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Preface

Many engineering problems involve heuristic search and optimization where,
for example, an input parameter vector for a given system has to be found
in order to optimize the system response. Also, many engineering optimiza-
tion problems, once discretized, may become combinatorial in nature, which
gives rise to certain difficulties in terms of solution procedure. In the first in-
stance many problems have enormous search spaces, are NP-hard and hence
require heuristic solution techniques. A second difficulty is the lack of ability
of classical solution techniques to determine appropriate (global) optima of
non-convex problems involving numerous (local) optima. Under these con-
ditions, approaches based on recent advances in computational optimization
techniques have been shown to be advantageous and successful compared to
classical approaches.

This book is the result of an open call for chapter contributions. Re-
searchers and practitioners were asked to share their experience and newest
methodologies with regard to intelligent optimization in various application
domains. From the many contributions, twelve were selected that constitute
the main part of this book. The focus is clearly on the application, and most
of the chapters do provide a case study for the application of intelligent op-
timization techniques in a real-world application. Other chapters discuss the
general experience and means to adapt the plain textbook algorithms within
a group of applications.

We want to use the opportunity to thank all who have contributed to this
collection, especially to all authors, to the anonymous referees who much
helped to gain a high-quality selection and to further improve the quality of
the contributions. Our thanks also goes to the publisher Springer for all their
support, patience and assistance during the preparation of this book.

January 2011 Mario Köppen
Gerald Schaefer
Ajith Abraham
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Emil M. Petriu, József K. Tar
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Intelligent Computational Optimization in
Engineering: Techniques and Applications

Lars Nolle, Mario Köppen, Gerald Schaefer, and Ajith Abraham

Abstract. Many problems can be formulated as optimization problems. Among the
many classes of algorithms for solving such problems, one interesting, biologically
inspired group is that of meta-heuristic optimization techniques. In this introduc-
tionary chapter we provide an overview of such techniques, in particular of Genetic
Algorithms, Ant Colony Optimization and Particle Swarm Optimization techniques.

1 Introduction

Many engineering problems involve heuristic search and optimization where, for
example, an input parameter vector for a given system has to be found in order to
optimize the system response. Also, many engineering optimization problems, once
discretized, may become combinatorial in nature, which gives rise to certain dif-
ficulties in terms of solution procedure. In the first instance many problems have
enormous search spaces, are NP-hard and hence require heuristic solution tech-
niques. A second difficulty is the lack of ability of classical solution techniques
to determine appropriate (global) optima of non-convex problems involving numer-
ous (local) optima. Under these conditions, approaches based on recent advances
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2 L. Nolle et al.

in computational optimization techniques have been shown to be advantageous and
successful compared to classical approaches.

The single contributions of this book detail the successful use of computational
optimization techniques that use (meta-)heuristic search to solve non-convex and
complex engineering problems. In the following, we want to give a short overview
of basic meta-heuristic optimization techniques from a more academic perspective,
before detailing the application aspects of these methods.

2 Evolutionary Computing

Many scientific problems can be viewed as search or optimization problems, where
an optimum input parameter vector for a given system has to be found in order to
maximise or to minimise the system response to that input vector. Often, auxiliary
information about the system, like its transfer function and derivatives, is not known
and the measures might be incomplete and distorted by noise. This makes such prob-
lems difficult to be solved by traditional mathematical methods. Here, evolutionary
optimization algorithms, which are based on biological principles borrowed from
nature, can offer a solution. These algorithms work on a population of candidate
solutions, which are iteratively improved so that an optimal solution evolves over
time.

This chapter discusses the general problem of search and optimization before
it introduces the systems view, followed by a definition of search space and fit-
ness landscape. It then explains the process of optimization and the concept of
optimization loops. It continuous with introducing biological-inspired evolutionary
optimization algorithms, namely Genetic Algorithms and Genetic Programming.
Other evolutionary inspired optimization techniques, namely Ant Colony Optimiza-
tion and Particle Swarm Optimization are also discussed.

2.1 Systems

Every process or object can be seen as a system. Fenton and Hill [9] define a sys-
tem as “...an assembly of components, connected together in an organised way, and
separated from its environment by a boundary. This organised assembly has an ob-
servable purpose which is characterised in terms of how it transforms input from
the environment into output to the environment.” By definition, a system has exactly
one input channel x and exactly one output channel y (Figure 1). All interactions
with the environment have to be made through these interfaces.

Both input and output can be vectors or scalars. The input is called the indepen-
dent variable or parameter, because its value(s) can be chosen freely, and results
in the output y, the so-called dependent variable. If the present state of the system
does not depend on previous states but only on the current input, the system is said
to be a steady state system, the output of the system can be described as a function
of the input y = f (x).
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Fig. 1 Generic system.

2.2 Objective Function

In order to rate the quality of a candidate solution x, it is necessary to transform
the system response to x into an appropriate measure, called the objective or fit-
ness. If the system has only one output variable, the system output y equals the
fitness. If y has more than one component the output variables of the system have
to be combined into a single value, computed by the so called objective function
or fitness function. In general, there are four approaches to judge the system out-
put: aggregation, the Changing Objectives Method, the Use of Niche Techniques
and Pareto Based Methods [10]. The most often used method is aggregation. In its
simplest case, the fitness function F(x) equals the weighted sum of the components
yi = ci ·Fi(x) of y, where ci is the weight for component i:

F(x) = c0 + c1 ·F1(x)+ · · ·+ cn ·Fn(x) (1)

2.3 Search Space and Fitness Landscape

If all the possible candidate solutions are collected in an ordered way, this collection
is called the search space. Sometimes, this space is also referred to as input space.
For an optimization problem of dimension n, i.e. a system with n independent pa-
rameters, the search space also has dimension n. By adding the dimension Fitness
or Costs to the search space, one will get the (n + 1)-dimensional fitness landscape
[23].

2.4 Optimization

Optimization [21] is the process of selecting the best candidate solution from a
range of possibilities, i.e. the search space. In other words, a system S, that has to be
optimized in terms of a quality output value y, is brought into a new state that has
a better quality output value y than the previous state. This is done by changing the
independent input parameters x. The error function describes the difference between
the predefined objective ydesired and systems response f (x) to the input x.

Error(x) = ydesired − f (x) (2)
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Fig. 2 Example of a fitness landscape for a system with two input parameters.

Usually, the aim is to find the vector x′ that leads to a minimal error for the system
S, i.e. the minimal departure from the optimal output value:

Error(x′) = 0 (3)

Often, a predefined target value is not known. In this case one tries to gain a fitness
value that is as high as possible in case of maximisation, or as low a possible in the
case of minimisation.

Ideally, one would evaluate all possible candidates and choose the best one. This
is known as exhaustive search. However, often it is not feasible to consider all pos-
sible solutions, for example if the search space is too large and the evaluation of a
single candidate is too expensive. In this case, only a subset of the solutions can be
evaluated.

Optimization problems can be either function optimization problems or combina-
torial problems. The first class of problems can be divided in continuous optimiza-
tion and discrete optimization problems. In continuous function optimization, the
independent variables are real numbers whereas for discrete function optimization,
the independent variables can only be chosen from a predefined set of allowed and
somehow ordered numbers, for example {10,20,30,40}.

In combinatorial optimization problems, the optimum sequence or combination
of a fixed set of input values has to be found. Here, the input values are symbols and
might not be connected or ordered, for example {apple,orange,strawberry}. An
example of a combinatorial optimization problem is the classical Travelling Sales-
man Problem (TSP), where a sales agent needs to visit a predefined set of cities
and return to base. The problem here is to find an optimal route, i.e. the route that
connects all cities whilst having the shortest travel distance, by choosing the order
in which the cities are visited.
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2.5 Optimization Loop

Mathematical or calculus-based methods use known functional relationships
between variables and objectives to calculate the optimum of the given system.
Therefore, an exact mathematical model of the process must exist. Edelbaum [8]
introduced the differentiation of calculus-based methods in direct methods and
indirect methods.

Direct methods solve the optimization problem by iterative calculation and
derivation of the error function and moving in a direction to the maximum slope
gradient. Indirect methods solve the optimization problem in one step – without
testing – by solving a set of equations (usually non-linear). These equations result
from setting the derivative of the error function equal to zero. Both classes of meth-
ods are local in scope, i.e. they tend to find only local optima. Therefore, they are not
robust. They depend on the existence of derivatives. Real problem functions tend to
be perturbed by noise and are not smooth, i.e. derivations may not exist for all points
of functions. This class of problem cannot be solved by mathematical methods.

If the functional relations between input variables and objectives are not known,
one can experiment on the real system (or a model of this system) in order to find
the optimum. Access to the independent variables must exist for the whole multi-
dimensional search space, i.e. the collection of all possible candidate solutions. Also
a possibility of measuring the independent variable and the objective must be given.
The optimization process is iterative, i.e. it has to be done in a closed optimization
loop (Figure 3).

Fig. 3 Closed optimization loop consisting of a system and an optimization algorithm.

Experimental optimization methods can therefore be seen as a search for the
optimum by traversing over the fitness landscape.

3 Genetic Algorithms

As Darwin’s theory of natural selection articulates, nature is very effective at
optimization, e.g. to enable life-forms to survive in a unfriendly and changing
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environment, only by means of the simple method of trial and error. Genetic Algo-
rithms (GAs) simulate this evolutionary mechanism by using heredity and mutation.
They were first introduced in 1975 by Holland [11] who also provided a theoretical
framework for Genetic Algorithms, the Schemata Theorem [13].

For genetic algorithms, the independent input parameters of a system S
(Figure 4) are coded into a binary string, the genotype of an individual (Figure 5).

Fig. 4 System to be optimized.

Fig. 5 Binary string representing one input pattern of the system.

The individual represented by genotype is called a phenotype. This phenotype
has a certain quality or fitness to survive which can be determined by presenting the
phenotype to the system S and measuring the system response.

The search is not only undertaken by one individual but by a population of n
genotypes, the genepool. Therefore, the search space is tested at n points in parallel.
All the individuals of the genepool at a time tn are called a generation.

A new generation for time tn+1 is generated by selecting N individuals from the
current population for breeding. They are copying into the genepool of the next
generation and their genetic information is then recombined, using the cross-over
operator (see 3.2), with a predefined cross-over probability pc. The resulting off-
spring is then copied into the new genepool and mutation is applied to the offspring.
Figure 7 shows the flowchart of a simple Genetic Algorithm.

The search will be carried out until at least one individual has a better fitness
than the defined minimum fitness, or a maximum number of generations have been
reached.
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Fig. 6 Genepool consisting of individuals I1, . . . , In.

3.1 Selection

In general, there are three different approaches to choose individuals from the cur-
rent generation for re-production, namely Tournament Selection, Fitness Propor-
tional Selection and Rank Based Selection. In Tournament Selection, two or more
individuals are randomly selected from the current generation of N genotypes to
compete with each other. The individual with the highest fitness of this set is the
winner and will be selected for generating offspring. The process is repeated N
times in order to create the new population. Using Tournament Selection, the least
fit individual can never be selected.

In fitness proportional selection, the chance of an individual to be selected is
related to its fitness value. The most commonly used method of this type is Roulette
Wheel Selection. Here, proportions of an imaginary roulette wheel are distributed
in proportion to the relative fitness of an individual. Figure 8 shows and example for
N = 3. In this example, the fitness of individual 3 is approximately four times higher
than the fitness of individual 1, i.e. its chance to be selected is four times greater
then the chance that individual one is selected. For a population of N individuals,
the wheel is spun N times and the individual under the pointer is selected. In fitness
proportional selection, all individuals have a chance of selection but high fitness
individuals are more likely to be selected, because they occupy a larger portion of
the wheel.
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Fig. 7 Flowchart of basic GA algorithm.

However, there is the statistical chance that the actual selected distribution might
not reflect the expected distribution based on the fitness values. If the selection is
too strong, it can lead to premature convergence, i.e. the population would converge
before it has found the region of the search space that contains the global optimum.
In other words, the exploitation would start before the search space is fully explored.
On the other hand, if the selection is too weak, it can lead to stalled evolution, which
means the search is reduced to randomly walking through search space.
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Fig. 8 Roulette Wheel selection.

These effects are overcome using Stochastic Universal Selection (SUS). Here, the
same roulette wheel is used, but instead of using a single pointer, N equally-spaced
pointers are used for a population of N individuals and the wheel is spun only once
(Figure 9).

Fig. 9 SUS selection.

Instead of using the fitness of an individual for selection, a selective s value can
be used, which is based on the rank position of an individual in the population
(Equation 4).

si = Min +(Max−Min)
ranki−1

N −1
(4)

where

Min: minimum fitness within a generation
Max: maximum fitness within a generation
ranki: rank of individual i within the population in a generation
N: number of individuals within population

So, instead of using the raw fitness to determine the proportion for an individual,
the rank of the individual within the generation is used.
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Sometimes the m fittest individuals in a generation are cloned into the next gen-
eration in order to make sure to preserve their genetic material. This is known as
elitism.

3.2 Cross-Over

The most important operator in terms of robustness of the algorithm is the cross-
over operator. Figure 10 shows the so-called one-point cross-over operator, which
combines the information of two parents. They are aligning and then both cut at a
randomly chosen cross-over point and the tails are swapped successively.

Fig. 10 Cross-over operator.

Instead of a single cross-over point, two or more random cross-over points can
be used for recombining the genetic information of the parents.

Another form of cross-over is called Uniform cross over [22]. Here, every compo-
nent of a parent individual X is randomly passed on either to offspring A or offspring
B. If X passes on its component to A, the position in B is filled using the component
from parent Y and vice versa.

3.3 Mutation

After the genetic information of the parents is recombined using cross-over,
mutation is applied to every individual of the new generation. Here, every bit of
the offspring is inverted (mutated) with probability pm. The mutation operator is
important for restoring lost information and therewith to result in a better effective-
ness of the GA.
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3.4 Discussion

The advantages of GAs are that they use payoff (objective function) information,
not derivatives or other auxiliary knowledge, i.e. they are black box optimization
methods. GAs tend to converge towards the global optimum rather than getting stuck
in a local optimum and therefore they are very robust. On the other hand, it is not
always straightforward to find the right GA parameters for a particular optimization
problem, e.g. a suitable genepool size or mutation probability. Also, the efficiency
of GAs relies heavily on the right coding of the input parameters, i.e. the chosen
mapping function from phenotype to genotype, and they tend to fail if the inputs of
the system are heavily correlated.

3.5 Schemata Theorem

Holland provided a theoretical foundation of GAs, i.e. a theoretical proof of conver-
gence, which he called the Schemata Theorem. A schema is a template for binary
strings, but built from a three letter alphabet containing the symbols *, 0 and 1. The
* symbol is the ‘dont care symbol’ which either stands for 0 or 1. Figure 11 shows
an example of a schema for chromosomes consisting of 12 bits, of which three are
set to the dont care symbol and the remaining nine bits are set to fixed values.

Fig. 11 Example of a schema in GA.

The distance between the first and the last fixed bit is called the defined length of
the schema and the number of fixed bits is called the order of the schema. Figure 12
shows an example of a schema H and the different instances it represents.

A binary string s is an instance of a schema H if it fits into the template. There-
fore, any binary string of length l does not just represent one candidate solution, it
is also an instance of 2l schemata at the same time. As a consequence, a GA with
the genepool of size n does not only test n different solutions at the same time, but
also a high number of different schemata. This is known as implicit parallelism in
GA and provides an explanation for their effectiveness and efficiency.

According to Holland, the number of instances m of a schema H that are con-
tained in the population at generation t + 1 can be determined as follows:

m(H, t + 1) = m(H, t) · f̄ (H)
f̄

(5)

where
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Fig. 12 Example of a schema H and the instances it represents.

H: Schema or “Building Block” with at least one instance
in the last generation,

m(H,t): number of instances of H at time t,
m(H,t + 1): number of instances of H at time t + 1,
f̄ (H): average fitness of the instances of schema H,
f̄ : average fitness of the whole population.

This is a simplified version of the schemata theorem, because it does not take into
account the effects of the cross-over and the mutation operator. However, it is suf-
ficient to demonstrate the basic idea. A more detailed description can be found, for
example, in the book of Goldberg [13].

Suppose that a particular schemata H remains above-average an amount c · f̄ with
c being a constant factor, equation 4 can be rewritten as follows:

m(H,t + 1) = m(H, t) · f̄ + c · f̄

f̄
= (1 + c) ·m(H, t) (6)

Assuming c is stationary and starts at t = 0, equation 5 can be rewritten as follows:

m(H, t) = m(H,0) · (1 + c)′ (7)

It can be seen that this equation is similar to the formula of interest: the number
of instances of a schema H with a fitness above-average grows exponentially to
generation t. Hence, schemata with good fitness will survive and ones with a fitness
below average will eventually die out. Therefore, the fitter building blocks, i.e. the
better partial solution, will take over the genepool within finite time. However, the
schemata theorem is controversial, because it assumes that the factor c is constant
over time.
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3.6 Coding Problem

Traditionally, GAs use binary stings. However, if an input variable is coded using
standard binary coding, this can lead to the problem that a small change in the
phenotype would require a large number of bits of the genotype to be inverted.
An example of the coding problem is given in Figure 13.

Fig. 13 Differences between decimal and standard binary coding.

As it can be seen from the figure, a step from 310 to 410 requires flipping 3 bits in
binary representation whereas it only changes the least significant digit in decimal
representation by one. One solution is to use Gray Code, which has the advantage
that only one bit changes between any two positions, i.e. it has a constant Hamming
Distance of one.

4 Ant Colony Optimization

Ant Colony Optimization (ACO) [4] refers to a class of discrete optimization algo-
rithms, i.e. a meta-heuristic, which is modelled on the collective behaviour of ant
colonies.

Real ants are very limited in their individual cognitive and visual capabilities,
but an ant colony as a social entity is capable of solving complex problems and
tasks in order to survive in an ever-changing hostile environment. For example, ants
are capable of finding the shortest path to a food source [14]. If the food source is
depleted, the ant colony adapts itself in a way that it will explore the environment
and discover new food sources.

Ants communicate indirectly with other ants by depositing a substance called
pheromone on the ground while they are walking around. This pheromone trail can
then be used by the ant to find its way back to its nest after the ant has found a food
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Fig. 14 Gray Code.

source and other ants can also sense it. Ants have the tendency to follow existing
paths with high pheromone levels. If there is no existing pheromone trail, they walk
around in a random fashion. If an ant has to make a decision, for example to choose
a way around an obstacle in its way, it follows existing paths with a high probability.
However, there is always a chance that the ant explores a new path or a path with a
lower pheromone level. If an ant has chosen an existing path, the pheromone level
of this path will be increased because the ants deposit new pheromone on top of
the existing one. This makes it more likely that other ants will also follow this path,
increasing the pheromone level again. This positive feedback process is known as
autocatalysis [5]. Although the pheromone evaporates over time, the entire colony
builds up a complex solution based on this indirect form of communication, called
stigmergy [4].

Figure 15 demonstrates the basic principle of the ACO meta-heuristic, which is
modelled after the behaviour described above. In this example, the system S that
has to be optimized has three independent variables x1 . . .x3 and the quality of the
solution can be measured by the achieved fitness value y. Each input can have one
of five different discrete alternative values si j, where i represents the input and j
the chosen alternative for that input. Each alternative has an associated probability
value, which is randomly initialised. The collection of probability distributions can
be seen as a global probability matrix. Each artificial ant in the colony has to choose
randomly a ‘path’ through state space, i.e. the input value for each independent
variable. In the example in Figure 15, the ant chooses alternative s12 for input x1,
s24 for input x2 and s33 for input x3. The chosen path depends on the probabilities
associated with the states, i.e. a state with a high probability is more likely to be
selected for a trial solution than states with a low probability value. This probability
values are refereed to as the pheromone level τ .
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Fig. 15 Example of an artificial ant constructing a trial vector by traversing through state
space.

A chosen path represents one candidate solution, which is evaluated and the
probabilities of the states that the ant has visited on that trail is updated based on
the achieved fitness. In the next generation, the updated probability matrix is used,
which means that states that have proven fit in the past are more likely to be selected
for the subsequent trail. However, it should be pointed out that a ‘path’ is not actu-
ally traversing through the state space; it simply refers to the collection of chosen
alternatives for a particular candidate solution. The order in which the states are se-
lected does not have any effect on the candidate solution itself, i.e. one could start
with determining the input for x1 first or, alternatively, with x2 or x3. The resulting
candidate solutions would still be the same.

A major advantage of ACO is that adjacent states in the neighbourhood do not
need to show similarities, i.e. the state space does not need to be ordered. This is
different to most optimization heuristics, which rely on ordered collections of states,
i.e. fitness landscapes.

Figure 16 shows a flowchart of the basic ACO meta-heuristic for a colony
consisting of n artificial ants. During one iteration, called a time-step, every ant
generates a trial solution, which is evaluated and based on the fitness of the solution
the pheromone level of the states involved in the trail is updated in a local proba-
bility matrix for the ant. After one iteration, i.e. time-step, all the local probability
matrices are combined and added to the global one, which is usually scaled down
in order to simulate the evaporation process of real pheromone trails. This helps to
avoid search stagnation and ensures that ants maintain their ability to explore new
regions of the state space.

The main principle of ACO is that a colony of artificial ants builds up discrete
probability distributions for each input parameter of a system to be optimized.
Figure 17 shows an example of a probability distribution for an input i with ten
alternative states.

It can be seen that state si8 has the highest pheromone level, i.e. probability, and
hence has a high chance to be selected for a trial. States si7 and si10, on the other
hand, have a pheromone level of zero and can never be selected. However, even
states with a low pheromone level, e.g. si3 in Figure 17, have a certain chance to be
selected.

Initially, every possible choice for each of the input variables is set to a very low
probability, which is the equivalent to the pheromone level in the real world. Each
individual ant then chooses randomly one value for each input parameter, i.e. builds
up a candidate solution, based on the probability distributions of the input values.
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Fig. 16 Flowchart of ACO meta-heuristic.

Depending on the quality of the resulting candidate solution, the probability values
of the chosen input values are updated. The whole process is repeated in iterations
called time-steps until a suitable solution is found or the algorithm has converged,
i.e. has reached a stable set of probability distributions. It has been proved, for exam-
ple by Stützle and Dorigo [19] and Gutjahr [15], that ACO algorithms are capable
of converging towards the global optimum within finite time.

The first computational optimization algorithm based on ant colonies was the Ant
System (AS) algorithm [2]. It was successfully applied to the Travelling Salesman
Problem and the Quadratic Assignment Problem. This was later followed by the
Ant Colony System (ACS) [6], the Max-Min Ant System (MMAS) [20] and the
Rank-Based Ant System (RBAS) [1].
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Fig. 17 Example of a probability distribution based on pheromone level.

For ACO the probability of a state si j to be chosen as input parameter i can be
calculated using the following transition rule (Equation 8):

p(si j) =

⎧⎨
⎩

ταi j ·ηβi j

∑m
j=1 τ

α
i j ·ηβi j

if si j ∈ Ni

0 otherwise
(8)

Where τi j is the pheromone level for state si j , ηi j is a heuristic value related to the
fitness of the solution, α and β are control parameters that determine the relative
importance of pheromone versus fitness, m is the number of alternatives for input
parameter i, and Ni is the set of possible alternatives for input i. If the heuristic value
ηi j is set to a constant value of one, the algorithm becomes the Simple Ant Colony
Optimization algorithm (SACO) [7].

The evaporation after time-step t can be computed using Equation 9, where ρ ∈
(0,1]) is the evaporation rate.

τi j(t + 1) = (1−ρ) · τi j(t) (9)

The pheromone updating rule is given in Equation 10, with Δτi j(t)= f (y1,y2,. . .,yn):

τi j(t + 1) = τi j(t)+Δτi j(t) (10)

Unlike real ants, artificial ants can be equipped with additional capabilities, for ex-
ample with look ahead capabilities [17] and backtracking [3] in order to improve
efficiency. They can also be combined with local search methods [4, 18].

However, one problem related to ACO is that it is not a straightforward task to
find optimum control parameter settings for an ACO application [12].
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5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a simple but effective algorithm that was orig-
inal developed by Kennedy and Eberhart [16] for continuous function optimization.
It is based on the social behaviour of a collection of animals that can be observed,
for example, in fish schooling and bird flocking. PSO uses a population of agents
where the population is referred to as swarm and the agents are called particles.
Each particle represents an input vector for the system and is randomly initialised.

Each particle i has a position xi j(t) and a velocity vi j(t) for each dimension j
of the search space. In every iteration of the algorithm, i is ‘flying’ through search
space by adjusting the position vector xi(t) using the velocity vector vi(t) as follows:

xi j(t + 1) = xi j(t)+ vi j(t + 1) (11)

It should be stressed that, in the physical world, a velocity and a position cannot be
added. The velocity would need to be multiplied with a time interval in order to get
a distance that could then be added to the original position. However, if one thinks
of an iteration as a time step, the velocity vector could be multiplied with one time
unit, which would not change the actual value but it would change the unit. The
velocity vector itself is determined using the following equation:

vi j(t + 1) = vi j(t)+ c1r2(xi best − xi j(t))+ c2r2(xglobal best − xi j(t)) (12)

Here, r1 and r2 are random numbers, c1 and c2 are tuning constants, xi best is the
best position that particle i found during the search so far and xglobal best is the best
position the swarm found so far. The second term in Equation 12 is called the com-
ponent cognitive component whereas the third one is called the social component.
Figure 18 shows a flow-chart of the basic PSO algorithm.

One variation of the basic PSO algorithm is that, instead of using the global best
position, the best position of the neighbourhood of particle i is used in the social
component.

6 Overview

The single chapters of this book will demonstrate the practical application of the
before-mentioned meta-heuristic optimization techniques. It can be seen how the
pure academic perspective taken so far conveys into the complex aspects of an en-
gineering application.

The chapter “Learning Automata in Control Planning Strategies” explores the
use of planning in order to improve the performance of feedback-based control
schemes considering only one probabilistic approach known as Learning Automata
(LA). Authors propose a novel scheme that has been motivated by the human abil-
ity of choosing among different alternative plans while solving daily-life problems.
Considering that Planning provides a very general and easy applicable methodology,
the overall approach combines the use of Model predictive Control as regulation
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Fig. 18 Flowchart of PSO algorithm.

strategy and LA as optimization technique. The latter provides remarkable capa-
bilities for global optimization on multimodal surfaces. By using LA, the search
for the optimum is done over a probability space rather than exploring the parame-
ter domain as it is commonly done by traditional algorithms. Some experiments and
comparisons are conducted over a conventional control plant in order to demonstrate
the proposed framework’s performance.

In the chapter “Optimization Strategies for Restricted Candidate Lists in Field
Service Scheduling,” authors formally define a real-world class of combinatorial
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optimization problems called Field Service Scheduling (FSS), and position it in re-
lation to some optimization problems more often encountered in the literature. The
presented research was motivated by the challenges encountered at routinely solv-
ing large instances of these problems in an industrial setting. The authors propose
a generic framework that combines the expressiveness to address a wide variety
of such problems with the ability to tune the optimization process to the type of
instances being solved. Stategies for restricted candidate lists are introduced as a
way to accelerate the pace of convergence when particular problem features are
present. Two such strategies, constrained clustering and bundling, are explored in
some detail, yielding some surprising results and material for further research. The
presented experimental results were obtained on top of a GRASP meta-heuristic, but
the presented approach of using strategies does not depend in any meaningful way
on the particular meta-heuristic in use and can be generalized to other optimization
methods.

The chapter “Framework for Integrating Optimization and Heuristic Models for
Solving Planning and Scheduling Problem in a Resin Manufacturing Plant” de-
scribes a methodology that combines optimization and heuristic models to provide a
solution to the planning and scheduling problem in a batch chemical plant. Real-life
industrial data from a resin manufacturing plant was used to validate and test the
robustness of the proposed methodology. The results of the proposed methodology
are encouraging and provide substantial benefits to practitioners.

The chapter “Evolutionary Algorithms in the Optimal Sizing of Analog Circuits”
highlights the application of two multi-objective evolutionary algorithms (NSGA-
II and MOEA/D) in the optimization of analog integrated circuits. The algorithms
use the circuit simulator SPICE to evaluate performances of unity-gain cells, cur-
rent conveyors and CFOA. The results on the sizing process show that the genetic
operator known as differential evolution increases the dominance of both evolution-
ary algorithms. Finally, some heuristics regarding the effectiveness of NSGA-II and
MOEA/D in the sizing of analog integrated circuits are summarized.

Managing the core of a nuclear reactor so as to maximise the energy produced
whilst meeting all of the safety requirements is a difficult and complex task, which
is the topic of the chapter “Application of Estimation of Distribution Algorithms for
Nuclear Fuel Management.” A reactor core consists of many vertical channels into
which a tube, containing the fuel, can be placed. Typically the fuel in each tube is
different, so that one needs to place N different objects into each of N locations. This
is a difficult problem in combinatorial optimization. The best available algorithm for
this problem, a genetic algorithm with a specially designed crossover operator, was
created nearly twenty years ago. In this research, an estimation of distribution al-
gorithm supplemented with heuristic information to tackle the problem was used.
The estimation of distribution algorithm produces a probability distribution func-
tion for each channel that indicates which fuel tubes are likely to be found in that
channel in an optimal solution. Conversely it indicates which fuel tubes will not be
found in the channel. The algorithm starts with a uniform probability distribution,
i.e. all solutions are equally likely. The distribution is then sampled and the pro-
posed solutions tested, this then allows the probability distribution to be updated.
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The process can then be repeated until the algorithm converges onto an invariant
probability distribution function. This algorithm has significantly outperformed the
previous state-of-the-art method and represents a major improvement in the ability
to tackle this problem.

The chapter “Optimal Control Systems with Reduced Parametric Sensitivity
Based on Particle Swarm Optimization and Simulated Annealing” offers the de-
sign of optimal control systems with a reduced parametric sensitivity on the basis
of Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms
that belong to the popular category of nature-inspired optimization algorithms. PSO
and SA algorithms are employed in solving optimization problems that optimize
the control system responses and reduce the sensitivity with respect to parametric
variations of the controlled process. The objective functions are expressed as in-
tegral quadratic performance indices that depend on the control error and on the
squared output sensitivity functions. The PSO-based and SA-based minimization
of the objective functions has as direct result the optimal tuning parameters of the
controllers. The new optimization problems use the advantages of nature-inspired
optimization algorithms to improve the control systems performance indices. This
chapter contains recommendations for the practitioners that contribute to practical
implementations with good computational efficency and fast convergence rate.

A comparative study of ant colony, differential evolution, particle swarm op-
timization and the neighbourhood algorithms for history matching of reservoir
simulation models is provided in the chapter “Comparison of Evolutionary and
Swarm Intelligence Methods for History Matching and Uncertainty Quantification
in Petroleum Reservoir Models.” In history matching, simulation models are cali-
brated to reproduce the historical observations from the oil and gas fields. History
matching is an inverse problem with non-unique solution. Multiple history matched
reservoir models are used to quantify uncertainty of future hydrocarbon produc-
tion from a field. In our assisted history matching workflow, different evolutionary
and swarm intelligence algorithms are use to explore the plausible parameter space
and find good-fitting reservoir models. These algorithms are also integrated within
a Bayesian framework to quantify uncertainty of the predictions. Two petroleum
reservoir cases illustrate different aspects of this comparative study. The results
present comparison of best history-matched models, convergence speeds for dif-
ferent algorithms, ability of the algorithms in navigating the search space and their
effect on uncertainty of the predictions for ultimate oil recovery.

A contribution from the general field of logistics can be found in the chapter
“Optimization of Multiple Traveling Salesmen Problem by a Novel Representation
based Genetic Algorithm.” The aim of logistics is to get the right materials to the
right place at the right time, while optimizing a given performance measure and sat-
isfying a given set of constraints. In most distribution systems goods are transported
from various origins to various destinations. It is often economical to consolidate
the shipments of various origin-destination pairs and transport such consolidated
shipments in the same truck at the same time. Obviously the challenge is to find the
optimal i.e. the best consolidation according to some objective functions.
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In case of this chapter, the problem is an asymmetric multiple Traveling Salesman
Problem with Time Windows, where additional special constraints exist, like an
upper bound for the number of salesmen, the maximum travelling distance, or a
time window at each location. This is a numerical optimization problem, obviously
an NP-hard task.

The main motivation of the research presented in this chapter was that there was
no available algorithm that is “intelligent” enough to handle constraints on tour
lengths, asymmetric distances, and the number of salesmen is not predefined, and
can vary during the evolution of the individual solutions. Furthermore the represen-
tation is so transparent that supports not only the implementation, but the initializa-
tion and heuristic fine-tuning of the individual routes.

In this chapter, authors propose a general, novel genetic representation for the
so-called mTSP problems. A new genetic algorithm based on the novel represen-
tation is presented, which can handle the constraints for the routes and the time
windows for the locations too, as well as its representation is more similar for the
characteristic of the problem than the ones until now. Thus it can be more easily
understandable and realizable. The algorithm was implemented in MATLAB and
integrated with Google Maps to provide a complete framework for distance calcu-
lation, definition of the initial routes and visualization of the resulted solutions. The
novel approach and the novel representation proved to be more effective in terms
of flexibility, complexity and transparency, and also in efficiency than the previous
methods.

In the chapter “Out-of-the-box and Custom Implementation of Metaheuristics. A
Case Study: The Vehicle Routing Problem with Stochastic Demand” authors pro-
pose an experimental analysis that studies the impact of development effort on the
relative performance of metaheuristics. Five algorithms for the vehicle routing prob-
lem with stochastic demand that have been proposed in the literature are considered:
Tabu Search, Simulated Annealing, Genetic Algorithms, Iterated Local Search and
Ant Colony Optimization. As measure of the development effort the time devoted to
tune the parameters of the algorithms is considered. In this way, such effort can be
easily measured. If such a minor implementation issue allows to point out a signif-
icant difference in the relative behavior of metaheuristics, then this difference can
be expected to grow when one considers other issues. The same algorithms in their
out-of-the-box version, i.e., with no parameter tuning, and in their custom one, i.e.,
with fine-tuned parameters are compared. The results support the main claim of the
chapter: one should clearly state in which context one develops algorithms, since
the results obtained in an out-of-the-box context are not necessarily extendable to a
custom one, and vice versa. Moreover, in experimental analysis we often consider
also the values of parameters indicated in the paper in which the algorithm was pro-
posed. This analysis allows one to observe that the results that are reported in the
literature cannot be a priori related to one of the two contexts.

Optimal analogue circuit sizing is investigated in the chapter “Analogue Cir-
cuit Optimization Through a Hybrid Approach.” It is shown that hybridization of
a global optimization approach with a local one leads to better results in optimiza-
tion of such circuits than using classical approaches. The case of merging Genetic
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Algorithms with the Simulated Annealing technique is considered. The hybrid al-
gorithm is detailed and is evaluated using test functions. It is shown through three
application examples, i.e. optimization of performances of a current conveyor, an
operational transconductance amplifier and a low noise amplifier, that such hy-
brid algorithms yield optimal solutions in a much shorter time, when compared to
conventional meta-heuristics.

The scope of the chapter “Evolutionary Inventory Control for Multi-Echelon Sys-
tems” is confined to the use of Genetic Algorithms (GA)s for handling operational
issues of inventory control and management in multi-echelon inventory networks.
It provides an extensive review of literature on use of GAs to solve multi-echelon
inventory control problems and evaluates the state of GA applications in these areas.
The chapter also presents a novel GA structure for a stochastic lot sizing problem in
a centralized distribution system. Numerical experiments conducted on several test
cases with different operational parameters show that proposed GA structure can be
used as an effective algorithm for solving the multi-echelon inventory distribution
problem under stochastic demand.

