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Preface

On behalf the Program Co-chairs as well as the entire Organizing Committee,
we welcome you to the proceedings of Pervasive 2011—the 9th International
Conference on Pervasive Computing. This year’s conference was held in San
Francisco, California, and marked the first time that this premiere forum for
research in the field of pervasive and ubiquitous computing was held in the
USA.

Pervasive 2011 received a total of 93 submissions to the paper track, con-
sisting of 70 full-length paper submissions (up to 18 pages) and 23 note-length
submissions (up to 8 pages). A rigorous review process was conducted by a Pro-
gram Committee of 27 recognized experts in the field of pervasive computing
from 10 different countries and from both academia and industry. Every sub-
mission was evaluated in a double-blind review process by at least two Program
Committee(PC) members and two external reviewers. In all, 174 external re-
viewers participated in the process in addition to the committee. The review
phase was followed by an online discussion in which both the PC members and
external reviewers took part. The final discussion and subsequent selection of
technical program papers and notes happened during a two-day PC meeting
in December 2010 in Seattle, Washington, hosted in part by Intel Labs Seattle
through the use of their facility. Ultimately, 22 submissions were selected for
inclusion in the technical program, among them 19 full papers and 3 notes, for a
total acceptance rate of 23.7%. The selected papers are the work of 96 different
authors from 34 international industrial and academic institutions.

As in previous years, Pervasive 2011 showcased a wide range of research ac-
tivities in addition to the technical program that is presented in this volume.
This year’s categories of participation included a full-day of workshops prior
to the technical program, as well as videos, demonstrations, and posters to ac-
commodate the presentation and discussion of research in ways appropriate to
its current state. Additionally, a Doctoral Consortium for senior PhD students
occurred in conjunction with ISWC 2011, the co-located 15th International Sym-
posium on Wearable Computers. The accepted submissions in these additional
categories are not published in this volume, but can be found in the adjunct
proceedings for Pervasive 2011.

Pervasive 2011 was the direct result of the dedicated effort of numerous vol-
unteers. We want to thank the Conference Committee members for their hard
work and attention to detail in making sure each aspect of the conference came
together. The Program Committee and reviewers worked diligently to assemble
a terrific program. We also wish to thank the staff of events for their assis-
tance with the management of the conference and our sponsors for helping make
Pervasive 2011 a success.

June 2011 Kent Lyons
Jeff Hightower

Elaine M. Huang



Organization

Conference Committee

Conference Chair Kent Lyons, Intel, USA
Program Co-chairs Jeff Hightower, Google, USA

Elaine M. Huang, University of Zurich,
Switzerland

Demos Tico Ballagas, Nokia Research Center,
Palo Alto, USA

Daniela Rosner, UC Berkeley, USA
Posters Oliver Amft, TU Eindhoven, The Netherlands

Kurt Partridge, PARC, USA
Workshops Mirco Musolesi, University of St. Andrews, UK

Alexander Varshavsky, AT&T Labs, USA
Videos Daniel Roggen, ETH Zurich, Switzerland

Gerd Kortuem, Lancaster University, UK
Publications Fahim Kawsar, Bell Labs, Belgium and

Lancaster University, UK
Publicity Andreas Bulling, University of Cambridge, UK
Local Arrangements Trevor Pering, Intel, USA
Web Nirmal J. Patel, Georgia Tech, USA
Sponsorship Thad Starner, Georgia Tech, USA

Program Committee

Andreas Bulling University of Cambridge, UK
Alexander Varshavsky AT&T Labs, USA
Antonio Krger DFKI and Saarland University, Germany
Bashar Nuseibeh Open University, UK
Chris Schmandt MIT, USA
Daniel Avrahami Intel Labs, USA
Florian Michahelles ETH Zurich, Switzerland
Frank Bentley Motorola, USA
Hao-Hua Chu National Taiwan University, Taiwan
James Scott Microsoft Research Cambridge, UK
Jens Grossklags Penn State, USA
Jin Nakazawa Keio University, Japan
John Krumm Microsoft Research, USA
Jon Froehlich University of Washington, USA
Judy Kay University of Sydney, Australia
Kay Connelly Indiana University, USA
Kurt Partridge PARC, USA



VIII Organization

Leila Takayama Willow Garage, USA
Lena Mamykina Columbia University, USA
Mike Hazas Lancaster University, UK
Minkyong Kim IBM T.J. Watson Research Center, USA
Nic Marquardt University of Calgary, Canada
Patrick L. Olivier Newcastle University, UK
Rene Mayrhofer Upper Austria University of Applied Sciences,

Austria
Shin’ichi Konomi Tokyo Denki University, Japan
Shwetak Patel University of Washington, USA
Tico Ballagas Nokia Research Center, Palo Alto, USA

Steering Committee

A.J. Brush Microsoft Research, USA
Hans Gellersen Lancaster University, UK
Anthony LaMarca Intel Research, USA
Marc Langheinrich ETH Zurich, Switzerland
Aaron Quigley University of St. Andrews, UK
Hide Tokuda Keio University, Japan
Khai Truong University of Toronto, Canada

Reviewers

Wael Abd-Almageed
Sharad Agarwal
Manfred Aigner
Fahd Albinali
Swamy Ananthanarayan
Lisa Anthony
Lora Appel
Ismail Arai
Daniel Avrahami
Tico Ballagas
Luciano Baresi
Aaron Beach
Marek Bell
Hrvoje Benko
Frank Bentley
Alastair Beresford
Claudio Bettini
Jon Bird
Jan Borchers
Gaetano Borriello
Nick Brachet

Stephen Brewster
Gregor Broll
Leah Buechley
Andreas Bulling
Tiago Camacho
Andrew Campbell
Ricardo Chavarriaga
Ling-jyh Chen
Guanling Chen
Yu-Chung Cheng
Kunigunde Cherenack
Mauro Cherubini
Marshini Chetty
Keith Cheverst
Tanzeem Choudhury
Marc Christie
Hao-Hua Chu
Jaewoo Chung
Elizabeth Churchill
Anthony Collins
Kay Connelly

Sunny Consolvo
David Cooper
Scott Counts
Landon Cox
Florian Daiber
David Evans
Eyal de Lara
Dave Dearman
Anind Dey
Travis Deyle
Tawanna Dillahunt
Sandra Dominikus
Steven Dow
Naranker Dulay
Schahram Dustdar
Nathan Eagle
David Evans
Benjamin Fabian
Benedict Fehringer
Steven Feiner
Mirko Fetter



Organization IX

Laura Forlano
Jodi Forlizzi
Adrian Friday
Jon Froehlich
Raghu Ganti
Lalya Gaye
Sven Gehring
Hans Gellersen
Joy Ghosh
Daniel Greenblatt
William Griswold
Jens Grossklags
Svenja Hagenhoff
Michael Haller
Masahiro Hamasaki
Raffay Hamid
Mike Hazas
Chantel Hazlewood
Jennifer Healey
Sumi Helal
Urs Hengartner
Steve Hodges
Jaap-Henk Hoepman
Jesse Hoey
Eve Hoggan
Paul Holleis
Lars Erik Holmquist
Gary Hsieh
Polly Huang
Bret Hull
Masugi Inoue
Stephen Intille
Shamsi Iqbal
Sibren Isaacman
Giulio Jacucci
Lee Joonhwan
Wendy Ju
Gerrit Kahl
Eunsuk Kang
Ashish Kapoor
Stephan Karpischek
Fahim Kawsar
Judy Kay
Ashraf Khalil
Danish Khan

Sunyoung Kim
Minkyong Kim
Donnie Kim
Jen King
Mikkel Baun Kjærgaard
Predrag Klasnja
Andrew Ko
Shin’ichi Konomi
Vassilis Kostakos
David Kotz
Sven Kratz

Christian Kray
John Krumm
Antonio Krüger
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Planning, Apps, and the High-End Smartphone:
Exploring the Landscape of Modern Cross-Device

Reaccess

Elizabeth Bales1, Timothy Sohn2, and Vidya Setlur2

1 University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
2 Nokia Research Center, 955 Page Mill Road, Palo Alto, CA 94304, USA
ebales@cs.ucsd.edu,{tim.sohn,vidya.setlur}@nokia.com

Abstract. The rapid growth of mobile devices has made it challenging for users
to maintain a consistent digital history among all their personal devices. Even
with a variety of cloud computing solutions, users continue to redo web searches
and reaccess web content that they already interacted with on another device.
This paper presents insights into the cross-device reaccess habits of 15 smart-
phone users. We studied how they reaccessed content between their computer
and smartphone through a combination of data logging, a screenshot-based diary
study, and user interviews. From 1276 cross-device reaccess events we found that
users reaccess content between their phone and computer with comparable fre-
quency, and that users rarely planned ahead for their reaccess needs. Based on our
findings, we present opportunities for building future mobile systems to support
the unplanned activities and content reaccess needs of mobile users.

1 Introduction

In the past several years the number of personal devices a user owns and interacts with
has increased. Mobile phones, laptops, desktops, slates, and in-car navigation systems
are becoming increasingly popular in the daily life of a user. In a previous study of
multiple device usage, Dearman and Pierce found that users interact with as many as 5
personal devices a day [13]. With multiple devices, a user’s data often becomes frag-
mented based on the usage pattern and affordances of each device. A mobile phone will
have history of phone calls, applications opened, and websites visited that are different
than activity on another device. The fragmentation of digital activity creates a challenge
for the user to transfer and reaccess content across their devices.

Cloud computing has offered promise to enable consistent data access on any device.
Services such as Evernote [4], synchronized bookmarks, Dropbox [3], and Chrome-to-
phone [2] all offer tools for users to transfer content from one device to another. These
tools are designed to support planning practices, where a user recognizes information
he will need later and saves it for easy reaccess. Users can sometimes forget the infor-
mation they will need later, or choose not to plan ahead to preserve flexibility. These
unplanned situations are often addressed by attempting to access web content by per-
forming web query searches [24].

Web content is one of the primary sources of information today, especially as web
applications that support productivity tasks are becoming increasingly popular. Both the

K. Lyons, J. Hightower, and E.M. Huang (Eds.): Pervasive 2011, LNCS 6696, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 E. Bales, T. Sohn, and V. Setlur

computer and mobile phone are important devices in a user’s ecosystem that provide
access to web content. There have been a number of studies analyzing the types of
web content and searches that users perform both on their desktop and mobile devices
[17,18], but few have studied reaccess patterns across these devices. The explosion
of mobile applications has also added a new dimension of content reaccess because
the same web content can be accessed through a web browser or a dedicated mobile
application.

In this paper we explore both the methods and content of web information reac-
cess among ones personal devices. We conducted a two week study with 15 users of
high-end smartphones: iPhone, Android, N900. We used a combination of interviews,
url logging, and a screenshot diary study to gather insights into cross-device reaccess
patterns regardless of the method they used to access the content (e.g., web browser
or mobile app). We measured cross-device reaccess by matching URLs and comparing
timestamps to determine which access occurred first. This process required matching
many of the URLs manually because mobile websites have different URLs than their
desktop counterparts. We only considered two URLs a match if the content they refer-
enced was the same. Our logging software captured over 123,497 web accesses on the
computer and 3,574 web accesses on the mobile phone. Over the course of the study
participants submitted 128 screenshots from in situ moments when participants noticed
they were reaccessing content they had seen before. We captured over 1,200 cases where
content was reaccessed on a device different from the original access device, with over
500 reaccesses originating on desktop and over 700 originating on the mobile device.

The results of our study show that:

– Cross-device reaccess, moving from computer to phone and from phone to com-
puter, occurs with comparable frequency.

– Reaccess is often unplanned.
– Native applications are an important part of how users reaccess content.

Informed by these results, we discuss several opportunities to support content reac-
cess among a user’s personal devices.

2 Related Work

There are three areas that researchers have explored the types of content mobile users
access. These can roughly be divided into information needs, search patterns, and cross-
device explorations.

2.1 Mobile Information Needs

Studies on mobile information needs have used diary study methods to gather ecologi-
cally valid data about the types of content mobile users look for. Sohn et al. found that
mobile users attempt to address many of their information needs through web access
or other online resources that may have been previously seen [24]. In a similar study,
Dearman et al. found that mobile users would often look to online resources to address
their mobile information needs, but the process could sometimes be difficult and cum-
bersome [12]. Church and Smyth looked at the intent behind mobile information needs
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and found many information needs were related to finding PIM data, hinting that the
data is related to content already seen by the user [10]. These diary studies hint at mo-
bile users relying more upon connected resources through the cloud and understanding
their re-access patterns would provider further insights into assisting mobile users in
limited attention environments.

2.2 Search Behavior and Revisitation Patterns

There have been a number of studies investigating web search behavior on both desk-
top and mobile devices. Many desktop studies have conducted query analysis on search
logs reporting on query length and categorization [16,7]. Spink et al. conducted a lon-
gitudinal study of query behavior between 1997 and 2001 [25]. As smartphones have
evolved over the years, users are accessing content through desktop and mobile web
browsers. To investigate this trend, Kamvar and Baluja conducted a large-scale anal-
ysis of mobile search queries and found that mobile users with less featureful phones
submitted shorter queries [17]. In a follow up study they found that iPhone users in
particular behave differently than other smart phone users [18]. Their research revealed
that iPhone users create search queries more like desktop computer users. We believe
that this trend towards higher end smartphones being used more like computers alters
how mobile users reaccess content across their devices and the type of content they
reaccess.

In addition to search behavior, studies have shown that web revisitation accounts for
58% [26] to 81% [11] of all desktop web site visits. Obendorf et al. found that 50% of
desktop web revisits occurred within 3 minutes, while the other half took place much
later [22]. Adar, Teevan, and Dumais looked deeper into the intent behind revisits [6]
and found a variety of revisitation patterns. When studying how users reaccess content
across devices, the analysis becomes multifaceted. A single piece of content can be ac-
cessed through a desktop URL, mobile URL, or a mobile application. As far as we are
aware, few researchers have studied reaccess patterns across multiple devices, specif-
ically when the content can be accessed through a web browser or mobile application
on a high end smartphone [19].

2.3 Cross-Device Interaction

Researchers have explored how users manage their life with multiple devices. Dearman
and Pierce conducted a study into how users interact with all their computing devices
[13]. In a study of 14 Windows Mobile phone users, Kane et al. found that users fre-
quently visit websites on both their phone and laptop/desktop machine, suggesting that
sharing web history among these devices could be beneficial [19]. In a later study, Karl-
son et al. looked at situational constraints that mobile users face while using their device
[20]. Participants were asked to take screenshots whenever they encountered a barrier
on their mobile phone. They suggest the idea of decomposing tasks into subtasks so
users can complete them across their devices based on their situational context. Nei-
ther of these studies looked at the effect of web reaccess on high-end smartphones and
content that can be accessed through a mobile application.

Several systems have created ways for users to plan ahead and share data between
their mobile device and their desktop machine. The Context Clipboard uses a clipboard
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metaphor where users can place notes on the clipboard from their desktop and it is
synchronized with their mobile device [15]. Gurungo uses the concept of mobile data
types to identify key data that a user may want to access later on and sends the con-
tent to the device through Bluetooth [14]. There are also a number of commercial tools
available today to support re-accessing content. These tools tend to support planned
activities, where users knows ahead of time the content they will need later. Evernote
[4] and Dropbox [3] both enable file sharing through the cloud. Googles bookmarks
for maps and websites as well as the Chrome-to-phone extension let users synchronize
data with their mobile device [2]. Firefox Home synchronizes bookmarks, tabs, and web
history between desktop and mobile Firefox clients [5] supporting unplanned activites,
where a user does not plan ahead for the content they need. The PIE system also sup-
ports unplanned activities by allowing users to search for files and documents on their
devices [23].

We build upon this work by specifically exploring re-access patterns among high-end
smartphone users. The high quality of smartphone interfaces and always-on connectiv-
ity have changed how phones are used today, with many phones being used more like
desktops. We focus specifically on the frequency of cross-device reaccess by device
type, the amount of preplanning users performed for content they reaccessed, and the
role of mobile applications in content reaccess. The following sections describe our
study design and results from our exploration of content re-access patterns.

3 User Study

Gathering ecologically valid data from mobile users is challenging. We wanted to gather
data from the moments of reaccess on a mobile device or on a computer, but placing
an observer in the field to shadow a user can be time intensive. Logging methods are
useful, but as mobile applications have become much more prevalent to access web
information, the content remains siloed from the data-logging processes. As a result we
used a hybrid approach of logging and a diary study to capture data in situ. Websites
represent a majority of content users may want to access on their device, so we focused
mainly on studying web content reaccess through a web browser or mobile application.
The following sections describe our methods for obtaining ecologically valid data about
the web content that user’s reaccess.

3.1 Participants

We recruited 15 smartphone participants (7 iPhone, 4 Android, and 4 N900) through
an advertisement on Craigslist from a city in the United States1. Due to the sensitive
nature of the data collected we experienced a relatively high attrition rate during our
recruiting process. We also found it more difficult to recruit Android and N900 users
compared to iPhone users which affected our overall recruitment numbers. Our Android
users used a variety of phone models that run the Android software platform including
the Nexus One, T-Mobile Cliq, and Motorola Droid. All iPhone participants used either
the 3G or 3Gs models. Participants ranged in age from 22 to 50 years (μ: 35) and had

1 City is anonymized for submission.
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Fig. 1. Example of the same content accessed on through a native mobile application(left) and
through the traditional web interface(right)

a wide variety of occupations including students, nanny, financial analyst, engineer,
and freelance writer. We focused our recruiting on high-end smartphone users to un-
derstand how users of computer-like mobile phones manage content reaccess between
their personal devices. Previous research found that users of high-end smartphones with
computer-like capabilities behave differently than other smartphone users [18]. As a re-
sult, we chose three high-end smartphones with a modern web browser and an available
set of mobile applications. All references to participants in this paper are anonymized
with i1-i7 representing iPhone owners, a1-a4 representing Android owners, and n1-n4
representing n900 owners.

3.2 Procedure

In order to gather in situ data from our participants, we used both a logging and screen-
shot capture method. The logging part of the study allowed us to observe the URLs
that a participant visited on their desktop and some mobile devices. We developed a
Chrome browser extension to log URL accesses on participants’ laptops/desktops. The
extension logged the URL, timestamp, and page title each time a participant navigated
to a webpage. We did not save any content from the web page due to privacy reasons.
The data collected by the extension was automatically sent to a server in our research
facility. We also used device specific methods, discussed later in this section, for ex-
tracting the URL history from each user’s mobile device so that it could be compared
with the Chrome browser log data.

With the explosion of applications available on a mobile device, users have multiple
ways to access web-based content. Many applications act as native clients to web-based
content and keep content in silos from other applications. It is difficult to observe con-
tent that may be accessed on a laptop through a web browser (e.g., Facebook website)
and then on a mobile device through a specialized application (e.g., Facebook applica-
tion). These types of reaccesses are also important, so we asked users to take screen-
shots when reaccessing content on their mobile device. Participants annotated these
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screenshots with additional comments about their reaccess event later through a nightly
journal. Our study design is similar to the idea of snippets [9,8] , where users capture
screenshots in the moment and annotate them in depth later on a PC. Figure 1 illustrates
an example of the same content viewed through a dedicated mobile application and on
the standard web interface.

Participants attended a 1 hour in-office visit, filled out nightly online journals about
their reaccess activity for the day, and participated in a semi-structured final interview
two weeks after their start date. During the first in-office visit, we installed the Chrome
browser and extension on the user’s laptop. N900 and iPhone users were instructed to
take screen shots on their mobile devices and all users were instructed to take screen-
shots on their computer. Android phones do not have a screen capture function, so
android users were asked to use a note application to document reaccesses on their mo-
bile devices. We sent participants daily reminders with a link to an online journal where
they could elaborate on their screenshots and reaccess stories they collected throughout
the day. During the initial visit we performed a detailed walkthrough of the process of
creating and annotating screenshots with the participants.

We installed URL-logging software on the Android and N900 devices that uploaded
the same information as the Chrome extension. This data was automatically sent to the
server in our research facility. Because of device limitations on the iPhone (i.e., Mobile
Safari does not allow browser extensions), we used an alternative method for collecting
URL access events. iPhone participants sent us weekly phone data backups that would
contain their URL history information.

At the end of the two week study we conducted an exit-interview with the partic-
ipants. The interview followed a semi-structured format and asked participants about
their screenshots and reaccess patterns. Participation were compensated $80 USD at
the end of the study.

4 Results and Observations

We collected a total of 123,497 (μ: 6370 min: 775 max: 33892) web page visits on
the computer and 3,574 (μ: 215 min: 28 max: 745) web accesses on the mobile phone.
Of those webpage visits 14,642 were unique URLs on the computer and 260 unique
URLs on the mobile phone. Table 1 shows a breakdown of average number of URLs
accessed per user by device type. Android participants tended to browse more pages
on the computer, while iPhone participants browsed more web pages on their mobile
phone.

Within-device reaccess of data, defined as reaccessing data on the device of original
access was observed on all device types with iPhone users averaging 98.4, Android
users averaging 9.8, and N900 users averaging 79 within-device reaccesses. Within-
device reaccess on the user’s personal computer averaged 6683.73 over all users.

To study cross-device reaccess we matched the URL history from both devices to
find access patterns. We considered two URLs a match when they accessed the same
content, even if one was a mobile page and one was the full page (ex. m.cnn.com
and www.cnn.comwould be considered the same content even though one is the mo-
bile URL and one is the standard URL). For password protected pages such as social

m.cnn.com
www.cnn.com
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Table 1. Total number of URLs access per user by device type

Device computer mobile
iPhone μ: 6370

min: 1482
max: 11667

μ: 327
min: 31
max: 745

Android μ: 14854
min: 775
max: 33892

μ: 182
min: 28
max: 449

N900 μ: 2169
min: 2527
max: 7344

μ: 142
min: 34
max: 309

networks and email we had to rely solely on the URL to determine if the content was
the same. In total there were 1276 cross-device reaccesses (μ: 35, min: 4 max: 378),
with 754 starting on the phone with reaccesses on the computer, and 522 starting on
the computer with reaccesses on the phone. Table 4 shows the frequency and direction
of reaccess for each of the smartphone participant classes, as well as the most common
content reaccessed by direction. To gain a better understanding of what type of content
users reaccessed we manually analyzed all the cross-device reaccessed URLS to iden-
tify the top categories. We categorized the reaccess events from the logs into website
categories based on a scheme proposed by BBC [1] . The most frequent reaccesses were
related to social network (e.g., Facebook) and news websites (e.g., New York Times).
Information articles were also a common category of reaccess (e.g., Wikipedia).

We also gathered temporal data about each logged reaccess event. In most cases the
time to reaccess information varied between several minutes and several days (Table2).
Most reaccesses were short term reaccesses, with the second access occurring on the
same day as the initial access event. It is likely that the clustering of reaccesses in the
short range time frame is influenced by memory, with reaccess that take place over a
longer period of time being easy to forget to complete. This is especially likely when we
take into account the methods participants used to remind themselves to reaccess data.
WIth most participants using systems that depended on temporally affected interface,

Table 2. Temporal Information of Cross-Device Reaccesses. Percentage represents percentile
error. Time is displayed in hours:minutes:seconds.

Device Direction 25% 50% 75% 90%

iPhone
Phone to Computer 02:38:19 05:47:13 06:21:05 08:28:41

Computer to Phone 00:45:19 07:22:27 08:18:41 10:31:17

Android
Phone to Computer 00:14:52 02:19:45 05:25:26 05:52:16

Computer to Phone 02:33:12 04:08:23 05:31:46 06:29:27

n900
Phone to Computer 01:38:16 03:17:58 04:03:17 04:48:28

Computer to Phone 01:12:17 03:46:24 04:29:13 05:17:57
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such as email inboxes, it is likely that if they waited too long to reaccess, the email
would be pushed down off the main screen and forgotten.

The following sections describe our observations around user’s current methods to
synchronize content among their devices, the role of planning in reaccess behaviors,
and the role of native applications in content reaccess.

4.1 Current Tools Do Not Adequately Support Cross-Device Reaccess

We observed a variety of methods for sharing content among one’s personal devices.
Through the nightly journals and interviews, we learned that our participants use many
creative, sometimes cumbersome, methods to make their devices interact with each
other. Participants expressed pride when sharing their clever syncing solutions. How-
ever, even those who were proud of their solutions noted that the methods were time
intensive and often reserved for tasks where they could foresee an obvious return on
their invested effort.

Table 3 shows a list of the different practices employed by our participants as ev-
idenced from their nightly journals, screenshots and interviews. The common theme
among these practices was storing the information in a place for easy access later. Tools
that synchronize easily across devices were used more heavily than others, but these
methods were not particularly created for save and retrieval purposes (e.g., browser
tabs). Email was a common place for our participants to put content they would need
later. Many of our participants used a web-based email system that allowed them to
access their data anywhere. In addition to emailing oneself links or files for later, users
would also repurpose features to save content for reaccess. Marking an email as unread
was a common example of repurposing a feature that was not necessarily meant for
that purpose. One user also reported using the Facebook ‘like’ button to populate her
‘news feed’ with items she wanted to reaccess later. She knew that Facebook was easy
to access from any device, and her news feed would be readily available to find the item
she was looking for.

The methods shared by our participants required some amount of planning to save
the needed data in a place for later access. If user’s did not plan ahead, they would
attempt to recreate web search queries in order to find the content they needed. Search
can work effectively, but can also present additional hurdles when the technology does
not behave the way the user expects. For example, Participant a3 encountered search
results on his phone that were “completely different” than the results he got on his
computer, making it hard for him to find the information that he wanted to reaccess. He
expected the same results he had seen before, but the search engine he used displayed
different results on the computer and mobile versions.

Even if the user plans ahead, there is a high recovery cost when restarting a task or
trying to find content previously seen. Bookmarks were one way to tag content to access
later. However, as the number of bookmarks increases, users need to sift through large
amounts of data to find their information. For some participants this lead to frustration.
“I feel like bookmarks are buried, like I have thousands of bookmarks. I have bookmarks
for car stuff, I have bookmarks for vegan stuff, I have bookmarks... ” (Participant a2)

Some of these methods (e.g., browser tabs) act as a reminder tool to reaccess in-
formation later, which can be useful reinforcement. However, participants still need to
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Table 3. Methods for content reaccess shared by users. Many methods require the user to plan
ahead for content reaccess.

Method Description
Email Email applications automatically sync messages across devices. Users often de-

pended on this feature to find content they had seen before.

Repurposing
Features

Features built for other purposes were overloaded by users to identify items for
reaccess later. Common examples included emailing content to themselves and
using the “mark unread” feature in email to mark a read email that the user
wished to return to.

Browser Tabs Leaving browser tabs open on the mobile device as a reminder to reaccess them
on another device was a common user strategy for remembering to reaccess
content.

Paper Paper for reaccess was used by several participants to help sync their devices.
Informations was handwritten or printed, carried between the devices, and in-
putted on the second device to reaccess content.

Bookmarks Shared bookmark systems were utilized by several users to share data between
devices. Using these systems users could save a bookmark on one device and
have it be available on their other device automatically.

Search Unplanned reaccesses were frequently executed by entering search queries into
another device.

manually enter the information into each device. Our participants expressed a need to
overcome these challenges and have an easy method to reaccess their data.

4.2 Cross-Device Reaccess Happens in Both Directions

We found that content reaccess occurs frequently in both directions between the mo-
bile phone and computer (Table 4 ). Phones and computers have different strengths that
influence reaccess patterns. Computers have large screen real estate, fast processing,
and a high-speed network connection. Phones are locationally aware, always on, and
ubiquitously connected. Phone to computer reaccess was often driven by technical bar-
riers and participants decomposing their tasks among their devices. Computer to phone
reaccess occurred due to contextual factors including location, time, and social context.
We also found that the most convenient and accessible device was a factor in deciding
which device to use for reaccessing content. In the remainder of this section we analyze
the different reasons for each reaccess direction.

Computer to phone: Need it at another location. Location was a prime contextual
factor for motivating reaccess. Location affects the range of tasks the user can engage
in, influences the external stimulus experienced by the user (which can act as a catalyst
for reaccess), and often places constraints on which devices the user can interact with.

Reaccess behaviors influenced by location often began on the computer and shifted
to the smartphone as users realized they needed the information while mobile. This
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Table 4. Top three categories of cross-device reaccessed URLs, broken down by device and
reaccess direction

Device Top 3 Categories Categories by direction Phone to
Comp

Comp to
Phone

Total
Reaccess

iPhone News 27.6%
Search/Portal 25.19%
Social Networks 20.06%

Phone to comp:
News 73.74%
Comp to phone:
Social Networks 67.34%

μ: 31
min: 3
max: 193

μ: 32
min: 1
max: 74

μ: 72
min: 4
max: 267

Android Social Networks 49.89%
Media/News 38.7%
Information Articles 11.41%

Phone to comp:
Social Networks 84.23%
Comp to phone:
Media/News 72.18%

μ: 20.5
min: 5
max: 166

μ: 10
min: 3
max: 212

μ: 28
min: 13
max: 378

N900 Social Networks 56.02%
Mail 13.86%
News 19.28%

Phone to comp:
Social Networks 80.36%
Comp to phone:
Social Networks 71.93%

μ: 11.5
min: 4
max: 53

μ: 17.5
min: 7
max: 44

μ: 29
min: 11
max: 97

frequently happened with maps and directions, where turn-by-turn directions are more
useful due to the mobile nature of the device. Participant a1 shared this story of reaccess
inspired by location.

“it [restaurant] had good reviews and a lot of people were talking about it, so we
actually went back friday the next week. and I looked it up (on phone) to see exactly
what street it was.”

Location-based reaccess also occurred when users recognized that information would
be more useful at another place besides the point of original access.

“Today, my girlfriend was interested in getting a new phone from sprint. I had heard
about them having a few android phones, so I went online to read up on HTCs. I read a
lot of information on my laptop before we left. While at the sprint store, she was curious
also about HTC, but wanted different information. I went back to the same wiki and let
her read, since she didn’t want me basically reading 2/3 of the wiki out loud as she
perused cell phones.” (Participant i6)

Participant i6 knew he would need the information he looked up on his laptop, but
his ability to reaccess the content a particular location is what really made it valuable.

Computer to Phone: Need it at a later time. Time was another contextual factor that
motivated how users reaccessed content on their phones and computers. Participants
would typically carry their phone while mobile and could rely on it being available at
other times. In these types of reaccesses, users either did not have all the information
they needed at the time when they started the task, the task was too long to complete at
the initial access, or external events controlled the time at which they could finish the
task.

“In the morning, I felt like going to Chili’s for lunch so I went to the Chili’s website
to find locations near me. I then repeated this on my phone when it was time for lunch
so that I would have the address/map with me.” (Participant i4)

The participant actually had to wait until the right time, here lunchtime, before he
could act on the content he accessed. He wasn’t interested in knowing how to get to
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Chilli’s until lunchtime arrived, and waited until then to conduct his reaccess on his
phone.

Time constraints were another common reason to postpone a task and reaccess it
later. Participant n3 shared an example of receiving a long email from a friend that
contained a riddle. “A friend gave me a puzzle, like a really long thing, it was going to
require a really long answer and it was going to require rereading and thinking about
[...] I had glanced at [it] earlier on my computer when I was at work and couldn’t read
it.” (Participant n3) When she first read the email she didn’t have time to think about
what the answer might be. Later when she was at the airport waiting for a plane, and
consequently had a lot of time, she revisited and answered the email on her phone.

Computer to Phone: Show my Friends. Social factors was a third type of context
that influenced mobile reaccess. Mobile reaccess influenced by social situations was
reported 7 out of 15 participants. We define socially motivated reaccesses as any reac-
cess which prompted social interactions with a friend or colleague. In each of these
instances, participants accessed a link, video, or picture they had seen on a device at an
earlier time to share with another person. Spontaneous reaccess was common in this cat-
egory, with many of the reaccesses inspired by conversations with friends. Inspired by
his social context, Participant n4 related this situation where his reaccess of a recently
watched video.

“We were at a bachelor party and started playing foosball, so it kind of came up in
conversation, and I was like, oh you gotta see this crazy foosball video! and I pulled it
up. I googled ‘Nokia foosball I had remembered that they had spelled it funny, and so
I was able to recreate that funny spelling on the google search and it came right up.
(Participant n4)

This reaccess was impossible for him to predict and he had to rely on his memory
for the video’s name and search for it on the spot. Participants noted it was especially
important that the content be found quickly, otherwise the conversation flow could be
negatively impacted.

Computer to Phone: Mobility Barrier. Although laptops are portable and travel fre-
quently with their owners they are ergonomically difficult to use in settings where the
user must stand or move frequently. They also have long boot up times, and are often
difficult to access quickly. Participants would reach for their phone for convenience and
speed depending on their current situation. Nylander et al. observed similar behavior
in understanding the motivation for users to perform tasks on their mobile phone [21].
Participants experienced these mobility barriers, which influenced their choice of device
when both were available.

“I want to access something really quickly, don’t want to wait for computer to boot
up [or there is ] no surface to put it on OR not a safe location to reveal I have a
computer that someone might want to steal OR I’m actually walking/moving somewhere
[or] I’m in a situation where using a computer would be ergonomically difficult (eg.
remembering something I needed to do online, but already in bed) (this sounds like a
weird use case, but it happens surprisingly often...” (Participant n3)

Phone to Computer: Technical Barrier. When reaccessing content on the computer
that was originally seen on the phone, technical barriers were the main influencing
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factors in a reaccess event. Although mobile phone technologies are fast approaching
the capabilities of personal computers there are still some things that are impossible to
do on today’s mobile smart phone. For example the iPhone is incapable of rendering
Flash websites, thus users were forced to view it on their desktop or laptop computer.
When users came to a website that looked “wrong” on their phone they often would
revisit it later on another device to check and see it their phone was the problem.

“I received a link to play a game and knew it would start immediately when I clicked
it so I read that I got the msg but waited to get home to click the link.” (Participant a2)

Although a2 was able to receive an invitation to play an online game through his
email, his phone was not capable of running the game due to technical barriers. Moti-
vated by a desire to beat his friend’s score, a2 delayed playing the game until he knew
he was on a capable device.

Phone to Computer: Decomposing Tasks. Participants would decompose tasks do-
ing as much as they could on their mobile device and then following up later on their
computer. Decomposition can occur because of barriers or mobile limitations, but can
also happen when resources are more readily available at another location. Participant
i2 shared that at the grocery store she accessed a recipe on her phone so that she could
buy the correct ingredients. Later at home she accessed the recipe again from her lap-
top to assemble the ingredients into a meal. Both of the locations in this example have
a specific function, the grocery store for selling food, and the kitchen for preparing it.
Accessing the same content at both locations the user was able to complete her full task.

Tasks can also be decomposed because they are ongoing over time. Participant i7 had
an ongoing task of looking for a new apartment. When she saw an apartment complex
that looked reasonable while she was commuting (as a passenger on public transit) she
would conduct a brief search to find the price range and amenities to see if the place
peaked her interest. Later when she had more time she would use her computer to look
up more in depth information on the apartments such as reviews and neighborhood
information. In this example i7’s physical location inspired a spontaneous access of
data, however her location also imposed time and device constraints which limited her
gathering of information. The cost benefits analysis of looking up basic information
about the apartments on her phone was worth it, but doing more in-depth research on
her phone was not. Once she determined, using her phone, to consider an apartment
complex, she would wait until she was in the locational context of ‘home’ to peruse
more details about the apartments at her leisure.

4.3 Unplanned Reaccess Behavior

Planning ahead can be one of the easiest ways to expedite reaccessing content later.
Easy access to directions for an event, phone numbers in an email, printing out a map,
or bookmarking a page for later are all methods and practices our participants used to
access their content. Despite these methods for planning ahead, participants communi-
cated a general preference not to plan and would rather rely on internet connectivity to
reaccess information they needed. Planning ahead was mainly reserved for important
items, such as the map to an interview. Participant i5 said that she “wouldn’t preplan
unless it’s a big date or a longer trip.”. The typical day to day activities did not involve
much planning ahead.
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Unforeseen reaccess. It is often hard for users to recognize what information they will
need to access later. Content was only accessed a second time if something changed in
the participant’s original plan. The mobile convenience of the phone serves users well
in these scenarios because they can often tweak their previous search queries to get the
results they need.

“what you actually need, like, when when you’re right in the situation, is not just in-
formation from earlier. It’s information of, like, highly contextual information if some-
thing changes. So if you try to go somewhere according to a plan or map that you had
ahead of time but you get lost... and so you’re pretty close to where you were supposed
to be, and so you need to change it a little bit.” (Participant n3)

“I had to go to a wedding and so I just said great! I had to type it the thing[phone]
from the paper invite, but then it was nice, I really did like it on my phone vs. paper
because when I made wrong turns I could just restart it [...] I’d get to a light and just
hit recalculate.” (Participant i3)

In another example of unforeseen reaccess, Participant i6 was trying to walk his dog
at a new location. “I used a website to locate a walking trail in San Mateo country.
After I chose the destination, we headed with the dogs only to discover that the place
was under construction. I quickly revisited the website with my iPhone, and decided on
an alternate place to roam.” (Participant i6) The participant was not planning on using
his phone once he arrived at the planned location but unforeseen circumstances forced
him to change his plans. Since his web history was not shared between his devices, he
had to redo a search query in order to find the website.

Mobile connectivity was a crutch used by our participants to support their unforeseen
reaccesses. Even if the participants had pre-planned their activities, the highly contex-
tual nature of their circumstances and changes in plans made it difficult to anticipate the
information needed later. Although it is difficult to predict what a user will need ahead
of time, since user’s are reaccessing web content seen before, there may be opportunity
to explore shortcuts to this content.

Plan a little, find it later. Connectivity was an expectation for most of our users given
their capable mobile devices. These expectations offer users the freedom to access con-
tent they might need on demand without having to completely plan ahead of time. When
users would plan ahead, some would prime themselves with a small bit of information
and rely on mobile connectivity to access more information while mobile. A common
method for doing this was to do a search on the computer, such as visiting a website for
initial ideas, but allowing final decisions to be made in a more fluid fashion as the day
progressed.

I went online to yahoo movies to look for a film that I’d like to see. I chose one, but
didn’t select a specific time, since I was meeting someone for dinner first. When we went
to the movie theater, I looked up times on my iPhone at the same website. The second
search was for a different theater, so I was glad that I hadn’t settled on a time - life’s
great when your schedule is flexible ;)”. (Participant i6)

Participant i5 shared her all too familiar story of how limited preplanning and on-
the-fly mobile research came together for her on a recent weekend. Although she had
performed minimalpre-planning togetan idea of restaurantsandclubs, sheandher friends
left the final decisions to the last minute, often changing their minds at the last second.
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“We had done some emailing, like mostly he[boyfriend] had emailed with them, so
then it was like let’s meet up for dinner, and then they wanted to eat dinner while we
wanted to be at the beach, so then it was like let’s have drinks later. We were going to
meet them at a dance club and they were like ‘oh we’re not really in the mood for that...
maybe something more low key,’ and then I was like ‘ok let me look up some other bars
on my phone like through yelp’, and then they met us at the place.” (Participant i5)

In another example, Participant a4 shopped initially online of shoes, but visited the
brick and mortar store to browse and have the in-store experience.

“She[wife] had to have these shoes and you could get them online but she wanted them
today so I went out and got them for her.... I went to the store and I said ‘hey I need this
shoe,’ and I read the description. They still asked me another question, and I said ‘well I
don’t know, here it is, that’s what I need.’ ”[showed clerk webpage]. (Participant a4)

Although a4 had looked at the shoe online on his computer at home, he accessed
the mobile version of the page because he was not familiar with the product details. He
relied on the content he was able to access on his phone in the store, to show the store
clerk what he wanted, so that he would go home with the correct item.

Plan for the long term. Proper planning was reserved for longer term activities, such
as finding a job, applying for schools, finding a new apartment, or planning a big event.
These longer term reaccess can be particularly difficult for users to handle because the
time between the original access and the final reaccess can make it hard for the user to
remember the details they need to locate the content.

Planning for travel was a common longer term reaccess behavior. Purchasing flights
and accommodation usually required many visits to the same websites to check prices
before a final purchase. Once tickets were purchased the confirmation emails would
be reference multiple times by the user as they made their final decisions about other
elements of their trip. Finally, when on the trip, webpages and previously received con-
firmation emails would commonly be reference to help users navigate, check-in, and
remember their schedule.

“It’s usually in my email (flight confirmation numbers, hotel reservations, etc.), orig-
inally viewed via computer, and I then need to access it again while in transit (on my
way to the airport to figure out which terminal to go to, at the counter of the hotel, etc.)
[...] what I used to do was print or write this down and carry a piece of paper with all
the information in one place. With the phone and a data plan, it was possible to look it
up again in transit instead. ” (Participant n3)

She did note problems with this method saying “This required logging in to my
email and searching for the information, which may be spread out over several emails.
I found it a bit of a frustrating experience because the internet access was always quite
slow, and I needed to load many pages to get to the piece of information I needed”.
In light of the troubles she experienced while having to locate travel related documents
on her phone, often months after her original access she shared her vision for a more
accommodating mobile solution. “what I really would prefer for that situation is to [...]
have them all sent to my phone so that they ended up on one “page” accessible offline.
Basically analogous to my printed consolidated piece of paper, only it’s easier to find
because it’s on my phone, and the information can be collected as soon as I receive it,
rather than right before the trip.”
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4.4 The Role of Applications

Applications are at the center of how user’s interact with and user their smartphones.
These applications are typically native portals into content that could be accessed
through a web browser. However, we found many of the heavily trafficked webpages
from the desktop absent from the mobile phone logs when the users also had a related
native application installed on their device (e.g., Bank of America application). Native
applications provide numerous benefits over web pages including better performance,
use of sensors and actuators, and easy access from the phone interface. In order to
capture data in third party applications, we asked participants to take screenshots when-
ever they found themselves reaccessing content on their mobile devices. Participants
sent 128 screenshots over the course of the two week study, accompanied by a story
of the moment of reaccess on the phone. 30 (23.4%) of the 128 screenshots were from
applications.

We expected more screenshots to be from applications given the plethora of appli-
cations that participants used. One possible reason is that frequently used applications
are more conducive towards realtime content and not previously seen, static content.
For example the BBC news application application for iPhone is designed towards con-
sumption of new data, with the first screen the user is directed to presenting the most
recent news stories. It may also be true that when users do engage in reaccess in these
applications it is often as a subtask rather than a primary task making it harder for the
user to recognize. For example, if a user goes to the Facebook application to see their
friend updates and while browsing around decides to comment on a picture that she saw
earlier, she may not consciously recognize this sub task as reaccess.

“I would go on Facebook and say I feel like I saw this stuff three times ... I go on
physical Facebook [on the computer] a lot less than I check the phone app [...] it’s
probably 70-30 [iphone-computer]. (Participant i7)”

She was aware that she was revisiting content she had seen before, however she never
took a screenshot on her phone of any of these encounters. It is possible that although
she was reaccessing information, the fact that the content was being “pushed” to her,
instead of her actively retrieving it, caused her to not recognize it as a reaccess. Self
reporting is one of the difficulties with gathering data in situ from mobile users with a
diary study method.

Participants indicated a general preference for interacting with native applications
rather than mobile web pages.

“if theres an app of something I definitely will do that, like, Ill look up products on
the amazon app rather than going to amazon through safari. (Participant i5)

There was also indication that the advantage native applications had over mobile web
pages was slight with users others mentioning that, “if I have Safari open, I’m not going
to close it to go to an app, I’ll get the mobile version anyway.” (Participant i7).

Mobile web browsers are improving with the adoption of HTML5 that gives
web applications access to local storage and on-device sensors. Application-centric
smartphones also allow users to save bookmarks in their application screen, letting them
live side-by-side with native applications. As the debate over native versus web appli-
cations continues, our results around reaccess suggests that users want to enable data to
interact among their devices regardless of how they access it.
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5 Discussion

Our investigation into reaccess habits among mobile users revealed the cumbersome
workarounds used to find and reaccess information. We found that users would often
use features that were made for different purposes as methods to find information later.
Many tools, such as Context Clipboard, Evernote, and Dropbox, have attempted to ad-
dress this problem by enabling easy capture and reaccess, such as saving a link to find
later [15] [4] [3]. Although these tools are seamless and easy to use, they still require
planning on the part of the user. Through our interviews and discussions with partic-
ipants, they communicated a general attitude of only planning ahead for big trips and
not for the more common reaccess tasks that occur in their everyday life. Sometimes
our participants did not know what information they needed later, thus were not able
to plan ahead effectively, and other times they expressed dislike of the rigidity imposed
by preplanning. Based on these observations, we offer several opportunities to support
content reaccess.

First, several contextual factors were influential in computer to phone reaccess. Par-
ticipants would often reaccess content previously seen on their desktop based on future
location and time. This is an opportunity to identify content that a user may need later
and use location and time context to present it at a relevant moment. Social context is
also an opportunity to present previously seen information that can promote dialogue
and help keep conversation flow moving.

Second, the general attitude among users not to plan ahead presents a large design
space to create tools to assist these unplanned reaccesses. Existing tools, such as Firefox
Sync, have started the process by using cloud computing to enable the sharing of book-
marks and web history across multiple devices [5] . The next opportunity is exploring
how to enable just-in-time access to this data without the burden of searching for it in
a mound of data. Participant n4 said that when trying to search for information again
while mobile he “[doesn’t] try very hard, if I don’t find it in the first or second search
then I just give up.”

Finally, breaking content free from mobile application silos can help assist with con-
tent reaccess. As applications have become the center of the mobile universe, we no-
ticed signs that people prefer native applications. The content within the application
is important, and having better reaccess tools to synchronize this content is essential.
For example, after a user looks up directions on the computer, that content should au-
tomatically sync to their mobile phone. Many applications are locked in content silos
that make it difficult to interact with other applications or devices. As applications con-
tinue to move forward, whether as native phone applications or web-based applications,
synchronized content is the key to helping users effectively access their data and help
support faster unplanned reaccess.

6 Conclusion

We presented a two-week study of high-end smartphone users exploring cross-device
reaccess patterns. Our analysis of web and mobile application content through logging
and screenshots revealed that reaccess occurs with comparable frequency in both di-
rections between the phone and computer. Participants also communicated a general
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attitude not to plan ahead for their reaccess needs, preferring to rely on the connectivity
of their device. Based on these results, we suggested several areas of opportunity to
support the unplanned activities of users. As more devices are introduced into the per-
sonal ecosystem, we believe there will be even greater opportunities to support quick,
easy reaccess among these devices.
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Abstract. This paper presents a large, 4-week study of more than 4000 people 
to assess their smartphone charging habits to identify timeslots suitable for 
opportunistic data uploading and power intensive operations on such devices, as 
well as opportunities to provide interventions to support better charging 
behavior. The paper provides an overview of our study and how it was 
conducted using an online appstore as a software deployment mechanism, and 
what battery information was collected. We then describe how people charge 
their smartphones, the implications on battery life and energy usage, and 
discuss how to improve users’ experience with battery life. 

Keywords: Large-scale study, battery life, autonomous logging, smartphones, 
android. 

1   Introduction 

Sustainability and energy reduction have emerged as important topics in the social, 
political and technical agendas in recent decades. The ubiquitous computing research 
community, with its focus on both design and development of technological systems 
has had to systematically face a strain between sustainability and usability. On the one 
hand, users express an interest in adopting more sustainable products and behavior, 
but on the other hand, they do not wish to do so at the expense of their comfort. 
Hence it is important that solutions tackling energy reduction take into accounts 
users’ behavior and preferences before making an intervention. One area strongly 
related to ubiquitous computing research where substantial energy savings can be 
achieved by introducing more usable systems is smartphones. 

Cell phones are increasingly popular and diverse, with worldwide sales 
approaching 1.6 billion units, just last year [8]. Thanks to the rapid development of 
wireless technologies, smartphones allow users to be reachable anywhere [3]. As 
"convergent" devices, smartphones empower users with Internet access, music, audio 
and video playback and recording, navigation and communication capabilities. 
However, the growing functionality of smartphones requires more power to support 
operation throughout the day. Processing power, feature-sets and sensors are 
bottlenecked by battery life limitations, with the typical battery capacity of 
smartphones today being barely above 1500 mAh [5]. This is an important limitation 
because smartphones are increasingly regarded as a gateway to one’s daily life, 
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providing networking access to email, social networking, and messaging, making the 
management of battery life an important task. 

Despite the important limitations that battery life imposes on users, previous 
research has shown that existing battery interfaces present limited information, and, as 
a consequence, users develop inaccurate mental models about how the battery 
discharges and how the remaining battery percentage shown in the interface correlates 
to application usage [20]. In addition, users do not completely understand how they 
should charge their batteries to support their planned use of the phone. As a result, 
every year $22 million are spent in electric utility costs due to keeping cell phones 
plugged into outlets for more time than required, to maintain a full charge [8]. On 
average, cell phone power supplies use 0.2 watts when the charger is left plugged into 
an electrical socket and the phone is no longer attached, with less sophisticated power 
supply designs reaching 1 watt [8].  

We argue that there exists potential in reducing the energy consumption of 
smartphones by better understanding users’ interactions with smartphones and 
providing better feedback. While previous studies have focused on the shortcomings 
of user interfaces in relation to battery life, there is a need to assess the real-world 
behavior of a large number of users in terms of when, how and how long they charge 
their batteries.  By analyzing users’ battery charging behavior, we can assess the 
extent to which energy is being wasted, explore how often users demonstrate less than 
optimal charging behavior, how often they interrupt the charging cycle and when this 
is more likely to happen. We hypothesize that by conducting such a study we can 
identify design opportunities for reducing energy consumption, increasing battery life, 
and also predicting when intensive computational operations and long data transfers 
should be scheduled.  

This paper starts by giving an overview of related work and current state of the art 
on smartphone battery management, followed by a description of how was the study 
deployed and conducted using the Android Marketplace, and a discussion of 
implementation concerns. We then present the results and a discussion of users’ 
charging habits, how to tackle the issues of wasted energy and opportunistic 
processing on smartphones. We conclude with a discussion of how the results can 
affect the design of a future smartphone for an energy conscious world. 

2   Related Work 

Most smartphones offer the possibility to add new applications, through distribution 
channels such as the Google Marketplace for the Android platform or App Store for 
the iPhone platform. These applications often take advantage of the sensors available, 
typically GPS and Internet connectivity to develop context-aware applications [10,5], 
accelerometer for motion tracking [18], Bluetooth for distance measurements from the 
device [15] and anomaly detection [3,19].  

While devices are becoming increasingly mobile, many software developers have 
limited experience with energy-constrained portable embedded systems such as 
smartphones, which leads to unnecessarily power-hungry applications that rely on the 
operating system for power management. In addition, users struggle to determine 
which applications are energy-efficient, and typically users blame the operating 
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system or hardware platform instead of unfortunate and unintentional software design 
decisions [21]. 

Rahmati et al. [16] coined the term Human-Battery Interaction (HBI) to describe 
mobile phone users’ interaction with their cell phones to manage the battery available. 
According to a survey they conducted, 80% of users take measures to increase their 
battery lifetime, and it can be expected that maximizing battery life will continue to 
be a key concern for users due to the major usability issues involved in this task. One 
approach to automatically deal with this issue is to rely on sensor data.  For example, 
recent devices act proactively to reduce their power consumption, either by turning 
off the screen after a specific amount of time with no new interaction, switching to a 
lower processing speed (CPU scaling), or disabling wireless interfaces such as 
Bluetooth and WiFi when battery levels are low. These devices effectively take into 
account sensed data regarding battery levels, idle time, etc. 

Oliver et al. [7] highlighted the importance of using real user data collected from 
the world and how it can influence application development, by introducing the 
Energy Emulation Toolkit (EET) that allows developers to evaluate the energy 
consumption requirements of their applications against the collected data. As a result, 
by classifying smartphone users based on their charging characteristics, the energy 
level can be predicted with 72% accuracy a full day in advance. 

A study on the environmental impact of cell phone charging related to national 
energy consumption and power plant greenhouse gas emissions reveals that the 
energy consumed by cell phone charging has been reduced by 50% in the past years 
due to two technology shifts: increased usage of power management and low-power 
modes of battery chargers; and use of more efficient switch-mode power supplies [8]. 
Despite these efficiency gains, however, the US could save 300 million kWh in 
electricity per year, which amounts to $22 million in electric utility costs, or 216.000 
tons of CO2 emissions from power plants. 

The study presented here complements Oliver’s study on user charging 
characteristics [7] and Rahmati et al.’s [16] study on how users consume battery in 
their devices. It aims to identify when, how, for how long and how frequently users 
recharge their devices’ batteries, in order to assess the extent to which energy savings 
can be achieved. At the same time, the collected information can be used to identify 
design opportunities in order to achieve such energy savings.   

3   Study 

We conducted a study of battery charging behaviors with 4035 participants over a 
period of four weeks, during which anonymous battery information was collected 
from Android devices running Android 1.6 or higher. In total, more than 7 million 
data points of battery information were collected. The Open Handset Alliance Project 
“Android” is a complete, free, and open mobile platform, and its API provides open 
access to the device hardware, abstracted from each device’s manufacturer or brand 
[2, 13], therefore increasing the number of deployable devices. Although the study 
was conducted solely with Android devices, most of the results should be similar to 
other smartphone platforms with respect to battery information and user behavior over 
time [11]. 
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There was no monetary compensation given to the participating users. The 
developed application, OverCharged, which was developed to help users be more 
aware of their battery usage, was made available for free on the Google MarketPlace. 

The main function of the OverCharged application we developed is to inform 
participants of their smart phone’s current battery level, for how long the phone was 
running on battery and other miscellaneous information, such as temperature and 
voltage. As such, the users who downloaded the application and opted in to sharing 
their data are already concerned with the battery life on their mobile devices. 
Therefore, they may in fact be atypical users, and our sample may not be 
representative of what all smartphone owners would do. Nonetheless, our study does 
serve as the first large collection of battery usage. 

During the study, users had the option to opt-in to sharing their battery data 
anonymously in order to contribute to a better understanding of battery usage patterns. 

The application captured charging activity, battery level, device type, temperature, 
voltage and uptime:  

• Charging activity captured when the user charged his device, either through 
USB or an AC outlet.  

• Battery level reflects the remaining battery and how long it took to discharge or 
charge. 

• Device type is the manufacturer, device board, model, Android version and build 
and the carrier. 

• Temperature of the battery, both Celsius and Fahrenheit. 
• Voltage available in millivolts (mV). 
• Uptime is the amount of time the device was on until being turned off or 

rebooted. 

The combination of charging activity and battery level allows for the identification 
of events such as “unplugged not full”, “charged just unplugged”, “finished 
charging”, “charging” and “running on battery”, defined as follows: 

• Unplugged not full: when the user stopped charging, even though the battery 
was not fully charged.  

• Charged just unplugged: when the user unplugged the charger and the battery is 
fully charged. 

• Finished charging: the moment when the battery is fully charged. 
• Charging: when the battery starts charging. 
• Running on battery: when the battery is the only power source. 

3.1   Implementation 

Polling a device’s state can reduce battery life [10, 12]. The Android API is event-
driven, hence gathering the data had a negligible impact on regular battery life. By 
programming a BroadcastReceiver attached to an Android Service running in the 
background, whenever the Android OS broadcasts ACTION_BATTERY_ 
CHANGED, the following battery information was recorded: battery level, battery 
scale (maximum level value), battery percentage, battery technology (i.e. Li-ion), 
health rating of the battery, whether the phone was plugged to AC/USB, whether the 
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phone is charging, temperature, voltage, uptime and usage uptime, battery status 
(charging, discharging, full and not charging) and phone events related to battery 
(fully charged and user just unplugged, charging, finished charging, running on 
battery, unplugged when not fully charged). 

As highlighted by Oliver [10], a large-scale user study distributed across the globe 
requires the use of UTC timestamps. We captured the UNIX timestamp on the 
participant’s device time zone, which results in consistent times across different time 
zones (i.e., 8pm is the same for different users at different time zones). These 
timestamps were used across all data collection and analysis operations. 

The application was programmed to start automatically when the device was 
turned on or rebooted. A small icon in the notification bar at the top of the screen kept 
users informed that data was being collected and allowed users to view further 
information [Figure 1]. 

 

Fig. 1. Notification bar information 

3.2   Device Distribution 

Of the approximately 17000 people that were using the application at the time the 
study was conducted, 4035 opted in to participate on our study. After the installation 
of the application from the MarketPlace, if the user opted in to participate in our 
study, the application captured device details including device board, service carrier, 
manufacturer, model, Android version and Android build. 

Recent Gartner worldwide mobile device sales reports [7, 19] do not place HTC as 
the leading sales manufacturer. Originally producing primarily Windows Mobile 
phones, HTC has changed their focus to Android devices, by manufacturing the 
Google Nexus One and EVO 4G more recently. Of the phones used by our 
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participants, HTC devices and Sony Ericsson devices were the most popular (44.6% 
and 29.8% respectively). In third place were Motorola devices with 14.8%, followed 
by Samsung with 7.5% [Table 1]. Furthermore, Google’s statistics claim that Android 
2.1 is the most popular version with 41.7%, while in our study we saw that 33% of 
phones used this version [Table 2]. One surprise in the collected data is that Android 
1.6 (Donut) is the leader with 36% of the participating devices using it. 

Table 1. Most popular platforms recorded during the study 

Platform Distribution 

HTC 44.6% 

Sony Ericsson 29.8% 

Motorola 14.8% 

Samsung 7.5% 

Table 2. Google’s official Android distribution, as of September 1, 2010 [1] 

Platform API Level Popularity 
(Source: Google) 

Popularity 
(Source: Study) 

Android 1.5 3 12.0% - 

Android 1.6 4 17.5% 36% 

Android 2.1 7 41.7% 33% 

Android 2.2 8 28.7% 31% 
 

3.3   How Do Users Manage Battery Life? 

Users mostly avoided lower battery levels, with the daily average of the lowest 
battery percentage values being 30%. This is likely due to the fact that the Android 
devices’ battery icon turns yellow at 30%, and prompts the user with a textual 
notification to charge the smartphone by the time it reaches 15%. 

The visualization in Figure 2 shows the average battery available at different hours 
of the day, across all the users, and how frequently the percentage was observed, 
when the battery was not being charged. Each bubble represents a different day of the 
study, for a given hour (with a bubble created only when there were at least 1000 
datapoints for the selected day-hour combination). Hence, the visualization contains 
three dimensions (Percentage, Time and Frequency), with frequency (low to high) 
highlighted both by size (small to big) and color (light yellow to dark red). The most 
frequent battery averages are above the 30% battery level. 
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Fig. 2. Average battery levels during the day (when not charging) 

On average the lowest average battery level was 65% at midnight, while the 
highest was 74% at 5AM. We expected that battery levels would be lowest at the end 
of the day, and the results confirmed it.  The average battery percentage is 67% across 
all users throughout the day [Figure 3]. 

 

 

Fig. 3. Average battery levels throughout the day for the whole population 

Despite the small variation of hourly battery levels across the whole population, 
individual users exhibited varying charging patterns. Some prefer to charge for short 
amounts of time throughout the day, while others allow the battery to discharge and 
charge it for longer periods of time until full [Figure 4].  
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Fig. 4. Battery level during a single day for three different users 

The data reveals two major charging schedules: one between 6PM and 8PM, with 
the majority of users initiating charging when the battery levels are at 40%, and 
another charging schedule between 1AM and 2AM, with a majority initiating 
charging when battery is at 30%. Another frequent charging event happens at 8AM, 
with battery levels at 80% on average [Figure 5]. 

 

 

Fig. 5. Average battery levels during the day at the moment when charging begins 

The majority of the charging instances occur for a very small period of time (up to 
thirty minutes) or between one to two hours, which is the average required time to 
recharge completely a battery (left side of the graph). [Figure 6]. 
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Fig. 6. Charging duration (amount of time the phone remains plugged in) 

As expected, a lot of charging instances happen overnight, for 14 hours or more 
(right side of Figure 6). The average charging time across the whole population is 
approximately 3 hours and 54 minutes, but there is certainly a bimodal distribution, 
with the majority of charging instances lasting less than 3 hours. By charging time, 
we mean the time since the user plugged his device to charge until unplugged from 
the outlet. 

Most charging instances start between 5PM and 9PM, while the least popular time 
to begin charging is from 3AM to 8AM [Figure 7], although the data in Figure 6 
shows that it is likely that phones are being charged during this time. 

 

 

 

Fig. 7. Charging schedule (times when users have their phones plugged in) 

3.4   How Much Energy Do Users Waste? 

Overall, in 23% of the charging instances, the phone is unplugged from the charger 
(USB and AC) within the first 30 minutes after the battery is fully charged, while in 
the remaining 77%, the phone is plugged in for longer periods thus leading to energy 
waste. On average, users keep the phones plugged for 4 hours and 39 minutes after 
charging has been completed [Figure 8]. 
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Fig. 8. Time until unplugged after the battery is full 

Monitoring when the device has finished charging, we calculated how long the 
user took to unplug the device from the charger (USB and AC). The amount of time is 
greater as expected during the night, starting most often at 11PM and lasting until 
8AM [Figure 9]. 

 

 

 

 

Fig. 9. Overcharging schedule 

3.5   How Does Charging Happen? 

As predicted, for longer charging periods AC is the preferred choice for phone 
charging. For short charges (30 minutes or less), USB charging is much more 
frequent. On average, users charge their phones 39% of the time using USB, and 61% 
of the time using AC [Figure 10]. 

 

 

Fig. 10. Amount of time charging with USB (red) vs. AC (blue) 
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In Figure 10, blue represents AC, and red is USB charging. The initial pair on the 
left represents charging between 0-30 minutes, in which charging is mostly USB for 
this specific period of time. AC charging has two peaks, one between 1-3h of 
charging time and 14 hours or more for overnight charging. 

3.6   How Often Is the Phone Rebooted/Turned Off? 

Uptime is the time elapsed before the phone is rebooted or turned off. In our study, all 
participants’ devices are on for at least up to a full day [Figure 11]. The results show 
that the likelihood of having a device on for up to two days is 33%, 18% for up to 
three and 11% for up to four days. 

 

Fig. 11. Uptime in days 

4   Discussion 

The large-scale study described here was conducted in order to assess the extent to 
which energy is being wasted, explore how often users demonstrate less than optimal 
charging behavior, how often they interrupt the charging cycle and when this is more 
likely to happen.  We hypothesized that by conducting such a study we could identify 
design opportunities for reducing energy consumption, increasing battery life, and 
also predicting when intensive computational operations and long data transfers 
should be scheduled. 

Previous studies have shown that users have inadequate knowledge of smartphone 
power characteristics and are often unaware of power-saving settings on smartphones 
[16]. Users should be provided with options on how to better manage the remaining 
battery, and, to some extent, automated power features can also help them use the 
device as intended [12, 20]. Most smartphones alert the user that they need to be 
charged when the battery reaches critical levels [16,17], but do not notify the user 
when it has finished charging. For instance, explicitly notifying the user that the 
device is running low on battery is something Android does when the battery is at 
15%. 

Battery management requires user intervention in two respects: to keep track of the 
battery available so that users can decide how to prioritize amongst the tasks the 
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device can perform; and to physically plug the device to the charger and surrender its 
mobility [17]. There is an opportunity to optimize which functionality should remain 
active based on the user’s lifestyle and battery charging habits, improving the human-
battery interface (HBI) with the user. Each user is unique and as such, the 
optimization system must learn and adapt to the user. The results show important 
differences between users’ behavior and preferences, but also highlight common 
patterns that can be useful in understanding aggregate behavior and developing 
software that taps into those behaviors. 

The findings of this study show that users 

• demonstrate systematic but at times erratic charging behavior (mostly due to the 
fact that charging takes place when the phones are connected to a PC);  

• mostly choose to interrupt their phones’ charging cycle thus reducing battery 
life. 

• aim to keep their battery levels above 30% due to an automatic ambient 
notification; and  

• consistently overcharge their phones (especially during the night);  

4.1   Users’ Charging Habits 

The study shows that users charged throughout the day resulting in erratic charging 
patterns and disrupted charging cycles that can reduce the lifetime of the battery 
[Figure 4]. A potential design opportunity exists here, whereby erratic charging 
behavior can be avoided by implementing a timer threshold that will prevent batteries 
from charging for short periods of times, e.g., for less than 5 minutes. The results 
[Figure 10] demonstrate that charging using USB could be triggered by command 
from the user (a feature already seen with some HTC Sense® devices) or if the battery 
percentage available is below 30%. 

Interrupted charging cycles [Figure 11] leads to the necessity of battery calibration 
(drain the battery until depletion and fully charging it). The “memory effect”, is a 
term loosely applied to a variety of battery ills [9]. From Corey’s research [5], 
overcharging, over discharge, excessive charge/discharge rates and extreme 
temperatures of operation will cause the batteries to die prematurely. Users in this 
study consistently kept the battery from reaching lower levels, with an average lower 
percentage of 30% of battery power by charging throughout the day (e.g., plugging 
their devices to the car dock for navigation at 8AM [Figure 5] or charging while 
transferring files). Software updates and backup routines could take these moments to 
run power intensive operations only if the user has his phone plugged in for more than 
30 minutes, since according to the results, there is a very high probability the user will 
charge for at least 1-2 hours. 

4.2   Avoiding Energy Waste 

Another problem that our study highlights in relation to charging duration is the 
amount of time the users keep their phones connected unnecessarily.  In the past, 
charging a battery for a long period of time would damage the battery from 
overheating and overvoltage [4, 5, 21]. Modern Li-ion and Li-poly batteries come 
from the manufacturer prepared to interrupt charging as soon as they are fully charged 
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[14], but this still results in unnecessary power consumption. This study shows that 
this happens frequently, which suggests that manufacturers should make an effort to 
improve their chargers to cutoff the charging as soon as the battery is full or after 
some time in cases where the phone is being powered directly from the charger.  

In addition, there is a design opportunity to give feedback to users the moment they 
plug in their phone – they usually look for confirmation that the phone is charging. At 
that moment feedback could be provided to change users’ behavior.  For example, we 
can predict when a “plugged in” event is likely to result in a long power consumption 
session, specially if it happens around 11PM. At that moment a message could inform 
the user that “your phone will be fully charged in X minutes”, prompting them to 
remember to unplug it, to minimize the time when the phone is plugged in when it is 
already fully charged. 

The combination of erratic charging and unnecessary charging observed in this 
study shows that users appear to have two types of charging needs: short bursts of 
charging to get through the day, and long charging periods during the night. One 
mechanism to reconcile these two distinct requirements is to allow for batteries to 
have a “slow-charge” mode, whereby they do not charge as fast as possible, but 
charge at a rate that will reduce the amount of unnecessary charging. A rule of thumb 
can be derived from [Figure 6], which suggests that an effective rate for “slow-
charge” rate could kick-in after 30 minutes and aim for a full charge in 4 hours (the 
average overcharging length).  A more sophisticated approach could incorporate a 
learning algorithm on the smartphone or even the battery itself. 

4.3   Opportunistic Processing on Smartphones 

In terms of identifying opportunities for intensive operations on the smartphone, the 
results suggest that there exists an important 30-minute threshold once charging 
begins.  If a charging session lasts more than 30 minutes, it is very likely that it will 
last for a substantially longer period. Charging that uses AC is also an indicator that 
the user will be likely to charge for a longer period of time. Combined, the 30-minute 
threshold and AC power source provide a good indication as to when applications 
should perform power intensive operations on smartphones: large data transfers, 
computationally intensive activities, etc. 

5   Conclusion 

More than ever, industry and academic research have an opportunity to resolve 
numerous issues and conduct studies using published applications to support users’ 
needs. Marketing and mobile phone manufacturers study a variety of user needs, 
focusing on the design of new handsets and/or new services [15]. Using automatic 
logging, in which software automatically captures user’s actions for later analysis 
provides researchers with the opportunity to gather data continuously, regardless of 
location or activity the user might be performing, without being intrusive. 

Asking users to anonymously collect battery information using a Google 
Marketplace application was a success: at the time of writing, 7 million battery 
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information points and 4000 participating devices from all over the world were loaded 
into our database from which the battery charging patterns were explored. 

The results provide application developers and manufacturers with information 
about how the batteries are being charged by a large population. The design 
considerations highlight how can we improve users’ experience with their battery life 
and educate them about the limited power their devices have. 

We look forward to seeing the next generation of smartphones, that learn from the 
user’s charging routines and changes their operation and charging behavior 
accordingly. 
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Abstract. Residential noise is a leading cause of neighborhood dissatisfaction 
but is difficult to quantify for it varies in intensity and spectra over time. We 
have developed a noise model and data representation techniques that 
prospective homeowners and renters can use to provide quantitative and 
qualitative answers to the question, “is this a quiet neighborhood?” Residential 
noise is modeled as an ambient background punctuated by transient events. The 
quantitative noise model extracts noise features that are sent as SMS text 
messages. A device that implements the noise model has been build, calibrated 
and verified. The qualitative impact of sound is subjectively assessed by 
providing one-minute audio summaries composed of twenty 3-second sound 
segments that represent the loudest noise events occurring in a 24 hour 
sampling period. The usefulness and desirability of the noise pollution 
monitoring service is confirmed with pre- and post-use surveys. 

Keywords: Location-based services, mobile devices, sensors. 

1   Introduction 

Excessive, unwanted or disturbing sound in the environment is called noise pollution. 
Noise affects our physical and mental health, increasing blood pressure and stress, 
damaging hearing and disturbing sleep [1]. Unlike chemical pollution which can be 
measured with a single value (e.g. parts per million) sound is difficult to quantify 
because it is multidimensional, varying in intensity and spectra. Similarly, the impact 
of noise on humans is complex. Some noises are pleasant, like flowing water, while 
others are annoying like car alarms, screeching breaks and people arguing. 

We experience noise pollution in all aspects of our lives; at work, at home and on 
holiday. Noise in the workplace is regulated to protect employees against loss of 
hearing and other injuries [2]. The parks department is very concerned with 
maintaining an acceptable soundscape and uses a combination of human observers 
and instrumentation to measure the impact of noise pollution such as jet flyovers and 
recreation vehicles (e.g. snowmobiles and water craft) [3]. 

In this paper, we are concerned with residential noise. In annual surveys conducted 
by the Department of Housing and Urban Development for the past three decades, 
noise has been identified as the leading cause of neighborhood dissatisfaction, with 
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traffic and aircraft noise leading the list [4]. We have developed noise monitoring 
hardware, analysis algorithms, visual and auditory representations to help people 
evaluate the noise environment of a home, providing a quantitative objective answer 
to the question, ``is this a quiet neighborhood?''  

When a person enters into a contract to purchases a house, a home inspection is 
performed to inform the buyer of any structural, electrical, plumbing and roofing 
problems. Too often, however, residents learn of unexpected noise pollution on the 
first night of occupancy. With this need in mind, we set out to create a device that 
could be used as part of a home inspection to provide an assessment of residential 
noise pollution.  

We began with a survey to understand how noise pollution affects residents in our 
area and a review of current laws and literature on noise pollution. We designed and 
built a device to monitor noise pollution in response to these problems.  Using noise 
samples from three representative houses, spanning the spectrum of quiet to noisy 
neighborhoods, we developed a noise model to characterize residential noise and a 
means to compress noise events of an entire day (24 hours) into a one minute auditory 
summary. Our design minimizes data collection, transmission and storage 
requirements to utilize low-cost and low-power components, while maintain sufficient 
measurement accuracy. We conducted a user study to measure the effectiveness of 
visual and auditory presentations of the collected noise data.  Our results show that 
people prefer to compare homes by the audio summaries rather than visual 
representation of noise data. 

2   Background 

2.1   Related Work 

Noise control has its US roots in the establishment of the National Environmental 
Policy Act of 1969 and the Noise Control Act of 1972. At that time the EPA testified 
before Congress that 30 million Americans are exposed to noise pollution [5]. The 
"Green Paper on Future Noise Policy" [6] published in 1996 set the ground work for 
noise policy in Europe. As more people live in cities, there are more noise sources and 
greater pressure from residents to control noise.  

Several organizations maintain web sites with a wealth of information on noise 
pollution (e.g. www.nonoise.org, www.acousticecology.org, www.noisefree.org) to 
raise awareness and reduce noise pollution.  Government agencies [7] have noise 
monitoring and education programs, including interactive noise maps [8, 9]. Sound 
meters have been combined with GPS receivers to populate a database to create sound 
maps of a location [10].  

Airports have permanent noise monitoring equipment to measure noise produced 
by arriving and departing aircraft [11, 12]. The FAA is required to make noise 
exposure maps available to the public via the Internet [13]. Using the WebTrack tool 
[14] we are able to correlate the air traffic noise detected at our noise pollution study 
locations with departing and arriving aircraft. The site also has real time sound 
pressure levels from fixed location monitoring stations on the arrival and departure 
corridors around the airport.  
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Noise pollution has motivated municipalities to take an active role in monitoring 
and reducing noise to protect their citizens. The European Directive 2002/49/EC [15] 
to monitor, inform, address and develop a long term strategy to reduce offending 
noise, has stimulated much noise pollution research and development activity in 
Europe. The Directive stimulated the MADRAS project [16], creating a database of 
samples of noise pollution sounds used by researchers studying noise pollution. One 
project [17] developed an automatic noise recognition system using a hidden Markov 
model to classify transportation noise events (car, truck, moped, aircraft and train) 
with higher accuracy than human listeners.  

Smart phones have been used to enable citizens to contribute to noise pollution 
maps [18, 19, 20, 21, 22]. Monitoring noise pollution with smart phones have several 
problems as reported by Santini et al. [23] including location of the phone (e.g. hand, 
pocket or backpack), modification of the detected sound by phone hardware and 
firmware (e.g. noise cancellation, low-pass filtering, automatic gain control), and 
power consumption limiting continuous monitoring duration. Previous works 
typically presents and compares noise pollution as a single number. As we will show 
through surveys, the impact of residential noise is too subjective and complex to be 
represented by a single metric. Our goal is to create a device to continuously and 
accurately monitor noise pollution, and data presentation methods to enable 
prospective home owners and renters to effectively evaluate noise pollution at several 
residential locations. 

 To achieve these goals we decided to build our own microprocessor-based audio 
capture system to send noise analysis results as SMS text messages. We chose to 
build a custom system rather than use a smart phone to control the audio performance 
characteristics of the device, including sample rate, dynamic range, resolution and 
accuracy. We developed several graphical representations and a novel audio 
summarization technique which we evaluated with user studies. 

2.2   Noise and Hearing 

The human ear detects minute changes in air pressure as sound. The ear is incredibly 
sensitive, with a dynamic range (the difference between the thresholds of hearing and 
pain) spanning 13 orders of magnitude (Table 1).  To accommodate the large dynamic 
range, sound pressure level (SPL) is measured in logarithmic units of decibels (dB), 
with 0 dB defined as the threshold of hearing. A +3 dB change doubles the SPL and is 
the minimum increase in loudness perceivable by humans. A +10 dB increase is 
perceived as the doubling of loudness [24]. This implies that our noise sensor must 
have a large dynamic range (e.g. 30 dB to 90 dB) but with low resolution (1-3 dB). 

Sound varies in amplitude and frequency. Spectrum refers to the frequency 
components that make up a sound. White noise has energy spread equally across all 
frequencies. Pink noise, also called 1/f noise, has a power spectral density inversely 
proportional to frequency, and is produced by flowing water and distant highway 
traffic (Fig 1, left). Motorcycles, propeller airplanes and helicopters are noise sources 
that appear prominently in our noise sampling sites and have a strong periodic 
component. Compressed gas emanated from the motorcycles’ exhaust system and the  
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Table 1. Sound pressure levels (in decibels) of common loudness references 

Decibels Example 
0 Threshold of hearing 
20 Rustling leaves 
30 Whisper, quiet library 
50-70 Normal conversation at 3 to 5 feet 
75 Loud Singing 
80 Telephone dial tone 
90 Train whistle at 500 feet, motorcycle, lawnmower 

95 Subway at 200 feet 
100 Diesel truck at 30 feet 
110 Jack hammer, rock concert, boom box 
120-140 Pain, gun blast, jet engine at 100 feet 
180 Death of hearing tissue 

chopping of air by propellers produce distant frequencies in the noise spectra (Fig. 1, 
right). While previous work uses sophisticated signal processing combined with 
statistical models to automatically detect and categorize these noise sources [17], our 
noise detection algorithm is simple enough to run on a low power 8-bit 
microprocessor. Instead of automatically identifying the noise source, we record short 
segments (e.g. 3 seconds) so humans can judge for themselves the subjective impact 
of noise. 
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Fig. 1. Spectra of several noise sources (left), sampled at 8 kHz, covering a frequency range 
from 100 Hz to 4 kHz. Periodic noise sources (right) are particularly disturbing. 

3   Research Methodology 

The goal of our research is to develop an inexpensive, convenient and effective means 
of monitoring and comparing residential noise pollution. Our approach is to interview 
potential users to understand the significance of the problem, take some real-word 
measurements, build a system and verify it in the field, then test our solution with 
users. The paper is organized in the order we use to carry out our research: 

• Conduct a survey to determine the importance of noise pollution on choosing 
a place to live and what noise sources are most disturbing 
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• Select three homes that represent a diversity of noise pollution environments 
and collect several days of audio recordings 

• Determine a noise model that captures the salient noise features to efficiently 
quantify noise pollution 

• Build hardware to measure salient noise features and verify in the field 
• Design noise pollution data presentation methods 
• Conduct a user survey to determine the effectiveness of noise pollution 

presentation methods.  

4   Data Collection 

4.1   Noise Pollution Survey 

We conducted a survey of 82 people to determine if noise pollution is perceived as an 
important factor in choosing a place to live, and what noise pollution sources cause 
problems. The subjects were adult technical and administrative staff, male and 
female, from our research laboratory. Practically everyone (93% of respondents) 
indicated that a quiet neighborhood is important in selecting a place to live (55% 
indicated ``very important'').  

We classified people into ``primarily apartment or townhouse residents'' and 
``primarily stand-alone house residents'' based on their reported residence history. 
People who have lived primarily in houses care more about noise then people who 
live in apartments (100% vs. 88%), and many feel it is ``very important'': (64% vs. 
49%).  About 2/3 of both apartment-renters and house-dwellers remember discovering 
noises in a new residence that they didn't know about before hand (65%, 64%). 
House-dwellers are a little more likely to read and buy a noise survey (read: 77% vs. 
68% ; buy:87% vs. 74%), and would pay more ($30 vs. $25 on average). 

Table 2. Survey results of which noise sources annoy residents 

Noise Source Apartment or 
Townhouse Resident 

House 
Resident 

Loud music 55% 64% 
Yard noise 43% 48% 
Traffic 43% 42% 
Parties 49% 24% 
Children 20% 9% 
Babies 31% 18% 
Construction 45% 30% 
Arguments 33% 42% 
Pets 33% 42% 

 
The most problematic times for noise are nights, followed by evenings and 

weekend mornings. The results of the relative annoyance and type of noise sources 
reported by survey participants are listed in Table 2. Neighbors' loud music is the 
biggest noise complaint for both groups, followed by yard services and traffic noise. 
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Traffic noise is the dominant noise pollution source detected in our monitoring since 
it happens every day. Leaf blowers are the biggest write-in noise complaint.  

Most people (52%) do nothing in response to noise pollution. Only about 1 in 5 
people have confronted a neighbor over a noise problem.  One in four house-dwellers 
called the police over a noise incident, and the same percentage of apartment-renters 
has either called the police or the building superintendent/security. A further 4% have 
contacted the humane society over pet noises. A surprising 4% of respondents (both 
apartment and house dwellers) reported retaliating against loud neighbors by making 
noise themselves. 

The variety of noise sources and the impact on individual demonstrates the 
subjective nature of noise pollution, and foreshadows an important lesson we learned 
by running our experiments and surveys; the impact of noise pollution must be 
evaluated subjectively by the individual. 

4.2   Selection Monitoring Sites 

In order to refine our understanding of what data should be collected to evaluate 
residential noise pollution, we made preliminary recordings at five locations. We 
listened to the recordings and selected three houses to represent a diversity of noise 
pollution environments. House A is located on a residential street far from any 
expressway or major road, representing a suburban location. It is a very quiet location 
punctuated by an occasional vehicle. House B is located in a large county park, down an 
unpaved road and represents a very rural setting. It is next to a creek, providing a source 
of pink noise (what is considered “white noise” in casual usage). We chose House A 
and B to study the relative impact of transient noise juxtaposed with background noise. 
A transient noise event (e.g. a car passing by) at house A may be perceived as more 
disturbing than the same magnitude event at house B since house A has a lower average 
sound level. However those noise events may not be as disturbing as a constant higher 
level of background noise. House C is located in a dense suburban development within 
a few blocks of two freeways, providing a variety of human activity and transportation 
noise sources, as would be encountered in an urban environment.  

4.3   Field Recordings 

For each of the three houses field recordings are made using an external electret 
microphone and laptop computer. The microphone has a ten foot cable, allowing it to 
be placed outside a window, while the laptop is located inside, plugged into the 
mains, to enable many hours of continuous recording. The microphone is chosen for 
its small size (6 mm diameter), low cost (<$1) and flat response for the bandwidth 
studied (100 to 4 kHz). The sampling bandwidth is determined by examining the 
spectra of noise sources recorded during our survey of potential monitoring sites. To 
avoid aliasing (acoustic artifacts), the sampling frequency must be at least twice the 
highest frequency detected, known as the Nyquist frequency. A low sampling rate is 
desired to minimize the storage used in our field recording and to minimize the speed, 
and hence power, of the microprocessor used in our mobile device. The highest 
frequency event recorded at our monitoring sights are birds chirping, which have 
energy between 3-4 kHz (Fig. 1, left), which agrees with published accounts [25]. 
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From this analysis we establish 8 kHz as the sampling rate for our field recordings 
and the mobile device.  

In order to compare sound measurements made by different instruments at different 
times, it is essential that each device be calibrated. We use two types of sound recording 
systems: a laptop with external microphone and a microprocessor-based mobile device. 
Each laptop runs sound recording software (http://audacity.sourceforge.net) that 
continuously records mono audio at 8 kHz sample rate, with 16 bits of linear amplitude 
resolution. The sound recordings are stored as uncompressed .wav format files to avoid 
any compression artifacts. The microprocessor-based mobile device samples audio at 8 
kHz with 10 bits of linear amplitude resolution, with +60 dB of auto-scaling for an 
effective dynamic range of 20 bits. 

All of our sound recording systems are calibrated with a commercial digital sound 
pressure meter (Extech Model 407730) which has a 2 dB accuracy and a 0.1 dB 
resolution. The sound pressure meter is used in A-weight filter mode, which 
approximates the spectral sensitivity of the human ear. To calibrate each sound 
recording system (microphone + amplifier + digitizer) we use radio static (tuned away 
from all broadcast stations) as a white noise source (equal energy at all frequencies, 
confirmed by spectral analysis).  By varying the volume of the radio, measured with 
the sound pressure meter, we can produce a series of calibrated sound pressure levels.  

To calibrate a field recording system, all of the system components are set in the 
field condition. For laptops this means specifying the gain settings of the entire audio 
chain (sound driver, operating system mixer and recording software) and using the 
exact microphone that will be used in the field. For the microprocessor-based mobile 
device, each gain setting (it has 4) is individually calibrated. The field recording 
microphone is placed next to the sound level meter microphone and in front of the 
radio speaker, on foam to reduce sound reflections (Fig. 2). The sound recording is 
started and the volume of the radio is increased in +3 dB steps. The log base-10 of the 
average microphone output is plotted against the sound pressure, measured with the 
sound pressure meter. A linear fit of this curve produces the gain and bias terms to 
convert microphone output into calibrated dB units.   

 

Fig. 2. Microphone calibration system. Radio (A) when tuned between stations provides white 
noise to calibrate microphone (B) with a reference sound level meter (C). The microphone’s 
voltage output is recorded with a laptop (D). 
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4.4   Noise Monitoring Hardware 

The objective of our research is to design an inexpensive mobile device that can be 
placed outside a residence for a day to a week to monitor noise in the environment. 
The device collects and processes sound samples, producing noise analysis output 
useful for evaluating the relative impact of noise pollution at a location. The device 
incorporates a mobile phone to wirelessly send the output to prospective renters and 
home buyers. To minimize the overall cost of the device we chose the lowest cost 
mobile phone we could find (Kyocera Model S2400, Radio Shack #17-3489, $9.99). 
To minimize the cost of mobile air time, noise analysis output is encoded and 
transmitted as SMS text messages.  

The mobile sound monitoring device is implemented with an inexpensive 8 bit 
microprocessor (Zilog Z8F64200100KIT) wired to the keypad of the mobile phone 
through analog switches (CD4051). The hardware interface allows the microprocessor 
to perform any phone function a human can through the phone’s keypad. The 
microprocessor samples sound pressure level, performs signal analysis to derive 
salient sound features, turns on the phone, composes a SMS text message, presses 
“SEND”, then turns the phone off, minimizing power consumption. The text message 
is sent to a server as email.  

The audio signal path consists of a +30 dB preamp followed by four +15 dB 
amplification stages. Each amplifier stage is sent to the multiplexer channels 
(switches) of the microprocessors’ analog-to-digital converter, providing software 
selectable gains of 30 to 90 dB (Fig. 3). The amplitude of the selected channel is 
sampled at 8 KHz with 10 bits linear amplitude resolution. The samples are rectified 
(absolute value function), integrated over a one-second window, and the minimum 
sum occurring in a five-minute window is saved as the Minimum Average. If one or 
more samples in a one-second window exceed the previous Minimum Average by 
+20 dB, a Peak Counter is incremented. If the Minimum Average becomes too small 
or large, a different amplifier gain is selected, implementing software automatic gain 
control (AGC), thereby increasing the dynamic range of the system. Once an hour the 
microprocessor turns on the phone, composes a text message containing Minimum 
Average and Peak Count values and sends it to an email account, using the same key  
 

 

Fig. 3. Mobile noise monitoring system. A series of amplifier stages are fed to the inputs of the 
microprocessor’s (Z8) analog-to-digital converter, providing a selectable gain from +30 dB to 
+90 dB. The microprocessor (Z8) performs audio analysis and sends the results as SMS text 
messages, using analog switches (4051) wired to the keypad to control a mobile phone. 
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sequence as a human composing a text message. This strategy dramatically reduces 
power consumption and extends battery lifetime, since the phone is only on for less a 
minutes every hour.  

The placement of a single sensor on the residence property does present a source of 
variation in absolute signal strength measurement. Peppin and Probst [8] handle this 
variation by creating noise maps that show the average noise at multiple locations 
around buildings. Another approach would be to walk around the residence while 
measuring the instantaneous sound pressure level and locate the sensor in the area 
with the largest sound pressure level. 

To validate the hardware, the mobile noise monitoring device is placed next to a 
studio-quality condenser microphone (MXL 990) connected to a laptop that has been 
calibrated with the method shown in Fig. 2. Over a period of 20 hours the prototype 
hardware automatically sends hourly SMS messages containing Minimum Averages 
and Peak Counts for house C, while the laptop continuously records audio. The 
Minimum Averages calculated from the continuous audio recordings correspond with 
Minimum Averages measured and transmitted by the mobile noise monitoring 
hardware (Fig 4), validating the mobile system. 
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Fig. 4. Average sound pressure level sent by mobile phone as SMS text messages and average 
sound pressure level measured with calibrated microphone. The test was stopped for one hour 
to confirm calibration, resulting in the data gap between 11:00 and 12:00. 

The noise analysis output sent over SMS text message (Minimum Average and 
Peak Counts) provides a quantitative analysis of the noise environment. To provide a 
qualitative representation of the noise environment we developed a method to 
compress one full day’s of audio into a one minute “collage”. The method requires 
multiple (e.g. 20) short recordings (e.g. 3 seconds) of audio. This can be 
accomplished two ways; storing the audio as analog samples using an integrated 
single chip solution (e.g. Nuvoton Technology ISD5008) or storing the audio digitally 
in flash memory. Playing back the audio samples as an analog signal would allow us 
to send the audio over the mobile phones’ voice channel.  

To test the feasibility of sending recorded noise samples over the mobile phone’s 
voice channel, a one minute sample of noise events from house B, recorded with the 
laptop system, is transmitted over the mobile phone’s voice channel to a WebSphere 
Voice Server (VoiceRite Client). The audio (line) output of a laptop is connected to 
the headset (mic) input of the mobile phone using a 10.3 dB attenuator and 0.1 uF 
capacitance coupler to match the impedance between the two devices.  
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Examining the amplitude of the transmitted and received signals (Fig. 5), it is clear 
that the combined mobile phone and network is modifying the signal in ways that 
defeat our purpose. We want to send and faithfully reproduce noise while the mobile 
phone and network is designed to fit many voice channels into a small bandwidth and 
minimize the transmission of noise. Therefore local flash must be used to store sound 
samples and can be retrieved with removable digital medium (SD card, compact flash, 
mini SD, etc.) or uploaded to a smart phone or laptop with a serial or wireless 
network. Making this easy-to-do is essential for commercial deployment. 

 

Fig. 5. Sound sample amplitude from house B before (top) and after (bottom) transmission over 
a mobile phone voice channel.  Time scale on top of figure is in seconds. 

5   Data Representation 

5.1   Noise Model 

In all the sound recordings, we observe the common characteristic of a slowly varying 
ambient component (caused by traffic and water) punctuated by quick transient events 
(caused primarily by vehicles) (Fig. 6, 7). The ambient component displays a cyclic  
 

 

Fig. 6. Profile of House A showing average sound pressure (lower) and percent of peak events 
(upper), defined as an instantaneous amplitude that exceeds the average by at least 20 dB, 
occurring, representing the baseline noise and transient events, respectively.  
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variation, with a period of a day, corresponding to commuter traffic, and is most 
apparent in the average signal. The transient events from passing vehicles last a few 
seconds while aircraft flybys can last up to a minute.   

We experimentally determined that a threshold of 20 dB above the minimum 
average is sufficient to detect a transient event. We quantify these two salient features 
by measuring the Minimum Average and counting the transient events (Peak Count) 
in a sampling window.   

 

Fig. 7. Profile of house B showing peak noise events and average noise. A creek adjacent to the 
property creates a diminishing baseline noise caused by runoff from recent rain.  Devoid of 
commuting traffic, transient events at this rural location are predominantly caused by airplanes, 
which pass overhead in the middle of the day.  On Thursday a significantly increased number 
of airplanes were diverted over this house. 

5.2   Quantitative Presentation of Noise Data 

Having defined quantitative measures of the ambient component (Minimum Average) 
and transient component (Peak Count) of noise pollution, we prepare graphs of the 
measurements so users can compare houses. Three graphs are presented to users: a 
one day (24 hour) timeline of the Minimum Averages (Fig. 8, left), and two 
histograms collected over three days showing the loudest events defined as the 
Minimum Average at the time of a Peak Count event (Fig. 8, middle) and a histogram 
of the average sound pressure level (Fig. 8, right).  

The urban and suburban houses A and C show peaks in the minimum noise level 
(Fig. 8, left graph) during morning and evening commutes. House B shows the sound 
of a creek adjacent to the property, which is slowly getting quieter as the swell from a 
recent rainfall reduces. This provides an interesting side-effect of our research; traffic 
levels and water flow can be indirectly observed by monitoring Minimum Averages.  

The histogram of the loudest noise (Fig. 8, middle) shows the Minimum Average 
at the time of peak events (indicated by the increment of the Peak Count). The narrow 
range of noise levels on house B indicates a predominantly constant noise level (the 
creek), whereas the wider bands for houses A and C reflect the variable intensity of 
noise from vehicles near these locations. Fig. 8, right, shows that the distribution of 
average noise level is similar to the distribution of loud noises, albeit centered at a 
lower peak. 
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Fig. 8. Data from three sample houses (A, B and C) showing a 24 hour time period of minimum 
average sound in 5 minute windows (left), a histogram of the loudest noises (middle) and 
average noise level (right) 

5.3   Qualitative Presentation of Noise Data 

The temporal and statistical data presented in Fig. 8 does not identify the sound 
source, only the magnitude and frequency of occurrence. Instead we developed an 
automatic technique that saves short recording of noise events and edits them together 
into a single recording. Using this method we compress 24 hours of sound monitoring 
into a one-minute “collage” (Fig. 9). The technique works as follows: starting at 6 am 
through 6 am the next day, for every 72 minutes of recorded audio, a 3 second 
segment with the largest average amplitude is saved. The resulting 20 segments are 
played sequentially, providing a one-minute summary of the loudest noise events 
occurring in a 24 hour period.  

