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Abstract. Many problems can be formulated as optimization problems. Among the
many classes of algorithms for solving such problems, one interesting, biologically
inspired group is that of meta-heuristic optimization techniques. In this introduc-
tionary chapter we provide an overview of such techniques, in particular of Genetic
Algorithms, Ant Colony Optimization and Particle Swarm Optimization techniques.

1 Introduction

Many engineering problems involve heuristic search and optimization where, for
example, an input parameter vector for a given system has to be found in order to
optimize the system response. Also, many engineering optimization problems, once
discretized, may become combinatorial in nature, which gives rise to certain dif-
ficulties in terms of solution procedure. In the first instance many problems have
enormous search spaces, are NP-hard and hence require heuristic solution tech-
niques. A second difficulty is the lack of ability of classical solution techniques
to determine appropriate (global) optima of non-convex problems involving numer-
ous (local) optima. Under these conditions, approaches based on recent advances
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in computational optimization techniques have been shown to be advantageous and
successful compared to classical approaches.

The single contributions of this book detail the successful use of computational
optimization techniques that use (meta-)heuristic search to solve non-convex and
complex engineering problems. In the following, we want to give a short overview
of basic meta-heuristic optimization techniques from a more academic perspective,
before detailing the application aspects of these methods.

2 Evolutionary Computing

Many scientific problems can be viewed as search or optimization problems, where
an optimum input parameter vector for a given system has to be found in order to
maximise or to minimise the system response to that input vector. Often, auxiliary
information about the system, like its transfer function and derivatives, is not known
and the measures might be incomplete and distorted by noise. This makes such prob-
lems difficult to be solved by traditional mathematical methods. Here, evolutionary
optimization algorithms, which are based on biological principles borrowed from
nature, can offer a solution. These algorithms work on a population of candidate
solutions, which are iteratively improved so that an optimal solution evolves over
time.

This chapter discusses the general problem of search and optimization before
it introduces the systems view, followed by a definition of search space and fit-
ness landscape. It then explains the process of optimization and the concept of
optimization loops. It continuous with introducing biological-inspired evolutionary
optimization algorithms, namely Genetic Algorithms and Genetic Programming.
Other evolutionary inspired optimization techniques, namely Ant Colony Optimiza-
tion and Particle Swarm Optimization are also discussed.

2.1 Systems

Every process or object can be seen as a system. Fenton and Hill [9]] define a sys-
tem as “...an assembly of components, connected together in an organised way, and
separated from its environment by a boundary. This organised assembly has an ob-
servable purpose which is characterised in terms of how it transforms input from
the environment into output to the environment.” By definition, a system has exactly
one input channel x and exactly one output channel y (Figure [I)). All interactions
with the environment have to be made through these interfaces.

Both input and output can be vectors or scalars. The input is called the indepen-
dent variable or parameter, because its value(s) can be chosen freely, and results
in the output y, the so-called dependent variable. If the present state of the system
does not depend on previous states but only on the current input, the system is said
to be a steady state system, the output of the system can be described as a function
of the input y = f(x).
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Fig. 1 Generic system.

2.2 Objective Function

In order to rate the quality of a candidate solution x, it is necessary to transform
the system response to x into an appropriate measure, called the objective or fit-
ness. If the system has only one output variable, the system output y equals the
fitness. If y has more than one component the output variables of the system have
to be combined into a single value, computed by the so called objective function
or fitness function. In general, there are four approaches to judge the system out-
put: aggregation, the Changing Objectives Method, the Use of Niche Techniques
and Pareto Based Methods [[10]. The most often used method is aggregation. In its
simplest case, the fitness function F(x) equals the weighted sum of the components
vi = ¢ - Fi(x) of y, where ¢; is the weight for component i:

F(x)=co+c1-Fi(x)+-+cp-Fy(x) (1)

2.3 Search Space and Fitness Landscape

If all the possible candidate solutions are collected in an ordered way, this collection
is called the search space. Sometimes, this space is also referred to as input space.
For an optimization problem of dimension n, i.e. a system with n independent pa-
rameters, the search space also has dimension n. By adding the dimension Fitness
or Costs to the search space, one will get the (n+ 1)-dimensional fitness landscape

[23].

2.4 Optimization

Optimization is the process of selecting the best candidate solution from a
range of possibilities, i.e. the search space. In other words, a system S, that has to be
optimized in terms of a quality output value y, is brought into a new state that has
a better quality output value y than the previous state. This is done by changing the
independent input parameters x. The error function describes the difference between
the predefined objective Y esireq and systems response f(x) to the input x.

EVVOV()C) = Ydesired *f(x) ()
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Fig. 2 Example of a fitness landscape for a system with two input parameters.

