2] and
PT [7] kernels. These kernels are all based on counting the number of parts (or
substructures) which are shared by two trees. However, different kernels define
in a different way the type of substructures that can be matched. Let us briefly
present the them in decreasing order of expressivity. The PT kernel counts the
number of matching subtrees, i.e. subsets of nodes of a tree (and edges that link
them) which form a tree. The SST counts the number of matching subset trees,
where subset trees are subtrees for which the following constraint is satisfied:
either all of the children of a node belong to the subset tree or none of them.
The ST kernel counts the number of matching proper subtrees, where proper
subtrees are here defined as subtrees rooted at a node v and comprising all of its
descendants. Note that all of the above kernels are members of the convolution
kernel framework [4], that is they can be computed resorting to the following
formula:

K(T1, T2) =
∑

v1∈T1

∑
v2∈T2

CK(v1, v2), (1)

whereK ∈ {ST, SST, PT } (see below). C(K) can be computed according to three
rules: i) if the productions1 at v1 and v2 are different then CK(v1, v2) = 0; ii)
if the productions at v1 and v2 are the same, and v1 and v2 have only leaf
children (i.e. they are pre-terminals symbols) then CK(v1, v2) = λ, where λ is
an external parameter which causes a downweighting of the influence of larger

1 A production is defined as the label of a node plus the labels of its children (if any).
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substructure matches; iii) if the productions at v1 and v2 are the same, and v1

and v2 are not pre-terminals, then the value of CK() depends on the kernel. If
K = ST then CST (v1, v2) = λ

∏nc(v1)
j=1 (C(chj [v1], chj [v2])), where nc(v1) is the

number of children of v1 and chj[v] denotes the j-th child of node v. If K = SST
then CSST (v1, v2) = λ

∏nc(v1)
j=1 (1 + C(chj [v1], chj[v2])). The computational com-

plexity in time of the above kernels is O(|T1||T2|), where |Ti| is the number of
nodes of the tree Ti. Nevertheless, a faster algorithm for computing the ST ker-
nel has also been proposed in [10] with complexity in time O(N log N), where
N = max{|T1|, |T2|}. Finally, for the PT kernel we have a slightly more complex
formulation, i.e.

CPT (v1, v2) = λ
(
μ2 +

∑
J1,J2,|J1|=|J2|

μd(J1)+d(J2) ·
|J1|∏
i=1

(1 + CPT (chsv1 [J1i], chsv2 [J2i]))
)

,

where J11, J12, . . . J21, J22, . . . are sequences of indexes associated with the or-
dered sequences of children chsv1 and chsv2 respectively, J1i and J2i point to
the i-th child in the two sequences and |J1| denotes the length of the sequence
J1. Finally, d(J1) = J1|J1|−J11 and d(J2) = J2|J2|−J21 (see [7] for details). The
parameter μ penalizes subtrees built on subsequences of children that contain
gaps. From this formulation one can see that the ST and SST kernels can be
seen as special cases of the PT kernel. The Partial tree kernel can be evaluated
in O(ρ3|T1||T2|), where ρ is the maximum out-degree of the two trees.

3 Injecting Positional Information into Tree Kernels

Tree kernels, such as ST, SST, and PT, are position invariant kernels, i.e. any
match between two subtrees t1 ∈ T1 and t2 ∈ T2 does not consider where t1 and t2
occur within T1 and T2, respectively. While this feature may turn useful to avoid
too sparse kernels (kernels in which matches barely occur), it may generate an
unsatisfactory kernel matrix from the point of view of structural similarity. This
point is illustrated in Fig. 1 where KST (T1, T3) = KST (T2, T3), while clearly
a better representation of the similarity among the trees would prescribe the
constraint K(T1, T3) > K(T2, T3) to hold. Then, a nice tradeoff aiming at using
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Fig. 1. Using the ST kernel we have KST (T1, T3) = KST (T2, T3) = 3, however it seems
to be more reasonable to have K(T1, T3) > K(T2, T3) since the matching subtrees
(i.e. the leaf labeled c, the leaf labeled e, and the subtree b(c,e)) occur in the same
positions within T1 and T3, while this is not the case for T2
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TT1 2

Fig. 2. A representation of which kernels k() have to be computed to evaluate the
kernel K(). Subtrees for which the kernel k() is computed are the ones of the same
color

this topological information while keeping low the sparsity of a kernel could be
to extend the original feature space with new positional dependent features. We
refer to the extended version of the kernels by applying the prefix PAK (Position
Aware Kernel) to their names: PAK-ST, PAK-SST, PAK-PT. One simple way to
do that is to define a kernel K() which is the sum of local kernel k() evaluations
obtained for each pair of subtrees of the two trees sharing the same route. A
route for a node v ∈ T , denoted by π(v), is the sequences of indices of edges
connecting the consecutive nodes in the path between root(T ), the root of the
tree T , and v (for a more detailed description refer to [1]). The index of an edge
is its position with respect to its siblings. The idea of the PAK extension is
exemplified in Fig. 2 where the same color in the two trees correspond to those
subtrees for which the kernel k() have to be computed, i.e. those sharing the
same route. Just to give an example, if we refer to trees T1 and T3 in Fig. 1, by
using the ST kernel KST , we would have

K(T1, T3) = KST (c, c)+KST (e, e)+ KST (b(c,e),b(c,e)) + KST (g,b)+
+KST (a(b(c,e),g), a(b(c,e),b)). (2)

Each route has associated its depth d(v) where d(root(T )) = 1 and d(v) is
1 + d(parent(v)). The formal definition of the kernel is the following:

Kk(T1, T2) =
∑

v1∈T1,v2∈T2

γd(v1)δ (π(v1), π(v2)) k(tv1 , tv2), (3)

where δ() is a function whose value is 1 whether the two input routes are identical,
0 otherwise. When γ = 0 computing eq. (3) is equivalent to computing the
baseline kernel.

Eq. (3) considers topological similarity while avoiding to have a too sparse
kernel since the computation of the position invariant kernel between the two
trees is included. Moreover, from a computational point of view, the repeated
computation of the same kernel on subtrees can be done efficiently by reusing
the already performed calculations. The kernel of eq. (3) is different from the
ones described in [1] in both the local kernel (simple kernels on the nodes in [1]
compared to tree kernels in this paper) and the kernel on the route considered.
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Fig. 2 shows that the local kernel k between two subtrees is computed as many
times as the length of the longest common prefix of their routes. For example in
Fig. 1 the longest common prefix between the routes of nodes e ∈ T1 and e ∈ T3

is 2, the one between nodes e ∈ T1 and e ∈ T2 is 0, the one between nodes e ∈ T1

and c ∈ T3 is 1. On the contrary, in [1] the computation of the local kernel is
repeated as many times as the length of the longest common suffix of the routes.

4 Algorithmic Issues

This section describes how to efficiently implement the kernel described in eq. 3.
In fact, we will see that when using the SST or PT kernel as the “local” kernel
k, the computational complexity of the extended kernel, i.e. eq. (3), is the same
as the one of the local kernel. Unfortunately, the same idea would alter the
complexity of ST, thus for the moment we’ll focus on SST and PT.

Considering eq. (3), there are at most n = min(|T1|, |T2|) routes for which
δ (πT1(v1), πT2(v2)) = 1. A naive algorithm listing all the common routes and
computing k for each of them, would have a complexity of n · Q, where Q is
the worst case complexity of the local kernel. Let us assume k is a convolution
kernel, i.e. it can be written in the form of eq. (1). All C values can be computed
in Q time, where Q = O(|T1| · |T2|) for SST and Q = O(ρ3 · |T1| · |T2|) for
PT. We show that, by aggregating subsets of C values, it is actually possible to
efficiently compute eq. (3). In fact, for each v1 ∈ T1 and v2 ∈ T2, let us define
S(v1, v2) =

∑
v
′
2∈tv2

C(v1, v
′
2). By exploiting the recursive definition of C, it is

easy to see that S can be computed as follows:

S(v1, v2) = C(v1, v2) +
nc(v2)∑
j=1

S(v1, chj(v2)). (4)

Note that, when v2 is a leaf nc(v2) = 0 and the second term of eq. (4) is 0.
Assuming to have precomputed the C values, computing all of the S values
related to a node v1 requires O(|T2|). Thus computing all the S values for a
pair of trees requires O(|T1| · |T2|), i.e. their computation does not affect the
complexity of the SST and PT kernels. Plugging eq. (4) into eq. (3), we obtain:

Kk(T1, T2) =
∑

v1∈T1,v2∈T2

γd(v1)δ (π(v1), π(v2))
∑

v
′
1∈tv1

S(v
′
1, v2). (5)

Since, as already noted, there are at most min(|T1|, |T2|) common routes between
T1 and T2 and those routes can be identified in min(|T1|, |T2|) steps by a simulta-
neous visit of both trees, the complexity of the kernel depends on the complexity
of computing C and S values. Since the complexity of S is not greater than the
complexity of computing C for SST and PT, the kernel we described in eq. (3)
can be computed without altering the worst-case complexity of both kernels.
The ST kernel has O(N log(N)) time complexity [10], thus computing S values
as described in this section, would alter the total complexity of the kernel. We
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have derived an algorithm for computing PAK-ST which is faster than O(N2),
but it won’t be described here due to lack of space.

5 Experiments

Experiments were performed to test the effectiveness of the proposed operator
in conjunction with the ST, SST and the PT kernels. The SVM-Light software
has been used for the experiments [5,8]. Our approach has been tested on the
INEX 2005 dataset [3], the INEX 2006 dataset [3], the Propbank dataset [6].

The INEX 2005 dataset is a reduced version of the one used for the 2005 INEX
competition [3] (for details of the preprocessing see [9]). It consists of 9, 640 xml
documents describing movies from the IMDB database. The total number of tree
nodes in the dataset is 247, 128, the average number of nodes in a tree is 25.63.
The maximum outdegree of a node is 32. The task is an 11-class classification
problem. The training and validation sets consist of 3397 and 1423 documents,
respectively. The test set is formed by 4820 documents.

The INEX 2006 dataset [3] is derived from the IEEE corpus composed of
12000 scientific articles from IEEE journals in XML format. The total number
of tree nodes in the dataset is 218, 537 and the average number of nodes in a
tree is 18.05. The maximum outdegree of a tree is 66. In this case the training,
validation and test sets consisted of 4237, 1816 and 6054 documents, respectively.
The task is an 18-class classification problem.

The Propbank dataset [6] is derived from the Penn Tree Bank II dataset,
which, in turns, consists of material from a set of Dow-Jones news articles. The
corpus is divided into sections. In order to reduce the computational complex-
ity of the task, we derived the training and validation sets from section 24 by
selecting randomly, with uniform probability, a subset of 7000 and 2000 exam-
ples, respectively. The test set has been derived selecting randomly, with uniform
probability, a subset of 6000 examples from section 23. The total number of tree
nodes in the dataset are 209, 251 and the average number of nodes in a tree is
13.95. The maximum outdegree is 15. The task is a binary classification prob-
lem. The dataset is very unbalanced: the percentage of positive examples in each
set is approximately 7%. Thus the F1 measure has been used for selecting the
parameters on the validation set.

The procedure followed for the experiments on each dataset is the following.
We first selected the best parameters of the baseline kernel on the validation
set. Then, keeping them fixed, we applied the operator proposed in the paper
selecting γ on the validation set. Finally, a model learned with the parameter
setting on the union of the training and validation sets was tested on the test
set. In the case of multiclass classification tasks, i.e. INEX 2005 and INEX 2006,
the one against all methodology has been employed. Table 1 summarizes the
results obtained. Note that the application of the operator always improves the
accuracy of the baseline kernel on INEX 2005 and the improvement is impres-
sive for the ST and SST kernels. For what concerns INEX 2006, in the case of
ST and SST, adding positional information to the matchings does not improve
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Table 1. Comparison between the classification error of ST, SST, PT and their version
with the proposed operator. The columns represent the lowest classification error on
validation and the corresponding classification error on the test set. The performance
measure employed for the Propbank dataset is the F1. In bold the best result between
the baseline and the PAK extension on the test set.

Kernel
INEX 2005 INEX 2006 Propbank

valid. test valid. test valid. test
error % error % error % error % F1 (error %) F1 (error %)

ST 12.94 11.11 57.27 60.04 0.5078 (6.30) 0.5170 (6.60)
PAK-ST 3.52 3.44 57.27 60.04 0.5447 (5.85) 0.5359 (6.23)

SST 12.51 11.17 57.72 60.40 0.5130 (5.60) 0.5420 (5.72)
PAK-SST 3.59 3.31 57.72 60.40 0.5431 (5.55) 0.5477 (5.92)

PT 2.96 2.96 58.11 58.69 0.5488 (6.00) 0.5161 (7.00)
PAK-PT 2.96 2.85 57.55 58.85 0.5636 (5.65) 0.5787 (6.07)

Table 2. Ratio between the execution times and the test errors or the F1 of the PAK
extensions with respect to the baseline kernels

PAK-ST PAK-SST PAK-PT
ST SST PT ST SST PT ST SST PT

INEX 2005 time 2.33 2.29 0.21 2.33 2.31 0.21 14.06 13.86 1.32
err 0.30 0.30 1.16 0.29 0.28 0.29 0.25 0.25 0.96

INEX 2006 time 2.5 2.42 0.54 2.65 2.44 0.54 6.21 6.04 1.34
err 1 0.99 1.02 1.01 1 1.03 0.98 0.97 1.01

Propbank time 2.63 2.63 0.71 2.65 2.65 0.72 5.83 5.82 1.59
err 1.03 0.98 1.03 1.05 1.01 1.06 1.12 1.06 1.12

the accuracy. The PT kernel improves its accuracy on the validation set, but
it does not on the test set. This may be due to the fact that, in order to re-
duce the time required for the whole experimentation, we do not reselect the
c together with γ. The application of the operator improves the F1 of each of
the baseline kernels for the Propbank dataset. Although the worst-case compu-
tational complexity of PAK-SST and PAK-PT is the same with respect to the
corresponding baselines, we computed the execution time overhead due to the
PAK extension. The comparison has been performed with respect to the time
(in seconds) required for computing the kernel matrices on a Intel(R) Xeon(R)
2.33GHz processor. All PAK extensions has been implemented as modules of the
SVM-Light Software [8]. Table 2 reports the ratio between execution times and
the ratio between test errors (F1 in the case of Propbank) of the PAK extensions
with respect to the baseline kernels. While a ratio lower than 1 for the execution
time or the test error means that the first method is better than the second, in
the case of the F1, a ratio higher than 1 means that the first method is better
than the second. Notice that the execution time ratios of both PAK-ST/PT and
PAK-SST/PT are always lower than 1, thus PAK-ST and PAK-SST are faster,
up to 4.76 times (0.21−1), than PT. While being faster, PAK-SST has only
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slightly worse test error on INEX 2006, with ratio 1.03, and better performances
on INEX 2005 and Propbank, (with ratios 0.29 and 1.06, respectively).

6 Conclusion and Future Work

In this paper we proposed a general operator for extending convolution tree
kernels with positional features. It has quadratic computational complexity in
time and thus does not alter the worst-case complexity of most of state-of-the-
art tree kernels. Experimental results show that, when positional information is
relevant for a specific task, this extension significantly improves on the baseline
kernels. Moreover, less effective tree kernels, if enriched with topological infor-
mation, may achieve accuracy values comparable to ones of the most effective
tree kernels, while being faster to compute. Future works will study the injection
of other kinds of relationships which can be defined on substructures and the
application of the same operator to other convolution kernels.
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Abstract. Clustering approaches constitute important methods for un-
supervised data analysis. Traditionally, many clustering models focus on
spherical or ellipsoidal clusters in Euclidean space. Kernel methods ex-
tend these approaches to more complex cluster forms, and they have
been recently integrated into several clustering techniques. While lead-
ing to very flexible representations, kernel clustering has the drawback
of high memory and time complexity due to its dependency on the full
Gram matrix and its implicit representation of clusters in terms of fea-
ture vectors. In this contribution, we accelerate the kernelized Neural
Gas algorithm by incorporating a Nyström approximation scheme and
active learning, and we arrive at sparse solutions by integration of a spar-
sity constraint. We provide experimental results which show that these
accelerations do not lead to a deterioration in accuracy while improving
time and memory complexity.

1 Introduction

The dramatic growth in data generating applications and measurement tech-
niques has created many high-volume data sets. Most of them are stored digitally
and need to be efficiently analyzed to be of use. Clustering methods are very
important in this setting and have been extensively studied in the last decades
[9]. Challenges are mainly in time and memory efficient and accurate processing
of such data with flexible and compact data analysis tools. The Neural Gas vec-
tor quantizer [13] (NG) constitutes a very effective prototype based clustering
approach with a wide range of applications and extensions [21,10,1,23]. It is well
known for its initialization insensitivity, making it a valuable alternative to tra-
ditional approaches like k-means. It suffers, however, from its focus on spherical
or ellipsoidal clusters such that complex cluster shapes can only be represented
based on an approximation with a very large number of spherical clusters. Al-
ternative strategies dealing with more complex data manifolds or novel metric
adaptation techniques in clusterings are typically still limited, unable to employ
the full potential of a complex modeling [7,2]. The success of kernel methods in
supervised learning tasks [20,19] has motivated recent extensions of unsupervised
schemes to kernel techniques, see e.g. [22,3,17,5,6].

Kernelized neural gas (KNG) was proposed in [17] as a non-linear, kernel-
ized extention of the Neural Gas vector quantizer. While this approach is quite
promising it has been used only rarely due to its calculation complexity which
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is roughly in O(N2), with N as the number of points. Drawbacks are given by
the storage of a large kernel matrix and the update of a combinatorial coefficient
matrix, representing the prototypes implicitly. This makes the approach time
and memory consuming already for small data sets.

Modern approaches in discriminative learning try to avoid the direct storage
and usage of the full kernel matrix and restrict the underlying optimization
problem to subsets thereof, see e.g. [16,20]. For unsupervised kernel methods
comparably few work has been done so far to overcome the memory and time
complexity for large data sets [12]. For the KNG approach no such strategy has
been proposed at all up to our knowledge.

In this contribution, we extend KNG towards a time and memory efficient
method incorporating a variety of techniques: The Nyström-Approximation of
Gram matrices constitutes a classical approximation scheme [25,11], permitting
the estimation of the kernel matrix by means of a low dimensional approximation.
Further speedup can be achieved by using the explicit margin information to
arrive at an active learning scheme. The high memory requirement which is
caused by the implicit representation of prototypes in terms of feature vectors
which, unlike for the supervised support vector machine, are usually not sparse,
can be dealt with by incorporating sparsity constraints. Sparsity is a natural
concept in the encoding of data [15] and can be used to obtain compact models.
This concept has already been used in many machine learning methods [10,8]
and different measures of sparsity have been proposed [15,8]. We integrate such
a sparsity constraint into KNG.

In Section 2 we present a short introduction into kernels and give the notations
used throughout the paper. Subsequently we present the KNG algorithm and
the approximated variant, accelerated KNG (AKNG) by means of the Nyström
approximation, active learning, and the additional sparsity constraint. We show
the efficiency of the novel approach by experiments on several data sets. Finally,
we conclude with a discussion in Section 4.

2 Preliminaries

We consider vectors vj ∈ Rd, d denoting the dimensionality, n the number of
samples. N prototypes wi ∈ R

d induce a clustering by means of their receptive
fields which consist of the points v for which d(v,wi) ≤ d(v,wj) holds for all
j �= i, d denoting a distance measure, typically the Euclidean distance.

A kernel function κ : Rd×Rd → R is implicitly induced by a feature mapping
φ : Rd → F into some possibly high dimensional feature space F such that

κ (v1,v2) = 〈φ (v1) , φ (v2)〉F (1)

holds for all vectors v1 and v2, where the inner product in the feature space is
considered. Hence κ is positive semi-definite. Using the linearity in the Hilbert-
space, we can express dot products of elements of the linear span of φ of the
form

∑
i αiφ(vi) and images φ(v) via the form

∑
i αiκ (vi,v). This property is

used in [17], to derive a kernelization of Neural Gas.
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3 Neural Gas Algorithm

The Neural Gas (NG) algorithm is a type of vector quantizer providing a compact
representation of the underlying data distributions [14]. Its goal is to find pro-
totype locations wi such that these prototypes represent the data v, distributed
according to P , as accurately as possible, minimizing the energy function:

ENG (γ) =
1

C (γ, K)

N∑
i=1

∫
P (v) · hγ (vi,W) · (v −wi)

2
dv (2)

with neighborhood function of Gaussian shape: hγ (vi,W) =
exp (−ki (v,W)/γ). ki (v,W) yields the number of prototypes wj for
which the relation d (v,wj) ≤ d (v,wi) is valid, i.e. the winner rank. C (γ, K)
is a normalization constant depending on the neighborhood range γ. The NG
learning rule is derived thereof by stochastic gradient descent:

�wi = ε · hγ (vi,W) · (v −wi) (3)

with learning rate ε. Typically, the neighborhood range γ is decreased during
training to ensure independence of initialization and optimization of the quan-
tization error. NG is a simple and highly effective algorithm for data clustering.

3.1 Kernelized Neural Gas

We now briefly review the main concepts used in Kernelized Neural Gas (KNG)
as given in [17]. KNG optimizes the same cost function as NG but with the Eu-
clidean distance substituted by a distance induced by a kernel. Since the feature
space is unknown, prototypes are expressed implicitly as linear combination of
feature vectors wi =

∑n
l=1 αi,lφ(vl), αi ∈ Rn is the corresponding coefficient

vector. Distance in feature space for φ(vj) and wi is computed as:

d2
i,j = ‖φ(vj)−wi‖2 = ‖φ(vj)−

n∑
l=1

αi,lφ(vl)‖2 (4)

= k(vj ,vj)− 2
n∑

l=1

k(vj ,vl) · αi,l +
n∑

s,t=1

k(vs,vt) · αi,sαi,t (5)

The update rules of NG can be modified by substituting the Euclidean distance
by the formula (4) and taking derivatives with respect to the coefficients αi,l.
The detailed equations are available in [17].

3.2 Nyström Approximation of the Kernel Matrix

As pointed out in [25] different strategies have been proposed to overcome the
complexity problem caused by the kernel matrix in modern machine learning
algorithms. One promising approach is the Nyström approximation.
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It originates from the numerical treatment of integral equations of the form∫
P(y)k(x, y)φi(y)dy = λiφi(x) where P(·) is the probability density function,

k is a positive definite kernel function, and λ1 ≥ λ2 ≥ . . . ≥ 0 and φ1, φ2, . . .
are the eigenvalues and eigenfunctions of the integral equation. Given a set of
i.i.d. samples {x1, . . . , xq} drawn from P(·), the basic idea is to approximate the
integral by the empirical average 1/q

∑q
j=1 k(x, xj)φi(xj) ≈ λiφi(x) which can

be written as the eigenvalue decomposition: Kφ = qλφ where Kq×q = [Ki,j ] =
[k(xi, xj)] is the kernel matrix defined on X , and φ = [φi(xj)] ∈ Rq. Solving this
equation we can calculate φi(x) as φi(x) ≈ 1/(qλ)

∑q
j=1 k(x, xj)φi(xj) which is

costly. To reduce the complexity, one may use only a subset of the samples which
is commonly known as the Nystöm method.

Suppose the sample set V = {vi}ni=1, with the corresponding n × n ker-
nel matrix K. We randomly choose a subset Z = {zi}qi=1 of landmark points
and a corresponding kernel sub matrix Qq×q = [k(zi, zj)]i,j . We calculate the
eigenvalue decomposition of this sub matrix: Qφz = qλzφz and obtain the corre-
sponding eigenvector φz ∈ Rq and the eigenvalue qλz . Subsequently we calculate
the interpolation matrix K̂n×q = [k(vi, zj)]i,j to extend the result to the whole
set V . We approximate the eigen-system of the full KφK = φKλK by [24]:

φK ≈
√

q

n
K̂φZλ−1

Z , λK ≈
n

q
λZ

K can be subsequently reconstructed as

K ≈
(√

q

n
K̂φZλ−1

Z

)(
n

q
λZ

)(√
q

n
K̂φZλ−1

Z

)′
= K̂Q−1K̂′

To integrate the Nyström approximation into KNG we only need to modify the
distance calculation between a prototype wi and a data point φ(vj) accordingly.
The original update equation for the coefficient matrix in KNG reads as:

αt+1
j,l =

{
[1− ε · hγ(kj(φ(vi),W))] · αt

j,l if vi �= vl

[1− ε · hγ(kj(φ(vi),W))] · αt
j,l + ε · hγ(kj(φ(vi),W)) if vi = vl

with t+1 indicating the time step and wk ∈W defined as in Eq. 4. The distance
calculation using the Nyström approximation is done as follows: (6):

d·,j = K(j, j)− 2 · T·,j + diag(ψ · T ′) (6)

with Ti,· = ((αi · K̂) ·Q−1) · K̂′ (7)

where diag provides the main diagonal elements of the associated matrix. With
Nyström-approximation the complexity is reduced to O(q2N) [24].

3.3 Sparse Coefficient Matrix

In [15] sparsity has been found to be a natural concept in the visual cortex of
mammals. This work motivated the integration of sparsity concepts into many
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Fig. 1. Effect of the sparsity constraint for DS2 shown by means of the γ-matrix
(normalized for better comparison) showing point weights (x-axis) for each prototype
(y-axis). With sparsity left and without right. Dark values (1) indicated high loaded
or high lighted data points for the considered prototype in the γ matrix. Data points
with very low values (0) over all prototypes can be safely removed from the model.

machine learning methods to obtain sparse but efficient models. Here we will
integrate sparsity as an additional constraint on the coefficient matrix α such
that the amount of non-zero coefficients is limited. This leads to a compact
description of the prototypes by means of sparse linear mixture models. We use
the sparsity measure given in [15]. The sparsity S of a row of α is measured as

S(αi) = −
∑

l

S
(αi,l

σ

)
(8)

with σ as a scaling constant. The function S can be of different type, here we
use S(x) = log(1 + x2). We change the energy function of the KNG as follows

EKNG (γ) =
1

C (γ, K)

N∑
i=1

∫
P (φ(v) · hγ (φ(vi),W) · ‖φ(v) −wi‖2 dφ(v)

−β · S(αi)

The updates for the coefficients of wi are exactly the same as for the standard
KNG using the Nyström formula to approximate the Gram matrix and including
the additional term caused by the sparsity constrained

∂S

∂αi,l
= − 2/σ2 · αi,l

1 + (αi,l/σ)2

In addition, we enforce the constrained αi,l ∈ [0, 1] and
∑

l αi,l = 1 for better
interpretability. The effect of the sparsity constraint on the UCI iris data is shown
in Figure 3.3 with 1 prototype per class. The sparse model has an accuracy of
≈ 90% whereas the original solution achieves only 86%.

3.4 Active Learning

The sparse coefficients α give rise to an active learning scheme in a similar
manner as proposed in [18], leading to faster learning. The matrix α encodes
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Fig. 2. Ring data set (left), post-labeled KGLVQ model (middle), the outer ring is red
(’o’), the inner ring is blue (�). The plot on the right shows the cluster boundaries of
the model from the middle plot. The model was calculated without sparsity. It can
be clearly seen that the A-KNG with an rbf kernel sucessfully separated these two
clusters, with good cluster boundaries and a large margin between the two rings.

a weighting of the data-points. We take the column-wise mean of α as ᾱ and
calculate a threshold δ for each data-point indicating its relative importance for
the learning. The average weight for a data-point in α is given as δ∗ = αi,j =
1/N , due to the normalization constraint. Weights close to this point are not
sufficiently learned, such that they have not been deleted or emphasized so far.
We transfer these weights to a skip probability for each data-point using:

δ = 1/2 · exp
(
− (ᾱj − δ∗)2

(2 · std(ᾱ)2)

)
with std - as the standard deviation (9)

This denotes the probability of the data-point to be skipped during learning. It
should be noted, that at the beginning of the learning α is initialized randomly
such that the probability of a data-point to be skipped is random; during learning
only those points are likely to be skipped which are either not or most relevant
for the model. In this line we roughly learn the model by considering an ε-tube
around the cluster centers. However, by taking the probability concept all points
are taken into account albeit with probably small probability.

4 Experiments

As a proof of concept, we start with a toy data set (DS1) and an RBF kernel. The
data consist of 800 data points with 400 per ring in 2 dimensions (x/y) as shown
in Figure 2. The first ring has a radius of r = 10 and the second r = 4, points
are randomly sampled in [0, 2π]. The data set has been normalized in N(0, 1).
We also analyzed the ring data using the additional sparsity constraint. In the
original model 53% of the weights, averaged over the prototypes are almost 0
(values ≤ 1e − 5). In the sparsity approach we used σ2 as the variance of the
data scaled by 0.01 and β = 1 and obtained a model with about 75% of the
points close to zero.

Following the work given in [12] we analyze several UCI benchmarks. We
consider the well known iris data set (DS2), the Wisconsin Breast cancer data
(WBC) (DS3), the Spam database (DS4), and Pima diabetes (DS5). Details
about the data can be found in [4]. DS2 consists of 150 instances in three groups
and is known to be almost linear separable by two hyperplanes. DS3 consists of
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Table 1. Post labeled accuracy vs. runtime over 10 runs. For AK-NG and K-NG 10
cycles are calculated, each. Best results in bold, ∗-ed results are taken from [12].

Algorithm Iris data WBC Spam Pima diabetes

NG 91.7%/n.a.∗ 96.1%/n.a.∗ 68.4%/n.a. ∗ 70.31%/7s
K-NG 90.0%/2.6s 91.7%/5.77s 86.5%/350s 71.74%/21s
AK-NG 92.6%/0.14s 92.1%/0.73s 84.42%/2.9s 73.05%/0.94s
K-Grower 94.7%/12.95s∗ 97.0%/807.17s∗ 81.3%/� 1000s∗ n.a.
SUK-Grower 93.4%/47.95s∗ 96.8%/22.85s∗ 80.2%/44.83s∗ n.a.

683 items. For this dataset non-linear supervised learning methods have been
found to be very effective whereas linear approaches are not so effective. This
motivates the assumption that kernelization might prove beneficial. The data set
DS4 contains 1534 samples, and classification is difficult. The fifth data set (DS5)
contains 768 samples. For each data set we used one prototype per expected
group. The results are shown in Table 1.

All results are obtained using 10 cycles with a Nyström approximation of
1−10% of the original kernel matrix, β ∈ [0.001, 10], and the sparsity σ ∈ [1, 100]
determined on an independent test set. The value of the Nyström approximation
is not very critical for the accuracy and mainly influences the runtime perfor-
mance, whereas a too sparse solution can lead to a decrease in accuracy. Dataset
D2,D3, and D5 are analyzed using an RBF kernel with a σ2 = {1, 0.01, 0.1}
respectively, for DS4 we used a linear kernel. The other experimental settings
have been chosen in accordance to [12] for compatibility. We also report two
alternative state of the art clustering methods by means of core sets provided
in [12], referred to as K-Grower and SUK-Grower. Analyzing the results given
in Table 1 the AK-NG is significantly faster in calculating the clustering models
than all other approaches with the same or only slightly less accuracy. Analyzing
the optimizations separately for DS3−DS5 we find: sparsity leads to a reduced
memory consumption of ≈ 25%(DS3),≈ 30%(DS4) and ≈ 41%(DS5) with re-
spect to the unoptimized approach; Nyström approximation leads to a speedup
of ≈ 1.6(DS3), ≈ 6.8(DS4) and ≈ 2(DS5) and the active learning strategy
behaves similar. The effect of these optimizations has almost no effect on the
accuracy, giving appropriate parameters as pointed out before.

5 Conclusions

In this paper we proposed an extension of kernelized neural gas with a sig-
nificantly reduced model complexity and time complexity by incorporating the
Nyström approximation and a sparsity constraint. We compared the efficiency
of our approach with alternative state of the art clusterings with respect to clus-
tering accuracy as well as efficiency. We found the AK-NG is similarly effective
and significantly faster with respect to the considered approaches. So far, we
tested the algorithm on UCI benchmarks, its application to real life very large
data sets being the subject of ongoing work.
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Abstract. We introduce a novel technique to program desired state se-
quences into recurrent neural networks in one shot. The basic methodol-
ogy and its scalability to large and input-driven networks is demonstrated
by shaping attractor landscapes, transient dynamics and programming
limit cycles. The approach unifies programming of transient and attrac-
tor dynamics in a generic framework.

Keywords: recurrent neural networks, input-driven dynamics, learning.

1 Introduction

It is a long outstanding question how to determine parameters of dynamical sys-
tems that shall display desired behaviors. Traditionally, data-driven parameter
estimation for recurrent neural networks (RNNs) has been approached in one of
the following contexts: (i) learning of associative memory networks mostly based
on correlation matrices, or (ii) learning of general RNNs for approximation of
input-output mappings by temporal generalizations of supervised backpropa-
gation learning. Learning in the latter case is based on gradient descent with
respect to some error criterion, which suffers from high computational load, bi-
furcations of the network dynamics during learning, and the typical gradient
descent problems like vanishing gradients, local minima, etc. Research in this
direction was widely concerned with minimizing the computational load and ac-
celerating convergence of the gradient descent [1], but these efforts can not free
learning by gradient descent in recurrent settings from its serious drawbacks.

One-shot learning of RNNs, like it is traditionally applied in the context of
associative memory networks [2], is therefore attractive. However, attractor and
sequence learning are strictly separated in these networks and learning does
not easily generalize to input-driven settings. The combination of both one-shot
learning of input-driven RNNs and shaping of transients in addition to desired
attractor dynamics has not yet been accomplished.

We introduce a generic paradigm to program RNNs efficiently in one shot
that applies to a wide range of neural network architectures. Based on the idea
to program the state transitions of an observed system into a parameterized
model, learning can be formulated as a simple regression problem and can be
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accomplished efficiently in one shot without descending a gradient. This state
prediction approach is applicable whenever state transitions can be formulated
as linear system of equations with respect to the model parameters. Together
with a trajectory-based sampling strategy, the method unifies programming of
transient as well as attractor dynamics in a generic formulation. The combination
of sampling desired sequences and one-shot learning solves three problems: First,
bifurcations during learning are prevented. Second, shaping of transient and
attractor behavior is unified, and third, linear regression is efficient to compute,
yields the best parameter estimates with minimal norm and scales to complex
network configurations. State prediction is related to the recently introduced
regularization approach for input-driven RNNs [3], [4] and the approach taken
by Jaeger in [5] to program the functionality of an external controller into a
reservoir network. We present the principle of this previous work in a coherent
framework for one-shot learning of input-driven RNNs.

2 State Prediction: A Constructive Approach

Consider a system with state s(k) ∈ �N at time step k that unfolds in time
according to a mapping Φ : s(k),u(k) �→ s(k+1), where u(k) are additional input
signals. Assume one can sample typical flows {(si(k),ui(k))}i of the system,
where k = 1, . . . , Ki for the i-th sequence. We model the observed system with
the input-driven recurrent network dynamics

s(k+1) = σ(W̃s̃(k)), (1)

u

s

W

Winp

Fig. 1. Input-driven recur-
rent neural network

where σ is a nonlinear activation function, s̃(k) =
(s(k)T ,u(k)T , 1)T is the combined input and sys-
tem state, and W̃ = (WT WinpT b)T are the
model parameters. The model is illustrated in
Fig. 1. Typically, learning is approached by min-
imizing the error E = 1/K

∑
k ||s∗(k) − s(k)||2,

where the model parameters W̃ are adapted in or-
der to bring the sequence s(k) closer to the target
sequence s∗(k). This error-based approach leads to
recursive dependencies of the states on the weights,
i.e. ∂E(k)

∂wij
=−(s∗i (k)−si(k))sj(k−1)σ′(k)∂si(k−1)

∂wij
. In

contrast to the separation of the model dynamics
and the target dynamics, the basic idea of state prediction is to find parameters
W̃ that explain the transitions between successive states s∗(k) and s∗(k+1) best,
i.e. minimize

||s∗(k+1)− σ(W̃s̃∗(k))|| for k = 1, . . . , K, (2)

where s̃∗(t) = (s∗(t)T ,u(t)T , 1)T . This formulation directly incorporates the
sampled system transitions s∗(k),u(k) → s∗(k + 1) for parameter estimation
which can be understood as state prediction parameterized by the input u(k).
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The prediction is based on the observed state s∗(k), not on the dynamics of
a partially trained model, which enables the constructive modeling of the se-
quence s∗(k) for k = 1, . . . , K. To prevent the nonlinear activation function σ
from cluttering the optimization of the model parameters W̃, we rephrase the
state prediction problem (2) as a linear system a∗(k +1) ≡ σ−1(s∗(k +1)) =
W̃s̃∗(k). This linearization is possible if (i) σ is invertible and (ii) the ob-
served data is transformed into the output range of σ. Condition (i) is ful-
filled by all common sigmoidal activation functions like tanh, atan or the lo-
gistic function. The second condition can be fulfilled without restriction for
all bounded sequences. Collecting all R sampled trajectories in a matrix S̃∗ =
(s̃∗1(1), . . . , s̃∗1(K1−1), . . . , s̃∗R(1), . . . , s̃∗R(KR−1))T , and the corresponding targets
in A∗=σ−1(s∗1(2), . . . , s∗1(K1), . . . , s∗R(2), . . . , s∗R(KR))T , the optimal solution to

the state prediction problem ||A∗− S̃W̃T || is W̃T
opt =

(
S̃∗T S̃∗ + α�

)−1

S̃∗TA∗,
where α weights the contribution of a regularization constraint corresponding to
a Gaussian prior distribution for the model parameters.

2.1 Sampling Dynamics for State Prediction

Programming dynamics by state prediction can be understood as a three-staged
process: Observation of the desired system yields a data corpus which is used in
a second step to determine the model parameters by solving the state prediction
problem (2) by means of W̃T

opt. Then, the programmed model dynamics can
be queried. One can substitute the first stage by synthesizing training data that
represent the desired behavior. Observation of the desired dynamics is a key step
and there are three basic ways how to sample dynamics for state prediction:

Sampling Velocities: Spatial sampling of states s with corresponding velocities
v(s) of the system at that particular point in state space is one way to acquire
training data. Simple integration yields the required pair of successive states s(k)
and s(k+1) = s(k)+v(s(k)). State transitions s(k)→ s(k+1) can also be observed
directly. Sampling velocities or state transitions means to observe the system
dynamics stepwise for selected states and inputs. This approach elucidates the
need for generalization: The programmed model has to operate also in areas
of the state space where no training examples are present. A local modeling
approach is hopeless because extrapolation is impossible. The network (1) models
state transitions globally and thus can generalize the system behavior to novel
states. However, sampling has to be done carefully, i.e. all important regions of
the state space have to be included and the number of samples in each region
should be sufficiently balanced. This is difficult for high-dimensional systems and
therefore restricted sampling can be advantageous.

Sampling Attractor Conditions: Focussing on the target of implementing a
specific behavior leads to the idea of sampling only particular conditions. For
instance, attractor conditions can be easily formulated in terms of state pre-
diction using that s(k +1) = s(k) if s is an attractor state. This approach is
typically applied to imprint memories into associative networks. Though con-
ceptually curing the problem of sampling from the entire velocity field, there is
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a serious drawback: The differential equation is only sampled at special points in
state space with zero velocity. Surrounding states s + ε might not be attracted,
i.e. the basin of attraction is too narrow and leaves space for spurious states.

Sampling Flows: A conceptually and practically appealing way of sampling
dynamics is a trajectory-based approach. Simply record representative flows of
the system. Recording or synthesizing exemplary state sequences (or a combi-
nation of both) solves the previous problems by collecting state transitions only
at relevant regions of the state space while preventing degenerated sampling.
In addition, learning from trajectories is biologically much more plausible. We
demonstrate sampling of velocities and sampling of flows in the next sections.

3 Programming the Dynamics of a Single Neuron

We start with the minimal possible scenario and program the dynamics of a
single neuron with σ ≡ tanh and apply the sampling of velocities approach. We
use no bias or inputs such that (1) has only one parameter w. The dynamics
of the neuron can be unistable, i.e. a single globally and asymptotically stable
fixed-point exists, or bistable, i.e. two fixed-points are separated by a saddle [8].
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Fig. 2. Bifurcation of dynamics depending
on the distance d of the potentials in the
training data. Programmed network (black)
and analytic dynamics (gray).

We create training data by sam-
pling states s and their respective
velocities v(s) from a potential field
P (s) = −0.1

∑2
i=1(5(pi − s)2 + 1)−1

with two “charges“ located in state
space at p1 and p2. We move p1 and
p2 = −p1 from zero (potential field
with a unique basin) to 0.7 (two de-
tached basins) and train for each po-
tential field a network model. We con-
duct the state prediction by model-
ing s∗ + v(s∗) = tanh(ws∗), where
v(s∗) = − ∂

∂sP (s∗) are the respective
velocities. We sample states and ve-
locities near to the charges p1 and p2,
and use α = 0 for training.

Fig. 2 (left) shows the attractor states s̄ = s(∞) of the programmed networks
(black) and the potential field dynamics (gray) for different initial conditions as
function of the distance d = |p1 − p2| between the two charges. Note that the
discrete dynamics given by s(k+1) = s(k) + v(s(k)) as well as the programmed
network dynamics bifurcate at d ≈ 0.5. The bifurcation introduces a saddle, i.e. is
a saddle-node bifurcation, which explains the peak number of steps until conver-
gence shown in Fig. 2 (bottom right). When both charges are separated further,
this effect vanishes and the number of iterations until convergence decreases
again. The weight of the programmed system is shown in Fig. 2 (top right) and
also displays the point of bifurcation: When the weight surpasses unity, global
asymptotic stability of the linearized system is not guaranteed anymore.
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4 Programming Two Neuron Circuits

In this section, we focus on two neuron circuits without inputs and show that
a variety of behaviors can be programmed into such circuits by simply pro-
viding some example sequences, i.e. sampling flows. The sequences are gen-
erated synthetically by a simple strategy: For each fixed-point attractor s̄∗,
we select random perturbations εi ∈ �N and generate sequences by setting
s∗i (k) = s̄∗ + (1− k/Ki)2εi with k = 0, . . . , Ki. For each fixed-point, we typically
use Ki = 20 for i = 1, . . . , 50 and chose perturbations εi uniformly distributed
in [−0.2, 0.2]2. The neurons have σ ≡ tanh and we use α = 0 for training.

Table 1 shows various mappings from target sequences (2nd col.) to pro-
grammed dynamics (3rd col.). The network parameters are given in the forth
column. For fixed-point attractors, the desired attractor positions (red dots)
and the actual attractors of the programmed networks (green circles) show that
the fixed-point conditions are accurately implemented by the networks. Gen-
erally, a few example sequences or even single sequences suffice to implement
the desired behavior (see rows 4 and 5 in Table 1). Note that the training data
does not only shape the dynamics in the limit case k → ∞, i.e. the location
of the attractor, but also the transient behavior as can be seen in case of the
spiral pattern in the forth row of Table 1. In the second row of Table 1 we used
s∗i2(k) = s̄∗2 + (1 − k/Ki)4εi2 for training data generation. The trained network
displays the changed speed of convergence along the second dimension. State pre-
diction shapes both the transient dynamics and the behavior in the limit case,
which is fundamentally different from learning of associative memories where
auto- and temporal hetero-association are strictly separated.

We observe that all unistable systems have a spectral radius λ, the maximal
absolute eigenvalue of W, below unity. Bistability and cyclic attractors are in-
dicated by spectral radii greater or close to unity. Note, however, that a spectral
radius greater unity does not strictly imply loss of global stability if b �= 0.

5 Programming Input-Driven Network Dynamics

In a next step, we program the dynamics of an input-driven RNN that comprises
a single input neuron and two internal neurons similar to the network structure
shown in Fig. 1. We use the same parameters and generate training data as
in Section 4, but this time we hide a sigmoidal structure in the training data
which is only implicitly represented by the one dimensional network input u (see
Fig. 3 (left)). The phase portraits of the trained network with exemplary flows
are shown in Fig. 3 for input signals u = 0 (2nd col.) and u = 0.2 (3rd col.).
The flows and velocities reveal that the network has a unique fixed-point for
each input. Fig. 3 (right) shows the attractor states of the network for a fine-
grained sampling of inputs in range [0, 1]. The sigmoidal structure is captured
well by the parameterized network dynamics. In [3], [4], [5], the functioning of
the state prediction approach is confirmed for large networks with multivariate
and time-varying inputs.
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Table 1. Programming networks with two neurons. The second column shows the
training data and the third column shows the resulting phase portrait of the pro-
grammed network dynamics with exemplary flows. The desired fixed-point attractors
are displayed by red dots and the actual attractors of the trained networks are shown
as green circles. The forth column gives the actual network parameters and the spec-
tral radius λ of the recurrent weights W. We present rounded values for the network
parameters which nonetheless describe very similar dynamics.

Description Training Data Phase Portrait Parameters

Single fixed-
point attractor

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

W =

(
0.8 0

0 0.84

)

b =

(
−0.05

0.06

)
λ = 0.84

Single fixed-
point attractor
with
modulated
transients

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

W =

(
0.96 0

0 0.88

)

b =

(
−0.01

0.04

)
λ = 0.96

Two fixed-point
attractors

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

W =

(
1.04 −0.01

−0.04 0.94

)

b =

(
0.005

0.002

)
λ = 1.05

Single fixed-
point attractor
with
spiral transients

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

W =

(
0.99 0.03

−0.03 0.99

)

b =

(
0

0

)
λ = 0.99

Limit
cycle

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s
1

s 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

s
1

W =

(
1.02 0.03

−0.03 1.02

)

b =

(
0

0

)
λ = 1.02
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Fig. 3. Parameterized network dynamics programmed from training data (left). Phase
portraits with flows for u=0 (2nd col.) and u=0.2 (3rd col.). The attractor states for
u ∈ {0, 0.01, . . . , 1} approximate the shape present in the training data (right).

6 Storing Sequences in a Large Network

In this section, we demonstrate the scalability of the approach to recall long and
high-dimensional sequences. We program a network with 784 neurons to recall
two sequences of digit images taken from the MNIST database [6] (see Fig. 4
rows 1 and 5). In training, we present s1(1) ≡ s1(11) and s2(1) ≡ s2(11) to close
the respective sequence loop. We scale the images into the range [0.01, 0.99]784

and use σ(a) = 1/(1 + exp(−a)) as activation function and α = 0.1 for training.
The second and sixth row in Fig. 4 show the generated state sequences of the

trained network, where we initialized the network state with the first pattern
of the respective sequence and then let it run freely. Note that the sequences
are stably reproduced for hundreds of time steps which is confirmed by the
instantaneous error plots in rows 4 and 8. Also, when the network is initialized
with strongly corrupted states, the network is attracted to the trained limit
cycles (see rows 3 and 7 in Fig. 4). This example shows that – in contrast to
correlation-based learning of associative memory networks [2] – one-shot storage
and robust recall of long sequences is possible with the state prediction approach.

7 Conclusion

At the advent of dynamical approaches to cognition (see [7] for instance), a
lot of attention was directed to the qualitative behavior of RNNs. The main
goal was to understand their dynamics, for instance by building up equivalence
classes of dynamics and bifurcation manifolds [8], [9], and then construct net-
works with desired dynamics on demand. This approach is tightly bound to the
analytic analysis of dynamical systems, which, unfortunately, is not feasible even
for small networks and consequently restricts network construction. The state
prediction paradigm in contrast is not restricted to small networks or by archi-
tectural assumptions like only piecewise constant inputs. The state prediction
approach to program observed dynamics into a parameterized network model cir-
cumvents descending a gradient, is efficient to compute, and enables the one-shot
construction of dynamical systems. Shaping of transient and attractor dynamics
is unified by the state prediction paradigm in a generic framework.
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s1(k)

error ||s1(k) − s(k)||

s(k)

s’(k)

0

0.001

1 2 3 4 5 6 7 8 9 10 11 12 13 551 552 553 554 555 556 557 558 559 560

time step k

s2(k)

error ||s2(k) − s(k)||

s(k)

s’(k)

0

0.001

1 2 3 4 5 6 7 8 9 10 11 12 13 551 552 553 554 555 556 557 558 559 560

Fig. 4. Sequence generation. The 1st and 5th row show the target sequences s1(k) and
s2(k). The 2nd and 6th row show the generated sequences, where s(1) = s1(1) and
s(1) = s2(1), respectively. The corresponding instantaneous error is plotted in the 4th
and 8th row. The 3rd and 7th row show the robustness against perturbations: The
sequences are still recalled when occluding 75% of the initial state or adding noise.

Future work includes the theoretic analysis of the range of dynamics that
can be implemented by state prediction. A necessary condition for successful
learning is that the desired dynamics belong to the class of dynamics the network
model spans. In addition, the sampled observations have to resemble the relevant
dynamic behavior sufficiently well. In a next step, state prediction can be applied
to networks with hidden representations: Features can be improved iteratively
with respect to some criterion and then be programmed by state prediction.
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Abstract. Our goal is to develop a system that is able to learn and clas-
sify environmental sounds for robots working in the real world. In the
real world, two main restrictions pertain in learning. First, the system
has to learn using only a small amount of data in a limited time because
of hardware restrictions. Second, it has to adapt to unknown data since
it is virtually impossible to collect samples of all environmental sounds.
We used a neuro-dynamical model to build a prediction and classification
system which can self-organize sound classes into parameters by learning
samples. The proposed system searches space of parameters for classi-
fying. In the experiment, we evaluated the accuracy of classification for
known and unknown sound classes.

Keywords: Environmental Sounds, Prediction, Classification, Neuro-
dynamical Model.

1 Introduction

Recently, there have been a growing number of studies focusing on systems
for classifying environmental sounds [1] [2]. Environmental sounds contain a
large amount of information, such as those about the dynamic change in the
environment. Recognition of environmental sounds is an indispensable ability for
creating an autonomous system. Methods for classifying environmental sounds
in previous studies are mainly based on statistical models [3] [4]. Studies show
good performances that environmental sound classes are known (training data
is composed of sounds from every sound class considered in the experiment).

The purpose of our study is to develop a system that enables robots working
in real world to understand environmental sounds. Such systems require solving
of the following two issues.

1. The model should be constructed from a small amount of sound samples
as it is difficult to obtain a large number of learning sound samples due to
durability of hardware.

2. The model should be capable of adapting to unknown sound classes as it is
almost impossible to obtain all possible sound samples in advance.
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We apply recurrent neural network as a dynamical system for the training model
of environmental sounds. The dynamical system points out a new possibility for
classifying unknown sounds. The concept of the dynamical system is to deal with
sequence data by a fixed “rule” generated through training. The model would
then infer the “rule” for the recognition and generation processes of unknown
sounds. This capability is known as the generalization capability which provides
the dynamical system the ability to deal with unknown data using few training
data.

Studies have also been conducted to show the capability of dynamical systems
to apply to sound classification and generation. Ogata et al. focuses on active
sensing that exploits the dynamic features of an object [5]. They trained the
parametric bias recurrent neural network (RNNPB) with sounds, arm trajecto-
ries, and tactile sensors generated while the robot moved/hit an object with its
own arm [6]. The method appropriately configured unknown (untrained) objects
in the PB space. Although the objectives of this study was not the classification
of environmental sounds, it has shown an insight on how to apply dynamical
systems for classifying known and unknown environmental sounds.

2 Environmental Sounds Classification System

2.1 Multiple Timescale Recurrent Neural Network (MTRNN)

In our model, we utilize the Multiple Timescale Recurrent Neural Network
(MTRNN) [7], shown in Fig.1(a), for the dynamical system. The MTRNN is an
extension of the continuous time recurrent neural network which acts as a predic-
tion model to predict the next state as the output, from the current state as the
input. The nodes of the MTRNN are composed of input/output nodes (IO), fast
context nodes (Cf), and slow context nodes (Cs). The combination weights link
nodes in a full connection manner except for those between IO and Cs.

In the MTRNN, each node possesses different changing rate controlled by
time scale coefficients. More specifically, Cf have a high changing rate, which
can help to generate dynamics, and Cs have a low changing rate, which can help
the self-organizing gate to switch the structure of primitive sequence data. The
function of fast context and slow context are illustrated in Fig.1(b). During the
training process, each primitive sequence is encoded into the initial values of Cs.
By selecting an arbitrary initial slow context value, the model can also generate
novel primitive sequences.

The main calculations of the MTRNN are forward calculation and backward
calculation (back propagation through time).

Forward calculating step: In this calculation, the MTRNN can predict the
next state as the output with specified current state of IO and initial values
of Cs.

Back propagation through time (BPTT) step: In this calculation, combi-
nation weights and initial values of Cs are updated for training the MTRNN to
predict learning samples.
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(a) Model of MTRNN (b) Multiple Timescale

Fig. 1. Multiple Timescale Recurrent Neural Network

The three functions of the MTRNN (learning, recognition, and prediction)
are conducted using the two calculations.

Learning: The MTRNN updates the combination weights and the initial values
of Cs using training data through forward calculation and BPTT step until the
output error converges. In this phase, sequence data used for training are self-
organized in the Cs space.

Recognition: The MTRNN conducts forward calculation and BPTT as in the
learning function. However, during BPTT, the output error is used only to up-
date the initial values of Cs (i.e. combination weights are fixed in the BPTT
step). Consequently, the process derives one point in the Cs space which repre-
sents the sequence data to be recognized.

Prediction: The initial values of the input and Cs are input into the MTRNN
to associate the whole sequence data through forward calculation. As the input
of each step, the output of the previous step is directly input into the MTRNN.

2.2 Environmental Sound Classification System

The classification system for environmental sounds is illustrated in Fig.2. Clas-
sification is conducted through four steps of the model (training, recognition,
detection, and classification). The training and recognition steps are conducted
using the learning and recognition functions of the MTRNN. We describe the
detection and classification steps in the following subsections.

Detecting unknown sound classes. Detection of unknown sound classes is
conducted by recognition and prediction functions of the MTRNN. The recog-
nition function is first used to calculate the Cs value representing the sound
sequence. The calculated Cs is then input into the MTRNN to associate the
sound sequence through prediction. The prediction error is calculated by accu-
mulating the absolute errors for each step of the predicted sequence and actual
sequence. Prediction errors of unknown sounds are expected to be larger than
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Fig. 2. Training and Classification of Proposed System

Fig. 3. Nearest Neighbor Algorithm for Sound Class Classification

for known (trained) sounds as the MTRNN is not trained with sounds from
unknown classes. Therefore, unknown sound classes are classified by comparing
the prediction error with a threshold value.

Classifying sound classes. Classification of sound classes is conducted based
on the Cs value of the sequence. A detailed flow of classification is shown
in Fig.3.

First, several typical known and unknown sounds are selected and input into
the MTRNN for recognition to calculate the Cs values. These Cs values are
used as prototypes of nearest neighbor algorithm. Using these prototypes, the
sound to be classified is evaluated based on the Euclidean distance between the
sound and prototypes. The prototype with the smallest distance is selected and
the sound is labeled as the sound class with the selected prototype.
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3 Experiments

3.1 Condition

In the experiments, we used sounds from RWCP real environmental voice sound
database to evaluate the performance of our system [8]. From the database, we
selected 20 classes of sounds listed in Table 1. Each class is composed of 100
sound data. Four of the 100 data from each class were used for training the
model. The Mel-frequency cepstral coefficient (MFCC, 12 dimensions) features
with a 25-ms window and 10-ms interval were extracted from the sounds. The
MFCC features were smoothed and normalized. Relatively long sounds were
cut to create MFCC feature sequences with less than 150 steps. We conduced
experiments by changing the threshold starting from 0 and increasing by 0.001.
We present the result with the best classification performance.

The MTRNN was trained using the MFCC features of training sounds. The
composition of the MTRNN is shown in Table 2. The process of the experiment
is as follows.