To improve the ride comfort is one of the most important design objectives in
automotive engineering by reducing the vibration transmission and keeping proper
tyre contact. This is the main topic of the chapter “Fuzzy Skyhook Surface Con-
trol using Micro-Genetic Algorithm for Vehicle Suspension Ride Comfort.” The
semi-active suspension systems are developed to achieve a better ride comfort per-
formance than the passive suspension system. A polynomial function supervised
fuzzy sliding mode control collaborated with a skyhook surface method is intro-
duced for the ride comfort of a two degree of freedom vehicle semi-active suspen-
sion. The multi-objective micro-genetic algorithm has been utilised to this proposed
controller’s parameter alignment in a training process with three ride comfort ob-
jectives. The numerical results have shown that this hybrid control method is able to
provide a real-time enhanced level of ride comfort performance for the semi-active
suspension system.
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Learning Automata in Control Planning 
Strategies* 

Erik Cuevas, Daniel Zaldivar, Marco Perez-Cisneros, and Raúl Rojas 

Abstract. Intelligent Computational Optimization has been successfully applied to 
several control approaches. For instance, Planning Control uses information re-
garding a problem and its environment to decide whether a plan is the most suit-
able to achieve a required control objective or not. Such algorithm is commonly 
embedded into a conveniently located model inside a control loop. Planning pro-
vides a general and easy methodology widely used by a number of approaches 
such as receding horizon control (RHC) and model predictive control (MPC). Ac-
tually, MPC is the planning approach that has recently acknowledged a wide  
acceptance for industrial applications despite being highly constrained by |its com-
putational complexity. For MPC, the evaluation of the overall plan is based upon 
time-consuming approaches such as dynamic programming and gradient-like 
methods. This chapter explores the usefulness of planning in order to improve the 
performance of feedback-based control schemes considering one probabilistic ap-
proach known as the Learning Automata (LA). Standard gradient methods de-
velop a plan evaluation scheme whose solution lies on a neighbourhood distance 
from the previous point, forcing to explore the space extensively. Remarkably, LA 
algorithms are based on stochastic principles considering newer points for optimi-
zation as being determined by a probability function with no constraints whatso-
ever on how close they lie from previous optimization points. The proposed LA 
approach is considered as a planning system to select the plan holding the highest 
probability of yielding the best closed-loop results. The system’s performance is 
tested through a nonlinear benchmark plant, comparing its results to the Leven-
berg-Marquardt (LM) algorithm and some other Genetic algorithms (GA). 
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1   Introduction 

Advances in computational intelligence have brought new opportunities and chal-
lenges for researchers seeking for new ways to deal with complex and uncertain 
systems. In Engineering, many systems are too complex to be represented by an 
accurate mathematical model but still they demand the use of other approaches for 
designing, optimizing or controlling their behaviour. In recent years, several com-
putational intelligence based techniques have emerged as successful tools for  
solving difficult optimization problems commonly mishandled by traditional  
optimization methods.  

The presence of nonlinearities is commonly the main challenge. They impose 
several conditions to most industrial processes including actuator nonlinearities 
such as saturations, dead-zones and backlash. On the other hand, model inaccu-
racy also imposes hard constraints when a given mathematical model cannot  
exactly reproduce the plant’s behaviour. 

According to the control framework, planning requires the ability to build rep-
resentations similar to daily-life models. In turn, this fact allows generating pre-
dictions on how the environment would react to several plans. The ability of 
choosing among different alternative plans and executing among several se-
quences of actions has been mastered, almost exclusively by humans. Planning is 
the approach which allows generating complex behaviours surpassing the simple 
reaction to what is sensed. Moreover, Planning Control uses information about the 
problem and its environment, often embedded into some type of a model which 
considers many options, also known as plans. It aims to choose the best plan in 
order to achieve the required objectives in the control loop. 

Planning also provides a very general and easy methodology to apply. It has been 
exploited extensively in conventional control, e.g. receding horizon control and 
model predictive control. In comparison to intelligent approaches such as neural net-
works (Liu, 2001) or evolutionary algorithms (Fleming & Purshouse, 2002), it ex-
ploits the use of an explicit approximated model to decide what actions to take. How-
ever, like the fuzzy and expert system approaches, it is still possible to incorporate 
heuristics to specify which control actions are the best to use. In broad sense, plan-
ning approaches attempt to use both heuristic knowledge and model-based decisions 
in order to exert control. It is the fundamental reason for selecting a planning strategy 
over a simple rule-based system. It is a bad engineering practice to prefer the use of 
heuristics and ignore the information provided by a good mathematical model con-
sidering that planning strategies provide a way to incorporate this information. 

Planning has been successfully applied to solve several engineering problems 
(Ying-Pin et al., 2009; Huang, 2009), despite only few examples portraying its ap-
plication to control dynamical systems (Chauvin et al., 2008 and Son, 2006). Sev-
eral planning system approaches may be considered depending upon the problem 
and the number of plans considered by the solution. An classic example is the  
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Belief-Desire-Intention method (Seow & Sim, 2008), an effective scheme for finite 
and sensibly small plan number, which unfortunately constrains its use for control. 

The Model Predictive Control (Camacho & Bordons, 2008) is the planning  
approach that has recently acknowledged a wide acceptance for industrial applica-
tions. The control signal generation in MPC involves the on-line use of one para-
metric plant model, assuming an efficient control plan. Major design techniques of 
MPC include Model Algorithm Control, Dynamic Matrix Control, Internal Model 
Control and Generalized Predictive Control, among others (Garcia et al., 1989). 
The strategy of MPC is, at any given time, to solve on-the-fly a receding open-
loop optimal control problem over a finite time horizon, taking only the first result 
in the control sequence. MPC algorithms are very intuitive and easy to understand 
with practical constraints commonly imposed to the on-line algorithm (Mayne et 
al., 2000). MPC has received worldwide attention because of its simple implemen-
tation on industrial applications. In particular, chemical processes have shown a 
relatively slow dynamics which may easily accommodate the on-line optimization 
(Garcia et al., 1989).  

Several variants of the MPC methodology have been published. In Camacho & 
Bordons (2007), the plan evaluation is done over non-linear models while Nagy et 
al., (2007) have applied a similar approach to an industrial batch reactor. Further-
more, the idea of mixing iterative learning control to feedback model-based con-
trol is discussed by Cueli & Bordons (2008). The use of Set-Membership (SM) 
methodologies for approximating Model Predictive Control schemes (MPC) and 
their laws for linear systems has been recently proposed in Canale et al., (2009). 
Predictive control has demonstrated an excellent performance for both theoretical 
studies and industrial applications. However, its deployment for controlling non-
linear processes is complicated as the algorithm limits the kind of functions which 
can be effectively minimized by the optimization method. 

However, much of the work has been limited to optimization strategies (for 
plan evaluation and selection) which are based on dynamic programming or gradi-
ent methods. The use of such optimization techniques for non-linear control prob-
lems is multimodal, yielding a slow speed operation and a high computational 
complexity. This chapter explains the use of a stochastic approach known as 
Learning Automata (LA) to overcome such problems.  

Few works have been reported using some stochastic methodology either to in-
corporate LA into MPC or to generate a planning structure. Some exceptions are 
reported by Potočnik et al. (2008) whose work considers a probabilistic neural-
network as part of a MPC system, and by Chen et al. (2009) or Nagya et al. 
(2001), both reporting a Genetic algorithm as optimization method. 

The Learning Automata (LA) (Narendra & Thathachar, 1989) is an adaptive 
decision making method that operates within unknown random environments 
while progressively improving its performance via a learning process. LA is 
very useful for optimization of multi-modal functions, in particular when such 
a function is unknown and only noise-corrupted evaluations are available 
(Beigy & Meybodi, 2006). For such cases, a probability density function, 
which is defined over the parameter (action) space, is used to select the next 
point. The reinforcement signal (objective function) and the learning algorithm 
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are used by the LA to update the probability density function at each stage. 
Such automaton improves its performance to obtain an optimal parameter  
(action). Therefore, the parameter showing the highest probability would corre-
spond to a minimum as it has been demonstrated through rigorous proofs of 
convergence by Narendra & Thathachar (1989), Najim & Poznyak (1994), 
Thathachar & Sastry (2004) and Beigy & Meybodi (2009). 

The LA method does not need knowledge of the environment or any other ana-
lytical reference to the function to be optimized. It is actually its main advantage. 
Additionally, it offers fast convergence for estimation of several parameters 
(Torkestani & Meybodi, 2010). Other Gradient-based methods, such as the LM, 
require iterative updating procedures within the parameter space that usually ex-
hibit a slow convergence or local minima trapping (Park et al., 2000). The LA’s 
search for the optimum is performed over a probability space rather than seeking 
through the parameter space as it is commonly done by gradient optimization al-
gorithms (Meybodi & Beigy, 2002). Opposite to well-known Genetic Algorithms 
(GA) which commonly bias the whole chromosome population towards the best 
candidate solution exclusively (see Gao et al., 2009), LA can effectively handle 
challenging multimodal optimization tasks by means of effectively exploring the 
search space (Ikonen & Najimz, 2008). 

LA has been used for solving different sorts of engineering problems at several 
fields such as pattern recognition, adaptive control (Zeng et al., 2000), signal process-
ing (Howell & Gordon, 2001), power systems (Wu, 1995) and computer  
networks (Torkestani & Meybodi, 2010). Some effective algorithms have been lately 
proposed for multimodal complex function optimization based on the LA (see  
(Howell & Gordon, 2001; Thathachar & Sastry, 2002; Zeng & Liu, 2005; Beygi & 
Meybodi, 2006; Beigy & Meybodi, 2009)). Furthermore, it has been shown experi-
mentally that the performance of such optimization algorithms may surpass the ge-
netic algorithm (GA) as they reduce the searching space yielding a fast convergence 
(see for instance, Zeng & Liu (2005)). This chapter discusses the use of the continu-
ous action reinforcement learning automata (CARLA) as the chosen LA approach. 

The CARLA algorithm was first introduced by Howell, Frost, Gordon and Wu 
(1997). It has been demonstrated its effectiveness to solve some optimization tasks 
for a wide range of applications. In Howell et al., 2000, the CARLA algorithm is 
used to simultaneously perform on-line tuning of an PID-controller which has 
been applied to an engine idle-speed system. On the other hand, Kashki et al., 
2008, have shown experimentally that CARLA's performance for tuning PID coef-
ficients is superior to the performance shown by the Genetic algorithms (GA) and 
the Particle Swarm Optimization (PSO) operating over the same problem. 

This chapter also discusses how to emulate the functionality of planning in order 
to decide how to control a plant. The study focuses on typical plants considered in 
conventional control. The planning strategy is the MPC methodology, incorporat-
ing Learning Automata as the optimization algorithm. The use of a stochastic ap-
proach deals appropriately with the multimodal problem of the error surface as it 
accelerates the computation process and eliminates the controller complexity. The 
algorithm’s performance is measured over a well-known non-linear process: the 
surge-tank plant. The solution is compared to the Levenberg-Marquardt algorithm  
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(Kelley, 2000) and one Genetic Algorithm (Chen et al., 2009). The LM algorithm 
has been chosen because it has been regarded as the most popular for planning 
strategies showing a fair balance between precision and speed. In the same sense, 
GA is a well-known stochastic optimization methodology. 

The chapter is organized as follows: Section 2 presents a brief review on con-
trol planning strategies while section 3 discusses the foundations and theory of 
Learning Automata. In Section 4, the LA approach is implemented using the surge 
tank plant as a non-linear example. In Section 5, experimental results are  
presented while Section 6 concludes the chapter. 

2   Planning Strategy Design 

The concept of planning is commonly understood following common sense such 
as the case when humans plan their activities for the weekend or when a solution 
for a daily-life problem is discussed among them. The solution normally arises 
from a collection of actions to be followed aiming to achieve specific goals. Such 
kind of action-sorting can be named as an action plan and may fall into the  
following planning steps: 

1. Planning domain. Refers to the first representation of the problem to be 
solved. (i.e. a model). 

2. Setting goals. Essential to planning to define the required behaviour or 
overall aims.  

3. Sticking to the plan. Considering that sometimes humans simply react to 
situations with no considerations about the consequences of their actions. 
For the scope of this chapter, it would be better to fully develop a plan by 
reaching the goals completely. 

4. Selecting a strategy. The selection of the plan commonly involves pro-
jections into the future by means of a model. It requires considering a va-
riety of sequences of task and sub-goals to be executed. An optimization 
algorithm is required to choose the best plan to be followed by assuming 
a partial model of the problem. 

5. Executing the plan. After the selection, it must be decided how to  
execute that plan. 

 

It is important to consider that the chapter focuses on plants that are typically con-
sidered for conventional control. In the approach, planning systems are considered 
as computer programs that emulate the way in that experts may do planning in or-
der to solve a given control problem. The following section discusses on several 
issues regarding the model, the plan generation and the selection process. 

2.1   Closed-Loop Planning Configuration 

A generic planning system can be set on the architecture of a standard control sys-
tem as it is shown by Figure 1. According to the human planning and solving  
 



32 E. Cuevas et al.
 
framework, the problem domain is the plant and its environment. There are  
measured outputs y(k) which are variables of the problem domain that are obtained 
at step k, control actions u(k) which can affect the problem domain, disturbances 
d(k) which represent random events that can affect the problem domain and hence 
the measured variable y(k), and the goal r(k) which is called the reference input in 
conventional control terminology as it represents what is to be achieved within the 
problem domain. There are closed-loop specifications to define the performance 
and stability requirements. The types of plants which are considered in this section 
are defined as follows: 

( 1) ( ( ), ( ), ( ))y k f x k u k d k+ =  (1)

where y(k) is the measured output and f is a generally unknown smooth function of 
the state u(k), the measurable state is x(k) and the disturbance d(k). 

( ) [ ( ), ( 1),..., ( ), ( 1), ( 2),..., ( )]Tx k y k y k y k p u k u k u k q= − − − − −  (2)

where p and q represent the system order. The system is therefore considered to be 
causal, yielding ( ) 0y k p− =  and ( ) 0u k q− = , if k<p or k<q. 

Let 

( ) ( ) ( )e k r k y k= −  (3)

Equation (3) is also known as the tracking error. Generally, the objective is to al-
ways make the tracking error as small as possible as it asymptotically approaches 
zero forcing the output to follow the reference input. 

Considering a plan to be a sequence of possible control inputs and the ith plan of 
length N at time k being structured as follows 

[ , ] ( ,0), ( ,1),..., ( , 1)i i i iu k N u k u k u k N= −  (4)

The algorithm aims to develop a controller that is based on the planning strategy. 
One model and the optimization method are used to evaluate and score each plan 
(e.g. MPC). This will in turn provide a quality ranking for each plan. The plan is 
thus chosen (plan i*) using the control input at each time instant k as follows: 

*

( ) ( ,0)iu k u k=  (5)

The best plan 
*

[ , ]iu k N is chosen, using the first input from the control sequence 

as input to the plant. The process is repeated through each time step. Clearly, it is 
possible to use a lower frequency for the re-planning using for instance a new plan 
at each sampling step and executing the first two inputs from the optimal plan. 
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Fig. 1 Closed-Loop planning system. 

 
Also, the use of a number of controllers may be an option to implement the 

planning system. The current state and the given reference input, both may be 
considered as a “plan template” which in turn represents a particular plan. An op-
timization algorithm may thus be used to evaluate the performance considering the  
approximated model of the plant that must also include uncertainty. Considering 
that a continuous interval for the parameters might generate an infinite number of 
plans, an optimization algorithm must be employed for finding the best plan for a 
particular situation. 

2.2   Models and Projections into the Future 

A wide range of models are available depending on the problem domain, the capa-
bilities of the planner to store and use the model features and the goals to be 
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achieved. For instance, a planning model could be continuous or discrete (e.g., a dif-
ferential or difference equation) and it could be linear or nonlinear. It may be deter-
ministic or it may contain an explicit representation of the uncertainty of the prob-
lem, so plans may also be chosen considering such factors (Mayne et al., 2000). 

There is no comprehensive model which can be able to fully represent the plant 
and the environment yielding uncertainty. Hence there is always a bound regard-
ing the amount of time which is required to simulate the model far into the future. 
Such projection into the future may become useless after some time as it may go 
too far as a result of inaccurate predictions which yield poor information on how 
to select the best plan. The difficulty emerges from knowing how good the model 
is and how far it may be projected into the future. In this chapter a deeper analysis 
on such problems will not be considered. 

Considering a general nonlinear discrete time model as: 

( 1) ( ( ), ( ))y j f x j u j+ =  
(6)

being ( 1)y j +  the output, ( )x j  the state and ( )u j  the input for j = 0,1,2,..., N-1. 

Notice that this model can be quite general, if required. However in practical 
terms, only a linear model is generally available and may be sufficient. Let 

( , )iy k j denote the jth value at time k using the ith plan defined by [ , ]iu k N , and 

the state ( , )x k j . In order to predict the effect of plan i (as it is projected into the 

future) at each time k, it is required to calculate a step-set ahead considering j= 
0,1,2,..., N-1 , as follows: 

( , 1) ( ( , ), ( , ))i iy k j f x k j u k j+ =  (7)

Considering a simulation forward in time k, for j = 0, it begins 
with ( ,0) ( )x k x k= generating ( , 1)y k j +  with j= 0,1,2,..., N- 1. It is required to ap-

propriately shift values in x at each step yielding values of ( , )iu k j ,  j = 1,2,..., N-

1, for each i. 

2.3   Optimization Procedure and Plan Selection Method 

The set of plans (strategies) is "pruned" to only one which is considered as the best 
one to be applied at the current time as optimization is very important for plan-
ning. The specific type of optimization approach that is used for plan selection 
should be able to operate in multimodal surfaces, showing a light and fast compu-
tation. The previous requirements are usually difficult to solve by means of t 
raditional optimization algorithms, yielding relevance for the use of the LA as an 
optimization procedure. 

Prior to the optimization procedure selection, it is necessary to define a specific 
criterion to decide the best plan. Although there exist different performance crite-
ria (Bloemen et al., 2004), a cost function of the type ( [ , ])iJ u k N is used at this 

chapter to quantify the quality of each candidate plan [ , ]iu k n  by means of the 
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model f. First, it is assumed that the reference input r(k) is either known all the 
time or at least at time k, while it is also known up to the time k + N. Therefore, 
the cost function is defined as follows: 

1
2 2

1 2
1 1

( [ , ]) ( ( ) ( , )) ( ( , ))
N N

i i i
m

j j

J u k N r k j y k j u k jω ω
−

= =

= + − +∑ ∑  (8)

being 1 0ω >  and 2 0ω >  the scaling factors for weighting the importance of re-

ducing the tracking error (first term) or minimizing the use of control energy (sec-
ond term) to reduce the tracking error. Often 1ω  and 2ω  hold similar values.  In 

order to specify the control at time k, it is necessary to take the best plan, as it is 

measured by ( [ , ])iJ u k N , calling it the plan 
*

[ , ]iu k N , and generating the control 

using 
*

( ) ( ,0)iu k u k= (i.e. the first control input in the sequence of inputs which is 

the best).  
An important consideration is therefore the selection of the optimization 

method that will converge to the optimal plan and the choosing of one that can 
cope with the complexity presented by a large number of candidate plans. First, by 
focusing on the complexity aspect, it should be noticed that the inputs and states 
for the plant under consideration can take on a continuum number of values, de-
spite of particular applications which may only consider a finite number of values. 
This is the case for analog-control systems in particular considering actuator satu-
ration. For digital control systems, one data acquisition scheme may be available, 
yet hosting some quantization and theoretically yielding a finite number of inputs, 
states, and outputs, for the model fm. Digital computers are commonly used despite 
the fact that the number of operations may be very large. In general, there exist an 
infinite number of possible plans that must compute their own cost, ranking them 
according to such cost and hence selecting the best one. 

If non-linear and uncertain system characteristics dominate to the extent that a 
linear model is not sufficient for generating plans, then a nonlinear model can be 
used within the planner. Some type of nonlinear optimization method may there-
fore be used for the parameters that evaluate the infinite set of feasible plans. 
However, this may become a troublesome task since a non-linear model is used 
for plan generation. In turn, it forces the overall solution to consider non-linear op-
timization with generally no analytical solution available. 

There exists a wide variety of algorithms to tackle this problem such as steepest 
descent, Levenberg-Marquardt, etc. Such methods, however, do not guarantee 
convergence to an optimal plan or they may get stuck into local minima, generat-
ing divergent solutions or even not reaching one at all. Therefore the resulting plan 
after the non-linear optimization procedure cannot be assured to yield the optimal 
closed-loop performance. It is important to recall that for some practical industrial 
problems, engineers have managed to develop effective solutions via such a non-
linear optimization approach. This fact has given way to the main motivation  
beneath the use of LA as an optimization algorithm because it offers global opti-
mization when dealing with multimodal surfaces. The search for the optimum is 
done within a probability space rather than seeking within a parameter space as it 
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is done by other optimization algorithms. An Automata is commonly understood 
as an automaton, acting embedded into an unknown random environment and im-
proving its performance to obtain an optimal action. 

3   Learning Automata 

The concept of learning automata was first introduced by the pioneering work of 
Tsetlin (Tsetlin, 1973). He was interested into the behaviour modelling of biologi-
cal systems and subsequent research has considered the use of such learning para-
digm for engineering systems. Although LA and reinforcement learning aim to 
solve similar problems, their methodologies and algorithms greatly differ (Thath-
achar & Sastry, 2002). LA operates by selecting actions via a stochastic process. 
Such actions operate within an environment while being assessed according to a 
measure of the system performance. Figure 2a shows the typical learning system 
architecture. The automaton probabilistically selects an action (X). Such actions 
are applied to the environment, and the performance evaluation function provides 
a reinforcement signal β . In turn, such signal is used to update the automaton’s in-

ternal probability distribution whereby actions that achieve desirable performance 
are reinforced via an increased probability, while those not-performing actions are 
penalised or left unchanged depending on the particular learning rule which has 
been employed. Over time, the average performance of the system will improve 
until a given limit is reached. In terms of optimization problems, the action with 
the highest probability would correspond to the global minimum as demonstrated 
by rigorous proofs of convergence available in Narendra & Thathachar (1989), 
Najim & Poznyak (1994), Thathachar & Sastry (2004) and Beigy & Meybodi 
(2009). 

A wide variety of learning rules have been reported in the literature. One of the 
most widely used algorithms is the linear reward/inaction ( RIL ) scheme, which 

has been shown to guarantee convergence properties (see (Narendra & Thath-
achar, 1989)). In response to action ix , being selected at time step k, the probabili-

ties are updated as follows: 
 

( 1) ( ) ( ) (1 ( ))i i ip k p k k p kθ β+ = + ⋅ ⋅ −            

( 1) ( ) ( ) ( )j j jp k p k k p kθ β+ = − ⋅ ⋅ ,  if i j≠  
(9)

 

beingθ  a learning rate parameter 0 1θ< <  and [0,1]β ∈ the reinforcement signal; 

1β =  indicates the maximum reward and 0β =  is a null reward. Eventually, the 

probability of successful actions will increase to become close to unity. In case 
that a single and foremost successful action prevails, the automaton is deemed to 
have converged.  

Considering a large number of discrete actions, the probability of selecting any 
particular action becomes low and the convergence time can become excessive. In 
order to avoid such situation, the automata can be connected into a parallel setup  
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Fig. 2 (a) Reinforcement learning system and (b) Parallel interconnected automata. 

 
as it is shown by Figure 2b. Each automaton operates a small number of actions 
and the ‘team’ works together in co-operative manner. This scheme can also be 
used if multiple actions are required. 

Discrete stochastic learning automata can be used to determine global optimal 
states for control applications with multi-modal mean square error surfaces. How-
ever, the discrete nature of the automata requires the discretization of a continuous 
parameter space, and the level of quantization tends to reduce the convergence 
rate. A sequential approach may be adopted (Howell & Gordon, 2001) to over-
come such problem by means of an initial coarse quantization. It may be later re-
fined using a re-quantization around the most successful action. In this chapter, an 
inherently continuous form of the learning automaton is used to speed the learning 
process avoiding its own complexity. 
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3.1   CARLA Algorithm 

The continuous action reinforcement learning automata (CARLA) was developed 
as an extension of the discrete stochastic learning automata for applications  
involving searching of continuous action space in a random environment  
(Howell & Gordon, 2001). Several CARLA can be arranged in parallel just like 
the discrete automata (Figure 2b) searching multidimensional action spaces. As 
each CARLA algorithm operates on independent actions, the automata set runs 
within a parallel implementation defining several parameter values (see Fig. 2b). 
Communication between several CARLA’s algorithms is done through the envi-
ronment and one performance evaluation function.  

The automaton’s discrete probability distribution is replaced by a continuous 
probability density function which is used as the basis for action selection. It oper-
ates a reward/inaction learning rule similar to the discrete learning automata. Suc-
cessful actions receive an increase on their probability for future selection via a 
Gaussian neighbourhood function. The probability density is thus increased within 
the vecinity of such a successful action. The initial probability distribution may be 
equally probable over a desired range, yielding numerous iterations and converg-
ing to a Gaussian distribution around the best action value. 

If action x is defined over the range min max( , )x x , the probability density func-

tion ( , )f x n at iteration n is updated according to the following rule: 

min max[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise

f x n n H x r x x x
f x n

α β⋅ + ⋅ ∈⎧
+ = ⎨

⎩
 (10)

With α being chosen to re-normalize the distribution according to the following 
condition 

max

min

( , 1) 1
x

x
f x n dx+ =∫  (11)

with ( )nβ being the reinforcement signal in the performance evaluation and 

( , )H x r a symmetric Gaussian neighbourhood function centred on ( )r x n= . It 

yields 

2

2

( )
( , ) exp

2

x r
H x r λ

σ
⎛ ⎞−= ⋅ −⎜ ⎟⎝ ⎠

 (12)

Where λ  and σ are parameters that determine the height and width of the 
neighbourhood function. They are defined in terms of the range of actions as  
follows: 

max min( )wg x xσ = ⋅ −  (13)
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max min( )
hg

x x
λ =

−
 (14)

where the value wg  controls the width and the parameter hg sets the height of the 

Gaussian function which is added to the distribution (Equation 10). The speed and 
resolution of the learning process are thus controlled by the free parame-
ters wg and hg . Such parameters are set experimentally as they depend on the sys-

tem to be optimized.  
Let action x(n) be applied to the environment at iteration n, returning a cost or 

performance index J(n). Current and previous costs values are stored within a vec-
tor R(n) for computing the median and minimum values medJ  and minJ . Both val-

ues are required to calculate ( )nβ  as follows: 

med

med min

( )
( ) max 0,

J J n
n

J J
β

⎧ ⎫−
= ⎨ ⎬−⎩ ⎭

 (15)

To avoid problems with infinite storage and to allow the system to adapt to chang-
ing environments, only the last m values of the cost functions are stored in R(n). 
Equation (15) limits ( )nβ  to values between 0 and 1 and only returns nonzero 

values for costs which lie below the median value. It is easy to understand 
how ( )nβ  affects the learning process as follows: during the learning, the per-

formance and the number of selecting actions can be wildly variable generating 
extremely high computational costs. However, ( )nβ is insensitive to such extremes 

and to extreme values of J(n) resulting from a poor choice of actions. As learning 
continues, the automaton converges towards more worthy regions of the parameter 
space as the actions within such regions are chosen for evaluation increasingly of-
ten. As more of such responses are being received, medJ  gets reduced. Decreasing 

medJ  in the performance index effectively enables the automaton to refine its ref-

erence around the better responses previously received. Hence, it yields a better 
discrimination between the competing selected actions. 

In order to define an action value x(n) which has been associated to this prob-
ability density function, an uniformly distributed pseudo-random number z(n) is 
generated within the range of [0, 1]. Simple interpolation is then employed to 
equate such value to the cumulative distribution function: 

min

( )
( , ) ( )

x n

x
f x n dx z n=∫  (16)

For CARLA optimization methods, the probability density function is associated 
to each decision variable. It is through modification of such probability  
density functions and a sufficient number of iterations, that the optimal value of 
the decision variables is determined. At each step, the modification process is  
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trigged by the reinforcement signal ( )nβ  that corresponds to a predefined cost 

function. For implementation purposes, the distribution is stored at discrete points 
with an equal inter-sample probability. Linear interpolation is used to determine 
values at intermediate positions (see full details in (Howell & Gordon, 2001)). 

4   Implementation 

The proposed approach represents the overall planning system based on approxi-
mated models of the plant. Therefore, several plans may be available and the elec-
tion of the best plan must be defined by the LA through considerations on the per-
formance of the approximate model and the prospective results for some future 
instants. The election of each plan is made at each sampling instant k, just as it is 
discussed in sub-section 2.3. In the following section, the proposed planning strat-
egy is applied to a conventional control plant commonly known as the “surge 
tank”. The discussion begins by introducing the control problem which later 
moves to the designing and testing of the planning strategy. 

4.1   Level Control in a Surge Tank 

Consider the "surge tank," shown in Figure 3 modelled by 

2 ( )( )
( )

( ( )) ( ( ))

d gh tdh t c
u t

dt A h t A h t

⋅
= − + ⋅  (17)

where u(t) is the input flow (control input) which can be positive or negative  
(it can either pull liquid out of the tank or contribute to fill it in); h(t) is the liquid 

level (the output of the plant); ( ( )) ( )A h t a h t b= ⋅ + is the cross-sectional area of 

the tank with 0a >  and 0b >  (their nominal values are a = 0.01 and b = 0.2);  
g = 9.81; [0.9,1]c ∈ is a "clogging factor" for a filter in the pump actuator with 

c = 0.9. There also exists some obstruction in the filter, however in case c = 1, the 
filter is clean so there is no clogging ( c = 1 will be taken as its nominal value). 

d > 0 is a parameter related to the diameter of the output pipe (and its nominal 

value is d = 1). It is assumed that all these plant parameters are fixed but  
unknown. 

Let r(t) be the desired level of the liquid in the tank (the reference input) and 
( ) ( ) ( )e t r t h t= −  be the tracking error (here h(t) is considered as the system’s 

output y(t)). It is assumed that the reference trajectory is known in advance and 
h(0) = 1. In order to convert the problem to a discrete-time approach, the Euler 
approximation is used considering a sampling time of T = 0.1 seconds.  
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Fig. 3 The surge tank system 

4.2   Planning System 

For planning purposes, an uncertain and imprecise version of the nonlinear dis-
crete-time model (the "truth model") is considered. The model (here referred as m) 
can be considered as an approximation of the problem over which several plans 
are to be tested. The candidate plans are generated using such a model while the 
evaluation follows the LA approach from last section. Taking the model from last 
subsection as the true plant model, the planning strategy considers a quite different 
cross-sectional area in comparison to the truth model in (17), yielding: 

2( ( )) ( ( ))m m mA h t a h t b= +  (18)

with ma = 0.002 and mb = 0.2. The same nonlinear equations in Eq. 16 are used 

assuming the values of mc = 0.9 and md = 0.8. Figure 4 shows the cross-sectional 

area of the actual plant and the value considered in the model. There are evident 
differences between the real plant and its model which is used by the planning 
strategy. 

In order to apply the planning methodology to the controlled plant, a simple 
proportional integral (PI) controller is considered. In particular, if 

( ) ( ) ( )e t r t h t= − , it yields 

0

( ) ( ) ( )
k

p i
j

u k K e k K e j
=

= ⋅ + ⋅∑  (19)
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Fig. 4 Cross-sectional area A(h) for the actual plant (solid) and the projected model 
(dashed). 

 
Each plan will be considered as a controller with two coefficients yielding an 

infinite number of plans as such variables are continuous. The complete structure 
of the planning system contains the model that evaluates each plan and the  
optimization system which determines the best coefficients for the values –they 
must match the acting indexes based on the error evaluation. Figure 5 shows a 
block representation of the system. 

4.3   LA Optimization 

Each plan yields a controller considering coefficients pK  and iK . The problem 

thus focuses on finding the appropriate plan representing the couple of coefficients 
showing the best performance by using the projection of the control action. The 
intervals for each variables are chosen as [0,0.2]pK ∈  and [0.15,0.4]iK ∈ . For 

instance, if the PI controller of Equation 19 is calibrated using conventional tech-
niques to control the plant, the values pK = 0.01 and iK = 0.3 are assumed to be 

optimal. Figure 6 shows the controller performance. It is important to notice the 
fast response despite the overshoot. 

pK  and iK  are not constant as they are calculated at each time instant k by 

means of the optimization system (LA in this chapter). The LA algorithm chooses 
the parameters pK  and iK  according to a probability distribution, projecting them  
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into the planning strategy. The probability distribution should be modified if an 
inconvenient result emerges from the minimization period once it has finished ac-
cording to the performance index in Equation 8. After several iterations, it must 
converge to a probability distribution around the optimal parameter value. Equa-
tion 8 rules the minimization representing twenty projections into the future (N = 
20), 1ω  = 1 and 2ω = 1, with the reference input remaining constant at each time. 

In the optimization process, two LA (one for each parameter) are used. They 
are coupled only through the environment (model). The set R is limited to 10  
values while only 50 iterations of CARLA are applied. The CARLA parameters 

are fixed at 0.02pK

wg =  and pK

hg =0.3 for pK , and 0.02iK
wg =  and iK

hg  for iK . 

Next, the overall CARLA algorithm for the optimization is described: 

i Set iteration n=0. 
ii Define the action set { }( ) ,p iA n K K= such that [0,0.2]pK ∈  and 

[0.15,0.4]iK ∈  

iii Initialize ( , )pf K n  and ( , )if K n  to a uniform distribution between the 

defined limits. 
iv Repeat while 50n ≤  

 (a) Use a pseudo-random number generator between 0 and 1, for 
each selected action ( )pz n and ( )iz n . 

 (b) Select ( )pK A n∈  and ( )iK A n∈ , considering that the area 

under the probability density function is 
( )

0
( , ) ( )

pK n

p pf K n z n=∫ and
( )

0.15
( , ) ( )

iK n

i if K n z n=∫ . 

 (c) Project the control over a 20 discrete time intervals. 
 (d) Evaluate the performance using Equation (8). 
 (e) Append to R and evaluate the minimum minJ , and median, 

medJ , values of R, considering m=25. 

 (f) Evaluate ( )nβ via Equation (15). 

 (g) Update the probability density functions ( , )pf K n  and 

( , )if K n  using Equation (10). 

 (h) Increment the iteration number n. 

