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Learning Automata in Control Planning 
Strategies* 

Erik Cuevas, Daniel Zaldivar, Marco Perez-Cisneros, and Raúl Rojas 

Abstract. Intelligent Computational Optimization has been successfully applied to 
several control approaches. For instance, Planning Control uses information re-
garding a problem and its environment to decide whether a plan is the most suit-
able to achieve a required control objective or not. Such algorithm is commonly 
embedded into a conveniently located model inside a control loop. Planning pro-
vides a general and easy methodology widely used by a number of approaches 
such as receding horizon control (RHC) and model predictive control (MPC). Ac-
tually, MPC is the planning approach that has recently acknowledged a wide  
acceptance for industrial applications despite being highly constrained by |its com-
putational complexity. For MPC, the evaluation of the overall plan is based upon 
time-consuming approaches such as dynamic programming and gradient-like 
methods. This chapter explores the usefulness of planning in order to improve the 
performance of feedback-based control schemes considering one probabilistic ap-
proach known as the Learning Automata (LA). Standard gradient methods de-
velop a plan evaluation scheme whose solution lies on a neighbourhood distance 
from the previous point, forcing to explore the space extensively. Remarkably, LA 
algorithms are based on stochastic principles considering newer points for optimi-
zation as being determined by a probability function with no constraints whatso-
ever on how close they lie from previous optimization points. The proposed LA 
approach is considered as a planning system to select the plan holding the highest 
probability of yielding the best closed-loop results. The system’s performance is 
tested through a nonlinear benchmark plant, comparing its results to the Leven-
berg-Marquardt (LM) algorithm and some other Genetic algorithms (GA). 
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1   Introduction 

Advances in computational intelligence have brought new opportunities and chal-
lenges for researchers seeking for new ways to deal with complex and uncertain 
systems. In Engineering, many systems are too complex to be represented by an 
accurate mathematical model but still they demand the use of other approaches for 
designing, optimizing or controlling their behaviour. In recent years, several com-
putational intelligence based techniques have emerged as successful tools for  
solving difficult optimization problems commonly mishandled by traditional  
optimization methods.  

The presence of nonlinearities is commonly the main challenge. They impose 
several conditions to most industrial processes including actuator nonlinearities 
such as saturations, dead-zones and backlash. On the other hand, model inaccu-
racy also imposes hard constraints when a given mathematical model cannot  
exactly reproduce the plant’s behaviour. 

According to the control framework, planning requires the ability to build rep-
resentations similar to daily-life models. In turn, this fact allows generating pre-
dictions on how the environment would react to several plans. The ability of 
choosing among different alternative plans and executing among several se-
quences of actions has been mastered, almost exclusively by humans. Planning is 
the approach which allows generating complex behaviours surpassing the simple 
reaction to what is sensed. Moreover, Planning Control uses information about the 
problem and its environment, often embedded into some type of a model which 
considers many options, also known as plans. It aims to choose the best plan in 
order to achieve the required objectives in the control loop. 

Planning also provides a very general and easy methodology to apply. It has been 
exploited extensively in conventional control, e.g. receding horizon control and 
model predictive control. In comparison to intelligent approaches such as neural net-
works (Liu, 2001) or evolutionary algorithms (Fleming & Purshouse, 2002), it ex-
ploits the use of an explicit approximated model to decide what actions to take. How-
ever, like the fuzzy and expert system approaches, it is still possible to incorporate 
heuristics to specify which control actions are the best to use. In broad sense, plan-
ning approaches attempt to use both heuristic knowledge and model-based decisions 
in order to exert control. It is the fundamental reason for selecting a planning strategy 
over a simple rule-based system. It is a bad engineering practice to prefer the use of 
heuristics and ignore the information provided by a good mathematical model con-
sidering that planning strategies provide a way to incorporate this information. 

Planning has been successfully applied to solve several engineering problems 
(Ying-Pin et al., 2009; Huang, 2009), despite only few examples portraying its ap-
plication to control dynamical systems (Chauvin et al., 2008 and Son, 2006). Sev-
eral planning system approaches may be considered depending upon the problem 
and the number of plans considered by the solution. An classic example is the  
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Belief-Desire-Intention method (Seow & Sim, 2008), an effective scheme for finite 
and sensibly small plan number, which unfortunately constrains its use for control. 

The Model Predictive Control (Camacho & Bordons, 2008) is the planning  
approach that has recently acknowledged a wide acceptance for industrial applica-
tions. The control signal generation in MPC involves the on-line use of one para-
metric plant model, assuming an efficient control plan. Major design techniques of 
MPC include Model Algorithm Control, Dynamic Matrix Control, Internal Model 
Control and Generalized Predictive Control, among others (Garcia et al., 1989). 
The strategy of MPC is, at any given time, to solve on-the-fly a receding open-
loop optimal control problem over a finite time horizon, taking only the first result 
in the control sequence. MPC algorithms are very intuitive and easy to understand 
with practical constraints commonly imposed to the on-line algorithm (Mayne et 
al., 2000). MPC has received worldwide attention because of its simple implemen-
tation on industrial applications. In particular, chemical processes have shown a 
relatively slow dynamics which may easily accommodate the on-line optimization 
(Garcia et al., 1989).  