1. Divide the twenty classes into four groups as shown in Table 1.
2. Select 11 sets of four-number groups {d1, d2, · · ·, d11} randomly.
3. Create inspection cross table constructed by class groups in Table 1 and 11

data groups. {(c1, c2, c3, c4), (c1, c2), (c1, c3), (c1, c4), (c2, c3), (c2, c4),
(c3, c4)} × {d1, d2, · · ·, d11}

Table 1. Class Grouping for Cross Validation

Class Group Class Class Group Class

c1 candybwl c2 coin1
coffmill file
crumple pump
dryer punch
horn ring

c3 saw2 c4 shaver
spray tear
stapler toy
string trashbox
whistle1 whistle2

Table 2. Composition of the MTRNN

The number of input nodes 12

The number of Cf nodes 20∼40

The number of Cs nodes 5

The time scale of input nodes 2

The time scale of Cf nodes 5

The time scale of Cs nodes 10,000

Training times 50,000

3.2 Result

In this subsection, we present the result of detecting unknown sounds using
prediction error and classifying known and unknown sound classes based on the
self-organized Cs space.
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Fig. 4. Success Rate of Detection of
Unknown Sounds

Fig. 5. Cs Space for Training Set {c1, c2,
c3, c4×d1}

Detecting unknown sounds using prediction error
Subsection 2.2 describes the detection of unknown sound. Concretely, the sound
is regarded as unknown one if its prediction error is larger than the threshold
value. In subsection 3.1, the different threshold is set according to each class
group. Figure 4 illustrates the results of average accuracy in detecting unknown
sounds based on prediction error. The accuracy of each group is 63.9% in worst
and 82.6% in best.

The Cs space
We present several results of the self-organized Cs spaces after learning in Fig.5
∼ 7. (Classes enclosed by boxes are known sound classes.)

The Cs spaces shown in the figures are the results of principal component
analysis (PCA) of the Cs values. We present the first two elements of five ele-
ments. The accumulated contribution ratio of first two elements of each Cs space
is also shown in each figure.

From these figures, it is notable that the Cs values of each sound forms clusters
of the same sound classes, denoting the effectivity of the MTRNN to self-organize
sound sequences into the Cs space.

Classification of known and unknown sound classes
Figure 8 shows the average rates of classification in different combination of
known and unknown classes. The error bar shows three times of standard er-
ror. From the results, it is notable that the success rate for 10 known classes
significantly shows best performance.

3.3 Discussion

Comparing with GMM. If all target classes are fixed, stochastic method
like GMM shows better classification performances than our method on neuro-
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Fig. 6. Cs Space for Training Set {c1,
c2×d1}

Fig. 7. Cs Space for Training Set {c1,
c4×d1}

Fig. 8. Success Rate of Classification

dynamical systems (96.4% better in average). The main advantage of our method
is that it can classify (generalize) unknown classes of sounds without any addi-
tional data and training phases.

Detection and classification of unknown sounds. We suggest that there is
a trade-off relationship between the classification and the detection of unknown
sounds. From Fig.4, (c1, c4) class group showed a good performance at detecting
unknown sounds. Figure 7 shows the self-organized Cs space of (c1, c4) class
group. Since the initial values of Cs on this space are not dispersed well, it is
difficult for training (c1, c4) class groups to generalize the Cs space.

Scale of learning data and classification performance. More training
samples can not lead a better performance (see Fig.8). In the figure, the 10-
known-classes group shows the best classification performance. Actually, com-
paring with the Cs space of Fig.5 to Fig.6, the Cs space of (c1, c2) class group
generates clear clusters whereas that of (c1, c2, c3, c4) class group generates
clusters together. The prediction errors of (c1, c2, c3, c4) and (c1, c2) were
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almost the same. Increase of training samples makes the Cs space complex for
classification.

Classifying unknown sounds. From the result of Fig.6 it is notable that
unknown sounds are also self-organized in the Cs space. The result suggests the
possibility of MTRNN to classify unknown sounds without the requirements of
prototypes for unknown sound.

4 Conclusions

In this paper, we presented a prediction and classification system for environmen-
tal sounds using a neural-dynamical model. This system showed a new approach
for classifying unknown environmental sounds using a small amount of samples.

For the evaluation experiment, we selected 20 classes from RWCP real envi-
ronmental voice sound database, and trained the system using sequence data of
Mel-frequency cepstrum coefficient (MFCC) features extracted from sounds. The
results show the effectivity of the system to deal with both known and unknown
sound classes.

In the discussion of comparing with GMM, GMM showed better accuracy
than our system. As future work, we plan to investigate different features of
sounds like Matching Pursuit [9] for improving performance of our system for
more practical environments and sounds.
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Abstract. This paper presents a nonlinear model for computing the
time-dependent evolution of the variance in time series of returns on as-
sets. First, we design a recurrent network representation of the variance,
which extends the typically linear models. Second, we derive temporal
training equations with which the network weights are inferred so as to
maximize the likelihood of the data. Experimental results show that this
dynamic recurrent network model yields results with improved statistical
characteristics and economic performance.

1 Introduction

Subject of particular interest in finance is the time-dependent conditional vari-
ance in time series of returns on assets, known also as the volatility. A popular
tool for capturing the latent variance in returns are the Generalized Autoregres-
sive Conditional Heteroscedastic (GARCH) models [3]. GARCH models have
already been enhanced by adding non-linearity using neural network formu-
lations [2]. Non-linear GARCH models based on Recurrent Neural Networks
(RNN) have also been proposed [5], [12], [9]. The RNN formulation offers two
advantages: 1) RNN offer an adequate representation for the inherently recursive
GARCH models because they are driven by external inputs as well as by internal
temporal context signals; and 2) RNN enable derivation of analytical parameter
estimation formula, leading to simple online training algorithms.

However, parameter fitting in such models does not explicitly account for time
dependencies among the data, i.e. the gradient information (in gradient based
training) is not propagated through time. Hence the models may not be fitted
to their full potential of being dynamic machines that can learn time-dependent
functions [13], [8]. Of course, the ‘vanishing gradient’ problem cannot be easily
avoided in any RNN formulation (unless one uses specialized architectures such
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as LSTM [6]). Nevertheless, propagation of error information, albeit to a limited
time horizon, is desirable in fitting all parameterized state space models.

This paper presents an RNN-GARCH model for computing the dynamic evo-
lution of the volatility of returns. First, we design a recurrent network repre-
sentation for a zero-mean nonlinear GARCH model. Our restricted formulation
captures only the volatility, unlike previous versions of GARCH using recurrent
networks [12], [9]. Second, we derive temporal training equations with which
the RNN-GARCH weights are inferred so as to maximize the model likelihood.
The training rules use temporal derivatives obtained following the Real Time
Recurrent Learning (RTRL) algorithm [13].

The developed RTRL training algorithm provides temporal derivatives of the
log-likelihood function that are generalizations of the analytical (closed-form)
derivatives [4] of linear GARCH models. While the analytical linear derivatives
are typically used to compute the parameters in offline manner, the novel tem-
poral derivatives are taken for online computations so as to reflect the stochastic
nature of the sequentially arriving data. The temporal derivatives can also be
used in offline manner in standard optimizers as demonstrated in this paper.

The efficacy of the proposed RNN-GARCH is studied on a benchmark cur-
rency exchange rates series. RNN-GARCH is compared with linear GARCH
trained both in the maximum-likelihood (ML) [4] and Bayesian (with MCMC
sampling) [7] frameworks. RTRL applied to RNN-GARCH results in slightly
better macro characteristics (lower skewness and higher kurtosis), as well as in
better economic performance (out-of-sample prediction of directional changes).

The remainder of this article is organized as follows. Section 2 provides the
GARCH representation as a recurrent network. Section 3 gives the training algo-
rithm for RNN-GARCH. Experimental results are reported in section 4. Finally,
a brief conclusion is provided.

2 Nonlinear Dynamic GARCH Modelling

2.1 The GARCH(p,q) Model

The changes in the variance (volatility) of returns on assets constitute an un-
observed process. The volatility is commonly represented as the standard de-
viation of the stochastic component of observable returns. Consider the mean
adjusted log-returns from a series of prices (of stocks, currencies, etc.) St, that
is rt = log (St/St−1) − m, assuming that m = (1/T )

∑T
t=1 log (St/St−1). The

dynamics of these log-returns can be described by the following simple het-
eroscedastic zero-mean GARCH(p,q) model [3]:

rt = εtσt (1)

σ2
t = μ +

q∑
i=1

αir
2
t−i +

p∑
j=1

βjσ
2
t−j (2)

where εt ∼ N (0, 1) is an i.i.d. normal random variable, and σt is the volatility.
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Adopting Rt−1 = (r1, r2, ..., rt−1) to denote the past information up to time t,
the moments of the return distribution are E[rt|Rt−1] = 0 and E[r2

t |Rt−1] = σ2
t .

The parameter set of the model contains the mean level μ > 0, the persistences βj

and the moving average coefficients αi. The parameters are restricted to ensure
positive variance (αi ≥ 0, βj ≥ 0) and stationarity (

∑q
i=1 αi +

∑p
j=1 βj < 1).

The distribution of the returns conditioned on the data up to time t reads

p(rt|Rt−1) =
1√

2πσ2
t

exp
(
− rt

2

2σ2
t

)
. (3)

The GARCH model given by Eq. (1) and (2) has the capacity to describe the
main features of the returns, namely their excess kurtosis, small autocorrelation
and high persistence of the squared returns. However, linear GARCH models
often fail to capture all these (desirable) features simultaneously.

2.2 The RNN-GARCH(p,q) Model

This research elaborates on an RNN-GARCH [12] that adds nonlinear terms to
Eq. (1) and Eq. (2). The RNN accepts as external inputs the returns r2

t−i and
the volatilities σ2

t−j as internal signals from its context.
The RNN-GARCH topology has a hidden layer and an output node that

computes the volatility ht = σ2
t (Figure 1). We use one hidden node to represent

the linear part of the model Eq. (2), while the remaining hidden nodes are used
to provide the nonlinear extension. The output node uses the absolute value
function to produce positive volatility as suggested before [12].

Let us adopt the following notation for the inputs to the network at time t:

zt−l =

⎧⎨⎩
1.0, i.e. bias if l = 0
r2
t−l, if 1 ≤ l ≤ p

ht−l+p, if (p + 1) ≤ l ≤ (p + q)
(4)

where p is the number of lagged inputs, and q are the recurrent connections.
These inputs feed the hidden nodes to compute the summations:

sk,t =
p+q∑
l=0

wklzt−l (5)

where wkl is the weight from the l-th source node to the k-th node.
The hidden nodes use the following activation functions:

uk,t = g (sk,t) , and g (sk,t) =
{

sk,t, linear part of the model
tanh(sk,t), hyperbolic tangent (6)

As in neural net research, tanh can be suitably replaced by e.g. logistic sigmoid.
The output node uses the absolute valute function f (so,t) = |so,t| to generate

the output ht = σ2
t :

ht = f (so,t) = f

(
K∑

k=1

wokuk,t

)



Time-Dependent Series Variance Estimation via Recurrent Neural Networks 179

g1

f

g2 g3

r2t-1

ht

context

hidden nodes

1.0

inputs

wkl

wok

g1 linear activation function

g2, g3  hyperbolic tangent activation functions

f absolute value function

uk,t

ht-1

Fig. 1. RNN-GARCH Model: a recurrent neural network interpretation of a nonlinear
dynamic GARCH model

= f

⎛⎝ K∑
k=1

wokg

⎛⎝ p∑
l=1

wklr
2
t−l +

p+q∑
l=p+1

wklht−l+p + wk0

⎞⎠⎞⎠ , (7)

where K is the number of hidden nodes in the network, and the weights wok

connect the k-th hidden node to the network output.

3 Dynamic Training of RNN-GARCH

The learning problem can be formulated as follows: given a (training) series of
returns r1, r2, ..., rt,..., 1 ≤ t ≤ T , find the RNN-GARCH parameters that ‘best
explain’ their changing variance. The parameters are: mean level wk, persistences
wkl, p + 1 ≤ l ≤ p + q, moving average coefficients wkl, 1 ≤ l ≤ p, and hidden
to output weights wok, 1 ≤ k ≤ K. We fit the parameters in the maximum
likelihood framework.

The likelihood maximisation is equivalent to minimization of the negative
log-likelihood, so the instantaneous loss function to be minimized reads [11]:

Lt = − log p(rt|Rt−1) =
1
2

(
log σ2

t +
rt

2

ht

)
. (8)

where the constant terms are omitted.
As in temporal neural network training by online gradient descent [10], we

develop training rules for updating the RNN-GARCH weights as follows:

wij = wij − η
∂Lt

∂wij
= wij − ηνt

∂ht

∂wij
(9)
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νt =
∂Lt

∂ht
=

1
2

[
1
ht

+ rt
2

(
− 1

h2
t

)]
=

1
2ht

[
1− rt

2

ht

]
(10)

where wij is the weight from the j-th source node to the i-th destination node,
and η is the learning rate.

The RNN-GARCH temporal derivatives can be computed following the RTRL
algorithm [13] for recurrent networks. According to RTRL, the derivative of the
output with respect to a weight at time t is obtained as follows:

∂ht

∂wij
= f ′

(
K∑

k=1

[
wok

∂uk,t

∂wij

]
+ δoiuj,t

)
(11)

where δoi is the Kroneker delta function: δoi = 1 if o = i and 0 otherwise, and
f ′ is the derivative of f defined as follows: f ′ = so,t/|so,t|.

The RTRL temporal derivatives of hidden node activations with respect to
any weight at time t are obtained analogously:

∂uk,t

∂wij
= g′

⎛⎝ q∑
l=p+1

[
wkl

∂ht−l

∂wij

]
+ δikzt−j

⎞⎠ (12)

where the initial state is assumed independent from the weights, i.e. ∂h0/∂wij =
0, and g′ is the derivative of g defined as follows: g′ = (1− s2

k,t).
Although the complexity of this RTRL algorithm for recurrent network train-

ing is high (O(q3(q + p))), it is reasonable to apply it to RNN-GARCH because
we typically use small model orders q = 1 (or 2) and p = 1 (or p = 2).

4 Experiments in Volatility Inference

Studied Methods. We compare a variety of GARCH estimation algorithms.
Linear GARCH were trained with: an MCMC sampling algorithm [7], and a
Maximum Likelihood Estimation (MLE) algorithm using ‘static’ derivatives
[4]. Nonlinear GARCH were trained with: a Maximum likelihood estimation
algorithm using ‘dynamic’ RTRL derivatives (MRTRL), the online RTRL and
a conjugate-gradients algorithm with static backprop derivatives (CGBP ) from
previous research [12]. We made an RNN-GARCH(1,1) model with K = 3 hidden
nodes. Learning rate η = 1.0e−6 and regularization λ = 0.1, were found using
cross-validation. The MLE and MRTRL algorithms were made with a BFGS
optimizer, using parameters: Tolerance = 1.0e−10, FunctionEvaluations = 102

and MaxIterations = 102 (found by cross-validation).
Each of the algorithms started with the same initial values: μ = 0.01, β = 0.85

and α = 0.05. The unconditional variance was taken to initialize the volatility
σ2

0 = μ/(1 − α − β). The initial network weights were chosen so as to produce
a network response close to one: w10 = w20 = w30 = 0.5μ, w11 = w21 = w31 =
0.5α, w13 = w23 = 0.0001, w33 = β, wo1 = 0.2, wo2 = 0.1, wo3 = 1.0.
Experimental Technology. After training with the initial 80% points from the
series, the out-of-sample performance was evaluated by rolling over the remaining
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points to compute one-step-ahead predictions. The model was re-estimated over
the next window again of 80% from the next training series, and this process
was repeated. The predicted volatilities were taken to evaluate the out-of-sample
accuracy with measures from relevant research [12], [9]: normalized mean squared
error (NMSE), normalized mean absolute error (NMAE), hit rate (HR) and
weighted hit rate (WHR). The last two HR and WHR compute the accuracy
of forecasted directional changes as follows [12], [9]:

HR =
1
T

T∑
t=1

θt, where: θt−l =
{

1, if (ht − r2
t−1)(r2

t − r2
t−1) ≥ 0

0, otherwise (13)

WHR =
∑T

t=1 sgn((ht − r2
t−1)(r2

t − r2
t−1))|r2

t − r2
t−1|∑T

t=1 |r2
t − r2

t−1|
(14)

Processing the DEM/GBP Series. A series of DEM/GBP currency ex-
change rates was taken as a benchmark [1]. It consists of 1974 daily observations
recorded from 3/1/1984 to 31/12/1991 (divided into 1500 data for training and
474 for testing). Table 1 shows the learned GARCH parameters.

Table 2 reports the testing results calculated with the standardized residuals
(produced by passing the squared standardized returns rt

2/ht through the nor-
mal cumulative density function). It shows that MCMC, RTRL and CGBP
lead to models with close low skewness and excess kurtosis. Both algorithms

Table 1. Learned linear and nonlinear GARCH(1,1) parameters and their standard
errors, obtained over the training series of returns on DEM/GBP exchange rates

MCMC MLE MRTRL RTRL CGBP

μ 0.01308 0.01352 0.00856 0.01197 0.01056
(0.00453) (0.00391) (0.00204) (0.00513) (0.00529)

α 0.14029 0.14185 0.08863 0.11436 0.10385
(0.03025) (0.02925) (0.02258) (0.02831) (0.02974)

β 0.80712 0.80857 0.80389 0.80845 0.80751
(0.04378) (0.04049) (0.0365) (0.04342) (0.04422)

Table 2. Statistical diagnostics calculated with standardized residuals, obtained by
fitting GARCH(1,1) models to the DEM/GBP series with the studied algorithms

Skewness Kurtosis B-S D-W B-P L-B(30) Log-lik.

MCMC −0.40302 5.09346 314.282 1.89976 0.01975 29.5099 −914.495
MLE −0.40331 5.08537 311.827 1.89999 0.01978 29.5965 −915.348
MRTRL −0.40472 5.09547 323.589 1.90174 0.01931 28.9338 −914.435
RTRL −0.40237 5.10024 298.473 1.90142 0.01984 29.7496 −914.181
CGBP −0.40485 5.08583 315.286 1.90182 0.01953 29.2453 −914.477
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Table 3. Out-of-sample performance of different GARCH(1,1) models, obtained via
rolling regression over the unseen testing 474 returns on DEM/GBP exchange rates

NMSE NMAE HR WHR

MCMC 0.75203 0.89187 0.67241 0.57623
MLE 0.75246 0.94271 0.64332 0.57056
MRTRL 0.75332 0.89052 0.67305 0.57836
RTRL 0.75095 0.88095 0.67944 0.58089
CGBP 0.75421 0.89106 0.64551 0.57645

a) b)

c) d)

Fig. 2.(a). Returns from DEM/GBP exchange rates and their time-varying volatility
(conditional variance) produced by an RNN-GARCH(1,1) model trained by RTRL.
(b). Gaussian fit to the distribution of squared standardized residuals obtained with
volatilities learned online by RNN-GARCH(1,1).
(c). Correlogram of the squared standardized residuals obtained with volatilities
learned online by RNN-GARCH(1,1).
(d). Quantile-quantile plot of the squared standardized residuals obtained with volatil-
ities learned online by RNN-GARCH(1,1).
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MRTRL and RTRL learn models with slightly better statistical characteristics
than the other models. All models exhibit similar values of the Durbin-Watson
(D-W), Bowman-Shenton (B-S), Box-Pierce (B-P) and Ljung-Box (L-B) statis-
tics, therefore there is no significant autocorrelation in their residuals.

Table 3 shows that indeed using RTRL derivatives leads to best out-of-sample
results. The out-of-sample residuals NMSE and NMAE from MRTRL and
RTRL training of RNN-GARCH are lower than these from CGBP as well as
the other studied models. Both RNN-GARCH models, learned using MRTRL
and RTRL, demonstrate also better economic performance, in the sense that
they achieve better directional forecasting of the future changes in the series as
indicated by the higher HR and WHR rates.

Figure 2.a illustrates that the deviations of the RNN-GARCH volatility wrap
closely the returns. Figure 2.b shows a Gaussian fit to the distribution of the
standardized residuals from RNN-GARCH. Figures 2.c, and 2.d show the cor-
relogram and the quantile-quantile plot of these standardized residuals.

5 Conclusion

This paper presented an RNN approach to nonlinear GARCH modeling of the
dynamic evolution of the conditional variance of returns. Empirical investigations
showed that this RNN-GARCH yields results with good statistical characteris-
tics and forecasting potential that outperform results from standard alternative
approaches. An interesting issue for future research is to develop more sophisti-
cated mechanisms for control of the learning step size.
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Abstract. Recurrent Neural Networks are in the scope of the machine
learning community for many years. In the current paper we discuss the
Historical Consistent Recurrent Neural Network and its extension to the
complex valued case. We give some insights into complex valued back
propagation and its application to the complex valued recurrent neural
network training. Finally we present the results for the the Lorenz system
modeling. In the end we discuss the advantages of the proposed algorithm
and give the outlook.
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complex valued recurrent neural networks, complex dynamics analysis.

1 Introduction

Historical Consistent Neural Network (further HCNN) was first described in the
work of Zimmermann [1]. This architecture is very interesting due to the stability
of training and simplicity of the construction. It allows a unique correspondence
between the dynamical equations, neural network architecture and the locality of
the learning algorithms. This architecture models the behavior of the dynamical
system which can be described by the eq.1 below:{

st = f (st−1, ut)
yt = g (st)

(1)

where u is a model input, s is an internal state of the model and y is the
model output, f and g are some transition functions (recurrent connection is
done through the states). Modeling of such systems is of big interest in many
application areas. But what happens if there is a need in complex valued neu-
ral network inputs? Even with real valued dynamics modeling there are a lot
of unsolved problems with the things like stable training, learning and stop-
ping criteria. In the following paper we will try to show the transition from the
Real Valued HCNN (further RVHCNN) to the Complex Valued HCNN (further

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 185–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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CVHCNN). We will present our insights in the complex valued back-propagation
and its application to the CVHCNN. At the end of the paper we present the
results obtained modeling of Lorenz system dynamics.

2 Historical Consistent Complex Valued RNN

2.1 Complex Valued Back-Propagation

Complex Valued Back Propagation (further CVBP) was already discussed in
many papers, here we can refer to the papers of Haykin [5], Hirose [6], Nitta [7],
Kim [8] etc. One can see that the interest in this topic remains. In this subsection
we will rearrange the knowledge in this area and show some insights on complex
valued back propagation.

Complex Valued Error Function. The main thing in neural networks ap-
proximation problems is to minimize an error function. This function typically
selected as a mean squared error MSE, root mean squared error RMSE etc.
First let us start with the definition of the error function which we are going
to minimize in the complex valued case. Now, all neuron inputs (further netin),
network outputs (further netout), targets (the desired output values) and net-
work weights are complex numbers (consist of real and imaginary parts). The
minimization of the complex valued error would be a complicated task due to
many reasons discussed below. Therefore, in the majority of the papers men-
tioned above one can see the following error function (see eq.2):

E =
T∑

t=1

(netoutτ − targetτ ) (netoutτ − targetτ )→ min
W

(2)

where τ is a pattern number, T is the number of patterns and the bar above the
brackets means complex value conjunction (z = x + iy, z ∈ C, z̄ = x − iy). For
more types of error function authors refer to the paper of Gangal [9] (in this paper
authors describe a lot of different error functions). The property of the presented
error function is that it is mapping from C→ R. This automatically means that
error function is not analytical (see Zimmermann [3]), which means that it does
not have neither analytical derivative nor Taylor expansion. Abscence of the
Taylor expansion means impossibility to apply Steepest Descent algorithm for
the Neural Network training. However, we can treat this error function with
the so called Wirtinger calculus; here we refer to Brandwood [4]. Let f (z) =
u (zr, zim) + iv (zr, zim) (here z ∈ C, zr is the real part of z and zim is the
imaginary part of z, u and v are some real valued functions), then one can write
two real valued variables as zr = (z + z̄) /2, zim = (z − z̄) /2i . One should
consider z and z̄ as independent from each other. Then function f : C → C

can be expressed as f : R × R → C by rewriting it as f (z) = f (zr, zim) .
Using the theorems below when evaluating the gradient, we can directly compute
the derivatives with respect to the complex argument, rather than calculating
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individual real-valued gradients. Here f is our error function written in the
eq.2. Let f : R × R → C be a function of real variables x and y such that
g(z, z̄) = f(zr, zim), where z = zr + izim and that g is analytic with respect to z
and z̄ independently. The requirement for the analyticity of g(z, z̄) with respect
to z and z̄ is equivalent to the condition on real differentiability of f(zr, rim)
since we can move from one form of the function to the other using the simple
linear transformation given above.

Theorem 1. Let f(z, z̄) be a real-valued function of the vector-valued complex
variable z where the dependence on the variable and its conjugate is explicit. By
treating z and z̄ as independent variables, the quantity pointing in the direction
of the maximum rate of change of f(z, z̄) is ∇z̄(f(z)).

This theory has been studied extensively in Brandwood [4]. For us it is important
that using Wirtinger calculus we can calculate the gradient for the non analytical
error functions, we can calculate the Taylor expansion for the error function
(E(w+Δw) = E(w)−ηgT ḡ+ η2

2 ḡT Gḡ) and apply the Steepest Descent learning
Δw = −η · ḡ for a small learning rate η. The figure below (see fig.1 shows the
overall scheme for the CVBP. Using the presented CVBP one can train complex
valued neural networks. Unfortunately, there is another issue which arises during
the training of the complex valued neural networks, which is complex valued
transition function.

Complex Valued Transition Function. As one can find from the mentioned
above papers – analytical transition functions are unbounded due to the Liouville
theorem (for example see Haykin [5]). This unboundness of functions can destroy

Fig. 1. Complex Valued Back-Propagation. Notations: netin - layer inputs, netout -
layer outputs, din -layer derivative input, dout -layer derivative output, Wi are network
weights, arrows show the information flow, (̄·) - means complex conjunction. The figure
depicts the locality of the CVBP algorithm and independence of the BP from the
network architecture.
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any computations in few iterations. To solve the problem one can bound the
weights, in case the “good” region for the function arguments is known. If not,
it is possible to use the so-called “engineered” functions, which are artificial
but do not allow unlimited growth of the output amplitude. To calculate the
derivative of such functions one should use Wirtinger calculus discussed above.
An example of such functions is given further: f(z) = tanh(zr) + i · tanh(zim) or
f(z) = tanh(r)ei·φ (here r is absolute value of z and φ is angle of z). One can
use the sin or tanh functions but he or she should take into account the position
of singularities or the speed of ascending (descending) of these functions and
do not allow the network arguments (weights) to go to infinite regions of these
functions.

Now let us describe the architecture of the Complex Valued Historical Con-
sistent Neural Network (further CVHCNN).

Fig. 2. HCNN architecture. Notations: Y T is target, Rt is teacher forcing block, Si

is state vector, W is shared weights matrix,[Id] is identity matrix, (·)T means matrix
transpose

2.2 Architecture Description and Insights on Training

The Historical Consistent Neural Network (further HCNN, for more information
authors refer to Zimmermann [1]) can do the modeling of the systems which
correspond to the eq.1. This architecture is working in the following way (see
fig. 2): some bias signal is coming to the most left state of the network (often it
is a random noise distributed normally). This network does not have inputs (in
the usual sense of this word, states transfer the information from one state to
the next one, doing unfolding in time), which means it is autonomous. It tries
to model the given outputs with an internal dynamics. To train it one should
use the so called Teacher Forcing (Zimmermann [1]) for the time moments from
t−n to t (see fig.2), where n is the number of network layers (recurrence layers).
One can use the following system of equations to describe the teacher forcing
training: ⎧⎨⎩

[
τ ≤ t : sτ+1 = f(W (sτ − [Id; 0] (yτ − yd

τ )))
τ > t : sτ+1 = f(Wsτ )
∀t : yτ = [Id, 0]sτ

(3)
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where [Id, 0] =

⎡⎢⎣ Ns︷ ︸︸ ︷
1, 1, ..., 1︸ ︷︷ ︸

No

, 0, 0, ..., 0

⎤⎥⎦ , No is number of network outputs, Ns is

number of network states (number of hidden neurons), f is non linear transition
function, W is the weights matrix. Note, that matrix W and function f are
every time (at each state of the model) the same matrix and function yτ is
the network output, yd

τ is the network desired output. To have the forecast one
should apply matrix W and then transition function f to the state vector, to
obtain the network outputs one has to apply the matrix [Id; 0] to the obtained
state vector. Iteratively applying a matrix W and a function f one can obtain
the forecast for the needed horizon.

Using this teacher forcing training and the CVBP algorithm we can train the
CVHCNN. One should admit the stability of CVHCNN training. The answer
to this fact is that due to the teacher forcing we avoid uncontrolled behavior
of the information flow inside the CVHCNN which can be rather dangerous
for the stability of computations caused by the unlimited functions or function
singularities.

2.3 Problem Description and Modeling Results

Problem Description. The Lorenz Problem is an example of a non-linear
dynamic system corresponding to the long-term behavior of the Lorenz oscillator.
The Lorenz oscillator is a 3-dimensional dynamical system [10]:{

dx

dt
= σ(y − x);

dy

dt
= x(ρ− z)− y;

dz

dt
= xy − βz (4)

here x, y, z ∈ C, parameters we will take as following: β = 8/3; ρ = 28; σ =
10; h = 0.01 where h – the step in Euler scheme of differential equation system
solving. Complex values can be obtained by multiplying x, y, z by ei·sin(t), where
t – time.

Modeling Results. The task was to achieve the maximum possible forecast
for all 3 coordinates of Lorenz system development (see eq.4). Let us describe
the CVHCNN architecture. The number of layers is 15, the number of states
is 15, the matrix weights are randomly initialized in the [−0.2,−0.2i; 0.2, 0.2i]
rectangle, the number of outputs is 3 (x, y and z coordinates respectively), the
activation function is f(z) = tanh(z)ei·φ, learning rate η was equal to 0.005.
The data structure is like following. Training set contains 1400 data points,
Test set – 583 and Forecast set – 20. Test set contains 1 step predictions for
583 moments in time. The Forecast set contains 20 steps iterated prediction
(network uses forecasted values to predict the next one). All sets follow one
after another (time series are historical (dynamical) consistent). To estimate the
quality of the network we have used the Root Mean Squared Error and R2 – is the
Determination coefficient. The negative R2 values arise because of the smooth
Lorenz system behavior (desired outputs are close to their average values, which
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Fig. 3. Training Error Convergence

Table 1. Test set results. Output 1 is x coordinate, Output 2 is y coordinate etc.

RMS for the test set

output # absolute angle

output 1 0.0005 0.0002
output 2 0.0011 0.0001
output 3 0.0008 0.0001

R2 for the test set

output # absolute angle

output 1 0.97 0.99
output 2 0.90 0.99
output 3 0.88 0.99

makes R2 very negative despite network outputs). Each experiment was repeated
10 times and the results were averaged except the best and the worst.

Training set results are presented at the fig. 3: the error function for all three
outputs is exponentially decreasing and is nearly 0. The Test set results are
presented for the absolute and angle parts of the CVHCNN output. From the
tables below one can see that the Test set results are very promising: all RMS
values are close to 0, R2 values are close to 1. Forecast set results are presented
for the absolute part (see fig. 4) and for the angle (phase) part (see fig. 5) of
the CVHCNN output. Tables below (see 2) show the statistics for the 20 steps
prediction. One should be very careful while treating the R2 < 0. In case desired
outputs do not change significantly the denominator of the R2 is very small,
which makes the complete fraction very big. Subtracting this big value from 1
makes the R2 negative. One should admit that the CVHCNN is giving not only
the forecast for the absolute part of the complex output, which contains Lorenz
values, but also predicts the sin of time, which stands at the angle (phase) part
of the complex output. Therefore by looking at the angle value we can say to
which moment in time the prediction is related. In case the prediction for the time
(phase of the complex output) starts behaving incorrect (we know this moment

Table 2. Forecast set results. Output 1 is x coordinate, Output 2 is y coordinate etc.

RMS for 20 steps forecast

output # absolute angle

output 1 0.0000 0.0201
output 2 0.0000 0.0059
output 3 0.0007 0.0004

R2 for 20 steps forecast

output # absolute angle

output 1 0.86 < 0
output 2 0.70 < 0
output 3 < 0 < 0
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since time is changing in a linear manner) then we cannot trust our absolute
parts predictions any more. The last statement is not proven statistically or
theoretically, therefore it should be checked for consistency.

3 Conclusions and Outlook

In the present paper we have shown the back propagation algorithm, presented
its locality and extended it for the complex valued case. Then we discussed
the CVHCNN which is recurrent. Then we showed that CVHCNN is trainable,
moreover the training is robust under certain conditions. We have considered
two real world problems and showed the applicability of the CVHCNN for the
modeling of such systems (both, real valued and complex valued dynamics).

One of the advantages which arise from the complex representation is the nat-
ural representation of time inside the complex valued network which means that
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we have the prediction not only for the absolute part of the complex (which is for
example Lorenz coordinate) but also the time moment to which this prediction
is related. This gives us a possibility to think about the continuous dynamics
modeling, which was not possible to do to the moment. In the future we are plan-
ning to apply CVHCNN for the continuous dynamics modeling and to show, that
trained network can give the prediction which includes the moment in time to
which this prediction is related. This option is to be investigated in the future.
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Abstract. In this paper, we consider learning of spatio-temporal pro-
cesses by formulating a Gaussian process model as a solution to an
evolution type stochastic partial differential equation. Our approach is
based on converting the stochastic infinite-dimensional differential equa-
tion into a finite dimensional linear time invariant (LTI) stochastic dif-
ferential equation (SDE) by discretizing the process spatially. The LTI
SDE is time-discretized analytically, resulting in a state space model with
linear-Gaussian dynamics. We use expectation propagation to perform
approximate inference on non-Gaussian data, and show how to incor-
porate sparse approximations to further reduce the computational com-
plexity. We briefly illustrate the proposed methodology with a simulation
study and with a real world modelling problem.

Keywords: Gaussian processes, spatio-temporal data, expectation
propagation, sparse approximations.

1 Introduction

Over the last decades Gaussian process (GP) based methods [1] have steadily
increased popularity as prominent tools for data analysis in several fields, in-
cluding spatial statistics, epidemiology and machine learning. Although, in the
common machine learning setting the modeled phenomena are assumed to be
static in time, learning of time dependent spatio-temporal models have recently
gained much interest. So far, the application of generic GP techniques to spatio-
temporal data has been hindered by the steep increase in computational require-
ments with respect to the number of data points.

In this article, we show how evolution type stochastic partial differential equa-
tions [2] can be used as flexible prior models in spatio-temporal learning. In
our approach, the Gaussian spatio-temporal prior processes are modeled as lin-
ear time-invariant stochastic partial differential equations, and the measurement
models are assumed to be generic conditional distribution models for the mea-
surements. Formulating the model this way enables us to make use of the Markov
property inherent in the system to perform inference sequentially. Furthermore,
we show how to incorporate the recently proposed sparse GP approximations
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[3,4] into the spatio-temporal formulation, which further reduces the compu-
tational burden. When combined with expectation propagation (EP) [5] ap-
proximate inference scheme the computations are very cheap, enabling accurate
inference on large-scale spatio-temporal data sets.

As such, learning of spatio-temporal systems which are modeled as stochastic
differential equations is a mature subject and has been much studied in control
engineering under the names distributed parameter systems [6] and infinite-
dimensional (Kalman) filtering [7]. More recently, the Bayesian Kalman filtering
approach to spatio-temporal estimation has been studied, for example, in geo-
statistics [8,9,10] as well as in statistical inversion theory [11,12]. In machine
learning context the usage of differential equations and partial differential equa-
tions for encoding prior information into Gaussian process regression models has
recently been discussed in [13].

2 Model and Methods

2.1 Spatio-temporal Gaussian Processes

In this paper we consider evolution type stochastic partial differential equations
(SPDEs) [2] of the following form:

∂x(t, r)
∂t

= Arx(t, r) + Lrw(t, r), yk ∼
n∏

i=1

p(yki |x(tk, ri)), (1)

where x(t, r) denotes the latent spatio-temporal prior Gaussian process de-
pending on the time t ≥ 0 and spatial location r ∈ D on some bounded do-
main D ⊂ �d, and yk = (yk1, . . . , ykn) are the measurements. Ar and Lr

are linear operators acting on the variable r. The noise process w(t, r) is a
Gaussian process with r-dimensional covariance function of the time-white form
k(t, r; t′, r′) = δ(t− t′) k(r, r′), where k(r, r′) is some suitably chosen spatial co-
variance function. Since Ar and Lr are linear operators and w(t, r) is a Gaussian
process, x(t, r) is also a Gaussian process.

Often in Bayesian inference for Gaussian processes the model is formulated in
terms of time-space covariance function k(t, r; t′, r′) instead of a SPDE. However,
as shown in [14] there is one-to-one mapping between a large class of temporal
covariance functions (including the Matérn class) and linear state space models.
Similarly, there is an analogous one-to-one mapping between spatio-temporal
covariance functions and SPDEs. In the case of separable covariance functions of
the form k(t, r; t′, r′) = kt(t, t′) ks(r, r′) where kt and ks are appropriate temporal
and spatial covariance functions, the mapping becomes particularly simple and
computationally efficient. In our examples we shall consider models of this form.

After obtaining a set of observations y1:T = {y, . . . ,yT } the aim is to infer
the state posterior distribution p(x(t, r)|y1:T ). In practice, x(t, r) is discretized
with respect to space and time to make the model tractable. Additionally, the
dynamic model typically has few hyperparameters θ = (θ1, . . . , θp), which need
to be learned. These can include, for instance, the spatial length scales and
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magnitudes of the noise process w(t, r) as well as possible parameters of the
operators Ar and Lr.

2.2 Making the Model Tractable

A simple way to convert a stochastic partial differential equation model into
tractable form is to use discretization. For example, by using a finite differ-
ence or finite basis type of approximation in the spatial dimension, the infinite-
dimensional SPDE model can be transformed into finite-dimensional SDE:

dx(t)
dt

= Fx(t) + Ln(t), (2)

where matrices F and L are finite dimensional approximations to the linear
operators Ar and Lr, and x(t) = (x1(t), . . . ,xn(t)) is the state of the process at
a finite set of spatial points {r1, . . . , rn}. GPs with separable covariance functions
result also in models of this form, where n(t) has the covariance function δ(t−
t′) ks(r, r′) and F is a hn×hn block diagonal matrix, where the h×h blocks are
constructed in such a way that they determine the desired temporal covariance
function kt(t, t′) for the n components (see [14] for more details).

In practice, we are interested in the values of the Gaussian process at discrete
points of time, say, t ∈ {t1, t2, . . .}. By using the well known methods from linear
systems theory [15], the continuous time LTI model above can be transformed
into discrete time model of the following form:

xk = Ak−1 xk−1 + qk−1, qk−1 ∼ N(0,Qk−1), yk ∼ p(yk |xk), (3)

where the matrices Ak−1 and Qk−1 have analytic solutions (see, e.g., [15]).

2.3 Sparse Approximations

Suppose that we have a GP prior on n latent variables x ∈ �n with input fea-
tures {ri

x}ni=1 as x ∼ N(0,Kx,x). The problem of this approach is the O(n3)
scaling of computations in the inference. The recently developed sparse ap-
proximations [3,4] are aimed to mitigate these problems by placing a GP prior
on a smaller set of m inducing variables u ∈ �m (with own input features
{ri

u}mi=1) as u ∼ N(0,Ku,u), and then setting a linear-Gaussian relationship
between the inducing variables u and the actual latent variables x as x|u ∼
N(Hu,R). Different approximations can be constructed by choosing the ma-
trices H and R appropriately. For example, by choosing H = Kx,uK−1

u,u and
R = diag(Kx,x −Kx,u K−1

u,u Ku,x) we obtain the fully independent conditional
(FIC) approximation, which we use as an example during the rest of this paper.
Due to linear-Gaussian formulation, the values of u can always be integrated out
analytically during the inference1, and by using the well-known matrix inverse
lemma the computations can be significantly reduced if R is of such form that it
can be inverted easily. For example, if R is diagonal the complexity is O(nm2).
1 The input features of u, however, have an impact on the result.
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To translate these ideas to spatio-temporal models we propose to formulate a
separable spatio-temporal GP prior model for inducing process u(t) ∈ �m as

du(t)
dt

= Fuu(t) + Lun(t), (4)

and the observation model as

xk|uk ∼ N(Hkuk,Rk), yk ∼ p(yk|xk). (5)

This formulation allows also to specify more general models by defining Hk

and Rk appropriately. For example, we can formulate additive models, in which
there are separate spatial, temporal and spatio-temporal components as well as
covariates, which have linear or fixed basis effects. This approach allows also to
predict the process on arbitrary input r since we can write the conditional as
x(t, r)|u(t) ∼ N(H(r)u(t),R(r)), which we can easily integrate over the poste-
rior of u(t) to get the marginal of x(t, r).

2.4 Expectation Propagation for Dynamic Systems

With generic GPs and non-Gaussian likelihoods expectation propagation (EP)
[5] has been shown to give state-of-the-art performance compared to other de-
terministic inference methods [16]. For dynamic systems EP was first introduced
by [17] and later extended for non-linear/Gaussian [18] and non-linear/Poisson
smoothing problems [19]. With EP, Gaussian approximations are made only in
the state space, avoiding possible difficulties arising with the Kalman filtering
type of methods [15]. In this article we apply EP to spatio-temporal GPs with
non-Gaussian likelihoods.

The central idea of EP is to factor the smoothing distribution as

p(x1:T |y1:T ) ≈ p̂(x1:T ) ∝
T∏

k=1

αk(xk)βk(xk), (6)

where the forward and backward messages αk(xk) ∝ p(xk|y1:k) and βk(xk) ∝
p(yk+1:T |xk,y1:k) are iteratively refined such that the Kullback-Leibler (KL) di-
vergence from the true posterior p(x1:T |y1:T ) to an approximation p̂(x1:T ) is min-
imized. While the global minimization is intractable, in EP the minimization is
performed by sequentially minimizing the KL divergence from p(xk−1,xk|y1:T ) ∝
αk−1(xk−1)p(xk|xk−1)p(yk|xk)βk(xk) to an approximation p̂(xk−1,xk). The
messages αk(xk) and βk(xk) are typically chosen to be members of exponen-
tial family (in our case un-normalized Gaussians), and such cases the mini-
mization of KL divergence is equivalent to moment matching. In our case this
means that the approximation p̂(xk−1,xk) is Gaussian, and in next section
we briefly detail how to seek its moments efficiently for the class of models
considered here. After obtaining p̂(xk−1,xk), the messages are updated in for-
ward pass as αnew

k (xk) =
∫

p̂(xk−1,xk)dxk−1/βk(xk) and in backward pass as
βnew

k−1(xk−1) =
∫

p̂(xk−1,xk)dxk/αk−1(xk−1). Usually several forward and back-
ward passes over the data are needed to achieve convergence.
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Approximating the Two-Slice Posterior. We now seek to find a Gaussian
approximation for p(xk−1,xk|y1:T ) via moment matching. First, the product of
densities p∗(xk−1,xk) = αk−1(xk−1)p(xk|xk−1) can be written as

p∗(xk−1,xk) ∝ N(xk−1,k|m∗
k−1,k,P∗

k−1,k), (7)

where

m∗
k−1,k =

[
mα

k−1

m∗
k

]
, P∗

k−1,k =
[
Pα

k−1 DT
k

Dk P∗
k

]
(8)

and

m∗
k = Ak−1mα

k−1, Dk = Ak−1Pα
k−1, P∗

k = Ak−1Pα
k−1A

T
k−1 + Qk−1. (9)

This can also be decomposed as p∗(xk−1,xk) ∝ p∗(xk)p∗(xk−1|xk), where

p∗(xk) = N(xk|,m∗
k,P∗

k), p∗(xk−1|xk) = N(xk−1|m∗
k−1|k,P∗

k−1|k),

m∗
k−1|k = mα

k−1 + DT
k [P∗

k]−1(xk −m∗
k), P∗

k−1|k = Pα
k−1 −DT

k [P∗
k]−1Dk.

(10)

The backward message can be incorporated by simply using the product rule of
Gaussian distribution to get p∗∗(xk) = p∗(xk)βk(xk) ∝ N(xk|m∗∗

k ,P∗∗
k ).

The posterior is now of form p̂(xk−1,xk) ∝ p∗(xk−1|xk)p∗∗(xk)p(yk|xk). By
using the Bayes’ rule we can write p̂(xk) ∝ p∗∗(xk)p(yk|xk) when we treat
p∗∗(xk) as a prior for xk. Generally this is not of an analytically tractable
form, but we can seek Gaussian approximations by applying any approximate
inference scheme applicable to GPs with non-Gaussian likelihoods. Common
approaches are Laplace approximation or EP (see, e.g.,[1]). If we use sparse
approximations or other generalized observation models, the dynamic model
would be defined for uk and the prior for the ”moment matching” algorithm
is p∗∗(xk) ∝ N(Hk m∗∗

k ,Hk P∗∗
k HT

k + Rk). Since the covariance of this prior
is of same form as in sparse GPs, we can use same tricks as presented, e.g.,
in [20] to speed up the inference. With this we achieve the overall complexity
O(NTnm2), where N is the number of EP iterations across the time sequence
(in our examples we used N = 3, which we empirically observed to be sufficient).

After obtaining an approximation p̂(xk) ∝ N(xk|mk,Pk), the (marginalized)
posterior of xk−1 used in updating the backward messages can be obtained by
combining p̂(xk) with (10), which results in Kalman smoothing like equations
that are not stated here due to lack of space.

3 Results

We briefly show how to analyze log-Gaussian Cox process models by using the
presented modelling framework. We consider two large sized examples: a simula-
tion study highlighting the properties of our approach, and a real-world example
concerning tropical rainforest point process data modelled recently by [21,22].

The log-Gaussian Cox process can be formulated in practice such that the ob-
servations yi in the region wi are Poisson distributed with mean |wi| exp(η(ti, ri)),
where |wi| is the area of the subregion (in our examples constant), and η(t, r) is
the latent intensity field, which is given a spatial or spatio-temporal prior.



198 J. Hartikainen, J. Riihimäki, and S. Särkkä
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Fig. 1. Simulation study: Comparison of RMSE values versus the used CPU time for
the considered data set sizes averaged over several simulation runs. The software was
implemented on Matlab and ran on AMD Phenom II 3.5 GHz, 4GB RAM PC.

3.1 The Effect of Sparse Approximations

First we shall test how the sparse approximations affect the accuracy of the
posterior estimate. For simplicity we consider here only two dimensional fields
such that we treat one coordinate as time and the other as space. We sim-
ulate intensity fields η with a GP prior having a separable covariance function
k(t, r; t′, r′) = kt(t, t′) ks(r, r′), where both kt and ks are Matérn covariance func-
tions with smoothness and magnitude parameters set to ν = 3/2 and σ2 = 1.
We generate three different cases, in which the length scale parameter (common
for both covariance functions) has the values l ∈ {0.25, 0.75, 1.5}. We generate
data sets of size 100×100 and 500×500, and generate Poisson observations after
generating the intensities. Given the observed data, we set the field to have a
sparse GP prior and use EP to estimate its posterior. Figure 1 shows the RMSE
values plotted against the used CPU time in cases of using different number of
inducing variables between 2 and 70. It can be seen that the smoother the field
the less number of inducing variables is needed to achieve accurate results.

3.2 Tropical Rainforest Data

We consider tropical rainforest data shown in Panel (a) of Figure 2. The data
consists of 3605 trees in a rectangular rainforest area discretized into a 201×101
regular lattice. In each subregion also altitude and norm of the gradient are
observed. Similarly as in [21,22], we model the log of the mean parameter in
Poisson distribution as

ηij = β0 + βalt altij + βgrad gradij + xij + εij , (11)

where β0 is a base line effect, βalt and βgrad the effects of the elevation and
gradient values, xij a spatially structured effect and εij a non-structure random
effect. We place a sequential sparse GP prior for xij similarly as in previous
section and model the random effect as εij ∼ N(0, σ2

ε ). The mean estimate of the
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(a) Tree locations (b) Posterior mean of ηij − εij

Fig. 2. Tropical rainforest data: (a) Data and (b) the mean estimate of ηij − εij pro-
duced by EP. We used Laplace’s method with FIC (m = 60) in approximating the
one-slice posteriors. The horizontal axis was treated as time and the vertical as space.

log intensity produced by EP is shown in Panel (b) of Figure 2. Hyperparameters
of the model were optimized w.r.t (approximate) marginal likelihood p(y1:T ) =∏T

k:1 p(yk|y1:k−1). Although we could use the full spatio-temporal GP prior for
the data considered here, by using FIC the computations were significantly faster
(the optimization taking only few minutes of CPU time) without affecting result.

4 Conclusions

In this article we have shown how spatio-temporal Gaussian processes can be
formed as linear-Gaussian state-space models that can be efficiently inferred by
using sequential algorithms. We have shown the key details on how to implement
EP for this class of GP priors with non-Gaussian observations. Moreover, we have
shown how to incorporate the sparse approximations for further speeding up
the computations. In future work we shall study wider class of spatio-temporal
Gaussian processes with more general covariance functions and linear operators,
implement a finite basis type of approximation to the SPDE by using the sparse
approximations, marginalize over the hyperparameters numerically as in [21,22]
and apply the developed modelling framework to high dimensional data sets.
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Abstract. This paper is concerned with estimation of learning curves
for Gaussian process regression with multidimensional numerical inte-
gration. We propose an approach where the recursion equations for the
generalization error are approximately solved using numerical cubature
integration methods. The advantage of the approach is that the eigen-
function expansion of the covariance function does not need to be known.
The accuracy of the proposed method is compared to eigenfunction ex-
pansion based approximations to the learning curve.
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1 Introduction

Gaussian process (GP) regression [1,2] refers to a Bayesian machine learning
approach, where instead of using a fixed form parametric model such as a MLP
neural network [3] one postulates a Gaussian process prior over the model func-
tions. Learning in Gaussian process regression means computing the posterior
Gaussian process, which is conditioned to observed measurements. The predic-
tion of unobserved values amounts to computing predictive distributions and
their statistics.

This paper is concerned with approximate computation of learning curves for
Gaussian process regression. By learning curve we mean the average generaliza-
tion error ε(n) as function of the number of training samples n. A common way
to compute approximations to the learning curves is to express the approximate
average learning curve or its bounds in terms of the eigenvalues of the covari-
ance function [4,5,6,7,8]. Upper and lower bounds for one-dimensional covariance
functions, in terms of spectral densities and eigenvalues have been presented in
[9]. One possible approach is to express the lower bound for the learning curve in
terms of the equivalent kernel [10], which leads to similar results as the classical
error bounds for Gaussian processes (see, e.g., [11,12]). Statistical physics based
approximations to GP learning curves have been considered in [13,14].

In this paper we shall follow the ideas presented in [5,8], but instead of using
the eigenfunction expansion, we approximate the integrals over the training and
test inputs with multidimensional numerical integration. The advantage of the
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approach is that the learning curve can be evaluated without the knowledge of
the eigenfunctions and eigenvalues of the covariance function. In the numerical
integration methods, we shall specifically consider application of multidimen-
sional generalizations of Gauss-Hermite quadratures, that is, Gauss-Hermite cu-
batures for computation of the multidimensional integrals. The usage of such
numerical cubature rules has also recently gained attention in context of non-
linear Kalman filtering and smoothing [15,16,17,18].

2 Recursion for Learning Curve

Consider the following Gaussian process regression model:

f(x) ∼ GP(0, C(x,x′))
yk = f(xk) + rk,

(1)

where yk, k = 1, 2, . . . , n are the measurements, rk ∼ N(0, s2) is the IID measure-
ment error sequence, and the input is x ∈ Rd. That is, the unknown function
f(x) is modeled as a zero mean Gaussian process with the given covariance
function C(x,x′). Here we shall assume that both the function f(x) and the
measurements yk are scalar valued, but the extension to vector case is straight-
forward. We shall also assume that the prior Gaussian process has zero mean for
notational convenience.

Given n measurements y = (y1, . . . , yn) at input positions x1:n = (x1, . . . ,xn)
the posterior mean and covariance functions of f are given as [1,2]:

m(n)(x) = C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 y

C(n)(x,x′) = C(x,x′)− C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 CT (x′,x1:n).
(2)

For the purposes of estimating the learning curves, we shall assume that the
input positions in the training set xk are random, and form an IID process
x1, . . . ,xn such that xk ∼ p(x). If we assume that the test inputs have the
distribution x ∼ p∗(x), we obtain the following well known expression for the
average generalization error of the Gaussian process:

ε(n) =
〈
C(x,x) − C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 CT (x,x1:n)

〉
, (3)

where the expectation is taken over both the training and test input positions
x1, . . . ,xn ∼ p(·) and x ∼ p∗(·), respectively. Note that the error is no longer
function of the measurements y1, . . . , yn, nor the input positions.

This Gaussian process regression solution (2) can also be equivalently written
in the following recursive form:

– Initialization: At initial step we have

m(0)(x) = 0

C(0)(x,x′) = C(x,x′).
(4)
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– Update: At each measurement we perform the following update step:

m(k+1)(x) = m(k)(x) +
C(k)(x,xk)

C(k)(xk,xk) + s2
(yk −m(k)(x))

C(k+1)(x,x′) = C(k)(x,x′)− C(k)(x,xk) C(k)(x′,xk)
C(k)(xk,xk) + s2

.

(5)

The result at step k = n will then be exactly the same as given by the equations
(2). This recursion can be seen as a special case of the update step of infinite-
dimensional distributed parameter Kalman filter (see, e.g., [19,20]) with a trivial
dynamic model.

Using these recursions equations, we can now write down the formal recursion
formula for the covariance function, which is averaged over n training inputs as
follows:

Ĉ(k+1)(x,x′) = C(k)(x,x′)−
∫

Rd

C(k)(x,xk) C(k)(x′,xk)
C(k)(xk,xk) + s2

p(xk) dxk. (6)

In this article, we shall follow [8] and ignore the dependence from the inputs
before the previous step and approximate this as

Ĉ(k+1)(x,x′) = Ĉ(k)(x,x′)−
∫

Rd

Ĉ(k)(x,xk) Ĉ(k)(x′,xk)
Ĉ(k)(xk,xk) + s2

p(xk) dxk. (7)

The approximation to the average generalization error is then given as

ε(n) =
∫

Rd

Ĉ(n)(x,x) p∗(x) dx. (8)

3 Eigenfunction Expansion Approximation of Recursion

As done in [8], we can use the eigenfunction expansion method for solving the
approximate average generalization error as follows. By Mercer’s theorem the
input averaged kernel Ĉ(k)(x,x′) has the eigenfunction expansion

Ĉ(k)(x,x′) =
∞∑

i=1

λ
(k)
i φi(x) φi(x′), (9)

where φi(x) and λ
(k)
i are the orthonormal set of eigenfunctions and eigenvalues

of the kernel such that

λ
(k)
i φi(x) =

∫
Rd

Ĉ(k)(x,x′) φi(x′) p(x′) dx′. (10)

Substituting the series into the recursion (7) now gives

Ĉ(k+1)(x,x′) =
∑

i

λ
(k)
i φi(x) φi(x′)

−
∫

Rd

⎧⎨⎩
[∑

i λ
(k)
i φi(x) φi(xk)

] [∑
j λ

(k)
j φj(x′) φj(xk)

]
[∑

i λ
(k)
i φi(xk) φi(xk)

]
+ s2

⎫⎬⎭ p(xk) dxk.