 

Fig. 9. Audio summary of noise for house A. One complete day (upper) (24 hours) of audio is 
compressed into a one-minute summary (lower) by selecting the 3 seconds of audio with the 
largest average amplitude, from every 72 minutes of audio. The upper scale format is 
hours:minutes:seconds, the lower scale is seconds. 
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6   Evaluation 

We conducted a user study to: (1) evaluate the usefulness of the graphs representing 
the noise pollution data we collected, (2) explore the utility of qualitative noise 
samples versus quantitative summaries, and (3) see if interest in a noise monitoring 
service changes after trying our system.  For each test site (houses A, B, and C) we 
create a graphical presentation of the quantitative data (shown in Fig. 8) and a one-
minute audio summary (described in Fig. 9) from 24 hours of monitoring, from 6 am 
to 6 am on a week day.   

The user study consisted of a questionnaire, three one-minute audio samples 
(listened with headphones), and the data graphs displayed on a laptop.  Thirty five 
(35) participants were surveyed, drawn from the same sample group as our noise 
pollution survey (Section 4.1).  Participants were asked to answer a few baseline 
questions and then rank where they would like to live based solely on viewing the 
graphical data and listening to the audio summaries. The test and choice orders 
(graphical, audio, house) were randomized to reduce any potential order-preference 
bias.  Participants were asked which presentation method (graph or audio) they prefer, 
and re-asked a question from our initial survey, “How likely would you read a 
neighborhood noise assessment report before renting or buying a dwelling (for 
example, as part of a home inspection)?” 

As an important validation to our system, the number of people who are “very 
likely” to read a noise assessment survey after trying our system jumped from 37% to 
50% (Table 3). The participants preferred the one-minute audio summaries to the 
graphical view. When they put on their headphones, they listened intently, some 
pushing the headphones to there head to block out all other sound. They appeared to 
be mentally transported to the location, trying to figure out what it was they were 
hearing but could not see. Most watched a cursor move across the timeline while the 
audio played. As one participating commented “Having the timeline helped me think 
about when the noise would be disturbing.” A participant said House C sounded like 
living in Manhattan. Another recognized the sound of someone practicing drums, an 
observation that cannot be discerned from any of the graphs.  

Many participants were confused by the graphical view and had little experience 
with the significance of dB levels. In retrospect, it would have been helpful to add 
loudness references to the y-axis that participants could relate to, as in Table 1. The 
histogram views were the most confusing for users, which surprised us since many of 
the participants were technical people. Perhaps participants were confused because a 
histogram usually has frequency in the y-axis and bins in the x-axis.  

Table 3. Noise assessment, audio and graphical presentation preferences 

 First Survey Second Survey 
Very likely to read noise assessment 37% 50% 
Likely to read noise assessment 30% 37% 
Prefer audio segment --- 66% 
Prefer graphical view --- 14% 
Undecided --- 20% 



 Monitoring Residential Noise for Prospective Home Owners and Renters 47 

 

Most people (66%) gave different rankings to the houses when listening to one-
minute audio summaries then when viewing the graph.  The largest variance was 
between houses A and B (58%). While many users identified house A as the quietest 
from the graphs and stated that as a preference, they had the opposite impression from 
the audio samples.  House B has a constant background noise caused by the nearby 
creek which masks other sounds, whereas house A is quieter, but has occasional loud 
noises such as motorcycles which stand out more against the quiet background.  
Almost all (89% of respondents) put house C in third place after the other two, and 
house C was never selected as the best place to live. 

Before showing users the data on these three houses, we asked users “Do you agree 
or disagree with the following: ‘I prefer white noise such as flowing water or other 
continuous noise source masking other sounds, as compared to a quiet background 
environment with more audible sound event.’” (We didn’t use the more accurate term 
“pink noise”, since it is not commonly used or understood). Fifty seven percent (57%) 
agreed or strongly agreed with this statement, 14% disagreed or strongly disagreed, 
and 29% were neutral. There was a 24% correlation between agreement/disagreement 
with this statement and preferential choice of house B in the noise sample ranking 
(the house with the creek).  This is corroborated by 17% of the participants who use 
wrote the term “white noise” when describing why they did or didn’t like house B. 
This suggests that, to some extent, people are aware of their preference for “white 
noise” in their sound environment, and reinforces the subjectivity of noise pollution 
impact.  

7   Conclusions  

We have developed a residential noise model that quantifies ambient and transient 
events, producing a compact representation that can be sent over SMS text messages, 
and is simple enough to run on an inexpensive microprocessor. The resulting data 
captures the cyclic nature of noise produced by human and natural activities. We 
developed a novel method of compressing the noise events of an entire day (24 hours) 
into a one-minute summary. Evaluating the impact of residential noise is subjective 
for there are many noise sources whose impact varies with the individual. A majority 
of test subjects (66%) prefer the audio summaries over graphical presentations of 
noise pollution data. The audio summaries provide a direct and visceral means of 
exposing subjects to noise pollution, allowing them to experience the sources and 
make their own subjective evaluation of impact. However, this method may not be 
practical for screening dozens of locations with longer sampling periods (e.g. week 
vs. a single day). A hybrid approach may therefore be useful, where locations are first 
screen using noise model parameters, then top candidates are reviewed with audio 
summaries.  

Nearly every subject in our survey said a quiet neighborhood is important in 
selecting a place to live, and two-thirds remember discovering noises in a new 
residence that they didn't know about before hand. We believe that a noise inspection 
device and service, as outlined in this paper, can help reduce some of the noise 
pollution surprises and risks encountered by new home owners and renters. 
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Abstract. We present the first longitudinal study of pressure sensing to infer 
real-world water usage events in the home (e.g., dishwasher, upstairs bathroom 
sink, downstairs toilet). In order to study the pressure-based approach out in the 
wild, we deployed a ground truth sensor network for five weeks in three homes 
and two apartments that directly monitored valve-level water usage by fixtures 
and appliances. We use this data to, first, demonstrate the practical challenges 
in constructing water usage activity inference algorithms and, second, to inform 
the design of a new probabilistic-based classification approach. Inspired by 
algorithms in speech recognition, our novel Bayesian approach incorporates 
template matching, a language model, grammar, and prior probabilities. We 
show that with a single pressure sensor, our probabilistic algorithm can classify 
real-world water usage at the fixture level with 90% accuracy and at the fixture-
category level with 96% accuracy. With two pressure sensors, these accuracies 
increase to 94% and 98%. Finally, we show how our new approach can be 
trained with fewer examples than a strict template-matching approach alone. 

Keywords: Water sensing, activity inference, sustainability, field deployments. 

1   Introduction 

Low-cost and easy-to-install methods to sense and model human activity in the home 
have long been a focus of UbiComp research. Because water is fundamental to many 
activities of human life (e.g., bathing, cooking), sensing disaggregated water usage 
has emerged as a particularly promising area for human activity inference in the home 
[6, 8, 19]. In addition, these sensing systems can play a vital role in collecting highly 
granular consumption information for enabling eco-feedback and sustainability 
applications (e.g., [7]). In previous work, we introduced HydroSense [8], a pressure-
based sensing solution that disaggregates water usage at the fixture level from a single 
installation point. HydroSense identifies the unique pressure waves generated when  
 

                                                           
* The first two authors contributed equally to this work. 
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Fig. 1. A pressure stream with ground truth labels from deployment site H2. The blue line is the 
cold water pressure (sensed from a hose spigot) and the red line is the hot water pressure 
(sensed from a water heater drain valve). The pressure transients are also highlighted and 
colored according to fixture. Note how rapid increases and decreases in pressure correspond to 
opens and closes and how transient waveforms are dampened when they occur in compound. 

fixtures are opened or closed. These waves propagate throughout a home’s plumbing 
infrastructure, thus enabling the single-point sensing approach. 

Although the original HydroSense work evaluated the pressure-based sensing 
approach using staged experiments in controlled home environments[8], it was 
unclear how well this approach would perform with real-world water usage. In this 
paper, we critically examine the feasibility of using pressure-based sensing to 
determine water usage activities in the home. We conduct real-world deployments in 
three homes and two apartments over a five-week period. In addition to installing 
pressure sensor sat each deployment site, we also deployed custom wireless ground 
truth sensors on individual fixtures throughout the home (e.g., kitchen sink, toilet, 
dishwasher) to provide ground truth data on water activity events. The ground truth 
sensors were designed to track both hot and cold water usage at their respective 
fixtures. This allowed us to investigate not only whether the pressure signal could be 
used to infer fixture-level water activity but also whether it could be used to 
determine hot and/or cold water usage at each fixture. This is an important capability 
as water heating alone is responsible for 12.5% of residential energy consumption 
[17]. To our knowledge, our ground truth deployment represents the most 
comprehensive real-world study of hot and cold water usage in residential homes and 
apartments ever performed. 

Over five weeks, we collected approximately 15,000 ground truth labels for the 
opening and closing of fixture valves (e.g., Figure 1). The scope and size of this 
dataset allows us to examine the practical challenges in constructing water usage 
activity inference algorithms and to highlight problems that any indirect water sensing 
method must address. We show, for example, that compound events (when two or 
more water fixtures are operating at the same time) constitute37.1% of all bathroom 
sink activity and nearly 20% of overall water usage activity. Such prevalence suggests 
that compound events should be specifically addressed and evaluated by any water 
disaggregation technique; however, this has rarely been the case (e.g., see [8, 9, 20]). 
Thus, our ground truth data serves both as a resource to inform the design of our 
classification algorithms as well as to evaluate their performance. 
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We use the ground truth labels along with the pressure stream data to design and 
evaluate a novel pressure-based water usage inference algorithm. Although the 
template matching of pressure wave transients used in our original HydroSense paper 
[8] worked well for controlled experiments, we show that a template-matching 
approach alone is insufficient for the variety of signal distortions that occur during 
real-world water use. For example, the speed with which a faucet handle is turned and 
whether an event occurs in isolation or in compound can change the shape of the 
pressure transient thereby rendering the naïve template matching approach 
inadequate. Consequently, we extend and adapt the original HydroSense algorithms to 
use a probabilistic model based in part on speech recognition algorithms. We show 
how the addition of a language model and contextual priors (e.g., fixture usage 
duration, and maximum flow rate) can boost classification accuracies by an average 
of 6% with real-world water usage data. We also show that the introduction of a 
language model and priors decreases the amount of training data relative to a 
template-based approach alone. Our current analysis provides pre-segmented pressure 
transients to our classification algorithm, leaving segmentation to future work. In this 
way, our classification results can be seen as an upper bound. 

In summary, the contributions of this paper are: (1) The most comprehensive 
dataset of labeled real-world hot and cold water usage events ever collected in homes 
and apartments; (2) An analysis of our new real-world dataset to uncover challenges 
that any indirect sensing water disaggregation method must overcome; (3) A new 
probabilistic approach to water usage classification that is highly extensible and 
incorporates a language model, grammar, and contextual priors; (4) An evaluation 
showing that this new probabilistic approach performs significantly better than 
previous template-based methods. 

2   Related Work 

Automatic identification of home water usage events has largely been pursued by two 
non-overlapping efforts. Utilities and water resource management scientists have 
investigated disaggregation to inform government policy [13], plumbing codes [15], 
and to study the effectiveness of conservation programs [14] and low-flow fixtures 
[12,13]. In contrast, computing researchers have focused on human activity inference 
(e.g., [6, 8, 19]) and sustainability applications (e.g., [9]). We draw upon literature 
across both fields. 

In studies by utilities and water resource management scientists, the most prevalent 
residential disaggregation technique is flow-trace analysis. Flow-trace analysis 
examines aggregate flow at a single inline water flow meter to determine the fixture 
category responsible for water usage [3]. Unlike HydroSense, flow-trace analysis 
only classifies at the fixture category level (i.e., it cannot determine the specific 
fixture or valve that was used). For example, flow-trace can determine that a toilet 
was flushed but not which toilet was flushed. Flow-trace analysis has been used in 
government- and utility- sponsored studies [3, 12, 13, 14], the largest of which 
included 1,188 households across North America [11]. Despite its prominence, flow-
trace analysis has not been comprehensively studied. In the only known empirical 
investigation, Wilkes et al. conducted staged experiments of water usage over a five 
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day period in one home. Flow-trace analysis correctly categorized 83% of the isolated 
water usage events at the fixture category level. When water usage overlapped (i.e., 
what we term compound events), performance dropped dramatically to 24% when two 
water fixtures were used in compound and 0% when three or more were used [20]. 

Researchers in the UbiComp and Pervasive communities have developed other 
water disaggregation techniques such as the Nonintrusive Autonomous Water 
Monitoring System [9], the original HydroSense work [8], and Sensing from the 
Basement [6]. In the only real-world evaluation, Fogarty et al., installed microphones 
on water supply and sewage pipes in a single home and used temporal features in 
order to classify pipe noise into individual fixture usages. This work demonstrated 
that temporal features such as duration (e.g., a toilet flush lasts ~60 seconds) and 
on/off activations (e.g., a dishwasher cycles through a detectable pattern of water use) 
were useful in classifying water events at the fixture level. However, it also revealed 
the difficulty in discriminating between bathroom sink and kitchen sink uses, 
correctly classifying short water events (e.g., events that lasted less than 10 seconds), 
and correctly classifying compound events. 

Our original HydroSense work was the first to show that pressure transients could 
be used to disaggregate water fixtures using staged experiments [8]. The experiments, 
however, were limited in that faucet handles were activated at approximately the same 
flow rate each time, and all fixtures were tested in isolation (i.e., no more than one 
fixture was used at a time). As we show in this paper and as could only be derived 
through a real-world ground truth deployment, much greater variations are common 
in real-world water usage. These phenomena can affect properties of the resulting 
pressure wave and thus the ease of classification. 

3   Data Collection and Deployment 

To evaluate the performance of a pressure-based approach using real-world data, we 
deployed a large ground truth water usage sensing network in three homes and two 
apartments. At each deployment site, we installed two pressure sensors and directly 
instrumented all water fixtures and appliances with custom wireless sensors that 
provided ground truth labels of water usage activity for the pressure stream. Here, we 
describe the ground truth data collection system and the five week study deployment. 

3.1   Acquiring Ground Truth Labels in a Real-World Deployment 

A key challenge in evaluating any new sensing technique is acquiring ground truth 
data. In the original HydroSense work [8], the team manually labeled the pressure 
stream during their staged experiments, which clearly would not work for a real-world 
evaluation. Thus, an automated method for labeling must be derived. An ideal 
labeling system would accurately detect when fixtures are turned on/off, be easy to 
install, work across a large variety of fixtures, and preferably provide flow and 
temperature information for each fixture valve. An accurate and direct approach 
would be to install small, wireless flow meters at each hot and cold fixture inlet (e.g., 
a sink would require two flow meters). Unfortunately, inline flow meters could 
actually distort the very phenomena we are interested in studying by impacting the  
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Fig. 2. The ground truth water usage sensors directly attached to (a) fixtures and (b) appliances 
and monitored valve openings and closings. This data was transmitted wirelessly in real time 
via the ground truth parent sensor board and aXBee wireless modem (a, left side) to a data 
logger. 

 

pressure-wave signal itself. Instead, we instrumented fixtures externally, such as on 
faucet and toilet handles, so that we did not disturb the water stream. 

We designed an array of ground truth sensors to accommodate the variety of home 
water fixtures: from hand operated fixtures like sinks to electromechanical appliances 
such as dishwashers. Even for a single fixture type, design variation affects how flow 
and temperature are selected and how they can be sensed. For example, some single-
handle faucets move left to right for temperature and up or down for flow while dual-
handle faucets select both temperature and flow by the open position of each handle. 

3.2   Water Usage Activity Ground Truth Sensors 

We developed seven ground truth sensors to accommodate all fixtures across our 
deployment sites. Each interfaced with a parent sensor board (wireless platform in 
Figure 2a, top right) to communicate water usage data in real time. At a minimum, we 
tracked when each valve was opened or closed and categorized temperature into hot 
only, cold only, and mixed. The parent sensor board was placed in a location protected 
from water and preferably next to a power outlet (5 of 33 ground truth sensor boards 
relied on battery power). All sensors and parent boards were weather proofed to 
protect against water damage. XBee Pro wireless modems (Figure 2a, top left) 
transmitted sensor state to a logger on a laptop installed at each deployment site. The 
sensor boards were configured to transmit a watchdog signal once every four minutes 
so failures could be quickly identified and corrected. The ground truth architecture 
and sensors went through several design cycles and took approximately three months 
to build and evaluate before being deployed in this study. 

For sinks, showers, and toilets, sensors to detect handle position were affixed 
directly to the fixtures themselves and linked to the wireless parent board via low-
voltage wires (Figure 3).We used three types of handle sensors: reed switches (N=34 
sensors deployed), accelerometers (N=14), and Hall effect sensors (N=3). Reed 
switches are electrical switches that react to the presence of a magnetic field and 
produce binary output: on or off. They are inexpensive, robust to water exposure, and 
provide easily analyzable data. For toilets, we instrumented the flush handle, which 
only provided data on the beginning of the fill and not on the end. We discuss how 
this end fill information was recovered in the next section. 
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Fig. 3. A sample of instrumented fixtures from our ground truth deployments. Note how 
different sensors (e.g., accelerometers, reed switches) are used to accommodate the variety of 
fixture types. 

For faucets where a single handle controls flow rate and temperature, the reed 
switches were insufficient. Instead, we used three-axis accelerometers (Figure 3a and 
3b) to measure acceleration and interpret the handle’s flow position (typically up and 
down movement) and temperature (typically left and right movement). Finally, we 
used Hall effect sensors for sensing faucets which control temperature using planar 
rotation but control flow through an up/down motion (i.e., where an accelerometer 
alone could not sense the planar motion). A Hall effect sensor provides a voltage 
difference representing the distance between two magnets, so we placed magnets on 
both sides of faucet handles and attached the Hall effect sensor to the handle itself. 

Additionally, each hand-operated fixture had at least oneomni-directional ball 
switch (N=39) that acted as a vibration sensor and woke the parent board to read and 
transmit handle position sensor data. This allowed us to limit power consumption and 
unnecessary XBee wireless traffic.  

For washing machines and dishwashers, we used three types of sensors: power 
usage sensors (N=7), push buttons(N=2), and thermistors (N=3). Power consumption 
patterns were used to reconstruct when appliances used water. We could not gain 
access to the power outlets in two cases (deployment site A1’s washing machine and 
H1’s dishwasher), so we used push buttons and a note reminding the resident to 
“please push button when turning on <appliance>.”For sites with washing machines, 
we also attached thermistors to the water drain pipe to measure the temperature of the 
previous fill cycle and infer machine settings (e.g., Hot/Cold, Warm/Cold). 

3.3   Pressure Sensors and Software Tools 

The above sensor network was deployed at each deployment site to provide ground 
truth labels for our pressure sensors. For our pressure sensors, we used Pace Scientific 
P1600s with a resolution of 0.03 psi. Each was connected to a 16-bit Texas  
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Fig. 4. Two pressure sensors were installed at each deployment site (one on a hot water access 
point, one on a cold) in order to study the effect of installation points on classification 
accuracies 

Instruments ADS8344 ADC and AVR microcontroller, which interfaced with a Class 
1 Bluetooth radio implementing the serial port profile with an approximate wireless 
range of 10m. This is the same setup as the original HydroSense study with three 
exceptions. First, instead of one pressure sensor, we connected two sensors to collect 
data from hot and cold water access points simultaneously (Figure 4). This allowed us 
to investigate the effect of installation point as well as the effect of two pressure 
streams compared to one on classification performance. Second, the original 
HydroSense work tested only 3/4” water access points (e.g., hose spigot). We built 
adapters to connect to 3/8” access points, which allowed us to install pressure sensors 
below kitchen and bathroom sinks (Figure 4, right). This was particularly important 
for the apartment installations, which did not have accessible 3/4”  access points. 
Finally, we used a sampling rate of 500Hz rather than 1,000Hz, as we found 500 Hz 
was more than sufficient to capture these pressure waves. 

To communicate with the ground truth sensor network and the pressure sensors, a 
2GHz Dell Inspiron 1545s laptop running Windows XP was deployed at each site. 
The laptops were configured with a USB XBee wireless modem and Bluetooth 
dongle. The laptops continuously ran a custom data logger written in C#, which 
received, compressed and archived data locally for backup. This was uploaded to a 
backend web server at 30-minute intervals. The server backend was implemented 
using Python and web2py. In addition to serving as a data repository, the backend 
automatically sent e-mail notifications when a ground truth sensor or pressure sensor 
was not heard from for 10 minutes or more. For analysis, we constructed a suite of 
tools in Matlab and C#. Because not all of the ground truth sensors provided direct 
labels about water usage (e.g., the power usage sensors and toilet handle sensors), we 
also built a custom annotation tool in C# that allowed us to quickly review the ground 
truth sensor streams and semi-automatically annotate the pressure stream. 

3.4   Deployments 

We deployed the ground truth sensor network and two pressure sensors at five sites: 
three houses and two apartments. Each site was a home or apartment of one of the 
authors. This was done because of the invasiveness of the direct sensing approach 
used for the ground truth data collection. There was, however, a large variation in the 
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type, size and plumbing systems across the deployments sites (Table 1). The 
deployments began February 2010 and lasted for five weeks. 

It took approximately two full work days per deployment site for two people to 
install and test the ground truth sensors. After the five-week ground truth deployments 
ended, we used our custom annotation tool to convert the ground truth sensor stream 
to labels. This was accomplished in a semi-automatic fashion—the annotation tool 
visualized the ground truth sensor values and the pressure streams together in a 
common time-series view. The ground truth sensor values could then be automatically 
or manually converted to labels. It took approximately 8-12 hours per week of data 
collected for one research assistant to convert the sensor stream to labels. These labels 
were then reviewed by a second research assistant for consistency, which took 
roughly half the time (4-6 hours per week of data). 

4   Analysis of the Collected Dataset 

We collected a total of 16,056 labeled events across the five deployment sites. Table 2 
provides an overview. Due to ground truth sensor failures, 2.9% of this data is marked 
as uncertain and is not used in our classification experiments. Nearly 80% of the 
uncertainties were due to malfunctioning kitchen sink handle position sensors in H1 
and H2, which were replaced within a few days of discovery. The dataset also 
includes unknown events (3.9% of our dataset), which are pressure stream transients 
whose origin cannot be determined because they occurred without accompanying data 
from the ground truth sensors. A1 has the highest proportion of unknown events 
(9.1%) because of water usage activity coming from other apartments. Although we 
do not attempt to classify uncertain or unknown events, they were not removed from 
the dataset and can impact classification performance when they overlap with other 
events. After accounting for uncertain/unknown events, we are left with 14,960 labels. 

Table 1. Occupant demographics and deployment site characteristics. In A1, The toilet and 
shower head were replaced with low-flow equivalents ~3.5 weeks into the deployment. We 
discuss the effect of this change on classification performance in the results section. 

 H1 H2 H3 A1 A2 

# Residents 2 2 4 2 2 
Gender/Age/ 
Profession 

M/27/professor; 
F/29/professor 

M/31/professor;
F/32/office worker 

4 Males/19-21/ 
undergrad students 

M/31/grad student; 
F/30/post-doc 

M/26/grad student;  
F/26/pharmacist 

Fixtures/Valves 17/28 8/13 13/21 6/10 (8/13)* 8/13 
Style/Built House/2003 House/1918 House/ 1923 Apt/1920s Apt/2000 

Size/Floors 3000 sqft/ 
2 floor + basement 

750 sqft/ 
1 floor + basement 

1200 sqft / 
1 floor + basement 

700 sqft/ 
3rd floor of 3 

750 sqft/ 
6th floor of 7 

Expansion Tank/ 
Regulator Yes/Yes No/No No/No N/A N/A 

Water  
Heater Tank Size/

Plumbing 

50 gal/ 
Copper 

50 gal/  
PEX 

50 gal/ 
Copper 

Two 100 gal tanks/
galvanized 

N/A/ 
PEX 

Pressure Sensor 
Install Point 

Hot/Cold 

Main floor bathroom 
sink/outdoor hose 

spigot 

Water heater drain 
valve/outdoor hose 

spigot 

Downstairs bathroom 
sink/outdoor hose 

spigot 

Bathroom sink 
hot/cold inlet 

Kitchen sink hot/cold 
inlet 
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Table 3 shows valve activity at individual fixtures by temperature state (hot, 
cold, mixed). We use M. for Master and S. for secondary to distinguish primary 
and secondary bathrooms. The M. Bath Diverter and S. Bath Diverter are for the 
tub/shower switch that diverts water flow from the bath to the shower and vice 
versa; we distinguish between a shower that is turned on straightaway and a 
shower that is diverted from a bath. The Other category includes data from only 
one deployment site, H1, and encompasses the Laundry Basin and the 
Refrigerator Water Dispenser. On average across all deployment sites, there is a 
nearly even proportion of cold and hot events (40.7% for cold only, 39.2% for 
hot, and 20% for mixed). This implies that any indirect water disaggregation 
sensing method, such as flow-trace analysis and HydroSense, must be equally 
capable of sensing usage regardless of temperature. The overall frequency of 
fixture usage follows a power-law distribution where the first four fixtures 
(kitchen sink, master bathroom sink and toilet, and secondary bathroom sink) 
account for 84.7% of the events in our dataset. For purposes of human activity 
inference, these fixtures are thus critically important.  

Table 2. High level ground truth data collection statistics. An event is one occurrence of either a 
valve open or a valve close. Uncertain and unknowns are not included in the totals events row.  

 H1 H2 H3 A1 A2 Totals 

Days of Data 33 33 30 27 33 156 
Total Events 2374 3075 4754 2499 2578 14960 

Avg Events/Day 71.9 93.2 158.5 92.6 78.1 95.9 
Cold Only Events 855 (36.0%) 1418 (46.1%) 1637 (34.3%) 633 (25.3%) 1657 (64.3%) 6087 (40.7%) 
Hot Only Events 607 (25.6%) 1329 (43.2%) 1766 (37.5%) 1818 (72.8%) 498 (19.3%) 5870 (39.2%) 

Mixed Temp Events 912 (38.4%) 328 (10.7%) 1351 (28.2%) 48 (1.9%) 423 (16.4%) 3003 (20.1%) 
Isolated Events 1981 (83.5%) 2477 (80.6%) 4131 (86.9%) 1914 (76.6%) 2149 (83.4%) 12393 (82.8%) 

Compound Events 393 (16.6%) 598 (19.5%) 623 (13.1%) 585 (23.4%) 429 (16.6%) 2567 (17.2%) 
Transient 
Collisions 

142 (6%) 72 (2.3%) 166 (3.5%) 219 (8.8%) 120 (4.7%) 701 (4.7%) 

Uncertain Events 22 (0.9%) 175 (5.3%) 189 (3.7%) 52 (1.9%) 37 (1.4%) 467 (2.9%) 
Unknown Events 52 (2.1%) 79 (2.4%) 184 (3.6%) 254 (9.1%) 85 (3.1%) 629 (3.9%) 

 

Table 3. A breakdown of valve activity by fixture, by temperature state (hot, cold, mixed) and 
by compound/collisions. The Cnt column tabulates the number of fixtures across sites.  

Fixtures Cnt Total Hot Cold Mixed Compound Collision AvgDuration 

KitchenSink 5 5494 (36.7%) 2438 (44.4%) 1415 (25.8%) 1641 (29.9%) 342 (6.2%) 206 (3.7%) 22.4 secs 
M.Bathroom Sink 7 3934 (26.3%) 2114 (53.7%) 1294 (32.9%) 526 (13.4%) 1459 (37.1%) 185 (4.7%) 27.2 secs 
M.Bathroom Toilet 5 1886 (12.6%) 0 (0.0%) 1886 (100%) 0 (0.0%) 87 (4.6%) 117 (6.2%) 43.6 secs 
S.Bathroom Sink 4 1369 (9.2%) 618 (45.1%) 637 (46.5%) 114 (8.3%) 430 (31.4%) 57 (4.2%) 30.9 secs 
Washing Machine 4 430 (2.9%) 93 (21.6%) 325 (75.6%) 12 (2.8%) 12 (2.8%) 66 (15.3%) 1.6 mins 
M.Bathroom Bath 5 423 (2.8%) 224 (53%) 35 (8.3%) 164 (38.8%) 87 (20.6%) 20 (4.7%) 43.4 secs 
S.Bathroom Toilet 3 341 (2.3%) 0 (0.0%) 341 (100%) 0 (0.0%) 11 (3.2%) 21 (6.2%) 27.2 secs 

M.Bathroom Shower 5 261 (1.7%) 55 (21.1%) 4 (1.5%) 202 (77.4%) 30 (11.5%) 10 (3.8%) 8.7 mins 
Dishwasher 3 261 (1.7%) 261 (100%) 0 (0.0%) 0 (0.0%) 9 (3.4%) 6 (2.3%) 1.2 mins 

M.Bath Diverter 5 228 (1.5%) 17 (7.5%) 1 (0.4%) 210 (92.1%) 92 (40.4%) 5 (2.2%) N/A 
Other 1 181 (1.2%) 28 (15.5%) 149 (82.3%) 4 (2.2%) 0 (0.0%) 4 (2.2%) 8.2 secs 

S.Bathroom Bath 2 59 (0.39%) 5 (8.5%) 0 (0.0%) 54 (91.5%) 2 (3.4%) 2 (3.4%) 20.7 secs 
S.Bathroom Shower 2 47 (0.31%) 11 (23.4%) 0 (0.0%) 36 (76.%) 0 (0.0%) 1 (2.1%) 9.4 mins 

S.Bath Diverter 2 46 (0.31%) 6 (13%) 0 (0.0%) 40 (87%) 6 (13%) 1 (2.2%) N/A 
Totals 53 14960 5870 (39.2%) 6087 (40.7%) 3003 (20.1%) 2567 (17.2%) 701 (4.7%) 49.1 secs 
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Fig. 5. (a) Bathroom sink open and close transients occurring in isolation and in compound 
from H2. (b) A shower close and bathroom sink close transient in isolation and colliding from 
A2. (c) A toilet close and a bathroom sink close transient in isolation and colliding from H3. 

Although we ultimately used this data to evaluate our classification algorithms, an 
equally important goal was to identify potential challenges in classifying real-world 
water usage compared to simulated, isolated water events. A compound valve event is 
a valve event that occurs while another fixture is using water (e.g., the bathroom sink 
events in Figure 5a). A collision valve event is a valve event that occurs within 
twoseconds of one or more other valve events (Figure 5b and 5c). Previous water 
disaggregation sensing approaches have performed poorly in the face of compounds 
and collisions (e.g., [6, 20]). This is because compounds and collisions often mask or 
distort features used for classification. Although a collision is technically also a 
compound, for the purposes of our analysis we separate them to investigate the 
individual effect of each on classification performance.  In our dataset, 17.2% of all 
valve events are compound while 4.7% of valve events are collisions (Table 2 and 3). 
The most common compound/collision events are master bathroom sink opens and 
closes, comprising 41.8% of all bathroom sink activity and 11% of all valve activity 
overall (Table 3). 

With the pressure-based approach, compound valve events result in a dampening 
and often a severe attenuation of the high frequency component of the pressure 
transient. As a result, the transient signal is homogenized, making it difficult to 
classify. With collisions, the two colliding transient waveforms become highly 
distorted; although it is rarely the case that two transients occur simultaneously (more 
often they are offset by 200-500ms), the distortions may still render the transient 
unrecognizable. In Figure 5b, the shower close and bathroom sink open occur 1.1s 
apart. In Figure 5c, the toilet close and bathroom sink close occur 200ms apart, 
making it unlikely that both will be classified. For these events to be classified 
correctly, less emphasis may need to be placed on template matching transient 
signatures relative to the original HydroSense work [8]. Our new algorithm 
specifically addresses this issue. 
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5   Valve Event Classification Algorithm 

To classify pressure transients as valve events, we apply a probabilistic approach 
using Bayesian estimation. Our particular approach is inspired by the dynamic 
Bayesian models used in speech recognition. Instead of recognizing words, we 
recognize valve events. Like many of the Bayesian approaches used in speech 
recognition, we incorporate a language model and grammar, which estimates the most 
likely sequence of valve events and defines permissible valve event pairings. This 
provides robustness against transient deformations that can occur during natural valve 
usage (e.g., brief water usage events, low-flow, and compounds). 

At a high level, the classification algorithm works as follows: First, an incoming 
water pressure data stream is buffered and the pressure transients are segmented. This 
segmentation process currently uses the time series boundaries defined by the ground 
truth annotations but would be automated in an end-to-end system. Second, the 
segmented pressure transients are each compared to a library of labeled templates using  

a set of similarity algorithms. Third, a language model determines the likelihood of a 
given sequence of valve signatures and links open and close valve events into paired 
tuples. Fourth, we extract features from these paired tuples and compare them with 
smoothed probability distributions. For example, by pairing a bathroom sink hot open 
with a bathroom sink hot close, we can extract the duration of that event and estimate 
the total flow volume used and then obtain probabilities for those features. Finally, the 
probabilities from the previous three steps are multiplied together for each sequence and 
the sequence with the highest probability is selected. 

We now formally define our Bayesian model for classifying pressure transient 
sequences. In eq. (1) below, let V denote the pressure signature template library (a 
vector of labeled pressure transient signatures and their transforms) and S denote a 
sequence of unknown segmented pressure transients. Then, using Bayes’ theorem, the 
most likely valve sequence is defined as:  

 (1)

The conditional probability term P(S|V) describes the outcome of the template-and 
feature-based comparisons. The prior probability term P(V) describes the likelihood 
of the valve sequence (using bigrams) and the likelihood of each pairing in the 
sequence. Note that arg max simply returns a specific valve sequence rather than a 
probability estimate, thus the normalization constant P(S) can be discarded in 
practice. We can expand the numerator of eq. (1) to further highlight the four major 
components of our approach: 

 (2)

P(S|V) is now represented by the first term in eq. (2), which describes our set of R 
signal transformations and comparison algorithms (where fr is the comparison 
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algorithm for the rth transformation). P(V) is expanded into three terms: our bigram 
language model, a grammar, and water usage event priors. We describe each term in 
the following. 

Term (i): Template- and Feature-Based Comparison: Term (i) compares the 
segmented unknown pressure transient s with open and close valve templates in our 
library. Each comparison is broken into two parts: a signal transformation on s to 
achieve ̂ and a similarity score calculation between ̂ and a corresponding 
transformed valve template  in our template library. We use multiple signal 
transformations and comparison algorithms to produce a set of similarity scores for a 
given valve (each transformation and score is represented by fr in term (i)). These 
scores are converted into probabilities and multiplied together to form a single 
template-match probability between s and every valve v in the template library. This 
is similar to our original HydroSense work which used a hierarchical classifier to 
prune and classify these individual pressure transients. Unlike this past work, 
however, these similarity scores are incorporated into a probabilistic model. 

We use eight signal transformations—four filters and a Cepstral transform of each 
filter. Each attempts to emphasize a unique property of the pressure transient 
waveform. The first two filters, a 1 Hz and a 13 Hz low-pass filter, allow us to 
explore the temporal shape of the transient signal. The next two filters are derivatives 
of the low-pass filtered signals, which help to uncover how resonances of the transient 
waveform decay over time. Specifically, we use a derivative of the 13 Hz low-pass 
filter and a band pass derivative of the difference between the 1 and 13 Hz low-pass 
filters. Finally, we apply a constant-Q Cepstral transformation on each of the 
aforementioned four transforms.  

The constant Q transformation uses a filter bank with overlapping and 
logarithmically increasing bandwidths to break apart the frequency spectrum of the 
transient signal. After the filter bank, we apply a magnitude and log operation to turn 
multiplication of two systems in the frequency domain into addition operations. This 
has the effect of separating the “source” (an impulse or step into the plumbing 
system) from the “filter” (the physical bends and pipe lengths in the plumbing 
system). We then take the discrete cosine transform (DCT) of the constant-Q 
coefficients, which compacts harmonic structures down towards lower indices of the 
transform (commonly known as low-time cepstral coefficients). We truncate these 
coefficients (known as low-time liftering) before applying similarity algorithms. For 
more information on our constant-Q transformations, see Larson et al. [10]. 

We use two similarity algorithms over the eight signal transformations: a matched 
filter and a Euclidean distance measure. The matched filter is an optimal similarity 
measure for orthogonal signals in the presence of white noise [16]. Because our 
signals resemble decaying sinusoids, we can expect the above transformations to 
result in signals that are approximately orthogonal. The matched filter is used to 
compare the first four signal transformations, while the Euclidean distance measure is 
used for the four Cepstral transformations (given that the Cepstral space is already 
aligned, a matched filter type approach is unnecessary). A similar set of signal 
transformations and comparison algorithms were used in the original HydroSense 
work [8]. However, to ensure the approach works robustly with real-world data, we 
added the 4th signal transform above (the band pass derivative) and eliminated the 
mean square error measure because it did not improve performance. 



62 J. Froehlich et al. 

After every {s,v} comparison has been made, we reinterpret the similarity scores as 
probabilities. For the matched filter comparisons, this is trivial as the matched filter 
already returns a similarity score between 0 and 1. For the real Cepstral transforms, 
we use Euclidean distance measures dm between each transient in S and template in V, 
such that | | | (a common interpretation of Euclidean distance as a 
probability in log-space [18]). 

At this point in the algorithm we have an unknown transient s and the results of the 
four matched filter comparisons and the four exponential Euclidean distance 
comparisons (for every template in our library). To form a single template probability 
score, we multiply the comparisons of each template together. These scores are then 
grouped by valve (i.e., all “kitchen sink open hot” scores are grouped together; all 
“bathroom sink close cold” are grouped, etc.). We then take the argmax over each 
valve grouping to find the probability that a particular valve is the originator of s.  

Because we now have a single probability score for each valve, we can combine 
these with the probability of observing valve-specific features. These features are low 
dimensional vectors or scalars that are pre-calculated for each valve at a deployment 
site. In particular, we use two features: (1) stabilized pressure drop and (2) 
amplitude/resonance tracking; however, other features such as damping ratio and time 
of day used could be explored in the future. The stabilized pressure drop can be 
calculated by assuming that the transient is an underlying step function with three 
parameters: (a) time at which the step occurs, t0, (b) magnitude of the step, A0, and 
(c) region, T, where the transient has many high frequency components and cannot be 
modeled by a step. These parameters can be solved for (in the mean square sense) 
using linear regression with a “don’t care” region. After regression, the stabilized 
pressure drop is the scalar value A0. For resonance/amplitude tracking we assume the 
transient can be modeled well by a four pole system and we use an auto regressive 
model to estimate the pole locations. Each pole represents the strongest resonances 
and resonance magnitude which can vary between valves.  

We train probabilities for these features by calculating the pressure drop and 
resonance values for all templates in our library and then using Gaussian kernel 
density estimation (KDE) [1] to assign probability distributions to each valve in a 
non-parametric way. This results in a look-up table between feature observations and 
valve-level probability estimates. These probabilities are multiplied with the template 
probabilities to complete term (i). Note that when multiple pressure sensor streams are 
available, such as when two installation points are used, the probabilities for each 
stream can be multiplied together to form term (i).If we wish to use template 
comparisons only, we can simply choose the template with the highest probability. To 
incorporate with a language model, we use the best valve probabilities to enumerate 
the state space of a trellis in a bigram graphical model(where each valve is a separate 
state). 

Term (ii): The Language Model: The language model assigns probabilities for 
possible valve sequences. This is performed using bigrams and is represented by term 
(ii) in eq. (2) (N represents the length of the sequence). Bigram analysis is commonly 
used in the statistical analysis of text to examine co-occurrences of words or letters. 
Here, our bigrams are groups of two sequential valve events; for example, toilet 
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open bathroom sink valve hot open comprises a single bigram. The language model 
consists of transition probabilities for every valve pair ,  and is trained by 
counting the number of co-occurring valve pairs in our library. These counts are 
smoothed using Katz smoothing, which is commonly used in speech recognition and 
works to assign a non-zero probability to every sequence [18]. This is important for 
handling transition probabilities between two valves that rarely occur in our library. 

Traditionally, language models use these transition probabilities to select the 
optimal word (valve) sequence from all possible word (valve) sequences. We 
maintain an n-best list of sequences using Viterbi-stack decoding [2]. This allows us 
to dynamically reorder the most probable sequences as new valve events occur.  
Crucially, it also allows us to reorder based on secondary knowledge sources—
particularly term (iii) and term (iv) in eq. (2).  

Term (iii): The Grammar: Term (iii) describes a grammar, which is typically used 
to define a set of structural rules that govern the composition of sentences, phrases, 
and words in a given language. Here, our grammar defines the possible ways in which 
valve sequences can be constructed. Our grammar rules are: (1) an opening of valve 

 must be followed by a closing of valve ; (2) a valve’s closure must be preceded 
by its opening; (3) and the temperature state of a valve must be consistent—e.g., a 
kitchen sink hot open event cannot be closed by a kitchen sink cold close event. 
Rather than eliminating impossible valve sequences (such as a close before an open or 
an open with no close), we use a soft grammar which applies a penalty to any valve 
sequence that violates a rule. In this way, sequences which contain grammatical errors 
but have the likeliest probabilities from the other terms can still be selected as correct. 
The grammar is applied to each sequence in the n-best list, resulting in a set of paired 
valvetuples . In eq. 2, the term fp penalizes all unpaired valves (those not in ). 

These paired tuples now bind together specific valve open and close events to form 
a full water usage event structure. For example, given the valve event sequence 
v1 v2 v3 v4where v1=toilet open, v2=bathroom sink open, v3=toilet close, and 
v4=bathroom sink close, our pairing algorithm might link the two toilet events into |  and the two bathroom sink events into | . These linkages 
are critically important because they allow us to compute an additional feature set 
(described in term (iv)) that is dependent on knowing the beginning and ending of a 
water usage event. We note that the language model and pairing is a novel aspect of 
our system. The original HydroSense had no notion of either and thus could only 
identify individual valve events but not the relationships between those events. 

Term (iv): Paired Valve Tuple Priors: By pairing valve events, we not only have 
the ability to link open and close transients together but also to compute classification 
features, such as water usage duration and relative estimates of water volume, which 
are not possible without a pairing methodology. For every paired valve tuple in , we 
compute K features over the entire water usage event, denoted as fk in eq. (2). Similar 
to the transient features used in term (i), a probability density is calculated using KDE 
and the example water usage events in our library. For example, given a particular 
draw length for an unknown tuple, we can use the usage durations for all kitchen 
sinks in our dataset to lookup the probability that the usage event is a kitchen sink. 
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Once all paired prior probabilities have been multiplied together, the n-best list is 
reordered and the likeliest valve sequence is chosen. 

We use two paired valve priors selected experimentally using one week of data 
from each deployment site: usage duration, the amount of time the given valve pair is 
drawing water and flow-trace max, an estimate of the maximum amount of flow used 
over the duration of the event (a feature also used in flow-trace analysis [3]). 

6   Analysis and Results 

We compare the performance of three classification algorithms: a template classifier 
(term (i)); a classifier that adds a language model and grammar: templ+LM (terms (i, 
ii, iii)); and our full classifiertempl+LM+priors (the complete eq. (2)). For baseline 
performance, we include chance and a majority classifier, which always selects the 
most likely result based purely on frequency. We were most interested in how the 
templ+LM+priors approach compares to the template approach. Additionally, we 
investigate the performance of each algorithm when using a single pressure sensor 
(hot or cold) versus dual pressure sensors. For the single sensor analysis, we chose the 
sensor (hot or cold line) that performed best. This was the cold line for all sites except 
for A2, where the majority of events were hot water use only. 

To understand how the algorithms perform at different granularities, we conduct 
valve level, fixture level, and fixture category level classification. For valve level, the 
algorithm must identify the correct fixture responsible for the pressure transient, 
whether it is an open or a close, and its temperature state (hot, cold, or mixed). 
Fixture level ignores temperature state. Finally, for the fixture category level, we use 
the same categories as flow-trace analysis (e.g., [11]). The algorithm must correctly 
classify open/close events as bath, clothes washer, dishwasher, faucet, shower or 
toilet. Note that the same models were used to train and test all three different 
granularities; however, temperature errors were ignored in the case of fixture and 
category level. 

We first focus on pre-segmented classification performance using data from a 
single pressure sensor. Figure 6 (left) displays the results of a 10-fold cross validation 
experiment over the full five weeks of data using the three classification algorithms 
and two baselines. In general, the best performing algorithm is templ+LM+priors, 
which resulted in an average overall classification accuracy of 75.5%, 89.5%, and 
95.9% for valve, fixture, and fixture-category level, respectively, across the five 
deployment sites. The best performing home, H2, resulted in 89.4%, 94.3%, and 
98.4% classification accuracies. In contrast, the worst performing home, H1, resulted 
in 66.6%, 79.6%, and 91.0% accuracies because of the lack of cross talk between hot 
and cold plumbing lines and the logarithmic pressure falloff during usage. 
Surprisingly, the two apartments, A1 and A2, both performed reasonably well with a 
single sensor: 77.3%, 89.7%, and 95% for A1 and 78.7%, 94.3% and 96.9% for A2. 
This is despite the pipe length distance between the hot and cold lines in an apartment 
being much longer than in a house.  
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Fig. 6. (a) Average classification results across the five deployment sites comparing algorithm, 
single vs. dual sensor, and different granularities (valve, fixture, fixture category). (b) A 
confusion matrix that averages the confusions for fixture level templ+LM+priors 
classifications across deployment sites. Note that averaging makes it such that the percentages 
do not add to 100%. 

To examine how events were misclassified, we calculated a confusion matrix for 
templ+LM+priors(Figure 6b), averaging the classification percentages at the fixture 
level across the five deployment sites. In general, classification accuracies are quite 
good—the most frequently used fixtures: kitchen sink, bathroom sinks, and bathroom 
toilets have an average classification accuracy of 90%. Confusions tend to occur 
within fixture categories (e.g., between sinks) and between fixtures that are situated 
close together with respect to plumbing layout. For example, the faucet in the 
secondary bathroom is misclassified as the master bathroom faucet 7% of the time 
while the dishwasher is misclassified as a kitchen sink 11% of the time (dishwashers 
are only a small distance from kitchen sinks). Recall from Table 3 that the other 
category involves data from only one home (H1) and is for the laundry basin and 
refrigerator water dispenser, which were classified correctly 86.1% and 98.6% of the 
time. However, the washing machine was confused as a laundry basin 30.1%, which 
is visible in Figure 6—this confusion can be attributed to their valve’s proximity in 
the plumbing system.  

With regards to compound and collision events, the two language model-based 
algorithms tend to perform better than the templ algorithm (Figure 7a). This is likely 
due to the transition probabilities of the language model and the paired valve priors in 
term (iv). Both reduce the weight placed on template-matching the distorted transient. 

As expected, the addition of a second pressure sensor improves the overall 
classification accuracies for each algorithm and sensing resolution granularity: an 
average of 10% for valve level, 5.5% for fixture level and 2.1% for fixture category 
level across the three algorithms. The templ algorithm benefited the most from the 
addition of the second sensor. Similar to the single sensor, the templ+LM+priors 
algorithm performed the best with overall accuracies of: 82.4%, 93.5%, and 97.7% for 
valve, fixture, and fixture category levels. Because of the lack of cross talk between 
hot and cold pressure lines, H1 and the apartments benefited the most from the 
addition of a second sensor, especially for valve level classification (an increase of  
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Fig. 7. (a) The error rates for fixture-level performance broken down by algorithm and whether 
the error occurred on an isolated, compound, or collision event. (b) The results of our amount 
of training data experiment; 1,3,5,7 and 10 days were used to test a two week period. Note that 
we offset the data points slightly for each algorithm to improve the readability of the graph. 
Error bars reflect one standard deviation above and one standard deviation below the mean. 

9.5% vs. 3.1% for the other two sites). Two sensors also increase compound and 
collision accuracy by 5.3% and 4.4%. Finally, as noted in Table 1, the toilet and 
showerhead were replaced with low-flow equivalents in A1 approximately three and a 
half weeks into the deployment. After training on these new fixtures, we were able to 
correctly classify their usage despite being in the same fixture category and installed 
in the same location as the previous fixtures. For example, the new toilet was 
correctly classified 90.2% of the time and classified as the old toilet 8.2% of the time 
(we kept the old fixture templates in our database for all classification experiments). 

To test whether templ+LM+priors offered a significant overall improvement over 
templ (the approach used by the original HydroSense work [8]), we conducted a 
three-way repeated measures ANOVA. We usedthe 10-fold classification accuracies 
as the dependent variable and sensing resolution, number of sensors, and algorithm 
(templ vs. templ+LM+priors) as within-subjects factors. Because we were only 
interested in the comparisons between the two algorithms, we report only main and 
interaction effects with algorithm. We found a significant main effect of classification 
algorithm (F(1,4)=21.76, p=.010), indicating that templ+LM+priors improved 
performance over templ. No interaction effects with algorithm were significant.  

To investigate how the amount of training data impacts performance, we trained 
models with one, three, five, seven, and ten days of data. The amount of data is 
divided by days, not number of templates, as the language model requires contiguous 
blocks of events for training. All were then tested on 14 non-overlapping days. The 
results are presented in Figure 7b.Significant improvements in classification accuracy 
are seen with only a small number of training days. On average, templ+LM+ priors 
outperforms templby 4.5%, 7.4%, 8.3%, 6.9% and 6.2%as the number of training 
days increases from one to ten. Note that both of the LM-based algorithms perform 
better throughout training though the templ+LM algorithm slightly outperforms 
templ+LM+priors with minimal training because it does rely on trained probability 
distributions for priors. 
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7   Discussion and Conclusion 

This paper is the first to use pressure-sensing to disaggregate real-world water usage. 
Using longitudinal data collected from ground truth deployments across five 
residences, we showed that a single pressure sensor was sufficient to classify pressure 
transients with accuracies between 76% and 96% depending on granularity (i.e., 
valve, fixture, or fixture category). With two pressure sensors, the accuracies rose to 
between 82% and 98%. To achieve these results, we introduced a new type of water 
usage inference algorithm inspired by research in speech recognition. Unlike previous 
approaches [8], our algorithm is probabilistic and leverages a language model, 
grammar, and prior probabilities to better handle pressure transient variability and to 
increase robustness in the face of compound events and collisions.  

Despite these advances, there are important opportunities for future work. Our 
current analyses used pre-segmented pressure transients (i.e., the start and end of 
waveforms are marked by the ground truth labels). Working with pre-segmented 
events allowed us to focus specifically on analyzing the discriminability and 
consistency of real-world water usage pressure transients. As such, our results 
demonstrate an upper bound of classification performance for our particular feature 
set and approach. Overall classification rates will likely drop once segmentation is 
implemented because of segmentation errors. This could be especially true for 
apartments which, depending on the plumbing structure, can be particularly sensitive 
to noise from other units in the building. 

With that said, the original HydroSense work segmented staged water usage data 
with 100% accuracy, so segmentation of real-world data should be possible. The key 
challenge will be properly segmenting compound and collision events, particularly in 
apartments with a much noisier pressure signal. We note that our Bayesian approach 
is amenable to many common speech recognition detection techniques such as 
keyword spotting. As such, the classification and segmentation tasks could likely be 
combined to make the algorithm more robust to sources of ambiguity such as transient 
collisions. Indeed, most optimal statistical signal processing strategies become sub-
optimal after separating segmentation and classification, which means the 
classification algorithms presented in this paper may need adjustment once 
incorporated with an imperfect segmentation scheme. 

In terms of training, we evaluated the classification algorithms using real-world 
data for both training and testing. For practical end-user deployment, we might expect 
a small amount of staged training data per fixture. Future work is necessary to 
establish what will be the most effective staged training data for accurate 
classification of real-world data. For example, our current approach trains the 
language model and priors using data from the home where it is deployed. A more 
general approach could leverage usage patterns and priors (such as duration of use) 
across different homes, thus reducing system calibration. It may also be the case that 
certain fixtures, such as toilets and dishwashers, require less calibration because of 
more consistent transients. Furthermore, unsupervised learning approaches may allow 
detection of previously unknown fixtures. An interface to allow correction of 
misclassifications and training of the algorithm over time may also prove beneficial. 

Finally, our work underscores the importance of conducting longitudinal 
evaluations out in the wild. Although challenging and resource-intensive, such studies 
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are critical in providing a sound scientific basis for the sensing work that we do in the 
UbiComp/Pervasive communities. In our case, studying the real-world uses of water, 
rather than only staged experiments, uncovered crucial limitations of past approaches 
and allowed us to characterize general challenges for water disaggregation research. 

In conclusion, this paper is the first to demonstrate that sensing pressure is a viable 
technique for inferring real-world water activity. We used labeled pressure stream 
data collected through five-week ground truth water sensor deployments across five 
sites to evaluate the performance of a new probabilistic method for inferring water 
usage from a single pressure sensor. To our knowledge, these ground truth 
deployments represent the most detailed investigation of residential hot and cold 
water usage ever performed.  
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Abstract. This note o�ers a reflection on the design space for a situated glyph - a
single, adaptive and multivariate graphical unit that provides in-situ task informa-
tion in demanding work environments. Rather than presenting a concrete solution,
our objective is to map out the broad design space to foster further exploration.
The analysis of this design space in the context of dynamic work environments
covers i) information aÆnity - the type of information can be presented with sit-
uated glyphs, ii) representation density - the medium and fidelity of information
presentation, iii) spatial distribution - distribution granularity and placement al-
ternatives for situated glyphs, and finally iv) temporal distribution - the timing of
information provision through glyphs. Our analysis has uncovered new problem
spaces that are still unexplored and could motivate further work in the field.

1 Introduction

In the field of information visualization, a glyph is a single graphical unit designed
to convey multiple data [15]. Di�erent parts of the representation or di�erent visual
attributes (e.g., shape, size, colour) are utilized to encode di�erent values. One early
example was shown by Cherno� [5] who represented multidimensional data through
di�erent attributes of human faces, e.g., a nose, eyes. In contemporary literature, re-
searchers have used glyphs to represent di�erent attributes of documents [14] or for
visualising software management data [16]. Due to their intrinsic capability of repre-
senting multiple variables with a single graphical representation, we see opportunities to
explore the use of glyphs for exposing salient information in a subtle fashion in dynamic
work places. Recent studies have shown that there is a clear need to present task-centric
information in demanding work places, such as hospitals or industrial plants [1, 2].
Consider the situation depicted in Fig. 1(a), where a nurse can choose to perform mul-
tiple activities with multiple patients and objects. She might decide to use saline water
with patient one or patient three, or she might decide to support patient two instead.
In each case, she needs information that matches her activity. As existing studies have
shown, medical personnel would benefit most from having specific information avail-
able (e.g., guidelines) about their current activity, linked to equipment and patients that
are relevant to this activity [2, 3].

K. Lyons, J. Hightower, and E.M. Huang (Eds.): Pervasive 2011, LNCS 6696, pp. 70–78, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. A Hypothetical Nursing Home Scenario with and without Situated Glyphs

To this end, we envisage that glyphs provide an interesting design alternative to
present real time in-situ information to support multiple interleaved activities involv-
ing multiple individuals and di�erent types of equipment in complex workplaces. Ac-
cordingly, we have devised situated glyphs as graphical units that are situated in time
and space – they are visual representations of activities, and are adaptive, mobile and
replaceable. Fig. 1(b) envisions the same situation as explained above, but here the
environment is augmented with multiple situated glyphs. In this case, when a nurse ap-
proaches a certain type of equipment or a patient to perform an activity, corresponding
glyphs show the information that is relevant to that activity. One of the key functions of
situated glyphs is to help people discover the activities that can be performed in a given
space, at a given time with the devices and objects at hand.

There has been a lot of work on information provisioning through ambient displays
– often embedded in interesting artistic objects or everyday artefacts, distributed across
the environment and providing a constant stream of peripheral information [6, 10, 11].
Information presented through ambient displays is always interesting, sometimes useful
but rarely vital. In contrast, our focus with situated glyphs is activity-centred. We aim to
support (both cognitive and physically) demanding real-world activities, such as nursing
tasks in a hospital, by mapping visual representations of activity-specific information to
the physical environment using situated glyphs.

In what follows, we investigate di�erent design cardinals for these situated glyphs
which we consider as the main contribution of this note: information aÆnity (Sect. 2.1),
representation density (Sect. 2.2), spatial distribution (Sect. 2.3) and temporal distribu-
tion (Sect. 2.4) , respectively addressing the content, appearance, placement, and timing
aspects of situated glyphs. We also present an example design of a situated glyph to il-
lustrate the concepts. Finally, we conclude by pointing to the unexplored problem space
that might foster future work in this field (Sect. 3).
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2 Situated Glyphs: Understanding the Design Space

Situated glyphs are visual representations of physical activities and are adaptive in a
sense that they move and change their appearance to match the activity at hand. They
are distributed in the environment through place-holders, i.e., each place holder can
present di�erent glyphs at di�erent points in time. Typically, glyphs are mapped onto
an environment by means of small embedded networked displays. Due to these charac-
teristics, situated glyphs put forth a number of design questions. Ware [15] gives a basic
background on standard glyphs emphasising on finding the right encoding mechanism
to encode information into symbols. Drawing on his theory in the context of pervasive
computing environments, we observe that there are four design cardinals that need to
be considered for physical embodiment of these situated glyphs. These design cardi-
nals address four basic questions - what information to present in situated glyphs, how,
where and when? In the following sections, we discuss these questions and present a
broad perspective on the design space of situated glyphs.

2.1 What: Information AÆnity

Information AÆnity describes the type of information that is substantial to maintain
the operational eÆciency and consistency of a dynamic work environment, i.e., it ad-
dresses the “What” aspect of situated glyphs. One way to address this information aÆn-
ity is to look at the activity patterns in the work environment to expose the basic and
critical information needs. Considering this paper predominantly focuses on the health
care domain, in this section we will center our discussion on a nursing home scenario.
Based on an initial feasibility study with nurses supporting Dementia and Alzheimer’s
patients at the Mainkofen Hospital in Germany, we analysed the nurses’ daily routines
and divided these into four generic activity patterns:

– Activity Type I: perform actiona, e.g., prepare injection.
– Activity Type II: perform actiona with ob jecto, e.g., sterilising a scissor.
– Activity Type III: perform actiona to patientp, e.g., change dressing of patient one.
– Activity Type IV: perform actiona with ob jecto to patientp, e.g., measure blood

sugar level of patientp with a glucose meter.

Each activity is composed of an action and optionally an object (e.g. a blood pressure
monitor) or a patient. The study results suggested that in most cases actions only involve
a single object and patient. Further analysis of these activity types and discussion guided
us to identify six distinct information types:

1. Identity and Relationship: This category of information describes the identity of a
patient, medical equipment, etc. and their relationship with each other in the context
of an activity. This type of information helps nurses to make informed decision
regarding which equipment to use with which patient.

2. Status: This category of information reflects an individual’s or an object’s status,
e.g., the operational status of an equipment (e.g., faulty, working).

3. Instructions: This information type provides guidelines to perform medical routines
with or without specific medical equipment.
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4. Confirmation: Feedback about the successful completion of a medical routine with
or without specific medical equipment.

5. Explanation: This category of information provides explanations to address excep-
tional situations, e.g., when devices are malfunctioning.

6. Trends: Temporal trail or history of an equipment’s status or patient’s medication
record.

In the next subsection, we look at how these information types can be encoded into
situated glyphs.

2.2 How: Representation Density

Representation Density specifies how a glyph can be designed to present real world in-
formation using patterns, texts or pictures, in other words, it answers the “How” aspect
of situated glyphs. A glyph can be abstract or very concrete depending on the situation
at hand.

Fig. 2. Semiotics Signs: Symbolic, Iconic and Indexical

Fig. 3. Design Space of Information AÆnity and Representation
Density

We observe that glyphs
can be expressed in the
language of semiotics, the
branch of philosophy that
deals with signs and their
meanings. A semiotic sign
is made up of three ele-
ments: signified, signifier,
and sense [4]. Signifier sig-
nifies a signified (physi-
cal object) through signs to
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give a sense to an observer. Semiotic signs can be Symbolic, Iconic or Indexical. Sym-
bolic signs are completely arbitrary and abstract and need implicit domain knowledge
for interpretation as shown in Fig. 2(a). Iconic signs have an intermediate degree of
transparency and provide a metaphoric representation as shown in Fig. 2(b)1. Indexical
signs are much more direct and reflect the signified object with high fidelity as shown
in Fig. 2(c).

We are interested in portraying di�erent information types into situated glyphs us-
ing semiotic signs. To this end, Fig. 3 plots various areas of representation among our
identified information aÆnity and semiotic signs. Whilst it may be interesting to ex-
plore symbolic or iconic representations for artistic purposes especially consulting the
contemporary literature on persuasive ambient displays aimed towards behaviour shap-
ing [6, 10], looking at the design space it is clear that indexical signs are best suited
for our purpose of designing situated glyphs as shown in Fig. 3. This is mainly due to
the limitation of symbolic and iconic signs’ capabilities in expressing instructions and
explanations articulately. We are currently investigating di�erent glyph designs using
indexical signs. In this paper, we present one of the designs as an example to ground
our discussion so far. Fig. 4 depicts the design of a simple glyph that utilizes colour,
text and number to represent the di�erent information types we have discussed earlier.
It has a rectangular shape with multiple properties in accordance to the activity pattern
introduced earlier. These properties are:

– The first property is the colour which is used to represent relationships : every
individual and object is assigned a colour; an individual can perform an action with
an object (optionally to another individual) only if their colour matches.

Fig. 4. An Illustrative Design of a Situated Glyph

– The second property is the identity which is represented by a number (lower left and
lower right). Two sub properties of this identity property are a circle and a pointing
arrow. The circle (lower left) represents the active component of an action (e.g., an
object or a patient) as described earlier. The presence of a pointing arrow (compass
metaphor) represents the status of the component (working or faulty, available or
not etc) and its location direction.

1 Some of these signs are collected from http:��www.elasticspace.com�2005�11�graphic-
language-for-touch.
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– The final property is the textual description of the action in the form of instruc-
tion, explanation, confirmation or trends. In addition, this property is animated to
highlight the urgency of an operation and to slide through the historical stages.

Consequently, the glyph shown in Fig. 4 (b) corresponds to a “red” coded nurse’s
activity of measuring blood pressure with a “red” coded patient numbered “3”, using a
“red” coded blood monitoring device numbered “19” which is available in the south-
east direction and working fine. This glyph design is adaptive and dynamically changes
its content depending on the activity at hand and the context of the activity, i.e., glyphs
are initially abstract, on approaching an individual or an object more detail is revealed
as shown in Fig. 4 (a).

2.3 Where: Spatial Distribution

Spatial Distribution describes the distribution granularity and placement alternatives
of situated glyphs and corresponds to the “Where” aspect of the design space. One
interesting point of discussion is defining the optimum number of glyphs distributed
across the environment. This placement granularity reveals the design trade-o� between
information capacity and fragmented attention. By increasing the number of glyphs it
is possible to present more fine-grained information[11]. Additionally, information can
then be dispersed across these glyphs in a more situated fashion, i.e., a glyph embedded
in an object shows only information about that object instead of showing about the
activity as a whole. However, the caveat of increasing the number of glyphs is that
it introduces fragmentation of attention due to the demanding context switches which
consequently increase the cognitive load of the individuals involved in the activity.

Taking these distribution choices into account, we envisage that there are multiple
possibilities for the placement of the glyphs. Delving into the “Situative Space Model”
introduced by Pederson [12], we can logically distribute the glyphs into manipula-
ble space and observable space. A third alternative is the physical embodiment of a
glyph onto an entity. Accordingly we identify three design alternatives for placement of
glyphs:

Fig. 5. Placement Possibilities for Situated Glyphs

1. Entity Centric: A glyph is embodied in every entity as shown in Fig. 5(a). For
individuals these glyphs come in a wearable form whereas for physical objects,
glyphs are embedded in them.
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2. Activity Centric: A glyph is placed at the location of the activity climax or in the
manipulable space as shown in Fig. 5(b). As an example, for an activity involving
a patient and a blood pressure monitor, the glyph can be placed on the patient’s bed
assuming this activity will be conducted while the patient is in bed.

3. Space Centric: A glyph is placed in the observable space and is shared across mul-
tiple activities and entities as shown in Fig. 5(c). An example of this kind of glance-
able space is the wall between two patients’ beds.

Entity centric glyphs represent the extreme end of the spatial spectrum, even though
they provide the finest detail of information, they introduce maximum fragmentation of
attention in comparison to activity centric and space centric glyphs. In addition, entity
centric glyphs require less information updates and adaptation dues to their situated
nature compared to the other two alternatives.

2.4 When: Temporal Distribution

Temporal Distribution specifies the timing of information provision that a situated glyph
provides and refers to the “When” aspect of the design space. This timing is directly
related to the information aÆnity, i.e., di�erent information requires di�erent timing for
presentation. Analysing the physical activity, we observe that there are three phases of
any activity - pre-execution phase (before), execution phase (during), and post execution
or evaluation phase (after).

Fig. 6. Information AÆnity - Temporal Distri-
bution Matrix

Delving into Suchman’s situated the-
ory of action [13] and considering our
identified information aÆnity, we have
devised an information-timing matrix for
situated glyphs in the context of health
care domain. This is depicted in Fig. 6.
The figure exposes the timing demand
of each information type. As an exam-
ple consider relationship information. It is
essential for a nurse to know before per-
forming a medical routine with an equip-
ment that this is the right equipment for
the patient in context. Furthermore, the
relationship information should be main-
tained during the execution to ensure in-
teraction consistency, and finally also be present after execution to receive the confir-
mation that the routine was successfully recorded for that patient. On the contrary, status
information is only needed in the pre-execution phase to ensure that an equipment or an
individual (e.g., a patient) is available. A further example is the instruction information
which is only needed before and during an activity to support the action but not once
the activity is completed.
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3 Discussion

Fig. 7. Current Prototype with a Physical
Size of 51mmx30mm

In the previous section, we have discussed
the design space for situated and activity-
aware glyphs to support dynamic work en-
vironments. Technically, such situated and
activity-aware glyphs can be realised as a
distributed display network. In our current
prototype we have designed situated glyphs
with a custom designed micro display net-
work using Jennic JN5139 micro controllers
with OLED-160-G1 displays with a resolu-
tion of 160x128 pixels at 65k colors, and run-
ning Contiki Operating System providing a
TCP�IP suite on top of ZigBee wireless standard (Fig 7).

We feel our analysis opens up several promising directions for future research. Firstly,
one caveat of our current design space is that we have not considered the interactivity
aspect of situated glyphs. As it is unclear at this point that what kind of interactivity is
suitable, we would like to address this in the immediate avenue of our future work. Sec-
ondly, we consider situated glyphs can be designed in many ways. In this work we have
borrowed concepts from semiotics, but we feel this is an open space. In fact, many pre-
vailing information visualisation techniques can be explored to design situated glyphs
in the context of pervasive computing. Next, since situated glyphs convey what activi-
ties can be performed in a given space, at a given time, with the devices and objects at
hand, they can be used to improve the intelligibility [7] of the underlying context-aware
system by exposing the internal behaviour through articulated explanation and adaptive
feedback. Further exploration on this area would contribute in shaping users’ under-
standing towards such system. Finally, the analysis of spatial distribution granularity
naturally prompts us to look further into the question of “how much is too much?”.
This is particularly important to understand the relationship between information over-
load and granularity of situated glyphs. As previous studies have concluded that indi-
viduals become selective and ignore large amounts of information when information
supply exceeds their information processing capacity [8, 9] and this also contributes to
the fragmentation of attention thus increasing the cognitive load. Unless we perform in-
situ real world studies in di�erent domains addressing di�erent situations, it won’t be
possible for us to determine or approximate the upper or lower bound of the placement
granularity of situated glyphs. We see opportunities for field studies that can help us in
gaining further insights towards the design of situated glyphs.
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Abstract. Many potential pervasive computing applications could use predic-
tions of when a person will be at a certain place. Using a survey and GPS data 
from 34 participants in 11 households, we develop and test algorithms for pre-
dicting when a person will be at home or away. We show that our participants’ 
self-reported home/away schedules are not very accurate, and we introduce a 
probabilistic home/away schedule computed from observed GPS data. The 
computation includes smoothing and a soft schedule template. We show how 
the probabilistic schedule outperforms both the self-reported schedule and an 
algorithm based on driving time. We also show how to combine our algorithm 
with the best part of the drive time algorithm for a slight boost in performance. 

Keywords: Location prediction, presence prediction, away prediction, energy 
efficiency, human routines. 

1   Introduction 

Predicting when a person will be at a particular location could be useful in many per-
vasive computing scenarios. For example, a person initiating a spoken or typed con-
versation may want to wait until the other party is at home or in their office if the 
conversation will be sensitive or long. In other situations, someone may want an im-
promptu, face to face meeting. Here, predicted presence would be useful to find the 
best time to drop in, e.g. “She’s nearly always in her office from 8 a.m. to 9 a.m.”. 
Another application is energy savings. Gupta et al. of MIT show that households 
could save up to 7% on their heating bill with a thermostat that knows how far the 
occupants are from home[1].For electric vehicles, cooling or preheating their batteries 
helps their performance[2], which would be aided by a prediction of when the driver 
will leave his or her current location. Predicted presence can also be used to detect 
anomalous behavior such as when a person is predicted to be somewhere but is not. 
Such behavior could be indicative of cognitive decline or an emergency. 

This paper presents a technique for learning the probabilities, as a function of time, 
that a person will be at a particular place based on observations of their presence 
there. We concentrate on presence at home, but the technique is equally applicable to 
any place where a person’s binary presence (i.e. there vs. not there) can be measured. 
In particular, we demonstrate inferences of an occupant’s home/away schedule based 
on GPS logs of their whereabouts over time. We create a probability distribution 
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giving their probability of being away from home as a function of the time of day and 
the day of the week. In addition, we look at the occupant’s current location as meas-
ured by GPS. We use this to override our probabilistic prediction if we discover the 
occupant is too far away to drive home within the prediction interval. 

There is other work is aimed at making general predictions about where people 
will be. For instance, Ashbrook and Starner look at GPS traces to find a person’s 
significant locations along with a Markov model to predict which one will be visited 
next [3]. Patterson et al. use GPS to sense activities, including making short term 
predictions about a person’s next destination [4]. Similarly, Krumm and Horvitz look 
at GPS traces to predict a driver’s destination based on their previous habits and gen-
eral driving behaviors [5]. These efforts concentrate on predicting specific locations 
in the future, not the arrival or departure times that we emphasize in this paper. In 
particular, algorithms like this that predict destinations and routes do not predict when 
the trip will start. The results of this paper, instead, can be used to predict when occu-
pancy states will change. 

Previous work on time-based presence prediction is normally aimed at thermostat 
control. An early attempt to solve the problem of occupancy prediction for home 
heating was that of Mozeret al. in 1997 [6]. Mozer’s Neural Network House was 
outfitted with sensors - including motion sensors to detect occupancy - and actuators - 
including one to control a central hot air furnace. They trained a neural network to 
predict when the home would be occupied as a function of recent occupancy observa-
tions. Gao and Whitehouse, of the University of Virginia, present a “self-
programming” thermostat that is sensitive to the home/away schedule of the  
occupants measured, by, for instance, occupancy sensors in the home [7]. Their algo-
rithm finds a thermostat schedule to minimize heating and cooling times given the 
occupant’s tolerance for “miss time”, which is the amount of time the house is not 
heated or cooled when it should be. Gupta et al.’s GPS controlled thermostat uses a 
driving time heuristic to conservatively predict that an occupant will be home in a 
given amount of time if it is possible to drive home in that amount of time [1]. 

One innovation in our approach is that our predictions are probabilistic, meaning 
that algorithms that use the predictions can tailor their behavior to the inherent uncer-
tainty in people’s future behavior. Our predictions are based on a novel way of 
smoothing and biasing occupancy observations. We combine our learned probabilities 
with the driving time heuristic of Gupta et al.[1] and show how it improves our accu-
racy slightly. We also show how using our algorithm significantly improves predic-
tion over users’ own ideas of their home/away schedules. While the previous work 
cited above used data from one (Mozeret al.[6]), two (Gao and Whitehouse [7]), and 
eight (Gupta et al.[1]) individuals, our results are based on surveys and GPS data 
from 34 individuals spread among 11 different households. The next section describes 
our survey and the data we gathered. 

2   Household GPS Survey 

In late 2009, we recruited 12 volunteer households in our area in order to gather data 
for our study for a period of approximately eight weeks each. These households were 
on a list of user study volunteers maintained by our institution, but not employed or  
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Table 1. Each of our participants filled out a time grid representing their typical week. In each 
one-hour cell, the participant could indicate sleeping, awake at home, or away from home. This 
is the data provided by one of our participants. 

 
otherwise associated with our institution. All the households had either three or four 
participants each, although one participant dropped out at the beginning of the study, 
leaving two participants remaining in one household. Also, one household of three did 
not properly comply with the GPS portion of the survey (explained below), so we 
dropped them, leaving 11 households with a total of 34 participants. One household 
had two child participants, and three households had one child participant. The partic-
ipants were evenly split across genders, and their ages ranged between 21 and 59, 
with a median age of 27. Six of the households were families with children living at 
home, and one was a couple without children. In return for participating in our survey, 
each household was offered four products of their choice from our institution (maxi-
mum value US$ 600 per product) and each participant was offered US$ 0.50 for each 
day of at least two hours of GPS log data. 

We asked each participant to do two main tasks. One of the tasks was to fill in a 
time grid predicting their status among “awake at home”, “sleeping at home”, and 
“away from home” for each hour of each day of a typical week. Data from a grid for 
one participant is shown in Table 1. This is analogous to programming a thermostat, 
where a person might pick different temperatures for each of these three states. We 
used these participant time grids to compare against other algorithms for predicting 
when a person would be home or away. 

The other major task of our survey participants was to carry a GPS logger with them 
during their waking hours. As part of our initial visit to each household, we loaned each 
participant a RoyalTek RBT-2300 GPS logger, equipped with an optional 1700 mil-
liamp-hour, rechargeable battery, plus a recharger. These loggers fit conveniently in a 
pocket or bag, and we set them to record a time-stamped latitude/longitude every five 
seconds. The larger, optional battery was enough for about 18 hours of operation on one 
charge. We instructed the participants to carry the logger with them wherever they went 
and have it turned off and recharging while they were sleeping. We also asked the par-
ticipants to mail their loggers to us every two weeks, switching to a second set of log-
gers we left with them. When we received the loggers, we uploaded and inspected the 

Sunday Monday Tuesday Wedneday Thursday Friday Saturday
0 sleeping sleeping sleeping sleeping sleeping sleeping awake home
1 sleeping sleeping sleeping sleeping sleeping sleeping sleeping
2 sleeping sleeping sleeping sleeping sleeping sleeping sleeping
3 sleeping sleeping sleeping sleeping sleeping sleeping sleeping
4 sleeping sleeping sleeping sleeping sleeping sleeping sleeping
5 sleeping sleeping sleeping sleeping sleeping awake home sleeping
6 awake home awake home sleeping sleeping sleeping awake home sleeping
7 away awake home awake home awake home awake home away sleeping
8 away awake home awake home awake home awake home away sleeping
9 away away away awake home awake home away awake home

10 away away away away away away awake home
11 away away away away away away awake home
12 away away away away away away awake home
13 away away away away away away awake home
14 away away away away away away away
15 away away away away away away away
16 awake home awake home away awake home away away away
17 awake home awake home awake home awake home away awake home away
18 awake home awake home awake home awake home away awake home away
19 awake home awake home awake home awake home awake home awake home awake home
20 awake home awake home awake home awake home awake home awake home awake home
21 awake home awake home awake home awake home awake home awake home awake home
22 awake home sleeping sleeping sleeping awake home awake home awake home
23 sleeping sleeping sleeping sleeping sleeping awake home awake home

Day of Week
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data to make sure the participants were properly complying. We then mailed back the 
empty loggers to serve as the replacement set after the next two-week switch, etc., until 
the end of the survey. An example of the type of GPS data we collected is shown in 
Figure 1. 

 

Fig. 1. This is an example of the GPS data we gathered. The black circle shows the region 
within 100 meters of one person’s home. Due to GPS noise, points within a circle of this size 
around a participant’s home were considered to be at home. 

An analysis of the data shows that the average, minimum, and maximum number 
of days we observed the 34 participants were 58, 13, and 95, respectively. The  
participants did not have their GPS loggers on all the time, e.g. normally turned off 
overnight, and sometimes forgotten in the morning. The average, minimum, and max-
imum fraction of time we obtained GPS data from the participants were 38%, 18%, 
and 76%. Some of the lower percentages were due to loggers that failed to upload 
their data after two weeks of logging. 

We used this GPS data to devise an algorithm for predicting when our participants 
would be home or away. First, however, we used their survey responses to assess how 
well they could predict their own home/away behavior, described in the next section. 

3   Self-reported Home/Away Schedules 

It may be that people are quite good at predicting their own home/away behavior. If 
so, there would not necessarily be a strong need to make these predictions automati-
cally. Part of our survey asked each participant to fill out a schedule of when they are 
sleeping, at home, or away from home. An example schedule from one of our partici-
pants is shown in Table 1. For the purposes of this study, we designated sleeping 
times as being at home. 
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Table 2. Participant Self-Report Confusion Matrix. The 
confusion matrix shows that our participants were not good at 
anticipating when they would be home or away, based on ground 
truth from GPS. They predicted they would be home much more 
often than they actually were. 

 

  Inferred 
  home away 

Actual 
from GPS 

home 76% 24% 
away 68% 32% 

 

The participants’ 
GPS data, along with 
knowledge of their home 
locations, gave us a 
simple way to measure 
their actual home/away 
behavior. We designated 
any GPS point within 
100 meters of the partic-
ipant’s home to be at 
home, and designated 
the remaining points as 
away. We chose the 100 
meter radius based on 
the observed spread of the GPS data as shown in maps such as in Figure 1. While a 
circle of this size could easily include many neighbors, we felt compelled to keep the 
circle this large to account for the occasional drift of our GPS logger. 

With the GPS home/away data as ground truth, we can assess how well our partic-
ipants anticipated their own home/away behavior. We note that the quality of predic-
tions based on a schedule like this do not vary with the look-ahead time, since each 
participant’s predicted schedule is static. For other predictions we make below, the 
look-ahead time is a factor. 

Table 2 shows the confusion matrix averaged over all our participants. We com-
puted this by considering every GPS point as a ground truth point, assigning it a label 
of “home” or “away” depending on its location. We used the GPS point’s time stamp 
to look up the participant’s anticipated home/away state in their self-reported 
home/away schedule. The confusion matrix shows that when a participant was actual-
ly away (as measured by GPS), they predicted they would be home about 68% of the 
time. We conclude that our participants were not good at anticipating their 
home/away schedules, and we next consider algorithms to automatically infer 
home/away in hopes of improvement. 

We note that the participants were likely not quite as poor at predicting their 
home/away status as the confusion matrix implies. We assessed their home/away 
prediction only when we had GPS data for ground truth, which did not include over-
nights, because we asked participants to turn off their GPS overnight for recharging. 
Thus nighttime data, when the participants were most likely home and when they 
likely correctly predicted they would be home, was not included in the calculations. 
So, we conclude that during waking hours, our participants were not good at predict-
ing their home/away pattern. In the following sections, we use the same GPS ground 
truth data to assess other algorithms, so we can directly compare performance, despite 
the lack of nighttime data. 

4   Drive Time Prediction 

The work in [1] introduces thermostat control based on the location of the home’s 
occupants. They recommend, in the absence of a programmable thermostat, to keep 
the house warm if the time to heat the home is more than the time it would take an 



84 J. Krumm and A.J. B

occupant to drive home. T
will always be home in the
We will refer to this algor
measure the relative accura
ment our algorithm for mor

 

30 minutes

90 minutes

Fig. 2. These maps show prec
home by driving for a given am

 

With our GPS data, we w
same type of confusion m
present the results, we desc
for efficiency. While [1] u

Bernheim Brush 

Thus, this algorithm conservatively predicts that a per
e amount of time it would take him or her to drive ho
rithm as the “drive time” algorithm, and we will use i
acy of our own presence prediction algorithm and to a
re accuracy. 

s 60 minutes 

s 120 minutes 

omputed drive time zones from which a person could reach t
mount of time 

were able to assess the drive time algorithm in terms of 
matrix presented in the last section. However, before 
cribe one modification we made to the drive time algorit
used MapQuest to predict driving times from each G

rson 
me. 
it to 
aug-

 

 

their 

f the 
we 

thm 
GPS 



 Learning Time-Based Presence Probabilities 85 

point, we instead 
computed driving times 
from points sampled on a 
map. In particular, we 
tessellated the map in our 
study region with trian-
gles from the Hierarchical 
Triangular Mesh (HTM) 
[8]. From the available 
mesh resolutions, we used 
level 12 triangles, whose 
size in our study region 
was about 5.1 square 
kilometers (area) and 3.4 
kilometers (length of each 
side). For each triangle, 
we computed the driving 
time from the triangle’s 
center to the participant’s 
home and stored the re-
sult. Then, given an arbi-
trary latitude/longitude, 
we found which triangle 
contained it and returned 
that triangle’s driving 
time as an approximation 
of the driving time from 
that point. This modifica-
tion of the algorithm in [1] was not designed to increase the accuracy of the algo-
rithm, but rather to increase the computational efficiency. Instead of computing a 
driving time for each query, we simply have to look up the precomputed driving time 
from the relevant triangle. Since the triangles are small, the loss in driving time accuracy 
caused by discretization is small.Thresholding the drive times in the triangles is a con-
venient way to show a map of the region over which a participant’s home is reachable in 
a given amount of time, as shown in Figure 2 for an arbitrary home location. 

From Figure 2 it is easy to understand the drive time algorithm. For example, if the 
look-ahead time for the prediction is 90 minutes, the occupant would be predicted to 
arrive at home in at most 90 minutes from anywhere within the 90-minute drive time 
region. We call this region the drive time zone. 

We can apply the drive time algorithm to home/away prediction by predicting that 
an occupant will be home in some amount of time if they are within the drive time 
zone associated with that time. Otherwise we predict they will be away. We note that 
the schedule-based algorithm in the previous section is insensitive to the look-ahead 
time, because its predictions are completely determined by the time of day and day of 
week. The drive time, algorithm, in contrast, depends on the look-ahead time. 

 

Table 3. Drive Time Algorithm. These confusion matrices
show the performance of an algorithm that predicts the user
will be home in X minutes whenever he or she is within X
minutes of driving time from their home. Since most people
in our study spent most of their time close to home, this
algorithm almost always predicts they will be home within the
prediction interval. 

 

  Inferred 
  home away 

Actual 
from GPS 

home 100% 0% 
away 90% 10% 

30-minute drive time prediction 

  Inferred 
  home away 

Actual 
from GPS 

home 100% 0% 
away 93% 7% 

60-minute drive time prediction 

  Inferred 
  home away 

Actual 
from GPS 

home 100% 0% 
away 94% 6% 

90-minute drive time prediction 
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Applying the drive time algorithm to our participants’ data, we get the confusion 
matrices shown in Table 3 for look-ahead times of 30, 60, and 90 minutes. The charts 
in Table 3, Figure 4, and Figure 5 show how the drive time algorithm compared to 
others we tested. The defining aspect of the drive time confusion matrices is that the 
algorithm almost always predicts “home” regardless of the data. This is because our 
participants spent the vast majority of their time near their homes. This is likely true 
of the general U.S. population, whose average commute time from work is about 23 
minutes, and 81% of whom work within 45 minutes of home [9]. 

While this algorithm did not perform well on our participants’ data, we show later 
how to combine it with a more accurate algorithm for a slight improvement in the 
other algorithm’s accuracy. 

5   Probabilistic Home/Away Schedules 

Despite the fact that our participants were not good at anticipating their own 
home/away schedules, we suspect there is much to be gained by looking at their regu-
lar habits. This section describes how, using their GPS data, we computed the proba-
bility of them being away from home as a function of the time of day and day of 
week, as shown in Table 4. (We note that if the probability of being away from  
home is , then 1 .)In this table the time slots are 30 minutes 
long. This is an arbitrary choice, but we found that 30 minutes worked well for our 
purposes. 

The advantages of using a probabilistic table such as this are: 

• It is based on users’ actual home/away behavior, and thus is a more accurate 
reflection of their schedule than a self-reported one. 

• The probabilities capture the fact that people are not completely predictable. 
• Using probabilities means that algorithms using these predictions can expli-

citly account for the inherent uncertainty. 
• The probabilities can be used as a prior for a more sophisticated Bayesian 

approach to home/away prediction. 

As we did previously, we say that a participant was home when their GPS data indi-
cated they were within 100 meters of their home latitude/longitude. 

One way to build a probabilistic home/away schedule would be to create a simple 
histogram of normalized frequencies. For each time/day slot in the schedule, we could 
simply count the number of times the user was away from home, based on GPS read-
ings, and divide by the total number of GPS readings in that slot. However, this leads 
to problems when there is no sample data for a slot, and it also neglects the opportuni-
ty to impose prior assumptions on the schedule. 

Below we describe our procedure for building a probabilistic home/away schedule 
which fills in missing values, smoothes the data, and allows a soft bias in the regulari-
ty of the schedule. 
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Imposing a Schedule Template 

We formulate the problem of finding a schedule as a linear matrix problem, 
where the unknowns are the probabilities in the time slots. Specifically, the 
unknowns form a vector , where each element is  for a particular time slot 
on a particular day of the week, i.e. … …  (1)

This vector is 336 elements long, which is the number of 30-minute periods in 7 
days. The elements are organized in day-major order, so  corresponds to the first 30 
minutes of Sunday after midnight, and  corresponds to the last 30 minutes of 
Saturday before midnight. 

We suspect that people have a somewhat unvarying home/away schedule on week-
days, with more variations on weekends. Therefore, we introduce another vector of 
away probabilities that correspond to a generic weekday, Monday - Friday. This vec-
tor is  , and there is one element for each 30-minute slot of a single 
weekday, i.e. 

 … …  (2)

where 48 is the number of 30-minute periods in one 24-hour, generic weekday. After 
solving for and  , the final probability for a weekday slot is 
computed as the sum of the relevant element of  (corresponding to a time slot 
on a specific day of the week) and the relevant element of  (corres-
ponding to the time slot on a generic weekday). The final probability for a weekend 
slot comes solely from . 

Introducing   is a way to impose our bias that people have a some-
what regular schedule on weekdays.  represents the unvarying part of 
a weekday, which is summed with the elements of  that represent the variable 
parts of specific weekdays. There are many such possible decompositions. For in-
stance, it may be that only daytime hours of weekdays are unvarying. We introduced 
the generic weekday as the intuitively most likely decomposition, but we leave for 
future work a verification that it improves accuracy. An interesting extension to this 
techniqueis to examine different types of probability decompositions to find which 
one, if any, works best for an individual. As it stands, our generic weekday decompo-
sition is an example of how to impose these types of decompositions mathematically. 

The linear matrix equation for computing the probabilities is 

 (3)

Here  is a matrix representing constraint equations on the probabilities, with the b 
vector representing the constraints’ constant parts. The unknown vector 

 

contains the probabilities we want to compute. The remainder of this section discusses 
how we fill the elements of  and  based on data and other constraints. 
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Home/Away Frequencies 

The main influence on the away probabilities is the home/away data itself. We create 
one constraint equation for each 30-minute period of collected GPS data. In these 
periods, we compute the proportion of GPS points outside the 100-meter radius of the 
home compared to the total number of GPS points measured in the time period. If one 
row of matrix  is represented by the row vector , and one element of vector  is 
represented by , then the form of this constraint for one observed 30-minute time slot 
is ·0 0 … 1 … 0 0 | 0 0 … 1 … 0 0 ·  (4)

Here the two 1’s in are positioned to pick up the time of day and day of week slot in 
 and   that correspond the time slot in the data. The vertical 

divider in  corresponds to the division between the two parts of :  and  . If the time slot is on a weekend, the second 1 in  is replaced with a 
0, because there is no generic time slot for weekends.The integers  and  
are the counts of GPS points inside and outside the 100-meter circle in the data’s time 
slot. 

There is one ,  pair, and thus one row of matrix , for every 30-minute time 
slot in the observed data. We keep appending ,  pairs to  until we exhaust 
all the participant’s GPS data. With approximately eight weeks of data from each 
participant, there are many more 30-minute data slots than unknowns in , making the 
matrix equation over-constrained. We eventually use a least squares approach to find 
a solution. 

Generic Weekday Influence 

We want to adjust the magnitude of the probabilities for a generic weekday,  , to allow for more or less variation on weekdays. To do this, we 
introduce a regularization factor, , to potentially reduce the generic weekday 
probabilities. In terms of the growing equation, we add rows to  and that 
look like the following: 0 0

0 0
1 0 00 1 0 00 0 1

0
00 | 0

 ( 5 )

This has the effect driving all the elements of   to zero. This effect is 
moderated by . We used 0.0001, and we describe subsequently how we 
chose this value. 
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Table 4. This table gives the probability of someone being away from their home as a function 
of the time of day and day of week. In this case, there is a high probability of being away dur-
ing most normal working hours on Monday – Thursday. Also, this person appears to be often 
away from home on Friday nights until the first 30 minutes of Saturday. The generic weekday 
in the last column shows a bulge during normal work hours as expected. 