Usually, the aim is to find the vector x’ that leads to a minimal error for the system
S, i.e. the minimal departure from the optimal output value:

Error(x') =0 3)

Often, a predefined target value is not known. In this case one tries to gain a fitness
value that is as high as possible in case of maximisation, or as low a possible in the
case of minimisation.

Ideally, one would evaluate all possible candidates and choose the best one. This
is known as exhaustive search. However, often it is not feasible to consider all pos-
sible solutions, for example if the search space is too large and the evaluation of a
single candidate is too expensive. In this case, only a subset of the solutions can be
evaluated.

Optimization problems can be either function optimization problems or combina-
torial problems. The first class of problems can be divided in continuous optimiza-
tion and discrete optimization problems. In continuous function optimization, the
independent variables are real numbers whereas for discrete function optimization,
the independent variables can only be chosen from a predefined set of allowed and
somehow ordered numbers, for example {10,20,30,40}.

In combinatorial optimization problems, the optimum sequence or combination
of a fixed set of input values has to be found. Here, the input values are symbols and
might not be connected or ordered, for example {apple,orange,strawberry}. An
example of a combinatorial optimization problem is the classical Travelling Sales-
man Problem (TSP), where a sales agent needs to visit a predefined set of cities
and return to base. The problem here is to find an optimal route, i.e. the route that
connects all cities whilst having the shortest travel distance, by choosing the order
in which the cities are visited.
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2.5 Optimization Loop

Mathematical or calculus-based methods use known functional relationships
between variables and objectives to calculate the optimum of the given system.
Therefore, an exact mathematical model of the process must exist. Edelbaum
introduced the differentiation of calculus-based methods in direct methods and
indirect methods.

Direct methods solve the optimization problem by iterative calculation and
derivation of the error function and moving in a direction to the maximum slope
gradient. Indirect methods solve the optimization problem in one step — without
testing — by solving a set of equations (usually non-linear). These equations result
from setting the derivative of the error function equal to zero. Both classes of meth-
ods are local in scope, i.e. they tend to find only local optima. Therefore, they are not
robust. They depend on the existence of derivatives. Real problem functions tend to
be perturbed by noise and are not smooth, i.e. derivations may not exist for all points
of functions. This class of problem cannot be solved by mathematical methods.

If the functional relations between input variables and objectives are not known,
one can experiment on the real system (or a model of this system) in order to find
the optimum. Access to the independent variables must exist for the whole multi-
dimensional search space, i.e. the collection of all possible candidate solutions. Also
a possibility of measuring the independent variable and the objective must be given.
The optimization process is iterative, i.e. it has to be done in a closed optimization
loop (Figure ).

X »| system S y

algorithm

<—— target value

Fig. 3 Closed optimization loop consisting of a system and an optimization algorithm.
Experimental optimization methods can therefore be seen as a search for the

optimum by traversing over the fitness landscape.

3 Genetic Algorithms

As Darwin’s theory of natural selection articulates, nature is very effective at
optimization, e.g. to enable life-forms to survive in a unfriendly and changing
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environment, only by means of the simple method of trial and error. Genetic Algo-
rithms (GAs) simulate this evolutionary mechanism by using heredity and mutation.
They were first introduced in 1975 by Holland [[L1]] who also provided a theoretical
framework for Genetic Algorithms, the Schemata Theorem [13]].

For genetic algorithms, the independent input parameters of a system S
(Figured)) are coded into a binary string, the genotype of an individual (Figure[3).

X1 ——»

x;— SystemS [ » y

X3—>

Fig. 4 System to be optimized.

genotype a, [a, a3 (a,|a a5 |a;, [ag|a [a,|a4|a

phenotype

Fig. 5 Binary string representing one input pattern of the system.

The individual represented by genotype is called a phenotype. This phenotype
has a certain quality or fitness to survive which can be determined by presenting the
phenotype to the system S and measuring the system response.

The search is not only undertaken by one individual but by a population of n
genotypes, the genepool. Therefore, the search space is tested at n points in parallel.
All the individuals of the genepool at a time ¢, are called a generation.

A new generation for time #,; is generated by selecting N individuals from the
current population for breeding. They are copying into the genepool of the next
generation and their genetic information is then recombined, using the cross-over
operator (see [3.2)), with a predefined cross-over probability p.. The resulting off-
spring is then copied into the new genepool and mutation is applied to the offspring.
Figure [7] shows the flowchart of a simple Genetic Algorithm.

The search will be carried out until at least one individual has a better fitness
than the defined minimum fitness, or a maximum number of generations have been
reached.
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Fig. 6 Genepool consisting of individuals Iy, ... ,I,.

