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Abstract. The purpose of this chapter is to present the use of Genetic Algorithm
(GA) for solving multi-echelon inventory problems. The literature of GA dealing
with inventory control problems is briefly reviewed with particular focus on multi-
echelon systems. A novel GA based solution algorithm is introduced for effective
management of a stochastic inventory system across a distribution network under
centralized control. To demonstrate the performance of proposed GA structure, sev-
eral test cases with different operational parameters are studied and experimented.
The percentage differences between the total cost obtained by GA and the lower
bounds and simulation results are used as performance indicators. Findings of the
experiments show that the proposed GA approach can be very useful for obtaining
feasible and satisfying solutions for the centralized inventory distribution problem.

1 Introduction

Most consumer or industrial products are manufactured in and distributed through
multi-echelon systems. Inventory control is critical in multi-echelon systems be-
cause of the financial necessity of maintaining a sufficient supply of products to
meet both customers’ needs and manufacturing requirements. Opportunity cost is
the main component of inventory related costs; money tied up in inventories is not
available for some other use. Inventories also create additional operational cost by
consuming physical space, personnel time, and capital. Holding of inventories can
cost anywhere between 20% and 40% of the product value, hence the effective man-
agement of inventory is critical in supply chain operations (Ballou, 1999).

The importance of a good inventory management in a supply chain is fully
recognized by practitioners and researchers. Besides the traditional inventory
management problems, the variability of orders increases in moving up from the
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downstream members to upstream members in the supply chain. This phenomenon
is known as bullwhip effect (Lee et al., 1997) which causes excessive inventory, loss
of revenue, low customer service levels, and inaccurate production plans throughout
supply chain systems. Much of the literature has shown that the bullwhip effect can
be minimized through information sharing and synchronized inventory control in
the supply chain (Cachon and Fisher, 2000). Hence the supply chain performance
might be improved by the lowering of inventory levels and the reduction of the cycle
times.

The scope of this chapter is confined to use of Genetic Algorithms (GA)s for
handling operational issues of inventory control and management in multi-echelon
inventory networks. The chapter is structured in six parts. Section 2 gives some
fundamental definitions and briefly explains the complexity of multi-echelon inven-
tory control problems. Section 3 provides a review of literature on use of GAs to
solve multi echelon inventory control problems and evaluates the state of GA ap-
plications in these areas. The studies are classified into three categories according
to the network structures they handle. Section 4 presents a novel GA structure for
a stochastic lot sizing problem in a centralized distribution system. Model structure
and the steps involved in development of the proposed GA scheme, such as chromo-
some representation, initialization, fitness function development, and determination
of operational parameters are explained in detail in relevant subsections. The perfor-
mance of GA is demonstrated through experiments conducted on several test cases
with different operational parameters. Finally, section 5 discusses the issues and
boundaries related to the application of the GA on inventory control problems. The
chapter is closed with discussions for further research directions.

2 Inventory Control in Multi-Echelon Systems

A multi-echelon inventory system refers to a multistage production/inventory sys-
tem in which each stage obtains its supply from its predecessor(s) and supplies its
supply to its successor(s). Inventory control in multi-echelon systems deals with the
problem of determining the best replenishment sizes of items at each stage, mostly
with the purpose of minimizing the total cost of the system which usually covers the
costs of carrying inventories, costs of making orders, costs of inter-location trans-
fers, and costs of shortages.

Several multi-echelon inventory/production systems can be modeled as a serial
system (Clark and Scarf, 1960). In a serial system, each installation has at most one
predecessor and at most one successor. An illustration of a serial system is given
in Figure 1. The customer demand only arises at the lowest level. Each installation
is replenished from its predecessor and the highest installation replenishes from an
outside supplier. It is, in general, considerably easier to deal with serial systems than
with other types of multi-echelon systems. The main reason to discuss such systems
is to obtain preliminary results to study more complex systems.
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Fig. 1 A Serial Inventory System.

Within a manufacturing context, a final product is sometimes the result of a pro-
cess which can be decomposed into several levels, broadly corresponding to assem-
bly activities. As illustrated in Figure 2, in an assembly system, each installation has
at most one immediate successor. In such systems, the safety stock levels should be
positioned wisely and the assembly schedule should be done carefully for effec-
tively managing the component procurement and maintaining service levels on the
demand side.

Fig. 2 An Assembly Inventory System.

Meanwhile, inventory distribution systems are generally divergent. A distribution
system involves a number of installations at the lowest level which satisfy customer
demand and in turn act as customers of higher level installations. Figure 3 shows
such a system with two levels: a central warehouse and a number of retailers.

Fig. 3 A Distribution Inventory System.

There exists substantial amount of studies for multi-echelon inventory control,
concerned with the analysis and modeling of systems under different operating



332 D. Çelebi

parameters and modeling assumptions. Extended reviews about the topic might be
found in van Houtum et al. (1996) and Gumus and Guneri (2007).

Two distinct configurations for multi-level inventory systems can be consid-
ered according to the center of management. First is the decentralized systems,
where each member of the network takes replenishment decisions on its own and
based on only local data. Though it is simple to construct and control such sys-
tems, it may not be the most effective. Recently, to increase the competitiveness
and effectiveness of their supply chains, companies have begun to set cooperative
agreements to manage inventory, which requires sharing demand information and
setting mutually agreed upon performance targets for the supply chain. However,
most of the time, it’s mistakenly assumed that efficiency can be attained simply by
sharing information and forming strategic alliances within supply chain partners
(Silver et al., 1998). In fact, only few companies are able to fully exploit the advan-
tages of collaboration in their supply chains (Holweg et al., 2005), because incor-
porating customer demand information into inventory control processes to develop
sound inventory management is critical to long term survival and competitive ad-
vantage. It is important not only to exchange information, but equally, to alter the
replenishment and planning decision structure so that a range of additional benefits
can be achieved. As a result, a second type of systems become popular as cen-
tralized systems, in which the stock control activities of the whole system become
concentrated within a particular member or group of members. These members
take the full control of the inventory replenishment of the chain, and use demand
and cost visibility in planning supply operations. The centralization of inventory
management might provide cost reductions and improved service levels due to the
decreased uncertainty and better utilization of resources for production and trans-
portation (Waller et al., 1999).