 

Smoothing 

We also allow for a degree of temporal smoothing of the away probabilities to ac-
count for vagaries in the limited observation time. Smoothing is also critical for filling 
in missing data, because sometimes we have no GPS data for certain nighttime time 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Gnrc Wkdy
12:00 AM 0.050 0.000 0.000 0.000 0.000 0.000 0.453 0.000
12:30 AM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1:00 AM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1:30 AM 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
2:00 AM 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000
2:30 AM 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000
3:00 AM 0.000 0.000 0.075 0.000 0.000 0.000 0.000 0.000
3:30 AM 0.000 0.000 0.133 0.000 0.000 0.007 0.000 0.000
4:00 AM 0.000 0.000 0.209 0.000 0.000 0.032 0.000 0.000
4:30 AM 0.000 0.000 0.300 0.000 0.000 0.084 0.000 0.000
5:00 AM 0.000 0.000 0.404 0.000 0.000 0.171 0.000 0.000
5:30 AM 0.000 0.000 0.515 0.000 0.000 0.298 0.000 0.000
6:00 AM 0.000 0.001 0.625 0.000 0.000 0.471 0.000 0.000
6:30 AM 0.000 0.807 0.728 0.371 0.001 0.692 0.000 0.001
7:00 AM 0.000 1.000 0.812 0.427 0.170 0.962 0.000 0.002
7:30 AM 0.000 1.000 0.934 0.583 0.461 0.964 0.000 0.073
8:00 AM 0.000 1.000 0.999 0.649 0.565 0.875 0.000 0.132
8:30 AM 0.000 0.833 0.294 0.797 0.587 0.875 0.000 0.061
9:00 AM 0.000 0.857 0.091 0.560 0.379 0.810 0.182 0.002
9:30 AM 0.000 0.857 0.200 0.546 0.090 0.714 0.200 0.000

10:00 AM 0.149 0.993 0.443 0.429 0.000 0.514 0.200 0.000
10:30 AM 0.376 1.000 0.833 0.637 0.341 0.571 0.011 0.219
11:00 AM 0.600 1.000 0.833 0.804 0.571 0.571 0.101 0.322
11:30 AM 0.567 1.000 0.714 0.625 0.400 0.574 0.189 0.252
12:00 PM 0.383 1.000 0.714 0.581 0.400 0.541 0.368 0.255
12:30 PM 0.400 1.000 0.714 0.714 0.703 0.400 0.375 0.325

1:00 PM 0.388 1.000 0.714 0.714 0.750 0.500 0.348 0.357
1:30 PM 0.376 1.000 0.714 0.714 0.750 0.352 0.287 0.324
2:00 PM 0.400 0.985 0.714 0.667 0.750 0.310 0.345 0.294
2:30 PM 0.721 1.000 0.714 0.667 0.714 0.315 0.143 0.283
3:00 PM 0.750 0.897 0.667 0.729 0.714 0.250 0.208 0.250
3:30 PM 0.600 0.500 0.650 0.712 0.559 0.328 0.427 0.160
4:00 PM 0.600 0.600 0.571 0.440 0.498 0.250 0.375 0.099
4:30 PM 0.600 0.368 0.709 0.336 0.429 0.151 0.148 0.043
5:00 PM 0.600 0.200 0.612 0.251 0.519 0.142 0.125 0.000
5:30 PM 0.595 0.314 0.429 0.375 0.506 0.125 0.143 0.007
6:00 PM 0.333 0.500 0.510 0.599 0.571 0.125 0.000 0.125
6:30 PM 0.333 0.429 0.532 0.429 0.460 0.125 0.143 0.085
7:00 PM 0.305 0.429 0.418 0.371 0.429 0.125 0.053 0.080
7:30 PM 0.167 0.302 0.250 0.384 0.313 0.290 0.000 0.073
8:00 PM 0.167 0.286 0.220 0.286 0.250 0.351 0.094 0.081
8:30 PM 0.167 0.172 0.125 0.286 0.290 0.375 0.143 0.083
9:00 PM 0.167 0.143 0.125 0.206 0.343 0.375 0.143 0.095
9:30 PM 0.108 0.143 0.053 0.143 0.202 0.375 0.143 0.053

10:00 PM 0.000 0.000 0.000 0.143 0.143 0.333 0.143 0.000
10:30 PM 0.000 0.000 0.000 0.200 0.143 0.400 0.143 0.000
11:00 PM 0.000 0.000 0.000 0.250 0.000 0.667 0.143 0.000
11:30 PM 0.000 0.000 0.000 0.000 0.000 0.667 0.143 0.000

Ti
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slots. For an away probability from , we smooth with the probabilities of the 
previous and next time slots, i.e. we want 

 2 1 22 2 0  (6)

 

where0 0.5 controls the amount of smoothing and , , and  are three, 
temporally adjacent away probabilities . This smoothing constraint is moderated by a 
smoothing regularization factor . For smoothing, we add rows to  and that look 
like the following: 
 2⁄ 0 0 2⁄2⁄ 2⁄ 0 00 2⁄ 2⁄ 0 00 0 2⁄ 2⁄2⁄ 0 0 2⁄

0
|0 0

 (7)

 

Smaller values of  tend to reduce the effect of smoothing on the final probabili-
ties. Likewise, a smaller value of  means less smoothing between temporally adja-
cent probabilities. 

Solving and Choosing Parameters 

The equation is built from three parts: away frequencies from GPS data, mod-
erating the effect of the generic weekday with , and smoothing with  and . The 
equation is over-constrained, so we solve with least squares. We also require the re-
sulting probabilities to be between zero and one, so we use a constrained solver. 

To choose the parameters , , and , we used two-way cross validation on 
eight weeks of GPS data taken from a participant outside our study. We made a rough 
sweep through possible values of the parameters. For each set of parameter values, we 
compared the computed probabilities from half the GPS data to the ground truth com-
puted from the other half of the GPS data. The best values of the parameters were 

 0.0001 
 0.4 
 0.1 

We used these parameters to compute away probabilities for each participant. An 
example result for one of our participants is shown in Table 4. 

Evaluation of Probabilistic Schedule 

The computed away probabilities introduce a convenient parameter into prediction for 
presence. For presenting estimates to other people, such as the probability of a person  
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Fig. 3. This is an ROC curve for predicting “away” for one of our participants using a probabil-
istic home/away schedule. In this person’s case, adding the drive time algorithm made a notice-
able improvement in performance. The diagonal line intersects the ROC curves at the equal 
error rate. 

 

being in their office, a system could simply present the computed presence probability 
and let the other person decide what action to take. For automatic behaviors, such as 
controlling a home’s temperature, we can set a threshold on the away probability to 
decide when to trigger an action. The probability can be combined with perceived 
costs of incorrect predictions, giving a decision-theoretic result. For instance, a low 
threshold on translates into a high threshold on , and it means that the 
system would have to be more confident of an impending arrival in order to take any 
action. As an example, for home heating, this threshold translates into a user-
adjustable tradeoff between comfort and energy savings. If comfort is more important, 
the user would set the threshold such that the home would be heated even if there was 
only a relatively small chance of arriving at home at the cost of sometimes heating an 
empty house. To save more energy, the user would adjust the threshold to reduce the 
chance of heating the home unnecessarily at the cost of sometimes arriving home to a 
cold house. With a probabilistic schedule like the one we produce, this tradeoff be-
comes possible. It is similar in spirit to the tradeoff introduced in [7] in which users 
set the “miss time” to control for how long the home’s temperature is miscontrolled. 
The drive time algorithm and the self-reported schedule have no such adjustment 
available. 

We evaluated our probabilistic schedules with 5-fold cross validation. For each 
participant, we split their GPS data into five equal-length parts in temporal order. For 
each of the five validation runs, we tested on one part and trained on the other four 
parts, picking a new test part for each run. 

The probabilistic schedule predictor does not use a specific look-ahead time for 
prediction. Since it assumes that the probabilistic schedule is forever unvarying, it can 
be used to predict ahead any amount of time. This is manifest in our results, because  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

it
iv

es

False Positives

ROC Curve - Predicting Away From Home 

Probabilistic Schedule
Probabilistic Schedule with Drive Time 90 Minutes



92 J. Krumm and A.J. Bernheim Brush 

 

Fig. 4. This plot shows the performance of all the algorithms we tested. For each algorithm, it 
shows the correct rates (e.g. “inferred away when away”) in the left-most two groups. Here a 
higher bar is better. The error rates (e.g. “inferred away when home”) are in the right-most two 
groups where a lower bar is better. The error bars show +/- one standard deviation over our 34 
test participants. 

 

we show no look-ahead time for this algorithm, unlike the drive time algorithm which 
considers a specific amount of time for its predictions. 

In evaluating the accuracy of the probabilistic schedule, we account for the adjust-
able probability threshold by creating an ROC curve that demonstrates the perfor-
mance tradeoff at different settings of the probability threshold. An example of an 
ROC curve for one of our participants is shown in Figure 3. This shows the perfor-
mance of predicting if the person will be away from home at different settings of the 
threshold on . At high settings, the system must be very confident of an upcom-
ing departure before it will predict an away state. This corresponds to the lower left 
part of the plot where the chance of a false positive is low, but where the high thre-
shold also reduces the chance of a true positive. At the other end of the plot, the thre-
shold is low, where the chances of a false positive and true positive are both high. 
Ideally there would be a threshold that gives 100% true positives and no false posi-
tives, which is the upper left corner of the plot. 

One advantage of our algorithm is that it allows this adjustment, which gives high-
er level algorithms the flexibility to trade off one type of error for another. 

To reduce the ROC curve to a confusion matrix for comparison with the other al-
gorithms, we look at the equal error rate, which in Figure 3 is where the diagonal line 
intersects the ROC curve. Using the equal error rate point, the confusion matrix asso-
ciated with home/away prediction using probabilistic schedules from all our partici-
pants is shown in Table 5. Figure 4 shows how this algorithm’s confusion matrix 
numbers compare with the others. The probabilistic schedule algorithm gives a much 
better balance for predicting home and away compared to participant’s self-reported 
schedules and the drive time algorithm, both of which significantly overestimate pre-
dictions that the participants will be home. 
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Figure 5 shows how 
the probabilistic 
dule algorithm 
pares to the previous 
algorithms in terms of 
accuracy, where accu-
racy is in our case 
simply the mean of the 
diagonal elements of 
the confusion matrix. 
The probabilistic 
schedule algorithm is 
significantly more 
accurate than the pre-
vious algorithms, al-
though the accuracy 
figure hides the fact 
that the previous algo-
rithms (participants’ 
self-reported schedule 
and drive time) get 
most of their accuracy 
from over-predicting 
when the participant 
will be home. Note 
that the minimum 
accuracy in the plot in 
Figure 5 is ½, since 
this is trivially achiev-
able by guessing 
“home” or “away” 
100% of the time. 

6   Combining Probabilistic Schedule and Drive Time Algorithms 

There is an easy way to combine the drive time algorithm with the probabilistic sche-
dule algorithm. The strength of the drive time algorithm is that it will never predict 
that a person can arrive at home in less time than it would take to drive home. Unless 
the person is traveling home faster than normal vehicular traffic, this heuristic will 
almost always be correct. Thus, we modified our probabilistic schedule algorithm to 
always predict “away” if the participant was outside the relevant drive time zone, 
regardless of the probability in the schedule. If the participant was within the drive 

Fig. 5. This chart shows the accuracy of each algorithm, 
which in our case is the average of the true positive rates in 
the confusion matrices. The error bars show +/- one standard 
deviation across our 34 participants. The minimum accuracy 
is ½, because that is achievable by simply guessing “home” 
or “away” 100% of the time. The maximum possible accura-
cy is 1.0. 
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time zone, we resorted to 
the probabilistic schedule 
instead. This combination 
of the algorithms takes 
the best part of the drive 
time algorithm and ig-
nores its rule to predict 
“home” whenever a par-
ticipant is within the 
drive time zone. We 
found that this addition 

improved the probabilistic schedule algorithm slightly but noticeably. The confusion 
matrices are shown in Table 6, and Figure 4&Figure 5show how this algorithm com-
pares to the others. Figure 3 shows the improvement in the ROC curve for one of our 
participants. In all cases, there is a slight improvement. 

7   Discussion and Summary 

With the goal of predict-
ing a home’s occupancy 
for energy efficiency, this 
paper shows that a proba-
bilistic home/away sche-
dule derived from GPS 
data works much better 
than peoples’ self-
reported schedules and 
much better than making 
predictions based purely 
on the time it would take 
to drive home. Our study 
was based on approx-
imately two months GPS 
data from each of 34 par-
ticipants. 

We introduced a ma-
trix-based method to 
compute probabilistic 
schedules that allows for 
the application of a soft 
schedule template on the 
data. In our case, we used 
a template that emphasiz-
es a similar schedule on 
weekdays. Our method 
also smoothes the data. 

Table 5. Probabilistic Schedule. The confusion matrix 
shows the performance of prediction for the probabilistic 
schedule we derived from participants’ GPS data 

 

  Inferred 
  home away 

Actual 
from GPS 

home 64% 36% 
away 35% 65% 

 

Table 6. Probabilistic Schedule + Drive Time. Adding 
information about the participants’ distance from home 
slightly improves the performance of the probabilistic sche-
dule algorithm 

  Inferred 
  home away 

Actual 
from GPS 

home 66% 34% 
away 32% 68% 

30-minute drive time prediction with probabilistic 
schedule 

  Inferred 
  home away 

Actual 
from GPS 

home 66% 34% 
away 33% 67% 

60-minute drive time prediction with probabilistic 
schedule 

  Inferred 
  home away 

Actual 
from GPS 

home 65% 35% 
away 33% 67% 

90-minute drive time prediction with probabilistic 
schedule 
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We also showed how to increase the performance of our probabilistic schedule al-
gorithm by adding the best part of the drive time algorithm. 

Our probabilistic schedule proved much more accurate than our participants’ own 
impression of their weekly home/away schedules. One possible objection to this result 
is that our participants filled out a schedule with time discretized to 1-hour pieces, 
while our probabilistic schedule worked with 30-minute pieces, allowing more accu-
racy in transition times.However, we found our participants were so poor at predicting 
home/away, that higher resolution discretization would not help much. For instance, 
as shown in Table 2, for 68% of the time when participants predicted they would be 
home, they were actually away. With only a few home arrivals and departures per 
day, adjusting these times by 30 minutes would not be enough to eliminate an error 
this large. 

In practice, these probabilistic schedules could be kept up-to-date by processing 
only the most recent location traces of an individual, thus staying more current as 
weekly schedules inevitably change. It would be interesting to investigate more so-
phisticated methods for maintaining a probabilistic schedule, perhaps by assembling 
chunks of previous schedules. Recent work has shown that only about 38% of a fami-
ly’s travel activities are routine, implying that there is an opportunity for improved 
predictions beyond a derived schedule like ours [10]. Another promising research 
question is whether or not a system like ours could use a coarser, more energy effi-
cient location system like WiFi or cell tower positioning instead of GPS. 
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Abstract. As location-sensing smart phones and location-based services
gain mainstream popularity, there is increased interest in developing
techniques that can detect anomalous activities. Anomaly detection ca-
pabilities can be used in theft detection, remote elder-care monitoring
systems, and many other applications. In this paper we present an n-
gram based model for modeling a user’s mobility patterns. Under the
Markovian assumption that a user’s location at time t depends only on
the last n − 1 locations until t − 1, we can model a user’s idiosyncratic
location patterns through a collection of n-gram geo-labels, each with
estimated probabilities. We present extensive evaluations of the n-gram
model conducted on real-world data, compare it with the previous ap-
proaches of using T-Patterns and Markovian models, and show that for
anomaly detection the n-gram model outperforms existing work by ap-
proximately 10%. We also show that the model can use a hierarchical
location partitioning system that is able to obscure a user’s exact loca-
tion, to protect privacy, while still allowing applications to utilize the
obscured location data for modeling anomalies effectively.

1 Introduction

Over the last decade, with smart-phone and ubiquitous computing technologies
maturing, the ability to locate a user accurately has become a reality especially
in outdoor environments using the Global Positioning System (GPS). With the
ability to accurately track a user’s location, it is theoretically possible to create
a model for that user’s movement pattern [11]. Such a model, combined with
location-based services (and context-aware services in general), enables oppor-
tunities to provide a wide array of services using the model’s ability to detect
variations from a regular routine, and its ability to predict location and varia-
tions. A comprehensive model of a user’s movement patterns would be able to
detect if a user is doing something out of the ordinary. This anomaly detection
capability of the model can support context-aware applications for 1) caregivers
to monitor elderly people unobtrusively (especially those suffering from memory
ailments such as Alzheimer’s Disease who are likely to wander), 2) monitoring
of young children, and 3) theft detection systems for mobile phones and cars.

In this paper we present an n-gram based model for learning a user’s move-
ment pattern using historical geo-traces (GPS tracks). Each person has a set

K. Lyons, J. Hightower, and E.M. Huang (Eds.): Pervasive 2011, LNCS 6696, pp. 97–114, 2011.
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of unique geo-locations and transitions (i.e., movements between those geo-
locations) which act as triggers or qualifiers for the person’s future locations.
n-gram models are very robust at modeling relationships between a sequence
of observations and outcomes dependent on the sequences. Therefore we use an
n-gram model to learn a person’s geo-patterns. For example, if a person visits
a cafe everyday on the way to work and the person is seen at the cafe on a
workday, it can be reasonably assumed that the person is on his way to work.
We cluster raw GPS coordinates into geo-labels, and use sequences of geo-labels
to train standard n-gram models for anomalous activity detection.

Using probabilistic methods for modeling the movement patterns of users has
been attempted in previous work. These approaches have focused predominantly
on using probabilistic approaches such as Markov models [30,19,1,16] and T-
Pattern based models [22,10]. Yet anomaly detection using GPS traces is a novel
area of research with sparse previous work. In [21], Ma proposes using generating
bounding regions (with borders parallel to the longitudinal and latitudinal lines)
for anomaly detection, while Binbin proposes Markov Random Fields for learning
geo-tracks of people and for anomaly detection [18]. Yet, neither have as yet
produced definitive results.

The work presented in this paper approaches the problem of grouping individ-
ual entries in geo-traces with a method that is distinct from previous attempts.
Our method utilizes previous states (or locations) to detect anomalies in daily
routines similar to using a T-Pattern or Markovian model. However, unlike those
models, the n-gram based model presented here is able to skip over previous lo-
cations which are detractors (or non-contributors) to the current prediction.
By skipping over location entries which are deemed to be detractors or non-
contributors, the n-gram model is made more robust to noise in data caused by
either GPS resolution or minor variations in a user’s movements. Furthermore
skipping detracting n-grams reduces the size of the model in terms of compu-
tational time and storage size (as the model has comparable performance for
a lower value of n than when the model takes detracting grams into account).
Therefore the work presented here is able to outperform models presented in
previous work at detecting anomalies.

In this work, we make the following contributions toward the problems of
mobility pattern modeling and anomaly detection in mobility patterns:

– We present an n-gram based model for modeling human mobility, which
employs unsupervised learning.

– We show how this model is used for detecting anomalous behavior of a user
given that user’s current context.

– We present a geo-partitioning method, used by our model, that preserves a
user’s privacy when exposing location information to external applications by
blurring GPS coordinates and, at the same time, retains enough information
for mobility modeling with sufficient accuracy.

– We evaluate the model’s anomaly detection capabilities with extensive real-
world data, and show that it outperforms other behavior modeling ap-
proaches to anomaly detection.
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This paper is organized as follows. In Section 2, we describe the properties
of geo-trace data and show how our method utilizes these properties. In Section
3, we describe our approaches to quantizing geo-tags and training the n-gram
model. In Section 4, we evaluate our approach with experimental results. Then,
in Section 5, we discuss the experimental results and describe the class of ap-
plications enabled by anomaly detection using the n-gram model. We conclude
after reviewing related work in the area of geo-trace modeling in Section 6.

2 Quantizing Geo-trace Data

Raw geo-trace information can be recorded from either a user’s mobile phone
(using GPS) or specialized GPS hardware. While some specialized geo-tracking
devices are capable of providing a greater amount of information about the user’s
movements (such as velocity), we assume that the only information available to
our model is raw, timestamped GPS coordinates (longitude and latitude) along
with the number of visible GPS satellites. We use the satellite count to clean the
data, rather than as a feature for the model [1].

In this paper, we use the term “geo-tag” to describe a tuple of raw readings
consisting of a longitude-latitude pair, timestamp, and visible satellite count, and
use the term “geo-label” to describe a tuple of quantized geo features derived
from the raw data. The geo-trace models are built upon these geo-labels.

2.1 Location Quantization through Partition

We do not use raw GPS readings as a part of geo-labels, since the precision
of the raw GPS readings is too high to generalize to a meaningful geo-trace
model (i.e., the geo-trace models will attempt to learn with an unrealistic de-
gree of granularity, resulting in many false positives/false anomaly detections).
For example, knowing that the user is driving on highway I-75 close to exit 187
heading north is enough to detect his/her future location and we do not really
need to know which lane he/she is at to achieve such a prediction. Essentially,
in this example, we treat the left and right lanes as one location rather than
two. Additionally, users may have privacy concerns over sharing precise location
information with an external application (such as a server/cloud-based applica-
tion utilizing geo-trace models) [15,3,16]. Therefore we abstract the raw GPS
readings to reduce their precision and to generalize them to a useful geo-trace
model. We now discuss two methods to perform this conversion.

Equal-sized Partition. The first method is to partition the entire surface of the
earth into equal sized rectangular segments, each with a unique label. Then, all
points from a geo-trace falling within a certain segment are replaced by the label
of that segment. This method of partitioning is very straightforward to imple-
ment and makes comparisons between multiple users’ geo-traces extremely sim-
ple. But the method also has the drawback of over- and under-granularization.
In the case of over-granularization, in areas where a user rarely travels, the few
geo-tags that exist (over a relatively large geographic area) are split into a large
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number of partitions. In the case of under-granularization, areas regularly fre-
quented by the user will have a large number of places of interest (e.g., campus
premises with different buildings of interest) and a low granularity of partition-
ing could lose important information regarding visits to each individual place of
interest within the partition.

Density-driven Hierarchical Partition. To counter the deficiencies of the
first partitioning approach, we propose a density-driven partitioning method
where the granularity of partitioning varies from area to area. The granularity
of partitioning for an area is determined by the frequency of visits to that area,
based on observed geo-traces of a user or a group of users. The process begins by
treating the entire world surface as a single partition and recursively dividing it
up into child partitions by splitting it into four quadrants with a north-south line
and an east-west line. Further division of a partition is halted when the number
of geo-tags recorded within that partition falls below a density threshold. The
resulting partition is a quad-tree. We assign a label to each leaf partition which
denotes the path to the leaf node from the root node in the partitioning quad-
tree. Each child partition’s label is comprised of the parent partition’s label
as a prefix appended with a designator as to which quadrant of the parent it
belongs. See Figure 1 for an example of a partitioned area on a user’s route. The
pseudocode for the partitioning algorithm is:

Create root Partition with root->region = entire world;
Assign all geo-tags to root;
PartitionSimple( root );

PartitionSimple( Partition cp ) {
IF( cp->geo-tags <= THRESHOLD ) THEN return;

Add 4 child partitions to cp;

i = 1;
FOR EACH child partition p IN cp

Set p->region = quadrant i of cp->region;
Set p->label = Concatenate( cp->label, i );
FOR EACH geo-tag gt IN cp

IF (gt lies within p) THEN Assign gt to p;
END
PartitionSimple( p );
i = i + 1;

END
}

While there are partitioning schemes such as Hierarchical Triangular Maps
which would result in a more even spacial partitioning, these scheme require
greater computational cost at run-time. Furthermore such partitioning schemes
do not provide significant performance improvements.
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Fig. 1. The map on the left displays a partition based on the frequency of visits by the
user. The image on the right shows an example of how labels are assigned to partitions
in a density based partitioning scheme.

2.2 Time and Direction Features

We also extract features other than location information for geo-trace modeling.

– direction of displacement. The direction of displacement of a geo-tag gi

is the angle of the directional vector gi − gi−1, i.e., the direction the user
moves from his previous location to the current location. The direction is 0
if gi − gi−1 points to North and 90 if East. Similar to quantizing locations,
we also quantized direction of displacement into B sectors where B << 360.

– time of day. The time of day feature is extracted from the geo-tag’s times-
tamp. We divide the 24 hour period of day into segments of equal duration
(e.g., in our experiments we use 1 hour segments) and convert the actual
hour:minute:second time stamp to a discrete label.

– time spent at a location. We replace a consecutive sequence of identical
geo-tags with a single geo-tag which indicates that the user is not moving or
only moving inside the current partition. The time spent at that location is
converted to a discrete value similar to the “time of day” feature.

2.3 Geo-label

Different types of features are concatenated in various combinations to form a
single geo-label. The combination of needed features depends on the application.
For example, the location label can be combined with the time-of-day label as
depicted in Figure 2.
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Fig. 2. Creation of geo-labels using equal-sized partition location labels and time-of-
day labels. In this example, we concatenate “time spent at location” such as EB, EC,
ED, with the location label such as “ZXX-RTT” and “ZXY-RTS”.

3 Geo-trace Modeling

In this section, we describe the n-gram model along with two alternative methods
for geo-trace modeling. We will use the alternative geo-trace modeling methods
for performance comparison against the n-gram model.

3.1 n-Gram Model

Shannon established that a language could be approximated by an n-th order
Markov model [26], where n may extend up to infinity. n-gram models have
proven to be very robust in modeling sequences of data. Using an n-gram model
trained on English text, we can estimate whether “United” or “house” is more
likely to follow the phrase “the president of the” by comparing the probability
P (“United” | “the president of the”) and P (“house” | “the president of the”).

In this paper, we model users’ geo-trace information using the n-gram model
assuming that the sequence of peoples’ locations can also be approximated by n
consecutive locations from the past (in essence, as a higher order Markov model).
We consider a geo-label as a “word” in the language and train a similar n-gram
geo-label language model on users’ geo-trace data. The model can then be used
to estimate the next geo-label gi given the previous n − 1 geo-labels from the
user’s geo-trace as P (gi|gi−n+1, gi−n+2, . . . , gi−1) or in short P (gi|gi−1

i−n+1). We
can also estimate the probability of a geo trace g1, g2, . . . , gN as
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P (g1, g2, . . . , gN) =
N∏

i=1

P (gi|gi−1
i−n+1) (1)

Similar to the n-gram language model, the n-gram geo-trace model is based on
the Markovian assumption that a user’s next location depends solely on his/her
previous n − 1 locations. This assumption is not always true as there are many
cases in which one’s future location depends on locations that happened a long
time ago (while the intermediate locations have little influence on the present
location).

n-gram model training. The model probabilities P (gi|gi−1
i−n+1) can be esti-

mated using the Maximum Likelihood Estimation (MLE) from the training data
by counting the occurrences of geo-labels:

PMLE(gi|gi−1
i−n+1) =

C(gi−n+1, . . . , gi−1, gi)
C(gi−n+1, . . . , gi−1)

(2)

MLE is problematic when a geo-trace contains n-grams that have never occurred
in the training data before as MLE assigns probability zero to any unseen n-
grams. Much of the prior work in GPS based user mobility modeling centers
around and is limited by this assumption, that the user is highly unlikely to
visit locations that he/she has not visited previously (referred to as the ”close-
world“ assumption by Krumm and Horvitz [17]). To reject the closed-world
assumption and to address this issue, we apply Good-Turing discounting and
Katz backoff smoothing [29] that was developed for language modeling, in our
geo-trace modeling. The key idea of smoothing (also known as discounting) is to
discount the MLE probability for each observed n-gram in the training data to
reserve some probability mass for unseen events.

Collapsing recurring geo-labels. In addition to quantizing GPS coordinates
to labels, we also collapse re-occurring geo-labels into a single geo-label. This is to
ensure that the n-gram models capture transition patterns of different locations
rather than being dominated by a few locations that users spend a lot of time at.
Instead, “time spent at a location” is modeled using the time-at-location feature
(described in Section 2). The collapsing process is applied on both training and
testing data for consistency.

Trigger bi-grams. In order to predict a user’s future location, we extract
discontinuous geo-label pairs from the original data to train trigger bi-gram
models. A “trigger” is a geo-label pair (g1, g2) where g1 and g2 are usually
not adjacent but have strong correlations. In other words, the occurrence of g1

triggers the occurrence of g2 in the future. For example, knowing that a user is
at the entrance ramp of highway A close to his/her office, we can predict he/she
will be at the exit of highway A close to his/her house, in the future. From the
geo-trace data, we extract pairs of geo-labels that are distance d apart to train
the trigger model for distance d. Conditional probabilities of seeing a “future”
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Fig. 3. Extracting a T-pattern for the geo-label combination ABC and XYZ. The
interval for the ABC-XYZ t-pattern is the largest interval Ii,j satisfying the critical
interval test [22] and containing more than a threshold amount of XYZ labels in the
training data.

label given the current geo-label are estimated from the extracted pairs (see
Section 4.8).

The trained n-gram model is used for anomaly detection by continuously
feeding the model geo-labels in real-time. The n-model then outputs a probability
estimate for the current geo-label being part of the user’s learned geo-trace
model, given the previously seen real-time geo-labels. The probability estimate
is compared against a heuristically decided threshold (see section 4.5), and if the
estimate falls below the threshold it is considered an anomaly.

3.2 T-Patterns

The T-Pattern model identifies “statistically significantly” related geo-label pairs
as signatures to characterize a user’s movement model [22,10]. A T-Pattern is
a triple of (starting location, time interval, ending location), where the “start-
ing” geo-label is followed by the “ending” geo-label within the time interval
〈t + d1, t + d2〉 (d2 ≥ d1 ≥ 0). The T-Pattern extraction algorithm searches
through the geo-labels for the most significant pair of recurring geo-labels. Sta-
tistical significance in this case is calculated using the Critical Interval Test de-
scribed by [22] (See Figure 3). This pair is collapsed as a new label and the search
is repeated on the modified data until no more pairs of statistical significance
can be found. The result of the iterative search is a collection of hierarchical
pairs and unpaired geo-labels (similar to binary trees).

We can compare the T-patterns extracted from the testing data against those
extracted from the training data to detect anomalies. In addition, when the
“starting” label of a particular T-Pattern is observed in the testing data, we can
predict that the user is likely to visit the corresponding “ending” location within
the time interval specified by the T-Pattern.
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3.3 Decaying Probabilistic Transition Network

Alternatively, we propose a Decaying Probabilistic Transition Network (DPTN)
similar to [24] to model geo-traces. In DPTN, each distinct geo-label is repre-
sented as a node in a network and the network is fully connected. While travers-
ing the DPTN following the sequence of geo-labels from a trace, the model
calculates the probability of the present geo-label gt given the preceding two
geo-labels (gt−1, gt−2). A penalty value et is assigned for the present geo-label
which is proportionally inverse to P (gt|gt−1, gt−2). Denote Et as an accumulated
penalty up to time t and Et = et + λEt−1, where λ is an empirically determined
decay factor. When Et exceeds an empirical threshold, we consider the geo-trace
to be abnormal. The decay factor is introduced to 1) prevent the system from
accumulating errors over a large amount of time, and 2) to make the model ro-
bust against sensor noise which would cause high penalties (by preventing these
penalties from accumulating). The choices for the threshold value and decay
factor are measures of the system’s sensitivity to anomalies.

Next we compare the performance of these 3 approaches on a real-world
dataset.

4 Experiments and Results

4.1 Data Collection and Preprocessing

We collected geo-trace data from 10 users living in the [anonymized] area, in-
cluding a mix of students, blue-collar and white collar workers. Each user carried
a QSTARZ BT-Q1000P GPS Data Logger at all times for 4 weeks (with two
users using the data-logger for only two weeks). The GPS receiver had a low
logging rate of approximately 8x10−3 Hz (approximately once every 2 minutes)
and the battery lasted about 30 hours for each charge. We do not assume a con-
stant capture rate for our analysis. The visible satellite count is also logged by
the GPS tracker. This satellite count is used to filter out unreliable data points
which have less than four satellites visible.

4.2 Anomaly Detection

In the following sub-sections we will discuss how well the n-gram model per-
formed anomaly detection on this data. First we present experimental results of
anomaly detection accuracy of the n-gram model in comparison to other mod-
els. We then analyze the impact of using different feature sets with our model.
Next we discuss alternatives for tuning the parameters of the n-gram model (i.e.,
size of n and the model’s temporal detection threshold). Then we will discuss
the effect of location partitioning granularity on anomaly detection. Finally we
discuss how detection accuracy varies with the amount of anomalous data seen.

The first set of experiments compares the three models described in Section
3 and a nth order Markovian model (similar to that described by Ashbrook and
Starner [1]) in an anomaly detection application.
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In this experiment, each model was trained using a week of a user’s data.
We create 4 separately trained models (of each model type) for each user. (In
the case of the n-gram models, n was set to 10.) As there are 10 users, this
results in 40 n-gram models for all users, 40 T-Pattern models for all users, etc.
The testing phase was conducted by taking a week long geo-trace of a user and
dividing it up into segments of six hours and providing each six hour segment
to all training models except the model trained on the originating geo-trace.
Each model provides a probability representing how likely it is that the geo-
trace data is generated by the model. The owner of the model (i.e., user) that
generates the highest probability is predicted to be the user that created the
testing data. Table 1 shows the average accuracy of user identification using the
three models described in Section 3. The n-gram model significantly out performs
the T-Pattern and both Markovian models. In this experiment the anomaly we
attempt to detect is whether the phone is being carried by any person other than
the owner (equivalent to determining the owner of a geo-trace segment), but
the anomaly detection process is capable of detecting other types of anomalous
activities (such as a phone owner wandering off on unfamiliar routes).

Table 1. Comparison of owner-predicting accuracy given a segment of a geo-trace

T-Pattern Markovian model
Decaying Probabilistic
Transition Network

n-gram model

72.6% 76.8% 79.2% 86.6%

4.3 Geo-tag Feature Selection

The second anomaly detection experiment was to evaluate the use of the n-gram
model with varying combinations of input features: partitioning scheme, time of
day, time at location and direction of travel. The n-gram model is set to n = 10,
while using 4 hours’ testing and training data segments. The cell size for the
equally spaced partitioning scheme is set to be 40 meters by 40 meters. For
each of the feature combinations, the experimental procedure described in the
previous experiment was applied. The various feature combinations and results
from this experiment are presented in Table 2.

The results indicate that both partitioning methods have very similar impact
on the performance of the model’s anomaly detection. Adding additional in-
formation such as time-at-location, time-of-day, or direction-of-travel, decreases
the accuracy. This is due to the fact that the model is trained on only one-week
of data and adding additional information increases the dimensionality of the
input, resulting in severe data sparseness.

4.4 Impact of History Length n

In this experiment, we search for the optimal value of n in the n-gram model.
Increasing the order of n captures more context dependency in the nn-gram
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Table 2. Prediction accuracy of the n-gram model with various input feature
combinations

Feature Combination Accuracy

Location label from quad-tree partitioning (density threshold = 50) 86.0%
Location label from equally spaced partitioning 86.5%
Location label from equally spaced partitioning, time of day label 73.1%
Location label from equally spaced partitioning, time at location label 57.1%
Location label from equally spaced partitioning, direction of travel label 81.6%
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model and usually increases the accuracy of the model. On the other hand, the
size of resulting n-gram model grows fast when n increases which makes train-
ing and testing computationally expensive. Figure 4 shows anomaly detection
accuracy vs the order of n-gram. This experiment is the same as described in
Section 4.3 except for the varying values of n. Here all experiments are based on
40m-by-40m equal partitioning.

The three curves in Figure 4 represent results for the experiment repeated
with testing and training data segments of 2, 4, and 6 hours respectively. The
results converge for n ≥ 6 suggesting that the current location of the user is, in
the majority of the cases, dependent only on his last five locations.

4.5 ROC Curves of the n-Gram Model

We generate Receiver Operating Characteristic (ROC) curves for the n-gram
model, to show how changing the model’s anomaly detection threshold would
affect the true positive and false positive rates for anomaly detection. The curves
are generated with n = 10, using equally spaced partitions with granularity of
40m-by-40m. The five ROC curves displayed in Figure 6 are generated for testing
segment lengths of 6 hours, 1 hour, 45 minutes, 30 minutes and 15 minutes.
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Fig. 6. Receiver Operating Characteristic (ROC) curves of the n-gram model for test-
ing segment lengths of 4 hours, 1 hour, 45 minutes, 30 minutes and 15 minutes

On the ROC plot, the y-axis shows correct anomaly detections (as a fraction of
the total number of anomalies present in the testing data), and the x-axis shows
incorrect detections (as a fraction of non-anomalous test cases in the testing
dataset). Points along the diagonal mean the ratio is even, and the model is
performing no better than a coin flip - for every one correct detection, there
is an incorrect detection. The upper left corner is a perfect anomaly detector,
detecting all anomalies perfectly without any false detections. Each point on a
ROC curve corresponds to a certain detection threshold. This graph makes it
clear the tradeoff between segment length, true positive rates and false positive
rates. We discuss this further in Section 5.

4.6 Partitioning Granularity

The fifth experiment carried out for anomaly detection was to identify the effects
of geo- and temporal-partitioning granularity on the accuracy of the n-gram
model’s anomaly detection rate. For this experiment, the geo-partition scheme
was used to partition the surface of the globe into cells of equal size, with the
partition granularity varying from 4m-by-4m regions to 4km-by-4km regions.
Again, we used every person-week geo-trace to train separate models and used
the models to classify the owner of a segment of a geo-trace. The n-gram model
uses n = 10. The results for this experiment are shown in Figure 5.

The three curves in Figure 5 represent results for the experiment repeated
with testing and training data segments of 2, 4, and 6 hours respectively. The
results indicate that the system performs best with cell sizes in the range of 40m
to 80m.
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4.7 Evaluating Variation of Accuracy vs. Anomalous Data Seen

An experiment was performed to estimate the amount of anomalous data that
has to be seen by the n-gram model in order to achieve accurate detection. We
used the same methodology as above; only the length of the testing data segments
was varied from 15 minutes to 12 hours. Partitioning for the experiment was
performed using a 40m-by-40m cell size, while n for the n-gram model is set to
10. While accuracy in detection increases with amount of anomalous data seen,
only 1 hour of data is required to achieve almost 80% accuracy. We discuss this
further in 5.

4.8 Effectiveness of n-Gram Model for Location Prediction

While not the focus of our work, the geo-trace model created for anomaly detec-
tion performed with considerable accuracy in predicting a user’s future location.
The n-gram model is capable of predicting the future location of the person af-
ter a given interval of time. Such a prediction model enables a whole new class
of applications. On an individual scale, the predictive power of user movement
models enables the development of applications such as 1) pre-heating a house
only when a resident is homeward bound [13,25], 2) intelligent context-aware
meeting/schedule organizers [6], 3) intelligent automotive navigation systems
that use prediction when the user deviates from a given route [17], etc. When
applied to a community, the predictive power of user movement models enables
applications such as 1) intelligent call routing on cellular and other wide area
networks with mobile users [20,2], 2) city wide traffic routing [9], etc.
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Table 3. Percentage of correct predictions on a user’s future movements based on a
week of training data and the user’s previous locations (only for users with four weeks
of data)

Person ID 1 2 3 4 5 6 7 8

Percentage of correct predictions 61.9 82.8 96.0 55.8 31.9 83.7 82.1 93.6

To assess the n-gram model’s predictive capabilities we use a week’s worth
of data to train a model for each person. Then using this model we attempt to
predict the user’s behavior for the remaining 3 weeks using the gathered data
as input data and validation information. We try to predict where the user will
be in the future after he/she travels for 5km. The reason that we use distance
instead of time as a way to measure the “future” is because time depends on
many other factors besides a user’s geo-trace pattern. To answer questions such
as “where is the user going to be in 20 minutes?” depends on his/her commuting
method (walking, running, biking, driving, etc.) and traffic situation. A user’s
next location prediction output by the model is the centroid of a circle of 500m
radius. The results are shown for 8 individuals in Table 3. As can be seen from
the results, the model is able to predict the future locations of most people quite
accurately. The prediction accuracy may drop in situations where the user’s
mobility patterns are quite irregular or different between the training and testing
data, as is the case for the results for persons 4 and 5 in this experiment.

5 Discussion

From the experimental results in the previous section it can be seen that the
n-gram model is able to perform with high accuracy even in conditions of sparse
training data. In all of the above experiments the models were trained on only
a week’s worth of user’s data, which in terms of geo-traces is a small amount
of training data (e.g., a user’s Saturday routine has only one example in the
training set). However, with more training data, we expect the n-gram model to
show further improvements in anomaly detection accuracy. With larger training
datasets it is possible that incorporating additional features (such as time-of-day
and time-at-location) into the model will present further performance gains.

As pointed out previously, each point on the ROC curves (Figure 6) corre-
sponds to a certain detection threshold. Applications utilizing the n-gram model
for anomaly detection will have their own unique costs for false-positives and
false-negatives, and should customize the n-gram model’s detection threshold so
as to optimize the trade-off between false-positive and false-negative rates and
overall accuracy.

We evaluated our n-gram approach with varying partition granularity size,
and found that it achieved optimal performance when the size was between
40x40m and 80mx80m. This indicates that we can abstract a user’s location from
a very specific GPS coordinate to a much larger cell (up to 6400 sq. meters), and
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still achieve high performance in detecting anomalies. For applications or users
that require high levels of privacy, this feature provides a significant benefit.

5.1 Applications of Geo-trace Modeling

Here, we investigate geo-trace modeling applications enabled by the ability to
detect anomalies in users’ mobility routines. Anomaly detection schemes using
geo-traces are useful in applications such as theft detection systems for cars
and mobile phones, and elder-care and child-care monitoring systems. In these
applications, the user carries a phone or GPS tracking device which continuously
tracks the user’s location and reports the location to the anomaly detection
program running on the mobile device or servers in the cloud. The model is
initialized in the “observing” mode where the system only learns the geo-trace
of the user and does not set off any alarms. We empirically set the “observing”
time to be one week. After one week the anomaly detection function can be
activated and the alarm will go off if the system believes that the mobile device
is traveling on a strange route. Data points collected after the observing phase
are continuously added to the training data to update the trained model.

Consider the theft detection application. The variation of accuracy of the
anomaly detection system as a function of the testing data segment length is
shown in Figure 7. The results indicate that the model is able to detect that the
phone is stolen at an accuracy of close to 80% within an hour (approximately
30 GPS data points). The model is able to achieve an accuracy of over 60%
after only 30 minutes (15 GPS readings). Alternatively, by examining the ROC
curves, if a user is willing to put up with a 20% false positive rate, the model can
achieve an 82% true positive rate after only 30 minutes. This is a good indicator
that the n-gram model can be used in this real-world application.

6 Related Work

Tracking the location of mobile phone users and using tracking information to
enhance user experiences have been areas of extensive research over the past
decade in both industry and academia [5]. Most of these location-based systems,
services and applications focus on utilizing the present location and most recent
historical location information of the user [12]. There has been some research
into more complex approaches that learn and model user mobility patterns. To
the best of the authors’ knowledge there has been very sparse previous work
in detecting anomalies in a user’s behavior using learned mobility models. Shi
et al. [27] use GPS readings in conjunction with call-logs and mobile phone
browser history to detect anomalies and test their approach with a large amount
of user data, but the models used are less adaptable as they are not conditioned
over prior events. Generating bounding regions of frequent travel, and Markov
Random Fields for learning geo-tracks of people for anomaly detection has been
proposed in [21] and [18] respectively. Both [21] or [18] are still in the proposal
stage, and have not produced results that we can compare our work to.
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We apply the approaches in the following previous work in user mobility
modeling for comparison against the n-gram model presented in this paper. The
approach employed by Salvador et al. [24] uses a state machine based probabilis-
tic approach for anomaly detection (equivalent to the Decaying Probabilistic
Transition Network in our experiments) with a different type of data which also
has an important time- and sequence-dependent nature. The trajectory pattern
(T-pattern) mining approach by Giannotti et al. [10] presents the notion of time
dependent sequences (mined from historic data) for modeling user mobility. Ash-
brook and Starner use nth order Markov models to predict the next building a
user will visit when observing the previous building visited by the user [1]. This
model is designed to work with relatively clean location data as the preprocess-
ing step discards or aggregates the majority of data into a few clusters. The
Predestination system by Krumm and Horvitz [17] uses a partitioning method
where the world is divided into equal sized cells (similar to our first partition
method). They observe that a partially traveled route is usually an efficient path
to the final destination. Ziebart et al. also use a Makovian model for destination
prediction as well as shorter term predictions of the route to be traveled [30].
The focus of our work presented in this paper is not location prediction, but as
our prediction results are promising, we propose to investigate using the n-gram
model for location prediction.

While there has been little previous work in detecting anomalies in user mo-
bility patterns, there exists some previous work in detecting anomalies in other
forms of context information. For example, Duong et al. use a variant of Hid-
den Markov Models (HMMs), named Switching Hidden Semi-Markov Models
for recognizing and detecting anomalies in human activities of daily living in
smart environments [7]. There has been much work in other areas for anomaly
detection, especially for security applications. An extensive survey of anomaly
detection methods using machine learning approaches is provided by Hodge and
Austin [14]. Xiang and Gong develop a framework for automatic behavior profil-
ing and abnormality detection in surveillance video streams [28]. In [8], Eskin et
al. describe an unsupervised anomaly detection framework for intrusion detec-
tion in network systems. A survey of work about anomaly detection in the field
of intrusion detection in network security is provided by Patcha and Park [23]
Chandola et al. provide a broad survey of various anomaly detection schemes
and their application domains in [4].

7 Conclusion

In this paper, we present a novel method for modeling users’ geo-trace patterns
using n-gram models. Simple as they may be, n-gram models perform surpris-
ingly well compared to more complicated probabilistic approaches such as T-
Pattern and Markovian models for anomaly detection tasks. In this paper we
also present a geo-partitioning method which can help preserve a user’s privacy
by blurring GPS coordinates, while retaining enough information for applica-
tions to model the user’s behavior and perform anomaly detection with great
accuracy.
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Through initial experimentation we have seen that the n-gram model per-
forms well at user location prediction. We plan to further investigate the n-gram
model’s predictive capabilities and improve its performance. We also plan to
perform comparative experiments against previous work [17,30] in the area of
user geo-location prediction.

We are currently investigating improvements to our n-gram based algorithms,
such as the use of trigger n-grams to improve anomaly detection accuracy. We
also plan to deploy and evaluate the n-gram model in real-world applications.
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Abstract. To construct a WiFi positioning system, dedicated individuals usually 
gather radio scans with ground truth data. This laborious operation limits the 
widespread use of WiFi-based locating system. Off-the-shelf smartphones have 
the capability to scan radio signals from WiFi Access Points (APs). In this paper 
we propose a scheme to construct a map of WiFi AP positions autonomously 
without ground truth information. From radio scans, we extract dissimilarities 
between pairs of WiFi APs, then analyze the dissimilarities to produce a 
geometric configuration of WiFi APs based on a multidimensional scaling 
technique. To validate our scheme, we conducted experiments on five floors of an 
office building that has an area of 50 m by 35 m in each floor. WiFi APs were 
located within a 10m error range, and floors of APs are recognized without error. 

Keywords: WiFi Access Point Map, Positioning, Autonomous and Unsupervised 
Learning, Multidimensional Scaling. 

1   Introduction 

Since the early 2000s, research on WiFi positioning systems [1-9] has been actively 
carried out, and databases for positioning systems have been constructed in various 
places. The databases usually consist of RF fingerprints or positions of WiFi access 
points (APs). A WiFi-enabled device estimates its position by matching an observed 
radio scan against the RF fingerprints database [1] or by estimating distances from 
WiFi APs within its radio range [8, 9]. Most current WiFi positioning systems build 
their database by inputs from dedicated operators who gather received signal strengths 
(RSSs) transmitted by WiFi APs, along with ground truth information where RSSs 
were scanned, while driving outdoors or walking indoors. It is, however, not possible 
for a limited number of dedicated operators to cover all locations; some places are 
often not open to the public. Furthermore, generating ground truth information is 
cumbersome and incurs a high cost.  

Recently, several studies have attempted to reduce the effort needed for the 
database construction. Additional devices are, for instance, used to generate ground 
truth information [10]. Inertial sensors, such as accelerometers and gyroscopes, make 
it possible to estimate trajectories of a device. The performance is, however, highly 
dependent on the precision and mounted positions of the sensors. Hence, it is difficult 
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to produce meaningful data with a conventional device, such as a smartphone. In 
other studies, stochastic models were used to minimize the required amount of ground 
truth data [11, 12]. Generally, the initial database is constructed with a small amount 
of data with ground truth, then the database is expanded with more data without 
ground truth. The methods are devised for a particular database builder. Despite these 
efforts, constructing WiFi positioning systems especially in indoors that are usable by 
a wide variety of people in everyday lives has not yet been achieved. 

Our goal is to achieve the ubiquity of WiFi positioning systems for all people at all 
times. To do so, a database should be built for all places that people can visit. We 
believe that the conventional method of data collection has limitations for reaching 
this goal. Hence, a scheme for ordinary people to join in building the database should 
be developed. Off-the-shelf smartphones have WiFi capability, and the number of 
these devices is dramatically increasing. Hopefully, WiFi APs can be scanned every 
one meter during people’s daily lives. One critical problem is that most radio scans do 
not include information about the location of the scan. 

In this paper, we propose a scheme to use radio scans gathered by smartphones to 
identify positions of WiFi APs. Ordinary smartphones users are not expected to move in 
a predefined route. Hence, ground truth information of radio scans is usually unknown. 
Each radio scan only includes identifiers of WiFi APs and their received signal 
strengths. In a scan, fortunately, radio signals from multiple APs are received. Our basic 
idea is to extract dissimilarities between pairs of WiFi APs from radio scans; then by 
analyzing the dissimilarities, produce the geometric configuration of WiFi APs. Here, 
we assume that we can acquire enough radio scans and that some of them are gathered 
in places beneficial for our scheme, for instance, a place near an AP. 

To estimate the geometric configuration of WiFi APs, we adopt multidimensional 
scaling (MDS) techniques [13, 14, 15]. MDS has been successfully applied in the 
social sciences to find a spatial relationship from high dimensional data, which 
contains dissimilarity information between objects. In wireless sensor networks, MDS 
was used to estimate locations of sensor nodes through measuring all pairs of distance 
between nodes [16, 17, 18]. In case of WiFi AP, adopting MDS is not straightforward. 
Since WiFi APs cannot measure distances from other APs without changing their 
software, we take an approach to estimate dissimilarities between APs from radio 
scans gathered by smartphones. Dissimilarity does not mean exact distance. It is a 
measure of how close it is. Hence, a result of multidimensional scaling is relative 
positions of WiFi APs. Given at least three positions of APs or radio scans, relative 
positions can be transformed to absolute positions. In the research, we focus on 
accurately estimating relative positions of APs corresponding to the real geographic 
configuration. In addition, we expand our scheme to a multifloor environment by 
using three-dimensional MDS. 

Knowing the positions of WiFi APs is useful in many aspects because of the 
following reasons: First, positions of APs are directly used to locate WiFi devices. 
Several systems provide positioning service based on positions of WiFi APs [3, 8]. 
Second, positions of APs can be used as supplementary data for constructing WiFi 
positioning systems [11, 19]. Third, the geometric configuration of WiFi APs 
provides the knowledge about the nature of networks, e.g., density, connectivity, 
interference properties, and models for simulations [20]. 
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The rest of this paper is organized as follows: Section 2 presents related works. In 
Section 3, we propose a WiFi AP positioning algorithm using MDS. The 
experimental results are provided in Section 4. In Section 5, we provide information 
on future challenges. We conclude the paper in Section 6. 

2   Related Work 

According to the type of database, WiFi positioning algorithms can be categorized 
into two types: RF fingerprint-based and AP position-based. Some algorithms use 
both schemes. 

In an RF fingerprint-based algorithm, a space is divided into grids. Dedicated 
operators gather radio scans at every grid. The gathered data from the entire grid 
construct an RF signal map in the space. When a mobile device scans radio signals at 
a position, the radio scan is searched in the signal map. The position of the best 
matching scan in the signal map is determined as the device’s position. RADAR [1] is 
the representative research work on this method. Horus [2] is based on this 
mechanism, but the scheme uses a stochastic model to improve the performance. The 
commercial system Ekahau [7] also uses a similar algorithm. To achieve a high 
accuracy in RF fingerprint-based algorithm, we reduce the size of the grid and 
increase the number of scans in the grid. RSS fingerprint-based algorithm is known to 
be superior to AP position-based algorithm. The database construction process is, 
however, too laborious. 

In an AP position-based algorithm, positions of APs are given a priori by a 
network operator; otherwise they need to be discovered through the process of war-
driving. In this approach, there are several possible methods to estimate the position 
of a mobile device. The simplest method is to use proximity, where a mobile device 
takes its position from the nearest AP. The method using a Centroid or weighted 
centroid is also frequently adopted [3, 6]. Here, the position of a mobile device is 
estimated as the center of positions of APs visible to the device. If a radio propagation 
model is known, distances from positions of APs are calculated based on RSSs. Then, 
the position is estimated by multilateration [9]. Place Lab [3] and Skyhook Wireless 
[8] work mainly based on positions of WiFi APs. Performance of this kind is known 
to be relatively lower than RF fingerprint-based algorithm. Several researchers, 
however, tried to improve the performance of AP position-based algorithm close to 
the performance of RF fingerprint-based algorithm [11, 19]. Even though the 
performance of AP position-based algorithm is relatively low, this approach has 
several advantages. First, it only needs a small database, for instance, identifiers of 
APs and their positions. Second, system building efforts are relatively light. It does 
not need to survey every grid in a site; hence this algorithm is easily applied on a 
large scale. Third, it is more reliable in case ground truth data is inaccurate and 
networks frequently changes, such as addition of new APs [4, 6]. Therefore, to 
achieve the ubiquity of WiFi positioning system in anonymous network 
environments, these advantages need to be taken into consideration. 

Several researchers have tried to reduce the labor in constructing a WiFi 
positioning system. Reducing the required number of ground truths is one approach. 
Wang et al. [12] devised an algorithm for a multiple floor environments. In that 
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research, WiFi radio scans were collected with ground truth data on a floor, while on 
other floors, radio scans were gathered without ground truth data. They say that floor 
plans in a building are usually identical, and although the signals can be quite 
different on different floors, some correspondences exist. Hence, by aligning the 
position-known radio scans with position-unknown ones, signal maps of adjacent 
floors are constructed. However, only a few adjacent floors can be successfully 
processed. 

In [19], AP positions were known a priori. An RF signal map was generated from 
scanned data by mobile nodes, which know the location of scanned radio signals. 
Madigan et al. [11] took a similar approach, but they did not assume that the scanned 
positions of mobile node were known. WiFi-SLAM [21] is an approach to build 
indoor radio maps with WiFi radio vectors. The scheme estimates the movement of a 
device and simulates the latent-space locations of unlabeled signal strength data using 
Gaussian process latent variable modeling. The scheme can use radio scans only 
gathered by one person moving at a constant speed, and its computation requirement 
is too expensive to be executed in a smartphone. 

In contrast, Woodman et al. [10] tried to generate ground truths by using inertial 
sensors. They accurately estimated the moving trajectory of a person. The sensors 
used in the experiment are, however, too expensive and are mounted on foot, which is 
the best position to estimate pose and direction. Hence, this method is not practical for 
the average individual. Inertial sensors built in current smartphones are not accurate 
enough to estimate a moving trajectory. Frequent changes of positions of smart 
phone, for instance at hand or in a pocket, make it worse. 

EZ system [22] has a similar approach to ours. The system tries to eliminate 
system training efforts. EZ uses radio scans gathered in unknown locations and three 
scans in known locations, which are essential in the algorithm. The scheme is based 
on an RF propagation model. From radio scans, it estimates parameters of the RF 
propagation model, locations of APs, and locations of radio scans. The results show 
that the performance is comparable to previous indoor location systems. EZ, however, 
requires extensive calculation, which takes a few minutes to several hours in a high-
end computer, and large storage for the radio scans. In a large site, the scheme 
actually needs more than three scans gathered in known locations.  

There have been several studies using MDS in the positioning research field. 
MDS-MAP [16] is the representative research work based on MDS. It estimates 
positions of sensor nodes by using connectivity information and finding the shortest 
paths between all pairs of sensor nodes. Unlike WiFi APs, sensor nodes usually have 
the capability to receive a radio signal or ultrasound from neighboring sensor nodes. 
Hence, distances are easily measured. When the average connectivity degree is larger 
than 9, the simulation result shows that the localization error is below the radio range 
of a sensor node. Xian Ji et al. [18] also applied MDS to a sensor positioning field. 
MDS technique was used in a distributed manner to estimate a local map for each 
group of neighbor sensors; these maps are then aligned together based on the 
alignment method. The approach is claimed to accurately estimate a sensor’s position 
in a network with an isotropic topology. 
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3   WiFi AP Positioning Using MDS 

Through the analysis of dissimilarities between pairs of objects, MDS makes it 
possible to discover a geometric configuration of the objects in a low-dimensional 
space, usually two- or three-dimensional, where the configuration matches the 
original dissimilarities between the pairs of objects [13, 14, 15]. Dissimilarity 
between two objects reflects how far apart an object is from the other psychologically, 
perceptually, or other type of sense. In various research fields, MDS has been 
successfully applied to identifying the spatial relationship of objects. For instance, 
sociologists have used MDS to obtain the structure of groups and organizations, based 
on members’ perceptions of one another and their interaction patterns. In the case of 
sensor node localization, distances between pairs of sensor nodes are used as 
dissimilarity information. By applying MDS to distances, relative positions of the 
sensor nodes are estimated. The main advantage in using the MDS for positioning 
estimation is that even though dissimilarity information is error-prone, it can generate 
relatively high accurate position estimation [18]. 

3.1   Positioning Scheme 

Consider a network of n devices, where each device is assumed to measure 
dissimilarities between itself and all other devices. The dissimilarity between devices 
i and j, when it is measured by device i, is represented by pij. Xi denotes the estimated 
position of device i, which is represented as (xi, yi, zi) in three-dimensional spaces. 
The Euclidean distance between Xi and Xj is denoted as dij. The central motivating 
concept of multidimensional scaling is to find a configuration of devices {X1, X2 , …, 
Xn} in some space such that Euclidean distances dij between the devices correspond to 
the dissimilarities pij. There are several variants to solve the problem. The basic form 
of the solution is to find the configuration that minimizes Equation (1). 

factorscale

dpf
i j

ijij

_

])([ 2∑∑ −
 (1)

In the equation, f is a continuous parametric monotonic function in metric MDS. In 
nonmetric MDS, f is related only on the rank order [13]. The positions of the devices 
that MDS estimates are relative positions, so they are always subject to rotation, 
translation, and scaling. Given at least three positions of the devices, the relative 
positions can be transformed to absolute positions. The relative positions are also 
important for the understanding of the network topology by themselves. 

According to the method of measuring, we can define different types of 
dissimilarity. The simplest measure of dissimilarity is proximity, which discriminate 
whether two devices are within their communication ranges. We set pij as 1 in case 
device i receives a signal from device j. Otherwise, pij is set to any large value. The 
most complex measure is the Euclidean distance. Distance is known to be 
exponentially related to RSS according to the radio propagation characteristic. 
Equation (2) is frequently adopted model that shows the relationship between the 
received signal strength and distance. 
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where Pr is the RSS in dB, P0 the signal strength at distance l0 from the transmitter, 
and n is the pathloss exponent. Xσ represents the shadow noise and is modeled as a 
normal random variable with the standard deviation σ dB [23]. d is distance between 
nodes. Typically, l0 is 1 m. If we have a priori knowledge on these parameters, we can 
use the distance as dissimilarity. Even though dissimilarities pij and pji are actually the 
same, the two values are measured differently in real environments. Hence, we need 
to adjust them to be symmetrical. Dissimilarity of itself, pii is set to 0. The set of 
dissimilarities is called a dissimilarity matrix, D=[ pij]. 

3.2   Dissimilarity Matrix of WiFi APs 

With respect to WiFi APs, there are several limitations to the method introduced in 
the previous section. First of all, WiFi APs usually do not have the capability of 
measuring distances between WiFi APs. To support this, WiFi APs’ software needs to 
be modified. This modification is impractical in the real environment, since numerous 
numbers of APs are already deployed. Second, various algorithms are not applicable 
to WiFi APs due to the difficulty in making software changes. Hence, we need to 
devise a new method to obtain dissimilarities between WiFi APs without modifying 
already deployed WiFi APs. Our basic idea is to infer dissimilarities between WiFi 
APs from RSSs scanned on smartphones. 

Let us assume that we have several radio scans gathered by a smartphone in a site. 
Each radio scan includes received signal strengths from visible APs at a position. In 
the case where n number of WiFi APs are scanned, a scan is represented as scani = 
{(AP1, rss1), (AP2, rss2), …, (APn, rssn), timestamp}i, where APn is the identifier of nth 
AP and rssn is its received signal strength. The scan set is denoted as SCAN = {scan1, 
scan2, …, scanm}, where total m radio scans are gathered. For the dissimilarity 
between AP i and a smartphone, we denote pi, which is a function of rssi, pi=g(rssi). 
The dissimilarity between AP i and AP j, which is pij, is estimated based on pi and pj 
by a certain rule, that is, pij= f(pi, pj). g and f are functions indicating the relationship 
between dissimilarity and RSS. These are explained later. Here, we have two 
arguments. One is how to extract pij from rssi and rssj. The other is how to manipulate 
several radio scans with the same AP list. 

To discuss this further, we use an example as shown in Figure 1. A smartphone 
scans RSSs from AP i and AP j at a position. Dissimilarities pi and pj are calculated 
based on the measured rssi and rssj. For the convenience of explanation, we assume 
that parameters of the radio propagation model are given a priori, and the Euclidean 
distance is calculated as dissimilarity. Here, pi is smaller than pj. In the scan, there is 
no information about directions of APs. Hence, from the viewpoint of the smartphone, 
the positions of APs may be points on the circles. Hence, we cannot find the exact 
dissimilarity pij. As seen in the figure, minimum dissimilarity between AP i and AP j 
is pi- pj and maximum is pi+pj. Then, we may select one value between pi-pj and pi+pj 
as dissimilarity. Specifically, the dissimilarity is a distance between Yi and a point of 
the inner circle. It is reasonable to take an average of all possible distances. For 
instance, when pi equals pj, pij is about 1.37×pi. In case pi >> pj, pi may be used as pij.  
 



 Autonomous Construction of a WiFi Access Point Map 121 

 

jp⋅=Δ 2

 

Fig. 1. At a point, a smartphone measures received signal strengths from two AP, Yi and Yj. The 
dissimilarities pi and pj are measured distances, and two circles show locatable positions of AP i 
and j, respectively. Then, the candidate of pij lies between pi-pj and pi+pj. 2×pj is the extent of 
possible errors of the dissimilarity pij. 

On the estimation of the dissimilarity, we can predict the extent of possible errors. In 
the figure, the error of an estimated dissimilarity is 2×pj at worst. This means that 
error is possibly proportional to the smaller one between pi and pj. 

In the estimation of dissimilarity, another issue should be considered. In the 
beginning we assumed that we could get many scans in various positions. As a result, 
we have several scans including the same APs. Figure 2 illustrates the situation. Four 
scans are gathered at positions m1, m2, m3, and m4, and their dissimilarities measured 
by the smartphone are (pj(1), pi(1)), (pj(2), pi(2)), (pj(3), pi(3)), and (pj(4), pi(4)), respectively. 
Considering we estimate dissimilarity pij from them, estimating four dissimilarities, 
pij(1), pij(2), pij(3) and pij(4) and averaging them is one possible solution. However, since 
most scans are not measured on the shortest path connecting two APs, its value is 
usually larger than a real distance. Hence, we select and use a radio scan that is the 
most proper to infer a real distance from. Measurement positions m1 and m3 
compared, pj(1) is equal to pj(3), but pi(1) is larger than pi(3). Then, m3 is selected as a 
candidate. Compared with m2, pj(2)+pi(2) is smaller than pj(3)+pi(3), then m2 is newly 
selected. Since m2 and m4 are on the shortest path, pj(2)+pi(2) is similar to pj(4)+pi(4). 
Hence, m2 or m4 may be equally selected. Until now we did not consider that received 
signal strengths are disrupted by noise. In reality, the measured signal strength is not 
always consistent with the expected distance. Hence, in the selection of a radio scan, 
we take an approach to reduce an expected error. One clue is the extent of possible 
errors shown in Figure 1. It is proportional to the value of the smaller one of 
dissimilarities between APs and a smartphone. Therefore, we finally select the radio 
scan with the smallest dissimilarity value, which in this case is m2. 
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Fig. 2. At several points the received signal strengths from two APs, Yi and Yj are measured. 
The dashed line shows the shortest path between the two APs. Here, pj(2)<pj(1)=pj(3)<pj(4) and 
pi(4) pi(3)<pi(2)<pi(1). This shows the effect of measurement positions.  

Now, we discuss the functions g and f that converts received signal strength to 
dissimilarity. In real environments, we do not often know parameters of the 
propagation model in Equation 2. Several previous researchers assumed a practical 
value for them. However, such assumptions are frequently fragile in many situations. 
Furthermore, even at the same distance, measured RSSs are different due to 
environmental factors including multipath fading. So, we do not try to convert 
received signal strength to a real distance. Instead, we quantize received signal 
strength into several levels. Considering the characteristic of exponential decaying of 
received signal strength, displacements between quantization thresholds should not be 
uniform. In the case where the range of received signal strength of WiFi APs is from 
–20dBm to –90dBm, our thresholds are –55, –70, –80, –85, and –90 in five levels, 
and its dissimilarities are 1, 2, 3, 4, and 5. When there is no scan including any pair of 
APs, we determine that they are not connected and set the dissimilarity between the 
two APs as any large value, for instance 9999. This quantization makes dissimilarities 
more robust to small variation of RSS. 

In a large site, many pairs of APs are outside the communication range of the 
other; hence a significant portion of dissimilarities remain unmeasured. To solve this 
problem, we use a graph-based algorithm. Nodes in the graph represent APs, and 
weighted edges represent dissimilarities between two APs. In the graph, we find the 
shortest paths of all pairs. For the dissimilarity between unconnected APs, the 
distance of the shortest path is used. As the number of APs increases, we get a larger 
number of dissimilarities, which raises information for understanding the 
configuration of the APs. As a consequence, positions are more accurately estimated 
in a large site.  

3.3   Multifloor AP Positioning 

Until now, radio scans are implicitly assumed to be gathered from a single floor. In 
general, people live in multifloor environments. Their radio scans are actually 
gathered from multiple floors. In the existing studies, floors of radio scans were 
labeled by user intervention. To encourage grass-roots radio gathering, however, the 
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explicit labeling should not be requested to normal users. In some radio scans, RSSs 
from APs on adjacent floors are included. Hence, dissimilarities between APs in 
different floors are also obtained. We process radio scans gathered on several floors 
altogether, then generate a dissimilarity matrix, which includes both dissimilarities 
between inter-floor APs and dissimilarities between intra-floor APs. Theoretically, 
MDS has no restriction on the dimension of an analysis result. One constraint is that 
its performance is affected by the number of dissimilarities. So, if there are enough 
WiFi APs in a site, applying three-dimensional MDS to multifloor dissimilarities is 
possible. As a rule of thumb, there should be at least twice as many dissimilarities as 
parameters to be estimated, to assure an adequate degree of statistical stability [13]. 
That is, at least 12 APs are needed for a three-dimensional MDS. 

Signals from an AP reach other floors following several paths. They penetrate 
through floors directly or detour through outside windows. Hence, in dissimilarities 
between inter-floor APs, different types of attenuations are included, and this breaks 
the consistency between a real distance and its dissimilarity. As a result, the estimated 
configuration is easily distorted. To overcome this, we divide multifloor AP 
positioning into three steps: three-dimensional MDS, clustering of APs and multiple 
single-floor MDS. In the first step, all the scans gathered from multiple floors are 
processed together to produce dissimilarities. Three-dimensional MDS is applied to 
the dissimilarities, and we get the three-dimensional positions of APs. Although three-
dimensional MDS estimates a distorted configuration of APs, APs from the same 
floor tend to be placed nearby. In the second step, we distinguish floors of APs. If the 
number of floors is k, we cluster APs into k clusters based on the three-dimensional 
positions of APs. We assume that the number of floors is given. If whole floors are 
scanned, it is the number of floors of a building. APs in the same cluster are 
considered as being placed on the same floors. In the final step, APs from the same 
floor are processed using two-dimensional MDS separately. The process identifies 
positions of APs on multiple floors from radio scans without information on which 
floor scans are gathered. 

3.4   Autonomous Collaboration 

To discover positions of WiFi APs universally, the participation of anonymous 
smartphone users is important; but this is not easily achieved if the technical barrier 
for participation is high. For instance, asking for ground truth for a scan or exact 
ranging to an AP hinders user participation. The proposed scheme only requires radio 
scan data; hence collaboration among smartphone users can be actively occurred. 
Here, we need to note that smartphones have different radio characteristics, which 
affect the dissimilarity estimation. 

We discuss three cases of collaboration. In the first case, several users gather enough 
radio scans in a site and then estimate their own dissimilarity matrices. Each matrix 
reflects the different radio characteristics of smartphones. Classically, three-way MDS 
processes multiple dissimilarity matrices at a time. A representative three-way MDS is 
individual difference scaling, INDSCAL [13, 14], which aggregates the matrices based 
on common characteristics and produces a collaborated result. It, however, requires 
intensive computation. It is known that the result from INDSCAL is similar to the result 
from MDS for averaged data of all the dissimilarity matrices [13]. 
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Second, users might gather enough radio scans to generate dissimilarity matrices at 
different sites. Then, AP positioning is performed individually and the estimated 
positions are patched together. In this case, radio characteristics of smartphones 
hardly affect the results. 

Finally, it is the most concerning case that users gather radio scans sporadically in 
a large site, so individual scans are not sufficient to estimate a dissimilarity matrix. In 
this case, we estimate one dissimilarity matrix from the entire set of radio scans 
shared by all users. The problem is that signal strengths have different characteristics 
according to the device gathering them. Fortunately, this is mitigated by using a small 
quantization level and the fact that radio characteristics between smartphones do not 
differ as much as between different types of devices. In the case where we use 
proximity information only, this problem is almost eliminated. 

4   Results 

To validate the proposed algorithm, we conducted experiments in real environments 
and in simulation. To gather WiFi scans, we implemented software scanning WiFi 
signals on a smartphone, HTC Hero, running Android 1.5. With the smartphone, we 
gathered WiFi scans in a 20-story office building. Scans were performed for five 
floors, from the 10th floor to the 14th floor. As shown in Figure 3, each floor is 35 m 
by 50 m size and about 3 m in height. The outer wall is surrounded by glass. In the 
middle of each floor, there are restrooms, elevators, stairways, and meeting rooms, 
which are mainly constructed with concrete. The places where peoples work are 
divided by soft partitions. Each floor has about six WiFi APs attached on walls. The 
positions of WiFi APs are manually collected. The smartphone was placed on a hand 
or in a trouser pocket. On a scan, BSSID, SSID and RSS are stored. For analysis, 
some of scans were gathered with their ground truths. In experiments, only BSSIDs 
and RSSs are used. The strongest signals from APs are distributed from –23 dBm to –
48dBm. Only two APs have signal strengths stronger than –30 dBm. The weakest 
signal strength was –96 dBm. In a scan, APs are listed in order of signal strengths. 
The AP with the strongest signal is listed first. From the scans, we found that two 
BSSIDs were transmitted by an AP. We gathered a total of 54,821 scans and found 57 
APs in the scans whose maximum signal strength was stronger than –50 dBm. We 
expect that APs with maximum signal strength weaker than –50 dBm are located on 
other floors. Gathered scans are processed in a notebook computer running Windows 
XP (CPU: Intel(R) Core(TM) 2 Duo CPU 1.83 GHz; memory size: 2GB). We 
implemented a program to estimate dissimilarities in C. As a tool of MDS, we used 
the Matlab function mdscale, which performs nonmetric MDS by default. Results of 
MDS are relative configurations of WiFi APs. To evaluate accuracies of 
configurations, we need to match estimated configurations to the real configuration of 
APs. We performed this by using the Procrustes analysis, which finds the isotropic 
dilation, translation, reflection, and rotation that best match one configuration with 
another. We also used the Matlab function procrustes. 
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Fig. 3. Floor plans for the building. Left shows an even-numbered floor, and right shows an 
odd-numbered floor. Each floor has six APs setup by a network operator. Even-numbered 
floors have different deployments from odd-numbered floors. 

4.1   Single-Floor AP Positioning 

The performance of the proposed algorithm is affected by the way dissimilarities are 
obtained. First, we used five-level quantized RSS as dissimilarity. A brief summary of 
the procedure used to calculate the dissimilarity is as follows: first, whether the 
strongest RSS in a scan is larger than a threshold, which is –50 dBm in our 
implementation, is examined. Conceptually, the examination judges whether the scan 
is gathered near an AP. If it is satisfied, dissimilarities to all the APs in the scan are 
calculated. Otherwise, the scan is discarded. Dissimilarities are set as 1, 2, 3, 4, and 5 
when RSS is larger than –47 dBm, –63 dBm, –75 dBm, –83 dBm, and –90 dBm, 
respectively. This process is repeated for all scans. If smaller dissimilarities are found 
in other scans, dissimilarities are updated as the new ones. 

In the calculated dissimilarities, there were many mismatched pairs of pij and pji. 
Many factors cause this phenomenon. It is well known that symmetries of radio 
propagations are not guaranteed due to environmental effects, even though AP 
hardware is the same. In our case, dissimilarities between APs are measured indirectly 
by a smartphone. pij may be calculated from a scan measured nearest to AP i. In 
contrast, pji may be calculated from a measurement nearest to AP j. Positions of the 
two scans are not likely to have the same geometric conditions. One of the two scans 
might be closer to the line connecting two APs, and its dissimilarity has a smaller 
value. From this insight, we take the lower value as the dissimilarity in case the two 
dissimilarities are different. 

Second, we used proximity information as dissimilarity. Simply, we decide a 
device is connected when a signal from an AP is visible. In this case, we set the 
dissimilarity to 1. However, this makes multidimensional scaling frequently fail to 
estimate positions of APs. In a small set of APs, this information is too limited to 
distinguish the configuration of APs. In the worst case, whole dissimilarities have the 
same value, for instance 1. To reduce this, we set a threshold to tighten the condition 
of proximity. In the experiments, we use –70 dBm as a proximity threshold. Since 
dissimilarities between unconnected APs are calculated by the shortest path-finding 
process, we obtain the effect that the amount of information increases. 
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Table 1. Experimental results of AP position estimation (error in meter) 

All APs (57 APs) 
Duplicated APs removed 

(32 APs)  
five-level 

quantization 
Proximity only 

five-level 
quantization 

Proximity 
only 

10th floor 9.22 8.93 5.34 8.53 

11th floor 5.94 10.47 5.66 12.64 

12th floor 9.49 14.64 11.64 13.84 

13th floor 5.72 6.18 5.48 4.79 

14th floor 8.77 12.32 10.08 12.41 

Average 7.85 10.50 7.64 10.44 

 
The results of our experiments are shown in the Table 1. In each floor, positions of 

12 or 13 unique BSSIDs are estimated. The average estimation error when using a 
five-level quantization is 7.85 m. When proximity information is used, the average 
error is increased to 10.50 meters. In the case of proximity only, most of the 
dissimilarities have a value of 1 or 2, which is not a distinguishable condition. If the 
area of a site is larger, dissimilarities will have various values and the performance 
will be enhanced. This is proved in a simulation experiment. Among the BSSIDs, 25 
are duplicated, and we removed these duplicated BSSIDs. As a result, six or seven 
BSSIDs remain for each floor. Again, we experimented with the refined set. The 
performance did not differ appreciably. From the result, we conclude that only the 
number of physically unique APs affects the performance. In the table, we show that 
performances of even-numbered floors are better than odd-numbered floors. There are 
two reasons for this. First, effective areas, which we define as the size of the convex 
hull of APs, are different. The effective area of an even-numbered floor is much 
smaller than the area of the odd-numbered floor. This differentiates the actual 
connectivity degrees, which represent how many APs are connected to an AP, and it 
is known that performance of MDS increases as the connectivity degree increases 
[16]. Second, the topology of even-numbered floor is beneficial. The topology of even 
numbered floors is round, but the topology of odd-numbered floors is more complex. 
By examining the layout of an even-numbered floor, we found many concrete walls in 
the middle, and concrete is difficult for radio signals to penetrate. Even though two 
APs in the middle are close, it is hard to identify small dissimilarities between them. 

On the 13th floor, estimation performance is good (error of 5.48 m), and on the 12th 
floor estimation performance is poor (error of 11.64 m). Figure 4 shows the 
estimation results of the two floors. On the 13th floor, the configuration of estimated 
positions is similar to the original configuration. On the 12th floor, however, the 
estimated configuration is distorted compared with its original configuration. A 
noticeable error is that the position of AP1 moves too far inside. By analyzing the 
dissimilarities of the 12th floor, we found that dissimilarity between AP1 and AP4 was 
lower than it should have been. To identify the reason for this, we investigated all the 
scans gathered from the 12th floor.  
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Fig. 4. The two graphs on the top show the estimation results of the 12th and 13th floors. “o” 
denotes the real position and * denotes the estimated position. Four graphs on the bottom depict 
scanned RSSs at various distances from four APs on the 12th floor, AP1, AP2, AP4, and AP7, 
respectively.  

 

The four graphs on the bottom in the Figure 4 show scatter plots of scanned RSSs 
according to the distances from AP1, AP2, AP4, and AP7, respectively. The range of 
distances from the APs is from zero to 56 m. Since AP2 is located in the middle of the 
site, its range is only from zero to 35 m. Among signals from AP4, there are 
unexpected large RSSs over a long distance (circled in red). At even 56 m from AP4, 
RSS was –68 dBm, and was measured around AP1. This caused a decrease in the 
distance between AP1 and AP4. Unlike other APs, AP7 was not set up by a network 
operator; it was a personal AP. Its signals were relatively low and were measured only 
in limited areas. Hence, dissimilarities to AP7 were largely found by the shortest path 
algorithm. 
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4.2   Multi-floor AP Positioning 

Even though expansions of algorithms to multifloor environments were mentioned, 
previous researches rarely conducted real experiments on them. In this study, we 
conducted a multifloor experiment. Radio scans gathered on five consecutive floors 
are used without floor information, but the number of floors is given. 
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Fig. 5. A total of 57 APs on five floors are processed at the same time. Each dot shows the 
estimated positions of an AP. The positions are divided into five clusters. Each color shows a 
different floor. 

All the scans are simultaneously processed to calculate dissimilarities between all 
pairs of APs on five floors. A total of 57×57 dissimilarities are estimated. We then 
applied three-dimensional MDS to the dissimilarities. The results are shown in  
Figure 5. Each dot denotes estimated positions of APs. We then divided the estimated 
positions of APs into five clusters. The Matlab function cluster was used for 
clustering. Each color in the figure shows a different cluster. In the x–z plane and y–z 
plane, we can see five distinctive clusters along the z-axis. To our astonishment, the 
clustering results show a 100% match to the real floors. This result verifies that we 
can identify the floor of AP with high accuracy using only radio scans collected on 
multiple floors. 

In contrast to floor identification, two-dimensional positions on each floor are 
inaccurate. The x–y plane in Figure 5 depicts overlaid positions of all the floors. Each 
floor is biased to a different direction. When a radio signal passes through a floor, it is 
severely attenuated. This is frequently described by a floor attenuation factor [23]. 
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However, since the outer wall of the building is made of glass, radio signals from 
other floors are easily received around the windows with only small attenuations. 
Even though dissimilarities are affected by these factors, they are not easily handled. 
Based on the clustering result, AP positioning is separately performed only with APs 
that are expected to be located on the same floor. This produces the same result as the 
single-floor experiment. The aligning problem between floors is still left, but this can 
be handled by radio matching methods [12]. 

4.3   Simulation Analysis 

To analyze the proposed algorithm, we conducted simulation experiments. To 
generate signal maps, we used radio propagation model as shown in Equation 2. Po at 
1 m from an AP, n the pathloss exponent and the standard deviation of shadow noise 
are –27dBm, 3.4, and 9 dBm, respectively. The values are extracted from the radio 
scans used in our real experiments by a curve-fitting method. 
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Fig. 6. While densities of APs remain the same, the size of areas is increased. The performance 
is enhanced as the size increases. 

First, we analyzed the effect of the size of a site. We used the same density as our 
real experiment. In the 50×35 m2 area, seven APs are used whose positions are 
randomly generated. In a doubled area (50×70 m2), the number of APs is doubled. In 
areas of 100×70 m2 and 100×140 m2, 28 and 56 APs are used, respectively. Figure 6 
shows the results. Even though the densities of APs are the same, the performance is 
enhanced and stable as the size of the area increases. 

As the size increases, two benefits are apparent: connectivity degrees in an AP 
increase, and as the total number of APs increases, the number of dissimilarities also 
increases. These two facts increase the amount of information about the configuration 
of APs. 

In contrast to the previous simulation, we fixed the area of site as 100×140 m2, and 
increased the number of APs. Figure 7 shows that as the number of APs increases, the 
performance is enhanced. When the number of APs is large enough, the error of using 
proximity information only is around 9 m, and the error of five-level quantization is 
around 5 m. 
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Fig. 7. Increase of connectivity degrees enhances the performance of AP positioning 

5   Discussion and Future Work 

We are concerned that the performance of the proposed scheme is suitable for 
location-based services. Outdoors, it may be enough to distinguish buildings, but 
indoors some location services will require more accurate results. We offer several 
possibilities to enhance the performance. First, performance improves as the size of 
an area widens. Second, an increased number of WiFi APs improves performance. In 
addition, a soft AP, which is a smartphone that acts like a WiFi AP temporarily, can 
be included to improve performance. Third, preprocessing radio scans can be applied. 
As shown in Figure 4, inconsistent signal strengths distort the geometric configuration 
of APs. We can use several stochastic methods, such as Kalman filter and Particle 
filter, to reduce this effect. We proposed an algorithm to estimate dissimilarities, but it 
can be replaced by a better method if there is one. In addition, there are many types of 
MDS techniques. We may use or develop a more appropriate version of an MDS 
technique. Despite all these variations, our overall scheme is still maintained. 

In our research, we mentioned that relative positions can be transformed to 
absolute positions if there are at least three absolute positions of APs or radio scans. 
The important point is how easy it is to get three absolute positions of APs or radio 
scans. In general, many APs are seen outdoors where GPS signal can be received 
[24]. This means that we can frequently obtain absolute positions of radio scans at a 
boundary of a building. With the positions, absolute transformation can be performed. 
This is a practical situation. 

The computational cost of the proposed algorithm is relatively low. In our 
experiment, execution of mdscale to 57×57 dissimilarities takes 3 s. In our opinion, 
the algorithm can be implemented in a smartphone or in a server. Hence, anyone can 
construct their own WiFi positioning system when needed. 

With multifloor positioning, we distinguished floors of APs. Positions of APs are 
separately estimated in each floor, and then alignment of APs between adjacent floors 
is performed. If we can properly handle the floor attenuation factor and environmental 
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effects across floors, we can remove all additional procedures. As our future works, 
we will improve the estimation algorithm of the dissimilarity matrix so that it is more 
robust to environmental effects including multifloor and perform an experiment of 
multiple users in a large site. 

6   Conclusions 

In this paper, we proposed an algorithm to determine a geographic configuration of 
WiFi APs from radio scans. Our method does not require ground truths for radio 
scans. Hence the assumption that we can obtain enough radio scans to build WiFi 
positioning system can be realized by the algorithm. We lowered the barrier of 
building a WiFi positioning system. Anyone using a smartphone can build their own 
positioning system or contribute information from their radio scans to help build a 
large positioning system. 

To validate the feasibility of the proposed algorithm, we conducted real 
experiments in a 20-story office building. We gathered radio scans from five 
consecutive floors. On each floor, six or seven APs were found, and the average 
estimation error was 7.64 m. Based on the simulation result, the performance of the 
proposed algorithm can be enhanced as the size of the area widens. For multifloor, we 
are able to distinguish APs on different floors with high accuracy. 
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Abstract. People spend most of their time at a few key locations, such as home
and work. Being able to identify how the movements of people cluster around
these “important places” is crucial for a range of technology and policy
decisions in areas such as telecommunications and transportation infrastructure
deployment. In this paper, we propose new techniques based on clustering and
regression for analyzing anonymized cellular network data to identify generally
important locations, and to discern semantically meaningful locations such as
home and work. Starting with temporally sparse and spatially coarse location in-
formation, we propose a new algorithm to identify important locations. We test
this algorithm on arbitrary cellphone users, including those with low call rates,
and find that we are within 3 miles of ground truth for 88% of volunteer users.
Further, after locating home and work, we achieve commute distance estimates
that are within 1 mile of equivalent estimates derived from government census
data. Finally, we perform carbon footprint analyses on hundreds of thousands of
anonymous users as an example of how our data and algorithms can form an
accurate and efficient underpinning for policy and infrastructure studies.

1 Introduction

While people travel further and faster than ever before, it is still the case that they spend
much of their time at a few important places. Identifying these key locations is thus
central to understanding human mobility and social patterns. Such understanding can,
in turn, inform solutions to large-scale societal problems in fields as varied as telecom-
munications, ecology, epidemiology, and urban planning. As an example, knowing how
large populations of people move about would help determine their carbon footprint
and in turn help guide policies intended to reduce that footprint.

Wireless cellular networks hold great potential for providing the necessary infor-
mation to identify important places in people’s lives. The growing ubiquity of cellular
phones means that a large percentage of people keep a phone with them most of the
time. In addition, the networks need to know roughly where each phone is in order to
provide the phones with voice and data services.
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In this work, we explore the use of anonymized Call Detail Records (CDRs) from
a cellular network to estimate the locations of important places in the lives of large
populations of people. CDRs are routinely collected by cellular network providers to
help operate their networks, for example to identify congested cells in need of additional
bandwidth. Each CDR contains information such as the time a voice call was placed or
a text message was received, as well as the identity of the cell tower with which the
phone was associated at that time. This information can serve as sporadic samples of
the approximate locations of the phone’s owner.

CDRs are an attractive source of location information for two main reasons. One,
they are collected for all active cellular phones, which number in the hundreds of mil-
lions in the US and in the billions worldwide. Two, they are already being collected
to help operate the networks, so that additional uses of CDR data incur little marginal
cost. Contrast this low cost, for example, with the expense of carrying out surveys to
ask people where they spend their time. This high expense generally limits other data
collection methods to orders of magnitude fewer participants.

However, CDRs have two significant limitations as a source of location information.
One, they are sparse in time because they are generated only when a phone engages in a
voice call or text message exchange. Two, they are coarse in space because they record
location only at the granularity of a cell tower. It is an interesting research question
whether CDRs can be used to identify important places in people’s lives.

In this paper, we show that applying clustering and regression techniques to CDR
data can indeed identify important places in people’s lives. First, we present an al-
gorithm for identifying important places. Then, we describe two other algorithms for
selecting home and work locations from among those important places. We validate all
three algorithms by comparing their results to ground truth provided by a group of vol-
unteers. We then apply these algorithms to much larger anonymous populations in the
Los Angeles (LA) and New York City (NY) areas. Our LA and NY dataset spans two
months of activity for hundreds of thousands of phones, yielding hundreds of millions
of location samples.

Finally, we present two example applications of these techniques. We start by using
the home and work locations identified by our algorithms to calculate the distribution
of commute distances per postal code in our Los Angeles and New York dataset. We
then estimate the carbon footprints of those commutes, also aggregated by postal code.

Overall, the contributions of our work are as follows.

– We propose and evaluate a model based on logistic regression of volunteers’ lo-
cations for Important Places analysis. In our first algorithm, we demonstrate an
accurate and efficient method for identifying Important Places from CDRs. Our
algorithm is the first to operate on the majority of cellular phone users, rather than
relying either on more continuous and fine-grained tracking (e.g. GPS) or focusing
on high-call-rate users whose mobility is easier to analyze.

– We propose and evaluate two other algorithms for applying semantic meaning to
important locations, namely Home and Work, using other models also derived via
logistic regression. Our algorithms identify these key sites with median errors under
one mile.
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– We test our approaches on a dataset that is more universal than prior work in several
ways. First, it is simply larger than prior work in terms of CDRs and number of
users. Second, it covers multiple distinct geographic areas. Third, it considers users
with a wide variety of call/text rates, from as low as a few calls/texts per week up
to dozens of calls/texts per day.

– Finally, we provide examples of how technology providers and policy makers might
use our data and algorithms in their work. In particular, we calculate home-to-work
commute distances and combine them with publicly available data to estimate the
carbon footprints of those commutes in two major metropolitan areas. Our average
commute distances for the LA and NY areas are within 1 mile of the equivalent
averages computed from US Census data.

In summary, our work extends prior research in location identification and cellphone
mobility to create effective algorithms and solid foundations for technological and soci-
etal problem-solving. The rest of this paper is organized as follows. Section 2 describes
the data we obtained from volunteers as well as the much larger set of anonymous
CDRs, including the measures we have taken to preserve individual privacy. Section 3
presents our algorithm for identifying important locations, Section 4 our algorithms
for selecting home and work locations, and Section 5 our estimates of commuting dis-
tances and carbon footprints. Section 6 discusses related work, and Section 7 offers
conclusions.

2 Data Collection Methodology and Characteristics

2.1 Anonymized Call Detail Records

We collected anonymized Call Detail Records (CDRs) from a random set of cellular
phones whose billing addresses lie within specific geographic regions.

Defining Geographic Regions of Interest: We first developed a target set of 891 postal
(ZIP) codes located in the Los Angeles and New York metropolitan areas. In the LA
area, the ZIP codes cover the counties of Los Angeles, Orange, and Ventura. In the NY
area, these ZIP codes cover the five New York City boroughs (Manhattan, Brooklyn,
Bronx, Queens, and Staten Island) and ten New Jersey counties that are close to New
York City (Essex, Union, Morris, Hudson, Bergen, Somerset, Passaic, Middlesex, Sus-
sex, and Warren). Figure 7 shows maps of the regions studied as part of carbon footprint
results presented in Section 5. Our selected ZIP codes cover similarly sized areas in LA
and NY.

Anonymized CDR Contents: We then obtained anonymized CDRs for a random sam-
ple of phones in each ZIP code. The CDRs contain information about two types of
events involving these phones: voice calls and text messages. In place of the phone
number, each CDR contains an anonymous identifier consisting of the 5-digit billing
ZIP code and a unique integer. Each CDR also contains the starting time of the voice
or text event, the duration of the event, the locations of the starting and ending cell
towers associated with the event, and an indicator of whether the phone was registered
to an individual or a business. It is important to note that we collect CDRs for these
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phones wherever in the US they travel, not only when they contact cell towers within
their billing ZIP codes.

Excluded Categories of Phones: Our goal is to understand aggregate mobility patterns
of people in particular regions of the country, and to compare them analytically where
possible. As such, our study omits from consideration two sets of phones from the
original CDRs.

First, we omitted phones registered to businesses, retaining only phones registered to
individuals. This step avoids, for example, the situation where a cellular service reseller
based in a ZIP code of interest would cause us to study large numbers of phones that
are not representative of that ZIP code.

Second, we removed from our sample those phones that appeared in their base ZIP
code fewer than half the days they had voice or text activity. We assumed that the owners
of such phones now live in other parts of the country but have retained their old billing
addresses (e.g., they are college students). Therefore, their daily travel patterns may not
be representative of the geographical areas we are interested in.

After these two filtering steps, our CDRs are a useful representation of mobility and
telephone usage in the regions of interest. While there will always be some people using
personal phones for business (and vice versa), we have compared our filtered CDRs
against US Census data for the regions of interest [22] and found a strong correlation
between the expected and actual number of users in each ZIP code.

Dataset Characteristics: Our data collection methodology resulted in location data for
hundreds of thousands of phones split roughly evenly between LA and NY, with the
number of phones in each ZIP code proportional to the population in that ZIP code.
We collected data for 78 consecutive days from November 15, 2009, to January 31,
2010. Table 1 offers some general characteristics of this dataset. As shown, it contains
hundreds of millions of location samples, with on the order of 10 location samples per
phone per day.

Table 1. General characteristics of our Call Detail Record dataset

Metric LA NY

Total Unique Phones 97K 71K
Total Unique CDRs 247M 161M

Median Calls Per Day 8 9
Median Texts per Day 4 3

Privacy Measures: Given the sensitivity of the data, we took several steps to ensure
the privacy of individuals represented in our CDR dataset.

First, only anonymous records were used in this study. In particular, personally iden-
tifying characteristics were removed from our CDRs. CDRs for the same phone are
linked using an anonymous unique identifier, rather than a telephone number. No de-
mographic data is linked to any user or CDR.

Second, all our results are presented as aggregates. That is, no individual anony-
mous identifier was singled out for the study. By observing and reporting only on the
aggregates, we protect the privacy of individuals.
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Finally, each CDR only included location information for the cellular towers with
which a phone was associated at the beginning and end of a voice call or at the time of
a text message. The phones were effectively invisible to us aside from these events. In
addition, we could estimate the phone locations only to the granularity of the cell tower
coverage radius. Although the effective radius depends upon tower height, radio power,
antenna angle, and terrain, these radii average about a mile, giving an uncertainty of
about 3 square miles for any event [21].

2.2 Ground Truth Data from Volunteers

In order to validate our work, we recruited a group of 37 volunteers who provided us
the true locations of important places in their lives, as well as permission to inspect their
CDRs for the purposes of this study. The group is composed of graduate students and
professionals, all of which are personal or professional acquaintances of the authors.
Of the 37 volunteers, 29 are male and 8 are female. Geographically, 31 recruits live in
the states of New York or New Jersey and the remaining 6 live in Ohio, Georgia, or
Arizona. The majority of the volunteers work at high-tech jobs.