3.1 Selection

In general, there are three different approaches to choose individuals from the cur-
rent generation for re-production, namely Tournament Selection, Fitness Propor-
tional Selection and Rank Based Selection. In Tournament Selection, two or more
individuals are randomly selected from the current generation of N genotypes to
compete with each other. The individual with the highest fitness of this set is the
winner and will be selected for generating offspring. The process is repeated N
times in order to create the new population. Using Tournament Selection, the least
fit individual can never be selected.

In fitness proportional selection, the chance of an individual to be selected is
related to its fitness value. The most commonly used method of this type is Roulette
Wheel Selection. Here, proportions of an imaginary roulette wheel are distributed
in proportion to the relative fitness of an individual. Figure[§]shows and example for
N = 3. In this example, the fitness of individual 3 is approximately four times higher
than the fitness of individual 1, i.e. its chance to be selected is four times greater
then the chance that individual one is selected. For a population of N individuals,
the wheel is spun N times and the individual under the pointer is selected. In fitness
proportional selection, all individuals have a chance of selection but high fitness
individuals are more likely to be selected, because they occupy a larger portion of
the wheel.
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Fig. 7 Flowchart of basic GA algorithm.

However, there is the statistical chance that the actual selected distribution might
not reflect the expected distribution based on the fitness values. If the selection is
too strong, it can lead to premature convergence, i.e. the population would converge
before it has found the region of the search space that contains the global optimum.
In other words, the exploitation would start before the search space is fully explored.
On the other hand, if the selection is too weak, it can lead to stalled evolution, which
means the search is reduced to randomly walking through search space.
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Fig. 8 Roulette Wheel selection.

These effects are overcome using Stochastic Universal Selection (SUS). Here, the
same roulette wheel is used, but instead of using a single pointer, N equally-spaced
pointers are used for a population of N individuals and the wheel is spun only once
(Figure[0)).

N -

before spinning after spinning

Fig. 9 SUS selection.

Instead of using the fitness of an individual for selection, a selective s value can
be used, which is based on the rank position of an individual in the population
(Equation ).

rank; — 1

si = Min+ (Max — Min) N1

“

where

Min: minimum fitness within a generation

Max: maximum fitness within a generation

rank;: rank of individual i within the population in a generation
N:  number of individuals within population

So, instead of using the raw fitness to determine the proportion for an individual,
the rank of the individual within the generation is used.
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Sometimes the m fittest individuals in a generation are cloned into the next gen-
eration in order to make sure to preserve their genetic material. This is known as
elitism.

3.2 Cross-Over

The most important operator in terms of robustness of the algorithm is the cross-
over operator. Figure [10l shows the so-called one-point cross-over operator, which
combines the information of two parents. They are aligning and then both cut at a
randomly chosen cross-over point and the tails are swapped successively.

Cross-over Point

aw|az|a3|a4|as ae|a7|as|ag|a1o|a11|a12

G)

b1|b2|b3|b4|b5 b6|b7|b8|b9|b10|b11|b12

Il

a1|aZ|a3|a4|aS|b6|b7|bﬁ|b9|b10|b11|b12

G(t+1)

b1|b2|b3|b4|b5|aG|a7|88|ag|a10|a11|a12

Fig. 10 Cross-over operator.

Instead of a single cross-over point, two or more random cross-over points can
be used for recombining the genetic information of the parents.

Another form of cross-over is called Uniform cross over [22]]. Here, every compo-
nent of a parent individual X is randomly passed on either to offspring A or offspring
B. If X passes on its component to A, the position in B is filled using the component
from parent Y and vice versa.

3.3 Mutation

After the genetic information of the parents is recombined using cross-over,
mutation is applied to every individual of the new generation. Here, every bit of
the offspring is inverted (mutated) with probability p,,. The mutation operator is
important for restoring lost information and therewith to result in a better effective-
ness of the GA.
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3.4 Discussion

The advantages of GAs are that they use payoff (objective function) information,
not derivatives or other auxiliary knowledge, i.e. they are black box optimization
methods. GAs tend to converge towards the global optimum rather than getting stuck
in a local optimum and therefore they are very robust. On the other hand, it is not
always straightforward to find the right GA parameters for a particular optimization
problem, e.g. a suitable genepool size or mutation probability. Also, the efficiency
of GAs relies heavily on the right coding of the input parameters, i.e. the chosen
mapping function from phenotype to genotype, and they tend to fail if the inputs of
the system are heavily correlated.