Considering centralized solutions for inventory control in supply chains intro-
duces computational difficulty. Schwarz (1973) shows that in a one-warehouse,
multi-retailer situation, the form of the optimal policy can be very complex; in par-
ticular, it requires that the order quantity at one or more of the locations vary with
time, even if all relevant demand and cost factors are time-invariant. Federgruen
(1993) notes that algorithms for determining optimal strategies are complicated even
for most deterministic demand systems, and complexity dramatically increases in
models with stochastic demand.

For centralized control of multi-echelon systems, Clark and Scarf (1960) intro-
duce the concept of echelon stock. Echelon stock consists of the stock at any given
installation plus stock in transit to or on hand inventory at a lower installation. They
have shown that order-up-to policies based on echelon stock inventories are optimal
for serial inventory systems with periodic review. Their optimality results for serial
systems are later generalized to an infinite time horizon by Federgruen and Zipkin
(1984), to assembly systems by Rosling (1989), and to batch ordering by Chen
(2000). However, determination of optimal lot sizes by provided models for large
scale problems still suffers from computational burden. Moreover, it is not possible
to show that echelon stock inventory policy is optimal for distribution systems due
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to the allocation problem, and for some cases a strategy based on echelon stock
inventories might be inferior to a installation stock based strategy (Chen, 2003). The
optimization of such systems requires the analysis of a multi-dimensional dynamic
programming.

There isn’t any known stochastic, multi-period, multi-location model capable of
handling complex systems like inseparable cost structures and nonlinear
transportation costs (Federgruen, 1993; Chen, 2003). In a practical setting, it is con-
sidered too difficult to solve the distribution lot sizing problem by dynamic pro-
gramming numerically due to the curse of dimensionality. Even for the smallest
number of retailers and periods, the exact solution is considered to be impracti-
cal (Federgruen and Zipkin, 1984).

3 GAs for Multi-Echelon Inventory Problem

During the last two decades, the opportunities for efficient control of multi-echelon
inventory systems have increased substantially (Axsater, 2003). One reason is new
information technologies which have created a completely different infrastructure
and increased the possibilities for efficient supply chain coordination. Another rea-
son is progress in research, which has resulted in new and efficient techniques for
solving hard combinatorial optimization problems. Meta-heuristics such as tabu
search, GA and simulated annealing, are examples of such tools which have be-
come popular tools for solving multi-echelon inventory control problems due to
computational complexity of such problems.

GA has received considerable attention regarding their potential as an effective
optimization technique (Gen and Cheng, 2000). First pioneered by Holland (1975),
GA is powerful stochastic search and optimization technique based on principles
of natural selection and evolution that has been widely studied, experimented and
applied in many fields in engineering (Goldberg, 1989; Holland, 1975). Many of the
real world problems, which might be difficult to solve by traditional methods but
are ideal for GA.

There exists wide range of studies which implement GA to cope with the multi-
echelon inventory management problem. Table 1 provides a review of how GAs
have been used to solve multi-echelon inventory problems and following sections
give brief summaries of these studies, classified under three main categories accord-
ing to the network structure they handle.
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3.1 Serial Networks

Fakhrzad and Khademi Zare (2009) present a combination of GA with Lagrange
multipliers for lot-size determination in a multi-stage, multi-product and multi-
period production scheduling problem. First, the original problem is converted to
several individual problems using a heuristic approach based on the limited re-
source Lagrange multiplier. Then, each individual problem has been solved using
GA combined with one of the neighborhood search techniques. Each chromosome
is represented by a (T ×2m) matrix where m is the number of elements and T is the
number of periods. This representation consists of lot-size (X) and inventory values
(I) for each element in each period which is illustrated as follows:

⎡
⎢⎢⎢⎣

X11 X12 . . . X1T I11 I12 . . . I1T

X21 X22 . . . X2T I21 I22 . . . I2T
...

...
...

...
...

...
...

...
Xm1 Xm2 . . . XmT Im1 Im2 . . . ImT

⎤
⎥⎥⎥⎦

Fitness function is developed to have two modes. One mode represents the cost value
for the feasible solution and the other indicates the feasibility of the solution. A so-
lution for the initial population is obtained using WagnerWhitin (WW) algorithm.
Two different combinatorial operations, namely a memetic algorithm and WW com-
bination, are used for crossover operation to generate new offsprings. Experiment
results over a set of 60 test problems show that proposed hybrid algorithm solves
the problem in much less time, with better solutions and lower costs compared to
memetic algorithm and CPLEX solution.

Daniel and Rajendran (2005), study the performance of a single-product serial
supply chain operating with a base-stock policy. A single period, multi-echelon,
single product model is formulated to optimize the inventory (i.e. base stock) levels
in the supply chain to minimize the total supply chain cost, comprising holding and
shortage costs for all installations in the supply chain. A set of actual values of the
base-stock levels are used to code all the genes in a chromosome that represent
every member in the chain. The chromosome length is set equal to the number of
installations, because every installation in the supply chain is assumed to operate
with a particular base-stock level. Every chromosome in the population is evaluated
through simulation and fitness value is computed by using the objective function
value. Test results illustrate that the proposed GA performs superior to a random
search procedures for defined experiment sets.

Both Kimbrough et al. (2002) and O’Donnell et al. (2006) manage to decrease
the bullwhip effect by implementing GA on a serial supply chain model based on the
MIT beer game. Each player in the game makes their own ordering decisions based
on only the orders from the next downstream player. The inventory and backorder
cost are calculated for every period in the simulation experiments with each unit
cost being constant throughout and the sum of the two types of costs, called total
cost, is used as the criteria for GAs to determine the optimal ordering policies.
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3.2 Assembly Networks

Torabi et al. (2006) investigate the lot and delivery scheduling problem in a simple
supply chain where a single supplier produces multiple components on a flexible
flow line and delivers them directly to an assembly facility. The main objective is
to find a lot and delivery schedule that would minimize the average of holding,
setup, and transportation costs per unit time for the supply chain where the de-
cision variables are production sequence vectors at each stage and machine. The
problem is formulated as a mixed integer nonlinear program and a Hybrid Genetic
Algorithm (HGA) is developed to solve the problem. The proposed HGA incorpo-
rates a neighborhood search into a basic GA that enables the algorithm to perform
genetic search over the subspace of local optima.