(11)
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If we approximate the latter integral by taking expectations separately in de-
nominator and numerator, then by the orthonormality properties of the eigen-
functions this reduces to:

Ĉ(k+1)(x,x′) =
∑

i

⎛⎜⎝λ
(k)
i −

[
λ

(k)
i

]2
∑

j λ
(k)
j + s2

⎞⎟⎠ φi(x) φi(x′), (12)

which implies that Ĉ(k+1)(x,x′) also has an eigenfunction expansions in terms
of the same eigenfunctions. If we denote the coefficients as λ

(k+1)
i , then the

approximate recursion equation for the coefficients is given as

λ
(k+1)
i = λ

(k)
i −

[
λ

(k)
i

]2
∑

j λ
(k)
j + s2

(13)

If we have p∗(x) = p(x), then the approximation (8) to the average generalization
error now reduces to [8]

εD(n) =
∑

i

⎛⎜⎝λ
(n)
i −

[
λ

(n)
i

]2

∑
j λ

(n)
j + s2

⎞⎟⎠ . (14)

We could then proceed to use further approximations by considering n as con-
tinuous, which would lead to UC and LC approximations [8]:

– The upper continuous (UC) approximation has the form

εUC(n) = s2
∑

i

λi

n′ λi + s2
, (15)

where λi are the eigenvalues of the prior covariance function, and the effec-
tive number of training examples n′ is the solution to the self-consistency
equation

n′ +
∑

i

ln
(
1 + s−2 n′λi

)
= n. (16)

– The lower continuous (LC) approximation is the solution to the self-consist-
ency equation

εLC(n) = s2
∑

i

λi

n′ λi + s2
, (17)

where n′ = s2 n/[s2 + εLC(n)].
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4 Numerical Cubature Approximation of Recursion

Cubature integration refers to methods for approximate computation of integrals
of the form

E[g(x)] =
∫

Rd

g(x) p(x) dx, (18)

where p(x) is some fixed weight function. In particular, cubature integration
methods here primarily refer to multidimensional generalizations of Gaussian
quadratures, that is, to approximations of the form

E[g(x)] ≈
∑

i

W (i) g(x(i)), (19)

where the weights W (i) and the evaluation points x(i) are (known) function-
als of the weight function p(x). In particular, when p(x) is a multidimensional
Gaussian distribution, we can use multidimensional Gauss-Hermite cubatures or
more efficient spherical cubature rules (see, e.g., [21,16,17]). However, because
here we need quite high order rules and construction of such efficient higher order
spherical rules is quite complicated task, here we have used simpler Cartesian
product based Gauss-Hermite cubature rules.

We can now use a multidimensional cubature approximation to the integral
in Equation (7) which leads to the following:

Ĉ(k+1)(x,x′) = Ĉ(k)(x,x′)−
∑

i

W (i) Ĉ(k)(x,x(i)) Ĉ(k)(x′,x(i))
Ĉ(k)(x(i),x(i)) + s2

, (20)

where the weights W (i) and sigma points x(i) correspond to integration over
the training set distribution p(x). For arbitrary x and x′ we thus may now
run the recursion (7), apply the above approximation on each step and get an
approximation to Ĉ(n)(x,x′). Analogously, we can now form approximation to
the average generalization error in Equation (8) as follows:∫

Rd

Ĉ(n)(x,x) p∗(x) dx ≈
∑

j

W ∗(j) Ĉ(n)(x∗(j),x∗(j)), (21)

where the weights W ∗(i) and sigma points x∗(i) correspond to integration over
the test set distribution p∗(x). The computation of the latter integral can now
be done by evaluating the former quadrature based approximation (20) at the
quadrature points of the latter integral, that is, at x = x′ = x∗(j). Note that
this procedure might underestimate the generalization error slightly, because
the sigma points for the train and test sets are in the same positions. It would
be possible to use different sigma points for train and test sets, but then the
computation would be slightly more complicated.

We can now compute simple approximation to the learning curve by assuming
that p∗(x) = p(x) and by using the same cubature rule for train and test sets.
This leads to a single set of sigma points x(i) = x∗(i) and weights W (i) = W ∗(i).
The algorithm can be implemented as follows:
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– Initialize the elements of matrix P(0) as follows:

P
(0)
ii′ = C(x(i),x(i′)). (22)

– for n = 1, . . . , N do

P(n) = P(n−1) −
∑

i

W (i) P
(n−1)
∗i P(n−1)

i∗
P

(n−1)
ii + s2

, (23)

where P∗i denotes the ith column of P and Pi∗ denotes the ith row.
– The approximate learning curve is given as

εC(n) =
∑

i

W (i)P
(n)
ii . (24)

5 Numerical Comparison

We tested the error bounds presented in this article using 1d and 2d squared
exponential (SE) covariance functions exp(−|x − x′|2/(2l2)) and with Matérn
covariance function (1+

√
3|x−x′|/l) exp(−

√
3|x−x′|/l)). For SE covariance we

used the parameters values l = 1, σ2 = 10−3. The parameters for the Matérn
covariance were selected to be l = 1, σ2 = 0.1. The input and test sets were
assumed to have a zero mean unit Gaussian distribution, for which the weights
W (i) and evaluation points x(i) can be obtained by using existing methods.

In addition to the bounds εD(n) defined in Equation (14), εUC(n) in (15),
εLC(n) in (17),and the proposed bound εC(n) in (24), we also compared to the
following well known Opper-Vivarelli (OV) bound [5]:

εOV (n) = s2
∑

i

λi

n λi + s2
. (25)

For the SE covariance functions we used the known closed form formulas for the
eigenvalues, in the 1d Matérn case we computed the eigenvalues numerically. In
the 2d Matérn case the eigenvalues were not available, because the eigenvalue
problem became too big to be solved with the required numerical accuracy. We
used 60th order Gauss-Hermite quadrature for the 1d εC(n) calculations and
20th order Gauss-Hermite product-rule cubature for the 2d εC(n) calculations.
For all the cases, we also computed approximation to the ’true’ generalization
error curve εMC(n) using Monte Carlo method with 100 independent training
sets for each training set size 1–100, and the generalization error was estimated
with test sets of size 100, which were drawn independently for each MC sample.

The learning curves computed using different approximations are shown in
Figure 1. As can be seen in the figures, in the 1d and 2d SE cases the pro-
posed approximation εC(n) overestimates the error, but is still much better than
εOV (n) and its relative accuracy is close to the other methods. In the 1d and
2d Matérn cases the proposed approximation is very accurate. The overall per-
formance of the proposed method is very good given that it does not need the
eigenvalues of the covariance function at all.
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Fig. 1. Learning curves for squared exponential (SE) and Matérn covariance functions
with input dimensions 1 and 2

6 Conclusion

In this article we have presented a new cubature integration based method for
approximate computation of learning curves in Gaussian process regression. The
advantage of the method is that it does not require availability of eigenvalues
of the covariance function unlike most of the alternative methods. The accu-
racy of the method was numerically compared to previously proposed eigenfunc-
tion expansion based methods and the propoposed approach seems to give good
approximations to learning curves especially in the case of Matérn covariance
function.
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Abstract. We present a Bayesian translational model for matching pat-
terns in data sets which have neither co-occurring samples nor variables,
but only a similar experiment design dividing the samples into two or
more categories. The model estimates covariate effects related to this de-
sign and separates the factors that are shared across the data sets from
those specific to one data set. The model is designed to find similarities
in medical studies, where there is great need for methods for linking lab-
oratory experiments with model organisms to studies of human diseases
and new treatments.

Keywords: Bayesian inference, cross-species modeling, multi-way
modeling, translational modeling.

1 Introduction

We study the translational modeling problem, where the aim is to integrate
data sets which have neither co-occurring samples nor variables. The only known
commonality between the sets is that they have been collected from experiments
with a similar design.

Translational modeling has an increasingly important application in cross-
species analysis of biological experiments, where treatments to human diseases
are studied using model organisms. In cross-species analysis, the question is how
to integrate data sets with high dimensionality, small sample-size, and potentially
structured covariates, as illustrated in Figure 1a.

The basic experimental design in the search for disease biomarkers is one-way
comparison of healthy and diseased patient groups. At the simplest, biomarkers
can be translated across species by comparing lists of p-values of differential
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(a) (b)

Fig. 1. (a) Data matrix representation of the translational problem. (b)
Plate diagram of the proposed Bayesian graphical model. The sets θs =
{αsh

s , αx
s , αy

s , (αβ)shs,b , (αβ)xs,b , (αβ)ys,b} contain all latent variables describing the cor-
responding HMM states. The state (category) of each sample j is determined by an
observed covariate bj and an unobserved covariate sj .

expression from a t-test. Most existing cross-species analysis tools are limited to
these simple designs [6].

Most biological experiments have, however, a multi-way experiment design,
where healthy and diseased groups are further divided into subgroups accord-
ing to additional covariates, such as treatment, gender, age, measurement time,
etc. The basic standard statistical methods capable of properly dealing with the
multi-way design are analysis of variance (ANOVA) and its multivariate gener-
alization (MANOVA) [8].

Taking all the covariates into account complicates the analysis only slightly,
but also allows us to extract considerably more information from the data. There
are no earlier tools for utilizing multiple covariates and estimating their effect
across data sets with neither co-occurring samples nor variables.

Time series experiments are becoming more and more common in clinical
studies searching for disease biomarkers. In our multi-way design, time is one of
the covariates, having a special structure. In a clinical follow-up study, such as
the Type 1 Diabetes prediction and prevention study [9], measurement times are
irregular due to practical reasons of data collection, and there are missing time
points. In addition, life spans of organisms, such as human and mouse, are very
different, resulting in very different measurement intervals. These complications
cause challenges for cross-species data analysis, and call for a possibility to align
the time series using machine learning techniques.

In this paper, we show how it is possible to integrate data sets with neither co-
occurring samples nor variables, only based on a similar experiment design. We
separate and identify shared covariate effects from data set-specific effects. We
do this by building on our recent work on high-dimensional multi-way modeling
and time series alignment [4]. We test the method on simulated data, and on
lipidomic and metabolomic data sets.
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2 Previous Work

A few iterative approaches have matched samples without taking covariate in-
formation into account. One of the methods matched only samples [10], and
another matched both samples and variables [1].

For cross-species analysis, there are methods that use and require side in-
formation about the possible matchings of the variables between the data sets.
Le & Bar-Joseph [5] utilized sequence similarities as a prior for clustering and
matching genes across data sets of two species. Lucas et al. [7] inferred a set of
factors that are active in one data set and used that as a starting point for the
inference in the other data set, requiring at least a subset of variables to be the
same across data sets. The model that we present next, does not require any
prior match across neither samples nor variables.

3 Model

We address the problem of translating covariate effects across two data sets
which have neither co-occurring samples nor variables. We develop a method that
handles traditional multi-way experimental designs, where samples have been
divided, for instance, into healthy-diseased and treated-untreated categories, or
more categories with possibly more levels. In addition, the model extends to time
series designs, where one covariate, the time point, is not necessarily matched
across the two data sets. Irregular time points are handled by aligning the time
series into latent states, which are then matchable across the data sets.

In our previous work [4], we were only able to estimate the covariate effects
shared by the data sets. In this paper we present a novel matching algorithm for
separating shared covariate effects from effects specific to one data set.

3.1 Dimensionality Reduction and Covariate Effects

We construct a unified multivariate model, where the inference is carried out
with Gibbs sampling. It is a single hierarchical Bayesian model capable of han-
dling uncertainty across the levels, in contrast to a straightforward successive
dimensionality reduction and MANOVA. In terms of estimation of multi-way
covariate effects and dimensionality reduction, the new approach builds on our
earlier work on high-dimensional multi-way modeling [3]: we assume that a single
latent factor vector xlat generates a group of correlated variables in the observed
data x, and the latent factors have a covariate-dependent prior structure for
each sample. These factors can thus be called clusters (of variables).

The model for sample j explained by K latent factors is

xj ∼ N
(
μ + Vxlat

j ,Λ
)

xlat
j | (aj , bj) ∼ N

(
αaj + βbj

+ (αβ)aj ,bj
, I
)

, (1)
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where xj is a p-dimensional data sample from the n × p data matrix, μ is a
p-vector of variable means, V is a p×K projection matrix, xlat

j the K-vector of
latent factors from the K × n latent space matrix, and Λ is a diagonal residual
variance matrix with diagonal elements σ2

i . Covariate effects are estimated in the
K-dimensional latent space, and in Equation 1 the prior is presented for the two-
way case with particular covariate values aj and bj selecting the main effects αaj

and βbj
, and an interaction effect (αβ)aj ,bj

. In the notation, covariates aj and
bj independently select a corresponding row from the main effect matrices α and
β, respectively, and (αβ)aj ,bj

is an interaction effect vector of the combination
aj , bj.

3.2 Alignment of Irregular Time Series

When one of the “ways” is irregularly sampled time, underlying states in the
time series are inferred in the model by a hidden Markov model (HMM)-type
state projection. The learned state allocations s are used as a covariate and the
corresponding HMM latent variable is interpreted as the covariate effect for the
sample group [4].

Now, xlat
j is assumed to be generated by using the learned covariate sj instead

of a fixed covariate aj :

xlat
j | (sj , bj) ∼ N

(
αsj + βbj

+ (αβ)sj ,bj
, I
)

, (2)

where αsj is the HMM-aligned time effect. We restrict the HMM to a linear
chain structure, which is reasonable for the biological patient progression data
of our experiment.

3.3 Estimation of Shared and Specific Covariate Effects

Now we have presented the model for dimensionality reduction and estimation
of covariate effects in the case of a single data set. Next, we will show how
this framework can be extended to the analysis of multiple data sets, and how
to identify latent factors that have a match across the data sets. We not only
estimate covariate effects of a single data set, but also probabilities of each latent
factor being generated either by data set-specific covariate effects or by effects
shared with a factor from the other data set. A plate diagram of the model is
shown in Figure 1b.

The model makes a flexible assumption [4] that the observed data vectors
in the two data sets X and Y are generated by the covariate effects through a
transformation fx and fy, respectively:

xj | (sj , bj) = μx+fx
(
αsh

sj
+βsh

bj
+ (αβ)shsj ,bj

)
+ fx

(
αx

sj
+ βx

bj
+ (αβ)xsj ,bj

)
+ εx

yi| (si, bi) = μy+fy
(
αsh

si
+βsh

bi
+ (αβ)shsi,bi

)
+ fy

(
αy

si
+ βy

bi
+ (αβ)ysi,bi

)
+ εy,

(3)
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where symbols with superscript sh represent covariate effects shared by the two
data sets, and symbols with superscripts x and y represent data set X and Y-
specific covariate effects, respectively. The variable spaces of data sets X and Y
are different, and therefore also the latent factor spaces xlat and ylat representing
groups of correlated variables need not match. For this reason, the covariate
effects have to be projected into the actual observed data spaces x and y through
the previously unknown projections fx and fy, which will be learned jointly.

Earlier, we have learned covariate effects from multiple data sets, where sam-
ples co-occur across the sets (views) [2]. The translational problem is now more
complicated, and we have to solve it in a different way.

The modeling question for two non-co-occurring data sets with a multi-way
experiment design becomes the following: Does some dimension of xlat respond
to the covariates s and b similarly as one of ylat? If it does, one can represent
this pattern with shared covariate effects θsh = {αsh, βsh, (αβ)sh}. The inter-
pretation is that a group of correlated variables in data set X matches with a
group in data set Y, represented by a dimension of xlat and ylat, respectively.
In biology, such factors can be considered as multi-species biomarkers. If there
is no match, the response to the covariates is modeled by species-specific covari-
ate effects θx = {αx, βx, (αβ)x}, and similarly for Y. Our modeling framework
estimates the confidence of the shared effects.

3.4 Matching

We propose the following measure for quantifying the quality of the match be-
tween two factors from different data sets: whether the matching is better than
an average matching (over other pairs). On a meta-level the measure is intu-
itively appealing in the spirit of permutation tests, and it can be formulated
more exactly by specifying what we mean by “better.” We will use probabilistic
modeling to measure the relative goodness below.

The matching problem of the clusters is a combinatorial problem, where pos-
sible configurations of pairs need to be evaluated, judging for each pair how
similarly they respond to multi-way covariates. We resort to an iterative algo-
rithm that attempts to change the matching of one cluster at a time.

After selecting a candidate pair, we compare its goodness to an average pair
(uniformly selected having one same endpoint), and accept forming a link be-
tween them by a Metropolis criterion that compares the likelihoods of the two
pairings. A reverse operation is to attempt to break a link by comparing an
existing link between two clusters to an average (random) pair. The goodness
(likelihood) of the linked pair is evaluated by comparing likelihoods of the two
shared covariate effect structures. Factors with no pairs are modeled by data set-
specific covariate effects. Averaging over sampling iterations, we can estimate the
probability for matchings and the patterns of the covariate effects. High prob-
ability of a particular pair indicates a found matching. Low probability of any
pair indicates that there might not be suitable match for the factor in the other
data set.
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4 Experiments

In this section, we demonstrate how the model works on high-dimensional toy
data, and on biological data from human blood samples.

4.1 Generated Data

We generated from the model two data sets X and Y with no pairing of samples
but only a shared two-way covariate structure. There are 11 separate time series
(“patients”) in both of the two data matrices, each series consisting of 5 to 15
time points. This results in 100 and 112 samples in total, and data matrices
are 200- and 210-dimensional. The latent factors xlat

j and ylat
j are 3- and 4-

dimensional, respectively. Two latent factors in each data set were generated
from a shared HMM chain with five states.

We used the proposed model to simultaneously align the samples into match-
able HMM states, learn the clusters of variables, search for the possible matches
of the clusters between the two data sets, and model the ANOVA-type covariate
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Fig. 2. Matching results from generated time-series data. Shown are the main effects
of the HMM-aligned covariate a (α; left), and interaction effects of covariates a and b
((αβ); right). Topmost, the generated effects are illustrated. In both the lower parts, the
table of estimated covariate effects shows shared (top-right area) and data set-specific
(left column and bottom row) effects for both α and (αβ). Rows and columns in the
area of shared effects correspond to clusters in data sets X and Y, respectively. The
found true pairing is highlighted by a red box. The value on top of each plot shows
the percentage of posterior samples, where the matching was found. The boxplots
within each subplot represent posterior distributions of effects at different levels of
the covariate. A distribution above or below zero with 95 % confidence is considered
significant.
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effects acting on the found clusters. We a priori chose a model with five HMM
states. During sampling, 150,000 burn-in samples and 150,000 posterior Gibbs
samples were collected, and every 50th sample was collected. The generated ef-
fects and the results are shown in Figure 2. Our model found the previously
generated clusters without mistakes and matched clusters across the datasets
correctly.

4.2 Biological Data

We analysed biological data from a follow-up study of type 1 diabetes, where
53 lipid and 74 metabolite concentrations from blood samples were measured
from two sets of human patients, respectively [9]. In total, we had 1153 and 417
samples from 124 and 37 patients, respectively.

We separated the normal development of young individuals from progression
of the disease by labeling samples of patients, who acquired the disease, into four
stages of progression of the disease using additional information of the antibody
levels in blood. These stages were fixed as the levels of covariate bj , while the
temporal alignment aj of all patients was learned within the model by the HMM.
We used a five-state HMM, and 6- and 15-dimensional latent variables to explain
the correlated groups of lipids and metabolites in the data, respectively.

Comparison of Matchings of Lipids to the Ground Truth. First, we
tested how the model finds matching, when the variables are actually co-occurring
across the data sets. We split the lipidomic data set into two groups of patients
and used the groups as data sets X and Y.

As a result, we found out that the three strongest matches out of the six were
correct.

Integration of Lipidomic and Metabolomic Data Sets. Next, we searched
for matching groups between the lipidomic and metabolomic data sets. Some of
the patients were the same in the two data sets, but we did not utilize this
information to help the model.

Table 1. The best-matched pair of a lipid and a metabolite cluster

Lipids Metabolites

GPCho(14:0/18:2) X4.7.10.13.16.19.Docosahexaenoic.acid
GPCho(18:2/16:1) X9.Octadecenoic.acid..Z.
GPCho(16:0/20:5) Hexadecanoic.acid

Phosphoric.acid

The main result was that the best match was a group of three glycerophospho-
choline (GPCho) lipids to a group of four metabolites with probability of 19.7 %
(see Table 1). Three first of the metabolites in the list are fatty acids, which are
building blocks for GPCho lipids. The found lipid and metabolite groups had a
similar covariate effect pattern in time (up-regulation) and in the stages of the
disease (down-regulation).
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5 Conclusion

We presented a novel method for translating biomarkers between multiple species
from multi-way, time series experiments, which is applicable even in the ex-
tremely hard case of no a priori known matching between neither variables nor
samples across the two data sets, but only a similar experiment design. The
method estimates ANOVA-type multi-way covariate effects for clusters of vari-
ables, and identifies and separates covariate effects that are shared between the
data sets and effects that are specific to one data set.
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Abstract. A technique for the image recognition is major issue in the
image processing and the image recognition method using pulse coupled
neural network (PCNN) have been studied as one of the valid method.
The most outstanding feature of the method using PCNN is that the
method is valid for the rotation, magnification and shrinking of the im-
age. Also, the good compatibility to the hardware implementation is
significant feature of the PCNN. In our previous study, we proposed the
GA based learning method for the PCNN parameters which enable the
reliable results of image recognition. In this study, we evaluate the image
recognition method using PCNN with our learning method. In the sim-
ulation results, we clarify the characteristics of recognition rate to the
number of the images to be learned using our proposed learning method.

Keywords: Pulse coupled neural network, image recognition.

1 Introduction

The pulse coupled neural network (PCNN)[1] is a numerical model of the visual
cortex grounded in some physiological works[2] which describes the temporary
synchronous dynamics of neurons’ firings in the visual cortex. This synchronous
phenomenon is considered as an important mechanism to achieve visual informa-
tion processing in the brain. The most important feature of the PCNN is that the
model can reproduce the temporary synchronous dynamics in the visual cortex.

On the other hand, using the synchronous pulse dynamics of the PCNN, many
engineering applications of the PCNN have been proposed especially in the fields
of image processing, e.g. image segmentation, edge detection, image/pattern
recognition and so on[3][4][5][6][7]. The image recognition is the major issue
in the image processing. A lot of methods to achieve the image recognition
have been studied and the method using PCNN had also been proposed in
conventional studies[4][8][9]. The method is based on the characteristics of the
PCNN that a number of firing neurons in every time step shows a temporal
pattern corresponding to the input image. This firing temporal pattern is defined
as a ”PCNN icon” and this PCNN icon shows unique characteristics for every
image to be recognized[4].

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 217–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The outstanding feature of the image recognition method using PCNN is that
the method shows good performance to recognize a rotated and scale modified
images. Also, in general, the PCNN is highly compatible to the hardware im-
plementation, i.e. the model is easy to achieve real-time processing. A hardware
implementation of PCNN is described in recent study[10].

To achieve the image recognition using PCNN icon, the parameters of the
PCNN are necessary to be optimized. In our previous study, we had proposed
the parameter learning method for the PCNN[11]. The proposed learning rule is
a kind of supervised learning using real coded genetic algorithm.

In this study, we evaluate a recognition rate of the image recognition method
using the PCNN with our learning method. Here, we assume that the objective
of the image recognition is to find the ”original image” of the input image which
is rotated and scale modified images of the original image. The main objective
of the evaluation is to reveal how many images will be learned properly. In the
simulation, we show the results using the monochrome images of standard image
database(SIDBA) and evaluate how the recognition rate will be changed with
increasing learned images. According to the results, we discuss the performances
of image recognition using PCNN in practical use.

2 The Image Recognition Using PCNN

2.1 The Pulse Coupled Neural Network Model

Fig. 1 shows a schematic of the neuron in the PCNN. The model consists of
the dendrite model and the soma model. In the PCNN, dendrite model forms
connections among neurons and input from an environment, and soma model
functions as a spike generator. In general, the PCNN to achieve image processing
has two-dimensional structure with latticed connection among neurons and each
neuron in the PCNN receives information from each corresponding pixel via
feeding input. The two-dimensional PCNN model is mathematically described
as follows. The internal state of the neuron Nij is given by,

Uij(t) = Fij(t)(1 + βijLij(t)). (1)

Note that the indices ij denote neuron number in the two dimensional PCNN.
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Fig. 1. The schematic of the neuron in Pulse Coupled Neural Network [11]
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The neuron model of the PCNN has feeding and linking input as shown in
Fig. 1. However, in this study, we assumed that the feeding input of the neuron
accepts only an external input, i.e., pixel intensity, as assumed in conventional
studies[4].This assumption is widely used in an application for the image pro-
cessing. Thus the each feeding and linking input is described as follows.

Fij(t + 1) = Iij =
Xij

255
, (2)

Lij(t + 1) = Lij(t) exp (−1/τL) + VL

∑
m

∑
n

Wij,mnYmn(t). (3)

Where Xij denotes 8-bit intensity of the pixel Pij , Wij,mn are weight matrix
which define a receptive field of the neuron Nij , Iij is a constant input to the
neuron, and Ykl(t) and Ymn(t) are spike output of the neuron Nkl and Nmn,
respectively.

This spike output is defined as a step function which is given by,

Ykl(t) =

{
1 if Ukl(t) > Θkl(t)
0 else

. (4)

Where Θkl(t) is a threshold of the action potential of the neuron Nkl which is
given by,

Θkl(t + 1) = Θkl(t) exp(−1/τT ) + VT Ykl(t) (5)

Through Eq.(1)−Eq.(5), parameters, βij , τL, τT , VL, VT and Wij,mn are un-
known parameters and they have to be decided appropriately.

2.2 The Pattern Recognition Using PCNN Icons

The image recognition using the PCNN is achieved by using the PCNN icon[4].
The PCNN icon is defined as the time series of the number of the firing neurons.
To obtain the PCNN icon, a number of the firing neurons are observed in every
time step from t = 0 to t = tmax, where tmax is defined arbitrary. Namely, the
PCNN icon is also defined as a tmax-dimensional vector of integers. Where we
assumed that the tmax is 100 in this study.

The PCNN icon is unique to the input image and its form is almost indepen-
dent of the rotation and magnification or shrinking of the pattern. This is the
most outstanding feature of PCNN icon and this characteristics achieves good
performance for the image recognition. The PCNN icon has been applied to vari-
ous issues in image processing e.g. for the object detection[8], for the human face
recognition[9] and so on. These conventional studies certify the validity of the
PCNN icon for image processing. Fig. 2 shows examples of the pattern images
and their PCNN icons. As shown in the figures, unique PCNN icons are obtained
corresponding to each of the input images and images will be discriminated with
the form of the PCNN icons.
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Fig. 2. Examples of the images and their PCNN icons; (a) An input image of pattern
”+” and its PCNN icon, (b) An input image of pattern ”T” and its PCNN icon[11]

2.3 Parameter Optimization Using Real Code Genetic Algorithm

In our previous study, we proposed the learning method to optimize parame-
ters in the PCNN to achieve the image recognition accurately[11]. Our proposed
method use the real coded genetic algorithm. Here, we assumed that the pa-
rameters to be optimized are βij , τL, τT , VL, and VT . To apply the real coded
genetic algorithm to the parameter optimization, a set of real numbers of the 5
parameters βij , τL, τT , VL, and VT are defined as a chromosome. Here, the ranges
of the parameters are assumed to be 0 ∼ 20.48 and the discretized value of the
parameter is considered, where the minimum difference of the values is 0.000001.
Initially, 17 chromosomes are generated randomly as an initial population.

The chromosomes are evaluated in each generation using the fitness which is
calculated based on the normalized correlation coefficient. Here the normalized
correlation coefficient between the PCNN icons of images X and Y is given by,

correlation =

tmax∑
t=0

(xt − x̄)(yt − ȳ)√√√√tmax∑
t=0

(xt − x̄)2

√√√√tmax∑
t=0

(yt − ȳ)2

. (6)

Where, xt and yt are the number of the firing neurons at time step t, and x̄ and
ȳ are the average of xt and yt through t = 0 to t = tmax.

The fitness is calculated based on the correlation as shown in following pro-
cedure. Where we assumed that the images to be learned are P1, P2, · · · , Pn,
and the procedure requires m(m ≥ 2) images for every image to be learned.
Note that a rotation angle or a scale factor of these m images is assumed to be
different each other. Thus our algorithm requires n×m images for the learning
of n images. In this study, we use the original image and 3 modified images for
the learning, i.e., m = 4.

1. Set a parameters of PCNN according to the jth chromosome Cj

2. Calculate the PCNN icons for all learning images.
3. Calculate the normalized correlation coefficient among PCNN icons of all

learning images.
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4. Search the minimum correlation coefficient among m learning images for Pi

and substitute it for ai.
5. Search the maximum correlation coefficient among different images, i.e.,

among any image of Pi and Pk(k �= i), and substitute it for bi.
6. Repeat 4 and 5 for every Pi(i = 1, 2, ...n)
7. Calculate the difference between the minimum ai and the maximum bi and

substitute it for Cj

8. Repeat 1-7 for every Cj(j = 1, 2, ..., 17) and sort the Cjs in ascending order.
9. Use the order which is obtained in 8 as a fitness of the chromosome.

To breed a new generation, two chromosomes are selected depending on the
fitness using roulette-wheel selection. In our algorithm, the one-point crossover
is applied to the selected chromosomes. The mutation is also applied to the
selected chromosomes. In the mutation, one randomly selected parameter in the
chromosome changes to random value. Here, the probability of the crossover and
mutation are 0.6 and 0.2, respectively.

These procedures of breeding the next generation will continue until 16 chro-
mosomes are produced. Also, in our algorithm, elitist strategy is used. The
chromosome which has largest fitness is selected and carries over to the next
generation. Then 17 chromosomes are produced as a population for the next
generation. We assumed that the procedure of breeding the next generation is
terminated in 500th generation.

In this study, as an extension of our proposed method, we consider the opti-
mization of the weight matrix of the linking input Wij,mn. Here we define the
weight matrix Wij,mn as follows.

Wij,mn =

⎧⎨⎩
1

h
√

(i−m)2+(j−n)2
if

√
(i−m)2 + (j − n)2 ≤ r

0 else
. (7)

We add these parameters h and r to the chromosome, i.e., the 7 parameters of
the PCNN are defined as a chromosome in this study.

3 Simulation Results

In this section, we show the simulation results of image recognition using the
PCNN with our parameter learning method. Fig. 3 (a)-(u) shows the ”origi-
nal images” used in the simulation. These images are from the standard image
database(SIDBA). We prepare a lot of rotated and scale modified images from
these original images for the recognition test. Where the rotation angles are 0,
15, 30, 45, 60, 75, 90 degrees, and the scale factors are 0.1 ∼ 2.0 at intervals of
0.1. Also we assume that the data only in the image area of 256 × 256 pixels
is used, i.e., the image data which is out of the image area is ignored. Some
examples of modified images of image (a) is shown in Fig. 3 (v) and (w). As a
result, we obtained 139 modified images and a original image from one original
image. We assume that the original image and 3 modified images are used as the
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Fig. 3. (a)-(u) 21 ”original images” used in the simulations. These images are
monochrome image and the resolution of all images is 256×256 pixels. (v) An ex-
ample of modified image of (a). the rotation angle is 45 degrees and scale factor is 1.0.
(w) The rotation angle is 30 degrees and scale factor is 1.5.

”learning image” and the other 136 images are assumed to be a ”test image” to
calculate the recognition rate. In the simulation, the required number of images
is selected from 21 original images and its learning images and test images are
used for the simulation.

In the recognition procedure, to select the corresponding image to the input
test image, we calculate the correlations of the PCNN icons among the test image
and each of the original images. Then the original image with largest correlation
is selected as an image to be recognized.

Fig. 4 shows the characteristics of the recognition rate depending on the num-
ber of learning images. In Fig.4, the solid line shows the average of recognition
rate of all the test images and two kinds of dotted lines show the maximum and
minimum recognition rate corresponding to certain original image. Where Fig.4
(a) shows the results using the PCNN with our learning method and (b) shows
the results using the PCNN without learning. In these results, the validity of
our learning method for the image recognition is obviously illustrated.

From the results in Fig.4 (a), we can find that the average of the recognition
rate decreases as increasing of a number of the learning images. Here, we con-
sider that this characteristics is depending on the large amount of data loss of the
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Fig. 4. The characteristics of the recognition rate depending on the number of learning
images. (a) Learning method is applied. (b) Learning method is not applied
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Fig. 5. The characteristics of recognition rate depending on the input test images. (a)
varying the scale factor (b) varying the rotation angle

magnified images such as shown in Fig.3 (w). To ensure this consideration, in
Fig.4 (a), we also show the characteristics of the average of the recognition rate
of all images in the case that the range of the scale factor is 0.1 ∼ 1.0. In
this case, the recognition rate always keeps 100% as increasing of the number
of the learning images. Then we can conclude that the method achieves good
performance in the case of small data loss of input images. Also from the results
shown in Fig.4, the maximum recognition rate corresponding to certain original
image also keeps 100%. Thus we can know that the decreasing of recognition
rate depends on the image characteristics.

These characteristics are ensured in another point of view. Fig. 5 shows the
characteristics of recognition rate to the scale factor and the rotation angle.
Where, the number of the learning image is 4, 8, 12, 16, and 21. From the results
shown in Fig.5(a), the recognition rate for the magnified images decreases as
increasing of learning images and it for the shrinking images keeps almost 100%.
Also, the recognition rate decreases as increasing of scale factor.

On the other hand, from the results shown in Fig.5(b), the recognition rate is
almost independent of the rotation angle. Therefore the results show the validity
of the method using PCNN which shows a good performance in the image recog-
nition of the rotated images. These results suggest that only the large amount of
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data loss in magnified test images can be cause of decreasing of the recognition
rate in the image recognition method using PCNN with our learning method.

4 Conclusion

The image recognition is a major issue in the image processing and the method
using PCNN have been studied as one of the valuable method for the image
recognition. In this study, we evaluated the image recognition method using the
PCNN with GA based learning method which proposed in our previous study. In
the simulation, we showed the characteristics of recognition rate to the number
of the learning images and it to the feature of the input test images. The results
showed a good performance for the large number of learning images and the
validity of the method using PCNN in practical use is clarified.
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Abstract. One of the main drawbacks of Support Vector Machines (SVM) is
their high computational cost for large data sets. We propose the use of the Leader
algorithm as a preprocessing procedure for SVM with large data sets, so that
the obtained leaders are used as the training set for the SVM. The result is an
algorithm where the Leader algorithm allows to construct a sample of the data set
whose granularity level and computational cost are controlled by the threshold
parameter. Despite its apparent simplicity, the proposed model obtains similar
accuracies to standard LIBSVM with fewer number of support vectors and less
execution times.

1 Introduction

Support Vector Machines (SVM) have been highly successful in several machine learn-
ing problems [25,19]. However, one of the main drawbacks of SVM is their computa-
tional complexity, leading to long training times for large data sets.

The optimization problem related to SVM is typically formulated as a quadratic
programming problem. Given N training examples, standard quadratic programming
solvers take O(N3) training time and O(N2) space to obtain a solution. Several ap-
proaches have been proposed for SVM to reduce time and space complexities. Chunk-
ing and decomposition methods [26,15] optimize the SVM with respect to subsets of the
data. The Sequential Minimal Optimization algorithm [17] obtains the analytical solu-
tion of the subproblem with only two examples, and then heuristically choices the best
pairs of parameters to optimize in a sequential process. Other incremental algorithms
have also been described [4,7,9]. Another family of algorithms modify the objective
function to apply efficient algorithms [6,13] or transform the problem to an equivalent
one [23]. In general, these methods suffer from slow convergence when the number of
support vectors is large [14].

A different approach aims to reduce the number of support vectors either directly
or by reducing the size of the training set while keeping all the necessary information
for the construction of a good model. Likelihood-based squashing is used in [16] to
remove examples that contribute in a similar way to the likelihood of the SVM pa-
rameters. Active learning methods for SVM [18,22] try to sequentially add examples

� This work was supported in part by the Ministerio de Ciencia e Innovación (MICINN), under
project TIN2009-13895-C02-01.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 225–232, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



226 E. Romero

near the boundaries. Several sampling techniques are also based in similar idea [10,1].
The model proposed in [20] proposes a preprocessing algorithm that tries to select the
examples near the decision boundaries by looking at the classes of their neighbors.

A third class of algorithms are based on clustering. The algorithm proposed in this
paper also takes this approach. The intrinsic nature of SVM, which is a function only on
the support vectors, makes clustering algorithms suitable for preprocessing and obtain
a representative sample of the data set. By changing the parameters of the clustering al-
gorithm, the number and shapes of the clusters change, leading to different granularity
levels for the training set. In [27], the centroids of a hierarchical clustering tree are re-
cursively selected to train a SVM at every step, where the examples near the boundaries
are declustered. The k-means clustering algorithm is used in [21] to select the examples
near the cluster boundaries as the input data for a SVM. A similar approach is taken
in [3,28] where, starting from a clustering algorithm, the clusters are split or shrinked
depending on a SVM trained with the centroids of the clusters. In [11] the learning
problem of SVM is redefined assuming that the clusters have a Gaussian distribution in
the feature space, and using a probability product kernel.

In this work we propose to use the Leader algorithm [8] as a preprocessing procedure
for large data sets. The obtained leaders are used as the training set for SVM. In order
to maintain the coherency between distances and inner products, the distance within the
Leader algorithm is computed with the kernel function, which is equivalent to run the
Leader algorithm in the feature space induced by the kernel. The proposed algorithm
consists of two decoupled phases, allowing to control the execution times.

The advantages of using the Leader algorithm are threefold. First, it is a very fast
clustering algorithm, compared to most common clustering algorithms such as k-means
or hierarchical clustering methods. Second, all the areas of the input space with any
example in the data set are represented by, at least, one leader. Finally, the leaders are
always a subset of the original data set. Despite its apparent simplicity, the proposed
model gives good experimental results on large data sets, obtaining similar accuracies
to standard LIBSVM with fewer number of support vectors and less execution times.

2 Support Vector Machines

SVMs for classification can be described as follows [25]: the input vectors are mapped
into a (usually high-dimensional) inner product space through some non-linear map-
ping φ, chosen a priori. In this space (the feature space), a maximal margin hyperplane
is constructed. By using a (positive definite) kernel function K(u, v) the mapping be-
cames implicit, since the inner product defining the hyperplane can be evaluated as
〈φ(u), φ(v)〉 = K(u, v) for every two vectors u, v ∈ RD.

When the data set is not separable by a hyperplane (neither in the input space nor
in the feature space), some tolerance to noise is allowed. Using Lagrangian and Kuhn-
Tucker theory, the maximal margin hyperplane for a binary classification problem given
by a data set X is a linear combination of simple functions depending on the data:

f(x) = b +
N∑

i=1

yiαiK(xi, x) (1)
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where the vector (αi)N
i=1 is the (1-norm soft margin) solution of the following con-

strained optimization problem in the dual space:

Maximizeα

∑N
i=1 αi − 1

2

∑N
i,j=1 yiαiyjαjK(xi, xj)

subject to
∑N

i=1 yiαi = 0 (bias constraint)
0 � αi � C i = 1...N.

(2)

for a certain constant C. The parameter C allows to control the trade-off between the
margin and the errors in the data set. By setting C = ∞, the hard margin hyperplane
is obtained. The points xi with αi > 0 (active constraints) are named support vectors.
The most usual kernel functions K(u, v) are polynomial, Gaussian-like or sigmoidal
functions. It is worth noting that the kernel function depends on a certain parameter γ.

3 The Leader Algorithm as a Preprocessing Procedure for SMVs

3.1 The Leader Algorithm

Clustering algorithms divide data into groups (clusters) that are meaningful, useful,
or both. Among the many clustering algorithms, the Leader algorithm [8] is one of
the fastest ones, and it has been used in many successful applications (see [24], for
example).

The Leader algorithm works with a distance or similarity measure and a predeter-
mined threshold T . It constructs a partition of the data into clusters, assigning an exam-
ple for each cluster (the leader), such that every example in a cluster is within a distance
(or similarity) T of the leading example. The algorithm makes a single pass through the
data set. For every example, it looks for the first cluster whose leader is close enough
(or similar enough) to the current example with respect to the specified measure and
threshold T . If such matching leader is found, then the current example is assigned to
that cluster. Otherwise, the algorithm will add a new cluster whose leader is the current
example. Several variations of the Leader algorithm have been described elsewhere (see
[2], for example).

3.2 The Proposed Approach

To fix notation, consider the classification task given by a data set X = {(xi, yi)}Ni=1,
where each example xi ∈ RD, yi ∈ {−1, +1}. Let us define X+ and X− as the subsets
of positive and negative examples, respectively.

The main idea of the proposed approach is to use the Leader algorithm as a prepro-
cessing procedure to select a subset of the data (the leaders) for the subsequent training
of the SVM. In order to lose as little information as possible (namely, possible support
vectors), the Leader algorithm is applied independently to every class. In this way, ex-
amples of different classes (near the decision boundaries, for example) will always be
represented by different leaders. Once the leaders of every class have been obtained,
they are joined in a single data set that will be the input training set of a standard SVM
algorithm. The proposed algorithm is summarized in Figure 1. We will call this scheme
Leader + SVM. Extension to multiple-class problems is straightforward.



228 E. Romero

Given a data set X, a threshold T , a kernel function K and learning parameters for the SVM,

Phase 1: Computing the leaders
L+ = LeaderAlgorithmKernel(X+, T, K)
L− = LeaderAlgorithmKernel(X−, T, K)
Y = L+ ∪ L−

Phase 2: Training the SVM
Model = TrainSVM(Y, K, learning parameters)

The function LeaderAlgorithmKernel(Z, T, K) runs the Leader algorithm on the data set Z

with threshold T and distance D(x, y) =
√

K(x, x)− 2K(x, y) + K(y, y)

Fig. 1. Algorithm proposed for the Leader + SVM scheme

Note that, in order to maintain the coherency between distances within the Leader
algorithm and inner products within the training of the SVM, the distance within the
Leader algorithm is computed with the kernel function. This is equivalent to run the
Leader algorithm in the feature space induced by the kernel K .

Different from other approaches (see [27,3,28], for example), the proposed algorithm
consists of two decoupled phases. Therefore, the execution times can be roughly con-
trolled by looking at the number of leaders obtained by the Leader algorithm (which,
in turn, is controlled by the threshold T ). The accuracy of the trained SVM will also
depend on the leaders obtained in the first phase.

The advantages of using the Leader algorithm are threefold. First, it is a very fast
algorithm, compared to most common clustering algorithms such as k-means or hier-
archical clustering methods. Second, all the areas of the input space with any example
in the data set are represented by, at least, one leader. This is a very important property
when combined with SVM, since if there exist areas of the input space not covered
by the clusters (represented by their centroids, for example), several potential support
vectors could be lost. Finally, the leaders are always a subset of the original data set, so
that there is no need to work with data subsets in the feature space as if they were an
only point (the centroid of a cluster), as in [27,3,28].

In summary, the Leader algorithm allows to construct a sample of the data set whose
granularity level and computational cost are controlled by the threshold T . Therefore, it
is a suitable preprocessing procedure for SVM with large data sets. A similar approach
has been presented in [12], with several important differences. First, the work in [12]
is mostly focused on the comparison with other sub-sampling techniques. Second, the
threshold T is fixed during the process, so that the computational cost is not controlled.
Finally, it is only tested on small data sets (less than 1, 000 examples).

4 Experiments

We performed several experiments on benchmark data sets in order to validate the pro-
posed model. For comparison, we also run a standard LIBSVM implementation [5].
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Table 1. Description of the benchmark data sets, kernel and learning parameters. Column ’Fre-
quencies’ indicates the frequencies of the examples of every class in the training set.

Data Set # Variables # Ex.Train # Ex.Test Frequencies γ C

KDDCUP-99 127 4,898,431 311,029 0.801 / 0.199 0.1 10,000
Forest Cover 54 522,910 58,102 0.512 / 0.488 0.0001 10,000
Extended USPS 676 266,079 75,383 0.543 / 0.457 0.0078 10

4.1 Data Sets

Several benchmark data sets were used for the experiments: KDDCUP-99, Forest Cover
and Extended USPS. These data sets are available at http://www.cse.ust.hk/

˜ivor/cvm.html. A brief description of these data sets is provided in Table 1.

4.2 Experimental Setting

Data Preprocessing. No preprocessing was applied to the data.

Kernel and kernel parameter. We used the Gaussian kernel K(x, y) = e−γ‖x−y‖2
. In

the Leader algorithm, the Gaussian function was normalized dividing by the number of
input variables. The values of the γ parameter used for every data set are those of [14],
and can be found in Table 1.

Threshold of the Leader algorithm. Different values of the threshold T were tested,
ranging from 0.002 to 1.0.

Learning parameters. The values of the C parameter used for every data set are those
of [14], and can be found in Table 1. The rest of parameters were used with their default
values.

Software. For LIBSVM, we used the C++ implementation available at http://www.
cse.ust.hk/˜ivor/cvm.html. For the Leader algorithm, we used our own C
implementation. Previous to every run, the examples in the data set were randomly
shuffled.

Hardware. All the executions were run on an Intel Xeon CPU X3220 at 2.40GHz.

4.3 Results

Figure 2 shows the comparative results between Leader + LIBSVM and standard LIB-
SVM (i.e., trained with the whole training set) on the benchmark data sets studied as
a function of the threshold value. Blue lines correspond to Leader + LIBSVM and red
ones correspond to standard LIBSVM. We only show the results for the threshold values
whose total execution time of Leader + LIBSVM (summing up the training times for the
Leader algorithm and LIBSVM) was less than the training time of standard LIBSVM.
Obviously, for threshold values near zero the computational cost of the Leader + LIB-
SVM scheme is larger than that of standard LIBSVM, since the leaders selected by the
Leader algorithm are the whole data set. Table 2 shows a comparison between the best
results obtained by the Leader + LIBSVM scheme and those of standard LIBSVM.

http://www.cse.ust.hk/~ivor/cvm.html
http://www.cse.ust.hk/~ivor/cvm.html
http://www.cse.ust.hk/~ivor/cvm.html
http://www.cse.ust.hk/~ivor/cvm.html
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KDDCUP-99 Forest Cover Extended USPS

Fig. 2. Comparison between Leader + LIBSVM (blue) and standard LIBSVM (red) on the
KDDCUP-99 (left), Forest Cover (middle) and Extended USPS (right) data sets. Top row: number
of support vectors. Middle row: test accuracies. Bottom row: execution times

The first thing to note from Figure 2 is that, except for the accuracies in the KDDCUP-
99 data set, the number of support vectors, the accuracies and the execution times in-
crease as far a the threshold T decreases. This is as expected. More interestingly, the
Leader + LIBSVM scheme is able to obtain similar accuracies to standard LIBSVM with
fewer number of support vectors and less execution times. This is particularly remark-
able for the Extended USPS and KDDCUP-99 data sets (see Table 2).

Note that the behavior on the Forest Cover and Extended USPS data sets is extremely
regular. The non-increasing behavior in the accuracies of the KDDCUP-99 data set in
Figure 2 is probably due to the highly unbalanced classes (see Table 1), that may need
different granularity levels for the Leader algorithm. Anyway, very good accuracies can
be obtained with very low execution times (see Table 2)

For the KDDCUP-99 and Extended USPS data sets, most of the execution time of
the Leader + LIBSVM scheme was spent in computing the leaders. For the Forest Cover
data set, in contrast, the LIBSVM software took most of the time. This can be explained
by looking at the number of support vectors of the obtained models, which is highly
correlated with the number of leaders (see top row in Figure 2 and Table 2): when the
number of examples is large and the number of leaders is small, LIBSVM may be faster
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Table 2. Comparison between standard LIBSVM and the best results of the Leader + LIBSVM
scheme. Columns ’Thr’, ’# Leads’, ’# SVs’, ’Test’ and ’Time’ indicate the threshold, number of
leaders, number of support vectors, test accuracy and execution times (in seconds), respectively.

Standard LIBSVM Leader + LIBSVM
Data Set # SVs Test Time Thr # Leads # SVs Test Time
KDDCUP-99 1,624 94.20% 4,476.8 0.01 7,187 531 94.26% 1,431.1

0.1 53 48 93.34% 6.2
Forest Cover 105,541 98.23% 74,135.9 0.1 176,102 88,916 97.75% 28,055.9
Extended USPS 2,468 99.53% 1,419.7 0.06 1,605 410 99.21% 139.5

than the Leader algorithm. Therefore, it is better to test high values of the threshold T
first, since the number of leaders may be large for low values of T .

5 Conclusions and Future Work

This paper experimentally shows that, for large data sets, selecting a subset of the train-
ing set with the Leader algorithm may lead to an important decrease in the training and
test times of SVM, without affecting the accuracies.

It could be worth modifying the Leader algorithm so that there were more leaders in
the expected boundaries (for example, by comparing the distance to the current leader
with the leaders of the other classes). If an example is suspected to be near a boundary,
the threshold can be decreased. Similarly, a different threshold T can be used for every
class, specially for data sets with highly unbalanced classes.
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Abstract. Traditional seizure detection algorithms act on single chan-
nels ignoring the synchronously recorded, inherently interdependent mul-
tichannel nature of EEG. However, the spatial distribution and evolution
of the ictal pattern is a crucial characteristic of the seizure. Two differ-
ent approaches aiming at including such structural information into the
data representation are presented in this paper. Their performance is
compared to the traditional approach both in a simulation study and a
real-life example, showing that spatial and structural information facili-
tates precise classification.

1 Introduction

Epilepsy is the second most common neurological disorder after stroke. Over
0.5% of the worldwide population is affected with epilepsy, and approximately
20% of them are not responding to anti-epileptic drugs. The manifestation of
this disease is the epileptic seizure. It is an abnormal, synchronous activity of
the neurons in the brain. An automatic seizure detection system could help the
diagnosis of epilepsy, reducing the workload of clinicians by supporting visual
inspection of EEG. Several seizure detection algorithms have been developed
in the past decades, applying various methods including time-frequency analysis
[5], [4], nonlinear time series analysis [6], feature extraction and machine learning
techniques [8], [3], [7].

The drawback of the existing algorithms is the fact that they act on single
channel data, however, the spatial distribution and evolution of the ictal pattern
are crucial characteristics of the seizure. A two-step system could overcome this
issue, where, in the first step a decision is made for each channel by a separate
classifier, and in the second step the outputs of these classifiers serve as the input
of a combined, final decision procedure. Greene et al. [3] compared such a late
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integration method to an early integration method, where the features extracted
from each channel are sorted and stacked into a long feature vector, which is
then used to train a single classifier. The early integration method is proved to
be superior in performance, by ”treating the channels as related, exploiting their
statistical inter-relationship and the synchronously recorded nature of the EEG”
[3]. Shoeb et al. [8] developed a patient-specific seizure detector, which relies on
features describing the temporal evolution, the spectral and the spatial structure
of the EEG. In order to capture spatial information, the features of each channel
are concatenated to form one feature vector. As opposed to the former study,
where the sorting operation was intended to remove spatial information, the goal
of the stacking in this case is to drive the attention to the locations corresponding
to the channels consistently showing seizure activity.

In the present paper a novel alternative solution is investigated. The features
extracted from the multichannel data are represented in the form of a matrix
as an input to a classifier. The matrix representation of the data helps preserv-
ing and exploiting the inherent spatial structure of the multichannel EEG data.
Moreover, recent studies ([1], [12]) show that higher-order representation of sig-
nals reduces the small sample-size problem, facilitating a precise classification
performance even for low number of training points and outperforms traditional
vector representation.

We investigate long-term recordings containing EEG data from refractory
epilepsy patients undergoing presurgical evaluation. The immediate intervention
after seizure onset is necessary to collect information about the seizure and is
a key to successful localization of the seizure focus. After sufficient information
has been acquired the patient can leave the hospital. Thus, it is essential that
the algorithm can learn the seizure pattern after a few occurrences. Moreover,
a low number of training points may be provided by seizures of possibly short
length. However, the training of a traditional classifier might need a relatively
high number of data points. We will show here that the proposed approach
performs well when relatively little information is available.

2 Materials and Methods

2.1 EEG Data

EEG recordings from 14 patients with refractory partial epilepsy were included
in the study. The patients were selected based only on the criterion that at least
4 seizures were recorded during their stay in the epilepsy monitoring unit. Data
were sampled at 250Hz, an average referenced electrode montage was used and
the electrodes were placed according to the standard 10-20 % 19 electrode system
with two additonal electrodes placed over the sphenoidal temporal region.

2.2 Feature Extraction

EEG was segmented into 2s long non-overlapping windows. A total number of
19 features were extracted from each channel of each segment. Thus, one data
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Table 1. Extracted Features

Frequency domain features Total power, Peak frequency, Spectral edge frequency
(80% , 90% , 95%), Mean and normalized power in the
frequency bands (1-3 Hz, 4-8 Hz, 9-13 Hz and 14-20 Hz)

Time domain features Number of zero crossings, maxima and minima, skewness,
kurtosis, root mean square amplitude

point represents the multichannel EEG window in the form of a 19× 21 matrix.
The features are listed in Table 1 and are selected from the features used in [13].

2.3 Classification Approaches

Single-channel Classification with Late Integration. Traditional seizure
detection systems analyze EEG channels independently and integrate the de-
cision outputs of the single channels into a global decision during a separate
step. There are several different strategies to follow. The outputs of the channel
classifiers can be binary or probabilistic; post-processing can be performed ap-
plying a moving average filter on the outputs from the consecutive epochs [14];
the channel outputs can be integrated via mean, max, or min score, or majority
vote [3]. The number of channels contributing to the global score might as well
be limited [7]. In the current study the length of the feature vectors corresponds
to the number of extracted features. The single-channel feature vectors are fed
to a least-squares support vector machine (LS-SVM) [11]. Finally, the binary
outputs of single epochs are integrated by a simple OR function.

LS-SVM was chosen because of its low computation costs due to solving a
set of linear equations instead of quadratic programming. Moreover, the model
is based on all data (all support values are nonzero), which can be beneficial
in case of small samples. We use LS-SVMlab toolbox (www.esat.kuleuven.be/
sista/lssvmlab, [2]), which performs automatic tuning of the model parameters
applying coupled simulated annealing [10].

Including Spatial Information via Early Integration of Feature Vec-
tors. In this approach the feature vectors extracted from each EEG channel
are stacked into one long feature vector of length I × J , where I is the num-
ber of channels and J is the number of extracted features. One LS-SVM is
trained and used for classification. As explained above, the concatenation of the
channels in fixed order aims at including spatial information and exploiting the
synchronously recorded and inter-dependent nature of multichannel EEG.

In both approaches applying LS-SVM a linear kernel was chosen considering
the high dimensionality of input data and the small sample size. Moreover, the
choice of linear kernel facilitates a meaningful comparison with the linear model
used in the nuclear norm learning approach (see below).
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Including Structural Information via Nuclear Norm Regularization.
We consider the following model:

ŷ = 〈A, X〉+ b, (1)

where X is the input pattern, A is a matrix of the same size, 〈·, ·〉 indicates the
inner product, and b is a bias term. Decisions are made according to sign(ŷ) ∈
{−1, 1}.

Such formulation allows to keep the natural matrix representation of the EEG
data: X ∈ RI×J , where I is the number of channels, and J the number of
features. The classifier (namely the pair (A, b) ) is found solving a non-smooth
convex optimization problem using a nuclear norm penalty:

min
(A,b)

F (A, b) = f(A, b) + μ‖A‖Σ,1, (2)

where f(A, b) is the quadratic error function accounting for the misclassification.
This choice was made specifically because the same loss function is used in LS-
SVM classification. Further, μ is a tuning parameter and ||A||Σ,1 is the nuclear
norm of the matrix A with singular values σi :

||A||Σ,1 =
∑

i

σi. (3)

The tuning parameter μ, as well as the tuning parameters of LS-SVM formu-
lation were chosen according to the 5-fold cross-validation of the misclassification
error. Regularization via nuclear norm conveys structural information from the
matrix by ensuring a low-rank solution. In the current application the low-rank
classifier matrix represents the features and spatial distribution characteristic
for the patient. Theoretical background and motivation behind the use of nu-
clear norms as heuristic ensuring low-rank solution, and details of the convex
optimization algorithm can be found in [9] and references therein.

3 Results

3.1 Simulation on Randomized Training and Test Set

Performance of the matrix nuclear norm learning (NNL) algorithm was com-
pared to the early integration (EI-LSSVM) and late integration (LI-LSSVM)
solution. The test set consisted of 50 % of the available positive data points
randomly selected from all segments of all recorded seizures of the given patient,
and negative data points randomly selected from all non-seizure segments. The
positive to negative ratio was fixed to 1:50 keeping into account the intrinsic
unbalanceness of the problem. Classifiers were built based on increasing sizes of
training sets, and were all tested on the same fixed test dataset. In total 5 train-
ing sets were randomly generated for each of the 14 patients and each training
set size, using all available EEG segments during the random selection, excluding
the ones in the test set. Performances are reported as the mean area under the
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Fig. 1. Results of the simulation on randomized trainingset: (a) mean AUC over all
trials in function of the training set size and (c) boxplots of AUC showing the variability
in performance between the individual trials. Results of the real-life setting: (b) mean
AUC values in function of the number of seizures included in the training set.

curve (AUC) of the 5× 14 trials (ordinate) for each training set size (abscissa)
as seen on Figure 1(a). The variability of AUC among the trials is depicted on
Figure 1(c).