3.5 Schemata Theorem

Holland provided a theoretical foundation of GAs, i.e. a theoretical proof of conver-
gence, which he called the Schemata Theorem. A schema is a template for binary
strings, but built from a three letter alphabet containing the symbols *, 0 and 1. The
* symbol is the ‘dont care symbol’ which either stands for 0 or 1. Figure [[1]shows
an example of a schema for chromosomes consisting of 12 bits, of which three are
set to the dont care symbol and the remaining nine bits are set to fixed values.

* * *

L]

1|0|0|0

o]

Fig. 11 Example of a schema in GA.

The distance between the first and the last fixed bit is called the defined length of
the schema and the number of fixed bits is called the order of the schema. Figure[12]
shows an example of a schema H and the different instances it represents.

A binary string s is an instance of a schema H if it fits into the template. There-
fore, any binary string of length / does not just represent one candidate solution, it
is also an instance of 2! schemata at the same time. As a consequence, a GA with
the genepool of size n does not only test n different solutions at the same time, but
also a high number of different schemata. This is known as implicit parallelism in
GA and provides an explanation for their effectiveness and efficiency.

According to Holland, the number of instances m of a schema H that are con-
tained in the population at generation ¢ + 1 can be determined as follows:

f(H)

m(H,t+1) = m(H,1)- F (5)

where
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1 * * 0 Schema H

1 0 0 0 Instance 1

1 0 1 0 Instance 2

1 1 0 0 Instance 3

1 1 1 0 Instance 4

Fig. 12 Example of a schema H and the instances it represents.

H: Schema or “Building Block™ with at least one instance
in the last generation,
m(H,t):  number of instances of H at time ¢,

m(H,t+ 1): number of instances of H at time # + 1,
: average fitness of the instances of schema H,
average fitness of the whole population.

This is a simplified version of the schemata theorem, because it does not take into
account the effects of the cross-over and the mutation operator. However, it is suf-
ficient to demonstrate the basic idea. A more detailed description can be found, for
example, in the book of Goldberg [13].

Suppose that a particular schemata H remains above-average an amount c - f with
c being a constant factor, equationd] can be rewritten as follows:
e f

m(H,t+1)=m(H,t) =(14c¢)-m(H,1) (6)

Assuming c is stationary and starts at t = 0, equation[3] can be rewritten as follows:

m(H,t) =m(H,0)-(1+c) (7)

It can be seen that this equation is similar to the formula of interest: the number
of instances of a schema H with a fitness above-average grows exponentially to
generation ¢. Hence, schemata with good fitness will survive and ones with a fitness
below average will eventually die out. Therefore, the fitter building blocks, i.e. the
better partial solution, will take over the genepool within finite time. However, the
schemata theorem is controversial, because it assumes that the factor ¢ is constant
over time.
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3.6 Coding Problem

Traditionally, GAs use binary stings. However, if an input variable is coded using
standard binary coding, this can lead to the problem that a small change in the
phenotype would require a large number of bits of the genotype to be inverted.
An example of the coding problem is given in Figure 13

3 A
@
£
[
I
|
|
|
i \
| |
i i » Search Space
0 01 02 03 04 decimal
000 001 010 011 100 binary

Fig. 13 Differences between decimal and standard binary coding.

As it can be seen from the figure, a step from 3¢ to 4o requires flipping 3 bits in
binary representation whereas it only changes the least significant digit in decimal
representation by one. One solution is to use Gray Code, which has the advantage
that only one bit changes between any two positions, i.e. it has a constant Hamming
Distance of one.

4 Ant Colony Optimization

Ant Colony Optimization (ACO) [4]] refers to a class of discrete optimization algo-
rithms, i.e. a meta-heuristic, which is modelled on the collective behaviour of ant
colonies.

Real ants are very limited in their individual cognitive and visual capabilities,
but an ant colony as a social entity is capable of solving complex problems and
tasks in order to survive in an ever-changing hostile environment. For example, ants
are capable of finding the shortest path to a food source [14]. If the food source is
depleted, the ant colony adapts itself in a way that it will explore the environment
and discover new food sources.

Ants communicate indirectly with other ants by depositing a substance called
pheromone on the ground while they are walking around. This pheromone trail can
then be used by the ant to find its way back to its nest after the ant has found a food
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Decimal | Binary |Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111

Fig. 14 Gray Code.

source and other ants can also sense it. Ants have the tendency to follow existing
paths with high pheromone levels. If there is no existing pheromone trail, they walk
around in a random fashion. If an ant has to make a decision, for example to choose
a way around an obstacle in its way, it follows existing paths with a high probability.
However, there is always a chance that the ant explores a new path or a path with a
lower pheromone level. If an ant has chosen an existing path, the pheromone level
of this path will be increased because the ants deposit new pheromone on top of
the existing one. This makes it more likely that other ants will also follow this path,
increasing the pheromone level again. This positive feedback process is known as
autocatalysis [3]. Although the pheromone evaporates over time, the entire colony
builds up a complex solution based on this indirect form of communication, called
stigmergy [4].