Several variants of the MPC methodology have been published. In Camacho & 
Bordons (2007), the plan evaluation is done over non-linear models while Nagy et 
al., (2007) have applied a similar approach to an industrial batch reactor. Further-
more, the idea of mixing iterative learning control to feedback model-based con-
trol is discussed by Cueli & Bordons (2008). The use of Set-Membership (SM) 
methodologies for approximating Model Predictive Control schemes (MPC) and 
their laws for linear systems has been recently proposed in Canale et al., (2009). 
Predictive control has demonstrated an excellent performance for both theoretical 
studies and industrial applications. However, its deployment for controlling non-
linear processes is complicated as the algorithm limits the kind of functions which 
can be effectively minimized by the optimization method. 

However, much of the work has been limited to optimization strategies (for 
plan evaluation and selection) which are based on dynamic programming or gradi-
ent methods. The use of such optimization techniques for non-linear control prob-
lems is multimodal, yielding a slow speed operation and a high computational 
complexity. This chapter explains the use of a stochastic approach known as 
Learning Automata (LA) to overcome such problems.  

Few works have been reported using some stochastic methodology either to in-
corporate LA into MPC or to generate a planning structure. Some exceptions are 
reported by Potočnik et al. (2008) whose work considers a probabilistic neural-
network as part of a MPC system, and by Chen et al. (2009) or Nagya et al. 
(2001), both reporting a Genetic algorithm as optimization method. 

The Learning Automata (LA) (Narendra & Thathachar, 1989) is an adaptive 
decision making method that operates within unknown random environments 
while progressively improving its performance via a learning process. LA is 
very useful for optimization of multi-modal functions, in particular when such 
a function is unknown and only noise-corrupted evaluations are available 
(Beigy & Meybodi, 2006). For such cases, a probability density function, 
which is defined over the parameter (action) space, is used to select the next 
point. The reinforcement signal (objective function) and the learning algorithm 
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are used by the LA to update the probability density function at each stage. 
Such automaton improves its performance to obtain an optimal parameter  
(action). Therefore, the parameter showing the highest probability would corre-
spond to a minimum as it has been demonstrated through rigorous proofs of 
convergence by Narendra & Thathachar (1989), Najim & Poznyak (1994), 
Thathachar & Sastry (2004) and Beigy & Meybodi (2009). 

The LA method does not need knowledge of the environment or any other ana-
lytical reference to the function to be optimized. It is actually its main advantage. 
Additionally, it offers fast convergence for estimation of several parameters 
(Torkestani & Meybodi, 2010). Other Gradient-based methods, such as the LM, 
require iterative updating procedures within the parameter space that usually ex-
hibit a slow convergence or local minima trapping (Park et al., 2000). The LA’s 
search for the optimum is performed over a probability space rather than seeking 
through the parameter space as it is commonly done by gradient optimization al-
gorithms (Meybodi & Beigy, 2002). Opposite to well-known Genetic Algorithms 
(GA) which commonly bias the whole chromosome population towards the best 
candidate solution exclusively (see Gao et al., 2009), LA can effectively handle 
challenging multimodal optimization tasks by means of effectively exploring the 
search space (Ikonen & Najimz, 2008). 

LA has been used for solving different sorts of engineering problems at several 
fields such as pattern recognition, adaptive control (Zeng et al., 2000), signal process-
ing (Howell & Gordon, 2001), power systems (Wu, 1995) and computer  
networks (Torkestani & Meybodi, 2010). Some effective algorithms have been lately 
proposed for multimodal complex function optimization based on the LA (see  
(Howell & Gordon, 2001; Thathachar & Sastry, 2002; Zeng & Liu, 2005; Beygi & 
Meybodi, 2006; Beigy & Meybodi, 2009)). Furthermore, it has been shown experi-
mentally that the performance of such optimization algorithms may surpass the ge-
netic algorithm (GA) as they reduce the searching space yielding a fast convergence 
(see for instance, Zeng & Liu (2005)). This chapter discusses the use of the continu-
ous action reinforcement learning automata (CARLA) as the chosen LA approach. 

The CARLA algorithm was first introduced by Howell, Frost, Gordon and Wu 
(1997). It has been demonstrated its effectiveness to solve some optimization tasks 
for a wide range of applications. In Howell et al., 2000, the CARLA algorithm is 
used to simultaneously perform on-line tuning of an PID-controller which has 
been applied to an engine idle-speed system. On the other hand, Kashki et al., 
2008, have shown experimentally that CARLA's performance for tuning PID coef-
ficients is superior to the performance shown by the Genetic algorithms (GA) and 
the Particle Swarm Optimization (PSO) operating over the same problem. 

This chapter also discusses how to emulate the functionality of planning in order 
to decide how to control a plant. The study focuses on typical plants considered in 
conventional control. The planning strategy is the MPC methodology, incorporat-
ing Learning Automata as the optimization algorithm. The use of a stochastic ap-
proach deals appropriately with the multimodal problem of the error surface as it 
accelerates the computation process and eliminates the controller complexity. The 
algorithm’s performance is measured over a well-known non-linear process: the 
surge-tank plant. The solution is compared to the Levenberg-Marquardt algorithm  
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(Kelley, 2000) and one Genetic Algorithm (Chen et al., 2009). The LM algorithm 
has been chosen because it has been regarded as the most popular for planning 
strategies showing a fair balance between precision and speed. In the same sense, 
GA is a well-known stochastic optimization methodology. 

The chapter is organized as follows: Section 2 presents a brief review on con-
trol planning strategies while section 3 discusses the foundations and theory of 
Learning Automata. In Section 4, the LA approach is implemented using the surge 
tank plant as a non-linear example. In Section 5, experimental results are  
presented while Section 6 concludes the chapter. 