NNL approach is able to capture useful information after a few training points,
and performs the best for small sizes of training sets. This advantage is not
yet seen in case of one training point, although good generalization from only
one training point is obviously not feasible for any learning algorithm. On the
contrary, EI-LSSVM benefits the most from including additional training points,
and it performs the best if greater number of training points are available.

3.2 Real-life Setting

The results of the above simulation are revised in the analysis of the performances
of NNL and EI/LI-LSSVM in a real-life setting. A patient-specific seizure detec-
tion system first records EEG until the first seizure occurs, and then builds a
classifier based on the collected data. Afterwards it goes on with recording and
classifying each new data segment in parallel. Once an other seizure occurs, the
classifier is updated in order to reach better classification performance based on
the additional information.

In order to simulate such an environment, the available seizures are ordered
based on the time of their occurrence, seizures occurring later on time serve as
test set, together with the appropriate number of non-seizure segments. The first
classifier is now built based on the segments of the seizure occurring first in time,
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(b) Patient 2

Fig. 2. ROC of the different approaches including one and two seizures in the training
set (left and right panel respectively)

then new classifiers are built adding the segments of the consecutive seizures to
the training set.

However, in a patient-specific setting, if the first seizure occurs shortly after
the start of the recording, there might not be enough diversity of negative train-
ing points. Brain activity in different physiological brain state and artifacts have
peculiar patterns, and some of them might resemble seizures. In order to include
a more complete and representative set of non-seizure segments alpha activ-
ity, sleeping and drowsiness patterns, muscle artifacts, chewing artifacts, rapid
eye movement and repeated blinking patterns were collected from 29 different
patients and were included in a semi-patient-specific training set.

The mean AUC of the three approaches over all the patients with at least five
training seizures is depicted on Figure 1(b). NNL proves to be superior when
two or more seizures are included in the training set, while LI-LSSVM performs
better when only one seizure is available.

Figure 2 illustrates two different scenarios regarding patient-by-patient per-
formance. The receiver operating characteristic (ROC) curves of the different
classification approaches are depicted for two patients given one and two train-
ing seizures. In the former case NNL and EI-LSSVM are able to capture enough
information after one seizure, while in the latter case they require two seizures
for their optimal performance. They are outperformed by LI-LSSVM when only
one training seizure is available.

3.3 Computational Costs

The computational costs using the three different approaches are compared in
Table 2. The computational times were tested given different sizes of training
sets. Ten positive datapoints correspond to a 20s long seizure, thus the chosen
training set sizes represent training sets including increasing number of seizures
from one up till five. For small training set sizes EI-LSSVM has the shortest
running time, however, its running time increases at a faster rate and exceeds
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Table 2. Computational times (s)

# of positive datapoints 10 20 30 40 50

EI-LSSVM 2.7 12.6 37.8 79.8 151.1

LI-LSSVM 44.2 248.4 769.7 1652.1 3153.4

NNL 49.8 74.1 96.3 118.0 145.5

NNL running time given five training seizures. Nevertheless, they both remain
within practical limits, unlike LI-LSSVM.

4 Discussion

The results acquired in the simulation study show clear superiority of the two ap-
proaches incorporating spatial/structural information over the traditional single-
channel method. However, EI-LSSVM performance clearly decreases in the real-
life experiment. Moreover, LI-LSSVM shows higher mean performance than NNL
given one training seizure. The principal difference between the two studies is
that data points from different seizures are included in the training set in the
simulation study, while the data points of the same seizure are included in the
real-life example. Given a patient with certain variability in spatial distribu-
tion among the seizures, EI-LSSVM fails to generalize, while LI-LSSVM easily
overcomes this problem due to the simple OR function integrating the channel
decisions. NNL nevertheless outperforms EI-LSSVM, suggesting that the struc-
tural information exploited by its learning algorithm is more flexible than the
spatial information encoded in the concatenated feature vector, i.e. the input
of EI-LSSVM. Moreover, given multiple seizure patterns, NNL is capable of ex-
ploiting additional information and performs slighly better than the independent
single-channel LI-LSSVM.

Determining the optimal set of features might improve classification perfor-
mance, but is beyond the scope of this paper. Furthermore, a future study apply-
ing the classifiers as on-line seizure detectors should be carried out and evaluated
by clinically relevant measures such as sensitivity, false detection rate over time
and alarm delay.

Extensive analysis is to be carried out aiming at defining the exact circum-
stances under which one classification approach is favorable over the other. A
final seizure detection system may be developed, which automatically selects
the most appropriate learning and classification technique given the actually
available training set.
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Abstract. This paper describes a generative approach for tackling the
problem of identity resolution in a completely unsupervised context with
no fixed assumption regarding the true number of identities. The problem
of entity resolution involves associating different references to authors (in
a paper’s author list, for example) with real underlying identities. The
references may be written in differing forms or may have errors, and
identical references may refer to different real identities. The approach
taken here uses a generative model of both the abstract of a document
and its list of authors to resolve identities in a corpus of documents. In
the model, authors and topics are associated with latent groups. For each
document, an abstract and an author list are generated conditioned on
a given group. Results are presented on real-world datasets, and outper-
form the best performing unsupervised methods.

Keywords: Bayesian nonparametrics, Dirichlet processes, nested Dirich-
let processes, author disambiguation.

1 Introduction

Entity resolution is a problem encountered widely in the literature and is referred
to by a variety of names that vary depending on the domain area it is used in,
including record linkage, deduplication and coreference resolution. The focus
of the problem is essentially to discover duplicate entities in a dataset in the
absence of unique identifiers. These entities may be things that are referenced in
different ways in a document, duplicate records from merging customer databases
or people being referenced within multiple documents in a single corpus. It is
this latter task that we focus on. One common approach to tackling this problem
includes the use of clustering, such as hierarchical agglomerative clustering and
k-means clustering, where each cluster represents an entity. However, a problem
with many of these existing approaches is that they require the number of clusters
or a cut-off threshold to be set in advance.

Models where the number of clusters is unknown a priori, and which are
flexible enough to incorporate a range of likelihood models are attractive for
this problem. Additionally, since very little labelled data exists for entity reso-
lution, unsupervised and generative approaches are useful. One class of models
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which satisfy these requirements are Bayesian nonparametric models, of which
the Dirichlet process (DP) [1] has been especially widely-used. The DP is a prob-
ability distribution on the space of probability measures. Since a sample from
the DP is a discrete distribution, such a sample is a natural representation for
clusters. Infinite mixture models that are based on the DP are not restricted to
a finite number of latent classes and so offer extra modelling flexibility. A draw
from a Dirichlet process (which we will denote by G ∼ DP(α, H)), is dependent
on two parameter terms H and α. H is called the base measure and gives the
expectation of G, and α is called the concentration. For a definition of the DP
we refer the reader to Ferguson [1] or one of the many introductory texts on
the subject. Structured variations of the DP include both the nested Dirichlet
process (NDP) [2] and the hierarchical Dirichlet process (HDP) [3].

The model described in this paper is a hierarchal generative nonparametric
model for document abstracts and author lists that differs from current ap-
proaches in a number of ways. It is the first approach (to our knowledge) to
integrate both topic and co-author information for tackling the task of unsuper-
vised identity resolution. Co-author information is captured through a concept
of research groups that forms part of the generative model. Each group also has
a number of topics on which they write. This integration of both topic and group
information enables improved performance over methods that only consider in-
dividual information sources. Furthermore, unlike earlier methods we make no
assumptions regarding the equivalence of authors with names that have the same
transcription in the corpus. The approach here is compared to state of the art
unsupervised models and is able to both separate identical references that refer
to different identities as well as combine different references that refer to the
same identity, while still performing better than the current state of the art.

The remainder of this paper is set out as follows. In Section 3, we develop our
framework used to tackle this problem with a description of the generative story.
In Section 4, we describe inference in this framework. We then describe results
on real world datasets in Section 5 and conclude in Section 6 with a discussion.

2 Previous Work

One way to attack the entity resolution problem is via an agglomerative approach
where references are merged according to some criterion until a threshold is
reached. Recently, approaches for entity resolution have aimed at avoiding the
need to set a threshold at which to stop merging clusters or the number of author
entities in advance. To avoid this problem, several approaches have been applied.
Bhattacharya and Getoor [4] describe an entity-resolution approach (LDA-ER)
based on latent Dirichlet allocation (LDA), that is able to infer the number of
author entities in the data. However, the number of co-authorship groups need
to be pre-specified and they require labelled data for setting the parameters.

Often, models which use information from other attributes perform better
than those that solely disambiguate based on names. The author-topic model,
proposed by Rosen-Zvi et al. [5], associates latent topics with authors and
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Group indicator 
(chooses k)

Base Measures

Words Authors

Corpus-level 
entity/topic DP

Group-level DPs

Group weights

Topic/entity 
parameters

Words Authors

Fig. 1. Our generative model in plate notation. Filled in nodes are observed variables.
The concentration parameters for the DPs have been omitted.

identifies the topics that authors frequently write on. In this work, a latent topic
is characterised by a distribution over words in the corpus. However, rather
than entity resolution, their goal was to model the tendencies of authors to
write on certain topics or subject areas assuming the authors for each document
are already known. Their model allocates words in the document to one of the
known authors and does not use co-author information. However, this approach
can require a large amount of data. An author must appear numerous times
in the corpus for its topic distribution to be sufficiently tight for the purpose of
disambiguation. Instead, in the model introduced in this paper, groups of authors
are associated with topics rather than individual authors. This eliminates the
difficult problem of associating authors with topics when data is limited.

3 Grouped Author-Topic Model

In this paper we aim to use as much of the commonly-shared information that is
available for the purposes of entity resolution. This information is typically the
words in the abstract, as well as the author list. This information is organised
via the latent concept of a research group (which characterises which authors
might be co-authors) along with topic information associated with each group
(which helps disambiguate authors which could be members of a number of
research groups). This leads to a model which we call the grouped author-topic
model.

In the grouped author-topic model each real-world author identity will be
represented by a latent author entity. Although a single entity, a real-world
author may have a number of different names by which he or she is referred.
These are known as references and different variants of the author’s name
occur due to variation in initialing, transcription errors, typographical errors,
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transliteration differences etc. These varying forms can be viewed as being gen-
erated by a name corruption process which, for each author, corrupts an un-
derlying canonical name associated with that particular author. Any poten-
tial corruption model can be used in the context of the grouped author-topic
model. We tested a generative bigram model, a trigram model and a previously-
used pair hidden Markov model [4]. This last model uses domain knowledge
that author names are often written with first or middle names initialled or
middle name removed. We found that this corruption model performed the
best.

To describe the model we need to introduce two concepts, that of group and
that of topic. The idea of topic is common to other papers on topic modelling,
where a topic is a mixture component defining a distribution of words. An in-
dividual abstract will only contain a small number of topics out of the total
possible number. Intuitively, the idea of a group conceptualises authors who
work/publish together and the associated topics they publish on. For each par-
ticular group, we define a Dirichlet process over author entities (to capture the
authors that work together), and over topics (to capture the topics the group
publishes on). This Dirichlet process is drawn hierarchically from a global au-
thor and topic DP. Hence author entities and topics can be shared between
groups so that an author entity has non-zero probability of occurring in multi-
ple groups, and similarly for the topics. In contrast to the author-topic model,
the authors are not associated with topics directly. This model is depicted in
Figure 1.

To complete the generative model we need to describe the process of generat-
ing the actual abstracts. Each abstract is associated with a group (again drawn
from a DP). The group associated with the document determines which authors
are potentially represented in a document and which topics are written about
(i.e. those given significant probability by the associated group). Intuitively, this
can be thought of as a document being authored by a single research group,
which has a number of particular topics which they may choose to publish on,
and which may be represented in the current document. The structure is loosely
similar to the nested Dirichlet Process (NDP) of Rodriguez et al. [2]. However,
due to the hierarchical structure in our framework, the clusters are shared be-
tween groups so that an author entity may be allocated to multiple groups. In
contrast, in the standard NDP, clusters are not shared between groups.

The generative process for a whole corpus is as follows, where γ and α de-
note concentration parameters for the global and lower level DPs respectively,
the superscripts W and A denote the parameters or distributions for the topics
and the author entities respectively. H denotes the base measure, πk denotes
the weight from the stick-breaking construction for each group k, and GEM
represents the distribution from the stick-breaking construction [3]. These stick
breaking weights determine the group DP over entities and topics Ek, Tk respec-
tively. θ denotes the parameters for the likelihood models for the authors and
topics and finally f(a|θA) is the probability the name a is corrupted from the
canonical name θA by the name corruption model.
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1. Draw (from their prior distributions) the concentration parameters for the
global DPs, γW , γA, γG for the topics, authors and groups respectively. Like-
wise, draw the concentration parameters for the lower-level DPs, αW , αA

from their priors.
2. Draw a global distribution over topics T0 ∼ DP(γW , HW ) and author entities

E0 ∼ DP(γA, HA). Draw a distribution over groups π ∼ GEM(γG).
3. For each group k, draw a distribution over topics Tk ∼ DP(αW , T0) and

author entities Ek ∼ DP(αA, E0).
4. Now for each document i = 1, . . . , D:

(a) Draw a group to generate the document gi|π ∼ π.
(b) For each word wij , j = 1, . . . , NW

i :
i. Draw a topic θW

ij |gi, Tgi ∼ Tgi . Draw a word w|θW
ij ∼ Mult(w|θW

ij ).
(c) For each author reference aij , j = 1, . . . , NA

i :
i. Draw an author entity θA

ij |gi, Egi ∼ Egi . Draw a (possibly corrupted)
author’s name from the corruption model a|θA

ij ∼ f(a|θA
ij ).

In the grouped author-topic model, HW is a symmetric Dirichlet(η) prior distri-
bution over topic parameters, where a topic is parameterised by the probabilities
of each word appearing in a corpus. Since this is conjugate to the likelihood (a
multinomial distribution), during inference θW can be integrated out.

4 Inference

Since calculating the exact posterior under DP models is intractable, we use ap-
proximate algorithms. Due to the ease of implementing and verifying a Markov
chain Monte Carlo approach, we use collapsed Gibbs sampling based on the
Polya urn scheme for inference. Collapsed Gibbs sampling is described in Teh
et. al [3] and involves Gibbs sampling while integrating out over conjugate dis-
tributions and random measures. The group allocations can be sampled given
the word and author allocations and vice versa. As noted earlier, we integrate
out the parameters for each topic, which are the multinomial distributions over
the words. Since the base measure for the author names is not conjugate, we use
Algorithm 8 described by Neal [6] for the author name parameters.

The true names in the corpus are considered latent variables in the grouped
author-topic model. However, for practical purposes, to avoid the search over all
possible canonical names, we make the computationally simplifying assumption
that the true name can be sufficiently well represented by one of the references
in the corpus. Every unique author name that appears in the corpus is therefore
given a uniform prior probability of being the canonical name for an entity,
HA = Multinomial(1/AN ) where AN is the number of unique names observed.
This is equivalent to using an empirical prior for the space of canonical names.

5 Experiments

We tested the grouped author-topic model on the author lists and abstracts from
several standard publicly available citation databases. We chose the real-world
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Table 1. B3 results on Rexa and CiteSeer datasets. Means and standard deviations
are across 10 parallel chains, each with a 1,000 iteration burn-in. Grouped A-T is the
grouped author-topic model, group per word relaxes the model allowing abstracts to
be allocated to multiple groups, words with authors is the model similar to the author-
topic model where words are allocated to entities without groups and without abstracts
is a simple HDP model that ignores abstracts and does not use groups.

Rexa CiteSeer

Model Recall Precision F1 Recall Precision F1

Grouped A-T 95.6 99.7 97.6 (± 0.3) 98.7 99.5 99.2 (± 0.1)
Group per word 95.2 99.5 97.3 (± 0.3) 99.3 85.7 92.0 (± 0.9)
Words with authors 93.6 97.3 95.4 (± 1.0) 95.1 39.3 55.6 (± 0.4)
Without abstracts 93.0 99.3 96.0 (± 0.3) 97.2 97.4 97.3 (± 0.2)

LDA-ER 92.6 99.4 95.9 (± 1.2) 97.0 100 98.4 (± 0.1)
Baseline distance 57.4 99.6 72.8 78.5 100 88.0

CiteSeer and Rexa databases as their ground truth is publicly available. The
CiteSeer dataset, created by Giles [7] with ground truth compiled by Culotta
and McCallum, consists of citations to four areas in machine learning. After re-
moving duplicate documents in the CiteSeer dataset, it contains 1,695 references
to 1,158 authors across 862 documents. The Rexa dataset [8] contains 9,366 au-
thor references in total with 1,972 of those labelled, by Culotta, to 105 author
identities across 2,697 documents. Compared to the Rexa dataset, the CiteSeer
dataset contains many more singleton author entities, authors that only appear
once in the corpus. We applied a standard stoplist and stemming.

We compare the grouped author-topic model with other similar approaches.
The words with authors model can be seen as a non-parametric version of the
author-topic model [5] adapted for author disambiguation. We implemented the
LDA-ER model [4], which uses the concept of groups to perform disambiguation
but does not use any abstract or title information. We also evaluate against
a baseline distance measure that assigns identical names to the same identity.
η was set to 0.01 in common with the author-topic model and for the entities
we placed an uninformative Gamma(1, 0.01) prior on the global concentration
parameter and a Gamma(1, 0.1) prior on the lower-level concentration parameter
and updated by sampling from their posterior. These priors and similar priors
on concentration parameters were chosen to give a uniform prior on the number
of clusters following the algorithm in Dorazio [9]. Changing the priors by an
order of magnitude did not significantly influence the results. We calculated the
standard B3 score [10] used for coreference and the results are shown in Table 1.

The sampler converged in terms of the log likelihood of each chain and between
chains after 200 iterations. It took 40 minutes to sample 1,000 iterations running
on a single core of an Intel Xeon server for the CiteSeer dataset. We burned-in
for 1,000 iterations and sampled for a further 1,000, evaluating on the posterior
author entity assignments. For each round of sampling the entity and topic
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Table 2. Macro-averaged B3 disambiguation results on the WePS 2 dataset

Model Recall Precision F1

Unsupervised grouped Author-Topic 50 82 56
Supervised bag of words 48 95 59
Baseline (each document in individual cluster) 24 100 34

allocations, we perform 10 iterations of group sampling to improve mixing of
groups. An example of an inferred group from the Rexa dataset spread across 20
documents is: N. Cristianini, Taylor J. Shawe, J. Kandola, J. Platt, H. Lodhi,
P. L. Montgomery with the topics: spectral, clustering, classification, semantic,
kernel, method, extension. Our results show that the grouped author-topic model
performs better than other unsupervised approaches including LDA-ER. Even
though LDA-ER performs well in the CiteSeer dataset, their approach assumes
that identical author references always refer to the same author identity. As
can be seen in the baseline, there is little ambiguity in the CiteSeer dataset.
Applying this assumption to the grouped author-topic model can be done by
requiring identical references to be assigned to the same entity. However, this
would result in a model that would no longer be able to handle ambiguous
names, the handling of which was an advantage over LDA-ER. Our results also
show that our grouped author-topic model succeeds in integrating abstract and
co-author information as compared to the models which do not. The model with
words directly assigned to authors likely performs poorer due to the posterior
overweighting author entities with many assigned words.

Finally, we show results on a task that LDA-ER cannot tackle due to its as-
sumption that authors with identical names always refer to the same entity. We
ran experiments on the dataset from the WePS 2 [11] people clustering task.
The goal of the task is to disambiguate person names in web search results. 30
randomly chosen names were searched for on an Internet search engine. The
top 150 search results were retrieved and each document was hand annotated
to match with a real identity. The dataset is highly ambiguous with an average
of 18 different people per name. We extracted the words from each webpage,
removed stopwords and ran the result through the Stanford named entity recog-
niser [12]. We used the extracted named entities in place of the author references
in our model and used the Jaro-Winkler distance metric as the name corruption
model. This flexible model was chosen to allow matching of name, location and
organization entities written in different forms. We used the non-entity words
as the observed words for each document. We then performed experiments with
priors on the concentration parameters that were scaled logarithmically in pro-
portion to the given real-world frequency of that name. Since identities are at
the document level, we evaluate our model using the posterior group assign-
ments. The results in Table 2 show that our unsupervised model almost matches
the performance of the supervised bag of words approach. Our model performs
well compared to other teams [11] despite the majority of the other teams
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being reliant on supervised approaches with additional features based on ex-
tracted attributes of the person, cutoff distances or additional queries on a search
engine.

6 Discussion

Our grouped author-topic model models the authorship of a document through
a hierarchical model that combines a topic model with a multiple authorship
model. This allows information that comes from a document having multiple
authors and the topic specific content in a document to be leveraged to usefully
disambiguate the authors that are represented in the corpus. We have evaluated
the model against real world data and shown that it performs well in the task of
identity resolution against other unsupervised state of the art approaches. The
model shows significant improvement over ignoring groups or abstracts in the
citation database examples and shows that it can perform well at disambiguating
a set of documents where the names are identical.

Our model is versatile in that it can disambiguate identical name references
that refer to different entities as well as combine differing references to the same
entity. The model is fully automated in that it does not require pre-specification
of numbers of entities, research groups, topics etc. This is a result of the model
taking a Bayesian non-parametric approach to the problem and allowing broad
uninformative priors to be set on the number of entities, etc. while allowing more
informative priors over the number of entities to be chosen if needed. Although
the base measure for the entities is non-conjugate, using an auxiliary variable
Gibbs sampler still resulted in good performance. The name corruption model
could be changed to a bigram model or a discriminative name model to simplify
inference or to use the model in other settings. For example, the appropriate
likelihood and base measure may allow the modelling of co-entity relationships
to be used for word sense disambiguation.
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Abstract. The I-divergence or unnormalized generalization of Kullback-
Leibler (KL) divergence is commonly used in Nonnegative Matrix Fac-
torization (NMF). This divergence has the drawback that its gradients
with respect to the factorizing matrices depend heavily on the scales of
the matrices, and learning the scales in gradient-descent optimization
may require many iterations. This is often handled by explicit normal-
ization of one of the matrices, but this step may actually increase the I-
divergence and is not included in the NMF monotonicity proof. A simple
remedy that we study here is to normalize the input data. Such normal-
ization allows the replacement of the I-divergence with the original KL-
divergence for NMF and its variants. We show that using KL-divergence
takes the normalization structure into account in a very natural way and
brings improvements for nonnegative matrix factorizations: the gradients
of the normalized KL-divergence are well-scaled and thus lead to a new
projected gradient method for NMF which runs faster or yields better
approximation than three other widely used NMF algorithms.

1 Introduction

Nonnegative Matrix Factorization (NMF) is a powerful tool for signal processing,
data analysis, and machine learning, that has attracted much research effort
recently. The problem was first introduced by Paatero and Tapper [1]. After Lee
and Seung [2] presented multiplicative update algorithms for NMF, a multitude
of variants of NMF (see e.g. [3] for a survey) have been proposed. Most of these
methods can be divided into two categories according to the approximation
criterion: least square error or information divergence. For the latter category, the
generalized Kullback-Leibler divergence or I-divergence used in Lee and Seung’s
algorithm is widely adopted in present applications.

In spite of a number of generalizations (see e.g. [4,5,3]), little research has been
devoted to investigating the difference between I-divergence and the original
Kullback-Leibler (KL) divergence. Actually the I-divergence difference measure
has a number of drawbacks. Firstly, in many applications the data matrix can be
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normalized before input to divergence-based NMF algorithms. This is the case
when the relative differences among matrix entries are more important than
their individual magnitudes. The normalization structure can provide valuable
information for the NMF learning, but I-divergence neglects such information.
Secondly, the Poisson noise model that underlies the I-divergence [2] is a discrete
distribution defined only for nonnegative integers [6]. Thirdly, the gradients that
provide critical information for the updating direction in optimization heavily
depend on the scales of factorizing matrices, whose correct values are unknown
beforehand. The additive gradient-based optimization of NMF with I-divergence
can be very slow because it requires many iterations to recover from wrong initial
scales.

In this paper we study the replacement of the I-divergence for NMF with the
original KL-divergence for normalized data. Optimizing the new objectives is not
trivial, where we are facing the challenge that the KL-divergence is non-separable
over the matrix elements. Actually it belongs to the family of γ-divergence (see
e.g. [3, Chapter 2]) whose optimization is unseen before. A new projected gra-
dient method is then proposed for NMF based on normalized KL-divergence,
which runs faster than two other additive optimization approaches and gives
better approximation than the conventional multiplicative updates.

The rest of the paper is organized as follows. We briefly review the NMF
problem based on the I-divergence in Section 2. In Section 3, we present NMF
based on the normalized KL-divergence, including their objectives and corre-
sponding optimization algorithms. Section 4 shows the empirical results which
demonstrate the advantages of using normalized KL-divergence. The conclusions
and future work are given in Section 5.

2 NMF Based on I-Divergence

Given a nonnegative input data matrix X ∈ R
m×n
+ , Nonnegative Matrix Factor-

ization (NMF) seeks a decomposition of X that is of the form X ≈WH, where
W ∈ R

m×r
+ and H ∈ R

r×n
+ with the rank r < min(m, n). The matrix X̂ = WH

is called the unnormalized approximating matrix of X.
In previous work, the approximation has widely been achieved by minimizing

one of the two measures: (1) the least square criterion ε =
∑

i,j(Xij − X̂ij)2 and
(2) the generalized Kullback-Leibler divergence (or I-divergence)

DI

(
X||X̂

)
=
∑
ij

(
Xij log

Xij

X̂ij

−Xij + X̂ij

)
. (1)

In this paper we focus on the second approximation criterion, which is partic-
ularly useful for sparse counting data of small occurrences. In what follows, we
call NMF based on the I-divergence I-NMF, to distinguish it from the one based
on the original KL-divergence described below.
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3 NMF Based on KL-Divergence

In many applications, the input data matrix is or can be normalized before its
nonnegative matrix factorization. The normalization scheme can provide valu-
able information for NMF algorithms and should be taken into account. This
motivates us to improve NMF by using the original or normalized KL-divergence.

3.1 Normalized Kullback-Leibler Divergence

Let X denote the normalized input data matrix. According to the original KL-
divergence definition, the NMF approximation should be X ≈ X̃ by the criterion

DKL

(
X||X̃

)
=
∑
i,j

Xij log
Xij

X̃ij

, (2)

where X̃ is obtained from X̂ = WH using the same normalization scheme that
was used for X. Common normalization schemes include

– matrix-wise normalization:
∑

ij Xij = 1. Then X̃ij = X̂ij/
∑

ab X̂ab;
– row-wise normalization: for all i,

∑
j Xij = 1. Then X̃ij = X̂ij/

∑
b X̂ib;

– column-wise normalization: for all j,
∑

i Xij = 1. Then X̃ij = X̂ij/
∑

a X̂aj .

The following derivations will focus on the matrix case to avoid notational clut-
ter, but the discussions can easily be extended to the other two cases. The
empirical advantages of row-wise normalized KL-NMF is shown in Section 4.

Normalized data matrices exist widely in applications. A matrix-wise normal-
ization example is to approximate a symmetric affinity matrix [7]. For row-wise
or column-wise normalization, a good example is the document-term occurrence
matrix commonly used in information retrieval.

We choose the original KL-divergence also because it can bring us better
stability. Let us take the matrix-wise normalization for example. Writing out
(2), one can see that up to a constant the KL-divergence

Dmat
KL

(
X||X̃

)
=
∑
ij

Xij log
Xij

X̂ij

+ log
∑
ij

X̂ij (3)

differs from the I-divergence with a logarithm before
∑

ij X̂ij . As we shall see,
this logarithm plays a key role in efficiently adjusting the scale of X̂ for both
additive and multiplicative optimization.

It has recently been shown that at the stationary points the I-NMF also
preserves the column-wise and row-wise sums of the input matrix [8]. However,
so far there is no optimization algorithm that theoretically guarantees to achieve
such exact stationary points. In practice, the learning with I-divergence can still
be inconsistent with the normalization of input matrix.
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3.2 Equivalence to pLSI

It has been shown that I-NMF is equivalent to the Probabilistic Latent Seman-
tic Indexing (pLSI) under certain conditions [9]. Actually NMF based on KL-
divergence (KL-NMF) has closer relationship to pLSI than I-NMF. KL-NMF
optimizes exactly the same objective as pLSI by its definition. The requirement
of unitary column sum in pLSI can be fulfilled by applying column normalization
only once after the iterative learning.

The I-divergence is separable over the matrix elements, but pLSI requires
unitary sum of the input matrix and of its approximate. I-divergence belongs to
the family of α- or β-divergences, while pLSI and KL-divergence belong to the
family of γ-divergences which are non-separable (see e.g. [3, Chapter 2]).

In I-NMF, the equivalence to pLSI can be enforced by employing column nor-
malization as shown by Proposition 2 in [9]. However, the extra normalization
steps are not included in the convergence proof. The normalization step itself
can indeed often violate the monotonic decrease of the objective. By contrast,
both additive and multiplicative algorithms for nonnegative matrix factoriza-
tions based on KL-divergence do not require such an extra normalization step,
which facilitates their convergence analysis.

3.3 Projected Gradient Algorithms for NMF

The most popular solution for I-NMF is alternatively applying two multiplicative
update rules [10]. Such EM-like multiplicative algorithms for NMF do not require
user-specified optimization parameters and thus are widely used. However, Gon-
zales and Zhang [11] as well as Lin [12] found that the monotonicity guaranteed
by the proof of multiplicative updates may not imply the full Karush-Kuhn-
Tucker conditions. Therefore, it remains possible to find a better objective by
using some other optimization methods instead of multiplicative updates. In ad-
dition, multiplicative updates are often slower in the long-run training compared
with gradient approaches such as [13]. This also motivates the use of additive
updates based on the gradient information.

The most commonly used additive approach for I-NMF is the Projected Gra-
dients [13], where the new estimate is obtained by first calculating the uncon-
strained steepest-descent update and then zeroing its negative elements. Lin [13]
employed a line search method with the Armijo rule for selecting the learning
step size η. Their method alternates the minimization over either W or H, with
the other matrix fixed. Denote f(W,H) the NMF objective, i.e. I-divergence or
KL-divergence in this paper. When minimizing f over H, the Armijo’s rule tries
to find the largest η that satisfies the sufficient decrease condition

f(W,Hnew)− f(W,H) ≤ σTr
(
∇Hf(W,H)(Hnew −H)T

)
, (4)

where 0 < σ < 1. The concrete form of the gradient ∇Hf , depending on the
divergence used, is given by Eqs (5) and (7) below. Assuming that η does not
vary too much in consecutive iterations, the improved minimization is described
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Algorithm 1. Projected gradients with Armijo’s rule
Initialize H. Set η = 1.
for i = 1 to k do

if η satisfies Eq. (4) then
repeatedly increase it by η ← η/ρ until either ρ does not satisfy Eq. (4) or
H(η/ρ) = H(η)

else
repeatedly decrease η by η ← η · ρ until η satisfies Eq. (4)

end if
Set Hnew = max(0,H− η∇Hf(W, H)).

end for

in Algorithm 1 [13], in which ρ is the dilation/shrinkage base for line search. The
same algorithm applies to the minimization over W with H fixed.

Although a number of projected gradient algorithms (e.g. [14,15,3], Chapter.
4-6) have been proposed for NMF based on least squared errors, the speedup
advantage is more difficult to obtain for the approximation based on the I-
divergence. The major reason is that the gradients of I-NMF

∇HDI(X||WH) = −WTZ + WT Z̄ (5)

∇WDI(X||WH) = −ZHT + Z̄HT (6)

heavily depend on the scaling of W and H, where Z and Z̄ are of size m × n
with Zij = Xij/(WH)ij and Z̄ij = 1. For example, if the entries of initial W are
overly large, the second term in Eq. (5) will dominate the gradient because in the
first term the scale of W cancels out. Unlike multiplicative updates which can
remedy for an improper scale by alternation between W and H, the projected
gradient algorithm requires many more iterations to recover from such a wrong
guess of scales. This is especially problematic for large-scale factorization tasks.
The badly scaled gradients also make the second order optimization methods
such as Newton or quasi-Newton algorithms ill-posed and even fail to converge,
as shown in Section 4.

By contrast, the normalized Kullback-Leibler divergence does not suffer from
such a scaling problem. Consider first matrix-wise normalization. Then the log-
arithm in the second term of Eq. (3) leads to an inverse normalization factor
α =

∑
ab (WH)ab in the gradients:

∇HDmat
KL (X||X̃) =−WTZ +

1
α
WT Z̄ (7)

∇WDmat
KL (X||X̃) =− ZHT +

1
α
Z̄HT . (8)

Such normalization factors can automatically stabilize gradient-based optimiza-
tion. The learning can thus focus on adjusting the relative values among entries
of factorizing matrices, which results in more efficient algorithms.
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4 Experiments

The normalized KL-divergence for NMF leads to well-scaled gradients which
favor stable additive optimization approaches. We have compared the projected
gradient method using the Armijo rule based on the gradients of I-divergence and
row-normalized KL-divergence, as well as the multiplicative I-NMF algorithm
[2] and a quadratic programming method based on I-divergence [3]. We refer
to the four compared methods as I-Armijo, KL-Armijo, I-multiplicative, and
I-quadratic, respectively.

We have used four datasets med1 (1033 × 5831), cran1 (1398 × 4612), cisi1

(1460 × 5609), and webkb4 2 (4193 × 1000). The document-term matrices are
preprocessed according to the TF-IDF weighting scheme, which is widely used in
information retrieval and text mining, and then normalized to unit row-sum. We
selected these datasets because (1) our contribution addresses the normalization
structure of input data and (2) the Armijo rule can be efficiently performed for
large-scale but sparse matrices.

It is important to notice that DKL(X||X̃) = DI(X||X̃) if both X and X̃
are normalized in the same scheme. On the other hand, generally DI(X||X̃) �=
DI(X||X̂). This enables us to compare the approximation performance of the
four selected methods for normalized matrices using DI(X||X̃).

Following [13], we set the line search base ρ to 0.1. The factor σ for determining
sufficient decrease is set to 10−5 in our experiments. Each method terminates
if maximal time (3600 seconds) or maximal number of iterations (1000, 1000,
10000, 100, respectively) is reached. Maximal ten iterations for inner loops have
been used in I-Armijo and KL-Armijo. We repeated 50 times for every method
on each dataset and recorded their resulting I-divergences and KL-divergences.

Figure 1 shows the evolution curves of I-divergences versus learning time.
The I-quadratic method violates the monotonicity quite often and seems to
diverge in the experiment. Another projected gradient method based on the I-
divergence, I-Armijo, requires about ten minutes to decrease the objective below
104 and is then stuck around 3800. The objectives using the other two meth-
ods, I-multiplicative and KL-Armijo, become smaller than 3400 in less than two
minutes. The multiplicative algorithm seems faster in early iterations but gives
little improvement after one minute, which ends up with the objective value 3378.
By contrast, the proposed projected gradient method based on KL-divergence
steadily minimizes the objective until it becomes stable at 3314 after about four
minutes.

More extensive results are shown in Table 1. The two methods using projected
gradients of I-divergence perform poorly in terms of both objectives. Their re-
sulting mean divergences are much higher than the other two approaches. In
practice, we find that I-quadratic often yields extremely bad results, which leads
to drastically high variance across different tries. I-multiplicative and KL-Armijo
are free of such instability, where they both converge with reasonable divergences.

1 http://www.cs.utk.edu/~lsi/
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

http://www.cs.utk.edu/~lsi/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Fig. 1. (Left) I-divergence evolutions using the four compared methods on the med
dataset. (Right) The zoom-in comparison between I-multiplicative and KL-Armijo.

Table 1. I-divergences shown in format μ±σ, where μ is the mean and σ the standard
deviation. Boldface table cells contain the smallest mean divergences.

I-multiplicative I-Armijo KL-Armijo I-quadratic

med: 3376.11 ± 15.34 3915.41 ± 117.25 3337.97± 21.25 1.7 × 1014 ± 4.2× 1014

cran: 5008.25 ± 12.13 5555.26 ± 85.49 4961.89± 12.43 4.0 × 1017 ± 1.1× 1018

cisi: 4058.06 ± 7.43 4697.35 ± 129.76 4023.99± 12.64 6.4 × 1015 ± 9.1× 1015

webkb4: 9145.38 ± 42.81 10528.07 ± 367.50 9113.02± 43.28 1.9 × 107 ± 1.3× 107

By contrast, the latter using KL-divergence and projected gradient descent can
find even better objectives. This is probably because monotonicity guaranteed
by multiplicative updates may not imply the full KKT condition.

5 Conclusions

We have studied the Kullback-Leibler divergence versus I-divergence in NMF for
normalized input data. Using the gradients of the former results in a faster ad-
ditive optimization algorithm that yields better approximation than three other
existing methods. Actually, both theoretical and practical advantages indicate
that there would be good reasons to replace the I-divergence with KL-divergence
for NMF and its variants.

More advanced optimization algorithms beyond the simple Armijo rule, for
example, conjugate gradient descent, could be constructed by using the pro-
posed gradients that provide better learning directions. In addition, the improve-
ment towards uniqueness of KL-NMF needs further investigation. Appropriate
constraints or priors could significantly reduce ambiguity between factorizing
matrices. For extensions, the proposed method can readily include penaliza-
tions such as additional L1 or L2 norms of the factorizing matrices. Other
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extensions such as the use of Automatic Relevance Determination to automat-
ically select the low rank in approximation can also be implemented as in con-
ventional NMF.
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Abstract. A ten layers feedforward network characterized by diverg-
ing/converging patterns of projection between successive layers is ac-
tivated by an external spatio-temporal input pattern fed to layer 1 in
presence of stochastic background activities fed to all layers. We used
three dynamical systems to derive the external input spike trains includ-
ing the temporal information, and two types of neuron models for the
network, i.e. either a simple spiking neuron (SSN) or a multiple-timescale
adaptive threshold neuron (MAT). We observed an unimodal integration
effect as a function of the order of the layers and confirmed that the MAT
model is likely to be more efficient in integrating and transmitting the
temporal structure embedded in the external input.

Keywords: preferred firing sequences, synfire chain, spatio-temporal
firing patterns.

1 Introduction

Spike trains are sequences of the exact timing of the occurrences of neuronal
action potentials. Experimental evidence of deterministic chaotic properties in
spike trains obtained from in vivo extracellular recordings [1] suggest that a neu-
ronal network can be considered as a complex nonlinear dynamical system able
to exhibit chaotic dynamics. Each neuron of the network is also likely to receive
background activities whose origin is unspecified or unknown and its activity
is often represented by stochastic occurrences of spikes. Thus, it is possible to
assume that in addition to stochastic background activity a network may receive
inputs characterized by an embedded temporal structure, which is somehow as-
sociated to a deterministic nonlinear system. Diverging/converging feedforward
neuronal networks are able to transmit information with great temporal accu-
racy, in particular synchronous firing in one layer for they were termed synfire
chains [2]. The question is whether complex asynchronous temporal structure
can be propagated in a reliable way. Previous studies[3,4] showed that spikes re-
lated to a deterministic nonlinear dynamics embedded in noisy time series could
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c© Springer-Verlag Berlin Heidelberg 2011



Distributed Temporal Information Propagated by Feedforward Networks 259

be detected by applying algorithms aimed at finding preferred firing sequences
with millisecond order time precision. Moreover, the characteristics of the trans-
fer function of the neuron model and the statistical feature of the background
activity may affect heavily the propagation of temporal information through the
synapses [5].

In the current paper we extend our previous analysis [6]. Each neuron in
the input layer of the synfire chain receives only randomly selected fractions of
the spike train associated to deterministic chaotic dynamics. The detection of
preferred firing sequences by pattern grouping algorithm (PGA) in all layers of
the network revealed a reliable propagation of temporal information. In addition
we present evidence that adaptive threshold neurons can maintain and integrate
the distributed temporal structures better than simple spiking neurons.

2 Methods

2.1 Spiking Neuron Model

We adopted two neuron models to simulate the dynamics of regular spiking
neurons. The first is a simple spiking neuron (SSN) model[7] described as:

dv

dt
= 0.04v2 + 5v + 140− u + Iext(t) ,

du

dt
= a(bv − u) ,

where v represents the membrane potential [mV ], u is a membrane recovery
variable, a and b control the time scale of the membrane potential dynamics.
When v ≥ +30 mV , a discontinuous resetting v ← c and u ← u + d follows
as a hyperpolarization after a spike. Parameters were set as a = 0.02, b = 0.2,
c = −65, d = 8 [7].

The second model is a multiple-timescale adaptive threshold (MAT) neuron
[8] whose membrane potential dynamics follows a non-resetting leaky integrator,

τm
dV

dt
= −V (t) + R A Iext(t) ,

where τm, V, R and A are the membrane time constant, membrane potential,
membrane resistance, and scaling factor, respectively. A spike is generated when
V (t) ≥ θ(t), θ(t) = ω +H1(t)+H2(t) , dH1

dt = −H1/τ1 , dH2
dt = −H2/τ2 , where

ω is the resting value. H1 and H2 are components of the fast and slow threshold
dynamics (characterized by decaying time constants τ1 and τ2, respectively)
which have a discrete jump when V (t) ≥ θ(t), H1 = H1 + α1 , H2 = H2 + α2 .
Parameters were set to values τm = 5 ms, R = 50 MΩ, A = 0.106, ω = 19 mV,
τ1 = 10 ms, τ2 = 200 ms, α1 = 37 mV, α2 = 2 mV.

2.2 Neural Network

We consider a diverging/converging neural network composed of ten layers (Fig.
1). Each layer includes 20 neurons. All neurons in a network are identical and
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Fig. 1. A schema of the convergent/divergent feedforward circuit formed by ten neuron
layers. Each cell receives 15 afferences and a PST (independent Poissonian spike train)

are either SSN or MAT models, and receive background activity represented by
an independent Poissonian spike train with a mean firing rate of 425 spikes/s,
in order to keep valanced excitatory inputs able to sustain the steady level of
activity for each neuron. Each neuron of Layer 1 receives an external input
represented by 15 spike trains derived from selected dynamical systems described
below. From 2nd to downward layers each neuron receives afferences from 15
neurons randomly selected among those of the immediately upstream layer. All
connections were hardwired, and no synaptic plasticity was taken into account.
Explicit synaptic transmission delays were in 0.7-1.3 ms range. Once we created
a network model, we used it for all simulations in order to avoid side effects
produced by different, even if statistically similar, connectivities.

A synaptic current I given to a post-synaptic neuron was defined as follows:
I = −A

∑
k gsyn(t − tk) , where A is an intensity of the synaptic transmission

(A = 0.9), and tk represents time when the k-th spike arrives to the neuron.
gsyn is the post synaptic conductance represented by gsyn(t) = C0

e−t/τ̃1−e−t/τ̃2

τ̃1−τ̃2
,

where τ̃1 and τ̃2 are rise and decay time constants given by 0.17 and 4 ms,
respectively. C0 is a coefficient used to normalize the maximum amplitude of
gsyn(t) to 1. Numerical integration was done by the 4th order Runge-Kutta
numerical integration method with 0.01 ms time steps for all cases and the total
simulation duration corresponded to 2, 000 s.

2.3 Dynamical Systems for Generation of the Input Spike Trains

We considered three dynamical systems as exemplars exhibiting chaotic dynam-
ics with certain parameter values to create input spike trains.
(1) The Zaslavskii map is defined by

xn+1 = xn + v(1 + μyn) + εvμ cos xn (mod. 2π) , yn+1 = e−γ(yn + ε cos xn) ,

where x, y ∈ R, and μ = 1−e−γ

γ , v = 4
3 · 100, γ = 3.0, ε = 0.1. The initial

conditions were set to x0 = y0 = 0.3. The iterative calculation generated the
time series {xn} which is used for the external input.
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(2) The Ikeda map is the quadratic mapping defined as follows,

xn+1 = p + μ(xn cos θ − yn sin θ) , yn+1 = μ(yn cos θ + xn sin θ)

where θ = k − a/(1 + x2
n + y2

n), and a = 6.0, k = 0.4, p = 1.0, μ = 0.9. Initial
conditions were x0 = y0 = 0.3. The sequence {xn} is used for the external input.
(3) The Chen’s equations are formulated by three equations,

dx

dt
= a(y − x) ,

dy

dt
= (c− a)x− xz + cy ,

dz

dt
= xy − bz ,

where a = 35.0, b = 3.0, c = 28.0, and x(0) = y(0) = 3.0 for initial conditions.
We considered a Poincaré map where the Poincaré section was defined by dx

dt = 0,
and the sequence of z(t) on the section was traced, referred to as {xn} hereinafter.

2.4 Simulated Input Spike Trains

A new time series {wn} corresponding to the sequence of the inter-spike-intervals
was derived from {xn} following wn = xn+1 − xn + C, where C = min{(xn+1 −
xn)}+ 0.1 is a constant to make sure wn > 0. The sequence {wn} was rescaled
to an average rate of 5 events/s for the sake of comparison with neurophysio-
logical firing rates of 5 spikes/s. We calculated N = 10, 000 points of time series
corresponding to a duration L = 2, 000 s. This was the original input.

The original input as such was never used to activate a neuron of the up-
stream layer (Layer 1). Instead, the original input was used to generate sparse
input spike trains as follows. D×N (0 ≤ D ≤ 1) spikes were selected at random
(uniformly distributed) from the original input and the remaining spikes were
deleted, thus yielding a sparse input spike train, where D is a dynamical infor-
mation ratio taking a value from 0 to 1. The sparse input spike train was merged
with a Poissonian spike train with mean firing rate N(1 −D)/L spikes/s. The
average rate of the resultant spike train was close to 5 spikes/s and its duration
is 2, 000 s. This is an input spike train. For a given dynamical information ratio
D this procedure is repeated 20 times to generate 20 different input spike trains.
Notice that if D = 1 all input spike trains are identical to the original input
spike train, and if D = 0 all input spike trains are independent Poissonian spike
trains. In this study we used D = 1, 0.5 and 0.7. Return maps, a plot of the
(n+ 1)-st inter-spike-interval against the n-th inter-spike-interval, of input spike
trains were shown at upper pannels in Fig. 2.

2.5 Pattern Detection and Reconstruction of Time Series

Subsets of spike trains were obtained by using the Pattern Grouping Algorithm
(PGA)[9,10,11] as follows. Firing sequences repeating at least 5 times and above
the chance level (p = 0.05) are detected by PGA. The maximun interval between
the first and the last spike of the pattern was set to ≤ 600 ms. Given a maximum
allowed jitter in spike timing accuracy (±3 ms) clusters of firing sequences are
represented by a template pattern. For example, if 9 triplets (i.e., spike sequences
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Fig. 2. (Upper) Return maps of input spike trains derived from three dynamical sys-
tems with dynamical information ratio D = 1 (the original input spike train) are
presented with the axes scaled in ms time units. The rightmost return map is derived
from a pure Poissonian spike train (i.e. D = 0). (Lower) Return maps of reconstructed
spike trains from the original input spike trains.

formed by 3 spikes) belonging to the same cluster were detected by PGA, a subset
of the original spike train that includes 27 spikes (= 9× 3) can be determined,
which is referred to as “reconstructed spike train”[4]. 92% of the original input
spike train derived from Zaslavskii map are included in the reconstructed spike
train. Similarly 86 % and 58% were reconstructed in the cases of Chen and Ikeda
maps, respectively. In a case of a Poissonian spike train with an average rate of
5 spikes/s the reconstructed spike train included only 0.4% spikes of the original
series. Figure 2 shows the return map of reconstructed spike trains.

2.6 Similarity between Two Spike Trains

Following [12,8] let us assume that spike trains A and B contain NA and NB

spikes, and M spikes occur at the same time in A and B with jitter Δ. Then,
the similarity between A and B is defined by the coincidence factor Γ : Γ =
100
C

2(M−P )
NA+NB

where P = 2fΔNB is the expected number of coincidences generated
by a Poisson process with the same mean firing rate f of spike train B. The jitter
Δ is 0.003 s here. C is a normalization coefficient given by (1 − 2fΔ) so that
Γ = 100 for two identical spike trains.

3 Results

We investigated the dynamics of the membrane potential of neurons modeled
by SSN and MAT and analyzed their output spike trains at all layers. Table 1
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Fig. 3. Firing dynamics at Layer 5 for SSN and MAT models as a function of Ikeda,
Chen and Zaslasvskii dynamical systems for several dynamical information ratio D.
Return maps of an input spike train fed to Layer 1 (Input), of an output spike train at
Layer 5 (Cell Output) and its corresponding reconstructed time series (Reconstructed).
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Table 1. Mean firing rate (spikes/s) and coincidence factor between the original input
spike trains and reconstructed spike trains of neurons modeled by SSN and MAT as a
function of the order of the layer and of the dynamical information ratio D for three
dynamical systems used to generate input spike trains.

SSN model MAT model

Zaslavskii Chen Ikeda Zaslavskii Chen Ikeda
Layer D= 1.0 0.5 0.3 1.0 0.5 0.3 1.0 0.5 0.3 1.0 0.5 0.3 1.0 0.5 0.3 1.0 0.5 0.3

Mean firing rate

1 5.4 4.8 4.1 5.6 5.2 4.3 5.6 4.9 4.1 5.5 4.6 3.4 5.5 4.7 3.5 5.5 4.6 3.4
2 5.5 5.1 4.2 5.8 5.5 4.4 5.7 5.1 4.2 5.5 4.8 3.3 5.5 5.0 3.4 5.4 4.8 3.3
3 5.5 5.2 4.4 5.8 5.6 4.6 5.8 5.2 4.3 5.6 4.9 3.4 5.6 5.1 3.5 5.5 5.0 3.4
5 5.6 5.3 4.6 5.9 5.7 4.8 5.8 5.3 4.5 5.6 5.0 3.5 5.6 5.2 3.6 5.5 5.0 3.5
7 5.7 5.4 4.7 5.9 5.8 5.0 5.8 5.4 4.7 5.6 5.0 3.6 5.6 5.3 3.7 5.5 5.1 3.5
10 5.8 5.6 4.2 6.0 5.9 5.1 6.0 5.6 4.9 5.7 5.1 3.7 5.6 5.3 3.7 5.6 5.1 3.6

Coincidence factor

1 81 40 9 86 45 14 66 21 10 93 48 5 91 47 6 69 22 1
2 73 42 10 80 54 14 60 28 8 93 68 10 91 69 10 68 39 1
3 70 40 10 79 54 14 56 25 7 94 70 12 91 72 17 70 42 2
5 65 36 9 76 49 12 52 26 7 93 68 11 89 73 15 68 43 1
7 59 32 8 69 45 11 48 26 6 93 69 10 90 72 16 66 39 1
10 49 24 7 62 39 10 41 24 6 89 66 12 89 69 13 62 31 1

shows that the mean firing rate was only slightly increased through the down-
stream layers for both neuronal models and for all dynamical information ratio
D. Notice that small values of D provoked fewer spikes for all dynamical sys-
tems. On the opposite to SSN in the MAT model it is interesting to observe that
the coincidence factor for dynamical information ratio D = 0.5 increased going
downstream throughout the layers.

Figure 3 exemplifies return maps of input (layer 1), output and reconstructed
spike trains of SSN and MAT neurons in layer 5. In the case of SSN, notice that
significant amount of preferred firing sequences were detected by PGA even for
D = 0.3, but the return maps do not show the attractor contour seen in the
original input spike train, as confirmed by the small values of the coincidence
factor. Those spurious events can be attributed to the intrinsic dynamics of the
model. On the opposite, the MAT model did not tend to introduce a spurious
temporal structure associated to its intrinsic dynamics.

4 Discussion

We observed the ability of partially convergent/divergent feedforward neural
networks to integrate and transmit distributed fractions of temporally organized
spikes in presence of the stochastic background activities. This network struc-
ture appears to be very efficient beyond its well known feature of propagating
synchronous firing [2], because it was able to preserve much of the asynchronous
temporal information at least up to layer 10 even for values of dynamical infor-
mation ratio D = 0.5. This performance depended on the neuronal model and
the spike coincidence analysis showed that a MAT model could integrate and
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retain the embedded temporal information much better than a SSN model. We
cannot discard that a fine tuning of the parameters of the SSN could improve
the result. However, both models reproduced the dynamics of regular spiking
neurons and the difference in performance is likely to persist in favor of MAT
models. Notice that with large values of D a neuron receives almost all spikes
derived from the original input and the short interval occurrences are likely to
trigger a post-synaptic neuron’s firing. Conversely with small values of D, spikes
with stochastic timing are dominant and the short intervals embedded in the
temporal information tend to be lost, thus leading to lower firing rates.

We consider that this work may be viewed as seminal because it suggests that
MAT class of models might represent the good candidate for integrating a dis-
tributed deterministic temporal information and preserve its dynamics through
networks of cell assemblies. Our further work is aimed to determine the lim-
its and robustness of this performance by designing inhomogeneous and diverg-
ing/converging networks with recurrent connections, the introduction of synaptic
plasticity and the effect of the wide range of the background activity.

References

1. Celletti, A., Villa, A.E.P.: Determination of chaotic attractors in the rat brain. J.
Stat. Physics 84, 1379–1385 (1996)

2. Abeles, M.: Local Cortical Circuits. Springer, Heidelberg (1982)
3. Tetko, I.V., Villa, A.E.: A comparative study of pattern detection algorithm and

dynamical system approach using simulated spike trains. In: ICANN 1997. LNCS,
vol. 1327, pp. 37–42. Springer, Heidelberg (1997)

4. Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a dynamical system attractor from
spike train analysis. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.)
ICANN 2006. LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

5. Asai, Y., Guha, A., Villa, A.E.P.: Deterministic neural dynamics transmitted
through neural networks. Neural Networks 21, 799–809 (2008)

6. Asai, Y., Villa, A.E.P.: Transmission of distributed deterministic temporal informa-
tion throughadiverging/convergingthree-layersneuralnetwork. In:Bosse,T.,Geller,
A., Jonker, C.M. (eds.) MABS 2010. LNCS, vol. 6532, Springer, Heidelberg (2011)

7. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transac-
tions on Neural Networks 15, 1063–1070 (2004)

8. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model
equipped with a multi-timescale adaptive threshold. Front Comput. Neurosci. 3
(2009), doi:10.3389/neuro.10.009.2009

9. Villa, A.E.P., Tetko, I.V.: Spatiotemporal activity patterns detected from single
cell measurements from behaving animals. In: Proceedings SPIE, vol. 3728, pp.
20–34 (1999)

10. Tetko, I.V., Villa, A.E.P.: A pattern grouping algorithm for analysis of spatiotem-
poral patterns in neuronal spike trains. 1. detection of repeated patterns. J. Neu-
rosci. Meth. 105, 1–14 (2001)

11. Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. J.
Neurosci. Meth. 107, 141–154 (2001)

12. Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., Gerstner, W.: A
benchmark test for a quantitative assessment of simple neuron models. J. Neurosci.
Meth. 169, 417–424 (2008)



Chaotic Complex-Valued Multidirectional

Associative Memory
with Variable Scaling Factor

Akio Yoshida and Yuko Osana

Tokyo University of Technology,
1404-1 Katakura Hachioji, Tokyo, Japan

osana@cs.teu.ac.jp

Abstract. In this paper, we propose a Chaotic Complex-valued Mul-
tidirectional Associative Memory (CCMAM) with variable scale factor
which can realize one-to-many associations of M -tuple multi-valued pat-
terns. The proposed model is based on the Multidirectional Associa-
tive Memory, and is composed of complex-valued neurons and chaotic
complex-valued neurons. In the proposed model, associations of multi-
valued patterns are realized by using complex-valued neurons, and
one-to-many associations are realized by using chaotic complex-valued
neurons. Moreover, in the proposed model, the appropriate parameters
of chaotic complex-valued neurons can be determined easily than in the
original Chaotic Complex-valued Multidirectional Associative Memory.
We carried out a series of computer experiments and confirmed that the
proposed model has superior one-to-many association ability than that
of the conventional model.

Keywords: Chaotic Complex-valued Neuron, Multidirecional Associa-
tive Memory, One-to-Many Association, Variable Scaling Factor.