Figure [15 demonstrates the basic principle of the ACO meta-heuristic, which is
modelled after the behaviour described above. In this example, the system S that
has to be optimized has three independent variables x| ...x3 and the quality of the
solution can be measured by the achieved fitness value y. Each input can have one
of five different discrete alternative values s;;, where i represents the input and j
the chosen alternative for that input. Each alternative has an associated probability
value, which is randomly initialised. The collection of probability distributions can
be seen as a global probability matrix. Each artificial ant in the colony has to choose
randomly a ‘path’ through state space, i.e. the input value for each independent
variable. In the example in Figure the ant chooses alternative s, for input xi,
524 for input x, and s33 for input x3. The chosen path depends on the probabilities
associated with the states, i.e. a state with a high probability is more likely to be
selected for a trial solution than states with a low probability value. This probability
values are refereed to as the pheromone level 7.
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X, ——
X,——»
;

Fig. 15 Example of an artificial ant constructing a trial vector by traversing through state
space.

A chosen path represents one candidate solution, which is evaluated and the
probabilities of the states that the ant has visited on that trail is updated based on
the achieved fitness. In the next generation, the updated probability matrix is used,
which means that states that have proven fit in the past are more likely to be selected
for the subsequent trail. However, it should be pointed out that a ‘path’ is not actu-
ally traversing through the state space; it simply refers to the collection of chosen
alternatives for a particular candidate solution. The order in which the states are se-
lected does not have any effect on the candidate solution itself, i.e. one could start
with determining the input for x; first or, alternatively, with x, or x3. The resulting
candidate solutions would still be the same.

A major advantage of ACO is that adjacent states in the neighbourhood do not
need to show similarities, i.e. the state space does not need to be ordered. This is
different to most optimization heuristics, which rely on ordered collections of states,
i.e. fitness landscapes.

Figure shows a flowchart of the basic ACO meta-heuristic for a colony
consisting of n artificial ants. During one iteration, called a time-step, every ant
generates a trial solution, which is evaluated and based on the fitness of the solution
the pheromone level of the states involved in the trail is updated in a local proba-
bility matrix for the ant. After one iteration, i.e. time-step, all the local probability
matrices are combined and added to the global one, which is usually scaled down
in order to simulate the evaporation process of real pheromone trails. This helps to
avoid search stagnation and ensures that ants maintain their ability to explore new
regions of the state space.

The main principle of ACO is that a colony of artificial ants builds up discrete
probability distributions for each input parameter of a system to be optimized.
Figure [[7] shows an example of a probability distribution for an input i with ten
alternative states.

It can be seen that state s;3 has the highest pheromone level, i.e. probability, and
hence has a high chance to be selected for a trial. States s;7 and s;;0, on the other
hand, have a pheromone level of zero and can never be selected. However, even
states with a low pheromone level, e.g. s;3 in Figure[[7] have a certain chance to be
selected.

Initially, every possible choice for each of the input variables is set to a very low
probability, which is the equivalent to the pheromone level in the real world. Each
individual ant then chooses randomly one value for each input parameter, i.e. builds
up a candidate solution, based on the probability distributions of the input values.
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Fig. 16 Flowchart of ACO meta-heuristic.

Depending on the quality of the resulting candidate solution, the probability values
of the chosen input values are updated. The whole process is repeated in iterations
called time-steps until a suitable solution is found or the algorithm has converged,
i.e. has reached a stable set of probability distributions. It has been proved, for exam-
ple by Stiitzle and Dorigo and Gutjahr [13], that ACO algorithms are capable
of converging towards the global optimum within finite time.

The first computational optimization algorithm based on ant colonies was the Ant
System (AS) algorithm [2]]. It was successfully applied to the Travelling Salesman
Problem and the Quadratic Assignment Problem. This was later followed by the
Ant Colony System (ACS) [6], the Max-Min Ant System (MMAS) [20] and the
Rank-Based Ant System (RBAS) [T
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Fig. 17 Example of a probability distribution based on pheromone level.

For ACO the probability of a state s;; to be chosen as input parameter i can be
calculated using the following transition rule (Equation[8):

B
T mij :
S if Sij € N;
p(sij) = sy tgnf 8)
0 otherwise

Where 7;; is the pheromone level for state s;;, 1;; is a heuristic value related to the
fitness of the solution, o and B are control parameters that determine the relative
importance of pheromone versus fitness, m is the number of alternatives for input
parameter i, and NV; is the set of possible alternatives for input i. If the heuristic value
7;;j is set to a constant value of one, the algorithm becomes the Simple Ant Colony
Optimization algorithm (SACO) [[7].