2   Planning Strategy Design 

The concept of planning is commonly understood following common sense such 
as the case when humans plan their activities for the weekend or when a solution 
for a daily-life problem is discussed among them. The solution normally arises 
from a collection of actions to be followed aiming to achieve specific goals. Such 
kind of action-sorting can be named as an action plan and may fall into the  
following planning steps: 

1. Planning domain. Refers to the first representation of the problem to be 
solved. (i.e. a model). 

2. Setting goals. Essential to planning to define the required behaviour or 
overall aims.  

3. Sticking to the plan. Considering that sometimes humans simply react to 
situations with no considerations about the consequences of their actions. 
For the scope of this chapter, it would be better to fully develop a plan by 
reaching the goals completely. 

4. Selecting a strategy. The selection of the plan commonly involves pro-
jections into the future by means of a model. It requires considering a va-
riety of sequences of task and sub-goals to be executed. An optimization 
algorithm is required to choose the best plan to be followed by assuming 
a partial model of the problem. 

5. Executing the plan. After the selection, it must be decided how to  
execute that plan. 

 

It is important to consider that the chapter focuses on plants that are typically con-
sidered for conventional control. In the approach, planning systems are considered 
as computer programs that emulate the way in that experts may do planning in or-
der to solve a given control problem. The following section discusses on several 
issues regarding the model, the plan generation and the selection process. 

2.1   Closed-Loop Planning Configuration 

A generic planning system can be set on the architecture of a standard control sys-
tem as it is shown by Figure 1. According to the human planning and solving  
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framework, the problem domain is the plant and its environment. There are  
measured outputs y(k) which are variables of the problem domain that are obtained 
at step k, control actions u(k) which can affect the problem domain, disturbances 
d(k) which represent random events that can affect the problem domain and hence 
the measured variable y(k), and the goal r(k) which is called the reference input in 
conventional control terminology as it represents what is to be achieved within the 
problem domain. There are closed-loop specifications to define the performance 
and stability requirements. The types of plants which are considered in this section 
are defined as follows: 

( 1) ( ( ), ( ), ( ))y k f x k u k d k+ =  (1)

where y(k) is the measured output and f is a generally unknown smooth function of 
the state u(k), the measurable state is x(k) and the disturbance d(k). 

( ) [ ( ), ( 1),..., ( ), ( 1), ( 2),..., ( )]Tx k y k y k y k p u k u k u k q= − − − − −  (2)

where p and q represent the system order. The system is therefore considered to be 
causal, yielding ( ) 0y k p− =  and ( ) 0u k q− = , if k<p or k<q. 

Let 

( ) ( ) ( )e k r k y k= −  (3)

Equation (3) is also known as the tracking error. Generally, the objective is to al-
ways make the tracking error as small as possible as it asymptotically approaches 
zero forcing the output to follow the reference input. 

Considering a plan to be a sequence of possible control inputs and the ith plan of 
length N at time k being structured as follows 

[ , ] ( ,0), ( ,1),..., ( , 1)i i i iu k N u k u k u k N= −  (4)

The algorithm aims to develop a controller that is based on the planning strategy. 
One model and the optimization method are used to evaluate and score each plan 
(e.g. MPC). This will in turn provide a quality ranking for each plan. The plan is 
thus chosen (plan i*) using the control input at each time instant k as follows: 

*

( ) ( ,0)iu k u k=  (5)

The best plan 
*

[ , ]iu k N is chosen, using the first input from the control sequence 

as input to the plant. The process is repeated through each time step. Clearly, it is 
possible to use a lower frequency for the re-planning using for instance a new plan 
at each sampling step and executing the first two inputs from the optimal plan. 
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Fig. 1 Closed-Loop planning system. 

 
Also, the use of a number of controllers may be an option to implement the 

planning system. The current state and the given reference input, both may be 
considered as a “plan template” which in turn represents a particular plan. An op-
timization algorithm may thus be used to evaluate the performance considering the  
approximated model of the plant that must also include uncertainty. Considering 
that a continuous interval for the parameters might generate an infinite number of 
plans, an optimization algorithm must be employed for finding the best plan for a 
particular situation. 

2.2   Models and Projections into the Future 

A wide range of models are available depending on the problem domain, the capa-
bilities of the planner to store and use the model features and the goals to be 
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achieved. For instance, a planning model could be continuous or discrete (e.g., a dif-
ferential or difference equation) and it could be linear or nonlinear. It may be deter-
ministic or it may contain an explicit representation of the uncertainty of the prob-
lem, so plans may also be chosen considering such factors (Mayne et al., 2000). 

There is no comprehensive model which can be able to fully represent the plant 
and the environment yielding uncertainty. Hence there is always a bound regard-
ing the amount of time which is required to simulate the model far into the future. 
Such projection into the future may become useless after some time as it may go 
too far as a result of inaccurate predictions which yield poor information on how 
to select the best plan. The difficulty emerges from knowing how good the model 
is and how far it may be projected into the future. In this chapter a deeper analysis 
on such problems will not be considered. 

Considering a general nonlinear discrete time model as: 

( 1) ( ( ), ( ))y j f x j u j+ =  
(6)

being ( 1)y j +  the output, ( )x j  the state and ( )u j  the input for j = 0,1,2,..., N-1. 