The learning system searches into a two-dimensional parameter space of pK  and 

iK , aiming to reduce the values for J in Equation (8).  
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Fig. 5 Block representation of the system including the planning strategy. 
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Fig. 6 PI controller performance with pK = 0.01 and iK = 0.3. 
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5   Results 

In order to test the operation of the planning strategy, the complete system is 
simulated during 30 seconds assuming a pre-determined signal reference r(k). 
Figure 7 shows the performance of the proposed approach applied to the plant 
with different values for 1ω  and 2ω . It is easy to identify different responses de-

pending upon the chosen value of 1ω  and 2ω .   
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(c) 

Fig. 7 Performance of the planning strategy applied to the plant considering different values 
for 1ω  and 2ω . (a) Setting 1ω =1 and 2ω =1, (b) setting 1ω =0.8 and 2ω =0.8 and (c) set-

ting 1ω =5 and 2ω =1. 
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Figure 7a presents results from setting 1ω =1 and 2ω =1. A slower rise-time can 

be seen in contrast to Figure 6 which uses the PI controller. The system manages 
to tune the planning strategy by adjusting 1ω  and 2ω  so that there is a small over-

shoot, still showing a reasonable rise-time. Figure 7b is obtained by setting 

1ω =0.8 and 2ω =0.8 while Figure 7c resulted after setting 1ω =5 and 2ω =1. 
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Fig. 8 Evolution of the probability-density functions in k=93 for pK  and  iK  considering 

1ω =1, 2ω =1. 
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Fig. 8 (continued) 
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Fig. 9 Evolution of the probability-density functions obtained for pK and  iK in  k=156 

considering 1ω =1 and 2ω =1. 
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Fig. 9 (continued) 
 

Two CARLA automata are employed for each parameter pK and iK respec-

tively, both initialised by a uniform distribution. The election of each plan (values 
of pK  and iK ) is made at each sampling time according to the CARLA algorithm 

(see sub-section 4.3). The evolutions of the two probability-density functions are 
shown in Figure 8 and 9 considering two different sampling instants. Figure 8 
shows the evolution of values pK and iK  for k=93 while Figure 9 for k=156. It is 

straightforward to identify how the probabilities converge to a maximum through 
the iterations. The highest probability values pK  and iK  are used as parameters for 

the controller, just as it is provided by Equation 19. 
In order to test the algorithm’s performance, it is compared to the solutions pro-

vided by the Levenberg-Marquardt method (Kelley, 2000) and Genetic Algo-
rithms (Chen et al., 2009). The former has been regarded as the most common in 
planning strategy with control applications, showing an interesting trade-off be-
tween precision and speed. On the other hand GA is the most well-known stochas-
tic optimization methodology. 
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In particular, the Levenberg-Marquardt gradient-based algorithm (LM) is imple-
mented according to Press et al., (1992). The method minimizes Equation (8) and 
updates all parameters following the equation: 

T 1( 1) ( ) ( ( ( ) ( ( )) ( )) ( ( ) ( ( )n n n n n n nθ θ ε θ ε θ ε θ ε θ−+ = − ∇ ⋅∇ + Λ ∇  (20)

where θ  represents pK and iK , which are to be found, being 

1 2( ( )) ( ( ) ( )) ( )mn r n j y n u nε θ ω ω= ⋅ + − + ⋅ ( ( ))nε θ∇  the Jacobian and ( )nΛ  the 

Cholesky factorization term ( )n λΛ = I  with 0λ > . As for the LA algorithm, the 

computation of pK and iK according to (20) is also employed by the control  

strategy. 
On the other hand, the GA algorithm described in (Chen et al., 2009) takes the 

following values: population size=100, crossover probability = 0.55, mutation 
probability = 0.10, and the number of elite individuals = 2. The roulette-wheel-like 
selection algorithm and the 1-point crossover method are considered. The para-
metric setup is taken from the best set according to (Chen et al., 2009) which has 
considered lots of hand tuning experiments. 

The values 1ω  and 2ω  in Eq. (8) are chosen in the simulation as 1 2 0.8ω ω= = . 

Figures 10 and Figure 11 show the controller’s performance using the Levenberg-
Marquardt and the Genetic Algorithm procedure for the optimization. 
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Fig. 10 Performance of the planning strategy using the Levenberg-Marquardt (LM) method 
as optimization algorithm  

The results are averaged over 50 runs and summarized in Table 1. The values 
correspond to the worst case after simulation. Two different conditions are consid-
ered: first the optimization algorithm running 50 cycles and second reaching 120 
cycles. The results show that for the CARLA method, the settling time converges 
about 42% faster than other methods at 120 cycles showing a minimal overshoot. 
On the other hand, the LM algorithm seems to surpass the GA at 50 cycles. How-
ever, just the opposite performance is obtained at 120 cycles. 
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Fig. 11 Performance of the planning strategy using the Genetic Algorithm (GA) method as 
optimization algorithm 

Table 1 Results obtained by the Leverberg-Marquad (LM) method, the Genetic Algorithm 
(GA) and the Learning Automata (CARLA) approach. 
 

 50 cycles 
Average value ± Standard deviation  

 

120 cycles 
Average value ± Standard deviation 

 
 

Method 
Settling time 

(s) 
Percent  

overshoot 
(%) 

Settling time 
(s) 

Percent  
overshoot 

(%) 

 
LM 

 
3.61±0.3 

 
10.21±1.27 

 
3.05±0.25 

 
8.97±1.11 

GA 4.33±0.41 14.42±2.33 2.11±0.12 4.16±0.79 
CARLA 2.1±0.4 1.1±0.13 1.41±0.2 0.69±0.012 
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Fig. 12 Optimization evolution for LM, GA and CARLA algorithms. 
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Figure 12 presents the performance evolution for all methods (LM, GA and 
CARLA) with respect to the objective function J. It is evident the stochastic nature 
of the CARLA method as it tests several parameter values following a probabilis-
tic approach until a minimum is reached. There is no deterministic relationship 
among the chosen values because they are generated while the probabilistic den-
sity function evolves (according to Equation 10). It is worth to notice that the  
performance index is decreasing gradually and one local minimum trapping has 
appeared for the LM method as a result of the parameter (n+1) being a modified 
version of the former (n). On the other hand, although GA does not reach an ac-
ceptable minimum after 50 cycles, it does manage at 120 cycles. The evolution of 
the performance index J is summarized in Table 2, with averaging over fifty runs. 
Again the performance is analyzed for two different iteration conditions: 50 and 
120 cycles. 

Table 2 Performance index J as it is generated by the Leverberg-Marquard (LM) algorithm, 
the Genetic Algorithm (GA) and the Learning Automata method (CARLA). 

 
 50 cycles 

Average value ± Standard deviation 
 

120 cycles 
Average value ± Standard deviation 

 
 

Method 
Performance index J Performance index J 

 
LM 

 
3.11±1.24 

 
2.57±1.24 

GA 4.14±1.51 1.19±1.012 
CARLA 1.23±0.88 0.13±0.2 

6   Conclusions 

This chapter has discussed how to emulate the functionality of planning in order to 
exert control over non-linear plants. The procedure adopts the MPC methodology 
as planning strategy, following the CARLA algorithm as the optimization method. 
The system’s performance is tested over a nonlinear plant. The results are  
compared to similar procedures built upon the Levenberg-Marquardt (LM) algo-
rithm and Genetic Algorithms (GA). 

In this chapter, the LA is applied to select optimal parameters pK and iK   

belonging to a PI control structure. The MPC and the optimization algorithm run 
over an uncertain plant’s model. The CARLA algorithm has shown its abilities to 
probabilistically explore and reach optimal parameters. 

The approach is also suitable for real-time applications. Although it requires 
learning in real-time, it can be effectively applied to nonlinear optimization prob-
lems with slow convergence under more conventional methods. 

The proposed method also allows increasing the optimization speed in com-
parison to other algorithms such as LM and GA. The searching for optimal points 
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is performed on the probability space rather than on the parameter space. Finally, 
the CARLA approach is faster to reach the minimum performance index J in com-
parison to the LM and GA methods. 

Despite Table 1 and 2 indicate that the CARLA method can yield better results 
with respect to the LM and GA algorithms, it should be noticed that the chapter 
contribution is not intended to beat all the optimization methods which have been 
proposed earlier, but to show that the CARLA systems can effectively serve as an 
attractive alternative to traditional optimization methods for control purposes. 
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Optimization Strategies for Restricted
Candidate Lists in Field Service Scheduling

Marko Žerdin, Alexander Gibrekhterman, Uzi Zahavi, and Dovi Yellin

Abstract. Field service scheduling (FSS) is a large class of practical optimization
problems combining features of the vehicle routing problem (VRP), scheduling
problems and the general assignment problem (GAP). In some cases the problem
reduces to well known variants of VRP, while other, more common circumstances
give rise to a distinct set of optimization problems that have so far received very little
attention in the literature. In this chapter we show how strategies for restricted can-
didate lists (RCL) – methods for pre-calculating and contextualizing the candidate
list reduction procedures within a context of a generic optimization framework, can
be used to efficiently solve a wide spectrum of FSS instances in a real-life industrial
environment. A comparison of results obtained using a greedy randomized adaptive
search procedure (GRASP) meta-heuristic with and without the use of certain RCL
strategies is presented as it applies to specific variants of the problem.

1 Introduction

Field Service Scheduling (FSS) is very common in the service industry [27], but has
not yet been extensively explored in scientific literature, although some research on
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the subject has appeared in print [22, 30, 23]. In an earlier paper on FSS [6] we
showed how meta-heuristics such as genetic algorithms (GA) [10] and ant colony
optimization (ACO) [11, 15] can be applied to instances of this NP-hard combina-
torial problem, yielding competitive results.

In this chapter we explore the potential benefits of using what we introduce in
section 3 as strategies for RCL. We try to show how these strategies can accompany
various meta-heuristics in order to improve their performance without being coupled
with any specific optimization approach. We illustrate the effects of such strategies
by using them to optimize different variants of FSS.

In section 2 we define the FSS class of problems and survey its characteristics. We
enumerate some of its most commonly encountered variants, and compare it to other
well known combinatorial optimization problems, most extensively to the VRP.

In section 3 we discuss a generic framework for solving FSS problems using var-
ious meta-heuristics. This framework was described in more detail in [6]. Here we
focus on and expand upon the important role of restricted candidate lists in unifying
the environment in which optimization algorithms operate and through this unified
view enabling the use of various optimization strategies. We define the meaning
of strategies in this context, and discuss their significance for making the generic
framework produce high quality results in different business cases encountered in
practice.

In section 4 we briefly review a GRASP meta-heuristic [12] that was used for
obtaining results provided in this chapter. We then move on to describe specific FSS
instances that served as a basis for experimental results in later sections.

In sections 5 and 6 we show how specific strategies become effective as the vari-
ant of the FSS that is being solved changes, and how some of their features af-
fect the suitability of particular scheduling approaches. We demonstrate this on two
strategies: a geographical constrained clustering approach using hard constraints
where we pre-calculate resource work areas based on demand distribution, both ge-
ographically and taking their required skills and other constraints into account; and
a bundling approach, in which demands at the same location are grouped together
into bigger demands, thus eliminating the repeat visits to the same site or at least
minimizing their number.

Our findings have an interesting parallel in a series of comprehensive studies
by Beck et al. [2, 3, 5, 4]. They studied instances of Job-Shop Scheduling Prob-
lem (JSP) and instances of VRP, defined a mapping between them, and compared
the performance of specialized algorithms for both kinds of problems on native
and transformed instances. Their analysis tried to identify the features of the prob-
lems make them so distinctive that completely different optimization frameworks
need to be used in order to obtain good quality solutions. In their conclusion, VRP
algorithms outperform JSP algorithms as long as certain temporal and specializa-
tion constraints are relaxed. Even though the typical instances of JSP and VRP are
clearly more distinct from each other than variants of FSS are amongst themselves,
the central idea is that a change in some of the features of the problem makes its
instances suddenly much harder to solve using the same solution framework. Strate-
gies for restricted candidate lists, such as the ones presented in this chapter, are our
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attempt at counteracting this effect in order to make the same generic framework
continue to produce high quality results across a wide spectrum of FSS problems.

2 The Field Service Scheduling Problem

FSS is a class of real-life optimization problems that is in its simplest distinctive
form characterized by the following:

• A set of geographically distributed resources (technicians, installers, meter
readers) with limited availability (working hours in their calendar) and a specific
skill-set.

• A set of geographically distributed demands of specified duration and revenue,
each requiring specific skills for its completion.

• The goal is to assign as many demands as possible to resources so that work
and travel are completed subject to resource availability. Each assigned demand
has to be assigned to a resource that has the skills it requires, each resource can
only be at one place at a time, and the times between start of work, consecutively
scheduled demands and end of work have to be sufficient to accommodate the
time required to travel between their respective locations (see figure 1).

• The objective function consists of maximizing the value of the schedule, which
in its simplest form equals the total revenue minus the travel cost.

Given the fact that resource availability is limited, some demands will typically
remain unscheduled. This is trivially true when total demand duration exceeds total
resource availability, but will also be true in many other realistic cases where travel
time and resource differentiation assert their discriminating roles. Therefore, the
challenge in solving FSS is twofold: to choose the subset of demands that will fit
into the availability and yield the greatest revenue, and at the same time to minimize
travel time either to simply minimize cost or, ideally, to fit more demands into the
schedule instead of spending the time on travel.

The FSS problem just described contains sufficient elements to distinguish it
from other optimization problems commonly encountered in the literature. How-
ever, if we relax appropriate constraints in the right way and adjust the objective
function, specific variants of FSS become analogous with or come close1 to variants
of VRP, JSP and GAP.

FSS is a straighforward generalization of the traveling salesman problem (TSP).
Any instance of TSP can be transformed into FSS following these steps:

1. The only resource is located at one of the TSP cities;
2. Each other city is represented by a demand of the same constant duration; and
3. The resource’s working time interval is long enough to accommodate all de-

mands regardless of their order in the schedule.

1 By this metric two combinatorial optimization problems are considered to be close if not
only can an instance of one be mapped into an instance of the other, but also such a map-
ping is natural to the problem in a sense that it preserves the suitability of algorithms that
would typically be used to solve it.
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Fig. 1 A Gantt chart of a schedule for an example FSS instance with 12 resources and 45
demands. Only 44 demands are scheduled in this solution. Resource availability times are
represented by white, while gray background represents non-working hours. Large rectangles
represent scheduled demands, while narrow rectangles represent travel times. White spaces
between some demands are waiting times, as this particular instance of FSS defines fixed
two-hour appointment slots for each demand (see section 2.1.1).

This transformation is clearly linear in the number of cities in the TSP instance.
It is also obvious that the solution to such an FSS instance would give the solution to
the TSP instance that was transformed into it due to one-to-one relationship between
TSP cities and FSS demands. Since TSP is NP-complete [17] it follows that FSS is
NP-hard.

2.1 Variants of the Field Service Scheduling Problem

All FSS problems share the features described in the previous section, and some
practical instances perfectly fit that description and require no more. However,
the whole FSS class of problems is very rich, and we commonly encounter in-
stances that introduce additional constraints. In this section we’ll try to systemat-
ically present the most common variants of FSS encountered in practice.

2.1.1 Field Service Scheduling with Time Windows (FSS-TW)

The most commonly encountered additional constraint are demand time windows.
Time windows define a time interval during which the demand needs to either be
started or completed. They are specified in almost every realistic scenario, and can
come from a number of possible sources: appointment booking, service level agree-
ments (SLA), regulations, maintenance planning etc. We’ll call the instances of this
problem Field Service Scheduling with Time Windows (FSS-TW). In keeping with
the common definition of VRPTW [26, 25] and unless explicitly stated otherwise,
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we’ll henceforth assume that the time windows define the time interval during which
the work on each demand has to start.

2.1.2 Field Service Scheduling with Dependencies (FSS-D)

Demands are not necessarily independent of each other. Very often they have rela-
tionships, such as the constraint to use the same resource or that one demand should
start a specific amount of time after another one has finished. The relationships can
be deemed critical, which triggers an all-or-nothing situation where the dependent
demand shouldn’t get scheduled unless its dependency is scheduled as well. Let us
look at a couple of examples:

• Plastering has to be finished before painting, and the wall has to rest for a certain
amount of time for the plaster to dry. This is an example of a critical relationship,
as there is no point in scheduling the painting job unless plastering has also been
scheduled to complete a sufficient amount of time before.

• Specialized tool pick-up in the morning for a job requiring the tool later in the
day would also be an example of a critical relationship.

• An example of a non-critical relationship would be a courtesy call confirming an
already agreed arrival for an important job that was scheduled and prepared for
well in advance.

We’ll call this problem Field Service Scheduling with Dependencies (FSS-D).

2.1.3 Field Service Scheduling with Long Demands (FSS-L)

Demands often have durations that approach or surpass the duration of any unin-
terrupted working time interval, yet they still need to be assigned in one piece to
a single resource. Different cases cover anything from longer jobs, such as wiring
a building that can take several days yet is best done by no more than one or two
people, to outstanding paperwork that doesn’t have very specific time or travel re-
quirements and can be completed in breaks while waiting for other demands. In
practice, such demands have to be seamlessly and dynamically broken into parts and
scheduled spanning several working days, taking into account other existing work
(when that is allowed) and associated travel, as well as travel from and to home at
the start and end of each day. We’ll call this variant Field Service Scheduling with
Long Demands (FSS-L).

2.1.4 Field Service Scheduling with Efficiency (FSS-E)

Finally, resources are usually more or less experienced at working on specific
types of demands, and therefore the same demand might take substantially dif-
ferent amounts of time to complete depending on who it is assigned to. This can
be modelled as resource efficiency, overall or per skill. Also, travel time might
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depend on the mode of transport the resource uses (walking, bicycle, public trans-
port, van, car) and the type of terrain (rural or urban area, pedestrian zone, central
areas with frequent traffic jams). In such instances, travel times and route optimality
become individualized and straightforward implementations of certain population
based meta-heuristics become very hard or impossible to use. After all, in the ex-
treme case where a sequence of demands has an unpredictably and inconsistently
different objective value for each resource, there is no room for cross-pollination,
and the population dissolves into a set of individuals each of which needs to be con-
sidered separately. We’ll call this variant Field Service Scheduling with Efficiency
(FSS-E).

2.1.5 Additional Objectives

Most variants of FSS encountered in practice can be covered by the constraints in-
troduced so far. However, in addition to the constraints used, substantial differences
in objective functions are also encountered. Let’s take a look at a few examples:

• Instances of FSS may include objectives such as scheduling demands to their pre-
ferred resources, a preference to schedule demands to the least qualified available
resource, a preference to schedule two or more related demands to the same re-
source, or a preference to keep resources in areas they know well.

• In instances of FSS-TW we often encounter an objective to minimize the risk of
lateness by scheduling higher priority demands earlier in their time window, or,
less frequently, the opposite objective of scheduling demands in the last part of
their SLA interval in order to encourage customers to purchase a higher priority
(and more expensive) support package with shorter SLA.

• When several demands may be situated at the same location, it is often very im-
portant to minimize the number of repeat visits even when that would generate
a schedule with less overall travel because of the overhead associated with each
visit or the impression such repeat visits might make on the customer. The ob-
jective function would in such cases typically contain a term that would reward
consecutive scheduling of same-site demands or, alternatively, penalize repeat
site visits.

2.1.6 Dynamic FSS

In addition to the static version of FSS with the full visibility of the data in ad-
vance, it is also very common to encounter a dynamic (or real-time) version of
the problem, in which new demands (usually in the form of customer calls) or
additional operational information (delays in travel or execution of demands, sick
leave, missing parts etc.) can enter the system at any time. In this case the sched-
ule needs to be continuously adjusted to accommodate the new information while
remaining well optimized. We won’t consider these variants of the problem in this
chapter.
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2.2 Field Service Scheduling and the Vehicle Routing Problem

The problem to which FSS would most commonly be associated and would seem
closest to is VRP [26, 15, 25] or some variant thereof; and indeed, when simplified
by removing certain constraints and objectives, FSS comes very close to VRP. How-
ever, in more typical cases FSS has several properties that sufficiently distinguish it
from VRP that the methods commonly used to solve the latter need to be substan-
tially modified in order to be used for the former, or they are not applicable at all.
These distinguishing properties are:

• Resources in FSS are substantially (and not just quantitatively) different from
each other while vehicles in VRP are typically all the same, or differ only in
capacity. In FSS, there is a list of demands that each resource can perform, and
there is no general relationship between those lists – they can be completely
distinct, partially overlapping or some are subsets of others.

• Resources in FSS have limited availability in time, and are limited in number.
In general VRP, it is usually feasible to allocate all work to a single vehicle,
while an equivalent is not generally a feasible solution of FSS. Even in Capaci-
tated VRP (CVRP, see [8]), there is usually an assumption that there are always
enough vehicles available to accommodate the work. In FSS, the resources are
individualistic, their availability is limited, and solutions don’t necessarily con-
tain assignments for all demands, making the selection of the best demands to
schedule an important algorithmic consideration.

This difference between VRP and FSS is similar to the difference between
minimization and maximization versions of GAP respectively [9]. In the mini-
mization version, the goal is to find the least costly allocation of jobs to machines
assuming that they can all be completed, equivalent to VRP’s unlimited fleet. In
the maximization version, the goal is to find the most profitable allocation of jobs
to a fixed set of machines with limited time given individual machine revenues,
which is equivalent to FSS’s individualized resources with limited availability.
Additional discussion about FSS and GAP can be found in section 2.4.

• FSS has a different objective function from VRP. In VRP, the goal is to minimize
either travel time, number of vehicles, or some combination of both. In FSS,
as a consequence of typically not being able to schedule everything, the goal is
to maximize the number of scheduled demands (or revenue, if each demand is
assigned its own individual revenue when scheduled) while minimizing travel
time. In general, additional revenue and cost components can be added to the
objective function.

Other obvious differences between FSS and VRP, such as non-zero duration of de-
mands, time limitation on each individual route or the typically large number of
starting points (not only multiple, but many depots) have occasionally been covered
in literature in various VRP variants [26].

In extreme and mostly impractical cases, FSS instances can also be instances of
VRP. FSS instances where resource capacity is guaranteed to be sufficient to accom-
modate all demands constitute instances of what is essentially a time-constrained
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VRP with vehicle specialization (transformed in a way that VRP travel time in-
cludes demand duration). Further on, in cases where any resource can be assigned
to any demand, for example in meter reading, we have a time-constrained VRP
without even a specialization requirement. However, in practice it is almost never
the case that the capacity is guaranteed to be sufficient to assign all demands, and
that is where the two problems and the methods for solving them diverge quite
substantially.

2.3 Field Service Scheduling and the Job Shop Scheduling
Problem

If we are guaranteed enough capacity and disjunctive resource skill-sets, all vari-
ants of FSS can be modeled as instances of JSP (or open-shop scheduling for FSS
without dependencies) with parallel machines and sequence-dependent setup times
[7]. The strength of this qualification and the specialized nature of the JSP problem
which is rich enough to model FSS indicates that the two problems are not very
strongly related. Still, when faced with FSS-D with complex demand dependencies
and relatively little travel time, scheduling algorithms can be hybridized into the
FSS solver and can be very helpful in guiding the decisions on the order in which
demands should be considered for scheduling.

2.4 Field Service Scheduling and the (Maximum) General
Assignment Problem

Max-GAP [14, 19] can be defined as follows: Given a set of machines with time
constraint and a set of jobs with possibly different durations and revenues on differ-
ent machines, find the assignment of jobs to the machines that produces the greatest
revenue. There are many parallels between Max-GAP and FSS:

• FSS demands correspond to GAP jobs. FSS resources correspond to GAP ma-
chines with resource availability being equivalent to machines’ time constraint.

• If a resource doesn’t have the skills to work on a demand, the corresponding job’s
duration on the corresponding machine can be set greater than the machine’s
available time.

• Resource efficiency in FSS-E can be modeled by different durations of the same
job on different machines.

• In both Max-GAP and FSS there is no guarantee that a full assignment will be
found.

The most important component of FSS missing in Max-GAP is the concept of
job ordering. In other words, everything in FSS that has to do with travel time,
demand time windows and precedence constraints cannot be expressed within Max-
GAP. Apart from that the two problems converge. In the real-life world of FSS the
demand ordering is almost always of crucial importance, and the techniques derived
from GAP are of limited practical use (apart from special cases like for example in
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section 6, where GAP methods are used not for solving the problem itself, but for
separately addressing one of its aspects).

3 Strategies for Restricted Candidate Lists within a Generic
Framework

Our experience lies in routinely solving the FSS problem for customers from dif-
ferent industries, with widely varied business workflows, constraints and objectives.
When faced with such a variety of problems, a fundamental decision needs to be
made about how to approach this task:

• One way is to design a separate solution for each individual business case, taking
all the problem specifics into account and possibly developing a different imple-
mentation for each FSS variant as a result. This may result in a somewhat better
solution quality, but it also leads to repeated effort, much longer implementation
times, higher cost and lower adaptability to inevitable changes.

• An alternative to this is to set up a generic framework which has sufficient ex-
pressiveness to accommodate the variations encountered in the field, and use cus-
tomization points and optimization workflow modifications to adjust the system
to the particular problem at hand. This solution is somewhat less tailored to each
particular problem, but it does have a lot more room for adaptability to different
problems and a vastly greater ability to accommodate change, both in the model
and in the workflow.

In this chapter we show how the second option can be used in conjunction with what
we call strategies for RCLs in order to implement a high-performing optimization
system for a wide range of FSS problems with greater potential for code reuse.

At the core of the proposed generic framework (which is described in detail in
[6]) is a constraint propagation engine that models the FSS in three dimensions: re-
sources (R), demands (D) and time (T). Constraints are implemented as independent
components operating on a subset of the three dimensions. R-constraints can for ex-
ample remove resources that are unavailable for scheduling, DR-constraints might
eliminate resource-demand combinations that fail to satisfy the required skills, and
DT-constraints might for example remove from consideration the times beyond the
end of demand’s appointment time.

The objective function is similarly composed of components, called objectives,
which define contributions to the complete objective function. Such components
for example define revenue for different demands, cost of travel or resource over-
time, penalty for lateness or for increased risk of lateness etc. Objectives operate on
both heuristic (during schedule building) and evaluative (after the schedule has been
built) level, often with different weights and varying parameters.

This constraint propagation engine is generic enough to model the full richness
of the FSS encountered in industrial practice, including all variants mentioned in the
previous section, and rarely needs to be extended. It produces the candidate lists at
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every stage of the schedule building process, and offers the evaluation of the current
and proposed schedules at any time.

On top of this constraint propagation engine, we propose a selection of meta-
heuristic solvers, allowing us to choose the ones that best fit the problem at hand.
These solvers may be much less generic than the framework itself, and can make
specific assumptions about the instances that they are presented with in order to
speed up the convergence; the only condition they need to satisfy is to be able to take
advantage of the candidate lists and evaluations provided by the constraint engine,
allowing them to be used even for the cases that they weren’t originally designed
to solve. The solvers that we investigated vary from deterministic local search to
GRASP, genetic algorithms and ant colony optimization, each one with its own
advantages and disadvantages, but all of them capable of taking advantage of the
underlying engine and therefore, successfully or less successfully, solving a large
variety of FSS variants. In essence, such approach moves the deployment of the
system from the realm of implementation of solvers, algorithms and other logic
components with all the risks that carries, to configuration, allowing successful reuse
of tested components in new business domains, sometimes entirely outside the scope
for which they were originally intended.

In addition to expressiveness, another important practical consideration in indus-
trial applications is performance. Optimization is a game of diminishing returns, and
squeezing the last few percent from the solution is far less important than the ability
to create solutions of reasonable quality fast enough that the operational needs are
satisfied. This is where the generic approach meets a serious challenge, and the need
to adapt the solver to the problem at hand starts to look like an excellent idea. On
the other hand, giving up the expressiveness of the generic solution is often quickly
penalised when new business requirements inevitably appear. Is there a way to keep
the generic nature of the solution while still being able to tailor the solver to the
particular problem at hand?

We propose a two-pronged approach. First, instead of using the full candidate
lists at each step, we use RCLs during most of the optimization process. Of course,
the use of RCLs may in some cases, despite due caution, eliminate from consid-
eration parts of the search space that contain better solutions. However, given the
size of these potential improvements and the practical constraints imposed on the
optimization time, living with such a risk is a price well worth paying given the
substantial gain in performance on the other side. The support for RCLs is built into
the framework and customizable, allowing the kind and the amount of pruning to be
adjusted to suit the problem at hand, both its FSS variant, its size and its required
performance. Previously developed components can be reused and configured again,
as well as new components written if the case is the first of its kind. Several meta-
heuristic solvers such as GRASP [12, 20, 24], tabu search [21] etc. can then take
advantage of this flexible infrastructure.

The behavior of RCLs is described using the standard convention based on three
parameters: α , β (both with values between 0 and 1) and m (an integer). Param-
eters α and m determine the size of the RCL by reducing the number of candi-
dates to max(αS,m), where S is the size of the full candidates list composed of all
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constraint satisfying variables, α determines the desired proportion of the candidate
list we wish to keep, and m determines the minimum number of candidates within
the RCL. Both α and m are predetermined and remain constant throughout the opti-
mization process. The third parameter, β , modifies the level of greediness during the
optimization run, allowing the selection process to be more or less biased towards
greedier options. β is used to determine the proportion of the RCL that is considered
for the actual selection, and changes, randomly or otherwise, for each selection step.

For problems with hundreds of resources and thousands of demands over several
weeks horizon, the performance improvement gained by this approach is substantial,
but not always sufficient, particularly when the time available for optimization is
severely limited. In such cases, setting a suitable strategy for further meaningful
reduction of the RCL can improve the rate of convergence towards solutions that
take the particular considerations of the given problem into account, even though
such speed-up might mean a lower-quality result overall. On other occasions, we
may have additional information or knowledge that will, if expressed as a reduction
strategy on the RCL, be useful in helping the convergence and will in many cases
not only reduce the search time, but also improve the quality of results. In this case,
implementing a strategy is an efficient and low risk way of putting knowledge into
the system without modifying the implementation of the search algorithm.

In addition to specific, very targeted cases where additional information is con-
veyed, RCL strategies are useful whenever we have a non-local consideration that
might influence the scheduling outcome. They often change what is originally a
non-local, expensive to evaluate scheduling criterion into something practical and
usable that can be verified locally with a much lower performance cost. Let us give
a few examples for better understanding:

• There may be an imbalance between skills required by demands and skills that
the resources have – some skills may be required by a disproportionally high
number of demands. Prioritizing the scheduling of such demands and discourag-
ing the scheduling of resources with those skills can be very helpful to ensure
that a high proportion of such demands don’t consistently remain unscheduled
because their potential resources were already scheduled to demands requiring
more common skills. This consideration is obviously not local and the analysis
of skills needs to be performed prior to the main optimization.

• When solving instances of FSS-D, it is helpful to evaluate some critical measures
of risk for networks of related demands, so that they can be prioritized in schedul-
ing before such scheduling becomes virtually or entirely impossible. Even when
the networks become impossible to schedule, it is beneficial to know about that
so they can be excluded from the consideration without unnecessary effort being
expended on trying to schedule them.

In response to such situations, we propose a second step in our approach – strategies
for RCL contextualisation and recalculation. Instead of simply calculating the RCL
at each step based on the valid moves and their heuristic values given the schedule
at the moment, we introduce two additional steps:



66 M. Žerdin et al.

• We pre-calculate as much heuristic information as possible for use later in the
process. The particular pre-processing might include neighborhood lists for each
demand in order to speed up geographical calculations, the ratio of required and
available skills in order to identify rare skills and give them appropriate weight,
or running a scheduling algorithm to determine the critical parameters for net-
works of related demands. This calculation is done only once at the start of the
optimization, and its results are reused later during the RCL calculation, hence
the name strategy.

• We introduce the RCL contexts that are triggered by certain scheduling events
or states, to which we respond by dramatically increasing the weight of a spe-
cific strategy in the RCL calculation. For example, the scheduling of a demand
that is part of a critical network of demands triggers an RCL mode in which
other members of the network (and other networks of similar criticality) will be
virtually the only candidates in order to allow the network to be realised with-
out the danger of other demands taking their place and preventing the networks
from being fully scheduled (and therefore fail as a whole, potentially leaving
holes in the schedule). The strength of such contextual boost is of course config-
urable and depends on the importance of a particular strategy for each particular
problem.

In this chapter we describe in detail two such strategies and demonstrate their effec-
tiveness on a large-scale real-life FSS instance, as well as show how their effective-
ness is not universal and varies depending on the problem variant at hand.

4 Experimental Setup

This section is devoted to a short description of the experimental setup used in the
rest of the chapter. This includes the implementation of a GRASP [12] solver for
FSS that we used on top of our strategy-modified RCLs, and a description of the
leading real-life problem instance which was used as a basis to generate other prob-
lem instances used in experiments described later in the chapter.

4.1 The GRASP Implementation

While we have successfully used various meta-heuristics in order to solve FSS [6],
we chose to demonstrate the strategies for RCL in this chapter using our imple-
mentation of the GRASP meta-heuristic. The reason for this decision is GRASP’s
inherent and direct reliance on candidate lists, allowing a fairly straightforward im-
plementation without needing to reproduce the framework we described in section 3.
This would allow interested readers to quickly try and test the results of the proposed
strategies. Our implementations of genetic algorithms and ant colony optimization
generally perform better, but their implementations get very involved and are clearly
out of the scope of this chapter.
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Following the initialization phase during which candidate lists are populated,
strategy initialization performed and the static parts of the fitness of each option
pre-computed, our GRASP implementation uses the following two stages:

1. An initial solution is created using a step-by-step constructive algorithm in
which selections from the RCL are randomized at each step. A step in this
regard consists of a selection of the next demand to be fitted into the partial so-
lution, followed by a selection from possible placements according to the RCL.
Once the demand has been incorporated in the partial solution, the RCL is up-
dated and objective function contributions are reevaluated for the remaining
demands. Greedier moves (i.e. the ones with more positive immediate effect on
the objective function) receive a greater weight during this process. This stage
is called a randomized greedy stage.

2. Increasingly more adventurous local variation operators are used to explore the
solutions’s local neighborhood in the search space, resulting in ever increasing
changes to the original solution. The main activity of this stage is composed
of deconstruction and reconstruction of an increasing number of steps used to
create the initial solution in the first place, with modifications to the decisions
that were originally made. For each new solution, deterministic local search or
any other relevant local improvement methods are employed in order to reach a
local minimum. This stage is called an adaptive stage.

We monitor the effectiveness of this iterative process by maintaining a count of it-
erations that have gone by without any substantial improvement in schedule quality.
After each iteration, we implement either of the following two options:

(a) If a gain in schedule quality has been achieved in one of the recent iterations,
randomly remove a subset of pre-defined size from the existing schedule in
order to allow the next iteration to continue from there.

(b) If the limit on the number of successive stale iterations has been reached, destroy
the entire schedule, allowing the next constructive stage to start afresh.

A full GRASP run consists of multiple iterations of these two stages, in which the
best solution found throughout the process is kept as a result of the optimization.

Each stage has its own control loop, allowing for seamless strategy adjustments
to the RCL. The strategies are initially selected according to the kind of problem
at hand, and can then be further fine-tuned through experimentation. Substantial
experimentation we conducted for this chapter using the described implementation
showed that careful selection of RCL strategies can result in substantial adaptation
of this generic setup to the FSS variant at hand, resulting in a significantly more
effective search and faster convergence rates.

4.2 The Leading FSS Problem Instance

In this section we describe the principal FSS instance used in this chapter. The in-
stance in question is based on an actual, real-life instance from the field of telecom-
munications.
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The instance contains 80 resources and 1,700 demands within a single geograph-
ical district. This number of demands would typically schedule over two to three
days as resources have the capacity to serve around 1,400 demands in two days of
work. However, for demonstration purposes of both the results and some of the dif-
ficulties encountered, we modified the instance by setting all demands to schedule
on a single day.

The business problem features resources which start and finish their workday
from their home locations scattered throughout the geography. Resources have dif-
ferent work hours, skills and equipment. Demands differ by their time window, du-
ration (which varies between 30 to 50 minutes), required skills and equipment.

The following constraints need to be satisfied by all valid solutions:

• Demands should be scheduled within their defined time windows and always for
their exact duration.

• Demands should only be scheduled to resources having the required skills and
equipment.

• The gaps between scheduled demands should reflect the travel time between
them.

• Resources can only perform a single demand at any given time.
• Resources can only work within their regular daily work hours.

These constraints are a clear indication that we are dealing with an instance of FSS-
TW. None of the additional elements defining FSS-L, FSS-D or FSS-E can be found
in these constraints.

The following are the business objectives for the instance:

• Maximize number of scheduled demands - the value of each scheduled demand
is constant at 50 points and doesn’t vary with the demand’s duration.

• Minimize travel time - the cost of each travelled hour is 50 points.
• Maximize the consecutive scheduling of demands situated at the same site – a

bonus of 20 points is given for every such occurrence. This objective was used
selectively in some of the experiments; see more about this in sections 5 and 6.