The evaporation after time-step ¢ can be computed using Equation8] where p €
(0,1]) is the evaporation rate.

Tj(t+1)=(1—p)-7;(t) ©)
The pheromone updating rule is given in Equation[I0 with A7;;(£)=f(y1,y2,- - -,yn):

T+ 1) = (1) + A1) (10)

Unlike real ants, artificial ants can be equipped with additional capabilities, for ex-
ample with look ahead capabilities [17] and backtracking [3]] in order to improve
efficiency. They can also be combined with local search methods [4} 18]

However, one problem related to ACO is that it is not a straightforward task to
find optimum control parameter settings for an ACO application [12].



18 L. Nolle et al.

5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a simple but effective algorithm that was orig-
inal developed by Kennedy and Eberhart for continuous function optimization.
It is based on the social behaviour of a collection of animals that can be observed,
for example, in fish schooling and bird flocking. PSO uses a population of agents
where the population is referred to as swarm and the agents are called particles.
Each particle represents an input vector for the system and is randomly initialised.
Each particle i has a position x;;(r) and a velocity v;;(r) for each dimension j
of the search space. In every iteration of the algorithm, i is ‘flying’ through search
space by adjusting the position vector x;(z) using the velocity vector v;(¢) as follows:

xij(t—l—l):xij(t)—l—vij(t—l—l) (11)

It should be stressed that, in the physical world, a velocity and a position cannot be
added. The velocity would need to be multiplied with a time interval in order to get
a distance that could then be added to the original position. However, if one thinks
of an iteration as a time step, the velocity vector could be multiplied with one time
unit, which would not change the actual value but it would change the unit. The
velocity vector itself is determined using the following equation:

Vij(t+1) = vij(t) +c1r2(x; pest — Xij(t)) + car2(Xgiopat best — Xij(t)) — (12)

Here, r; and r, are random numbers, ¢; and ¢ are tuning constants, X; pes 1S the
best position that particle i found during the search so far and xg/opar pest 18 the best
position the swarm found so far. The second term in Equation[I2]is called the com-
ponent cognitive component whereas the third one is called the social component.
Figure [[8] shows a flow-chart of the basic PSO algorithm.

One variation of the basic PSO algorithm is that, instead of using the global best
position, the best position of the neighbourhood of particle i is used in the social
component.

6 Overview

The single chapters of this book will demonstrate the practical application of the
before-mentioned meta-heuristic optimization techniques. It can be seen how the
pure academic perspective taken so far conveys into the complex aspects of an en-
gineering application.

The chapter “Learning Automata in Control Planning Strategies” explores the
use of planning in order to improve the performance of feedback-based control
schemes considering only one probabilistic approach known as Learning Automata
(LA). Authors propose a novel scheme that has been motivated by the human abil-
ity of choosing among different alternative plans while solving daily-life problems.
Considering that Planning provides a very general and easy applicable methodology,
the overall approach combines the use of Model predictive Control as regulation
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Fig. 18 Flowchart of PSO algorithm.

strategy and LA as optimization technique. The latter provides remarkable capa-
bilities for global optimization on multimodal surfaces. By using LA, the search
for the optimum is done over a probability space rather than exploring the parame-
ter domain as it is commonly done by traditional algorithms. Some experiments and
comparisons are conducted over a conventional control plant in order to demonstrate
the proposed framework’s performance.

In the chapter “Optimization Strategies for Restricted Candidate Lists in Field
Service Scheduling,” authors formally define a real-world class of combinatorial
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optimization problems called Field Service Scheduling (FSS), and position it in re-
lation to some optimization problems more often encountered in the literature. The
presented research was motivated by the challenges encountered at routinely solv-
ing large instances of these problems in an industrial setting. The authors propose
a generic framework that combines the expressiveness to address a wide variety
of such problems with the ability to tune the optimization process to the type of
instances being solved. Stategies for restricted candidate lists are introduced as a
way to accelerate the pace of convergence when particular problem features are
present. Two such strategies, constrained clustering and bundling, are explored in
some detail, yielding some surprising results and material for further research. The
presented experimental results were obtained on top of a GRASP meta-heuristic, but
the presented approach of using strategies does not depend in any meaningful way
on the particular meta-heuristic in use and can be generalized to other optimization
methods.