Notice that this model can be quite general, if required. However in practical 
terms, only a linear model is generally available and may be sufficient. Let 

( , )iy k j denote the jth value at time k using the ith plan defined by [ , ]iu k N , and 

the state ( , )x k j . In order to predict the effect of plan i (as it is projected into the 

future) at each time k, it is required to calculate a step-set ahead considering j= 
0,1,2,..., N-1 , as follows: 

( , 1) ( ( , ), ( , ))i iy k j f x k j u k j+ =  (7)

Considering a simulation forward in time k, for j = 0, it begins 
with ( ,0) ( )x k x k= generating ( , 1)y k j +  with j= 0,1,2,..., N- 1. It is required to ap-

propriately shift values in x at each step yielding values of ( , )iu k j ,  j = 1,2,..., N-

1, for each i. 

2.3   Optimization Procedure and Plan Selection Method 

The set of plans (strategies) is "pruned" to only one which is considered as the best 
one to be applied at the current time as optimization is very important for plan-
ning. The specific type of optimization approach that is used for plan selection 
should be able to operate in multimodal surfaces, showing a light and fast compu-
tation. The previous requirements are usually difficult to solve by means of t 
raditional optimization algorithms, yielding relevance for the use of the LA as an 
optimization procedure. 

Prior to the optimization procedure selection, it is necessary to define a specific 
criterion to decide the best plan. Although there exist different performance crite-
ria (Bloemen et al., 2004), a cost function of the type ( [ , ])iJ u k N is used at this 

chapter to quantify the quality of each candidate plan [ , ]iu k n  by means of the 
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model f. First, it is assumed that the reference input r(k) is either known all the 
time or at least at time k, while it is also known up to the time k + N. Therefore, 
the cost function is defined as follows: 

1
2 2

1 2
1 1

( [ , ]) ( ( ) ( , )) ( ( , ))
N N

i i i
m

j j

J u k N r k j y k j u k jω ω
−

= =

= + − +∑ ∑  (8)

being 1 0ω >  and 2 0ω >  the scaling factors for weighting the importance of re-

ducing the tracking error (first term) or minimizing the use of control energy (sec-
ond term) to reduce the tracking error. Often 1ω  and 2ω  hold similar values.  In 

order to specify the control at time k, it is necessary to take the best plan, as it is 

measured by ( [ , ])iJ u k N , calling it the plan 
*

[ , ]iu k N , and generating the control 

using 
*

( ) ( ,0)iu k u k= (i.e. the first control input in the sequence of inputs which is 

the best).  
An important consideration is therefore the selection of the optimization 

method that will converge to the optimal plan and the choosing of one that can 
cope with the complexity presented by a large number of candidate plans. First, by 
focusing on the complexity aspect, it should be noticed that the inputs and states 
for the plant under consideration can take on a continuum number of values, de-
spite of particular applications which may only consider a finite number of values. 
This is the case for analog-control systems in particular considering actuator satu-
ration. For digital control systems, one data acquisition scheme may be available, 
yet hosting some quantization and theoretically yielding a finite number of inputs, 
states, and outputs, for the model fm. Digital computers are commonly used despite 
the fact that the number of operations may be very large. In general, there exist an 
infinite number of possible plans that must compute their own cost, ranking them 
according to such cost and hence selecting the best one. 

If non-linear and uncertain system characteristics dominate to the extent that a 
linear model is not sufficient for generating plans, then a nonlinear model can be 
used within the planner. Some type of nonlinear optimization method may there-
fore be used for the parameters that evaluate the infinite set of feasible plans. 
However, this may become a troublesome task since a non-linear model is used 
for plan generation. In turn, it forces the overall solution to consider non-linear op-
timization with generally no analytical solution available. 

There exists a wide variety of algorithms to tackle this problem such as steepest 
descent, Levenberg-Marquardt, etc. Such methods, however, do not guarantee 
convergence to an optimal plan or they may get stuck into local minima, generat-
ing divergent solutions or even not reaching one at all. Therefore the resulting plan 
after the non-linear optimization procedure cannot be assured to yield the optimal 
closed-loop performance. It is important to recall that for some practical industrial 
problems, engineers have managed to develop effective solutions via such a non-
linear optimization approach. This fact has given way to the main motivation  
beneath the use of LA as an optimization algorithm because it offers global opti-
mization when dealing with multimodal surfaces. The search for the optimum is 
done within a probability space rather than seeking within a parameter space as it 
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is done by other optimization algorithms. An Automata is commonly understood 
as an automaton, acting embedded into an unknown random environment and im-
proving its performance to obtain an optimal action. 

3   Learning Automata 

The concept of learning automata was first introduced by the pioneering work of 
Tsetlin (Tsetlin, 1973). He was interested into the behaviour modelling of biologi-
cal systems and subsequent research has considered the use of such learning para-
digm for engineering systems. Although LA and reinforcement learning aim to 
solve similar problems, their methodologies and algorithms greatly differ (Thath-
achar & Sastry, 2002). LA operates by selecting actions via a stochastic process. 
Such actions operate within an environment while being assessed according to a 
measure of the system performance. Figure 2a shows the typical learning system 
architecture. The automaton probabilistically selects an action (X). Such actions 
are applied to the environment, and the performance evaluation function provides 
a reinforcement signal β . In turn, such signal is used to update the automaton’s in-

ternal probability distribution whereby actions that achieve desirable performance 
are reinforced via an increased probability, while those not-performing actions are 
penalised or left unchanged depending on the particular learning rule which has 
been employed. Over time, the average performance of the system will improve 
until a given limit is reached. In terms of optimization problems, the action with 
the highest probability would correspond to the global minimum as demonstrated 
by rigorous proofs of convergence available in Narendra & Thathachar (1989), 
Najim & Poznyak (1994), Thathachar & Sastry (2004) and Beigy & Meybodi 
(2009). 