1 Introduction

Recently, neural networks are drawing much attention as a method to realize
flexible information processing. And, some associative memories have been pro-
posed. However, most of these models can not deal with multiple-valued patterns
and one-to-many associations. As the model which can deal with multi-valued
patterns, the complex-valued neuron model has been proposed[1]. In the complex-
valued neuron model, input, output and internal states of neurons have complex-
value. The network is composed of complex-valued neurons can deal with
multi-valued pattern[1].

On the other hand, chaos is drawing much attention as a method to realize
flexible information processing. In order to mimic the real neurons, a chaotic
neuron model has been proposed by Aihara et al.[2]. It is known that the dynamic
(chaotic) association is realized in the associative memories composed of the
chaotic neurons.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 266–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Chaotic Complex-Valued MAM with Variable Scaling Factor 267

The chaotic complex-valued neuron model[3] which is based on the complex-
valued neuron model[1] and the chaotic neuron model[2] has been proposed.
The chaotic complex-valued associative memory[3] composed of chaotic complex-
valued neuron models can realize dynamic associations of multi-valued patterns.
And the Chaotic Complex-valued Bidirectional Associative Memory (CCBAM)
[4][5] which can realize one-to-many associations of multi-valued patterns has
been proposed. The CCBAM is based on the Bidirectional Associative Memory[6],
and is composed of complex-valued neurons and chaotic complex-valued neu-
rons. Moreover, the Chaotic Complex-valued Multidirectional Associative Mem-
ory (CCMAM) [7] which can realize one-to-many associations of multi-valued
N -tuple patterns. In these models, the property of the network composed of
chaotic complex-valued neurons is very sensitive to the parameters of chaotic
complex-valued neurons. Moreover, in most cases, chaotic complex-valued neu-
ron parameters are determined based on the designer’s experiments or trial and
errors.

In this paper, we propose the Chaotic Complex-valued Multidirectional As-
sociative Memory (CCMAM) with variable scale factor which can realize one-
to-many associations of M -tuple multi-valued patterns. The proposed model
is based on the Multidirectional Associative Memory[8], and is composed of
complex-valued neurons and chaotic complex-valued neurons. In the proposed
model, associations of multi-valued patterns are realized by using complex-valued
neurons, and one-to-many associations are realized by using chaotic complex-
valued neurons. Moreover, in the proposed model, the appropriate parameters
of chaotic complex-valued neurons can be determined easily than in the original
Chaotic Complex-valued Multidirectional Associative Memory[7].

2 Chaotic Complex-Valued Multidirectional Associative
Memory with Variable Scaling Factor

Here, we explain the proposed Chaotic Complex-valued Multidirectional Asso-
ciative Memory (CCMAM) with variable scaling factor.

2.1 Structure

The proposed model has more than two layers as similar as the conventional
Multidirectional Associative Memory[8] and the Chaotic Complex-Valued Mul-
tidirectional Associative Memory[7]. Figure 1 shows the structure of the pro-
posed model which has three layers. Each layer has two parts; (1) Key Input
Part composed of complex-valued neurons and (2) Context Part composed of
chaotic complex-valued neurons.

2.2 Learning Process

Generally, the associative memory which is trained by the correlation matrix
can not deal with one-to-many associations because the stored common data
cause superimposed patterns. In the Chaotic Bidirectional Associative Memory
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Fig. 1. Structure of Proposed Model

(CBAM)[10], each training pair is memorized together with its own contextual
information in order to memorize the training set including one-to-many rela-
tions. In the proposed model, we use the same method to memorize the training
set including one-to-many relations.

In the proposed model, the patterns with its own contextual information are
memorized by the orthogonal learning. The connection weights from the layer y
to the layer x, wxy and the connection weights from the layer x to the layer y ,
wyx are given by

wxy = Xy(X∗
xXx)−1X∗

x (1)
wyx = Xx(X∗

yXy)−1X∗
y (2)

where * shows the conjugate transpose, and −1 shows the inverse. Xx and Xy

are the training pattern matrixes which are memorized in the x layer and the y
layer, and are given by

Xx = {X(1)
x , · · · , X(p)

x , · · · , X(P )
x } (3)

Xy = {X(1)
y , · · · , X(p)

y , · · · , X(P )
y } (4)

where X(p)
x is the pth pattern which is stored in the layer x, X(p)

y is the pth
pattern which is stored in the layer y and P is the number of the training pattern
sets.

2.3 Recall Process

Since we assume that contextual information is usually unknown for users, in
the recall process of the proposed model, only the Key Input Part receives input.
For example, in the training sets which is given by

{(X1 CX1, Y 1 CY 1, Z1 CZ1), (X1 CX2, Y 2 CY 2, Z2 CZ2),
(X2 CX3, Y 3 CY 3, Z3 CZ3)}, (5)

X1 is used as an input to the proposed model. Here, Cxx (such as CX1 and CY 1)
shows the contextual information. In the proposed model, when X1 is given to
the network as an initial input, since the chaotic complex-valued neurons in the
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Contextual Information Part change their states by chaos, we can expect that
they can realize one-to-many associations as follows:

(X1 0, ?, ?)→ · · · → (X1 CX1, Y 1, Z1)→ · · · → (X1 CX2, Y 2, Z2)→ · · · (6)

The recall process of the proposed model has the following procedures when
the input pattern is given to the layer x.
Step 1 : Input to Layer x

The input pattern is given to the layer x.
Step 2 : Propagation from Layer x to Other Layers

When the pattern is given to the layer x, the information are propagated to
the Key Input Part in the other layers. The output of the neuron k in the Key
Input Part of the layer y (y �= x), xy

k(t) is given by

xy
k(t) = f

⎛⎝Nx∑
j=1

wyx
kj xx

j (t)

⎞⎠ (7)

where Nx is the number of neurons in the layer x, wyx
kj is the connection weight

from the neuron j in the layer x to the neuron k in the layer y, xx
j (t) is the

output of the neuron j in the layer x at the time t. And f(·) is the output
function which is given by

f(u) =
ηu

η − 1.0 + |u| (η ∈ R) (8)

where η (η > 1) is the constant.
Step 3 : Propagation from Other Layers to Layer x

The output of the neuron j in the Key Input Part of the layer x xx
j (t + 1) is

given by

xx
j (t + 1) = f

⎛⎝ M∑
y �=x

(
ny∑

k=1

wxy
jk xy

k(t)

)
+ vAj

⎞⎠ (9)

where M is the number of layers, ny is the number of neurons in the Key Input
Part of the layer y, wxy

jk is the connection weight from the neuron k in the layer
y to the neuron j in the layer x, v is the connection weight from the external
input, and Aj is the external input (See 2.4) to the neuron j in the layer x.

The output of the neuron j of the Contextual Information Part in the layer
x, xx

j (t + 1) is given by

xx
j (t + 1) = f

⎛⎝ M∑
y �=x

(
ny∑

k=1

wxy
jk

t∑
d=0

kd
mxd

k(t− d)

)
− α(t)

t∑
d=0

kd
rxx

j (t− d)

⎞⎠(10)

where km, kr are damping factors. And, α(t) is the scaling factor of the refrac-
toriness at the time t, and is given by

α(t) = a + b · sin(c · t) (11)
where a, b and c are coefficients.
Step 4 : Repeat

Steps 2 and 3 are repeated.
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2.4 External Input

In the proposed model, the external input Aj is always given so that the key
pattern does not change into other patterns.

If the pattern is given to the layer x and the initial input does not include
noise, we can use the initial input pattern Aj = xx

j (0) as the external pattern.
However, the initial input pattern sometimes includes noise. So we use the fol-
lowing pattern x̂x

j (tin) when the network becomes stable tin as an external input.

tin = min

⎧⎨⎩t

⏐⏐⏐⏐⏐⏐
nx∑
j=1

(x̂x
j (t)− x̂x

j (t− 1)) = 0

⎫⎬⎭ (12)

where nx is the number of neurons in the Key Input Part of the layer x. x̂x
j (t)

is the quantized output of the neuron j in the layer x at the time t, and is given
by

x̂x
j (t) = arg min(ωs − xx

j )∗(ωs − xx
j ) (s = 1, 2, ..., S − 1) (13)

where S is the number of states and ω is given by
ω = exp (i2π/S) (14)

where i is the imaginary unit.

3 Computer Experiment Results

Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed model.

3.1 One-to-Many Associations of Multi-valued Patterns (S = 4)

Here, we show the association result of the proposed model for 4-valued pat-
terns. In this experiment, the training set shown in Fig.2 including one-to-many
relations were memorized.

Figure 3 shows the association result by the direction cosine between the re-
called pattern and each stored pattern. In this experiment, the pattern A (panda)
was given to the 1st layer at t=0, and the corresponding patterns (Pattern Sets
1 and 2) were recalled. At t=30, the new pattern E (cow) was given to the 2nd
layer, and the corresponding patterns (Pattern Sets 2 and 3) were recalled. Then,
at t=60, the pattern I (bear) was given to the 3rd layer, and the corresponding
patterns (Pattern Sets 3 and 4) were recalled. At t=85, the pattern J (snake)
was given to the 4th layer, the corresponding patterns (Pattern Sets 1 and 4)
were recalled.

We carried out the similar experiments using various patterns, and confirmed
that the proposed model can realize one-to-many associations of 4 or 8-valued
patterns.
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Fig. 2. Training Patterns (S = 4)
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(c) Pattern Set 3
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(d) Pattern Set 4

Fig. 3. Association Result (Direction Cosine)

Table 1. Parameters of Variable Scaling Factor

# of Layers M 3 4 5 6

N (in 1-to-N) 4 5 6 4 5 6 4 5 6 4 5 6

a in Eq.(11) 2.5 2.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

b in Eq.(11) 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0

c in Eq.(11) π/3 π/3 π/3 π/3 π/3 π/3 π/3 π/3 π/3 π/3 π/3 π/3

3.2 Comparison of One-to-Many Associations Ability

Here, we examined the one-to-many association ability of the proposed model
and the conventional Chaotic Complex-valued Multidirectional Associative
Memory[7] using random 4 or 8-valued patterns. In this experiment, N patterns
including 1-to-N relation (N = 4 ∼ 6) were memorized in the network, and the
common pattern was given to the network as an initial input. Figure 4 ∼ 7 shows
the recall rate in each model based on 100 trials of the experiments. In these
figures, the horizontal axis indicates the scaling factor α in the conventional
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(c) 1-to-6 Patterns.

Fig. 4. Association Ability (M = 3)
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Fig. 5. Association Ability (M = 4)

model[7], and the vertical axis indicates the recall rate. In the proposed model,
the parameters of the variable scaling factor α(t) shown in Table 1 were used.

From these figures, the recall rate of the proposed model is higher than that
of the conventional model.

4 Conclusion

In this paper, we have proposed the Chaotic Complex-valued Multidirectional
Associative Memory (CCMAM) with variable scaling factor which can realize
one-to-many associations of N -tuple multi-valued patterns. We carried out a
series of computer experiments and confirmed that the proposed model can real-
ize one-to-many associations of M -tuple multi-valued patterns and has superior
one-to-many association ability than that of the conventional model.
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Fig. 6. Association Ability (M = 5)
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Fig. 7. Association Ability (M = 6)
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Abstract. A central question in the study of the mental lexicon is how
morphologically complex words are processed. We consider this question
from the viewpoint of statistical models of morphology. As an indicator
of the mental processing cost in the brain, we use reaction times to words
in a visual lexical decision task on Finnish nouns. Statistical correlation
between a model and reaction times is employed as a goodness measure
of the model. In particular, we study Morfessor, an unsupervised method
for learning concatenative morphology. The results for a set of inflected
and monomorphemic Finnish nouns reveal that the probabilities given
by Morfessor, especially the Categories-MAP version, show considerably
higher correlations to the reaction times than simple word statistics such
as frequency, morphological family size, or length. These correlations are
also higher than when any individual test subject is viewed as a model.

1 Introduction

The processing of morphologically complex words is a central question in the
study of the mental lexicon. Theoretical models have been put forward that sug-
gest that morphologically complex words are recognized either through full-form
representations [3], full decomposition (e.g. [17]) or a combination of the two
(e.g. [11]). For example, Finnish words can be combined of several morphemes,
and one single noun can, in principle, attain up to 2000 different forms [7]. Having
separate neural representations for each of these forms would seem unnecessar-
ily demanding compared to a process where words would be analyzed based on
their compound morphemes. In behavioral word recognition tasks, a processing
cost (i.e., long reaction times and high error rates) has been robustly associ-
ated with inflected Finnish nouns in comparison to matched monomorphemic
nouns [11,10]. This has been taken as evidence for the existence of morphologi-
cal decomposition for most Finnish inflected words, with the possible exception
of very high frequency inflected nouns [15].
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Statistical models of language learning would be attractive both conceptu-
ally and because they yield quantitative predictions that may be tested against
measured values of performance and, eventually, of brain activation. In this first
feasibility test, we use reaction times as a proxy, providing an indirect measure
of the underlying mental processing. In previous studies, several factors, in-
cluding the cumulative base frequency (i.e., the summative frequency of all the
inflectional variants of a single stem, [16]), surface frequency (i.e., whole form
frequency, [1]), and morphological family size (i.e., the number of derivations
and compounds where the noun occurs as a constituent, [2]), have been found to
affect the recognition times of morphologically complex words. However, we do
not know of any previous work that would use statistical models of morphology
as models of the reaction times. In the proposed evaluation setting, we exam-
ine how well they predict the average reaction times for individual inflected and
monomorphemic words in a word recognition task. As a particular morphological
model we examine an unsupervised method for word segmentation, Morfessor,
that induces a compact lexicon of morphs from unannotated text data.

2 Experimental Setup

Our experimental setup can be summarized as follows: (1) Data recording: Mea-
surement data from humans is obtained, namely reaction times recorded on test
subjects in a lexical decision task with inflected and monomorphemic words. (2)
Model estimation: Using training data of varying size and type, we estimate sta-
tistical models of morphology that can be used to predict the recognition times
of words. In addition, we collect such statistics of the words that are known to
affect the reaction times. (3) Model evaluation: We calculate linear correlation
between model predictions and the average reaction times of the test subjects.
A good model is one which produces costs that have high correlation to the
reaction times. Also any of the human test subjects can be viewed as a model,
and their reaction times thus correlated with those of the rest of the subjects.

2.1 Reaction Time Data and Model Evaluation

We use the reaction time data reported in [9]. Sixteen Finnish-speaking univer-
sity students participated in the experiment. The task was to decide as quickly
and accurately as possible whether the letter string appearing on the screen was
a real Finnish word or not, and to press a corresponding button. The stimuli
consisted of 320 real Finnish nouns and 320 pseudowords. The words were taken
from an unpublished Turun Sanomat newspaper corpus of 22.7 million word to-
kens and divided into four groups of 80 words according to their frequency in
the corpus (high or low) and morphological structure (monomorphemic or in-
flected). There were four kinds of pseudowords (monomorphemic, real stem with
pseudosuffix, pseudostem with real suffix, and incorrect combination of real stem
and suffix) and their lengths and bigram frequencies (i.e., the average frequency
of letter bigrams in the word) were similar to the real words.
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As preprocessing, we exclude all incorrect responses and reaction times of
three standard deviations longer or shorter than the individual’s mean. For the
remaining data, we take the logarithm of the reaction times, normalize them to
zero mean for each subject, and calculate the average across subjects per each
word. To evaluate the predicted costs, we calculate the Pearson product-moment
correlation coefficient ρ between the costs and the average reaction times, with
ρ ∈ [−1, +1] and ρ = 0 for uncorrelated variables. This is equilavent to calculat-
ing linear regression, as ρ2 corresponds to the coefficient of determination, i.e.,
the fraction of variance of the predicted variable explained by the predictor.

2.2 Statistics and Computational Models

Several statistics are calculated for each stimulus word: length, surface frequency,
base frequency, morphological family size, and bigram frequency. As logarithmic
frequencies often correlate with reaction times better than direct frequencies,
we also test those. The computational models examined here give a probability
distribution p(W ) over the words. Thus, we can use the cost or self-information
− log p(W ) to explain the reaction times in a similar manner as with the word
frequencies: a high probability is assumed to correlate with a low reaction time.

N-gram Models. We use n-gram models to get a good estimate on how com-
mon the form of the word (sequence of letters li) is among all the words in
the language. An n-gram model of order n is a (n− 1):th order Markov model,
thus approximating p(W = l1l2 . . . lN ) as

∏N
i=1 p(li | li−n+1 . . . li−1). For esti-

mating the n-gram probabilities p(li | li−n+1 . . . li−1), the standard techniques
include smoothing of the maximum likelihood distributions and interpolation
between different lengths of n-grams. We apply one of the state-of-the-art meth-
ods, Kneser-Ney interpolation [4], implemented in VariKN toolkit [14].

Morfessor Baseline. Morfessor [6] is a method for unsupervised learning of
concatenative morphology. It does not limit the number of morphemes per word,
and is thus suitable for modeling complex morphology such as that in Finnish.
The basic idea can be explained using the Minimum Description Length (MDL)
principle [13], where modeling is viewed as a problem of encoding a data set
efficiently in order to transmit it. In two-part MDL coding, one first transmits
the model M, and then the data set by referring to the model. Thus the task
is to find the model that minimizes the sum of the coding lengths L(M) and
L(corpus|M). In the case of segmenting words into morphs, the model simply
consists of a lexicon of unique morphs, and a pointer assigned for each. The
corpus is then transmitted by sending the pointer of each morph as they occur
in the text. Using L(X) = − log p(X), the task is equivalent to probabilistic
maximum a posteriori (MAP) estimation, where p(M|corpus) is maximized.

In Morfessor Baseline, the lexicon consists of the strings and frequencies of
the morphs. The cost of the lexicon increases by the number and length of the
morphs. Each pointer in the corpus corresponds to a maximum likelihood prob-
ability set according to the morph frequency. Thus, for a known segmentation,
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the likelihood for corpus is simply the product of the morph probabilities. Dur-
ing training, Morfessor applies a greedy algorithm for finding simultaneously
the morph lexicon and a segmentation for the training corpus. After training, a
Viterbi-like algorithm can be applied to find the segmentation with the highest
probability—the product of the respective morph probabilities—for any single
word. For details, see, e.g., [6] and [5].

Morfessor Categories-MAP. The assumption of the independence between
the morphs in a word is an obvious problem in Morfessor Baseline. For example,
the model gives an equal probability to “s + walk” and “walk + s”. The later
versions of Morfessor extend the model by adding another layer of representa-
tion, namely a Hidden Markov Model (HMM) model of the segments [6]. In
Morfessor Categories-MAP, the HMM has four categories (states): prefix, stem,
suffix, and non-morpheme. While the model allows hierarchical segmentation
to non-morphemes, the final analysis of a word is restricted by the regular ex-
pression (prefix* stem+ suffix*)+. Context-sensitivity of the model has lead
to improved segmentation results when compared to a linguistic gold standard
segmentation of words into morphemes [6].

2.3 Data for Learning Computational Models

The main corpus in our experiments is the one used in the Morpho Challenge
2007 competition [8]. It is part of the Wortschatz collection [12] and contains
three million sentences collected from World Wide Web. To observe the effect of
the training corpus, we also use 30 000, 100 000, 300 000 and one million sentence
random subsets of the corpus. In addition, we use three smaller corpora: “Book”
(4.4 million words) and “Periodical” (2.1 million words) parts of Finnish Parole
corpus [18], subtitles of movies from OpenSubs corpus [19] (3.0 million words),
and their combination.

It is often unclear whether intra-word models should be trained on a cor-
pus (word tokens), a word lexicon (types), or something in between. For ex-
ample, Morfessor Baseline gives segments that correspond better to linguistic
morphemes when trained on types rather than tokens [6,5]: with token counts,
many inflected high-frequency words are not segmented. Morfessor Categories-
MAP, however, is by default trained on tokens [6]: the context-sensitivity of the
Markov model reduces the effect of direct corpus frequencies. We compare mod-
els trained on types, tokens, and an intermediate approach, where the corpus
frequencies c are reduced using a logarithmic function f(c) = log(1 + c).

3 Results

Table 1 shows the correlations of the different statistics and logarithmic proba-
bilities of the models to the average reaction times for the stimulus words. All
values, except for the bigram frequency, showed statistically significant correla-
tion (p(ρ = 0) < 0.01). Among the statistics, logarithmic frequencies gave higher
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Table 1. Correlation coefficients ρ of different word statistics and models to average
human reaction times. Surface frequency I and other statistics are from the Turun
Sanomat newspaper corpus. Surface frequency II is from the Morpho Challenge corpus
used for training the models. The last row shows correlations for reaction times of
individual subjects. The highest correlations are marked with an asterisk.

Word statistics Logarithmic Linear

Surface frequency I −0.5108 −0.2806
Surface frequency II −0.5353* −0.2376
Base frequency −0.4453 −0.1901
Morphological family size −0.4233 −0.2916
Bigram frequency −0.0211 +0.0221
Length (letters) +0.2180 +0.2158
Length (morphemes) +0.5417* +0.5417*

Models Types Log-frequencies Tokens

Letter 1-gram model +0.1818 +0.1816 +0.1799
Letter 5-gram model +0.5394 +0.5380 +0.5160
Letter 9-gram model +0.6952* +0.6920 +0.6358
Morfessor Baseline +0.6605 +0.6765* +0.5817
Morfessor Categories-MAP +0.6620 +0.6950* +0.5474

Other Minimum Median Maximum

Reaction times of a single subject +0.2030 +0.4774 +0.5681*

correlations than linear frequencies, and the highest ones were obtained for the
number of morphemes in the word and the surface frequency. Among the models,
the n-grams were best trained with word types, while training with the logarit-
mic frequencies gave the highest correlations for Morfessor. The highest corre-
lation was obtained for the letter 9-gram model trained with word types—any
longer n-grams did not improve the results. Categories-MAP correlated almost
as well as the 9-gram model, while Baseline did somewhat worse. All of them
had markedly higher correlations than the maximum correlation obtained for an
single test subject to the average reaction times of the others.

With logarithmic counts, the Categories-MAP model segmented 135 of the
160 inflected nouns, but also 33 of the 160 monomorphemic nouns. The Baseline
model segmented less: 39 of the inflected and 5 of the monomorphemic nouns.

Figure 1 shows how the reaction times and probabilities given by Categories-
MAP model match for individual stimulus words. Observing the words that have
poor match between the predicted difficulty and reaction time led us to suspect
that some of the unexplained variance is due to a training corpus that does
not match the material that humans are exposed to. Thus we next studied the
effect of the training corpus for the morphological models (Fig. 2). Increasing
the amount of word types in the corpus clearly improved the correlation between
model predictions and measured reaction times. However, the data from books,
periodicals and subtitles gave usually higher correlations than the same amount
of the Morpho Challenge data.
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Fig. 1. Scatter plot of reaction times and log-probabilities from Morfessor Categories-
MAP. The words are divided into four groups: low-frequency monomorphemic
(LM), low-frequency inflected (LI), high-frequency monomorphemic (HM), and high-
frequency inflected (HI). Words that have faster reaction times than predicted are
often very concrete and related to family, nature, or stories: tyttö (girl), äiti (mother),
haamu (ghost), etanaa (snail + partitive case), norsulla (elephant + adessive case).
Words that have slower reaction times than predicted are often more abstract or pro-
fessional: ohjelma (program), tieto (knowledge), hankkeen (project + genitive case),
käytön (usage + genitive case), hiippa (miter), kapselin (capsule + genitive case).

Fig. 2. The effect of training corpus on correlations of Morfessor Baseline (blue circles),
Categories-MAP (red squares), and logarithmic surface frequencies (black crosses). The
dotted lines show the results on subsets of the same corpus. Unconnected points show
the results using different types of corpora.

4 Discussion

We studied how language models trained on unannotated textual data can pre-
dict human reaction times for inflected and monomorphemic Finnish words in
a lexical decision task. Three models, the letter-based 9-gram model and the
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Morfessor Baseline and Categories-MAP models, provided not only higher cor-
relations than the simple statistics of words previously identified as impor-
tant factors affecting the recognition times in morphologically complex words
(cf. [16,1,2]), but also higher than the correlations of reaction times of individual
subjects to the average times of the others. The level of correlation was sur-
prisingly high especially because the training corpus is likely to differ from the
material humans encounter during their course of life. Based on the results us-
ing several training corpora, we assume that even higher correlations would be
obtained with more realistic training data.

The highest correlations were obtained for the letter 9-gram model. However,
its number of parameteres—almost 6 million n-gram probabilities—was very
large. As the estimates of the word probabilities are very precise, we assume
that they are good predictors especially for early visual processing stages.

The Categories-MAP model had almost as high correlation as the 9-gram
model with much fewer parameters (178 000 transition and emission probabili-
ties). It has three important aspects: First, it applies morpheme-like units instead
of words or letters. Second, it finds units that provide a compact representation
for the data. Third, the model is context-sensitive: the cost of next unit depends
on the previous unit. It is still unclear which contributes more to the high corre-
lations: the morpheme lexicon learned by minimizing the description length, or
the underlying probabilistic model. One way to study this question further is to
apply a similar model to a linguistic morphological analysis of a corpus.

While behavioral reaction times necessarily incorporate multiple processing
stages, brain activation measures could provide markedly more precise markers
of the different stages of visual word processing. At the level of the brain, effects
of morphology have been previously detected in neural responses that have been
associated with later stages of word recognition such as lexical-semantic, phono-
logical and syntactic processing [9,20]. Future work includes finding out whether
the predictive power of the models stems from some of these stages, or from an
earlier one related to the processing of visual word forms.
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Abstract. The purpose of this study is to examine the understanding
mechanism for metaphors represented in the form of “A is like B” (simile)
using model simulation. In a previous experimental study[1] , the prim-
ing effects of visual images on metaphor processing were demonstrated
in a psychological experiment. In that experiment, the presentation of a
picture of a vehicle (”B”) interfered with metaphor comprehension, even
when the picture did not directly inhibit features that relate to metaphor
interpretation. The previous research has suggested that priming effects
arise from interaction among features. In this research, in order to elu-
cidate the dynamic interaction among features within metaphor under-
standing, the priming effect is examined by simulating computational
models that do and do not incorporate detailed processes of dynamic in-
teraction. Furthermore, the strengths of the dynamic interactions among
features are estimated as the parameters of the model.

Keywords: metaphor, priming effect, recurrent neural network.

1 Introduction

This study examines the dynamic interaction among features within the under-
standing process for metaphors, represented in the form of ”A (target) is like
B (vehicle)” (simile). Interaction among features has been assumed by many
models of metaphor understanding (e.g. [2][3][4]). However, few previous studies
have examined experimentally this interaction. One previous study [1]conducted
an experiment using visual priming and obtained results that support the ex-
istence of such interaction. Many previous studies have examined priming ef-
fects for metaphor understanding using word priming. McGlone & Manfredi [5]
reported that presenting the sentence ”VEHICLE is (vehicle’s) IRRELEVANT
FEATURE” inhibits metaphor understanding. The (vehicle’s) irrelevant features
are properties of the vehicle but are ones that are irrelevant to the metaphoric
interpretation.
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On the other hand, another experimental study[1] used pictures of the vehicle
as the primes in order to examine the more complicated priming effects of the
vehicle. In that experiment, two types of pictures were used: irrelevant pictures
and relevant pictures. The irrelevant pictures usually included more vehicle-term
properties that were irrelevant to the metaphoric interpretation. In contrast, rele-
vant pictures included fewer irrelevant properties than the irrelevant picture, and
had properties that were relevant to the metaphoric interpretation. That study
reported that, in addition to the presentation of irrelevant pictures inhibiting
metaphor understanding, the presentation of relevant pictures also caused in-
hibition. The priming effects of the irrelevant picture are consistent with the
sentence priming effect [5], however, the effects from the relevant pictures are
not. The study argued that the inhibition from relevant pictures was caused by
interaction among the features. A subsequent study [6] sought to examine the
priming effects with a model simulation. However, the mechanism was not inves-
tigated in detail and the strengths of dynamical interactions among the features
were not examined.

We have constructed a simulation model of metaphor understanding using a
recurrent neural network in order to verify the interaction among features within
metaphor understanding. As mentioned above, a number of previous models (e.g.
[2][3][4]) have been constructed that assume interaction among features. How-
ever, the parameters for the models were statistically estimated from relation-
ships among features based on either human judgments or language statistical
analysis. In this research, the model parameters are estimated by applying a gen-
eralized method of back-propagation to the recurrent neural network[7] based on
data obtained from the previous experiment. By this method, the strengths of
the dynamic interactions among features can be estimated as parameter values.

2 Experiment Using Visual Primes

This experiment[1] was conducted in order to examine the visual priming effect
on metaphor comprehension.

2.1 Method

Six metaphors in Japanese were used (e.g. ”ballerinas are like butterflies”). Four
types of features (total 17 features) are used for each metaphor: target’s fea-
tures, which are relevant only to the basic-level meaning of the target (e.g. ”are
human-beings” ”stand on the toes”), vehicle’s features, which are relevant only
to the basic-level meaning of the vehicle (e.g. ”suck honey”, ”are insects”), com-
mon features which are relevant to the meaning of the vehicle and the target
(e.g. ”fluttering”, ”dance”, ”fly”), neutral abstract features (e.g. ”beautiful”,
”light”). Two types of pictures for the vehicle were used as a prime for each
metaphor: a relevant picture and an irrelevant picture. The participants were 70
undergraduates (native Japanese speakers). They were divided into two groups.
One group (N = 33) was the relevant-picture group and the other (N = 37) was
the irrelevant-picture group.
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The participants were asked to undertake two kinds of task: one task with a
picture and one task without a picture. The procedure of the with-picture task
was as follows: Step 1: The participants were asked to evaluate the relationships
between the features and the target-term (or the vehicle-term) (7-point scales).
Step 2: They were presented with the picture (relevant picture to relevant-picture
group and irrelevant picture to irrelevant-picture group) as a prime for 5000
msec. Step 3: They were asked to rate the understandability of the metaphor
(5-point scales). Step 4: They were asked to evaluate the relationships between
the features and the metaphor. Step 5: They were asked to evaluate the relation-
ships between the features and the presented picture. The without-picture task
consisted of Step 1, Step 3 and Step 4. In the task without pictures, the par-
ticipants were not presented with a picture and were not asked to evaluate the
picture. In order to avoid the influence of individual differences, the participants
undertook both of the tasks, with and without pictures.

2.2 Results of the Experiment

Comparing the understandability ratings of the metaphor with a picture and
without a picture. While the results indicated that both relevant and irrelevant
pictures significantly inhibited understanding for the metaphor ”ballerinas are
like butterflies” (p < .01) 1. In order to investigate the process of the priming ef-
fect of the relevant picture on ”ballerinas are like butterflies”, the ratings for the
metaphor were compared to those for the target-term. The shift from a image of
the target’s term2 o to one of the metaphor reflects the process of metaphor un-
derstanding. Participants who rated the understandability of a metaphor lower in
the with-picture task than in the without-picture task exhibited priming effects,
such that their metaphor understanding processes were inhibited. In order to
examine the priming effect clearly, the ratings of 19 participants were analyzed.

Three types of rating sets relating to the relevant-picture group are pre-
sented here. First, ratings for the target and for the metaphor (target in the
metaphor) in the with- and without-picture tasks are shown in Fig.1. The ratings
for the without-picture task show a pattern of change from target-term images
to metaphor images when the metaphor makes sense. The pattern of changes
reflects the process of metaphor understanding. The ratings in the with-picture
task indicate the pattern of change when the participants do not understand
the sentence as a metaphor. In order to compare the processes of the metaphor
understanding in these with- and without-picture tasks, the differences between
the target-term ratings and the metaphor ratings in the respective tasks were ex-
amined. There was a significant difference for the feature of ”beautiful ” (number
of figure is 13 in Fig.1) (p<0.05) between two tasks. The results show that the
1 Only significant priming effects for irrelevant pictures were observed on the under-

standing of the ”rage like a volcano” metaphor (p < .01), with no priming effect
observed for the relevant picture. There is no priming effects about the other 4
metaphors.

2 The image of the target’s term means the relationships between features and target
terms.
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Fig. 1. Average ratings (relevant-picture group - ”ballerinas like butterflies” N=19).
Numbers of features means as follows, 1:fluttering, 2:dance, 3:fly, 4:are human-beings,
5:stand on the toes, 6:wear the toe-shoes, 7:wear the costume, 8:suck honey, 9: are
insects, 10:scale-winged, 11:become pupae, 12:become specimens, 13:beautiful, 14:light,
15:soft, 16:dynamic, 17:strong.

”beautiful” feature was significantly influenced by the presentation of a picture.
Thus, metaphor understanding was inhibited. Furthermore, the ratings for the
vehicle’s relevant picture in the with-picture task are compared with the ratings
for the vehicle-term. If there is no difference between these ratings, presentation
of a picture might not influence metaphor understanding. However, the differ-
ences between the ratings for the vehicle-term and for the picture indicate an
influence from presenting the relevant picture. The relevant picture exerted an
influence in facilitating the features of ”fly” and ”suck honey”, such that the
ratings for the picture were significantly higher than that for the vehicle-term
(p<0.05). However, it did not directly influence to the feature of ”beautiful”.
Therefore, the results of priming effects for the relevant picture are consistent
with the notion that interaction among features exists.

3 The Model of the Metaphor Understanding

The results of the experiment concerning the priming effects of the relevant
picture suggest that there should be interactions among features in the process
of metaphor understanding. In order to verify that the mechanism underlying
the priming effects of the relevant pictures is due to the interactions among
features, a computational model of metaphor understanding is constructed based
on the results obtained from the experiment and simulation results for the model
with interactions is compared against the simulation results for a model without
interactions.

3.1 Architecture of the Model

The model of the metaphor understanding is constructed using a recurrent neu-
ral network (Fig.2). The model has feature nodes, which are the input and the



An Examination of the Dynamic Interaction 287

output nodes. Each node indicates a feature. There are connections among fea-
ture nodes, which represent the interactions among features. The dynamics of
the feature nodes are represented using the following formula:

dxk
i (t)
dt

= −xk
i (t) + f(

∑
j

wijx
k
j (t) + Ik

i ), (1)

where xk
i (t) means the activation of the ith feature node concerning the kth

participant at time t. Function f means the following sigmoid function, whose
range is (-1,1). The initial value of each node is 0. When dxk

i (t′)
dt = 0, each node

outputs Ok
i = xk

i (t′) as the relationship between each feature and the target of
the metaphor. wij indicates the connection weight to the jth feature node to the
ith feature node. Ik

i represents the input value of the ith feature node concerning
the kth participant.

The model represents metaphor understanding for the with-picture and
without-picture tasks using different input values. In the with-picture task, the
input values are computed using the formula2:

Ik
i = α

RAk
i − 4
3

+ β
RBk

i − 4
3

+ γ
(RBP k

i −RBk
i )− 4

3
, (2)

where, RAk
i means the kth participant’s rating of the relationship between the

ith feature and the target term, RBk
i means the rating of the relationship be-

tween the ith feature and the vehicle-term and RBP k
i indicates the rating of

the relationship between the ith feature and the picture of the vehicle. The rat-
ings (RAk

i , RBk
i , and RBP k

i ) have 7 grades. Thus, these ratings are changed
to values from -1 to 1. And, the influence of the picture is represented using
the difference between the ratings of the picture and those of the vehicle-term.
That is, the first term represents the influence of the target, the second term
represents the influence of the vehicle and the third term indicates the priming
effect of a picture within metaphor understanding. The respective strengths of
these influence are represented using the parameters α, β, γ. On the other hand,
in the without-picture task, the input values are computed using the formula3:

Ik
i = α

RAk
i − 4
3

+ β
RBk

i − 4
3

. (3)

Fig. 2. The architecture of the model with interactions
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Fig. 3. Results of the model with and without interaction (relevant-picture group -
”ballerinas are like butterflies”). Numbers of features means as follows, 1:fluttering,
2:dance, 3:fly, 4:are human-beings, 5:stand on the toes, 6:wear the toe-shoes, 7:wear
the costume, 8:suck honey, 9: are insects, 10:scale-winged, 11:become pupae, 12:become
specimens, 13:beautiful, 14:light, 15:soft, 16:dynamic, 17:strong.

These are values derived by subtracting the influence of the picture from the
input values for the with-picture task.

The connection weights are estimated using generalized back-propagation[7],
which can estimate the parameter values for a recurrent neural network model.
The connection weighs and the parameters α, β, γ are estimated alternatively.
An artificial data set, which is generated from the experimental results, is used
to train the model. The artificial data for target-term and vehicle-term ratings
are generated by adding an error, which has an average of 0 and a standard
deviation of 0.5, to average ratings for the target term and the vehicle-term
respectively. The artificial data for the metaphor ratings are generated by adding
the average difference between target-term and metaphor ratings with 10% of the
errors to the artificial data for the target-term in the with-picture task. Similarly,
the artificial data for the picture ratings were generated by added the average
difference between the ratings for the vehicle-term and for the picture with 10%
of the errors to the artificial data for the vehicle-term in the with-picture task.
In total, 1000 sets of artificial data were generated.

3.2 Model Simulation

The simulation results are shown in Fig.3. In this figure, the ratings of the target-
term are the average ratings from the experiment results and the ratings of the
metaphor are the average output values from the simulation results, which are
changed to values from 1 to 7. The change from the ratings for the target-term to
the output values represents the metaphor understanding process. Comparing
the simulation results to the experimental results, it is clear that the model
can represent the priming effect of relevant pictures. The features (”beautiful”
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(number of figure is 13 in Fig.3)) are emphasized in the without-picture task
by the metaphor, while ”beautiful” is weakened in the with-picture task. The
results show that metaphor understanding is inhibited in the with-picture task.
Consequently, the model simulation shows the process of the priming effect in the
psychological experiment. Namely, the model with interactions among features
can represent the priming effect of the visual stimulus.

In order to explain the effects of interactions, the model whose parameters
wij = 0 simulated the process as the model without interactions. The results
from the model without interactions are shown in Fig.3. The model does not
represent the emphasizing of ”beautiful” for the relevant-picture group in the
without-picture task. The model does not show the process of metaphor un-
derstanding in the task without a picture. Comparing the results of the model
without interaction to those of the model with interaction, metaphor compre-
hension is realized using interaction among features, not only combining the
meanings of the target and the vehicle.

3.3 Estimated Parameters

In understanding the metaphor ”ballerinas are like butterflies”, the results of
the psychological experiment suggest that there should be interactions among
features. Therefore, the estimated weights among features in the model are ex-
amined. Metaphor understanding was interfered with because the feature of
”beautiful” was weakened, although the relevant picture did not weaken the fea-
ture of ”beautiful” directly. The estimated parameters are α = 3.66, β = 0.51
and γ = 5.59. The connection weights from ”fly”, ”strong” ”light” and ”suck
honey” are -6.78, -6.49, -5.47 and -5.21, respectively. These are bottom four
weights to the features of ”beautiful”. The relevant picture significantly empha-
sizes the features of ”fly” and of ”suck honey”. Thus, emphasizing these features
inhibits the feature of ”beautiful” through interactions from these features to
”beautiful”.

4 Discussion

The model with dynamic interaction among features simulates the priming effect
of pictures within the process of metaphor understanding. And, the simulation
results of the model without interaction fail to represent the priming effect,
which indicates the necessity of including interaction. Furthermore, the param-
eter values of the model are estimated based on data which was obtained from
the previous experiment, using generalized back-propagation[7]. The parameter
values represent the strengths of the dynamic interactions among features.

By way of comparison, the relationships among features are estimated stat-
ically using a correlation coefficient to represent the priming effect. The corre-
lation coefficient among features are computed using differences between two
changes (δ2 − δ1); δ1 are the changes from ratings for the target to those for
the metaphor in the without-picture task and δ2 are the respective changes in
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the with-picture task. The correlation coefficients between the features (”fly”,
”strong”, ”light” and ”suck honey”) and the feature of ”beautiful” are -0.39,
-0.08, 0.39 and -0.01, respectively. There is some difference between the corre-
lation coefficients between other features and the feature of ”beautiful” and the
parameter values of the model. Especially, the parameter value between ”fly”
and ”beautiful” is the lowest value in the parameter values for the feature of
”beautiful”, on the other hand, the correlation coefficient between these features
is not the lowest. The correlation coefficient between ”scale-winged” and ”beau-
tiful” is the lowest value in the correlations for ”beautiful”. This suggests that
the parameter values more accurately represent the relationships between these
features.

In previous research, the priming effect of pictures, which suggests an inter-
action among features, was observed for only one picture for only one metaphor.
Accordingly, the present study examined the interaction using only the metaphor
of ”ballerinas are like butterflies”. In order to examine the interactions within
metaphor understanding in greater detail, it will be necessary to employ more
metaphors.
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Abstract. The Medial Axis Transform (MAT) (or skeleton transform)
is one of the most studied shape representation techniques with estab-
lished advantages for general 2D shape recognition. Embedding local
boundary information in the skeleton, in particular, has been shown to
improve 2D shape recognition capability to state of the art levels. In
this paper we present a visual pathway for extracting an analogous to
the MAT skeleton abstraction of shape that also contains local boundary
curvature information. We refer to this structure with the term curvature-
skeleton. The proposed architecture is inspired by the biological findings
regarding the cortical neurons of the visual cortex and their special pur-
pose Receptive Fields (RFs). Points of high curvature are initially iden-
tified and subsequently combined by means of a visual pathway that
achieves an analogous to the MAT abstraction of shape but also em-
beds in the skeleton local curvature information of the shape’s bound-
ary. We present experimental results illustrating that such an abstraction
can improve the recognition capability of multi layered neural network
classifiers.

Keywords: Shape Abstraction, Skeleton Transform, Visual Pathways.

1 Introduction

Our first knowledge about cortical neurons and their receptive fields we owe
to the Nobel Prize winners Hubel and Wiesel. Their 25 years of collaboration
marked an unprecedented progress in elucidating the responses of cortical neu-
rons. In their papers they define the ways in which area VI receptive fields differ
from the Lateral Geniculate Nucleus (LGN) receptive fields by using stimuli of
great relevance to vision. The qualitative methods they used for studying the cor-
tex continue to dominate experimental physiology [1]. Hubel and Wiesel recorded
the activity of cortical neurons while displaying patterned stimuli, mainly line
segments and spots, on a screen that was imaged through the animal’s cornea
and lens onto the retina. As the micro-electrode penetrated the visual cortex,
they presented line segments whose width and length could be adjusted. After
they varied the position of the stimulus on the screen, searching for the neu-
ron’s receptive field, they measured the response of the neuron to lines, bars
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and spots presented individually. One of their main discoveries, regarding sim-
ple cells, is that they have oriented receptive fields, and hence they respond to
stimuli in some orientations better than others. This receptive field property
is called orientation selectivity. The orientation of the stimulus that evokes the
most powerful response is called the cell’s preferred orientation. Other cells are
also end-stopped, that is selective for bars of specific lengths. The defining char-
acteristic of end-stopped cells is the presence of inhibitory receptive field (RF)
end zones that ’stop’ the response of the cell to stimuli which are long enough
to intrude into the end zones. This specific arrangement of orientation-specific
simple or complex cells detect or are specific for the direction of a short line seg-
ment. Whether our perception of a line or curve depends on them and how the
information from such sets of cells is assembled at subsequent stages in the path,
to build up what we call percepts of lines or curves, is still an open question.

Our contribution in this paper is in extending the proposed in [2] method for
curvature calculation to a complete pathway for transforming a random shape
into a skeleton abstraction that also contains curvature information. The exten-
sion consists in adding an additional layer that will extract the skeleton of the
projected image but at the same time will encode the boundary points of high
curvature into the skeleton itself. The proposed pathway abides to the rules re-
garding orientation selectivity and end-stopping discovered by Hubel and Wiesel.
We show that the proposed method achieves extraction of a curvature-skeleton
that conveys both local and global shape information. Experimental results show
that encoding hybrid shape information into the intensity values of the curvature-
skeleton location improves the recognition capability of Neural Network (NN)
classifiers.

2 Related Work

The concept of landmark points of high curvature for shape summarization has
been appreciated by many researchers in many different areas of neuropsychol-
ogy [3], [4]. A. Dobbins, S.W. Zucker and M.S. Cynader presented evidence that
the curvature detection is related to end-stopping neurons, they also presented
a supporting mathematical model [5]. In the field of human cognition further re-
search has revealed that the extraction of landmark points is a critical process in
human perception and the basis for potential mechanisms of shape identification
and recognition [6]. In biology biometrics Bookstein defined landmark points on
various biological shape for species classification [7]. The use of landmark points
has been appreciated as the most compatible to the human cognition method
of representing and encoding shape information. Berreti introduces a decompo-
sition of the shape into primitives based on the curvature [8]. Mokhtarian and
Mackworth [9] showed that curvature inflection points extracted using a Gaus-
sian scale space can be used to recognise curved objects. Dudek and Tsotsos
[10] presented a technique for shape representation and recognition of objects
based on multi-scale curvature information. A similar technique based on the
landmark points of high curvature, is also introduced in [11]. The most popular
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and extensively studied, shape abstraction method, is the medial axis transform
(MAT) originally proposed by Blum [12]. The terms fire transform, symmetric
axis transform, and skeleton transform have all been used in literature to refer
to the same approach [13]. Among the most successful attempts regarding the
skeleton representation, T. B. Sebastian et al [14] demonstrated state of the art
recognition by editing the shock graphs which is a skeletal representation that
contains also local boundary information. A skeletal representation based on
shape stable properties that arise as a result of excessive regularization is an-
other recent approach that give successful results on a diverse database of planar
shapes [15]. It appears that the most successful recent approaches are based on
the incorporation of boundary local shape information as well as global abstrac-
tions of shape [16,17,18]. The proposed approach in this paper describes a neural
pathway for extracting a skeleton abstraction of the projected shape that also
contains boundary curvature information. The proposed approach is compatible
to our knowledge regarding the arrangement of the cortical neurons.

3 The Skeleton Extraction Process with Embedded
Curvature Information

Orientation selectivity of cortical neurons is a critical receptive-field property.
LGN and retinal neurons have circularly symmetric receptive fields, and they
respond almost equally well to all stimulus orientations. Orientation-selective
neurons are found throughout layers 2 and 3 of the visual cortex, though they
are relatively rare in the primary inputs within layer 4C. In [2] it has been shown
that continuous successive orientations of an orientation selective filter, like the
ones discovered by Hubel and Wiesel in the visual cortex of primates, can be a
mechanism of measuring curvature. End-stopped cells, on the other hand, are
characterized by the presence of inhibitory receptive field (RF) end zones that
’stop’ the response of the cell to stimuli which are long enough to intrude into
the end zones.

In this section we will describe the mechanism and the neuron connectivity
model that under the above assumptions encodes the skeleton of the planar
shape into the intensity values together with curvature measurements available
from the previous layer. The cortical cells in layers 2 and 3 of the visual cortex
have orientation selective receptive fields and this orientation changes direction
continuously in successive layers. Successive rotations of an orientation selective
filter we can indeed measure the curvature at every point on the curve as was
shown by Raftopoulos at al in [2] and [19]. The idea was to use the orientation
selectivity to locate the direction which is tangent to the curve at a specific point
and at the same time measure the curvature at this point by accumulating the
firings of the successive layers in which the rotated field remains close to the
direction of the tangent. This method of calculating curvature was implemented
by a layered architecture designed in an analogous way to resemble the arrange-
ment of the cortical sheets [19]. We now extend this architecture by adding
another layer with the purpose to extract the skeleton of the projected shape
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Fig. 1. The complete layered architecture for skeleton extraction together with bound-
ary curvature information. The proposed added mechanism between layers L3 and L4
is illustrated in Figure 2.

and embed the previously calculated points of high curvature into the skeleton
representation. The complete layered architecture is shown in figure 1 while the
mechanism for skeleton extraction in the added layer is shown in figure 2. The
medial axis of a shape is the set of all the inner points having more than one
closest point on the object’s boundary. Originally referred to as the topological
skeleton, it was introduced by Blum as a tool for biological shape recognition.

In 2D, the medial axis of a plane curve S is the locus of the centers of circles
that are tangent to curve S in two or more points, where all such circles are con-
tained in S. It is therefore natural to assume the circular RF of the simple neurons
as the model of the inscribing disks by assuming an off-center, on-surround type
of RF that will ensure firing of the appropriate neuron, located at the center
of the circle, only if the curve’s boundary falls in the surrounding excitatory
zone and not in the central inhibitory zone of the circular RF disk. This ensures
that only the circular RFs that are inscribed in the contour will cause firing and
not the RFs that cut the boundary in one or more points because in the later
case the contour will enter in the RF’s inhibitory zone. Furthermore, the firing
will be stronger according to the stimulation on the excitatory surrounding zone
(perimeter of the disc) in a way that if the disc is tangent to the curve in more
than one points the firings of the appropriate neuron, at the center of the disk,
will be stronger. Since the disks that are tangent to the curve in more than one
points are centered on the shape’s skeleton, the respective cells (that have RF
on these disks) in the next layer, will receive a stronger stimulation.

At the same time recall that the contour image that appears in layer L3 (figure
2) receives stronger inputs at the points of high curvature, as was explained in
[19] and is assumed here. These points are depicted with big dots on the boundary
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Fig. 2. Points of high curvature receive stronger input from the previous layers and
are depicted in L3 with big dots on the boundary. Circular off-center on-surround
RFs of different sizes fire at the skeleton points whenever the shape’s boundary falls
in the circular on-surround region and not in the off-center RF region. The firing is
proportional to the curvature at the tangential boundary points. Points of the skeleton
that receive stronger input are depicted in L4 with big dots on the skeleton. These
points receive stronger input because their corresponding on-surround circular RF in
layer L3, falls on points of high boundary curvature.

in L3. A consequence of this is that a circle that is tangent at the points of high
curvature will in turn receive a stronger excitation in a way that the respective
neuron in L4 , with its RF on this circle, will receive a stronger stimulaiton
as well. But this neuron lies at the center of the RF (disk) and therefore the
strong signal due to the high curvature detected in layer 3 will appear on the
shape skeleton in layer 4. This way, in layer 4, we encode not only the global
shape topology (skeleton) but also the local boundary (curvature) information
from layer 3 on the skeleton itself. The proposed mechanism for extracting the
curvature-skeleton of a shape is consistent with the neuroanatomical findings of
the visual cortex, as was explained before, regarding the orientation selective,
end-stopped but also the circular off center, on surround RFs of various sizes.
At the same time the proposed model of shape abstraction is consistent with
the most successful attempts in shape representation and recognition as was
explained in the related work section.

4 Experimental Results

To evaluate the proposed representation we examined the ability of a neural
network trained by an efficient back-propagation scheme [20] to generalize over a
set of five hundred shapes in the presence of occlusions and deformations like the
ones shown in figure 4. Occlusions and deformations alter the signal significantly
therefore traditional classifiers perform poorly under these conditions.
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Fig. 3. Training set sample Fig. 4. Test set sample

For the experiment we used 2-D gray scale images of hands and rabbits from
the KIMIA shilouette database to be classified in two categories. 500 such images
of the two classes, like the ones in figure 3, were first encoded with the proposed
skeleton-curvature representation and used to train a network of two hidden
layers varying the number of neurons in the first layer between 2 and 8 and the
number of neurons in the second hidden layer from 1 to 3, as identified through
application of the weight decay pruning methodology [20]. The network was able
to learn the correct classification for all the presented 500 images. We then tested
the generalization ability of this network by presenting 50 new images like the
ones in figure 4 which are versions of the original 500 images after applying
partial occlusion, deformations and missing parts. The test set was also encoded
by means of the skeleton-curvature representation before presented to the NN
classifier. Correct recognition was achieved at 91.6% of these cases which renders
the method applicable for real life scenarios. In figure 5 the curvature skeleton
image that served as input to the NN classifier is shown for various test and
train images. Columns 1 and 3 show the images received from layer 3 (with
encoded curvature in the gray scale values), where columns 2 and 4 show the
curvature-skeleton image that is produced in layer 4 and is actually used as an
input to the NN classifier.
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The same NN classifier was also trained using the same 500 images but with-
out encoding the skeleton-curvature representation into the gray scales. The
network again was able to learn all the 500 images at the same rate. We then
again tested the generalization capability by presenting the same test set of 50
occluded or deformed shapes but also without encoding the skeleton-curvature
representation. The recognition in this experiment was correct at 61.5% of these
cases which is low compared to the 91.6% achieved by encoding the skeleton-
curvature representation into the intensities of the same images.

As a result we can conclude that encoding the shape content of the image
through global(skeleton) and local(curvature) descriptors into the signal energy
(gray scales) improves the recognition ability of NN classifiers under conditions
of occlusion and deformation.

Fig. 5. The curvature image and the curvature-skeleton image for some test and train
images. In columns 1 and 3 the curvature images of Layer 3 are shown. In columns 2
and 4, the corresponding skeleton-curvature images, as these are captured in the 4th
layer of the proposed pathway, are shown. The skeleton structure can be tracked by
the local maxima of the intensity values. The images of the 4th layer serve as inputs
to the NN classifier.
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Abstract. Speech sounds can be characterized by articulatory features.
Articulatory features are typically estimated using a set of multilayer
perceptrons (MLPs), i.e., a separate MLP is trained for each articu-
latory feature. In this paper, we investigate multitask learning (MTL)
approach for joint estimation of articulatory features with and without
phoneme classification as subtask. Our studies show that MTL MLP
can estimate articulatory features compactly and efficiently by learning
the inter-feature dependencies through a common hidden layer repre-
sentation. Furthermore, adding phoneme as subtask while estimating
articulatory features improves both articulatory feature estimation and
phoneme recognition. On TIMIT phoneme recognition task, articulatory
feature posterior probabilities obtained by MTL MLP achieve a phoneme
recognition accuracy of 73.2%, while the phoneme posterior probabilities
achieve an accuracy of 74.0%.

Keywords: multitask learning, articulatory features, posterior proba-
bilities, multilayer perceptrons.

1 Introduction

In machine learning and neural networks often it is required to learn a set of
multiple related tasks. If the tasks can share what they learn, then learning
them together may be better than learning them in isolation. Multitask learn-
ing (MTL) is an approach of transfer learning where multiple tasks are learned
together and what is learned for each task can help other tasks be learned bet-
ter [2]. MTL is an inductive transfer mechanism which can be used to improve
generalization accuracy, speed of learning and intelligibility of learned models.
Multitask learning in neural networks allows features learned at the hidden layer
for one task to be useful for other tasks.

In the context of speech processing, MTL has been applied to improve ASR
performance (a) in noise by incorporating speech enhancement and gender recog-
nition as additional tasks [8], (b) by high level additional tasks such as gender,
broad phoneme classification, grapheme classification [12], (c) on meeting data
by jointly learning phone classification and feature mapping from farfield mi-
crophone to near field microphone [3]. MTL has also been applied for acoustic-
articulatory inversion [11].

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 299–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we investigate the use of MTL framework for joint estimation
of articulatory features, such as manner of articulation, place of articulation
(Section 2). We study this approach on the TIMIT phoneme recognition task
and compare it with the traditional approach of estimating articulatory features
using independent classifiers (Section 3). As MTL allows addition of new tasks,
we also investigate a framework where both articulatory features and phonemes
are learned together. Our studies show that (a) MTL not only yields similar or
better system but also a system with fewer number of parameters (about 50%
less parameters than independent classifier approach), and (b) adding phoneme
classification as an additional task helps in improving both articulatory feature
and phoneme recognition (Section 4).

2 Articulatory Feature Estimation

Phonological studies suggest that each sound unit of a language (phoneme) can
be decomposed into a set of features based on the articulators used to produce the
sound. Articulatory features define the properties of speech production. There
exist different types of articulatory representations of speech, like: binary fea-
tures, multi-valued features, and government phonological features [7]. In this
work, we are interested in multi-valued articulatory features.