Two different encoding schemes are considered to represent the discrete part
of a solution for the problem. In the first format, each chromosome is composed
of m sub-chromosomes, where m gives the number of stages. So that, each sub-
chromosome represents the production schedule in that stage. At stages with only
one machine, the corresponding sub-chromosomes are permutation vectors of size
n where n is the number of components. At stages with multiple parallel machines,
the corresponding sub-chromosomes are composed of a component symbol list
and a partitioning symbol list, in which integers are used to represent sequence
of components and asterisks are used to designate the partition of components to
the machines. This first format is good for representing a complete solution for the
problem, because it covers the entire solution space and there is a unique string asso-
ciated with every solution for the problem. However, there are difficulties associated
with crossover and mutation operations, so a new encoding scheme is considered.
The second format relates to the set of permutation vectors of size n. Each permu-
tation vector represents the order in which the given set of components is processed
at each stage. Such a vector by itself does not specify the complete solution, so an
appropriate procedure out of two constructive heuristics is used to construct a com-
plete solution for every given permutation vector. The fitness function is set equal
to the objective function of the problem and the optimal lot sizes associated to each
solution representing a given production schedule is solved by a NLP.

Vergara et al. (2002) develop an evolutionary algorithm that calculates the pro-
duction sequence at each supplier that would minimize transportation, setup, and
inventory holding costs across a multi-component assembly system. The goal of
the proposed GA is to determine a common delivery cycle time and production se-
quence of components for each member of a synchronized supply chain. Integer
value representation is used for encoding the solutions. First three places in each
chromosome contain the total cost, synchronized delivery time, and the minimal cy-
cle time. The rest of the chromosome is composed of the production sequences of
components for each supplier. The last space in the chromosome is used for holding
the cost of the assembly center. The performance of the algorithm is tested through
the comparisons with an enumeration procedure that identifies the global minimum.
On the average, GAs are observed to find the global optimum in 97% of the cases
and the error term is less than 0.0038 in the remaining cases.
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Berretta and Rodrigues (2004) deal with the multistage capacitated lot-sizing
problem with an objective of determining the production lot-sizes of multiple items
that minimizes the production, inventory and setups costs subject to demand and
capacity limitations. A memetic algorithm approach is used for solution of the prob-
lem. Each solution is represented by a matrix of size 2N ×T (where N is number
of items and T number of periods), with lot-size and inventory of each item in each
period. Each solution of the initial population is created using the WW algorithm.
Fitness of each solution is composed of two values, one for value of objective func-
tion, the other for representing the feasibility of the solution. Each chromosome uses
a local search algorithm to improve its current fitness value and transfers the best
solution to the population.

Two different crossover schemes are used to stimulate diversity of solutions in
the population. First crossover method determines a production lot size of offspring
randomly over parent chromosomes and updates the inventory level accordingly.
Second method uses WW algorithm, which changes the setup costs of some items
randomly and develops a solution for each item by WW algorithm. The performance
of the algorithm is tested through comparisons of solutions with lower bounds eval-
uated by Lagrangean Relaxation in three groups of instances. The average gaps
between the lower bound and the heuristic solution are observed to be between than
11−12%.

Hnaien et al. (2009) examine supply planning for two-level assembly systems
under lead time uncertainties. They handle an optimization problem for a single pe-
riod system where the finished product demand for a given due date is supposed to
be known. The objective is to find the component release dates in order to minimize
the sum of the holding costs of the components and the shortage cost for the fin-
ished product. Each chromosome has been coded with an array of integer numbers
where each gene of a chromosome represents an order release date. Therefore, with
a chromosome length equal to number of components, a complete encoding that
ensures that all solutions to the problem is represented and considered by the algo-
rithm. The expected total cost of the system is used to evaluate the fitness of each
individual of the population. Two selection phases are considered for generation of
new generations. First is a reproduction selection to determine the individuals on
which the evolutionary operators will be applied. Second is a replacement selection
concerning the evolution of the population from a generation to the next. A standard
single point crossover and mutation is then applied to the generated offsprings to
introduce some diversity in the population. The mutuant gene is selected randomly
at each generation by sampling a uniform random number. In addition to the typ-
ical genetic operators, also a local search is incorporated in order to speed up the
convergence of the algorithm.

3.3 Distribution Networks

Syarif et al. (2002) consider a single period capacitated distribution problem which
also consists of the binary decisions of opening plants and Distribution Center (DC).
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The number of the DC’s to be opened is assumed to be given as a constant. The ob-
jective is to minimize the total transportation, inventory, ordering and warehouse
costs under capacity constraints, while fully supplying deterministic customer de-
mand. A spanning tree based GA is used to solve the model. Vertex encoding is used
with Prüfer number representation which establishes a unique sequence of length
n− 2 associated with the tree with n vertices. The chromosome consists of five
sub-strings as illustrated in Figure 4. The first and the second substrings are binary
digits representing opened/closed plants and DCs, respectively. The last three num-
bers are the Prüfer numbers to represent the production and distribution pattern for
each echelon.

Fig. 4 Chromosome Structure Used by Syarif et al. (2002).

The infeasibility that may result from capacities and distribution structures are
eliminated with a repair strategy, simply by replacing the digits in Prüfer numbers
until the number of connections in the supplier set is equal to the number of con-
nections in the supplier plants set for each node. A single point crossover operation
is used. For mutation, an inversion-displacement operation is employed. Inversion
selects two positions within a chromosome at random and inverts the substring be-
tween these two positions where displacement selects a substring at random and
inserts it in a random position. The results of various experiments show that pro-
posed algorithm provides near optimal solutions both for small and large scaled
problems.

Yokoyama (2002) present a model and a solution procedure based on GA for
single item distribution system with stationary and probabilistic demand. The ob-
jective is to determine the target order-up-to levels for DCs and transportation quan-
tities to minimize the expected total inventory related costs and transportation costs.
Simulation and linear programming are used for calculating the estimates of ex-
pected costs. Each solution is represented by a integer array of size equal to the
number of the DC where each gene holds the order-up-to level for the given DC.
Total expected cost for a given chromosome is estimated by simulation where op-
timal transportation quantities for given inventory levels are determined by linear
programming. Two-point crossover operation, roulette wheel selection, and random
replacement mutation operations are implemented for generating offsprings. The
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results of the algorithm are compared to the results of random local search algo-
rithm. GA is observed to produce slightly better results than random search within
same computation times.