A wide variety of learning rules have been reported in the literature. One of the 
most widely used algorithms is the linear reward/inaction ( RIL ) scheme, which 

has been shown to guarantee convergence properties (see (Narendra & Thath-
achar, 1989)). In response to action ix , being selected at time step k, the probabili-

ties are updated as follows: 
 

( 1) ( ) ( ) (1 ( ))i i ip k p k k p kθ β+ = + ⋅ ⋅ −            

( 1) ( ) ( ) ( )j j jp k p k k p kθ β+ = − ⋅ ⋅ ,  if i j≠  
(9)

 

beingθ  a learning rate parameter 0 1θ< <  and [0,1]β ∈ the reinforcement signal; 

1β =  indicates the maximum reward and 0β =  is a null reward. Eventually, the 

probability of successful actions will increase to become close to unity. In case 
that a single and foremost successful action prevails, the automaton is deemed to 
have converged.  

Considering a large number of discrete actions, the probability of selecting any 
particular action becomes low and the convergence time can become excessive. In 
order to avoid such situation, the automata can be connected into a parallel setup  
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Fig. 2 (a) Reinforcement learning system and (b) Parallel interconnected automata. 

 
as it is shown by Figure 2b. Each automaton operates a small number of actions 
and the ‘team’ works together in co-operative manner. This scheme can also be 
used if multiple actions are required. 

Discrete stochastic learning automata can be used to determine global optimal 
states for control applications with multi-modal mean square error surfaces. How-
ever, the discrete nature of the automata requires the discretization of a continuous 
parameter space, and the level of quantization tends to reduce the convergence 
rate. A sequential approach may be adopted (Howell & Gordon, 2001) to over-
come such problem by means of an initial coarse quantization. It may be later re-
fined using a re-quantization around the most successful action. In this chapter, an 
inherently continuous form of the learning automaton is used to speed the learning 
process avoiding its own complexity. 
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3.1   CARLA Algorithm 

The continuous action reinforcement learning automata (CARLA) was developed 
as an extension of the discrete stochastic learning automata for applications  
involving searching of continuous action space in a random environment  
(Howell & Gordon, 2001). Several CARLA can be arranged in parallel just like 
the discrete automata (Figure 2b) searching multidimensional action spaces. As 
each CARLA algorithm operates on independent actions, the automata set runs 
within a parallel implementation defining several parameter values (see Fig. 2b). 
Communication between several CARLA’s algorithms is done through the envi-
ronment and one performance evaluation function.  

The automaton’s discrete probability distribution is replaced by a continuous 
probability density function which is used as the basis for action selection. It oper-
ates a reward/inaction learning rule similar to the discrete learning automata. Suc-
cessful actions receive an increase on their probability for future selection via a 
Gaussian neighbourhood function. The probability density is thus increased within 
the vecinity of such a successful action. The initial probability distribution may be 
equally probable over a desired range, yielding numerous iterations and converg-
ing to a Gaussian distribution around the best action value. 

If action x is defined over the range min max( , )x x , the probability density func-

tion ( , )f x n at iteration n is updated according to the following rule: 

min max[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise

f x n n H x r x x x
f x n

α β⋅ + ⋅ ∈⎧
+ = ⎨

⎩
 (10)

With α being chosen to re-normalize the distribution according to the following 
condition 

max

min

( , 1) 1
x

x
f x n dx+ =∫  (11)

with ( )nβ being the reinforcement signal in the performance evaluation and 

( , )H x r a symmetric Gaussian neighbourhood function centred on ( )r x n= . It 

yields 

2

2

( )
( , ) exp

2

x r
H x r λ

σ
⎛ ⎞−= ⋅ −⎜ ⎟⎝ ⎠

 (12)

Where λ  and σ are parameters that determine the height and width of the 
neighbourhood function. They are defined in terms of the range of actions as  
follows: 

max min( )wg x xσ = ⋅ −  (13)
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max min( )
hg

x x
λ =

−
 (14)

where the value wg  controls the width and the parameter hg sets the height of the 

Gaussian function which is added to the distribution (Equation 10). The speed and 
resolution of the learning process are thus controlled by the free parame-
ters wg and hg . Such parameters are set experimentally as they depend on the sys-

tem to be optimized.  
Let action x(n) be applied to the environment at iteration n, returning a cost or 

performance index J(n). Current and previous costs values are stored within a vec-
tor R(n) for computing the median and minimum values medJ  and minJ . Both val-

ues are required to calculate ( )nβ  as follows: 

med

med min

( )
( ) max 0,

J J n
n

J J
β

⎧ ⎫−
= ⎨ ⎬−⎩ ⎭

 (15)

To avoid problems with infinite storage and to allow the system to adapt to chang-
ing environments, only the last m values of the cost functions are stored in R(n). 
Equation (15) limits ( )nβ  to values between 0 and 1 and only returns nonzero 

values for costs which lie below the median value. It is easy to understand 
how ( )nβ  affects the learning process as follows: during the learning, the per-

formance and the number of selecting actions can be wildly variable generating 
extremely high computational costs. However, ( )nβ is insensitive to such extremes 

and to extreme values of J(n) resulting from a poor choice of actions. As learning 
continues, the automaton converges towards more worthy regions of the parameter 
space as the actions within such regions are chosen for evaluation increasingly of-
ten. As more of such responses are being received, medJ  gets reduced. Decreasing 

medJ  in the performance index effectively enables the automaton to refine its ref-

erence around the better responses previously received. Hence, it yields a better 
discrimination between the competing selected actions. 