2.1 Previous Work

Traditionally, articulatory features are estimated using a set of multilayer per-
ceptron (MLP) classifiers [4,7,10], dynamic Bayesian networks (DBNs) [5] etc.
Stage: 1 of Figure 1 shows estimation of articulatory features using a set of MLP
classifiers. The number of independent MLPs depend upon the way phoneme
to articulatory feature maps are derived. In literature, it has been shown that
the articulatory feature classification accuracies could be improved by modeling
inter-feature dependencies [5]. Along this line, in a more recent work, we showed
that by modeling the inter-feature dependencies using a hierarchy of MLP classi-
fiers as shown in Stage: 2 of Figure 1, articulatory feature classification accuracy
can be improved, and thereby the phoneme recognition accuracy [10] . The hi-
erarchical approach is originally inspired from [9].

. .
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Fig. 1. Hierarchical MLP classifiers for articulatory posterior estimation
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Fig. 2. Hierarchical Multitask MLP classifiers for articulatory (and phoneme) posterior
estimation

2.2 Proposed Work

In this work, we investigate the use of multitasking MLP (MTL MLP) for joint
estimation of articulatory features (as shown in Stage: 1 of Figure 2). The moti-
vation for this is two fold. Firstly, estimating different articulatory features from
the same acoustic signal could be considered as a set of interrelated tasks [5].
Traditional, approach of training independent MLPs does not takes it into con-
sideration. Secondly, a system that has fewer number of parameters can be ob-
tained. Similar to our previous work [10], we also consider a hierarchical approach
where a second MTL MLP as shown in Stage: 2 of Figure 2 is trained using the
posterior probabilities of articulatory features estimated from Stage: 1 as feature
input. In earlier work, it has been observed that articulatory feature probabilities
(articulatory posteriors) and phoneme probabilities (phoneme posteriors) when
modeled together can yield better system [10]. Motivated from these observa-
tions, we also investigate the importance of phoneme classification as one of the
tasks (depicted as dotted line in Figure 2) and examine if MTL could exploit
shared hidden layer representation to learn the complementary information.

3 Experimental Setup

TIMIT acoustic-phonetic corpus (excluding the SA sentences) is used in all the
experiments. The partitioning of the database as specified in the TIMIT corpus
is used. The experimental setup is exactly same as the one described in [9]. The
targets of articulatory features for MLP training are obtained from phoneme to
articulatory feature maps given in John Hopkin’s workshop (JHU) [4]. The artic-
ulatory features are given in Table 1 along with their cardinality. The different
types of MLP classifiers used in this work are:

1. MTL MLP with articulatory features as tasks (MTL MLP-af ).
2. MTL MLP with articulatory features and phoneme classification as tasks

(MTL MLP-af+ph).
3. MLP with one articulatory feature as task, i.e. training a separate classifier

for each articulatory feature (MLP-af ).
4. MLP with phoneme classification as task (MLP-ph).
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These MLPs can be in the first stage or second stage of hierarchical MLP clas-
sifiers as shown earlier in Figures 2 and 1. To compare similar systems, phoneme
posteriors are also estimated using a hierarchical MLP classifier described in [9].
All the first stage MLPs use PLP cepstral coefficients with a context window of
9 frames as input and the second stage MLPs use posteriors estimated in the
first stage with a temporal context of 17 frames as input.

The hidden layer size of MTL MLP-af was optimized on the cross-validation
dataset. The same hidden layer size was used for the MTL MLP-af+ph and MLP-
ph. This was done to ascertain the benefit of training jointly both articulatory
features and phonemes. As it could be noted that after completion of training
MTL MLP-af+ph can be split into two MLPs which are of the same size of
MTL MLP-af and MLP-ph. In the case of training individual classifiers for each
articulatory feature, i.e., MLP-af, the size of the hidden layer were determined
by fixing the total number of parameters to 35% of the training data following
the previous work [10]. The total number of parameters in this system was more
than two times of the number of parameters in MTL MLP-af.

The stopping criterion of the MLPs during training is the cross-validation
frame accuracy. All the tasks in the MTL MLP (including the case where
phoneme classification is a subtask) are learned with equal learning rate and
equal error weight. It is also observed that the optimal cross-validation perfor-
mance is obtained for all the articulatory features at the last training epoch.
All the MLPs used in this work are trained using a modified version of ICSI
Quicknet software1 with minimum cross entropy error criterion.

The phoneme recognition experiments were carried out using Kullback-Leibler
divergence based hidden Markov model (KL-HMM) system. In KL-HMM acous-
tic modelling [1], posterior probabilities of sub-word units are directly used as
features and the state distribution is parameterized by a reference multinomial
distribution. Description about the integration of articulatory feature into KL-
HMM system can be found in [10].

4 Results

In this section, we first present the results of articulation feature classification
studies and then phoneme recognition studies.

4.1 Articulatory Feature Classification

Table 1 compares the frame level articulatory feature and phoneme classification
accuracies, when estimated using a set of MLPs and MTL MLPs. The perfor-
mance of the articulatory features is slightly better when estimated from MTL
MLP compared to a set of MLPs. The results also show that along with the
articulatory feature classification accuracy, frame level phoneme classification
accuracy can also be improved by having phoneme as a subtask in MTL MLP.

1 http://www.icsi.berkeley.edu/Speech/qn.html
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Table 1. Frame level articulatory feature and phoneme classification accuracies of
individual and MTL MLPs expressed in percentage on the TIMIT cross-validation set

MLP-af /MLP-ph MTL MLP-af MTL MLP-af+ph

Task
Cardi- Chance First Second First Second First Second
nality rates stage stage stage stage stage stage

Manner 8 34.1 86.0 88.1 86.9 88.4 86.9 88.8
Glottal state 5 61.6 92.9 94.5 93.4 94.5 93.4 94.7

Nasality 4 77.9 96.0 96.8 96.4 96.9 96.4 97.0
Place 11 34.1 86.3 88.5 87.0 88.7 87.2 89.3
Height 9 47.7 82.5 85.1 83.8 86.0 83.8 86.5

Frontedness 8 47.7 84.2 86.6 85.3 87.1 85.3 87.6
Rounding 4 67.8 89.9 91.9 91.2 92.9 91.3 93.1

Vowel 22 47.7 81.3 84.5 82.5 84.8 82.7 85.4

Phoneme 40 – 75.1 78.4 – – 75.6 79.4

4.2 Phoneme Recognition

In this section we compare phoneme recognition accuracies of the KL-HMM
systems obtained by using phoneme posteriors and articulatory posteriors esti-
mated from MLPs described in Section 3 as feature observations.

First Stage Results: Phoneme recognition studies were performed using the
posteriors obtained by different first stage of MLPs:

1. base-ph: phoneme posteriors estimated from an MLP.
2. base-af : articulatory posteriors estimated from a set of independent MLPs

(Stage: 1 in Figure 1).
3. base-mtl-af : articulatory posteriors estimated from an MTL MLP without

phoneme subtask (Stage: 1 in Figure 2).
4. base-mtl-af+ph: articulatory posteriors and phoneme posteriors estimated

from an MTL MLP with phoneme as one of the subtask (Stage: 1 in Figure 2).

Table 2 presents the phoneme recognition accuracies of the above systems on the
test set of TIMIT database. Results show that the phoneme recognition accuracy
obtained using articulatory posteriors estimated from MTL MLP is significantly
better than the system using posteriors from independent MLPs. The addition of
phoneme subtask to the MTL MLP further improves the accuracy of the system
using articulatory posteriors as well as the system using phoneme posteriors.

Second Stage Results: The baseline hierarchical posteriors used for compari-
son are:

1. hier-af : articulatory posteriors estimated from a set of hierarchical MLP
classifiers (Stage: 2 in Figure 1).

2. hier-ph: phoneme posteriors estimated from hierarchical MLP classifier.

Two different posteriors can be obtained from hierarchical MTL MLP systems
based on the presence or absence of phoneme subtask:
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Table 2. Phoneme recognition accuracy expressed in percentage on the TIMIT test
set, using phoneme posteriors and articulatory posteriors as features in KL-HMM. Also
given the number of hidden units and output units.

Features
MLP hidden MLP output Posteriors

Accuracy
units units used

base-ph 3500 40 phoneme 70.2

base-af Not applicable 71 articulatory 67.4

base-mtl-af 3500 71 articulatory 68.9

base-mtl-ph+af 3500 111
articulatory 69.2
phoneme 70.4

1. hier-mtl-af : articulatory posteriors estimated from hierarchical MTL MLP
classifier without phoneme task.

2. hier-mtl-af+ph: articulatory posteriors and phoneme posteriors estimated
from hierarchical MTL MLP classifier with phoneme as one of the subtask.

However, the input to the MTL MLPs estimating above posteriors can be the
articulatory posteriors obtained from base-mtl-af or base-mtl-af+ph (shown as
inputs (1) and (2) in Figure 3 respectively). Also, a hierarchical MTL MLP
system was built where the input of the second MTL MLP consisted of phoneme
posteriors and articulatory posteriors (shown as input (3) in Figure 3).

MTL MLP

(3500)
+

PLP

PLP MTL MLP

(351)

(351)

(3500) (71)

(111)

(3)

(1)

(2)
OR

MTL MLP
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(1200)
MTL MLP

(40)

(71)

(71)

17 frames
context

(40)

(71)

base−mtl−af

base−mtl−af

base−mtl−ph base−mtl−af+ph

hier−mtl−af

hier−mtl−af

hier−mtl−ph

Fig. 3. Hierarchical MTL MLP systems with inputs, hidden and outputs specified

Table 3 presents the phoneme recognition accuracies obtained by using base-
line MLP and MTL MLP posteriors as features in KL-HMM system. The results
show that performance of the system using articulatory posteriors from MTL
MLP without phoneme task is comparable to the system using articulatory pos-
teriors from a set of MLPs. The second stage MTL MLP with input as artic-
ulatory posteriors from base-mtl-af+ph (discarding phoneme posteriors) further
improves the performance slightly. Thus, indicating that articulatory features
could be learned better when phoneme classification is also a subtask. Overall,
in all the cases MTL MLP with phoneme as subtask improves the phoneme
recognition performance of system that uses articulatory posteriors as well as
system that uses phoneme posteriors.
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Table 3. Phoneme recognition accuracy expressed in percentage on the TIMIT test
set, using phoneme posteriors and articulatory posteriors as features in KL-HMM. Also
given the number of input and output units of MLPs.

Input to MLP i/p
Features

MLP o/p
Posteriors used

Phoneme
MLP units units accuracy

base-ph 680 hier-ph 40 phoneme 73.0

base-af 1207 hier-af 71 articulatory 72.0

base-mtl-af 1207
hier-mtl-af 71 articulatory 72.2

hier-mtl-af+ph 111
articulatory 72.3
phoneme 72.7

articulatory
1207

hier-mtl-af 71 articulatory 72.4
posteriors of

hier-mtl-af+ph 111
articulatory 72.5

base-mtl-af+ph phoneme 73.3

base-mtl-af+ph 1887
hier-mtl-af 71 articulatory 72.7

hier-mtl-af+ph 111
articulatory 73.2
phoneme 74.0

The MTL MLP with phoneme as subtask at both the stages gave the best
performance of 73.2% for articulatory posteriors and 74.0% for phoneme pos-
teriors. It is important to note that the system benefited from both phoneme
input and MTL of articulatory and phoneme tasks.

5 Discussion and Conclusions

Our studies show that MTL provides a framework for efficient and compact es-
timation of articulatory posteriors compared to a set of MLPs. Furthermore,
jointly training articulatory features and phoneme improves both articulatory
feature classification and phoneme recognition. We hypothesize that MTL MLP-
af+ph through a shared hidden layer learns to exploit the complementary in-
formation present in phoneme and articulatory tasks. This is partly supported
by the fact that we do not achieve significant improvement in phoneme recogni-
tion accuracy (74.1% compared to 74.0% with phoneme posteriors alone) when
concatenating phoneme posteriors and articulatory feature posteriors (as done
in our previous work [10]).

In our work, we have used JHU phoneme to articulatory feature maps. How-
ever, in literature one could find different phoneme to articulatory feature maps.
In the case of MTL MLP, one of the difference it brings in is number of tasks that
are learned jointly. Along this line, we have also investigated the representation
given in [6] (after making a few modifications, such as adding vowel features
resulting in four subtasks). The results showed similar trends in terms of artic-
ulatory feature classification and phoneme recognition accuracy irrespective of
number of subtasks. Furthermore, in preliminary (ongoing) ASR studies we have
observed trends similar to phoneme recognition at word recognition level.

In this work, during the training of MTL MLPs all the tasks were given equal
importance. It may be interesting to study the effect of giving one or a few tasks
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more importance. Future work will also focus on addition of more subtasks, such
as gender, rate-of-speech estimation, and performing full-fledged ASR studies.
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Abstract. Many measures of human verbal behavior deal primarily
with semantics (e.g., associative priming, semantic priming). Other mea-
sures are tied more closely to orthography (e.g., lexical decision time,
visual word-form priming). Semantics and orthography are thus often
studied and modeled separately. However, given that concepts must be
built upon a foundation of percepts, it seems desirable that models of
the human lexicon should mirror this structure. Using a holographic, dis-
tributed representation of visual word-forms in BEAGLE [12], a corpus-
trained model of semantics and word order, we show that free association
data is better explained with the addition of orthographic information.
However, we find that orthography plays a minor role in accounting for
cue-target strengths in free association data. Thus, it seems that free as-
sociation is primarily conceptual, relying more on semantic context and
word order than word form information.

Keywords: holographic reduced representation, orthographic priming,
semantic priming, word association norms.

1 Introduction

Verbal behavior is a hallmark of humankind, and is thus of great interest to
cognitive science. Human adults have command of tens of thousands of words and
use them effortlessly each day. As such, words are used in studies of many levels of
cognition, from perception to memory to semantics, and many effects have been
observed. Descriptive factors such as word frequency, length, part-of-speech, and
phonological features have been found to be correlated with these effects, but
models have rarely attempted to integrate all of these dimensions. Models of
word perception tend to focus on the orthographic and phonological features of
a word, yet often ignore semantic information such as word co-occurrence. On
the other hand, most models of semantics treat words as atomic units with no
overt perceptual features. Fortunately, recent research seeks to bridge this divide
from both directions.

The SOLAR model [6,5] uses a spatial coding representation of word forms to
account for effects in both masked priming and lexical decision. [3] proposes an
alternative orthographic encoding scheme that better captures a set of empiri-
cal constraints enumerated by [9]. This encoding scheme uses Holographic Re-
duced Representations (HRRs) [15], which are neurally-plausible, distributed,
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and which result in analytically similar representations for items with simi-
lar content or structure. [3] integrates orthographic vectors into BEAGLE, an
HRR-based model of lexical semantics and word order [12], and also successfully
accounts for lexical decision data. In the present work, after briefly describing
HRRs, the Cox et al. orthographic encoding scheme, and BEAGLE, we apply
this model to human free-association data [4].

2 Methodology

2.1 Holographic Reduced Representations

HRRs [15] are a form of distributed representation that can hierarchically en-
code information from diverse sources in a single format. This format is usually
a large vector, similar to a layer in an artificial neural network. As in a neural
network, it is not the individual vector elements that carry information, but the
pattern of values across the vector. The high-dimensional, distributed nature
of HRRs thus makes them robust against input noise and memory degrada-
tion. Further tightening the connection between HRRs and neural systems, [10]
have recently shown that back-propagation neural networks, when trained on
location-invariant visual word recognition, produce patterns of stimulus similar-
ity that are equivalent to those derived from HRR representations of the stimuli.
HRRs go beyond many simple neural systems, however, in that they can perform
variable binding operations (i.e., tracking which items have what properties) and
straightforwardly encode hierarchical structure [15].

Although there are other ways of implementing HRRs (including, e.g., binary
spatter codes [13]), we focus on the methods introduced by [15] that are based
on circular convolution. HRRs begin with a set of “atomic” vectors which are
operated upon to produce more structured representations. Each element of these
“atoms” is drawn independently from a normal distribution with mean 0 and
variance 1

n , where n is the dimensionality of the vector. There are two operations
that enable these atoms to be combined into more structured representations.
The first, superposition (+), is simply vector addition; it takes two HRR vectors
and produces a third vector–still an HRR, and with the same dimensionality–
that is partially similar to its components (where “similarity” is defined below).

The second operation, binding (�), takes two HRRs and produces a third HRR
that is independent of (not similar to) its components. Binding is implemented
as circular convolution, which is both neurally plausible [8] and approximately
invertible via correlation (#). If C = A � B is the circular convolution of two
vectors, A and B, then each element cj of C is defined:

cj =
n−1∑
k=0

akbj−kmodn .

C can be thought of as a compressed version of the outer product of A and B.
Note that the output vector of a circular convolution is the same dimensionality
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as each input vector, unlike techniques in other models that produce outputs
with greater dimensionality (e.g., [14,11]). Circular convolution is commutative,
associative, and distributes over addition. Implementing circular convolution as
defined above is an O(n2) operation; therefore, in our implementation, we employ
the fast Fourier transform, which can be used to approximates circular convo-
lution in O(n log n) time1. In combination, binding and superposition can be
used to implement a variety of encoding schemes that simultaneously represent
structure at multiple levels. For example, the word cat may be represented as the
superposition of bound substrings of the word, e.g.: c+a+ t+c�a+a� t, where
each letter is represented by a unique random vector (i.e., they are the “atoms”
of the representational scheme). This strategy of chunking long sequences (e.g.,
letters in words, words in sentences) allows the representation to capture simi-
larity at many resolutions: cat will be similar to catch, but catcher will be more
similar to catch by virtue of more shared substrings. The similarity between
two HRRs is given by their normalized dot product, otherwise known as cosine
similarity:

sim (A, B) =
A •B

‖A‖‖B‖ =
∑n−1

i=0 aibi√∑n−1
i=0 a2

i

√∑n−1
i=0 b2

i

.

This similarity measure is always in the range [−1, 1]. The expected cosine sim-
ilarity of two i.i.d. random vectors (e.g., letters c and a) is 0—that is, they are
orthogonal. Bound items (e.g., c � a) are independent of (orthogonal to) their
contents (c or a), but superposed vectors (e.g., c + a) will have positive similar-
ity to each component. Identical vectors have maximal similarity. The similarity
of two HRRs relies not just on the contents of the representations (e.g., cat
and catch both have the letters c, a, and t), but also on the structure of the
stored associations (e.g., cat can be made more similar to cut if the association
c� t is included in their HRRs). When using HRRs, researchers must be explicit
about what structures they are encoding, allowing simpler interpretation and
comparison than the learned correlations in standard neural network models.

2.2 A Holographic Encoding for Word-Form

[3] and [9] investigate several methods of encoding word-form structure as a
HRR, evaluating them on the basis of empirical studies of word-form similarity.
While all but one of these word-form encoding methods were found unable to
account for the entirety of the empirical constraints, [3] introduced a word-form
encoding that satisfied the desiderata. Our solution, called “terminal-relative”
(TR) encoding, is related somewhat to the simplified word recognition model of
[1] and to the SERIOL model [16].

Each individual letter is an “atom” represented by a random vector of dimen-
sion n with elements drawn independently from a normal distributionN

(
0, 1√

n

)
.

1 This follows from the fact that convolution in the “spatial domain” (i.e., of the raw
vectors) is equivalent to elementwise multiplication in the “frequency domain” (the
discrete Fourier transforms of each operand).
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Thus, the representations for individual letters are orthonormal. To encode a
word, e.g., “word”, we first superpose vectors for each individual letter and for
all contiguous letter bigrams in the word: word = w+o+r+d+w�o+o�r+r�d.
Here, we wish to form bigrams that are order-specific; to do this, we randomly
permute each operand before convolving them according to whether it is on the
left or right: L(w) � R(o). To encode larger n-grams, these permutations are
applied iteratively: wor = L(L(w) � R(o)) � R(r). Throughout the remainder
of this paper, we will use this non-commutative variant of circular convolution
(suggested by [15]), although we omit the L and R operators for clarity.

After encoding the individual letters (unigrams) and bigrams, for any n-gram
that does not contain one of the terminal letters (either the first or last letter),
we encode an additional n-gram that binds the missing terminal letter to that
n-gram, including a “space” (just another random vector) to encode a gap in
any non-contiguous n-grams. For example,

word =w + o + r + d + w � o + o � r + r � d

+ w � o + (w � ) � r + (w � ) � d + (w � o) � r + ((w � ) � r) � d

+ (w � ) � d + (o � ) � d + r � d + ((w � o) ) � d + (o � r) � d

Because this last rule is applied iteratively, the first and last bigrams, and the
noncontiguous bigram comprising the terminal letters are added into the rep-
resentation repeatedly, thus increasing their “strength”. Although our method
possesses the advantage of being parameter-free, the relative weighting of bi-
grams in TR encoding is similar to the bigram weighting that arises from neural
mechanisms in the SERIOL model of word recognition [16].

The overall effect of this encoding scheme is to capture both local (contiguous
bigrams) and global (internal n-grams bound to terminal letters) structure in
word-forms. Empirical studies of word recognition (see, for a review, [9,7]) show
that humans are indeed sensitive to structure on both those levels, and that
such sensitivity is required to account for human word recognition capabilities.
In addition, TR encoding is capable not just of capturing the relative similarity
between isolated pairs of words, but scales to account for orthographic similarity
effects within the entire lexicon, as evidenced in lexical decision and speeded
pronunciation tasks [3]. In general, TR encoding is a good balance between
simplicity (it is parameter free), veracity (it accounts for many word recognition
effects), and scalability (orthographic similarity effects across the entire lexicon).

2.3 BEAGLE

BEAGLE (Bound Encoding of the AGgregrate Language Environment) is a
convolution-based HRR model that learns word order and meaning informa-
tion from natural language text corpora [12]. For each word, BEAGLE uses an
i.i.d. 2048-dimensional environmental vector to represent the word’s perceptual
characteristics, a context vector to store word co-occurrence information, and
an order vector to encode which words appear before and after the given word.
As BEAGLE reads each sentence, the environmental vectors of the neighboring
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n (window size) words are superimposed on each word’s context vector. Words
that have similar meanings grow more similar to one another, since their con-
text vectors tend to hold the same set of superimposed vectors. Thus, BEAGLE
learns a semantic space; the semantic similarity of any two words can be found
by taking the cosine similarity of the two words’ context vectors. BEAGLE
learns word order by binding n-grams containing a placeholder vector for the
current word (denoted Φ) and superimposing the bound n-grams in the current
word’s order vector. For example, “dog bites” would be encoded in the order
vector for “dog” (odog) as Φ � ebites where ebites is the environmental vector for
“bites”. Thus, an approximate environmental vector for the word(s) following
“dog” can be obtained by inverting the convolution via the correlation operator
(#), Φ#odog ≈ ebites; we refer to this inversion of the order vector as “probing”.

BEAGLE captures many aspects of syntactic and semantic similarity between
words. However, this space is constructed on the basis of random environmental
vectors which are, on average, orthogonal to one another. We replaced BEA-
GLE’s random environmental vectors with the TR HRR word-form encoding
defined above. In this way, we may capture orthographic similarity (e.g., cat and
catch), and perhaps additional semantic relationships (e.g., catch and catcher).
Because OrBEAGLE builds its knowledge of semantics and word order on the
basis of a principled orthographic representation, it may better explain a variety
of human data, and can be applied to tasks such as fragment completion that no
semantic model has previously been suited to model [3]. In the present paper,
we examine how well OrBEAGLE accounts for human free-association data, and
compare it to BEAGLE.

3 Experiment

[4] collected free association (FA) data by asking some 6,000 participants to write
down the first word (target) that came to mind after seeing a cue word. Given
5,019 words as cues, participants produced 72,176 responses. In various cases,
these responses seem to depend on order (e.g., aluminum-foil), semantics (e.g.,
aluminum-metal), or orthography (e.g., abduct-adduct). Thus, we chose to ex-
amine whether OrBEAGLE—which encodes order, semantic, and orthographic
information—can account for this FA data.

As a dependent measure, we use the forward strength (FSG) of each cue-
target association, defined as the proportion of participants who generated a
particular target when given the cue word (Pr (target|cue)). For example, 17 of
143 participants responded capability when given the cue ability, so FSG for this
pairing is 0.119. We examine how well logit(FSG)2 of each cue-target pairing is
predicted by the cosine similarity of these words’ representations in BEAGLE
and OrBEAGLE.

Using a window size of three and 2048-dimensional vectors, we trained both Or-
BEAGLE and BEAGLE on the lemmatized TASA corpus (≈680,000
2 Because FSG is a probability, the logit function is used to transform the domain to

all real numbers.
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Table 1. Regression terms and coefficients (βs) for predicting logit(FSG) on the ba-
sis of cosine similarities of a cue’s and target’s holographic vectors, both in ordinary
BEAGLE (left), and using OrBEAGLE’s orthography and probe results (right)

BEAGLE BEAGLE + Ortho.

Predictor β t-value p-value β t-value p-value

Ortho. – – – 0.249 3.961 <.001***
Context 0.846 28.142 <.001*** 0.848 28.188 <.001***
Order 0.207 8.330 <.001*** 0.206 8.306 <.001***
Probe 0.598 5.079 <.001*** 0.605 5.140 <.001***

Fig. 1. Cue-target similarities of BEAGLE’s context and order vectors and OrBEA-
GLE’s environmental vector and probe results compared to logit(FSG)

sentences). Overall, the cosine similarity of the composite OrBEAGLE
representation–including semantic context, order, and orthographic information–
of cues and targets are significantly correlated with FSG (r = .087, p < .001).
However, the cue-target similarities computed from BEAGLE’s context and order
vectors were more strongly correlated with FSG (r = .199, p < .001). By examin-
ing the separate order, context, and environmental (random or orthographic) vec-
tors comprising BEAGLE and OrBEAGLE, we found that context vectors built
from BEAGLE’s orthogonal environmental vectors were more highly-correlated
with FSG than OrBEAGLE’s context vectors (r = 0.154 vs. r = 0.035).
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To determine whether OrBEAGLE can explain any unique variance beyond
BEAGLE, we used a linear regression to examine the relative contributions of
BEAGLE’s context and order similarities, and OrBEAGLE’s orthographic simi-
larities. Also included in the regression are the cosine similarities of the target’s
environmental vector with the results from “probing” the order vector of the cue
word as described above. Shown in Table 1 (left), BEAGLE’s order, context, and
probe similarities are significant positive predictors. Introducing OrBEAGLE’s
orthographic similarities and probe results significantly increased the regression
fit (right; F(1,47858) = 15.687, p < .001). All correlation coefficients are signif-
icantly positive, with context the largest, followed by the probe, orthography,
and order. A scatterplot of the cue-target similarities and the probe results used
in this regression, along with logit(FSG), are shown in Figure 1.

4 Discussion

We have described OrBEAGLE, a holographic model incorporating orthographic,
semantic, and order information, and demonstrated that it can account for signif-
icant variance in human free-association data. However, using independent repre-
sentations for each word, BEAGLE better accounts for this data, and does so pri-
marily due to its context vectors. In different tasks, perceptual (orthography) and
conceptual (context) information likely contribute differentially. Masked priming,
a perceptual task, shows large effects of orthography. Lexical decision and word
naming are less well-accounted for by orthography, and it is not unreasonable to
expect that free association would be primarily conceptual. Nonetheless, we also
demonstrated that a significant portion of additional variance in FA data can be
accounted for by adding OrBEAGLE’s orthographic similarities and orthographic
probe results to BEAGLE’s context and order similarities.

Indeed, the partial independence of orthographic and semantic/syntactic prop-
erties of words underlies many theories of verbal processing, including the Dual
Route Cascaded model (DRC, [2]). In DRC, orthographic similarity plays a role
in which semantic representations are activated, but the two types of informa-
tion are not embodied in a single representation; DRC’s semantic representations
are akin to the random environmental vectors in the original BEAGLE model,
while its orthographic representations are akin to the environmental vectors in
OrBEAGLE. While DRC has been implemented as a neural network model, the
results in this paper suggest that a holographic approach—with reduced training
time and the ability to store a larger lexicon—can capture many of the same
theoretical ideas.

OrBEAGLE is a distributed representation system that uses neurally-plausible
mechanisms and an empirically-viable encoding scheme for visual word-forms to
capture a wide variety of human data, including latencies in word naming and
lexical decision, word fragment completion [3], and now, free-association data.
OrBEAGLE can be applied to a variety of other experimental paradigms as it
stands, and can indicate the relative contributions of word order, context, and
orthography. We have shown that it is both possible and useful to begin unifying
models that previously operated at different levels and on different tasks.
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Abstract. Recently, the so-called Support Feature Machine (SFM) was
proposed as a novel approach to feature selection for classification. It
relies on approximating the zero-norm minimising weight vector of a
separating hyperplane by optimising for its one-norm. In contrast to
the L1-SVM it uses an additional constraint based on the average of
data points. In experiments on artificial datasets we observe that the
SFM is highly superior in returning a lower number of features and a
larger percentage of truly relevant features. Here, we derive a necessary
condition that the zero-norm and 1-norm solution coincide. Based on
this condition the superiority can be made plausible.

Keywords: Support feature machine, L1-SVM, feature selection, zero
norm minimisation, classification.

1 Introduction

The ever increasing complexity of real-world machine learning tasks requires
more and more sophisticated methods to deal with datasets that contain only
very few relevant features but many irrelevant noise dimensions. In practise,
these scenarios often arise in the analysis of biological datasets, such as tissue
classification using microarrays [2], identification of disease-specific genome mu-
tations or distinction between mental states using functional magnetic resonance
imaging [3]. It is well-known that a large number of irrelevant features may dis-
tract state-of-the-art methods, such as the support vector machine. Thus, feature
selection is a fundamental preprocessing step to achieve proper classification re-
sults, to improve runtime, and to make the training results more interpretable.

The recently proposed Support Feature Machine [5,4] relies on approximating
the zero-norm of a separating hyperplane. As zero-norm optimisation is compu-
tationally infeasible for real world datasets, the SFM approach uses an iterative
optimisation scheme based on the one-norm that is closely related to the SVM-
based method proposed by Weston et. al [6]. However, in artificial experiments it
has been shown that the SFM approach is superior, i.e. it returns a significantly
lower number of features and a larger number of truly relevant features. The
reason is not obvious, so here, we derive plausibility considerations to explain
why the SFM approach finds the zero-norm more frequently.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 315–322, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The following sections are organised as follows. First, we outline the mathe-
matical formulation of the Support Feature Machine and related methods. Then,
we compare its performance with the L1-SVM on an artificial dataset. Finally, for
the SFM and Weston’s method we derive a coincidence condition, i.e. a condition
in which zero-norm and one-norm minimising solution coincide. Unfortunately,
it is not possible to decide for a specific dataset whether this condition is ful-
filled or not. However, we compare both methods in a simple scenario to give a
plausible explanation for the superior performance of the SFM.

2 Feature Selection by Zero-Norm Minimisation

We make use of the common notations used in classification and feature selection
frameworks, i.e. the training set D = {xi, yi}ni=1 consists of feature vectors xi ∈
Rd and corresponding class labels yi ∈ {−1, +1}. We assume the dataset D to
be linearly separable without bias, i.e.

∃w ∈ R
d with yix

T
i w ≥ 0 ∀ i and w �= 0 , (1)

where the normal vector w ∈ Rd describes the separating hyperplane except for
a constant factor. Analogous formulations including bias can be found in [5] and
[4]. In general, there is no unique solution to (1). A common approach in feature
selection is to find a weight vector w which solves

minimise ‖w‖00 subject to yix
T
i w ≥ 0 and w �= 0 (2)

with ‖w‖00 = card {wi|wi �= 0}. Hence, solutions to (2) solve the classification
problem (1) using the least number of features. Some attempts have been made
to approximate the above problem with a variant of the Support Vector Machine
(SVM), e.g. by Weston et al. [6] who

minimise
∑d

j=1
ln (ε + |wj |) subject to yix

T
i w ≥ 1 (3)

with 0 < ε� 1. A local minimum of (3) is found using an iterative scheme based
on linear programming. However, the following approach was found to identify
relevant features more effectively. Instead of modifying the SVM setting as in [6],
we slightly change (2) such that we

minimise ‖w‖00 subject to yix
T
i w ≥ 0 and

(
1
n

n∑
i=1

yixi

)T

w = 1 . (4)

The second constraint excludes w = 0 and solving (4) yields a solution to the
ultimate problem (2). Since we have linear constraints, for solving (4) we can
employ the same framework Weston et al. [6] used for solving their problem.
However, our experiments show that by

minimising
d∑

j=1

ln (ε + |wj |) subject to yix
T
i w ≥ 0 and

(
1
n

n∑
i=1

yixi

)T

w = 1
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we obtain significantly better solutions to the ultimate problem than by solv-
ing (3). It seems that the new cost function is much less prone to local minima.
For solving the above problem, we apply a constrained gradient descent tech-
nique based on Frank and Wolfe’s method [1]:

1. Set v = (1, . . . , 1).
2. Minimise |w| such that yi(xi ∗ v)Tw ≥ 0 and

(
1
n

∑n
i=1 yi(xi ∗ v)

)T
w = 1

3. Set v = v ∗w.
4. Repeat until convergence.

Here, v is the iteratively adapted scaling vector and the operator ∗ denotes
the element-wise multiplication. The solution is optimal with respect to feature
selection if a solution to (4) is found, i.e. if both solutions coincide.

3 Experiments

We compared the performance of both approaches with respect to k and n.
For that purpose, we constructed artificial scenarios with balanced classes. The
first k dimensions xi, . . . , xk were drawn as xi = N (c · y, σ2). The parameter c
controls the distance between both classes. The remaining features xk+1, . . . , xd

were noise drawn as xi = N (0, σ2). Additionally, we ensured that both classes
were linearly separable. However, it was possible that both classes were separable
with less than k features.

The results are shown in Fig. 1. Obviously, the SFM returns both a lower total
number of features and a higher percentage of correct features. So, Weston’s
method returns more irrelevant features than the SFM. Besides, increasing the
number of features (see Fig. 1, bottom) has a different impact on both methods.
If we increase the number of data points (in this case to 100), the SFM will
identify all relevant features correctly. The SVM-based method fails to converge
to the correct number of features even if the number of data points is further
increased (e.g. to 1000). So, in this setting the SFM converges for large n to
the correct set of features, while the SVM-based approach gets stuck in a local
minimum even for large datasets. It is also obvious, that the SFM solution in
the first iteration is already very close to the final solution, while the SVM-based
method needs more iterations. In scenarios with a large number of data points
the SFM converges already after one iteration (see Fig. 1, bottom left).

4 Optimality of the Support Feature Machine

In general, it is not possible to decide whether the zero-norm and one-norm
solution coincide. However, one may give some plausibility considerations to
show why in most cases the SFM is closer to the ultimate zero-norm solution
than the SVM-based approach.

This section is organised as follows. First, we introduce notations to improve
the readability of the admittedly complex plausibility considerations. Then, we
derive a condition for zero- and one-norm minimising solutions to coincide. This
condition holds both for the SFM and the SVM-based approach. Finally, we
demonstrate that in certain scenarios it is beneficial to use the SFM.



318 S. Klement and T. Martinetz

0 5 10 15 20
100

101

102

k

F
ea
tu
re
s

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

C
o
rr
ec
t
F
ea
tu
re
s

10 20 50 100 200 500 1000
100

101

102

103

n

F
ea
tu
re
s

SFM

SFM (1st)

Weston

Weston (1st)

10 20 50 100 200 500 1000
0

0.2

0.4

0.6

0.8

1

n

C
o
rr
ec
t
F
ea
tu
re
s

Fig. 1. Feature selection performance depending on k and n. The top row shows the
mean number of features and the mean percentage of correctly identified features after
the first and after the last iteration depending on k (k = 1, . . . , 20, n = 100, σ =
1, d = 100, c = 0.3, 1000 repetitions), while the bottom row shows the same aspects for
different values of n (σ = 1, d = 100, k = 5, c = 0.3, 1000 repetitions).

4.1 Preliminaries

For simplicity, we define zi = yixi and Z = (z1, . . . , zn) and z̄ = 1
n

∑n
i=1 zi.

Additionally, 0 and 1 are vectors that consist of zeros and ones, respectively. For
reasons of readability, we omit the length of these vectors where possible. Using
this notation, Weston et al. aim to

minimise ||w||0 subject to ZTw ≥ 1 , (5)

while in the SFM setting we aim to

minimise ||w||0 subject to ZTw ≥ 0 and z̄Tw = 1 . (6)

First, we focus on (5) — minor changes will lead us to (6). To simplify a comparison,
we consider only results after the very first iteration of the overall optimisation
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procedure. We denote the solution space with Ω and define the following two weight
vectors:

w0 = arg min
w∈Ω

||w||1 subject to ZTw ≥ 1

w1 = arg min
w∈Rd

||w||1 subject to ZTw ≥ 1

So, among all solutions of (5), w0 is the solution with lowest one-norm. Note that
if w1 is in Ω then w1 = w0. As in practise (5) cannot be solved directly, Ω is in
general unknown as well as w0. However, both are well-defined. In contrast, w1 is
the solution on the entire Rd and can efficiently be solved by linear programming.
If w0 = w1 for a specific dataset, then the optimal feature set would be found
by optimising for the one-norm.

In the following, we assume Ω �= ∅ and w1 to be unique. This is only a minor
restriction as non-uniqueness of w1 will occur only in degenerate cases. Since
Z is drawn from a probability distribution, the probability of these cases is of
measure zero. The probabilistic nature of the input data also ensures that all
quadratic submatrices of Z have full rank.

Without loss of generality, for the following considerations we assume:

1. All entries of the weight vector are positive, i.e. w0,i ≥ 0. Otherwise, invert
the corresponding input dimension.

2. The training data is ordered such that Z =
(
Ẑ Ž

)
with ẐTw0 = 1 and

ŽTw0 > 1 .
3. The dimensions of D are sorted, such that exactly the first k dimensions of

w0 are non-zero, i.e.

w0,i

{
> 0 i = 1, . . . , k
= 0 otherwise such that w0 =

(
ŵ0

0

)
In total the input data matrix Z has the following structure:

Z =
(

Ẑ1

Ẑ2
Ž

)
with Ẑ1 ∈ R

k×k∗
, Ẑ2 ∈ R

d−k×k∗
, Ž ∈ R

d×n−k∗

Lemma 1. If w0 contains k non-zero entries, exactly k equations in ZT w0 ≥ 1
are active, i.e. k = k∗.

Proof. By definition, the problem is feasible and non-degenerate. Thus, as an op-
timal solution exists, also a basic optimal solution exist, which is known from lin-
ear programming theory. Due to ẐTw0 = ẐT

1 ŵ0 = 1, the initial d-dimensional
problem is reduced to a k-dimensional one. Thus, in a basic solution k constraints
are active and k∗ = k follows. ��

4.2 Optimality Condition

Theorem 1. For w1 = w0, it is necessary that
∥∥∥∥Ẑ2Ẑ

T
1

(
Ẑ1Ẑ

T
1

)−1

1
∥∥∥∥
∞

< 1.
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Proof. If w0 = w1, for each infinitesimal Δ with ẐT(w0+Δ) = 1 and ŽT(w0+
Δ) > 1 we have

||w0 + Δ||1 > ||w0||1

⇔
d∑

i=1

|w0,i + Δi| >
d∑

i=1

|w0,i| =
d∑

i=1

w0,i

⇔
k∑

i=1

|w0,i + Δi|+
d∑

i=k+1

| w0,i︸︷︷︸
=0

+Δi| >
k∑

i=1

w0,i

⇔
k∑

i=1

(w0,i + Δi) +
d∑

i=k+1

|Δi| >
k∑

i=1

w0,i (7)

⇔
k∑

i=1

Δi +
d∑

i=k+1

|Δi| > 0 . (8)

Next, we apply the structure of the matrix Ẑ and split the disparity vector,
i.e. ΔT =

(
ΔT

1 ΔT
2

)
with Δ1 ∈ Rk, Δ2 ∈ Rd−k. After some rearrangements, we

can derive a closed formulation for Δ1:

⇔ ẐTΔ = ẐT
1 Δ1 + ẐT

2 Δ2 = 0

⇔ ẐT
1 Δ1 = −ẐT

2 Δ2

⇔ Ẑ1Ẑ
T
1 Δ1 = −Ẑ1Ẑ

T
2 Δ2

⇔ Δ1 = −
(
Ẑ1Ẑ

T
1

)−1

Ẑ1Ẑ
T
2 Δ2 (9)

⇒ 1TΔ1 = − 1T
(
Ẑ1Ẑ

T
1

)−1

Ẑ1Ẑ
T
2︸ ︷︷ ︸

:=αT

Δ2

Finally, (8) can be expressed using α and Δ2:

k∑
i=1

Δi +
d∑

i=k+1

|Δi| = −αTΔ2 + ||Δ2||1 =
d∑

i=k+1

−αi−kΔi + |Δi| > 0 (10)

Equation (10) has to hold for any infinitesimal Δ2. This is only the case if
|αi| < 1 holds for all i, i.e. if

||α||∞ =
∥∥∥∥Ẑ2Ẑ

T
1

(
Ẑ1Ẑ

T
1

)−1

1
∥∥∥∥
∞

< 1. (11)

(Note: Δ2 = 0 and simultaneously Δ1 �= 0 is excluded according to (9)). ��

So far, the above observations only apply for the optimisation problem (5).
However, with the following minor changes the same condition is derived for (6):
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1. The weight vectors w0 and w1 are defined analogously:

w0 = arg min
w∈Ω

||w||1 subject to ZTw ≥ 0 and z̄Tw = 1

w1 = arg min
w∈Rd

||w||1 subject to ZTw ≥ 0 and z̄Tw = 1

2. If w0 contains k non-zero entries, exactly k equations are active. The last
of these constraints is the equality constraint z̄Tw = 1. To allow a compact
notation, we include this constraint into the matrix Z, i.e. we append the
vector z̄.

3. The proof of Theorem 1 works analogously and leads to the same condition.

So, both approaches are very closely connected. However, they are not iden-
tical as the matrices Z are not the same.

4.3 Arguments for the Superior Results of the SFM

Due to the complexity of both approaches, it is not possible to give a rigorous
mathematical proof for the superior performance of the SFM (6) compared to
Weston’s approach (5). However, within a simplified scenario and with approxi-
mate arguments we can use the result of the above theorem to make the superior
performance plausible.

We consider the same scenario as in our experiments and assume the rows of Z
to be drawn as Zi. The first k features are relevant — all others are irrelevant,
i.e. the expected value of the first k features differs from zero, all others are
exactly zero: E(Zi) = c for i = 1, . . . , k and E(Zi) = 0 otherwise. For Weston’s
approach (5) we have ẐT

1 ŵ0 = 1 and obtain

Ẑ1Ẑ
T
1 ŵ0 = Ẑ11 ≈ k · c · 1 ⇔ ŵ0 ≈ k · c ·

(
Ẑ1Ẑ

T
1

)−1

1

such that

||α||∞ ≈
∥∥∥∥∥ Ẑ2Ẑ

T
1 ŵ0

k · c

∥∥∥∥∥
∞

=

∥∥∥∥∥ Ẑ21
k · c

∥∥∥∥∥
∞

=
∥∥∥εk

c

∥∥∥
∞

with εk :=
Ẑ21
k
∈ R

d−k .

Here, the entries of the vector εk are distributed asN (0, σ2
/k). In contrast, for the

SFM (6), where the last column of Ẑ is the mean of all zi, we have ẐT
1 ŵ0 =

(
0
1

)
and obtain

Ẑ1Ẑ
T
1 ŵ0 = Ẑ1

(
0
1

)
≈ c · 1 ⇔ ŵ0 ≈ c ·

(
Ẑ1Ẑ

T
1

)−1

1

and

||α||∞ ≈
∥∥∥∥∥ Ẑ2Ẑ

T
1 ŵ0

c

∥∥∥∥∥
∞

=

∥∥∥∥∥ Ẑ2

c

(
0
1

)∥∥∥∥∥
∞

=
∥∥∥εn

c

∥∥∥
∞

with εn := Ẑ2

(
0
1

)
∈ R

d−k+1 .
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Obviously, for k � n, the probability that all elements of α stay below 1 and,
hence, that the condition in Theorem 1 to successfully find w0 is fulfilled, is
much larger for the SFM. As expected, the larger c, the easier it is for both
approaches to be successful. Note, that we assumed that the elements of Ẑ1 and
Ẑ2 are independent stochastic variables. Of course, since Ẑ1 and Ẑ2 are selected
by the respective algorithm according to certain criteria, this is not really the
case.

5 Conclusions

The recently proposed SFM approach for feature selection identifies relevant
features very effectively and may improve the generalisation performance signif-
icantly. It is based on the approximation of the weight vector’s zero-norm by
its one-norm. Here, we derived a condition under which both measures coincide.
Unfortunately, in practise it is not possible to decide whether the condition is ful-
filled for a specific dataset or not. However, one can compare the SFM approach
with other zero-norm approximating methods such as Weston’s method.

We found that the coincidence constraint in the SFM approach relies on av-
eraging over n values, while in Weston’s approach it relies on averaging over k
values. According to this finding, it is beneficial to use the more stable SFM
approach in scenarios with n > k. In toy experiments, we found that in almost
all cases the SFM returns a lower number of features and a higher percentage of
truly relevant features than Weston’s method.

Further work will include a comparison of the SFM to other zero-norm ap-
proximating methods and the derivation of more strict constraints that could
possibly be used to judge whether the solution to a specific dataset is close to
the optimal one or not.
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Abstract. We present a nonlinear generalization of Canonical Corre-
lation Analysis (CCA) to find related structure in multiple data sets.
The new method allows to analyze an arbitrary number of data sets,
and the extracted features capture higher-order statistical dependencies.
The features are independent components that are coupled across the
data sets. The coupling takes the form of coactivation (dependencies of
variances). We validate the new method on artificial data, and apply it
to natural images and brain imaging data.

Keywords: Data fusion, coactivated features, generalization of CCA.

1 Introduction

This paper is about data fusion – the joint analysis of multiple data sets. We
propose methods to identify for each data set features which are related to the
identified features of the other data sets.

Canonical Correlation Analysis (CCA) is a classical method to find in two
data sets features that are related. In CCA, ”related” means correlated. CCA
can be considered to consist of individual whitening of the data sets, followed by
their rotation such that the corresponding coordinates are maximally correlated.
CCA extracts features which capture both the correlation structure within and
between the two data sets.

CCA has seen various extensions: More robust versions were formulated [2],
sparsity priors on the features were imposed [1], it was combined with Indepen-
dent Component Analysis (ICA) to postprocess the independent components of
two data sets [7], and it was extended to find in two data sets related clusters [8].

Here, we propose a new method which generalizes CCA in three aspects:

1. Multiple data sets can be analyzed.
2. The features for each data set are maximally statistically independent.
3. The features across the data sets have statistically dependent variances; the

features tend to be jointly activated.

In Section 2, we present our method to find coactivated features. In Section 3, we
test its performance on artificial data. Applications to natural image and brain
imaging data are given in Section 4. Section 5 concludes the paper.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 323–330, 2011.
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2 Extraction of Coactivated Features

In Subsection 2.1, we present the general statistical model which underlies our
data analysis method. In Subsection 2.2, we show that in some special case our
method boils down to CCA. Subsection 2.3 focuses on the analysis of multiple
data sets.

2.1 Modeling the Coupling between the Data Sets

As in CCA, we assume that each data set has been whitened. Denote by zi the
random vector whose i.i.d. observations form data set i. We assume that the
total number of data sets is n. We use ICA to find, for each data set, features
that are maximally statistically independent. That is, we model the zi as

zi = Qisi (i = 1, . . . n), (1)

where zi ∈ Rd and the Qi are orthonormal matrices of size d× d. Each vector si

contains d independent random variables si
k, k = 1, . . . d of variance one which

follow possibly different distributions. The unknown features that we wish to
identify are the columns of the Qi. We denote them by qi

k, k = 1, . . . , d.
We have assumed that the si

k, k = 1, . . . , d are statistically independent in
order to extract, for each data set i, meaningful features. In order to find features
that are related across the data sets, we assume, in contrast, that across the
index i, the si

k are statistically dependent. The joint density ps1
1,...,s1

d,...,sn
1 ,...,sn

d

factorizes thus into d factors ps1
1,s2

1,...,sn
1

to ps1
d,s2

d,...,sn
d
. To model coactivation,

we assume that the dependent variables have a common variance component,
that is

s1
k = σks̃1

k s2
k = σks̃2

k s3
k = σks̃3

k . . . sn
k = σks̃n

k , (2)

where the random variable σk > 0 sets the variance, and the s̃i
k are Gaussian

random variables. Treating the general case where the s̃i
k may be correlated

becomes quickly complex. We are treating here two special cases: For correlated
sources, we consider only the case of n = 2. This is done in the next subsection.
For larger numbers of data sets, we are additionally assuming that the s̃i

k are
independent random variables. This is the topic of Subsection 2.3.

2.2 Two Data Sets: A Generalization of Canonical Correlation
Analysis

We consider here the case n = 2. Let sk = (s1
k, s2

k)T contain the k-th component
of the vectors s1 and s2. If (σk)2 follows the inverse Gamma distribution with
parameter νk, the variance variable σk can analytically be integrated out.1 The
factors psk

= ps1
k,s2

k
, k = 1, . . . , d, follow a student’s t-distribution,

psk
(sk; νk; Λk) =

Γ
(

νk+2
2

)
(π(νk − 2))Γ

(
νk

2

) |Λk|
1
2

(
1 +

1
(νk − 2)

sT
k Λksk

)− νk+2
2

. (3)

1 Proofs are omitted due to a lack of space. Supplementary material is available from
the first author.
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Here, Γ () is the gamma function and Λk is the inverse covariance matrix of sk,

Λk =
1

1− ρ2
k

(
1 −ρk

−ρk 1

)
. (4)

The parameter ρk is the correlation coefficient between s1
k and s2

k. As νk becomes
larger, the distribution psk

approaches a Gaussian.
Together with Eq. (1), the density psk

leads to the log-likelihood �,

�(q1
1,q

1
2, . . . ,q

1
d,q

2
d, ρ1, . . . , ρd, ν1, . . . , νd) =

T∑
t=1

d∑
k=1

log psk
(yk(t)), (5)

where yk(t) = (q1
k

T z1(t), q2
k

T z2(t))T contains the two inner products between
the feature vectors qi

k and the t-th observation of the white random vector zi. As
denoted in the equation, maximization of the log-likelihood � can be used to find
the features qi

k (the columns of the orthonormal matrices Qi), the correlation
coefficients ρk, as well as the parameters νk. If the learned νk have small values
there are higher-order statistical dependencies between the features; large values
mean that the correlation coefficient ρk captures already most of the dependency.

We show now that maximization of Eq. (5) generalizes CCA. More specifically,
we show that for large values of νk, the vectors qi

k which maximize � are those
found by CCA: The objective � considered as function of the qi

k is

�(q1
1, . . . ,q

2
d) = const−

T∑
t=1

d∑
k=1

νk + 2
2

log
(

1 +
1

νk − 2
yk(t)T Λkyk(t)

)
. (6)

For large νk the term 1/(νk − 2)yk(t)TΛkyk(t) is small so that we can use the
first-order Taylor expansion log(1 + x) = x+ O(x2). Taking further into account
that the zi are white and that the qi

k have unit norm, we obtain with Eq. (4)

�(q1
1,q

2
1, . . . ,q

1
d,q

2
d) ≈ const + T

d∑
k=1

1
1− ρ2

k

(
ρkq1

k
T Σ̂12q2

k

)
, (7)

where Σ̂12 is the sample cross-correlation matrix between z1 and z2. Since 1−ρ2
k

is positive, � is maximized when |q1
k

T Σ̂12q2
k| is maximized for all k under the

orthonormality constraint for the matrices Qi = (qi
1 . . .qi

d). We need here the
absolute value since ρk can be positive or negative. This set of optimization
problems is solved by CCA, see for example [3, ch. 3]. Normally, CCA maximizes
q1

k
T Σ̂12q2

k so that for negative ρk, one of the qi
k obtained via maximization of �

would have switched signs compared to the one obtained with CCA.

2.3 Analysis of Multiple Data Sets

We return now to Eq. (2), and consider the case where the s̃i
k are indepen-

dent random variables which follow a standard normal distribution. The ran-
dom variables s1

k, . . . , sn
k are then linearly uncorrelated but have higher order
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Fig. 1. We illustrate with artificial data the coactivation of the features across the data
sets. (a) Correlation coefficients between the si

k. (b) Correlation coefficients between
the squared si

k. The black rectangles indicate each data set. In this example, there
are three data sets (n = 3), each has four dimensions (d = 4). (c) Illustration of the
dependencies between the si

1. Row i shows si
1, i ∈ {1, 2, 3}. Correlation of squares

means that the sources tend to be concurrently activated. Note that the data points
si

k(t), t = 1, . . . , 10000 do not have an order. To visualize coactivation, we chose the
order in the figure.

dependencies. The dependencies can be described by the terms “coactivation”
or “variance-coupling”: whenever one variable is strongly nonzero the others are
likely to be nonzero as well. Figure 1 illustrates this for the case of three coupled
data sets (n = 3) with dimensionality four (d = 4).

Under the assumption of uncorrelated Gaussian s̃i
k, the log-likelihood � to

estimate the features qi
k is

�(q1
1, . . . ,q

n
d ) =

T∑
t=1

d∑
k=1

Gk

(
n∑

i=1

(qi
k

T zi(t))2
)

, (8)

where zi(t) is the t-th data point in data set i = 1, . . . , n, and Gk is a nonlinearity
which depends on the distribution of the variance variable σk.

This model is closely related to Independent Subspace Analysis (ISA) [5,
ch. 20]. ISA is a generalization of ICA; the sources are not assumed to be sta-
tistically independent but, like above, some groups of sources (subspaces) are
dependent through a common variance variable. ISA was proposed for the anal-
ysis of a single data set but by imposing constraints on the feature vectors we
can relate it to our model: Denote by z and s the vectors in Rdn which are
obtained by stacking the zi and si on each other. Eq. (1) can then be written
as z = Qs. The matrix Q is orthonormal and block-diagonal, with blocks given
by the Qi. Our dependency assumptions for the sources si

k in this subsection
correspond to the dependency assumptions in ISA. This means that our model
corresponds to an ISA model with a block-diagonality constraint for the mixing
matrix. This correspondence allows us to maximize the log-likelihood in Eq. (8)
with an adapted version of the FastISA algorithm [6].
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3 Simulations with Artificial Data

In this section, we use artificial data to both illustrate the theory and to test our
methods. To save space, we only show results for the method in Subsection 2.3.
We generated data which follows the model of Subsection 2.1 and 2.3; the de-
pendencies for that kind of data were illustrated in Figure 1. As in the figure,
we set the number of data sets to three (n = 3), and the dimension of each
data set to four (d = 4). The variance variables σk in Eq. (2) were generated
by squaring Gaussian random variables. The sources si

k were then normalized
to unit variance. The three orthonormal mixing matrices Qi were drawn at ran-
dom. This defined the three random variables zi. For each, we drew T = 10000
observations, which gave the coupled data sets.

Given the data sets, we optimized the log-likelihood � in Eq. (8) to estimate the
coupled features (the columns qk

i of the mixing matrices Qi). As nonlinearity,
we chose Gk(u) = G(u) = −

√
0.1 + u, as in [6]. Comparison of the estimates

with the true features allows to assess the method. In particular, we can assess
whether the coupling is estimated correctly. The ICA model for each of the data
sets, see Eq. (1), can only be estimated up to a permutation matrix. That is, the
order of the sources is arbitrary. However, for the coupling between the features
to be correct, the permutation matrix for each of the data sets must be the same.
Comparison of the permutation matrices allows to assess the estimated coupling.

We tested the algorithm for ten toy data sets (each consisting of three coupled
data sets of dimension four). In each case, we found the correct coupling at the
maximum of the objective in Eq. (8). However, we observed that the objective has
local maxima. Figure 2 shows that only the global maximum corresponds to the
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Fig. 2. Local maxima in the objective function in Eq. (8). The figures show simulation

results where, for the same data, we started from 20 different random initializations of

the Qi. The red circle indicates the trial with the largest objective. (a) We plot the value

of the objective function versus the fraction of the correct learned coupling. The larger

the value of the objective, the better the estimated coupling. (b) We plot the sum of

the estimation errors in the Qi versus the learned coupling. The estimation error can

be very small but the estimated coupling can be wrong. This happens when the Qi are

individually well estimated but they do not have the same permutation matrix.
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correct estimates of the coupling. We have used the adapted FastISA algorithm to
maximize Eq. (8). It has been pointed out that FastISA converges to local max-
ima [6]. When we used a simple gradient ascent algorithm to maximize Eq. (8),
we observed also the presence of local maxima – the results were as in Figure 2.