Han and Damrongwongsiri (2005) develop a model to define stochastic, multi-
period, two-echelon inventory with the many-to-many demand-supplier network
problem to develop a (R,S) inventory management system where R refers to the
replenishment period and S is the order-up-to level. GA is applied to derive op-
timal solutions through a two stage optimization problem. First stage covers the
optimization of inventory order-up-to levels of the warehouses based on historical
demand. Binary representation of the order levels is used for encoding where the
length of the bitstream assigned to each warehouse is determined by the capacity
of the warehouse. The fitness function is calculated as the sum of inventory carry-
ing and shortage costs. The optimal inventory order-up-to levels determined in the
first stage are used as inputs of the second stage, distribution planning. The goal of
this stage is to determine the optimal transportation quantities of the retailers that
minimizes inventory related costs. Binary encoding is preferred for chromosome
representation, where the bit length assigned for each retailer is determined by both
the capacity of the retailer and the total warehouses’ maximum inventory level. First
population is randomly generated and roulette wheel approach is used for selection.
Crossover is done by one-cut-point method and random point mutation is used. Re-
sults of numerical experiments do not contain any performance comparisons with
other methods but various experiment sets are presented to illustrate the flexibility
of the method to handle many uncertainty factors.

The approach developed by Han and Damrongwongsiri (2005) is implemented to
solve a real industry case by Wang and Wang (2008). Both the mathematical model
and the GA structure are adopted for optimizing the distribution operations of a
medical products manufacturer which supplies to four Nordic region markets from
three geographically distinct warehouses. The demands at each market are assumed
to be normally distributed with parameters forecasted through past data and inde-
pendent of each other. Again no data is provided for performance comparisons but
it’s noted that GAs are able to compute the trade-off of all parameters and derive a
good inventory and distribution plan, which might lead to a reduction up to 80% on
the total cost of the system.

4 A GA Approach for Stochastic Lot-Sizing in a Centralized
Distribution Network

This section presents a novel GA structure and the implementation issues for so-
lution of a stochastic lot sizing problem in a centralized distribution system. To
author’s knowledge, this is the first study that investigates the use of GA for
the capacitated lot sizing problem of One Warehouse - Multi Retailer (OWMR)
system under stochastic and time varying demand. A similar study is given by
Celebi and Bayraktar (2008) for deterministic demand case. The main
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contribution of the proposed GA structure is the domain specific encoding scheme
and the fitness value calculation technique that uses dynamic programming for
evaluating best order structure of the warehouse. This structure can be utilized as
a collaborative supply chain planning tool to effectively manage the distribution
process.

This section also presents an extensive numerical study over simulations which
identifies the parameter settings where the proposed GA based method performs
better or poorer than a widely used approximation technique. These results also
implicitly shows the impact of cost parameters on the performance of the studied
distribution network.

4.1 Model Description

A two-echelon distribution inventory system with a single central warehouse and
multiple retailers is considered. The network is controlled by a central distributor
which is occupied with all relevant information. That means, the distributor moni-
tors the end customer demand and retailers’ inventory levels in order to decide on
order quantities, shipping and timing of replenishment orders.

Retailers directly replenish their stocks from the warehouse where warehouse
orders from an outside supplier. It is assumed that the outside supplier have infinite
source of supply or work at very high service levels so delays from the supplier
side are negligible. All facilities follow a periodic inventory order policy where
the lengths of planning periods are the same for all retailers and the warehouse.
Customer demands are probabilistic and only placed in retail locations. It is assumed
that the demand rates might change from one period to another, but remain constant
within a period. This is not a restrictive assumption when the period length is kept
small enough compared to the planning horizon. Moreover, this assumption is a
good representative of the practical situation when demand quantities are forecasted
by a time series method. In such a case there exists a demand forecast for given
period, and the variations of demand within the period are estimated by a probability
distribution.

An inventory problem for T periods is considered. There is a fixed ordering cost
incurred with each replenishment with a cost function δ (q);

δ (qn
t ) =

{
cqn

t + Kn
t , if qn

t > 0
0, if qn

t = 0,
(1)

where Kn
t is the setup cost, c is the unit purchasing cost, and qn

t is the replenishment
quantity at period t. During each period, the stock on hand is decreased by an amount
equal to the demand.

In addition to ordering cost, for all locations, carrying inventories incurs holding
costs at a rate of h which is charged on the inventory level at the end of each period.
Unfilled customer demands are fully back-ordered at retailer level and the retailer
shortages are penalized a rate of π , the back-order cost per unit.
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L(xn
t ) =

⎧
⎨
⎩

h∑xn
t

u=0(x
n
t −u)P(u)+ π ∑∞

u=xn
t
(u− xn

t )P(u), if xn
t > 0

π ∑∞
u=0(u− xn

t )P(u), if xn
t ≤ 0.

(2)

In equation (2), xn
t is used to express the inventory level and P(u) is the probability

of observing u units of demand.
The allocation decision made for shipping to a total number of N retailers has

direct impact on warehouse’s costs. At the beginning of each period, warehouse al-
locates a total of ∑N qn

t units to the retailers. Delivery of a replenishment arrives �
periods after the allocation decision, when the stock on hand is increased by the
amount of the replenishment. Since customer transactions only occur at retailer
points and the warehouse directly replenishes from an infinite supply source, there
aren’t any costs associated with inventory shortages on warehouse side. Inventory
carrying costs for the warehouse for holding y units of inventory, is denoted by
H(y,qt) and given as:

H(y,qt) = h0(y−∑
N

qn
t ) (3)

In a centralized system the optimal policy is not necessarily the aggregation of in-
dividual optimal policies because of the dependencies among members and costs
associated with those dependencies. The purpose of our model is to obtain the min-
imum total cost for the overall system which is formulated as follows:

Minimize
T

∑
t=1

(
H(yt ,qt)+ δ (pt)+

N

∑
n=1

(
L(xn

t )+ δ (qn
t )

))
. (4)

subject to

xn
t+1 = xn

t −Dn
t + qn

t−� n = 1, . . . ,N (5)
N

∑
n=1

qn
t ≤ yt t = 1, . . . ,T (6)

xn
t ≤Cn t = 1, . . . ,T,n = 1, . . . ,N (7)

yt ≤C0 t = 1, . . . ,T (8)

The solution of model presented above for the lot sizing problem of the centralized
system gives the minimum value of objective function (4) under given constraints.
The first two terms in the objective function refer to total expected warehouse in-
ventory costs. Last two terms are the sum of expected inventory related costs of
all retailers. First constraint is a balance equation which adjusts the inventory lev-
els between two consecutive periods. This is not a simple linear equation due to
the stochastic variable Dn

t . Second constraint limits the number of shipped prod-
ucts from warehouse to all retailers with warehouse’s on-hand stock in period t.
Constraints (7) and (8) ensures that retailers’ and warehouse’s inventory holding
capacities are not exceeded.