The average number of resource candidates per demand in this problem instance is
22 out of 80. This number is an indicator of workforce specialization – the less can-
didate resources there are for each demand, the more specialized the workforce is.
We discuss some of the implications of different degrees of workforce specialization
in later sections.

5 Constrained Clustering Strategy – When FSS Shifts towards
VRP

The first strategy we present becomes relevant when the FSS problem is, oddly
enough, simplified – when certain constraints limiting the number of candidate re-
sources for each demand are either removed or play a lesser role. To give a more
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specific example, when most of the skills are sufficiently common amongst the re-
sources, then most resources can perform most of the demands and skill constraints
are effectively relaxed to the point where they don’t have a real selective effect. This
is where the story of this section begins.

5.1 The Business Case

In certain industries such as the domestic utilities sector, some of the work does
not involve a high degree of workforce specialization. For example, in water and
gas meter reading and repair, most of the resources are qualified to perform most
demands. The ability to read or replace meters is the only relevant skill, thus al-
lowing almost everyone who is trained in performing any work to work on almost
anything.

An additional factor that commonly comes into play in such cases is a relatively
short demand duration associated with this type of work. This implies that a resource
can complete a dozen or more demands per day. When resource capacity is not tight,
the optimization problem starts to resemble the classic VRP. Of course, the features
that distinguish FSS from VRP, such as limited availability of a fixed number of
resources and the inability to always schedule every single demand, are still present.
But assuming resource levels are high enough to schedule all demands, the problem
starts to resemble VRP very closely.

5.2 Implementing a “Cluster First, Route Second” Strategy

For large FSS instances and when their search space becomes more loosely con-
strained, we find that the usual optimization setup becomes less effective and the
convergence to high quality solutions becomes slower. This introduces the need for
a leading strategy to be applied to the RCL.

Clustering is the strategy that becomes effective in the VRP-like domain when
DR constraints imply that most resources can perform most of the demands. Our im-
plementation of clustering is not a straightforward one and involves a few method-
ologies. First, we employ the familiar “cluster first, route second” approach [13]
and make use of its wide range of application in the field of VRP solutions. This
approach has been comprehensively investigated and widely used in practice [26].
However, in addition to geographical clustering, in FSS it has to take the following
considerations into account:

• Despite geographic proximity, certain demands can’t be members of the same
cluster. For example, if there is a single specialist in the domain that can perform
certain demands, the demands that require this resource will all need to be in the
cluster with the specialist regardless of their location.

• The balance of skills and capacity between resources and demands also needs
to be considered when creating clusters. This is important as clustering repre-
sents an additional constraint on demands’ scheduling, and such considerations
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represent an attempt to at least try to match the demands’ probability for getting
scheduled when clustering.

Constrained clustering approach [29, 28] is a possible answer here, as it utilizes con-
straint programming in order to enhance clustering. In our case it incorporates a set
of cannot-link and must-link constraints. The linking constraints define a relation-
ship between pairs of demands implying the members cannot or must be associated
with the same cluster.

The leading meta-heuristic for clustering is the well-known k-means clustering
approach [18]. In the iterative clustering algorithm we aim to generate a predefined
number (K) of geographically separated subsets of demands in which each demand
belongs to a single cluster. The number of generated clusters is constrained to be
smaller or equal to the number of resources for obvious reasons. The algorithm
iterates through the following steps:

1. Create subsets of demands that minimize the total distance between demands
within each of the different subsets while adhering to linking constraints de-
scribed above.

2. Create a matching between clusters generated in the first step and the resources
in the domain while attempting to maximize the predefined fitness function that
evaluates the matching between clusters and resources. The fitness function is
based on DR compatibility (i.e. the suitability of demands contained in a clus-
ter given the resources assigned to serve this cluster, including the balance of
requirements and availabilities in both time and skills), the cluster–resource dis-
tance and optionally additional components.

3. The results of the second step are analyzed, and the results of analysis are uti-
lized during the creation and modification of the linking constraints. The con-
straints are created by identifying demands that are poorly fitted to their clusters
(either by not having any scheduling options, requiring the skills that are locally
deficient, or there is relative lack of availability in comparison to other clusters),
and finding better fitting clusters for them according to fitness criteria similar to
the ones used for resources.

The stop conditions of the algorithm are similar to those of the standard k-means
approach. The algorithm is deemed to have converged when “jump” stabilization
occurs and the fitness function no longer changes.

At this stage, the clustering results are used in order to adjust the RCL. We ex-
amined adjustments through either a constraint or an objective, and here we present
results in the former case.

In the extreme case when K equals the number of resources, we achieve the max-
imum reduction of the candidate list. The effects of the clustering strategy are also
most visible in this case, providing a clear gain in performance, but also introducing
an “over-constraining” affect that may negatively influence schedule quality. This
in turn invites further examination of the optimal number of resources per cluster
which we explore in the next section.
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5.3 Experimental Results

We start by comparing the results obtained using the GRASP meta-heuristic with-
out any RCL strategies (referred to as “pure GRASP” later on), with those using
clustering as a strategy with different values of K.

The results presented in figure 2 on the following page were obtained on the
problem instance described in section 4. As we mentioned before, the average num-
ber of candidates per demand in the instance is 22 out of the total of 80.

Clustering was run with several values of K in order to observe the effect of the
number of clusters on the quality of results as a function of optimization time. The
results clearly indicate that the strategy is beneficial in the short term. We attribute
this improvement to shorter candidate lists and therefore faster iterations. For ex-
ample, with K = 10 the average number of candidate resources per demand is less
than 8 as opposed to 22 in the unrestricted case. When more time is available for
optimization, clustering eventually becomes a hindrance rather than an advantage.
Its role in increasing performance becomes less important as search time increases,
so its only remaining effective role as an artificial constraint (when compared to the
unrestricted case) prevents the exploration of clearly advantageous options that pure
GRASP is able to reach. The time the restrictive nature of clustering becomes obvi-
ous clearly correlates with the number of clusters K. In our experience, to achieve
best results clustering should be gradually relaxed in the later stages of the optimiza-
tion after its initial boost to faster convergence was consumed.

Next, we survey the impact of workforce specialization on the effectiveness of
the clustering strategy. We regard specialization as equivalent to the proportion of
resource candidates after applying DR constraints which disqualify part of the re-
sources based on skills, equipment, time intervals and other relevant attributes.

In order to study the transition of a problem instance from less to more special-
ized, we have to consider an experimental setup very carefully. Using completely
different problem instances with different levels of specialization wouldn’t serve
the purpose well as it would introduce a number of additional variables that would
be very hard to control. Therefore, we took a smaller real-life instance with 275
demands and 20 resources2 which we gradually modified from complete openness
where all resources were valid candidates for all demands, to achieve ever higher
specialization.

We started in a constellation without any skills, and all twenty resources were
feasible candidates for all demands. Then, starting from an exact copy of the first
instance, we first randomly selected a single resource per each demand that will not
posses skills to perform it, leaving exactly 19 candidates per each demand. Moving
on, we removed two candidate resources per demand from the original instance in
order to get to 18 candidates per demand, and so on. While we ended up with the

2 The demands in the instance were set with a priority value ranging between 1 (lowest) to
9 (highest). The value of calls with priority level of 1 was 100 points, and it was set to rise
progressively by 50 points for every call of a higher priority, making priority 2 calls worth
150 points, priority 3 200 points and so on leading to the highest priority 9 calls having a
value of 500 points. The cost of every travelled hour was set to 50 points.
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Fig. 2 The figure compares results obtained by pure GRASP with results of clustering at
different measures of K, as function of processing time. The inner subfigure zooms-in on first
200 sec of the run. The comparison reveals the benefit of using tight clusters (K = 30) at
very short time scales. Results of looser clustering (K = 10 and 5) emerge more slowly but
outmatch the tighter clustering results at the medium processing times. As can be seen, at
larger processing times pure GRASP will outperform results of any of the clustering strategy
settings.

instances that were progressively more artificial, we feel that we successfully iso-
lated resource specialization as the single most important difference between them.
We also feel that always starting from the original instance instead of progressively
modifying the already modified instances indicates that the results that we see are
not the consequences of a particular set of lucky modifications, but have somewhat
wider validity.

The results are shown in figure 3 on the next page. We measured schedule quality
after a short constant period of optimization with and without clustering for a fixed
value of K as a function of resource specialization. As we move from right to left
in the graph and the specialization of resources increases, we find that the benefits
of using clustering quite suddenly disappear, and the strategy becomes detrimental
to the quality of the results. The specialization of resources basically divides the
problem space into two regimes: one in which clustering can play a very instru-
mental role in achieving higher quality results at least in the initial stages of the
optimization, and the other in which it shouldn’t be used at all because it damages
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the quality even in the short term. The transition between the two regimes seems to
be abrupt and could be described as a phase transition. As our past experiences in
the field seem to indicate and further experiments of a similar kind show3, the state
transition is not just present in one instance, but seems to be a common occurrence
in FSS. The exact place the phase transition is going to take place is not obvious,
implying that care needs to be taken when using clustering in practice.
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Fig. 3 On the left side, we see the relative value of using the clustering strategy com-
pared with results achieved without it, as a function of workforce specialization. The
units of the x-axis show the number of candidate resources per demand, while the y-axis
represents the relative improvement in quality of clustering over pure GRASP, given by
(Qclustering −QGRASP)/QGRASP, where the quality of results is measured as the value of the
objective function and as number of created assignments. The result indicates a phase transi-
tion when the number of candidate resources falls below the level of 15 resources. The table
on the right shows the actual number of scheduled demands with and without clustering as a
function of the number of candidate resources per demand (C).

In Beck et al. [5], the authors make an analogous finding regarding the lack of
affectiveness of VRP meta-heuristics when the level of fleet specialization crosses
some borderline. They state: “When we increased the specialization of the fleet, we
discovered that the routing technology failed to produce a solution”. With the closed
and packaged algorithm used in their study, Beck et al. did not have the ability

3 The results will be published separately in the future in a dedicated paper.
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to investigate how exactly the quality of the results diminishes as specialization is
increased. Luckily, we were in a position to perform such an analysis, as detailed
above.

6 Bundling Strategy

In certain business cases, for instance in utility maintenance or meter reading scenar-
ios, several demands are often situated at the same location, and can be performed
consecutively by the same resource. Quite often this is in fact the optimal way of
scheduling such demands – consecutively and to the same resource, although it’s
easy to find cases where scheduling two separate resources to visit the same site is
actually better, as illustrated in figure 4.

1 4

3 2

A

B

(a)

A

B

1 2

3

(b)

Fig. 4 Scheduling same-site demands consecutively and to the same resource is not always
optimal. In the above example, resources A and B both have the skills to work on the same-
site demands 1 and 2, but only resource A has the skills to work on demand 4 and only
resource B has the skills to work on demand 3. Splitting the same-site demands, as in case
(a), will result in more travel, but it will also allow all demands to be scheduled. Scheduling
the same-site demands consecutively and to the same resource will always leave at least one
demand off the schedule, as illustrated in case (b).

Visiting a site is often associated with overheads that are not immediately appar-
ent, such as signing in when visiting the site, parking and unloading the van, and
getting to the right location within the site. All these overheads are largely elimi-
nated for all demands but one when same-site demands are scheduled consecutively
and to the same resource, as illustrated in figure 5 on the next page. In such cases,
splitting same-site demands between resources or scheduling a resource for repeat
site visits is usually strongly discouraged even if the basic objective function actu-
ally increases on paper when doing so. The decrease in the actual demand duration
can be utilized by dynamic optimization mechanisms to schedule more demands to
the same resource once the actual duration of the whole same-site block becomes
known. Of course, this is going somewhat beyond the pure FSS as defined here,
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but in practical terms this is a common situation and therefore of great interest
and importance. Repeat site visits in practice also create a psychological impres-
sion of perceived sub-optimality by resources carrying out the work and dispatchers
working with the schedule, which decreases the trust in the automated schedule op-
timization. For all these reasons, many organizations choose to place a great deal of
weight on minimizing the number of site visits, even at the expense of other business
considerations.

(a) 2 3 41

(b) 31 2 4

Fig. 5 Realistic demand duration will include not just the actual work that needs to be done,
but also overheads such as entering the site or performing a site safety check. If same-site
demands are scheduled separately, such as in case (a), each of them will contain these over-
heads (shown here as a dark shaded area at the start of the demand’s duration). However, if
they are scheduled consecutively and to the same resource, such overheads will be largely or
completely eliminated in practice, as shown in case (b).

6.1 What Is Bundling?

Bundling is a strategy in which same-site demands with suitably overlapping time
windows and requiring similar skills and parts are merged into a “bundle” – a single
demand that is composed of qualifying same-site demands. Several considerations
play important roles in bundling strategy:

Selection defines which demands get to be considered for bundling and which de-
mands can be bundled together. This might be used to prevent bundling together
demands that have no overlap in their time windows, create separate bundles from
demands requiring different types of skills, or to avoid bundling high-priority
or highly specialized demands together with common demands that anyone can
work on.

Aggregation defines how the properties of the bundle are calculated from the
properties of individual bundled demands. The bundle’s required skills would
typically be a union of required skills of all bundled demands4, and the bundle’s
time window would typically be an intersection of bundled demands’ time win-
dows, but we encountered several other properties and aggregation methods in
practice.

4 There is a trade-off to be made between bundling together all same-site demands, or only
demands requiring same or commonly associated skills. In the former case, we will gen-
erally have fewer bundles, but can also end up with skill-set requirements for some of the
bundles that few or none of the resources could meet. The latter case would often result in
less demanding bundles with more resources to choose from, but it can also result in more
site visits. Our experience tends to favour the latter approach.
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Scaling defines how the bundle’s duration is derived from the durations of bun-
dled demands. If we want to compare the solutions with and without bundling,
such as we are trying to do in this chapter, then the bundle’s duration has
to be the sum of all bundled demands’ durations. However, as illustrated in
figure 5 on the preceding page, this is not always realistic. Therefore, the bun-
dle’s realistic duration in real-life applications would very often be quite signif-
icantly shorter than the sum of bundled demands’ durations, and scaling reflects
that expectation and tries to model it mathematically.

Partitioning defines how compatible same-site demands will be split into several
bundles when there are too many of them to create a single bundle of reasonable
duration. Having a single bundle that is longer than any resource’s availability
would quite obviously not be a good idea. Similarly, it would also not be a good
idea to have a four-hour bundle that can only be scheduled after 2PM if all re-
sources stop working at 5PM. Apart from such extreme cases, partitioning would
typically be tuned to minimize the amount of artificial constraints5 imposed on
demands in the bundle as a consequence of property aggregation.

Using scaling and permissive aggregation (for instance, an abandonment of certain
required skills for bundled demands, or an effective extension of their time intervals
when mere presence on-site is sufficient and the bundle’s demands don’t necessarily
need to be performed individually within their time interval) would typically result
in a schedule that can not be unbundled and still considered to be a feasible solution
of the original problem. Depending on the circumstances, the durations would be
too short or some demands could not be performed within their own time window
after unbundling.

On the other hand, it is straightforward to construct a bundling procedure that
would preserve the feasibility of the solution: no scaling, bundle skills are a union
of all bundled demands’ skills, bundle time interval is an intersection of all bundled
demands’ time intervals decreased from the right by the bundle duration, and the
bundle duration is no longer than the intersection of time intervals of all bundled
demands. The last two points might seem non-obvious, but this is the only way to
guarantee that all bundled demands will fit the time window when the bundle is
trivially unbundled (unbundled without reordering or any kind of additional logical
processing, as illustrated in 6 on the next page). We’ll call such bundling faithful
bundling. We’ll only use faithful bundling in our results in order to ensure that the
results with and without bundling are directly comparable.

The main effects of faithful bundling are that the total number of demands in
the later optimization process is decreased, sometimes quite substantially, and that
same-site demands that are bundled together are assured to be scheduled consecu-
tively and to the same resource.

5 When demands are bundled, the constraints imposed on the bundle are tight enough to
ensure that each demand still satisfies its own constraints. If some demand’s constraints
are tighter, imposing such constraints on the bundle as a whole effectively decreases the
scheduling options for other demands in the bundle. We refer to such constraints as artifi-
cial constraints or bundling constraints.
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Fig. 6 The first three rows above show three demands’ time intervals (darker gray) followed
by their duration (the dotted box with a number in it). Since the FSS definition defines the
demand’s time interval as the time that the demand is allowed to start, the left and right side
of this box indicate the latest start and latest finish respectively for each demand. The fourth
row shows the intersections of these time intervals, using the intensity of colour to indicate
the number of intersecting time intervals. Only the darkest part indicates the intersection of
all three demands and therefore the times during which the bundle of all three demands can
start. Finally, the fifth row takes into account the fact that the whole bundle needs to finish
by the earliest latest finish (in this case the latest finish of demand 1) and that the order of
work within the bundle can rarely be guaranteed in practice, further reducing the bundle’s
time interval to the black bit.

6.2 Bundling as Bin Packing

In case of the most basic FSS and faithful bundling we are really faced with an
instance of the classical bin packing problem [16, 1]:

• Each bundle that we create is equivalent to filling a bin in the bin packing
problem.

• We are trying to minimize the number of bundles created which is equivalent to
minimizing the number of bins that we use.

• Durations of bundled demands are equivalent to item sizes in bin packing.
• The duration of each bundle is limited by an external parameter, as having de-

mands that are too long can make it very hard to schedule them. This is equivalent
to the limited bin size, which is constant in the classical bin packing problem. The
ultimate limit here would of course be the length of the longest availability in-
terval amongst resources minus the travel time required to get to the bundle and
back from it. In practice the limit would be set lower than that.

In a more realistic case of FSS-TW, still with faithful bundling, the situation be-
comes substantially more complex. The maximum bundle size now changes as de-
mands are added to it because it is limited by the size of the intersection of all
bundled demands’ time intervals. In addition to that, in order to determine whether
a certain demand can be added to a bundle, it is not enough to look just at its dura-
tion, but we also have to consider its effect on the bundle’s maximum duration once
it’s added to it. These two considerations are equivalent to bins getting smaller as
we add certain items to them, and the items that are packed also being picky about
the combinations in which they can be packed together.
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In the process of bundling, each demand’s scheduling options decrease in more
ways than one. In FSS, the list of their candidate resources can be decreased by
the skill requirements of their co-bundled demands. In FSS-TW, their time win-
dow can decrease quite dramatically because of the additional constraints imposed
by time window aggregation in faithful bundling. The combination of decreased
time window size and increased duration can also eliminate certain resources that
would be valid candidates for each and every demand in the bundle. In light of
this, the minimization of imposed constraints is an important consideration for
any realistic bundling strategy. When viewed as a bin packing problem, this rep-
resents an important secondary objective in addition to decreasing the number of
bundles.

6.3 Experimental Results

The bundling strategy serves as a pre-processor for optimization, essentially mod-
ifying the FSS instance by forcing bundles as hard constraints over the RCL. The
practical implication is that the demands that have been bundled together will be
seen as a single unified demand within the candidate list, and scheduled as a group.

The anticipated outcome of focusing on scheduling same-site demands consec-
utively and to the same resource is that the overall number of site visits will be
minimized, and this becomes an important measure of schedule quality under these
circumstances. The general FSS objectives such as maximization of the number of
scheduled demands and the minimization of travel cost also remain important, but
their relative weight is decreased to a certain degree.

It is also remarkably interesting to observe the effect of bundling on the number of
demands that fit into a schedule as bundles become progressively larger, individually
require more capacity and become harder to schedule, increasing the risk that all
demands bundled within them will remain unscheduled.

Observing these two effects of bundling was the main focus of our research as
presented here. The results were obtained on the problem instance introduced in sec-
tion 4. We performed a series of short schedule optimization runs without bundling
(equivalent to maximum bundle size of 1) and with bundling for various values of
the maximum bundle size. Bundling was faithful in all cases, and was used as a hard
constraint on RCL. After performing the initial measurement on this result, we un-
bundled all bundles that remained unscheduled, and performed an additional short
optimization run trying to fit now individual demands into the existing schedule.
The results are shown in figures 7 and 8.

Let us first look at the main declared focus of the bundling strategy – the reduction
of the number of site visits. As we see in figure 7, the strategy is very effective on
this front. The number of site visits decreases quite dramatically as soon as bundling
is introduced, and continues to decrease as bundling becomes more ambitious by
increasing the maximum bundle size. A similar, although somewhat less pronounced
effect is seen when bundling is subsequently relaxed.
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Fig. 7 The figure depicts how the number of site visits and the number of scheduled demands
changes as we change the maximum size of the bundles created by the bundling strategy (1
means no bundling at all). We use the strategy as hard strategy (“bundling only”) and relaxed
for the last round of scheduling in order to allow the demands whose bundles didn’t fit into
the schedule to be scheduled individually (“bundling with relaxation”).

The story of the number of scheduled demands is also interesting and indicates
that hard bundling does have a cost. The number of scheduled demands6 decreases
as soon as we introduce bundling, indicating that longer resulting demands are sig-
nificantly harder to schedule. The trend becomes less pronounced and loses sig-
nificance as the maximum bundle size increases, and coincides with how well the
longer bundles fit the schedule, which seems to become the predominant factor in
the end. This can be explained as a consequence of the fact that there aren’t that
many sites in the instance that can actually take advantage of the longer maximum
bundle size.

When we introduce relaxation after hard bundling, the number of scheduled de-
mands consistently increases when compared with the result without bundling. The
increase is greater for medium-sized bundles, indicating that such bundling might
actually have an independent heuristic value which will need to be investigated
further in the future. As bundle sizes become longer, the improvement over the
case without bundling remains, but decreases somewhat. Not being able to fit the
large bundles during the initial optimization results in those gaps being filled by

6 All demands bring the same revenue in this instance, so the number of scheduled demands
is proportional to the total revenue the solution brings.
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Fig. 8 The figure depicts how the objective value changes as we change the maximum size
of the bundles created by the bundling strategy (1 means no bundling at all). The results
with and without relaxation correspond to the results shown in figure 7 on the previous page.
The increase in objective value for the “bundling only” case despite the reduction in number
of scheduled demands can be explained by a high cost associated with return visits in the
objective value calculation.

other demands of lesser geographical suitability, and the same-site demands can’t
be squeezed into the schedule after the unbundling to quite the same degree.

Figure 8 shows the objective function for the same set of experiments. The objec-
tive function includes a strong preference for scheduling same-site demands consec-
utively and to the same resource. The strategy is clearly effective in achieving that
goal, and produces superior results for all values of maximum bundle size. How-
ever, the figure also indicates that there is a tipping point, and that the reduction
in the number of site visits eventually becomes insufficient to compensate for the
reduction in revenue due to the inability to schedule more same-site demands that
are stuck in non-fitting bundles.

7 Conclusions

In the scope of this chapter, we defined and described the FSS problem and sev-
eral of its variants. We then introduced the concept of RCL strategies as a part of
a wider, unified meta-heuristic approach. We demonstrated the benefits of two such



Strategies in Field Service Scheduling 81

strategies on an actual FSS instance with real-life characteristics and using a GRASP
implementation. The specific strategies, clustering and bundling, are both relevant
to the challenges faced by the actual service organizations.

The presented results open room for considerable amount of future research. We
plan to conduct further analysis of the attributes contributing to the phase transition
identified in relation to the clustering strategy described in section 5, in particu-
lar when levels of workforce specialization are intensified. This will likely require
generating a considerable number of different problem instances and deducing the
shape of the phase transition though proper averaging over results. The ultimate
goal here would be to achieve an approximation formula for the location of a phase
transition based on the attributes of a given problem, and to better understand the
factors contributing to its existence.

The main practical implication of this research would be the ability to make an
automated decision whether to use the strategy or not based on the properties of
the instance at hand, which would clearly be very beneficial in a commercial FSS
system. This is even more true in scenarios involving real-time optimization where
the need to quickly incorporate the new information into the existing solution is
even more pressing.
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Abstract. This chapter introduces a three-level hierarchical production planning 
and scheduling approach for a multi-product batch processing resin plant in South 
East Asia. The approach integrates optimization and heuristic models to determine 
aggregate plans, master production schedule, number of batches that need to be 
scheduled and finally sequencing of jobs with the objective to minimize the total 
weighted tardiness. At the top level of the hierarchy, our approach deploys a 
mixed-integer linear programming model to solve the aggregate plans where set-
ups occur. At the second level a weighted integer goal programming model is de-
veloped to disaggregate the aggregate plans and provides an optimal number of 
monthly batches to be sequenced in the presence of setups activities. At the third 
level of the hierarchy, a job-sequencing model is developed that combines two 
heuristics approaches that aims to minimize the total weighted tardiness. Real in-
dustrial data is used to test and validate the proposed approach. The results  
indicate that the approach is capable of dealing with a full range of the products 
produced by the resin plant.  
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1   Introduction 

This chapter deals with a planning and scheduling problem in a multi-product sin-
gle machine batch process environment. Planning in a production organization is 
about making decisions based on the current status of the organization and is 
aimed at achieving certain future goals. Production planning which deals with a 
longer time horizon, determines the expected inventory levels, as well as the 
workforce and other resources necessary to implement the production plans.  

Scheduling on the other hand, deals with a shorter time horizons, coupling in-
dividual products with individual productive resources with the emphasis often be-
ing on the lower level decisions such as sequencing of operations. Decisions made 
at the planning level have a strong influence on scheduling which makes both of 
them closely related. In general, planning and scheduling refer to the strategies of 
allocating equipment and utility or manpower resources over time to execute 
processing tasks required to manufacture one or several products.  

In the resin manufacturing environment, batch processing is dominant and ob-
taining optimal scheduling of the products in the batch processing machines is of 
great concern in productivity and on-time delivery management. Batch processing 
means the processing of an integrated, non-divisible units of production such as 
volume of resins, polymer or plastic. Batch operations are used to provide a wide 
variety of products and it is prevalent across a wide spectrum of process industry. 
In such an industry, products are often grouped into incompatible product fami-
lies, where an intensive setup is incurred, whenever production changes from one 
product family to another. 

Typically, in the resin production environment, the planning and scheduling 
task starts by considering a set of orders where each order specifies the product 
and the amount to be manufactured as well as the promised due date. The most 
important task of the planner is the so-called batching of orders, (see Mendez et al. 
[1]). Batching of orders is the process of transforming customers’ product orders 
into sets of batches to be planned and subsequently assigned due date. This proc-
ess is commonly practised in the industry such as this, since a batch is frequently 
shared by several orders with the earliest one determining the batch due date. 
Moreover, while the planner is carrying out this task, his/her objective is to mini-
mize as much as possible the setups between products that are generated from in-
compatible families. 

Despite the use of batch operations in many industries, their planning and 
scheduling have not been fully studied. This research identifies and addresses 
these characteristics and aims to pursue the development of a framework to solve 
a batching and sequencing problem for a realistically sized industrial case that can 
be easily implemented with inexpensive and readily available software. A three-
tiered Hierarchical Production Planning (HPP) framework for single-stage, single 
machine, multi product batch plants with restricted batch sizes that originated 
from incompatible product families is developed. The framework integrates opti-
mization and heuristic models for solving production planning and scheduling in a 
resin manufacturing plant. 
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This chapter is organized as follows. In the next section, the literature review is 
presented and followed by description of the production environment. The meth-
odology, hierarchical framework and model formulations are then presented. Fi-
nally, model validation procedure, results and discussions and conclusions and  
future research are presented. 

2   Literature Review 

A rigorous mathematical analysis of HPP is found in the pioneering work of Hax 
and Meal [2] and Gabbay [3]. Since then, many theoretical works on the topic 
have followed (see Bitran and Tirupati [4]). 

Many HPP solutions to industrial applications have been reported in the litera-
ture, such as the tile industry (Liberator and Miller [5]), steel manufacturing 
(Mackulak et al. [6]), milk powder manufacturing (Rutten [7]), paper industry 
(Bowers and Agarwal [8]), fibre industry (Qiu and Burch [9]), paint industry 
(Venkataraman and Smith [10]) , household chemicals (Das et. al [11]) and resin 
production (Omar and Teo [12]). 

The literature on solution techniques used for solving the different levels of the 
HPP is vast, and we do not attempt to cover it all here. However, interested read-
ers are referred to comprehensive reviews provided by Mckay et al. [13] and 
Okuda [14]. A brief literature review on disaggregate production planning and 
short-term sequencing models is provided here. 

2.1   Disaggregation Production Planning 

Disaggregation is a process of translating the aggregate plans into feasible detailed 
plans. The effectiveness of the aggregate plans depends on the existence of consis-
tency and sound disaggregation. Without this linkage, decisions made at the ag-
gregate level cannot be translated into cost savings at the shop floor. Disaggrega-
tion works within the boundaries established by the aggregate plan. It translates 
the objectives and goals as set by the aggregate plan into a workable program suit-
able for practical implementation. Many approaches for disaggregate plans have 
been reported in the literature. Bitran and Tirupati [4] presented a model that 
treated the disaggregate plan as a knapsack problem. Oliff [15] suggested a mixed 
integer programming formulation to solve the disaggregate problem for multi pro-
cessor, multi product with conditional setups. Leong et al. [16] presented a 
weighted goal programming model that disaggregate the aggregate plans to lot-
sizes and line assignment by product and group and finished goods inventories by 
product.  

Omar and Teo [12] reported on a three-level HPP for a single-stage, identical 
parallel machines in the process industry with batch size restricted production en-
vironment that involves setup considerations. The authors reported that their  
proposed model can provide optimal solution to the production planning and 
scheduling problem considered, however, they conclude that their proposed model 
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cannot solve a planning problem when the products involved exceeds 18 products 
originated from 5 incompatible families. 

2.2   Short-Term Scheduling and Sequencing 

Enormous solutions have been proposed for machine scheduling problems, and we 
do not attempt to cover it all here. However, interested readers are referred to the 
recent reviews by Toppan et al. [17] and Allahverdi et al. [18]. However, we will 
provide a brief review related to our work. Tardiness, defined as positive lateness 
of a job, incurs if a job is completed after its due date. In the weighted case, each 
job’s tardiness is multiplied by a positive weight. The objective is to find a se-
quence of jobs that minimizes the total weighted tardiness in a single machine 
which is NP-hard in the strong sense (Lenstra et al. [19]). Adding the characteris-
tics of jobs originated from incompatible families increases the difficulty of the 
problem of minimizing the total weighted tardiness in a single machine. Many 
practical industrial situations require the explicit consideration of setups and the 
development of appropriate scheduling tools. Among the reported cases, Pinedo 
[20] describes a manufacturing plant making paper bags where setups are required 
when the type of bag changes. A similar situation was observed in the plastic in-
dustry by Das et al. [21]. The aluminium industry has a casting operation where 
setups, mainly affecting the holding furnaces are required between the castings of 
different alloys (see Gravel et al. [22]). 

Previous research done in the case of incompatible job families had been fo-
cused mostly on single machine batch problems. Fanti et al. [23] developed a  
heuristic that aims to minimize the makespan of jobs on a multi-product batch 
processing machine. Dobson and Nambimodom [24] considered the problem of 
minimizing the mean weighted flow time and provided an integer programming 
formulation to solve the problem. Azizoglu and Webster [25] described a branch 
and bound procedure to minimize total weighted completion time with arbitrary 
job sizes. Their procedure returns optimal solutions to problems of up to 25 jobs. 
Most recently, Perez et al. [26] developed and tested several heuristics to mini-
mize the total weighted tardiness on single machine with incompatible job fami-
lies. Their tests consistently show that the heuristics that uses Apparent Tardiness 
Cost (ATC) rule to form batches, combined with Decomposition heuristics (DH) 
to sequence jobs, perform better than other heuristics tested, except ATC com-
bined with Dynamic Programming algorithms (DP). Their tests show that ATC-
DH and ATC-DP results are close. 

The literature is also not extensive either for single machine scheduling prob-
lems with sequence-dependent setups, where the objective is to meet delivery 
dates or to reduce tardiness. However, Lee et al. [27] have proposed the Apparent 
Tardiness Cost with Setups (ATCS) dispatching rule for minimizing total 
weighted tardiness. Among other authors who have treated the problem, we find 
Rubin and Ragatz [28] developed a genetic algorithm method while Tan and Na-
rasimhan [29] used simulated annealing as a solution procedure. Tan et al.[30] 
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presented a comparison of four approaches for solving scheduling problem of sin-
gle machine with the objective to minimize total tardiness in a sequence dependant 
setup environment. Their experiment results suggested that simulated annealing 
and random-start pairwise interchange are viable solution techniques that can yield 
good solutions to a large combinatorial problem and that the genetic algorithm had 
the worst performance. 

3   Production Environment 

This research is motivated by a planning and scheduling problem encountered in a 
multi-product batch operations of a chemical firm in South East Asia.  This firm 
produces a variety of resin intermediates, which are used for coatings. It is a joint 
venture company of a leading global industry for high solids and waterborne coat-
ing formulations and powder, together with traditional solvent borne technology. 
Customers of this company include leading suppliers of automotive OEM coat-
ings, vehicle refinishes, coatings for plastics, industrial wood finishes, metal and 
protective coatings. As a member of the global resins manufacturers, the resins 
company is able to leverage on knowledge and experience for its research and de-
velopment works, production methodology and processes from other members of 
the group worldwide. 

The resin manufacturing plant has two production lines and the major produc-
tion reactions include alkylation, acyliction, aminotion, leading to the production 
of about 100 finished products..  

The resin manufacturing plant operates on three shifts, and each production 
year has 358 days. Working capacity is around 742 tons and 633 tons per month 
for production line one and two respectively. The operation in each production 
line is a reaction process, where the chemical reaction takes a place in a reactor; 
mixing where chemicals are mixed in a thinning tank; filtering where purities are 
control to meet customers’ specifications and packaging. Reaction is the bottle-
neck operation, hence the working capacities estimation are based on the reaction 
process. Demand of the finished products is considered to be high and, therefore, 
cannot be satisfied from production runs, since some of the available capacity is 
consumed for setups, so the firm allows backorder practices. Owing to storage 
limitations, the firm does not practice safety stock policy, and allows inventory for 
restricted fixed period of time. The workforce involved on the production is very 
limited and the plant management does not practice workforce variation policies. 

When the demand estimates for the following year are ready, the marketing de-
partment passes these estimations to the production department to prepare the op-
erating budget for the following year. Batching of orders process starts when the 
production planner receives customers’ order due date. The ultimate objective of 
this process is to meet the customers’ due date and minimize setups activities.  

When considering large orders, the planner will consider resource fam-
ily/production line dedication policy: In its simplest form, this policy that aims to 
utilize the available plant capacity, the planner usually adopts the following  
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dedication policy: Families 1, 2 and 3 that comprises of 15 end products are to be 
produced in production line 1. The rest, 17 families, that consists of 85 products, 
are to be produced in production line 2. 

The management of the company has become aware that the current manual 
planning procedure, which is adopted, is inadequate for coping with future plan-
ning problems. The management is also concerned for some time about the lack of 
formal integrated framework for production planning that facilitates coordination 
and collaboration among different managerial levels. The aim of this case study, 
therefore, is to develop for this company an integrated framework that can be eas-
ily implemented with inexpensive and readily available software. 

In the following section, our methodology and the details of the developed ma-
thematical models are presented. 

4   Methodology 

The HPP presented in this chapter (Figure 1) integrates family planning, item dis-
aggregation planning and job sequencing scheduling into a complete planning and 
scheduling system. 

In our proposed HPP, family demand is the input to the Aggregate Production 
Planning (APP) model. Since the setup is a major concern in the resin-
manufacturing environment, the APP was formulated as a mixed-integer linear 
programming model. The objective of the APP model is to minimize total produc-
tion, setup, inventory and backorder costs in a fixed workforce size, industrial  
environment. 