Simulations with the method for two data sets, outlined in Subsection 2.2,
showed that local maxima also exist in that case (results not shown).

4 Simulations with Real Data

In Subsection 4.1, we apply our new method to the analysis of structure in nat-
ural images; we are learning from image sequences (video clips) features that are
related over time. In Subsection 4.2, we apply the method to brain imaging data.

4.1 Simulations with Natural Images

We use here the method outlined in Subsection 2.3 for the analysis of n = 2
and n = 5 coupled data sets. First, we consider the case of two data sets, and
compare our results with those obtained with CCA. The two data sets were
constructed from natural image sequences. The database consisted of the 129
videos used in [4].2 From this data, we extracted T = 10000 image patches
of size 25px × 25px at random locations and at two time points. The first
time points were also random; the resulting image patches formed the first data
set. The second time points were 40ms after the first time points; these image
patches formed the second data set. As preprocessing, we whitened each data
set individually and retained in both cases 50 dimensions (98% of the variance).
This gave our data zi(t) ∈ R50, i ∈ {1, 2} and t = 1, . . . , 10000, for the learning
of the qi

k, k = 1, . . . , 50. We run the algorithm five times, and picked the features
giving the highest log-likelihood.

Figure 3 shows the learned features where we included the whitening matrices
in the visualization: the features (qi

k
TVi)T are shown, where Vi is the whitening

matrix for the i-th data set. The learned features are Gabor-like. The features
are arranged such that the k-th feature of the first data set is coupled with
the k-th feature of the second data set. It can be clearly seen that the coupled
features are very similar. This shows that, for natural video, the Gabor features
produce temporally stable responses. This result is in line with previous research
on natural images which explicitly learned temporally stable features from the
same database [4]. This shows that the presence of local maxima in the objective
� is not really harmful; our learned features, which most likely correspond to
a local maximum, also produced meaningful insight into the structure of the
investigated coupled data sets.

As a baseline for this simulation, we also applied CCA to the two coupled
data sets. The extracted features were highly correlated but they did not iden-
tify meaningful structure in the data. The features were noise-like (results not
shown). This shows the advantages of having a method at hand which takes both
within and across the data sets higher-order statistics into account.
2 For more details on the database, see [4], and references within.
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(a) Features, first data set (b) Features, second data set

Fig. 3. Activity-coupled features in natural image sequences. The natural image
patches in the second data set showed the same image sections as those in the first
data set but 40ms later. The k-th feature of the first data set is coupled with the k-th
feature of the second data set. The coupled features are very similar. This shows that
Gabor features produce temporally stable responses [4].

(a) First data set (b) Third data set (c) Fifth data set

Fig. 4. Activity-coupled features in natural image sequences. The image patches in
the five data sets showed the same image sections at different time points, each 40ms
apart. The features for only three of five data sets are shown.

Next, we consider the case of n = 5 data sets. The image patches in the
different data sets showed the same image sections at different time points, each
40ms apart. Figure 4 shows the results. The learned coupled features are again
very similar, albeit less localized than those in Figure 3. The similarity of the
features in the different data sets means that, for natural image sequences, the
Gabor features tend to be active for a longer time period, see also [4].

4.2 Simulations with Brain Imaging Data

Finally, we apply the method of Subsection 2.2 to magnetoencephalography
(MEG) data. 3 A subject received alternating visual, tactile and auditory stim-
ulation interspersed with rest [9]. We estimated sources by a blind source sep-
aration method and chose for further analysis two sources which were located
close to each other in the somatosensory or motor areas. We took at random
time points windows of size 300ms for each source. This formed the two data
sets which we analyzed with our method.

Figure 5 shows three selected pairs of the learned coupled features. The results
indicate the presence of highly synchronized activity in the brain. The correlation
3 We thank Pavan Ramkumar and Riitta Hari from the Brain Research Unit of Aalto

University for the access to the data.
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Coupled pair 1, Rho: 0.002, nu: 2.68

0 50 100 150 200 250 300
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Fig. 5. Coupled features in MEG data. The feature outputs show no linear correlation
(ρk ≈ 0) but are nonlinearly correlated (νk ≈ 2.7).

coefficients ρk between the feature outputs are practically zero which shows
that higher-order dependencies need to be detected in order to find this kind of
synchronization.

5 Conclusions

We have presented a data analysis method which generalizes canonical correla-
tion analysis to higher-order statistics and to multiple data sets. The method
finds independent components which, across the data sets, tend to be jointly
activated (“coactivated features”). The method was tested on artificial data,
and its applicability to real data was demonstrated on natural images and brain
imaging data.
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Abstract. This paper presents the adaptation of a single layer complex
valued neural network (NN) to use entropy in the cost function instead
of the usual mean squared error (MSE). This network has the good prop-
erty of having only one layer so that there is no need to search for the
number of hidden layer neurons: the topology is completely determined
by the problem. We extend the existing stochastic MSE based learning
algorithm to a batch MSE version first and then to a batch minimum
error entropy (MEE). We present experiments showing the the proposed
algorithms are competitive with other learning machines.

Keywords: Complex valued NN, Entropic cost function, MSE, MEE.

1 Introduction

Complex valued neural networks (CVNNs) have been gaining considerable at-
tention [1,2,3,4]. The benefits of using a complex valued NN come when dealing
with specific types of data, such as wave phenomena [1, 5] where there is the
need of processing phase and amplitude information.

The key feature of these networks is related to how the product of complex
numbers work. Let’s compare what happens if we consider a 2D input to a
neuron in the following two cases: first, the traditional real valued case where
the neuron has a weight associated with each input; second the complex value
case where a single complex weight is used for a single complex valued input.
The two cases are represented in figure 1. Consider the real numbers a, b, w1

and w2. In a real value neuron the 2D input consisting of values a and b gets
multiplied by the respective weights w1 and w2 giving an input to the neuron of
aw1 + bw2. In the case represented in the lower part of the figure, we have the
same input values a and b but now as real and imaginary parts of a complex input
z = a+ib. The weight are also part of a single complex weight w = w1+iw2. The
neuron now sees this input as the product zw = aw1− bw2 + i(aw2 + bw1). If we
write this result using amplitude and phase representation of complex numbers,
say, z =

√
a2 + b2ei tan−1(b/a) and w =

√
w2

1 + w2
2e

i tan−1(w2/w1), we get zw =√
a2 + b2

√
w2

1 + w2
2e

i(tan−1(b/a)+tan−1(w2/w1)). This means that the product of
complex numbers is really just multiplying the amplitudes and adding the phases.

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 331–338, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Example of how a real valued (above) and a complex valued (below) neuron
deal with a 2D input. z = a + ib and w = w1 + iw2. See the text for details.

Traditionally, neural networks have used mean squared error as cost functions
[6]. Recently however, it has been shown [7, 8] that there may be advantages in
using a cost function based on an information theoretical approaches, such as
the minimization of the entropy of the errors (MEE). A concrete example is the
increase in convergence during the training of recurrent NNs that were observed
in [9, 10].

In this paper we show a batch learning algorithm for the single layer complex
value neural network proposed in [3] and proceed to derive the MEE based
learning algorithm for this network.

The rest of the paper is organized as follows: the next section contains a pre-
sentation of the single layer complex valued NN, section 3 contains the derivation
of the batch versions of the learning algorithm (with MSE and MEE); the fol-
lowing sections contains experiments and section 5 contains the conclusions.

2 Complex Valued NN

2.1 One Layer CVNN

In this subsection we follow closely [3].
Consider an input space with m features. The neuron input is the complex

vector x = xR + ixI where xR is the real and xI is the imaginary part, such that
x ∈ Cm. The complex unit is i =

√
−1. The weight matrix w ∈ Cm can also be

written as w = wR + iwI . The net input of neuron k is given by

zk = θk +
m∑

j=1

wkjxj (1)

where θk ∈ C is the bias for neuron k and can be written as θk = θR
k + iθI

k.
Given the complex multiplication of wkx, this can be further written as

zk = zR
k + izI

k =
(
θR

k + xRwR
k − xIwI

k

)
+ i

(
θI

k + xRwI
k + xIwR

k

)
(2)

Note that,

xRwR
k =

m∑
j=1

xR
j wR

kj (3)



SLCVNN with Entropic Cost Function 333

The k neuron output is given by yk = f(zk) where f : C → R is the activation
function and yk ∈ R. The activation function used is f(zk) = (s(zR

k ) − s(zI
k))2

where s(·) is the sigmoid function s(x) = 1
1+exp(−x) .

Given the form of this activation function, it is possible to solve non-linear
classification problems whereas in the case of a real valued neural network with
only one layer (such as a simple perceptron) this would not be possible.

Now that we know how a single neuron obtains its output, we will see how
to train a network composed of a single layer with N of these complex valued
neurons.

To train the network in a stochastic learning approach we need to obtain the
weights that minimize the following error functional

E(w) =
1
2

N∑
k=1

(tk − yk)2 (4)

where tk ∈ R represents the target output for neuron k. This is the mean squared
error functional (MSE) that is traditionally used in the learning algorithm of
NNs, only in this case it depends on a complex weight matrix, w.

To minimize (4) we find its derivative w.r.t. the weights:

∂E

∂wR
kj

= −2ek(s(zR
k )− s(zI

k))
(
s′(zR

k )xR
j − s′(zI

k)xI
j

)
(5)

The previous expression is the derivative w.r.t. the real weights but a similar one
should be made w.r.t. the imaginary weights.

To obtain the weights we use the gradient descent rule, and update the weights
at each iteration (t), that is, after the presentation of each training pattern to
the network, using

wR
kj(t) = wR

kj(t− 1) + ΔwR
kj(t) (6)

with (gradient descent: go opposite to the derivative of E w.r.t. the weights)

ΔwR
kj(t) = −η

∂E

∂wR
kj

= 2ηek(s(zR
k )− s(zI

k))
(
s′(zR

k )xR
j − s′(zI

k)xI
j

)
(7)

A similar derivation can be made for the case of the imaginary part of the
weights, yielding

ΔwI
kj(t) = −η

∂E

∂wI
kj

= 2ηek(s(zI
k)− s(zR

k ))
(
s′(zR

k )xI
j + s′(zI

k)xR
j

)
(8)

It is possible to show that the final expressions for the adjustment of the real
and imaginary parts of the bias are

ΔθR
k = 2ηek(s(zR

k )− s(zI
k))s′(zR

k ) (9)

and
ΔθI

k = 2ηek(s(zI
k)− s(zR

k ))s′(zI
k) (10)
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3 Batch Learning

In this section we present the batch version of the algorithm presented in the
previous section.

First change is on the functional that should be minimized: now it contains
the error contributions from all the L patterns in the training set:

E(w) =
1

2L

L∑
l=1

N∑
k=1

(tk − yk)2 (11)

The only difference to the stochastic approach presented earlier is that instead
of updating the weights after each pattern is presented to the network, we sum
the values of Δwkj and Δθk obtained after each pattern is presented to the
network and only update the weights after all patterns have been shown to the
network (after an epoch).

3.1 MEE for Learning in Batch Mode

Now we propose the use of the minimization of the entropy of the errors (MEE)
instead of the minimization of the mean squared error (MSE) as the optimization
principle behind the learning for this network.

This type of training needs a batch mode algorithm because we have to esti-
mate the distribution of the errors for updating the weights, so we need several
of these errors to obtain a good estimate.

In [11] it is shown that the minimization of the error entropy (in particular,
Renyi’s entropy) results in the minimization of the divergence between the joint
pdfs of input-target and input-output signals. This suggests that the distribution
of the output of the system is converging to the distribution of the targets. Also,
when the entropy is minimized, for the classification case and under certain mild
conditions, implies that the error must be zero (see proof in [12]).

As we saw above, the error ej = tj − yj represents the difference between
the target tj of the j neuron and its output yj . We will replace the MSE
of the variable ej for its MEE counterpart. First it is necessary to estimate
the pdf of the error. For this we use the Parzen window approach f̂(ej) =
1

Lh

∑L
i=1 K

(
ej−ei

h

)
where h represents the bandwidth of the kernel K and L

is the number of patterns in the training set. The kernel used is the Gaussian
kernel given by K(x) = 1√

2π
exp

(
−x2

2

)
. Renyi’s quadratic entropy is given by

HR2(x) = − log
(∫

C
(f(x))2dx

)
where C is the support of x and f(·) is its den-

sity function. Note that this last equation can be seen as the logarithm of the
expected value of the pdf: − log E[f(x)]. This justifies the use of the following
estimator for HR2: ĤR2(x) = − log

(
1
L

∑L
i=1 f(xi)

)
.

Once we plug the estimator of the pdf into this last expression, we get the
final expression of the entropy of the error (the cost function)
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ĤR2(ej) = − log

(
1

L2h

L∑
i=1

L∑
u=1

K

(
ei − eu

h

))
(12)

Note that instead of the time complexity for the MSE which is O(L), the
MEE approach has O(L2) complexity.

To find how to minimize this cost function, we follow a similar approach to
the one done above for the MSE. Note first that to minimize equation (12) is the
same as to maximize the argument of the logarithm, which we call J (ignoring
the constant factors):

J =
L∑

i=1

L∑
u=1

K

(
ei − eu

h

)
(13)

First we find the derivative of J w.r.t. the real weights:

∂J

∂wR
kj

=
1
h

L∑
i=1

L∑
u=1

K ′
(

ei − eu

h

)(
∂ei

∂wR
kj

− ∂eu

∂wR
kj

)
(14)

The term ∂ei

∂wR
kj

is given by − ∂yi

∂wR
kj

. This gives the following

∂J

∂wR
kj

=
2
h

L∑
i=1

L∑
u=1

K ′
(

ei − eu

h

)
((s(zR

i )− s(zI
i ))(s′(zR

i )xR
j − s′(zI

i )xI
j )−

(s(zR
u )− s(zI

u))(s′(zR
u )xR

j − s′(zI
u)xI

j ))

(15)

We will again use the gradient to guide the search for the weights, but in this
case it is a gradient ascent since we wish to maximize J . So, the weight update
at each iteration (t) will be guided by

ΔwR
kj(t) = η

∂J

∂wR
kj

(16)

A similar derivation can be done for the case of the imaginary weights. The
expression equivalent to (15) is

∂J

∂wI
kj

=
2
h

N∑
i=1

N∑
u=1

K ′
(

ei − eu

h

)
((s(zI

i )− s(zR
i ))(s′(zR

i )xI
j + s′(zI

i )xR
j )−

(s(zI
u)− s(zR

u ))(s′(zR
u )xI

j + s′(zI
u)xR

j ))

(17)

The update equations for the thresholds can be obtained by finding ∂J
∂θR

k

and
∂J
∂θI

k

. These equations are

∂J

∂θR
k

=
2
h

N∑
i=1

N∑
u=1

K ′
(

ei − eu

h

)
((s(zR

i )− s(zI
i ))s′(zR

i )−

(s(zR
u )− s(zI

u))s′(zR
u ))

(18)
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and

∂J

∂θI
k

=
2
h

N∑
i=1

N∑
u=1

K ′
(

ei − eu

h

)
((s(zI

i )− s(zR
i ))s′(zI

i )−

(s(zI
u)− s(zR

u ))s′(zI
u))

(19)

4 Experiments

4.1 Datasets

We tried to find datasets were measurements were made with real and imaginary
parts (complex numbers) because we suspected that these would be the most
adequate settings for the type of network we are studying. Unfortunately it is
very hard to find this type of data. We used an artificial dataset to simulate
complex data and a real one, with actual complex measurements.

The artificial generated problem (Checkerboard) is a 2 by 2 grid of points
with alternate classes (similar to the XOR problem). It contains 400 points, 100
per grid position and 200 per class. In this case we consider that the value of
the X coordinate of a point is the real part of a complex measurement and the
Y coordinate is the imaginary part.

The second is a breast cancer dataset. It consists of electrical impedance
measurements that were performed on 120 samples of freshly excised breast
tissue. The problem has 6 classes, 120 points and 24 features (real and imaginary
parts of 12 measurements of impedance at different frequencies) [13].

The data was centered and reduced for all algorithms with the exception of
the SVM where a normalization in the interval [-1,1] was done for each feature.
We used the LIBSVM [14] implementation.

4.2 Results

The results are in table 1. This table contain the average error and standard
deviation of 30 repetitions of a two-fold cross-validation. We show also the results
using SVM with RBF kernel (best value obtained for g varying from 2.2 to 0.8
in steps of 0.2, for C=10 and C=100), k-NN (best value from k=1, 3, 5 and 7)
and the C4.5 decision tree. For the MEE version there were 3 results for each
value of the learning rate, one for each of values of the kernel bandwidth used
(1.0, 1.2 and 1.4). We only show the best to save space. The presented results
for the CVNNs were the best values obtained when the training run for 4000
epochs, which were evaluated at 20 epochs intervals on the test set.

The results for the Checkerboard problem are very impressive: the CVNN is
able to attain almost perfect classification and the second best method, the SVM
with RBF, is still a bit behind. In this dataset, the batch MEE version is also
the best for the tested values of the parameters, when compared with the other
two versions. For the Checkerboard problem we also show the more informative
balanced error rate since this is a two class problem (we cannot show this value
for the second dataset since it has 6 classes).



SLCVNN with Entropic Cost Function 337

Table 1. Average error and balanced error (BER), in percentage, with standard devi-
ation for 30 repetitions of a two fold-cross validation for both datasets

Dataset -> Checkerboard Breast cancer

Method Parameters Error (std) BER (std) Parameters Error (std)

SVM RBF g=1.8, C=10 2.92 (0.60) 5.37 (1.14) g=1.0, C=10 31.83 (3.23)
k-NN k = 1 4.48 (0.98) 7.18 (1.38) k = 5 34.42 (2.99)
C4.5 - 25.22 (0.29) 49.91 (0.55) - 35.28 (5.28)

Stochastic η = 0.09 0.51 (0.38) 0.38 (0.34) η = 0.09 32.11 (5.68)
Batch MSE η = 0.09 0.60 (0.43) 0.47 (0.39) η = 0.09 33.25 (6.05)
Batch MEE η = 0.09, h = 1.0 0.30 (0.22) 0.22 (0.21) η = 0.09, h = 1.0 33.14 (5.55)

Stochastic η = 0.07 0.43 (0.26) 0.32 (0.29) η = 0.07 32.69 (5.30)
Batch MSE η = 0.07 0.48 (0.39) 0.37 (0.33) η = 0.07 33.25 (6.05)
Batch MEE η = 0.07, h = 1.4 0.32 (0.31) 0.24 (0.28) η = 0.07, h = 1.4 33.47 (6.19)

Stochastic η = 0.05 0.57 (0.50) 0.46 (0.54) η = 0.05 33.64 (5.07)
Batch MSE η = 0.05 0.45 (0.30) 0.33 (0.26) η = 0.05 33.03 (5.26)
Batch MEE η = 0.05, h = 1.4 0.33 (0.24) 0.22 (0.16) η = 0.05, h = 1.0 33.00 (4.94)

Stochastic η = 0.03 0.72 (0.55) 0.59 (0.51) η = 0.03 33.17 (6.18)
Batch MSE η = 0.03 0.58 (0.36) 0.44 (0.34) η = 0.03 32.94 (5.74)
Batch MEE η = 0.03, h = 1.4 0.37 (0.22) 0.27 (0.21) η = 0.03, h = 1.0 33.50 (4.43)

Stochastic η = 0.01 0.68 (0.32) 0.57 (0.34) η = 0.01 33.28 (5.66)
Batch MSE η = 0.01 0.68 (0.54) 0.59 (0.57) η = 0.01 33.61 (5.29)
Batch MEE η = 0.01, h = 1.0 0.23 (0.31) 0.18 (0.27) η = 0.01, h = 1.0 34.58 (3.84)

For the Brest Cancer problem, the SVM with RBF was the best classifier.
The CVNN came in second place. Within the 3 variants of the CVNN, the best
results were obtained by the stochastic version. The MEE based version showed
in general (4 out of 5) smaller standard deviations in the results. The exception
was for η = 0.07.

5 Conclusions

In this paper we showed how to extend the previous existing single layer com-
plex valued neural network to batch MSE training and batch MEE training. We
present some experiments showing the validity of the proposals. It is interest-
ing to see that in one of the experiments (Checkerboard), the CVNN improves
substantially the results of other approaches. It would be important to try to un-
derstand what are the features of this dataset that make CVNNs so adequate to
it, but this is beyond the scope of the present work. As future work, we would like
to try to accelerate the MEE based algorithm, since it is quadratic in the num-
ber of data points. A possibility is the application of a mixed batch-sequential
approach as in [15].

Acknowledgments. We acknowledge Prof. Marques de Sá for providing the
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Abstract. Extreme learning machines are single-hidden layer feed-
forward neural networks, where the training is restricted to the out-
put weights in order to achieve fast learning with good performance.
The success of learning strongly depends on the random parameter ini-
tialization. To overcome the problem of unsuited initialization ranges,
a novel and efficient pretraining method to adapt extreme learning ma-
chines task-specific is presented. The pretraining aims at desired output
distributions of the hidden neurons. It leads to better performance and
less dependence on the size of the hidden layer.

Keywords: extreme learning machine, pretraining, neural network,
learning, intrinsic plasticity, batch, regression.

1 Introduction

In [1], Huang proposes the extreme learning machine (ELM) which is an efficient
learning algorithm based on random projections. Its task performance depends
on the size of the hidden layer and the initialization ranges of the parameters. A
good performance is usually achieved by manually tuning these parameters to a
task-suitable regime.

Although, recently some improvements to the ELM have been developed, that
are based on the idea to change the hidden layer size, an automatic and efficient
task-specific optimization method for ELMs is still missing.

Feng presents a method which adds random neurons to the ELM - the error
minimized extreme learning machine (EMELM) [2]. Whereas recomputation of
the pseudo inverse is necessary, the computational time for solving the regression
task is reduced to a minimum by using fast update rules derived in the original
paper. Another idea to improve ELMs is to decrease the size of the hidden layer
- the optimally pruned extreme learning machine (OPELM) [3]. The OPELM
method starts with a large hidden layer and a ranking of the neurons. The
learning results are improved by pruning the OPELM using a leave-one-out
criterion. There is no need to specify the size of the hidden layer in advance
without knowledge of the task complexity by using these methods. However, the

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 339–346, 2011.
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results still strongly depend on the random initialization - i.e. the biases and
input weights. Methods controlling the network size are insufficient in tuning
the neurons to a good regime, where the encoding is optimal.

It is shown in [4], that a biologically inspired online learning rule called in-
trinsic plasticity (IP) published by Triesch in [5] is able to enhance the encoding
in recurrent neural networks. The output is forced by IP to produce exponential
distributions. This maximizes the network’s information transmission, caused by
the high entropy of the distribution. Inspired by IP, we propose a novel method
to pretrain ELMs, which also aims on achieving desired output distributions.
In contrast to IP, the pretraining works in batch fashion by creating imaginary
targets and will therefore be called batch intrinsic plasticity (BIP). The method
adapts the hidden layer analytically by a pseudo inverse technique instead of
performing a computationally expensive gradient-descent. This idea makes BIP
highly efficient.

The following experiments show that the new method leads to better results
for randomly initialized ELMs. In particular the generalization ability of the
networks is improved significantly.

2 Extreme Learning Machine

The ELM consists of three different layers: u ∈ RI×1 collects the input, h ∈ RR×1

the hidden, and ŷ ∈ R
O×1 the output neurons. The input is connected to the

hidden layer through the input matrix W in ∈ RR×I , while the read-out matrix
W out ∈ RO×R contains the read-out weights. The ELM as it is proposed by
Huang is created by randomly initializing the input matrix, the slopes ai and
the biases bi (i = 1, . . . R) in the - typically sigmoid - activation function. Usually
the slopes are set to one. When denoting the weights from the input layer to a
specific hidden layer neuron i with W in

i ∈ R1×I , the ELM scheme then becomes

ŷ = W outh = W out
(
. . . , f

(
aiW

in
i u + bi

)
, . . .

)T
. (1)

2.1 Supervised Read-Out Learning by Ridge Regression

Supervised learning for ELMs is restricted to the read-out weights W out. In
order to infer a desired input-output mapping from a set of Ntr training samples
(u(k), y(k)) with k = 1 . . .Ntr, the read-out weights W out are adapted such that
the mean square error for the training set is minimized:

E =
1

Ntr

Ntr∑
k=1

||y(k)− ŷ(k)||2 → min . (2)

The paper focuses on batch training and uses a standard linear ridge regression
method to control the size of the output weights. This is different to the approach
in the original ELM paper where the pseudo inverse is used. The generalization
ability of the networks is improved by that technique. The network’s states
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h(k) belonging to the inputs u(k) as well as the desired output targets y(k)
are collected in a state matrix H = (h(1) . . . h(Ntr))

T ∈ �Ntr×R and a target
matrix Y = (y(1) . . . y(Ntr))

T ∈ �Ntr×O. The optimal read-out weights are then
determined by the least squares solution

(W out)T =
(
HT H + ε1

)−1
HT Y, (3)

where the factor ε ≥ 0 was identified by Tikhonov in [6] as output regularization
strength.

2.2 Batch Intrinsic Plasticity

The task performance of an ELM strongly depends on the random initialization
of the input matrix and the biases. Without expert-tuning by means of additional
task knowledge, a random initialization can lead to the problem of saturated,
almost linear or constant neurons. This can be avoided by finding activation
functions which are in a favorable regime. Thus, we introduce a novel method to
adapt activation functions such that certain output distributions are achieved.
An invertible activation function and a random number generator which pro-
duces numbers drawn from the desired distribution are assumed.

Only the inputs u = (u(1), u(2) . . . u(Ntr)) ∈ RI×Ntr stimulating the network
are used for optimization. The goal is to adapt slope ai and bias bi of the acti-
vation function such that the desired distribution fdes for the neuron’s outputs
hi(k) = f(aisi(k)+bi) is realized. The synaptic sum arriving at neuron i is given
by si(k) = W in

i u(k) and collected in si = W in
i u.

Therefore, a linear regression problem is formulated, where random targets
t = (t1, t2 . . . tNtr)T are drawn in ascending order t1 < · · · < tNtr from the
desired output distribution. Since the stimuli need to be mapped onto the right
targets, a rearrangement of the stimuli in ascending order si(1) < · · · < si(Ntr)
is done by sorting si ← sort(si). This is necessary because a monotonically
increasing activation function f is used to map all incoming training stimuli on
the right targets and infer the desired distribution fdes for the neuron’s output.
The model Φ(si) =

(
sT

i , (1 . . . 1)T
)

and the parameter vector vi = (ai, bi)T are
built to reduce the learning for the i-th neuron to a linear and over-determined
regression problem, where the outputs are mapped onto the targets hi(k) ≈ tk:

‖Φ(si) · vi − f−1(t)‖ → min . (4)

The solution for the optimal slope ai and bias bi is obtained by computation of
the Moore-Penrose pseudo inverse [7]:

vi = (ai, bi)T = Φ†(si) · f−1(t) . (5)

Typically Fermi and tangens hyperbolicus functions are used as activation func-
tions. The learning is done in one-shot fashion and summarized in Alg. 1.

The pretraining is of the same order of complexity than the supervised read-
out learning, since only the least squares solutions of the linear model Φ have to
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Algorithm 1. Batch intrinsic plasticity (BIP)
Require: get inputs u = (u(1), u(2) . . . u(Ntr))

T

for all hidden neurons i do
get stimuli si = W in

i · u
draw targets t = (t1, t2 . . . tNtr)

T from desired distribution fdes

sort targets t← sort(t) and stimuli si ← sort(si)
build Φ(si) =

(
sT

i , (1 . . . 1)T
)

calculate (pseudo-)inverse (ai, bi)
T = vi = Φ(si)

† · f−1(t)
end for
return v = (v1, v2 . . . vR)T

be calculated. In the experiments, the pretraining and the supervised learning
showed no significant difference in the computational time.

3 Results

In Sect. 3.1 the impact of BIP-learning is considered and single-neuron behav-
ior is illustrated for different input and desired output distributions. Sect. 3.2
demonstrates the performance of the ELMs after pretraining on a robotics task.
Sect. 3.3 shows that the performance is less dependent on the size of the hidden
layer after pretraining the ELMs with BIP on the Abalone task from the UCI
machine learning repository [8] and compares the method to other state of the
art models.
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Fig. 1. A neuron’s activation function adapted by BIP to approximate the output
distributions fdes while starting from the input distributions fs. The input distribution
is varied over the rows, while the output distributions varies column-wise.
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Table 1. Fits of output distributions.
A cell contains mean and standard de-
viation of the χ2-value, μ and σ.

χ2/μ/σ exp norm uni

0.49±0.36 1.04±1.04 1.83±0.37
exp 0.18±0.02 0.49±0.01 0.46±0.04

0.21±0.03 0.08±0.01 0.25±0.02

0.08±0.06 0.05±0.04 0.27±0.11
norm 0.20±0.02 0.50±0.01 0.49±0.04

0.19±0.02 0.09±0.01 0.29±0.01

0.27±0.11 0.25±0.09 1.14±0.13
uni 0.19±0.02 0.49±0.01 0.49±0.03

0.18±0.02 0.09±0.01 0.31±0.01

Table 2. Test errors on the robotics
task. Comparison of randomly initial-
ized and BIP-pretrained ELMs.

rnd ld(ε)=-15 −12 −9
BIP

R=50 .062±.003 .062±.003 .060±.002
.062±.004 .063±.004 .059±.002

100 .094±.034 .093±.032 .077±.017
.073±.014 .072±.013 .061±.002

150 .149±.076 .148±.076 .107±.042
.073±.013 .073±.013 .062±.003

200 .229±.160 .227±.158 .153±.085
.075±.015 .075±.015 .062±.003

3.1 Batch Intrinsic Plasticity and Single Neuron Behavior

To illustrate the behavior of the BIP-learning, a single-neuron model with dif-
ferent fixed input distributions fs is considered. Ntr = 50 samples are used for
training and Nte = 1000 samples are used for testing - both drawn from fs.

Three different input and output distributions are taken into account: fdes =
fs = exp(onential), norm(al), and uni(form). The moments of the distributions
are: μ(exp) = 0.2, σ(exp) = 0.2, μ(norm) = 0.5, σ(norm) = 0.1, μ(uni) = 0.5,
and σ(uni) = 0.3.

Fig. 1 illustrates the result of adapting the neuron’s nonlinear transfer func-
tion. The input distribution is assigned to the rows of the figure, while the desired
output distribution is assigned column-wise. The incoming training stimuli are
visualized by the crosses on the x-axis, while the corresponding targets are on
the y-axis. The x-axis shows a histogram of the synthetically created test stim-
uli while the y-axis shows a histogram of the outputs produced by the learned
activation function transforming the inputs. Especially when stimulated with
Gaussian input, the neuron is able to achieve the three desired output distribu-
tions very accurately - illustrated by the second row in Fig. 1. It is demonstrated
in the first column of Fig. 1 that the exponential distribution is approximated
for all inputs. However, since the sigmoid activation function has only two de-
grees of freedom, the match is typically not perfect. The figure shows that large
deviations from the optimal output distribution can sometimes be observed.

Further statistics are summarized in Tab. 1. The table shows a neuron which
is trained by BIP for 100 trials. After each trial, the mean and the standard
deviation of the output distribution are collected as well as the χ2-value over
100 trials which determines the deviation of samples from the desired probability
distribution. The χ2-value is given by χ2 =

∑#bins
i=1

(Oi−Ei)
2

Ei
, where #bins = 20

is the number of bins equidistantly distributed in the interval [0, 1]. Ei is the
analytically given value of the integral in the i-th bin-range, and Oi is the ob-
served value divided by the number of test samples Nte = 1000. The table
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Fig. 2. Robotics task for ELMs with: R = 150 and ε = 10−12. Left: performance of
the randomly initialized ELM. Right: performance of the ELM which was first trained
with the BIP method.

shows, that μ and σ of the output distribution are always approximated very
well with low variance.

3.2 Robotics Regression Task

In the following two sections the experiments are described, where the networks’
input matrix components W in

ij and the biases bi are drawn from a uniform dis-
tribution in the interval [−10, 10] while the slopes ai are set to unity. In the
experiments, the Fermi-function f(x) = 1/(1 + exp(−x)) is used as activation
function and the desired output is the exponential distribution fdes = fexp with
a fixed mean μ = 0.2. It was already shown that this choice of desired output
distribution can lead to an improvement of the generalization ability [4].

The network models are applied to learn the observed inverse kinematics
mapping between joint and task space of a redundant six degrees-of-freedom
(DOF) robot arm shown in Fig. 2. Ntr = 100 training samples are generated by
projecting a task trajectory specified in Cartesian end-effector coordinates into
the joint space of the robot arm by means of the analytically calculated inverse
kinematics function F : U → Y, where U is the task and Y the joint space.
For each task space input (u1(k) . . . u6(k))T containing the end-effector position
and orientation the six-dim target vector (y1(k) . . . y6(k))T is computed and
additionally corrupted with Gaussian-noise (σN = 0.1). The generated trajectory
forms an eight - see Fig. 2. The left plot images the learned inverse kinematics for
a randomly initialized ELM, which apparently overfits the data. The right plot
shows the result of the supervised learning for an ELM which was first trained
with BIP. The learned part of the inverse kinematics is approximated very well.

Additionally, Nte = 1000 test samples are created to verify the generalization
capability for different hidden layer sizes R and output regularization strengths
ε. The results of the experiments are summarized in Tab. 2 and done for 10
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different ELMs and 10 different data sets for each cell. The results show that
the ELMs trained with BIP perform significantly better than the randomly ini-
tialized networks over the whole range of the parameters. Even ELMs with a
big hidden layer and low output regularization (e.g. with R = 200, ε = 10−15)
do not tend to overfit the data after BIP-pretraining. Also the variance in the
performance is much less after pretraining, a robust solution from the learning
can be guaranteed.

3.3 Abalone Regression Task

In this section, the performance is tested on the well known Abalone task com-
prising Ntr = 2000 samples for training and Nte = 2177 for testing. The per-
formance results of some popular optimization techniques (resource allocation
network (RAN) [9], minimum resource allocation network (MRAN) [10], incre-
mental extreme learning machine (IELM) [11], and error minimized extreme
learning machine (EMELM) [2]) on the Abalone regression task quoted from
[2] are given in Tab. 4. 20 BIP-pretrained ELMs are used with different hidden
layer sizes R, the results are summarized in Tab. 3. The input was normalized to
[−1, 1] and the output to [0, 1], the weights were drawn uniformly from [−1, 1]
and linear regression where used for supervised learning as it was done in Feng’s
work to make the results comparable. Since the mentioned models are focusing
on incremental growth of the hidden layer, which is different to the BIP scheme,
a direct comparison seems difficult. However, Tab. 3 shows that the ELMs of size
R = [40, 49] perform better in most of the cases than the other models without
incrementally searching for good performing networks.

Table 3. Test-RMSEs on Abalone task

R 40 41 42 43 44

mean .0748 .0754 .0749 .0745 .0756

std .0005 .0014 .0012 .0004 .0020

R 45 46 47 48 49

mean .0751 .0761 .0747 .0745 .0748

std .0004 .0014 .0008 .0008 .0005

Table 4. Abalone results, [2]

model EMELM IELM

mean .0755 .0920

std .0032 .0046

model RAN MRAN

mean .1183 .0906

std .0076 .0065

4 Conclusion

This contribution introduces BIP, a novel and unsupervised scheme to pretrain
ELMs. Since the algorithm works in batch fashion, it is independent of learning
dynamics. It was shown that the new learning method produces the desired out-
put distributions to some extend and leads to an improvement of the learning
for randomly initialized ELMs by task-specific pretraining - no excessive expert-
tuning is needed anymore. The method is efficient and can therefore be used
to initialize the networks input weights and biases without detailed knowledge
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about the task. In addition, BIP is compared to other optimization techniques
and show that it leads to better and stable results for a specific network size.

Only the desired distribution fdes and the inverse of the activation f−1 is
needed for the method, which points out the high flexibility of the method. The
generic formulation might be used to analyze the performance of the method
with respect to other desired output distributions and activation functions. This
will lead to different codes in the hidden layer and has a huge impact on the
network’s performance.

Most of the methods used for optimizing ELMs - like the ones mentioned
- focus on the size of the hidden layer. BIP complements those methods and
could - combined with other optimization methods - lead to even better learning
results for ELMs.
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Abstract. In recent years, there has been a surge of interest in spec-
tral manifold learning techniques. Despite the interest, only little work
has focused on the empirical behavior of these techniques. We construct
synthetic data of variable complexity and observe the performance of
the techniques as they are subjected to increasingly difficult problems.
We evaluate performance in terms of both a classification and a regres-
sion task. Our study includes Isomap, LLE, Laplacian eigenmaps, and
diffusion maps. Among others, our results indicate that the techniques
are highly dependent on data density, sensitive to scaling, and greatly
influenced by intrinsic dimensionality.

1 Introduction

In recent years, the development of techniques for nonlinear dimensionality re-
duction has generated much interest. Spectral manifold learning, in which the
data is assumed to lie near an embedded manifold, has emerged as a particularly
prominent approach. These techniques compute a low-dimensional representa-
tion based on the structure of the manifold, while also guaranteeing a globally
optimal solution. During the last decade, a vast number of manifold learning
techniques were proposed [1–7].

Surprisingly, only little work has focused on the empirical behavior and per-
formance of these techniques. To our knowledge, only three such studies exist,
namely (1) the work of Yeh et al. [8], in which LLE, Kernel PCA, and Isomap
are compared in terms of a clustering task; (2) the work of Niskanen & Silven
[9] in which five techniques are evaluated on several low-density data sets; and
(3) the technical report of van der Maaten et al. [10] in which twelve techniques
are compared on a range of both artificial and natural data sets. In the case of
the two latter studies, performance is only evaluated in terms of neighborhood
preservation. All previous studies only consider problems of fixed difficulty.

Our study deviates from the previous work in two critical ways. First of all,
the techniques are evaluated in terms of both a local and a global measure of
structure preservation. Secondly, and more importantly, we construct data sets
in which the complexity can be controlled by a single parameter, allowing us to
study the performance as a function of the problem difficulty. By systematically
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applying this scheme to several types of complexity, we are able to identify sce-
narios under which the techniques break down. Moreover, we are able to highlight
strengths and weaknesses, not only of each technique individually, but also of
the methods in general. Furthermore, we believe that, by visualizing the perfor-
mance as a function of the data complexity, we give an intuitive understanding
of characteristic behavior not found in previous studies.

We have designed 5 data set variants, each of which can be scaled in complex-
ity, in terms of a certain data property. The suite contains data sets in which
(1) the density can be varied, (2) the amount of noise can be varied, (3) the em-
bedded manifold contains a hole of variable size, (4) the scaling can be varied,
(5) the intrinsic dimensionality can be varied. All data sets are modifications
of the classical swiss roll [2], which has traditionally been applied in qualitative
evaluation of manifold learning techniques. Our data sets are synthetic, because
natural data sets would have an unknown or at least poorly estimated manifold
structure, which would render our study impossible. We have confined our anal-
ysis to four canonical manifold learning techniques, namely Isomap [2], LLE [1],
Laplacian eigenmaps [3], and diffusion maps [7]. In order to evaluate the discov-
ered embeddings, we construct quality measures based on two common super-
vised learning tasks—classification and regression. The quality measure based
on regression is sensitive to global deformations in data structure and, to our
knowledge, this measure is novel in the analysis of manifold learning techniques.

2 Techniques

In the following, we provide a brief review of the applied manifold learning
techniques. Due to space constraints, we refer to the original papers for details.

The manifold learning problem is stated as follows. Let {xi ∈ RD : i ∈
1, . . . , n} be a collection of data points lying near a possibly nonlinear d-dimen-
sional manifold. The aim is to determine a low-dimensional representation in
the form of a mapping xi ∈ RD �→ yi ∈ Rd which preserves the structure of the
embedded manifold. We let X and Y denote corresponding design matrices.

The evaluated techniques represent each data point as a node in a similarity
graph G. The graph is constructed in one of three ways: i) by an ε-neighborhood
approach, in which each point is connected to all points within a ball of radius ε;
ii) by connecting each point to its k nearest neighbors; iii) by similarity weight-
ing, in which G is a fully connected, weighted graph and weights are assigned
according to a Gaussian function of width σ2.

All techniques compute a low-dimensional representation which retains some
measure of the data structure, based on the similarity graph. The optimization
amounts to an eigendecomposition of a matrix which is quadratic in the number
of data examples.

Isomap [2] estimates the pair-wise geodesic distances by the shortest paths dis-
tances in G. The low-dimensional representation is chosen such that the geodesic
distances are retained. LLE [1] characterizes the local data structure using lin-
ear models and uncovers an embedding which can be described by the same



A study on the Performance of Spectral Manifold Learning Techniques 349

model. Laplacian eigenmaps [3] compute a low-dimensional embedding in which
neighboring nodes are proximate, under the weighting of a Gaussian kernel of
width σ2. Diffusion maps [7] apply similarity weighting and treats the distances
between data points as transition probabilities in a Markov chain. The similarity
between data points is estimated by simulating a Markov random walk between
the nodes for t time steps.

3 Synthetic Data Sets

In this study, we construct data sets which vary in complexity as a function of
a single argument, which we will refer to as the data argument. We evaluate the
selected techniques by applying them to data sets of increasing complexity. All
constructed data sets are modifications of the traditional swiss roll [2]. The swiss
roll data set is a natural basis for several reasons: 1) it is visualizable; 2) it has
a simple shape which cannot be modeled by PCA; 3) the chosen techniques are
known to perform well on this data set.

A synthetic data set X is constructed by a mapping f : Rd → RD of n data
points {ŷi ∈ Rd : i = 1, . . . , n}, where ŷi = [ŷi,1, . . . , ŷi,d]T. ŷi,j is sampled from
a uniform distribution with finite support [cmin

j , cmax
j ]. We refer to these points

as the true embedding. Letting ŷi,1 ∈
[

3π
2 , 9π

2

]
and ŷi,2 ∈ [0, 100], each data

point of the embedded swiss roll is calculated by

xi = f(ŷi) = [ŷi,1 cos(ŷi,1), ŷi,2, ŷi,1 sin(ŷi,1)]T .

Below we motivate and describe the five data set variants. We provide visu-
alizations when the structure of the data set is nontrivial.

Density: Machine learning data sets are often of low density and it is unknown
how severely this affects the discovered embeddings. We construct data sets
which vary in density by varying n, the number of data points.

Noise: Natural data often exhibit irregular structure and contains noisy mea-
surements. We model this by adding Gaussian noise sampled from N (0, σ2) to
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Fig. 1. Visualizations of a selection of the applied data sets. (a) 2-dimensional visual-
ization of the noise data set for σ2 = 0.5. (b) 2-dimensional visualization of the noise
data set for σ2 = 1. (c) Visualization of the hole data set for h = 0.5 (50%). (d)
Visualization of the intrinsic dimensionality data set for d = 1.
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each component of the swiss roll data points xi. Realizations of this data are
visualized in Fig. 1(a) and 1(b).

Hole: Some concern has been expressed regarding the inability of Isomap to
model nonconvex manifolds [5]. Motivated by this, we apply the techniques to
data where the manifold has a hole. A manifold which contains a square hole,
centered in the true embedding and spanning h percent of each true embedding
axis, is constructed by rejecting all samples within the hole. Fig. 1(c) shows a
realization of this data.

Scaling: Natural data is often a product of a number of measurements; these
measurements are frequently not directly comparable and must be rescaled ap-
propriately for analysis. We investigate the sensitivity of the techniques with
respect to scaling. Rescalings of the swiss roll data set are constructed by ro-
tating the manifold 45 degrees around each coordinate axis and scaling the first
component of the resulting data points by a factor of s.

Intrinsic dimensionality: We investigate the performance of the techniques
when subjected to data of variable intrinsic dimensionality. A data set contain-
ing one intrinsic dimension is defined to be the 2-dimensional swiss roll. Each
additional intrinsic dimension is simply added by including a linear component
sampled from U(0, 100). Note that, under this simple scheme, the empirical per-
formance of the techniques degenerate to that of PCA when d = 3 and higher.
Because of this, we simplify the swiss roll by only sampling ŷi,1 from U

(
3π
2 , 7π

2

)
.

A visualization of this is given in Fig. 1(d).

4 Quality Measures

Motivated by the applicability of spectral manifold learning techniques to data
analysis, we evaluate the embeddings discovered by these techniques in terms of
two common supervised learning tasks—classification and regression. Under this
scheme, we associate to each data point yi a target value ti based on its position
in the true embedding. In the classification setting, where tclas

i ∈ {0, 1}, target
values are assigned in a checkerboard pattern. In the regression setting we have
treg
i ∈ R and target values are assigned linearly along the first coordinate axis

in the true embedding, i.e. treg
i = ŷi,1. Visualizations are given in Fig. 2.

In principle, any classification technique can be applied in the classification
setting. In this study, we employ a Nearest Neighbour (NN) classifier for sim-
plicity. Letting pclas

i denote the NN prediction of tclas
i under leave-one-out cross-

validation, we define the quality Qclas of Y as the misclassification rate [10, 9].
The classification measure determines how well the local structure is preserved
in the discovered embeddings.

Since the target values were chosen as a linear component in the true embed-
ding, it is reasonable to expect that they can approximately be reconstructed
linearly in the embedded coordinate system. Thus, we define the quality Qreg of
the embedding Y wrt. the data X as the root mean squared error
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Qreg =

√√√√n−1

n∑
i=1

(preg
i − treg

i )2,

where preg
i is the predicted target value under a linear least squares regression

model using leave-one-out cross-validation. The regression measure responds to
deformations in both global and local data structure. To our knowledge, this
measure is novel.
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Fig. 2. Target value assignment in the classification and regression settings. Color
denotes target value. Left: Classification setting. Right: Regression setting.

5 Experimental Results

Each technique has a number of parameters which must be fixed. We esti-
mate the optimal parameters in a practical manner, by exhaustively search-
ing a fixed range of viable parameters, and retaining the parameters which
maximize quality measures. For Isomap, LLE, and Laplacian eigenmaps, k is
varied in k ∈ {4, . . . , 20}. For diffusion maps, the parameters are varied in
t ∈ {1, 2, 3, 5, 10, 15, 25} and σ2 ∈ {0.75, 1, 2, 3, 5}. Note that we avoid fixing
the σ2 parameter of Laplacian eigenmaps by letting σ2 → ∞, as proposed by
Belkin & Niyogi [3].

Having fixed the parameters for each data set, we estimate the mean perfor-
mance over a series of 10 trials; each trial uses a new realization of the data set.
The results are plotted along with the standard error. We report the performance
of PCA as a baseline measure. Except for the density experiment, each data set
is constructed with a density of 3500 data points. We remind the reader that,
for both quality measures, a lower score is indicative of better performance.

The experimental results are given in Fig. 3–7. For clarity, the markers have
been slighty displaced. Before inspecting each experiment in turn, we make two
general observations. First, we note that the two quality measures are highly
correlated; when the measures disagree, it is an indication that a global defor-
mation of the embedded manifold has occurred. Secondly, we observe that LLE
tends to perform less stable than the remaining techniques, especially in the re-
gression setting. We do, however, not believe that this is an effect of attempting
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Fig. 3. Results of the density experiment. Left: Classification measure. Right: Regres-
sion measure.

to uncover global manifold structure from models of local geometry; our results
show that Laplacian eigenmaps is capable of this with considerable stability.
Rather, we speculate that this is a weakness of modeling the local geometry by
reconstruction weights.

Density (Fig. 3): We make two key observations. First, the performance
of the techniques does not converge until n ≥ 2500; note that this is a fairly
densely sampled manifold. Additionally, we observe that diffusion maps, in the
low-density cases, outperform the remaining techniques with significant stability,
according to the classification measure. Since this is not the case in the regression
setting, we conclude that only the local manifold structure is preserved.

Noise (Fig. 4): We note that the performance of the techniques deteriorates
as the noise is increased beyond σ2 = 0.5. Surprisingly, the sensitivity of Isomap
with respect to short-circuiting does not result in more rapid deterioration than
the remaining techniques. Diffusion maps and Laplacian eigenmaps tend to be
especially robust when subjected to low noise data. We also observe that diffusion
maps are capable of preserving the local structure, even noise levels increase.

Hole (Fig. 5): We observe that holes on the manifold, regardless of the size,
does not significantly affect the performance of the applied techniques. Note
that this is not necessarily an indication that the applied techniques accurately
determine the structure of the true embedding, but rather that the discovered
embeddings are satisfactory in terms of the classification and regression tasks.

Scaling (Fig. 6): We observe that, generally, the techniques more easily recon-
struct an embedding which is satisfactory in terms of the classification measure
than the regression measure. Again, this gives an indication that the local struc-
ture is more easily retained than the global structure. Additionally, we observe
that the techniques struggle to recover the global manifold structure when the
data is scaled beyond s ∈ [0.5; 2].This effect is most pronounced for LLE, Lapla-
cian eigenmaps, and diffusion maps.

Intrinsic Dimensionality (Fig. 7): We observe that the performance of the
techniques begins to deteriorate when d > 3 and that the techniques do not have
a significant advantage over PCA when d > 4.
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measure.
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6 Discussion

In summary, our experiments indicate that the evaluated techniques are 1) highly
dependent on data density, 2) invariant to holes on the manifold with respect
to the classification and regression tasks, 3) sensitive to scaling, and 4) highly
dependent on intrinsic dimensionality. Clearly, 1) and 4) are tightly related.

Although it is expected that high intrinsic dimensionality and low data density
have a negative impact on the discovered embeddings, the severity of these effects
is nevertheless surprising. As limited amounts of data is the rule rather than the
exception, we consider this a severe problem. Note that these techniques require
quadratic memory in the amount of data examples, making problems of more
than 10.000 examples virtually infeasible on modern computers.

The experiments showed that the methods were sensitive to scaling of the
original data. This is a problem of practical concern as it questions the use of
e.g. whitening as a pre-processing step. Such pre-processing does not take the
manifold structure into account, which is why we see performance drops when
data is scaled.

We believe that our study provides four important contributions to the com-
munity: 1) we have presented a novel quality measure which is sensitive to global
deformations in data structure; 2) we exemplify how to view performance as a
function of complexity; 3) we facilitate an intuitive understanding of manifold
learning performance; 4) our study can help practitioners evaluate whether spec-
tral manifold learning is applicable for a certain data set.
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Abstract. Currently the most accurate WLAN positioning systems are
based on the fingerprinting approach, where a “radio map” is constructed
by modeling how the signal strength measurements vary according to
the location. However, collecting a sufficient amount of location-tagged
training data is a rather tedious and time consuming task, especially in
indoor scenarios — the main application area of WLAN positioning —
where GPS coverage is unavailable. To alleviate this problem, we present
a semi-supervised manifold learning technique for building accurate ra-
dio maps from partially labeled data, where only a small portion of the
signal strength measurements need to be tagged with the corresponding
coordinates. The basic idea is to construct a non-linear projection that
maps high-dimensional signal fingerprints onto a two-dimensional man-
ifold, thereby dramatically reducing the need of location-tagged data.
Our results from a deployment in a real-world experiment demonstrate
the practical utility of the method.

Keywords: non-linear projection, manifold learning, wlan positioning,
Isomap.

1 Introduction

The need for special-purpose positioning systems for indoor use arises from the
failure of established technologies, such as GPS, to properly locate and track
objects in an indoor environment [8]. GPS signals tend to be weak when blocked
by building walls, and even when a position is triangulated the accuracy is not
sufficient for indoor use [4]. Several systems have been proposed that rely on the
localized object carrying some kind of transceiver (RFID) [9] or infrared sensors
built into the environment [14].

Recently, the interest in positioning based on wireless local area networks
(WLANs), in particular, has grown significantly. This can be attributed to their
wide use and distribution as well as the open standard which allows for request-
ing of signal strength information without separate authentication. WLAN-based
systems have come a long way since the pioneering work of Bahl and Padmanab-
han, who applied a nearest neighbor method on fingerprints composed of received
signal strength indicator (RSSI) values [1]. Many of the most successful methods
currently used in the field are probabilistic in nature ([6],[17], [23]). For a survey
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on indoor positioning techniques, see [8]; for recent work, we refer the reader
to [12],[22],[25].

Though WLAN fingerprinting approaches have achieved relatively good ac-
curacy, and have found their way into some commercial services (e.g. [5]), the
majority of location-based services are still based on GPS and other technolo-
gies [15]. One of the reasons to this is probably the manual effort required in
calibrating fingerprinting-based methods: before the system can be used, finger-
prints need to be recorded everywhere in the deployment area. Since the radio
map created through this effort needs to be tied to real-world coordinates, it
is also necessary to record the location of every fingerprint. This invariably re-
quires human presence or other external location information (e.g., GPS, camera
arrays) for the entirety of the calibration process.

We present a method for WLAN positioning wherein the fingerprinting ap-
proach is augmented with non-linear dimension reduction techniques. The main
idea is to learn a low-dimensional, non-linear manifold that can represent the ra-
dio map, enabling better statistical modeling of the signal properties in complex
multi-path environments. Once the manifold is constructed, we further propose
a very simple method for mapping observation points attached to the manifold
into geographical coordinates. Our approach is semi-supervised as the manifold
learning phase is based on observing plain RSSI vectors without their geograph-
ical coordinates. A small sample of key points whose location is recorded are
needed only to fix the mapping from the coordinate system of the manifold to
geographical coordinates.

Earlier related work has focused on localization in sensor-networks. In the
sensor-network localization problem a large set of sensor nodes communicate
with other nodes in their proximity: Shang et al. [19] use the Isomap algo-
rithm [21], and Patwari and Hero [13] use Laplacian eigenmaps to process bi-
nary connectivity data from each of the sensor nodes. Pan et al. [10,11] apply
Laplacian regularized least squares regression [2], without explicitly constructing
a low-dimensional manifold; the drawback of this method is that the outcome is
highly sensitive to the choice of the parameters controlling the regularization [24].

The rest of this paper is organized as follows. In Section 2, we lay out the
basic concepts in semi-supervised learning, and in particular, manifold learning,
including the specific non-linear approach (Isomap) used in this paper. In Section
3, we present the empirical framework and the details of the testing environment.
Conclusions are summarized in Section 4.

2 The Semi-supervised Approach

Manifold learning methods attempt to find the defining features of a high-
dimensional data set by reducing the dimensions (number of features) of the data
to a more manageable level, usually two or three. The underlying assumption
is that most of the variability in the data is concentrated on a low-dimensional
(possibly non-linear) manifold embedded in the high-dimensional space. In our
case, this is natural assuming that the signal characteristics are determined by
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the location of the receiver, and that the dependency is smooth. If the possible
locations are constrained to a flat two-dimensional surface, the resulting mani-
fold is then two-dimensional as well. The crux of this approach is maintaining
the pairwise distances between the fingerprints, at least locally, when they are
mapped from the high-dimensional signal space to the low-dimensional manifold.

2.1 Isomap
One of the established manifold learning methods is the Isomap algorithm [21].
Isomap is based on the same principle as multidimensional scaling (MDS) in that,
given a dissimilarity matrix, it tries to find a lower dimensional representation
of the data such that the pairwise distances between the points are distorted
as little as possible. One way to cast this as an optimization problem is to
minimize the sum of squared deviations between the actual distances dX(i, j),
and the distances in the new representation dY (i, j):

min
Y

t∑

i=1

t∑

i=1
(dX(i, j)− dY (i, j))2, (1)

If the original distances, dX(i, j), are Euclidean, MDS reduces to principal com-
ponent analysis (PCA) [3]. Due to space limitations, we omit further details and
refer the interested reader to [7].