The chapter “Framework for Integrating Optimization and Heuristic Models for
Solving Planning and Scheduling Problem in a Resin Manufacturing Plant” de-
scribes a methodology that combines optimization and heuristic models to provide a
solution to the planning and scheduling problem in a batch chemical plant. Real-life
industrial data from a resin manufacturing plant was used to validate and test the
robustness of the proposed methodology. The results of the proposed methodology
are encouraging and provide substantial benefits to practitioners.

The chapter “Evolutionary Algorithms in the Optimal Sizing of Analog Circuits”
highlights the application of two multi-objective evolutionary algorithms (NSGA-
IT and MOEA/D) in the optimization of analog integrated circuits. The algorithms
use the circuit simulator SPICE to evaluate performances of unity-gain cells, cur-
rent conveyors and CFOA. The results on the sizing process show that the genetic
operator known as differential evolution increases the dominance of both evolution-
ary algorithms. Finally, some heuristics regarding the effectiveness of NSGA-II and
MOEA/D in the sizing of analog integrated circuits are summarized.

Managing the core of a nuclear reactor so as to maximise the energy produced
whilst meeting all of the safety requirements is a difficult and complex task, which
is the topic of the chapter “Application of Estimation of Distribution Algorithms for
Nuclear Fuel Management.” A reactor core consists of many vertical channels into
which a tube, containing the fuel, can be placed. Typically the fuel in each tube is
different, so that one needs to place N different objects into each of N locations. This
is a difficult problem in combinatorial optimization. The best available algorithm for
this problem, a genetic algorithm with a specially designed crossover operator, was
created nearly twenty years ago. In this research, an estimation of distribution al-
gorithm supplemented with heuristic information to tackle the problem was used.
The estimation of distribution algorithm produces a probability distribution func-
tion for each channel that indicates which fuel tubes are likely to be found in that
channel in an optimal solution. Conversely it indicates which fuel tubes will not be
found in the channel. The algorithm starts with a uniform probability distribution,
i.e. all solutions are equally likely. The distribution is then sampled and the pro-
posed solutions tested, this then allows the probability distribution to be updated.
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The process can then be repeated until the algorithm converges onto an invariant
probability distribution function. This algorithm has significantly outperformed the
previous state-of-the-art method and represents a major improvement in the ability
to tackle this problem.

The chapter “Optimal Control Systems with Reduced Parametric Sensitivity
Based on Particle Swarm Optimization and Simulated Annealing” offers the de-
sign of optimal control systems with a reduced parametric sensitivity on the basis
of Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms
that belong to the popular category of nature-inspired optimization algorithms. PSO
and SA algorithms are employed in solving optimization problems that optimize
the control system responses and reduce the sensitivity with respect to parametric
variations of the controlled process. The objective functions are expressed as in-
tegral quadratic performance indices that depend on the control error and on the
squared output sensitivity functions. The PSO-based and SA-based minimization
of the objective functions has as direct result the optimal tuning parameters of the
controllers. The new optimization problems use the advantages of nature-inspired
optimization algorithms to improve the control systems performance indices. This
chapter contains recommendations for the practitioners that contribute to practical
implementations with good computational efficency and fast convergence rate.

A comparative study of ant colony, differential evolution, particle swarm op-
timization and the neighbourhood algorithms for history matching of reservoir
simulation models is provided in the chapter “Comparison of Evolutionary and
Swarm Intelligence Methods for History Matching and Uncertainty Quantification
in Petroleum Reservoir Models.” In history matching, simulation models are cali-
brated to reproduce the historical observations from the oil and gas fields. History
matching is an inverse problem with non-unique solution. Multiple history matched
reservoir models are used to quantify uncertainty of future hydrocarbon produc-
tion from a field. In our assisted history matching workflow, different evolutionary
and swarm intelligence algorithms are use to explore the plausible parameter space
and find good-fitting reservoir models. These algorithms are also integrated within
a Bayesian framework to quantify uncertainty of the predictions. Two petroleum
reservoir cases illustrate different aspects of this comparative study. The results
present comparison of best history-matched models, convergence speeds for dif-
ferent algorithms, ability of the algorithms in navigating the search space and their
effect on uncertainty of the predictions for ultimate oil recovery.

A contribution from the general field of logistics can be found in the chapter
“Optimization of Multiple Traveling Salesmen Problem by a Novel Representation
based Genetic Algorithm.” The aim of logistics is to get the right materials to the
right place at the right time, while optimizing a given performance measure and sat-
isfying a given set of constraints. In most distribution systems goods are transported
from various origins to various destinations. It is often economical to consolidate
the shipments of various origin-destination pairs and transport such consolidated
shipments in the same truck at the same time. Obviously the challenge is to find the
optimal i.e. the best consolidation according to some objective functions.
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In case of this chapter, the problem is an asymmetric multiple Traveling Salesman
Problem with Time Windows, where additional special constraints exist, like an
upper bound for the number of salesmen, the maximum travelling distance, or a
time window at each location. This is a numerical optimization problem, obviously
an NP-hard task.