The second level of the HPP is the Disaggregation Production Planning (DPP) 
as shown in Figure 1. The DPP receives several inputs. One of the inputs is the 
monthly item demand, which results from the disaggregation of family demand. 
Another input is the optimal outputs from the APP model which includes aggre-
gate (family) production, inventory and backorder levels. These levels service as 
the parameters for the goal constraints of the DPP. Additional input to the DPP are 
the minimum and maximum batch-size for individual products and the man-hours 
consumed for setup activities. 

The DPP problem was formulated as a weighted integer goal programming 
model. The rational for our choice is the fact that multiple objectives usually exist 
at this level of planning and the capability of goal programming to guarantee the 
consistency of disaggregation of aggregate feasible solutions. The objective of the 
DPP is to minimize the excess of production, inventory and backorder level tar-
gets set by the APP model. Moreover, the DPP model, while considering the min-
imum and maximum batch-size requirements, converts monthly optimal produc-
tion levels into a monthly optimal number of batches. Determining the optimal 
number of batches is an important process, since companies in the process indus-
try develop their scheduling in terms of batches to schedule rather than product 
orders to fill. The optimal output of DPP consists of number of batches, batch  
sizes, item production, inventory and backorder levels.  
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Fig. 1 Proposed hierarchical production planning framework 

 
As can be seen from Figure 1, the third level of our proposed HPP is the job se-

quencing model (JSM). The input required by the JSM includes the number of 
batches (jobs) to be scheduled for each product, the product family each job be-
longs to, the process time, setup time, unit tardiness penalty and due dates. The 
JSM then determines the sequence of the batches to be processed to meet cus-
tomer’s due dates. In modeling the JSM, we have used an existing dispatching rule 
(Apparent Tardiness Cost with Setups-ATCS) for single machine with sequence 
dependent-setups. The ATCS seems to be a good choice since it has been reported 
in the literature to be one of the most successful dispatching heuristic used in the 
industry. Rather than just completely relying on the ATCS sequencing results, we 
decided to implement the suggestions in the literature in which the ATCS is com-
bined with simulated annealing or Tabu-search to improve the sequencing results. 
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In our case, a Tabu-search (TS) was developed which takes the initial results  
provided by the ATCS and tries to generate a better solution.  

The methodology described here presents a systematic approach that combines 
optimization and heuristic models to provide operational decision support for 
planning, scheduling and sequencing of jobs (batches) that originated from in-
compatible product families in the process industry. The proposed approach can 
provide important answers to questions that usually posed by the decision maker, 
such as the following questions: Which product is to be made in which period, 
how many batches and what is the batch size of each product to be produced per 
period and what is the exact sequence of orders that meet the customer’s due date?  

Next, the chapter will introduce the planning, scheduling and sequencing  
models that have been developed. 

4.1   Aggregate Production Planning Model (APP) 

A mixed-integer linear programming formulation is proposed for the APP. Model 
parameters, decision variables and formulations are presented next. 
Indices 

t  : period: 1,…, T. 
i  : product family: 1,…,N. 
l : production line: 1,..L. 

Parameters 

itZ :  Unit production cost for product family i (excluding labour) in period t. 

itV    Production setup cost for product family i in period t. 

itH : Unit inventory holding cost for product family i in period t. 

itCB : Unit backorder cost for product family i in period t. 

tCR : Manpower cost in period t. 

itlD : Demand for product family i in line l in period t. 

tlSC  :Maximum available storage capacity in line l in period t. 

tlQ   : Capacity available for production line l in period t. 
min

ilP :Minimum batch size for product family i in line l. 

ilA    :Unit process time for product family i (man-hour/ units) in line l. 

ilG    :Production setup time required for product family i in line l. 

tlTR :Total regular time available in period t in line l. 

ilM  :Upper bound on production of family i in line l in period t. 

Decision Variables 
itlx  : Production level of product family i in line l in period t. 

itlh   :Inventory level of product family i in line l in period  t. 
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itlb   :Backorder level of product family i in line l in period t. 

itlφ  : Binary setup variable for product family i in line l in period t. 

tls  : Time consumed in setup activities in line l in period t, itl

N

i iltl Gs φ∑ =
=

1
.  

tlw  : Time consumed in production activities in line l in period t, itl

N

i iltl xAw ∑ =
=

1
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Subject to: 

itlitlitlltiltiitl Dbhbhx =+−−+ −− ,1,,1,  , lti ,,∀                               (2) 
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i itl SCh ≤∑ =1
 , lt,∀                                                       (3) 
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{ }1,0∈itlφ                                                            (9) 

In the above formulation, equation (1) represents the objective function, which is 
to minimize the sum of production, setup, inventory, backorder, and workforce 
costs. Equation (2) is the demand, inventory and backorders constraint relation-
ship.  Equations (3) and (4) state the storage and capacity limitation.  Equations 
(5), (6) and (9) enforce a minimum batch size requirement for each product family 
in each production line in each planning period.  Equation (7) states, that the total 
labour capacity for each product family, in each planning period and production 
line is sufficient for both production and setup activities. Equation (8) is a non-
negativity constraint. 

4.2   Disaggregate Production Planning Model (DPP) 

An integer-weighted goal-programming model is proposed for the DPP. The indi-
ces, parameters and decision variables are presented next. 

Indices 
t  :  period: 1,…, T. 
i  :  product family: 1,…,N. 
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l  :  production line: 1,..L. 
k  : item: 1,…,K. 

 

Inputs from the Aggregate Production Planning Model: 
itlx : Target production level of product family i in line l in period t. 

itlh : Target inventory level of product family i in line l in period t. 

itlb : Target backorder level of product family i in line l in period t. 

tls :  Man hour consumed in setup activities in line l in period t. 
 

Parameters 

tlQ  : Production capacity available for line l in period t. 

kitlD : Demand for item k of product family i in line l in period t. 

tlSC :Maximum storage capacity in line l in period t. 

tlTR :Total regular time available in line l in period t. 
min

iklP  :Minimum batch size of item k of product family i in line l. 
max

iklP  :Maximum batch size of item k of product family i in line l. 

kilHB : Processing hours per batch of item k of product family i in line l. 

 

Decision Variables 

kitlx : Production level of item k of product family i in line l in period t. 

kitlh : Inventory level of item k of product family i in line l in period t. 

kitlb : Backorder level of item k of product family i in line l in period t. 
+1

itld : Over production of product family i in line l in period t. 
−1

itld : Under achievement of production levels of product family i in line l in period 

t. 
+2

itld : Inventory excess of product family i in line l in period t. 
−2

itld : Under achievement of inventory level of product family i in line l in period t. 
+3

itld : Positive deviation of backorder level of product family i in line l in period t. 
−3

itld : Negative deviation of backorder level of product family i in line l in period t. 

kitlη : Integer variable denoting the number of batches of item k of product family i 

produced in line l in period t. 

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ = = =
+

= = =
+

= = =
+ ++

N

i

T

t

L

l itl

N

i

T

t

L

l itl

N

i

T

t

L

l itl dWdWdWMin
1 1 1

3
31 1 1

2
21 1 1

1
1               (10) 

Subject to: 

Goal Constraints: 

itlitlitl

K
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=∑ 11

1
, lti ,,∀                                         (11) 
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itlitlitl
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1
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System Constraints:  
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Equation (10) presents the objective function that aims to minimize the excess of 
production, inventory and backorder target levels set by the aggregate production 
planning model.  The relative importance of the goals is addressed by assigned 
weights W1, W2 and W3 in each goal, in the objective function.  Equations (11), 
(12) and (13) present the model production, inventory and backorder goal con-
straints. Equation (14) is the demand, inventory and backorders constraint rela-
tionship.   Equation (15) enforces the available storage capacity and equation (16) 
presents production capacity limitations for each production line, in each planning 
period.  Equations (17) and (18) determine the optimal number of batches and en-
sure that the monthly production quantities of the end items are within minimum 
and maximum batch size. Equation (19) enforces that the total batch processing 
time and the setup time incurred do not exceed total available time.  Equation (20) 
is the non-negativity constraints. 

4.3   Job Sequencing Model (JSM) 

The JSM uses the idea of combining the ATCS and TS in order to solve a se-
quencing problem that involve batches (jobs) which are originated from incom-
patible product families in a single machine environment. The objective of the 
JSM is to find a sequence of jobs that minimizes the total weighted tardiness. The 
detail of the JSM is presented next. 

4.3.1   Composite Dispatching Rule 

The Apparent Tardiness Cost (ATC) heuristic is a composite dispatching rule de-
veloped by Lee et al. [27] that combines the Weighted Shortest Processing time 
(WSPT) and the Minimum Slack (MS) rule. Under the ATC rule, jobs are sched-
uled one at a time, that is, every time a machine becomes free, a ranking index is 
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completed for each remaining job. The job with the highest-ranking index is then 
selected to be processed next. Several generalizations of the ATC rule have been 
developed. Such generalization, the Apparent Tardiness Cost with setups (ATCS) 
rule that has been designed to minimize the total weighted tardiness of jobs which 
are subject to sequence dependent setup times. The ATC and the ATCS heuristics 
are guaranteed to always produce a feasible schedule. The ATCS rule combines 
the Weighted Shortest Processing time (WSPT) rule, the Minimum Slack (MS) 
rule and the Shortest Setup Time (SST) rule in a single ranking index. The rule 
calculates the index of job j  at time t  when job l  has completed its processing on 
the machine as 
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A sequence of jobs is generated by selecting the job with the highest ranking index 
to be processed next. Once the sequence is obtained, the total weighted tardiness 
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  is calculated where 

=jT tardiness of job =j { }jj dC −,0max  

=jC completion time of job j  



Framework for Integrating Optimization and Heuristic Models 97
 

The ATCS rule in this phase gives a sequence which provides an initial seed or so-
lution for the Tabu Search.  

4.3.2   Tabu Search 

Tabu Search (TS), a technique for solving combinatorial optimization problems, is 
basically a strategy to overcome the local optimality. This is done by surpassing 
local optimality, by a strategy of penalizing certain moves during a number of it-
erations. TS basic step starts from a feasible solution S to the problem we are deal-
ing with and then moves to another feasible solution S/ belonging to the 
neighbourhood of S that optimizes an objective function over a set of neighbour-
ing solutions. In order to prevent cycling, the procedure stores data concerning a 
certain number of recent moves, which are considered “tabu” moves, namely, pro-
hibited. Readers interested to learn more about TS are referred to Glover [32, 33]. 
In this chapter we propose a TS heuristic that receives the sequencing results ob-
tained from the ATCS and tries to improve the sequencing results. Our TS heuris-
tic is summarized as follows: 

The tabu search procedure is summarized as follows: 

1.  Set length of tabu list. 
2.  Set number of iterations. 
3.  Set initial tabu list as zero. 
4.  Let =1S initial sequence from ATCS. 
5.  Set =0S total weighted tardiness value from ATCS )( 1TS  as best objective value 

from sequence 1S . 
6.  For ;,...2 nk =  If the move from kk SS →−1  is not prohibited by any mutation on  

the  tabu list, select a candidate schedule kS  from the neighbourhood of 1−kS ,  

which gives the minimum value for the total weighted tardiness value: )( kTS . 

7.  Update 0S  if  1−< kk TSTS . 

8.  Update tabu list. 
9.  Increment k by 1. 
10.Repeat steps  6-9 until maximum iteration. 

4.3.3   An MILP Formulation 

In this section, a mixed integer linear programming model for a single machine 
with the objective to minimize the total weighted tardiness is presented. The opti-
mal results obtained from this model will be compared with the heuristic results. 
Notations 

⎩
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=m number of families 
=in number of jobs in family i. 

=n total number of jobs 
=ijd due date of jth job in family i. 

=ijp processing time of jth job in family i. 

=ijw weight of jth job in family i. 

=kC completion time of the job at position k. 

=ijkT tardiness of the jth job in family i at position k. 

=is family setup time of family i. 
 

Formulation 
Objective Function: 

∑∑∑
= = =

m

i

n

j

n

k
ijkij

i

TwMin
1 1 1

                                                 (21) 

Subject to 

1
1 1

=∑∑
= =

m

i

n

j
ijk

i

X  , nk ,...2,1=                                       (22) 

1
1

=∑
=

n

k
ijkX  , injmi ,..,2,1;,...2,1 ==                                    (23) 

{ } { }
1

1 ,...2,1
)1(

1

≤−+∑ ∑∑
= −∈

−
=

ik

n

j imp
kpj

n

j
ijk YXX

ii

 , nkmi ,..,2,1;,...2,1 ==                        (24) 

∑∑
= =

=
m

i

n

j
ijij

i

XpC
1 1

11                                                      (25) 

ijk

m

i

n

j
ijik

m

i
ikk XpYsCC

i

∑∑∑
= ==

− ++=
1 11

1  , nk ,...3,2=                               (26) 

∑∑∑∑
= == =

≤−
m

i

n

j
ijkijkijk

m

i

n

j
ijk

ii

XTXdC
1 11 1

 , nk ,...2,1=                              (27) 

0≥kC  , nk ,...2,1=                                               (28) 

0≥ijkT  , nknjmi i ,..,2,1,,...,2,1;,...2,1 ===                            (29) 

The objective function (21) of the model is to minimize the total weighted tardi-
ness of the problem. Constraint (22) and (23) state that each position can be occu-
pied by only one job and each job can be processed only once. Constraint (24) 
checks whether or not the preceding job and the following job are from the same 
family. If so, there is no setup time between them. Otherwise, a family setup time 
of the job in position k exists. Constraint (25) states the completion time of the job 
in the first position. Constraint (26) calculates the completion time from the  



Framework for Integrating Optimization and Heuristic Models 99
 

second position to the last position of the sequence. Constraint (27) determines the 
tardiness values for all positions. Constraints (28) and (29) gives the non-
negativity constraints. 

5   Testing and Validation 

The model’s testing and validation are now illustrated using data taken from the 
company. In this research, Microsoft Excel is used to import and export data 
needed to execute all developed models for the three levels. The APP and DPP 
were developed using OPL Studio version 3.6 and solved using CPLEX version 8. 
The JSM is developed using Visual Basic 6.0. All models were executed using a 
personal computer with Pentium IV 2.80 GHZ processor. Our proposed testing 
and validation methodology is carried out in the following manner: 

(1) Generating random demand: A crucial input to both the APP and DPP is the 
families and product demand. Using 17 months sales history of 100 products 
that originated from 20 product families, demand is generated using two pa-
rameters in the demand distribution as proposed by Xie et al. [35]. Demand 
variation (DV), represents the variability of the total demand and product-mix 
variation (MV),  represents the variability in the proportion of the demand for 
each of the 100 products items in the total demand for two production lines. 
Three levels of DV factor are used. DV is set at 10% and 20% and 40% of the 
average total demand for three levels, respectively, representing the low, me-
dium and high levels of variations in the normal random noise component of 
the total 100 products. The magnitudes of the noise component for MV are 
also varied at three levels. MV is set at 10%, 20% and 40% of the average 
proportion of individual demand for the three levels, respectively, represent-
ing the low, medium and high levels of variations in the normal random noise 
component of the total 100 products. The demand generation process which is 
based on real data obtained from the resin manufacturing firm, results in the 
development of 9 different  demand variations and product-mix variations for 
each production line and was generated for 60 periods (months) with each  
period recorded after 4000 simulation runs.  

(2) Validating the APP and the DPP levels: One of our objectives is to use a de-
mand generation function that allows us to ensure that both the APP and DPP 
models are capable of developing optimal plans for the different demands and 
product-mix variations. It is worth mentioning that our intention in adopting 
this method of demand generation is different from that stated by Xie et al. 
[35]. Another objective is to test whether the DPP model is capable of con-
verting production levels into optimal number of batches that can be  
processed.  

(3) Validating the performance of the combined heuristic (ATCS + TS): An im-
portant question that requires an answer is this: How good are the quality of 
the schedules generated by the ATCS and the combined heuristic? In indus-
trial application, heuristics were compared against other heuristics which may 
lead to a wrong judgement or conclusion about the quality of the schedules. 



100 M.K. Omar and Y. Suppiah
 

(see Ovacik and Uzsoy [34]). The authors developed an integer programming 
model that can answer the above important question. It is known that integer 
programming models can only deal with small size problems; therefore we 
have created a problem that consists of 10 jobs that originated from 2, 3 and 4 
incompatible product families. The optimal results obtained from the integer 
programming model are compared with the results obtained from the ATCS 
and combined heuristic.  

(4) Robustness issues: Once we were quite comfortable with our approach of the 
demand generation at (1), it is important to determine the behaviour of the so-
lutions found by the proposed models. The first issue of concern would be to 
investigate the capability of the APP model to provide optimal solutions and 
how far in terms of the planning horizon the planner might consider. The sec-
ond issue is to investigate the ability of the DPP model to convert finish prod-
uct quantities into workable number of batches the planner may process. The 
third issue that need to be examined is the ability for the combined heuristic to 
provide optimal solutions and reasonable solution to the sequencing problem 
faced by the resin firm. The various demand scenarios mentioned above are 
used for investigating the robustness of the first and the second issues. For the 
third issue, we decided to use 20, 30, 40, 50 and 60 jobs with each job consist-
ing of a single batch of a product. Families were made to vary between 10, 15 
and 20 leading to the development of 15 sets. Every set was run 5 times using 
randomly generated due dates that lies between 1.0 and 7.0 (we assumed that 
each month has 30 working days and each week has 7 working days). The 
whole process, made available 75 cases ready for evaluation. The tardiness 
penalty for every job is assigned a weight 1, 2 or 3 according to the product 
family. The number of iterations of the TS is fixed at 500 and the tabu list is 
allowed a maximum of 5 pairs of jobs. 

6   Results and Discussions 

Turning to our experimental results, in which demand generated from the 9 sce-
narios for 60 time horizons, indicate that the APP model can provide optimal solu-
tion. However, since the APP is formulated as a mixed-integer linear program-
ming problem, obtaining optimal solutions for longer time horizons would be a 
challenge to the model due to the increased number of integers. As for the DPP 
model, our investigations indicate that reliable optimal solutions are only possible 
if the planning horizon does not exceed 3 months, beyond that, computational time 
will increase exponentially as the number of integer variables increase. Conse-
quently, the decision maker may not be able to obtain results in real time to be of 
any use for implementation purposes. However, this problem should not be con-
sidered as a drawback since in practice, companies use a rolling horizon planning 
methodology at this level of planning and typically will not exceed 3 months. 

To demonstrate the capability of the DPP model to convert monthly production 
levels into workable optimal number of batches, the authors run the DPP model 
for 3 months time horizon using the developed 9 demand generating scenarios 
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function. The summary of all computational results are shown in Table 1. For ex-
ample, a close look to the first row and first column in Table 1 indicates that for 
the demand generation function that consist of DV 0.1 and MV 0.1, the planner 
needs to make available in January, 62 batches which is equivalent to 742000 kg 
from production line 1 in order to meet the demand for that particular month.  

Table 1 Summary of monthly batches developed by the DPP 

Demand  
Scenario 

January February March 

 L1 L2 L1 L2 L1 L2 

DV=0.1,MV=0.1 62 76 63 74 64 28 

DV=0.1,MV=0.2 64 76 64 70 52 30 

DV=0.1,,MV=0.4 64 75 64 65 40 19 

DV=0.2,MV=0.1 61 75 62 75 61 36 

DV=0.2,MV=0.2 63 71 60 72 59 69 

DV=0.2,MV=0.4 63 74 65 67 56 26 

DV=0.4,MV=0.1 64 77 62 61 61 51 

DV=0.4,MV=0.2 61 72 62 72 33 19 

DV=0.4,,MV=0.4 64 77 60 28 57 42 

 
The authors developed Table 2 to explain the advantage of converting produc-

tion levels into batches to meet variety of customers. In Table 2, we considered the 
result obtained in January for production line one (742000kg), where the planner 
only knows that 742000kg is produced out of 15 products. While the planner by 
using our developed batching method will have all the details shown in Table 2 
columns 2 and 3, and obviously making the batching process more efficient. Re-
turning to Table 1, it could be seen that the DPP model successfully converted 
production levels (quantities) into optimal number of batches making the batching 
of orders process job more efficient.  

To examine how good are the schedules generated by the ATCS and the com-
bined heuristic, the total weighted tardiness results obtained from using the ATCS 
and the combined heuristic are compared with the optimal total weighted tardiness 
(TWT) results obtained from using the MILP model. The Relative Error percent-

age, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 100*%
OPT

OPTHEU

TWT

TWTTWT
RE  is used to determine the performance of the 

ATCS and the combined heuristic. 
The results of the performance of the ATCS and the combined heuristic are 

shown in Table 3. The ATCS is at most about 4.68% from the optimal solution 
whereas the combined heuristic provided a better solution which is about 1.17% 
away from the optimal solution. Moreover, the ATCS and the combined heuristic 
provided the same value as the MILP model for the total weighted tardiness for  
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Table 2 Development of Batches  

Without batching of orders With batching of orders 

Products No. of batches 

1 13 

2 9 

3 5 

4 6 

5 1 

6 4 

7 2 

8 2 

9 1 

10 5 

11 3 

12 1 

13 2 

14 2 

15 6 

742000kg which consists of 15 
products 

Total 62 

Table 3 Comparison of MILP, ATCS and (ATCS+TS) 

 10 jobs originated from 2 families 

 MILP ATCS (ATCS+TS) 

TWT 344 344 344 

CPU Time(s) 53.17 5.94 11.16 

RE(%)  0.00% 0.00% 

 10 jobs originated from 3 families 

 MILP ATCS (ATCS+TS) 

TWT 344 344 344 

CPU Time(s) 73.99 9.17 11.27 

RE(%)  0.00% 0.00% 

 10 jobs originated from 4 families 

 MILP ATCS (ATCS+TS) 

TWT 342 358 346 

CPU Time(s) 95.05 10.35 11.27 

RE(%)  4.68% 1.17% 
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the instance where 10 jobs originating from 2 and 3 families. This has shown that 
the combined heuristic can provide an optimal solution. Furthermore, our findings 
indicate that the approach that calls for combining the ATCS and TS to provide 
reasonably good solutions for jobs that originated from incompatible product 
families works.  

Table 4, shows the summary of 15 problems set tested. In Table 4, each row 
starting from column 3 represents the computational average results based on 5 set 
problems. The performance measures shown in table 4 are as follows. Column (3) 
and (4) are, respectively, the total weighted tardiness (TWT) results of the ATCS 
and the combined heuristic (ATCS +TS). Column (5) represents the average CPU 
time in seconds consumed to solve the problem by the combined heuristic. The 
average number of setups that resulted from applying combined heuristic is shown 
in column (6).  

Table 4 Summary of the 15 problem sets average computation results 
 

No. of jobs No. of families TWT of ATCS TWT of 
(ATCS+TS) 

CPU time(s) of 
(ATCS+TS) 

Average no. of 
setups 

10 46.40 46.30 14.57 9 

15 113.20 113.16 15.72 14 

20 

20 118.76 187.70 19.26 19 

10 115.07 114.92 25.15 9 

15 216.10 216.06 28.26 14 

30 

20 349.75 348.26 32.82 19 

10 203.13 202.88 40.66 9 

15 331.21 330.41 42.68 14 

40 

20 510.27 510.05 48.09 20 

10 311.22 311.03 50.38 10 

15 505.41 504.19 58.82 15 

50 

20 672.10 671.68 59.78 20 

10 394.38 413.44 62.71 10 

15 607.87 606.73 67.40 15 

60 

20 810.09 808.75 73.20 20 

 
From the result of our experiments, we can make the following observations: 

(1) Even though integer programming models cannot provide optimal solutions 
for industrial scheduling problems, they are a very important tool in testing 
the scheduling heuristics. 

(2) As expected, the number of jobs (batches) and number of incompatible fami-
lies have a significant impact on both the objective function (minimizing the 
total weighted tardiness value) and the CPU time consumed to obtain a solu-
tion. As it could be seen from Table 4, as the number of job increases, the  
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average total weighted tardiness and CPU time increases as well. It is worth 
noting that there is no significant difference in the CPU time consumed for the 
ATCS alone or the combined heuristic of ATCS and TS. 

(3) ATCS and combined heuristic attempts to sequence the jobs within the same 
product family to be sequenced consecutively in order to reduce the setups. 
For example, jobs involving 10 families, the optimal number of setups is 9 
times. This has been achieved for 20, 30 and 40 jobs whereas when the num-
ber of jobs increases to 50 and 60, the average number of setups is 10 indicat-
ing a minimum increment. 

(4) For all the 75 cases tested (15 scenarios run for 5 times), no significant im-
provement of TWT value of the combined heuristic(ATCS+TS) over ATCS 
was found. This issue was investigated in order to find the reason behind this. 
Our findings indicate that based on our input data, the proposed heuristic at-
tempts to improve the results obtained from the ATCS by producing a differ-
ent sequence in which some of the jobs from the same family position are ex-
changed. It seems that the tightness of an instance is a critical factor in 
deciding the efficiency of the heuristic for the TWT problem. This is true 
since the proposed heuristic provides a significant improvement when used to 
solve the problem described in Pinedo [20] page 350. In this case, the authors 
compared the results obtained by Pinedo using ATCS and the results for the 
same problem by using the combined heuristic ATCS+TS. The study indi-
cates that while ATCS provided a sequence that resulted in total weighted tar-
diness of 440, the combined heuristic ATCS+TS provided a sequence with a 
total weighted tardiness of 408. 

7   Conclusions and Future Research 

This research was initiated due to a planning and scheduling decisions problem 
encountered at a resins firm located in South East Asia. A three hierarchical 
framework is proposed to address this problem, which extends the literature of the 
hierarchical system and takes into consideration the shortcomings of the job sche-
duling and sequencing literature.  

Although several hierarchical production planning (HPP) systems have been 
developed, there is strong evidence that the industrial implementations are mini-
mal. The main reasons were a lack of communication between designers and users 
and the intrinsic difficulties of quantitative models in production planning. As 
many HPP systems focused only on the disaggregation of aggregate planning, the 
author realised the importance of integrating jobs sequencing decisions into pro-
duction planning. Hence, in this research, a three-level hierarchical framework, 
which integrates production planning and job sequencing decisions, is proposed. 

The performance of the integrated approach has been tested in two ways. First, 
the APP and DPP models were tested to ensure that they are capable of developing 
optimal solutions for the range of products tested. Secondly, the 75 cases of job 
sequencing problems were analyzed to show that the heuristic model for the JSM 
is capable of obtaining solution in a reasonable time frame.  Heuristic method is 
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preferred, as the integer programming cannot solve large scheduling problems as 
stated in the literature. The capability of the heuristic for large problems is tested 
by conducting experiments with many combinations of jobs and families. The 
heuristic model showed that it can provide a good sequence in terms of minimiz-
ing setup time in a reasonable computational time. Our proposed models assumed 
deterministic demand and market conditions and therefore an obvious extension 
would be to consider stochastic conditions at the APP and DPP levels. An oppor-
tunity for further research is the use of different heuristics models for the sug-
gested methodology such as genetic algorithm or simulated annealing and consid-
ers probabilistic nature of job arrivals. 
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Evolutionary Algorithms in the Optimal Sizing
of Analog Circuits
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and Gerardo Reyes-Salgado

Abstract. Analog signal processing applications such as filter design and os-
cillators, require the use of different kinds of amplifiers, namely: voltage fol-
lower, current conveyors, operational amplifiers and current feedback operational
amplifiers. To improve the performances on these applications, it is very much
needed to optimize the behavior of the amplifiers. That way, this work shows their
optimization by applying two evolutionary algorithms: the Non-Sorting Genetic Al-
gorithm (NSGA-II), and the Multiobjective Evolutionary Algorithm Based on De-
composition (MOEA/D). The analog circuits are sized taking into account design
constraints, and linking HSPICE like circuit simulator to evaluate their electrical
characteristics. Additionally, we show that differential evolution (DE) enhances the
convergence to the Pareto front and controls the evolution of the objectives among
different runs. DE also preserves the same time efficiency and increases the dom-
inance on NSGA-II and MOEA/D compared with the one point crossover genetic
operator.

1 Introduction

Analog signal processing applications require the use of different kinds of analog
electronic devices. For instance, in [1] an analysis of the state-of-the-art of active
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Gustavo Rodrı́guez-Gómez
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devices is introduced, where a methodology to generate new ones is proposed. An
important thing is that the majority of the active devices, already known or new
ones, can be designed by using four unity-gain cells (UGCs), namely: voltage fol-
lower, voltage mirror, current follower, and current mirror [2, 3]. The UGCs can be
synthesized automatically as already shown in [4]. Furthermore, they can be evolved
to design more complex devices, for example: current conveyors (CCs) [5], and cur-
rent feedback operational amplifiers (CFOAs) [3]. The behavior of UGCs, CCs and
CFOAs can be modeled by applying symbolic analysis [6,7], to speed-up time sim-
ulation. Other circuit synthesis approaches can be found in [8, 9, 10, 11, 12, 13, 14],
all of them apply evolutionary or swarm intelligence in the optimization process.

Some applications of UGCs, CCs and CFOAs include sinusoidal and chaotic
oscillators [15, 16, 17, 18, 19, 20]. However, to improve the performances of these
applications, it is very much needed to optimize the behavior of the active devices.
Although some optimization approaches have been already presented in [21,22,23,
24, 25, 26, 27], the analog circuit optimization problem is yet unsolved. This is due
to the fact that analog circuit design automation tools are not developed at the same
speed of technology [28]; analog circuit design remains dependent on the designer’s
experience.

Besides, the actual tendency is to apply evolutionary algorithms (EAs) [29, 30,
31, 32, 33, 34, 35, 36], combined with intelligent techniques [10, 11, 12, 21, 22, 23,
37, 38], to solve the sizing optimization problem in analog circuit design including
nanoscale CMOS devices [39]. That way, this work shows the performances of ap-
plying the Non-Sorting Genetic Algorithm (NSGA-II) [29], and the Multiobjective
Evolutionary Algorithm based on Decomposition (MOEA/D) [31], to automatically
size analog circuits such as UGCs, CCs and CFOAs taking into account design
constraints, and linking HSPICE like simulator to evaluate electrical characteris-
tics. The EAs described herein are evaluated by applying ZDT1–4 test functions
from [30]. An important point is that the performance of the proposed optimization
system depends on the generation of solutions to the optimization problem (sizing
analog integrated circuits), or in other words, our system performance depends on
the generation of the true Pareto front [21].

In Sect. 2 the design characteristics of the analog circuits UGC, CC, and CFOA
are shown. This section also summarizes the sizing problem. In Sect. 3 the main
characteristics of NSGA-II and MOEA/D are presented, and these algorithms are
tested by applying the functions given in [30]. In Sect. 3.4, the genetic operators
one-point crossover and differential evolution (DE) are described. In Sect. 4, the
optimization results of applying NSGA-II and MOEA/D, with and without DE, to
the analog circuits design are shown. Finally, in Sect. 5 we summarize the main
conclusions and future lines for research.

2 Analog Circuit Sizing

Nowadays, progresses made in the VLSI technology are leading to the full integra-
tion of mixed analog/digital circuits [14]. Even though the analog part presents a
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small portion of the entire circuit, its design is a very complicated task that gener-
ally relies on the experience of the skilled designer. Despite its importance, analog
design automation still lags behind that of digital circuits. Besides, analog circuit
design is a hard and tedious work due to the large number of parameters, constraints
and performances that the designer has to handle [8, 9, 10, 11, 12, 13, 21, 22, 23, 24,
25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

As highlighted in [11,12,21,22,26,40], since analog designs are becoming more
and more complex, there is a pressing need for analog circuit design automation
(ADA), to meet the time to market constraints. In this manner, this chapter shows the
characteristics of two multiobjective EA’s: NSGA-II and MOEA/D to contribute to
solve the sizing problem of analog integrated circuits [41]. Basically, an EA searches
for the optimal width (W ) and length (L) of the MOSFETs to accomplish target spec-
ifications. Furthermore, it is shown that NSGA-II and MOEA/D give much better
results than the classically used statistic based approaches [23, 27, 31]. However,
a very important set of major problems seems to be still open; mainly problems
related to the number of parameters, the numbers and nature of constraints and ob-
jective functions [14,31,32,33,34,35], etc. Added to that the fact that almost all cir-
cuit design problems comprise conflicting performance trade-offs among electrical
characteristics, i.e. improving one performance leads to the degradation of another
one; the use of multiobjective approaches is unavoidable [22]. Furthermore, due to
the increasing complexity of the considered circuits and technology, developed and
handled performance models [7], as well as constraints, suffer from approximations
that the designer is forced to adopt [14].

The circuits to be sized by applying the EAs NSGA-II and MOEA/D are the volt-
age follower shown in Fig. 1, the positive-type second generation current conveyor
(CCII+) shown in Fig. 2, and the current-feedback operational amplifier (CFOA)
shown in Fig. 3. As one can see, the CCII+ is designed from the evolution of the
VF, and the CFOA is designed from the cascade connection between the CCII+ and
the VF [3]. This systematic design approach is quite interesting to show that the
optimized sizes of the VF can change when it is evolved to design the CCII+, and
when it is used to design the CFOA. In the following section is shown the encoding
of these circuits to be optimized by using standard CMOS technology of 0.18 μm,
Vss = −Vdd = 2 V, Ire f = 50 μA and a load capacitor of 1 pF.
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Fig. 3 Current-Feedback Operational Amplifier (CFOA)

3 Evolutionary Algorithms

Evolutionary algorithms are used to solve multiobjective optimization problems, and
these solvers are incorporated into tools for analog circuit design. In this manner,
changing the number of objectives or variables, and even with different magnitudes,
is very easy to perform [22, 34, 35, 36]. Additionally, constraints can be taken into
account under user defined limits, between design parameters and electrical charac-
teristics [37,38]. In this manner, this chapter shows the characteristics of the two se-
lected EAs: NSGA-II and MOEA/D, for the optimization of the three analog circuits
described in Sect. 2. Both EAs are tested by applying the functions given in [30].

3.1 Multi-Objective Optimization

A Multi-objective Optimization Problem (MOP) can be formally defined as the
problem of finding the vector: x = [x1,x2, . . . ,xn]T which satisfies the k inequality
constraints:

gi(x) < 0; for i = 1,2, . . .k

the p equality constraints

h j(x) = 0; for j = 1,2, . . . p

and minimizes the vector function

f : R
n → R

m

f(x) = [ f1(x), f2(x), . . . , fm(x)]T

In other words, we aim to determine from among the set S of all vectors (points)
which satisfy the constraints those that yield the optimum values for all the m objec-
tive functions simultaneously. The constraints define the feasible region S and any
point x in the feasible region is called a feasible point.
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Pareto dominance is formally defined as follows: A vector u ∈ R
m is said to

dominate a vector v ∈ R
m, u ≺ v, if and only if u is partially less than v, i.e., ∀i ∈

{1, . . .m}, ui ≤ vi ∧ ∃i ∈ {1, . . .m}: ui < vi, (assuming minimization). In order to
say that a solution dominates another one, this one needs to be strictly better in at
least one objective, and not worse in any of them.

The formal definition of Pareto optimality is provided next: A solution xu ∈ S
(where S is the feasible region) is said to be Pareto optimal if and only if there is
no xv ∈ S for which v = f(xv) ∈ R

m dominates u = f(xu) ∈ R
m, where m is the

number of objectives. In words, this definition says that xu is Pareto optimal if there
exists no feasible vector xv which would decrease some objective without causing
a simultaneous increase in at least one other objective (assuming minimization).
This definition does not provide us a single solution (in decision variable space),
but a set of solutions which form the so-called Pareto Optimal Set or Pareto Front.
All the vectors that correspond to the solutions included in the Pareto Front are
non-dominated.