Given a set of m-dimensional column vectors X = (x′1, . . . ,x′n), we denote by
D = [dX(i, j)] the matrix defined by their Euclidean distances. Further, we define
B = HDH , where H is the symmetric centering matrix H = In − 1

n11T , where
1 denotes the all-ones column matrix, and 1T its transpose. This implies that
both the vector and column sums of B are null. Letting B = V ΛV T , where Λ is
a diagonal matrix, be the eigendecomposition of B, we obtain the eigenvectors
as the columns of V , and the eigenvalues as the diagonal elements of Λ. The
reconstruction obtained by using the l ≥ 1 largest eigenvalues, Y = VpΛ

1
2
p is

optimal in the sense of Eq. (1). An important observation is that if we replace
the Euclidean distances dX(i, j) by arbitrary dissimilarity values, which may or
may not satisfy the properties of a valid distance metric, a solution can still be
obtained by setting all negative eigenvalues (if any) to zero.

In the Isomap algorithm, the distances dX(i, j) are obtained by constructing a
neighborhood graph where each point xi is connected to its K nearest neighbors
(in Euclidean distance). The length of an edge connecting two points is defined
as their distance, and the distance dX(i, j) between two points (that need not be
neighbors) is then calculated as the sum of edge lengths along the shortest path
connecting them. Applying the MDS algorithm as outlined above to the result-
ing distance matrix, yields a low-dimensional representation where the pairwise
distances approximate path lengths along the neighborhood graph.

2.2 Manifold-Based Radio Map Learning
We now describe the application of Isomap in WLAN-based positioning. Con-
sider a sample S = (s′1, . . . , s′n) of fingerprints, each of which is represented as a
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vector si = (si1, . . . , sip) of RSSI values. The length of the vector, p, is defined
as the number of access points (APs) in the WLAN network. The distance ma-
trix X is then given by the Euclidean distance between the fingerprint vectors,
dX(i, j) = ‖si − sj‖2. One of the practical problems that need to be solved is
treating the occasionally unobserved RSSI values that show up as missing entries
in the fingerprint vectors. Since the unobserved values are usually caused by too
weak received signal, one reasonable solution is to replace all missing values by
a small dummy value. In practice, we found that missing values typically result
when the signal power drops below -100 dBm, and hence, we replaced all missing
values by the constant -100 dBm, see [10,17].

Another technical detail, albeit one that has a dramatic effect on the quality
of the radio map produced by Isomap, is the choice of the neighborhood size,
K. There is no universally good value, as appropriate values are determined
by the variance of the observations perpendicular to the manifold relative to
its curvature, and the sparseness of the available data [18,20]. For too small a
neighborhood, the neighborhood graph will not properly capture the geodesic
distances on the manifold. Too large a neighborhood, on the other hand, risks
creating “short circuits” that distort the topological properties of the manifold
and make the algorithm unstable.

We propose to solve the neighborhood selection problem by exploiting ad-
ditional information available in a set of fingerprints that are labelled by their
geographical coordinates, which we call the key points. The method we propose
below depends on being able to map points on the manifold onto a geographical
coordinate system; we first describe a method for doing this.

2.3 Calibrating the Manifold to Geographical Coordinates

While the manifold learned by Isomap will reflect the topological structure of the
area from which the data was collected, see Fig. 1a, it will usually not correctly
match its metric properties such as lengths, angles, and curvature, which makes it
unsuitable for positioning. This is corrected in what we call the calibration phase.
We have found that the following very straightforward method is effective.

Assume that we have access to the precise location of nkey fingerprints, which
we can without loss of generality assume to be the first nkey out of the total
sample size of n. We denote the geographical coordinates of these key points
by (g(x)

i , g
(y)
i )1≤i≤nkey . Denoting the manifold coordinates of the fingerprints by

(m(x)
i ,m

(y)
i )1≤i≤n, we map the manifold coordinates to geographical coordinates

via

g
(x)
i = βxm̃′i + ε

(x)
i

g
(y)
i = βym̃′i + ε

(y)
i , (2)

where βx and βy are both parameter vectors of length five, and

m̃i = (1,m(x)
i , (m

(x)
i )2,m

(y)
i , (m

(y)
i )2), (3)
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a) b)

Fig. 1. a) Manifold discovered by Isomap with the fingerprints on it, and b) the same
manifold calibrated with geographical coordinates of a subset of key points (fingerprints
marked with red stars)

are the regressor variables where we include the constant (intercept) term, both
the manifold coordinates, as well as their squares. Note that the labeling of the
manifold coordinates as x and y has no significance. The parameters βx and βy
can be estimated by the standard least squares technique to minimize the sum
of squares of the respective errors ε(x)

i and ε(y)i for the key points 1 ≤ i ≤ nkey.
This provides an efficient way to map any point on the manifold, expressed as
(m(x),m(y)) onto the corresponding geographical coordinates (g(x), g(y)).

Figure 1 illustrates the process. The fact that the squares of the manifold co-
ordinates are involved in Eq. (3) allows non-linear (namely quadratic) mappings,
which is important since there is no guarantee that the correspondence between
the learned manifold and the actual locations is linear. The non-linearity of the
fit is clearly visible in the distortion of the bounding box in Fig. 1b. If a more
generous set of key points is available, it may be useful to consider even more
flexible mappings such as nonparametric regression, see [16].

Finally, we can use the error in the calibration mapping (2) to adjust the
Isomap neighborhood size, K. We do this by trying different values between one
and the total number of fingerprints (minus one), and choosing the one that
leads to the mapping with the smallest error between the embedded key points
and their actual (known) geographical coordinates:

1
nkey

nkey∑

i=1

(
(g(x)
i − β̂xm̃′i)2 + (g(y)i − β̂ym̃′i)2

)
.

2.4 Positioning

Positioning new fingerprints is relatively straightforward once the manifold has
been learned and calibrated with the key points. There are various ways to map
new fingerprints onto the manifold, and thence to geographic coordinates. We
choose to use the k-nearest neighbors method, selecting the k nearest fingerprints
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Fig. 2. Plot of embedded fingerprints

(not necessarily any of the key points), and then letting the manifold coordinates
of the new fingerprint be given by the average of the coordinates of the selected k
fingerprints. The latter are directly obtained from Isomap output. The resulting
manifold coordinates are then mapped to geographical coordinates, providing the
position estimate, by Eq. (2). A comparison of alternative positioning methods
in combination with manifold approaches is an interesting topic for future work.

3 Deployment and Results

We deployed the system in a real-world office building at the Department of
Computer Science, University of Helsinki. The deployment area covered hall-
ways and an adjoining open space used as a meeting space. The total area of
the environment was about 24 m × 7 m. The data recording, processing, and
most positioning tests were performed with a Samsung NC10 Netbook, running
Ubuntu Linux 9.10, equipped with an Atheros AR5007EG Wireless network
adapter, complying to the 802.11b/g standard. The total number of fingerprints
used for learning and calibrating the manifold was n = 437, of which nkey = 38
were used as key points. We reserved an additional ntest = 66 points for testing
purposes.

The Isomap neighborhood size that was found to minimize the error in map-
ping the key points was 15. This left the average error of 1.9 m. Among the 66
test fingerprints collected separately, the mean positioning error was 2.0 m, and
the median error was 1.5 m. Plotting the calibrated points onto the floor plan,
we can clearly see the shape of the hallway in the mass of points, see Fig. 2. A
majority of the points mapped to the hallway respect the infrastructure. It is
clear that the hallways insulate the WLAN signal and create unique signatures.
The mapping of fingerprints in the open space was not as distinct, however. This
was most likely caused by the lack of attenuating infrastructure, making it hard
to distinguish between the fingerprints from different ends of the space.

We have also carried out experiments in other environments with somewhat
varying results; details are omitted due to space restrictions. Future research will
benefit from an investigation of the factors most affecting the outcome.
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4 Conclusion

We presented a WLAN positioning approach where high-dimensional signal fin-
gerprints are represented as points on a two-dimensional manifold. For the man-
ifold learning phase, we used the Isomap algorithm. Our contributions include
a straightforward method for mapping points on the Isomap manifold to a geo-
graphical coordinate system by taking advantage of a relatively small subset of
the fingerprints whose precise location is known. This also allowed us to choose
the neighborhood size, a central (and only) parameter in Isomap, in a principled
way by minimizing the error in the resulting coordinate mapping.

The main benefits of our method are: more robust estimation of the RSSI
variability due to the lower dimensionality of the estimated model, and even more
importantly, reduction in the effort required to collect measurement data. The
latter feature boosts the cost-effectiveness of the fingerprinting approach both in
terms of initial set-up as well as maintenance, which may finally enable WLAN-
based indoor positioning to become the method of choice for future location-
based services. Exploring the exact tradeoff between the number of labelled
examples (and thus the deployment cost), and accuracy is a most urgent topic
for investigation, which, however, is beyond the scope of this paper.

Acknowledgments. This work was supported in part by the European Com-
mission under the PASCAL Network of Excellence.
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Abstract. In ensemble-teacher learning, a student learns from a quasi-
optimal-teacher selected randomly from a pool of many quasi-optimal-
teachers, and the student performs better than the quasi-optimal teach-
ers after the learning. The student performance is improved by using
many quasi-optimal-teachers when a Hebbian rule is used. However, a
perceptron rule cannot improve the student performance. We previously
proposed a novel ensemble-teacher learning using a perceptron rule with
a margin. A perceptron rule with a margin is mid-way between a Hebbian
rule and a perceptron rule. We have found through computer simulation
that a perceptron rule with a margin can improve student performance.
In this paper, we provide theoretical support to the proposed method by
using statistical mechanics methods.

1 Introduction

Ensemble learning improves the performance of a learning machine by using a
majority vote of many weak-learners. The majority vote is obtained by calculat-
ing the average of the weak-learners output. Bagging[1] or boosting[2] is a kind
of ensemble learning. Ensemble learning is classified with respect to the way a
new weak learner is added and the way weak learners are combined. In partic-
ular, when the weak learners are non-linear perceptrons, the space spanned by
combining weak learners differs from the original space, so ensemble learning
improves the learning machine performance. [3].

Miyoshi and Okada proposed ensemble-teacher learning as an alternative
method [4]. This method employs a true-teacher, quasi-optimal-teachers, and
a student. Quasi-optimal-teachers learn from the true-teacher beforehand and
are not a subject of learning. In this method, the student learns from a quasi-
optimal-teacher selected randomly from a pool of many quasi-optimal-teachers,
and the student performs better than the quasi-optimal-teachers after the learn-
ing. The student performance is improved by using many quasi-optimal-teachers
when a Hebbian rule is used. However, a perceptron rule cannot improve the
student performance. [5]. Okada et al. showed theoretically that the student

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 363–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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used in ensemble-teacher learning mimics an averaging mechanism of ensemble
learning [6].

We earlier proposed ensemble-teacher learning using a perceptron rule with a
margin[7] to overcome the problem. A perceptron rule with a margin is identical
to a perceptron rule when the margin is zero, and to a Hebbian rule when
the margin is infinity. Otherwise, it is somewhere between a Hebbian rule and
a perceptron rule. We have shown through computer simulation that student
performance is related to the number of quasi-optimal-teachers when a small
margin is added to a perceptron rule. However, we have not previously provided
a theoretical background to explain why this is so.

In this paper, we provide theoretical support to the effectiveness of ensemble-
teacher learning through a perceptron rule with a margin. We first review the
theory of the ensemble-teacher learning given by Miyoshi and Okada[4]. We then
point out some theoretical insights, and derive coupled differential equations
which depict the learning behavior by using statistical mechanics methods. After
that, we solve the order parameter equations in a numerical way and show the
behavior of the generalization error. Last, we show the validity of the proposed
method.

2 Model

In this section, we formulate a true-teacher (latent teacher), quasi-optimal-
teachers (ensemble-teachers), and a student network. Then we formulate
ensemble-teacher-learning through a perceptron rule.

We assume the latent teacher network, ensemble-teacher networks and the
student network receive N -dimensional input x(m) = (x1(m), . . . , xN (m)) at
the m-th learning iteration. We also assume that the elements xi(m) of the
independently drawn input x(m) are uncorrelated Gaussian random variables
with zero mean and 1/N variance; that is, the i-th element of input is drawn
from a probability distribution P (xi). At the limit of N →∞, the norm of input
vector ‖x‖ becomes one.

The latent teacher network is a non-linear perceptron. The ensemble-teacher
networks are K non-linear perceptrons, and the student is a non-linear percep-
tron. The latent teacher network and the ensemble-teacher networks are not
subject to training. Thus, the weight vectors of these networks are fixed in the
learning process. The latent teacher output is sgn(y(m)) = sgn(

∑N
i=1 Aixi(m)),

the ensemble-teacher output is sgn(vk(m)) = sgn(
∑N

i=1 Bkixi(m)), and the stu-
dent output is sgn(u(m)) = sgn(

∑N
i=1 Ji(m)xi(m)). Each element of the latent

teacher weight vector Ai, those of the ensemble-teacher weight vector Bki, and
those of the initial student weight vector Ji(0) are drawn from a Gaussian dis-
tribution of zero mean and unit variance. Assuming the thermodynamic limit
of N → ∞, ‖A‖, ‖Bk‖ and ‖J(0)‖ become

√
N . At the limit, the distribution

of the input potential of the latent teacher P (y), that of the ensemble-teacher
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P (vk), and that of the student P (u) follow a Gaussian distribution of zero mean
and unit variance. Bk and A are correlated with each other. The direction cosine
between J and A is RJ , that between J and Bk is RBkJ , that between A and
Bk is RBk, and that between Bk and Bk′ is qkk′ .

Generally, the norm of student weight vector ‖J(m)‖ changes as the time
step proceeds. Therefore, the ratio l of the norm to

√
N is considered and is

called the length of student weight vector J . The norm at the m-th iteration is
l(m)
√

N , and the size of l(m) is O(1). The distribution of the input potential of
the student P (u) follows a Gaussian distribution of zero mean and unit variance
in the thermodynamic limit of N →∞. The distribution of the input potentials
of the latent teacher P (y) and that of the sub-optimal teacher P (vk) follow a
Gaussian distribution of zero mean and unit variance.

We then introduce the ensemble-teacher learning[4]. This learning uses a la-
tent teacher, ensemble-teachers that are quasi-optimal-teachers, and the student.
The student learns from an ensemble-teacher that is randomly selected from K
ensemble-teachers. Here, a perceptron rule is used. The learning equation is

J(m + 1) = J(m) + ηΘ
(
−u(m) sgn(vk′(m))

)
sgn(vk′(m))x(m). (1)

Here, subscript k′(m) denotes an ensemble-teacher selected at the m-th iteration.
Θ(x) is a step function defined as +1 when x ≥ 0, or defined as -1 when x < 0.
Equation (1) shows that the student learns many semi-optimal-teachers within
a microscopic interval when we assume that time t is defined as t = m/N and
N →∞, so there are N iterations in a microscopic interval of t→ t+Δt. Okada
et al. showed theoretically that the student used in ensemble-teacher learning
mimics an averaging mechanism of ensemble learning [6].

3 Theory of Ensemble-Teacher Learning with a
Perceptron Rule

Next, we show theoretical results for ensemble-teacher learning through a per-
ceptron rule[5]. The generalization error εg is given by error ε averaged over the
possible input.

εg =
∫

dxP (x)ε =
∫

dyduP (y, u)ε(y, u) =
1
π

arccos(RJ ) (2)

ε = Θ(−yu) (3)

Here, y is output of the latent teacher, and u is output of the student. P (x) is
the distribution of input x, and P (y, u) is the joint distribution of y and u.

Next, we introduce closed differential equations of the order parameters which
depict dynamics of the learning system[5]. rBkJ = RBkJ l and rJ = RJ l are used
to simplify the analysis.
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drBkJ

dt
=

η

K

K∑
k′=1

〈fk′vk〉 (4)

drJ

dt
=

η

N

K∑
k=1

〈fky〉 (5)

dl

dt
=

1
K

K∑
k=1

{
η 〈fk〉+

η2

2l

〈
f2

k

〉}
(6)

Here, fk = Θ(−uvk)sgn(vk). We treat the case RBkJ = RBJ , RBk = RB, and
qkk′ = q. qkk′ = q when k �= k′ and is qkk = 1 when k = k′. K ensemble-
teachers are used. Utsumi et al. calculate the four averages 〈fk′vk〉, 〈fky〉, 〈fk〉
and

〈
f2

k

〉
and substitute to Eqs. (4) to (6); then

drBJ

dt
=

η√
2π

(
1 + (K − 1)q

K
−RBJ

)
, (7)

drJ

dt
=η

RB −RJ√
2π

, (8)

dl

dt
=η

RBJ − 1√
2π

+ η2 1
π

arccos(RBJ ), (9)

are obtained[5] . Here, time t = m/N and we assume N →∞. K is the number
of sub-optimal teachers. RB and q are constant values. From Eqs. (7) to (9), only
drBJ/dt depends on K. Note that in Eq. (9), the second term of the right-hand
side represents the generalization error of ensemble-teachers. By solving Eqs.
(7) to (9) numerically at each time t, we can obtain the generalization error by
substituting RJ(t) into Eq. (2).

Figure 1 shows time dependence of the generalization error of ensemble-
teacher learning through a perceptron rule. Analytical solutions are used. The
horizontal axis is normalized time t = m/N , where m is the learning iteration.
The vertical axis is the generalization error. In Figure 1(a), learning step size
η = 0.05 and in (b), η = 1. Initial conditions are RBJ(0) = RJ(0) = 0. We set
RB = 0.6 and q = 0.2. As shown in Fig. 1(a), the generalization error decreased
with larger K and overshot in the early stage of learning, but the errors eventu-
ally became the same regardless of K. However, in Fig. 1(b), the decrease in the
generalization error was almost the same for K = 1, 2 or 3. In both cases, the
effect of majority voting obtained from many ensemble-teachers asymptotically
disappeared.

We next consider the reason for the difference between Figs. 1 (a) and (b).
From Eq. (9), the term η2 will be negligible when η is small. This term is the
generalization error of the ensemble-teachers, so the generalization error of the
ensemble-teachers need not be taken into account when η is small. Then, the
student length l becomes shorter and RJ = rJ/l becomes larger. Therefore, the
generalization error εg = arccos(RJ )/π for a small learning step size becomes
smaller in the early stage of the learning. This mechanism may cause overshoot-
ing in the early stage of learning.
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(b) η = 1.0

Fig. 1. Time dependence of generalization error of ensemble-teacher learning through
a perceptron rule

The generalization error of the ensemble-teachers may be relatively large com-
pared to the first term of Eq. (9) since the overshooting disappears when η is
large.

4 Theory of Proposed Method

In this section, we describe ensemble-teacher learning through a perceptron rule
with a margin[7], and then we build a theory supporting this method.

As discussed in [7], the cause of the diminishing effect of using many ensemble-
teachers is that the perceptron rule does not learn from ensemble-teachers whose
output sign is the same as that of the student. To avoid this problem, we intro-
duce a perceptron rule with a margin. The learning equation is

J(m + 1) = J(m) + ηΘ
(
κ− u(m) sgn(vk′(m))

)
sgn(vk′(m))x(m). (10)

Here, κ is a positive constant, and subscript k′(m) denotes an ensemble-teacher
selected at the m-th iteration. As shown in Eq. (10), a perceptron rule with
a margin expands the learnable region in the input space, thus changing the
dynamics of ensemble-teacher learning and improving the learning ability. When
κ → ∞, this learning rule is identical to a Hebbian rule, and when κ → 0, it is
identical to a perceptron rule. In other words, a perceptron rule with a margin
is a middle way between a Hebbian rule and a perceptron rule.

Next, we derive differential equations of the method’s order parameters.
We can use the same differential equations in Eqs. (7) to (9) instead of using
different fk = Θ (κ− u(m) sgn(vk)) · sgn(vk). The following equations are then
obtained:
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〈fk′vk〉 =

√
2
π

[
qkk′H

(
−κ

l√
1−R2

Bk′J

)

− RBkJ exp
(
− κ2

2l2

)
H

(
−κ

l RBk′J√
1−R2

Bk′J

)]

〈fky〉 =

√
2
π

[
RBkH

(
−κ

l√
1−R2

BkJ

)
−RJ exp

(
− κ2

2l2

)
H

(
−κ

l RBkJ√
1−R2

BkJ

)]

〈fku〉 =

√
2
π

[
RBkJH

(
−κ

l√
1−R2

BkJ

)
− exp

(
− κ2

2l2

)
H

(
−κ

l RBkJ√
1−R2

BkJ

)]
〈
f2

k

〉
= 2

∫ ∞

0

DuH

(
RBkJvk − κ

l√
1−R2

BkJ

)
.

Here,

H(x) =
∫ ∞

x

Dx =
∫ ∞

x

dx√
2π

exp
(
−x2

2

)
.

We treat the case RBkJ = RBJ , RBk = RB, and qkk′ = q when k �= k′ and
qkk′ = 1 when k = k′. K ensemble-teachers are used. Then we get

drBJ

dt
=η

√
2
π

[
1 + (K − 1)q

K
H

(
−κ

l√
1−R2

BJ

)

− RBJ exp
(
− κ2

2l2

)
H

(
−κ

l RBJ√
1−R2

BJ

)]
(11)

drJ

dt
=η

√
2
π

[
RBH

(
−κ

l√
1−R2

BJ

)
−RJ exp

(
− κ2

2l2

)
H

(
−κ

l RBJ√
1−R2

BJ

)]
(12)

dl

dt
=η

√
2
π

[
RBJH

(
−κ

l√
1−R2

BJ

)
− exp

(
− κ2

2l2

)
H

(
−κ

l RBJ√
1−R2

BJ

)]

+
η2

l

∫ ∞

0

DvkH

(
RBJ − κ

l√
1−R2

BJ

)
(13)

5 Results

We solved closed order parameter equations of the proposed method (Eqs. (11)
to (13)) numerically and then substituted into Eq. (2) to obtain the generaliza-
tion error. We compared the errors with those of computer simulations. Figure
2 shows the time dependence of the generalization error. The horizontal axis is
normalized time t = m/N , where m is the learning iteration. The vertical axis
is the generalization error. Initial conditions are RBJ(0) = RJ(0) = 0. We set
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RB = 0.6 and q = 0.2. The number of ensemble-teachers was K = 1, 2 or 3. The
margin κ was 0.2. The learning step size η = 0.05. Figure 2(a) shows analytical
solutions, and (b) shows computer simulation results. For the computer simula-
tions, N = 1000 and 1000 samples were used to calculate the mean error. Figure
2 shows that the analytical solutions agreed with those of the computer sim-
ulations, confirming the validity of the analytical solutions. The generalization
error decreased with larger K, so our objective is sufficiently achieved.
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(b) Simulation results

Fig. 2. Time dependence of generalization error for proposed method. The margin κ
is 0.2.

Next, we consider the case of K → ∞. From Eqs. (11), (12) and (13), Eq.
(11) depend on K and remained two does not depend on K. So, we consider
the effect of K using Eq. (11). When the number of output K goes to infinity,
1 + (K − 1)q)/K approaches to q as shown in Fig. 3. q is set to 0.5. From this
fact, the generalization error using many ensemble-teachers converges into the
generalization error replacing 1 + (K − 1)q/K by q with respect to the order
of 1/K.
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Fig. 3. K dependence in ensemble-teacher learning. (q = 0.5)
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6 Conclusion

In this paper, we have theoretically analyzed ensemble-teacher learning through
a perceptron rule with a margin. We derived the order parameter equations
using a statistical mechanics method. The generalization error was obtained by
using solutions of the order parameter equations. The analytical results show
that this learning method has achieved our objectives and the generalization
error decreased with larger K. Note that a random margin for every learning
iteration may also work well.
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Abstract. We propose a method of citation analysis for evaluating the topic-
dependent importance of individual scientific papers. This method assumes 
spreading activation in citation networks with a multi-hysteretic input/output re-
lationship for each node (paper). The multi-hysteretic property renders the 
steady state of spreading activation continuously dependent on the initial state. 
Given a topic represented by the initial state, the importance of individual  
papers can be defined by the activities they have in the steady state. We have 
devised this method inspired by memory retrieval in the brain, where the multi-
hysteretic property of single cells or neuronal networks is considered to play an 
essential role for cue-dependent retrieval of memory. Quantitative evaluation 
using a restoration problem has revealed that the performance of the proposed 
method is considerably higher than that of the benchmark method. We demon-
strate the practical usefulness of the proposed method by applying it to a  
citation network of neuroscience papers. 

Keywords: Bibliometrics. Scientometrics. Citation network. PageRank.  
Memory retrieval. Continuous attractor. Graded persistent activity. 

1   Introduction 

Citation of a scientific paper in another scientific paper means that research activity 
described in the latter was under the influence of that in the former (Fig. 1, left). Some 
papers, which have had broad impact upon subsequent studies, are cited many times. 
Accordingly, the simplest way of evaluating the importance of a paper in terms of 
citation is to count how many times it is cited. The importance of a paper defined in 
this way is exactly proportional to the number of citation. The impact factor, a meas-
ure for the influence of a journal, is also calculated with the same idea [1].  

Nevertheless, we believe that a citation in a more important paper is more valuable 
than that in a less important paper. So, taking account of the value of each citation 
will provide a more appropriate definition of the importance of individual papers [2]. 
The most sophisticated method employing such an idea is the PageRank algorithm 
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used by the Google internet search engine [3, 4]. This algorithm assigns higher scores 
of importance to web pages that are linked from more numerous and more important 
pages.   

The PageRank algorithm defines the importance of individual web pages only from 
the graph structure of the World Wide Web. However we often consider the ‘impor-
tance’ of a paper as what varies depending on the context or user’s interest [5-7]. Here 
we propose a novel method of citation analysis to evaluate the topic-dependent impor-
tance of individual papers. We have devised this method inspired by recent liens of 
evidence in neuroscience suggesting biophysical mechanisms of cue-dependent  
retrieval of memory in the brain [8].  

 

A

cited citing

B
Refs.
…
A
…

 

Fig. 1. Left: Document B cites document A. Right: Citation network. 

2   Methods 

2.1   Citation Network and Spreading Activation 

Consider a large network consisting of documents as nodes and citation relations 
between documents as links (Fig. 1, right). Each node has an instantaneous value of 
‘activity’. Activities spread along links from nodes to nodes; this process is referred to 
as ‘spreading activation’ [9, 10]. We define the importance of a document by the 
value of activity finally acquired by this document. It should be noted that the PageR-
ank algorithm [3] also uses the idea of spreading activation. (The difference between 
the PageRank algorithm and ours will be described later.) 

2.2   Algorithm: Initial-State-Dependent Retrieval of Information 

Let ( ) ( ), 1, ,nm mA Nn= =A  be an adjacency matrix defining the citation network 

of N  documents. If document m  cites document n , 1nmA = ; otherwise 0nmA = . Let 

( )nx t  denote the activity (output) of node n  corresponding to document n . The input 

to node n  at time t  is given by ( ) ( )
1

N

n nm mm
I t T x t

=
=∑ , where 

1

N

nm nm l lmT A A
=

≡ ∑  

corresponds to the transition matrix in the PageRank algorithm [3].  
We assume a multi-hysteretic input/output (I/O) relationship (Fig. 2) for each node. 

The time evolution of spreading activation is hence defined by the following rule:  
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(1a) If ( ) 1nx t I< , ( ) ( )1n nx t I t α+ = ; 

(1b) if ( )1 2nI x t I≤ ≤ , ( ) ( )1n nx t x t+ = ; 

(1c) if ( )2 nI x t< , ( ) ( )1n nx t I tα+ = . 

Here, α  is a parameter whose value ranges from 0 to 1 and controls the magnitude of 
hysteresis; ( )1 nI tIα=  and ( )2 nI I t α= .  

Because of the hysteretic property of the I/O relationship, the spreading activation re-
sults in the steady state that continuously depends on the initial state [8]. So, if a given 
‘topic’ is represented by the initial state ( )0x , information specific to this topic can be 

retrieved as a continuous attractor ( ) ( )limt x t x→∞ = ∞  [8]. Note that, at the limit 

1α → , the topic dependence (i.e. the continuous dependence of attractors on the initial 
state) disappears and the procedure (1a-c) is identical to the PageRank algorithm. 

The multi-hysteretic property (Fig. 2) of single cells [11, 12] or neuronal networks 
[13, 14] was originally proposed by computational neuroscientists to explain a type of 
neuronal activity whose magnitude depends on the transient cue signal in a graded 
manner (graded neuronal activity) [15, 16]. The multi-hysteretic system can generate 
robust continuous attractors; this well accounts for the experimentally observed prop-
erty of graded neuronal activity. We have hypothesized that graded neuronal activity 
is the neural substrate of cue-dependent retrieval of memory [8]. Thus the proposed 
algorithm using spreading activation with the multi-hysteretic I/O relationship repli-
cates cue-dependent retrieval of memory in the real brain.  

0

( )1nx t + x I=

K

1 K ( )nI t
0

x I α= x I= x Iα=

( )nx t

1I 2I

K → ∞

( )1nx t +

( )nI t
 

Fig. 2. The multi-hysteretic input/output relationship is implemented by stacking K  hysteresis 
units as described in the left diagram. In the limit K → ∞  (right), the relationship between 

( )nI t  and ( )1nx t +  can be expressed by the simple rule (1) given in the text.  

2.3   Expressing a Topic by Seed Documents 

A given topic is fed into the algorithm through ‘seed documents’, which are prepared 
by a user as a set of documents judged to be relevant to this topic. Since user’s 
knowledge about the topic is incomplete beforehand, seed documents might lack 
some documents that are truly relevant to the topic or include irrelevant ones. Even 
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so, high restoration performance of the proposed algorithm will retrieve truly relevant 
documents and remove irrelevant ones.  

Let τ  be a vector representing a ‘seed state’, which is defined as: 

(2a) 1nτ =  if document n  is a seed document; 

(2b) 0nτ =  otherwise. 

Hence the initial state of spreading activation is set as 

 ( )0x τ= . (3) 

2.4   Comparison Experiment: Evaluation of the Performance 

To evaluate the performance of the proposed algorithm, we carry out a comparison 
experiment taking the personalized PageRank (PPR) algorithm [3, 7] as a benchmark. 
The PPR algorithm, unlike the original PageRank algorithm, can allocate activities to 
individual nodes in a topic-dependent manner in the steady state of spreading activa-
tion. The PPR algorithm is defined by the formula 

 ( ) ( ) ( )1 1n n nx t tIρ ρ τ+ = + − , (4) 

where 0 1ρ≤ ≤ . In the right-hand side, τ  behaves as a bias force, rendering the 

steady state dependent on the topic represented by τ .  
The comparison experiment is conducted using a restoration problem set as fol-

lows. First, we adopt a mathematical model for complex networks proposed by 
Klemn and Eguiluz (KE model) [17]. Among existing network models, the KE model 
most appropriately reproduces characteristics of real citation networks. The KE model 
used in the present experiment is defined with the notations in [17] as follows: 

5000N = , 5m =  and 0.1μ = .  

Next, we define a ‘correct state’ ξ  as the steady state of the PPR algorithm,  

 ( ) ( ) ( )1 1n n nx t tI bλ λ+ = + −  (5) 

with 0.8λ = ; 1nb =  if 1 2n n n< ≤ , and 0nb =  otherwise. Here, 1n  and 1n  are inte-

gers satisfying 1 11 Nn n≤ < ≤ , and 100 sets of ( )1 2,n n  are chosen (randomly  

but with the constraint 2 150 150nn ≤−≤ ) to generate 100 different ξ ’s. The PPR 

algorithm (5) is used only to generate ξ ’s and should not be confused with the PPR 

algorithm (4) to be compared with the proposed algorithm.  

Each ξ  is quantized to a vector d  as follows: if nξ  is larger than the 50L = th 

largest component, 1nd =  (document n  with 1nd =  will be referred to as ‘correct 

document’); otherwise 0nd =  (‘non-correct document’). Then we produce a ‘seed 

state’ τ  according to the following probabilistic rule (Fig. 3): 

(6a)  If 1nd = , 0nτ =  with probability p  and 1nτ =  with probability 1 p− ; 

(6b)  if 0nd = , 1nτ =  with probability q  and 0nτ =  with probability 1 q− . 
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The rule (6a) models the event that some correct documents might be dropped from 
the seed state, while (3b) states that non-correct documents (noise) might enter the 

seed state. For each of the 100 ξ ’s, we produce corresponding τ  with p  and q  that 

are chosen each time randomly from uniform distributions 0.05 0.95p≤ ≤  and 

0 0.02q≤ ≤ . The above procedure of generating τ  includes several parameters such 

as λ , 1n , 2n , L , p  and q . Quantitatively, however, the results of comparison ex-

periment do not strongly depend on the values of these parameters. 

1nd =

0nd =

1nτ =

0nτ =

1 p−

1 q−

p

q

 

Fig. 3. Production of seed documents (τ ) from correct documents ( d ) 

We examine how accurately ξ  is restored in the steady state ( )x ∞ . For this we 

calculate the correlation coefficient between ( )x ∞  and ξ : 

 
( ) ( )( )( )

( ) ( )( ) ( )
1

1 1

22

N

n nn

N N

n nn n

x
r

x

x

x

ξ ξ

ξ ξ

=

= =

∞ ∞

∞

−

−∞

−
=

−

∑
∑ ∑

, (6) 

where ( ) ( )
1

N

n nx x N
=

∞ = ∞∑  and 
1

N

nn
Nξ ξ

=
=∑ . The larger r  the more accurate 

restoration; especially when 1r = , restoration is complete. The correlation coefficient 
for each value of the unique parameter involved in each algorithm ( α  for the proposed 
algorithm and ρ  for the PPR algorithm (4)) is averaged over the 100 ξ ’s.  

2.5   Bibliographic Data 

To demonstrate the practical usefulness of the proposed method, we examine its ap-
plication to real citation networks. For this, we prepared bibliographic information of 
papers published in major neuroscience journals. This includes for each paper: Identi-
fication data (ID); author(s); title; journal; volume; pages; year; IDs of cited papers; 
abstract; and so forth. Among them, only IDs of citing and cited papers are necessary 
to construct a citation network (Fig. 1, right). 

2.6   Topic-Dependent Ranking 

Documents that are highly activated in the steady state are regarded as what are truly 
relevant to the topic. Sorting these documents in descending order of acquired values 
of activity gives a topic-dependent document ranking.   
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2.7   Visualization 

Documents highly activated in the steady state tend to form a connected graph be-
cause the activation of these documents is maintained by mutual exchange of their 
activities via citation links. So, visualizing such a connected graph will give an over-
view of a ‘genealogy’ in the research field of the topic.  

3   Results 

Using the restoration problem defined in Methods, we compared the performances of 
the proposed algorithm with that of the PPR algorithm taken as a benchmark. How 

accurately these algorithms restore correct states ξ  from seed states τ  was evaluated 

by calculating the correlation coefficient (6). The average correlation coefficient r  
was plotted as a function of the unique parameter in each algorithm ( α  for the pro-

posed algorithm and ρ  for the PPR algorithm). Remind that ξ  itself is generated by 

the PPR algorithm (5); this appears to be more advantageous to the PPR algorithm 
than to the proposed algorithm. Despite that, the performance of the proposed algo-
rithm turned out to be considerably higher than that of the PPR algorithm (Fig. 4). To 
our best knowledge, the PPR algorithm [3, 7], except for the proposed algorithm, is 
the only method that achieves topic-dependent allocation of activities to individual 
nodes by spreading activation. Therefore, the proposed algorithm is currently the best 
for achieving such a function.  

Next we empirically demonstrate the use and the benefit of the proposed method 
by applying it to a real citation network. A citation network (Fig. 1, right) was con-
structed from papers published in major neuroscience journals. Then we took for 
example an emerging topic in neuroscience, expressed by the phrase “graded persis-
tent activity and neural integrator”. A set of 10 papers with abstracts showing high 
scores of word matching to this phrase was chosen as seed documents.  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r

,α ρ

proposed algorithm
PPR algorithm

 

Fig. 4. The restoration performance, expressed by the average correlation coefficient r , is 
plotted as a function of the unique parameter in each algorithm ( α  for the proposed algorithm 
and ρ  for the PPR algorithm)  
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Table 1. The top 20 in the topic-dependent ranking 

Rank Title Authors Activity
Seed?

1(Y)/0(N)
Journal Vol. pages year

1 STABILITY OF THE MEMORY OF EYSEUNG HS,LEE DD,REIS BY,T0.073831 0 NEURON 26 259-271 2000
2 IN VIVO INTRACELLULAR RECORDAKSAY E,GAMKRELIDZE G,SE0.073822 1 NAT NEUROSCI 4 184-193 2001
3 MODEL FOR A ROBUST NEURAL INKOULAKOV AA,RAGHAVACH 0.069003 1 NAT NEUROSCI 5 775-782 2002
4 SYNAPTIC MECHANISMS AND NETCOMPTE A,BRUNEL N,GOLDM0.06481 0 CEREB CORTEX 10 910-923 2000
5 SYNAPTIC REVERBERATION UNDEWANG XJ 0.061916 0 TRENDS NEUROSCI 24 455-463 2001
6 A MODEL OF VISUOSPATIAL WOR CAMPERI M,WANG XJ 0.058597 0 J COMPUT NEUROSCI 5 383-405 1998
7 ROBUST PERSISTENT NEURAL ACGOLDMAN MS,LEVINE JH,MA0.057205 1 CEREB CORTEX 13 1185-1195 2003
8 A RECURRENT NETWORK MODEL MILLER P,BRODY CD,ROMO 0.056 1 CEREB CORTEX 13 1208-1218 2003
9 BRAIN CALCULUS: NEURAL INTEGMCCORMICK DA 0.055254 0 NAT NEUROSCI 4 113-114 2001
10 TIMING AND NEURAL ENCODING OBRODY CD,HERNANDEZ A,ZA0.055159 0 CEREB CORTEX 13 1196-1207 2003
11 HISTORY DEPENDENCE OF RATE AKSAY E,MAJOR G,GOLDMAN0.052381 1 CEREB CORTEX 13 1173-1184 2003
12 SYNAPTIC BASIS OF CORTICAL P WANG XJ 0.050142 0 J NEUROSCI 19 9587-9603 1999
13 MATCHING PATTERNS OF ACTIVITCHAFEE MV,GOLDMAN-RAKI0.048867 0 J NEUROPHYSIOL 79 2919-2940 1998
14 BASIC MECHANISMS FOR GRADEDBRODY CD,ROMO R,KEPECS 0.047541 0 CURR OPIN NEUROBIOL 13 204-211 2003
15 ROBUST SPATIAL WORKING MEMORENART A,SONG PC,WANG X0.042419 0 NEURON 38 473-485 2003
16 NEURAL BASIS OF A PERCEPTUA SHADLEN MN,NEWSOME WT 0.04152 0 J NEUROPHYSIOL 86 1916-1936 2001
17 CORRELATED DISCHARGE AMONGAKSAY E,BAKER R,SEUNG HS0.040958 1 J NEUROSCI 23 10852-10858 2003
18 TEMPORAL STRUCTURE IN NEUROPESARAN B,PEZARIS JS,SAH0.040258 0 NAT NEUROSCI 5 805-811 2002
19 TURNING ON AND OFF WITH EXCITGUTKIN BS,LAING CR,COLBY0.038298 0 J COMPUT NEUROSCI 11 121-134 2001
20 DYNAMICS AND PLASTICITY OF S BRUNEL N 0.037095 0 CEREB CORTEX 13 1151-1161 2003  

Table 1 shows the top 20 in the ranking obtained by our algorithm. With this table, 
one can learn a list of papers to read in order of priority. It is noticeable that the paper 
by Seung et al. (2000), which is not highly ranked by word matching and is dropped 
from the seed documents, is ranked first by our algorithm. Indeed, this paper is ac-
knowledged as what has marked the beginning of the research field.  

Fig. 5 visualizes citation relations among the top 30 in the ranking. Each document 
icon symbolizes a paper and its size expresses the activity, namely, the topic-
dependent importance assigned to this paper. Icons are sorted in chronological order 
from the top to the bottom. Thin arrowed lines represent citation relations between the 
papers. The arrow is directed from a citied to a citing paper, denoting that the latter is 
under the influence of the former (Fig. 1, left). When an icon is clicked (as indicated 
by the block arrow), bibliographic information of the corresponding paper is dis-
played in a pop-up window. Interacting with this visualized graph, one can find out 
which papers are central or subsidiary and which relations between papers are main-
stream or tributary; he/she will thereby figure out how this research field has developed.   

past

future

Seung, H. S. et al. “Stability of 
the memory of eye position in 
a recurrent network of …” 
Neuron 26, pp. 259-271 (2000)

 
Fig. 5. Visualization of citation relations between the top 30 papers 
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4   Discussion 

One problem overwhelming modern scientists is a tremendous number of papers 
being published every year. Even for a narrowed topic, what one has to read often 
exceeds what one can read. Hence, it is crucial to efficiently select papers to read 
from a pile of papers and prioritize them. Using the topic-dependent ranking proposed 
here, one can get a list of papers to read in order of priority (Table 1).  

The benefit and performance of the proposed algorithm might be so high (Fig. 4) 
because it models excellent functions of the real brain. We believe that exploring the 
real brain will be helpful for creating new information-processing technology.  
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Abstract. Recently, considerable research efforts have been devoted to
the design of methods to learn from data overcomplete dictionaries for
sparse coding. However, learned dictionaries require the solution of a
sparse approximation problem for coding new data. In order to over-
come this drawback, we propose an algorithm aimed at learning both a
dictionary and its dual: a linear mapping directly performing the coding.
Our algorithm is based on proximal methods and jointly minimizes the
reconstruction error of the dictionary and the coding error of its dual;
the sparsity of the representation is induced by an 
1-based penalty on
its coefficients. Experimental results show that the algorithm is capable
of recovering the expected dictionaries. Furthermore, on a benchmark
dataset the image features obtained from the dual matrix yield state-of-
the-art classification performance while being much less computational
intensive.

1 Introduction

The goal of this paper is to introduce an algorithm – that we called PADDLE
– capable of learning from examples a dictionary as well as its (approximate)
dual: a linear operator that decomposes new signals to their optimal sparse
representations, without the need for solving any further optimization problem.

Over the years considerable effort has been devoted to the design of methods
for learning optimal dictionaries from data. The seminal work of Olshausen and
Field [13] was the first to propose an algorithm for learning an overcomplete
dictionary in the field of natural image analysis. Recent advances in compressed
sensing and feature selection led to use an �1 penalty on the decomposition
coefficients, as in [8,10].

Within this framework, given N training vectors xi ∈ R
d, the goal is to

minimize the functional
N∑

i=1

‖xi −Dui‖2 + τ

N∑
i=1

‖ui‖1 s.t. ‖di‖2 ≤ 1, (1)
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where D = [d1, . . . , dK ] ∈ Rd×K is the dictionary whose columns are the atoms,
the vectors ui ∈ RK are the decompositions over D of the training vectors xi,
and τ ≥ 0 weights the sparsity penalty.

Although the use of the decompositions ui as features for subsequent super-
vised tasks has proved to be very successful, e.g. [15], it has one major drawback.
Each decomposition requires the minimization of the functional in (1) with fixed
D, which may turn out to be impractical in real-life settings. To address this
problem, in [14] and subsequent works [7,4] the authors proposed to learn, as
well as the dictionary, a non-linear encoding transformation. For settings with
large amounts of data and/or budgeted computational resources, purely linear
approaches may be preferable and as an additional advantage can be easily and
efficiently implemented in hardware.

In the present paper we look for an optimal pair of linear operators D and
C = [c1, . . . , cK ]T ∈ R

K×d (the encoding or analysis operator) that minimize

E(D, C, U) = ‖X−DU‖2F +η‖U−CX‖2F +τ‖U‖1 s.t. ‖di‖2, ‖ci‖2 ≤ 1, (2)

where X ∈ Rd×N is the matrix whose columns are the training vectors and
U ∈ RK×N is the matrix holding the encodings. The ci can be seen as filters
that are convolved with an input signal x to approximate its optimal encoding u.

The minimization of the proposed functional may be achieved by block coor-
dinate descent, and we rely on proximal methods to perform the three resulting
inner optimization problems. Indeed, in recent years different authors provided
both theoretical and empirical evidence that proximal methods may be used to
solve the optimization problems underlying many algorithms for �1-based reg-
ularization and structured sparsity. A considerable amount of work has been
devoted to this topic within the context of signal recovery and image processing.
An extensive list of references and an overview of several approaches can be
found in [2], and in [3] for the context of machine learning. Proximal methods
have been recently used in the context of dictionary learning by [6] for imposing
a hierarchical structure into a dictionary using a structured sparsity penalty.

Experimental results show that PADDLE can recover the expected dictionar-
ies and duals, and that codes based on the dual matrix yields state-of-the-art
classification performance while being much less computational intensive.

2 Proximal Methods for Learning Dual Dictionaries

Since the functional in 2 is separately convex in each variable, we proceed by
block coordinate descent (also known as block nonlinear Gauss-Seidel method)
[9], iteratively minimizing first with respect to the encoding variables U (sparse
coding step), and then to the dictionary D and its dual C (dictionary update
step). Such approach has been shown to be empirically successful [8], and its
convergence towards a critical point of E is guaranteed by Corollary 2 of [5].

The minimization steps both with respect to U and w.r.t. D and C are solved
by proximal methods. In summary, a proximal (or forward-backward splitting)
algorithm minimizes a function of type E(ξ) = F (ξ) + J(ξ), where F is convex
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and differentiable, with Lipschitz continuous gradient, while J is lower semicon-
tinuous, convex and coercive. These assumptions on F and J , required to ensure
the existence of a solution, are fairly standard in the optimization literature (see
e.g. [2]) and are always satisfied in the setting of dictionary learning for visual
feature extraction. In the following we will denote by F the differentiable terms
of the functional E(D, C, U), and by J the sparsity penalty and the constraints
on D and C.

The non-smooth term J is involved via its proximity operator P , which can
be seen as a generalized version of a projection operator:

P (x) = argmin
y
{J(y) +

1
2
‖x− y‖2}. (3)

The proximal algorithm is given by combining the projection step with a forward
gradient descent step, as follows

ξp = P

(
ξp−1 − 1

2σ
∇F (ξp−1)

)
. (4)

The step-size of the inner gradient descent is governed by the coefficient σ,
which can be fixed or adaptive, and whose choice will be discussed in Section 2.
In particular, it can be shown that E(ξp) converges to the minimum of E if σ is
chosen appropriately [2].

Sparse Coding. Applying the algorithm (4) to the minimization of the func-
tional (2) with fixed D and C, the gradient of the (strictly convex) differentiable
term F is

∇UF = −2DT (X −DU) + 2η(U −CX),

while the proximity operator corresponding to J is the well-known soft-thre-
sholding operator Sλ defined component-wise as

(Sλ[U ])ij = sign(Uij) max{|Uij | − λ, 0}.

Plugging the gradient and the proximal operator into the general equation
(4), we obtain the following update rule:

Up = Sτ/σU

[(
1− η

σU

)
Up−1 +

1
σU

(
DT (X −DUp−1) + ηCX

)]
(5)

Dictionary Update. When U is fixed, the optimization problems with respect
to D and C are decoupled and can be solved separately.

The quadratic constraints on the columns of D and the rows of C are equiva-
lent to an indicator function J . Denoting by B the unit ball in Rd, the constraint
on D (respectively C) is formalized with J being the indicator function of the set
of matrices whose columns (resp. rows) belong to B. In both cases the proximity
operator is a projection operator. Denoting by π(d) = d/ max{1, ‖d‖} the pro-
jection on the unit ball in Rd, let πD be the operator applying π to the columns
of D and πC the operator applying π to the rows of C.
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Plugging the appropriate gradients and projection operators into Eq. (4) leads
to the update steps

Dp = πD(Dp−1 +
1

σD
(X −Dp−1U)UT ), (6)

Cp = πC(Cp−1 +
1

σC
(U −Cp−1X)XT ). (7)

Gradient Descent Step. The choice of the step-sizes σU , σD and σC is crucial
in achieving fast convergence.

In general, for E = F +J , one can choose the step-size to be equal to the Lip-
schitz constant of ∇F for all iterations. These constants can be evaluated explic-
itly, leading to σU = 2‖DT D + ηI‖F , σD = 2‖UUT ‖F and σC = 2‖XXT ‖F .

Faster rates can be obtained in two ways: either through adaptive step-size
choices (e.g. the Barzilai-Borwein method), or by slightly modifying the proximal
step as in FISTA [1]. The PADDLE algorithm makes use of the latter approach.

The FISTA update rule is based on evaluating the proximity operator with a
weighted sum of the previous two iterates. More precisely, defining a1 = 1 and
φ1 = ξ1, the proximal step (4) is replaced by

ξp = P

(
φp − 1

2σ
∇F (φp)

)
, (8)

ap+1 = (1 +
√

1 + 4a2
p)/2 (9)

φp+1 = ξp +
ap − 1
ap+1

(ξp − ξp−1). (10)

Choosing σ as in the fixed step-size case, this simple modification allows to
achieve quadratic convergence rate with respect to the values [1]. Although con-
vergence of the sequences Dp, Cp and Up is not proved theoretically, there is
empirical evidence that it holds in practice. Our experiments confirm this obser-
vation.

The PADDLE Algorithm. Let us summarize the complete algorithm. As
previously explained, PADDLE alternates between optimizing with respect to
U , D and C. These three optimizations are carried out employing the iterative
projections defined in equations (5), (6) and (7), respectively, adapted according
to equations (8–10). After the first iteration of the algorithm, the three inner
optimizations are initialized with the results obtained at the previous iteration.
This can be seen as an instance of the popular warm-restart strategy.

During the iterations it may happen that, after the optimization with respect
to U , some atoms of D are used only for few reconstructions, or not at all. If
the i-th atom di is under-used, meaning that only few elements of the i-th row
of U are non-zero, we can replace it with an example that is not reconstructed
well. If xj is such an example, this can be achieved by simply setting uj to the
canonical vector ei, since at the next step D and C are estimated from U and
X. In our experiments we only replaced atoms when not used at all.
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The iterative procedure is stopped either upon reaching the maximum number
of iterations, or when the energy decreases only slightly with respect to the last
H iterations. In our experiments we found out that, in practice, after a few
hundreds of outer iterations the convergence was always reached. Indeed, in
many cases only a few tens of iterations were required.

It is worth noting that in our implementation the algorithm optimizes with
respect to all codes ui simultaneously. Although not strictly necessary, it is a
possibility we opted for, since we are confident it could prove advantageous in
future hardware-accelerated implementations. However, the algorithm can be
easily implemented with a sequential optimization of the ui.

A reference implementation in Python, together with scripts for replicating
the experiments of the following sections, are available online at the address
http://slipguru.disi.unige.it/Research/PADDLE.

3 Experiments

The natural application of PADDLE is in the context of learning discriminative
features for image analysis. Therefore, in the following we report the experiments
on standard datasets of digits and natural images, in order to perform qualitative
and quantitative assessments of the recovered dictionaries for various choices
of the parameters. Furthermore, we discuss the impact of the feature vectors
obtained from a learned C on the accuracy of an image classifier.

Berkeley Segmentation Dataset. Following the experiment in [14, Sec. 4], we
have extracted a random sample of 105 patches of size 12x12 from the Berkeley
segmentation data set [11]. The images intensities have been centered by their
mean and normalized dividing by half the range (125). The patches have been
separately recentered too.

We have run PADDLE over a range of values for τ , with K = 200 and
both with coding error (η = 1) and without (η = 0). The relative tolerance
for stopping has been set to 10−4. The reconstruction error achieved at the
various level of sparsity (τ), both with and without the coding error, have been
constantly lower than the reconstruction error achievable with as many principal
components as the number of non-zero elements of the encodings.
In Figure 1 we show images of the recovered dictionary. An interesting effect we
observed is that different levels of sparsity in the coding coefficients also affects
the visual patterns of the dictionary atoms. The sparser the representation, the
closer the atoms are to simple partial derivatives of a 2D Gaussian kernel, i.e.
the dictionary tends to adapt poorly to the specific set of data. On the contrary,
with a less sparse representation, a larger number of the atoms seem to encode
for more structured local patterns or specific textures present in the dataset.

MNIST Dataset. Next we have tested the algorithm on the 50, 000 training
images of the popular MNIST data set [12], which is a collection of 28×28 quasi
binary images of handwritten digits. According to the experiments described

http://slipguru.disi.unige.it/Research/PADDLE
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Fig. 1. Dictionary learned from the Berkley segmentation dataset with different values
of τ : from left to right, 1, 0.1 and 0.02. The atoms are in column-major order from
the most used to the least one. The codes corresponding to the three dictionaries pairs
uses on average 6.6, 65.9 and 139.8 atoms, respectively.

in [14], we have trained the dictionary with 200 atoms. All the images have been
pre-processed by mapping their range into the interval [0, 1]. The results ob-
tained are consistent with those already reported in the literature. In particular,
the learned dictionary D comprises the most representative digits from which it
is possible to reconstruct all the others with a low approximation error. In Fig-
ure 2 (bottom) we show how the exemplar digit on the left can be expressed in
terms of the small subset of the atoms in the middle, obtaining the approximate
image on the right. As expected, the actual number of non-zero coefficients is
extremely low if compared with the size of the dictionary. In the two rows in the
middle, we first report all the dictionary atoms with non-zero coefficients and
then we weight them with respect to their relevance in the reconstruction.

A second, more interesting aspect is the fast empirical convergence of the al-
gorithm with such a well-structured dataset, as shown in Figure 2 (top). The
initial dictionary has been built with random patches. After the first iteration it
was already possible to inspect some digits, and the amount of change decreased
rapidly reaching a substantial convergence after only a few iterations. The dic-
tionary after 20 iterations (corresponding to the full convergence) was almost
identical to the one after 4 iterations only.

Classification. In this last group of experiments we have focused on the impact
of using the dictionaries learned with the PADDLE algorithm in a classification
context. More specifically, we have investigated the discriminative power of the
sparse coding associated to the dictionary D and its dual C when used to rep-
resent the visual content of an image. The goal of the experiments has been to
build a classifier to assign each image to a specific semantic class. In practice, we
replicated the experimental setting of [15], using the authors’ software package
ScSPM (available at http://www.ifp.illinois.edu/~jyang29/ScSPM.htm).
According to our experiments, the classifcation accuracy we have obtained using
a representation computed with PADDLE, 98.4% (SD=0.8%), is essentially the

http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
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Initialization After 1 iteration After 4 iterations At convergence

Fig. 2. Experiments on MNIST dataset. See text for details.

same as the one obtained with the learned dictionary used by the authors in the
original paper: 98.5% (SD=0.8%).

The results obtained with the dictionary C are especially encouraging if one
consider the substantial gain in the computational time required to compute
the sparse codes, with a fixed dictionary, for each new input image. In our
classification experiments (i.e. after learning the dictionary), processing an image
took less than 0.21 seconds on average if the representations where computed
with the matrix C, compared to 2.3 seconds using the original implementation
of the feature-sign search algorithm [8] provided with ScSPM. Indeed, regardless
the specific implementation of the sparse optimization method, it is easy to see
that using C is always the best choice since it requires just one matrix-vector
multiplication.

4 Conclusion

We have proposed a novel algorithm based on proximal methods to learn a
dictionary and its dual, that can be used to compute sparse overcomplete repre-
sentations of data. Although there may be other methods for solving the inner
optimization steps, we believe that using proximal methods allows for an addi-
tional flexibility that may be useful in employing more complex penalities, as in
[6]. The experiments have shown that for image data the algorithm yields repre-
sentations with good discriminative power. In particular, the dual dictionary can
be used to efficiently compute the representations by means of a simple matrix-
vector multiplication, without any loss of classification accuracy. We believe that
our method is a valid contribution towards building robust and expressive dic-
tionaries of visual features.

Acknowledgments. The authors wish to gratefully thank A. Barla, G. Chiu-
sano, M. Esposito, A. Staglianó.
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Csató, Lehel II-221
Cuadrado, Abel A. II-285

Dähne, Sven I-36
Dai, Andrew M. I-241
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Kůrková, Věra I-126

Kurokawa, Hiroaki I-217
Kusherbaeva, Victoria I-185

Laaksonen, Jorma II-373
Lagus, Krista I-275
Laparra, Valero II-213
Lazar, Andreea II-127
Lebbah, Mustapha II-87
Lefort, Mathieu I-93
Lehtonen, Minna I-275
Le Roux, Nicolas II-9
Linares-Barranco, Alejandro II-389
Liu, Qingshan II-253
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