Each volunteer filled out a survey on a website. The survey form asked them to list
up to 10 important places in their lives, defined as places where they had spent a sig-
nificant amount of time and/or visited frequently in the previous 60 days. It specifically
requested that they include home and work in the list, and expressed the hope that they
would list additional places such as a gym or the destination of an overnight trip.

The volunteers also provided us with the latitude and longitude of each place they
listed. The survey website included a tool to help them find this information. Volunteers
could either enter a street address, or drop a pin on a map after panning and zooming
the map to the appropriate location. The tool would convert this input into a latitude-
longitude pair that the volunteer could cut and paste into the survey form.

In the work described in the rest of this paper, we used the ground truth data from
18 of our volunteers as a training set for our algorithms, and data from the remaining
19 volunteers as a testing set. The 18 training volunteers were chosen arbitrarily and
without regard for their mobility or calling patterns. For both our training and testing
volunteers, we collected CDRs for the same 60 days covered by their survey responses.

3 Identifying Important Places

Intuitively, we know that human mobility involves moving to and from a set of places,
some of which are recurringly important to us and some of which are visited less often
or only fleetingly. Being able to discern significant places in people’s lives is an impor-
tant aspect of characterizing human mobility. Identifying important places can be used
to support location-based services, improve understanding of general human movement
patterns, and support the creation of realistic and practical models of human mobility.
We define an important place as a geographic location where a person spends a signif-
icant amount of time and/or which she visits frequently. Examples of important places
include: home, work, gym, grocery store, and a house of worship.

In this section, we show how mobile network events can be used to identify impor-
tant places in people’s lives. We identify important places based on the mobile network
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events that correspond to CDR entries. Thus, making or receiving a phone call or send-
ing or receiving a text message generates an event. For each event (CDR), we know its
time of occurrence and the location of the first and last cell towers associated with it.
We refer to the list of events that were generated by a user’s phone as the user’s trace.
If a cell tower appears in the user’s trace on a given day, we say that the cell tower was
contacted on that day.

Our algorithm for identifying important places has two stages. In the first stage,
we spatially cluster the cell towers that appear in a user’s trace. In the second stage,
we identify which of the clusters are important using a model derived from a logistic
regression of volunteers’ CDRs. In the rest of this section, we describe these two stages
in detail, present our validation results based on the important locations of our 19 testing
volunteers, and compare the results characteristics for our NY and LA populations.

While in this paper we use cellular phone activity collected in the form of CDRs, our
algorithms for identifying important locations, and for assigning semantic meaning to
these locations such as “home” or “work”, are quite general. They could also be applied
to location traces collected via GPS, WiFi, or other techniques.

3.1 Clustering Cell Towers

Clustering cell towers that appear in a user’s trace has two steps. In the first step, we
sort the cell towers in descending order based on the total number of days they were
contacted. Thus, the cell tower that was contacted on the most days will be ranked
first. Sorting the cell towers serves as a modest optimization but is not required. An
on-line algorithm could easily be developed by removing the sorting phase, resulting
in an average change in error of less than 0.1 miles. However, sorting by the number
of days the cell tower was contacted (“call-days”) rather than by the total number of
events associated with the cell tower is both important and novel. In particular, sorting
by call-days rather than total calls helps to decrease the influence of cell towers that
were contacted only on a few days, but that had a burst of events on those days. A flurry
of calls from one location on a single day is not as indicative of location importance
as a similar number of calls spread over many days at a location that recurs. Consider,
for example, work travel to a distant location. Though the trip may be short in duration,
one might make many calls back home to family and friends. These calls would then
unduly increase the perceived importance of the location. This distinction helps us to
maintain good location accuracy for users across a wide range of calls-per-day.

In the second step, the sorted list of cell towers is clustered according to Hartigan’s
leader algorithm [10]. We chose the leader algorithm because it doesn’t require pre-
specifying the desired number of clusters and because it works in a single pass, which
is important for practical use on very large datasets such as ours (4GB, compressed).

The leader algorithm starts with the first cell tower in the sorted list and makes this
tower the centroid of the first cluster. Then, for each subsequent cell tower, it checks
to see whether the tower falls within a threshold radius of the centroid of any existing
cluster. If it does not, the tower becomes the centroid of a new cluster. If it does fall
within the threshold radius of an existing cluster, the algorithm adds the tower to the
cluster and moves the centroid of the cluster to be the weighted average of the locations
of all the cell towers in the cluster. The cell tower locations, in our case, are weighted
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Fig. 1. Our clustering algorithm applied to a volunteer. Cell towers are clustered into groups
according to Hartigan’s leader algorithm. Cell towers are added to a cluster if they are within a
mile of the cluster’s centroid. Clusters are depicted as circles and cell towers as diamonds. A line
connects each cell tower to the centroid of its cluster. Circle size is proportional to the number of
days on which any cell tower in the cluster was contacted.

by the number of call-days. The algorithm completes once every cell tower has been
assigned to a cluster.

Choosing a particular threshold radius around cell towers helps equalize for the fact
that in urban areas towers might be as dense as 200 meters apart, while in suburban
areas, spacings of 1-3 miles are more common. We experimented with a range of radii
and found that 1 mile works well in practice.

Figure 1 illustrates the result of running the clustering algorithm on a volunteer’s
trace with a threshold radius of 1 mile. We can see that although the volunteer connected
to the network through many cell towers, there are only three clusters. Note again that
the size of a cluster is proportional to the number of days on which any cell tower in
the cluster was contacted, and not necessarily proportional to the number of cell towers
that belong to the cluster. For instance, the middle cluster in Figure 1 is the largest even
though it contains fewer cell towers than the southernmost cluster. Although for this
volunteer there are many cell towers belonging to each of the clusters, it is common for
people to have clusters comprising only one or two cell towers.

3.2 Determining Importance

Clustering cell towers typically results in dozens to hundreds of clusters, most of which
may have little importance to the user. In this section, we describe how our algorithm
determines which clusters are important.

We developed an algorithm for identifying important clusters by studying the behav-
ior of our 18 training volunteers and then testing the algorithm on a set of 19 testing
volunteers. Studying the data of our training volunteers revealed the following five ob-
servable factors that are considered in determining whether a cluster is important:
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– Days: The number of days on which any cell tower in the cluster was contacted. If
two or more cell towers were contacted on the same day, the day is counted only
once. This factor gives a sense of the regularity of activity in the cluster.

– Tower Days: The sum of the number of days cell towers in the cluster were con-
tacted. Thus, each cell tower in the cluster adds its Days value to the sum. This
factor gives a sense of both the number of cell towers in the cluster as well as the
number of days on which cell towers in the cluster were contacted.

– Duration: The number of days that elapse between the first contact with any cell
tower in the cluster and the last contact with any cell tower in the cluster. (For
example, a cluster with one cell tower that was contacted only on the first day and
on the seventh day of the user’s trace has a duration value of 6.) Duration gives a
sense of how long a user is in the area of the cluster, even if network events were
not generated from this cluster on a daily basis.

– Work Hour Events : The number of times any cell tower in the cluster was contacted
on weekdays between 1pm and 5pm. We experimented with various ranges of hours
and found that 1pm to 5pm works well in practice because it is a core set of hours
for both early and late workers.

– Home Hour Events : The number of times any cell tower in the cluster was con-
tacted on weekends or weekdays between 7pm and 7am.

The algorithm identifies a cluster as important if the cluster satisfies each of the
following three conditions. First, cell towers in the cluster should have been contacted
on more than 5% of the total days in the study. In our case, this translates to the Days
factor being higher than 2. This condition filters out transitional clusters that are rarely
contacted. Second, the cluster should have a Duration of more than 14. This helps to
remove vacations and other locations that may generate a large number of events in
a short period of time but that are not consistently used throughout the trace. Third,
the cluster should have a higher than 20% chance of being important according to the
regression analysis discussed below. While we derived all the thresholds experimentally
based on the data from the 18 training volunteers, our tests on other volunteers and on
the larger dataset point to their general applicability.

To determine the likelihood of a cluster being important, we use logistic regression.
We considered the five observable factors described above as well as several derived
variables. Specifically, we added the rank and the percentage of each of the observ-
able factors. Rank is calculated by ordering the clusters based on the observable factor
and then assigning each cluster a sequential number. For example, the cluster with the
largest Duration gets a ranking of 1 and the cluster with the second largest Duration
gets a ranking of 2. Percentage is calculated by dividing the value of a given observable
factor of a cluster by the sum of these values in all clusters. For instance, if the Days
value of the current cluster is 5 and there are two more clusters with Days values of 20
and 25, the percentage of the Days factor of the current cluster is 5 divided by 50, or
0.1. In total, we ended up with 15 observable and derived factors.

Prob(x1, ..., xn) =
1

(1 + eβ0+β1x1+···+βnxn)
(1)

Equation 1 shows the general form of the logistic regression formula that we use to
estimate the likelihood of the importance of a cluster. In this formula, Prob(x1, ..., xn)
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is the probability that a cluster with factors xi is the closest cluster to an important
location and βjs are coefficients that are discovered during the regression.

To discover the coefficients, we used the important locations of our 18 training vol-
unteers. First, we marked clusters of each of the volunteers as either being important
or not. A cluster is marked as being important if its centroid is the closest to any of
the important locations specified by the volunteer. The importance of a cluster is the
dependent binary variable in our regression analysis and the 15 observable and derived
factors are the independent variables. Once the statistically insignificant factors were
eliminated, only three factors were left: the percentage of Tower Days, the Duration,
and the ranking of a cluster based on Days. The percentage of Tower Days and the
ranking based on Days prefers clusters with many cell towers contacted on many days.
The Duration indicates that for a cluster to be considered important its cell towers must
be contacted during a large fraction of the trace. Including the Duration feature reduces
the importance of transitionary calls made during travel by giving a higher weight to the
locations where a user made phone calls many days apart. We conjecture that Duration
was selected as one of the main features because people tend to return to places that
are important to them often and tend to visit transitionary places infrequently. Once the
training is complete, we estimate the importance of a new cluster by feeding these three
statistically significant factors of the cluster into the regression formula.

Figure 2 plots the true important locations and the discovered important clusters of
four volunteers. The figure confirms that the discovered important clusters match well
with the volunteer-provided important locations. However, one important location in
the bottom right figure was not matched by any discovered important cluster. This is
because the volunteer made almost no calls from that location. It is worth noting that
the algorithm performed well despite the significant difference in patterns of of im-
portant locations for different volunteers (e.g., different number of important locations,
different spatial distributions, different rate of calls, etc.)

Fig. 2. True important locations vs. discovered important clusters for four volunteers. Paddles rep-
resent the important locations provided by the volunteers. Circles represent the important clusters
discovered by our algorithm, with their radii signifying days of use. The four examples are drawn
to the same scale.
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3.3 Validation of Important Places Algorithm

We further validate our algorithm for determining important places by comparing to
other approaches. Recall that each important cluster contains one or more cell towers.
The location of an important place is then the weighted centroid of the geographic
locations of these cell towers. To measure how well our Important Places algorithm
works we calculate the error between each important location provided to us by our
19 testing volunteers and the nearest important place identified by our algorithm. We
also compare our results to two additional algorithms: Nearest Cluster and Nearest
Tower. The Nearest Cluster algorithm considers all clusters identified in Section 3.1
and identifies an important place as the weighted centroid of a cluster that is the nearest
to an actual important location. This algorithm acts as an upper bound on our Important
Places algorithm since it operates on all discovered clusters, without restricting the pool
of clusters to choose from. The Nearest Tower algorithm determines an important place
at the location of the cell tower that is the closest to the actual important location. This
algorithm shows the limit of the accuracy we can achieve if we limit our clusters to just
a single cell tower.

Figure 3 plots a CDF of the error between the actual important locations and the
identified important places for the Important Places, Nearest Cluster and Nearest Tower
algorithms. The figure shows that the Important Places algorithm performs very well,
even though it reduces the total number of identified clusters by up to 90% for some
volunteers. The median error of the Important Places algorithm is 0.9 miles, which is
close to the performance of the upper bound algorithms. Nearest Cluster and Nearest
Tower achieve 0.62 and 0.5 miles median error, respectively. The reason for the slightly
higher error for the Important Places algorithm is that some people do not use their cell
phone frequently at their important locations. Viewing the results more broadly, we find
our approach maintains within-3-miles accuracy for 88% of the users, which suffices
for the types of policy and planning applications we envision.
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Fig. 3. CDF of errors between true important locations and those found using three techniques.
Important Places refers to the clusters identified as important by our algorithm. Nearest Cluster
shows the best possible outcome with clustering performed. Nearest Tower demonstrates the best
that can be done without clustering.

3.4 Important Places in Los Angeles and New York

In this section, we use our full CDR data set to compare the number of important
places of Angelenos and New Yorkers, as identified by our Important Places algorithm.
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Fig. 4. Histogram of the number of important places of people in Los Angeles and New York

Without user-provided surveys, we do not know the actual number of important places
of people in the LA and NY dataset, but our results allow us to roughly compare the
behavior of people in the two areas. Figure 4 plots the histograms of the number of
important places for the two populations. We draw three conclusions from our results.
First, our algorithm succeeds in finding important locations for 97.5% of the user pop-
ulation, which is a very high percentage. For the remaining 2.5%, our algorithm cannot
find any important places, mostly due to people not using their cell phones frequently
enough for our algorithm to work. Second, about a quarter of people in both areas have
exactly 5 important places and more than three quarters of people have between 3 to 6
important places. This is similar to results found in other work [2,9]. Third, New York-
ers have a higher percentage of people with 1 to 4 important places, whereas Angelenos
have a higher percentage of people with 5 to 8 places. Overall, the implications are
that although typical cellphone users have dozens or hundreds of towers contacted in a
multi-month event trace, their main locus of mobility is concentrated on a much smaller
set of places.

4 Identifying Home and Work

In this section, we move beyond identifying generally important places in people’s
lives, to inferring where people live and work. The knowledge of where people live
and work can be used for a detailed analysis of mobility prediction models, workday
patterns, commuter carbon footprints, and a variety of context-aware applications, such
as location-based reminders [20].

We developed algorithms that compute estimates of where a cellphone user lives and
works, given a list of important clusters identified in Section 3.2. We call these estimated
locations Home and Work, respectively. Of course, not everyone will have distinct home
and work locations: some people work at home, others have no fixed work site, and still
others may not use their cell phones at home and/or work. Nevertheless, our validation
work confirms that our algorithms produce good approximations of the true home and
work locations of volunteers.
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4.1 Home and Work Algorithms

Our Home and Work algorithms select, among all important clusters identified by the
Important Places algorithm described in Section 3.2, the clusters that correspond to
where a person lives and works, respectively. The algorithms are independent and may
end up selecting the same cluster as both Home and Work.

To select Home or Work, the relevant algorithm (i.e., either the Home or Work al-
gorithm) calculates a score for each important cluster using coefficients obtained from
a logistic regression. The algorithm then assigns the cluster with the highest score to
be Home or Work. To calculate a score for a cluster, we use the logistic regression
formula shown in Equation 1. In this case, Prob(x1, ..., xn) is the score calculated for
each cluster, xi is the value of the ith factor and βjs are regression coefficients fitted
during training. To train our regression formulae, we repeated the procedure described
in Section 3.2 using the reported home and work locations of the 18 training volun-
teers. Home and Work, then, are chosen as the clusters with the highest probability as
computed by the coefficients given by the logistic regression.

Recall that in this study we define “home” hours to be weekends and weekdays
between 7PM and 7AM, whereas “work” hours are weekdays between 1pm and 5pm.
For the Home algorithm, the single most dominating factor was the Home Hour Events.
That is, the cluster with the largest number of events during the “home” hours is selected
as Home. For the Work algorithm, there are two dominating factors. The first factor is
the rank of the Work Hour Events. In other words, after ranking all clusters based on
the number of events occurring during “work” hours, a cluster with a higher ranking
is assigned a higher score than a cluster with a lower ranking. The second factor is the
percentage of the Home Hour Events. Recall that this percentage is calculated as the
number of events occurring during “home” hours in the cluster, divided by the total
number of events occurring during “home” hours in all clusters. A cluster is assigned a
higher score by the Work algorithm if the percentage of the Home Hour Events in the
cluster is low.

4.2 Validation of Home and Work Algorithms

Table 2 shows the 25th, 50th, 75th and 95th percentile errors between the Home and
Work locations as estimated by our Home and Work algorithms and the actual home and
work locations as reported by our 19 testing volunteers. Both algorithms perform well,
achieving median errors of 0.9 miles and 0.83 miles, respectively. We also calculated
the distance between the actual home and work locations and the nearest cell tower,
finding them to be 0.61 miles (home) and 0.5 miles (work). Moving out to the 95th per-
centile, the Home algorithm continued to work well, with 3.86 miles of error, whereas

Table 2. Errors in miles from true home and work locations to those found using our Home and
Work algorithms

Percentile 25th 50th 75th 95th

Home Error 0.53 0.90 1.28 3.86

Work Error 0.62 0.83 2.30 21.23
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the “best-case” algorithm that chooses the cell tower nearest to the user-provided lati-
tude/longitude has 1.12 miles of error. At the 95th percentile error, the Work algorithm’s
error increases to 21.2 miles, and studying these few cases in more detail revealed that
the errors were due to our volunteers not using their cell phone much at work. Given
that the majority of our volunteers did use their cell phones at work and given the in-
creasing trend of dropping landlines at both home and work locations, we believe that
our Home and Work algorithms are an increasingly useful tool for estimating home and
work locations for the general population at large.

5 Example Applications: Commute Distances and Carbon
Footprints

In this section, we show how we can apply our algorithms to larger-scale data analysis
and policy planning. In one example, we compute home-to-work commute distances
for populations of cell phone users aggregated by ZIP code. In another example, we
combine cellular network data with US Census data to estimate the commuting carbon
footprints of the same populations.

5.1 Calculating Commute Distances

We define commute distance as the geographic distance between a person’s home and
work locations. Our HomeWork algorithm estimates commute distance by calculating
the distance between the two locations identified by the Home and Work algorithms
described in Section 4.1. Here we evaluate our HomeWork algorithm by comparing
its results to those of three other approaches for estimating commute distance: Oracle,
TopTwo, and TimeBased.

The Oracle algorithm, given a set of important-location clusters identified by the Im-
portant Locations algorithm described in Section 3.2, estimates a volunteer’s commute
distance as the distance between the two clusters closest to the true home and work lo-
cations reported by that volunteer. The Oracle algorithm represents an upper bound on
the accuracy of the HomeWork algorithm and is not realizable. We include the remain-
ing two algorithms, TopTwo and TimeBased, to show HomeWork’s accuracy relative
to simpler algorithms. TopTwo estimates commute distance as the distance between the
two important locations with the largest number of network events. The TimeBased al-
gorithm estimates where a person lives as the cluster with the largest number of events
on weekends and weekdays between 7PM and 7AM, and it estimates where a person
works as the cluster with the largest number of events on weekdays between 1PM and
5PM. To estimate commute distance, TimeBased then calculates the distance between
these home and work clusters.

Figure 5 plots the CDF of the commute distance error in miles for the Oracle, Home-
Work, TopTwo and TimeBased algorithms. The HomeWork algorithm performs very
well, estimating the commute distance within 3 miles for 82% of the volunteers. Home-
Work not only significantly outperforms both the TopTwo and TimeBased algorithms,
which achieve 19.9 miles and 14.2 miles for 82%, respectively, but also is close to
Oracle, which achieves 1.23 miles error. The median errors for Oracle, HomeWork,
TopTwo and TimeBased are 0.67, 1.16, 2.10 and 1.24 miles, respectively.
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Fig. 5. Error in commute distance for volunteers. The plot is cut at 100 miles for clarity, but the
extreme errors for TopTwo extends beyond 200 miles.

5.2 Commute Distances in Los Angeles and New York

As an additional check on our work, we compare commute distances as calculated by
our HomeWork algorithm to those derived from US Census statistics. In particular,
HomeWork estimates the average commute distance for residents of the 891 ZIP codes
in our CDR dataset to be 21 and 20 miles for the Los Angeles and New York areas,
respectively. Using tables of where people live and work published by the US Bureau
of Transportation Statistics [4], we calculate the average commute for residents of the
same ZIP codes to be 21 and 19 miles for the Los Angeles and New York areas, respec-
tively. This very close match between HomeWork and census results further validates
our approach. It is also important to note that the low cost of our approach makes it
practical to regenerate current statistics much more frequently than with a census, for
example every few months instead of every ten years.

We now summarize our commute-distance results with the help of boxplots. Box-
plots depict five-number summaries of the complete empirical distributions of interest.
The “box” represents the 25th, 50th, and 75th percentiles, while the “whiskers” indi-
cate the 5th and 95th percentiles. The horizontal axes show miles on a logarithmic scale.
Nearly any difference between our medians is statistically significant due to our large
sample sizes.
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Fig. 6. Box plots of commute distances for Los Angeles and New York
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Figure 6 plots the daily commute distances for Angelenos and New Yorkers. For the
greater NY and LA regions, the commute distances are similar, with the median com-
mutes at 3.2 and 3.3 miles, respectively. We also looked in detail at the data from city
centers, namely Manhattan (ZIP codes 100xx) and downtown LA (ZIP codes 900xx).
We make two observations from the data. First, although the commute distances of city
center residents are shorter than that of the general population in both areas, the Man-
hattanites have a significantly shorter median commute distance compared to all NY
(28% smaller) than residents of downtown LA compared to all LA (3% smaller). This
is likely because the Los Angeles area is more evenly spread out than NY area. As a re-
sult, people who live in the downtown LA commute farther more often than residents of
Manhattan. Second, although the median commute distance of Manhattanites is shorter
than that of downtown LA residents, 2.3 miles in Manhattan vs. 3.2 miles in down-
town LA, the 95th percentile commute distance of Manhattanites is 222% larger at 71.9
miles. These numbers show that when Manhattanites commute far, they commute much
farther than Angelenos. Such long commutes may be due in part to the extensive com-
muter rail network radiating from Manhattan, which may make such long commutes
more feasible.

5.3 Carbon Footprint Estimation

Our final example application makes the extension from commute estimates to carbon
footprints. To accurately calculate the carbon footprint of a person’s commute, we need
to know the length of the commute and the mode of transportation the person uses.
Although we can estimate the commute distance of a person using the HomeWork al-
gorithm, the sparsity of our data does not allow us to determine a commuter’s mode
of transportation. Instead, we determine the mode of transportation of commuters at
the ZIP code level using US census data. Specifically, we used Table P30 from the
2000 US census (Summary File 3): “Means of Transportation to Work for Workers 16+
Years.” [22] to calculate the percentage of commuters that uses a particular mode of
transportation per ZIP code.

The next step is to assign each commuter a mode of transportation that fits her com-
mute pattern best. The intuition behind our approach is that walkers and bikers in each
ZIP code are likely to be the people with the shortest commutes. To assign a mode of
transportation to each commuter, we first sort the users in each ZIP code according to
the length of their commute. If the census reports that P% of commuters in the ZIP code
walk or bike to work, then the lowest P% of ranked users in that ZIP code are treated as
walkers/bikers with zero carbon emissions. The remaining commuters are assigned the
average of the remaining modes of transportation in that ZIP code. For example, assume
that we have two commuters in a ZIP code with 50% walkers, 25% drivers, and 25%
train passengers. In this example, the commuter with the shorter commute distance is
assigned to be a walker and the other user is assigned as driving half the time and taking
a train the other half.

Finally, combining this information with the amount of carbon dioxide emitted per
person by each mode of transportation [3] allows us to compute the rough amount of
carbon dioxide emitted per commuter. Aggregating commuters at the ZIP code level
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(a) Los Angeles (b) New York

Fig. 7. Heat maps of median carbon emitted per person for each direction of a commute in the
ZIP codes in our study. Darker ZIP codes denote larger carbon footprint. Note that all NY and
LA ZIP codes are colored according to the same scale.

allows us to generate a distribution of carbon dioxide emissions per commuter in each
ZIP code.

Figure 7 shows heat maps of LA and NY, where shading corresponds to the median
carbon emission per person in each ZIP code in each direction of a commute. In the
New York area, increasing distance from Manhattan correlates with increasing carbon
footprint. In contrast, Los Angeles is fairly uniform throughout, with the exception of
certain parts of Antelope Valley (in the northeast part of the map), which are separated
from downtown LA by a mountain range that must be driven around. These patterns
match well with what would be expected from both cities. Popular knowledge indicates
that in New York, many people commute into the city center, while in Los Angeles,
there is no specific region where people live or work. Manhattan ZIP codes have the
lowest carbon footprints of all ZIP codes studied. Specifically, a median amount of
carbon dioxide emitted per person is 0.5 kg per trip in Manhattan, 1.07 kg per trip in
downtown LA, and 3.7 kg per trip in Antelope Valley.

Generating carbon footprint estimates is a good example of how our technique for
computing commuting distances can be combined with already available data to pro-
duce new and previously difficult to obtain information.

6 Related Work

There are two broad categories of work closely related to ours. One, there is a body of
work that seeks to determine people’s important locations based on GPS traces or WiFi
beacons. Two, there have been a number of efforts to use cellular network data to find
patterns of human mobility. We next survey these two categories of work and contrast
them with our own.

Recently, Hightower et al. [11] and then Kim et al. [14] presented algorithms for
determining semantically meaningful places based on continuous tracking of GSM and
WiFi beacons. Kang et al. [13] explored how clustering locations obtained through WiFi
beacons can be used for identifying places people visit. Previous work [1,16,17,18] has
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also explored how semantically meaningful places can be discovered based on series
of GPS coordinates. Similarly, Mun et al. [19] estimate the environmental impact of
individual travel using GPS traces. Although accurate, these efforts require much finer
granularity of data than is available from Call Detail Records. In contrast, we operate
on a much larger data set composed of relatively sparse and coarse location samples,
which requires a different approach to determining important places in people’s lives. In
addition, these other approaches collect data using software running on users’ devices,
which consumes power on those devices and may inhibit large-scale data collection. In
contrast, our data is collected by the network for all devices, and does not consume any
power on those devices beyond what is consumed by normal use.

There is also a growing body of work attempting to discover patterns of human
mobility from cellular network data. González et al. [9] used cellphone records from an
unnamed European country to create models of people’s movement patterns. Our own
recent work [12] characterized the daily range of movement of people in two cities in
the United States. Other work has developed algorithms for predicting where a user will
travel next [2,5,15]. In contrast to the work presented in this paper, that earlier body of
work did not seek to attribute importance to any particular location.

Previous attempts to measure the predictability of cell phone users restrict their
datasets to highly active users [21] or force phones to provide more frequent location
updates than would normally occur [23]. We demonstrate in our work that these steps
are not necessary. We show that we are able to accurately determine important loca-
tions across a wide range of usage modes, from highly connected individuals to users
that make only a few calls a week.

Finally, Girardin et al. used cell phone usage within cities to determine locations of
users in Rome [6], New York City [8], and Florence [7]. They were able to find where
people clustered in these cities and the major paths people tended to take. In a sense,
they explored the converse of our question. While we ask “to how many locations does
this person travel?”, they ask “how many people travel to this location?”. Furthermore,
their work is restricted to a view of a single city, while our work captures travel over a
whole country for the subjects in our dataset.

7 Conclusions

This paper has described our work to identify important personal places and movement
patterns based on cellular network data. As the central focus of our research, we have
proposed and evaluated three algorithms derived from a logistic regression-based analy-
sis of volunteers. The first of these algorithms identifies Important Places based on call
and text message records. The other two, Home and Work, narrow down these important
places to identify the most likely home and work locations, allowing for the case when
they may be one and the same. We validated our algorithms by comparing our results
to ground truth from volunteers and to US census data.

Estimating and modeling human mobility is important for many technical and policy
reasons. Previously, however, significant challenges have lain in gathering large-scale,
comprehensive, and accurate data on which to base such estimates and models. Our
work demonstrates that call and text records from cellular networks represent an un-
obtrusive and accurate way to gather large-scale mobility data. Furthermore, the large
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degree of aggregation and anonymization allows us to usefully employ this data without
unduly impinging on the privacy of any individual.

Viewed broadly, our clustering and location algorithms form a foundation for a range
of accurate, low-overhead analyses of human movement and social patterns. As specific
examples, this paper demonstrates how we can use home and work identification to
perform analyses of commute distances and estimates of commuting carbon footprints.
We demonstrate that we can find users’ important locations to within 3 miles 88% of
the time. We further estimate commute distances within 3 miles of ground truth 82%
of the time. In fact, our commute distance estimation errors are quite close to that of an
oracle technique, with a median difference from the oracle of only 0.5 miles. Our work
is the first to show accurate home and work location estimates and apply them to find
carbon emissions from traces that include not just heavy daily cellular phone users, but
a nearly universal sample of the user population.
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Abstract. Accurate and fine-grained prediction of future user location and ge-
ographical profile has interesting and promising applications including targeted
content service, advertisement dissemination for mobile users, and recreational
social networking tools for smart-phones. Existing techniques based on linear
and probabilistic models are not able to provide accurate prediction of the loca-
tion patterns from a spatio-temporal perspective, especially for long-term estima-
tion. More specifically, they are able to only forecast the next location of a user,
but not his/her arrival time and residence time, i.e., the interval of time spent in
that location. Moreover, these techniques are often based on prediction models
that are not able to extend predictions further in the future.

In this paper we present NextPlace, a novel approach to location prediction
based on nonlinear time series analysis of the arrival and residence times of users
in relevant places. NextPlace focuses on the predictability of single users when
they visit their most important places, rather than on the transitions between dif-
ferent locations. We report about our evaluation using four different datasets and
we compare our forecasting results to those obtained by means of the prediction
techniques proposed in the literature. We show how we achieve higher perfor-
mance compared to other predictors and also more stability over time, with an
overall prediction precision of up to 90% and a performance increment of at least
50% with respect to the state of the art.

1 Introduction

The ability to predict future locations of people allows for a rich set of novel pervasive
applications and systems: accurate content dissemination of location related informa-
tion such as advertisement, leisure events reports and notifications [20, 1] could be im-
plemented in a more effective way, avoiding the delivery of information to uninterested
users, and, therefore providing, a better user experience. For example, by exploiting
the availability of future location information, Web search engines such as Google,
Bing or Yahoo! and location-based social network services such as Facebook Places
and Foursquare may provide “location-aware” sponsored advertisements together with
search results that are relevant to the predicted user movement patterns.
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The increasing popularity of smart-phones equipped with GPS sensors makes location-
aware computing a reality. Even in the case of devices where this information is not cur-
rently available, location can be roughly estimated by means of triangulation and cell
estimation techniques or by profiling places through the analysis of the MAC addresses
advertised by nearby devices and 802.11 access points [17]. In addition, these devices
are increasingly always connected to the Internet, at least in areas where GPRS/EDGE
or WiFi connectivity is present. Therefore, information about the current positions of
users can be transmitted to a back-end server, where analysis of the data can be per-
formed at run-time in order to predict future location patterns.

In this paper we propose NextPlace, a new prediction framework based on nonlin-
ear time series analysis [12] for forecasting user behavior in different locations from a
spatio-temporal point of view. NextPlace focuses on the temporal predictability of users
presence when they visit their most important places. We do not focus on the transitions
between different locations: instead, we focus on the estimation of the duration of a visit
to a certain location and of the intervals between two subsequent visits. The existing
techniques are able to forecast the next location of a user, but not his/her arrival and res-
idence time, i.e., the interval of time spent in that location. Moreover, these techniques
are often based on prediction models that are not able to extend predictions further in
the future, since they mainly focus on the next movement of a user [19,26,23,14,2,16].

We focus instead on patterns of residence in the set of locations that are more fre-
quently visited by users. We show that, at least in the datasets under analysis, human
presence in important places is characterized by a behavior that, even if at first glance
seems apparently random, can be effectively captured by nonlinear models. Predictions
are based on the collection of movement data that can be of different types: sets of GPS
coordinates, registration patterns to access points or also information about presence
in locations by means of passive and active transponders (such as badges). In addition,
check-ins performed in location-based social networking services can be exploited to
acquire movement data.

The proposed prediction technique consists of two steps. Firstly, we need to identify
significant locations among which users move more frequently. Secondly, we apply a
model able to predict user presence within these locations and relative residence time by
means of techniques drawn from nonlinear time series analysis [12]. More specifically,
the contribution of this paper can be summarized as follows:

– We describe NextPlace, a novel approach to user location prediction based on non-
linear time series analysis of visits that users pay to their most significant locations.
NextPlace estimates the time of the future visits and expected residence time in
those locations.

– We analyze four datasets of human movements: two GPS-based (representing re-
spectively the positions of the users involved in the deployment of the CenceMe ap-
plication at Dartmouth College [21] and the locations of cabs in San Francisco [24])
and two containing registration patterns of WiFi access points (at Dartmouth Col-
lege [15] and within the Ile Sans Fils wireless network in Montreal, Canada [18]).
We identify regularity and, more specifically, some previously uncaptured degree
of determinism in patterns of user visits to their significant places by means of
nonlinear analysis.
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– We evaluate NextPlace comparing it with a probabilistic technique based on spatio-
temporal Markov predictors [26] and with a linear model [6]. We report an overall
prediction precision over the four datasets of up to 90%, with precision of up to
65% even after a number of hours, and a performance increment of at least 50%
over Markov-based predictors. We show how the adoption of a nonlinear prediction
framework can improve forecasting precision with respect to other techniques even
for long-term predictions.

The rest of this paper is organized as follows: Section 2 describes NextPlace and its
novel approach to prediction based on nonlinear time series analysis as well as illus-
trates the techniques we use for the extraction of significant places. Section 3 presents
the implementation issues and the validation of our approach using real-world measure-
ments, also reporting the results of the evaluation of our method against other predictors.
Section 4 discusses related work and Section 5 concludes the paper illustrating potential
future work.

2 Predicting Spatio-temporal Properties of Mobile Users

Any prediction of future user behavior is based on the assumption of determinism. From
a practical point of view, determinism simply means that future events are determined
by past events, so that every time a particular configuration or situation is observed,
the same (or a similar) outcome will follow. Since in human societies daily and weekly
routines are well-established, human activities are characterized by a certain degree of
regularity and predictability [8].

The intuition behind NextPlace is that the sequence of important locations that an
individual visits every day is more or less fixed, with only minor variations that are
also usually deterministically defined. As an example, if a woman periodically goes to
the gym on Mondays and Thursdays, she may change her routine for those days, but
the changed routine will be more or less the same over different weeks. Therefore, the
sequence of events may still be predictable.

From a formal point of view, let us consider a certain number of mobile users, where
user i freely moves among different locations. For the moment, we do not explicitly
focus on how these locations can be identified, and only assume that the start time
and the duration of each visit of a user to a given location can be determined. A visit
of a user is simply defined by the tuple (u, l, t, d), where t and d are respectively the
time of arrival and the residence time of user u in location l. It is worth noting that
this approach does not model movements but, rather, residence time in some locations,
hence, it can also be adopted in systems without any spatial or geographical information
about locations, i.e., access points in 802.11 WLANs.

We now introduce the two steps of NextPlace and the basic theory behind them.
We first describe how we isolate the user’s significant places, exploiting the technique
proposed by Kim et al. in [14]. Then, we describe our novel method for the estimation
of future times of arrival and residence times in the different significant places and how
we exploit this prediction to compute accurate estimation of where the user will be after
a given time interval. Finally, we describe the mathematical details of the prediction
techniques behind our approach.
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(a) (b)

Fig. 1. Example of frequency map using GPS traces. Higher peaks in (a) reveal places where user
spent most of their time and which represent its significant locations: in (b) we show some visits
to these significant places reported on a geographical map.

2.1 Significant Places Extraction

In this section we present two methods we use to extract significant locations from both
GPS information and WiFi association logs, the two most commonly available sources
of data about user movements.

Extracting Places from GPS Data. Many solutions for the extraction of significant
places from GPS measurements have been presented in the literature [11, 28, 2]. We
choose one that is based on the residence time of a user to quantify the importance of a
place for him/her: the intuition being that permanence at a place is directly proportional
to the importance that is attributed to it by the user.

As proposed in [14], we apply a 2-D Gaussian distribution weighted by the residence
time at each GPS point. This means that at each point the Gaussian distribution uni-
formly contributes also to nearby points, smoothing out values that are close together.
The value of the variance for the Gaussian distributions that we choose is σ = 10
meters, which is related to the average GPS accuracy1. The resulting frequency map
contains peaks which give information about the position of popular locations: we con-
sider regions that are above a certain threshold T as significant places. The threshold T
can be chosen as a fraction of the maximum value of the frequency map. We will show
the application of this technique and how the value of the threshold T can be selected
using two GPS-based datasets in Section 3.

In Figure 1(a) a close-up of a frequency map is shown: when a threshold is applied
to the map, only higher peaks are selected and each peak generates an area defined

1 http://www.gps.gov/
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by a continuous boundary. All GPS points within that area result in visits to the same
significant place. As an example, if we choose a threshold equal to 15% of the highest
peak of the map, we obtain the visits to significant places shown over the area map in
Figure 1(b).

Extracting Places from WiFi Logs. Alternatively, we can derive significant places
from user registrations to 802.11 access points. Since these access points are fixed and
easily identifiable from their globally unique MAC address, this information can be ex-
ploited to extract visit patterns to a set of locations in a straightforward manner. From
this point of view, the most frequently seen access points are natural candidates to rep-
resent significant places. Hence, we can define as popular places for a user the access
points he/she connects to more often, providing that a sufficient number of visits has
been recorded to a given access point. More specifically, we define an access point as
a significant place for a certain user if this user has a sequence of at least n visits to
the access point, in order to filter out all the access points that are seldom visited and to
have a sufficient number of observations from a statistical point of view. For the analysis
presented in this paper, we select n equal to 20.

2.2 Predicting User Behavior

We now describe NextPlace’s location prediction algorithm: in order to obtain an es-
timation of the future behavior, the history of visits of a user to each of its significant
locations is considered. Then, for each location we try to predict when the next visits
will take place and for how long they will last. After this estimation, the predictions
obtained for different locations is analyzed, in order to produce a unique prediction of
where the user will be at a given future instant of time. A theoretical foundation of this
technique is described in Section 2.3.

For each user we keep track of all previous visits to a set of locations, that is, for
each visit we consider the instant when it started and how long it lasted. The algorithm
predicts the next visits to a given location by means of the previous history of visits
((t1, d1), (t2, d2), . . . , (tn, dn)):

1. two time series are created from the sequence of previous visits: the time series of
the visit daily start times C and the time series of the visit durations D defined as
follows:

C = (c1, c2, . . . , cn)

D = (d1, d2, . . . , dn)

where ci is the time of the day in seconds corresponding to the time instant ti (i.e.,
ci is in the range [0, 86400]);

2. we search in the time series C sequences of m consecutive values (ci−m+1, . . . , ci)
that are closely similar to the last m values (cn−m+1, . . . , cn)2;

3. the next value of time series C is estimated by averaging all the values ci+1 that
follow each found sequence;

2 We will discuss the choice of parameter m in the next section.
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4. at the same time, in time series D the corresponding sequences (di−m+1, . . . , di)
are selected; the sequences have to be located exactly at the same indexes as those
in C;

5. the next value of time series D is then estimated by averaging all the values di+1

that follow these sequences.

As an example, if the last three visits of a certain user to a location are Monday at
6:30pm, Monday at 10:00pm and Tuesday at 8:15am, we analyze the history of visits
in order to find sequences that are numerically close to (6:30pm, 10:00pm, 8:15am),
i.e. (6:10pm, 9:50pm, 8:35am) and (6:35pm, 10:10pm, 8:00am): then, assuming that
the next visits that follow these subsequences start at 1:10pm and 12:40pm and last for
40 and 30 minutes respectively, we estimate the next visit at 12:55pm for 35 minutes,
averaging both arrival times and duration times.

The main idea behind this algorithm is the assumption that human behavior is strongly
determined by daily patterns: the sequence of visit start times is therefore mapped to a
24-hour time interval, focusing only on the start time of each visit. The choice of the
value m has an impact on the accuracy of the prediction: in fact, this can be improved
by taking into account more visits in order to identify particular patterns that may be
present only in certain intervals of time such as specific days.

We can generalize this algorithm to predict not only the next visit to a location, but
also successive visits in the future: in fact, we can choose to average together not only
the next values of each subsequences but also values that are 2 or more steps ahead.
However, the prediction of time series can become inaccurate when adopted to calculate
further values in the future [12].

Since we can predict when the future visits to all significant locations will start and
for how long they will last, we can design a simple method to predict the location
where the user will be at a given time in the future. Let us suppose that at time T we
want to predict in which significant location user i will be after ΔT seconds. Then, the
following steps are performed:

1. for each location the sequence of the next k visits (starting with k = 1) are pre-
dicted and a global sequence of all predicted visits (loc1, t1, d1), . . . , (locn, tn, dn)
is created, with t1 ≤ · · · ≤ tn;

2. if there is a prediction (loci, ti, di) which satisfies ti ≤ T + ΔT ≤ ti + di, then
loci is returned as predicted location (in case several predictions exist which satisfy
the predicate, we choose at random between them);

3. if no prediction satisfies the condition stated above, there are two cases: if the min-
imum start time t1 of the current predicted visits is smaller than T + ΔT , then
prediction needs to be extended further in the future in order to find a suitable visit,
thus the parameter k is doubled and the algorithm is repeated considering new pre-
dicted visits. Otherwise, extending the prediction provides visits which start after
T + ΔT and which cannot be exploited for prediction: thus, the algorithm termi-
nates returning that the user will not be in any significant location.

Note that it is realistic for a user to be predicted as being outside the set of significant
places (e.g., maybe transitioning from one to another) and that our technique is also
able to predict this state.
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2.3 Nonlinear Prediction Framework: Key Concepts and Practical
Implementation Issues

In this section we provide a brief overview of the key concepts at the basis of the fore-
casting framework and we discuss the practical issues in implementing it.

In this work we adopt a prediction technique inspired by nonlinear time series anal-
ysis [12]. A time series can be seen as a collection of scalar observations of a given
system made sequentially in time and spaced at uniform time intervals, albeit this last
assumption can be relaxed to allow any kind of temporal measurement pattern [6].

While the scalar sequence of values contained in a time series may appear com-
pletely unrelated to the underlying system, it is possible to uncover the characteristics
of its dynamic evolution by analyzing sub-sequences of the time series itself. In or-
der to investigate the structure of the original system, the time series values must be
transformed in a sequence of vectors with a technique called delay embedding.

More formally, a time series (s0, s1, . . . , sN) can be embedded in a m-dimensional
space by defining an appropriate delay ν and then creating a delay vector reconstruction
for the time series value sn as follows:

βn = [sn−(m−1)ν , sn−(m−2)ν , . . . , sn−ν , sn]

where all vectors βn have m components and are defined in a so called embedding
space. Note that m is the parameter used in the algorithm described in Section 2.2.

The values of the parameters m and ν greatly affect the accuracy of the represen-
tation. Nonetheless, a fundamental mathematical result (the so-called embedding theo-
rem [12]) ensures that a suitable value for m does exist and is related to the complexity
of the underlying system. At the same time, ν might be chosen to represent a suitable
time scale of the phenomenon, since consecutive values in the time series should not be
too strongly correlated to each other.

An effective predictive model can be generated directly from time series data through
the delay embedding. Let us suppose that a prediction for the value sN+Δn, a time
Δn ahead of N , must be made for the time series (s0, s1, . . . , sN). The steps of the
prediction process are as follows:

1. The time series is embedded in a m-dimensional space by defining an appropriate
time delay ν and then creating the related embedding space;

2. The embedding space is searched for all the vectors that are close, with respect to
some given metric distance, to vector βN : more formally, a neighborhood Uε(βN )
of radius ε around the vector βN is created;

3. Since determinism involves that future events are set causally by past events, and
since all vectors βn ∈ Uε(βN ) describe past events similar to the past events of βN ,
the prediction pN+Δn is taken as the average of all the values sn+Δn

pN+Δn =
1

|Uε(βN )|
∑

βn∈Uε(βN )

sn+Δn

where |Uε(βN )| denotes the number of elements of the neighborhood Uε(βN ). The
value of ε should be chosen in order to obtain a sufficient number of vectors for the
prediction.



NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems 159

Intuitively, this algorithm searches the past history to find sequences of values that are
very similar to the recent history: assuming that the evolution is ruled by deterministic
patterns, a given state will always be followed by the same outcome.

In our implementation we have chosen ν = 1, since we do not have to deal with
particular time scales which require to skip some values of our time series. As suggested
in [12], the radius ε of the vector neighborhood is chosen in order to be 10% of the
standard deviation of each time series: this value allows us to obtain enough vectors to
perform prediction and, at the same time, filters out vectors that are not close to βN .

We note that for each prediction all vectors in the embedding space have to be consid-
ered and searched. For this reason, it is wise to use an efficient method to find nearest
neighbors in the embedding space: the main computational burden is the calculation
of the neighborhood Uε(βN ) and the asymptotic complexity O(N2) can be reduced
to O(N log N) with binary trees or even to O(N) with a box-assisted search algo-
rithm [25], which is the method we implement.

3 Validation of the Prediction Framework Using Real-World
Measurements

In this section we introduce the datasets used in our analysis and we describe how we
process them in order to extract significant places. Then, we investigate the predictabil-
ity of the time series extracted from sequences of visits of each user to his/her significant
locations, using standard metrics adopted in time series analysis. Finally, we compare
NextPlace prediction performance against other prediction methods.

3.1 Datasets

For the evaluation of our approach we choose four different datasets of human move-
ments:

1. Cabspotting. This dataset is composed of movement traces of taxi cabs in San
Francisco, USA, with GPS coordinates of approximately 500 taxis collected over
30 days in the San Francisco Bay Area. Each vehicle is equipped with a GPS track-
ing device that is used by dispatchers to efficiently reach customers [24]. The av-
erage time interval between two consecutive GPS measurements is less than 60
seconds.

2. CenceMe GPS. This dataset was collected during the deployment of CenceMe [21],
a system for recreational personal sensing, at Dartmouth College. The GPS data
was collected by means of 20 Nokia N95 phones carried by postgraduate students
and staff members from the Department of Computer Science and the Department
of Biology.

3. Dartmouth WiFi. This dataset was extracted from the SNMP logs of the WiFi
LAN of the Dartmouth College campus. The compact nature of the campus means
that the signal range of interior APs extends to most of the campus outdoor areas.
Between 2001 and 2004 data about traffic in the access points was collected through
three techniques: syslog events, SNMP polls, and network sniffers [9, 15].
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Table 1. Properties of the different datasets: total number of users N , total number of visits V ,
total number of significant places P , average number of significant places per user p, average
number of visits per user v, average residence time in a place D (seconds), total trace length and
average proportion of time spent by each user in significant places

Dataset N V P p v D [s] Trace length Significant time

Cabspotting 252 150612 6122 24.29 597 231 23 days 7.27%
CenceMe GPS 19 3832 225 11.84 201 696 12 days 14.74%

Dartmouth WiFi 2043 772217 539 17.87 377 2094 60 days 11.24%
Ile Sans Fils 804 142407 173 3.61 177 5296 370 days 0.18%

4. Ile Sans Fils. Ile Sans Fils [18] is a non-profit organization which operates a net-
work of free WiFi hotspots in Montreal, Canada. It now counts over 45,000 users
with 140 hotspots located in publicly accessible spaces. These hotspots are de-
ployed mostly in cafes, restaurants and bars, libraries, but also outdoor to cover
parks and sections of popular commercial streets.

We choose a subset of regularly active users for each original dataset, filtering out
all the users that appear only a few times and for which prediction may be worthless. In
Table 1 we report some important characteristics and metrics of the resulting datasets.

3.2 Practical Issues

In order to extract significant places for each user in the Cabspotting and CenceMe
GPS datasets, which are composed of GPS measurements, we need to choose a suitable
threshold T for the frequency map. Thus, we investigate how the average number of
significant places per user changes as a function of the threshold itself. As reported in
Figure 2(a), the average number of places decreases as the threshold increases: for the
Cabspotting dataset a suitable choice is T = 0.10, where the curve changes its slope,
which denotes the transition from a situation with many unimportant significant areas
to a situation with less but probably more important places. However, in the case of
the CenceMe GPS dataset such transition does not occur: hence, we investigate how
the percentage of time spent in significant locations changes with T , as reported in
Figure 2(b): this percentage quickly decreases with T but the steepness of the curve
changes at T = 0.15. Hence, we choose the value of T = 0.15 for this dataset. These
values of T result in an average number of about 24 and 12 places per user for the
Cabspotting and CenceMe GPS datasets, respectively.

When dealing with GPS measurements, the duration of a visit can be computed as
the difference between two consecutive GPS samples. However, the GPS measurement
process usually involves a periodic sampling of the location. When the user is located
for a long time interval inside the same region, this results in several successive short
visits being recorded, whose length depends on the adopted sampling interval. The same
problem may occur with WiFi association logs: since WiFi connectivity may be inter-
mittently available and handoff mechanisms are in place in this type of network infras-
tructure, a long residence time may be split in several shorter sessions.
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Fig. 2. Average number of significant places per user (a) and percentage of time spent in sig-
nificant locations (b) as a function of the threshold T of the frequency map for the Cabspotting
dataset and the CenceMe GPS dataset

In order to infer a more accurate residence time of the user in a certain region, we
apply a merging procedure to the dataset of the sequence of visits. Given a sequence of
visits to the same location (t1, d1), (t2, d2), . . . (tn, dn), if the end time of a visit is close
to the start time of the next one, that is if ti+1 − (ti + di) ≤ δ, we merge them in a new
visit starting at ti and ending at ti+1 + di+1. In this way the visits obtained are more
likely to mimic the real patterns of presence of users, thus improving prediction. We
adopted the value of δ = 60 seconds for the Cabspotting dataset and δ = 180 seconds
for the CenceMe GPS dataset, since these are the values of the scanning period for the
GPS data acquisition. On the other hand, we apply the same merging procedure to WiFi
association logs in the Dartmouth and Ile Sans Fils datasets with a value of δ = 300
seconds, in order to filter out casual disconnections from the access point which may
last for few minutes.

From a statistical point of view, these datasets show different characteristics, as re-
ported in Table 1: while Cabspotting, Dartmouth WiFi and Ile Sans Fils contain mea-
surements for hundreds or thousands of users, CenceMe GPS consists of data related
to a smaller group of moving users. On average about 12 significant locations have
been recorded for each user in the CenceMe GPS dataset. In the Dartmouth WiFi and
Cabspotting datasets the number of significant places is 18 and 24, respectively. On the
other hand, in the Ile Sans Fils dataset we have less than 4 significant locations per user.
This is due to the fact that the Ile Sans Fils dataset contains association logs with access
points located in public spaces, thus, a large portion of individuals are seen just in few
locations. In fact, public access point are not likely to capture some important places for
a given user, such as his/her home and working place. There are also differences in the
residence time of users in their significant locations: while for Ile Sans Fils and Dart-
mouth WiFi the average residence time is about 90 and 30 minutes, in the Cabspotting
and CenceMe GPS datasets it is about 5 and 10 minutes.

Finally, the amount of time spent in significant locations is crucial to the investigation
of the performance of the location prediction technique. While in the CenceMe GPS and
in the Dartmouth WiFi datasets each user spends on average 14.74% and 11.24% of
their time in a significant location, this value drops to 7.27% in the Cabspotting dataset
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Fig. 3. Cumulative Distribution Function of the predictability error of the time series of the start
instants extracted from the various datasets. We report the results for different values of the em-
bedding dimension m adopted in the prediction method.

and to 0.18% in the Ile Sans Fils dataset, since it covers a longer period of time (more
than one year) and many of its users are present less regularly than in the other datasets.

3.3 Time Series Predictability Test

In order to exploit time series techniques to predict user behavior, we first need to
investigate if determinism is present in the extracted time series. In other words, we
want to evaluate the predictability of these time series.

Let us consider a time series (s0, s1, . . . , sN). If a real measurement for sN+1 is
given, the prediction error is the difference between sN+1 and the predicted value pN+1.
Given a prediction technique, it is possible to obtain predicted values (p0, p1, . . . , pN)
for the whole time series. Then, the mean quadratic prediction error can be evaluated as
ε = 1

N

∑N
n=1 (sn − pn)2. Large values of ε indicate that the prediction is not accurate

and the time series is not predictable.
The evaluation of ε is based on the comparison to the variance σ2 of the time series:

thus, a convenient way of deciding whether ε is small or large is to take the ratio ε
σ2 ,

which is the predictability error: if this ratio is close to 1, then, the mean quadratic
prediction error is large, while if it is close to 0, the mean quadratic prediction error is
small. We refer to this ratio as the predictability error of a prediction algorithm. The
absolute error value ε may be meaningless if not compared to the average amount of
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fluctuations a time series exhibits: by dividing by the variance of the series we can
normalize the error and compare the prediction accuracy for different time series.

We exploit this metric to evaluate whether the time series extracted from user visits
in the different datasets are predictable. We divide each dataset in two halves: we use the
first half to build the model and we compute predicted values of the second half and vice
versa. A value equal to 1 means that no determinism is present in the time series, since
in this case the predictor has the same accuracy of the simple average value, whereas a
value closer to 0 indicates a high degree of determinism.

In Figure 3 we show the Cumulative Distribution Function of the predictability error
for the time series of the visit start times for different values of the embedding dimen-
sion m. We have also investigated the predictability error for the time series of visit
end times, obtaining similar results, which we do not show due to space limitations.
On average, a large proportion of users exhibit predictability: in the Dartmouth WiFi
dataset 80% of the time series show predictability error smaller than 1, whereas in the
CenceMe GPS and Cabspotting datasets the same figure is 70% and it drops to 40% in
the Ile Sans Fils dataset, which show less predictability than the others. This is due to the
fact that visits may not occur every day with the same pattern for access points in public
places, since different individuals are likely to show less regularity in public space than
in more personal locations as living or working places, which are not present in this
dataset. Moreover, in all datasets the predictability error is lower for higher values of
the embedding dimension m: this confirms that nonlinear methods improve prediction
quality, since they are able to capture and recognise specific patterns of visits and to
estimate when the next visit will be. However, we have noticed that values of m ≥ 4
show worse performance because we do not have sufficient statistics in order to make a
correct prediction.

Interestingly, we expected to observe a lower degree of regularity in the Cabspot-
ting traces, since the movements of a taxi are related to the destinations of the different
customers and these destinations can be hardly predictable. Nonetheless, we were able
to identify a set of places among which taxis move with more regular patterns. These
places correspond to areas where taxi drivers periodically go and wait for new cus-
tomers, such as touristic locations, shopping malls, cinemas, and they tend to exhibit
regular and predictable patterns.

3.4 Evaluating Prediction Accuracy

We compare the performance of NextPlace with those of other two methods: a state-of-
the-art Markov-based spatio-temporal predictor and a modified version of NextPlace,
where time series of visits are predicted with linear methods rather than with nonlinear
algorithms.

Methodology. Firstly, we compare NextPlace with a more sophisticated spatio-
temporal Markov predictor derived by extending the techniques presented in [26]. To
the best of our knowledge, this is the most accurate algorithm that has been presented
in the literature for this class of prediction problems, because it combines spatial and
temporal dimensions to estimate both next location and handover time for users in a
cellular network.
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Consider a user visit history among several locations H = (t1, d1, l1), . . . , (tn, dn,
ln), where ti is the time when the user arrived at location li and di is the residence time
in that location. Then, from H we extract the location history L = l1, . . . , ln and the
order-k location context Lk = L(n − k + 1, n) = ln−k+1, . . . , ln−1, ln. The history
L is searched for instances of the context Lk and, for each destination that follows
an instance, we examine the duration of the previous residence time. More formally,
we extract the following set of inter-arrival times Ax and set of durations Dx for each
possible destination x:

Ax = {ti+1 − ti if L(i − k + 1, i + 1) = (Lk, x)}
Dx = {di+1 if L(i − k + 1, i + 1) = (Lk, x)}

Then, we compute the estimated time when the user will move to location x and the
estimated residence time in x by using a CDF predictor with probability p = 0.8 [26].
Moreover, a Markov predictor of order k is used to assign the probability of transition
between the current location and the possible destinations. Finally, spatial and temporal
information are combined to obtain the predicted location. In order to predict not only
the next location but also the subsequent ones, we extend this approach taking the pre-
dicted location as the current one and computing again the next movement. We refer
the interested reader to the original paper for further details [26].

To understand how largely NextPlace relies on the performance of the nonlinear time
series predictor, we can design a linear version of our prediction technique. We use an
order-k running average predictor instead of a nonlinear method to estimate the future
values of a time series: given the sequence of previous visits of a user to a location,
the last k visit duration times and k intervals between visits are averaged to obtain a
prediction of future visits. Then, the future location is chosen among several predicted
locations according to the same algorithm at the basis of the nonlinear predictor (pre-
sented in Section 2.2). However, this simplistic time series predictor ignores how user
behavior changes over time, since high heterogeneity can be observed in visits occur-
ring during different times of the day. Focusing only on recent data and not investigating
these temporal aspects may not be sufficient to obtain accurate estimates.

Results. We now evaluate the performance of NextPlace with the nonlinear predictor
presented in Section 2.2 compared to the other predictors previously described.

We use the following definition of correctness: if we predict, at time T , that the user
i will be at location l at time TP = T + ΔT , the prediction is considered correct
only if the user is at l at any time during the interval [TP − θ, TP + θ], where θ is the
error margin. It is important to note that each prediction algorithm can also estimate if
the user will not be in any of her significant places: thus, a prediction may be correct
whether the user is predicted to be in a particular location l and then he/she is in l or
if the user is predicted not to be in any significant location and then, in fact, she is
not. However, as reported in Table 1, the fraction of time that on average users spend
in their significant locations ranges between 14.74% in the CenceMe GPS dataset and
only 0.18% in the Ile Sans Fils dataset. Hence, it is not easy to understand if predictions
are accurate because a method is performing well or because, on average, it is just easier
to predict the user outside of all her significant locations.
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Fig. 4. Prediction precision as a function of time interval ΔT for the different datasets and for
different predictors: NextPlace with nonlinear predictor for different values of embedding di-
mension m = 1, 2, 3 (NL1-NL2-NL3), first-order and second-order Markov-based (M1-M2)
and NextPlace with linear predictor (L). Error margin is θ = 900 seconds.

Therefore, we introduce an accuracy metric that takes into account this issue. We
define the prediction precision as the ratio between the number of correct predictions
and the number of all attempted predictions which forecast the user to be in a significant
location. We do not consider for the evaluation any predictions which forecast the user
outside her significant locations.

We report the performance of different predictors: we test NextPlace with different
values of the embedding parameter m = 1, 2, 3, two order-1 and order-2 Markov-based
predictors and the linear version of NextPlace with a running average predictor consid-
ering the last m = 4 values. For each dataset, we use the first half to build a prediction
model and then we compute predictions during the second half and, for each user, we
make 1000 predictions at uniformly distributed random instants. Finally, prediction pre-
cision is computed and we investigate how it changes with ΔT , using an error margin
θ = 900 seconds. All results are averaged over 20 runs with different random seeds.

We see in Figure 4 that for all datasets, NextPlace with its nonlinear predictor is
always outperforming the other methods. We also note that using a higher value of
m improves prediction quality, as it can be appreciated especially in the GPS-based
Cabspotting and CenceMe GPS datasets. Similarly, Markov models are able to provide
correct predictions when ΔT is smaller than 1 hour: however, except for the Ile Sans
Fils dataset, the performance of the nonlinear NextPlace are at least about 50% better
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of the Markov-based predictors, since they reach a maximum precision of 60% while
NextPlace achieves a precision higher than 90%. Moreover, when ΔT increases, the
precision of Markov predictors decreases rapidly and the performance gap with the
nonlinear approach widens. This can be explained by the fact that Markov predictors
are generally employed to predict the next movement and, thus, when predictions are
extended in the future, movement after movement, a large error is accumulated.

If we substitute the nonlinear predictor in NextPlace with a linear one, we observe a
similar trend but precision is considerably lower, since errors on time series prediction
are larger and, hence, affect the location prediction. However, NextPlace with both non-
linear and linear predictors is less dependent on ΔT than Markov models, which show
a lower precision when predictions are extended in the future. Again, this demonstrates
how NextPlace, which focuses only on temporal information of visits in significant
places, is more robust for long-term predictions.

As discussed in Section 3, the Ile Sans Fils dataset exhibits less predictability. This
is confirmed by the analysis of prediction precision, which shows the lowest figures
among all the datasets. The other datasets score a precision equal to about 90% for
ΔT = 5 minutes and around 70% for ΔT = 60 minutes. We also investigate the
impact of the error margin θ on prediction results: prediction precision is lower for
smaller error margins, but it shows the same trends for all predictors and for all the
datasets. In Figure 5 we report how prediction precision of our nonlinear approach with
m = 3 is affected by different error margins for some values of ΔT . Even with θ = 0,
which represents the worst case scenario, prediction precision is between 50% and 60%
after ΔT = 60 minutes for all datasets except Ile Sans Fils, where it is below 50%.

From a general point of view, our evaluation shows how NextPlace achieves high
prediction accuracy, even for long-term predictions made some hours in advance. Fur-
thermore, these results also show how focusing on spatial movements, as Markov mod-
els do, may be useful only for short-term predictions. Instead, focusing just on temporal
information about recurrent patterns in significant places proves to be more robust both
for short-term and long-term predictions, since NextPlace outperforms Markov models
even for small values of ΔT .

4 Related Work

Pioneering work [3,4] has focused on the analysis of mobility traces in order to gain in-
sight about human mobility patterns. Key papers in this area include studies on mobility
and connectivity patterns, such as [5, 13]. The main findings are that contact duration
and inter-contacts time between individuals can be represented by means of power-law
distributions and that these patterns may be used to develop more efficient opportunis-
tic protocols [10]. In addition, temporal rhythms of human behavior have been studied
and modeled to discover daily activity patterns, to infer relationships and to determine
significant locations [7]. This related body of work concentrates on the statistical char-
acterization of temporal behavioral patterns of groups of users, whereas we concentrate
on prediction of single users.

The evaluation of prediction techniques applied to the problem of forecasting the
next location (but not the arrival time to that location and the corresponding residence
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Fig. 5. Prediction precision of NextPlace with nonlinear predictor with m = 3 as a function of
error margin θ and for different values of ΔT

time) are presented in [27]. A prediction framework based on spatio-temporal patterns
in collective mobility trajectories has been presented in [22]: this method attempts to
predict the next location of a moving object by matching a new trajectory to a corpus
of global frequent ones. While this prediction technique is more general, as it captures
dependencies between visits at different places, our method includes time-of-day infor-
mation and does not rely on global patterns, allowing prediction to be made also for
users who deviate from collective behavior. In [2] the authors present a model of user
location prediction from GPS data. A simple first-order Markov model to predict the
transitions between significant places is used, albeit in this work temporal aspects are
not taken into consideration. In [19] the significant places are extracted by means of
a discriminative relational Markov network; then, a generative dynamic Bayesian net-
work is used to learn transportation routines. Another system for the prediction of fu-
ture network connectivity based on a second-order Markov model is BreadCrumbs [23].
Again, this system is able to predict only the next location of the user and not the time
of the transitions and the interval of time during which users reside in that specific lo-
cation. Similarly, Markov based techniques have also been applied to the prediction of
the destinations (geographical locations) of vehicles using for example partial trajec-
tories [16]. As we have shown in the evaluation section, this class of models is able
to provide precise predictions only for instants of time close in the future, given the
inherent memorylessness of Markov predictors.
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5 Conclusions

In this paper we have presented NextPlace, a new approach to spatio-temporal user
location prediction based on nonlinear analysis of the time series of start times and
duration times of visits to significant locations. To the best to our knowledge, this is the
first approach that not only allows to forecast the next location of a user, but also his/her
arrival and residence time, i.e., the interval of time spent in that location. Moreover,
existing models are not able to extend predictions further in the future, since they mainly
focus on the next movement of a user.

We have evaluated NextPlace comparing it with a version based on a linear predictor
and a probabilistic technique based on spatio-temporal Markov predictors over four
different datasets. We have reported an overall prediction precision up to 90% and a
performance increment of at least 50% over the state of the art. We have showed how
the adoption of a nonlinear prediction framework can improve prediction precision with
respect to other techniques even for long-term predictions.

As future work, there is a number of potential improvements that can be pursued.
Regular collective human rhythms can be exploited to refine the prediction and a prob-
abilistic framework can be used to choose between equally promising next locations,
giving more flexibility to applications. Finally, we are interested in the investigation of
prediction models which take into account human rhythms on a weekly basis, in order
to better capture regular human behavior on a longer time scale.
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Abstract. We contribute a method for approximating users’ interruptibility 
costs to use for experience sampling and validate the method in an application 
that learns when to automatically turn off and on the phone volume to avoid 
embarrassing phone interruptions. We demonstrate that users have varying 
costs associated with interruptions which indicates the need for personalized 
cost approximations. We compare different experience sampling techniques to 
learn users’ volume preferences and show those that ask when our cost ap-
proximation is low reduce the number of embarrassing interruptions and result 
in more accurate volume classifiers when deployed for long-term use.  

Keywords: interruptibility, preference elicitation, mobile devices, machine 
learning. 

1   Introduction 

As mobile devices become increasingly ubiquitous in our environments, they increas-
ingly ring or beep at inappropriate times or in inappropriate contexts such as in meet-
ings or in movies. While we receive reminders to turn off our phones or put them in 
silent mode in these contexts, we often forget to do so which can result in embarrass-
ing situations. Even when we do remember, we then forget to turn the ringer on af-
terwards resulting in missed calls [21] or missed notifications about SMS messages 
and calendar events. In this work, we are interested in learning users’ preferences for 
receiving audible notification preferences in order to enable an application we built to 
automatically change the volume of users’ phones. 

Because users often forget to change their phone volumes themselves, we cannot 
automatically train a machine learning classifier using their volume settingsas they are 
not an accurate indication of their actual volume preferences. Because we expect 
these preference rules to be complex, it is not feasible for users to define volume rules 
before using our application. Instead, our application elicits volume preferences from 
the user through experience sampling while they are using the phone [14, 24, 27]. 
However, the experience sampling itself may interrupt and embarrass the user in the 
same situations as the original notifications. In order to reduce these interruption costs 
associated with asking, Kapoor and Horvitz have proposed and demonstrated the 
success of a decision-theoretic experience sampling technique that builds accurate 
classifiers by asking for preferences only when the potential cost of misclassifying 
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that preference outweighs the interruption cost of asking now [13]. Our work builds 
upon this previous work to model user-specific costs (rather than an average cost for 
all users) while maintaining a high level of accuracy for all users.  

In particular, while the previous work assigns constant costs for asking at an inap-
propriate time and for misclassifying preferences for all users and all situations, we 
show that different users have different costs and these costs vary for each user in 
different situations. One user may not want to be interrupted during work, another 
may not want to be interrupted during meetings at work but would answer if neces-
sary, and another may have no problem being interrupted at work. A constant model 
cannot capture this complexity and the wrong model could severely impact the usabil-
ity of the model for users who have high costs for interruption. We aim to address 
these potential usability problems by creating personalized cost models for each user. 
Although users may not be able to predefine their interruption costs for all situations 
(just as they cannot predefine preferences for a classifier), we assume they can ap-
proximate this cost for a broad set of situations that we survey them about. We pro-
pose that these approximations can be used to determine times to ask for notification 
preferences that reduce the interruption cost from asking while maintaining the high 
accuracy that Kapoor has shown previously.   

We recruited participants to test the usability of our experience sampling technique 
against other commonly used techniques and to test the accuracy of the resulting clas-
sifiers’ volume prediction. Prior to testing the on-phone application, participants filled 
out surveys about their predicted phone volume preferences in a variety of situations. 
Additionally, we asked for participants’ predicted costs of being asked questions and 
the potential costs of an application misclassifying their preferences in each situation. 
Then, for two weeks, the application learned the users’ preferences through one of 
three experience sampling techniques (random sampling, uncertainty sampling, and 
our augmented decision-theoretic sampling). For participants in our experience sam-
pling condition, we used the survey costs to approximate, and to determine when to 
ask for, their preferences. Then, users tested the accuracy of their classifiers for an 
additional two weeks.  

In this work, we make the following contributions. First, we contribute a method 
for approximating interruptibility costs and show that it improves the timeliness of 
questions asked during experience sampling. Second, we find that 7 out of 10 partici-
pants in the decision-theoretic condition reported very high accuracy (near 100%) 
with few or no errors while testing their classifier for two weeks. Third, we find that 
the user-specific cost models, while effective at improving usability for all users, 
reduced accuracy for the remaining 3 decision-theoretic participants as it asked too 
few questions and thus we caution using this technique for users with high asking 
costs. Finally, for these high cost users, we show that their initial preferences from the 
surveys can be used to create more accurate classifiers without sampling.   

2   Related Work 

As mobile phones are so ubiquitous and we increasingly have them available with us, it 
is becoming more important to understand when it is appropriate for them to interrupt  
us through rings and beeps. While users can characterize their own interruptibility  
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preferences by changing phone modes (e.g., ring, vibrate, silent) to avoid unwanted 
phone calls [27], they often forget to set and reset their phone modes, resulting in un-
wanted interruptions or potentially missing important calls, or SMS or calendar notifica-
tions due to silent notifications [21]. With a model of interruptibility, a phone could 
automatically set its volume to avoid inappropriate interruptions and important missed 
calls.  

Phones today offer a variety of sensors such as accelerometers, microphones, and 
GPS that can be leveraged to classify a user’s context and interruptibility preferences. 
Studies have shown that human interruption in offices can be captured accurately by 
simple sensors such as these [6, 9], and other studies have found that users decide 
whether to answer their phones based on their activity, location, and who is calling – 
all of which are becoming more observable using current phone sensors [7, 15, 16]. 
With new applications to classify interruption preferences and react based on these 
predictions, it is not clear what accuracy level is acceptable for users. Kern and 
Schiele found that interruption classifiers generated by users predefining rules re-
sulted in 80-85% accuracy (the highest of all classifiers they tested) [14]. In a simu-
lated phone experiment, Khalil and Connelly found that users rated their simulated 
volume changer highly even though it incorrectly changed phone volume 9% of the 
time, but that different users had very different satisfaction levels with the classifier 
accuracy [15]. It is important to test machine learning classifiers to understand wheth-
er users find their accuracy tolerable for real world use. 

While it is possible for machine learning researchers to collect data and build clas-
sifiers that apply to all users in some applications, it is infeasible for creating person-
alized preference models such as those for interruption because different people have 
different preferences. Additionally, because users often forget to change their phone 
volumes, their current volume settings are not an accurate indication of their actual 
volume preferences and the labels cannot be captured automatically as in [5] to learn 
email classifiers. However, Kern and Schiele argue that if the mobile device could use 
experience sampling [2, 23] to elicit preferences while the user is using the device, the 
resulting classifiers would be more accurate [14].  

Many different experience sampling techniques have been proposed to accurately 
elicit data labels from users in order to build classifiers including diary studies [3], 
device-initiated questions at different intervals of time [10, 20], and based on context-
awareness [11] and previous labels [26]. The active learning literature have also  
proposed a variety of ways to choose which data should be labeled [1, 12, 17, 18]. 
However, it has been shown that the frequency and repetition of questions can affect 
the accuracy and compliance with experience sampling [22]. Horvitz has argued [8] 
and attempts have been made in both the machine learning and experience sampling 
communities [4, 12, 13, 14] to take into account users’ interruption costs to determine 
when to ask. Kapoor and Horvitz propose a decision-theoretic sampling approach that 
trades off an interruption cost of asking and a future cost of misclassification to limit 
the number of questions but these costs are not personalized for each user [13]. For 
example, one user may be more willing to answer even when they are busy in favor of 
producing a higher accuracy classifier while another wants to receive as few questions 
as possible. Additionally, Kapoor and Horvitz’s resulting preference classifiers were 
not deployed to users so it is unclear whether their 70% accuracy obtained during the 
experience sampling is tolerable for users. For clarity in our paper, we differentiate 
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interruptibility preferences that are learned by the classifier from interruption costs of 
asking used to determine when to ask for preferences. 

In this work, we aim to approximate users’ individual interruption costs to improve 
the usability of an experience sampler by limiting the questions that are asked when 
each particular user is busy. In particular, we build upon Kapoor’s decision-theoretic 
experience sampling technique to include our personalized cost of asking models that 
we approximate with users’ survey responses. We use the interruptibility preference 
data collected via experience sampling to build a classifier to determine when users 
want their phone to ring (i.e., when they are interruptible). We compare decision-
theoretic sampling using our personalized cost models to more traditional experience 
sampling approaches and show that our personalized cost models lead to more timely 
questions for users and often led to nearly 100% accurate interruptibility preference 
classifiers. Additionally, we test our classifiers over two weeks to understand not only 
the costs of collecting personalized data but also the required accuracy of classifiers 
deployed to users in the real world.  

3   Domain: Mobile Phone Interruptibility Preferences 

We designed an Android application that learned users’ volume preferences for phone 
calls, SMS messages, and calendar alarms. The application ran as a background proc-
ess on the phone and listened for notifications (phone calls, incoming SMS messages, 
and calendar alarms). When a new notification arrived (e.g., when the phone is about 
to ring), the application collected a variety of sensor and user-generated features and 
ran a classifier on those features to determine if the phone volume should be loud or 
silent. We did not turn on or off the vibration for this study.  

Phone Interruption Features 
We collected a variety of features based on sensor and other data that we can actively 
collect and have been shown to be effective at determining mobile interruptibility 
(e.g., [7, 25, 27]) (Table 1). Examples of these features include GPS longitude, lati-
tude, the time of day, and whether the user is talking on the phone. Additionally, the 
Android API provides information about the notification itself, which we will call the 
reason for the notification (in bold in Table 1). For phone calls and SMS messages, 
this includes information about the type of person who was contacting the user (e.g., 
if they were in the user’s favorites list, contact list, or neither) and the frequency of 
contact by this contactor. Calendar notification reasons included information about 
whether the calendar event was repeating versus a one-time event. 

Due to the high battery cost of collecting this information on the phone, we only 
collected it when a new notification arrived with the exception of GPS coordinates. 
GPS coordinates were collected once per minute when the accelerometer values were 
above a certain threshold. Otherwise, it was assumed that the user was not moving 
and the GPS was turned off. As a result, the application had to quickly analyze the 
features and run the classifier to change the volume before the first ring or beep oc-
curs, in case it was necessary to suppress it – in approximately ½ second. 
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Table 1. Features used in our personalized cost models - bold indicate the notification context, 
while the rest describe the participants’ situations 

GPS: Longitude, Latitude, 
Speed 

Accelerometer X, Y, Z 
axes 

Time until Next Meeting 

User in Meeting Noise (in dB) Hour of Day 

Day of Week User on Phone 
Count of Times On-Phone 
Caller has Contacted User 

User on Phone with 
Someone in Contact List 

User on Phone with 
Someone in Favorite List 

Next Meeting is a Repeated 
Meeting 

Contactor is in Contact 
List 

Contactor is in Favorites 
List 

Count of Times Contactor 
Has Contacted User 

 

Interruptibility Classification Model 
In this work, we use logistic regression (LR) classifiers because of the computational 
speed and efficiency on small platforms such as phones. The LR model distinguishes 
between two “classes” of interruption preferences – those in which the phone should 
audibly ring (LOUD = 1) and those in which it should not (SILENT = 0) – using the 
features F defined in Table 1. In particular, for a new situation with features F, LR 
calculates the probability of those features being labeled as LOUD as: 

 

If P(LOUD|F) is greater than 0.5, then the prediction is LOUD. Otherwise, the predic-
tion is SILENT. The classifier defines the weights wi by minimizing differences  
(errors) between the labels yj that the user provides through experience sampling 
(training data) and the classifier’s predicted label Yj for each training example j: 

 

We use experience sampling techniques to generate the training preference data 
that is used to learn to a classifier that distinguishes users’ interruption preferences –
when they want audible notifications. Each time a user responds to the experience 
sampler’s question, the features of the current notification and the user’s response are 
given to the LR classifier as training data to update the weights. Additionally, two of 
the experience sampling techniques - uncertainty and decision-theoretic sampling - 
use the classifier to determine whether to sample for preferences on new notifications.  

Study Overview 
Our study contains 3 parts. First, we surveyed users of mobile phones to understand 
their interruption preferences and interruption cost to learn those preferences in a 
variety of situations: at work, in the movies, at home. We will show that they not only 
had different preferences (as found in previous work) but also that they have different 
costs of asking. We then recruited participants to train a preference classifier for two 
weeks to understand the usability and accuracy of different sampling techniques. 
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Finally, we tested the model of their personalized classifiers for an additional two 
weeks to understand whether the final accuracy is tolerable for the participants. 

4   Experience Sampling to Acquire Training Data 

Experience sampling was originally introduced to intentionally interrupt study par-
ticipants in order to have them make notes about their current situations [2]. These 
interruptions could happen at regular or random intervals with the expectation that 
participants would be more accurate in describing their current situations in the mo-
ment rather than later during interviews. Rather than depend on users to define their 
preferences before our study or recall them each evening, we use this approach to 
collect user preferences for training our classifiers.  

We want to use experience sampling to build and train personalized preference 
classifiers for mobile phone users without affecting the usability of our application. 
Unlike traditional experience sampling techniques in which the participant should be 
interrupted, we are interested in minimizing this interruption so that users are more 
likely to answer the questions over time [22]. Several techniques have been proposed 
for when to collect accurate data from users. However while some focused on mini-
mizing the questions, they do not guarantee that questions minimize interruption.  

Random Sampling 
In random sampling, the decision to elicit the user’s preferences is made irrespective 
of the classifier that is being built with the user’s responses. It is likely that a prefer-
ence may be asked for the same or very similar situations multiple times, making 
some of the elicitations extraneous. However, this sampler ensures that the there is a 
broad set of data to train a classifier with. In our work, we assume that a user’s phone 
rings on average 3 times per day (participants were screened for this) and we want the 
phone to ask at least once per day so our random sampler elicits preferences approxi-
mately 1/3 of the time when the phone rings. To decide when to ask, the sampler 
generates a random number p between 0 and 1 and asks if p< 0.3. 

Uncertainty-Based Sampling 
Unlike random sampling, uncertainty sampling builds the preference classifier using 
the data collected so far and then decides whether to ask for a new preference based 
on the classifier prediction [1, 17]. The goal of uncertainty-based sampling is to re-
duce the number of labeled preferences by only asking in situations that have not 
previously been encountered. If a new situation is encountered, it may benefit the 
classifier to get the user’s preferences in order to classify it correctly in the future. 
However, if a similar situation was already encountered, the user should not have to 
provide their preferences again.  

Specifically, classifiers such as LR, output a real value p between 0 and 1 rather 
than the binary 0/1 classification with the rule that if p< threshold of 0.5, then predict 
0, otherwise predict 1. We use P(LOUD|F), defined above, as our uncertainty measure 
p, where LOUD is defined as 1. The closer to 0.5, the less certain the classifier is of 
the user’s actual preference and the less likely it is that there is a previously labeled 
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situation that is similar to the current one. Uncertainty sampling asks for the user’s 
preference for the notification if the current classifier outputs a p between 0.3 and 0.7. 

Decision-Theoretic Sampling 
Recently, Kapoor and Horvitz introduced decision-theoretic sampling to limit the 
number of labels the sampler requests about the user’s interruptibility by taking into 
account the p value from uncertainty sampling and other interruption cost information 
about the user [13]. When the uncertainty is high, this technique trades off a prede-
fined cost of asking A (a user’s cost of interruption for a question) with the cost of 
misclassification M (user’s preference for accuracy) with the aim of collecting equal 
amounts of data when the user was busy and when the user was available. If the cost 
of asking is higher than the cost of misclassification, the assumption is that the user is 
busy. If the cost of misclassification is higher, the assumption is that he is more will-
ing to answer. The decision-theoretic sampler asks for a user’s volume preference if 
M > A, where M is defined in terms of the change in the prediction uncertainty (Δp) if 
the new data is added (details in [12]). 

In Kapoor’s work, the costs of asking and misclassification were kept constant 
across all users and equal – 1 each. However, some recent work has indicated that 
different users may deal with misclassifications differently [15]. Some users may 
have very high cost of misclassification and therefore may be much more willing to 
answer questions to train an accurate classifier or vice versa. By more accurately 
estimating these costs for each user, we argue that it is possible to create a more per-
sonalized asking mechanism that is more usable for each user. Like phone notifica-
tions themselves, it is difficult for users to predefine the situations in which they are 
willing to be asked questions. In order to approximate the cost of interruption to de-
termine when to ask, we propose to survey users’ interruption preferences with a set 
of concrete situations and use linear regression to interpolate to other situations that 
the user encounters during normal daily phone use. We will compare the usability and 
accuracy of our augmented decision-theoretic experience sampling approach against 
the other experience sampling techniques.  

5   Approximating Cost Models with Surveys 

In order to understand phone users’ predicted volume preferences and interruption 
and misclassification costs across a variety of situations, we surveyed users of smart 
phones who receive several phone calls, SMS messages, and calendar alarms daily. 
Participants were asked to rate their preferences for receiving audible notifications in 
a variety of hypothetical, but real world, situations and their expected costs to train 
the classifier. We analyzed the differences in preferences and cost ratings between 
participants in the same situation as well as differences that a single participant pro-
vided across multiple situations to determine if a single approximation (as found in 
[15]) is sufficient or if personalized approximations are also needed.  

Method 
Before the survey began, participants were first asked a series of questions about their 
work schedule and common modes of transportation, which might affect their survey  
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Table 2. Eight questions were asked about whether the user’s phone should ring in a meeting at 
work. Prior to taking the survey, participants were given definitions of the notification contexts 
to help them answer the questions. 

Notification 
Type  Notification Context Question 

Phone 
Favorite List,  
Contact List,  

Frequently Calls 

If you were at work in a meeting and someone in 
your favorites list called, would you want your 

phone to ring aloud? 

Phone 
Not in Favorite, 

Contact List,  
Occasionally Calls 

If you were at work in a meeting and someone in 
your contact list called, would you want your 

phone to ring aloud? 

Phone 
Not in Favorite,  

Not in Contact List,  
Few (if any) Calls 

If you were at work in a meeting and someone 
not in your contact list called, would you want 

your phone to ring aloud? 

SMS 
Favorite List,  
Contact List,  

Frequently Texts 

If you were at work in a meeting and someone in 
your favorites list texted you, would you want 

your phone to beep aloud? 

SMS 
Not in Favorite, 

Contact List,  
Occasionally Texts 

If you were at work in a meeting and someone in 
your contact list texted, would you want your 

phone to beep aloud? 

SMS 
Not in Favorite,  

Not in Contact List, 
Few (if any) Texts 

If you were at work in a meeting and someone 
not in your contact list texted, would you want 

your phone to beep aloud? 

Calendar Repeating Meeting 
If you were at work in a meeting and a repeating 
meeting was about to start, would you want your 

phone to beep aloud to remind you? 

Calendar 
Non-repeating  

Meeting 

If you were at work in a meeting and a non-
repeating meeting was about to start, would you 

want your phone to beep aloud to remind you? 

 
responses about situations in which they want audible notifications. Participants were 
then given 20 hypothetical situations when their phone might display a notification 
for each notification type. These situations were drawn from the sensor features in 
Table 1 and described participants’ environments (e.g., work or movie theater) or 
activities at the time of the interruption (e.g., driving a car or relaxing at home).  

Participants were given a short description of each of the situations and notification 
reason for the interruption, and were asked 1) if they would want audible notifications 
in that situation (interruption preference). Then they were asked to rate 2) their ex-
pected annoyance if the phone has the wrong volume setting (cost of misclassifica-
tion) and 3) their expected annoyance if the phone asked which volume it should use 
(cost of asking). The questions were as follows: 

1) In this situation, would you want your phone to ring out loud? Answer: Yes/No  
2) How upset would you be if the phone did the opposite (rang when it should have 

been silent or vice-versa)? Answer: Likert scale 1 (no problem) to 7 (I would be 
very upset).  
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3) In this situation, how upset would you be if your phone asked what it should do if 
it didn’t know? Answer: Likert scale 1 (no problem) to 7 (I would be very upset). 

An example of the questions for a situation where a user is in a meeting at work is 
found in Table 2, Additionally, participants were able to list exceptions to their inter-
ruption preferences for each situation.  

All combinations of situations, notification reasons and notification types (phone 
call, SMS message, or calendar alarm) were presented to participants. Because of the 
number of situations that would be necessary to train a classifier, we split the survey 
into twelve parts. Each participant was given the option of answering all questions 
through all 12 surveys, but was not required to complete them all. Before each survey, 
participants confirmed that they did receive each notification type the survey focused 
on (e.g., only those who received calendar alarms filled out the calendar surveys).  

Participants 
Participants were recruited through a Carnegie Mellon participant recruiting website 
to complete the online surveys. We are interested in both within-subject differences 
across notification types, as well as between-subject differences for each situation. In 
total 44 participants took all 12 surveys and 50 more participants took subsets of the 
surveys for an average of 69.25 participants per survey. Sixty-five out of 94 partici-
pants reported that they were students. The rest reported jobs such as cashier, machine 
shop manager, photographer, and administrative assistant. The average age of the 
participants was 25.27 with standard deviation 6.3. 

Approximating Participants’ Costs 
We received a total of 9219 responses to our surveyed situations questions and ana-
lyzed the proportion of participants who wanted audible notifications for each notifi-
cation type (calls, SMS messages, or calendar alarms), situation, and notification 
reason to understand interruption preferences. We found that participants had very 
different interruption preferences for each type of notification, which is contrary to 
current phone settings that only allow a single phone volume for all notification types. 
For example, at work, 45% of participants wanted calendar notifications during meet-
ings compared to 7% on average who wanted phone calls or text messages in the 
same situation (Figure 1). Only 35% of participants wanted to receive phone calls at 
work, but more wanted text messages, especially from those on their favorites list.  

Participants noted that, currently, they often kept their phone on vibrate rather than 
silent or loud volume because of these situational and notification type differences. 
One participant said that they prefer to err on the side of caution when it comes to 
phone volume and “I can find the time to check the onscreen message if I'm not too 
busy” rather than listening for an audible notification. When they had to decide on a 
loud or silent volume setting, participants often responded that they would not want 
their phone to ring “unless it was a family emergency” or “unless I’m getting a ride 
from that person.” These exceptions are hard to enumerate and predefine and indicate 
a need to use experience sampling to capture preferences in situ. 

In order to be able to collect these in situ responses, we use their surveyed costs of 
misclassification and asking. Participants reported varying costs of misclassification 
responses on the Likert scale from 1-7 (mean 4.3, s.d. 2.1). Participants responded  
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Fig. 1. Participants varied greatly in their preferences for audible notifications at work when 
they were not in meetings, but mostly agreed that they should not receive calls or text messages 
during meetings 

 

nearly half of the time (4436/9219 responses) that they would have “No Problem” if 
their phone asked them for their preference (mean 2.6, s.d. 1.95). There was no par-
ticular situation where a majority of participants indicated that they would not be 
willing to answer. In fact, some participants indicated that they would always be will-
ing to answer questions while others indicated there were situations when they never 
wanted to answer questions. These results show that a single cost model for all situa-
tions and/or all participants (from [13]) would likely interrupt many participants who 
indicated they did not want questions. 

In order to approximate the costs for all situations in our phone app, we created ar-
tificial but plausible sensor values for each of the features in our application. Then, 
we used those sensor values to train a linear regression (easily computable on a 
phone) with the surveyed Likert ratings. For example, in order to model situations in 
the car, we averaged sampled accelerometer, microphone, and GPS values collected 
while driving with phones and labeled it with the corresponding Likert rating. For any 
new sensor data, the linear regression model will predict the cost of asking and mis-
classifying. Our linear regression models varied in their ability to capture each par-
ticipant’s predicted asking costs, as measured by the R2 test, but overall was success-
ful for such a simplistic model. Because we used only the features in Table 1 and did 
not use complex features, our cost approximations are easy to calculate on phones but 
may not always be predictive. Some of our linear regressions had R2 values near 1; 
others were only about 0.3 (mean 0.65, s.d. 0.15).  

Based on these findings and analysis, our phone volume application will need to 
learn a separate preference classifier (and use a personalized cost model) for each 
notification type and each participant.  
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6   Learning Interruption Preferences Using Experience Sampling 

In order to understand the impact of personalized cost models on the usability of ex-
perience sampling and the accuracy of the resulting preference models, we designed a 
four-week experiment. Participants in the study were given our phone application, 
which learned their volume preferences and actually changed the volume of the phone 
based on learned classifiers. The application used one of three experience sampling 
algorithms - random, uncertainty, or decision-theoretic sampling – which asked them 
about their interruptibility preferences for each of the notification types, and used 
those preferences to build the volume classifiers.  

Study Design and Procedure 
Twenty of the survey participants who filled out all 12 surveys and had Android ver-
sion 2.0 or higher phones were recruited to participate in our study to learn their 
phone volume preferences. Participants were asked to train their application, provid-
ing their volume preferences when asked, for two weeks and then test the resulting 
models for another two weeks, each night filling out surveys about the accuracy of the 
application and their current annoyance with either the questions or the volume chan-
ger itself. Participants were randomly but evenly assigned to one of four conditions – 
including two for decision-theoretic sampling – which determined when to ask for 
their preferences for phone volume when new notifications arrived: 

• Random Sampling 
• Uncertainty Sampling 
• Decision-Theoretic Sampling 
• Decision-Theoretic Sampling with Notification Reason 

Because user preferences varied so greatly across participants, we did not test De-
cision-Theoretic (DT) sampling with a single cost model. Additionally, we do not test 
Kapoor’s DT-dynamic condition (shown to be most accurate in highly changing do-
mains) because we assume that users’ preferences remain constant over the four 
weeks of the study. However, we did find in our surveys that the reason for the notifi-
cation (e.g., who is calling or whether the meeting is regularly scheduled) is a feature 
that users often use to determine whether they want an audible notification. We test 
the accuracy of preference classifiers that use this additional feature versus ones that 
do not, but do not test its use in experience sampling because the identity of the caller 
should not affect the cost of answering a question. The two DT techniques asked 
using the same algorithm.  

Our volume changing application was loaded on each participant’s phone, with a 
parameter file indicating which experience sampling technique to use and the linear 
regression cost models that were calculated from the participant surveys. Participants 
were told about the features that the application monitored and that it logged the fea-
tures of each incoming notification, the classifier’s prediction, and labels into a text 
file that we would collect once the study was complete. In addition to answering the 
application’s questions, they were asked to fill out nightly online surveys on their 
phone about the accuracy of the model each day as well as the application’s usability.  

Participants were asked to keep the application running at all times during the 4 
weeks of the study and were notified via email if the application quit at any time. 
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After two weeks, the application automatically switched from training mode, which 
asked users for preferences but did not change the phone volume, to testing mode, 
which used the prediction to turn on or off the volume of the phone for each type of 
notification. One participant left the study after the training phase because of a family 
emergency that required her to hear her phone all the time. After four weeks, re-
searchers paid the participants $80, removed the application and collected the logs 
that were written to the phone over the course of the study.  

Measures and Analysis 
We measure four dependent variables: the number of questions asked, the accuracy of 
the classifier (collected each night over the 4 weeks) and the annoyance of both the 
asking and misclassification. The classifier accuracy is measured by comparing the 
classifier’s predictions and the user’s actual preferences collected from nightly sur-
veys. We compare the experience samplingtechniques using a repeated measures 
ANOVA of the accuracy, number and timeliness of responsesover time. We collected 
annoyance ratings in the nightly surveys, but because participants did not have any 
other condition to compare to, they all rated their application as usable. Instead, we 
asked participants during their final interviews to recall specific situations when their 
application interrupted them, when the volume was incorrect as well as any other 
general impressions that they had about the application. We used these findings to 
distinguish the different sampling techniques.  