In order to define an action value x(n) which has been associated to this prob-
ability density function, an uniformly distributed pseudo-random number z(n) is 
generated within the range of [0, 1]. Simple interpolation is then employed to 
equate such value to the cumulative distribution function: 

min

( )
( , ) ( )

x n

x
f x n dx z n=∫  (16)

For CARLA optimization methods, the probability density function is associated 
to each decision variable. It is through modification of such probability  
density functions and a sufficient number of iterations, that the optimal value of 
the decision variables is determined. At each step, the modification process is  
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trigged by the reinforcement signal ( )nβ  that corresponds to a predefined cost 

function. For implementation purposes, the distribution is stored at discrete points 
with an equal inter-sample probability. Linear interpolation is used to determine 
values at intermediate positions (see full details in (Howell & Gordon, 2001)). 

4   Implementation 

The proposed approach represents the overall planning system based on approxi-
mated models of the plant. Therefore, several plans may be available and the elec-
tion of the best plan must be defined by the LA through considerations on the per-
formance of the approximate model and the prospective results for some future 
instants. The election of each plan is made at each sampling instant k, just as it is 
discussed in sub-section 2.3. In the following section, the proposed planning strat-
egy is applied to a conventional control plant commonly known as the “surge 
tank”. The discussion begins by introducing the control problem which later 
moves to the designing and testing of the planning strategy. 

4.1   Level Control in a Surge Tank 

Consider the "surge tank," shown in Figure 3 modelled by 

2 ( )( )
( )

( ( )) ( ( ))

d gh tdh t c
u t

dt A h t A h t

⋅
= − + ⋅  (17)

where u(t) is the input flow (control input) which can be positive or negative  
(it can either pull liquid out of the tank or contribute to fill it in); h(t) is the liquid 

level (the output of the plant); ( ( )) ( )A h t a h t b= ⋅ + is the cross-sectional area of 

the tank with 0a >  and 0b >  (their nominal values are a = 0.01 and b = 0.2);  
g = 9.81; [0.9,1]c ∈ is a "clogging factor" for a filter in the pump actuator with 

c = 0.9. There also exists some obstruction in the filter, however in case c = 1, the 
filter is clean so there is no clogging ( c = 1 will be taken as its nominal value). 

d > 0 is a parameter related to the diameter of the output pipe (and its nominal 

value is d = 1). It is assumed that all these plant parameters are fixed but  
unknown. 

Let r(t) be the desired level of the liquid in the tank (the reference input) and 
( ) ( ) ( )e t r t h t= −  be the tracking error (here h(t) is considered as the system’s 

output y(t)). It is assumed that the reference trajectory is known in advance and 
h(0) = 1. In order to convert the problem to a discrete-time approach, the Euler 
approximation is used considering a sampling time of T = 0.1 seconds.  
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( )u t  
( ( ))A h t  

g 

c  
 

Fig. 3 The surge tank system 

4.2   Planning System 

For planning purposes, an uncertain and imprecise version of the nonlinear dis-
crete-time model (the "truth model") is considered. The model (here referred as m) 
can be considered as an approximation of the problem over which several plans 
are to be tested. The candidate plans are generated using such a model while the 
evaluation follows the LA approach from last section. Taking the model from last 
subsection as the true plant model, the planning strategy considers a quite different 
cross-sectional area in comparison to the truth model in (17), yielding: 

2( ( )) ( ( ))m m mA h t a h t b= +  (18)

with ma = 0.002 and mb = 0.2. The same nonlinear equations in Eq. 16 are used 

assuming the values of mc = 0.9 and md = 0.8. Figure 4 shows the cross-sectional 

area of the actual plant and the value considered in the model. There are evident 
differences between the real plant and its model which is used by the planning 
strategy. 

In order to apply the planning methodology to the controlled plant, a simple 
proportional integral (PI) controller is considered. In particular, if 

( ) ( ) ( )e t r t h t= − , it yields 

0

( ) ( ) ( )
k

p i
j

u k K e k K e j
=

= ⋅ + ⋅∑  (19)
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Fig. 4 Cross-sectional area A(h) for the actual plant (solid) and the projected model 
(dashed). 

 
Each plan will be considered as a controller with two coefficients yielding an 

infinite number of plans as such variables are continuous. The complete structure 
of the planning system contains the model that evaluates each plan and the  
optimization system which determines the best coefficients for the values –they 
must match the acting indexes based on the error evaluation. Figure 5 shows a 
block representation of the system. 