Due to the stock allocation problem of distribution systems, the optimality for-
mulations are functions of distributor’s and N retailers’ inventory levels and can not



342 D. Çelebi

be broken down in the form of independent formulations (Clark and Scarf, 1960).
The state of the system at the beginning of period t can be described by the vec-
tor (xt ,qt−�n+1, . . . ,qt−1). For any period t ∈ 1 . . .T , the minimum total expected
cost function is defined as ft (xt ,qt−�+1, . . . ,qt−1,yt , pt−�0+1, . . . , pt−1). Here xt and
qt refers to the vector of the inventory levels and replenishment quantities of all
retailers, yt and pt refers to the inventory level and replenishment quantity of the
warehouse for period t. The optimal lot sizing policy in centralized system is given
by one combined formulation due to the dependencies between retailers’ and dis-
tributor’s orders. The recursive formulation for period t then becomes:

ft (xt ,qt−�, . . . ,qt−1,yt , pt−�0 , . . . , pt−1) = (9)

min
0≤yt≤C0

{
min

0≤∑qt≤min(yt ,Cn)

{
δ (qt)+ δ (pt)+ H(yt , pt)+ L(xt)

+ ft+1(xt + qt−�−u,qt−�+1, . . . ,qt ,yt + pt−�0 −∑qt , pt−�0+1, . . . , pt)P(u)
}}

.

Solving (9) recursively for T periods gives us optimal policy for allocation and
inventory replenishment strategy of the overall system.

4.2 Motivation for Using Genetic Algorithms

For finding the global optimum convexity plays a crucial role in minimization prob-
lems. Finding a local optimum solution is an important step of solving the global
problem, however it is not sufficient most of the time. Traditional optimization tech-
nique works by obtaining the zeros of a function’s derivative, and testing for op-
timality. Such derivative tests obtain local information, and hence yield solutions
that are locally optimal. Removing the convexity assumption on the function to be
optimized, this method may prove severely inefficient, as it cannot provide anything
more than local information. In such a case, the characteristics of the solution space
should be investigated for ensuring the global optimum.

The problem presented in section 4.1 is proven to be NP-complete (Florian et al.,
1980) and there is no known method to decompose the model into smaller ones.
Besides the non convex behavior of total cost function, (4), distribution network lot
sizing problem consists of variables that are diverse in their behavior, boundaries,
and the probability distribution type. Moreover, the individual objective functions of
the parties are not linear and multiple objectives can not be combined into a single
metric. The combinatorial and sequential behavior of the two-echelon lot sizing
problem can not be easily handled by traditional optimization techniques. Then it is
reasonable to investigate a search algorithm to approximate the global minimum of
the inventory distribution problem.

The known methods developed so far need considerable computational effort to
obtain an optimal solution and so are only able to solve relatively small problems
within a reasonable time. The problem requires a considerable computational burden
when the problem instance is large. Even for a simple example which represents a
very small instance of a problem, the total cost function might have multiple local
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minima (Çelebi, 2008). A search algorithm that only uses the gradient ascent will
be trapped in a local optimum, but any search strategy that analyzes a wider area
will be able to cross the local optimum and achieve better results.

GAs are capable of handling non-linear functions and can also deal with multiple
objectives. They do not have any restrictions on the nature of data or mathematical
requirements about the problem structure, unlike most traditional approaches. Due
to their evolutionary nature, they can handle any kind of objective functions and
constraints (linear or nonlinear) defined on discrete or continuous, or mixed search
spaces (Gen and Cheng, 1997).

One of the difficulties when dealing with non convex optimization problems by
search algorithms is that one often falls into local optima. When this happens, of-
ten the global optimum is then impossible to reach. The probabilistic evolution of
operators makes GA very effective at performing global search and reaching global
optima. The GA based solution methods have the advantage of being able to gen-
erate both convex and non convex points of the optimization curve, accommodate
nonlinearities in the objective functions, and not be restricted by the peculiarities of
a weighted objective functions (Scott et al., 1995).

One should keep in mind that as it is common with all heuristic methods, GAs
cannot guarantee to locate the global optimum in a problem space in a finite time.
But still, for some engineering problems such as many design and simulation tasks,
the most desirable solution may not be the conventional global optimum but instead
a solution representing a robust answer to the problem in hand is sought.

4.3 The Proposed GA Structure

The construction of a GA for any problem can be separated into four distinct and
yet related tasks (Hou et al., 1994):

1. The choice of the representation of the solutions,
2. The determination of the fitness function,
3. The design of the genetic operators to be used for creation of new generations,

and
4. The determination of the probabilities controlling the genetic operators.

Each of the above four components greatly affects the solution obtained as well as
the performance of the GA. The summary of these steps involved in the proposed
GA structure are described in detail in the following sections.

4.3.1 Encoding and Initialization

The most critical problem in applying a GA is in finding a suitable encoding of the
examples in the problem domain to a chromosome. A good choice of representation
will make the search easy by limiting the search space, a poor choice will result in
a large search space. Our candidate solutions are combinations of all possible order
quantities of each retailer and the distributor, for a number of T periods, hence the
phenotype space P is the set of all such combinations. To design a GA defined by
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a representation of phenotypes from P, integer value representation is used where
each chromosome represents retailers order up to levels for each period. Each chro-
mosome takes the following sequence in the proposed encoding scheme:

C = q1
1q1

2 . . .q1
T q2

1 . . .q2
T . . .qN

1 . . .qN
T

Here, qn
t is the direct value representation of the replenishment quantity for retailer

n in period t. Each chromosome is a string of N × T genes, where N is the total
number of retailers and T is the number of periods. That means, ith gene in the
sequence is the replenishment quantity for retailer �i/T� in period i(mod T ). Each
gene can take values between 0 and Cn which corresponds to the inventory carrying
capacity of retailer n.