3.2 NSGA-II

This algorithm approximates the Pareto Front of a multi-objective optimization
problem (MOP) by sorting and ranking all solutions in order to choose the better
solutions to make new offspring. This means, by ranking all the population in dif-
ferent Pareto subfronts that it will be possible to know which solutions show better
performance. In this algorithm a form to choose the best solution between two so-
lutions, in the same subfront preserving diversity, is contemplated; in this form it
is possible to select the best part of a population without losing diversity. NSGA-II
is based on three main issues : Fast Ranking Function , Crowding Distance As-
signment and elitism. These procedures, and the fact that constraints can be added
easily, ensure that the solutions are feasible.

At the beginning it is necessary to randomly initialize the parameters and start by
building two populations (Po and Qo) of size N, from random values into a feasible
region. The NSGA-II procedure in each generation consists of rebuilding the actual
population (Rt) from the two original populations (Pt and Qt ) then the new size of
the population will be N, where t represents the actual generation.

Through a nondominated sorting, all solutions in Rt are ranked and classified in
a family of subfronts. In the next step, it is necessary to create from Rt (previously
ranked and ordered by subfront number) a new offspring (Pt+1), the objective is
to choose, from a population of size 2N, the N solutions which belong to the first
subfronts. In this manner, the last subfront could have more than the necessary indi-
viduals; therefore (idistance) measure is used to identify the best solutions, a process
that preserving elitism. And for preserving diversity, the solutions that are far of
the rest are selected; this is possible simply by modifying a little bit the concept of
Pareto dominance as follows:

i ≺n j if (irank < jrank)or
[
(irank = jrank) and (idistance > jdistance)

]
(1)
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Algorithm 1. NSGA-II
1: P0← random, Q0← random //initialize
2: t← 0
3: Evaluate(P0), Evaluate(Q0)
4: repeat

5: i← 1
6: Pt+1← /0
7: Rt ← Pt ∪Qt //combine parent and offspring population
8: evaluate(Rt )
9: F ←fast-ranking(Rt ) //F = (F1,F2, ...) , all nondominated fronts of Rt

10: while |Pt+1|+ |Fi| ≤ N do

11: Pt+1← Pt+1∪Fi //include ith nondominated front in the parent pop
12: i← i+1 //include ith nondominated front in the parent pop
13: end while

14: crowding-distance-assignment(Fi) //calculate crowding-distance in last Fi to achieve N
15: sort(Fi,≺n) //sort in descending order using ≺n
16: Pt+1← Pt+1∪Fi[1 : (N−|Pt+1|)] //choose the first (N−|Pt+1|) elements of Fi
17: Qt+1← make-new-pop(Pt+1) //use crossover and mutation to create it
18: until stop criteria

3.2.1 Fast Ranking Function

This procedure is responsible to rank each solution into a subfront, and it starts by
selecting the nondominated solutions among the current population (Rt). This first
group of solutions will be labeled as the solutions into the first subfront (F1) and
are separated from Rt . For the remaining solutions in Rt the nondominated solutions
are selected again, but this time they are labeled into the second subfront (F2) and
separated from Rt like the solutions in (F1) were separated before. This procedure
continues until all solutions in Rt are ranked into a subfront.

The procedure uses a counter for each solution. Such counter allows to know
how many solutions dominate to other solutions (np where p is the p-solution). In
the same way, there is a set which contains all the solutions dominated for each
solution (all solutions in Sp are dominated by p-solution ). First, the solutions with
counter equal to zero are taken, and to each reminded solution are decreased its
counter in one. In this way, the next subfront is composed by the remaining so-
lutions with counter equal to zero. This continues until all solutions have been
ranked.

3.2.2 Crowding Distance Assignment

This is the second procedure to select those solutions which generate the offspring,
and it makes sense when it is necessary to choose the last members of the population
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Algorithm 2. Fast Ranking Function Algorithm

1: for each p ∈ P do
2: Sp ← /0
3: np ← 0
4: for each q ∈ P do
5: if (p ≺ q) then
6: Sp ← Sp ∪{q}
7: else if (q ≺ p) then
8: np ← np +1
9: end if

10: if np ← 0 then
11: prank ← 1
12: F1 ← F1 ∪{p}
13: end if
14: end for
15: end for
16: i ← 0
17: while Fi �= /0 do
18: Q ← /0
19: for each p ∈ Fi do
20: for each q ∈ Sp do
21: nq ← nq −1
22: if nq ← 0 then
23: qrank ← i+1
24: Q ← Q ∪{q}
25: end if
26: end for
27: end for
28: i ← i+1
29: Fi ← Q
30: end while

Pt+1 into a subfront. In this manner, the crowding distance allows a measure to chose
members into the same subfront. The main idea is to perform a density estimation
named crowding distance (idistance) by sorting in ascending order the solutions for
each objective function, then for each objective it is first selected the smallest and
largest limit found and an infinite value is assigned to their crowding distances.

Algorithm 3. Crowding Distance Assignment

1: l ← |T | //number of solutions in |T |
2: for each i do
3: set T [i]distance ← 0 //initializing
4: for each objective j do
5: T ← sort(T, j) //sort according each objective, 1 ≤ j ≤ m
6: T [1]distance ← T [l]distance ←∞ //boundaries are always selected for all other points
7: for i ← 2 to (l-1) do
8: T [i]distance ← T [i]distance +(T [i+1] · j−T [i− 1] · j)/( f max

j − f min
j )

9: end for
10: end for
11: end for
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Next, for the rest of the functions values, their crowding distance are calculated
as follows: with the sorted objective values take the immediately maximum and
minimum function value of each objective, and the difference of these two val-
ues is normalized (using the global maximum and global minimum of the current
function). Finally, the main procedure of NSGA-II could be summarized in
Algorithm 1.

3.3 MOEA/D

The basic idea of MOEA/D is the decomposition of a multiobjective problem
in scalar optimization subproblems by a weights vector. This vector associates a
weight (λλλ ) for each subproblem which is considered as a single individual in the
population and it is going to try to improve itself and to its nearby (neighborhoods).

Algorithm 4. MOEA/D pseudocode

1: t = 1 , P=random(N,n) , set EP = /0 , T
2: build an uniform spread of N weight vectors λλλ 1, . . . ,λλλN
3: for i = 1,2, . . . ,N do
4: B(i) = {λλλ i1 , . . . ,λλλ iT }
5: end for
6: evaluate population P
7: save best solutions in EP
8: repeat
9: for i = 1,2, . . . ,N do

10: randomly select parents from B(i)
11: generate new individual y
12: for each � ∈ B(i) do
13: if g(y | λλλ �,Z∗) ≤ g(x� | λλλ �,Z∗) then
14: x� = y
15: f�(x�) = f(y)
16: end if
17: end for
18: end for
19: all vectors dominated by f(y) are removed from EP
20: until stop criteria

After the initialization of the parameters the first step in MOEA/D is related to
find the N spread weight vectors (to each individual xi, 0≤i≤N corresponds one λλλ i =
{λ 1

i ,λ 2
i , . . . ,λm

i } where m is the number of objective functions). One way can be by
using a parameter H in a sequence as described by (2):

{ 0
H

,
1
H

, . . . ,
H
H

}
(2)

Therefore, for m = 2 , N = H + 1 , with m > 2 the number of such vectors is given
by (3):
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N = Cm−1
H+m−1 (3)

Now for each individual in the population corresponds one λλλ i. Therefore, it is pos-
sible to define a number (T ) of neighborhoods for each λλλ i and they will be saved
in B.

In each generation there is a population of N points x1,x2, . . . ,xN ∈ X where xi is
the current solution to the ith subproblem and there are f1, f2, . . . , fN , where fi is the
f-value of xi.

In the procedure it is necessary to generate a new individual y which will be com-
pared with its neighborhood by applying a decomposition approach (g[xi | λλλ i,Z∗])
such as the Tchebycheff Approach and each neighbor worse than this new indi-
vidual will be replaced by it in an external population (EP) which is used to store
non-dominated solutions.

In the Tchebycheff Approach, the scalar optimization problem is described by
(4), where Z∗ = [z∗1,z

∗
2, . . . ,z

∗
m]T is the vector of the best objective functions values

found. Algorithm 4 shows the steps performed by MOEA/D :

g(xi | λλλ i,Z∗) = max{λ j
i | f j(xi)− z∗j |}1≤i≤N

1≤ j≤m
(4)

3.4 Genetic Operators: Differential Evolution

Evolutionary algorithms have been tested by including the Differential Evolution
(DE) operator to improve convergence and diversity [34,36]. Such operator consists
of randomly choosing three solutions: xa,xb and xc from the population X . A new
solution xnew = x1

new,x2
new, . . . ,xn

new is generated in the following way [42]:

xk
new =

{
xk

a + R · (xk
b− xk

c) if rand() < C,

xk
a otherwise,

for k = 1,2, . . . ,n. (5)

Where R is a constant factor which controls the amplification of the differential
variation, C is the cross-over probability and rand() is a function that returns a ran-
dom real number in the interval [0,1). In this work we set R and C to constant val-
ues, recommended values for these constants are R ∈ [0.5,1.0], C ∈ [0.8,1.0] [43].
In [44] these parameters are self-adapted by including them inside the optimization
problem.

Iorio and Li [45] propose the Nondominated Sorting Differential Evolution
(NSDE). This approach is a simple modification of the NSGA-II. The only dif-
ference between this approach and the NSGA-II is the method for generating new
individuals. The NSGA-II uses a real-coded crossover and mutation operator, but in
the NSDE, these operators are replaced with the DE’s operators. New candidates are
generated using the DE. On the other hand, Qingfu and Li [46] use DE as genetic
operator in MOEA/D. In our proposal, we include DE into NSGA-II and MOEA/D
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to show its suitability in sizing analog circuits. Furthermore, the results shown in the
next section, provide diversity and good behavior of the generations to find optimal
solutions.

3.5 Behavior of NSGA-II and MOEA/D on Test Functions ZDT

Zitzler et al. [30], provided a comparison of various evolutionary approaches to mul-
tiobjective optimization using six carefully chosen test functions, each one involves
a particular feature, that is known to cause difficulty in the evolutionary optimiza-
tion process, mainly in converging to the Pareto-optimal front. In Table 2, the four
test functions used in this work are shown, where ZDT 1, ZDT 2, ZDT 3 and ZDT 4
are the name of the selected functions, n is the number of variables used for the
functions, and bounds are the maximum and minimum search limits for each vari-
able. For the four selected functions the goal is to minimize the functions given. The
test function ZDT 1 has a convex Pareto-optimal front, ZDT 2 is the nonconvex con-
trapart to ZDT 1. ZDT 3 represents the discreteness feature, its Pareto-optimal front
consist of several noncontiguous convex parts. ZDT 4 contains 219 local Pareto-
optimal fronts then it tests the EA’s ability to deal with multimodality.

The test functions were evaluated (in a dual processor 1.2GHz, RAM 2GHz) over
ten runs with a population size of 100 along 250 generations, by using DE and single
point crossover (SPC) as genetic operators. Figures 4 - 7 depict the behavior of each
method with each genetic operator. Table 2 shows the maximum value (MAX), min-
imum (MIN), average value (AVG), standard deviation (STD), average error (ERR)
between the objective values found and the goal, and finally, the average run time
(TMR). It is possible to see how DE preserves or improves the SPC performance in
most cases, but for other ones, the average error worse, as in NSGA-II for ZDT3.
However by comparing Figures 4(c) and 5(c) (or Figures 6(c) and 7(c)), DE notably

Table 1 Test Functions

Function n Bounds Functions Optimal Sol.

ZDT 1 15 xi ∈ [0,1]
f1(x) = x1 x1 ∈ [0,1]
f2(x) = g(x)[1−

√
x1

g(x) ] xi = 0,

g(x) = 1+ 9
n−1 ∑n

i=2 xi i = 2, . . . ,n

ZDT 2 15 xi ∈ [0,1]
f1(x) = x1 x1 ∈ [0,1]
f2(x) = g(x)[1− ( x1

g(x) )
2 ] xi = 0,

g(x) = 1+ 9
n−1 ∑n

i=2 xi i = 2, . . . ,n

ZDT 3 15 xi ∈ [0,1]
f1(x) = x1 x1 ∈ [0,1]
f2(x) = g(x)[1−

√
x1

g(x) − x1
g(x) sin(10πx)] xi = 0,

g(x) = 1+ 9
n−1 ∑n

i=2 xi i = 2, . . . ,n

ZDT 4 15 x1 ∈ [0,1]

x2,...,n ∈ [−5,5]

f1(x) = x1 x1 ∈ [0,1]
f2(x) = g(x)[1−

√
x1

g(x) ] xi = 0,

g(x) = 1+10(n−1)+∑n
i=2[x

2
i −10cos(4πxi)] i = 2, . . . ,n
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improves the convergence to the goal. In the same way, DE improves the conver-
gence for MOEA/D for ZDT4 as Figures 6(d) and 7(d) show.

In this manner, we choose DE as genetic operator for this work due to its
capability to improve the convergence by preserving the run time performance.
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Fig. 4 NSGA-II with single point crossover for ZDT functions
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Fig. 5 NSGA-II with differential evolution for ZDT functions
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Fig. 6 MOEA/D with single point crossover for ZDT functions
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Fig. 7 MOEA/D with differential evolution for ZDT functions

Table 2 Results on Test Functions

Function Measure
NSGA-II MOEA/D

SPC DE SPC DE
f1 f2 f1 f2 f1 f2 f1 f2

ZDT 1

MAX 0.9977 1.0000 0.9991 1.0028 1.0000 1.0058 0.9998 1.0023
MIN 0 1.450E-3 0 1.699E-3 0 1.992E-4 0 2.826E-4
AVG 0.4517 0.3971 0.5546 0.2916 0.4190 0.3973 0.4187 0.3975
STD 0.3098 0.2909 0.2762 0.2215 0.2741 0.2353 0.2739 0.2351
ERR 0.0022325 0.0021727 0.00030632 0.00029017
TMR 1.439s 1.372s 0.041s 0.042s

ZDT 2

MAX 0.9998 1.0000 0.9947 1.0000 1.0000 1.0000 1.0000 1.0000
MIN 0 4.697E-3 0 1.086E-2 0 2.978E-4 0 5.051E-4
AVG 0.6024 0.5726 0.1813 0.8825 0.5685 0.5823 0.5685 0.5823
STD 0.2621 0.2983 0.2912 0.2280 0.3081 0.3302 0.3081 0.3301
ERR 0.002427 3.3345E-5 0.00016512 0.00016875
TMR 1.392s 1.382s 0.0299s 0.0293s

ZDT 3

MAX 0.8517 1.0033 0.8514 1.0025 0.8519 1.0000 0.8531 1.0016
MIN 0 -7.687E-1 0 -7.687E-1 0 -7.690E-1 0 -7.727E-1
AVG 0.2121 0.4673 0.1411 0.5880 0.1667 0.5559 0.5197 -1.261E-1
STD 0.2367 0.4541 0.1843 0.3646 0.2411 0.4098 0.2793 0.5003
ERR 0.00062655 0.00066736 0.0035069 0.00042582
TMR 1.430s 1.364s 0.0296s 0.0289s

ZDT 4

MAX 0.9998 1.0013 0.9997 1.0003 1.0000 1.0000 1.0000 1.0000
MIN 0 2.016E-3 0 2.179E-3 0 2.285E-7 0 0
AVG 0.4803 0.3764 0.4719 0.3843 0.2299 0.7009 0.3611 0.5568
STD 0.3100 0.2983 0.3197 0.3009 0.3796 0.3742 0.4293 0.4060
ERR 0.0015544 0.0014316 0.00082932 0.0003195
TMR 1.377s 1.370s 0.664s 0.642s

4 Sizing Optimization Results

The three circuits, depicted in Figures 1, 2 and 3, were optimized and the results are
shown in this section. Each one was optimized with different number of variables,
objectives, population size and number of generations.

Both optimization systems are performed with MATLAB and the circuit simu-
lations are made with HSPICE by modifying each transistor width (Wi) and length
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(L), and recollecting results from the output listing. Table 3 shows an example of
the HSPICE directions to perform an AC and DC analysis and the measurements of
gain, bandwidth and offset in voltage mode [33, 34].

Table 3 Measurements library example

.LIB MEASLIB � Library name
.AC dec 100 100 1G � Executing an AC Analysis
.TF V(X) VIN � Calculating DC parameters
.NET V(X) VIN � Calculating AC parameters
.MEAS AC GAIN MAX Vdb(X) FROM=100 TO=100 �Calculating Gain in dB
.MEAS AC BW TRIG vdb(X) at=100 TARG vdb(X) VAL=’GAIN-3’ cross=1 �Calculating f−3dB

.DC VIN 1.5 -1.5 .01 �Executing a DC Analysis

.MEAS DC OFFSET TRIG V(x) at=0 targ v(x) val=0 cross=1 �Calculating offset
.ENDL MEASLIB

4.1 Voltage Follower (VF)

The VF depicted in Fig. 1 is encoded with seven design variables: transistors lengths
(L) and widths (Wi), where i represents a specific transistor (or transistors which
share the same width) of the circuit, as Table 4 shows.

Table 4 VF encoding

gene Design Variable Encoding Transistors
x1 L M1, . . .M14

x2 W1 M11, M12, M13, M14

x3 W2 M8, M9, M10

x4 W3 M6

x5 W4 M5
x6 W5 M1, M3

x7 W6 M2, M4

The optimization problem for this circuit is expressed as:

minimize f(x) = [ f1(x), f2(x), f3(x), f4(x), f5(x)]T

subject to hk(x) ≥ 0 , k = 1, . . . ,14,
where x ∈ X .

(6)

where X : R
7 | 0.36 μm ≤ Xi ≤ 80 μm, i = 1,2, . . . ,5, is the decision space for the

variables x = [x1, . . . ,x7]T. f(x) is the vector formed by five objectives:
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• f1(x) = 1 - Voltage gain (From Y port to X port).
• f2(x) = Voltage offset (Between Y port and X port).
• f3(x) = 1 / Voltage band width (From Y port to X port).
• f4(x) = 1/ Input resistance (Y port).
• f5(x) = Output resistance (X port).

Finally, hk(x), k = 1, . . . ,14 are performance constraints, in our experiments we
include the saturation condition in all transistors as constraints [24]. Then this circuit
was optimized along 126 generations over 10 runs, H = 5 was used, and according
to equation 3 the population size is 126. For DE, C=1 and R=0.5 were used.

Table 5 NSGA-II optimization measurements for VF

Measure Gain (V
V ) Offset (V) BW (Hz) Rout (Ω ) Rin (Ω )

MAX 0.9910 2.739E-3 9.991E+8 3.1486 2.077E+5
MIN 0.9866 1.951E-6 4.837E+8 0.5203 1.011E+5
AVG 0.9887 9.702E-4 8.811E+8 0.8073 1.616E+5
STD 6.404E-4 5.272E-4 1.294E+8 0.2783 2.276E+4

Table 6 MOEA/D optimization measurements for VF

Measure Gain (V
V ) Offset (V) BW (Hz) Rout (Ω ) Rin (Ω )

MAX 0.9914 4.145E-3 9.997E+8 18.3272 2.088E+5
MIN 0.9836 5.172E-7 3.004E+8 0.5030 6.183E+4
AVG 0.9893 1.469E-3 7.334E+8 2.6302 1.673E+5
STD 1.287E-3 1.136E-3 2.265E+8 3.4790 3.288E+4

4.2 Positive Second Generation Current Conveyor (CCII+)

The CCII+ depicted in Fig. 2 is encoded with nine design variables: transistors
lengths (L) and widths (Wi), where i represents a specific transistor (or transistors
which share the same width) of the circuit, as Table 9 shows.

The optimization problem for this circuit is expressed as:

minimize f(x) = ( f1(x), f2(x), . . . , f10(x))T

subject to hk(x) ≥ 0 , k = 1, . . . ,15,
where x ∈ X .

(7)

where X : R
9 | 0.36 μm ≤ Xi ≤ 80 μm, i = 1,2, . . . ,9, is the decision space for the

variables x = (x1, . . . ,x9). f(x) is the vector formed by ten objectives:

• f1(x) = 1 - Voltage gain (From Y port to X port).
• f2(x) = Voltage offset (Between Y port and X port).
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Fig. 8 NSGA-II optimization for VF
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Fig. 9 MOEA/D optimization for VF
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Table 7 NSGA-II best objective results for VF

Best Objective for:
Gain Offset BW Rout Rin

Gain 0.991 0.987 0.987 0.989 0.990
Offset 2.74E-3 1.95E-6 1.20E-3 1.69E-3 9.41E-4
BW 4.84E+8 9.54E+8 9.99E+8 9.48E+8 6.99E+8
Rout 3.149 1.114 0.750 0.520 0.835
Rin 1.90E+5 1.01E+5 1.16E+5 1.72E+5 2.08E+5

Variable Values for the Best Values:
L 7.20E-7 5.40E-7 5.40E-7 5.40E-7 7.20E-7
W1 2.11E-6 1.31E-5 4.86E-6 7.93E-7 1.03E-6
W2 5.94E-6 5.41E-6 1.16E-5 1.68E-6 3.58E-6
W3 3.15E-6 2.53E-5 4.93E-5 7.97E-5 4.77E-5
W4 7.76E-5 6.98E-5 7.84E-5 7.89E-5 7.17E-5
W5 7.72E-5 6.54E-5 7.41E-5 7.35E-5 7.96E-5
W6 6.25E-5 6.09E-5 2.87E-5 5.68E-5 6.93E-5

Table 8 MOEA/D best objective results for VF

Best Objective for:
Gain Offset BW Rout Rin

Gain 0.991 0.988 0.985 0.989 0.990
Offset 3.91E-3 5.17E-7 2.38E-3 1.65E-3 1.37E-3
BW 3.25E+8 9.38E+8 1.00E+9 9.45E+8 6.92E+8
Rout 7.798 1.236 0.985 0.503 0.738
Rin 2.03E+5 1.29E+5 8.29E+4 1.71E+5 2.09E+5

Variable Values for the Best Values:
L 7.20E-7 5.40E-7 5.40E-7 5.40E-7 7.20E-7
W1 1.23E-6 2.80E-6 3.52E-5 1.19E-6 1.06E-6
W2 4.61E-6 1.27E-5 3.96E-6 1.89E-6 2.88E-6
W3 7.29E-7 2.07E-5 5.41E-5 8.00E-5 6.31E-5
W4 7.23E-5 5.94E-5 4.77E-5 8.00E-5 7.00E-5
W5 7.25E-5 7.64E-5 7.13E-5 7.98E-5 7.97E-5
W6 6.20E-5 5.73E-5 4.41E-5 7.69E-5 7.73E-5

• f3(x) = 1 / Voltage band width (From Y port to X port).
• f4(x) = 1/ Input resistance (Y port).
• f5(x) = Output resistance (X port).
• f6(x) = 1 - Current gain (From X port to Z port).
• f7(x) = Current offset (Between X port and Z port).
• f8(x) = 1 / Current band width (From X port to Z port).
• f9(x) = Input resistance (X port).
• f10(x) = 1/Output resistance (Z port).
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Table 9 CCII+ encoding

gene Design Variable Encoding Transistors
x1 L M1, . . .M14

x2 W1 M11, M12, M13, M14

x3 W2 M8, M9, M10

x4 W3 M6
x5 W4 M5

x6 W5 M1, M3

x7 W6 M2, M4

x8 W7 M15
x9 W8 M7

Finally, hk(x), k = 1, . . . ,15 are performance constraints, in our experiments we
include the saturation condition in all transistors as constraints [24]. Then this circuit
was optimized along 111 generations over 10 runs, with a population size of 111.
For DE, C=1 and R=0.5 were used.
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Fig. 10 NSGA-II voltage gain (GainV) optimization for CCII+
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Fig. 11 MOEA/D voltage gain (GainV) optimization for CCII+

Table 10 NSGA-II optimization measurements for CCII+

V
O

LT
A

G
E

(Y
-X

)

Measure GainV (V
V ) OffsetV (V) BWV (Hz) RoutV (Ω ) RinV (Ω )

MAX 0.9885 4.836E-3 9.733E+8 3.1576 8.115E+4
MIN 0.9758 1.105E-4 5.268E+8 0.6239 7.393E+3
AVG 0.9858 2.159E-3 7.913E+8 1.1510 2.783E+4
STD 1.947E-3 7.562E-4 1.308E+8 0.4134 1.788E+4

C
U

R
R

E
N

T

(X
-Z

)

Measure GainI ( I
I ) OffsetI (A) BWI (Hz) RoutI (Ω ) RinI (Ω )

MAX 0.9999 4.988E-5 9.425E+8 1.456E+5 13.8628
MIN 0.8513 1.972E-8 2.218E+8 7.758E+3 0.8994
AVG 0.9302 1.878E-5 4.917E+8 2.504E+4 2.5182
STD 4.140E-2 1.402E-5 1.130E+8 2.406E+4 2.4096

4.3 Current Feedback Operational Amplifier (CFOA)

The CFOA depicted in Fig. 3 is encoded with fifteen design variables: transistors
lengths (L) and widths (Wi), where i represents a specific transistor (or transistors
which share the same width) of the circuit, as Table 14 shows.

The optimization problem for this circuit is expressed as:
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Table 11 MOEA/D optimization measurements for CCII+

V
O

LT
A

G
E

(Y
-X

)

Measure GainV (V
V ) OffsetV (V) BWV (Hz) RoutV (Ω ) RinV (Ω )

MAX 0.9897 6.129E-3 9.734E+8 20.8758 1.011E+5
MIN 0.9592 7.773E-7 2.650E+8 0.5303 6.552E+3
AVG 0.9856 1.548E-3 7.268E+8 1.7078 5.037E+4
STD 5.076E-3 1.108E-3 1.551E+8 2.1357 2.873E+4

C
U

R
R

E
N

T

(X
-Z

)

Measure GainI ( I
I ) OffsetI (A) BWI (Hz) RoutI (Ω ) RinI (Ω )

MAX 1.0000 4.994E-5 9.832E+8 5.142E+5 65.3312
MIN 0.8514 6.135e-010 1.175E+8 6.641E+3 0.6405
AVG 0.9605 1.421E-5 5.175E+8 3.251E+4 4.2372
STD 4.911E-2 1.392E-5 1.680E+8 5.645E+4 8.3924

Table 12 NSGA-II best objective results for CCII+

Best Objective for:
GainV OffsetV BWV RoutV RinV GainI OffsetI BWI RoutI RinI

GainV 0.988 0.987 0.986 0.987 0.987 0.987 0.988 0.987 0.986 0.987
OffsetV 1.83E-3 1.11E-4 1.92E-3 2.01E-3 2.29E-3 2.09E-3 2.27E-3 1.11E-4 4.41E-3 1.98E-3
BWV 6.86E+8 9.54E+8 9.73E+8 9.35E+8 6.16E+8 6.37E+8 9.19E+8 9.54E+8 7.00E+8 9.65E+8
RoutV 0.754 1.232 0.680 0.624 1.084 1.012 0.682 1.232 1.609 0.627
RinV 5.38E+4 1.94E+4 1.38E+4 1.50E+4 8.12E+4 4.73E+4 4.15E+4 1.94E+4 1.54E+4 2.13E+4
GainI 0.864 0.863 0.916 0.868 0.871 1.000 0.895 0.863 0.888 0.915
OffsetI 4.58E-5 2.81E-5 9.36E-6 4.32E-6 3.36E-6 2.67E-6 1.97E-8 2.81E-5 4.34E-6 3.57E-5
BWI 4.87E+8 9.43E+8 5.01E+8 5.05E+8 4.52E+8 4.11E+8 5.27E+8 9.43E+8 2.46E+8 4.81E+8
RoutI 1.38E+4 1.98E+4 9.83E+3 8.98E+3 1.89E+4 1.80E+4 1.00E+4 1.98E+4 1.46E+5 9.19E+3
RinI 1.047 1.772 0.995 0.948 1.682 1.545 0.972 1.772 13.555 0.899

Variable Values for the Best Values:
L 7.20E-7 5.40E-7 5.40E-7 5.40E-7 7.20E-7 7.20E-7 5.40E-7 5.40E-7 5.40E-7 5.40E-7
W1 1.88E-6 3.78E-6 5.69E-6 5.52E-6 8.33E-7 1.93E-6 1.83E-6 3.78E-6 4.26E-6 3.60E-6
W2 4.85E-5 4.68E-5 5.44E-5 5.26E-5 5.30E-5 5.21E-5 3.95E-5 4.68E-5 4.36E-5 4.45E-5
W3 7.85E-5 2.33E-5 7.01E-5 7.97E-5 7.53E-5 6.97E-5 7.89E-5 2.33E-5 7.08E-5 7.60E-5
W4 7.59E-5 7.72E-5 8.00E-5 7.41E-5 7.33E-5 7.31E-5 5.79E-5 7.72E-5 2.84E-5 7.94E-5
W5 7.32E-5 7.91E-5 7.46E-5 6.84E-5 5.08E-5 5.86E-5 6.36E-5 7.91E-5 7.94E-5 7.43E-5
W6 3.44E-5 1.64E-5 2.84E-5 7.72E-5 8.58E-6 1.02E-5 5.65E-5 1.64E-5 3.33E-6 2.96E-5
W7 6.63E-5 6.64E-5 7.77E-5 6.92E-5 6.55E-5 7.51E-5 5.51E-5 6.64E-5 2.80E-5 7.63E-5
W8 7.44E-5 2.19E-5 7.25E-5 7.85E-5 7.04E-5 7.52E-5 7.93E-5 2.19E-5 6.66E-5 7.92E-5

minimize f(x) = [ f1(x), f2(x), . . . , f12(x)]T

subject to hk(x) ≥ 0 , k = 1 . . . p,
where x ∈ X .

(8)

where X : R
15 | 0.36 μm ≤ Xi ≤ 80 μm, i = 1,2, . . . ,15, is the decision space for

the variables x = [x1, . . . ,x15]T. f(x) is the vector formed by twelve objectives:

• f1(x) = 1 - Voltage gain (From Y port to X port).
• f2(x) = Voltage offset (Between Y port and X port).
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Table 13 MOEA/D best objective results for CCII+

Best Objective for:
GainV OffsetV BWV RoutV RinV GainI OffsetI BWI RoutI RinI

GainV 0.990 0.986 0.988 0.989 0.990 0.985 0.986 0.990 0.986 0.989
OffsetV 3.09E-4 7.77E-7 1.46E-3 1.74E-3 1.13E-3 3.05E-3 2.85E-3 3.36E-4 5.83E-3 1.74E-3
BWV 6.74E+8 6.49E+8 9.73E+8 9.61E+8 6.90E+8 8.43E+8 8.94E+8 6.74E+8 3.71E+8 9.61E+8
RoutV 1.678 2.072 0.737 0.530 1.166 1.069 1.043 1.813 20.876 0.530
RinV 9.98E+4 1.94E+4 7.66E+4 8.29E+4 1.01E+5 1.73E+4 2.09E+4 9.87E+4 2.09E+4 8.29E+4
GainI 0.851 0.908 1.000 0.867 0.947 1.000 0.958 0.965 0.935 0.867
OffsetI 8.43E-6 3.08E-5 2.40E-5 4.50E-7 1.86E-5 6.87E-6 6.14e-010 2.99E-6 1.35E-7 4.50E-7
BWI 8.30E+8 7.40E+8 5.83E+8 5.27E+8 6.90E+8 4.46E+8 5.18E+8 9.83E+8 1.68E+8 5.27E+8
RoutI 1.95E+4 3.78E+4 8.77E+3 6.64E+3 1.45E+4 1.92E+4 1.40E+4 2.56E+4 5.14E+5 6.64E+3
RinI 1.862 3.589 0.947 0.640 1.390 2.041 1.554 2.017 65.331 0.640

Variable Values for the Best Values:
L 7.20E-7 7.20E-7 5.40E-7 5.40E-7 7.20E-7 5.40E-7 5.40E-7 7.20E-7 5.40E-7 5.40E-7
W1 7.28E-7 5.00E-6 6.80E-7 6.96E-7 7.25E-7 3.82E-6 3.67E-6 7.28E-7 2.98E-6 6.96E-7
W2 6.88E-6 7.75E-5 1.41E-5 4.74E-6 6.92E-6 3.31E-5 7.20E-5 6.88E-6 7.18E-5 4.74E-6
W3 1.95E-5 1.81E-5 5.30E-5 7.86E-5 3.73E-5 7.19E-5 6.36E-5 1.82E-5 1.75E-5 7.86E-5
W4 4.67E-5 7.49E-5 6.74E-5 7.87E-5 5.14E-5 5.10E-5 3.70E-5 4.41E-5 1.03E-6 7.87E-5
W5 7.42E-5 7.02E-5 7.65E-5 7.99E-5 7.95E-5 4.24E-5 5.88E-5 7.38E-5 6.00E-5 7.99E-5
W6 4.78E-5 9.08E-6 3.45E-5 4.82E-5 5.60E-5 6.66E-6 3.57E-5 3.88E-5 2.93E-6 4.82E-5
W7 5.60E-5 6.33E-5 7.25E-5 7.69E-5 5.75E-5 5.32E-5 4.01E-5 4.36E-5 9.25E-6 7.69E-5
W8 2.37E-5 1.78E-5 6.03E-5 7.94E-5 4.21E-5 7.81E-5 7.30E-5 1.85E-5 1.56E-5 7.94E-5

Table 14 CFOA encoding

gene Design Variable Encoding Transistors
x1 L M1, . . .M25

x2 W1 M11, M12, M13, M14

x3 W2 M8, M9, M10

x4 W3 M6
x5 W4 M5

x6 W5 M1, M3

x7 W6 M2, M4

x8 W7 M15
x9 W8 M7

x10 W9 M23, M24

x11 W10 M16 ,M17

x12 W11 M21 ,M22

x13 W12 M19 ,M20

x14 W13 M18

x15 W14 M25

• f3(x) = 1 / Voltage band width (From Y port to X port).
• f4(x) = Output resistance (X port).
• f5(x) = 1 - Current gain (From X port to Z port).
• f6(x) = Current offset (Between X port and Z port).
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• f7(x) = 1 / Current band width (From X port to Z port).
• f8(x) = 1/ Output resistance (Z port).
• f9(x) = 1 - Voltage gain (From Z port to W port).
• f10(x) = Voltage offset (Between Z port and W port).
• f11(x) = 1 / Voltage band width (From Z port to W port).
• f12(x) = Output resistance (W port).

Finally, hk(x), k = 1 . . . p are performance constraints, in our experiments we in-
clude the saturation condition in all transistors as constraints [24]. Then this circuit
was optimized along 168 generations over 10 runs, and the population size of 168.
For DE, C=1 and R=0.5 were selected.

Table 15 NSGA-II optimization measurements for CFOA

V
O

LT
A

G
E

(Y
-X

)

Measure GainV (V
V ) OffsetV (V) BWV (Hz) RoutV (Ω )

MAX 0.9880 6.098E-3 6.303E+8 7.7824
MIN 0.9707 4.868E-4 3.190E+8 0.7915
AVG 0.9853 2.495E-3 4.871E+8 1.5373
STD 2.002E-3 8.009E-4 5.247E+7 0.7503

C
U

R
R

E
N

T

(X
-Z

)

Measure GainI ( I
I ) OffsetI (A) BWI (Hz) RoutI (Ω )

MAX 0.9986 4.976E-5 9.996E+8 8.646E+4
MIN 0.6017 2.111E-7 1.248E+8 2.760E+3
AVG 0.8513 1.851E-5 8.087E+8 1.581E+4
STD 0.1001 1.350E-5 1.522E+8 9.532E+3

V
O

LT
A

G
E

(Z
-W

)

Measure GainW (V
V ) OffsetW (V) BWW (Hz) RoutW (Ω )

MAX 0.9890 7.348E-3 9.893E+8 21.2337
MIN 0.9754 7.205E-6 3.219E+8 0.8430
AVG 0.9841 1.744E-3 7.084E+8 3.2157
STD 2.249E-3 1.312E-3 1.186E+8 2.5300

4.4 Discussion of Results

Before discussing the results, it is important to remember that the variable values
of the three problems, represent the physical dimensions of each codified transistor.
Smaller values for the dimensions L and W , are required in integrated circuit design
to reduce the silicon area.