4.3   LA Optimization 

Each plan yields a controller considering coefficients pK  and iK . The problem 

thus focuses on finding the appropriate plan representing the couple of coefficients 
showing the best performance by using the projection of the control action. The 
intervals for each variables are chosen as [0,0.2]pK ∈  and [0.15,0.4]iK ∈ . For 

instance, if the PI controller of Equation 19 is calibrated using conventional tech-
niques to control the plant, the values pK = 0.01 and iK = 0.3 are assumed to be 

optimal. Figure 6 shows the controller performance. It is important to notice the 
fast response despite the overshoot. 

pK  and iK  are not constant as they are calculated at each time instant k by 

means of the optimization system (LA in this chapter). The LA algorithm chooses 
the parameters pK  and iK  according to a probability distribution, projecting them  
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into the planning strategy. The probability distribution should be modified if an 
inconvenient result emerges from the minimization period once it has finished ac-
cording to the performance index in Equation 8. After several iterations, it must 
converge to a probability distribution around the optimal parameter value. Equa-
tion 8 rules the minimization representing twenty projections into the future (N = 
20), 1ω  = 1 and 2ω = 1, with the reference input remaining constant at each time. 

In the optimization process, two LA (one for each parameter) are used. They 
are coupled only through the environment (model). The set R is limited to 10  
values while only 50 iterations of CARLA are applied. The CARLA parameters 

are fixed at 0.02pK

wg =  and pK

hg =0.3 for pK , and 0.02iK
wg =  and iK

hg  for iK . 

Next, the overall CARLA algorithm for the optimization is described: 

i Set iteration n=0. 
ii Define the action set { }( ) ,p iA n K K= such that [0,0.2]pK ∈  and 

[0.15,0.4]iK ∈  

iii Initialize ( , )pf K n  and ( , )if K n  to a uniform distribution between the 

defined limits. 
iv Repeat while 50n ≤  

 (a) Use a pseudo-random number generator between 0 and 1, for 
each selected action ( )pz n and ( )iz n . 

 (b) Select ( )pK A n∈  and ( )iK A n∈ , considering that the area 

under the probability density function is 
( )

0
( , ) ( )

pK n

p pf K n z n=∫ and
( )

0.15
( , ) ( )

iK n

i if K n z n=∫ . 

 (c) Project the control over a 20 discrete time intervals. 
 (d) Evaluate the performance using Equation (8). 
 (e) Append to R and evaluate the minimum minJ , and median, 

medJ , values of R, considering m=25. 

 (f) Evaluate ( )nβ via Equation (15). 

 (g) Update the probability density functions ( , )pf K n  and 

( , )if K n  using Equation (10). 

 (h) Increment the iteration number n. 

The learning system searches into a two-dimensional parameter space of pK  and 

iK , aiming to reduce the values for J in Equation (8).  
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Fig. 5 Block representation of the system including the planning strategy. 
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Fig. 6 PI controller performance with pK = 0.01 and iK = 0.3. 
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5   Results 

In order to test the operation of the planning strategy, the complete system is 
simulated during 30 seconds assuming a pre-determined signal reference r(k). 
Figure 7 shows the performance of the proposed approach applied to the plant 
with different values for 1ω  and 2ω . It is easy to identify different responses de-

pending upon the chosen value of 1ω  and 2ω .   
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(c) 

Fig. 7 Performance of the planning strategy applied to the plant considering different values 
for 1ω  and 2ω . (a) Setting 1ω =1 and 2ω =1, (b) setting 1ω =0.8 and 2ω =0.8 and (c) set-

ting 1ω =5 and 2ω =1. 
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Figure 7a presents results from setting 1ω =1 and 2ω =1. A slower rise-time can 

be seen in contrast to Figure 6 which uses the PI controller. The system manages 
to tune the planning strategy by adjusting 1ω  and 2ω  so that there is a small over-

shoot, still showing a reasonable rise-time. Figure 7b is obtained by setting 

1ω =0.8 and 2ω =0.8 while Figure 7c resulted after setting 1ω =5 and 2ω =1. 

 

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Time,k

Li
qu

id
 h

ei
gh

t, 
h

 
 

0

0.05

0.1

0.15

0.2

0

10

20

30

40

50
0

0.2

0.4

0.6

0.8

1

 

Kp

iteration

 

pr
ob

ab
ili

ty

 

Fig. 8 Evolution of the probability-density functions in k=93 for pK  and  iK  considering 

1ω =1, 2ω =1. 
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Fig. 8 (continued) 
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Fig. 9 Evolution of the probability-density functions obtained for pK and  iK in  k=156 

considering 1ω =1 and 2ω =1. 
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Fig. 9 (continued) 
 

Two CARLA automata are employed for each parameter pK and iK respec-

tively, both initialised by a uniform distribution. The election of each plan (values 
of pK  and iK ) is made at each sampling time according to the CARLA algorithm 

(see sub-section 4.3). The evolutions of the two probability-density functions are 
shown in Figure 8 and 9 considering two different sampling instants. Figure 8 
shows the evolution of values pK and iK  for k=93 while Figure 9 for k=156. It is 

straightforward to identify how the probabilities converge to a maximum through 
the iterations. The highest probability values pK  and iK  are used as parameters for 

the controller, just as it is provided by Equation 19. 
In order to test the algorithm’s performance, it is compared to the solutions pro-

vided by the Levenberg-Marquardt method (Kelley, 2000) and Genetic Algo-
rithms (Chen et al., 2009). The former has been regarded as the most common in 
planning strategy with control applications, showing an interesting trade-off be-
tween precision and speed. On the other hand GA is the most well-known stochas-
tic optimization methodology. 
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In particular, the Levenberg-Marquardt gradient-based algorithm (LM) is imple-
mented according to Press et al., (1992). The method minimizes Equation (8) and 
updates all parameters following the equation: 