Results 
Overall, we found our approximated cost models had a significant effect on the num-
ber of questions that participants were asked and the usability and accuracy of the 
application. Participants in both decision-theoretic conditions reported that they were 
overall very satisfied with the timeliness of their questions and the resulting models 
were more accurate for most of the participants compared to the participants in ran-
dom and uncertainty sampling conditions. We find that decision-theoretic participants 
who predicted they would have high interruption costs had lower accuracy because 
they were asked fewer questions, but that we can use participants’ survey results to 
add more training examples and increase the accuracy. 

Number and Timeliness of Questions 
Participants received an average of 285 (min 32, max 717) phone calls, SMS notifica-
tions, and calendar alarms during the 14-day training period and received an average 
of 13 (s.d. 9.1), 41 (s.d. 59), and 3.2 (s.d. 5.8) questions respectively over the same 
period of time. Participants received far more SMS messages than phone calls and 
calendar alarms and the number of questions about them reflects this difference. 

We compared the number of questions that participants received in each condition 
of the study for each type of notification (phone call, SMS message, calendar alarm) 
using a repeated measures test to understand whether the number of questions de-
creased over time and differed between conditions. We found that, for phone calls, 
both day of training (F[13,195] = 4.67, p < 0.01)  and condition (F[3,15] = 4.95, p = 
0.01) played a role in the number of questions participants received, but there was no 
interaction effect (F[39,195] = 1.0, p > 0.05). For SMS messages, there was high  
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Fig. 2. As the classifier uncertainty decreased through training, the number of questions de-
creased for Uncertainty and both Decision-Theoretic conditions. However, it did not decrease 
for Decision-Theoretic participants who said they were willing to answer more questions to 
increase accuracy 

variability in thenumber of questions by participant mainly because some participants 
received many more text messages than others so we found that there was only a 
significant effect of day of training on the number of questions (F[13,195] = 3.55, p < 
0.01). There were no significant effects on the calendar alarms as all participants 
received very few questions to learn an accurate classifier. Next, we analyzed the 
specific effects that the training day and experimental condition had on the number of 
questions. 

A Tukey HSD test on the day of training for each of the phone and SMS messages 
showed that participants received statistically significantly more questions on days 1 
and 2 (mean phone 2.33, SMS 6.96) compared to each of days 5-14 (all phone means 
less than 1.0 questions per day, SMS means less than 2.5). After day 2, the number of 
questions decreased for both phone and SMS notifications (Figure 2). The drop in 
notifications in the random condition is not significant. 

Interestingly, a Tukey HSD test on the experimental condition for phone calls 
showed that the Decision-Theoretic Sampling resulted in a statistically higher number 
of questions (mean 1.6 questions per day) compared to Uncertainty sampling (mean 
.47 questions) and Decision-Theoretic with Notification Reason (mean 0.65 ques-
tions). There was no statistical difference between Random sampling (mean 0.96) and 
any other condition. Because we expected the two Decision-Theoretic sampling con-
ditions to have similar results, we investigated this anomaly further. We found that 
4/5 participants in the Decision-Theoretic condition reported low estimated costs of 
asking - each had an average cost of less than 4 out of 7 – compared to only 2/5 with 
low costs of asking in the DT + reason condition. When we add an extra independent 
variable representing a binary high or low cost of asking in our analysis, we find (as 
expected) that participants in both Decision-Theoretic conditions who indicated they 
had a low cost of asking were asked statistically significantly more questions per day 
compared to those with a high cost - on average 1.45 compared to 0.52 (F[1,6] = 6.51, 
p < 0.05). This cost accounts for the differences in the Decision-Theoretic conditions.  
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Fig. 3. Participants with low costs of asking in Decision-Theoretic conditions had the highest 
accuracy classifiers for each notification type (mean 0.99, 0.97, 1.00 respectively). Three par-
ticipants in the two Decision-Theoretic conditions had high costs of asking because they were 
not asked enough questions to create accurate classifiers. 

Despite the higher number of questions for 6 out of 10 of the decision-theoretic 
condition participants, all participants in both DT conditions reported that they were 
very satisfied with the timeliness of the experience sampling questions. Many partici-
pants in the random and uncertainty sampling conditions said they “eventually got 
used to the questions” but were annoyed by them before that. This indicates that our 
personalized models had the effect we intended, in reducing the number of questions 
when users had high interruption costs and asking at more appropriate times for all 
participants including those who received questions everyday. 

Accuracy 
Thirteen out of nineteen participants reported at the end of the study that they were 
happy with the accuracy of their application. Three requested to see the application in 
the Android app store to download again. The accuracies of the conditions were 0.83 
(s.d. 0.1) for random sampling, 0.85 (s.d. 0.1) for uncertainty, 0.85 (s.d. 0.23) and 0.9 
(s.d. 0.21) for decision-theoretic without and with notification reason respectively. 
The difference in accuracy between conditions is not statistically significant. Al-
though participants indicated that notification reasons were important in determining 
their volume preferences, classifiers trained with these extra features had the same 
accuracy as those trained without them.  

We combine the decision-theoretic conditions to show the differences in accuracy 
between the 6 participants with low costs of asking compared to the 4 with high costs 
(Figure 3). Three of the four high cost participants in the decision-theoretic conditions 
had accuracy lower than 0.8 for phone calls and text messages (mean 0.66, s.d. 0.16) 
compared to an average accuracy of 0.98 for participants with low cost of asking. Our 
decision theoretic samplers with approximated cost models are capable of very high 
accuracy when users are willing to answer questions. The experience samplers with 
high costs could not identify enough situations to ask but maintain usability, and the 
lack of labeled training data resulted in low accuracy for these classifiers.  
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In an effort to create more accurate classifiers for these 3 participants with high 
costs of asking, we examined the participants’ survey responses to understand if their 
predictions were accurate. One participant’s schedule and corresponding volume 
preferences changed after providing survey responses and the training period. Be-
cause the participant did not anticipate these changes, a classifier trained on these 
survey responses could not have been accurate. For the two other participants, how-
ever, the survey responses would have increased the classifier accuracy. For example, 
one participant’s classifier turned the volume off in the evenings when he was relax-
ing causing him to miss many phone calls and text messages. The decision-theoretic 
experience sampler never asked for his preferences in this situation in order to pre-
serve usability. If the classifier had used his single response to the survey – that he did 
want his phone to ring and beep - his accuracy would have increased from 75% to 
over 92%.  We conclude that we can use participants’ survey responses as additional 
training data for inaccurate classifiers. 

In summary, participants in both decision-theoretic conditions reported that they 
were very satisfied with the timeliness of the questions they were asked compared to 
the participants who received random and uncertainty sampling. The resulting models 
were more accurate for most of the participants in these conditions as well. However, 
some decision-theoretic condition participants received fewer questions than others 
due to their high cost models and this affected the accuracy of their classifiers. We 
find that in most cases we can use participants’ survey responses to increase the accu-
racy of the classifiers when they have high interruption costs. 

7   Discussion 

We have compared the accuracy and usability of three different experience sampling 
algorithms and found that our decision-theoretic sampling with personalized cost 
models was most accurate and asked questions at the most appropriate times. Next we 
address some of the participants’ difficulties and suggestions that they made after 
using our application for four weeks.  

Survey Responses as Approximate Interruption Models 
Our main assumption in using experience sampling was that participants have diffi-
culty predicting their preferences in advance, but that we could use these predictions 
to approximate interruptibility. We found that overall, this approach was very suc-
cessful in maintaining very high accuracy while limiting the interruptions at inappro-
priate times. Thirteen participants also preferred answering questions over time and 
thought their in situ responses were more accurate than their survey predictions, and 
three thought a combination of surveys and experience sampling would be most accu-
rate. Participants who preferred the questions reported that they liked that “it prompt-
ed me because it made me think of what I'm doing now” and that is hard to do before 
using it. This finding mirrors other experience sampling findings that participants 
answer more accurately in the moment, but contradict other HCI arguments that users 
should not be interrupted to train classifiers [5]. 

Participants who received few questions resulting in poor accuracy said that they 
would have been willing to answer more questions if they were told that their costs 
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affected the classifier accuracy. A visualization showing the costs of interruption and 
the average resulting accuracy could allow participants to see the results of their tra-
deoffs concretely before using the application. Future work is needed to evaluate 
whether such visualizations are understandable and affect users’ predicted interrup-
tion costs. 

Volume Preferences Change over Time  
We also found that participants’ volume preferences changed throughout the study. 
Participants started new routines in the middle of the study – either starting classes or 
their kids started new activities. Because they had already started or even completed 
the training of their classifier, they could not reverse or change the previous responses 
and their classification accuracy suffered. Participants reported at the end of the study 
that they wanted to change or start the training over because they had such different 
preferences. As a result, we argue that applications should be able to employ lifelong 
learning techniques such as forgetting [12] or at least allow users to change their pref-
erences to maintain accuracy as they drift or schedules change over time. 

Some participants reported that there were sometimes unexpected circumstances 
that their classifiers could not handle. For example, some students were willing to 
receive audible text message notifications in class, but they did not want them on days 
when they had exams. Participants were not thinking about exams during their classes 
when they answered questions during training but had no way of changing the classi-
fier’s prediction on that particular day. For circumstances like these, we suggest the 
use of an override button to force the phone volume to be at a set level for a set 
amount of time. This button could also give users a better sense of control about their 
phone notifications if they are uncertain about what their classifier will predict. 

Need for Intelligibility  
Intelligibility became a big issue for our participants as their phone applications  
transitioned to testing mode. Uncertain of what their classifiers had learned, many 
participants emailed the authors asking how to find out what they should do if their 
classifiers learned the wrong thing. We argue that offering a “what if” interface (in 
which participants could have set different features to see the resulting prediction[19]) 
could have reduced some of the uncertainty and lack of control that users felt during 
testing mode in our study. Users could check that their classifiers make accurate pre-
dictions and provide extra examples for those situations in which it does not.  

Participants also requested an interface in which they could see and change the 
rules that were generated for their classifier, especially if it was consistently wrong 
about a set of situations. We found that the classifiers were most overconfident in the 
uncertainty sampling condition and if users could adjust the classifiers during both 
training and testing phases, it could have reduced the potential errors and helped iden-
tify opportunities for the sampler to request more preference data. One student par-
ticipant, for example, said that his classifier learned to turn his ringer off too early in 
the evening and this could have been easily resolved if he could have set the time 
feature. However, it is often difficult to show the rules of a classifier in a simplified 
way. More work is needed in order to understand what information users really want 
to know about their classifiers and what is too complicated or not important to show. 
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8   Conclusion 

In this work, we have presented a phone volume application that classifies users’ 
interruptibility and adjusts the volume accordingly. Because users have difficulty 
predicting their interruption level when they are not actually in the asked-about situa-
tion, we introduce an experience sampling technique that asks users to predict their 
costs of interruption and uses these predictions to approximate a cost model and de-
termine when to actually ask for preferences. We deployed our volume application to 
learn users’ preferences over 2 weeks and test the resulting classifier for 2weeks, 
comparing the usability and accuracy of our experience sampling technique against 
other traditional techniques.  

We find that our method for approximating interruptibility improves the timeliness 
of questions asked during experience sampling. Additionally, we find that 7 out of 10 
participants in the decision-theoretic condition reported very high accuracy with few 
or no errors while testing their classifier for two weeks. However, we find that the 
cost models, while effective at improving usability for all users, actually harmed ac-
curacy for the remaining three Decision-Theoretic participants by asking too few 
questions and thus we caution using this technique for users with high asking costs. 
Finally, for these high asking cost users, we show that their initial predictions from 
the surveys can be used to create more accurate classifiers than the experience sam-
pling could. Future work is needed to increase the intelligibility of the classifiers and 
the cost models to give users more control over their phone. Additionally, more work 
is needed to understand how phone preferences change over time and how we can 
develop classifiers to maintain high accuracy during through lifelong learning.  
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Abstract. Automatically identifying the person you are talking with using 
continuous audio sensing has the potential to enable many pervasive computing 
applications from memory assistance to annotating life logging data. However, a 
number of challenges, including energy efficiency and training data acquisition, 
must be addressed before unobtrusive audio sensing is practical on mobile 
devices. We built SpeakerSense, a speaker identification prototype that uses a 
heterogeneous multi-processor hardware architecture that splits computation 
between a low power processor and the phone's application processor to enable 
continuous background sensing with minimal power requirements. Using 
SpeakerSense, we benchmarked several system parameters (sampling rate, GMM 
complexity, smoothing window size, and amount of training data needed) to 
identify thresholds that balance computation cost with performance. We also 
investigated channel compensation methods that make it feasible to acquire 
training data from phone calls and an automatic segmentation method for training 
speaker models based on one-to-one conversations. 

Keywords: Continuous audio sensing, mobile phones, speaker identification, 
energy efficiency, heterogeneous multi-processor hardware. 

1   Introduction 

Forgetting the name of the person you are talking with can be an awkward and 
uncomfortable experience. Imagine being able to glance unobtrusively at a mobile 
device to see the name of the person who is speaking and perhaps a few other details 
about them. Several research projects, most notably SenseCam [2] have explored 
aiding people’s memory using technology. However, these systems provide memory 
support retrospectively, by recording information (e.g., lifelogging) automatically and 
allowing the user to review events at a later time. With the advances in sensing and 
processing power, today’s mobile phones offer the potential to provide memory 
assistance to the user in real time when a memory problem occurs.  

Using audio sensing for memory assistance is particularly attractive because all 
phones have built-in microphones and audio data is less sensitive to the location and 
orientation of the phone as compared with other common sensors such as cameras and 
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accelerometers. In addition to memory assistance, identifying a co-located speaker 
has a number of other possible uses including allowing people to set “person-based 
reminders” (e.g., “remind me the next time I speak to John to ask him about his 
vacation”), filtering social networking status feeds presented to a user based on the 
people they interact with face to face, or tagging life-logging data artifacts (e.g., 
photos) to facilitate retrieval at a later point. 

Several previous prototypes have studied capturing audio to support retrospective 
memory assistance [e.g., 1, 5, 17] and have explored speaker identification using 
additional sensors [12] or multiple phones [7]. However, two key challenges must be 
addressed before continuous audio sensing for speaker identification is practical: 

• Energy efficiency. To be useful for memory assistance and other scenarios, 
speaker identification must run continuously and unobtrusively in the 
background and be ready when needed. However, as we show in Section 4, 
although microphones use very little energy, on an off-the-shelf smart 
phonesampling audio data requires the phone’s application processer to run 
and the ~335mW power consumption of continuous recording will quickly 
drain aphone’s battery. 

• Training data acquisition. Training data quality is a key factor in determining 
the performance of a speaker identification system. For most prototypes, 
researchers manually gather voice data, label them, and train a speaker model 
for each participant. Yet, in practice users are unlikely to be willing or able to 
manually train a system.  

In this paper, we present the design and implementation of SpeakerSense, a practical, 
energy efficient, and unobtrusive speaker identification system. SpeakerSense tackles 
the above challenges by using a heterogeneous multi-processor (HMP) based mobile 
phone architecture, a set of robust speaker identification methods, and a novel training 
data collection mechanism via phone calls.  

Our experiments show that using an HMP architecture to sample audio, detect 
high-quality voice data on a low-powered secondary processor and engage the 
speaker identification pipeline on a phone’s processor only when necessary makes 
continuous audio sensing very efficient. Our system uses ~4.29mW when sensing in 
the background, and ~771mW on a phone when actively performing speaker 
identification. Using SpeakerSense, we also benchmarked several system parameters 
(sampling rate, GMM complexity, smoothing window size, and amount of training 
data needed) to identify thresholds that balance computation cost with performance. 
For example, our data show that 3 minutes of audio is a reasonable minimum for the 
amount of training data needed to train robust speaker models. 

To address the challenge of acquiring training data, we investigated several 
unobtrusive data acquisition methods including using phone calls, one-to-one 
conversations, and sharing models across phones. We identify the appropriate channel 
compensation methods that make it feasible to train speaker models using audio data 
from phones calls, and an automatic segmentation method that can be used for 
training based on one-to-one conversations. We also validate the feasibility of sharing 
speaker models trained on one phone with another phone. While work remains to 
develop SpeakerSense into a system that can be studied with people with memory 
deficits, our contributions address technical challenges for speaker identification on 
mobile phones and move continuous audio sensing another step closer to reality.  
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2   Related Work 

In our project, we were inspired by the use of technology to help people with memory 
deficits. Kapur [4]’s survey of memory aids describes the wide variety in common use 
which span both technological (e.g., reminders on watch alarms, mobile phones or 
pillboxes) and non-technological (e.g., wall calendars, notebooks) solutions, and 
highlights the potential for advances in technology on mobile phones, cameras and 
location detection devices to provide further memory assistance. Research using the 
SenseCam [e.g., 2, 5] has shown the potential of lifelogging to help people with 
memory impairments retrospectively review captured information to assist them in 
recalling events. Looking specifically at retrospective aids based on audio logging, 
Vemuriet al.developed iRemember [17], a memory retrieval prototype which 
recorded and transcribed everyday conversations so they could be later searched.  

In addition to supporting retrospection, the computing power available in 
smartphones makes it possible to provide assistance in real time based on sensed 
events. The Personal Audio Loop (PAL) system [1] is a near-term audio-based 
memory aid that continuously records audio into a buffer; when users need assistance 
recalling something they recently heard (e.g., the name of the person they were just 
introduced to), the buffer can be played back on-demand. SoundSense [6] explores 
using audio beyond memory assistance, continuously sensing and classifying audio 
events to recognize general sound types heard by users (e.g., voice or music) and 
specific activities (e.g., walking, driving cars, riding elevators). These classifications 
enable a number of different applications including an audio daily diary and music 
detection service, which were both prototyped by the authors. 

SoundSense and other continuously sensing applications raise concerns about 
battery efficiency which have been identified and studied. A variety of duty-cycling 
schemes have been proposed to alleviate battery life issues by samplingintermittently 
[e.g., 8, 19]. We take a complementary hardware-based approach to enable low power 
continuous sensing by offloading the initial speech detection task to a low power co-
processor and using the main processor on the phone only when needed. 

Most related to our interest in on-the-go speaker identification, two systems, 
Darwin [7] and EmotionSense [12], have recently explored speaker identification 
using mobile phones. Similar to both of these systems, our goal is not to design new 
speaker identification algorithms. Instead we leverage well-established techniques 
such as the MFCCs feature set[20], pitch tracking[11], and GMM classifiers [e.g., 13, 
14], which have been proven effective for speaker identification. Our focus is on 
adapting these techniques to a mobile platform and addressing challenges that arise 
when using speaker identification on energy constrained mobile phones. 

EmotionSense is a platform for social psychology research that aims to continu-
ously sense the emotions of the mobile phone owner. EmotionSense includes a 
speaker recognition sub-system and silence detector that was used to select non-silent 
audio for the speaker recognition sub-system. Our work complements theEmotion-
Sense research by exploring different approaches to address challenges in continuous 
audio sensing. For example, EmotionSense gathers training data offline in an explicit 
setup phase, while we have focused on gathering training data during everyday use. 
To extend battery life, EmotionSense offloads computation to a remote server, while 
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we explore using an on-board low power processor. Finally, EmotionSense uses 
Bluetooth identifiers from other phones to narrow down the number of possible 
speakers, while in SpeakerSense we focus on the case where the user’s phone must 
work independently without relying on anyone else to be running the same program.  

Darwin [7] uses speaker identification as the example application to demonstrate a 
collaborative sensing platform that uses data collected across many phones to evolve 
classifiers, share them across multiple phones, and then collaboratively infer state 
(e.g., who is speaking). The authors demonstrate the potential for speaker 
identification using multiple phones in three experimental scenarios. Again our work 
is related but complementary; we focus on improving speaker recognition on a phone 
running independently, which does not need or assume many phones running the 
same system. Our research to improve speaker recognition on a single phone could 
contribute to overall improvements in Darwin-style collaborative approaches.  

3   SpeakerSense  

To unobtrusively identify the people a user interacts with face to face, SpeakerSense 
must run continuously on the phone, sampling and processing audio to detect human 
speech from other sounds, and attempt speaker identification when speech is detected. 
A naïve continuous speaker identification algorithm would place a heavy burden on 
the battery and computational resources of the phone, since the high audio sampling 
rate prevents the phone from going into the sleep mode, and the speaker identification 
process is itself computationally expensive. For example, based on our measurements, 
running speaker identification continuously on an HTC Touch Pro 2 (TP2) phone 
consumes ~771mW, which is considerably larger than the phone’s idle power 
consumption (~11mW)when the phone is asleep and no application is running. In this 
section, we first introduce a heterogeneous multi-processor mobile phone architecture 
that can support low power continuous sensing, and then show how we can build a 
speaker identification system on it. 

3.1   SpeakerSense Architecture 

We designed SpeakerSense so that we can continuously run speaker identification 
without significantly impacting the phone’s battery life. On current phones, individual 
sensor energy consumption is generally very low, but the process by which the data is 
read requires the phone’s main processor to be active, which has high energy 
requirements. Furthermore, the high sampling frequencies (e.g 8~16KHz) required for 
continuous sensing do not allow enough time for the phone’s main processor to sleep 
between sampling cycles, leading to a state of continual high-energy consumption. 
Recent work has shown that energy requirements for continuous background sensing 
can be significantly reduced using an HMP architecture, where sampling and 
processing of sensor data is offloaded to a low-power processor [10].  The power 
consumption of a modern low-power processor is similar to that of a typical sensor; 
and due to the simple architecture, a low power processor can make transitions 
between sleep and active modes very quickly. 
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∑ | |2  

where s(i = 1 … N ) represents the samples in the frame and N is the length of the 
frame,(256 in this example). The value of sign(x) is +1 or -1 depending on whether(x 
>0) or (x <0). For example, if two consecutive samples have opposite signs, 
indicating a zero crossing, ZCR increases by 1. RMS represents the energy of the 
sound signal, and is defined as:  ∑

 

Since floating point calculations incur high processing overhead on most low 
power CPUs, we use a simple integer approximation as an alternative given by:  ∑ | |

 

For every window of 64 frames (approximately 2 seconds of data), Speech 
Detection extracts window-based features and performs classification procedures. 
Human speech is characterized by rapidly changing fluctuations resulting from the 
interleaving of consonants and vowels, which other types of sound are less likely to 
exhibit [15]. Using the ZCR and RMS features for each frame, we calculate four 
window-level features to capture the sound patterns in a window: the mean of ZCR, 
the variances of ZCR RMS, and the Low Energy Frame Rate, which is defined as the 
number of frames within the window that have an RMS value less than 50% of the 
mean RMS for the entire window[16]. For efficiency, we approximate the variances 
of ZCR and RMS as follows:  ∑ | |

 

Once the features are extracted, an offline-trained decision tree classifier decides 
whether the sound is human speech. If speech is detected, the Speech Detection stage 
wakes up the phone to run the final two stages that we describe next. 

3.3   Frame Admission and Speaker Identification on the Phone  

SpeakerSense  runs frame admission and speaker identification on the phone.  
 

Frame admission. The role of the frame admission stage is to pick high quality 
speech frames from the sampled audio and discard low quality speech frames as well 
as silence frames that occur naturally from brief pauses in human speech. Human 
speech can be divided into voiced speech and unvoiced speech [15]. Voiced speech is 
defined as speech generated from vibrations of the vocal chords, and includes all the 
vowel sounds. In contrast, unvoiced speech does not involve the vocal chords, and 
generally includes the consonant sounds. Because there is more energy in voiced 
speech than in unvoiced speech, voiced speech tends to be more resilient to 
background noise. Thus to increase robustness within the phone context and to 
improve overall system efficiency, we use a frame admission policy in SpeakerSense 
that only forwards voiced speech for speaker analysis, skipping pauses(silence) and 
unvoiced frames.  
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Frame admission is accomplished using thresholds on two metrics, ZCR, which we 
also use in the Speech Detection stage, and spectral entropy [3].In the frequency 
domain, voiced frames have a series of strong peaks in the spectrum, corresponding to 
the pitch and formant of the voice, which results in low spectral entropy. On the other 
hand, the spectrum of unvoiced frames or non-speech frames is fairly flat, and yield 
relatively high spectrum entropy. Unlike standard speech processing systems, we do 
not adopt any commonly used energy features here, such as RMS[16], because the 
energy of the sampled audio is sensitive to the context of use (e.g., distance from the 
speaker, orientation of microphone etc.), while frequency-related features are 
relatively robust to environment conditions. 

 
Speaker Identification. The speaker identification stage is based on a Gaussian 
Mixture Model (GMM) classifier [13] with some modifications to improve robustness 
and computation efficiency for use on the mobile phone. We use as our feature vector 
pitch[11] and the Mel-frequency cepstral coefficients (MFCCs)[20] computed for 
each admitted frame. SpeakerSense computes 20-dimensional MFCCs, and then 
ignores the first coefficient, which represents the energy of the frame, and instead 
focuses on the spectral shape, represented by the 2nd through 20th coefficients. While 
most traditional speaker identification systems use frames that overlap by 50% in 
order to capture subtle changes in the voice, this approach leads to sections of frames 
being analyzed multiple times. Given the resource constraints of the phone, we use 
non-overlapping frames to reduce the amount of computation required. 

As is typical, we use a smoothing window, a fixed-length of successive frames, to 
improve system performance. In theory, a longer smoothing window increases the 
system performance. However, we have found that in practice, the smoothing window 
needs to be less than 10s, due to the latency introduced by the smoothing window and 
the uncertainty of turn-takings in conversations. The speaker identification algorithm 
attempts to identify a speaker by matching GMM speaker models to each smoothing 
window. Each speaker’s GMM model estimates the log likelihood of the speaker, 
given every frame’s feature vector. Assuming independence of frames, the speaker 
identified as the one talking during the window is the one whose speaker model gives 
the highest sum of log likelihood across the smoothing window. We train the GMM 
speaker models offline on a server. We use a universal background GMM to represent 
all unknown speakers [13]. To reduce the impact of noisy training data, the variance 
limiting technique[14] is applied with a standard expectation maximization (EM) 
algorithm [13] to train the GMM speaker models. 

We have our low-powered processor attached to a prototype phone, so we decided 
to validate Frame Admission and Speech Detection on off-the-shelf phones for a 
better indication of feasibility and performance on currently available hardware. We 
implemented prototypes on an HTC Touch Pro 2(TP2) and an Apple iPhone 3Gs. The 
HTC TP2 runs Microsoft Window Mobile 6.5; the iPhone 3Gs runs Apple iOS 3.1.3. 
All signal processing and classification algorithms are implemented in approximately 
1000 lines of C code to achieve high efficiency and portability between different 
platforms. Other system components (e.g., UI, communication, etc.) are written in the 
default languages for each phone, C# for the TP2 and Objective C for the iPhone 3Gs. 
The offline server side training code is implemented primarily in Matlab. 



 SpeakerSense: Energy Efficient Unobtrusive Speaker Identification on Mobile Phones 195 

In our implementation, the prototype pipeline is optimized for lower CPU usage at 
the cost of a larger memory usage. Whenever applicable, we pre-compute parameters 
offline, serialize them into configuration files, and load them into the memory when 
the application initializes. For example, in our prototype implementations, the GMM 
models directly use the pre-computed inverse and determinant of the covariance 
matrix as the model parameters rather than the covariance matrix itself. 

4   Evaluation 

We evaluated several aspects of SpeakerSense including efficiency and trade-offs 
between computational cost and performance for system parameters. We first describe 
our data collection methodology and then our experiments. 

4.1   Data Collection 

For the evaluations we collected voice data from 17 speakers (10 males, 7 females) 
using the two mobile phones on which we implemented our prototype(TP2 and 
iPhone 3Gs). We were motivated to seek participants with a range of ages due to our 
interest in memory assistance applications where people would likely be interacting 
with family members of many different ages. The age distribution of our participants 
included four participants older than 45, four between 30-45, seven between 15 and 
30, and two under 15. The median age was 29 and mean was 34. 

For each speaker, we collected approximately 10 minutes of voice both locally and 
remotely though a phone call. The local recording was done by the two mobile phones 
simultaneously in both 8kHz 16bit mono and 16kHz 16bit mono formats. The phone 
call was recorded only in 8kHz, the phone channel standard. All the speech was 
collected in a normal office/home environment where the participant’s voice was the 
dominant signal and there was modest background noise, such as air conditioning, 
desktop computer fan, or people talking remotely. All phones were placed within 1.5 
meters from the subject’s head. For each of the adult participants, we also collected 5 
minutes of conversation with the researcher. This gave us a 15-person (eight male, 
seven female) one-to-one conversation database.  

To train the Sound and Speech Detection stages on the low-powered processor, we 
also collected common ambient noises found in office and home settings. These 
sounds included the rubbing sound made by a phone in a pocket, the sound of 
walking, keyboard typing, mouse clicking, printers, copy machines, different types of 
fan noise, air conditioners, flowing water, street traffic, vacuuming, and various types 
of music. This ambient noise dataset contained approximately 250 minutes of audio.  

4.2   Trade-offs between Computational Cost and Accuracy 

For continuous audio sensing and speaker identification on mobile phones there are a 
number of possible trade-offs for system parameters that affect computational cost 
and accuracy.  With SpeakerSense we investigated:  the sampling rate and length of 
the smoothing window, the amount of training data needed, and number of GMM 
components to use. 
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Fig. 3. Accuracy vs. amount of training data for the 8kHz (left) and 16kHz (right) datasets 

 

We can make several observations based on the results. First, there is a sharp 
increase of accuracy between 30s to 60s of training data and then accuracy levels off 
above 120sfor 8kHz and 180s for 16kHz. These values are likely lower bounds on the 
amount of training data necessary to adequately model the speakers in our mobile 
phone setting. Second, the performance of smaller smoothing windows shows the 
fastest improvement. Longer smoothing windows are less sensitive to the increase of 
training data. Lastly, the 16 kHz system seems to benefit from more training data as 
accuracy increases up through 180 seconds. The reason may be that the training phase 
needs to model a wider frequency range, so it benefits from more data to learn from. 
Our experiments suggest for both 8 kHz and 16 kHz, 180 seconds (3 minutes) is a 
good minimum amount of training data. 

 

The number of GMM mixture components. There is no well-established way to 
determine the optimal number of GMM components to model a speaker adequately. 
Using too few components results in an oversimplified speaker model, that is not 
sufficient to encode the characteristics of a speaker’s voice. On the other hand, using 
too many components leads to a complicated speaker model with a large number of 
parameters, which requires a large amount of data and computation to train and makes 
the classification on the phone costly. Our goal is to choose the minimum number of 
components necessary to adequately model the speakers. Shown in Figure 4, we 
investigated5 different model complexities: 4, 8, 16, 32, and 64 component GMMs 
with 1, 3, and 5 second smoothing windows. We used 180 seconds of training data 
based on evaluation of the amount of training data necessary. 
 

Fig. 4. Accuracy vs. number of GMM components for 8kHz (left) and 16kHz (right) datasets 
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With more GMM components, identification accuracy improves as expected. The 
accuracy for shorter smoothing windows has bigger performance gains. The greatest 
increase in performance occurs for all smoothing window sizes when the number of 
GMM components grows from 4 to 16. Above 32 GMM components, the accuracy 
gain levels off. Since the computation cost of identifying the speaker is proportional 
to the number of GMM component, we believe 32 components is a good choice to 
balance accuracy and efficiency. 

4.3   Efficiency of SpeakerSense 

We now evaluate the processing overhead and power consumption of SpeakerSense 
as well as the accuracy of speech detection on the MSP430 low-powered processor. 
 
SpeakerSense Processing Overhead. On the low-powered processor, Sound and 
Speech Detection consume very little processing resources. Sound Detection runs as a 
periodic task with a 1.5µs processing time every 500µs, using only 0.3% of the 
processing cycles. The Speech Detection stage takes 90.9ms to process 2s of audio 
data, resulting in only 4.4% processor utilization.  

On the phone, we evaluated the processing overhead of Frame Admission and 
Speaker Identification using the speaker models of the 17 participants. In the 
experiments, we ran 18 GMMs in parallel (17 speakers plus 1 universal speaker 
model for unknown speakers) to perform speaker identification. All experiments 
sample at 16kHz, 16-bit, mono audio from the phone’s built-in microphone. Based on 
the experiments described in the previous sub-section, we use a 32-component GMM 
and a 3s smoothing window. 

The TP2 uses 24.8ms to process a 32ms frame of voice data when the full pipeline 
is engaged (i.e., processing voiced frames). The iPhone 3Gs, which has a slightly 
faster processor, takes 21.7ms to process a frame. Using the profiling tool provided in 
the iPhone SDK, we benchmarked the resource usage of different processing stages, 
shown in Table 1. The memory usage stays at about 8.25 MB, including the user 
interface that displays the current speaker, since we preload all the models and pre-
allocate the memory required for processing. We can see that when the pipeline is 
fully engaged, SpeakerSense uses less than 50% of the CPU, which leaves enough 
resources for other applications to run concurrently. 

In summary, we see the full advantage of using a HMP architecture. The Sound 
and Speech detection stages, which likely dominate the execution time in typical 
usages, consume very little processor resources on the low-power processor. Frame 
Admission and Speaker Identification on the phone, which run only when active 
conversations are detected, require more resources, but still leave computing resource 
for other concurrent applications. 

Table 1. CPU usage for Speaker Identification on the iPhone 3Gs prototype 

Pipeline Stage: Idle Silence Feature Extraction SpeakerModelEvaluation 

CPU Usage: <1% <3% 5.6% ~ 11.3% 35.1% ~ 44.9% 
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Table 2. HTC TP2 Power Consumption 

Pipeline Stage: 
Sampling 

Audio 
Frame 

Admission 
Speaker 

ID 
Total 

Average Power (mW): 335 21 415 771 

 
SpeakerSense Power Consumption. Energy life is a scarce resource on mobile 
phones so the power consumption of SpeakerSense must be small for continuous 
speaker identification to be practical. First, we measured the power consumption of 
Sound and Speech detection stages on the low-power processor. We found that the 
Sound Detection stage consumes 0.73mW on average, which is an order of magnitude 
smaller than the 11mW idle power consumption of TP2.So, when the environment is 
quiet, SpeakerSense does not add noticeable burden to the battery. The Speech 
Detection stage consumes 4.29mW, which is still much less than TP2’s idle power.  

To evaluate the power consumption of the Frame Admission and Speaker 
Identification stages, we measure the power consumption of TP2 using the Power 
Monitor tool [9] (the iPhone hardware does not allow this type of measurement). 
Table 2 shows the total power consumption under different operating conditions with 
a dimmed backlight. We first observe that just continuously sampling the audio on 
TP2 consumes 335mW, which highlights the advantage of using a low-power 
processor for sampling audio for sound and speech detection. The Frame Admission 
stage adds 21mW, which is much smaller than the overhead due to audio sampling. 
The infrequently invoked Speaker Identification routine adds 415mW to the average 
power consumption for a total of 771mW. 

Accuracy of Speech Detection on Low-Powered Processor. We have shown that 
introducing the low-power processor results in considerable energy savings compared 
to using the current mobile phone architecture. However, we also need to validate that 
the Speech Detection on the low-powered processor is reasonably accurate, since an 
efficient but incorrect detection is useless. Table 3 shows the confusion matrix for 
Speech Detection on the low-powered processor (these numbers implicitly evaluate 
both Sound and Speech Detection since Sound Detection triggers Speech Detection).  

The precision of the Speech Detection stage—a decision tree classifier with depth 
7—is fairly high, around 93%, at the expense of a low recall at 85%. The latter is due 
to the fact that during pruning, the classifier is tuned to keep the false positive rate 
low in order to reduce the chance of waking up the phone unnecessarily. Although 
more sophisticated and demanding voice detectors can achieve better performance 
[e.g.,3, 16], we prefer the current design that has very low resource consumption. 

Table 3.Confusion matrix of the accuracy of the voice and ambient noise classifiers 

Ground Truth \ Classified As Voice Ambient Noise 
Voice 85.36% 14.64% 

Ambient Noise 7.28% 92.72% 
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5   Training Speaker Models 

Speaker recognition requires training a speaker model for each individual who needs 
to be recognized. Acquiring the necessary training data is a practical challenge that is 
often ignored in research prototypes, where researchers collect the data required for 
training. Collecting training data directly from participants, typically by recording a 
single participant’s voice in a quiet environment, yields the best speaker models 
because the audio data is of high quality and contains data from a single known 
person. However, this method is labor intensive and requires participants to contribute 
their voice and time to train a model. While people might be willing to provide 
explicit training data to help a loved one with memory assistance (e.g., a grandparent 
or parent), this explicit training step is unappealing in general.  

In Section 4.2 we showed that to build a robust speaker model, SpeakerSense 
needs at least 3 minutes of voice data from the speaker. In this section, we explore 
three additional ways beyond an explicit training phase to acquire training data for the 
people that a user interacts with in everyday life: using phone calls, one-to-one 
conversation, and by sharing speaker models across phones. We discuss the 
advantages and disadvantages of each method, as well as additional processing 
required, and compare performance to the “gold standard” of user contributed data for 
the 17 participants we collected data from.  

5.1   Using a Phone Call to Train a Model 

Using data collected during phone calls to train speaker models has many potential 
advantages. First, the identity of the person talking on the phone is typically known 
using caller identification. Second, the audio generated by the phone’s owner and the 
caller is automatically segmented because the voices pass through two different audio 
channels: the owner’s voice is received by the local microphone while the caller’s 
voice is received over the telephone network.  

There is no question that phone calls are an excellent way to train the speaker 
model for the phone’s owner. The user’s own voice is recorded locally by the mobile 
phone’s microphone and can be used directly for training without any additional 
processing. The most striking difference between audio recorded during a phone call 
and user contributed data is that speech from phone calls will exhibit large segments 
of silence or background noise when the caller is talking. However, because 
SpeakerSense is already designed to select only those segments that contain voiced 
speech for training, breaks in the dialog are handled automatically.  

Training speaker models for the caller is more challenging. The caller’s voice is 
sampled by the phone and transmitted through the phone network where it undergoes 
band limit filtering and some spectral shaping because the telephone line is a 
narrowband communication channel. This makes it problematic to directly use the 
audio recording from another caller as input to the speaker model training since there 
is a mismatch between the narrowband speech data gathered from the phone line and 
the wideband testing data recorded by the phone’s microphone. To determine if it is 
feasible to recover useful training data for a caller from a phone call, we investigated 
three lightweight channel compensation techniques to address the acoustic distortion 
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produced by the telephone network: phone frequency warping [14], mean 
normalization[18], and the delta MFCCs features[13].  

The average speaker identification accuracy for all 17 participants using the 
different compensation techniques is shown in Figure 5. Assuming the phone is able 
to provide precise caller identification information, in the experiment we manually 
labeled the speaker’s identity for each of the mobile phone call recordings. We trained 
the speaker models using 5-minute call recordings and tested on 5 minutes of clean 
locally recorded voice data from our 8kHz dataset to match the phone channel 
standard. We used a 32-component GMM and the variance limiting was set to 0.1 in 
order to be more robust to the noisy channel. For the frequency warping method, the 
typical phone channel bandwidth of 300~3300 Hz was linearly warped to the full 
bandwidth 0~4000Hz. When using delta MFCCs features, 19 difference coefficients 
from a 32ms interval around the current frame are used. This introduces a 32ms delay, 
but is negligible compared to the smoothing window delay.  

 

Fig. 5.Comparisons of channel compensation methods for different length smoothing windows 

It is clear from Figure 5 that without further processing, the performance of 
speaker identification was vastly reduced by using recorded telephone speech directly 
for training. Even with a 10s smoothing window, the accuracy is still poor, coming in 
at only 63% accuracy as compared to greater than 94% when using user contributed 
data. When used individually, frequency warping and mean normalization are nearly 
equally effective, with both contributing more than a 20% accuracy gain when the 
smoothing window is 3s or greater. Adding delta MFCCs to the feature vector 
produced a moderate5% increase in accuracy when used alone. However, when Delta 
MFCCs was combined with frequency warping or mean normalization, it contributed 
an additional 4% performance gain. Because combining mean normalization with 
frequency warping provided no significant improvement over the use of each method 
individually, we omitted this combined condition from the figure. Although our 
experiments found frequency warping and mean normalization to be equally effective, 
we recommend using frequency warping over mean normalization for mobile 
applications because frequency warping is applied to each frame independently, 
which avoids maintaining a running average that introduces delay into the pipeline.  

Based on this analysis, our prototype system uses frequency warping and delta 
MFCCs together when handling phone recorded speech. Given the ease of collecting 
training data using phone calls, the trade-off of slightly reduced accuracy rates 
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compared to user contributed data seems worthwhile. It is important to note that while 
we have addressed the technical feasibility of gathering training data from phone 
calls, the cultural and legal acceptability of training speaker models based on phone 
calls requires further investigation.   

5.2   Using One-to-One Conversations to Train Speaker Models 

Another possibility for training speaker models is to collect voice data from everyday 
conversations, particularly those between the phone owner and one other person. 
While more practical than asking people to explicitly contribute training data, using 
data recorded during a one-to-one conversation is more complicated than using phone 
calls because the audio collected is not automatically labeled with the person 
speaking, and the recorded data likely includes speech from both the phone owner and 
the unknown speaker.  

To process data recorded in one-to-one conversations, SpeakerSense requires the 
phone owner to manually mark the start and end of the (entire) conversation and enter 
the name of the other speaker. SpeakerSense then applies an automatic segmentation 
method that runs the phone owner’s speaker model and the universal model on all the 
voiced frames. Intuitively, the user’s own voice will be identified correctly, and the 
other speaker’s voice will be marked as an unknown speaker. Once enough data from 
the other speaker has been accumulated, the system can train a model accordingly.  

To analyze the effectiveness of this automatic segmenting approach for harvesting 
training voice data from one-to-one conversations we used the conversations that we 
collected with each of the 15 adult participants. Each conversation was sampled at 
16kHz by the phone, and the start and end was marked by the researcher whose 
speaker model was pre-obtained. Informed by our previous experiments we used 32-
component GMMs. Figure 6 compares the accuracy of speaker models trained using 5 
minutes of conversation data and 5 minutes of user contributed data.     

As expected, the speaker models trained from user contributed data has better 
accuracy, since it starts with perfectly segmented voice data containing only one 
speaker. In contrast, we expected that our algorithm for automatically selecting audio 
segments for a second speaker would not be able to perfectly segment the 
conversation and thus that some number of the audio segments used in training the 
speaker model may contain voiced data from the phone owner or both speakers.  
 

 

Fig. 6. Speaker models trained on one-to-one conversations compared to user contributed data 
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Fig. 7. Performance of sharing models between phones. Case 1: training with iPhone and 
testing with TP2. Case 2: training with TP2 and testing with iPhone. Case 3: training with 
iPhone and testing with TP2 with delta MFCCs features. Case 4: training with TP2 and testing 
with iPhone with delta MFCCs features. Case 5: training and testing with the same phone. 

However, as Figure 6 shows, accuracy for the speaker models trained using the 
conversation data only marginally lag behind the speaker models trained on user 
contributed data. The difference is consistently less than 5% for all smoothing 
lengths. This shows that using automatically segmented conversation data could be a 
reliable and practical source for training data, especially given the reduced user effort 
necessary compared to getting user contributed data.  

5.3   Sharing Speaker Models between Phones to Train Speaker Models 

The final speaker model training solution that we explored was sharing speaker 
models between phones. This approach was suggested by Darwin [7], one of the only 
other systems we are aware of that considers the challenge of collecting training data. 
In Darwin’s speaker identification prototype, each phone learns a speaker model for 
its owner and then exchanges its model with other phones, in a process termed ‘model 
pooling.’ We were intrigued by the feasibility of exchanging speaker models across 
different types of devices and how well speaker models trained on one device would 
work on another device, which was not described by [7]. If possible, sharing speaker 
models would greatly reduce the training effort because each person would only need 
to train their own speaker model. 

The main challenges in sharing speaker models are the differences between the 
microphones on the devices used to capture the original audio. Although the built-in 
microphones on mobile phones are usually optimized for human voice, their 
frequency responses can differ. We hypothesized that using a channel normalization 
technique, such as using delta MFCCs features, could reduce the effect that different 
microphones have on the data. Using the 16kHz iPhone and HTC TP2 datasets, we 
conducted experiments to explore the impact of microphone variation when sharing 
speaker models between different phones and the effectiveness of applying delta 
MFCCs features to reduce the effect of the differences. 

As Figure 7shows, the mismatch between the training and testing microphone 
when sharing models between the two phones decreased the system accuracy by 
about 7%. However, using a longer smoothing window helps reduce the negative 
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impact of using different microphones. Furthermore, adding the delta MFCCs 
features, which are insensitive to the microphone differences, improves the accuracy 
by about 4%. Thus our results from the TP2 and iPhone suggest that combining delta 
MFCCs features with models trained on different phones yields in an overall accuracy 
loss of only 3%. While it would be worth validating this small loss across more 
phones, we believe it is likely that speaker models can be shared across phones with 
only a negligible performance loss. It is important to note that while we have evidence 
that it is technically feasible to share speaker models across phones, user acceptance 
of sharing or exchanging models has not been investigated by Darwin or our research 
and is important to consider moving forward. 

6   Conclusions and Future Work 

Our research with SpeakerSense has addressed two challenges for using continuous 
audio sensing for speaker identification: efficient performance that enables continuous 
audio sensing and scalable methods for gathering the training data needed for speaker 
models. Through our experiments with data gathered from 17 participants in an 
indoor office environment, we have identified trade-offs between computational cost 
and performance that enable robust speaker identification on mobile phones by 
evaluating sampling rate options (8 kHz vs. 16 kHz), the length of the smoothing 
window, the number of GMM components needed to model a speaker adequately, and 
identified lower-bounds on the amount of training data needed to construct robust 
speaker models for the phone.  

To address efficiency we prototyped SpeakerSense using HMP hardware. We 
demonstrate that splitting computation across a dedicated low-power processor that 
detects sound and voice and using the phone’s main processor to run the 
computationally intensive speaker identification pipeline only when necessary enables 
continuous and efficient speaker identification. We believe other continuous sensing 
applications could benefit from a similar hardware-based approach. Lastly, we 
presented and evaluated methods for gathering the training data necessary for 
constructing speaker models during everyday activities, identifying channel 
compensation methods that make it feasible to gather training data from phone calls, 
and an automatic segmentation method for training speaker models using one-to-one 
conversations. Furthermore, we validate the feasibility of sharing speaker models 
between different phone platforms. 

Our research has addressed many technical issues necessary to make continuous 
audio sensing and speaker identification practical, enabling the future work needed to 
study SpeakerSense, and similar continuous sensing applications, in day-to-day use.  
Field deployments will be valuable to test our approaches for gathering training data 
in real use, to gather data about the performance of SpeakerSense across a variety of 
environments, and to evaluate whether the information provided by SpeakerSense can 
provide memory assistance for people with memory impairment in practice. We are 
excited about the potential pervasive computing applications that we believe are 
enabled by our research. 
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Abstract. Mobile devices often utilize touchscreen keyboards for text input. 
However, due to the lack of tactile feedback and generally small key sizes, 
users often produce typing errors. Key-target resizing, which dynamically 
adjusts the underlying target areas of the keys based on their probabilities, can 
significantly reduce errors, but requires training data in the form of touch points 
for intended keys. In this paper, we introduce Text Text Revolution (TTR), a 
game that helps users improve their typing experience on mobile touchscreen 
keyboards in three ways: first, by providing targeting practice, second, by 
highlighting areas for improvement, and third, by generating ideal training data 
for key-target resizing as a side effect of playing the game. In a user study, 
participants who played 20 rounds of TTR not only improved in accuracy over 
time, but also generated useful data for key-target resizing. To demonstrate 
usefulness, we trained key-target resizing on touch points collected from the 
first 10 rounds, and simulated how participants would have performed had 
personalized key-target resizing been used in the second 10 rounds. Key-target 
resizing reduced errors by 21.4%. 

Keywords: Game, key-target resizing, text entry, touchscreen keyboard. 

1   Introduction 

Mobile devices with capacitive or resistive touch sensors often utilize an on-screen, 
virtual keyboard(see [10] for a survey), or touchscreen keyboard, for text input. 
Without the need for dedicated hardware, touchscreen keyboards facilitate larger 
displays for videos, web pages, email, etc. [11]. As software, touchscreen keyboards 
can easily accommodate different languages, screen orientation, and key layouts. On 
the other hand, touchscreen keyboards lack the tactile affordances of a physical 
keyboard, which have been shown to be critical for touch typing [15]. Due to the lack 
of tactile feedback and generally small key sizes, users often produce typing errors. 
To reduce noisy input, researchers have developed algorithms for dynamically 
adjusting the underlying target areas of keys based on probabilities, a technique called 
key-target resizing. As shown in previous research [8,9], key-target resizing can 
significantly reduce typing errors, but requires labeled training data in the form of 
touch points for intended keys. In this paper, we introduce Text Text Revolution 
(TTR), a game that helps users improve their typing experience on mobile 
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touchscreen keyboards in three ways: first, by providing targeting practice, second, by 
highlighting areas for improvement, and third, by generating ideal training data for 
key-target resizing as a side effect of playing the game. This paper is organized as 
follows. In Section 2, we describe how we designed the game to address specific text 
entry goals. In Section 3, we discuss how TTR relates to prior research on leveraging 
human computation. Finally, in Section 4, we evaluate how well TTR accomplishes 
its text entry goals through a user study and simulation experiment. 

2   Game Design and Text Entry Goals 

Because text entry on mobile touchscreen keyboards can be quite challenging, a small 
market has opened up for mobile typing apps, such as SpeedType [17] for the iPhone. 
In most typing apps, users are prompted with text they are required to type. When 
users mistype a character, they are typically notified through auditory and visual 
feedback, such as beeps and squiggly underlines. In some cases, the feedback can be 
more implied. For example, in Turbo Type [18], a race car representing the user slows 
down with typing errors. When users are finished typing, they typically receive 
information about their text entry speed and accuracy, but not information 
highlighting areas for improvement. Instead, users are typically encouraged to 
practice and to beat their personal best scores. 

Inspired by this market for typing apps, we endeavored to design a text entry game 
with three goals in mind. First, like all typing applications, we sought to provide users 
with lots of practice targeting the keys of a mobile touchscreen keyboard. After all, 
the rendered keys can be quite small. For example, on the iPhone, most adult fingers 
easily cover two to three keys. Second, unlike most typing apps, we sought to provide 
users with concrete means to improve their typing by visually highlighting keys they 
tend to mistype. Third, we sought to obtain “ideal” training data for key-target 
resizing. As formalized in [8], key-target resizing employs a probabilistic approach to 
decoding noisy touch input. It combines probabilities from both a language model for 
predicting the likelihood of a next character given previous characters and a touch 
model for predicting the likelihood of observing a touch point (e.g., pixel coordinate 
or ellipsoid) given the intention to hit various keys. 

Unfortunately, most of the time, it is not possible to know without inference what 
keys users are intending to hit, unless, of course, we instruct them to hit those keys. 
This is the hidden treasure of typing apps. By giving users text they are supposed to 
type, these apps are acquiring a wealth of labeled touch point data which can be 
leveraged immediately to learn a touch model for every key. For example, if, 
whenever users are instructed to type ‘g’, they correctly hit ‘g’ with some frequency 
and ‘v’ with some other frequency, we are essentially learning a probability 
distribution over likely touch points (mapped to keys) given the intention to type ‘g’. 
Furthermore, if we can train touch models on the fly using data from the game, then 
the more users play the game, the more robust key-target resizing will be – which 
translates into reduced typing errors on the soft keyboard (we empirically demonstrate 
this in Section 4). Besides real-time adaptation, we could also aggregate user touch 
data in the cloud (i.e., on web servers) and leverage collaborative filtering to learn 
touch models for similar patterns of touch points for keys. The cloud could then push 
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these touch models down to the mobile device. In short, by having a game that allows 
us to collect touch points for intended keys, we can explore opportunities for real-time 
adaptation and collaborative filtering. 

In terms of implementation, we developed TTR using the XNA game development 
language and the Windows Phone 7 SDK [21]. The game runs on any Windows 
Phone 7 device and is available for free in the Windows Phone Marketplace. 

(a) (c)(b)

Anonymous

 

Fig. 1. Screenshots of Text Text Revolution: (a) Sample text users are instructed to type; (b) 
Letters exploding when users touch an expected or adjacent key; (c) End screen highlighting 
areas for improvement. 

2.1   Game Play 

With the above goals in mind, the game play of TTR proceeds as follows. As shown 
in Figure 1(a), users are prompted with words they are instructed to type. The words 
are randomly selected from a corpus of 10,000 words. Following [15], the corpus was 
generated by minimizing the relative entropy of character bigrams in the corpus with 
respect to a larger source– in our case, over 1 million email messages and transcribed 
voicemail messages. This allows us to provide users with consecutive characters that 
are representative of consecutive character sin email, a common mobile task. When 
users touch the keys we expect, the letters explode forward and fade out, as depicted 
in Figure 1(b). When users touch keys that are immediately adjacent to the keys we 
expect, we still explode the letters (e.g., ‘q’, ‘w’, ‘s’, ‘z’ for ‘a’). We did this for two 
reasons. First, we noticed that in typing apps where users are not permitted to move 
forward unless they hit the correct key, users tend to change their normal typing 
behavior; in particular, they tended to slow down and more carefully hunt-and-peck 
each key. Because we are interested in collecting “natural” touch points, we decided 
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to relax the direct hit requirement. Second, we wanted to simulate an “ideal” typing 
experience. If key-target resizing could accurately infer intended keys despite the user 
hitting adjacent keys, then the experience of typing with unerring key-target resizing 
would be identical to what the game simulates. In essence, the game allows users to 
experience the kind of typing experience we hope to enable by collecting their labeled 
touch points and training key-target resizing on their data. If users hit a key that is 
neither the expected key nor an adjacent key, the text turns red and a beep sound is 
played. This immediately alerts users to their errors. 

As shown in Figure 1(a) and (b), on each side of the presented text are two bars. 
The left bar indicates a running estimate of typing speed expressed in words-per-
minute (WPM), and the right bar indicates a running estimate of typing accuracy. 
Accuracy is simply computed as the number of touch points that directly hit the 
intended key divided by the number of keystrokes. Users complete a word when they 
finish entering all of the word’s letters. To move to subsequent words, users touch the 
space bar or any of the adjacent keys above the space bar. Because users sometimes 
miss the space bar, we can also learn a probability distribution for the space bar. 

At the end of each game, we present users with a map of all of their accumulated 
touch points on the keyboard layout, as shown in Figure 1(c). The touch points are 
colored for each target key, which allows users to easily see when their touch points 
might be encroaching into unintended keys. For example, in Figure 1(c), most of the 
colored touch points for the letter ‘l’ are inside the boundaries of the ‘l’ key. 
However, some touch points bleed into the boundaries of the ‘k’. As highlighted by 
the orange squares, the user in this case can immediately see areas for improvement; 
namely, avoid mistyping‘k’ for ‘l’, and ‘b’ and ‘n’ for the space bar. When the user 
presses the “Submit Score” button, the score is sent to the cloud and the user receives 
a screen displaying a scoreboard containing the user’s best WPM and accuracy scores 
as well as the top scores from any user. However, even before users have the 
opportunity to submit their scores it is important to note that we send all of their data 
to the cloud for training key-target resizing. This is done with the user’s permission 
via a privacy dialog box that is presented the first time the user launches the game. 

3   Related Research 

The problem of attaining touch point data to train key-target resizing can be viewed as 
part of the larger challenge of leveraging human computation for useful purposes. 
One method that has been gaining momentum in the research community is the online 
platform AmazonMechanical Turk[1], which allows developers to incorporate paid 
human intelligence via crowdsourcing into their applications. Indeed, due to the 
generally low cost of data, researchers have begun to exploitMechanical Turk for 
natural language processing tasks related to text entry, such as transcribing native [14] 
and non-native speech [6].Another method is to exchange human computation for 
entertainment in the context of a computer game. According to the Entertainment 
Software Association, 67% of American households play computer or videogames 
[5]. This has prompted researchers, most notably Luis Von Ahn and colleagues, to 
design clever games with a purpose (GWAP), in which human players perform tasks 
which computers cannot automate easily as part of the game (see [19] for a survey). 



210 D. Rudchenko, T. Paek, and E. Badger 

For example, in The ESP Game [20], players generate meaningful, accurate labels for 
images on the Web as they try to guess what their game partners are thinking. In 
essence, they are producing labeled training data for an object recognition system. 
Amazingly, as of July 2008, 200,000 players contributed more than 50 million labels. 

While TTR falls under the rubric of a GWAP, it is also very akin to training 
wizards that not only teach users how to perform a task, but gather adaptation data 
along the way. For example, in the Windows 7 Speech Recognition Tutorial [22], 
users not only learn and practice voice commands for accessing features of the 
Windows 7 operating system by voice, but they also contribute example 
pronunciations for various phonemes, or segmental units of sound, that make up a 
language. In fact, the Tutorial has a section where users are presented with text they 
are instructed to read aloud. When they pronounce each word correctly, they are 
allowed to proceed. The acoustic data generated by the Tutorial is then used to adapt 
speech engine parameters. The entire setup of the Tutorial is more or less the same as 
what we use for TTR, except that we use a game instead of a wizard to entice users. 

4   Evaluation 

In order to evaluate TTR, we conducted a user study in which we recruited 6 
participants, half of whom were female, to play the game. The participants played 20 
rounds of TTR on a 3.5 inch WVGA, capacitive touchscreen device. Each round 
consisted of 250 characters, or approximately 50 words. Participants were told to use 
whatever posture for inputting text on the keyboard felt comfortable (e.g., two 
thumbs, one thumb, etc.) so long as they consistently used that posture for all 
subsequent rounds. Anytime participants needed a break, they could pause after 
completing a word during a round of TTR, or they could relax before the next round. 
Participants were all employees of Microsoft and were compensated for their time. 

Before assessing how well TTR achieves its text entry goals, one important 
question to ask is whether or not the game is engaging. Since the game was released, 
it has been downloaded by over 25,000 unique users. 134 provided ratings [2], with 
an average score of 4.5/5 stars. The vast majority ofraters posted positive comments 
about both its game play and usefulness, such as “This is so much FUN! I can't stop 
playing, I think I'm addicted”, “The leaderboard feature makes it a lot of fun”, and 
“Very additive game. Very useful as well. My mobile typing is ten times faster now.” 

With respect to text entry goals, the first goal of TTR was to provide users with 
targeting practice so they could improve over time by sheerrepetition. Not 
surprisingly, participants improved in both speed and accuracy over the 20 rounds, as 
shown by the trend lines in Figure 2(a) and (b). The second goal of TTR was to 
provide users with areas for improvement. TTR accomplishes this by visually 
displaying where users tended to mistype keys on a map of touch points overlaid on 
the keyboard. According to a post-hoc questionnaire, 4/6 participants found the touch 
point map to be useful. Of the 2 participants who did not find it useful, they claimed 
to have not even noticed the map. We are considering methods to make suggestions 
inherent in the touch point map more salient (e.g., written suggestions). 
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Fig. 2. Targeting practice improving (a) speed and (b) accuracy over time (multiple rounds of 
TTR). Trend line has been added in. 

4.1   Simulation Experiment 

Finally, in order to assess the third goal of TTR, generating useful training data for 
key-target resizing, we trained key-target resizing on touch points collected from the 
first 10 rounds of the participants’ data, and simulated how participants would have 
performed had key-target resizing been used in the second 10 rounds. We are able to 
simulate performance by taking the touch points collected from TTR and seeing if 
key-target resizing would have changed the key assigned to each touch point. For 
example, suppose the user was attempting to type an ‘a’ and touched an (x,y) 
coordinate on the keyboard “normally” corresponding to an ‘s’, where “normally” 
means using a key mapping that is based on fixed key boundaries which are 
equidistant in both the vertical and horizontal axis from neighboring keys. Recall that 
key-target resizing dynamically adjusts the key boundaries based on probabilities. It 
does this by simply taking an (x,y) coordinate and returning a key assignment. As 
long as key-target resizing is constrained to have convex target regions [9], it will 
assign the same key to any two touch points contained within the target region. We 
can now investigate whether key-target resizing would have assigned an (x,y) 
coordinate that was incorrectly assigned to an ‘s’ to an ‘a’ instead. If key-target 
resizing would have assigned the (x,y) coordinate to an ‘a’, then the number of direct 
hits, and hence accuracy, would have increased. Likewise, suppose the user had 
touched an (x,y) coordinate normally corresponding to a direct hit. If key-target 
resizing would have assigned a different key to that (x,y) coordinate, then the number 
of direct hits, and hence accuracy, would have decreased. 

Figure 3 displays the simulation results for the 6 participants. Overall, no participant 
would have achieved an average accuracy higher than 89% in the last 10 rounds. 
However, if we had applied key-target resizing, using parameters trained on general 
data, the average accuracy would have jumped up from 78.2% to 82.4% (t(5)=10.0, 
p<.001), a relative error reduction of 18.9%. In all cases, key-target resizing would have 
been beneficial and for some participants (viz., user 5 and 6)it would have resulted in a 
dramatic increase in accuracy, pushing user 5 into the 90% range. For “personalized” 
key-target resizing, we trained the algorithms on each user’s touch points from the  
first 10 rounds of TTR and only that user’s data. As evident in Figure 3, personalized 
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key-target resizing consistently improves accuracy across all participants. The average 
accuracy of personalized key-target resizing is 82.9%, which constitutes a relative error 
reduction of 21.4% over key-target resizing (t(5)=-9.8, p<.001). Note that the 
personalized data we used for training was smaller than the general data for key-target 
resizing. As such, it is possible that with further rounds of TTR, personalized key-target 
resizing would continue to increase accuracy. 

 

Fig. 3. Simulation results showing how well users would have done on the 11-20th rounds of 
TTR in accuracy had key-target resizing been on (green) and had key-target resizing been 
personalized to each user’s data (red) 

5   Conclusion and Future Directions 

In this paper, we introduced TTR with three text entry goals in mind: 1. Provide 
beneficial targeting practice, 2. Provide useful highlighting of areas for improvement, 
and 3. Generate beneficial training data for key-target resizing. Through a user study 
and simulation experiment, we demonstrated that the game indeed achieves these 
three goals. As a future direction, we plan to explore using the game for real-time 
adaptation and collaborative filtering, as discussed in Section 2. We also plan to 
investigate adapting the text presented to users so that we can gather more data for 
areas in which our touch models have a significant amount of variance or where users 
simply need more practice. Finally, we are expanding the language coverage of TTR 
to enable widespread localization of our key-target resizing soft keyboard solution. 
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Abstract. Exposure and adoption of opinions in social networks are
important questions in education, business, and government. We de-
scribe a novel application of pervasive computing based on using mobile
phone sensors to measure and model the face-to-face interactions and
subsequent opinion changes amongst undergraduates, during the 2008
US presidential election campaign. We find that self-reported political
discussants have characteristic interaction patterns and can be predicted
from sensor data. Mobile features can be used to estimate unique individ-
ual exposure to different opinions, and help discover surprising patterns
of dynamic homophily related to external political events, such as elec-
tion debates and election day. To our knowledge, this is the first time
such dynamic homophily effects have been measured. Automatically esti-
mated exposure explains individual opinions on election day. Finally, we
report statistically significant differences in the daily activities of individ-
uals that change political opinions versus those that do not, by modeling
and discovering dominant activities using topic models. We find people
who decrease their interest in politics are routinely exposed (face-to-face)
to friends with little or no interest in politics.

1 Introduction

A central question for social science, as well as for the practical arts of educa-
tion, sales, and politics, is the mechanism whereby ideas, opinions, innovations
and recommendations spread through society. Diffusion is the phenomena of
propagation of ideas or opinions within a social network. On the internet, the
proliferation of social web applications has generated copious amounts of data
about how people behave and interact with each other in online communities,
and these data, are being extensively used to understand online diffusion phe-
nomena. However, many important attributes of our lives are expressed primarily
in real-world, face-to-face interactions. To model the adoption of these behav-
iors, we need fine-grained data about face-to-face interactions between people,
i.e. who talks to whom, when, where, and how often, as well as data about ex-
ogenous variables that may affect the adoption process. Such social sensing of
face-to-face interactions that explain social diffusion phenomena is a promising
new area for pervasive computing.
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Traditionally, social scientists have relied on self-report data to study social
networks, but such approaches are not scaleable. It is impossible to use these
methods with fine resolution, over long timescales (e.g. months or years), or for a
large number of people, (e.g. hundreds or thousands). Further, while people may
be reasonably accurate in their reports of long term social interaction patterns,
it is clear that memory regarding particular relational episodes is quite poor. In
a survey of informant accuracy literature, Bernard et.al. have shown that recall
of social interactions in surveys used by social scientists is typically 30-50 %
inaccurate [5,8].

A key question is how mobile sensing techniques and machine perception
methods can help better model these social diffusion phenomena. This paper
describes the use of mobile phone sensors at an undergraduate community to
measure and model physical proximity (via bluetooth sensors), phone communi-
cation, movement patterns (via 802.11 WLAN access-points) and self-reported
political opinions. Our approach provides insight about the adoption of political
opinions in this community.

The contributions of this paper are as follows.

1. We devise a mobile sensing platform and observational methodology to cap-
ture social interactions and dependent variables during the last three months
of the 2008 US Presidential campaigns of John McCain and President Barack
Obama, amongst the residents of an undergraduate residence hall at a North
American university. This dataset, first of its kind to our knowledge, con-
sists of 132,000 hours of social interactions data and the dependent political
opinions measured using monthly surveys.

2. We estimate exposure to diverse political opinions for individual residents,
and propose a measure of dynamic homophily that reveals patterns at the
community scale, related to external political events.

3. Pervasive-sensing based social exposure features explain individual political
opinions on election day, better than self-reported social ties. We also show
that ‘political discussant’ ties have characteristic interaction patterns, which
can be used to recover such ties in the network.

4. Using an LDA-based topic modeling approach, we study the behavior dif-
ferences between individuals who change opinions, and those who held their
political opinions. We show statistically significant differences in the activi-
ties of people who changed their preferred party versus those that did not.
People that changed preferred party often discuss face-to-face with their
democrat political discussants, and their daily routines included heavy phone
and SMS activity. We also find people that decrease their interest in politics
often interact with people that have little or no interest in politics

2 Related Work

Sensing Human Behavior Using Mobile Devices
There has been extensive work to model various aspects of human behavior,
using smartphones [16,36,1,22,15,4,17], wearable sensor badges [43,30,41], video
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[46], and web-based social media data [7,48,52,33,34,3,39]. Choudhury et. al.,
used electronic sensor badges to detect social network structure and model turn-
taking behavior in face-to-face networks [10,12]. Eagle et. al. used mobile phones
as sensors to characterize social ties for a student community [16]. At larger
scales, mobile location and calling data have been used to characterize temporal
and spatial regularity in human mobility patterns [22], and individual commu-
nication diversity has been used to explain the economic development of cities
[15]. Other examples of the use of mobile phones to map human interaction
networks include the CENS participatory sensing project at UCLA [1], and the
mHealth and Darwin projects at Dartmouth [4,17]. Electronic sensor badges
instrumented with infrared(IR) sensors to capture the direction of face-to-face
proximity, have been used by Olguin, Waber and Kim [42,41] to enhance organi-
zational performance and productivity, for financial institutions and consultants.
Vocal analysis has been used to capture nonlinguistic communication and social
signaling in different contexts [11,35,43,42].

On the modeling front, Exponential Random Graph Models (ERGMs) and
its extensions [45,50,24,26] have been used to understand interaction networks.
Topic models have been explored for activity modeling applications [18,19,27].
New topic models have also been proposed in the context of blog post response
prediction [51] and blog influence [40]. Other types of topic models, like Author-
Topic [47,37] and Group-Topic [49] models have been used for social network
analysis when content or contextual data is present. In this paper, we use LDA
topic model [6] to better understand the behavior differences between people
who changed their opinions.

Adoption of Political Opinions
In political science and sociology, an important area of study is how opinions
about political candidates and parties, and voting behavior, spread through dif-
ferent interaction networks. Political scientists have proposed two competing
models of social influence and contagion [9]. The social cohesion model suggests
that influence is proportional to tie strength, while the structural equivalence
model [21] proposes that influences exist across individuals with similar roles
and positions in networks. Huckfeldt and Sprague [25] studied the interdepen-
dence of an individual’s political opinions, their political discussant network and
context and demographics during the 1984 presidential elections. They found a
social dissonance effect in the propagation of political opinions, and also report
an ‘inverse U’ relationship with tie-strength, i.e. discussant effects are stronger
for less intimate relationships like acquaintances and frequent contacts than they
are for close friends.

In the online context, Adamic and Glance [2] studied political blogs during the
2004 presidential elections, and found that content, discussions and news items
on liberal and conservative blogs, connected primarily to separate clusters, with
very few cross-links between the two major clusters. Leskovec et. al. [33] tracked
the propagation of short, distinctive political phrases during the 2008 elections,
and model the news cycle across both mainstream news sources and political
blogs.
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3 Methodology

In the past, researchers have used Call Data Records (CDRs) provided by mobile
operators to better understand human behavior [22,15]. Our approach, however,
is to use pervasive sensing methods for capturing social interactions, and this
has several advantages. Firstly, it allows us to sample different sensors and de-
pendent training labels, and not just calling data alone. Secondly, from a privacy
perspective, this requires the user’s explicit participation in data collection. Ad-
ditionally, in the future, it could be used to provide the user immediate feedback
on the mobile device itself.

3.1 Privacy Considerations

An important concern with long-term user data collection is securing personal
privacy for the participants. This study was approved by the Institutional Re-
view Board (IRB). As financial compensation for completing monthly surveys
and using data-collection devices as their primary phones, participants were al-
lowed to keep the devices at the end of the study. The sensing scripts used in
the platform capture only hashed identifiers, and collected data is secured and
anonymized before being used for aggregate analysis.

3.2 Mobile Sensing Platform

Given the above goals, the mobile phone based platform for data-collection
was designed with the following long-term continuous sensing capabilities, us-
ing Windows Mobile 6.x devices. Daily captured mobile sensing data was stored
on-device on read/write SD Card memory. On the server side, these logs files
were merged, parsed and synced by an extensive Python post-processing infras-
tructure, and stored in MySQL for analysis. This sensing software platform for
Windows Mobile 6.x has been released under the LGPLv3 open source license
for public use [28].

Proximity Detection (Bluetooth). The software scanned for Bluetooth wire-
less devices in proximity every 6 minutes (a compromise between sensing short-
term social interactions and battery life, [16]). The Windows Mobile phones
used in our experiment were equipped with class 2 Bluetooth radio transceivers,
with practical indoor sensing range of approximately 10 feet. Scan results for
two devices in proximity have a high likelihood of being asymmetric, which is
accounted for in our analysis. Due to API limitations of Windows Mobile 6.x,
signal strength was not available during scans.

Approximate Location (802.11 WLAN). The software scanned for wireless
WLAN 802.11 Access Point identifiers (hereafter referred to as WLAN APs)
every 6 minutes. WLAN APs have an indoor range of approximately 125 feet
and the university campus had almost complete wireless coverage. Across various
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locations within the undergraduate residence, over 55 different WLAN APs with
varying signal strengths can be detected.

Communication (Call and SMS Records). The software logged Call and
SMS details on the device every 20 minutes, including information about missed
calls and calls not completed.

Battery Impact. The battery life impact of periodic scanning has been previ-
ously discussed [16]. In this study, periodic scanning of Bluetooth and WLAN
APs reduced operational battery life by 10-15%, with average usable life be-
tween 14-24 hours (varying with handset models and individual usage). Win-
dows Mobile 6.x devices have relatively poorer battery performance than other
smartphones, and WLAN usage (web browsing by user) had a bigger impact on
battery life than periodic scanning.

3.3 Dataset Characteristics

The mobile phone interaction dataset was collected from 67 participants and con-
sisted of approximately 450,000 bluetooth proximity scans, 1.2 million WLAN
access-point scans, 16,900 phone call records and 17,800 SMS text message
events. The average duration of phone calls is approx 138 seconds, and 58 percent
of phone calls were during weekdays.

3.4 Political Opinions (Dependent Variables)

The dependent political opinions were captured using three monthly web-based
surveys, once each in September, October, and November 2008 (immediately
following the presidential election). The monthly survey instrument was based
on established political science literature, and consisted of questions shown in
Table 1. The questions were identical to the survey instrument used by Lazer
and Rubineau [32], who measured the monthly political opinions of students
across different universities (during the same 2008 election period) and studied
the co-evolution of political opinions and self-report friendship networks.

Political scientists have established that shifts in political opinions are gradual
[25]. This is observed in our dataset, as approximately 30% of the 67 participants
changed their opinions for each of the dependent questions during the three
month observation period. Opinion changes were along 1-point or 2-points on the
respective 4/7-point Likert scales. Similar variations in our dependent variables
were also reported in the analysis of Lazer and Rubineau [32].

For each monthly survey, participants also identified other residents that were
political discussants, close friends or social acquaintances, identical to those used
here [32]. Baseline information including race, ethnicity, political opinions of the
person’s parents and religious affiliations was also collected from some of the
participants before the start of the experiment, but is not used in our analysis.
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Table 1. Political Survey Instrument used to capture different political opinions. All
responses were constructed as Likert scales.

Survey Question Possible Responses
Are you liberal or conservative? 7-point Likert scale

Extremely conservative to extremely liberal
How interested are you in politics 4-point Likert scale

Not interested to very interested
What is your political party preference? 7-point Likert scale

Strong Democrat to strong Republican
Which candidate are you likely to vote for?
(Sept and Oct)

Choice between leading Republican and Democrat
nominees

Which candidate did you vote for? (Nov) Choice between B. Obama and J. McCain
Are you going to vote in the upcoming elec-
tion? (Sept and Oct)

4-point Likert scale

Did you vote in the election? (Nov) Yes or No

4 Analysis

4.1 Individual Exposure to Diverse Opinions

What is an individual’s social exposure to diverse ideas and opinions? Threshold
and cascade models of diffusion [23,29] assume that all individuals in a popula-
tion have a uniform exposure, or that the underlying distribution of exposure to
different opinions is known. While exposure to different opinions is dynamic and
characteristic for every individual, it has previously not been incorporated into
empirical social diffusion models. Dynamic exposure to different opinions can
be estimated for each participant, on a daily or hourly basis. Contact between
two individuals can be given as a function of physical proximity counts (blue-
tooth), phone call and SMS counts, total duration of proximity, total duration of
phone conversation, or other measures of tie-strength. These features represent
the time spent with others having different opinions in classes, at home, and in
phone communication.

Normalized exposure, Ni represents the average of all opinions a person is
exposed to on a daily basis, weighted by the amount of exposure to different
individuals and their self-reported opinions, where Oj represents the opinion
response for person j for a particular question in Table 1, contactij is the blue-
tooth proximity counts between i and j (tie-strength), and Nbr(i) is the set of
neighbors for i in the interaction network.

Ni =
∑

j∈Nbr(i)

contactij · Oj/
∑

j

contactij (1)

Cumulative exposure, Ci to a particular political opinion O, represents the
magnitude of a particular opinion that a person is exposed to on a daily basis,
and is a function of the amount of contact with different individuals and their
self-reported opinion. contactij can be estimated from other mobile interaction
features, like counts for calling, SMS, and 802.11 WLAN co-location. In Sec-
tion 4.4, Ni is used for future opinion prediction and in Section 5, CiO from
both bluetooth and call features are used for change of opinion modeling.
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(a) Cumulative exposure
to Democrats. Y-Axis
is Bluetooth proximity
counts

(b) Cumulative exposure
to Republicans Y-Axis
is Bluetooth proximity
counts

(c) Normalized exposure
for the Preferred party re-
sponse

Fig. 1. Characteristic daily normalized and cumulative exposure for one resident during
the election period (Oct-Nov 2008). Contact is Bluetooth physical proximity. X-Axis
is days for all graphs. This individual had much more exposure to democratic opinions
than republican during this period. Incidentally, this person did not show an opinion
shift for the preferred-party response during the study (not shown).

CiO = δj ·
∑

j∈Nbr(i)

contactij (2)

δj = 1 only if person j holds opinion O, and 0 otherwise. Figure 1 shows cumu-
lative and normalized exposure for one participant during the election campaign
period. This individual did not have much exposure to republicans, though was
often in proximity to democrats, some days much more than others.

4.2 Pervasive Reflection of Dynamic Homophily

Homophily, or the idea of “birds of a feather flock together”, [31] is a fundamen-
tal and pervasive phenomenon in social networks, and refers to the tendency of
individuals to form relationships with others that have similar attributes, be-
haviors or opinions. McPherson and Smith [38] provide an in depth review of
homophily literature. The emergence of homophily during network formation has
be explained using agent based models, and in economics [14] by incorporating
chance, choice, and tie formation costs. In this section we define a measure of
dynamic homophily based on mobile phone interaction features.

In sociological literature, homophily is estimated using the homophily index
Hi, and Coleman’s inbreeding homophily index, IHi, which are a function of
the relative fraction of social ties expressed between people who hold similar
opinions, and those that hold different opinions. These homophily indices are
explained in more detail in [14,38]. These sociological measures of homophily
are useful for static networks, but do not capture the dynamics of the underlying
phenomena. To overcome these limitations, we propose a measure of dynamic
homophily based on social exposure features for the daily timescale, given as,

Δi(t) =

∣∣∣∣∣∣Oi −
∑

j∈Nbr(i)

contactij · Oj

/ ∑
j

contactij

∣∣∣∣∣∣ (3)

H(t) =
∑

i

Δi(t)/n (4)
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where Δi(t) is the difference between the individual’s opinions and the opin-
ions he/she is exposed to, H(t) is a daily measure of dynamic homophily for
the entire community, and Oi are an individuals political opinion responses, on
the full-range of the 4 or 7-point scale, i.e., for the political interest response,
Oi ranges from 1 (“Very Interested”) to 4(“Not at all interested”) and for the
preferred party response, Oi ranges from 1(“Strong Democrat”) to 7(“Strong
Republican”). Unlike the static homophily measures above, Oi is not based on
the redistributed classes.

Daily variations in H(t) are due to changes in mobile phone interaction fea-
tures, that capture how participants interact with others. A negative slope in
H(t) implies that residents have more social exposure to individuals sharing sim-
ilar opinions, in comparison to the previous day or week. Similarly, an upward
slope implies that residents have decreasing social exposure with others having
similar opinions.

This daily measure captures dynamic homophily variations during the election
period, not captured using existing static measures of homophily. For a few days
around the election day and final debates, participants show a higher tendency
overall to interact with like-minded individuals. Statistical validation of these
variations using repeated-measures ANOVA for different political opinions for
three relevant conditions (periods) are given in Table 2 (plots in Figure 2).

Table 2. Statistically significant variations in Dynamic Homophily around the final
election debate period (15th Oct 2008) and election day (4th Nov 2008) period. Dy-
namic homophily is calculated using bluetooth proximity (phone calling and SMS are
not significant for any self-reported political opinions). For each period, the average dy-
namic homophily for the 5-day period per participant was estimated. This analysis was
first done for all participants, and then repeated for freshmen-only, who had only been
in the community for a month before start of the study, and where stronger effects are
observed. The three experimental conditions (periods) chosen for validating the main
effect were (a) Baseline Period (1st condition), i.e., 4th October to 10th October 2008
(b) Final election debate Period (2nd condition), 12th October to 18th October 2008
and (c) Election period (3rd condition): 1st November to 7th November 2008.

Opinions Evaluated for main effects over
three periods (conditions)

Result Summary (plots in Figure 2)

Political Interest for all participants

Significant effect, higher tendency to interact with like-
minded individuals during debate and final election period
as compared to baseline period, F − value = 8.49, p <
0.0004

Political Interest for freshmen only
Significant effect, higher tendency to interact with like-
minded individuals during debate and final election period
as compared to baseline period, F−value = 3.43, p = 0.04

Party preference for all participants Not a significant effect, F − value = 0.87, p < 0.42

Liberal-conservative tendency for all par-
ticipants

Significant effect, higher tendency to interact with like-
minded individuals during debate and final election period
as compared to baseline period, F − value = 6.26, p <
0.003
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Figure 2 (a) shows H(t) for political interest for all participants, where daily
network structure is estimated on the basis of Bluetooth proximity counts. The
first dip in this graph corresponds to the period of the final election debate during
the campaign, 14th Oct 2008. The difference between the three conditions is
statistically significant (F − value = 8.49, p < 0.0004). Figure 2(b) and (c) show
similar dips for the preferred-party and liberal-conservative responses. Figure
2(d) shows H(t) for political interest only for freshmen, based on daily bluetooth
proximity networks. The dynamic homophily effects for freshmen, who only had
a month to form ties in this community at this point, are visually pronounced,
and a second dip is seen around 4th November 2008 (Election day, F − value =
3.43, p = 0.04). We find that these behavior changes related to external events
are seen in bluetooth proximity data, but not in calling and SMS interactions.
This suggests that exposure to different opinions based on physical proximity
plays a more important role than exposure to opinions via phone communication.
Similar results are also observed for the preferred party responses and liberal-
conservative responses with respect to phone calling patterns.

4.3 Inferring Political Discussants

What are the behavioral patterns of political discussants? In monthly self-
reported survey responses, only 39.6% of political discussants are also close
friends. Similarly, it is found that having similar political opinions does not
increase the likelihood that two individuals will be political discussants in this
dataset.

While these political discussants do not fit the mould of ‘close friends’ or in-
dividuals with similar political opinions. we find that it is possible to identify
political discussants from their interaction patterns. Classification results based
on mobile phone interaction features – total communication; weekend/late-night
communication; total proximity; and late-night/weekend proximity, that char-
acterize a political discussant are shown in Table 3. Two different approaches
are used for comparison, an AdaboostM1 based classifier [20] and a Bayesian
network classifier [13], where each input sample represents a possible tie, and
both show similar results. Cost-sensitive approaches are used in both cases, to
account for unbalanced classes. Political discussants are treated as unidirectional
ties. Precision and recall of the discussant class are similar if self-reported the
training labels are converted to bi-directional ties.

4.4 Exposure and Future Opinions

Exposure based features described in the previous section can be used as a fea-
ture to train a linear predictor of future opinions. The coefficients used in a
linear model of opinion change include normalized exposure during the period,
the persons opinion at the start of the study (September 2008), and a constant
term that represents a linearly increasing amount of media influence as we get
closer to the election date (Nov. 2008). For the various political opinion ques-
tions, regression values are in the R2 = 0.8, p < 0.01 region. Using exposure
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(a) Dynamic homophily of political
interest responses (using bluetooth
proximity) for all participants. Notice
the decline, i.e. tendency to interact
with others having similar opinions,
lasting for a few days, around Oct 15th
2008, which was the last presidential
debate.

(b) Dynamic homophily of preferred
party responses (using bluetooth
proximity) for all participants.

(c) Dynamic homophily of liberal-
conservative responses (using blue-
tooth proximity) for all participants.

(d) Dynamic homophily of political
interest responses (using bluetooth
proximity) only for Freshmen . There
are two periods of decline, each last-
ing for a few days. The first is around
Oct 15th (last presidential debate) and
the second is around 4th Nov, Election
Day.

Fig. 2. Top: actual values of H(t) with standard error bars. Bottom: Moving average.

based features explains an additional 15% - 30% variance across different politi-
cal opinion questions. The effects for freshmen are approximately twice as strong
as compared to the entire population, similar to the variations in dynamic ho-
mophily related to external events. In the context of social science literature,
this is a relevant effect.
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Table 3. Identifying Political discussants based on exposure features. Classification
results using Meta-cost AdaboostM1 (individual classifiers are decision stumps), 5-fold
cross validation.

Class Precision Recall F-Measure

Non-discussants 0.87 0.62 0.72
Political discussants 0.35 0.67 0.46

Table 4. Identifying Political discussants based on exposure features. Classification
results using cost-sensitive Bayesian Network classifier, 5-fold cross validation and K2
hill-climbing structure learning.

Class Precision Recall F-Measure

Non-discussants 0.87 0.61 0.72
Political discussants 0.35 0.70 0.46

Table 5. Least squares regression results for the opinion change model. The dependent
variable in all cases is the self-reported political opinion in November. The independent
regression variables are averaged opinion of self-reported close friends relationships and
political discussants (I), normalized bluetooth exposure (II), and normalized exposure
combined with past opinion (III). As seen, automatically captured mobile phone fea-
tures substantially outperform self-reported close friends or political discussants.

I II III
Political Opinion Self-reported Disc. Normalized Exp. Normalized Exp.
Type / Close Friends Only & Sept Opinion

Preferred Party n.s. / n.s. 0.21∗∗ 0.78∗∗∗

Liberal or Conservative n.s. / n.s. 0.16∗ 0.81∗∗∗

Interest in Politics n.s. / 0.07∗ 0.24∗∗ 0.74∗∗∗

Preferred Party n.s. / n.s. 0.46∗ 0.83∗

(freshmen only)

Interest in Politics n.s. / n.s. 0.21∗∗ 0.78∗∗∗

(freshmen only)

All values are R2 n.s.: not significant
∗ : p < 0.05 ∗∗ : p < 0.01 ∗∗∗ : p < 0.001

5 Modeling Opinion Change with Topic Models

An important question in sociology is ‘what influences opinion change’? Is there
an underlying mechanism resulting in the opinion change for some people? Can
we measure this mechanism, and if so, can we predict future opinion changes from
observed behavior? In this section, we propose a method for activity modeling
based on the Latent Dirichlet Allocation (LDA) [6] topic model, to contrast
the activities of participants that change opinions, with those that do not. We
discover in an unsupervised manner, the dominating routines of people in the
dataset, where routines are the most frequently co-occurring political opinion
exposure patterns also referred to as topics.
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5.1 Latent Dirichlet Allocation

Topic models can be used to discover a set of underlying (or latent) topics
from which a corpus of M documents d is composed via unsupervised learn-
ing. They are generative models initially developed for textual content analysis.
In LDA [6], a word w is generated from a convex combination of K topics
z. The number of latent topics, K, must be chosen by the user. The proba-
bility of word wt from a vocabulary of V words in document di is p(wt|di) =∑

k p(wt|zk)p(zk|di),
∑

k p(zk|di) = 1. LDA assumes a Dirichlet prior probability
distribution on Θ = {{p(zk|di)}K

k=1}M
i=1 and Φ = {{p(wt|zk)}V

t=1}K
k=1 to provide

a complete generative model for documents. Words are considered to be ex-
changeable, meaning they are independent given topics. The objective of LDA
inference is to obtain (1) the distribution of words given topics Φ and (2) the
distribution of topics over documents Θ.

When considering behavioral data, what we refer to as ‘multimodal exposure
(MME) features’ can be seen as analogous to text words and a user is analogous
to a document. Further, latent topics are analoguous to human routines, where
Φ gives an indication of how probable topics are for users, and Θ results in a
distribution of exposure features given topics.

5.2 Multimodal Exposure (MME) Features and Topics

We formulate a multimodal vector of exposure features (MME features) encom-
passing four components: (1) time (2) political opinion (3) type + amount of
interaction and (4) relationship. Overall, a MME feature captures the exposure
to a particular political opinion, including details such as time and relation-
ship. Given a survey question from Table 1, a MME feature has the following
structure (t, po, b, c, f, s, pd). Component (1) is the time where t ∈ {10 pm−2
am (late night = LN), 2 − 8 am (early morning = EM), 8 am−5 pm (day =
D), 5 − 10 pm (evening = E)}. These 4 time intervals in the day are specific
to the overall daily activities of the users in the dataset. Component (2) is the
political opinion po ∈ o and o is the set of possible responses from Table 1 for the
survey question chosen. Component (3) is the type and amount of interaction
where b is a measure of the cumulative exposure (Equation 2) from bluetooth
proximity to opinion po and c is the cumulative exposure from the mobile phone
logs to opinion po. Cumulative exposure is quantized into the following bins:
b ∈ {0, 1 − 2, 2 − 9, 9+}, c ∈ {0, 1 − 2, 3+} to limit the vocabulary size. b = 0
implies no proximity interaction in the time interval t with political opinion po

and c = 3+ implies 3 or more calls and/or SMS with political opinion po dur-
ing time interval t. Finally, the relationship metric is defined by f ∈ [friend, not
friend], s ∈ [socialize, do not socialize], and pd ∈ [political discussants, not politi-
cal discussants]. Topics are essentially clusters of dominating ‘opinion exposures’
present over all individuals and days in the real-life data collection, described in
terms of MME features.



226 A. Madan et al.

5.3 Model Selection with Statistics

In order to choose the optimal number of topics, K, for the model, we consider
statistical significance measures over the entropy of topic distributions. We chose
entropy of topic distributions as it (1) enables the computation of statistical
significance over a vector of probability distributions and (2) summarizes the
probability distributions of user behaviors.

In Figure 3, statistical significance test results are displayed for various survey
questions (Table 1) (e.g. interest in politics (I)) as a function of the number of
topics (x-axis) (a) for the groups ’changed opinion’ versus ’did not change’ (b)
considering all possible opinions and change of opinions as groups. The differ-
ence in group entropies is mostly statistically significant for the preferred party
opinion when considering the 2 group case in (a), however not for all values of K.
In Figure 3(a), the first two points for which statistical significance occurs are at
K = 13 and K = 14 and in the case of Figure 3(b) at K = 17. For the opinion
interest in politics (I) and the 2 group case in plot (a) at K = 22 the p-value
reaches its minimum. We consider K = 14 for PP (4-point scale) and K = 22
for I, points which are statistically significant, in analyzing opinion change in
the results.

(a) T-test results (b) F-test results
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Fig. 3. Significance results (a) for ’changed opinion’ versus ’did not change opinion’
for interest in politics (I), liberal/conservative (L), preferred party (PP) (4-point scale)
and (PPD) (7-point scale) (b) considering all possible opinions and change of opinions
as groups

5.4 Results

Interaction Patterns of People who Change Opinion. The goal is to de-
termine the difference in the interaction patterns of these two groups and we do
this by comparing the most probable topics, averaged over all the users of each
group. In Figure 3 for preferred party (PP) at K = 14, we observed the two
groups ’people who changed opinion’ and ’people who did not change opinion’
was statistically significant with p = 0.026. Note, 5 users changed PP and 44
users did not. In Figure 4(a), the top plot shows the mean Φ for those that
changed opinions and the bottom is for those that did not. The most probable
topics (dominating routine) for users that changed opinion was topic 3, 9, and 10
visualized by (b), (c), and (d), respectively. The most dominant topic for users
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that did not change was topic 10, which dominated in both groups. For a given
topic ((b)-(d)), we display the 3 most probable words’ (top) face-to-face inter-
action features (middle) phone interaction features and (bottom) relationship
statistics, abbreviated by FR for friends, SOC for socialize and PD for political
discussants.

Looking at Topic 3 (plot (b)), we can see that users that changed opinion
predominantly had face-to-face interactions with PD, that were non-friends and
not people they socialize with. The preferred party of these political discussants
was democrat and this interaction occurred predominantly between 10pm-5pm
(LN to D time components). Further, people who changed opinion also had
heavy phone call and SMS activity with democrats as well as independents, as
seen by Topic 9.
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Fig. 4. (a) Mean topic distribution of users that changed opinion(top) and users that
did not (bottom). Users that changed PP (4-point scale) had a high probability of
topics 3, 9, 10, whereas users that did not change had a high probability of topic 10.
By looking at the features of the 3 most probable words for these topics, we can see that
users that changed opinion displayed (b) heavy face-to-face interactions with political
discussants, and (c) they also had heavy phone call activity with non-friends.