For the VF, although Tables 5 and 6 show similar results, actually, MOEA/D
presents the best performance for all the objectives, but only for offset, MOEA/D
significantly improves the NSGA-II offset result. While MOEA/D has better re-
sults, it is possible to see how the average results for offset, band width and output
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Table 16 MOEA/D optimization measurements for CFOA

V
O

LT
A

G
E

(Y
-X

)

Measure GainV (V
V ) OffsetV (V) BWV (Hz) RoutV (Ω )

MAX 0.9893 6.984E-3 6.641E+8 50.2381
MIN 0.9344 1.211E-5 2.268E+8 0.6119
AVG 0.9851 2.236E-3 4.595E+8 1.8835
STD 5.695E-3 1.167E-3 6.571E+7 2.9437

C
U

R
R

E
N

T

(X
-Z

)

Measure GainI ( I
I ) OffsetI (A) BWI (Hz) RoutI (Ω )

MAX 1.0000 4.920E-5 9.999E+8 2.809E+5
MIN 0.6022 2.168E-9 1.011E+8 5.708E+3
AVG 0.8997 1.135E-5 7.743E+8 2.535E+4
STD 0.1044 1.061E-5 2.242E+8 2.892E+4

V
O

LT
A

G
E

(Z
-W

)

Measure GainW (V
V ) OffsetW (V) BWW (Hz) RoutW (Ω )

MAX 0.9899 7.899E-3 9.994E+8 65.7684
MIN 0.9275 7.635E-7 2.730E+8 0.4185
AVG 0.9851 1.573E-3 6.507E+8 3.4540
STD 7.186E-3 1.181E-3 1.659E+8 6.6713
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Fig. 12 NSGA-II voltage gain (GainV) optimization for CFOA

resistance, are better in NSGA-II than MOEA/D. Figure 9 and the standard deviation
of MOEA/D output resistance, shows an asymmetric behavior in the solution set.

Tables 7 and 8 list the variable values for each best objective. Sometimes, the Wi’s
values are similar, but the L values are the same, which indicates that both methods
found similar Pareto fronts to achieve their best performances.

For the CCII+, the behavior continues in both algorithms: MOEA/D exhibits
the best results for the offset (in voltage and current mode); the improvement is
most remarkable for the voltage input resistance (Tables 10 and 16). Now the aver-
age is closer for both methods although the standard deviation is better in NSGA-II
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Fig. 13 NSGA-II current gain (GainI) optimization for CFOA
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Fig. 14 NSGA-II voltage gain (GainW) optimization for CFOA

0.95 1
0

50

100

So
lu

tio
ns

GainV
0.96 0.98

0

2

4

x 10−3

Of
fs

et
V

GainV
0.96 0.98

2

4

6
x 108

BW
V

GainV
0.96 0.98

0

2

4

Ro
ut

V

GainV

0.96 0.98

0.7
0.8
0.9

1

Ga
in

I

GainV
0.96 0.98

0

2

4

x 10−5

Of
fs

et
I

GainV
0.96 0.98

0

5

10
x 108

BW
I

GainV
0.96 0.98

0

1

2
x 105

Ri
nI

GainV

0.96 0.98
0.97

0.98

0.99

Ga
in

W

GainV
0.96 0.98

0

2

4

x 10−3

Of
fs

et
W

GainV
0.96 0.98

0

5

10
x 108

BW
W

GainV
0.96 0.98

0

10

20

Ro
ut

W

GainV

Fig. 15 MOEA/D voltage gain (GainV) optimization for CFOA
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Fig. 16 MOEA/D current gain (GainI) optimization for CFOA
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Fig. 17 MOEA/D voltage gain (GainW) optimization for CFOA

than MOEA/D. Tables 12 and 13 have small differences in the variables, although
for offset values, L is different. In this point, if we compare Tables 12 and 7, the
variable values are similar in L, however if we compare Tables 13 and 8, MOEA/D
tried to change the L value to handle more objectives achieving the best results.

Finally, for the CFOA, the behavior is similar as for the CCII+, MOEA/D has
the best performance (in optimal and average objective values) but there is a large
improvement only for the offset in voltage and current. Regarding to the standard
deviation, MOEA/D improves its values but for output resistances presents an asym-
metric behavior. This time, the variables for both algorithms changed to handle the
large number of objectives and variables. For the first time, both methods found
smaller values of L (MOEA/D for BWV, ROUTV and ROUTW, NSGA-II for OFF-
SETI).

If we focus on the behavior of the EAs, on the one hand, MOEA/D shows bet-
ter performance because besides finding best objectives values than NSGA-II, its
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Table 17 NSGA-II best objective results for CFOA

Best Objective for:
GainV OffsetV BWV RoutV GainI OffsetI BWI RoutI GainW OffsetW BWW RoutW

GainV 0.988 0.984 0.984 0.987 0.987 0.981 0.985 0.983 0.987 0.980 0.985 0.985
OffsetV 2.13E-3 4.87E-4 3.50E-3 1.67E-3 1.99E-3 3.93E-3 2.96E-3 2.91E-3 1.92E-3 2.81E-3 3.41E-3 3.41E-3
BWV 4.51E+8 5.91E+8 6.30E+8 4.77E+8 4.81E+8 5.94E+8 5.91E+8 4.97E+8 4.75E+8 4.97E+8 6.25E+8 6.25E+8
RoutV 1.862 3.393 2.368 0.791 1.144 1.855 1.189 3.134 1.190 1.920 1.205 1.205
GainI 0.698 0.847 0.692 0.787 0.999 0.761 0.978 0.943 0.988 0.729 0.884 0.884
OffsetI 2.40E-5 1.40E-6 1.34E-5 4.80E-5 1.02E-5 2.11E-7 1.54E-5 3.50E-6 3.07E-5 2.38E-5 3.61E-5 3.61E-5
BWI 8.53E+8 8.42E+8 8.10E+8 9.15E+8 8.61E+8 9.56E+8 1.00E+9 5.36E+8 8.74E+8 4.43E+8 9.76E+8 9.76E+8
RoutI 9.40E+3 4.48E+4 4.03E+4 7.75E+3 1.51E+4 2.99E+4 1.56E+4 8.65E+4 9.88E+3 8.76E+3 1.31E+4 1.31E+4
GainW 0.985 0.985 0.986 0.986 0.985 0.985 0.983 0.987 0.989 0.985 0.984 0.984
OffsetW 1.79E-3 4.83E-4 1.14E-3 9.11E-4 1.69E-3 6.32E-3 3.88E-3 7.98E-4 3.07E-3 7.20E-6 1.81E-3 1.81E-3
BWW 7.42E+8 9.39E+8 8.63E+8 5.56E+8 6.51E+8 3.84E+8 9.21E+8 4.91E+8 4.82E+8 9.60E+8 9.89E+8 9.89E+8
RoutW 1.180 3.078 2.196 6.213 3.563 8.694 2.573 1.730 4.726 2.134 0.843 0.843

Variable Values for the Best Values:
L 7.20E-7 5.40E-7 5.40E-7 7.20E-7 7.20E-7 3.60E-7 5.40E-7 5.40E-7 7.20E-7 5.40E-7 5.40E-7 5.40E-7
W1 3.39E-6 4.14E-6 7.11E-6 7.54E-6 5.03E-6 8.29E-6 7.69E-6 1.04E-5 7.78E-6 7.26E-6 7.90E-6 7.90E-6
W2 4.94E-5 5.43E-5 7.15E-5 5.88E-5 5.96E-5 6.68E-5 7.64E-5 6.34E-5 5.20E-5 7.60E-5 7.15E-5 7.15E-5
W3 3.66E-5 1.01E-5 3.50E-5 7.52E-5 5.67E-5 3.27E-5 5.48E-5 2.24E-5 5.71E-5 4.43E-5 6.11E-5 6.11E-5
W4 2.72E-5 4.23E-5 2.47E-5 7.91E-5 5.51E-5 2.33E-5 4.54E-5 2.42E-5 4.91E-5 4.92E-5 3.83E-5 3.83E-5
W5 6.28E-5 7.98E-5 5.54E-5 6.22E-5 6.60E-5 4.77E-5 7.51E-5 5.48E-5 5.11E-5 2.76E-5 7.94E-5 7.94E-5
W6 4.92E-5 4.16E-6 5.78E-6 6.01E-5 2.51E-5 6.27E-6 1.10E-5 5.58E-6 5.99E-5 4.14E-6 1.11E-5 1.11E-5
W7 4.73E-5 8.21E-6 2.52E-5 5.86E-5 5.64E-5 4.28E-5 5.39E-5 2.55E-5 5.79E-5 5.87E-5 5.49E-5 5.49E-5
W8 4.19E-5 4.05E-5 1.79E-5 7.23E-5 5.92E-5 3.05E-5 4.80E-5 2.42E-5 5.60E-5 6.37E-5 3.65E-5 3.65E-5
W9 1.24E-5 6.62E-6 8.50E-6 4.23E-5 1.31E-5 7.81E-7 1.82E-5 7.81E-7 3.78E-5 1.24E-5 1.62E-5 1.62E-5
W10 1.32E-5 6.80E-5 6.00E-5 2.99E-5 3.37E-5 1.07E-5 7.23E-5 1.52E-5 6.39E-5 7.35E-5 4.57E-5 4.57E-5
W11 7.97E-5 5.20E-5 5.30E-5 6.42E-5 5.81E-5 2.72E-5 6.44E-5 2.44E-5 7.88E-5 7.18E-5 6.07E-5 6.07E-5
W12 5.28E-6 1.59E-5 5.84E-5 1.59E-5 4.97E-5 4.93E-6 1.89E-5 6.04E-6 7.24E-5 3.11E-5 7.09E-5 7.09E-5
W13 6.62E-5 4.00E-5 5.12E-5 3.22E-5 1.93E-5 4.23E-5 1.62E-5 6.92E-5 6.46E-5 4.47E-5 6.42E-5 6.42E-5
W14 7.55E-5 1.04E-5 1.14E-5 4.90E-6 2.30E-5 4.59E-7 4.22E-5 1.16E-5 2.08E-6 1.60E-5 7.19E-5 7.19E-5

Table 18 MOEA/D best objective results for CFOA

Best Objective for:
GainV OffsetV BWV RoutV GainI OffsetI BWI RoutI GainW OffsetW BWW RoutW

GainV 0.989 0.956 0.982 0.983 0.987 0.983 0.989 0.985 0.988 0.987 0.984 0.983
OffsetV 2.00E-3 1.21E-5 6.81E-3 3.24E-3 1.75E-3 3.01E-3 1.28E-3 3.97E-3 1.49E-3 1.63E-3 2.95E-3 3.38E-3
BWV 4.97E+8 3.37E+8 6.64E+8 5.06E+8 4.52E+8 5.66E+8 5.08E+8 4.27E+8 4.49E+8 4.89E+8 5.33E+8 5.17E+8
RoutV 0.901 22.216 4.412 0.612 1.020 0.953 1.628 3.738 1.192 1.210 0.987 0.841
GainI 0.927 0.667 0.877 0.955 1.000 0.965 0.966 0.635 0.706 0.970 0.963 0.843
OffsetI 1.51E-5 5.34E-6 6.33E-6 1.04E-5 1.07E-5 2.17E-9 1.98E-5 6.08E-8 2.35E-6 1.84E-5 1.44E-5 8.90E-6
BWI 9.55E+8 4.63E+8 6.34E+8 9.98E+8 8.64E+8 1.00E+9 1.00E+9 1.71E+8 8.39E+8 9.16E+8 7.43E+8 7.15E+8
RoutI 1.27E+4 4.40E+4 4.17E+4 1.33E+4 1.18E+4 1.17E+4 2.44E+4 2.81E+5 1.20E+4 1.50E+4 1.64E+4 2.51E+4
GainW 0.987 0.986 0.985 0.947 0.989 0.984 0.989 0.988 0.990 0.986 0.982 0.986
OffsetW 1.09E-3 1.87E-3 2.77E-3 1.07E-3 3.61E-3 6.32E-4 1.86E-3 2.47E-3 3.98E-3 7.63E-7 1.42E-3 2.53E-3
BWW 8.10E+8 9.86E+8 9.76E+8 8.14E+8 3.35E+8 9.23E+8 5.45E+8 3.21E+8 3.36E+8 6.76E+8 9.99E+8 7.69E+8
RoutW 0.978 0.780 0.473 14.968 5.670 3.193 0.648 3.438 5.413 3.020 0.961 0.418

Variable Values for the Best Values:
L 7.20E-7 5.40E-7 3.60E-7 3.60E-7 7.20E-7 5.40E-7 7.20E-7 7.20E-7 7.20E-7 7.20E-7 5.40E-7 3.60E-7
W1 9.98E-7 1.87E-6 2.83E-6 3.66E-6 1.31E-5 9.96E-6 3.22E-6 8.09E-6 6.02E-6 1.01E-5 7.44E-6 1.28E-6
W2 1.25E-5 7.20E-5 6.36E-5 7.55E-5 7.76E-5 7.68E-5 4.72E-5 7.23E-5 5.30E-5 7.66E-5 7.36E-5 4.68E-5
W3 6.77E-5 6.89E-5 6.10E-5 7.86E-5 5.84E-5 7.96E-5 2.99E-5 3.64E-5 4.54E-5 4.96E-5 6.86E-5 6.30E-5
W4 5.14E-5 2.89E-6 2.75E-6 8.00E-5 6.30E-5 5.92E-5 3.90E-5 2.03E-5 5.65E-5 5.59E-5 6.53E-5 6.27E-5
W5 7.73E-5 2.85E-6 2.38E-5 7.30E-5 7.37E-5 4.18E-5 7.71E-5 6.06E-5 7.05E-5 6.18E-5 6.49E-5 5.68E-5
W6 5.78E-5 4.54E-5 1.31E-5 4.77E-6 6.96E-5 1.26E-5 6.21E-5 3.79E-6 4.04E-5 5.33E-5 6.97E-6 2.45E-6
W7 6.29E-5 4.96E-5 6.00E-5 7.90E-5 5.84E-5 7.80E-5 2.91E-5 2.50E-5 5.86E-5 4.86E-5 7.27E-5 7.66E-5
W8 4.96E-5 2.38E-6 2.41E-6 7.99E-5 6.97E-5 5.92E-5 3.77E-5 1.32E-5 7.76E-5 5.56E-5 7.07E-5 7.71E-5
W9 2.99E-6 2.76E-6 9.13E-7 5.59E-6 4.36E-5 2.01E-5 1.32E-6 1.13E-6 1.78E-5 1.65E-5 1.51E-5 3.65E-7
W10 1.94E-5 7.72E-5 3.45E-5 7.63E-5 1.90E-5 6.34E-5 2.03E-5 1.58E-5 3.18E-5 7.04E-5 7.65E-5 1.16E-5
W11 7.03E-5 6.35E-5 7.37E-5 6.58E-6 5.29E-5 6.37E-5 7.83E-5 6.09E-5 6.32E-5 7.20E-5 3.59E-5 7.81E-5
W12 7.94E-5 1.57E-5 9.23E-6 5.99E-7 2.23E-5 1.57E-5 4.68E-5 3.97E-6 6.79E-5 1.80E-5 5.53E-5 1.01E-5
W13 6.96E-5 7.77E-5 7.95E-5 6.51E-5 6.28E-5 3.05E-5 7.52E-5 7.54E-5 7.51E-5 4.43E-5 6.80E-5 7.90E-5
W14 6.76E-5 6.87E-5 7.66E-5 6.84E-6 1.14E-6 1.39E-5 7.63E-5 3.80E-6 8.21E-7 1.40E-5 7.19E-5 7.98E-5
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diversity feature tries to explore the whole search space, finding wider range of val-
ues in the objectives values compared with NSGA-II. If we compare the MOEA/D
average objective values with theirs standard deviations, it is possible to see how
a large number of the solutions are concentrated around the average and a few are
exploring promising areas. Also, as we can see, it takes less execution time than
NSGA-II to conclude the optimization task. On the other hand, NSGA-II has more
symmetry in the solutions set, it avoids exploring areas that are far from the search
space and increasing the probability of finding a solution without the need to make
a large number of runs.

All these observations, confirm the difficulty for the development of a generic
framework for analog circuit optimization, so that an analog designer should test
an integrated circuit design with all available optimization tools to select the best
optimal solution. This is a very difficult task. Other authors have suggested fuzzy-
sets to automate the selection process [39],[40].

5 Conclusion

This work shows the usefulness of EA’s in electronic design automation by using
two algorithms named as NSGA-II and MOEA/D, which have the capability to han-
dle a multi-objective optimization problem, with two or more objectives and taking
into count also constraints.

First, we discussed about the selection of DE as genetic operator by using four
synthetic ZDT functions and exposing the performance of both methods. Then we
conclude that DE improves the convergence by diminishing the error of each point
with the real goal and in most cases improving or preserving the runtime of EA.

For circuit optimization, the objectives to optimize were the voltage or current
performances, the variables were the transistor dimensions and the constraints were
the saturation condition for each transistor in the circuit.

Afterwards, the first circuit optimization was performed on a VF by optimizing
five objectives in voltage mode and five design variables. For this case, MOEA/D
found the best results in each objective, albeit NSGA-II found the best average re-
sults. In both methods, the relation W/L are similar, this is a signal that both methods
find the optimal results in the same region of the search space.

The second circuit optimization was performed on a CCII+, which works with
five objectives in voltage mode, and five objectives in current mode, by handling
nine design variables. This time the region of the searching space is different for
both methods, however, MOEA/D improves its average performance over NSGA-
II, but this latter exhibits more symmetry denoted by its standard deviation.

Finally, a CFOA was optimized and the difference was that both EA’s found the
smallest W/L relation, which is preferable in circuit design, but those values were
in different objectives for each method.

In general, for the three circuits, both EA’s found closer optimized results, in
most cases MOEA/D exhibited the best optimal values but NSGA-II exhibited the
best symmetry.
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The EA’s used herein were implemented in MATLAB and the system has the
capability to work with a great number of transistors and it is possible to work
with different technology sizes (0.5 μm, 0.35 μm and 0.18 μm) to explore the best
design. Also it is possible to define the bounds of the search space to ensure that the
optimal solutions are feasible.

Another issue, that we believe must be consider to improve the system, is to
include the circuit process variability, because an “optimal” solution might be in a
delicate point which does not support the natural variations of a fabrication process.
It is impossible to avoid the process variations, but it is possible take them into
account in order to know whether a solution can deal with them.
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Application of Estimation of Distribution
Algorithms for Nuclear Fuel Management

Shan Jiang and Jonathan Carter

1 Introduction

In 2007, 30 countries were operating a total of 439 commercial nuclear power re-
actors which contributed about 16% of the world’s total electrical power. With con-
cerns about global warming it is likely that more reactors will be built in the near
future.

In this paper we will describe, in general terms, the operation of a commercial
nuclear reactor and how this leads to a difficult problem in combinatorial optimi-
sation. We then describe the principles of the Estimation of Distribution Algorithm
(EDA) and how we have adapted it to solve a combinatorial problem, it is demon-
strated using the travelling salesman problem. Next we explain how the method
was modified to solve the nuclear fuel management problem and how heuristic in-
formation was incorporated. Finally we examine the performance of the EDA on
three test problems for the CONSORT reactor, a small research reactor at Imperial
College in London, and show how this compares to the performance of a Genetic
Algorithm (GA), which is regarded as the best current optimisation algorithm for
this problem[24].

1.1 Understanding the Principles of a Reactor

All current power generation nuclear reactors use the same basic design. Figure 1
shows a schematic of the basic design. In the reactor vessel we find the nuclear core
where nuclear fission is producing large amounts of heat. This heat is removed from

Shan Jiang
Imperial College, South Kensington, London, UK
e-mail: shan.jiang04@imperial.ac.uk

Jonathan Carter
Imperial College, South Kensington, London, UK
e-mail: J.N.Carter@imperial.ac.uk
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the core by a fluid that flows through and around the fuel elements contained within
the core. The most commonly used fluid is pressurised water, as shown here. Cool
fluid is forced in at the base of the reactor by a pump, and hot fluid leaves the top
of the reactor vessel. The hot fluid returns to the pump via a heat exchanger. In the
heat exchanger water is boiled to form high pressure stream, which passes through a
series of turbines which are used to turn electrical generators. After leaving the tur-
bine the steam is cooled and condensed back to water by a secondary heat exchanger
(not shown). This second heat exchanger is part of a system that releases waste heat
energy to the environment. In many power stations the large cooling towers are the
externally visible component of this.

Generator
Turbine

Core

Reactor Vessel
Heat 

Exchanger

Water

Steam

HotPressurized Water

Cool Pressurized Water

Fig. 1 A schematic of a typical pressurized water reactor.

In a nuclear reactor the fuel is contained in long tubes, known as a fuel assembly.
Different assemblies can contain different amounts of nuclear fuel and how much
energy can be release from a fuel assembly depends on where it is placed in the
reactor. The optimal placement of the fuel assemblies within the reactor core is the
problem that we attempt to solve.

Figure 2 is a schematic of the core of a typical pressurised water reactor, in this
case the Russian VVER 440/230. There are a total of 349 fuel channels, of which 30
are occupied by safety assemblies, 7 by control assemblies and 312 by fuel assem-
blies. Each fuel assembly is one of three types depending on the level of enriched
fuel that it contains. To ensure safety, there are 37 control rods, 30 of which are
out of core during operation, and seven which are partially inserted and control the
normal operation of the reactor. To shut the reactor down all 37 control/safety rods
are fully inserted.1

We can observe that the core loading pattern has a high level of symmetry. This
reflects the underlying symmetry that is incorporated into the design of the reactor

1 Reactors are designed so that complete shutdown can be achieved without the need to fully
insert all 37 control/safety rods.
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Fig. 2 A Core Map of the VVER 440/230, a typical Pressurized Water Reactor, showing a
possible fuel loading pattern at the start of reactor life.

and its cooling/management systems. Typically reactors operate with either 4-fold
or 6-fold symmetry, and the symmetry can be rotational and/or reflective. Figure 2
shows an initial fuel loading which is designed to ensure the safe start up of the reac-
tor. The more interesting situation occurs periodically through the life of the reactor
when used, burnt, fuel assemblies need to be removed from the reactor and replaced
with fresh fuel. Depending on the reactor design, the time between refuelling can
vary from a few weeks to many months. For example the Sizewell B pressurised
water reactor in Britain, is designed to be shutdown and refuelled every 18 months.
At this point a third of the fuel is removed and replaced with fresh fuel assemblies.
However, we do not simply take one fuel assembly out and replace it with a new one,
as we have the opportunity to shuffle the positions of all of the assemblies within
the core. This is our optimisation problem: where exactly should each fuel assembly
go?

1.2 The Optimisation Problem

Despite the complexity of nuclear reactors, the Loading Pattern (LP) optimisation
problem can be expressed as a simple assignment problem: to which of the load-
able positions should each of the available fuel assemblies be assigned, subject to
a number of operational constraints, so as to maximise/minimise some objective
function? For the VVER reactor there are 312 fuel assemblies, being a mixture of
new and partially burnt, which have to be allocated to 312 fuel channels. If the
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reactor is managed on four fold symmetry, then the problem becomes one of opti-
mally allocating 78 assemblies to 78 channels.

The objective of the shuffling of the fuel is two fold. Firstly we must ensure
that the reactor is operating safely, and secondly we will be trying to optimise some
measure of performance. In a commercial reactor this measure is normally the profit
made from selling the electricity generated. In non-commercial reactors other crite-
ria may be more important such as maximising the time between refuelling subject
to achieving a minimum power output. In research reactors the objective is often to
maximise the number of emitted neutrons which are used for scientific experiments.

In an optimisation process, the objective function(s) will be evaluated many times
for different candidate solutions. Since the necessary physical experiments are not
feasible, the only way to do it is through a computer simulation. Simulation software
is able to provide accurate predictions of all of the key measurements of the reactor.
However, even with the most up-to-date computing facilities, the reactor simulation
is still very computationally expensive. This is a key driver for the continuing search
for better optimisation algorithms. Furthermore, due to the complexity of the nuclear
reaction and the reactor system, most objective functions are non-linear and have
multiple local optima. This increases the difficulties of the optimisation process.

1.3 The Variables and the Search Space

As described above our problem is to allocate the available fuel assemblies to the
available assembly channels. The size of the problem space, that is the number of
different Loading Patterns (LPs), depends on the number of fuel assemblies avail-
able. In the VVER example there are 312 fuel assemblies to load into the core. If
we ignore the fact that some of the new fuel assemblies are identical to each other,
then the number of possible LPs is 312! ≈ 2×10644. If we assume that the reactor
has four fold symmetry, that at a refuelling a third of the fuel is replaced and that
all the new fuel assemblies are of the same type, then in each quarter of the reactor
there are 52 used fuel assemblies and 26 identical new fuel assemblies the number
of possible LPs for these 78 fuel assemblies is 78!

26! ≈ 3× 1088. These numbers are
too large to perform an exhaustive search. Because of the size of the search space
and the complexity of the objective function, it is impractical to use manual methods
to identify optimal LPs. Thus an optimisation algorithm is required to automate the
search.

2 Description of a Basic Estimation of Distribution Algorithm

Estimation of Distribution Algorithms (EDAs) have evolved from Genetic Algo-
rithms. They work by using a sequence of populations to estimate the probability
that a particular solution is the one that you want. At the start of the optimisation
process, when no information is available, one would typically have a uniform dis-
tribution. This means that every solution is considered to be equally likely to be the
solution to the problem under investigation. The probability model is then refined
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as the parameter space is explored, using individual solutions, which are usually
stochastically selected from the current probability model. In the limit of all possible
solutions being evaluated, the probability model will collapse into a delta function.

All EDAs have the same iterative process of sampling from the current proba-
bility model, updating the probability model, and then repeating the iteration. Each
variation on the basic principle uses a different probability model and a different
way of updating that probability model. In this section, we describe the outline of a
basic EDA and demonstrate its application through a simple example.

The main steps of an EDA are:

1. Initialise the probability model to a uniform distribution or pre-defined distribu-
tion;

2. Sample new solutions from the probability model and calculate their objective
function values;

3. Select some individuals from the current population, based on their objective
function values;

4. Revise the probability model using the information extracted from selected indi-
viduals;

5. If the stop criteria are not met, then go to step 2, otherwise end the search.

Key considerations are how to construct, sample and update the probability models.
To illustrate the application of an EDA, we will consider the Univariate Marginal

Distribution Algorithm (UMDA, [14]), and use it to solve a onemax problem. The
optimisation problem is:

max f (X) =
3

∑
i=1

xi = x1 + x2 + x3; (1)

where the input variable X is:

X = [x1,x2,x3], xi ∈ {0,1}, i ∈ {1,2,3} (2)

The steps in the UMDA are:

1. Initialise a uniform distribution model P. We use tP to represent the distribu-
tion model at iteration t, here t = 0. The data structure of the probability model
is a real-valued vector P having the same dimension as X , in which each pi rep-
resents the probability of xi being 1.

0P = [p1, p2, p3] = [0.5,0.5,0.5] (3)

2. Sample M individuals from the model 0P, and compute their objective func-
tion values. In this example we will use M = 6. Initialise an empty individual t

jX
(i.e. none of the ordinates are assigned a value), where t is the generation number
and j is the individual ID in the current population. Here t = 0 and j = 1. For
each pi, generate a random number ri ∈ [0,1] from a uniform distribution:
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r = [ r1, r2, r3 ] = [ 0.4, 0.5, 0.1 ]
0P = [ p1, p2, p3 ] = [ 0.5, 0.5, 0.5 ]
0
1X = [ x1, x2, x3 ] = [ −, −, − ]

(4)

Then compare each ri and pi, if ri < pi, then set xi = 1, otherwise, xi = 0. Since
0.4 < 0.5, 0.5 = 0.5 and 0.1 < 0.5

0
1X = [1,0,1] (5)

and the objective function is calculated:

f (0
1X) = 1 + 0 + 1 = 2 (6)

Similarly, other individuals can be randomly generated and the current popula-
tion becomes

0
1X = [1,0,1] f (0

1X) = 2
0
2X = [1,1,1] f (0

2X) = 3
0
3X = [1,0,0] f (0

3X) = 1
0
4X = [0,1,0] f (0

4X) = 1
0
5X = [1,0,1] f (0

5X) = 2
0
6X = [0,0,1] f (0

6X) = 1

(7)

3. Select the N best individuals. In this example we will use N = 3. The selected
IDs are j ∈ {1,2,5}

0
1X = [1,0,1]
0
2X = [1,1,1]
0
5X = [1,0,1]

(8)

4. Update the probability model by counting the frequency for each xi in the
selected individuals. The updating method is described by

1P(xi) = 1P(xi = 1) =
∑ j xi j

N
(9)

in which the updated 1P will be the sampling model at generation/iteration 1, i is
the ID number of the input variables, j is the ID of the selected individuals and
N is the number of selected individuals. Hence

1P(x1 = 1) = ∑ j x1 j
N = ∑ j x1 j

3 = 1
1P(x2 = 1) = ∑ j x2 j

N = ∑ j x2 j
3 = 1

3

1P(x3 = 1) = ∑ j x3 j
N = ∑ j x3 j

3 = 1

(10)

The updated P is:
1P = [1,

1
3
,1] ≈ [1.0,0.3,1.0] (11)
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5. Stop if maximum number of generations is reached, otherwise go back to 2
and sample new solutions. The current best solution is

0
2X = [1,1,1] f (0

2X) = 3 (12)

The UMDA is one of the simplest forms of EDA. However, its idea is the basis of
many of the variants. It estimates the probability of the distribution of the promising
solutions and maintains it with a separate data structure, in which the input variables
are considered as independent of each other.

In this basic version, the distribution model is re-estimated in each generation.
There are other variants of UMDAs using slightly different updating methods. For
example, in the original UMDA paper, [14], an alternative implementation is intro-
duced, which uses an incremental learning strategy to update the distribution model:

t+1P(xi) = (1−λ )tP(xi)+λ
∑N

j=1 xi

N
(13)

in which λ is a scalar, and N is the number of selected candidates.

3 Applying Estimation of Distribution Algorithms to Travelling
Salesman Problems

The algorithm structure for EDAs is very similar to that of GAs. They both search
by evolving a population of candidate solutions. The main difference is the way in
which they reproduce and maintain the candidate pool. The key points for the appli-
cation of EDAs to the Travelling Salesman Problem (TSP), and other problems, are
the encoding method for representing the candidate solutions, the type of the prob-
ability model, and how to use it to generate new solutions. We discuss the encoding
method used by EDAs for TSP first, followed by the use of the probability model
and by a discussion of some performance-enhancement methods.

3.1 Encoding for the TSPs

The TSPs are a set of classical combinatorial optimisation problems that look for
the shortest route by which a salesman can visit a set of cities. It can be described
as ordering a set of cities in such a way as to minimise the length of the path
along which they lie2. A TSP is easily abstracted as a permutation, which is one
of the most natural ways of encoding TSPs, and has been used in the research
of GAs and Simulated Annealing for TSP. There are other methods of encoding
a TSP and they were mainly introduced in GA research. For example, the Ordinal

2 There are several variants on the TSP, they can be cyclic or non-cyclic depending if you
are required to finish where you started, and they can be symmetric or non-symmetric
depending on whether the distance A → B is the same as the distance B → A. This may
mean that an encoding may contain some slight redundancy.
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Representation [11], the Adjacency Representation [11], the Adjacency Listing Rep-
resentation [20], the Position Listing Representation [16] and the Precedence Matrix
Representation [8]. As pointed out by previous studies in GAs, the candidate solu-
tions need to be encoded naturally into binary strings to produce good results [4].
In recent years, other types of data structure have been used in GAs. These repre-
sentations are normally associated with specially-designed crossover and mutation
operators.

It is generally believed that the GAs’ performance on the TSP type of problems
has not been particularly impressive [17]. This is mainly because of the way in
which solutions are represented and reproduced in GAs (crossover and mutation) is
not straightforward or ‘natural’. The candidate solutions in the GAs contain the en-
coding of the problem explicitly, and the dynamics in the search process implicitly.
Some hidden information, or the ‘Schemata’ in GA terminology, can easily be dis-
rupted during the crossover and/or mutation process. In consequence the search will
contain more random jumps and the search space may not be explored smoothly.

In the EDAs, we use a natural encoding of the solutions to preserve the general-
ity of the algorithm. At the same time, a separate distribution probability model is
used to keep the statistical information gathered during the search or any relevant
information. New solutions are generated by sampling the model. This mechanism
separates the encoding of the candidate solution and the dynamics of the optimisa-
tion process. It is clear that in such EDAs, the problem encoding is not associated
with solution-reproducing operators. This enables users to use the most straight-
forward encoding method without looking for the associated crossover operator, or
having to develop a new one. The EDAs’ generality is also well preserved.

For the EDAs applied to TSPs, we use the permutation representation. A candi-
date solution for a TSP is represented in an integer vector that contains a permuta-
tion of integers from 1 to N, where N is the number of cities. A candidate tour of a
five-city TSP is illustrated below:

Cities : {1,2,3,4,5}
CandidateTour : {3,2,1,5,4} (14)

where the candidate tour represents a possible shortest path, visiting city 3 first, then
city 2, city 1, city 5, city 4 and back to city 3.

Alternatively, this permutation can also be transformed to a binary matrix form,
as shown in figure 3. The rows stand for the visiting order and the columns are the
city IDs. Entry [m,n] set to ‘1’ means the nth city will be visited at the mth stop of
the tour. Since each city should be visited once and only once, each row and col-
umn has one and only one ‘1’ bit. This binary matrix form of a permutation makes
no difference in representing a tour. The reason we introduce the binary matrix is
to make it easier to understand the relationship between the candidate tour and the
probability model in subsequent sections. A candidate tour of the TSP is a combi-
nation of some entries of the whole matrix, as illustrated in figure 3. These entries
can be regarded as the building block of the TSPs. The binary matrix contains all
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Fig. 3 The binary matrix form of a Permutation Representation of a tour for a five-city TSP.
Each row and each column only has one ‘1’ bit.

the possible building blocks to form any candidate solution. The optimisation then
consists of picking some of the matrix entries.

3.2 Probability Model for Generating Candidate Solutions

EDAs can be categorised into two sub-classes. One uses a relatively simple proba-
bility model that has no dependence between any input variable. The other sub-class
uses a probability model that does have input variable dependencies. The former is
obviously simpler while the latter is generally believed to have better modelling
capacity, although, it can be very complicated and computationally expensive.

The probability model in EDAs is utilised to capture and preserve the informa-
tion found during the search, as well as any relevant heuristic information. Given a
complicated real-world application, the input variables - namely, the encoded can-
didate solutions - may or may not interact with each other. The dependent models
are better at capturing these relationships, and ideally can improve the search. The
dependency structure can be decided beforehand, using background knowledge, or
achieved on the fly during the search.

Despite the theoretical advantage of probability models with variable depen-
dency, simple EDAs with a non-dependent model are frequently used in real-world
applications [22]. One reason for this is that the computational cost of the dependent
models can be prohibitively high. Since one of the drivers for using an EDA is to
find near-optimal solutions with reasonable time and effort [16], the application of
the dependent models may not be cost-efficient.