This design guarantees the completeness and the correctness requirements of en-
coding. Completeness is simply a consequence of using allocation quantities for all
retailers in all periods. The correctness condition is provided by a simple check be-
fore fitness calculation. If the inventory on hand exceeds the capacity level for the
given allocation quantity in any period, allocation quantity is updated to provide a
feasible inventory level. Hence, feasibility of the chromosomes are kept in the legal
domain without use of any additional constraint. First population is created with
randomly generated individuals.

4.3.2 Fitness Evaluation and Selection

The role of the fitness function is to represent the requirements for improve-
ment (Eiben and Smith, 2007) for a given individual. The quality of the given solu-
tion f , represented by a chromosome C , is determined by the minimum expected
total cost of the system given by equation (4). The total cost represented by any
chromosome is evaluated in three steps:

1. Each retailer’s expected costs for the replenishment scheme proposed by the
chromosome are calculated by using equation (10) for total of T periods.

gn
t (x

n
t ,q

n
t−�, . . . ,q

n
t−1) =

{
δqn

t + L(xn
t ) (10)

+
∞

∑
u=0

gt+1(xn
t + qn

t−�−u,qn
t−�+1, . . . ,q

n
t )P(u)

}
.

2. The replenishment quantities are summed up to develop the aggregate allocation
quantities (∑qt ) and the ordering policy of the distributor is evaluated by dynamic
programming formulation as given in equation (11).

ft (yt , pt−�0 , . . . , pt−1) = min
pt≥0

{
δ pt + H(yt ,∑qt) (11)

+ ft+1(yt + pt−�0 −∑qt , pt−�0+1, . . . , pt)
}
.

3. The objective function value is taken as the sum of the cost of warehouse
(Eqn. (10)) and total cost of retailers (Eqn. (11)).
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Resulting raw fitness scores are converted to values in a range that is suitable for
the selection function. To avoid the effect of the spread of the raw scores, Rank
fitness scaling method is used which scales the raw scores based on the rank of
each individual instead of its score (Gen and Cheng, 1997). The selection of mating
parents is done through roulette wheel algorithm. The pseudocode of this algorithm
can be found in (Eiben and Smith, 2007).

4.3.3 Creation of New Generations

At each iteration, the current population is used to create the offsprings that make
up the next generation through a general replacement scheme, so that, the chro-
mosomes in the current population are completely replaced by the offspring. That
means, population size is kept constant in its initial level through generations. The
creation of next generation is conducted by three types of children. Figure 5 presents
the schematic illustration of the three types of children.

Fig. 5 Schematic Illustration of Three Types of Children.

Elite children are the individuals in the current generation with the best fitness
values. These individuals are automatically passed to the next generation without
any modification. Such an elitist algorithm is recorded to be able to speed up the
performance of the GA significantly by preventing loss of good solutions once they
are found (Zitzler et al., 1998). Experimenting on varying numbers (from 0 to 10)
of elite chromosomes, the number of elite chromosomes is set to 2 which has given
highest scoring individuals and provided best results in means of fitness value and
time of convergence.

Crossover children are created by paring up the chromosomes and combining the
vectors of a pair of parents. Intermediate recombination, which creates a new value
for each gene of the offspring that lies between those parents. The function creates
the child, c from parent1, and parent2 using the following formula:
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offspring = αparent1 +(1−α)parent2,

where α is a random number generated from the range [0,1].
This method protects the feasibility of the chromosomes but might assign frac-

tional numbers to the offspring genes. Such genes are repaired by rounding the
number to the nearest integer for representing a valid order quantity.

Mutation children are created by introducing random changes, or mutations, to
a single parent. To introduce variations into the chromosomes, Random Resetting
in multiple points is implemented. Genes are selected according to a probability of
being mutated, Pmut , which is defined by the mutation rate. Selected genes are then
replaced with a value which is a realization of uniformly distributed random variable
within the capacity range.

4.3.4 Setting Operational Parameters for GA Cycles

The selection of the best genetic parameters such as population size, number of gen-
erations, probability of crossover, and probability of mutation, is one of the impor-
tant issues for the successful application of GA. Identifying the best parameters for
a specific task is an open and challenging problem. Larger population sizes reduce
the chance that GA will return a local minimum by searching the solution space
more thoroughly but it also causes the algorithm to run more slowly. Experimenting
on different population sizes, for the given problem instance it is observed that a
population size of 50 gives satisfactory results both in sense of convergence speed
and fitness values for our problem.

Two genetic operators, crossover and mutation, competes over the field of conver-
gence. High crossover rate decreases the level of variation in the population so forces
the convergence, while mutation forces diversity in the population. As a result of this
fact, an optimum setting for the operator probabilities should have been determined.
Optimal rates of these operators are problem specific and there are no defined rules
on selecting the best GA operator fractions. To overcome this, the crossover and
mutation rates are determined through several GA experiments for different rates
of crossover and mutation by linear variations as suggested by Davis (1991). The
experiment sets are composed by all combinations of 11 different crossover frac-
tions over [0.5,1.0] and 11 different mutation rates over [0,0.2]. The performance
of each configuration is calculated by the value of the objective function, which is
total system cost.

First one problem instance with 10 periods which represents the maximum period
is used in our test cases. GA is run 121(11×11) times to observe each configuration
of crossover and mutation rate combinations. Two terminating conditions are set:
First on the maximum number of generations, as 500, and second, on the number
of generations without any improvement on fitness function, as 100. The minimum,
average fitness function values of these three runs are recorded and crossover and
mutation parameters are set to ones which give the minimum fitness values. The
experiment results are presented in Figure 6.
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Fig. 6 Determination of Best Crossover and Mutation Rates.

Experiment results show that one of the crossover or mutation rates perform su-
perior than others. Generally, high crossover rates are observed to give better results
when mutation rate is also increased, however best results are obtained by a mod-
erate crossover fraction, 0.7. On the average, mutation rate of 0.12 is observed to
perform slightly better than others.

4.4 Numerical Study and Discussions

To demonstrate the performance of proposed GA approach, several test cases with
different operational parameters are experimented. All algorithms are implemented
in Matlab due to its efficiency for numerical computations, advanced data analysis
capabilities, visualisation tools, and special purpose application domain toolboxes.
The built-in functions of population creation, crossover, mutation, and fitness evalu-
ation of Matlab-GA toolbox are modified according to the structure of the proposed
GA design. Cost function and dynamic programming algorithms are coded as a
common set of interdependent functions which are both used by GA algorithm and
Balance Assumption (BA).