Different Exposure for Increased vs. Decreased Interest in Politics. We
considered the difference in daily routines of users which increased their interest
in politics as opposed to those that decreased their interest. Figure 5(a) shows
the T-test results for the entropy of topic distributions of both groups, with
p = 0.06. Figure 5(b) is the mean probability distribution of topics given the
users from the two groups with K = 22 topics. The mean topic distribution p(z|d)
is shown for (top) all users that increased their interest, and (bottom) all users
that decreased their interest. Note, 14 users increased their interest and 34 users
decreased their interest in politics. Plots (c)-(e) show the most probable words
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Fig. 5. Routines of people who increased their interest in politics versus those that
decreased their interest. (a)T-test results reveal the difference in the entropy of topic
distributions for these groups is statistically significant. (b)Mean distribution of topics
for users of both groups. (c)-(e)Topics which best characterized users’ daily life patterns
in both groups. People who increased their interest often communicated by phone (c)
and those that decreased interest had many face-to-face interactions with people with
little/no interest in politics (d-e).

for the dominating topics in both groups. Due to space constraints, we show
topics which differed between the groups and disregard topics which were highly
probable for both groups. Topic 14 (c) is highly probable for users that increased
their interest. Topic 8 and 18 are highly probable for users that decreased their
interest. People who displayed increased interest were communicating most often
by phone during the day. The group which decreased their interest had only face-
to-face interactions (no phone communication) dominating their daily routines
and it included interaction with people with little and no interest as seen by
topics 8 and 18. There was heavy face-to-face interactions with friends in the
early morning (EM) who had no interest in politics, for the group that decreased
their interest.

6 Conclusion

In this paper we describe a novel application of pervasive sensing using mobile
phones– modeling the spread of political opinions in real-world face-to-face net-
works. Using mobile phone sensors, we estimate exposure to different opinions
for individuals, find patterns of dynamic homophily at the community scale, re-
cover ‘political discussant’ ties in the network, and explain individual political
opinions on election day. We use an LDA-based model to study specific behaviors
of people who changed their political opinions.
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There are however, several limitations of our approach. We use bluetooth sen-
sors to identify when people are in physical proximity, but there are many cases
where individuals are proximate in the same room or space, but not necessarily
interacting, as discussed in [44]. Another limitation is that our dataset consists
of interactions captured using mobile phone sensors, and does not account for
exposure to political opinions in mass media, e.g. via television or internet blog
posts. The ability to estimate future changes in political opinions would certainly
improve if such data was available. Mass-media access to political information,
however, has been shown to be correlated with the self-reported party prefer-
ence and political interest responses of the individual. On the technical front, our
Windows Mobile platform at the time did not support GPS hardware sensors.

There are several fascinating future extensions of this work. In addition to po-
litical opinions, it would be important to understand if pervasive sensing methods
can help understand the propagation of other types of opinions and habits in
face-to-face networks, e.g., those related to health or purchasing behavior, both
in our current dataset and also in other observational data. With the constant
improvement in sensing technologies, future projects could use global positioning
system (GPS) or infra-red (IR) sensors for better location and proximity sensing.
Overall, our quantitative analysis sheds more light on long-standing open ques-
tions in political science and other social sciences, about the diffusion mechanism
for opinions and behaviors.
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Abstract. Touring location-based experiences is challenging as both content 
and underlying location-services must be adapted to each new setting. A study 
of a touring performance called Rider Spoke as it visited three different cities 
reveals how professional artists developed a novel approach to these challenges 
in which users drove the co-evolution of content and the underlying location-
service as they explored each new city. We show how the artists iteratively 
developed filtering, survey, visualization and simulation tools and processes to 
enable them to tune the experience to the local characteristics of each city. Our 
study reveals how by paying attention to both content and infrastructure issues 
in tandem the artists were able to create a powerful user experience that has 
since toured to many different cities.  

Keywords: Location-based performance, cycling, adaptation, Wi-Fi 
fingerprinting, seams, user generated content. 

1   Introduction 

From tours and guides, to games and performances, to educational field trips, there is 
a growing interest in how location-based technologies can deliver engaging new 
forms of leisure, entertainment and learning. Early explorations have demonstrated a 
variety of ways in which such experiences can combine digital media with physical 
settings to create exciting new experiences. Guides and tours have attached digital 
media to historic sites in order to enhance understanding [1,2,3,4]. Computer games 
have been overlaid on real cities, demanding physical engagement from players as 
they chase one another through the streets [5,6,7,8,9,10]. Other experiences have 
drawn on the pleasure of physical exploration, either to find digital resources [11,12] 
or to find physical resources as in the popular pastime of Geocaching [13]. 
Educational experiences have engaged learners in simulations that appear to be 
overlaid on the real world [14] and have underpinned field trips to sites of special 
interest [15,16]. Location-based technologies have also enhanced Live Action Role 
Play by enabling the creation of apparently magical or paranormal artifacts [17]. 
Finally, artists have combined digital media with physical locations, props and players 
on the city streets to create performances that draw on the everyday world as a 
theatrical backdrop [18]. 
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While these examples demonstrate the potential of location-based technologies to 
underpin compelling new experiences, they also raise major challenges, especially 
with regard to touring them to different locations. At the heart of this challenge is the 
extensive work involved in adapting an existing experience to each new setting in 
which it is to be deployed, potentially including authoring content, but also rolling out 
and tuning the underlying location-service and other technical infrastructure.  

Although authoring content is a challenge for established digital media such as 
computer games, location-based experiences raise the added problem of potentially 
requiring re-authoring for each new setting, with digital assets such as videos, sounds, 
text, graphics and virtual worlds being created afresh to match local buildings, 
artifacts, people and other physical assets. Even when previous content is available, it 
needs to be tailored to fit to new locations incurring considerable additional cost.  

After creating assets, the designers have to wrestle with the complexities of 
location and communication technologies so as to properly locate these within the 
physical world. Previous studies have shown how challenging this can be, requiring 
them to be able to reason about the fine details of coverage and accuracy of wireless 
communications and positioning across a given location [20]. They may even have to 
actually deploy some new physical infrastructure such as tags and beacons within the 
new environment. Nor does their work end here, as other studies have highlighted the 
importance of the real-time monitoring and ongoing orchestration of an experience 
from behind the scenes once it has gone live [5]. While game-mastering and other 
forms of orchestration are already practiced with current online games, location-based 
experiences introduce a new level of challenge to this, as participants are often widely 
dispersed across a physical location, difficult to identify, and may suffer from 
frequent disconnections [18].  

Finally, these various challenges are mutually dependent, with both the authoring 
of content and the orchestration of experience depending on the successful adaptation 
of the underlying technical infrastructure, requiring designers to wrestle with a 
complex mix of experiential and technical issues at each new location. 
Unsurprisingly, it remains remarkably difficult to create an experience that benefits 
from a rich integration of the digital and physical and yet can be easily rolled out 
across many different locations. Indeed, an inherent lack of ‘tourability’ may be the 
greatest bottleneck facing the future widespread adoption of these kinds of emerging 
location-based experience. 

This paper presents a study of a professional location-based experience called 
Rider Spoke that has been deliberately designed to tour to multiple cities. Our study 
covers the critical fifteen month period from early concept workshops through touring 
to three cities, by which time it had emerged as a stable product. We focus on how 
artists addressed the complex challenges of tourability by creating a novel structure 
that, with only minimal seeding, enables participants themselves to create location-
based content as they explore a city, while simultaneously driving the gradual 
evolution of the underlying location-service. We also describe how the artists 
iteratively developed new software tools to support the touring process. Our study 
draws on multiple sources of data, from questionnaires completed by participants that 
give insights into their experience, to notes and observations from meetings and 
performances that reveal the activities of artists and technicians, in order to present a 
holistic account of the story of Rider Spoke from multiple perspectives. 
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2   From Concept to Premiere 

The first half of our study takes us from creating the initial concept up to the premiere 
performance of Rider Spoke at London’s Barbican centre in October 2007 – a detailed 
examination of Rider Spoke as a cycling experience can be found in [19]. 

2.1   The Design Drivers behind Rider Spoke 

Prior to Rider Spoke, our artists had created several location-based experiences and 
through these, had acquired extensive first hand experience of the substantial costs 
involved in touring them to different locations. Their primary concern this time was to 
create an experience that was deeply engaging and yet also lightweight and flexible 
enough that it could be toured to many different locations worldwide. Early design 
workshops explored this challenge and homed in on three key design drivers that 
would underpin Rider Spoke and reduce the cost of touring. 

A commitment to user-driven locally-relevant content. Participants would populate 
the experience with content by recording personal stories that others could then listen 
to. It was important that these stories should be deeply engaging, for example moving, 
charming or hilarious, but also have local relevance, that is resonate with specific 
locations within the city which would somehow serve as an inspiration or backdrop 
for them. Thus, participants would be required to explore the nooks and crannies of 
the city in order to record their stories and find those of others.  

A lightweight and adaptable approach to location. The location mechanism would 
need to be sufficiently lightweight and flexible that it could be reliably deployed and 
adapted to different cities. Although widely available in principle, the artists’ previous 
experiences led them to reject GPS as being too sensitive to the particular geography 
of built-up urban environments, especially with regard to variable coverage, and so 
they were keen to experiment with an alternative approach to location. 

Shifting away from a dependency on real-time data connection. Unlike many 
earlier experiences, Rider Spoke would deliberately operate as a disconnected 
experience, isolating participants from immediate contact with one another so as to 
create a calm and contemplative atmosphere, whilst also avoiding the severe technical 
challenges of dealing with disconnection that had dogged previous experiences and 
required extensive orchestration. 

From these three principles emerged the detailed design of an experience that 
involves individuals cycling through a city at night, recording and then listening to 
personal stories that are associated with particular locations. It was felt from the start 
that travel on foot was too spatially constraining and that some form of transport 
would be required to enable a sufficiently wide ranging exploration of the city. Cars 
were briefly considered, but cycles were soon settled on as they allow exploration, 
can access a wide range of territories, help isolate players and yet still deliver a 
visceral experience of the city. It was also decided to stage the experience at dusk and 
into the night so as to heighten the sense of an unusual, even otherworldly, experience 
of the city as an inspiration for stories. Participants would therefore cycle through the 
city at night. The artists themselves expressed their intention in their documentation 
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as follows: “As you roll through the streets your focus is outward, looking for good 
places to hide, speculating about the hiding places of others, becoming completely 
immersed into this overlaid world as the voices of strangers draw you into a new and 
unknown place. The streets may be familiar but you’ve given yourself up to the 
pleasure of being lost.” 

2.2   A Participant’s View of Rider Spoke 

Participants arrive at the hosting venue, either on their own bicycle or to borrow one. 
They register at the reception where they sign a disclaimer and leave a deposit. They 
then receive a briefing that covers the nature of the experience, how to use the 
technology, how to cycle safely, and also tells them of an emergency paper map and 
phone number under their saddle. The receptionist logs their details in a database and 
then sends them outside where a technician mounts a mobile console (a Nokia N800) 
onto the handlebar of the cycle and, for loaned cycles, adjusts their seating position so 
that they feel comfortable and safe. Riders leave the venue individually and the 
experience lasts for an hour. After the first few minutes cycling, gentle music plays, 
setting the tone for the experience, and a narrator begins giving instructions. The 
female voice is calm and measured, adopting a style and tone reminiscent of a 
psychotherapist: 
 

This is one of those moments when you are on your own; you might feel a little odd 
at first, a bit self-conscious or a bit awkward.  But you’re alright and it’s OK.  You 
may feel invisible tonight but as you ride this feeling will start to change.  Relax, 
don’t forget to breathe both in and out and find somewhere that you like, it might be 
near a particular building or road junction, it might be near a mark on a wall or a 
reflection in a window. When you have found somewhere give yourself a name and 
describe yourself. 

 
The rider’s first task is to find an appealing location, stop, and record a name and 
description, as shown in figure 1. This location has to be a ‘new’ location within the 
experience, meaning one that is not already occupied by an existing recording 
(according to the location technology that we describe below). It is the basic rule of 
Rider Spoke that each new recording has to be made at a new location, requiring 
players to continually seek out new places in the city as the volume of recordings 
grows. When the Rider has found a valid location the console screen displays the 
invitation shown in figure 2. 

The interface is designed to be distinctive and yet simple, providing just a few 
options to record and listen to messages. After all, Riders may be using this device for 
the first time while engaged in an unusual experience that also involves cycling. The 
overall metaphor is one of hiding and finding recordings within homes. Artistically, 
the design draws on a combination of Mexican votive art, with religious associations 
of prayer and offerings, combined with images of tattoos that are emblematic of 
voyages of exploration. Interaction is via a touchscreen using just a few large buttons 
and with safety in mind, the briefing and instructions encourage riders to stop before 
interacting. 
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Fig. 1. A rider with console attached to their bicycle listening to a recording  

 

Fig. 2. Inviting a rider to record their description 

Following this initial task, riders can repeatedly choose between recording an 
answer to a new question or listening to others’ recordings, repeating this choice until 
their allotted time of one hour has elapsed. To answer a question, the rider must again 
find a new location. They will then be asked a question (over the audio in their 
headphones) that encourages them to divulge a personal story of some kind. The 
questions, authored by the artists, ask riders to reflect on significant, evocative or 
hilarious moments of their life while engaging with the city. For example, they may 
be asked to reflect on people or events in their lives:  

 
Please will you tell me about your father. You might want to pick a particular time 

in your father’s life or in your life. Freeze that moment and tell me about your dad: 
what they looked like, how they spoke and what they meant to you. And while you 
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think about this I want you to find a place in the city that your father would like. Once 
you’ve found it stop there and record your message about your father at that moment 
in time. 

 
 Or they may be asked to use the places and strangers in the city as inspiration for 

their imagination: 
 
I want you to look for a flat or a house and find a window that you would want to 

go through. I want you to stare into that window and tell me what you see and tell me 
why you want to go through that window 

 
Riders are given the opportunity to review and record their stories and then to save 

them when they are satisfied. On choosing to listen to other’s recordings, the rider is 
offered a list of the three nearest recordings to their current location. As a result, 
recordings are always available to be heard, although cycling through the city will 
continually update the list, effectively browsing a landscape of stories. When the 
experience is near its end the narrator gives the rider one final task: to make and 
record a final promise. After this, they return to base where the device is dismounted 
from their bike and their deposit returned. 

2.3   Implementing Rider Spoke 

A substantial portion of our study is concerned with how the artists adapted the 
technical infrastructure of Rider Spoke, and so it is necessary to delve into some 
details of its implementation, especially with regard to the design of the location 
service and database. The design team elected to exploit the prevalence of Wi-Fi in 
many cities as the basis of their location service as previous research had shown that 
Wi-Fi could provide a sound basis for a location service [21]. After some initial 
experimentation, the team elected to develop a bespoke Wi-Fi location service that 
was tailored to the particular requirements of Rider Spoke, basing this on an existing 
technique called Wi-Fi fingerprinting [22,23]. The rider’s console periodically scans 
for Wi-Fi access points as they traverse the city. The resulting list generated at any 
moment is taken to be a distinctive fingerprint for their current location. If this 
fingerprint is deemed to be different from already known fingerprints held in a 
database then it becomes a new location. If it is very similar, it is considered to match 
an already known location.  

As players record stories, some of these known fingerprints become associated 
with recordings. The database also records adjacency links between fingerprints that 
are created whenever one fingerprint is seen directly after another. Thus, the resulting 
database takes the form of a mathematical graph, with nodes being fingerprints and 
edges representing direct adjacencies between these. These adjacency links enable the 
location-service to reason about the relative proximity of locations by working out the 
minimum number of links that separates them. Thus, it becomes possible to work out 
the likely ‘nearest’ recordings to a given location. 

Each rider begins with a preloaded version of the database on their console from 
the previous day. Any new locations and data that they generate during the experience 
as they make recordings and explore new parts of the city are offloaded back to the 
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central database when they return (remembering that this is a disconnected 
experience). At the end of each day all new locations and new recordings from that 
day’s participants are merged back into the database. This requires the artists to filter 
and merge the new recordings, working out which should be made available to future 
riders. This involves listening to all of the recordings from that day and making two 
key decisions. First, is a recording engaging enough to warrant it being included. 
Second, where two new recordings are associated with the same new location (two 
riders having independently discovered and used it on that day), which should be kept 
and which thrown away in order to resolve the conflict.   

Thus, the graph structured database of known locations, adjacencies and recordings 
grows and evolves as the experience unfolds over many days. The strength of this 
approach is that the content and location information evolve from practically nothing 
as the experience gradually rolls out over the city. A little seed content, normally of 
the order of a few tens of recordings, and a small fingerprint graph that can be built 
from a few short test cycle rides around the venue, is all that is required to prepare the 
experience.    

It is important to note that this approach does not deliver, or aim to deliver, the 
geographical position (coordinates) of a fingerprint; it is therefore not a positioning 
service as are some other Wi-Fi-based services. However, it does satisfy the essential 
requirements of Rider Spoke, namely being able to identify new and existing 
locations to a mobile console, associating some of these with content, and reasoning 
about their relative proximities. Of course, there is still a question of ‘accuracy’ in the 
sense that recordings ideally need to be heard near to any physical locations to which 
they refer. However, this is deliberately a relatively fuzzy association and so the 
experience is carefully designed not to rely on accurate positioning. Early seed 
messages that are deposited by the artists are carefully constructed to be engaging but 
also locationally-vague as these may be potentially heard from far away while the 
initial graph is small and sparse. As the database grows and the graph becomes ever 
more dense, it should be the case that the three ‘nearest’ recordings are increasingly 
from locations that are actually nearby.  

2.4   Feedback from the Premiere Performance  

The premiere performance of Rider Spoke took place in London in October 2007, 
being experienced by 548 riders over 8 days. Between them they left 1,964 audio 
recordings in the city (average of 3.5 per player and maximum of 10). All riders were 
invited to give feedback after the event via a web-based questionnaire that probed 
their background, overall enjoyment, and the themes of recording and listening to 
stories, finding locations, and cycling. Given that this was a public event, all of the 
participants were self-selecting, as were the 71 (13%) of these who completed the 
questionnaire. Responses were quite evenly distributed across the 8 days of play, with 
no day receiving less than 5 or more than 10. 41 respondents were female, 28 male, 
and two didn’t say. Most were attracted by the novelty or by the artists’ reputation, 
and some by the cycling (54 classified themselves as ‘cultural/arts events visitors’ and 
29 as ‘cyclists’). Over half cycled regularly and 31 used their own bikes. However, 2 
claimed to ‘never cycle’! 



 Lessons from Touring a Location-Based Experience 239 

 

The overall reception to Rider Spoke was very positive. On a five point Likert 
scale, 70% of respondents agreed or agreed strongly that ‘taking part in Rider Spoke 
was fun’ while 67% said that they would do the experience again. While it may of 
course be that those who felt most positive were also the most willing to complete the 
questionnaire, this fits well with anecdotal feedback that we received from riders as 
their returned to the venue. It appears that riders appreciated several aspects of the 
experience.  

They enjoyed recording and listening to stories which could at times be deeply 
personal and apparently honest, and some even cried while recounting them: “It was a 
very 'moving' experience for me and very memorable. To be alone in the city, holding 
your bike, blubbing about your father on a Sunday evening is something else....!” 
Others, however, invented stories: “I was much more performative. I often made 
things and characters up to make it interesting, both for me and the other listeners”. 
Listening to other people’s stories could also be moving, again especially when they 
were personal: “One about the memory of a man's father.  It was extremely touching – 
he also described standing on a roman wall, an evocative historical location to be 
thinking about memories.  He even vowed to bring his dad to that spot because he 
thought he'd like it there. Beautiful.”  

Respondents also remarked on the distinctive social nature of the experience, 
which as one put it, involved “a disconnected intimacy with a total stranger.” This 
was amplified by the feeling of being isolated in the city: “It was a private moment 
strangely enough not always in a private space.” This is not to say that riders were 
not aware of bystanders though, which for some introduced a further sensation of 
being exposed and even slightly vulnerable. 

Location played an important role in inspiring stories, with players choosing 
movie-like backdrops for their recordings:  “I just found places that excited me to 
stand in, that would be seen in a film.” and “When hiding in old alleys that reminded 
me of what Victorian London might have looked like, I think I romanticised the 
answers a bit more.” Ambient sound was also important and would directly appear on 
the recordings: “Yes - sometimes the background noise or the atmosphere of a 
particular place really chimed or sometimes jarred with the words I was speaking.  
This added a layer of richness to the testimonials.” Some locations imparted a 
personal meaning: “I followed a route that I like and stopped at places that had 
personal resonance or geographic prominence.”, while others were simply 
aesthetically pleasing in their own right: “Cos they were quiet and beautiful in their 
own way.” Yet others were associated with a memorable landmark: “I looked for 
spots which were quiet and had some kind of marking point - as if it was buried 
treasure, so like a squirrel I could always find it again if i wanted to!”  

Finally, cycling appeared to engender a sense of freedom and liberation in some 
that may have opened them up to recounting stories. “I love cycling and haven’t 
cycled regularly for a while as my bike broke and i have not got round to fixing it! So 
it reminded me of the freedom i feel when I cycle and to cycle with no destination is 
wonderful - i felt physically awakened and engaged” and “Made you look, made you 
stare, made you investigate dark places you wouldn't normally.” 

This is not to say that all players had a great time and that all stories were deeply 
engaging by any means. Many stories were not greatly interesting, others were 
unintelligible, and there were clearly moments when players found themselves in a 
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completely inappropriate location: “I wasn't going to speak at length about my father 
whilst standing in a grimy back alley that stank of excrement.” Some players got lost, 
while others commented on being cold, tired, uncomfortable and even in desperate 
need of the toilet while cycling. Perhaps the most frequent criticism, however, arose 
from the slow response of the interface which could take many seconds to respond on 
some occasions as we discuss below. However, it does seem that on balance, the 
distinctive combination of freedom, isolation, vulnerability, disconnected intimacy, 
location, physicality and of course the artists’ questions provided a framework within 
which many riders could create powerful content.  

2.5   Lessons for the Infrastructure  

While the artists were generally satisfied with the overall user experience, the 
technical challenges involved in delivering Rider Spoke proved to be more 
problematic. These revolved around two issues: the overhead of filtering content and 
the somewhat opaque and inflexible nature of the location mechanism. 

Given the high-profile and often unpredictable nature of a  premiere performance, 
the artists were prepared to devote a large amount of their own time to the hands-on 
running of the experience, and had also been willing to hire a relatively large crew to 
support them. This had made it (just about) feasible to listen to and filter hundreds of 
new recordings each day ready to be merged into the database for the next day’s play. 
However, future touring would need to rely on a smaller crew to be financially viable, 
and would also have to demand less time from the artists themselves as it would take 
place over many years to come when they would be working on new projects.  
Concerns were also raised about how filtering would work with overseas touring 
where recordings would not necessarily be in English. Improving the filtering of 
content was therefore identified as a key bottleneck to be addressed to support future 
touring.   

The second issue concerned the location mechanism. Collectively our riders logged 
1,236,120 distinct sightings of 3990 unique fingerprints (locations) over the 8 days. 
The size of the resulting graph was a major contributing factor to the poor 
performance of the console software. Discussions between the artists and the 
technical team after the first few days revealed that it was not possible to retune the 
mechanism to produce a new smaller graph. Even if it had been, it was unclear what 
density of graph would be needed anyway. A large and dense graph could clearly 
cause performance problems and also make it possible to appear to place many 
recordings at each physical location. Too sparse a graph however might not provide 
sufficient locations for new content and could potentially lead riders to perceive 
mismatches between content and location (which had not been a significant factor in 
user feedback from the premiere). Furthermore, it was not clear how variations in Wi-
Fi density across different cities, or perhaps even across a single city, would impact 
on tuning the graph. Being able to tune the fingerprint graph to match the local 
characteristics of each new city was therefore felt to be also important to the future 
touring of Rider Spoke.  
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3   From Premiere to Touring 

The second part of our study considers the work that was done to address these 
challenges as Rider Spoke toured through two further cities, Athens in March 2008 
and Brighton in May 2008. While nearly all aspects of the experience were tweaked 
to some extent (questions revised, briefings updated, and the software on the console 
restructured to improve performance), the greatest effort was invested in developing 
tools and processes to support filtering of content and tuning the location mechanism. 

3.1   Managing the User Generated Content 

Filtering recordings needs to address three issues. First is selecting the best content so 
that it can be merged into the database and made available to future riders. The aim 
here is to both reduce the volume of content to a manageable amount, ensuring that 
enough locations remain free for the new players, and also to ensure that that the 
content is of the best possible quality in the opinion of the artists. Second, is the need 
to resolve conflicts where two new recordings occupy the same location. Third, is the 
challenge of dealing with multiple languages. Many riders in Athens wished to record 
their stories in Greek and the artists (who did not speak Greek) felt that the recordings 
would be of higher quality if this were the case. To be able to tour Rider Spoke, the 
artists needed to be able to outsource the task of rating content to trusted people who 
could be hired in as needed, including native speakers. The first step was development 
of the following five point rating scale and guidelines as written down in the 
‘Operator Manual’: 

 
1. I can’t hear this/ would never want to listen to this. Inaudible. Very long silences. 

Criticizing the work: “This is boring”. Repeated answer: i.e. an exact copy of this 
answer already exists 

2. I wouldn’t want to listen to this. Boring: an observation or sentiment that is 
completely undistinctive or obvious “Some parts of the city are quite rough” “I 
went to lots of wild parties when I was young”. These answers lack anything 
specific, precise or personal. They are often very short. An answer that is almost 
exactly the same as a previous answer 

3. I wouldn’t mind listening to this. Average: a typical answer but nevertheless one 
that has meaning to the person speaking. “I promise that tomorrow I will be 
kinder to my work colleagues.” “I went to a party when I was 15 and tried to kiss 
a boy called Peter but before I could I threw up ...” The majority of answers will 
be 3 and, if  you are not sure what score to give, mark an answer as 3 

4. I would enjoy listening to this. Outstanding. Contains a unique or specific insight 
or revelation. Something that no one else has said. Makes you laugh or moves 
you. 

5. I would love to listen to this. Exceptional: hilarious, moving, surprising, unique. 
Not necessarily long: it could be very short 

 

The artists also proposed the following modifiers: 
 

If an answer is location specific (i.e. refers to a specific building or street so that 
another player would know what they are talking about) +1 
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Any answer to “describe yourself” (because these are usually short and 
introductory) -1 

Any answer to “make a promise” (because there are so many of them and they can 
be very repetitive) -1 

Very brief (don’t forget the effort that a player will have gone to in order to hear 
an answer: if an answer is very short then it may seem like a big anticlimax unless it 
is especially strong) -1 

 
These guidelines were then embedded in a web-based ranking tool. One of the 

screens in this tool presented cases where multiple new recordings conflicted with a 
single new location. The tool also allowed the artists to choose a ranking threshold (1-
5) such that only recordings rated above this would be merged into the database. This 
could be raised over time as higher quality recordings became available. In each of 
the three performances the ranking began at 3 on the first day and had been raised to 4 
by the end (retaining 10%, 13% and 20% of the recordings in London, Athens and 
Brighton respectively). 

The work of ranking was usually shared out among the artists who could review 
prior rankings day-by-day to allow for ongoing artistic oversight and the review of 
one another’s judgments, whilst keeping the task at a level that was practically 
manageable. Artists also became much quicker at the task as their familiarity with the 
content and this new tool grew. Furthermore, the use of the ranking tool and how the 
above gross categories and rules might get applied was something that itself evolved 
as the experience became more populated with content and the artists listened to more 
recordings. Rankings could even be pre-reviewed within the current session to get a 
feel of what the overall batch of recordings sounded like in advance of the final 
ranking at the end of the day. In this way ranking sessions and the use of the ranking 
tool within them became a fine-tuned and highly nuanced resource for keeping 
content captivating and up to date. In addition, a particular attentiveness to locally-
grounded stories enabled the artists to further refine the location-specific tuning of the 
experience and imbue the whole event with a sensitivity to the character of the locale 
that it would otherwise have lacked. Finally, being web-based allowed the task to be 
carried out remotely, further reducing touring costs and allowing the sharing of the 
work across the team of artists. 

3.2   The Complexities of the Location Mechanism 

Tuning the location mechanism to each new city was the second major challenge for 
touring Rider Spoke. It also proved to be a considerably more knotty problem to 
resolve. Given that the artists spent considerable effort trying to understand the 
technical details of this mechanism, it is necessary for us to briefly consider them here 
too. 

The location mechanism goes through several steps to decide whether the list of 
currently visible Wi-Fi access points represents an existing or a new fingerprint (and 
hence location). Wi-Fi scanning software scans every few seconds, returning a list of 
all currently visible access points, each represented by its MAC address (the unique 
address pre-programmed into the access point) along with the received signal strength 
with which it has been seen. Access points below a configurable signal strength 
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threshold, are then removed from the list because they may be susceptible to transient 
interference and their inclusion could lead to highly unstable fingerprints. After this, 
only a limited number of the remaining access points are considered, according to a 
configurable fingerprint size parameter, with the weakest signals being discarded. The 
result of applying these two parameters is a manageably long list of access points, 
each of which is associated with a reasonable signal strength. The resulting list is then 
compared against the local database of known fingerprints (the fingerprint graph). If 
the filtered access point list “overlaps” an existing fingerprint by a sufficient amount – 
specified by a third overlap threshold parameter – then the new sighting is deemed to 
match an existing fingerprint. If not, it is deemed to be a new fingerprint and is added 
to the fingerprint graph along with a new edge that connects it to the most recently 
sighted fingerprint before this. The overlap is the proportion of access points that are 
in common between the two lists, for example “A,B,C” and “A,B,C,D” have a 75% 
overlap. Choosing a value of 100% for the overlap threshold would require that 
access point lists match exactly. In this case any difference in the list would produce a 
new fingerprint and hence a new location. Conversely, smaller values allow an 
existing location to be found again if a subset of the access points are not visible, for 
example if they have been temporarily turned off.  

In summary, the three key parameters of signal strength threshold, fingerprint size, 
and overlap threshold control how raw lists of access points and signal strengths are 
mapped onto distinct fingerprints and hence locations. Collectively, they determine 
the density and stability of the resulting fingerprint graph. The artists can change them 
to produce, on the one hand, a graph with very many but possibly transient locations, 
and on the other, a graph with relatively few but more stable locations. The goal is to 
find the correct combination that produces enough locations for a given city so that 
riders can find new locations at which to place their stories, and yet not so many that 
it feels like too many stories are at each location or that it is difficult to ever find a 
story again after it has been recorded.  

Discussions with the artists revealed that it was difficult both to understand and 
predict the effect of changing individual parameters (not least because they overlap to 
some extent in their ultimate effect). Setting them for the London performance had 
been largely a matter of guesswork and the result had clearly not been optimal. It also 
seemed highly likely that these parameters would need to be tuned to suit the 
particular local distribution of Wi-Fi access points across each new city so that a more 
principled approach was clearly needed.  

3.3   Tools to Adapt the Location-Mechanism 

The team therefore created a suite of three software tools to help localise Rider Spoke 
to each new city. A survey tool was used to gather some initial Wi-Fi data from the 
city, along with GPS data that could subsequently help georeference this to maps of 
the area. A simulation tool processed this data, enabling the artists to very rapidly 
create many different graphs, arising from different parameter settings, and rank and 
compare. Finally, a visualisation tool revealed the likely distribution of a given 
fingerprint graph across the chosen area of the city. 
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Fig. 3. Geo-referenced visualization of Brighton survey 

The survey tool required someone to cycle several pre-planned routes through the 
city with a mobile logging device to cover likely places that riders might visit during 
the experience. The artists aimed to get a broad brush picture of the environment in as 
short a time as possible. The Athens survey was conducted by four artists in parallel 
and completed in about one hour. Here, the different routes were arranged so that they 
would cover different areas, but also contain some overlap with other routes to make 
connections in the fingerprint graph. The Brighton survey covered the busy city 
centre, the suburbs and the seafront and was completed by a single artist in about one 
hour. These surveys were carried out weeks in advance of the performance alongside 
the usual site inspection and discussions with the hosting venue and the survey data 
was then taken back to the studio for analysis. 

The simulator tool allowed the artists to conduct a series of ‘what if’ experiments 
by feeding the survey data into the fingerprinting mechanism as if live and then 
stepping through ranges of values for each of the three parameters so as to 
automatically generate hundreds or even thousands of different fingerprint graphs. 
These graphs could then be sorted according to basic metrics including the number of 
fingerprints and edges they contained. An additional metric called ‘retrievability’ was 
introduced to capture the artists’ requirement that “content and fingerprints must be 
easy to find”. This was defined to be the total number of fingerprint sightings divided 
by the number of unique fingerprints generated for this graph and helped the artists 
find parameter settings that yield a graph whose locations might be suitably easy to 
find. By sorting and sifting to compare these various metrics across many graphs, the 
artists were able to home in on parameter settings that might hit the sweet spot of a 
good number of locations that were reasonably retrievable. 

Finally, the visualisation tool enabled the artists to inspect selected graphs (chosen 
from the simulation), examining their topologies (the clustering and connectedness of 

Seafront 

City Centre

Suburbs
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fingerprints) in relation to the geography of the local area, as shown in figure 3. The 
graphs could be drawn as abstract visualisations to reveal their topology, but these 
could also be pinned onto to various geographical maps and satellite views of the 
local area in Google Earth.  

4   Populating the City with Stories 

In its varied detail, our study has revealed how Rider Spoke combines a distinctive 
mode of interaction (cycling through a city at night and recording and listening to 
personal stories) with a novel technical infrastructure (an evolving graph of locations 
determined through Wi-Fi fingerprinting) to create a unique experience. The ultimate 
success of this approach is perhaps best demonstrated by the continued popularity of 
Rider Spoke as a touring product. At the time of writing it has been performed in 
London, Athens, Brighton, Budapest, Adelaide, Sydney, Copenhagen, Bristol, 
Edinburgh and Linz, with further bookings pending. That Rider Spoke is both 
engaging for audiences (and promoters) and yet also tourable can be largely attributed 
to the way in which both experiental and technical issues have been addressed in 
tandem through a process of iterative design and testing ‘in the wild’ of public 
performance. However, beyond documenting a ‘unique’ experience, what more 
general lessons can we draw out for HCI? What can the designers of other location-
based experiences and technologies take away from this study? 

The co-evolution of content and infrastructure. As already mentioned, the critical 
feature of Rider Spoke is the way in which both the content and the underlying 
location database evolve in tandem over the lifetime of the experience as a result of 
participants exploring the city. This enables the experience to be quickly rolled out 
across each new city without the need for extensive pre-authoring of content, or 
surveying or deploying underlying infrastructure, directly addressing two major 
bottlenecks to touring location-based experiences.  

User generated content. Web 2.0 services such as Wikipedia, YouTube and others 
make use of friendships, subscriptions and users’ ratings to motivate ‘user generated 
content’ and ensure that the most interesting content becomes the most publicly 
visible (see [24] for a discussion of collaborative editing in Wikipedia for example). 
Rider Spoke also relies on user generated content, but in a different way. First, it 
provides a distinctive framing for storytelling in which anonymity and isolation, 
rather than friendship and discussion, are used to encourage powerful performances 
by members of the public. Second, the artists retain a high degree of editorial control 
over the final rating and filtering of content that is published back to the users. While 
having the artists rate content clearly limits the scalability of Rider Spoke (while 
ensuring high quality), it may be that other applications that employ user generated 
content can learn from its approach to carefully framing storytelling to enable the 
public to perform. 

A ‘placeful’ experience. As a location-based experience, Rider Spoke is also able to 
draw on specific places in the city to provide rich and often personally meaningful 
backdrops for stories. Furthermore, participants are required to explore the city in 
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order to find and create these locations for themselves rather than having the artists 
choose or create them in advance. In other words, in a location-based experience, 
creating locations can be as much a part of user generated content as recording audio 
or video. Rider Spoke is also distinctive in that it does not fix locations to absolute 
positions or demand a high degree of accuracy. One way to view it’s deliberately 
fuzzy approach is, as Harrison and Dourish have previously argued [25], that it 
emphasises a sense of place rather than a consideration of the absolute geometry of 
the space of the city which would have arisen from adopting a more positioning-
oriented approach. However, as Dourish suggests also when subsequently revisiting 
this argument [26], the division between place and space is sometimes less clear. We 
would suggest that what we see in Rider Spoke is the development and deployment of 
a technology that presents a ‘user generated spatiality’ to users with “people creating 
space through their movement” [27] as they cycle through the city.  

Tools for flexible and adaptable location services. Finally, our study has also 
shown that evolution of the infrastructure requires careful management in much the 
same way as the user driven evolution of content. To be effective this user driven 
infrastructure needs to be adapted to local conditions (in our case to the local 
geography and variations in the distribution of Wi-Fi) and this requires careful 
attention and the support of dedicated tools that enable designers to survey, simulate 
and visualize the likely evolution of an infrastructure across a particular city and to be 
able to tune it as a result. This capability to reveal the nature of the technical 
infrastructure to the designers of location-aware experiences reflects an ongoing 
discussion of ‘seamful design’ within HCI. Previous papers have observed how the 
characteristics of the underlying infrastructure of positioning and wireless 
communications can have a major impact on the user experience and how, far from 
being an occasional glitch or bug, this is an ongoing aspect of such experiences that 
needs to be recognized by designers [20]. Lack of coverage or accuracy can be 
characterized as ‘seams’ in the infrastructure, a natural part of the fabric from which it 
is knitted together. Various approaches to dealing with seams have been proposed 
including removing, hiding, managing and even exploiting them [5]. Work on 
seamful games has explored the latter approach, demonstrating and studying a series 
of examples in which partial coverage of Wi-Fi and/or GPS becomes a resource in the 
game that can be exploited by players, for example, by being able to hide in the ‘GPS 
shadows’ [10]. Other work has explored the approach of revealing the infrastructure, 
arguing that authoring tools that allow designers to overlay digital assets onto a map 
or image of a physical location need to be extended with an additional infrastructure 
visualization layer that enable designers to take account of the availability of the 
underlying infrastructure across specific locations [27]. Our study has demonstrated 
the power of this latter approach, providing our artists with a series of tools for 
exposing the characteristics of its location mechanism across each new city. Part of 
this certainly involves overlaying visualizations of the infrastructure on maps as we 
see in figures 5 and 6. However, it also requires additional tools for surveying each 
site and for experimenting with various settings of parameters so as to explore 
different possible scenarios. In short, while we agree that designers do indeed need to 
visualize the underlying infrastructure, we recognize that this is only one part of a 
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complex overall workflow that also involves gathering and experimenting with data 
and that all stages of this require support from dedicated tools.  

5   Conclusion 

Our study of a touring location-based experience, from its first concept to its 
emergence as a stable product following three performances in different cities, has 
revealed how professional artists worked to create an experience that was both 
compelling and yet also practicably tourable to different locations. We have seen how 
they developed a distinctive approach that involved participants exploring a city on 
bicycles, recording and listening to personal stories, which were then filtered and 
merged together into an evolving database of ‘user generated content’.  We have also 
seen how the iterative development and use of survey, simulation and visualization 
tools allowed this to be supported by a location service that also gradually evolved at 
each city and could be tuned to its local characteristics.  

While Rider Spoke itself is perhaps a unique experience, we have also discussed 
how it embodies general principles that should be of use to the designers of future 
location-based services. Careful framing of the experience, drawing upon cycling as a 
distinctive mode of engagement with the city and deliberately isolating participants 
from one another, while unusual in traditional HCI terms, establishes a frame within 
which the public are able to create powerful user generated content. At the same time, 
the development of an platform that can be easily rolled out over a city with minimal 
seed content, supported by dedicated tools that enable adaptation to each new setting, 
enables the experience to be easily toured. It is through attention to detail of both 
content and the technology that the artists are able to deliver a successful experience.  

In summary, Rider Spoke shows through its success as a touring product that there 
are solid, practical ways of addressing some of the core challenges that face the 
widespread adoption of location-based applications. Indeed, a concatenation of 
practical, locally-sensible strategies appears to be an inevitable aspect of managing 
touring location-based services where it is exactly the distinctiveness of particular 
locales that may trump any effort to create overly generic, standardized solutions. We 
hope that through the detailed study of artistic practice presented in this paper we 
have begun to show how some of these strategies might appear.  
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Abstract. In this paper, we introduce CityCompiler, an integrated en-
vironment for the iteration-based development of spatial interactive sys-
tems. CityCompiler visualizes interactive systems in a virtual 3D space
by combining the Processing1 source code and the 3D model of the real
space, designed with Google SketchUp. A simulation in virtual space en-
ables us to test a spatial layout and a combination of components. In
addition, the system function of smoothly switching between a virtual
sensor and a real sensor realizes hybrid prototyping by means of virtual
simulation and miniature simulation. These features integrate the space
design with the software design and allow the smooth deployment of
spatial interactive information systems into the real world.

Keywords: software design, space design, prototyping, deployment, IDE.

1 Introduction

In recent years, the use of large displays in public or commercial spaces has be-
come increasingly popular.These displays are attractive and eye-catching, and
they bring with them embodied and spatial interactions. Some notable examples
of emerging applications of visual displays are sharing large-size visualized data,
smart office applications, digital signage, interactive public art, and interior and
exterior architectural displays. These spatial interactive systems consist of both
software and real-space components. For instance, interactive digital signage
or applications for urban environments mostly use software, cameras, sensors,
projectors, speakers, PCs, and real spaces, such as exhibition rooms and urban
buildings for projection. In order to make these systems work in the right or
effective manner, developers are required to simultaneously configure software
and real-space components. For example, configuring the camera/projection lo-
cation, size, direction, or designing the real space is a significant process.

1 http://www.processing.com/
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Various input and output devices are available for constructing such interac-
tive environments, spanning a large design space. The choice of devices deter-
mines modalities, which affect both the nature and the impact of the interactions
of such environments with a system. They are crucial for the usability and ac-
ceptance of the system by its users, and the integration of interaction design
with space design is a topic of considerable interest.

However, in general, after the input and output devices have been decided
and the software for the interactive system has been developed, the problem of
where to physically place these devices arises. In particular, it should be noted
that optical devices such as cameras or displays have a limited field of view,
which needs to be considered. Presently, it is difficult for software developers to
configure such system components before the system is deployed and runs in the
real space. Some developers use low-fidelity techniques, such as paper prototypes
and mental walkthroughs, and others have to wait for a full-scale deployment.
In other words, software developers are unable to properly test the entire system
in the early stages of system development.

To solve these problems, we propose CityCompiler, which enables spatial in-
teractive system developers to create their systems using an iteration-based de-
velopment process, using iterative visualization or trial-and-error. CityCompiler
simulates how an interactive system developed with Processing runs in a 3D vir-
tual world, modeled using Google SketchUp. Simulation in the virtual 3D world
allows not only collaboration between the software developer and the space de-
signer, but also trial-and-error testing when sketching a spatial interactive sys-
tem by choosing input and output devices. The objective of CityCompiler is to
support the interaction design concerning the choice of sensors and actuators
and their placement in the 3D world, including the assessment of their range of
sensitivity and effect such as the visibility of a display.

2 Hybrid Prototyping with CityCompiler

2.1 Sketching and Prototyping

CityCompiler is composed of two modules: a Java class library and a 3D viewer.
The 3D viewer is based on the jMonkeyEngine, which is a Java-based 3D game
engine2. These modules are compressed in jar format, which allows developers
to use the prototype with an integrated development environment (IDE), such
as Eclipse or NetBeans. Our Java class library provides several Java classes
and interfaces that support the development of spatial interactive systems, and
some spatial components that work in the virtual spaces are also implemented.
Figure 2 shows a part of the CityCompiler class diagram.

– The Model class loads the 3D models saved in the .obj file format created
with 3D modeling tools.

– The Projector class projects the Processing application onto the 3D models.

2 http://www.jmonkeyengine.org/
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– The Display class shows the application on the surface.
– The Camera class captures images in the virtual world and transfers them

to any other Java application.
– The DistanceSensor class returns distances to other objects on the basis of

collision detection in the virtual world.

The developer creates a subclass of the CityCompiler class in order to integrate
3D models, the Processing application, and input/output devices in a virtual
world. These three main elements that the developer creates are as follows.

(a) Source code as a subclass of the PApplet class for a Processing application
(b) A 3D model for the surrounding environment
(c) Source code based on CityCompiler for integration of the system components

To be more specific, (a) would be installed in (b), and (c) would be used to
visualize (a), which runs in (b) and supports several trial-and-error tests with
regards to (a). For (c), the developer defines a class that is a subclass of the
CityCompiler class, and has several instances of the Display class or Camera
class together with the general Java class library.
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2.2 Testing Layout and Combination of Components

Once the source code for (a) and the model for (b) are prepared, the developer
then compiles (c). After compiling the source code (c), the 3D viewer is displayed
along with the parameter window, the camera viewer, and the user application’s
window. The parameter window allows the developer to manipulate several pa-
rameters of the 3D components, such as the position and rotation during runtime.
For example, the developer can use the parameter window to configure and check
the elevation of the virtual cameras with realistic heights, such as 180 cm or 120
cm. This allows the developer to simultaneously compare the layout of actuators
from multiple viewpoints, such as their display or projector.

After carrying out the above-mentioned processes, the developer can return to
the process of coding the source (a) or (c), or both, or designing the 3D models
(b), which happens in the case of iteration.

2.3 Switching Virtual Devices and Real Devices

In most cases, the space required for developing and testing these types of sys-
tems and the space required for deploying them are different. It is impossible to
reliably prepare specific visual, spatial, and sensory contexts for the final deploy-
ment. Thus, when deploying a system into a real space, unexpected situations
often arise, and parameters of the software logic must be adjusted in order to
handle inputs from sensors. In some cases, the logic itself is even revised on the
site, although such cases should be avoided as much as possible; the visualized
simulation in our CityCompiler will make the software logic robust and flexible.
In particular, we suppose that operating a system within both a virtual space
and miniature space and comparing the corresponding source code will help de-
velopers to handle the parameters and revise codes. Obtaining different inputs
from a number of sources will allow for further development. In addition, com-
paring operations in a virtual space and miniature space will aid the successful
installation of a system in real space.

In CityCompiler, a SensorManager class is implemented for managing input
devices that allow for smooth switching operations in virtual, miniature, and
the real space. This class tries to gain access to a real sensor connected to the
PC and selects a real sensor or a virtual sensor as the data source. For example,
when a USB camera is detected, real-world images are captured and are sent to
the application, otherwise, virtual-world images are captured and are sent by the
system. Our current implementation can use both USB cameras and Phidgets3

for USB sensing and control, and these devices are available as real sensors
and virtual sensors. Switching virtual sensors with real sensors, and adding the
number of various virtual sensors also supports the design decision of choosing
between available sensors and actuators.

Figure 3 shows a system deployed into the real space after carrying out re-
peated simulations both in the virtual space and in the miniature space. The
system comprises two distance measuring sensor units connected to a Phidgets
3 http://www.phidgets.com/
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Fig. 3. Deployment into real space after carrying out repeated simulations both in the
virtual space and in the miniature space

board and a projector. It counts the number of visitors at the entrance of a
room, and displays the results with motion graphics. First, we developed a sys-
tem that works in the virtual space and arranged virtual sensors and a virtual
projector in a model of our room. Next, we ran it in a miniature space made of
white styrofoam with real sensors and a mini-projector. In the virtual space, we
can arrange any numbers of projectors in any location, and it is easy to arrange
them horizontally. However, in the miniature space, such an ideal placement is
difficult. Therefore, in the Processing application, we added a function to change
the size, angle, and location of the counted number. We also ran the distance
sensors in the miniature space by using a finger to represent one person and mov-
ing it around. However this did not work as well as in the virtual space, because
the values of parameters for sensing people were different. Thus, a function was
added to change the thresholds of the sensing logic during runtime.

Figure 4 shows a system that displays several photos those include location
information on a map. We planned to exhibit it with a screen set to the window
of our room, which faces the road. First, we developed the processing application,
and arranged a virtual projector in the virtual model of our room. Next, we ran
it in a miniature space with a mini-projector. The miniature model was made
of white styrofoam, and we used a small piece of cloth as a miniature screen.
Our current system does not calculate the size of the styrofoam and the cloth
automatically, so we calculated the sizes of the parts based on the 3D model
and assembled them. We checked how the system worked by watching a movie
sent from a wireless camera on the head of a doll, and matched the scale of the
miniature to the height of the doll. We found that the size of displayed photos
was too small, and so we added a function that changes the sizes of photos for
the whole application during runtime. Next, we noticed that the brightness of
both the room and the road were the same in the miniature space, although
the room was bright and the road was dark at night. Therefore, we added a
white LED in the miniature room to introduce such a brightness gap. We also
found that the brightness difference between the room and the road changed the
appearance of the photos. Thus, we added a function to adjust the brightness of
the whole application.
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Fig. 4. Another case of hybrid prototyping

In these two cases, we obtained the required parameters and the revised points
of codes by carrying out the simulation in the miniature space. Such improve-
ments make the system more robust and flexible, and will ensure that the system
is smoothly deployed in the real world.

We call this hybrid prototyping, and it is a process that can be used to in-
tegrate a space design with a software design. In order to deploy devices that
match the simulation, we have to implement virtual devices that have the same
specifications as the real devices. However, it is difficult to make devices the
same as they are in the miniature space. In the above-mentioned cases, the dif-
ferences between the virtual simulation and the miniature simulation helped us
to discover parameters and brought about spiral design cycles. Running the code
in several different spaces, and with different devices helps to evolve both the
software and the spatial arrangement of devices, which is a benefit of hybrid pro-
totyping. From this viewpoint, it might not necessarily be good that our system
helps to automatically form an exact miniature model with a 3D printer.

There are limitations in hybrid prototyping. For example, it cannot tell all
the necessary parameters, even if we repeat virtual and miniature simulations,
and we might find further problems in the final deployment. However, updating
the source code using hybrid prototyping would allow the flexibility to handle
new problems. A further limitation is that it is time-consuming, expensive, and
complicated to arrange several displays or cameras in a miniature space. In this
case, it is more realistic to use a virtual simulation and a partial miniature
simulation concurrently.

3 Related Works

There have been many prototyping tools for various domains. Topiary is a tool for
prototyping location-enhanced applications, and enables iteration on designs by
using a map that demonstrates scenarios composed of interaction sequences[8].
Papier-Mâché is a toolkit for building tangible user interfaces using computer
vision, etc., and introduces a high level event model[5]. Both these systems and
our system aim to make it easy to prototype, evaluate and iterate on augmented
environments. Incorporating the functions of Topiary and Papier-Mâché will
makes our system a better tool. Singh et al. proposed the use of immersive video
as a means of rapid prototyping and an evaluation tool for mobile and ambient
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applications[6]. This approach uses immersive video with surround sound as a
simulated infrastructure to create a realistic simulation of a ubiquitous envi-
ronment for software design. The objective of CityCompiler is also to simulate
for a ubiquitous computing environment. However, it aims at having both vir-
tual and miniature simulations rather than creating just one realistic simulation.
UbiREAL[3] and eHomeSimulater[1] are simulators used for developing and test-
ing devices that run on a smart home, and their main aim is developing hardware
or software. CityCompiler also simulates a smart environment, and supports not
only indoor smart space environments, but also outdoor systems, such as urban
areas. The objective of CityCompiler is to integrate software design and spatial
design with iteration-based development. CityCompiler places great emphasis on
iteration-based development, rather than accurate simulation. This is the reason
why we selected Processing and SketchUp.

Firefly is a set of software tools that bridge the gap between 3D modeling
software, micro-controllers and the internet4. It also allows near real-time data
flow between virtual and model spaces, and will read/write data to/from internet
feeds or sensors. However, it changes shapes made by parametric and algorithmic
design, and does not target sound, video, graphics, or animation, which Process-
ing and CityCompiler do. Nakanishi et al. proposed two multiagent-based par-
ticipatory simulation methods for a large-scale socially embedded system[4]. One
involves participatory simulation, in which scenario-guided agents and human-
controlled avatars coexist in a shared virtual space and jointly perform simula-
tions. The other involves an augmented experiment, in which an experiment
is performed in a real space by human subjects, enhanced by a large scale
multi-agent simulation. They can be Cross-Reality[2] or Augmented-Virtuality
to combine a virtual space and a model space and to combine people with multi-
agents. Hybrid prototyping as Cross-Reality or Augmented-Virtuality would be
a promising way to design and develop spatial information systems or responsive
augmented environments.

Yamashita et al. demonstrated that seating arrangements exert an impor-
tant influence on video-mediated conversations; different seating arrangements
yield differences in speech patterns, senses of unity, and quality of solutions[7].
The display layout allowed the participants to change their body orientations,
head movements, and seating arrangements, creating different patterns of video-
mediated conversations. This means that both the software design and the space
design, along with the orientation and disposition of input/output devices influ-
ences the way people interact. The integration of interaction design with space
design, and in particular, spatiality, is a topic of considerable interest.

4 Conclusion and Future Work

One problem in developing pervasive computing applications is the simulation
of the required input/output devices in the environment in which they are to be
deployed. In this paper, we introduced CityCompiler, an integrated environment
4 http://www.fireflyexperiments.com/
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for the iteration-based development of spatial interactive systems. CityCompiler
visualizes an interactive system in a virtual 3D space by combining the Process-
ing source code and a 3D model designed with SketchUp. In the Web interface
design, graphic design is integrated with software design. In the case of the spa-
tial information systems design, space design should be integrated with software
design in the same way, and simulations using CityCompiler are studied to real-
ize the integration. CityCompiler enables the developer to carry out interactive
trial-and-error tests with the testing layout and a combination of components.
Here, the developer uses both the virtual space and the miniature space before
the final deployment into the real space. The simulation allows the software de-
signer, space designer, or interaction designer to browse the intended activities,
and to collaboratively highlight their context in the urban environment by con-
sidering spatial regions and the installation of input and output devices. In this
paper, we introduced only two of our processes employing hybrid prototyping.
In future, we will investigate the effectiveness of hybrid prototyping by analyz-
ing more cases. We believe hybrid prototyping would be effective not only for
deploying a system into the real world but also for designing a system with a
new concept. We will also use both virtual and miniature simulations to come up
with an idea and investigate the advantages and disadvantages of each method.
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Abstract. Large public displays have become a regular conceptual element in 
many shops and businesses, where they advertise products or highlight upcom-
ing events. In our work, we are interested in exploring how these isolated dis-
play solutions can be interconnected to form a single large network of public 
displays, thus supporting novel forms of sharing access to display real estate. In 
order to explore the feasibility of this vision, we investigated today’s practices 
surrounding shared notice areas, i.e. places where customers and visitors can 
put up event posters and classifieds, such as shop windows or notice boards. In 
particular, we looked at the content posted to such areas, the means for sharing 
it (i.e., forms of content control), and the reason for providing the shared notice 
area. Based on two-week long photo logs and a number of in-depth interviews 
with providers of such notice areas, we provide a systematic assessment of fac-
tors that inhibit or promote the shared use of public display space, ultimately 
leading to a set of concrete design implication for providing future digital ver-
sions of such public notice areas in the form of networked public displays.  

Keywords: public display, observation, advertising. 

1   Introduction 

Large digital displays are rapidly permeating public spaces. The availability of suit-
able display technologies for outdoor use, together with decreasing prices for large 
screen display hardware, has led to a transformation from paper-based to digital  
signage and advertising. Urban landscapes are being augmented with digital signage 
solutions by large digital-out-of-home (DOOH) advertisers (e.g. Stroer, JC Decaux) 
replacing more and more traditional billboards. Apart from reducing the cost of updat-
ing their contents, these displays allow for the addition of animations and/or interlac-
ing news content in order to make them more visible and attractive to passers-by. 
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However, so far these digital displays are not globally networked and access is typi-
cally restricted to their owners. 

We envision that in the future, these individual displays and isolated display solu-
tions could be inter-connected through the Internet. Hence, a canvas across urban 
space can be provided that allows for distributing any type of content onto this display 
landscape, not only from large advertisers but instead from neighboring shops, local 
residents, and visitors. Technically, the challenge of such a vision is to create a suit-
able middleware that supports the remote exchange and programming of arbitrary 
content onto arbitrary displays, as well as suitable interfaces to interact with such sys-
tems. A far greater challenge, though, lies in the design and deployment of suitable 
control tools that can support the stakeholders’ understanding of how these displays 
ought to be used. Without suitable incentives and means for staying in control, display 
owners might be reluctant to grant access to their displays and relinquish their control 
over what is being shown on their in-store displays. Our central research question thus 
is: how can we build digital public display networks that can go beyond today’s iso-
lated advertisement displays, and instead provide an open platform for posting and 
displaying user-generated content? Yet instead of tackling the technical challenge of 
such a vision directly, we begin our investigation with trying to understand the social 
and economical drivers to support this vision: What would motivate display owners to 
allow others access to their displays? And what would control interfaces and incentive 
structures have to look like to support widespread uptake of such systems? 

We decided to ground our research in today’s practices surrounding the precursors 
to our vision: shop-windows, notice boards, and wall hangers, where customers, 
community members, and visitors can use pen & paper and pins & tape to put up their 
messages, notices, posters, and classifieds (c.f. Figure 1). For the purpose of this pa-
per, we collectively call such boards, walls, and hangers “Public Notice Areas”, or 
PNAs. We began by observing the use of PNAs in 29 locations in two different coun-
tries, using photo logs to document their use and change over 4 weeks. We then per-
formed in-depth interviews with most of the people responsible for the observed 
PNAs, in order to understand their current practices for controlling access to the 
PNAs, elicit their motivations for offering PNAs, and identify concerns they might 
have when relinquishing control in a fully digital public display network. The results 
from the observational studies and interviews were analyzed in a quantitative and 
qualitative fashion, using a “data walkthrough” analysis that we developed to give all 
team members an in-depth view of the data collected by other team members.  

 

Fig. 1. Types of Displays. (1) Scaffolded Classifieds Display (2) Non-Scaffolded Classifieds 
Display (3) Information Display (4) Event Display. 
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After briefly discussing related work in section 2 below, we will enumerate our re-
search questions in section 3, followed by a description of our study design in section 4. 
Section 5 describes the data analysis and section 6 presents our findings based on the 
research questions. Finally section 7 deals with inferred design implications.  

2   Related Work 

Public displays have been subject to research for many years. With decreasing prices, 
many traditional displays are being replaced with digital counterparts. Many projects 
have looked at the technical requirements for networking digital displays, mostly 
within and across offices (e.g. [1], [3]) but also in public space (e.g. [12],[15]). Also, 
novel interaction methods have been studied, both in terms of user behaviors (e.g. 
[2],[11]) and interface technology (e.g. [6],[7]). Although technical and architectural 
suggestions could be drawn from these studies, our initial work in this domain focuses 
on understanding the design implications from existing practices of posting on PNAs 
and latent motivations for offering and maintaining PNAs.  

There have been several such studies that looked at current practices around pub-
licly available notice boards and displays. Taylor et al. [16] looked at community no-
tice boards in a rural village to inform the design of a digital version. Churchill et al. 
[4] looked at community notice boards in an urban area and in their own workspace to 
inform the design of their Plasma Poster Network, a system that enhances the chance 
to encounter interaction and awareness of different workgroups’ activities. Huang et 
al. [8] conducted a field study to analyze various paper and digital displays and their 
actual placement, as well as how much people actually look at them. Based on their 
findings, they provided design recommendations for increasing the visibility of dis-
plays and for better matching between people’s behavior and the displays’ content. 
Although there is some overlap between previous studies and our research, our pri-
mary goal is to come up with general implications that inform the design of a public 
display network system that go beyond display visibility and office space and subur-
ban area settings. 

As can be seen from the previous paragraph, public displays have a large potential 
to foster communities. Redhead et al. [13] presented a qualitative analysis of local 
community interaction among its members. One of their main findings was that public 
displays could increase the perception of unity as well as communities’ interests. 
Some of their findings, e.g. suggestions for content and features of such displays, 
support the perspective of the community and delivery of local messages. A report of 
their findings on the usage of a digital community notice board is available in [14].  

Studies exploring the impact of digital notice boards on communities have been 
conducted in several settings. As mentioned previously, Taylor et al. [17] looked into 
notice board practices in a rural village and informed the design of the Wray Display, 
a community photo sharing display aimed at understanding how digital displays can 
help to support communities in suburban areas. Churchill et al.’s Plasma Poster  
Network [5] looked into how displaying social media impacts relationships among  
co-located colleagues in their workplace. The CoCollage [10] aimed at cultivating 
community in a café by showing posters and quotes and hence enhancing awareness, 
interaction, and relationship among people. Of particular interest is Huang et al.’s [9] 
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finding that people spend less time learning about system capabilities when it is not 
supporting current use practices. The users’ desire and interest to use novel system 
need be taken into account [11]. This emphasizes the necessity of embedding existing 
routines in novel system to support its use. Note that in our view, this entails not only 
catering to users’ needs, but also reflecting on PNA providers’ motivations.  

3   Sharing Public Display Space 

Traditional public displays are a very common way of communication and they are 
ubiquitous in our environment. They scale from post-it notes on an office door telling 
people who stop by “back in 5 minutes” to graffiti on a train making a political state-
ment. This form of communication is very effective and observers will not be even 
aware of reading the signs in many cases, but they still do. Such public displays are an 
example of invisible technologies that allow transparent use, as Weiser suggests [18].  

In our work we are particularly interested in public displays for information dis-
semination and for one-to-many communication. Spaces for these forms of communi-
cation and publicly sharing information can be found in many places, such as grocery 
stores, cafes, and restaurants but also in city administrations, public libraries, universi-
ties, and schools. Such places provide space that is visible, accessible, and frequented 
by people. Examples are notice boards and walls on which people are allowed to at-
tach posters, and windows as well as doors where people can hang up flyers or notes. 
There is a huge variety of such PNAs, and many types of content can be found. Gen-
erally it can be seen that these displays have a function in their environment, and that 
the form factor of the display and the types of contents shared are influenced by the 
location, the owner, and the expected audience. In contrast to other forms of commu-
nication these displays support the following properties: (1) dissemination of content 
that is mainly locally relevant, (2) addressing of the receivers by selection of space, 
and (3) forcing information and content on people that pass through a certain space. 

Traditionally, posting information in PNAs also had the function of personal com-
munication from one individual to many receivers. However, this function of public 
displays has lost importance with the digital social networks and the World Wide 
Web. Popular forms of content include sales, housing, job and service offers, events, 
promotions, lost and found, and advertisements, all of which are at least showing one 
of the characteristics above. In order to derive an understanding of how to create digi-
tal displays that provide new flexibility and cost-effectiveness and at the same time 
retain the qualities of the analog PNAs, we investigate several issues further.  

3.1   Value Propositions of PNAs for Stakeholders 

In the optimal case, PNAs provide value to all stakeholders, including the people 
owning the space, people providing content, and people observing the content. First, it 
is important to identify stakeholders for a PNA installation, and their motivations. In 
many cases there is interplay between interests, incentives, and value propositions. 

Consider the following scenario of a notice board for classified ads in a supermar-
ket. The content provider (e.g. a customer who wants to sell a bike) has the opportu-
nity to reach people in the local community. The observer (e.g. another customer 
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looking for a used bike to buy) via PNA becomes aware of the product she is looking 
for. The supermarket provides customers with a further reason to visit the store.  

Values have to be seen in the greater context of the PNA and its place of use. Here 
issues such as exercising control over what content can be placed, by defining access 
to the display and implementing means for restricting content placement to a certain 
group play a role. The following questions help to identify these issues: 

• Who is allowed to post?  
• Who decides what content is appropriate?  
• What content can be posted? 
• What is the motivation for the owner to allow posting? 
• What is the motivation for content providers to post? 
• What is the motivation for observers to look at the content? 

3.2   Mechanism for Content Creation, Posting, Removing and Access Control  

The utility of public displays depends on the fact that displayed information is useful. 
In general, content is posted to the display and removed or overwritten after a certain 
time. The mechanisms used both for posting and removing content as well as for en-
forcing usage policies are essential success factors. Often it is desirable that content 
can be created ad-hoc, without specific knowledge or tools (e.g. writing with a pen 
provided at the board onto pre-printed cards). Yet, the simpler the means for content 
provision, the more likely that spam or inappropriate content will be posted.  

Many different ways can be found with which such control mechanisms for content 
creation and posting are restricted, ranging from having the notice board in a public 
area (where users posting content may be observed) to explicit approval of content. 
We suggest the following questions to identify and structure these mechanisms: 

• How can content be placed onto the display?  
• What flexibility is available for content creation? 
• What tools are required to create content?  
• What is the process for approval of content?  
• How is content removed or overwritten?  
• How is access control implemented for content providers and viewers? 
• How are viewers supported to help them remember content? 

3.3   Learning from Practices in the Analog World  

Many different types of PNAs are in use in different places. This multitude evolved 
over a long time and many of their properties fulfill a certain need. Similarly, many 
sorts of posted content are publicly posted. Here, too, a long tradition exists for creat-
ing and designing content, ranging from artistic expression to minimalistic presenta-
tions. In this paper we aim at identifying these rich characters of different displays, 
content types, and related practices. For deriving design implications for digital dis-
plays, understanding practices and the rationale behind these is very valuable. In par-
ticular we are interested in the communication aspects that such displays facilitate.  
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A further important aspect of public displays is that they have a potential function 
for the community. By positing information in publicly accessible space but in a spe-
cific location, a clear addressing to the local community is made. Here it seems inter-
esting to uncover functions that displays have that go beyond the communication of 
individuals or groups. To learn about the practices we ask the following questions: 

• What practices have been established around sharing on a display? 
• What are the reasons for these practices? 

4   Study Design 

To answer our research questions we ran a two-week field study during summer 2010 
in four different cities in Switzerland and Germany, involving observational studies 
(photo logs) and subsequent interviews with the people responsible for the observed 
PNA, i.e. shop-owners and personnel.  

4.1   Observational Studies 

We aimed at observing a wide variety of locations, displays, and audiences. To do so, 
we looked for any kind of institutions, stores, and restaurants/eateries that displayed 
public notice boards. Due to the labor-intensive nature of the work, we opted for a 
convenience sampling of the observed sites (places were located along our work 
routes), allowing us to regularly visit these places over the course of four weeks. Con-
sequently, the observed locations were within the local neighborhoods surrounding 
the universities and central stations of Lugano (Switzerland), Essen, Düsseldorf and 
Munich (all Germany). An overview of the locations can be found in Table 1.  

After choosing suitable locations, we identified the persons responsible for the 
PNA to be observed. We introduced ourselves, explained the purpose of the study and 
asked for permission to take pictures of the PNA. We provided a written description 
of the study and explained that all data collected would be used for scientific purpose 
only. While most people immediately agreed to permit the study and even showed in-
terest in the results, some of them (notably in larger stores) first had to check with 
central management and asked us to report to the management every time we re-
turned. In two locations we were refused permission to conduct the study, as the man-
agement felt that this would strongly affect their customers’ privacy.  

After permissions had been obtained, we visited each location on consecutive 
working days over the course of roughly four weeks, each time taking several pictures 
of all postings. Pictures were mainly taken in the morning (on the way to work), dur-
ing lunch break, and in the late afternoon / evening (on the way back home). We tried 
to make sure that pictures were taken at comparable times of the day. In total, 4 re-
searchers were involved in the study, each one being assigned a fixed set of locations. 
Due to scheduling constraints it was not in all cases possible to take pictures on con-
secutive working days. However, we made sure that for each location at least 10 pic-
ture sets from different days were taken within no more than 4 weeks.  
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Table 1. Overview of study locations 

ID Name Description Obs. | Int. Type Cur. 
E1 Turn Headshop (Rack)  Retail x | x ED - 
E2 Turn Headshop (Door) Retail x | x ED - 
E3 Diocese (Office) Church x | x ID x 
E4 Diocese (Entrance) Church x | x ID x 
E5 Supermarket Retail x | x SCD - 
E6 Supermarket Retail x | x UCD - 
E7 University cafeteria Public Bldg./Gov. - | x UCD x 
D1 City administration Public Bldg./Gov. x | x ID x 
D2 Adult Education Center Public Bldg./Gov. x | x UCD - 
D3 Public Library Public Bldg./Gov. x | x ED x 
D4 Child Services Public Bldg./Gov. x | x ED - 
M1 Supermarket Retail - | x SCD - 
M2 Supermarket Retail - | x SCD - 
M3 Supermarket Retail - | x SCD - 
M4 Supermarket Retail - | x SCD - 
L1 Supermarket Retail x | x SCD - 
L2 University Public Bldg./Gov. x | x UCD - 
L3 Bakery Service x | x UCD x 
L4 Church Church x | - ID x 
L5 Supermarket Retail x | x SCD - 
L6 Café Service x | - ED - 
L7 Hairdresser Service x | - ED - 
L8 Bar Service x | x ED - 
L9 Café Service x | x ED x 
L10 Pharmacy Retail x | - ED - 
L11 Bookstore Retail x | x ED - 
L12 Red Cross Public Bldg./Gov. x | x ID x 
L13 Laundry Service x | - ED - 
L14 Church Church x | - ID x 

Abbreviations: 
Obs | Int: Observation | Interview 
Cur: Curated Display 

Display Types: 
SCD / UCD (Scaffolded / Unscaffolded Classifieds Dis-
play), ID (Information Display), ED (Event Display) 

4.2   Interviews 

After finishing our observational study we conducted a number of interviews with 
people in charge of managing the displays. Those were not necessarily the display 
owners, but also store managers or regular staff. With the interviews we aimed at un-
derstanding a range of issues surrounding PNAs: the shops’ motivation for having 
such a PNA; the practices for adding, editing, and removing content; any restrictions 
as to what customer were allowed to post; any problems with the displays; and 
whether people could imagine substituting the “analog” display with a digital version. 

We conducted interviews in the locations that were covered in our observational 
study. However, for two locations we were not able to get hold of a responsible person. 
We also included additional locations with similar PNAs to gather further information. 
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For the interviews we returned to the location and tried to identify the person (currently) 
in charge of the display, asking her or him to answer a set of 10 questions. We offered to 
return at a convenient time in case people were too busy to talk to us. As interviews hap-
pened during business hours, the interviewee’s time was in general scarce. Conse-
quently, we limited our interviews to maximum 10 minutes. We either audio-recorded 
the interviews with a voice recorder (in case people felt comfortable to do so) and tran-
scribed them later, or took hand-written notes during the interview. It should be noted 
that the interviews were limited to the parties who owned and “administered” the dis-
plays for reasons of accessibility. Information we gained about the perception and use of 
these displays by passers-by and other stakeholders in the interviews was conveyed to 
us by display administrators and therefore may reflect their particular interpretation of 
phenomena regarding the displays. For the purpose of this study, we relied primarily on 
our observations to gain insight into the practices and needs of passers-by and other 
stakeholders to complement the more direct inquiry into the practices of display owners 
and administrators. 

5   Data Analysis 

We conducted an extensive qualitative analysis of the collected photographs and in-
terviews. Because of the large volume of data generated by the study and the distrib-
uted fashion in which the data was collected, we designed a “data walkthrough”  
analysis method. The goal of this method was to help team members become highly 
familiar with data that had been collected by other members of the team, and provide 
a view on that data that would afford both a comprehensive overview of all of the data 
from all of the sites, as well as an individual detailed view of each site. 

The team printed out photos from each day of data collection for each data collec-
tion site and affixed these photos (in total 298) to walls and whiteboards in a single 
room. The photos were placed in chronological order, grouped by site. Additionally, 
interview transcripts and field notes were affixed along with the corresponding photo-
graphs. Five members of the research team then proceeded to “walk through” the  
data, analyzing the photographs, interviews, and notes, and writing observations on 
individual sticky notes that were used to annotate the collections of data (see Figure 
2). As the team discovered patterns and higher-level observations, these were written 
on a separate whiteboard. 

After this exploratory phase of analysis, the team then used an affinity diagram to 
identify themes in the data and associate them with our research questions (see (3) Af-
finity Diagram in Figure 2): 

• Who are the stakeholders? (6.1) 
• What “characters” of displays arise and what determines them? (6.2) 
• What are current practices for sharing displays space? (6.3) 
• What is the role of “posting displays” in a space? (6.4) 
• How do the space, stakeholders and content interplay? (6.5) 
• What are the needs of people who are posting and display owners, and how do 

the displays satisfy them? (6.6) 
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This was achieved by taking all of the observations and categorizing them to derive 
the general findings from the data. The identification of findings was done as a group, 
and each observation was discussed as to how it might fit with other observations.  

 

Fig. 2. Data Walkthrough (1) Photos, field notes, and transcribed interviews were printed and 
affixed to walls. (2) Analysis and annotation of material by researchers. (3) Affinity Diagram to 
identify themes in the data. 

6   Findings 

Based on the data collected and analyzed, we report in this section the findings, with a 
focus on current practices. We first identify stakeholders, describe characteristics of 
displays and content, and uncover the motivation for shared public displays. During 
the data analysis we did not discover any obvious differences in the data gathered in 
both countries. 

6.1   Stakeholders and Motivation 

The data from observations and interviews provide a clear indication of a number of 
diverse stakeholders involved in operating and using public notice boards and shared 
public displays. On a highest level we can discriminate three different groups: display 
providers and managers, content providers, and viewers.  

Display Providers and Managers 

Based on interviews (L1, L2, L5, E3, E4, E5, E6, D1, M1, M2, M3, M4) we discov-
ered that the decision to install a PNA is taken on a higher management level, e.g. in 
store chains and public authority institutions, and hence each branch or store will have 
a PNA as standard inventory. Also public and ecclesiastic institutions see information 
dissemination as a part of their mission and use them to distribute important informa-
tion about their current activities. In locations where venue and shop owners are run-
ning the place (L3, L8, L9, L11, E3, E4, E5, M1, M2, M3, M4), interviews revealed 
that the decision to have a display and how to use it is in one hand.  

The motivation for providing public displays is manifold: retail and service have 
them to increase customer satisfaction (interviews at M1, M3, M4, E6, D2), public 
authorities and ecclesiastic institutions mainly used them to disseminate information 
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on their current activities (observations at L4, L14, interviews at E7, D1, D2, D3, D4), 
and some of them (interviews at E3, E4, E7, D1, D2, D3, D4) feel the need to have a 
space for third party content as long as it fits within the institution’s scope and does 
not harm its reputation.  

In interviews, we found that some venues (L3, E3, E4, M3) have a dedicated per-
son in charge of the content approval, i.e., a notice board manager whereas in other 
places it is less formalized. In the case of public and ecclesiastic institutions there is 
typically a dedicated manager, whereas smaller venues, like shops and cafés are more 
likely to distribute this role throughout their staff, i.e., each staff member can act as a 
manager.  

Content Providers 

We can see two distinct groups of content providers: classifieds providers and third 
party advertisers. Both groups seek to distribute information to the target audience. 
People living in the vicinity of the venue or its frequent visitors can be seen as classi-
fieds providers, seeking for ‘matchmaking’ opportunities, e.g. students exchanging 
books, people offering and looking for housing, or selling furniture. The content de-
fines in many cases how long one can expect a poster to remain on the board.  

While classifieds providers are mostly individuals, third party advertisers are usually 
affiliations: church, government, business, musicians, non-profit, or other. All of them 
have a common goal of reaching a large audience and advertise in the vicinity of the 
target community’s physical center, e.g. music events have multiple posters at music-
oriented bars and universities, church-related events appear within its parish’s locality, 
and even third party advertisements on government public display are topically focused. 
Interestingly enough, some of the venues take on the role of the third party advertiser 
and try to blend in with the rest when advertising its own events (e.g., Li8).  

There is an inherent tension between display owners and content providers as both 
rely upon each other (e.g. a PNA without content is not interesting and a person pro-
viding content cannot do so without space). The best way to minimize the risk of con-
flicts is to create a shared understanding about venues’ board expectations (e.g. it is 
clear what content is expected on a certain display). It seems that this is quite com-
mon for PNAs as there were very few reports of abuse of the displays (interviews at 
L1, L5, L8, L9, L11, E1, E2, D1, D2, D3, D4). 

Viewers 

The motivations for viewing content ranges from clear information needs (e.g. some-
one looks actively for a place to rent among postings) to accidental reading (e.g. wait-
ing at the bus shelter and reading the posts in lack of any other occupation). Viewers 
are typically related to the location (e.g. they work or live close by) and may act at 
some time as viewer and at some other times as content provider. 

Many PNAs are located near high-traffic areas with guaranteed waiting time, e.g. 
next to printers and copiers, whereas other locations use them for decoration, e.g. 
bars. In cases where people are waiting, e.g. for a drink or a print job to finish, it is 
very likely that they browse through the PNA’s content. Supporting evidence can be 
found in [5]. 
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6.2   Displays and Content 

During our observations and data analysis we discovered a number of different dis-
play types that are targeted to specific types of content. In the following we discuss 
typical groups that are commonly in use for PNAs (see also Figure 1).  

Scaffolded Classifieds Displays: Our observations indicate that retail stores and su-
permarkets favor a well-organized arrangement of their PNA (e.g., L1, L5). These ar-
eas are highly scaffolded with preprinted cards provided at the display, which can be 
filled in and inserted into several rows of slots. Their content is in general informal 
and hand-written and sometimes includes tear-aways (e.g. name and telephone num-
ber). Content creation is very fast (on the order of a minute). Typically, content pro-
viders are asked to provide a date to later remove outdated content. Often content not 
fitting the scaffold is attached next to the board. Content usually has a high turnover. 

Unscaffolded Classifieds Display: These displays are characterized by the absence 
of prescribed structure leading to flexible and ad-hoc posting practices. Typically they 
are not well organized. Content in any form can be placed at any position, even if it 
fully or partially occludes other content. Interviews showed that for most of these  
displays (e.g., L2, L8), there is no particular person in charge to check and remove 
posters placed in improper place or with unwanted content. These displays reflect the 
self-service nature of the postings. Content posted on such displays is in general simi-
lar to the aforementioned displays, with less structured layout, mixed sizes of posts, 
more colorful posts and more event-related content. We discovered such displays at 
university, the adult education center, and also grocery stores (L2, L8, D2). 

Information Display: As part of their information duty, many institutions, churches 
and libraries provide curated PNAs (observations at L4, L12, L14). They are charac-
terized by formal, mostly professional content, including ads and events. In general 
they have a smaller number of postings compared to the abovementioned types. Con-
tent is thematically focused (even if from third parties) and often applies to a larger 
vicinity. There is often a process for submitting and approving through exist-
ing/formalized organization networks. These PNAs typically have a means for prohib-
iting unauthorized postings (e.g. by having a glass front pane, see Figure 1c). 

Event Display: Observations showed that bars and retailers offer event-focused 
PNAs (E1, L6, L8, L9). They are characterized by professional ads (posters, flyers), 
are thematically tightly scoped (e.g. techno events) and contain mostly third party 
content. The content is usually colorful, sometimes chaotic (depending on whether 
scaffolding is provided) and often provides some form of urban aesthetic.  

6.3   Managing Content and Supporting Memory 

Different mechanisms exist that help viewers to remember content they have seen. 
We came across 3 types of practices with regard to supporting memory: (1) informa-
tion that is meant to stay on the board and where viewers are expected to remember 
essential information, (2) content that is completely taken away, and (3) content that 
offers parts with contact details that can be taken away. To allow for taking away in-
formation, current practices include providing multiple copies (e.g. flyers) or posts  
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Fig. 3. Taking away information – Flyers (left, E1), Posts with takeaway tabs (right, E6) 

 

with takeaway tabs (see Figure 3). If viewers have to remember content, it is impor-
tant that this is well feasible, e.g. by providing an easy-to-remember URL. With the 
wide availability of mobile-phone cameras we also see a further practice conceptually 
combining (1) and (3). As people take photos of public display content, they take the 
information with them and at the same time leave the content for others.  

We found different practices of post management with regard to cleaning displays. 

• Expiration Date: The most popular practice we discovered for cleaning con-
tent is the removal of outdated content. This can be done either with a posted 
expiration date (e.g. after 30 days of posting) or with an implicit expiration 
date (e.g. the date of an event).  

• Complete Cleanup: Another practice is entirely erasing PNAs based on a 
regular schedule, e.g. monthly. We found this practice for PNAs that con-
tained too much content for manually selecting stale content (observation and 
interview at L2). 

• Curated Content: Especially in municipal and official institutions we found 
that displays are often curated. Content is usually submitted at the reception or 
sent via mail, and has to be approved by the director prior to being published. 
We observed that curated displays are in general very tidy and posts are not 
attached above each other so that they obscure other content.  

6.4   The Role of Shared Displays in a Space 

One function of displays is that they tend to create a central location for community 
activity (observations at E1, E2, E7). Such communities may be geographical, cul-
tural, and also religious. Even though platforms such as Ebay or Craig’s list exist, 
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means for locally exchanging goods are still of interest. Especially items whose ship-
ping costs outweigh their price are popular. Notice boards offer a convenient way of 
offering items to a local community where it is likely to find interested persons who 
are able to fetch items personally. Additionally, we found content that is relevant to 
the expected community visiting the location. E.g. in a music bar (observation at L8), 
PNAs mainly included promotion for music events (parties, live shows, concerts, 
etc.).  

Further, boards are often used as community support tools. An example is the PNA 
at the adult education center, which was mainly used as a forum to exchange study-
related material (e.g. people offered their course material to people in lower courses). 

6.5   Interplay between Space, Stakeholders, and Content 

We found that PNAs are often placed in high traffic areas (e.g. next to the main en-
trance of a location or in spots with waiting times) and that this had a strong impact 
on turnover in content. The same appeared to be true for communication and informa-
tion hotspots. PNAs were often placed next to opinion boxes, store hours, space for 
prospects, and content from the display owner itself. 

Most interesting though, posts are very local in nature. We found that content with 
no relation to a certain location (e.g. products, movies) appeared only rarely. In con-
trast, content seemed to be locally highly relevant. An example is posts on babysit-
ting, as these people would usually not cover too large distances. This finding is also 
supported by the fact that information on local events is often posted in multiple loca-
tions in close proximity (e.g. in various stores in the pedestrian area). Similarly, 
boards often seem to express the identity of a venue. During our interviews we found 
that certain types of content is removed (e.g. political content, certain music events).  

6.6   Needs of Content Providers and Display Owners 

We observed that PNA owners often have an agenda. This in general correlates with 
their motivation for having a PNA (e.g. information obligation, dissemination of cul-
ture). Interestingly, persons in charge of managing the PNA sometimes serve as a gate-
keeper, hence supporting certain events in an altruistic way as they feel that competing 
events are already sufficiently well publicized. As an example, the public library D4 re-
fuses to announce Mardi Gras events but instead favors independent theatres. 

Further, many places provide support for posting. Such support includes tables for 
writing posts as well as scaffolding in the form of structured cards and pens.  

In addition, we found that flexibility of content creation is supported in many plac-
es. Whereas especially scaffolded displays provide standard cards, most of the display 
owners allow in parallel for customized postings. Thus, homemade posts, profession-
ally printed or colored to make them more visible and eye-catching, can also be 
found. Another example we observed was that it seemed to be OK for most display 
owners to extend the provided display space in order to fit more content, e.g. by at-
taching content next to the designated posting area.  

We also found many places that allow for multiple copies of the same item of con-
tent. This was observed for different types of PNAs. On unscaffolded displays posters 
are freely tiled up next to each other, making a larger area more distinguishable from 



 Designing Shared Public Display Networks 271 

other parts of the board. This practice was observed also with scaffolded displays. 
Multiple posts of the same ad/post appear on different PNA locations and sometimes 
with small or no differences that are not easy spotted: in cases of non-professional 
handwritten posts, multiple posts are hard to recognize. Only by reading them care-
fully and comparing contact details can these be noticed. Obviously, having multiple 
copies of a single post increases the chances of the post being seen. The motivation 
for the content providers to put up multiple copies of the post is that they are afraid 
that their post is going to be removed for some reason. 

Finally, we found that there are often difficulties of indicating a venue’s expecta-
tions of the board. When asking for problems with PNAs, several display owners re-
ported on discussions with people in order to explain what content is / isn’t allowed. 
Content that is removed is mainly political content, offending or provocative content, 
competing content, and content that does not fit the agenda of the display owner. 
There are very few examples where we found explicit notices that certain types of 
content are not allowed or have to be approved. One example was at the adult educa-
tion center, where a notice stated that teaching content is to be approved first.    

7   Design Implications 

Our observations identified important stakeholders and some of their needs, as well as 
current processes and structures helping them to fulfill their goals, or that emerge as a 
result of their joint activities. Naturally traditional displays are not technically net-
worked. However we could observe a connectedness on a conceptual level. Connect-
edness was exhibited by enforcing the same policies across a set of displays or by 
having the same design and structure across all displays. Our design implications as-
sume that the stakeholders’ needs will still have to be met within an open digital pub-
lic display network, but that the concrete processes and features do not need to match 
existing solutions one-to-one. We propose 5 broad principles, and offer specific ideas 
for how to apply them. 

A. Design for Specific Uses of Notice Boards 

One of the clearest patterns in the observations was the great variety of notice boards 
and surfaces, depending on the purpose they were meant to fulfill, particularly the 
type of content they present, and on the preferences of the stakeholders. This indicates 
that no single design may be an appropriate replacement for all the current uses of no-
tice boards. A system that displays large numbers of classified ads should optimally 
look different and work differently from one that seeks to create awareness of local 
events. The notice board styles, posting form factors, and content described above  
offer a starting point for developers to target their systems; designers should comple-
ment this general description with specific knowledge and understanding of their  
particular users. A digital notice board designed for a chain of coffee shops might for 
example draw on elements from unscaffolded classifieds and event displays, and 
would consider the type of clientele, the activities that take place in the shop, and the 
chain’s design aesthetic and brand image. 
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The design should take into account that users interact with more than one display. 
In a department store they may see one at the entrance, one in the elevator, and one 
where they try on some shoes. The design should capitalize on the fact that users will 
be exposed to a network of displays. If the used technologies allow determining in 
which order users see the displays the presentation should utilize this, e.g. creating a 
story within the display content across the physical display network.  

B. Respect the Neighborhood Focus of Notice Boards 

Of the thousands of postings we observed across the 29 sites, every one, with almost 
no exception, was related to the local area or to the community that used the space. 
The vast majority of these were classifieds relevant to a limited area or notifications 
for local events. Across the very different styles of notice boards, it is clear that the 
neighborhood is the audience for and the source of the postings. If a digital notice 
board is to play the same role, it should be based on postings and ads that have a clear 
connection to the place or neighborhood, not on centralized ad campaigns. Especially 
for networked display systems, where technically there is no limitation for the distri-
bution we recommend to design posting procedures in a way that supports locality 
and to restrict the content to a certain neighborhood. Such mechanisms are most likely 
a property of the system architecture as well as a part of the actual design.  

Note that this is not simply a matter of geographical restriction, but of community 
identity, even more though when using display networks. The handwritten nature and 
tear away tabs of many classified postings create an indirect physical connection be-
tween advertiser and reader, which may lead to greater intimacy and trust. Further, the 
aesthetic of a concert poster both communicates the intended audience and is used by 
that audience to provide a shared group identity. A digital notice board might attempt 
to capture the direct intimacy of handwritten notes by allowing posters to record short 
video messages as part of postings. 

C. Support the Emergent Profiling of a PNA by Owners and Users of the Space 

The different styles of notice boards we observed reflect, among other things, differ-
ent agendas on the part of the owners of the space. Some are considered decorative or 
a way to express the identity or support the image of the place, some are appreciated 
as providing another activity for customers to engage in, increasing the importance of 
the venue to the community and potentially even attracting customers. Perhaps the 
most important agenda, however, is in disseminating information the notice board 
owners have and interest in or sympathy with, such as a library posting notices for 
classical concerts or an adult learning center ones for trading course books. 

Board owners actively use their control to promote all of these priorities. At the 
same time, we found that in many cases they have difficulty articulating their agen-
das, and when asked, many were unable to give a good explanation for why they even 
offered a PNA. Even more importantly, they rely on third-party posters for most of 
the content. These factors mean that the actual profile of the PNA is usually not pre-
defined, but emerges from the interplay of the interests of the board owners and users. 

This goes to the core of reasons why venue owners are willing to offer free adver-
tising space and must be taken very seriously. In a globally networked digital system, 
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the owner of the venue may no longer be the owner of the board and may have a 
much less direct control of the content that is posted. A digital replacement must give 
the venue owners overall control over the board profile, and designers must recognize 
that this is usually not a choice that is made once, but a day-to-day activity. Features 
could be provided to the managers or owners of each venue allowing them to easily 
choose which postings to allow or remove (and perhaps learning and automating their 
patterns over time) and to oversee the overall appearance of the board. 

D. Design for Flexibility of Input, Low Overhead to Post 

Across all locations we found an impressive variety of posts, comprising hand-written 
notes in various sizes and colors on a set different materials, printed notes enhanced 
with images or maps, and professionally designed advertisements. We recommend 
that digital notice boards provide means for preserving this flexibility, supporting: 
 

• Ad-hoc posters: For people (coincidentally) approaching the display a mech-
anism has to be provided allowing for on-site creation of notes (e.g. pre-
defined templates, standard input devices such as mouse, keyboard, or touch). 

• Sophisticated Posters: People preparing content in advance need to be given 
means to easily transfer it to the board locally, e.g. via a scanner, a USB stick 
or Bluetooth and in networked settings remotely, e.g.. via a web interface. 

• Professional Posters: In a similar way, people distributing professionally de-
signed content (e.g. flyers) need to be granted easy access to the board. 

 
As a result of the flexibility of current approaches we see that the entry barrier is kept 
low, hence attracting a large amount of posters. We believe that for globally net-
worked display systems the success heavily depends upon speed and ease of use of 
the content creation mechanisms. 

E. Support Takeaway of Information 

The opportunity to take away information is a crucial prerequisite for the success of 
classifieds as well as for event promotions. In the design of this mechanism two basic 
options exist: providing a pointer for the user to take way (e.g. a URL or a phone 
number) or to provide a copy of the content to take away (e.g. a flyer). Traditional 
systems use a combination where a pointer is taken away (e.g. by tearing off a piece 
of paper) and this also contains a minimal summary of the content. In digitally net-
worked systems and considering users equipped with mobile devices many mecha-
nism exist to support users in taking content with them, including users taking photos 
of the content, to sending this information via SMS or Bluetooth, by providing a QR 
code, or simply by printing it out. Whereas the primary motivation is to preserve in-
formation such as a date, a name, an address, or a telephone number, additional im-
plicit information is embedded with the takeaway information: the number of missing 
takeaways, e.g. indicates high interest. On digital displays similar information could 
be provided by displaying the number of poster downloads, or even by restricting the 
number of possible downloads. 
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8   Conclusion and Future Work 

Traditional displays are all around us and interaction with them is a common activity. 
The communication characteristics we can find in traditional displays are in many 
ways complementary to the Internet. The importance of using public displays to ad-
dress a larger number of people with general content has declined with the advent of 
digital social networks and the World Wide Web. However public displays play a ma-
jor role in addressing groups of people that can be found in a certain location. We be-
lieve that understanding practices in the use of traditional analog displays can provide 
valuable insights for future generations of globally networked public displays. 

Analyzing the observations of the usage of a large number of public displays situ-
ated in different context as well as based on follow-up interviews with stakeholders 
we collected and described various practices related to public displays. In particular 
we were interested in the various stakeholders and their motivation in the use of pub-
lic displays. Additionally we investigated how content can be provided and removed 
and how access control is implemented. Based on our reflection and understanding of 
the data we suggested a set of design implications for digital display systems. 

The central design recommendation is to take the context of a potential display into 
account: the people likely to pass by, the neighborhood and community in which the 
display is situated, and the display owners’ expectations with regard to content. Be-
yond this flexible content creation, content posting, and content control are central to 
allow a broad set of people using it. To increase the effectiveness of posted content it 
is important that viewer have means to take the information with them – through 
physical tokens or digital technology. 