The main motivation of the research presented in this chapter was that there was
no available algorithm that is “intelligent” enough to handle constraints on tour
lengths, asymmetric distances, and the number of salesmen is not predefined, and
can vary during the evolution of the individual solutions. Furthermore the represen-
tation is so transparent that supports not only the implementation, but the initializa-
tion and heuristic fine-tuning of the individual routes.

In this chapter, authors propose a general, novel genetic representation for the
so-called mTSP problems. A new genetic algorithm based on the novel represen-
tation is presented, which can handle the constraints for the routes and the time
windows for the locations too, as well as its representation is more similar for the
characteristic of the problem than the ones until now. Thus it can be more easily
understandable and realizable. The algorithm was implemented in MATLAB and
integrated with Google Maps to provide a complete framework for distance calcu-
lation, definition of the initial routes and visualization of the resulted solutions. The
novel approach and the novel representation proved to be more effective in terms
of flexibility, complexity and transparency, and also in efficiency than the previous
methods.

In the chapter “Out-of-the-box and Custom Implementation of Metaheuristics. A
Case Study: The Vehicle Routing Problem with Stochastic Demand” authors pro-
pose an experimental analysis that studies the impact of development effort on the
relative performance of metaheuristics. Five algorithms for the vehicle routing prob-
lem with stochastic demand that have been proposed in the literature are considered:
Tabu Search, Simulated Annealing, Genetic Algorithms, Iterated Local Search and
Ant Colony Optimization. As measure of the development effort the time devoted to
tune the parameters of the algorithms is considered. In this way, such effort can be
easily measured. If such a minor implementation issue allows to point out a signif-
icant difference in the relative behavior of metaheuristics, then this difference can
be expected to grow when one considers other issues. The same algorithms in their
out-of-the-box version, i.e., with no parameter tuning, and in their custom one, i.e.,
with fine-tuned parameters are compared. The results support the main claim of the
chapter: one should clearly state in which context one develops algorithms, since
the results obtained in an out-of-the-box context are not necessarily extendable to a
custom one, and vice versa. Moreover, in experimental analysis we often consider
also the values of parameters indicated in the paper in which the algorithm was pro-
posed. This analysis allows one to observe that the results that are reported in the
literature cannot be a priori related to one of the two contexts.

Optimal analogue circuit sizing is investigated in the chapter “Analogue Cir-
cuit Optimization Through a Hybrid Approach.” It is shown that hybridization of
a global optimization approach with a local one leads to better results in optimiza-
tion of such circuits than using classical approaches. The case of merging Genetic
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Algorithms with the Simulated Annealing technique is considered. The hybrid al-
gorithm is detailed and is evaluated using test functions. It is shown through three
application examples, i.e. optimization of performances of a current conveyor, an
operational transconductance amplifier and a low noise amplifier, that such hy-
brid algorithms yield optimal solutions in a much shorter time, when compared to
conventional meta-heuristics.

The scope of the chapter “Evolutionary Inventory Control for Multi-Echelon Sys-
tems” is confined to the use of Genetic Algorithms (GA)s for handling operational
issues of inventory control and management in multi-echelon inventory networks.
It provides an extensive review of literature on use of GAs to solve multi-echelon
inventory control problems and evaluates the state of GA applications in these areas.
The chapter also presents a novel GA structure for a stochastic lot sizing problem in
a centralized distribution system. Numerical experiments conducted on several test
cases with different operational parameters show that proposed GA structure can be
used as an effective algorithm for solving the multi-echelon inventory distribution
problem under stochastic demand.

To improve the ride comfort is one of the most important design objectives in
automotive engineering by reducing the vibration transmission and keeping proper
tyre contact. This is the main topic of the chapter “Fuzzy Skyhook Surface Con-
trol using Micro-Genetic Algorithm for Vehicle Suspension Ride Comfort.” The
semi-active suspension systems are developed to achieve a better ride comfort per-
formance than the passive suspension system. A polynomial function supervised
fuzzy sliding mode control collaborated with a skyhook surface method is intro-
duced for the ride comfort of a two degree of freedom vehicle semi-active suspen-
sion. The multi-objective micro-genetic algorithm has been utilised to this proposed
controller’s parameter alignment in a training process with three ride comfort ob-
jectives. The numerical results have shown that this hybrid control method is able to
provide a real-time enhanced level of ride comfort performance for the semi-active
suspension system.
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