Since the optimal policy and the associated cost are unknown, instead of com-
paring the cost obtained by GA to the optimal cost, the cost of the system eval-
uated under BA and the cost realizations of system simulations(sim) are taken as
the benchmark values. BA implies that in each period the downstream stock levels
are balanced in such a way that a cost minimizing allocation without restrictions
on the allocation variables will never result in negative allocation quantities. Thus,
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the system-wide cost calculated analytically under BA provides a lower bound for
the true optimal cost. Detailed explanation of the balance assumption may be found
in Eppen and Schrage (1981).

Assumption of zero lateral transshipment among retailers leads to a relaxation of
the original optimization problem and is infeasible in real life. To provide a real-
istic benchmark value, an estimate for the real cost of the given policy (by BA) is
obtained by simulation, so the cost of a feasible policy can be achieved. Each sim-
ulation is run for at least 100 times and terminated as soon as the width of a 99%
confidence interval about the average cost function was within 1% of the average
cost. The relative gaps between the results of the GA runs and the lower bound and
the simulation runs (%εlb = 100× GA−LB

LB and %εsim = 100× SIM−GEN
LB respectively)

are used as measures to assess the performance of the proposed GA method. Since
the optimal cost of the original problem is between LB and GA, a small relative
gap (εlb) implies that GA value is close to the optimal cost of the original problem,
meaning that GA leads to an accurate approximation of the true optimal cost. On the
other hand, even though the ”balance assumption” might seem somewhat unrealis-
tic, it has since been used extensively in the inventory literature and has been shown
to produce solutions of very good quality in many different situations, (see for exam-
ple Eppen and Schrage (1981); Federgruen and Zipkin (1984); van Houtum et al.
(1996)). Policies that can provide considerable improvements over the BA in less
or equal computation times, might be considered as well performing. Hence, a large
relative gap between the simulation of ”balance” policy and GA policy (%εsim) is
an indicator of the success of proposed GA structure for solving the given inventory
distribution problem.

Due to the curse of dimensionality, only the case with two retailers with demands
distributed over integers in [0,4] with probabilities [0.1,0.2,0.4,0.3] is considered.
This approximately corresponds to a moderate level of coefficient of variation. Both
lead times for the retailers and the distributor are taken as 1. A limited number of
test cases are structured by varying following cost parameters:

Fixed Costs: A variety of cases is considered for fixed replenishment costs de-
fined by three different values for the retailers, (Kn = 0,5,10) and three for the
distributor:(K0 = 20,10,0)).

Inventory Carrying Costs: Inventory carrying cost of retailers is taken constant,
hn = 1, and the variation is provided by changing the added value of the distrib-
utor: (h0 = 0.1,0.5,0.9).

Shortage Costs: The values of shortage costs are chosen as 4, 9, 19 and 99 which
approximately correspond to no-stockout probabilities of 80%, 90%, 95% and
99% respectively.

A full factorial design is used to generate experimental cases that corresponds to
108 problem instances. All test cases are set for 10 periods.

First the lower bound and relevant simulation values for each test case are calcu-
lated. Then GA is run three times for each test and the run is stopped when either
a pre-specified number of searches reaches to 1000, or there is no improvement in
the best fitness value for 100 generations. The performance of each configuration is
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calculated by the value of the objective function, which is the expected total system
cost. The best of these three runs which provides the minimum cost is used. The rel-
ative gap measures (%εlb and %εsim) for scenarios 1−108 are graphically depicted
in Figure 7.

Fig. 7 Experiment Results.

When these 108 test instances are ranked with respect to %εlb, 61 of them have
%εlb > 50%. Among these cases only 11 of them have a %εsim < 0, that means for
remaining 50 cases, balance assumption fails to provide a good lower bound and an
effective replenishment policy. In general, GA produced better results than balance
assumption in 82 out of 108 cases with an %εsim > 0. Savings over the total cost that
are achieved by use of GA is 21.82% on the average, while savings up to 136.23%
are recorded.

In order to see the influence of the cost parameters on the results, test results
are also given in Tables 2 and 3, where data is summarized with respect to one
parameter at a time. For example, the left part of Table 2 is dedicated to display the
effect of the fixed replenishment costs of retailers. The first column gives the values
of various measures for a set of 36 test instances in which Kn = 0. The measures used
in the analysis are minimum, maximum and average %εlb (denoted by %ε−lb , %ε+

lb
and %ε̄lb, respectively), the minimum, maximum and percentage of improvement
(denoted by %ε−sim, %ε+

sim and %ε̄sim, respectively), and the number of the cases that
GA produced better and worse results than the simulation of balance assumption
(denoted by ⊕ and �, respectively).

The findings can be summarized as follows:

1. In the test bed of 36 problem instances with Kn = 0, there are 14 scenarios with
%εsim < 0. This number decreases with increasing value of Kn. Similarly, the
average improvement is 13.31% when retailer fixed replenishment costs are zero,
and the improvement increases up to 30.79% with increasing value of Kn. This is
in line with expectations. Balance assumption implies zero transshipment costs
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Table 2 The summary of the results - Fixed Replenishment Costs

Retailers’ Fixed Costs Distributor’s Fixed Costs
Kn = 0 Kn = 5 Kn = 10 K0 = 0 K0 = 10 K0 = 20

%ε−lb 22.19 26.98 30.37 40.69 27.22 22.19
%ε+

lb 147.06 173.80 165.65 173.80 86.96 73.57
%ε̄lb 48.83 71.81 75.37 105.35 50.56 41.32
%ε−sim −22.98 −12.13 −4.13 −44.08 −31.86 −20.79
%ε+

sim 136.23 91.69 82.28 136.23 79.45 62.23
%ε̄sim 13.31 22.59 30.79 33.34 17.35 14.78
⊕ 22 27 33 29 26 27
� 14 9 3 7 10 9

Table 3 The summary of the results - Inventory Carrying and Penalty Costs

Inventory Carrying Costs Penalty Costs
h0 = 0.9 h0 = 0.5 h0 = 0.1 π = 4 π = 9 π = 19 π = 99

%ε−lb 22.19 23.40 23.68 22.19 28.22 29.85 22.49
%ε+

lb 173.80 165.65 133.42 165.65 173.80 148.52 100.47
%ε̄lb 74.57 63.82 58.84 68.26 67.50 74.02 53.19
%ε−sim 0.58 −4.73 −44.08 −22.19 −35.84 −44.08 −20.79
%ε+

sim 136.23 78.01 38.72 136.23 99.09 74.05 62.17
%ε̄sim 48.80 21.42 −4.76 36.43 27.44 14.60 8.82
⊕ 36 34 12 21 22 19 20
� 0 2 24 6 5 8 7

between retailers thus increasing transshipment costs decreases the effectiveness
of the method. That means when retailer replenishment costs are high, GA may
provide better solutions than the policies based on balance assumption.