T 1( 1) ( ) ( ( ( ) ( ( )) ( )) ( ( ) ( ( )n n n n n n nθ θ ε θ ε θ ε θ ε θ−+ = − ∇ ⋅∇ + Λ ∇  (20)

where θ  represents pK and iK , which are to be found, being 

1 2( ( )) ( ( ) ( )) ( )mn r n j y n u nε θ ω ω= ⋅ + − + ⋅ ( ( ))nε θ∇  the Jacobian and ( )nΛ  the 

Cholesky factorization term ( )n λΛ = I  with 0λ > . As for the LA algorithm, the 

computation of pK and iK according to (20) is also employed by the control  

strategy. 
On the other hand, the GA algorithm described in (Chen et al., 2009) takes the 

following values: population size=100, crossover probability = 0.55, mutation 
probability = 0.10, and the number of elite individuals = 2. The roulette-wheel-like 
selection algorithm and the 1-point crossover method are considered. The para-
metric setup is taken from the best set according to (Chen et al., 2009) which has 
considered lots of hand tuning experiments. 

The values 1ω  and 2ω  in Eq. (8) are chosen in the simulation as 1 2 0.8ω ω= = . 

Figures 10 and Figure 11 show the controller’s performance using the Levenberg-
Marquardt and the Genetic Algorithm procedure for the optimization. 
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Fig. 10 Performance of the planning strategy using the Levenberg-Marquardt (LM) method 
as optimization algorithm  

The results are averaged over 50 runs and summarized in Table 1. The values 
correspond to the worst case after simulation. Two different conditions are consid-
ered: first the optimization algorithm running 50 cycles and second reaching 120 
cycles. The results show that for the CARLA method, the settling time converges 
about 42% faster than other methods at 120 cycles showing a minimal overshoot. 
On the other hand, the LM algorithm seems to surpass the GA at 50 cycles. How-
ever, just the opposite performance is obtained at 120 cycles. 
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Fig. 11 Performance of the planning strategy using the Genetic Algorithm (GA) method as 
optimization algorithm 

Table 1 Results obtained by the Leverberg-Marquad (LM) method, the Genetic Algorithm 
(GA) and the Learning Automata (CARLA) approach. 
 

 50 cycles 
Average value ± Standard deviation  

 

120 cycles 
Average value ± Standard deviation 

 
 

Method 
Settling time 

(s) 
Percent  

overshoot 
(%) 

Settling time 
(s) 

Percent  
overshoot 

(%) 

 
LM 

 
3.61±0.3 

 
10.21±1.27 

 
3.05±0.25 

 
8.97±1.11 

GA 4.33±0.41 14.42±2.33 2.11±0.12 4.16±0.79 
CARLA 2.1±0.4 1.1±0.13 1.41±0.2 0.69±0.012 
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Fig. 12 Optimization evolution for LM, GA and CARLA algorithms. 
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Figure 12 presents the performance evolution for all methods (LM, GA and 
CARLA) with respect to the objective function J. It is evident the stochastic nature 
of the CARLA method as it tests several parameter values following a probabilis-
tic approach until a minimum is reached. There is no deterministic relationship 
among the chosen values because they are generated while the probabilistic den-
sity function evolves (according to Equation 10). It is worth to notice that the  
performance index is decreasing gradually and one local minimum trapping has 
appeared for the LM method as a result of the parameter (n+1) being a modified 
version of the former (n). On the other hand, although GA does not reach an ac-
ceptable minimum after 50 cycles, it does manage at 120 cycles. The evolution of 
the performance index J is summarized in Table 2, with averaging over fifty runs. 
Again the performance is analyzed for two different iteration conditions: 50 and 
120 cycles. 

Table 2 Performance index J as it is generated by the Leverberg-Marquard (LM) algorithm, 
the Genetic Algorithm (GA) and the Learning Automata method (CARLA). 

 
 50 cycles 

Average value ± Standard deviation 
 

120 cycles 
Average value ± Standard deviation 

 
 

Method 
Performance index J Performance index J 

 
LM 

 
3.11±1.24 

 
2.57±1.24 

GA 4.14±1.51 1.19±1.012 
CARLA 1.23±0.88 0.13±0.2 

6   Conclusions 

This chapter has discussed how to emulate the functionality of planning in order to 
exert control over non-linear plants. The procedure adopts the MPC methodology 
as planning strategy, following the CARLA algorithm as the optimization method. 
The system’s performance is tested over a nonlinear plant. The results are  
compared to similar procedures built upon the Levenberg-Marquardt (LM) algo-
rithm and Genetic Algorithms (GA). 

In this chapter, the LA is applied to select optimal parameters pK and iK   

belonging to a PI control structure. The MPC and the optimization algorithm run 
over an uncertain plant’s model. The CARLA algorithm has shown its abilities to 
probabilistically explore and reach optimal parameters. 

The approach is also suitable for real-time applications. Although it requires 
learning in real-time, it can be effectively applied to nonlinear optimization prob-
lems with slow convergence under more conventional methods. 

The proposed method also allows increasing the optimization speed in com-
parison to other algorithms such as LM and GA. The searching for optimal points 
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is performed on the probability space rather than on the parameter space. Finally, 
the CARLA approach is faster to reach the minimum performance index J in com-
parison to the LM and GA methods. 

Despite Table 1 and 2 indicate that the CARLA method can yield better results 
with respect to the LM and GA algorithms, it should be noticed that the chapter 
contribution is not intended to beat all the optimization methods which have been 
proposed earlier, but to show that the CARLA systems can effectively serve as an 
attractive alternative to traditional optimization methods for control purposes. 
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