Currently we are working on an implementation, called Digifieds, which supports 
practices that are effective in traditional signage systems and that can provide new 
features for creating rich communication media based on public displays. Digifieds 
will be deployed as a finalist of the UbiChallenge in Oulu, Finland in summer 2011.  
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Abstract. The new method proposed here recognizes the use of portable
electrical devices such as digital cameras, cellphones, electric shavers,
and video game players with hand-worn magnetic sensors by sensing the
magnetic fields emitted by these devices. Because we live surrounded by
large numbers of electrical devices and frequently use these devices, we
can estimate high-level daily activities by recognizing the use of elec-
trical devices. Therefore, many studies have attempted to recognize the
use of electrical devices with such approaches as ubiquitous sensing and
infrastructure-mediated sensing. A feature of our method is that we can
recognize the use of electrical devices that are not connected to the home
infrastructure without the need for any ubiquitous sensors attached to
the devices. We evaluated the performance of our recognition method
in real home environments, and confirmed that we could achieve highly
accurate recognition with small numbers of hand-worn magnetic sensors.

Keywords: Wearable sensing; Activity recognition; Magnetic sensor.

1 Introduction

Activity recognition is one of the most important technologies in relation to
context-aware and lifelogging applications, e.g., elder care support and fitness
monitoring. We can categorize activity recognition technologies into two main ap-
proaches; wearable sensing and environment augmentation. The wearable sensing
approach recognizes activities by using sensor data obtained from such body-
worn sensors as accelerometers and microphones [1,11,12,13]. In many cases, the
environment augmentation approach uses ubiquitous sensors such as RFID tags
and/or switch sensors installed in the environment [20,17,19,14]. Although the
environment augmentation approach places a smaller burden on the user than
the wearable sensor approach, ubiquitous sensors are expensive to deploy because
we have to attach them to various indoor objects and maintain a large number
of them. On the other hand, several studies have used a sensor device attached
to a single point in the environment [5,16]. For example, [16] recognizes elec-
trical device use by monitoring electrical noise on residential power lines. Many
environment augmentation approaches detect the use of daily objects in the en-
vironment by using small sensors attached to the objects and/or a single point
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device that monitors the objects and then estimates high-level daily activities
using the detected information. This approach is based on the idea that objects
in use relate to an activity the user is performing. For example, when a user is
using a razor and preshave lotion, we can easily assume that the user is shaving.

On the other hand, because many wearable sensing approaches use body-
worn accelerometers, they can recognize only simple low-level activities such as
walking and running. However, unlike the environment augmentation approach,
the wearable sensing approach can sense users’ activities in both indoor and
outdoor environments. Also, as mentioned above, its deployment cost is smaller
than that of the environment augmentation approach. In this paper, we try to
recognize the use of daily objects solely by employing wearable sensors that have
the above advantages. That is, we recognize which object is in use by employing
only wearable sensors without any sensors embedded in the user’s environment.
This permits us to realize a low deployment cost and place-independent high-
level activity recognition. In this work, by using hand-worn magnetic sensors,
we try to recognize the use of portable electrical devices such as digital cam-
eras, cellphones, electric shavers, video game players, and music players. That
is, we sense the magnetic fields that the devices emit and determine the device a
wearer is using by analyzing the sensor data. In modern societies, because we are
surrounded by large numbers of electrical devices, we can estimate high-level ac-
tivities by recognizing the use of these devices. For example, when we recognize
that a wearer is using a hair dryer, we can know that she is doing her hair. Such
high-level activity recognition is a fundamental technology of context-aware sys-
tems and lifelogging. Therefore, many studies have been undertaken with the
aim of recognizing the use of electrical devices. However, several approaches re-
quire a sensor node for each electrical device [8]. Also, because other approaches
utilize the existing infrastructure in a home, i.e., power lines [16], they cannot
recognize the use of electrical devices that are not connected to the infrastructure
via power outlets. Because the new method proposed in this paper recognizes
the use of portable electrical devices by employing a magnetic field emitted from
magnets and ICs embedded in the devices, we can recognize the use of devices
that are not connected to the infrastructure. In addition, we can recognize the
use of the devices in outdoor environments. Portable electrical equipment such
as digital cameras and cellphones are frequently used out of doors.

In the rest of this paper, we first introduce work related to activity recognition
with sensor data, and then describe the magnetic field emitted from electrical
devices and the mechanism of the magnetic sensors. After that, we describe
the design and implementation of our proposed sensor device, and explain our
method, which recognizes the use of portable electrical devices by employing
magnetic sensor data. By using the sensor device, we collect sensor data in three
actual home environments and then evaluate our method by using the data. The
contributions of this paper are that we propose a new method that recognizes
the use of portable electrical devices without the need to install any sensors in
environments, i.e., without attaching sensor nodes to the devices. In addition,
we experimentally investigate the appropriate number and locations of magnetic



278 T. Maekawa et al.

sensors attached to wearer’s hands. To achieve this, we attempt to recognize the
use of devices accurately with small numbers of sensors. This enables us to reduce
the burden it places on wearers.

2 Related Work

As mentioned in section 1, activity recognition methods are categorized into en-
vironment augmentation and wearable sensing approaches. Many environment
augmentation approaches employ a large number of small sensors such as switch
sensors, RFID tags, and accelerometers installed in the corresponding environ-
ments [20,17,19]. Although the approach can achieve fine-grained measurements
of daily lives, its deployment and maintenance costs, e.g., costs related to battery
replacement, are very large. Several studies employ a single point sensor device
that can monitor home infrastructures to detect the use of electricity, water, or
gas in home environments [3,5,16]. However, the approach cannot monitor the
use of devices and objects that are not connected to the home infrastructure
such as the plumbing or electrical systems. The method proposed in this paper
can recognize the use of portable electrical devices that are not connected to
the home infrastructure by employing wearable sensors. However, as described
below, our approach may not be able to recognize the use of many large sta-
tionary electrical devices such as washing machines and refrigerators, which are
usually connected to power lines. We consider that, by combining our method
with the infrastructure-based method, we can recognize the use of both portable
and stationary electrical devices in both indoor and outdoor environments with
small deployment costs.

Most wearable sensing approaches use multiple accelerometers attached to
the wearer’s body [1,18]. Although these approaches can recognize the wearer’s
activities in outdoor environments, they place a burden on the wearer because
she has to wear several sensors. Also, unlike approaches that leverage the use
of daily objects, the wearable sensing approaches recognize just simple low-level
activities such as walking and running because they only use accelerometers. On
the other hand, some studies can recognize high-level activities by employing
such rich sensors as body-worn microphones and cameras [2,10,12,13,15]. How-
ever, the methods that employ such rich sensors as cameras and microphones
may generate privacy concerns. Because the method proposed in this paper em-
ploys magnetic sensors, there is less of a privacy issue than with camera and/or
microphone based methods. The magnetic sensor simply outputs a sequence of
numerical values in the same way as accelerometers. In addition, rich sensors
such as cameras and microphones must handle a large amount of data and/or
consume a lot of energy.

3 Magnetic Field and Magnetic Sensor

Before explaining our approach, we describe the magnetic field emitted by elec-
trical devices and the magnetic sensor mechanism.



Recognizing Use of Portable Electrical Devices 279

3.1 Magnetic Field Emitted by Electrical Devices

The magnetic fields in electrical devices have two main sources. The first source
is permanent magnets embedded in the devices. Because permanent magnets are
widely used components of motors, speakers, and earphones, they are familiar
in our daily lives. The intensity of the magnetic field emitted by a permanent
magnet attenuates greatly according to the distance from the magnet. The at-
tenuation feature depends on the form and strength of the magnet. With a
horizontally-located pillar-shaped magnet 5 mm in diameter, 3 mm thick, and
with a residual magnetization of 1.2 T, for example, the magnetic flux density
values 5 mm and 10 mm away in the vertical direction are 36.0 and 7.1 mT,
respectively. 1.2 T magnets are commonly used as speaker components. The sec-
ond source is the flow of an electric current in the devices. An electric current
flowing through a device produces a magnetic field, and the intensity of the
magnetic field also attenuates according to the distance. Such a magnetic field
is emitted by conductive wires, coils, and ICs included in electrical devices. On
the other hand, to restrict the harmful effects of a time-varying magnetic field
on a person’s health, some organizations have established exposure guidelines
[4,6]. Based on these guidelines, many electrical devices are designed to limit
magnetic field leakage by surrounding the magnetic sources with such magnetic
materials as iron. This effect is called the shielding effect. The intensity of mag-
netic fields emitted by conductive wires and ICs is much smaller than that by
permanent magnets and coils, and the intensity is also smaller than that of the
earth’s magnetism (0.03 - 0.04 mT) in many cases. It is difficult to capture the
small magnetic fields by using body-worn magnetic sensors that are affected by
the earth’s magnetism. Therefore, we mainly focus on permanent magnets and
coils.

3.2 Magnetic Sensor

Magnetic field detection has various applications such as current sensing, ori-
entation sensing, diagnosis of disease, and paper currency validation, and so
various kinds of magnetic sensors have been developed [9]. Here, we introduce
the widely used Hall effect sensors. A Hall effect sensor is a kind of magnetic
sensor that utilizes the electromotive force integrated in an electrical conductor
carrying a current when it is placed in a magnetic field perpendicular to the
current. A Hall effect sensor outputs a voltage in proportion to the magnetic
flux density that penetrates its element. Because of its simple mechanism, very
small and inexpensive sensors, e.g., from about 1 to 2 mm square, have become
commercially available.

4 Sensor Device Design

4.1 Manual Use of Electrical Devices

To obtain a design guideline for our sensor device, we first categorize the ways
of using electrical devices into two types. The first is that the user picks up the
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device and uses it. The second is where the user employs a fixed static device by
pushing its buttons, turning its knobs, etc. The ways of using many large devices
such as refrigerators and washing machines fall into the second category. Most
large devices are connected to power outlets, and so the methods that monitor
power line infrastructures can recognize the use of these devices [16]. On the
other hand, most of the devices employed in the first way are small because the
user holds the devices in her hand when using them. Also, because these devices
are portable, many of them are battery powered, which makes them impossi-
ble to recognize with the methods that monitor power line infrastructures. As
mentioned in the previous section, electrical devices emit magnetic fields from
their embedded magnets, coils, etc. The idea we propose in this paper is that we
recognize the electrical device a user is using by employing the magnetic field.
In particular, we recognize the use of portable electrical devices with hand-worn
magnetic sensors. As described in the previous section, a magnetic field atten-
uates greatly because of its characteristics and the shielding effect. Thus, if a
user holding a portable device wears a sensor on her hand, we can effectively
detect the magnetic field emitted by the device. Then, we analyze the detected
magnetic field and recognize which device the wearer is using. We detail the
recognition method later.

Here, we examine the parts of the hands to which we should attach magnetic
sensors. We consider there to be two criteria for selecting the parts. (i) Although
the magnetic sensors are small, we should select locations where the attached
sensors do not place a large burden on the wearer. For example, when we attach
sensors to a person’s fingertips, the sensors may impede the operation of buttons
and keyboards. Moreover, if we attach sensors to the regions surrounding the
finger joints, they will be uncomfortable when the wearer bends her fingers. (ii)
We should attach sensors to locations where the sensors can effectively detect
the magnetic fields emitted by portable devices held in the wearer’s hands. As
mentioned in the previous section, because magnetic fields attenuate greatly, we
should attach sensors to locations where they can monitor devices near them.

Here, we look at the ways of holding various kinds of portable electrical devices
in the hands. We found that button position and shape of a device affect the way
it is held as shown in Fig. 1. For example, when holding a device with buttons as
shown in Fig. 1 (a) and (c), we usually hold the device in a way that enables us to
access the buttons with our fingers. Moreover, a device with a handle, as shown in
Fig. 1 (c), is normally held by the handle. As above, we basically hold the devices
with the fingers and palm. In addition to the shape and button position, its size
affects the way it is held. We often hold small and lightweight devices with just
our fingers. For example, when holding a small camera as shown in Fig. 1 (a),
we can hold it using only our fingers. We hold slightly larger and heavier devices
with part of the palm in addition to the fingers, e.g., when holding a relatively
large smart phone as shown in Fig. 1 (b). That is, we hold devices mainly with
the fingers and also with part of the palm. Based on the above facts, we decided
to sense the magnetic fields from portable devices by mainly focusing on the
fingers. In particular, we focus on the parts of the fingers where sensors would
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(a) (b) (c)

Fig. 1. Ways of handling portable devices: (a) digital camera, (b) smart phone, and
(c) hand-held cleaner. Regions circled with dashed lines represent those parts of the
devices that the hand touches.

not impose a large burden on the wearer, i.e., between the first and second joints
and between the second joint and the base of the finger. We considered that,
by embedding a magnetic sensor in a finger ring, which is usually worn between
finger joints, we could achieve a low burden and convenient sensing.

In our investigation, we also found that the way a portable device is held
depends on the device (or the operation of the device). As mentioned above, the
ways devices are held are determined by their shape and the positions of their
buttons. That is, the way a device is held is almost identical whenever the user
performs a certain operation.

4.2 Basic Idea of Recognition Method

As described above, we try to distinguish which portable electrical device a user
is using by analyzing time-series sensor data obtained from hand-worn magnetic
sensors that sense magnetic fields emitted by various components embedded
in the devices. Therefore, we should solve the multi-class recognition problem,
namely we must classify sensor data at each time slice into an appropriate activ-
ity class (use of an electrical device). Here, to solve the problem, we look at two
discriminative characteristics of sensor data obtained from hand-worn magnetic
sensors. The first is strength of magnetic field (magnetic flux distribution). As-
sume that a permanent magnet is embedded at a certain position on a device.
When the way of holding the device is identical whenever the wearer performs
a certain operation, a magnetic sensor fixed to a certain hand position may out-
put similar sensor values whenever the operation is performed. This is because
the strength of a magnetic field depends on the intensity of the magnet and
distance from the magnet. Because the intensity and positions of the embedded
magnets differ from device to device, we consider that we can recognize which
device a wearer is using by utilizing the strength of a magnetic field picked up
by hand-worn magnetic sensors. The second discriminative feature is the tem-
poral change in the strength of a magnetic field. For example, when the amount
of current flowing in a device changes or a wearer changes the way of holding
a device when operating it, the strength of the magnetic field obtained from a
hand-worn magnetic sensor may change. Such characteristic temporal variations
in the magnetic field can allow us to distinguish between activity classes.



282 T. Maekawa et al.

R-T1
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Fig. 2. A magnetic sensor shown next to a quar-
ter dollar coin (left) and our prototype sensor glove
(right). We provided each sensor on the glove with an
identifier. The identifier is labeled with an initial let-
ter indicating the left or right hand, an initial letter
showing its position, and a serial number. For exam-
ple, the identifier of the first sensor attached to the
little finger of the right hand is R-L1.
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Fig. 3. Time-series raw mag-
netic sensor data of R-I1 ob-
tained when we brought a cell-
phone close to the sensor and
then moved the phone away
from the sensor. (The voltage
values are shifted.)

4.3 Design and Implementation of Prototype Device

Based on the characteristics of a magnetic field mentioned in section 3.1 and
the ways of using portable electrical devices mentioned in section 4.1, we design
and implement a sensor device that focuses on the fingers and palm. However,
it is not clear which of the finger parts that we focus on are actually effective
for recognizing the use of portable devices. Moreover, it is unclear how many
sensors are needed to achieve highly accurate recognition. Thus, in this paper,
we first develop a sensor device that is equipped with many sensors at important
locations on the hand mentioned above, and then we determine the good loca-
tions experimentally. The prototype device developed in this study is in the form
of a glove with ten magnetic sensors as shown in Fig. 2. We attached magnetic
sensors to the important parts of the hand mentioned in section 4.1. We also
attached a magnetic sensor to the center of the palm. We used Asahi Kasei’s
HW105A Hall ICs as magnetic sensors, and also used a glove that fitted the hand
well. As shown in Fig. 2, the sensor is sufficiently small. Because the device is
a prototype, these sensors are connected to a USB port of a host PC via cables
and a sensor board. The board samples the sensor data at a sampling rate of
about 330 Hz. We implemented the devices for both right and left hands. If we
can recognize the use of electrical devices with a small number of sensors, we
can achieve convenient sensing by using a small finger ring shaped device with
a magnetic sensor because we assume that the sensors will be attached between
finger joints. Note that several magnetic sensor products are sensitive to tem-
perature changes. That is, output voltage characteristics of the sensors change
according to ambient temperature. When we use such sensors, we should correct
sensor outputs by using temperature data.
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pick up camera release camera

(a) `Take picture’ (b) `Take picture’ 1 day later (c) `Take picture’ 12 days later (d) `Take picture’ 27 days later

(h) `Take video’(g) `Use hair dryer’(e) `Take picture’ close to tower (f) `Take picture’ close to railway 

synchronizingcharacteristic frequency

hold camera

Fig. 4. Sensor data sequences obtained from our devices. Positive or negative sensor
data values indicate the direction of the magnetic flux that penetrate a sensor.

4.4 Characteristics of Sensor Data

We examine sensor data obtained from our implemented sensor device. Fig. 4
(a)-(f) show time-series sensor data sequences obtained from sensors attached
to the middle fingers of both hands when the wearer was performing a certain
activity at different times and at different locations. (The sensor identifiers are L-
M1 and R-M1 as shown in Fig. 2.) The activity consists of the wearer picking up
a digital camera, turning on the camera, taking a picture, turning off the camera,
and then releasing the camera. The x- and y-axes of the graphs represent time
and the output voltage of the magnetic sensor, respectively. (The voltage values
are amplified, smoothed, and then shifted.) From Fig. 4 (a)-(d), we can find that
the sensor data values obtained on different days while holding the camera were
similar. Also, Fig. 4 (e) and (f), respectively, show sensor data sequences obtained
at places close to a power transmission tower and an electric train line, which may
generate magnetic fields. As mentioned in section 3.1, because the magnetic field
attenuates greatly, magnetic sensors were not affected by magnetic field sources
located at a distance. In addition, although these data change depending on the
orientation of the sensor as a result of the effect of the earth’s magnetism, the
amount of change was small. On the other hand, Fig. 4 (g) shows sequences of
sensor data obtained when the wearer was using a hair dryer. The sequences are
different from those obtained when the wearer was taking a picture.

5 Recognition Method

We attempted to recognize the use of electrical devices by using the sensor data
sequences introduced above. Fig. 5 shows the architecture of our recognition
method. In this architecture, we first amplify the output voltages from hand-
worn magnetic sensors and then denoise them. As shown in Fig. 3, we can detect
the presence of high-frequency noise in a sequence of raw output voltage signals.
Therefore, we remove the noise by employing a low-pass filter (moving average).
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Fig. 5. Architecture of our recognition method

The charts in Fig. 4 show smoothed signals. The host PC samples the smoothed
sensor data from the board at a sampling rate of 33 Hz. The host PC then
extracts features from the data and classifies the extracted feature vectors at each
time slice into the appropriate activity class. We describe the feature extraction
and the classification method below.

5.1 Feature Extraction

We extract features from sensor data that are used to model/recognize activity
classes. We compute features from each sample of sensor data. Thus, because the
host PC samples sensor data from the board at a sampling rate of 33 Hz, about 30
feature vectors are generated per second and become inputs of the classification
method. In addition to the smoothed output voltage values from the hand-worn
magnetic sensors, we also use (i) energy, (ii) dominant frequency, and (iii) the dif-
ference between the output voltage values of different sensors as features.

The energy and dominant frequency are computed for each sensor data se-
quence. We extract the energy and dominant frequency features based on the
FFT components of each 64-sample window because we can find a character-
istic frequency in the sensor data captured during the performance of several
activities as shown in Fig. 4 (g), which may be caused by motor rotation. The
energy can be used to distinguish low intensity changes in sensor data from high
intensity changes. The energy feature is calculated by summing the magnitudes
of squared discrete FFT components. For normalization, the sum was divided
by the window length. Note that the DC component of the FFT is excluded
from this summation. The dominant frequency is the frequency that has the
largest FFT component, and this component should be ten times larger than
the average component of all the frequencies in this implementation.

We also compute the difference between the output voltage values of two
different sensors sampled at the same time. We compute the differences for all
combinations of two sensors attached to the same hand, and then use them as
features. As mentioned in section 4.4, magnetic sensors are affected by the earth’s
magnetism. Fig. 4 (h) shows sequences of sensor data obtained during digital
camcorder use. We found temporal changes in the sensor data sequences and the
changes of these sequences were synchronized. This was caused by changes in
the wearer’s orientation when using the camcorder. That is, the magnetic sensor
data change according to the orientation of the sensor. Our idea is that, by using
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the difference between the sensor data values of two sensors, we cancel out the
changes caused by earth’s magnetism (the orientation change).

As described above, we use the smoothed sensor data value, energy, dominant
frequency,anddifferenceas features.Whenauserwears10 sensorsonthe righthand
and 10 sensors on the left hand, the generated feature vector consists of a total of
150 feature values ((10 + 10 + 10 + 45) × 2), i.e., the vector has 150 dimensions.

5.2 Classification Methodology

We classify an extracted feature vector in an appropriate class by employing
supervised machine learning techniques. That is, we first model each activity
(use of a device) by using labeled training data and then recognize test data with
the learned models. Note that a label includes information about the class label
of its related activity and activity start and end times. Here, the classification
approaches used in machine learning are divided into two groups: one group
uses discriminative techniques that learn the class boundaries, and the other
uses generative techniques that model the conditional density functions of the
data classes. The classification performance of the discriminative techniques,
which find the discriminant boundaries of the classes, often outperform those of
generative techniques. By contrast, handling missing data is often easier with
the generative techniques. State of the art activity recognition studies achieve
high accuracy by employing a hybrid discriminative/generative approach that
can combine the advantages of the two techniques [7,10,11,13].

These facts provide our motivation for using the hybrid discriminative/
generative approach shown in Fig. 5. Our classification method employs two
main modules: discriminative classifiers and generative classifiers. The input of
the first module is the extracted feature vector sequence. The first module con-
sists of some decision tree based binary classifiers trained with feature vectors.
We build each decision tree to recognize its corresponding activity class. That
is, the number of decision trees n corresponds to the number of activities the
method learns. Each decision tree computes its associated class probability for
each feature vector in the feature vector sequence. That is, each decision tree
outputs the class probability sequence. For example, a decision tree for the ‘vac-
uum activity’ class outputs the probability of the class for each feature vector.
The input of the second module consists of n-dimensional class probability se-
quences computed by the n decision trees. The second module also comprises n
HMM classifiers [21], which can be used to recognize signals with temporal pat-
terns, trained with a sequence of output class probabilities of the discriminative
classifiers. We also build each HMM to recognize its corresponding activity class,
that is, each HMM also outputs the likelihood of its corresponding activity. The
class with the highest likelihood is the classified class.

6 Evaluation

In this section, we evaluate our activity recognition approach by using sensor
data obtained in real environments. We also investigate how many magnetic
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Table 1. Information about experimental
environments and participants

Houses House A House B House C

Type house house apartment
#rooms 7 5 2
#days 8 4 7
#sessions 10 6 12
#residents 3 3 1
Age 60 35 32
Gender male male male

Table 2. Activities performed in our
experiment

Activities Activities

A talk on cellphone H vacuum
B operate cellphone I watch TV
C use smart phone J play video game
D listen to music K listen to radio
E shave L use flashlight
F use hair dryer M take picture
G brush teeth N take video

sensors are required and to which parts of the hands we should attach them to
achieve highly accurate activity recognition that imposes the minimum burden
on the wearer.

6.1 Data Set

We collected sensor data in three different dwellings; one seven-room house
(house A), one five-room house (house B), and one two-room apartment (house
C). One resident (an experimental participant) in each house wore our prototype
devices on both hands and collected sensor data. Our devices were connected
to a laptop PC in a backpack via cables. To annotate the collected sensor data,
each participant also wore a head-mounted camera that captured the region in
front of the participant’s body. Table 1 shows an overview of the experimental
conditions. During the experimental periods, the participants collected sensor
data without being supervised by researchers.

Here, the most natural data would be acquired from the normal daily lives
of the participants. However, obtaining sufficient samples of such data is very
costly. We collect sensor data by using a semi-naturalistic collection protocol [1]
that permits greater variability in participant behavior than laboratory data.
In the protocol, participants perform a random sequence of activities (obsta-
cles) following instructions on a worksheet. The participants are relatively free
as regards how they perform each activity because the instructions on the work-
sheet are not very strict, e.g., “shave your face” and “vacuum the room with a
hand-held cleaner.” During the experimental period, the participants completed
data collection sessions that included the random sequence of activities (use of
portable electrical devices) listed in Table 2. We selected these portable devices
(activities) from those frequently found in appliance stores and online stores.

Here we describe how these activities were performed in detail. In activity
B, each participant operated his cellphone, i.e., texting and dialing. In activity
C, we instructed the participants to browse an arbitrary web page on a smart
phone. In activity E, each participant shaved his face with an electric shaver.
In activity G, each participant brushed his teeth with an electric toothbrush. In
activity H, we instructed the participants to vacuum their house with a hand-
held cleaner. In activity I, we instructed the participants to operate a TV with a
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remote control, e.g., control its volume and switch channels. In activity J, each
participant operated a video-game console such as Nintendo DS or Wii in his
house. In activity K, we instructed the participants to listen to a radio program
on a portable radio. In activity M, we instructed the participants to take a
picture with a digital camera. In activity N, we instructed the participants to
take a video with a (digital) camcorder. Here, the electrical devices used in the
experiment were located in their appropriate places in each house. For example,
an electric toothbrush was placed on a wash stand. Note that, with respect to
devices that are usually used in various places such as cellphones and digital
cameras, we instructed the participants to use the devices in various places both
in and outside the house. Also, when a participant did not have a device, we
asked him to buy the device. (We paid for it.)

6.2 Evaluation Results

We evaluated the performance of our approach by using the collected and anno-
tated sensor data. We conducted a ‘leave-one-session-out’ cross validation eval-
uation. That is, we tested one session obtained in a house by using classifiers
trained on other sessions obtained in the same house. To evaluate the perfor-
mance of our method, we used the precision and recall calculated based on the
results for the estimated class at each time slice.

Performance of our method. The left part of Table 3 shows the precision and
recall of our recognition method in each house when we used sensor data obtained
from all 20 magnetic sensors. As shown in the table, our method achieved very
high recognition accuracy simply by using wearable sensors. We achieved about
80% average precision and recall in each house. The accuracies for houses A and C
were higher than that for house B. This may be because the amounts of training
data in houses A and C were sufficient. With large amounts of training data, we
can capture various ways of using electrical devices. However, in house A, the
precision of the ‘take picture’ activity was not good. As shown in the confusion
matrix of house A in Table 4, other activities such as ‘use smart phone’ and
‘watch TV’ were mistakenly classified in the ‘take picture’ class. This may be
because we could not model the ‘take picture’ class well. When the participant
in house A took a picture, he changed the way he held the camera slightly
depending on the type of photograph he was taking, e.g., closeup photograph or
telephotograph. Although the changes were very small, the data values obtained
from the sensors were very different as shown in Fig. 6 (a) and (b). The time-
series sensor data sequences in Fig. 6 (a) were obtained when the participant in
house A took a picture of the landscape in front of him. The time-series sensor
data sequences in Fig. 6 (b) were obtained when the participant took a picture
of an object by pointing the camera directly at it. Although the data values
obtained with the R-M2 sensor were similar to each other, those obtained with
the L-M1 sensor were different. This was caused by the magnetic field, which
attenuates greatly with distance, as mentioned in section 3.1. Depending on the
sensor position, the sensor data values change considerably. This phenomenon



288 T. Maekawa et al.

Table 3. Accuracies (precision / recall) of the recognition method in each house. The
values are percentages. The left portion of this table shows the accuracies when we use
the sensor data from all 20 sensors. The right portion shows the accuracies when we
use the sensor data of only the top-4 contributing sensors.

All 20 sensors Only top-4 sensors

House A House B House C House A House B House C

A: talk on cellphone 95.1/82.2 25.2/80.2 27.2/89.9 89.6/88.8 58.5/43.1 43.7/75.0

B: operate cellphone 89.5/84.9 89.4/73.3 98.2/80.4 70.0/79.9 58.1/73.5 91.9/89.7

C: use smart phone 92.5/76.0 91.4/85.5 91.6/83.6 68.0/64.9 77.4/61.7 98.4/93.4

D: listen to music 87.2/71.0 63.4/65.5 73.0/89.5 75.1/72.8 59.6/37.2 81.3/89.5

E: shave 78.8/78.8 99.9/100.0 93.9/68.8 84.9/84.9 86.4/71.8 81.1/67.1

F: use hair dryer 95.9/99.4 94.4/89.9 91.2/89.3 91.4/93.7 96.1/95.5 97.2/94.0

G: brush teeth 95.4/95.5 79.6/51.2 79.2/67.4 65.7/79.0 50.8/81.0 55.7/72.0

H: vacuum 90.0/83.3 99.4/66.0 98.0/85.4 82.8/79.6 26.6/58.5 93.6/86.2

I: watch TV 79.4/78.9 84.3/73.8 89.3/69.4 76.8/74.1 72.3/69.5 95.2/83.5

J: play video game 95.5/97.7 99.3/99.5 95.9/85.8 88.8/96.0 99.1/100.0 88.8/89.8

K: listen to radio 89.0/73.6 92.9/81.2 69.8/70.1 59.3/41.5 74.9/78.9 72.7/73.2

L: use flashlight 86.9/90.7 95.2/80.0 98.3/71.6 58.3/80.8 22.7/21.6 80.9/73.2

M: take picture 35.3/77.2 98.4/92.0 90.8/99.9 82.5/82.8 99.0/88.8 73.8/75.2

N: take video 91.4/78.7 53.3/28.7 99.3/92.2 96.7/82.2 40.6/29.0 98.0/80.9

Average 85.9/83.4 83.3/76.2 85.4/81.7 77.9/78.7 65.9/65.0 82.3/81.6

Overall 83.3/83.3 79.6/79.6 81.2/81.2 77.6/77.6 68.8/68.8 82.7/82.7

was also observed for ‘talk on cellphone’ in houses B and C. However, this result
indicates that, when we have sufficient amounts of training data, we may be
able to achieve very fine-grained recognition of electrical device operation, e.g.,
distinguish a closeup photograph from a telephotograph. As above, the various
ways of holding the electrical devices reduced the accuracy in our experiment.

We found another reason for recognition failure, namely the positions of the
components in electrical devices. The accuracies of ‘brush teeth’ and ‘take video’
in house B were poor because the intensities of magnetic fields that the hand-
worn sensors sensed in these activities were very small. That is, the magnetic
components included in the devices that were used in these activities may have
been located far from these sensors when the devices were used. It is very difficult
to recognize the use of such devices with our approach because our approach
employs the intensity of the magnetic field. This problem occurred with ‘brush
teeth’ and ‘take video’ in house B, and ‘watch TV’ in house C. However, although
the hand-worn sensors could not sense the high intensity magnetic field emitted
by the electric toothbrush in house B, the accuracy of ‘brush teeth’ in house
B was not very bad. When the participant in house B brushed his teeth, he
controlled the toothbrush so that it brushed his front teeth, back teeth, upper
teeth, and lower teeth. That is, he moved his hand to control the toothbrush and
then the posture of his hand changed. In section 4.4, we mentioned that magnetic
sensors are slightly affected by the earth’s magnetism. When the posture of
the hand changes, sensor data obtained from hand-worn sensors also change
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Table 4. Confusion matrix in house A when we use sensor data of all 20 sensors. The
values are percentages.
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A 82.2 0.0 2.2 0.0 0.0 0.0 4.7 0.0 9.1 0.0 0.0 0.9 0.8 0.0
B 0.0 84.9 0.0 0.7 0.4 0.0 0.2 0.1 0.2 0.0 0.4 2.4 9.4 1.3
C 0.0 0.7 76.0 0.0 0.3 0.0 0.0 0.0 3.7 5.6 0.0 1.1 12.2 0.4
D 0.5 4.2 0.6 71.0 5.1 0.3 0.6 0.6 1.1 0.8 6.0 0.6 6.4 2.0
E 0.2 3.0 0.0 0.9 78.8 0.3 0.1 2.2 0.9 0.0 0.4 0.0 12.5 0.6
F 0.3 0.0 0.0 0.0 0.0 99.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
G 0.0 0.0 0.0 0.7 0.0 0.0 95.5 0.0 1.2 0.0 0.0 0.0 0.4 2.2
H 0.0 0.8 0.0 0.1 0.0 0.0 0.0 83.3 0.0 2.2 0.1 2.6 10.6 0.3
I 0.0 0.0 2.0 0.0 0.2 0.5 0.0 0.5 78.9 0.1 1.7 0.0 15.3 0.8
J 0.0 0.2 0.1 1.1 0.1 0.0 0.0 0.1 0.2 97.7 0.0 0.0 0.5 0.0
K 0.0 2.0 1.3 4.2 2.2 0.0 0.8 1.5 4.8 0.4 73.6 0.0 9.1 0.0
L 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.8 0.8 0.2 0.0 90.7 6.3 0.0
M 0.0 0.0 0.4 2.0 10.2 0.8 0.4 0.0 3.9 1.0 1.7 1.1 77.2 1.4
N 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 10.9 0.0 0.5 0.6 9.1 78.7

(a) `Take picture’ at house A (b) Another `take picture’ at house A (c) `Brush teeth’ at house B

Fig. 6. Example sensor data sequences obtained in our experiment

because the orientation of the sensors changes. Fig. 6 (c) shows sensor data
sequences obtained when the participant in house B brushed his teeth. We can
see that the sensor data value of R-I1 suddenly changes several times. These
changes were caused by changes of hand posture. We could find such sensor data
changes in other ‘brush teeth’ activities in house B. We consider that our method
modeled the ‘brush teeth’ activity class by using the characteristic changes of
sensor data. As above, even though the hand-worn sensors cannot sense high
intensity magnetic fields emitted by electrical devices, our method may be able
to recognize activities that involve characteristic changes of hand posture, e.g.,
walking and running in addition to tooth brushing.

Recognition with small numbers of sensors. In the above evaluation, we
confirmed that our approach could achieve very high accuracy activity recogni-
tion with 20 hand-worn magnetic sensors. However, it is impractical to wear a
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large number of sensors on the hands continuously in our usual daily environ-
ment. To reduce the number of required sensors, we investigated which magnetic
sensors on which parts of the hand were effective for recognizing the use of elec-
trical devices by employing our obtained data sets. That is, we find sensors
that help us to recognize the use of electrical devices. More specifically, we find
extracted features that help us to discriminate the feature vectors of activity
classes. Once we obtain discriminative features, we then also obtain effective
sensors from the features. For example, when we find that the energy feature of
the L-M2 sensor data assists us to recognize many activities, we can say that
the L-M2 sensor is important.

The problem of finding a discriminative feature is called the feature selec-
tion problem. Several studies have found discriminative features by employing
the concept of information gain. The information gain of a feature increases
the better the feature classifies the instances. For more detail, see [22]. In our
case, an instance corresponds to a feature vector at a time slice. By using the
information gain, we obtained the ranking of 20 magnetic sensors on hands by
the contribution to the classification of instances. We employ the simple ranking
method described below. (1) We compute each feature’s information gain when
distinguishing feature vectors of an activity class from those of other activity
classes by using its feature values in the training data. This permits us to obtain
the measure of the contribution, i.e., the information gain, of each feature to
distinguish the activity class from other classes. We describe the information
gain of the ith feature to distinguish the jth class as gain(fi, Cj). By apply-
ing this procedure to all activity classes, we can obtain the information gain
of a feature for each activity class. (2) We compute the sum of the informa-
tion gain of all activity classes for each feature. We regard the sum as being
an overall measure of the contribution of the feature. We describe the overall
measure of ith feature as scoref (i) =

∑
j gain(fi, Cj). (3) To obtain a mea-

sure of the contribution of the kth sensor, we again compute the summation of
scoref (i) related to the sensor. We can describe the measure of the kth sensor as
scores(k) =

∑
fi∈F (k) scoref (i), where F (k) denotes a set of features computed

from the kth sensor data. (4) We rank the 20 magnetic sensors by scores(k).
The table in Fig. 7 (a) shows the rankings of the top 8 sensors in each house

computed by employing the above procedure. As described above, in the rank-
ings, the magnetic sensors are listed in descending order of contribution to the
feature vector classification. The ‘all’ columns in the table show the rankings
of the top 8 sensors among all 20 sensors. In the rankings, we can see that the
rank orders of sensors on the right are high in all three houses. This is because
the participants are right-handed. They used electrical devices with their right
hands in many activities, and thus the importance of the sensors on the right
hand became high. Of the sensors on the right hand, the sensors on the middle
finger were particularly important. This may be because the middle finger is
positioned in the center of the hand. We consider that sensors in the center
of the hand tend to be located nearer electrical devices held in the hand than
outlying sensors such as those on the little finger. On the other hand, the ‘ring’
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House A House B House C
all ring all ring all ring

1st R-M1 R-M2 R-T1 R-T1 R-I1 R-I2
2nd R-M2 R-R2 R-M1 R-M2 R-M1 R-M2
3rd R-R1 R-I2 R-M2 R-I2 R-I2 R-T1
4th R-R2 R-T1 R-I2 L-R2 R-M2 R-L2
5th R-I2 L-I2 R-P1 L-L2 R-R1 L-T1
6th R-T1 L-M2 L-P1 L-I2 R-P1 L-I2
7th L-I1 L-T1 R-I1 L-M2 R-L1 L-R2
8th L-M1 R-L2 L-R2 R-R2 R-T1 L-L2

(a) Ranks of sensors
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(d) House C

Fig. 7. (a): Rankings of magnetic sensors in each house. The table shows the rankings
of the top-8 sensors of all 20 sensors and the rankings of just 10 sensors on hand
positions where common forms of finger rings are attached. (b), (c), (d): Transitions of
the overall F-measure when we increase # sensors in descending order of the rankings
in each house. (F -measure = 2·precision·recall

precision+recall
.)

columns in the table in Fig. 7 (a) show the top 8 sensors in the ranking of just
10 sensors at hand positions where common forms of finger rings are worn, i.e.,
(L|R)-T1, (L|R)-I2, (L|R)-M2, (L|R)-R2, and (L|R)-L2. That is, we assume that
magnetic sensors are embedded in finger ring-form devices. This is a practical
condition. In these rankings, the sensors on the right hand were also important.

Fig. 7 (b), (c), and (d) show the transitions of the overall F-measure when we
increased the number of sensors in descending order of the rankings in Fig. 7 (a).
For example, when the number of sensors is 2 in the line chart of house A, the y-axis
value of the ‘F-measure (all)’ line indicates the recognition accuracy computed by
using sensor data obtained from only the R-M1 and R-M2 sensors, which are the
top 2 sensors in house A. We use these charts to investigate the required number
of sensors. From the charts, we find that we can achieve high accuracies equaling
those obtained with 20 sensors with only about seven sensors. The accuracies were
still high (over 75%) with only three sensors in houses A and C. The right part of
Table 3 shows the detailed recognition accuracies when we used the sensor data of
the top 4 sensors. Even though we used only four sensors, the average and overall
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accuracies decreased by only about 5 to 10% compared with those obtained when
using all 20 sensors. As shown in the charts in Fig. 7 (b), (c), and (d), when we
limit the sensor positions to common finger ring positions, the accuracies decreased
somewhat. However, with only four or five sensors, we could achieve accuracies of
over 75% in houses A and C. Here, the accuracies in house B are not stable because
the amount of training data may be insufficient.

The above results show that we can achieve the highly accurate recognition
of the use of portable electrical devices with small numbers of magnetic sensors.
Strictly speaking, the importance of the sensor positions was different in each
house as shown in the table in Fig. 7 (a). However, in any environment, by simply
attaching several sensors to a dominant hand, we consider that we can achieve
fairly good accuracy. (In fact, by simply using the R-M1, R-M2, R-I1, and R-I2
sensors, we could achieve 76.8, 67.6, and 82.7% overall F-measures in houses A,
B, and C, respectively.) In particular, attaching sensors to the middle fingers
may significantly improve the accuracy.

7 Conclusion

In this paper, we proposed a new method that recognizes the use of portable
electrical devices with hand-worn magnetic sensors. In modern societies, we
live with large numbers of electrical devices. Many studies have attempted to
detect/recognize the use of electrical devices because this would allow us to rec-
ognize various high-level activities. The method proposed in this paper can rec-
ognize the use of portable electrical devices that are not connected to the home
infrastructure without using any sensors attached to the devices in both indoor
and outdoor environments. In this paper, we evaluated our recognition method
in real environments and achieved very high accuracies. We also confirmed exper-
imentally that we could achieve highly accurate recognition with small numbers
of hand-worn sensors. As part of our future work, we will attempt to recognize
simple low-level activities that do not involve the use of electrical devices, such
as walking and running, with hand-worn magnetic sensors because we found in
our experiment that our method may be able to recognize activities involving
characteristic hand movements. This is because magnetic sensors are affected by
the earth’s magnetism, and so the hand-worn sensors can capture characteristic
hand movements. This permits us to recognize both the use of electrical devices
and low-level activities with only hand-worn magnetic sensors.
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Abstract. We report a series of empirical studies investigating gesture as an 
interaction technique in pervasive computing.  In our first study, participants 
generated gestures for given tasks and from these we identified archetypal 
common gestures. Furthermore, we discovered that many of these user-
generated gestures were performed in 3D. We implemented a computer vision 
based 3D gesture recognition system and applied it in a further study in which 
participants used the common gestures generated in the first study.  We 
investigated the trade off between system performance and human performance 
and preferences, deriving design recommendations. We achieved 84% 
recognition accuracy by our prototype 3D gesture recognition system after 
tuning it through the use of simple heuristics.  The most popular gestures from 
Study 1 were regarded by participants in Study 2 as best matching the task they 
represented, and they produced the fewest recall errors. 
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1   Introduction 

This paper reports an investigation of gesture as an interaction technique in a 
pervasive computing environment.  We conducted a linked series of empirical studies 
and system development investigating gestural interaction in a pervasive computing 
environment.  In phase 1 of the research, we sought to identify a candidate set of 
gestures that could be useful and usable across a range of devices, services and 
contexts.  We asked participants spontaneously to generate gestures to perform given 
interaction tasks.  The tasks were selected through a process of iterative scenario 
generation and refinement, and ranged from concrete tasks familiar to computer users, 
e.g. “Select ...”, to more abstract tasks, e.g. “Show me a ...”.  We recorded the 
gestures made by each participant and categorized typical or most common gestures 
for the different tasks.  In addition, we discovered that many of the gestures were 3-
dimensional. 

In the next phase, we implemented a computer vision based 3D gesture recognition 
system and trained it using the set of archetypal gestures derived from the study in 
phase 1.  The system uses 3D cameras to capture a user’s hand movements, and 
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Hidden Markov Models (HMMs) to recognize the gestures.  Participants were trained 
on the gestures and then asked to perform interaction tasks using only these gestures.  
We collected data on user performance (recalling the correct gesture), user ratings of 
how well a gesture matched the task being performed and system recognition rates. 

Typically there is a balance of cost or effort between the user and the system for a 
given performance and different approaches tend to put more of the burden on either 
the user or system while attempting to find an acceptable balance and adequate 
performance.  For example, handwriting recognition systems on mobile devices, such 
as Graffiti on previous Palm devices, forced the user to form letters in a non-standard 
way, increasing the burden on the user in order to reduce the burden on the 
recognition system. Therefore, in the final phase of our study we performed a 
comparative assessment of the ability of users to remember and perform gestures, the 
accuracy of the system in recognizing the gestures and the balance achieved between 
burdening the user and burdening the system for a given level of overall performance 
and user satisfaction. 

2   Background and Motivation 

Our research is focused on exploring gesture as an interaction technique for pervasive 
computing environments.  Our work focuses on gestural interactions that range from 
traditional desktop metaphor interactions (e.g. select, open, move) to more abstract or 
conversational interactions (e.g. “take a picture of …”, “show me information about …”). 

Categorization of gestures allows us to explore opportunities to exploit the 
characteristics of different types of gesture for different types of interaction. Kendon 
[2] describes a set of gesture categories, (gesticulation, language-like gestures, 
pantomimes, emblems and sign language), which range in their formalism. For 
example, gesticulation is “free form gesturing which typically accompany verbal 
discourse” and sign language contains a complete grammatical specification. Other 
categorizations include those used by Efron [6] and McNeill [7]. 

These categorizations of gestures allows us to explore the characteristics of gesture 
such that they can be exploited.  For example, [9] examines different categorizations 
of gesture in order to produce realistic interactions between humans and Artificial 
Intelligence agents while [13] defines a vocabulary of gestures to be used when 
interacting with a gesture interface. 

Our ultimate aim is to allow users to interact more naturally in pervasive computing 
environments with more complex interactions.  Exploiting the features of these different 
categorizations may enable these types of interactions.  For example, the types of 
interactions that might be supported range from selecting an image on a large display 
(manipulative) to taking a photo (iconic), to pointing at a street sign and asking “show me 
where I am on a map” (gesticulation), to missing an announcement over the public 
address system in a railway station and cupping your hand behind your ear and pointing 
at your mobile phone to stream the announcement to the phone (pantomime). 

However, the majority of the literature on gesture focuses on the technology used to 
capture gestures made by the user.  Such technology includes accelerometers, infra-red 
tracking, data gloves, and cameras.  The largest body of literature on systems for gesture 
recognition uses computer vision algorithms with 2D and 3D cameras. For example, 
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 [3, 4, 8, 11, 12] describe systems which use HMM models with 2D or 3D cameras in 
order to capture and recognize gestures made by a user.  Wu and Huang [18] provide a 
review of vision-based gesture recognition systems and techniques. 

In each of these systems, the gestures are defined by the designer.  As Wobbrock 
[10] articulates, although these gestures are designed skillfully, they are often 
designed with priority given to system recognition rates rather than to the users’ 
requirement for gestures that they feel fit the actions being performed.  Palm’s 
Graffiti is another example of this, as is MIT’s Sixth Sense [15].  Sixth Sense utilizes 
vision based gesture recognition techniques to enable the use of gestures to interact 
with a system.  Users can use gestures to perform actions such as taking a photo and 
controlling user interfaces projected by the device on to different surfaces.  These 
gestures are defined by the system designers and rely on physical and desktop 
metaphors.  This is a reasonable design decision, however as Wobbrock highlights, in 
a technology which is maturing into commercial systems and products there is a need 
to explore the gestures that users find most appropriate for given tasks. 

Wobbrock’s observations expose a gap in the research where gestures are often not 
designed based on user preference or need but rather on the needs of the system.  
Although gestures are designed based on a principled design approach, as his study 
illustrates, even experienced designers cannot predict a gesture set that can fully meet 
user expectations of interaction. 

Similar studies into user defined gesture sets have been undertaken by Fikkert [17] 
and Kray [5]. Fikkert describes a wizard-of-oz study in which users were asked to 
perform gestures to control the pan and zoom of a map interface on a large display out 
of reach of the user. They also conducted a user survey in which participants rated 
different proposed gestures for 6 different commands when interacting with a large 
display at a distance.  Based on these studies they propose an initial gesture set for 
interacting at a distance with large displays, based on agreement amongst users both 
in the generation and in the rating of gestures. 

Similarly, Kray describes a study where users were asked to perform gestures 
using a cell phone to interact with other cell phones, large displays and interactive 
tabletops. Again, they propose a gesture set based on agreement amongst participants. 
Further to this study they also assess the ability of cell phones to recognize the 
gestures in this gesture set and provide design recommendations for sensor hardware 
to be incorporated into future cell phones. 

In all three of these studies it was observed that users produce similar gestures for 
tasks. Based on this observation, we explored user-generated gestures for interaction 
in pervasive computing environments. This extends the work done by Wobbrock, 
Fikkert and Kray by exploring more general interactions in an environment where 
there are potentially many different devices (e.g. large displays, audio, embedded 
sensors) and services (e.g. location tracking, travel information etc). 

Additionally, we also set out to apply user generated gestures to an implementation 
of a gesture recognition system and to explore the trade off between the user 
requirement of natural gestures that fit the action being performed and the system 
requirement of gestures which can be effectively recognized.  This extends the 
assessment conducted by Kray in that it applies the gestures to a working gesture 
recognition system and explores the requirements and adaptations needed by both the 
user and the system. 
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3   Study 1: Generation of a Common Gesture Set 

Prior to running this study, we collaborated with colleagues in several academic and 
industrial organizations to develop a set of scenarios that explore the ways in which 
future users might interact with pervasive computing.  The scenarios focus on the 
theme of Augmented Travel where multiple devices, services and users come together 
to enable and enhance the traveling experience from booking tickets to providing 
contextual information while en route.  From these scenarios we abstracted example 
tasks for our study.  The tasks included:  

• Move a [document/image/advert] from one device to another 
• Go back to the previous [page in a document/image/advert] 
• Show me the location of this cafe 

Study 1 was a generative empirical study in which participants proposed gestures to 
perform the tasks drawn from the scenarios.  Tasks ranged from concrete tasks 
familiar to computer users, e.g. “Select ...”, to more abstract, e.g. “Show me a ...”. 

Twenty two participants took part in the study, aged from 20 to 44 with a mean age 
of 29.  16 participants were male and 6 were female.  All participants were recruited 
from around the University of Bath. 

Participants were asked to imagine themselves performing the tasks in the course 
of interacting with a pervasive computing environment.  They were asked to visualize 
the interfaces and objects they might be interacting with.  They were deliberately not 
provided with ‘props’ or interfaces in order to focus the participants on generating 
gestures that would allow them to perform the task rather than focusing on the 
gestures that could be made to interact with a specific interface or object. 

Participants were run individually.  Each participant was provided with the context 
in which she should imagine herself performing the gestures.  The experimenter read 
aloud each task in turn and the participant made a gesture of her own choice to 
perform the task.  A subset of the tasks is presented in Table 1.  The order of the tasks 
was randomized for each participant.  The gestures performed by each participant 
were video recorded for later analysis. 

 

Table 1. A subset of the 68 tasks presented to participants in Study 1 

Task No Task 
2 Go to an image 
4 Select 
17 Zoom in to an image 
25 Close 
26 Close an application 
39 Show me information about this cafe 
41 Show me my location 
51 Move an application from one device to another 
52 Go to an image and zoom in  
53 Select a piece of text and delete it 
54 Open a document and select a piece of text 
57 Zoom in to a map and show me my location 
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3.1   Results  

The resulting video record was analyzed to investigate the gestures generated by 
participants.  In analyzing the gestures, we were particularly interested in the 
similarity of gestures made across participants for a particular task.  Here we focus on 
the ‘verbs’ in the tasks, i.e. Select, Move, Go To, as these gestures are the actions or 
manipulations the participant performed on an imagined interface or object. 

Two researchers independently analyzed the resulting video and produced 
descriptions of the gestures made by participants for the verb in the task.  To ensure 
that the resulting categorization of gestures was based on the same observed gesture 
we ran an inter-rater reliability test.  Each researcher gave a description of the gesture 
made for each task.  These descriptions were then compared and a Kappa statistic was 
produced to determine consistency between the researchers.  The results of the test 
indicate a very high level of agreement (Kappa = 0.818, p<0.001) between the 
descriptions of the gestures performed by each participant. 

Tables 2 to 4 respectively present the 3 top level categories we identified from our 
analysis of the gestures. Category A consists of tasks for which a single common 
gesture was used by more than 65% of participants for the given task, and the overall 
variance (i.e. the number of different types of gestures performed) was low. Category 
B consists of tasks for which the variance was low but there was not a single 
dominant gesture as there was in Category A.  Category C consists of tasks for which 
the variance was high. 

In Category A (Table 2) for each of the actions Select, Open, Close, Stop, Pick Up, 
Drop and Move, participants typically made one gesture.  Furthermore, there is a low 
variance in the gestures made, i.e. there are few alternative gestures.  In all but one 
case (Open) the variance is 1 if we exclude outliers, i.e. where a gesture was made by 
only one participant.  Thus, for these tasks in the context of the study there was a high 
level of agreement across participants on the archetypal gesture for this task. 

In Category B (Table 3) there is low variance (between 2 and 3) for each of the 
gestures generated for the tasks Zoom In, Zoom Out, Move Forward, Move Back and 
Go Back.  The cause of variance in this category is primarily due to the direction in 
which the gesture was performed.  For example, both the Zoom In and Zoom Out 
gestures were performed either as a movement of the hands forwards and inwards to a 
point or spreading apart outwards from a point.  One possible explanation for this 
variance is the interaction metaphor used by the participant.  In the Zoom examples, 
either gesture could be used depending on the metaphor employed by the participant, 
e.g. magnifying glass or stretch to zoom.  In selecting an archetypal gesture for the 
Zoom gestures, we added together percentages from the forwards and inwards 
movement and the outwards and further apart movement and selected as the archetype 
the higher percentage.  Therefore, Zoom In is defined as a movement of the hands 
forwards and inwards to a point as this direction was used by 48% of participants 
whereas the movement of the hands spreading apart outwards from a point was 35%.  
There is no a priori reason not to prefer the opposite direction for the Zoom gestures 
but, in this category, direction is the main distinguishing feature and so the most 
common direction was used to select the archetypal gesture. 
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Table 2. Category A: Gestures produced in Study 1 for which there is low variance and a 
greater than 65% concurrence by participants on the gesture for a given task 

Action  Gesture Made  % used 
Select  point 86% 
 sideways movement 13% 
 circle 1% 
Open movement outwards like a book 71% 
 double tap 9% 
 point 12% 
 open hand/flash 5% 
 upwards movement 3% 
Close movement inwards like a book 73% 
 x shape 22% 
 close hand 5% 
Stop “halt!” sign 86% 
 cutting motion 2% 
 point  11% 
Pick Up grasp and pick up 80% 
 upwards movement 9% 
 sideways movement 11% 
Drop open hands and a movement down 66% 
 push down movement  30% 
 x shape 5% 
Move  movement from side to side 100% 

Table 3. Category B: Gestures produced in Study 1 for which there is a low variance in the 
number of gestures produced but there is no single gesture which was generated by participants 
more than 65% of the time 

Action  Gesture Made  % used 
Zoom In movement forwards towards a point 42% 
 movement inwards like a book 6% 
 movement from the user outwards 24% 
 movement outwards like a book 11% 
 pinch 17% 
Zoom Out movement from the user outwards 47% 
 movement outwards like a book 12% 
 movement forwards towards a point 18% 
 movement inwards like a book 9% 
 pinch 14% 
Move Forward right to left movement 18% 
 left to right movement 36% 
 z axis forward movement 25% 
 circle 14% 
 physically move forward 7% 
Move Back right to left movement 36% 
 left to right movement 18% 
 z axis backwards movement 25% 
 circle 16% 
 physically move back 7% 
Go Back  left to right movement 11% 
 right to left movement  41% 
 z axis backwards movement  25% 
 physically move back 7% 
 circle 16% 



300 M. Wright et al. 

 

Table 4. Category C: Gestures produced in Study 1 where there is a large variance. In addition, 
the point gesture is typically used as a default. 

Action  Gesture Made  % used 
Go To sideways movement 36% 
 physically move 11% 
 point 41% 
 double tap 3% 
 icon of object e.g. media or tv 9% 
Search point to eye 6% 
 shrug 5% 
 question mark (?) icon  17% 
 circle  44% 
 side to side in a z shape 14% 
 downwards or sideways movement  15% 
Turn On turn of the wrist 16% 
 up movement 9% 
 open hand/ flash 9% 
 point 61% 
 open gesture 5% 
Turn Off turn of the wrist 20% 
 downward movement 11% 
 eyes 5% 
 x shape 11% 
 two handed large cross movement 7% 
 point  32% 
 close gesture 14% 
Play  point 48% 
 open gesture 7% 
 wave 5% 
 circle 16% 
 open hand(s) 2% 
 right to left movement 2% 
 tap 9% 
 icon(thumbs up or triangle play) 11% 
Show Me point 47% 
 point at eyes 8% 
 shrug/hands open gesture 22% 
 icon of object e.g. media or tv 8% 
 circle 7% 
 open hand(s) 9% 
Delete draw an x shape 48% 
 right to left movement 9% 
 throw 27% 
 rip 3% 
 close gesture 8% 
 downward movement 5% 

In Category C (Table 4) there is large variance (between 4 and 6) for each of the 
gestures generated for the tasks Go To, Search, Turn On, Turn Off, Play, Show Me 
and Delete.  The point gesture was performed for almost all of the tasks. One 
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explanation is that actions such as Turn On, Go To etc were, for our participants, 
considered as equivalent to selecting the object.  However, in tasks such as “Show me 
information about this cafe” the point gesture was used as a default when the 
participants struggled to think of an appropriate gesture for the task.  Hence, it seems 
more likely that pointing is in many of these cases a symptom of participants’ not 
articulating the specific meaning of the task through the gesture, rather than the 
various tasks being semantically equivalent to selecting.  In determining the 
archetypal gesture for Category C tasks, we simply chose the gesture generated the 
greatest number of times by the participants, disregarding the point gesture.  These 
gestures are effectively arbitrary and it is therefore likely that they will be more 
difficult to learn and remember than Category B gestures where there was less 
variance, and Category A where there was even less. 

Participants performed gestures in a variety of directions and orientations 
depending on how they visualized the interfaces and objects they might interact with 
in a pervasive computing environment.  For example, the Select gesture often had a 
different direction depending on where the participant imagined the target object to be 
located and a different orientation of the hand depending on the type of task (figure 
1(a) and 1(b)).  Another example is the Zoom In and Zoom Out gestures where, 
although participants made the same gesture in terms of the direction of movement of 
their hands, the orientation of their hands could either be vertical towards the ground 
or horizontal in front of them (figure 1(c) and 1(d)).  Existing gesture recognition 
systems typically operate only with 2D gestures, e.g. [11, 12, 15].  Given the 
predominance of 3D gestures in the gesture set we derived from Study 1, there would 
appear to be a need for gesture recognition systems that can recognize gestures in 3D. 

 

Fig. 1. Different directions and orientations performed by participants when asked to generate 
gestures for different tasks 

In the remainder of this paper we present an implementation of a computer vision 
based 3D gesture recognition system followed by a further study.  In this second study 
we trained participants on the candidate common gesture set derived from the first 
study and assessed the ability of the users to remember and perform the gestures, the 
accuracy of the 3D recognition system in recognizing the gestures, and the balance 
achieved between burdening the user and burdening the system for a given level of 
overall performance and user satisfaction. 
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4   Gesture Recognition System 

Our 3D gesture recognition system drew on [12].  In [12] they propose a method by 
which hand movements can be categorized based on a topology of vectors calculated 
from the movement of the user’s hand.  We extended this topology to include the 
third dimension. Furthermore, in [12] only one hand is tracked; in our implementation 
we are able to track 2 hands and, therefore, to recognize two handed gestures. 

Our gesture recognition system is comprised of two main modules: an image 
processing module and a HMM module. We used a Bumblebee 2 stereo camera 
(figure 2(a)) to capture the image of the user performing a gesture. From this image 
the system extracts the x, y and z coordinates of each pixel and uses color detection to 
locate and track the user’s hands. We convert the RGB colour values for each pixel 
into the Y’UV444 color space to reduce the effects of changes in lighting. To increase 
performance and object recognition rates, we perform this conversion only if the z 
value of the pixel is in an active range based on the clustering of detected pixels.  If an 
individual pixel falls outside the z value range of this cluster then it is rejected. 

Following identification of the objects, we apply two more filters.  The first filter 
treats as noise detected potential objects whose total number of pixels is not greater 
than a predefined threshold.  The second filter treats the detected object as static if the 
distance the object has moved between frames is below a predefined threshold. 

In the next stage the system calculates a Gesture Sequence for the movement of the 
user’s hands between frames.  This sequence is used as input to the HMM model 
which returns the gesture whose Gesture Sequence best matches the one performed.  
In order to capture both hands we produce a separate Gesture Sequence for each hand 
and the HMM is trained using these separate sequences.  The outputs of the HMM 
predictions for the left and right hands are then examined together. 

 

                         (a)     (b) 

Fig. 2. The system developed used a 3D stereo camera and HMM models in order to capture 
and recognize gestures in 3D 

In order to encode the hand movements, the system calculates the centre point of 
the detected object and tracks the movement of this centre point between frames. 
Using this movement data we divide the x,y,z values into three planes of movement, 
X-Y, X-Z and Y-Z, with each plane divided into eight directions (figure 2(b)). These 
coordinates are saved into a buffer. Using this buffer the system is able to calculate 
the angle between the two movements of an object.  Using these angles we can build 
up a sequence of movements for each axis from one frame to another. 
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After all the angles have been converted to directions, the system combines the 
three directions into a number.  For example, if x-y is 8, y-z is 7, x-z is 1, the system 
encodes those directions as 871.  Figure 2 shows an example of a section of a Gesture 
Sequence used as input to the HMM.  The HMM module provides a probability that 
the Gesture Sequence input is a particular gesture.  We used the Accord Statistics 
Library API [1] in order to implement the HMM. 

In training mode, the HMM module was given a training set of gesture sequences 
for each gesture in our candidate set of common gestures derived from Study 1.  From 
the training set the HMM module produces a model for each gesture.  In prediction 
mode, the HMM was given as input the Gesture Sequence derived for each gesture 
performed by the user.  The HMM then identifies and outputs the gesture that has the 
best match based on the trained gesture sequences. 

5   Study Two: User and System Evaluation 

Study 2 applied our 3D gesture recognition system to the archetypal gestures derived 
from Study 1. We aimed to evaluate simultaneously both the participants’ 
performance and experiences in recalling and performing the gestures and the 
performance of the system in recognizing the participants’ gestures. Furthermore, as 
we report in section 6, we examined the balance between, on one hand, requiring a 
recognition system effectively to handle the inevitably diverse range of interpretations 
by users of even a constrained set of gestures and, on the other hand, requiring users 
to adapt their performance to conform to the equally inevitable constraints of a given 
recognition system implementation. Historically, some proponents of an ‘engineering-
oriented’ approach have taken the line of ‘optimizing’ a system’s performance at the 
cost of considerable constraints on allowable user behaviors, while most proponents 
of a ‘human-oriented’ approach have argued that the human users should be given 
more freedom to behave and express themselves as they want, with the system having 
to cope as best it can.  The optimal approach to combining limited machines with 
diverse humans is probably somewhere between these two extremes. 

5.1   Method 

Study 2 builds upon Study 1 and uses the gesture recognition system described in 
Section 4 in order to test the accuracy of the system to recognize the gestures as well 
as the ability of the users to remember and perform the correct gestures.  Participants 
were trained on a subset of gestures derived from Study 1 (Table 5) and then asked to 
perform given tasks using only these gestures.  As in Study 1 participants were not 
given any physical devices on which to make a gesture and the study took place in a 
lab where no devices were present apart from the laptop and stereo camera 
comprising the gesture recognition system. 

18 participants took part in the study, aged from 20 to 44 with a mean age of 30.  
14 of the participants were male and 4 were female.  All participants were recruited 
from around the University of Bath. 

Participants were run individually.  In the first part of Study 2, participants were 
trained on the set of gestures derived from Study 1 (Table 5). We deliberately removed 
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some gestures from this set so that they could be used in an interference task between 
training the participants and asking them to complete the tasks. 

In the training phase, the participant was asked to perform a specific gesture in 
front of the gesture recognition system. The participant was shown the gesture by the 
experimenter and asked to perform each gesture 10 times. Each repetition was 
recorded by the system and the experimenter made sure that the participant performed 
the gesture correctly by ensuring the movements made by participants were the same 
as those demonstrated. In line with our view that human-computer interaction is a 2-
way street, it is worth noting that this process trained both the user and the recognition 
system on the gestures as performed by that particular user. 

Following training, the participant performed an interference task in which the 
experimenter read aloud a task from those previously used in Study 1 (and not 
otherwise used in study 2), and asked the participant to generate a gesture or gestures 
they thought corresponded to that task.  Participants were encouraged to be as creative 
as possible in generating these new gestures and they were not constrained to the 
gestures they had just been shown.  Each participant generated gestures for 15 new 
tasks, taking a minimum of 5 minutes to complete. 

Next, the experimenter again read aloud a task, but this time the participant was 
asked to perform the task using only gestures she had learned in the training phase of 
Study 2.  This was repeated for all the tasks in the training set.  The gestures made by 
the participants were video recorded.  The experimenter noted correct gestures made 
(i.e. that the gestures were recognizable – by the experimenter! – and of the correct 
type), corrected any mistakes of gesture type (e.g. making a Select gesture rather than 
an Open gesture) and prompted participants if they could not remember the gesture. 

Finally, the participants completed a questionnaire on their experience of the 
gestures and tasks.  In addition, they were asked for their perceptions of how ‘natural’ 
they perceived the gestures to be for accomplishing the given tasks. 

Table 5. Subset of gestures generated in Study One and carried forward into Study Two 

Gesture Description 
Select point 
Open movement outwards like a book 
Close movement inwards like a book 
Pick Up grasp and pick up 
Drop open hands and a movement down 
Zoom In movement forwards towards a point 
Zoom Out movement from the user outwards 
Move Forward left to right movement 
Move Back right to left movement 
Search circle 
Show Me shrug/hands open gesture 
Delete draw an x shape 

5.2   Results 

In keeping with our focus on both sides of the human-computer interaction, we 
analyzed and compared both the users’ performance and the 3D gesture recognition 
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system’s performance.  We first present results on the system recognition rates and 
then on the success of the participants in recalling and performing the correct gesture 
when completing the tasks.  Furthermore, we report participants’ qualitative 
preferences in terms of how well they felt the gesture matched the task in each case. 
In section 6 we compare system and user performance. 
 

System Recognition Rates. In order to evaluate the performance of our 3D gesture 
recognition system we followed a leave-one-out testing strategy to derive an overall 
accuracy rate as well as a break down of the gestures that were misidentified by the 
system.  Leave-one-out testing involved training the HMM model on all the training 
data of all but one participant.  The omitted participant’s data was then input into the 
system and the output was the identification of the gesture by the HMM based system, 
from which we were able to evaluate the accuracy of the gesture recognition system. 

 

Fig. 3. Confusion Matrix – 61% accuracy: each gesture is shown relative to the gestures with 
which the system confused it 

Using our initial implementation of the system we achieved an average recognition 
rate of 61%.  Figure 3 shows a confusion matrix for the results of our initial leave-
one-out testing.  From this matrix we can see that there are a number of cases where 
the gesture recognition system misidentified a gesture frequently by confusing it with 
another similar gesture.  By examining the clusters of misidentifications, i.e. where 
the number of errors is above 30, we can identify some common misidentifications: 

 

1. Zoom In with Close 
2. Zoom Out with Close 
3. Show Me with Move Back, Move Forward and Open 
4. Close with Show Me and Move Back 
5. Close with Open 
6. Pickup with Drop 
7. Pick Up with Select 
8. Search in general 

 

To improve the accuracy of the system’s gesture identification we applied 
heuristics to confusions 1-4 in the above list. These heuristics worked because at least 
one of the gestures being confused was a two-handed gesture. Our first heuristic 
attempts to correct the confusion between the Zoom In and Zoom Out gestures and 
the Close gesture.  From the confusion matrix we can see that the confusion comes 
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from the misidentification of Zoom In Right Hand with Close Right Hand (101 errors) 
and Zoom In Left Hand with Close Left Hand (48 errors). However, the reverse is not 
true, with Close Right Hand and Left Hand not being confused with Zoom In.  This is 
a similar pattern for Zoom Out Right and Left Hand and Close Right and Left Hand.  
To correct this, we made the Zoom gesture dominant, e.g. if a Zoom In gesture is 
reported for one of the hands and a Close for the other then the gesture for both hands 
is assumed to be a Zoom In. 

Using the same method as above, our second heuristic made the Show Me gesture 
dominant over the Move Back, Move Forward and Open gestures. Therefore, if a 
Show Me was reported for one hand then it was assumed that a Show Me gesture had 
been performed if the other hand reported either a Show Me, Move Back, Move 
Forward or Open gesture. Similarly, our third heuristic made the Close gesture 
dominant over the Show Me and Move Back gestures. 

Finding heuristics or improvements in recognition for confusions 5-8 in the above 
list proved difficult as we could not apply any dominance rules since these gestures 
are all one handed gestures.  The misidentifications in 5 came from each hand being 
misidentified with its opposite, which we found difficult to correct, e.g. Close Left 
Hand with Open Right Hand and Close Right Hand with Open Left Hand. 

Finally, the Search gesture caused a lot of confusion with all of the gestures. The 
reason for this is that the Search gesture is a circle. The circle made by the participant, 
depending on the speed, can mean that the captured Gesture Sequence includes more 
codes on a particular edge of the circle than on another. For example starting out with 
the hand at 12 o’clock, rapidly moving it in a circle to 6 o’clock and then slowing 
down from 6 back to 12 o’clock would produce a Gesture Sequence with more codes 
that relate to the Gesture Sequence of Zoom Out Left Hand. 

Figure 4 shows the results of applying the heuristics in the 3D gesture recognition 
system. Again we use a confusion matrix to illustrate where misidentification of 
gestures occurs. The misidentification of gestures is greatly reduced, with the overall 
accuracy rate increasing from 61% to 84%. As noted in Section 4, we based our 
system on [9] which had an overall accuracy rate of between 94.29% and 98.6% over 
a very small set of highly distinct 2D gestures.  Our system compares favorably as our 
84% accuracy rate was over a larger number and diversity of both one and two 
handed gestures and in 3D. 

 

Fig. 4. Confusion Matrix – 84% accuracy: each gesture is shown relative to the gestures with 
which the system confused it 
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Participant Data. This section presents an analysis of the participants’ ability to 
recall and perform the gestures correctly for the given tasks.  In addition, we describe 
the participants’ ranking of how well they thought the gestures matched the actions.  
Table 6 gives the overall accuracy rate across all participants.  It is important to note 
again that here we are considering correctness of a gesture in terms of whether or not 
the gesture was of the right type, i.e. a Select gesture when the Select task was 
intended, rather than whether or not the gesture was recognizable by the 3D gesture 
recognition system.  A gesture made by a participant to perform a particular task 
could have been of the right or wrong type in these terms.  Orthogonally, it might or 
might not be recognizable as a particular gesture by the recognition system.  Thus, the 
user could intend to perform the gesture for Task A, actually perform the gesture for 
Task B (poor user performance), and have it recognized by the system as the gesture 
for Task C or not recognized at all (poor system performance).  Thus, accuracy in 
Table 6 is based on the participants’ ability to recall the correct gesture and the 
experimenter’s observation and assessment of the users’ performance of the gesture.  
Table 6 is ordered by incorrectly performed gestures based on the percentage of 
gestures that participants got wrong. 

Category C gestures are clearly mis-performed the largest percentage of times.  
However, there is a less clear distinction between the mis-performance of Category A 
and B gestures.  The main reason for mis-performing a gesture was the user forgetting 
the gesture for a given task.  This is the main reason for Category C gestures and is 
not unexpected as these gestures are more abstract than those in Categories A and B.  
Category B gestures were often mis-performed because participants used the incorrect 
direction.  Again this is not surprising as the cause of variance in Category B was 
primarily due to the direction in which the gesture was performed. 

Surprisingly, since it was a Category A gesture, the Close gesture was often mis-
performed. This was often due to the correct gesture being forgotten but in several 
instances the Delete gesture was performed instead. The Delete gesture was to draw 
an ‘x’ shape. A similar shape is extremely commonly used to close a window in 
traditional desktop user interfaces and it is likely that users’ previous experience with 
this convention overrode their relatively newly acquired gestural metaphor of closing 
a book. This explanation is corroborated by users’ perceptions of how well the 
gestures matched their associated tasks. 

Figure 5 shows a ranking of how participants perceived that a gesture matched its 
corresponding task, ordered by how well the participants rated each gesture.  So, for 
example, 10 participants gave the Select gesture the maximum score of 20, with a 
cumulative score of 335 for Select.  With the exception of Close, participants felt that 
Category A gestures matched their tasks well. This is as expected since Study 1 found 
little variance in the user-generated gestures for these tasks.  The results of Studies 1 
and 2 combined give us some confidence that these are indeed good archetypal 
gestures for these tasks. There was more variance in the Category B gestures and, 
again as expected, less agreement on how well these gestures matched their tasks in 
Study 2.  Finally, Category C gestures had the most variance when generated by users 
in Study 1 and we saw no real consensus amongst the participants in Study 2 that the 
chosen gestures matched their tasks well.  The notable exception here was Delete. 
Thus, as with performance accuracy, the Close and Delete gestures were the only 
exceptions to the predicted ranking.  The Category A Close gesture was ranked very 
low while the Category C Delete gesture was ranked high. 
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Table 6. Accuracy rate of participants when performing a gesture 

Gesture Category % Performed
Incorrectly 

Reason 

Show Me C 36.11% Forgot (33.33%),  
Used select (2.78%) 

Search C 19.44% Forgot (16.67%),  
Used move back (2.28%) 

Close A 13.89% Forgot (11.11%),  
Used delete (2.78%) 

Move Forward B 11.11% Used wrong hand (5.55%),  
Used two hands (2.78%),  
Used move back (2.78%) 

Delete C 7.41% Did zoom in (1.85%),  
Forgot (5.56%) 

Pick Up A 5.56% Used drop (2.78%),  
Performed incorrectly (2.78%) 

Zoom In B 3.70% Used zoom out (3.70%) 
Open A 2.78% Used Select (1.39%),  

Included a close gesture (1.38%) 
Select A 2.78% Dragged over text (0.93%),  

Forgot (0.93%),  
Used zoom in (0.92%) 

Move Back B 2.78% Forgot (2.78%) 
Drop A 0.00%  
Zoom Out B 0.00%  

 

 

Fig. 5. User ranking of how well the gesture matched the action with 20 being very strong and 
1 being very weak 

6   The Trade Off between System and User 

In the previous section we described the results from our second study in terms of 
both user performance and preferences and system performance.  Table 7 presents a 
comparison between the user ranking of gestures from Study 2 and a ranking of the 
recognition errors made by the 3D gesture recognition system.  A user ranking of 1 
represents the best perceived match to the corresponding task and a system error 
ranking of 1 represents the fewest errors in system recognition of the gesture. 
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Taken individually, these results could provide design recommendations for the 
form of the gestures, where the recognition algorithm needs improvement, and even 
whether gestures should be adopted or rejected.  However, the comparison illustrated 
in Table 7 demonstrates some of the potential conflicts in design recommendations 
based solely on examining either the user or system performance.  For example, the 
system recognition results would suggest that despite a high user preference the 
gesture for Pick Up should be changed because of its low system recognition rate.  
Conversely, the user preference results would suggest that Show Me should be 
changed based on user ratings that indicate the gesture was not perceived as a good 
match to the action being performed. 

Table 7. Comparison of the user ranking of gestures and the misidentification error rate of the 
system (1 being the highest user ranking and producing the fewest system errors and 12 being 
the lowest user ranking and producing the most system errors) 

User Ranking Gesture Gesture System Error Ranking 
1 Select Move Forward 1 
2 Pick Up Show Me 2 
3 Open Drop 3 
4 Delete Select 4 
5 Drop Delete 5 
6 Move Forward Move Back 6 
7 Move Back Zoom Out 7 
8 Zoom In Open 8 
9 Zoom Out Zoom In 9 

10 Close Close 10 
11 Search Pick Up 11 
12 Show Me Search 12 

Table 8. Generalized design recommendations derived from the direct comparison of user and 
system performance 

System Performance 
vs 

User Performance 

 
High 

 
Medium 

 
Low 

 
High 

Keep gesture and 
system in current form 

Improve the system and keep 
gesture the same 

Improve the system and 
keep gesture the same 

 
 
 

Medium 

Require the user to 
learn the gesture and 
keep the system the 
same 

Work could be done on either  
- improving the system 
performance  
- tweaking the gesture to allow 
for better recognition (e.g. 
orientation of hands) 

Work on improving the 
system, however, if this 
is not practical or the 
cost:benefit ratio of 
doing so is high then the 
gesture could be altered 

 
 

Low 

Require the user to 
learn the gesture and 
keep the system the 
same 

Consider changing the gesture 
unless there is an easy way of 
improving the system to 
recognize the gesture 

Change the gesture 
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By examining the system and user results together we can begin to explore the 
potential trade off between the need for gestures that are effective for humans and that 
are distinct enough to be recognized effectively by a given gesture recognition 
system.  Based on this exploration we can propose a set of design recommendations 
that take into account this trade off (summarized in Table 8).  These recommendations 
highlight where there is a need to improve the recognition system implementation, 
alter the characteristics of the gesture (e.g. specifying a particular orientation of the 
hands) or change the gesture entirely. 

In Table 9 we map the results of our study to the general recommendations of 
Table 8.  We then provide an enumerated list of the resulting design recommendations 
for our 3D gesture recognition system.  Recommendations 3, 4, 5 and 6 illustrate the 
value of considering the trade-off between what works for the user and what works 
for the system.  In each of these cases, simply considering either the users’ experience 
or the system performance alone could have led to very different conclusions. 

Table 9. Gestures from our study mapped to the generalized design recommendation table 

System Performance  
(recognition rate for individual 
gestures from Study 2) vs 
User Performance  
(user rating of gesture in Study 2) 

High 
(recognition 
accuracy  
between  91-100%) 

Medium 
(recognition  accuracy 
between  81-90%) 

Low 
(recognition  accuracy 
between  71-80%) 

High 
(majority of ratings > 15) 

Drop Select 
Open 
Delete 

Pick Up 

Medium 
(ratings spread out but most > 15) 

Move Forward Move Back 
Zoom Out 

Zoom In 

Low 
(ratings spread out but most < 15) 

Show Me  Close 
Search 

 
1. Drop: this gesture should be retained in its current form as both the user and 

system performance are high. 
2. Select, Open and Delete: these gestures are regarded by users as an excellent 

match to their corresponding tasks.  However, the medium system recognition 
rates indicate that work needs to be undertaken to improve the system. 

3. Pick Up: similarly, Pick Up should be retained due to its high user rating and 
work should be undertaken on improving the system. 

4. Move Forward and Show Me: participants gave these gestures a medium 
and low rating respectively, indicating that these gestures were only a 
reasonable or low match to the task being performed.  However, both these 
gestures have high system recognition rates.  Therefore, it is recommended 
that these gestures should be retained and the user should be encouraged to 
learn the gestures.  In the case of Show Me, this is further corroborated by 
Study 1 where, setting aside the simple Point gesture as discussed above, the 
Show Me gesture chosen was easily the most popular gesture generated for 
this task.  Show Me is sufficiently abstract a task that it is unsurprising that 
Study 2 participants did not rank it highly.  It seems likely, again corroborated 
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by the findings of Study 1, that they would have had similar or greater 
concerns with any other gesture chosen to perform this task. 

5. Move Back and Zoom Out: the generalized design recommendations suggest 
that either the gesture or the system could be altered.  However, based on the 
mirrors of these gestures (Move Forward and Zoom In) being retained in their 
current form, it would seem sensible to recommend that the Move Back and 
Zoom Out gestures should be retained in their current form and improvements 
made to the gesture recognition system. 

6. Zoom In: although the system recognition rate for Zoom In was low, 
participants reported that the gesture was a reasonable match to the action 
being performed.  Therefore, it is recommended that improvements are made 
to the system rather than altering the gesture. 

7. Close and Search: these gestures should be rejected as participants did not 
regard them as matching their tasks well and the system recognition rate was 
poor. 

7   Conclusions and Future Work 

In this paper we have reported a series of empirical studies and system development 
undertaken to investigate the use of gestures as an interaction technique in pervasive 
computing environments.  In phase 1, participants were asked to generate gestures 
that we categorized based on the degree of consensus and the number of different 
gestures generated by participants.  Additionally, we discovered that many of the 
gestures generated by participants were performed in 3D. 

Therefore, in phase 2, we implemented a computer vision based 3D gesture 
recognition system and applied it in a further study in which participants were trained 
on the archetypal gestures derived from phase 1.  Participants were asked to perform 
tasks using these gestures.  From this study we were able to collect data on both user 
performance and preferences and system performance. 

Finally, we explored the trade off between the requirement for gestures to support 
high system performance versus the requirement for gestures to support high human 
performance and preference, deriving design recommendations. 

Deriving user-generated gestures, as we did in phase 1, enabled us to define an 
archetypal gesture set for specific types of interactions in pervasive computing 
environments.  The advantage to this approach is that we are able to define gestural 
interactions that are considered natural and intuitive, based on user expectations and 
preferences and the degree of consensus amongst participants. 

However, considering only the user requirements for gestures when implementing 
a gesture recognition system for use in pervasive computing environments excludes 
from the equation the needs of the system.  Therefore, we proposed a method by 
which we could compare both user performance and preference and system 
performance.  The resulting general design recommendations indicate where the 
archetypal gestures can remain unchanged, where adjustments need to be made to  
the gesture performance by the user, where development effort is needed to improve  
a recognition implementation and where a potential gesture could be rejected.  
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We illustrated the application of these general recommendations to our particular 
gesture set and system implementation. 

As part of our future work we wish to define a framework that designers can 
employ to add new gestural interactions to our archetypal gesture set for new tasks.  
This framework should not only take into account how to generate gestures for 
particular tasks but also the practicalities of gesture recognition and interaction.  For 
example, the technology used to recognize gestures (e.g. computer vision with 2D or 
3D cameras, accelerometers etc) and the context of the interaction. 

Furthermore, we plan to identify further gestures using this framework and 
evaluate them with a range of gesture recognition systems for pervasive computing 
environments.  The aim is to compare these different systems, exploring the trade off 
between user and system performance.  From these studies, we aim to provide 
insights into the types of gestural interactions that work well – and poorly – for 
different recognition technologies in different contexts. 
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Abstract. Hearing instruments (HIs) have emerged as true pervasive
computers as they continuously adapt the hearing program to the user’s
context. However, current HIs are not able to distinguish different hear-
ing needs in the same acoustic environment. In this work, we explore
how information derived from body and eye movements can be used
to improve the recognition of such hearing needs. We conduct an ex-
periment to provoke an acoustic environment in which different hearing
needs arise: active conversation and working while colleagues are having
a conversation in a noisy office environment. We record body movements
on nine body locations, eye movements using electrooculography (EOG),
and sound using commercial HIs for eleven participants. Using a support
vector machine (SVM) classifier and person-independent training we im-
prove the accuracy of 77% based on sound to an accuracy of 92% using
body movements. With a view to a future implementation into a HI we
then perform a detailed analysis of the sensors attached to the head. We
achieve the best accuracy of 86% using eye movements compared to 84%
for head movements. Our work demonstrates the potential of additional
sensor modalities for future HIs and motivates to investigate the wider
applicability of this approach on further hearing situations and needs.

Keywords: Hearing Instrument, Assistive Technology, Activity
Recognition, Electrooculography (EOG).

1 Introduction

Hearing impairment increasingly affects populations worldwide. Today, about
10% of the population in developed countries suffer from hearing problems; in the
U.S. even 20% adolescents suffers from hearing loss [22]. Over the last generation,
the hearing impaired population grew at a rate of 160% of U.S. population
growth [13]. About 25% of these hearing impaired use a hearing instrument (HI)
to support them in managing their daily lives [13].
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Over the last decade considerable advances have been achieved in HI technol-
ogy. HIs are highly specialised pervasive systems that feature extensive process-
ing capabilities, low power consumption, low internal noise, programmability,
directional microphones, and digital signal processors [10]. The latest of these
systems –such as the Exelia Art by Phonak– automatically select from among
four hearing programs. These programs allow the HI to automatically adjust the
sound processing to the users’ acoustic environment and their current hearing
needs. Examples of hearing need support include noise suppression and direc-
tionality for conversations in noisy environments.

Satisfying the users’ hearing needs in as many different situations as possible
is critical. Already a small number of unsupported listening situations causes a
significant drop in overall user satisfaction [14]. Despite technological advances
current HIs are limited with respect to the type and number of hearing needs
they can detect. Accordingly, only 55% of the hearing impaired report of being
satisfied with the overall HI performance in common day-to-day listening situa-
tions [14]. This is caused, in part, by the fact that adaption is exclusively based
on sound. Sound alone does not allow to distinguish different hearing needs if
the corresponding acoustic environments are similar. We call this limitation the
acoustic ambiguity problem.

1.1 Paper Scope and Contributions

In this work we investigate the feasibility of using additional modalities, more
specifically body and eye movements, to infer the hearing needs of a person. As
a first step toward resolving the acoustic ambiguity problem we focus on one
particular listening situation: the distinction between concentrated work while
nearby persons have a conversation from active involvement of the user in a
conversation. The specific contributions are: 1) the introduction of context-aware
HIs that use a multi-modal sensing approach to distinguish between acoustically
ambiguous hearing needs; 2) a methodology to infer the hearing need of a person
using information derived from body and eye movements; 3) an experiment to
systematically investigate the problem of acoustically ambiguous hearing needs
in an office environment, and 4) the evaluation of this methodology for automatic
hearing program selection.

1.2 Paper Organisation

We first provide an overview of the state-of-the-art in HI technology, introduce
the mechanisms that allow HIs to adapt to the user’s hearing needs, and discuss
the limitations of current systems. We then survey related work and detail our
methodology to infer the user’s hearing need from body and eye movements. We
describe the experiment, discuss its results, and provide a brief outlook on the
technical feasibility of integrating body and eye movements into HIs.
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Fig. 1. Components of a modern behind-the-ear (BTE) HI [19]

2 Hearing Instrument Technology

Figure 1 shows the components of a modern behind-the-ear (BTE) HI. HIs are
also available in smaller form factors. E.g., Completely-in-the-Canal (CIC) de-
vices can be placed completely inside the user’s ear canal. Current systems in-
clude a DSP, multiple microphones to enable directivity, a loudspeaker, a telecoil
to access an audio induction loop, and a high-capacity battery taking up about
a quarter of the HI housing. HIs may also integrate a variety of other accessories
such as remote controls, Bluetooth, or FM devices as well as the user’s smart
phone to form wireless networks, so-called hearing instrument body area net-
works (HIBANs) [3]. These networking functionalities are part of a rising trend
in higher-end HIs. This motivates and supports our investigation of additional
sensor modalities for HIs that may eventually be included within the HI itself,
or within the wireless network controlled by the HI.

A high-end HI comprises two main processing blocks as shown in Figure 2.
The audio processing stages represent the commonly known part of a HI. It per-
forms the traditional audio processing function of the HI and encompasses audio
pickup, processing, amplification and playback. The second processing block is
the classifier system. It estimates the user’s hearing need based on the acous-
tic environment of the given situation, and adjusts the parameters of the audio
processing stages accordingly [12]. The classification is based on spectral and
temporal features extracted from the audio signal [4]. The classifier system se-
lects the parameters of the audio processing stages from among a discrete set
of parameters known as hearing programs. The hearing programs are optimised
for different listening situations. Most current high-end HIs distinct four hear-
ing programs: natural, comprehensive hearing (Speech), speech intelligibility in
noisy environments (Speech in Noise), comfort in noisy environments (Noise),
and listening pleasure for a source with high dynamics (Music). The hearing pro-
grams represent trade-offs, e.g. speech intelligibility versus naturalness of sound,
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Fig. 2. Bottom: audio processing stages of the HI, from microphone pick-up to am-
plified and processed sound playback. Top right: classification of the acoustic environ-
ment based on sound to adjust the parameters of the audio processing stages. Top left:
the extension proposed in this paper. Body and eye movement data are included in
the classification system to select the appropriate hearing program. (Figure extended
from [10]).

or omnidirectional listening versus directivity. The automatic program selection
allows the hearing impaired to use the device with no or only a few manual in-
teractions such as program change and volume adjustment. Adaptive HIs avoid
drawing attention to the user’s hearing deficits. Users consider automatic adap-
tion mechanisms as useful [4]. Further technical details on HI technology can be
found in [10, 21].

2.1 The Acoustic Ambiguity Problem

HIs select the most suitable hearing program according to the user’s acoustic
environment. The current acoustic environment is used as a proxy for the user’s
actual hearing need. This approach works well as long as the acoustic envi-
ronment and hearing need are directly related. This assumption does not hold
in all cases and leads to a limitation we call the acoustic ambiguity problem:
Specifically, in the same acoustic environment a user can have different hearing
needs that require different hearing programs. A sound-based adaption mecha-
nism cannot distinguish between these different hearing needs. Therefore, it is
important to not only analyze the acoustic environment but to also assess the
relevance of auditory objects [23]. The challenge here is not the effectiveness of
the dedicated hearing programs but rather automatically adapting the hearing
program to the specific hearing need, rather than to the acoustic environment.
The following story illustrates the acoustic ambiguity problem:

Alice suffers from hearing impairment and works in an open office space.
Alice is focused on her assigned task when Bob enters the office space to talk to a
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colleague sitting next to Alice. Alice’s HI senses speech in noise and optimizes for
speech intelligibility. She now has a hard time focussing on her work, as the HI
adapts to the distracting conversation that occurs around her. Then Bob starts
talking to Alice. She now needs the HI to support her interaction with colleagues
in the noisy environment. Alice doesn’t like to select hearing programs manually
and desires a robust automatic adaption to her current hearing need.

In the first case, the HI user takes part in a conversation, in the second case,
the user could be concentrated on her work and and experiences the conversation
as noise. The key challenge in this example is to assess the relevance of speech
in the acoustic environment to the HI user. The HI needs to choose between
a hearing program that optimizes speech intelligibility and a hearing program
treating the speech as noise for user comfort. In both situations, the HI detects
the same acoustic environment and thus cannot select a suitable hearing program
in both of the cases. A possible strategy is a static “best guess”choice based on
a predefined heuristic rule. It could favor speech intelligibility over comfort in
noise as social interaction is generally considered important.

Other typical situations in which state of the art classification systems fail
include listening to music from the car radio while driving or conversing in a
cafe with background music [10].

2.2 Vision of a Future HI

We envision the use of additional modalities to distinguish between ambiguous
hearing need requirements in the same acoustic environment. These modalities
will be included within the HI itself, or within a wireless network controlled by
the HI. Wireless networking functionalities are now starting to appear in higher-
end HIs. These new sensors need not be specifically deployed for HIs: they may
be shared with other assistive technologies, such as systems designed to detect
falls or to monitor physiological parameters. Thus, we see the HI as one element
included in a broader set of ambient assisted living technologies. Wearable and
textile integrated sensors have become available and sensor data from a mobile
phone that may be carried by an individual can be used. We believe the next
step in HI technology is to utilize this infrastructure to improve HI performance.

3 Related Work

Various sensor modalities have been proposed to detect social interaction, con-
versation, or focus of attention from wearable sensors. In [8] body-worn IR trans-
mitters were used to measure face-to-face interactions between people with the
goal to model human networks. All partners involved in the interaction needed
to wear a dedicated device.

In [11] an attentive hearing aid based on an eye-tracking device and infrared
tags was proposed. Wearers should be enabled to “switch on” selected sound
sources such as a person, television or radio by looking at them. The sound
source needed to be attached with a device that catched the attention of the



Recognition of Hearing Needs from Body and Eye Movements 319

hearing aid’s wearer so that only the communication coming from the sound
source was heard.

In [7] different office activities were recognised from eye movements recorded
using Electrooculography with an average precision of 76.1% and recall of 70.5%:
copying a text between two screens, reading a printed paper, taking hand-written
notes, watching a video, and browsing the web. For recognising reading activity
in different mobile daily life settings the methodology was extended to combine
information derived from head and eye movements [6].

In [18] a vision-based head gesture recognizer was presented. Their work was
motivated by the finding that head pose and gesture offer key conversational
grounding cues and are used extensively in face-to-face interaction among peo-
ple. Their goal was to equip an embodied conversational agent with the ability
to perform visual feedback recognition in the same way humans do. In [9] the
kinematic properties of listeners’ head movements were investigated. They found
a relation of timing, tempo and synchrony movements of responses to conversa-
tional functions.

Several researchers investigated the problem of detecting head movements
using body-worn and ambient sensors. In [1] an accelerometer was placed inside
HI-shaped housing and worn behind the ear to perform gait analysis. However,
the system was not utilised to improve HI behavior.