2. Similarly, when the distributor’s replenishment costs are high, GA tend to per-
form better on the basis of comparisons to LB. This is not parallel to compar-
isons to SIM. Though increasing K0 doesn’t have a visible impact on the number
of cases that GA performs better, the level of average improvement decreases
dramatically.

3. Highest impact on performance of GA is observed on added value of the trans-
portation to retailers. The performance of GA is top when the costs of carrying
inventories in the warehouse is high. When h0 = 0.9, GA never performed poorer
than the policy based on balance assumption even though there is not signifi-
cant change on the value of %ε̄lb. The average improvement on the cost value
is almost 50% where it reaches up to 136.23%. On the other hand, GA perform
poorest when the carrying costs of inventories in the warehouse is comparably
lower than carrying costs of retailers. When h0 = 0.1, policy based on balance
assumption produces better results than GA in 67% of the cases.
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4. The value of the penalty costs has the lowest impact of GA performance. No
trend can be observed on the number of the cases GA performs better and the
value of the %ε̄lb with increasing value of the penalty costs, but the average
rate of improvement %ε̄sim decreases visibly with increasing value of the penalty
costs. The reason is not that GA performs poorer in such cases but balance as-
sumption based policy performs better. For example, when π increases from 4 to
99, the average improvement of GA drops from 36.4% to 8.82% but the average
gap between the GA and the lower bound, %ε̄lb, also decreases from 68.26% to
53.19%.

The experiment results show that GA generally produce better results than the pol-
icy based on balance assumption. However in some cases, the solution provided by
GA give higher total system costs than the benchmark. This shows that as in com-
mon with all heuristic methods, GAs cannot guarantee to locate the global optimum
in a problem space in a bounded time. This is mainly through stochastic search be-
havior of the GAs. The results can be improved by increasing the number of trials
and the computation time of the algorithm, and also experimenting on different GA
operators such as population size, mutation and crossover. Besides, in practice the
most desirable solution may not be the conventional global optimum but instead a
solution representing a robust answer to the problem in hand is sought. Hence, for
a large system with a high number of periods and retailers, GAs can be used as
an effective algorithm for solving the multi-echelon inventory distribution problem
under stochastic demand.

This study only presents the comparison of the proposed GA method with most
known and used heuristic, for a system under a limited number of parameters. The
experiment results can be strengthened by a more comprehensive numerical study,
specifically targeting to assess the performance of the proposed heuristic. Another
extension can be comparison of these results with the results obtained by other
heuristic solutions, as well as the real optimal solution of the system.

5 Conclusion

GAs have been applied to a wide variety of multi-echelon inventory control prob-
lems in various studies. Tests on artificial data sets show that GA are pretty suc-
cessful for determining a good solution even for the most complicated problems.
However, some barriers might exist for the successful implementation of the pro-
posed methods to real life. The complexity of today’s business world means that it
is often not possible to link external sources of information into the vendor’s pro-
duction and inventory control processes (Stank et al., 2001), as in many cases the
same level of detailed information cannot be obtained from all of the distribution
channels. For some environments, centralization may be expensive, very complex,
or the coordination may be too much of a burden. This is especially true for large
systems, which would require substantial computational power to store and process
large amounts of information for centralized decision-making. A practical contribu-
tion can be made if GAs are applied to industrial inventory problems as integrated
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with interactive decision support systems where application data and test results on
the algorithms performance are collected from real life applications.

Main assumption of multi-stage inventory control is the share of information
among the supply chain members, however in practice, this assumption might be
restrictive. The companies involved in strategic or incidental supply-network part-
nerships might be not willing or prepared to share information needed required for
coordination of supply chain. Hence, the participants might agree to share only par-
tial information due to the unwillingness of the participants to share private infor-
mation such as cost structure. A distributed algorithm based on evolutionary algo-
rithms that allows the distributed system to perform just as well as a centralized one
may be designed for such cases. For example, Shin (2007) propose a framework for
such a collaborative coordination mechanism: The coordinator solves the aggregate
problem and delivers the solution results to all members. Each member evaluates
the performance of the delivered solution from the coordinator using its own cost
structure, solves its own problem in terms of its own objectives and measures the
performance, calculates its penalty, and returns the penalty with its solution to the
coordinator. Then, the coordinator selects the facility with the largest penalty value,
modifies and solves the problem again, and redistributes the solution results to the
all members. Not only the local optimization procedures but the collaboration mech-
anism can easily be optimized by GA to provide a global optimal solution.

For most of the multi-echelon systems, uncertainty is an unavoidable factor of
inventory control and recognized to have a major impact on the manufacturing and
service functions (Wilding, 1998). Uncertainties such as high variability in demand,
manufacturing processes or supply create problems in planning, scheduling and con-
trol that jeopardize delivery performance (Fisher et al., 1997). Incorporating uncer-
tainty might pose severe problems for the current GA structures developed for multi-
stage inventory control. Explicitly, incorporating uncertainty will undoubtedly result
in very complex models. However, the power of GAs to deal with such complex
models proposes a promising topic of investigation and new research opportunities.



Nomenclature

� Transportation lead time, page 13
π Unit Shortage Cost, page 13
c Unit purchasing cost, page 12
C0 Maximum replenishment quantity for the distributor, page 14
Cn Inventory holding capacity of retailer n, page 14
Dn

t Demand faced by retailer n in period t, page 13
h Unit Inventory Holding Cost, page 12
Kn

t Fixed Cost per Order of retailer n at period t, page 12
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N The number of retailers, page 13
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Acronyms

BA Balance Assumption
DC Distribution Center
GA Genetic Algorithm
HGA Hybrid Genetic Algorithm
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