Capturing the user’s auditory selective attention helps to recognise a person’s
current hearing need. Research in the field of electrophysiology focuses on mech-
anisms of auditory selective attention inside the brain [24]. Under investigation
are event-related brain potentials using electroencephalography (EEG). In [17]
the influence of auditory selection on the heart rate was investigated. However,
the proposed methods are not robust enough yet to distinguish between hearing
needs and are not ready yet for deployment in mobile settings.

All these approaches did not consider sensor modalities which may be in-
cluded in HIs, or assumed the instrumentation of all participants in the social
interactions. In [26], analysis of eye movements was found to be promising to
distinguish between working and interaction. Head movements were found to be
promising to detect whether a person is walking alone or walking while having
a conversation. However, the benefit of combining modalities was not investi-
gated. Moreover, the actual improvement in hearing program selection based on
the context recognition was not shown.

4 Experiment

4.1 Procedure

The experiment in this work was designed to systematically investigate acous-
tically ambiguous hearing needs in a reproducible and controllable way, still
remaining as naturalistic as possible. We collected data from 11 participants
(six male, five female) aged between 24 and 59 years, recruited from within the
lab. The participants were normal hearing and right handed without any known
attributes that could impact the results.
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Table 1. Experimental procedure to cover different listening situations and hearing
needs. The procedure was repeated eight times with the different office activities men-
tioned above and with the participants being seated and standing.

Time Slot [min] Situation Hearing Need

1 Participant and colleague are working work
2 Disturber and colleague converse work
3 Disturber and participant converse conversation
4 Disturber and colleague converse work
5 Colleague and participant converse conversation

The experiment took place in a real but quiet office room. The participant and
an office colleague worked in this office. A third person, the disturber, entered
the office from time to time to involve them in a conversation. The participants
were given tasks of three typical office activities: Reading a book, writing on a
sheet of paper, typing text on a computer. The participants had no active part
in controlling the course of events. They were instructed to focus on carrying
out their given tasks and to react naturally. This assures that the resulting body
and eye movements are representative for these activities.

The experiment was split in one minute time slots each representing a different
situation and hearing need (see Table 1). In the first minute, the participant
worked concentrated on his task. In the second minute, the participant tried
to stay concentrated while the office colleague was talking to the disturber. In
the third minute, the participant was interrupted and engaged in a conversation
with the disturber. In the fourth minute, the disturber talked to the colleague
again. In the fifth minute, the participant and the colleague had a conversation.

This procedure was repeated eight times with the office activities mentioned
above and with the participants being seated and standing. The total experiment
time for each participant was about 1 hour. We then assigned each of these
activities to one of the following two hearing needs.

Conversation includes situations in which the participant is having a conver-
sation. The HI is supposed to optimize for speech intelligibility, i.e. the hearing
program should be “Speech in Noise” throughout. Figure 3 shows all four com-
binations of sitting and standing while talking to the conversation partners.

Work includes situations in which the participant is carrying out a work task.
This case covers situations in which no conversation is taking place around him
and situations in which two colleagues are having a conversation the participant
is not interested in. The HI is supposed to be in a noise suppression program
called “Noise”. Figure 4 shows the participant work sitting and standing. Figure 5
shows the participant work in speech noise for the sitting case only.

4.2 Performance Evaluation

We investigate how accurate we can distinguish the two classes conversation and
work. The hearing programs we declared as optimal for each of the situations
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Fig. 3. Situations with the hearing need Conversation, including all four combinations
of sitting and standing conversation partners. The HI is supposed to be in a program
optimizing for speech intelligibility (Speech In Noise).

Fig. 4. Situations with the hearing need Noise for the case Work. Working tasks include
reading a book, writing on a sheet of paper, and typing a text on the computer. The
participant works sitting and standing.

Fig. 5. Situations with the hearing need Noise for the case Work in Speech Noise.
The participant tries to focus on his working task while two colleagues are having a
conversation. Only the sitting case is shown here.
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served as ground truth: Speech In Noise for conversation and Noise for work. It
is important to note that the Noise program is not optimized for supporting the
user with concentrated work, but is the best choice among the available hearing
programs in our conversation cases. Robust detection of working situations would
enable to augment existing HIs with a dedicated program and sound signal
processing strategies. For evaluation we compare for each signal window whether
the classification result corresponds to the ground truth. We count how often
classification and ground truth match in this two-class problem to obtain an
accuracy value. In addition, we obtained as a baseline the classification result
based on sound. To this end, we analysed the debug output of an engineering
sample of a HI1.

4.3 Data Collection

For recording body movements we used an extended version of the Motion
Jacket [25]. The system features nine MTx sensor nodes from Xsens Technolo-
gies each comprising a 3-axis accelerometer, a 3-axis magnetic field sensor, and
a 3-axis gyroscope. The sensors were attached to the head, the left and right up-
per and lower arms, the back of both hands, and the left leg. The sensors were
connected to two XBus Masters placed in a pocket at the participants’ lower
back. The sampling rate is 32 Hz.

For recording eye movements we chose Electrooculography (EOG) as an in-
expensive method for mobile eye movement recordings; it is computationally
light-weight and can be implemented using on-body sensors [5]. We used the
Mobi system from Twente Medical Systems International (TMSI). The device
records a four-channel EOG with a joint sampling rate of 128 Hz. The partici-
pant wore it on a belt around the waist as shown in Figure 6. The EOG data
was collected using an array of five electrodes positioned around the right eye
as shown in Figure 6. The electrodes used were the 24mm Ag/AgCl wet ARBO
type from Tyco Healthcare equipped with an adhesive brim to stick them to the
skin. The horizontal signal was collected using two electrodes on the edges of
both eye sockets. The vertical signal was collected using one electrode above the
eyebrow and another on the lower edge of the eye socket. The fifth electrode, the
signal reference, was placed away from the other electrodes in the middle of the
forehead. Eye movement data was saved together with body movement data on
a netbook in the backpack worn by the participant.

We used two Exelia Art 2009 HIs from Phonak worn behind the left and the
right ear. For the experiment we modified the HIs to use them for recording only
the raw audio data rather than logging the classification output in real-time.
With the raw audio data the HI behavior in the conducted experiment can be
reconstructed offline. Using the same noise for overlay gives equal conditions
for each participant to rule out different background noise as an effect on the
resulting performance. Moreover, it is possible to simulate for different acoustic
environments, e.g. by overlaying office noise. Another advantage of recording

1 This work was carried out in collaboration with a hearing instrument company.
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Fig. 6. Sensor setup consisting of HIs (1), a throat microphone (2), an audio
recorder (3), five EOG electrodes (h: horizontal, v: vertical, r: reference), as well as
the Xsens motion sensors placed on the head (4a), the upper (4b) and lower (4c) arms,
the back of both hands (4d), the left leg (4e), two XBus Masters (4d), and the backpack
for the netbook (5)

raw audio data is the possibility to simulate the behavior with future generation
of HIs. We used a portable audio recorder from SoundDevices to capture audio
data with 24 bit at 48 kHz. Although not used in this work, participants also
wore a throat microphone recording a fifth audio channel with 8 bit at 8 kHz.
Based on both sound recordings we investigate detection of active conversation
based on own-speech detection in future research.

Data recording and synchronisation was handled using the Context Recogni-
tion Network (CRN) Toolbox [2]. We also videotaped the whole experiment to
label and verify the synchronicity of the data streams.

5 Methods

5.1 Analysis of Body Movements

We extract features on a sliding window on the raw data streams from the
3-axis accelerometers, gyroscopes and magnetometers. For the magnetometer
data we calculate mean, variance, mean crossing and zero crossing. For the gy-
roscope data we additionally extract the rate of peaks in the signal. For the ac-
celerometers data we calculate the magnitude based on all three axes. Based on a
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parameter sweep we selected a window size of 3 seconds and a step size of 0.5 sec-
ond for feature extraction.

5.2 Analysis of Eye Movements

EOG signals were first processed to remove baseline drift and noise that might
hamper eye movement analysis. Afterwards, three different eye movement types
were detected from the processed EOG signals: saccades, fixations, and blinks.
All parameters of the saccade, fixation, and blink detection algorithms were
fixed to values common to all participants. The eye movements returned by
the detection algorithms were the basis for extracting different eye movement
features using a sliding window. Based on a parameter sweep we set the window
size to 10 seconds and the step size to 1 second (a more detailed description is
outside the scope of this paper but can be found in [7]).

5.3 Feature Selection and Classification

The most relevant features extracted from body and eye movements were selected
with the maximum relevance and minimum redundancy (mRMR) method [20].
Classification was done using a linear support vector machine (see [15] for the
specific implementation we used). We set the penalty parameter to C = 1 and the
tolerance of termination criterion to ε = 0.1. Classification and feature selection
were evaluated using a leave-one-participant-out cross-validation scheme. The
resulting train and test sets were standardised to have zero mean and a standard
deviation of one. Feature selection was performed solely on the training set.

5.4 Analysis of Sound

We used the classification output of commercial HIs as a baseline performance
for sound based classification. We electrically fed the recorded audio stream
described in section 4.3 back into HIs and obtained the selected hearing programs
over time with a sampling rate of 10 Hz. To simulate a busy office situation
we overlaid the recorded raw audio data with typical office background noise.
In silent acoustic environments without noise, the hearing instrument remains
mainly in the Clean Speech program for both the working and the conversation
situation. We focus on the scenario with noise: The HI needs to decide wether
optimizing for speech is adequate or not.

5.5 Data Fusion

To combine the unimodal information from the different motion sensors we used
a fusion approach on feature-level. We built a feature vector comprising features
from each of the sensors. To combine the multimodal information from body
movement, eye movement, and sound we used majority voting as a standard
fusion method on classifier-level. When there was no majority to make a decision
we repeated the most recent decision. In this way, we suppress hearing program
changes based on low confidence.
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6 Results and Discussion

6.1 Analysis of the Different Modalities

We first evaluated the performance of the different modalities. Accuracies are
given for the two-class classification problem comprising active conversation and
working while colleagues are having a conversation. Figure 7 shows the accu-
racies for distinguishing the hearing needs using sound, body movements, eye
movements, and combinations of these modalities averaged over all participants.
The results for body movements are based on sensors attached to all nine body
locations whereas the results for sound-based adaption are based on the classi-
fication output of the HIs.

The limited recognition accuracy of 77% for adaption based on sound is a
consequence of the acoustic ambiguity problem that has been provoked in this
scenario. The sound based analysis does not distinguish between relevant and
irrelevant speech. The HI optimizes for speech in both of the cases described in
section 4.1: When the participant is having a conversation and also when the
colleagues are having a conversation.

As can be seen from Figure 7, recognition based on body movement data from
all available movement sensors (placed at head, back, arms, hands, leg) achieves
the best performance with an accuracy of 92%. Adaptation based on eye move-
ment performs slightly worse with 86% accuracy. Looking at combinations of
different modalities shows that the joint analysis of body and eye movements has
an accuracy of 91%, sound and body movement results in 90% accuracy, and
combination of sound and eye movements yields 85% accuracy. Complement-
ing body movements with eye movements or sound results in a lower standard
standard deviation, meaning more robustness across different users. First results
suggest the inclusion of movement sensors additionally to sound into the HI.

6.2 Analysis of Body Locations

Based on these findings we selected body movements for further analysis. We
investigated on which body locations the movement sensors provided the highest
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Fig. 7. Accuracies for distinguishing the hearing needs in our scenario based on sound,
eye movements, body movements (placed at head, back, arms, hands, leg), and all
possible combinations. Results are averaged over all participants with the standard
deviation indicated with black lines.
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Fig. 8. Accuracies of adaption based on individual sensors (Accelerometer, Magne-
tometer, Gyroscope) for each of the 9 locations on the body: head, back, left upper
arm (lua), left lower arm (lla), left hand (lha), right upper arm (rua), right lower arm
(rla), right hand (rha), and leg. Results are averaged over all participants with the
standard deviation indicated with black lines.

accuracies. Figure 8 provides the accuracies for adaption using individual sensors
(Accelerometer, Magnetometer, Gyroscope) as well as using sensor fusion on
feature level for each of the nine body locations averaged over all participants.

Figure 8 shows that from all individual body locations the sensor on the head
yields the highest performance with accuracies between 72% for the gyroscope
and 85% for the accelerometer. It is interesting to note that fusing the informa-
tion derived from all three sensors types at the head does not further improve
recognition performance (see first group of bars in Figure 8). For all other body
location, sensor fusion consistently yields the best recognition performance. Sin-
gle sensors placed on other body locations perform considerably worse with
accuracies ranging from 59% (magnetometer on the left upper arm, lua) to 73%
(accelerometer on the right hand, rha). These sensors may still prove beneficial
if combined with other sensors located at other parts of the body. The higher
utility of analyzing sensors on the right arm (rha, rla, rua) can be explained by
the fact that all participants were right handed.

6.3 Further Analysis of the Head Location

As shown in the previous sections, the head is the most relevant individual body
location. The sensors at this location are also the most promising with respect
to a later implementation into a HI.

Figure 9 shows the accuracies for distinguishing the hearing needs based on
sound, head movements, eye movements, and all possible combinations. As can
be seen from Figure 9, from the three individual modalities, an accuracy of 86%
was achieved using eye movements. Moreover, the standard deviation is lower
than the one for head movements that yields an accuracy of 84%. From all indi-
vidual modalities, eye movement analysis performs best. From all combinations
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Fig. 9. Accuracies for distinguishing the hearing needs in our scenario based on sound,
eye movements, head movements, and all possible combinations. Results are averaged
over all participants with the standard deviation indicated with black lines.

of two modalities (bars 4–6 in Figure 9), joint analysis of head and eye move-
ments perform with 87%. The combination of all three modalities yields the
highest accuracy of 88%.

Adaption based on eye movements (86%) outperforms adaption based on head
movements (84%). As described in section 5, eye movement analysis requires a
three times larger data window size (10 seconds) than body movement analysis
(3 seconds), leading to a larger classification latency. The joint analysis of body
and eye movements combines the more long-term eye movement analysis, and
more short-term body movements and yields an accuracy of (85%).

Taking into account movement from all body location corresponds to the idea
of leveraging the HIBAN described in section 2. Sensing head and eye movements
corresponds to the idea to eventually integrate all sensors into the HI. The
HIBAN approach leads to higher than the stand-alone approach at the cost of
additional locations on the body that have to be attached with a sensor. The
two cases represent a trade-off between accuracy and required number of body
locations attached with sensors. Hearing impaired can decide to take the burden
of wearing additional sensors to benefit from better hearing comfort. Besides,
smartphone and on-body sensors are more and more likely to be available. As
shown, the system functions stand-alone with reduced performance.

6.4 Individual Results for Each Participant

To further investigate the large standard deviation for head movements we ad-
ditionally analysed the individual recognition performance for each participant.
Figure 10 shows the accuracy of choosing the correct program for adaption based
on sound, head movements, eye movements, and their fusion on feature level for
each individual participant. This analsyis reveals that for four participants eye
movements performed best, for the remaining 7 participants head movements
performed best. Eye movements provide more consistent high performances for
all participants between 82% and 91%. Results for head movements were less
consistent. In particular participant 9 and 10 showed reduced accuracies of 61%
and 74%. A possible reason for this can be a displaced sensor, e.g. caused by the
user adjusting the cap. For eye movements the variability is smaller in the given
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Fig. 10. Accuracy for adaption based on sound, head movements, eye movements and
their combination, individually for each participant

data set. Sound adaption compares worse to body and eye movement adaption
since this scenario intentionally contains acoustically ambiguous hearing needs.

6.5 Integrating Body and Eye Movement Sensing into a HI

The integration of additional sensor modalities is within reach of future HIs
driven by the trend of HIBANs. HIs may in some cases be one of many deployed
ambient assisted living technologies. Thus, wearable and textile integrated sen-
sors, as well as the user’s smart-phone may become part of the HIBAN. Future
HIs can also take advantage of additional sensors that are already deployed for
other purposes (e.g. motion sensing for fall detection). This reduces the user
burden of utilizing multiple sensors while improving his auditive comfort.

Whenever HiBANs are not available, sensors could also be completely
integrated into the HI itself to provide a stand-alone solution. Low power ac-
celerometers with small footprints are available for integration into a HI. EOG is
an inexpensive method for mobile eye movement recording. These characteristics
are crucial for future integration of long-term eye movement data into future HIs
in mobile daily life settings. EOG integration into a HI could follow integration
achievements of EOG into glasses [7] or headphones [16].

6.6 Limitations

Although we significantly enhanced the distinction of two ambiguous auditory
situations, our multimodal context recognition approach remains a proxy to
infer what is essentially a subjective matter: the subjective hearing need of a
person. Thus, even a perfect context recognition would not guarantee that the
hearing need is detected correctly all the time. Ultimately, this would require
capturing the user’s auditory selective attention. Our evaluation is based on
the recognition accuracy compared to the objective ground truth defined in the
scenario. However, to assess the actual benefit experienced by the user, a more
thorough user study with hearing impaired will need to be carried out.
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We currently investigated a single ambiguous auditory situation. Nevertheless
there are a large number of other ambiguous situations for current hearing in-
struments. Our objective is to identify the smallest subset of additional sensor
modalities which can help to distinguish a wide range of currently challeng-
ing auditory situations. Thus, this work in an office scenario is an exemplary
proof-of-concept approach. It still needs to be shown that the approach can be
generalised and that one can resolve ambiguity in a sufficient number of other
situations to justify the inclusion of additional sensor modalities within HIs.

The office scenario we chose may be a limitation. We chose a specific office
work situation, but a variety of other office situations are thinkable, e.g. with
more conversation partners and different activities. For this proof-of-concept
study it was necessary to choose a trade-off between variety and control to
collect data in a reproducible manner for multiple participants. After the exper-
iment we went through a short questionnaire with each participant. The general
feedback was, that the sensor equipment was found to be bulky, but overall the
participants felt that they were not hindered to act natural.

Overlaying background noise as described in section 5.4 may be a limitation.
We overlaid one typical office background noise. Many different kinds and inten-
sities are thinkable. In some cases, the performance of the sound-based HI might
be better. However, the performance based on body and eye movement is inde-
pendent of the present sound. As a further potential limitation the participants
may not act the same as they would if there is actual background noise.

6.7 Considerations for Future Work

There are a large number of other challenging situations that are faced by cur-
rent HIs, e.g. listening to music from the car radio while driving, reading a book
in a busy train, or conversing in a cafe with background music. This motivates
the investigation of additional modalities, acoustic environments, and hearing
situations in future work. A critical issue will be the trade-off in improving con-
text awareness in HIs while minimising the burden caused by additional sensors.
Possible additional sensor modalities are the user’s current location, proximity
information, or information from other HIs or the environment. Based on the
promising results achieved in our proof-of-concept study, we plan to deploy our
system in further real-life outdoor scenarios to study the benefit in everyday life
experienced by the user.

7 Conclusion

Hearing instruments have emerged as true pervasive computers and are fully
integrated into their user’s daily life. In this work we have shown that multi-
modal fusion of information derived from body and eye movements is a promising
approach to distinguish acoustic environments that are challenging for current
hearing instruments. These results are particularly appealing as both modalities
can potentially be miniaturised and integrated into future HIs.
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Abstract. As personal health sensors become ubiquitous, we also expect them to
become interoperable. That is, instead of closed, end-to-end personal health sens-
ing systems, we envision standardized sensors wirelessly communicating their
data to a device many people already carry today, the cellphone. In an open per-
sonal health sensing system, users will be able to seamlessly pair off-the-shelf
sensors with their cellphone and expect the system to just work. However, this
ubiquity of sensors creates the potential for users to accidentally wear sensors
that are not necessarily paired with their own cellphone. A husband, for example,
might mistakenly wear a heart-rate sensor that is actually paired with his wife’s
cellphone. As long as the heart-rate sensor is within communication range, the
wife’s cellphone will be receiving heart-rate data about her husband, data that is
incorrectly entered into her own health record.

We provide a method to probabilistically detect this situation. Because ac-
celerometers are relatively cheap and require little power, we imagine that the
cellphone and each sensor will have a companion accelerometer embedded with
the sensor itself. We extract standard features from these companion accelerom-
eters, and use a pair-wise statistic – coherence, a measurement of how well two
signals are related in the frequency domain – to determine how well features cor-
relate for different locations on the body. We then use these feature coherences
to train a classifier to recognize whether a pair of sensors – or a sensor and a
cellphone – are on the same body. We evaluate our method over a dataset of sev-
eral individuals walking around with sensors in various positions on their body
and experimentally show that our method is capable of achieving an accuracies
over 80%.

1 Introduction

Mobile sensing of the human body is becoming increasingly pervasive with the advent
of personal devices capable of processing and storing large of amounts of data. Com-
mercial devices like the FitBit [7] and BodyBugg [1] allow a person to collect nearly
continuous data about his or her health. The FitBit, for example, allows a person to
track one’s own fitness and sleeping patterns by wearing an accelerometer on the waist.

Typically these devices are highly specialized, end-to-end solutions, but we imagine
the sensors in these products becoming commodities and inter-operating with a device
most people carry with them everyday: cellphones. A person could wear several sensors
of varying types (e.g., blood pressure monitor, pulse oximeter, pedometer, blood glu-
cose meter). Because of the physiological requirements, or comfort, these sensors will
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necessarily be attached at different locations on the body. We imagine these sensors
wirelessly communicating with a person’s cellphone, which would store and aggregate
all data coming from the sensors. In fact, this scenario is feasible today, and there are
purchasable medical and fitness sensors capable of communicating to cellphones via
Bluetooth.

There are many security issues, not to mention privacy issues, with this scheme. How
does the cellphone authenticate valid sensors? How do sensors discover the presence of
the cellphone, without exposing their own presence? How does the user pair sensors
with the cellphone? What types of encryption are employed to maintain confidentiality
and integrity? How do we balance privacy and usability? We focus our attention on one
specific challenge: how can we verify that a suite of sensors are attached to the same
person?

Suppose Alice and Fred, a health-conscious couple living together, each decide to
buy a fitness-monitoring sensor. The instructions indicate that each should “pair” their
respective sensor with their own cellphone. Pairing ensures, through cryptographic
means, that a sensor is only able to communicate with a specific cellphone. One day,
when Alice and Fred go for a run, Alice unknowingly wears Fred’s sensor, and Fred
wears Alice’s sensor. As they run, thereby remaining in communication range, Fred’s
cellphone will be collecting data about Alice, but labeling the data as Fred’s and placing
it in Fred’s health record, and vice versa. This problem, a result of the one-to-one pair-
ing model, is even more likely as the number of sensors grows. The implicit assumption
when pairing is that the sensors paired with a cellphone will not be used by anyone else
but the user of the cellphone.

Our goal is to make life easier for people like Alice and Fred. Although Alice and
Fred buy identical sensor devices, Alice should be able to strap on either device and
have her cellphone recognize which device is attached to her, automatically creating
the phone-device association without an explicit pairing step. Similarly, if Alice and
Fred jointly own another sensor device, either may use the sensor at any time, and
again the correct cellphone should detect which body is wearing the sensor and receive
the data into the correct person’s health record.

To achieve this vision requires two core problems to be solved. First, Alice’s phone
must be able to determine which sensors are attached to Alice’s body, ignoring sensors
that may be in radio range but not attached to Alice. Second, the phone and sensor de-
vices must be able to agree on a shared encryption key, to secure their communications;
ideally, this should require no user assistance and be more secure than in most “pair-
ing” methods today. In this paper we specifically address the first challenge, leaving the
second challenge to future work. There are existing solutions that address the second
challenge, but it is unclear if those solutions can be applied for accelerometers that are
not intentionally shaken together [13].

To address the first challenge, the sensor device must somehow attest (to the cell-
phone) which body is wearing the sensor at the current time. Ideally, the phone would
analyze the data coming from the sensors to see whether it identifies the wearer by
some biometric measure. However, not all types of sensors, or sensor locations, produce
data that is suitable for biometric identity verification. Thus we propose the following
compromise: every sensor device will include an accelerometer sensor in addition to
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its primary sensor (ECG, blood pressure, etc.). Accelerometers are cheap, so this is a
relatively inexpensive addition; instead of biometric identity verification with a wide
variety of sensor data, sensor placement, and usage conditions, we only need to find
correlations for the accelerometer data that answers the question: are the devices in a
given set all attached to the same body?

We recently [6] formalized this problem as the “one-body authentication problem,”
which asks: how can one ensure that the wireless sensors in a wireless body area net-
work are collecting data about one individual and not several individuals? We identified
two variants of this problem. The strong version of this problem requires identifying
which person the sensors are attached to, whereas the weak version of this problem
simply requires determining whether the sensors are on the same body. We noted how
existing solutions do not necessarily solve the problem and called for further research.
Thus, we now aim to provide a solution to the weak one-body authentication prob-
lem; given such as solution, one might solve the strong-body problem for one of the
sensors in a set, and be able to extrapolate the verification to all of the sensors on the
body.

Our paper is organized as follows. In the next section we describe our model. In
the third section we briefly describe our approach and hypothesis as to why we believe
our approach will work. In the fourth section we describe, in detail, our method. In the
fifth section we describe the data we collected as well as our collection method. In the
sixth section we evaluate our method. In the final sections, we discuss related work and
distinguish our work from earlier approaches, and provide some discussion about our
method’s limitations and about some potential future work.

2 Model

We imagine a world where personal health sensors are ubiquitous and wirelessly con-
nect to a user’s cellphone. Thus, there are two principle components in our system:

– One mobile node (e.g., the user’s cellphone) per user.
– Many sensor nodes (e.g., blood glucose, pedometer, electrocardiography).

We assume that mobile nodes communicate wirelessly with sensor nodes. Sensor
nodes are also capable of communicating wirelessly with mobile nodes but have limited
computational resources relative to the mobile nodes. Additionally, sensor nodes have
the ability to detect when they are attached to a user (although they will not know to
whom). The sensor node might contain a circuit that is completed, for example, when
the user straps a sensor node onto their body and the two ends of a necklace or wrist-
strap come into contact. Finally, we also assume each sensor node, and the mobile node,
has an accompanying triaxial accelerometer of the same type (so that their readings may
be directly compared). Since accelerometers are tiny, cheap, and require little energy to
operate, this is a reasonable assumption1.

1 The Freescale MMA845xQ line of accelerometers, for example, cost $0.95 (in quantities of
100K) and consume “1.8 microamps in standby mode and as low as 6 microamps in active
mode” [8].
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2.1 Binding

“Binding” occurs when a user wishes to use a sensor node. The following happens:

1. The user straps the sensor node to their body, thereby turning it on.
2. The sensor node detects that it was applied, and broadcasts its presence.
3. The mobile node receives the broadcast, thereby binding it with the sensor node,

and labels that sensor node as unauthenticated.

Binding is like pairing, but without the need for user intervention. In a pairing sce-
nario, the user is usually required to enter a shared key on one of the devices. Binding
does not have this requirement. When a sensor node is bound to a mobile node, the
sensor node enters an unauthenticated state.

2.2 Authentication

“Authentication” is a process, initiated by the mobile node, for verifying which of the
mobile node’s bound sensor nodes are on the same body. Once a sensor node is authen-
ticated, the mobile node will record sensor data from that node; until then, the data will
be ignored. (As it may take some time for authentication to succeed, in some implemen-
tations the mobile node may buffer the incoming data received between the moment of
binding and the moment of authentication, recording the data only once authentication
is assured. This “retroactive authentication” of the early data is feasible because of our
assumption that a sensor node can detect its own attachment and removal; if a sensor
node is moved from one body to another before it was authenticated on the first body,
the unbinding and rebinding events will clear the buffer on the first body’s mobile node).

To achieve authentication, our protocol requires an algorithm that is able to decide
whether two streams of data are originating from sensor nodes on the same body. That
is, given a stream of accelerometer data from a sensor node, the algorithm examines the
correlation between a sensor node’s data stream and the mobile node’s data stream, with
the requirement that the two streams should correlate well only when both the mobile
node and the sensor node are on the same body. The algorithm should return true if
and only if the two data streams are well correlated and false otherwise. We present the
details of our algorithm in Section 4.

Procedure 1 provides an overview of the process for the mobile node to authenticate
sensor nodes. Because our method depends on recognizable acceleration events, our
algorithm performs authentication only when the user is walking. The mobile node
records acceleration data using its internal accelerometer for t seconds. Simultaneously,
it asks the other sensor node to send it acceleration data for the same duration. The
duration required depends on the level of confidence desired; a shorter duration may
lead to more incorrect results (false positives and false negatives), but a longer duration
makes the approach less responsive after the person first puts on the sensor. It then runs
our algorithm, called AreCorrelated, to determine whether its internal acceleration
data correlates with the sensor node’s acceleration data. Only when the accelerometer
data correlates well does the mobile node begin to record that sensor node’s other sensor
data (e.g., electrocardiography data).
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Procedure 1. Authenticating sensor nodes, from the mobile node’s perspective
Notation:
B: set of bound sensor nodes, initially empty
Ai: acceleration data from sensor node i, where i = 0 is the mobile node’s acceleration data.
Record(t): read mobile node’s accelerometer for t seconds
Recv(b, t): read sensor node b’s accelerometer for t seconds
AreCorrelated(x, y): determine whether acceleration data x and y
————————————————–

1: while { true } do
2: if b := NewSensorNodeDetected() then
3: B := B ∪ b
4: { Mark sensor node b as unauthenticated }
5: end if
6: for b ∈ B do
7: if Disconnected(b) or Timeout(b) then
8: B := B \ b
9: else if d := RecvData(b) and IsAuthenticated(b) then

10: RecordData(b, d) { Save b’s data d in our health record }
11: end if
12: end for
13: if UserIsWalking() then
14: for b | b ∈ B and not IsAuthenticated(b) do
15: { The next two lines are accomplished in parallel }
16: A0 := Record(t)
17: Ab := Recv(b, t)
18: if AreCorrelated(A0, Ab) = true then
19: { Mark sensor node b as authenticated }
20: { Tell sensor node b to send sensor data }
21: end if
22: end for
23: end if
24: end while

2.3 Unbinding

Unbinding occurs when a user removes a sensor node. In the ideal case, the following
happens:

1. The user unstraps the sensor node from their body.
2. The sensor node detects that it was removed and notifies the bound mobile node of

this fact.
3. The mobile node acknowledges this notification, thereby unbinding it with the sen-

sor node.
4. Upon receipt of this acknowledgement (or upon timeout), the sensor node turns off.

A sensor node may lose power or go out of range of the mobile node, during this
process or prior to the user unstrapping the sensor node. Thus, the mobile node period-
ically pings each sensor node (not shown in Procedure 1); if the sensor node does not
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reply (after some timeout period), the sensor node is likely not on the same body, and
the mobile node treats it as unauthenticated and unbound.

3 Approach

Our goal is to determine whether a sensor node is on the same body as a mobile node
receiving the sensor node’s data. That is, we provide a solution for the weak one-body
authentication problem. Our solution could be used as the first step in a strong one-body
authentication solution by first verifying that all the sensors are on the same body, then
using some subset of the sensors to provide strong one-body authentication (i.e., via
some biometric one of the sensors could determine) to all the sensors on the body. To
maximize the generality of our solution, we require each sensor to have an accompany-
ing accelerometer.

Our intuition is that if sensors are on the same body, then (at a coarse level) all of
the sensors’ accelerometers experience similar accelerations. If a user is seated, or lying
down, then there is not much information we can extract from the accelerometer data to
make the determination that a suite of sensors are on the same body. There are a variety
of activities that cause bodily acceleration, but we focus on walking. When walking,
a human body is largely rigid in the vertical direction. Although our limbs do bend,
we hypothesize that the vertical acceleration (i.e., the acceleration relative to gravity)
experienced by sensors placed anywhere on a walking body should correlate well. As
one foot falls, that side of the body experiences a downward acceleration due to gravity,
followed by an abrupt deceleration when the foot contacts the ground. Sensors on one
side of the body should experience a similar vertical acceleration, while sensors on the
other side of the body will experience the opposite. We should expect positive correla-
tion for one side of the body, and an inverse correlation on the other side. Of course, this
observation is complicated by the fact that it is difficult to extract the vertical acceler-
ation component without knowing the orientation of the sensor. Furthermore, although
the signal can be very noisy, the accelerations due to walking are likely to dominate
the accelerations due to intra-body motion (such as arm swings or head turns) and we
should be able to reliably make a determination that the supposed suite of sensors are
on the same body.

Fortunately, there is already an existing body of work that shows how to do activ-
ity recognition given user-annotated data [2], and even on a mobile phone class de-
vice [4]; these techniques are particularly good at detecting when a user is walking.
Our approach, therefore, is to detect periods when a user is walking by monitoring the
accelerometer data periodically; when the data indicates the user is walking, we use
Procedure 1 to collect accelerometer data from the sensors. (In Section 8 we discuss
users who cannot walk).

Lester et al. [11] provide a solution the one-body authentication problem, but only
for sensors that are carried in the same location on the body. They also propose using
accelerometers attached to each sensor and measure the coherence of the accelerometer
data. “Coherence measures the extent to which two signals are linearly related at each
frequency, with 1 indicating that two signals are highly correlated at a given frequency
and 0 indicating that two signals are uncorrelated at that frequency” [11]. By looking
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Fig. 1. Five seconds of magnitude data for each position on the body for one user

at the coherence at the 1-10Hz frequencies (the frequency range of human motion),
they can experimentally determine a threshold (e.g., coherence > 0.9) at which it is
appropriate to deem two sensors as located on the same body.

We extend Lester et al. [11] to sensors carried at different locations on the body – wrist,
ankle, and waist – by using features often used for activity recognition. We then extract the
pairwise coherence of features for the sensors on the same body. Given these coherences,
we can train a classifier and use it to determine whether the alleged set of sensors are on the
same body. We train our classifier to be as general as possible by using data collected from
several individuals; the same model can then be used by all users for all sensor devices.
We describe our method in more detail in the following section.

4 Method

As stated previously, we assume each sensor node has an accompanying accelerometer;
our method uses only the accelerometer data. Specifically, consider a signal s sampled
at some frequency such that:

s = {(x0, y0, z0), (x1, y1, z1), . . .}
where xi, yi, and zi are the three axes of the instantaneous acceleration, relative to
gravity, at time i.

Because sensors might be mounted in different orientations, or might be worn in
different orientations each time they are worn, we discount orientation by using the
magnitude of the acceleration. Figure 3 shows that the magnitude exposes the overall
walking motion well. Thus, we compute the magnitude of all three axes for all samples
in s:

mi =
√

x2
i + y2

i + z2
i

This gives us the rate of change of speed over time for that particular sensor node.
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4.1 Feature Computation

We partition this orientation-ignored signal {m0, . . . , } into non-overlapping windows
of length w. For each window j, comprising {mjw, . . . , mjw+w}, we extract seven
common features (mean, standard deviation, variance, mean absolute deviation, inter-
quartile range, power, energy); collectively, these seven values form the feature vector
Fj = (f1

j , f2
j , . . . , f7

j ).
We chose these features primarily because others [12, 14] have used these features

successfully to detect physical activities, and we hypothesize they would similarly be
useful for our problem. If they can capture the physical activity of walking and we
examine the correlation of these features, we should expect them to correlate if and
only if they are attached the same body.

4.2 Coherence

Coherence is a measure of how well two signals correlate in the frequency domain.
More precisely, it is the cross-spectral density of two signals divided by the auto-
spectral density of each individual signal. Like Lester et al. [11], we approximate co-
herence by using the magnitude-squared coherence:

Cxy(φ) =
|Sxy(φ)|2

Sxx(φ)Syy(φ)

In the above, x and y are the signals, Sxy is the cross-spectral density between signals
x and y, Sxx is the auto-spectral density of signal x, and φ is the desired frequency.
Cross-spectral density is calculated by the Fourier transform of the cross-correlation
function. If x and y are well correlated at some frequency φ, then Cxy(φ) should be
close to 1.

To get a final measure, we compute the normalized magnitude-squared coherence up
to some frequency φmax:

N(x, y) =
1

φmax

∫ φmax

0

Cxy(φ)dφ

We chose φmax = 10 because, as Lester et al. notes, “human motion rests below the
10Hz range” [11].

In addition, to compute the cross-spectral density over different frequencies, it is
necessary to window the signals x and y. We choose a Hamming window of length
equal to one-half of the size of the signals with no overlap.

4.3 Feature Coherence

Given two sets of feature matrices A = (F1, F2, . . .) and B = (F1, F2, . . .) with entries
Fj as described above, we want to determine how well A and B are correlated. Here,
A and B represent the feature matrices extracted from the accelerometer data of the
mobile node and sensor node respectively.
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We apply coherence to the feature matrices in the following manner. For some win-
dow length c (the feature coherence window), we compute the normalized coherence of
A and B as such:

NAB
k =

{
N(A1

k...k+c, B
1
k...k+c), N(A2

k...k+c, B
2
k...k+c), . . . , N(A7

k...k+c, B
7
k...k+c)

}

where A1
k...k+c =

{
f1

n ∈ A : k ≤ n < k + c
}

, the window of a specific feature of A.
That is, we take each feature (i.e., a column of the matrix) of A and the corresponding
feature of B, and compute the normalized coherence using c samples (i.e., the rows of
the matrix). At this stage, we are left with a matrix of normalized coherences for each
feature and window k.

Because we want to capture how the two signals are related over time, the coherence
window c should be sufficiently large to capture periodicities in the features. Because
the typical walk cycle is on the order of seconds, it is advisable to chose a coherence
window on the order of several seconds.

4.4 Supervised Learning and Classification

To account for the many positions a sensor node might be placed on the body, we collect
data from several locations. In our method, we compare the mobile node’s accelerom-
eter data to each other sensor node’s accelerometer data. That is, the mobile node acts
as a reference accelerometer, to which every other sensor node must correlate using
the method described above. For a given set of locations and one reference location,
we compute the feature coherence of each location (i.e., A in the above) relative to the
reference location (i.e., B in the above). In our experiments, we compute the coherence
of the right wrist and waist; left wrist and waist; left ankle and waist; and right ankle
and waist. When we do this for one user, this yields feature coherences of the sensor on
the same body, and we can label them as such. To yield feature coherences of sensors
on different bodies, we take pairs of users and mix their locations. For example, at the
waist and left hand there are two possible ways to mix up the sensors: Alice’s waist and
Fred’s left hand, Fred’s waist and Alice’s left hand. By mixing locations for any pair of
users, it is possible to compute an equal number of feature coherences that are and are
not on the same body, labeling them as such.

Given a set of feature coherences and their respective labels, we can train a classifier
to learn a model that is the coherence threshold for each feature. We employ support
vector machines (SVMs) for this task since, once trained, they are good at predicting
which label a given feature coherence is associated with. An SVM accomplishes this
task by finding the hyperplane with the largest separation between the set of training
feature coherences that are on the same body, and those that are not on the same body.
In our experiments, we trained a support vector machine with a radial basis kernel using
LIBSVM [5].

Given a trained SVM, we can use it to classify whether a given feature coherence
is on the same body. That is, at the window the feature coherence was computed, the
support vector machine can determine if the sensor node is on the same body as the
mobile node. The SVM does so by determining on which side of the hyperplane the test
feature coherence lies.
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User Walking Time (minutes:seconds) Magnitude Samples Feature Vectors
1 18:45 288017 9000
2 29:57 460047 14375
3 21:02 322962 10092
4 19:30 299553 9361
5 20:24 313215 9787
6 28:33 438484 13701
7 19:01 291974 9123

Fig. 2. Time spent walking, total acceleration samples, and number of features extracted for each
user

4.5 Classification Smoothing

The classification method described above makes an instantaneous classification of a
feature coherence for that particular coherence window. It is, however, possible to boost
the classification rates by examining a window of classifications over time. For exam-
ple, if over the course of three classifications, two classifications positive and the third
classification is negative, we can use a simple voting scheme to smooth over these mis-
classifications. In the example, because the majority of the classifications are classified
as on the same body, we assume the sensor node is on the same body for that classifi-
cation window. We can empirically determine the best window by varying the window
and choosing the one that yields the best classification rates.

5 Dataset

We collected a set of accelerometer data, from several test subjects wearing sensors in
several locations on their body, to use as training data (for the model) and to use as
test data for (for our evaluation). We used WiTilt (version 2.5) accelerometers [15]. We
followed the user with a laptop as they walked around a flat, predetermined course. The
laptop was used to synchronize the accelerometer readings sent via Bluetooth by the
WiTilt nodes.

We collected 2.5 hours of acceleration from 5 accelerometers sampled at 255Hz
from seven users for a total of 13 hours of acceleration data. The average user walked
for 22 minutes while wearing 5 accelerometers (waist, left wrist, right wrist, left ankle,
right ankle). We chose the waist (specifically, the right pocket), because it represents a
common location for the mobile node (cellphone). Of the likely locations for medical
sensors (arms, legs, chest, head) we chose the wrists and ankles for our experiments
because (as extremities) we expect they would raise the most difficult challenge for our
method. Figure 2 gives more detailed information about how much data was collected
for each user.

6 Evaluation

We evaluate how well our method performed for each location, at the wrists only, at the
ankles only, on the left side of the body, on the right side of the body, and at all locations.
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For each experiment we used only the data from that location, or type of location, for
training and for evaluation; for example, in the “left leg” case we train on (and test on)
the accelerometer data from the left ankle in comparison to the data from the waist. In
neither the learning process nor in the operation of our system was the data labeled as
to which location produced the acceleration data. We varied the coherence window size
from 2 to 16 seconds.

Using these datasets, we performed two types of cross-validations to evaluate the
accuracy of our method. The first cross-validation we performed was a simple 10-fold
cross-validation. A k-fold cross-validation partitions the dataset into k partitions, trains
the classifier over k − 1 of the partitions (the training set) and classifies the remaining
partition (the testing set), repeating this procedure for each partition. This type of cross-
validation will tell us how well our classifier generally performs since it will classify
every sample in the dataset. The second cross-validation we performed is a variant
of leave-one-out cross-validation we call leave-one-user-out cross-validation. A leave-
one-user-out cross-validation leaves an entire user’s data out as the testing set and trains
the classifier using the remaining data. We then test the classifier using the left-out
user’s data, repeating this procedure for each user. This type of cross-validation will tell
us how general our classifier is. Ideally our classifier would not be user-specific, and
would perform well in the case of a never-before-seen user.

We define a true feature coherence as a feature coherence computed from a sensor
node and mobile node on the same body, and a false feature coherence as a feature
coherence computed from a sensor node and mobile node not on the same body. A
positive classification means the classifier determined that the given feature coherence
indicates the sensor node and mobile node were on the same body, while a negative
classification means the classifier determined that the given feature coherence indicates
the sensor node and mobile node were not be on the same body. It follows, then, that a
true positive occurs when a true feature coherence is classified as positive, and a true
negative occurs when a false feature coherence is classified as a negative. A false posi-
tive occurs when a false feature coherence is classified as positive, and a false negative
occurs when a true feature coherence is classified as negative.

We present the accuracy, precision and recall for each possible scenario. Accuracy
is the sum of true positives and true negatives over the total number of classifications.
Accuracy tells us how well our classifier is doing at classifying feature coherences. Pre-
cision is the number of true positives over the total number of positive classifications.
Precision tells us how well our classifier is able to discriminate between true and false
positives. Recall is the number of true positives over the sum of true positives and false
negatives. Recall tells us how well our classifier classifies true features coherences.

In all of our experiments, we chose a feature window size of 17 acceleration mag-
nitudes with no overlap so that each second may be divided evenly and thus yield 15
features per second. We present results using our dataset for both our method and the
method used in Lester et al. [11] for sake of comparison.

6.1 Our Method

We ran a 10-fold cross-validation using the data from all users and for each specified
location, resulting in Figures 3(a), 3(b), and 3(c). The results show how the choice of
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coherence window size affects the accuracy, precision and recall. A smaller window is
more desirable because the coherence window size is directly proportional to the win-
dow of accelerometer data that needs to be transmitted to the mobile node, and wireless
communication is typically expensive. However, a smaller window will not capture
the periodicity of walking. According to Figure 3(a), a 4–6 second coherence window,
or about 60–90 feature values, performed the best and minimized the communication
overhead. In such cases our method was about 70–85% accurate.

In general, as the coherence window length increases the accuracy briefly climbs
then settles down, precision increases steadily, and recall drops significantly. Given a
longer coherence window length, this means the classifier is more likely to make neg-
ative classifications rather than positive ones. Since a longer coherence window means
more walking cycles are taken into account, it also means there is more opportunity
for the signals to differ due to accumulated noise and/or a change in walking style in
accordance with the environment.

These plots show that the method was more accurate for the legs than for the hands,
which is not surprising because the legs have more consistent motion behavior during
walking than do the hands, particularly across users. The right leg (or left hand) seemed
to do better than the left leg (or right hand, respectively), perhaps because the waist
accelerometer was always carried in the right pocket, and most people swing their hands
in opposition to their legs. When the hands and legs were combined, as in the left-body
and right-body cases, this effect was cancelled out and the results of both were fairly
similar to the all-body case.

In Figure 3(d), we ran a leave-one-user-out cross-validation for each user with a
fixed coherence window of 6 seconds. The accuracy, precision, and recall for all users
are nearly identical, thus providing some evidence that our trained model is not specific
to any user, and can in fact be used to predict a never-before-seen user.

6.2 Lester et al. Method

For comparison’s sake, we implemented the method described in Lester et al. [11], after
extending it to use a support vector machine for determining the threshold instead of
choosing an arbitrary threshold. Figure 4 shows that for any of the given locations, their
method has poor classification rates, little better than random guess (0.50).

Lester et al. [11] do present results for “devices at other locations on the body, includ-
ing accelerometers on the wrist, placed in one or both pockets, in a backpack, and in a
fanny pack.” These placements, however, are in the same relative location and therefore
not comparable. Furthermore, we evaluated the scheme over longer time intervals, and
averaged the results for a specified window.

6.3 Classification Smoothing

We now return to the leave-one-user-out experiments, as they most closely model how
the method would be used in practice. In these experiments, for each user left out (the
testing set), we used the model trained on all other users’ data to predict the testing set.
Now, instead of instantaneous prediction, we use a simple majority vote to smooth over
classifications and plot how well this smoothing performed for a given window size of
classifications.
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Fig. 3. Evaluation of our method. Subfigures (a), (b), and (c) were computed from a 10-fold
cross-validation of all users at the specified locations and coherence windows. Subfigure (d) was
computed from a leave-one-user-out cross-validation for each user with a coherence window of
6 seconds.

Figure 5 shows the average accuracy, precision, and recall over all users for vary-
ing classification windows with a fixed coherence window of 6 seconds. Our method,
Figure 5(a), benefits slightly from classification smoothing as does Lester et al.’s method,
Figure 5(b). This result tells us that our method makes sporadic mis-classifications that
can be reduced with smoothing. Like any smoothing scheme, one must strike a balance
between the size of a smoothing window and the desired classification rates. For our
method, a 42 second smoothing window, or 7 feature coherences, modestly boosts our
instantaneous classification rates by 8%.

7 Related Work

Mayrhofer et al. [13] provide a solution to exchange a cryptographic key between two
devices by manually shaking the two devices together. They use the method described
in Lester et al. [11] to determine whether two devices are being shaken together. But,
as they notice, coherence “does not lend itself to directly creating cryptographic key
material out of its results” [13]. To extract key material they extract quantized FFT
coefficients from the accelerometer data to use as entropy for generating a key. Our
problem is more difficult because the accelerometers are not being shaken together but
are attached to a body and will therefore experience less-correlated accelerations.
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Fig. 4. Evaluation of Lester et al. method. Subfigures (a), (b), and (c) were computed from a
10-fold cross-validation over all users at the specified locations and coherence window lengths.
Subfigure (d) was computed from a leave-one-user-out cross-validation for each user with a co-
herence window of 6 seconds.
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Fig. 5. Average accuracy, precision and recall over all users for different classification windows
with a fixed coherence window of 6 seconds

Kunze et al. [10] provide a method for determining where on a body a particular
sensor is located. They detect when a user is walking regardless of the location of a
sensor, and by training a classifiers on a variety of features (RMS, frequency range
power, frequency entropy, and the sum of the power of detail signals at different levels)
on different positions on the body they can use the classifier to determine where on the
body the sensor is located. We seek to provide a method that determines whether a suite
of sensors is located on the same body without having to use multiple classifiers for
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different body locations. It might be the case that knowing the location of a sensor node
could boost our classification rates, but we leave that for future work.

Kunze et al. [9] provide similar methods to account for sensor displacement on a
particular body part. This problem is difficult primarily because “acceleration due to
rotation is sensitive to sensor displacement within a single body part” [9]. To alleviate
this problem, the authors observe that “combining a gyroscope with an accelerometer
and having the accelerometer ignore all signal frames dominated by rotation can remove
placement sensitivity while retaining most of the relevant information” [9]. We choose
to limit our approach to accelerometers; although the inclusion of a gyroscope might
increase accuracy, it would also increase the size, cost, and energy consumption on each
sensor device.

Sriram et al. [16] provide a method to authenticate patients using electrocardiogra-
phy and acceleration data for remote health monitoring. While electrocardiography has
proven to be useful for authentication, they observe that these methods do not perform
well in the real world because physical activity perturbs the electrocardiography data.
By employing an accelerometer to differentiate physical activities, they can use electro-
cardiography data from those physical activities to authenticate patients. We both make
the observation that “the monitoring system needs to make sure that the data is coming
from the right person before any medical or financial decisions are made based on the
data” [16] (emphasis ours). Our work is complementary since it is necessary to establish
that accelerometer is on the same body as the sensor used to collect electrocardiography
data. Their method extracts 50 features from the electrocardiography and accelerome-
ter data and uses these features to train two types of classifiers, k-Nearest Neighbor and
a Bayesian Network, whose output can be used for identification and verification. We
follow a similar procedure except that we work exclusively with accelerometer data,
again, to reduce the complexity and cost of the solution. We also look at the correlation
between sensors, whereas they assume there is a prior profile of the patient’s combined
electrocardiography and accelerometer data.

8 Discussion and Future Work

There are a variety of existing technologies one could imagine using to solve the weak
one-body authentication problem. For example, one could employ a wireless localiza-
tion technique to ensure the sensors nodes are within some bodily distance. The body,
however, might block all or some of the wireless signal thereby limiting localization, nor
is it clear how these kind of techniques would provide confidence to a physician that the
data is coming from one body. Similarly, one can trivially use a form of body-coupled
communication [3], but the security properties these type of communication mediums
provide are not well understood. If two users were to hold hands, for example, would
they be considered one body?

When two people are walking together, it is a common natural phenomenon for two
walkers to synchronize their walking patterns. It is unclear whether our method will be
fooled by such a situation, mis-classifying Alice’s and Fred’s sensor devices as being on
the wrong body. The first dataset we captured to test this method actually employed one
user trying to mimic the gait of another user, and our first results showed our algorithm
not being fooled by this. This case, however, requires exploration in a larger dataset.
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Our method relies on the assumption that a user is capable of walking, which may not
be true for some users. It remains as future work to determine whether we can extend
the method for a person who is confined to a wheelchair, for example. Even for a user
who is able to walk, there may be an extended period of time after binding a sensor
node and before the user walks. It may be necessary for the mobile node to alert the
user that they should walk around so that authentication can be performed. As future
work, we may explore other acceleration events; for example, to ask the user for clap
their hands, or perform some unique movement.

Ideally the algorithm should be tuned to produce more false negatives (i.e., the algo-
rithm determined the sensor nodes to be on different bodies when they really were on
the same body) than false positives (i.e., the algorithm determined the sensor nodes to
be on the same body when they were actually not) because the consequences of a false
positive (recording the wrong person’s data in someone’s health record) are more severe
than the consequences of a false negative (losing data). It may be possible to ‘bias’ the
SVM toward false negatives by adding a margin to its hyperplane-testing function.

Although we do not discuss encryption mechanisms, ensuring data confidentiality
is paramount in any health-related scenario. If one were to optimize the authentication
phase by simultaneously authenticating all bound sensor nodes, it might be necessary
to encrypt the acceleration data to avoid replay attacks (in which the adversary replays
one node’s acceleration data in hopes that its rogue sensor node will be authenticated
as being on the same body as the victim). Even if such an attack is discounted, the
accelerometer data itself might be privacy sensitive because accelerometer data may be
used to recognize a victim’s activity. Some activities are clearly privacy sensitive, and
some of those sensitive activities might be detected from accelerometer data alone.

In a practical system, one must consider energy and computational costs. In our
model, the sensor node sends raw acceleration data to the mobile node. If this proves to
be too expensive, then the sensor node could compute features from a window of accel-
eration and communicate those features instead. We leave exploring this delicate bal-
ance between extendability (allowing use of other features in the future), computability
(due to limited computational capabilities on a sensor node), and energy requirements
(with trade-offs specific to the technology in a sensor node) as future work. In terms of
the mobile node, we assume the cellphone will be more than capable of computing cor-
relations, but the energy costs of these functions is unknown and require more careful
analysis. Should the computation prove to be too expensive or time consuming, then
one may need to explore optimizations or approximations or the assistance of a back-
end server, with due consideration to the trade-off of computational overhead, accuracy,
and privacy.

9 Conclusion

Mobile health will play a major role in the future of healthcare. Wearable health sen-
sors will enable physicians to monitor their patients remotely, and allow patients better
access to information about their health. The method presented in this paper provides
the foundation for any mobile-health system, because, in order for the data to be useful,
physicians need confidence that the data supposedly collected about a patient actually
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came from that patient. We provide the first step in that verification process: generi-
cally authenticating that all the sensor nodes bound to a mobile node are the same body.
We show that our method can achieve an accuracy of 80% when given 18 seconds of
accelerometer data from different locations on the body, and our method can be gener-
ically applied regardless of the sensor type and without user-specific training data. In
summary, we make the following contributions:

– We describe a novel problem in the mobile healthcare domain and provide a solu-
tion to the weak version of the one-body authentication problem.

– We extend Lester et al. [11] to sensors carried at different locations on the body –
wrist, ankle, and waist – by extracting used for activity recognition.

– We provide empirical results to our solution using a dataset of seven users walking
for 22 minutes to show that it is feasible.
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Abstract. Positioning using GPS receivers is a primary sensing modality in many
areas of pervasive computing. However, previous work has not considered how
people’s body impacts the availability and accuracy of GPS positioning and for
means to sense such impacts. We present results that the GPS performance
degradation on modern smart phones for different hand grip styles and body
placements can cause signal strength drops as high as 10-16 dB and double the
positioning error. Furthermore, existing phone applications designed to help users
identify sources of GPS performance impairment are restricted to show raw sig-
nal statistics. To help both users as well as application systems in understand-
ing and mitigating body and environment-induced effects, we propose a method
for sensing the current sources of GPS reception impairment in terms of body,
urban and indoor conditions. We present results that show that the proposed au-
tonomous method can identify and differentiate such sources, and thus also user
environments and phone postures, with reasonable accuracy, while relying solely
on GPS receiver data as it is available on most modern smart phones.

1 Introduction

Positioning using GPS receivers is a primary sensing modality in many areas of per-
vasive computing, such as behavior recognition (e.g., health status monitoring [20]),
collaborative sensing (map generation [15] and environment impact monitoring [17])
and community applications (e.g., Micro-Blogging [4] and GeoPages [3]). In these ap-
plication domains, the GPS receivers are assumed to be worn and used by people during
their everyday life. However, the mentioned articles do not consider the impact of the
user’s body on the positioning performance. Several of the above articles mention that
the applications described depend on GPS performance parameters such as availability
and accuracy, but link difference and impairment in GPS performance only to the user’s
surrounding environments, e.g. urban or indoors.

In the first part of our paper, we study and analyze the body impacts on the per-
formance of GPS receivers, focusing on in-phone systems, and intending to inform
researchers and developers about these impacts. Our work builds on knowledge from
existing studies of the body impact on in-phone GSM communication [1,19], while
our methodology as well as our analysis results differ in nature from those described
for GSM communication, since, first, the performance parameters of GPS differ from
those of communication services, and, second, since a variety of factors, other than
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body effects, impacts GPS positioning more severely than GSM communication (due
to the weakness of the GPS signals); such factors include the user’s environment (e.g.
urban or indoor) as well as, potentially, other simultaneous phone operations, e.g. GSM
or WiFI transmissions or CPU computations [5]. Our study is also motivated by the
recent body related issues with modern antenna designs in mobile phones [7] and by a
recent short paper by Vaitl et al. [24] who quantify the GPS positioning accuracy for
four on-body locations and three phone models in walking experiments.

The second part of this paper is motivated by the fact that existing mobile phone
applications designed to help users identify sources of GPS performance degradation
are restricted to radar views of satellites’ signal strength and accuracy estimates. To help
both users as well as application systems in understanding and mitigating body, urban
and indoor effects, we want to provide information to the user about which effects are
impacting the current performance of the GPS. For the indoor effects we build on the
results of our recent study of indoor positioning using GPS presented in Kjærgaard et
al. [8]. Consequently, in the second part of this paper we present a concept for how
to differentiate these effects utilizing only signal quality data made available by in-
phone GPS modules, enabling the GPS receiver as a new sensor modality for sensing
body placement and environment. Our method calculates a number of features from
the signal quality data among others it compares data to an open sky model of how
strong signals should have been received given no impairments. The calculated feature
values are used as an input to a standard machine learning algorithm that outputs a
classification of current positioning impairments.

This concept is motivated foremost by the potential of information about GPS im-
pairments and respective sources to improve GPS positioning quality and quality aware-
ness: Both through GPS receiver algorithms, middleware [14] and application systems,
utilizing such information, but also via informing the user directly via on-phone appli-
cations about current impairments, increasing his understanding of the position quality
and help answering questions, such as “What is impacting my GPS positioning accu-
racy?” and “Can I improve GPS performance by changing my grip style or placement?”
One might consider if the need for answering these questions could be removed by
switching to other positioning means, such as WiFi or GSM positioning. But while we
found body impacts to cause GPS positioning errors in the range between three to thirty
meters, the WiFi or GSM positioning exhibits usually even larger errors in rural and
urban areas [13].

We make the following contributions in this work: First, we argue that body related
issues are significant for GPS performance and present results for different hand grip
styles and body placements which show that signal strength drops as high as 10-16 dB
can be experienced and double the positioning error. Finally, we propose a method for
sensing and classifying GPS reception and positioning impairments in terms of body,
urban and indoor conditions using a set of features calculated via a model for open-sky
conditions. We present results that show that the method can estimate the correct cause
with reasonable accuracies.

The remainder of this paper is structured as follows: In Section 2 we give a brief
introduction and overview of research on GPS with a focus on in-phone GPS systems. In
Section 3 we present our study of body-related impacts on GPS reception. In Section 4
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we present the proposed method for sensing present GPS performance impairments
and for identifying their sources. In Section 5 we discuss shortcomings and potential
improvements and utilizations of the proposed method and provide directions for future
work. Finally, Section 6 concludes the paper.

2 GPS: Operation Basics and Sources of Impairment

In this section we review basic concepts and recent advances in GPS positioning, as
well as, research on how the user’s environment impacts GPS performance and on how
the user’s body impacts other phone signal operations, specifically GSM signaling.

2.1 GPS Operation Principles

GPS satellites send signals for civilian use at the L1 frequency at 1.575 GHz; these sig-
nals are modulated with a Pseudo-Random Noise (PRN) code unique to each satellite.
A GPS receiver tries to acquire each GPS satellite’s signal by correlating the signal
spectrum it receives at L1 with a local copy of the satellite’s PRN code. An acquisition
is successful, once the local copy is in sync with the received signal, which requires
shifting the copy appropriately both in time and in frequency. The latter shift is due to
the Doppler effect caused by the satellite’s and the user’s relative motion. Once a satel-
lite’s signal has been acquired, the receiver tracks it, that is, the receiver continuously
checks the validity of the shift parameters above and updates them if necessary.

Each satellite’s signal is modulated not only with its PRN code but additionally with
a navigation message, which contains almanac data (for easier acquisition of further
satellites) as well as its precise ephemeris data, that is the satellite’s predicted trajectory
as a function of time, allowing GPS receivers to estimate the current position of the
satellite. Finally, to achieve precise 3D positioning with a standard GPS receiver via
trilateration, the positions of and distances to at least 4 satellites have to be known; those
distances can be computed from the time shift maintained while tracking the respective
satellites. As a general rule, the more satellites can be tracked, and the wider they are
spread over the sky as seen by the user, the more precise the positioning –due to the
additional distance data and a satellite geometry resulting in less error-prone lateration.

A popular enhancement of GPS positioning is given by Assisted GPS (A-GPS) [25],
which provides assistance data to GPS receivers via an additional communication chan-
nel, which for in-phone GPS operation is usually the cellular network. This assisting
data contains ephemerides and often also atmospheric corrections. A-GPS eases satel-
lite acquisition and can therefore drastically reduce the time to first fix and the ini-
tial positioning imprecision of a receiver, once the assisting data has been transmitted.
Furthermore, A-GPS can improve positioning accuracy by eliminating systemic, e.g.
atmospheric, error sources [16, Chapter 13.4].

2.2 Environment Impacts on GPS Performance

GPS performance degrades in terms of both coverage and accuracy when experiencing
problematic signal conditions, e.g. in urban canyons and especially in indoor environ-
ments. The cause for this is termed signal fading, subsuming two fundamental signal
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processing obstacles: First, when GPS signals penetrate building materials, they are
subjected to attenuation, resulting in lower signal-to-noise ratio (SNR). Furthermore,
the signal is subject to multipath phenomena: Reflection and refraction of the signal
results in multiple echoes of the line-of-sight (LOS) signal arriving at the receiver.
Low signal-to-noise ratios and multipath handicap both acquiring and tracking GPS
signals and usually result in less reliable positioning due to less suitable satellite geom-
etry and less accurate individual time shifts measurements. For investigations of GPS
positioning in urban and indoor environments and its limitations, see, e.g., [8,22,27].
High-Sensitivity GPS (HSGPS) [12] subsumes advances in GPS receiver technology to
alleviate the limitations mentioned above. HSGPS is claimed to allow tracking for re-
ceived GPS signal strengths down to -190 dBW, corresponding to a nominal SNR value
of 14 dB: three orders of magnitude less than the GPS signal strength to be expected
in open-sky conditions [16]. These thresholds are constantly being improved using new
processing techniques [25, Ch. 6].

2.3 In-Phone Signal Recption and Antenna Design Considerations

Today, most smart-phones allow for reliable and accurate GPS positioning in open-sky
conditions. Van Diggelen lists the main technological advances which have led to this
achievement, stating furthermore, that “we thought the main benefit of this would be
indoor GPS, but perhaps even more importantly it has meant very, very cheap antennas
in mobile phones” [26]. It is agreed within the GPS research community, that antenna
design, placement, and utilization is key for the further improvement of in-phone GPS
positioning [5,6]. Central aspects in this challenge are the cost-effectiveness of the an-
tenna design and the limiting of interference caused by other in-phone components,
such as the GSM communication module. Finally, increasing form factor minimization
also increases the constraints on antenna size, suggesting cohabitation, i.e., the use of
one antenna for multiple services such as GPS reception, and GSM, Bluetooth, or WiFi
communication [5]. More recently, a growing focus on in phone GPS technology lies
on limiting the power consumption [25] and consequently, most GPS chip manufactur-
ers emphasize and provide details about the improved energy-efficiency of their latest
products for in-phone integration.

While the in-phone GPS reception is strongly influenced by the kind of environment,
e.g. urban or indoor, another source of impairment can be the user himself, more specif-
ically the parts of the user’s body, which are either i) close to or even ii) contacting with
the GPS in-phone antenna, or iii) just blocking the line-of-sight between the antenna
and specific GPS satellites. All these three phenomena have impacts on GPS reception,
the magnitude of which depends also on the design of the smartphone used. Sokova
and Forssell give indications, that in difficult positioning conditions, e.g., indoor envi-
ronments even pedestrians passing by can cause severe impairment of GPS reception
[21]. In general, the closer the body is to a receiving antenna and the more it shields
it, the more signal power dissipates into the body, impairing the desired resonation of
the antenna with the incoming signal. Such body effects have been investigated thor-
oughly for the sending and receiving of signals of various types, most prominently for
cell phone communication signals [1,2]. The above research identified that for the qual-
ity of signal sending and reception the following (interrelated) parameters are crucial:
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the antenna type, its location within the phone, and the way the user holds the phone,
specifically the phone’s orientation and the amount of body shielding and contact the
phone’s antenna is subjected to.

Furthermore, the results of these studies allow the conclusion that the body impacts
on signal reception are complex to model in simulation and that the respective results
often differ from the effects as observed in real-world situations. Furthermore, the ef-
fects depend in a complex manner on the signal frequency. Consequently, these studies
provide an intuition about the body effects on the reception of signals at the GPS signal
frequencies –but due to the GPS signals differing from GSM signals not only in fre-
quency, but also in strength, purpose and structure, these studies don’t allow for proper
predictions of body effects on GPS reception in real-life use-cases, and even less so for
predictions of the resulting impacts on the experienced GPS positioning performance.

3 Quantifying the Body and Phone Impact on GPS Reception

In this section we present results from measurements designed to quantify the impact of
the user’s presence and handling of the phone in real-world settings. More specifically,
we measure impacts of various grip styles selected according to previous work; both in
this and the subsequent section we will relate these impacts also to effects originating
from the user’s environment.

3.1 Methodology

The primary measure we used in our analysis of in-phone GPS performance are the sig-
nal strengths as they are experienced on the phones for the GPS satellites tracked by the
phone. It has been observed that this set of signal strength values gives a good indica-
tion of overall GPS positioning quality including the essential performance parameters
availability and accuracy, and we provide evidence for that in Section 3.2. Hence, to
evaluate the impairment of GPS performance caused by a form of user interaction, e.g.,
a certain grip style, we measured the signal strengths in respective setups and compared
the observed SNR values to those observed on a reference phone affected neither by
body nor user environment impacts. To be able to draw valid conclusions from such sig-
nal strength comparisons, it is essential, that the everyday difference in observed signal
strengths between two unaffected reference phones is small. To validate this assump-
tion, we have collected sixty hours of measurements with two unaffected Google Nexus
One phones placed statically in open-sky conditions, 2 meters apart from each other,
with no nearby pedestrians, and running only our measurement collection software. As
we measure body and user environment impacts over 10 minutes using two phones and
average the GPS signal reception properties over this time span, the two assumptions
we depend on are that a) the deviation in signal strength between phones within the
ten minutes are small and b) that for the same phone the signal properties measured
differ only slightly in consecutive measurements. Mainly to validate our measurement
setups, we also investigated whether interference between close by GPS receivers [5]
can impair any GPS performance measures: In several experiments in which several
GPS enabled phones were placed as close as 5 centimeters apart we observed no visible
degradations.
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Table 1. Absolute signal strength deviations between two unaffected phones in open sky condi-
tions for Google Nexus One phones

Scenario Four Strongest Satellites [dB] All Satellites [dB]
μ σ max μ σ max

Between Phones 1.10 0.86 4.35 1.20 0.93 4.91
Same Phone (Consecutive) 0.62 0.47 2.29 1.01 0.81 4.04

As shown in Table 1 for the validation of our assumption, we give quantifications
of signal strength differences by mean, standard deviation and maximum differences –
averaged over i) the four GPS satellite signals which are received strongest on the phone
and ii) over all satellite signals tracked by the phone1. The results in Table 1 indicate
mean variations around 1 dB with standard deviations below 1 dB and maximum varia-
tions below 5 dB. It follows that for our results to deviate from the mean with more than
one standard deviation (this deviation is relevant as visual inspection of the distributions
supports that they are normally distributed), the signal strength would have to differ at
least 1.96 dB in the case of the four strongest satellites and 2.13 for all satellites.

3.2 Measured Impacts of the User Body on GPS Reception

As reviewed in Section 2 there are results from studies of, e.g., cellular technologies
that confirms that bodies negatively impact signal reception in mobile phones. We want
to add to this knowledge by studying the effects on the GPS antenna. In this specific
study we focus primarily on the Google Nexus One phone but also present results for
the Nokia N97.

To select relevant hand and body placements we base our selection on a study by
Pelosi et al. [19] who identified common hand grip styles for both data and talk mobile
phone usage. Based on their study we have selected three data style grips one with 3
fingers in the bottom third of the device, a five finger style and a double hand style,
and a soft and a firm talk style grip with five fingers, as depicted in Figure 1. As GPS
usage is also relevant when the user does not have the phone in the hand we have also
evaluated an overarm jacket pocket placement, e.g., similar to popular overarm straps
for runners, a trouser pocket placement and a placement in the top of a bag carried by
a person. To limit the study we did not consider special casings of the phone or special
phone configurations, e.g., opening of the keyboard on the Nokia N97. We conducted
the experiments outdoors in open sky conditions and collected measurements for 10
minutes with one affected phone held in the evaluated body position and a unaffected
phone statically placed 1.5 meter away from the person carrying out the experiment. To
compare the data we calculate the drop in signal strength as the mean signal strength
difference between the measurements from the affected and the unaffected phone.

The results listed in Table 2 from the measurements with two Google Nexus One
phones show that signal strength drops depending on the hand grip style and body

1 We chose to give measure - i) additional to measure - ii) because the strongest satellites will
also be the most important contributors to the positioning accuracy of the GPS. Therefore, a
significant drop of their SNR will have a higher impact than that of the SNR of already weaker
satellites that the GPS may weigh less (or not even consider) in the position computation [10].
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Fig. 1. Illustrations of different hand grip styles

placement. The most significant drops between 6.9 to 10.6 dB are experienced with
Talkstyle, firm grip, 5 fingers and Datastyle, double hand. For comparison, Kjærgaard
et al. [8] lists the following values for attenuation of glass 2.43 dB, a wooden wall 4.8
dB, a brick wall 10.38 dB and reinforced concrete 16.7 dB. Generally the drops for the
four strongest and all visible satellites correlate only the Running style, overarm jacket
pocket scenario deviates where the drop considering all satellites is 3.7 dB.

Table 2. Drops in signal strength for the four strongest and all satellites with different hand grip
styles and body placements comparing pairs of Google Nexus One and Nokia N97 phones

Google Nexus One Nokia N97
Scenario Four Strongest [dB] All [dB] Four Strongest [dB] All [dB]
Running style, overarm 0.3 3.7 - -
Datastyle, 3 fingers 0.4 0.4 4.7 2.7
Everyday style, bagpack 1.5 2.0 - -
Talkstyle, soft grip, 5 fingers 2.5 2.0 - -
Talkstyle, firm grip, 5 fingers 6.9 7.3 17.3 14.2
Datastyle, 5 fingers 8.0 3.6 11.8 10.5
Everyday style, trouser back pocket 9.4 6.6 - -
Datastyle, double hand 10.6 8.8 16.1 14.5

To argue that the signal strength drops are not only pertinent to the Google Nexus
One phone we collected similar measurements with two Nokia N97 phones for a subset
of the scenarios. The results are also listed in Table 2 and indicates even bigger drops in
the range of 4.7 dB to 17.3 dB which is five dB higher than for the newer Google Nexus
One for similar hand grip styles and body placements. From these measurements we can
conclude that the body impact is present and in some cases amounts to the attenuation
experienced in indoor environments.

To quantify the effect on positioning accuracy during everyday use measurements
were collected by a person walking a 4.85 kilometer tour twice through both open-
sky and urban positioning conditions carrying six phones with different placement. The
data set consists of ground truth positions and 1 Hz GPS from the built-in sensors in
the Google Nexus One and the Nokia N97. The ground truth was collected at 4Hz with
a high accuracy u-blox LEA-5H receiver with an dedicated antenna placed on the top
of a backpack carried by the collector. The ground truth measurements were manually
inspected to make sure they followed the correct route of the target.
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Figure 2 shows error plots for four of the Google Nexus One and Nokia N97 traces,
respectively. The error is computed as the distance between the ground truth positions
reported by the dedicated GPS to the positions reported by the phones. The figures de-
pict cumulative distributions of the individual positioning errors throughout the traces.
From the figures one can observe a significant difference in accuracy comparing the
nearly body unaffected placements of Upper compartment of bagpack and Datastyle, 3
fingers to the affected trouser placements and the Datastyle, 5 fingers. Considering the
median, the increase in error is for the Google Nexus One from five meters to ten meters
and for the Nokia N97 from ten meters to twenty meters. One can therefore conclude
that the body impact can have a strong impact on the positioning accuracy. In a study,
conducted at the same time as ours and for three mobile phones Vaitl et al. [24] also
identified the phone placement within trouser pockets as the worst for GPS accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty
 [
%

]

Error Distance [Meters]

Upper compartmet of bagpack

Datastyle, 5 fingers

Left jacket pocket

Trouser back pocket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty
 [
%

]

Error Distance [Meters]

Datastyle, 3 fingers

Trouser front pocket

Trouser back pocket

Fig. 2. Drops in positioning accuracy with different hand grip styles and body placements for
Google Nexus One (left), and Nokia N97 (right)

The body effects also impact the positioning availability in the everyday measure-
ments, but only for the Nokia N97, whereas for the Google Nexus One, which was
released in early 2010, 16 months after the N97, there were no major drops. For the
N97s the availability dropped from 88% during collection in the Datastyle, 3 fingers
case to 51% for the back pocket trouser placement. Availability drops may occur also
on the Nexus One, as we observed in the data set collected to evaluate the method pro-
posed in Section 4: In four urban and five indoor data traces a Nexus One placed in a
trouser pocket did not produce any fixes at all and in one urban and four indoor data
traces, and a Nexus One held with the Datastyle, 5 fingers grip style did produce only
very few. In the same traces both a phone held with grip style Datastyle, 3 fingers and
a reference phone placed some meters away from the person collecting the data pro-
duced continuous fixes throughout the experiments. Therefore, we can conclude that
body effects impact GPS availability, however, more significantly for the N97 than for
the Nexus One.
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4 Sensing and Classifying Impairment Sources

To assist both application systems as well as the user in understanding and mitigat-
ing body and environment-induced effects, we aim to provide information about which
effects are currently impacting the GPS device’s performance and to which extent. In
the following, we present an approach for differentiating such effects and respective
sources utilizing only GPS signal quality data, in particular SNR measurements paired
with directional information about GPS satellites; note, that such data is made avail-
able by most popular last generation smart-phones. The information about sources of
GPS performance impairment, that we provide, adds to existing user assistance such
as radar views of satellites strengths and accuracy estimates, and can be delivered as
either visual, audible or tactile feedback, assisting, e.g. in answering questions such as
“What is impacting my positioning accuracy?” and “Can I improve GPS performance
by changing my grip style or placement?”.

4.1 Classification Concept and Procedure

The proposed concept is illustrated in Figure 3. An in-phone GPS module outputs signal
quality measurements –even in conditions in which only few and very weak signals can
be acquired. Therefore, our method is functional even in cases where the GPS module
is not able to produce any position fixes at all. From the signal quality measurements
a range of features are computed with the help of an open-sky model that estimates
how strong signals would be received for a given satellite and on the device if placed in
open-sky conditions and not suffering from body, indoor or urban effects.

In-Phone 
GPS receiver

Feature 
Extraction

(prn,elevation,
azimuth,snr)

Open Sky Model

(feature1, feature2, 
..., featuren)

Classification 
Model

Impairment 
Sources

Fig. 3. Process for classifying impairment sources via analyzing in-phone signal measurements

Classification output domain. The classification model outputs information about in-
ferred sources of GPS performance impairment. We have chosen to consider two types
of GPS positioning impairments, environment- and body-induced ones. Furthermore,
we considered two resulting categorizations: In the first one we distinguish twelve
categories, i.e. twelve potential outcomes of the classification, corresponding to the
twelve combinations of three environment types (open-sky, urban and indoor) and four
phone placement and posture types (datastyle 3 fingers, datastyle 5 fingers, trouser back
pocket, and no-body reference). In the coarser second categorization, we consider only
six categories, combining the three environment types (open-sky, urban and indoor)
with cases of no or weak body effects (datastyle 3 fingers and no-body reference) and
cases of significant body effects (datastyle 5 fingers and trouser back pocket).
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4.2 Feature Extraction

The aim in designing suitable features for classification is to numerically capture the
occurrence of patterns which –ideally– are specific to a single environment or on-body
phone placement or posture, or –more generally– allow us to separate different (com-
binations of) environment and body placement types. In the following, we first sketch
some of these patterns we look for, then we present features designed for detecting
them, after introducing a utilized reference model, which holds expected SNR values in
open-sky conditions. Some of the patterns we are looking for include:

When separating environment types. Naturally, for open-sky environments hardly
any SNR drops or deviations w.r.t the model of SNRs in open-sky conditions occur.
If deviations exist, they are distributed normally over both azimuths and elevations
of the satellites tracked. In urban environments, drops occur for low elevation satel-
lites, while the signals of higher satellites are received stronger. Indoors, satellite
signals are received strongest through windows and wall openings, i.e. from satel-
lites at low elevation and within ’horizontal clusters’, i.e. at specific azimuth ranges,
corresponding to window areas and wall openings.

When separating phone placement types. The blocking effect of the user body shows
for different on-body placements in SNR drops of a particular range of azimuth val-
ues: E.g., for the trouser back pocket-placement this range is almost hemispherical.
In contrast, when the user holds the phone in hand, the attenuation is more evenly
distributed with regards to azimuth. Furthermore, different grips styles can often be
distinguished by the overall amount of attenuation.

An Empirical Model of Open-Sky Conditions. Our identification of GPS reception
impairments is based mainly on interpreting signal degradations. An indicator of the lat-
ter, which is even more suitable than the absolute SNR values recorded, is given by the
drops of SNR w.r.t. ideal conditions, i.e. when not impacted by body- or environment-
induced effects. Therefore, our system is supported by an Open Sky Model which pro-
vides estimations of the SNR values to be currently expected on the device at the user’s
geographic position.

To the best of our knowledge, there does not yet exist an accurate theoretical model
for open-sky GPS signal conditions. There are two main reasons for this, firstly, that
SNR values depend both on properties of the antenna and the receiver chip, and sec-
ondly, that the transmission power of GPS satellites vary depending on their generation
and age. Therefore, to characterize open-sky conditions we propose to use a device-
specific and empirical parametrized model. This model holds for each GPS satellite a
function which maps for each GPS satellite its evaluation to a Gaussian distribution
of the SNR of that satellite at that elevation, as recorded by the device. The resulting
function table contains less than 3000 entries, .i.e. a mere 60 kilobytes. The motivation
for modeling not only average SNR values, but also error distributions is that deviations
are caused by several error sources, such as atmospheric weather, ground multi-path
effects and integer rounding imprecision of the elevation data. Note, that since GPS
orbits repeat every sidereal day, these differences are observable from the mappings
which each use only 24 hours of the recorded data. The daily SNR pattern, as well as
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Fig. 4. SNR measurements for GPS satellite PRN 31, recorded on Google Nexuses in open-sky
no-body conditions

differences in this pattern observed over two consecutive days are depicted exemplary
for GPS satellite PRN 31 as recorded in Aarhus, Denmark, in Figure 4.

As our model’s mappings are gained by empirical data won over 48 hours at one
particular location, the accuracy of the model diminishes with the temporal and spatial
distance from that recording. We will though later on present evidence that our system
performs well also with less accurate or less detailed models.

Classification Features Employed. We now give an overview of the 29 features our
current classification is based on, as well as discuss their suitability and limits in pro-
viding a successful classification of (combinations of) body-induced and environment-
induced impairments.

Features Based on Averaged SNR Drop: One of the features used in classification con-
siders the experienced SNR drop w.r.t. the open sky model, averaged over all satellites
within the GPS constellation which were trackable according to the open sky model.
This feature captures the overall level of signal attenuation experienced. Figure 5(a)
illustrates the differentiation of phone postures and placements achievable by this fea-
ture: The probability distributions shown represent output of the feature, i.e. average
SNR drops. Each distribution subsumes data, described in more detail in Section 4.3,
from 12 five-minute measurements for each particular combination of environment and
phone-body context. Note, that to achieve better visualization of the characteristica of
the distribution, feature output was beforehand mapped to bins. The plot shows, that
in open-sky environments almost no SNR drops occur for the grip style using only
3 fingers, while in contrast large drops occur (in any given environment), when the
phone is held firmly with 5 fingers, and even significantly larger drops occur when
the phone is kept in the back pocket of a trouser. Furthermore, the two distributions
in Figure 5(a) showing data gathered in urban settings, show that the environmental
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attenuation visibly ’blurrs’ the separation between different contexts; a fact that repre-
sents a general challenge for the body context classification: As a rule of thumb, the
more attenuating and impairing the user’s current environment is in itself, the harder it
becomes to differentiate between different phone-body contexts.

Features Based on Elevation Order: The following feature is designed to distinguish
environment types: It captures the maximally negative difference of SNR between two
satellites, consecutive in the increasing order of the received satellites by elevation.
Figure 5(b) shows output of this feature, originating from the measurements men-
tioned above. The distributions shown result from grouping measurements, undertaken
in open-sky as well as in indoor areas and with various body-phone contexts, by sever-
ity of GPS impairment –following the coarser one of the categorizations described in
Section 4.1. The plot shows, that for most indoor locations the feature output values are
high. This is because satellites are received most strongly at low elevations, e.g. through
windows, and because these satellites are ultimately followed in the elevation ordered
sequence by a satellite that is highly attenuated by either walls or ceilings. In contrast,
the open-sky measurements provide feature values close to zero. This again gives ev-
idence, that if the impairment in one domain –in this case the body-induced one– is
severe, it becomes harder for the feature to differentiate impairments of another domain
–in this case of the user environment, .i.e. to tell apart indoor locations from open-sky
ones. Another feature is obtained as a variant of the one just described: It measures the
maximal positive, instead of negative, SNR difference; this allows for identifying the
urban environment type, since in urban canyons usually the satellites above the ’skyline’
of surrounding buildings are received significantly stronger.

Features Based on SNR Drop Order: Three of the features currently employed are com-
puted on basis of the sequence of the tracked satellites, sorted by the SNR drop expe-
rienced for them. E.g., when averaging over the azimuth difference between satellites
consecutive in that sequence, the resulting feature captures the entropy for the sequence
w.r.t. azimuth; for open-sky no-body conditions this entropy is usually high, while the
lowest entropy was obtained in a no-body setup in indoor locations: Satellites similar in
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azimuth often reach the user through the same building element and therefore exhibit
also similar SNR values.

Features Based on Azimuth Order: Alternatively, if one sorts the satellites instead by az-
imuth, one can capture, e.g. hemispherical, body shielding effects for in-pocket setups:
One of our features identifies the azimuth half-space separation, for which the differ-
ence between the averaged signal drop in the respective hemispheres is maximized.
This feature naturally generalizes for angles other than 180 degree.

Further Features: Further features are extracted from already established signal quality
indicators, e.g., DOP values as provided by the phone’s GPS system [16]. Feature
design techniques, which we consider worth of exploring in future work, we discuss in
Section 5.

4.3 Classification Results

As depicted in the procedural outline given in Figure 3, the classification model has to
infer present GPS positioning impairments, once provided with feature outputs, com-
puted as described in the previous section. To implement the classification model we
chose to use the Weka Machine Learning toolkit [28]. Prior to processing the fea-
ture outputs, we aggregate them by averaging over a five second window to remove
outliers2.

To evaluate the proposed classification concept, we collected a data set at three open-
sky, three urban, and three indoor exemplary locations, employing different phone-body
contexts in order to cover all twelve classification context categories listed in Section
4.1. At each location four consecutive measurements were collected at a fixed position,
and for two opposite directions e.g. facing north and south, resp. For each location and
orientation, measurements were undertaken by two users of differing stature in order to
investigate the influence of body physique on the GPS reception and on our impairment
classification process. In each measurement, four Google Nexus One phones were used
where one was placed 2 meters away as reference, one was placed in the user’s trouser
back pocket and the two remaining ones were held by the user with the Datastyle, 3
fingers and the Datastyle, 5 fingers grip style, resp. In total, 144 measurement traces
of five minutes each were collected. Each trace contains GPS position fixes and signal
quality measurements sampled at 1 Hz. This experimental setup was designed to collect
a balanced data set w.r.t. locations, users, orientations and body placement; however,
since at some locations positioning availability was not 100%, some categories naturally
have fewer data samples. Thus, we have applied a re-sampling filter to balance the data,
so that we are able to judge the performance of the classification model directly from
the classification accuracies and confusion matrices.

In Table 3 we present classification results for six and twelve categories, resp., and
for two different machine learning algorithms, the basic Naive Bayes algorithm and the
more accurate J48 decision tree algorithm and for three types of evaluations: firstly,

2 We evaluated different window sizes: For the window size chosen the classification results
benefited from the resulting noise removal, whereas for larger windows it suffered too much
from the size reduction of the data set.
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Table 3. Classification accuracy results for classifying GPS positioning impairments into six and
twelve categories, resp.

10 Fold Cross-Validation Different Persons Different Orientation
12 Categories
Naive Bayes 59 44 46
Decision Tree 94 50 51

6 Categories
Naive Bayes 73 71 66
Decision Tree 96 75 73

ten fold cross-validation on the complete data set, secondly, training with data for one
person and testing the resulting classification model with data from the other person
and, thirdly, training with data for the respectively first chosen orientation and testing
with the data of the respective opposite orientation. The results show that the decision
tree algorithm performs better than the naive Bayes algorithm with accuracy rates of
94% and 96% for twelve and six categories, respectively. However, there are indications
of overfitting because separating the training and test data, either w.r.t. to person or
orientation, lowers the results to 75% and 73%, respectively, for six categories and
even more for twelve categories. Similarly, training with data from only half of the
investigated environments and subsequent testing with the remaining data, results in a
lower classification accuracy –implicating, that for accurate classification in arbitrary
environments training data from a broader variety of locations would be essential, as
well as further development of the proposed features.

To further analyze how the errors are distributed, Table 4 shows the confusion ma-
trix for the results of the decision tree algorithm with six categories and when separating
training and test data w.r.t. the collecting person. From the matrix one can see that data
from the classes open-sky, no body and urban, no body are classified highly accurate,
whereas data from indoor, no body and indoor, body is not; the poor separation perfor-
mance of the algorithm in this case shows in high confusion values of 28.9% and 30.8%
between the two categories. This observation is in agreement with the statement made

Table 4. Confusion matrix for the decision three algorithms for six categories and with separate
training and test data depending on the collecting person

Classified As
open-sky urban indoor open-sky urban indoor
no body no body no body nody body body

open-sky, no body 92.1 0.1 1.2 6.6 0 0
urban, no body 3.3 88.2 6.8 0 1.5 0.3
indoor, no body 7.9 4.7 45.6 9.3 1.7 30.8
open-sky, body 8.7 0 6.4 70.0 1.7 13.1
urban, body 0 0 8.5 0 81.5 10.0
indoor, body 0 0 28.9 0.2 0.9 70.0
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above, that in weak signal environments it is harder to differentiate body effects: even
telling none body effects situations from those with body effects becomes challenging.

The results shown in Table 4 were obtained using an open-sky model that considered
each satellite independently which has the drawback that reference data ideally should
be collected at many places on the globe to account for local differences in observable
signal strengths. Thus, we have also evaluated our method using an alternative, simpler
model that combines gathered SNR data across satellites to compute the strength of GPS
reception per elevation, averaged over all satellites. When using this model instead of
the proposed open-sky model, the accuracy of the classifications, using either the naive
Bayes or the decision tree algorithm, did only decrease by 2 to 3 percent.

5 Discussion

The work presented shows that classification of GPS impairment sources can be done,
relying only on current GPS signal quality data obtainable on most last generation smart
phones. In the following, we discuss the classification concept presented, how to utilize
it, as well as future research directions for refining and improving it.

The feasibility of the classification concept in terms of classification accuracy has
been documented in Section 4. We expect further improvement from integrating addi-
tional features into our classification procedure. Among these will be the detection of
geometric clusters (w.r.t. elevation and azimuth) of similarly strong satellites, to detect
environmental features, such as window areas indoors, and street canyons in urban ar-
eas. Additionally, the consideration of the recent data history –additional to the most
recent GPS signal quality data snapshot, may allow to more reliably detect and keep
track of ’static’ features such as windows, walls or buildings, and to tell them apart
more easily from body features, which are always ’moving’ with the user. Worth inves-
tigating is also the incorporation of indicators for the user’s phone handling as well as
his context, e.g., his transportation mode, which are provided through data from sensors
other than the GPS. E.g., Vahdatpour et al. [23] propose to detect a device’s on-body
placement from accelerometer readings.

In terms of output semantics, an integration of further as well as more fine-grained
classes of user environments, distinguishing between different building types and trans-
portation vehicles, the user may currently be in, would be desirable, depending on user
requirements and application scenarios. W.r.t. resulting classification accuracies, Table
4 illustrates the naturally poorer absolute accuracy when classifying into a higher num-
ber of classes; note, though that the majority of false classifications still determine the
user environment correctly and only confuse similar phone postures and placements.

Furthermore, the issue that the diversity of the physiques of users result in drops in
classification performance, as noted in Table 3, has to be addressed: First, the system
should be trained through data gathered by subjects of various statures. Secondly, we
plan to evaluate the benefits of providing the user with a training procedure, designed
to determine the impact of the user’s physique on GPS reception w.r.t., comparing the
gathered data with the training data provided by users of various physiques.

The potential for application and middleware-specific benefits of the proposed
on-device sensing and classifying of GPS impairments in real-time require further
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investigation, for improving both ad-hoc and general user behaviour, as well as for en-
hancing the positioning quality and quality awareness of GPS receivers. The latter can
be achieved since identifying current impairment sources can inform the receiver which
satellites’ ranging data to trust: GPS receivers can ignore ranging information from indi-
vidual satellites which are believed to be distorted or currently received only indirectly;
while such selection has been shown to potentially improve GPS accuracy [11], know-
ing the current user environment is crucial for picking proper selection criteria: E.g., in
open sky environments stronger signals usually provide preciser ranging information,
whereas in indoor environments the contrary can hold, when the strongest signals are
likely to be signal reflections, reaching the user through windows, but only indirectly
and thus yielding large ranging distortations [8]. Furthermore, providing application
developers with access to the classifications is an example of benefitial seamfull design
for developers [14]: E.g., in a positioning middleware, which is designed following
a seamfull design approach to provide translucency w.r.t. the positioning process, the
classifications could be used as an input to adapt application logic.

To investigate to which extent the proposed classification can benefit ad-hoc and gen-
eral user behaviour, we are currently considering a phone application which provides
as feedback the classification results regarding reception impairments and sensed envi-
ronments and phone postures. Additionally, we want to explore ways to provide visual
or acoustic feedback, which not only assesses and classifies current GPS impairment
sources, but which can also guide the user towards a more beneficial phone holding
posture or placement, or help him identify more reception-beneficial spots within or
close to his current environment, e.g., using information collected by fingerprinting
GPS positioning quality [9]. Finally, the computational load and energy consumption
induced by different impairment classification schemes should be investigated, to en-
sure that real-time processing is feasible on common smart phones –also for feature
sets, larger than the currently used one. Our preliminary investigations indicate that
real-time processing on common smart phones is possible for the presented system.

6 Conclusions

We presented a concept for sensing present impairments of GPS reception and posi-
tioning performance, and for classifying impairment sources in terms of body, urban
and indoor context. Results obtained from a measurement campaign provided reason-
able classification accuracy and a proof of concept, that both the type of environment,
the user is currently in, as well as the way a user is currently holding or storing his
phone can be determined with reasonable accuracy through analysis solely of GPS sig-
nal quality data as available on most modern smart phones. Finally, in Section 5 further
improvements of the accuracy of the presented classification system were identified,
and directions for how to bring benefits of such a classification concept to the users
were illustrated.

Additionally, to assess user-body effects on GPS reception and to aid and inform
existing and future research and application systems, we have empirically evaluated for
different hand grip styles and body placements the respective effects on GPS positioning
performance of modern GPS enabled smart-phones. The evaluation showed that GPS
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reception depends highly on how the phone is kept or held, and that body-effects can
cause attenuation of average signal strength of up to 10-16 dB, which is more than that
caused by a typical brick wall, and can lead to a doubling of the median positioning
error as experienced in open-sky conditions in the absence of body effects.
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