The other reason is that, when used in EDAs, the statistical data available for
finding the dependencies is limited. The current candidate solutions are literally all
the data that is available, which may be insufficient for extensive statistical analysis.
The dependency models may fail to capture the variables’ dependencies accurately,
due to incomplete data. The performance of EDAs with non-dependent models can
be improved by combining with local search or heuristic information. Promising
results have been published, for example in [22], where an EDA with an independent
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probability model combined with derivative-free local search has been tested on a
set of difficult continuous functions.

Given the above reasons, we will apply an EDA with an independent probability
model to the TSPs. It is simple to understand and sufficiently well-analysed to be
extended to the solution of very complicated real-world applications.

3.2.1 A Non-dependent Model for TSPs

The best-known EDAs with the non-dependent distribution model are the UMDA
- Univariate Marginal Distribution Algorithm [14], the PBIL - Population Based
Incremental Learning [3], and the cGA - Compact Genetic Algorithm [12].

For a five-city TSP, the data structure of the probability model used is illustrated
in figure 4. A matrix entry (m,n) represents the probability of visiting city n at
the mth stop. Initially, the model can be a uniform distribution if no background
information is given. Hence each matrix entry is set to 0.2 because there are five
cities to be chosen randomly.

Fig. 4 The data structure of the initial non-dependent probability model P for a hypothetical
five-city TSP. Each entry represents the initial probability of visiting a city (column) at a
certain stop (row).

The probability model updating method we use is similar to that for PBIL. It can
be described as:

Pt+1 = (1−α)Pt +αX (15)

where P is the probability model; t is the number of the iteration or generation; P0

is a uniform distribution model; α is a scalar between [0,1]; and X is the frequency
of occurrence of each city-stop arrangement, extracted from the selected candidate
tours. The independent model implies that the arrangements of cities to stops are
independent of each other. An example is illustrated in figure 5.

Having updated the probability model by estimating the distribution of the
promising solutions, new candidate solutions will be generated by sampling the
model. An example of generating new tours for TSPs is illustrated in figure 6.
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Fig. 5 An example of updating a probability model in EDAs.
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Fig. 6 An example of sampling new candidate tours from a non-dependent probability model
in the EDAs.
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Fig. 7 An example of combining the heuristic information with the probability model in the
EDAs for TSPs: generating a candidate tour with population-based learning and the distance
matrix.
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3.2.2 Combining with Heuristic Information

Using problem-dependent heuristic information can improve the performance of op-
timisation algorithms, especially the black-box type of methods. Examples include
the use of a distance matrix in the Ant Colony Optimisation (ACO, [5]) and a multi-
objective EDA with problem-dependent regularity information [23].

The distance between cities in the TSPs is useful and makes a direct contribution
to the objective function - the tour length. We use this information in the proposed
EDAs to improve its performance. The method is from the ACO [5]. Using the data
structure of the probability model and the tour sampling operator in figures 6 and 5,
it is straightforward to combine the distance information into the probability model
in order to guide the tour regeneration. The probability model is perturbed in the
sampling operator as follows:

Psampling(i, j) =
P(i, j)

D(k, i)β
(16)

where Psampling is the probability used to sample new tours, P is the probability up-
dated by the standard updating operator shown in figure 5, D is the distance matrix,
D(m,n) is the distance from city m to city n, i is the visiting order or the stops, j is
the city IDs, k is the ID of the city visited at the last stop and β is a scalar.

The above method is incorporated in the sampling operator. The idea is that the
choice of the next city to visit depends on how often it is used in known promising
tours (see figure 5), as well as on the distance between the candidate cities and
the last visited city. By using this sampling probability, the length of sub-paths is
combined into the EDA.

Figure 7 illustrates how a new tour is generated for a 3-city TSP. The distance
between city 1 and 2, and between 2 and 3, is one unit, and the distance between
city 1 and city 3 is two units.

4 Adaptation of the Algorithm to the Nuclear Power Problem

In the remainder of this paper we will be describing how to apply the algorithm to
a real reactor. The reactor is the research reactor at Imperial College (CONSORT).
In this section we start by briefly describing the reactor, we then discuss the load-
ing pattern representation and the heuristic information used. This section is then
followed by three test cases.

4.1 The CONSORT Reactor

The CONSORT reactor is a small research reactor at Imperial College. It has just 24
fuel channels in the core for fuel assemblies, however there is no reactor symmetry.
The simple shuffling problem size is approximately 6× 1023, smaller than for a
commercial reactor, but still substantial. The objective function is also different from
commercial reactors as this reactor is not used to generate power.
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The CONSORT Reactor was first constructed in 1965, and was subsequently
expanded in 1971. It has been in continuous safe operation since 1965 at the Im-
perial College Reactor Centre and is the only civil research reactor in the UK. It is
designated as a low-power research reactor to provide neutrons for research and en-
gineering applications. The reactor centre provides facilities for the university and
other educational institutions to be used for teaching and research in many fields of
nuclear science and technology, such as reactor physics, reactor engineering, neu-
tron physics, solid-state physics, radiochemistry and activation analysis. The reactor
centre also provides radioisotopes for use in other laboratories.

The CONSORT core consists of 24 fuel assemblies that contain highly enriched
Uranium fuel plates in an Uranium/Aluminium alloy [9], [10]. There are four control
rods, rods no. 1, 2, 3 and 4, in the core. A photograph of the CONSORT reactor is
shown in figure 8 alongside a 2D core plan.

Fig. 8 A photograph of the CONSORT Reactor and a schematic of the core plan.

There are five types of fuel assemblies, referred to as MARK I A, MARK I B,
MARK I C, MARK II and MARK III. The MARK I A fuel assemblies are the old-
est and contain 12 fuel plates which are slightly curved and were manufactured in
1965. The Mark I B fuel elements contain 6 fuel plates and the MARK I C fuel
elements contain 3 fuel plates. MARK II fuel elements also have 12 plates, with the
fuel plates being thicker than in the MARK I; the plates are not curved and contain
about 4g more Uranium metal, and are therefore more reactive than MARK I A,
MARK I B and MARK I C plates. MARK III elements have 16 plates that are thin-
ner than the MARK I and MARK II plates. The reactivity (K∞) of the five different
types of fuel assemblies is summarised in table 1. The listed fuel inventory infor-
mation is based on their initial designed status. Since the amount of uranium has
decayed in the last four decades, we used a modified fuel inventory in our test cases
by re-calculating their K∞. There are only two MARK II fuel elements available and
they must be inserted in channel numbers 6 and 15.



156 S. Jiang and J. Carter

Table 1 K∞ for the five fuel types for the Imperial College CONSORT Reactor

Fuel Name MARK I A MARK I B MARK I C MARK II MARK III
K∞ 1.66197 1.16471 0.79238 1.77473 1.78583

4.2 Loading Pattern Representation

An LP of a reactor is a set of assignments of N items to M positions, where N is the
number of types of fuel assemblies and the M positions could include in-core fuel
channels and out-of-core store locations.

In a binary matrix, with M rows and N columns, each row of the matrix represents
an in-core fuel channel, while each column represents a fuel assembly ID or fuel
assembly type ID. Entry LP(i, j) is set to 1 if and only if fuel channel i is loaded
with fuel ID j, otherwise LP(i, j) is 0. Since one channel can only be occupied by
one fuel element, there is only one 1 on each row.

Fig. 9 A binary matrix representation of a reactor loading pattern.

4.3 Heuristic Information for the Fuel Management Problem

In real-world applications, using heuristic information in optimisation has been re-
garded as a successful enhancement method [21] and [22]. An example in reactor
fuel-management optimisation can be found in [18]. It does not guarantee that the
global optimum will be reached, but the use of heuristic information aids finding
a near-optimal solution in reasonable time. The key questions are how to extract it
from a given problem and how to use it in optimisation algorithms.

Let us assume that there is some information, H, for each building block indicat-
ing its contribution to an objective function. The greater the contribution made by a
building block, the more likely it is that it will appear in the optimal solution. How
we generate the H for reactor fuel-management optimisation will be described later.



EDAs for Fuel Management 157

The heuristic information H can be easily used to perturb the probability model P.
The modified algorithm is similar to the one described earlier in a previous section.
The only difference is that, when sampling new LPs, a perturbed Ph is used instead
of the original P.

Ph = PHβ (17)

where H contains heuristic information and β is an exponential scalar adjusting
the weight between population-based learning and heuristic information. Each row
of Ph must be normalised to obtain a valid pdf. An example of using H in EDAs
is illustrated in figure 10. Using this idea, any useful heuristic information, ex-
pert knowledge or even random perturbations can be used to direct the optimisa-
tion to concentrate the search on some particular area without sacrificing too much
exploration. There is no requirement that H is calculated using a single heuristic
measure, as we do in the examples shown here. In principle the measures used could
be different on every row of H, what is important is that H does capture useful in-
formation about the relative importance of a particular item appearing in a particular
position. The range that H takes depends on the measures that are used to construct
H, it should be noted that each row in Ph is normalised before a solution is con-
structed, which means the range of H is not critical, but that the relative magnitudes
of components does matter.

5 Test Case 1: A Fresh Core

This case represents the situation at the start of the reactor’s life. We set up a fresh
core, where ‘fresh’ means we assume all the fuel assemblies are brand new. By
doing so, there are only five different fuel types and the problem is therefore less
complicated than a case when all the fuel assemblies have different reactivity. The
objective of this test case is to find the optimal LP for the CONSORT reactor for the
given fuel inventory, so as to maximise the effective multiplication factor - the Ke f f .
By doing this, the life of the reactor can be extended, allowing more experiments
and research to be performed. Given the 24-channel CONSORT core and the fuel
inventory shown in table 2, the search space (number of possible LPs) for this case
is approximately 1013.

5.0.1 LP Representation

A straight forward LP representation can be established using an integer vector. For
example, an integer vector form of an LP is given below:

LP = [1,1,1,1,1,4,5,5,1,1,1,5,5,5,4,1,5,1,5,5,1,1,1,1] (18)
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Each entry in this vector indicates a fuel type, as shown in table 2. The index
of this vector indicates the fuel channel index shown in figure 8. A loading pattern
and its corresponding binary matrix which is used in our methodology is shown in
figure 11.

Fig. 10 Combining heuristic information with the probability model used in EDAs.
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Table 2 The hypothetical fuel inventory of the CONSORT reactor for Test Case 1. Each fuel
type is given an integer code.

Fuel Type MARK I A MARK I B MARK I C MARK II MARK III
Type Code 1 2 3 4 5
No. of Fuel 20 22 22 2 8

Fig. 11 An example initial LP for the CONSORT reactor and its corresponding binary matrix.

5.1 Heuristic Information

Useful heuristic data is the likelihood of a building-block being used in a promising
candidate LP. In this example a building block is a particular fuel type being used in
a particular fuel channel, ie an element in the binary matrix shown in figure 11. We
propose to issue a ‘weight’ for every possible fuel-type-to-fuel-channel assignment,
which will be used in our EDAs when searching for optimal LPs. This information
is called the ‘stand-alone Ke f f with fuel coupling’ (stand-alone Ke f f for short). It
is inspired by the technique used for ANN training in Erdogan and Geckinli’s work
[6], derived from the coupled reactor theory [1], and then applied in our approach
for reactor loading pattern-optimisation problems.
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For this particular test case, the stand-alone Ke f f is organised in a 24×5 matrix,
shown in table 3. Each entry of the matrix indicates the contribution of a particular
fuel element-channel assignment to the objective function - the overall Ke f f . Each
entry (i, j) (i for channel and j for fuel type) is the calculated core Ke f f when loading
fuel j to channel i with all other channels filled with MARK I A calculated with the
reactor modelling code EVENT [7]. This is why MARK I A has an identical value
for different channels. MARK I A is used to form a generic core state because it has
the median reactivity.

Table 3 The calculated stand-alone Ke f f s using EVENT [7] for the five different fuel types
in the CONSORT reactor test case 1. The S.D. is the fuel channel-wise standard deviation.

Channel No. MARK I A MARK I B MARK I C MARK II MARK III
1 1.20460 1.19972 1.19744 1.20690 1.20883
2 1.20460 1.19919 1.19654 1.20717 1.20930
3 1.20460 1.19919 1.19654 1.20717 1.20930
4 1.20460 1.20164 1.20016 1.20611 1.20735
5 1.20460 1.20164 1.20016 1.20611 1.20735
6 1.20460 1.18920 1.18184 1.21091 1.21600
7 1.20460 1.19186 1.18581 1.21004 1.21448
8 1.20460 1.19186 1.18581 1.21004 1.21448
9 1.20460 1.19833 1.19525 1.20754 1.20995
10 1.20460 1.19833 1.19525 1.20754 1.20995
11 1.20460 1.19652 1.19252 1.20831 1.21133
12 1.20460 1.19652 1.19252 1.20831 1.21133
13 1.20460 1.18736 1.17857 1.21153 1.21700
14 1.20460 1.18736 1.17857 1.21153 1.21700
15 1.20460 1.18168 1.16935 1.21312 1.21972
16 1.20460 1.19797 1.19469 1.20778 1.21038
17 1.20460 1.19797 1.19469 1.20778 1.21038
18 1.20460 1.19216 1.18589 1.20989 1.21412
19 1.20460 1.19216 1.18589 1.20989 1.21412
20 1.20460 1.19092 1.18435 1.21043 1.21515
21 1.20460 1.20156 1.20004 1.20615 1.20742
22 1.20460 1.20156 1.20004 1.20615 1.20742
23 1.20460 1.19907 1.19636 1.20728 1.20949
24 1.20460 1.19907 1.19636 1.20728 1.20949

S.D. 0.00000 0.00545 0.00827 0.00200 0.00356

5.2 The Algorithms

In this section we define three variants of the EDA algorithm, and a GA that is used
as a benchmark.
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5.2.1 EDA S, a Simple EDA

The simple EDA is the algorithm described earlier and has the following steps,

1. Initialise a population of LPs randomly.
2. Select some good LPs according to their Ke f f or other objective function(s).
3. Build or update the probability model using the following:

P(t+1) = (1−α)P(t) +αX (19)

where P is the probability model for core channels; t is the number of the itera-
tion; P0 is a uniform distribution model; α is a scalar between [0,1]; and X is the
statistical information extracted from the selected LPs.

4. Sample new LPs from the updated probability model.
5. If stop criteria are not met, go back to (2), otherwise stop.

5.2.2 EDA G, an EDA with an Elitism Strategy

A modified algorithm is developed by combining EDA S with a generic elitism
strategy, called EDA G (G for generic). It is identical to EDA S except that an
elitism strategy is used to improve the exploitation of the algorithm, and therefore
fast convergence and better solution quality are expected.

One of the well-known limitations of GAs is that they often fail to find a local
optimum, even when the current best solutions are very close to it. This can be
caused by inappropriate encoding, crossover method or random perturbations used
in evolutionary operators (i.e. mutation).

An elitism strategy can be used as in [17] to improve the exploitation near the
current best LP. Normally it is to ensure that the current best solution is kept at all
times so that, hopefully, the crossover and mutation operators may generate more
candidate solutions around the current best. The same method can be employed
in EDAs but adapted to the EDA framework. The adapted elitism strategy is to
perturb the probability model directly using the current best solution, as a result of
which, the forthcoming search for promising LPs is explicitly biased in the direction
indicated by the current best. A modified probability model updating method is

P(t+1) = (1−α)P(t) +αX +ηXb (20)

In the additional term ηXb, Xb is the best solution found so far and η is a scalar.
This term guides the search towards the direction of the current best solution. It will
keep the search close to the current location if the best is near the centroid of the
population; if the best is far away from the centroid, it will accelerate the movement
of the population centroid. Because of the introduction of the elitism term P needs
to be normalised.
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5.2.3 EDA H, an EDA Combined with Heuristic Information

EDA H is identical to EDA G except that EDA H samples a new population of LPs
using the updated probability model P together with some heuristic information.
The methods by which heuristic information is used in EDAs are described in an
earlier section. The sampling probability is:

P
′
= PHβ (21)

where H contains heuristic information - the stand-alone Ke f f - and β is an expo-
nential scalar adjusting the weight between population-based learning and heuristic
information. H has an identical data structure to P. For this problem, we use the
stand-alone Ke f f with fuel coupling as H. The entry H(i, j) is the calculated stand-
alone Ke f f of loading fuel j to channel i and other channels filled with MARK I A.
A larger H(i, j) increases the probability of loading fuel j to channel i. An example
is given in figure 10.

Similarly, in EDA H, the probability of assigning a fuel type j to a fuel channel i
depends on how often this assignment appeared in some known good LPs (positive)
and its corresponding stand-alone Ke f f with fuel coupling (positive), which can be
considered a measurement of the ‘contribution’ that a certain fuel element makes to
the objective function, the overall Ke f f , when it is inserted into a specified channel
in a generic reactor environment. The calculated stand-alone Ke f f value for this test
case is given in table 3.

To demonstrate how H affects the optimisation, let us assume that there are 10
candidate LPs, and five of them use a MARK III fuel element at channel 13. The
other five LPs use MARK I A at channel 13. After the application of heuristic in-
formation with β = 4, the probability of using a MARK III at channel 13 is higher
than using a MARK I A:

Ph(13,MARK III) = 0.5×1.21704 ≈ 1.09681 (22)

Ph(13,MARK I A) = 0.5×1.20464 ≈ 1.05279 (23)

where 1.2170 and 1.2046 are the respective stand-alone Ke f f s. From this example
we can see that in a case in which the population-based learning cannot give clear
instructions, the heuristic information will lead the search. Note that Ph for each
channel should be normalised after being multiplied by H.

Also, from the stand-alone Ke f f with fuel coupling table, H(13,5) = 1.217 is
larger than H(22,5) which is 1.20742. This means that loading MARK III into
channel 13 is potentially more effective than loading it into channel 22. Even though
no channel dependence is considered in the EDAs presented in this work, the use
of heuristic information in a ‘weight-like’ form PHβ , can compensate for this by
applying the ‘weight’ containing the position-wise and adjacent fuel information.
For channel 13, the vectors that give information about the relative probabilities for
each of the five fuel types, j, are

P(13, j) = [0.2,0.2,0.2,0.2,0.2] (24)



EDAs for Fuel Management 163

H4(13, j) = [2.10557,1.9876,1.93057,2.15445,2.19362], (25)

After normalisation, Ph and Ph(22, j) are:

Ph(13, j) = [0.2030,0.1906,0.1816,0.2077,0.2115] (26)

Ph(22, j) = [0.2004,0.1984,0.1974,0.2015,0.2023], (27)

It can be seen that the assignment of MARK III to channel 13 is more likely than its
assignment to channel 22.

5.2.4 Benchmark Genetic Algorithms

GAs are efficient and versatile algorithms for tackling complex, large-scale combi-
natorial optimisation problems. There are many examples of the application of GAs
for reactor fuel management optimisation problems, eg Ziver[24]. For this reason,
we are going to use GAs as a benchmark. Our GA-based algorithm is

1. Initialise the LP population randomly.
2. Select some LPs according to their Ke f f .
3. Generate the new population of LPs by applying crossover and mutation to the

selected individuals.
4. If stop condition is not met, go back to step 2, otherwise stop.

One of the key elements to any GAs success is its crossover operator. A study of
GA crossover operators for ordering applications can be found in [17]. We have
implemented the following crossover operators: 2-Point Crossover (2PX) with 1-D
integer vector encoding, and the Heuristic Tie Breaking Crossover HTBX[16] with
2D permutation representation. We chose 2PX as it has been widely applied to var-
ious applications. The HTBX was specifically designed for reactor loading pattern
optimisation and uses problem-dependent information. These GAs are referred to
as GA 2PX, a GA with 2PX, and GA HTBX, a GA with HTBX. Due to the differ-
ence between 2PX and HTBX, different encoding methods were used. For 2PX, the
integer-vector form of LP representation is used, just as in the EDAs; for HTBX,
a permutation representation is used. The fuel element ID is defined by reactivity
ranking.

5.3 Results

The EDAs developed were tested extensively and compared against GAs that em-
ployed different crossover operators. A proportional selection method on ranked
fitness [2] value rather than the raw value of Ke f f is used for all the EDAs and
GAs. It should be noted that this method is statistically equivalent to a two-person
tournament selection scheme.

Because different encoding methods are used, the mutation operators in the EDAs
and GAs are different too. In our EDAs, it is to randomly choose a fuel element and
then assign it to a fuel channel that is also randomly chosen. For GAs, the mutation
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operator is the Swap mutation in [15], which is to randomly swap the fuel elements
at two different channels.

An initial population consisting of fifty LPs is randomly generated and used as
the same starting point for all the algorithms. All experiments are based on 30 in-
dependently created runs. Only one initial population has been generated and it was
used for all the runs of all the algorithms.

The performance of GAs and other evolutionary algorithms can be very sensitive
to the values of their control parameters. We tuned the parameters used in the GAs
and EDAs carefully to ensure the validity of the comparison. The parameters are
summarised in table 4.

Table 4 Parameter settings for the numerical experiments giving the population size, total
number of generations, mutation and crossover rates.

Algorithms Population Max α β η Mutation Crossover
Size Generations Rate Rate

EDA S 50 2000 0.001 N/A N/A 0.05 N/A
EDA G 50 2000 0.001 N/A 0.01 0.05 N/A
EDA H 50 2000 0.001 30 0.01 0.05 N/A
GAs 50 2000 N/A N/A N/A 0.05 0.9

We recorded the best solution found in each generation, and plotted their average
values from 30 independent runs. This is shown in figure 12. Experimental results
after 100,000 LP evaluations are given in table 5. The maximum and minimum
objective function values (error bounds), as predicted by the ANN used rather than
using the EVENT software [7], found among 30 independent runs of EDA H and
GA HTBX are recorded and plotted in figure 12. The results show that EDA H,
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Fig. 12 Results showing the averaged optimisation process of EDAs and GAs on the CON-
SORT reactor case and the error bounds.
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Table 5 The maximum Ke f f found by EDAs and GAs from 30 independent runs and their
corresponding average and standard deviation.

Algorithms Best Average Standard Deviation
EDA S 1.20173 1.19900 0.00108
EDA G 1.20578 1.20572 0.00004
EDA H 1.20578 1.20575 0.00005
GA 2PX 1.20573 1.20520 0.00041
GA HTBX 1.20578 1.20537 0.00033

EDA G and GA HTBX find the same ‘optimal’ solution:

LPOPT = 1,1,1,1,1,4,5,5,1,1,5,1,5,5,4,1,1,5,5,5,1,1,1,1 (28)

Ke f f = 1.20578 (29)

Both EDA G and EDA H outperform the tested GAs in optimising the Ke f f s. It
was also found that the EDAs have smaller variations compared to GAs, which
can be seen by the average, standard deviation and error-bound values from the 30
independent runs.

The better GA of the two GAs is the GA HTBX, with a similar performance close
to EDA G. GA HTBX and GA 2PX converge slightly faster than EDA G initially
but EDA G outperforms them later. This is a well-known problem with GAs, they
are efficient in finding a local neighbourhood containing a good solution, but they
are poor local optimisers. It is not surprising that the GA 2PX performed very well
and only slightly worse than HTBX at the end of the search. Considering the fuel
inventory in this case, the integer vector form of LP representation in GA 2PX is a
more natural and efficient encoding than the permutation form in GA HTBX. There
are in total 74 fuel elements in the fuel store, and only five different fuel types -
which means that, in the permutation form of an LP, many of the entries are simply
identical fuels that have been given a random ID. When a crossover or mutation
operator is being executed, it could be swapping identical fuel elements. That is why
GA 2PX with the integer vector LP encoding converges quickly at the beginning.
This is another good example of a typical GA - good at locating a good area very
quickly, but inefficient in converging to a local optimum.

EDA G and EDA H outperform the crossover operator HTBX in terms of con-
vergence speed and stability. EDA G uses neither physical information about fuel
assemblies nor the reactor core’s 2D structure, but does use a ‘elitism-guided’ term
to make full use of the best known LP so far. The effect of this is to improve the ex-
ploitation near the current best and therefore a better local convergence is achieved.
EDA H makes use of heuristic information, the stand-alone Ke f f with fuel coupling,
which includes the consideration of the channel position of a fuel element and the
adjacent fuel elements, to improve the optimisation. It does not consider the core
structure explicitly, but employs the stand-alone Ke f f with fuel coupling to help
the optimisation. So the stand-alone Ke f f with fuel coupling is not only helpful in
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speeding up the convergence, but also enables the EDAs to use the reactor core
channels’ position and neighbourhood fuel dependence information.

In addition, the permutation representation used in GA HTBX has to include
the whole ‘fuel store’ including in-core and out-core fuel assemblies to ensure that
the entire search space is explored, which greatly increases the problem size and
computational time. The EDA approach does not need the out-of-core fuel store in-
formation, because the probabilities sampling operator allows it to search the entire
search space.

6 Test Case 2: A Realistic Core Model

Test Case 2 is designed to be a more complicated case with a more realistic core
state. The search space is larger and more irregular, due to more reactivity variance
among fuel elements.

We demonstrate how the EDAs are adapted to this class of problems, and the
results are compared to the well-established GA HTBX algorithm. Based on the
results from Test Case 1, only EDA G, EDA H and GA HTBX are tested. GA 2PX
is not used, as it will produce infeasible LPs in their permutation representation, as
a result of which special treatment will be needed to repair them. As pointed out
in Poon’s work [16], GA HTBX is one of the best candidates for this particular
application, and has been regarded as the best of the available algorithms.

The optimisation task is to find the optimal loading pattern that maximises the
overall Ke f f for this modified CONSORT core, given that the fuel inventory consists
of 35 fuel elements, as shown in table 6. Each fuel element is different and will have
a unique ID. The core structure is the same as in Test Case 1.

The hard constraint remains the same, in that the two MARK II type fuel elements
(fuel elements 10 and 11 in this case) must always be inserted into channels 6 and
15, due to safety and operational constraints. Given the core plan, the fuel inventory
and the constraints, the whole search space is approximately 2×1029.

Table 6 The CONSORT reactor fuel store information of the modified Test Case 2

Ranking 1 2 3 4 5 6 7
K∞ 1.68 1.68 1.68 1.68 1.67 1.67 1.67
Ranking 8 9 10 11 12 13 14
K∞ 1.67 1.67 1.61 1.60 1.54 1.54 1.53
Ranking 15 16 17 18 19 20 21
K∞ 1.53 1.53 1.53 1.53 1.53 1.52 1.52
Ranking 22 23 24 25 26 27 28
K∞ 1.52 1.52 1.52 1.52 1.52 1.52 1.52
Ranking 29 30 31 32 33 34 35
K∞ 1.52 1.52 1.52 1.52 1.51 1.13 0.77
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6.1 LP Representation

Since each fuel element needs to be encoded explicitly, we use a permutation to
represent the whole fuel store for this test case. The K∞ ranking numbers are used
as their unique IDs. An LP is then represented as an integer vector containing a full
permutation of integers in [1,35] (35 fuel elements). The first twenty-four integers
indicate the in-core loading pattern, and the rest of them are not used in this loading
pattern. An example is given below.

LP = [1,2,3,4,5,10,6,7,8,9,12,13,14,15,11,16,17,18,

19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] (30)

It should be noted that in this case, the order of out-of-core fuel elements is not
relevant to the in-core LP. However, for the benchmark GA HTBX to be able to
explore the whole search space, the full permutation is required. This is because the
crossover operator needs the LPs to contain all the information of the fuel inventory,
so that it can regenerate valid new LPs.

In the EDAs, the LP representation is similar to the one used in Test Case 1 and
is shown in figure 11. The corresponding matrix form is a 24×35 matrix. There is
only one ‘1’ in each row and each column, because each fuel element can only be
used once in one fuel channel. The same 24× 35 matrix structure is used for the
probability model (but with real values). By using it, all the fuel elements will be
considered when filling a fuel channel and no information will be lost.

6.2 Heuristic Information

To generate the stand-alone Ke f f , we insert a fuel element j in channel i, filling
all other channels with a ‘generic’ fuel m. An LP is then created and examined by
the simulation software EVENT [7] to obtain its Ke f f . This result is recorded as
the stand-alone Ke f f with fuel-coupling information for fuel j in channel i. This
calculation is repeated for all the fuel elements and all channels, and the results can
be presented in a 24× 35 matrix, this is equivalent to that shown in figure 3. Each
entry [i, j] of this matrix represents the ‘spatial contribution’ of assigning fuel j to
channel i in a more realistic context.

This set of data is too large to be shown in this paper, but it is available
elsewhere[13]. The use of the stand-alone Ke f f remains the same as in Test Case
1, as given in the following equation:

P
′
= PHβ (31)

where P
′

is the probability model used to sample new candidate solutions, P is the
probability model updated by the EDA algorithm, H is the stand-alone Ke f f and β
is an exponential scalar. The data structures of the probability model P and H are
identical to each other as well as to the binary matrix form of an LP.
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The stand-alone Ke f f with fuel coupling can be used directly as H. If the variance
of different assignments of fuel elements to channels is too small even when a large
β has been used, our suggestion is to use the ranked stand-alone Ke f f matrix instead
of the original raw data. The total 24×35 = 840 entries in the original stand-alone
Ke f f matrix are ranked from 1 to 840, which represents the relative contribution of
all the possible assignments of fuel elements to fuel channels. Unacceptable assign-
ments (e.g. assigning fuel element 10 to any channel other than channel 5) should
not be included in this ranking as it will disturb the effect of the stand-alone Ke f f .
The ranking stretches the differences between the fuel element-channel assignments
so that a much smaller range of β can be used. In this case, β = 2 is sufficient.

6.3 Results

The parameters used are summarised in table 7. It should be noted that the β value in
EDA H is smaller in this case because we used the ranked stand-alone Ke f f instead
of the raw value. The reason for this is that the variance among fuel elements is
much smaller compared to Test Case 1.

Table 7 The well-tuned parameters settings used in EDAs and GAs for Test Case 2

Algorithms Population Max α β η Mutation Crossover
Size Generations Rate Rate

EDA G 50 2000 0.001 N/A 0.01 0.05 N/A
EDA H 50 2000 0.001 2 0.01 0.05 N/A
GA HTBX 50 2000 N/A N/A N/A 0.05 0.9

Numerical results after 100,000 LP evaluations are given in table 8. For both
EDAs and the GA, the best solution found in each generation was recorded, and
their average values from 30 independent runs are illustrated in figure 13. Figure 13
shows the maximum and minimum objective function values (error bounds) found
among 30 independent runs, using the same initial starting population, of EDA H
and GA HTBX. It is found that EDA G and EDA H algorithms both found better
solutions than GA HTBX, as well as better averaged best solutions over 30 inde-
pendent runs. The standard deviations also suggest that both EDAs converge faster
than GA HTBX. The experimental results show that EDA H and EDA G outper-
formed the benchmark GA HTBX in terms of solution quality, convergence speed
and stability.

The fast convergence of EDA G and EDA H may cause a premature problem, as
they can become stuck at some local optima. GA HTBX, due to more randomised
noise being used, suffers less from the local convergence problem. In order to re-
solve this for EDAs, parameter tuning is necessary.
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Table 8 The maximum Ke f f found by EDAs and GAs from 30 independent runs and their
corresponding average and standard deviation

Algorithms Best Average Standard Deviation
EDA G 1.007480 1.007459 0.000039
EDA H 1.007480 1.007477 0.000016
GA HTBX 1.007400 1.007151 0.000221
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Fig. 13 The averaged performance of EDAs and GAs against number of LP evaluations of
the modified CONSORT case and the error bounds.

7 Test Case 3: A Realistic Core with a Constraint

Test Case 3 is designed to be an even more complicated case based on the core
model used in Test Case 2. A power peaking constraint was added to the previous
objective function. The algorithms to be tested are EDA G, EDA H and GA HTBX.
The main purpose of this section is to demonstrate the application of EDAs to LP
optimisation with a typical constraint, and to observe their performance.

Because the CONSORT reactor is a low-power research reactor, it does not gen-
erate excessive energy in the core. In reality, the Power Peaking Factor (PPF) is not
a realistic safety concern.

We use the PPF as a penalty term in the objective function as a way of dealing
with the constraints. The experiments are performed with a simple weighted sum of
the Ke f f and PPF . The optimisation task is then to maximise an objective function
that consists of the core Ke f f and the PPF constraint as a penalty term, which is:

F = w1Ke f f + w2PPF (32)

where w1 and w2 are scalars adjusting the weights between the objective term and
the constraint term and PPF is the estimated power peaking factor given a loaded
core. In this work, we used neutron flux density to replace the actual power in order
to simplify the PPF calculation. It is calculated using the equation below:
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PPF =
The Maximum Thermal Flux Density of all Fuel Channels
Averaged Thermal Flux Density of all the Fuel Channels

(33)

In this test case, maximising F may not yield the optimal Ke f f given the PPF con-
straint, because the two weights, w1 and w2, have a significant impact on the lo-
cation of the optima. In this case, w1 will be set to 0.8, while w2 will be -0.2. In
practice, these two parameters should be adjusted to suit real-world applications.

The core structure and the hard constraint are both the same, as in Test Case
2. The size of the search space remains the same, and is approximately 2× 1029.
However, in order to distinguish different fuel elements better, the fuel inventory has
been modified to increase the reactivity difference between different fuel elements,
which is summarised in table 9. The problem caused by spreading the reactivity
evenly is that the variation of the PPF will be relatively small.

Table 9 The modified CONSORT reactor fuel inventory for Test Case 3

Ranking 1 2 3 4 5 6 7
K∞ 1.80 1.79 1.78 1.77 1.76 1.75 1.74
Ranking 8 9 10 11 12 13 14
K∞ 1.73 1.72 1.71 1.70 1.69 1.68 1.67
Ranking 15 16 17 18 19 20 21
K∞ 1.66 1.65 1.64 1.63 1.62 1.61 1.60
Ranking 22 23 24 25 26 27 28
K∞ 1.59 1.58 1.57 1.56 1.55 1.54 1.53
Ranking 29 30 31 32 33 34 35
K∞ 1.52 1.51 1.50 1.49 1.48 1.47 1.46

7.1 LP Representation and Heuristic Information

In this test case an LP is represented in the same way as in Test Case 2.
As in the previous test cases, the heuristic information will be an estimate of

the contribution of the building blocks (the assignments of fuel elements to fuel
channels) to the objective function. Since there are two components in the objec-
tive function, the heuristic information for this test case will need to contain the
information of both Ke f f and PPF . We calculate one set of the stand-alone Ke f f ,
which is a 24×35 matrix, as in the previous test cases. In addition, another matrix
with an identical structure to the stand-alone Ke f f is built, which can be called the
stand-alone PPF .

To calculate the stand-alone PPF , an LP with a certain fuel element, j, inserted
into one of the 24 fuel channels, i, and other fuel channels filled with a generic
fuel elements, ‘m’, is set up and fed to an EVENT simulation [7]. The estimated
stand-alone PPF of this LP can be calculated using equation 34, which is differ-
ent to equation 33. This stand-alone PPF is intended to be a measure of the power
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generated by fuel element j in fuel channel i compared to the averaged power of
all the fuel channels. Repeating this process for all the fuel elements and all fuel
channels, a 24×35 matrix can be filled, just like the stand-alone Ke f f is built. Both
the stand-alone Ke f f and PPF are available elsewhere[13].

PPF =
The Thermal Flux Density of the Chosen Fuel Channel i
Averaged Thermal Flux Density of all the Fuel Channels

(34)

The stand-alone Ke f f and PPF are combined in the same way as they are used in
the objective function:

H = w1Ke f f + w2PPF (35)

where H is the heuristic information and w1 and w2 are weight scalars. In this
case, they will be set to exactly the same values as in the objective functions, i.e.
w1 = 0.8 and w2 = −0.2. This H matrix contains the ‘spatial’ contribution of each
fuel element when it is assigned to a specific fuel channel.

7.2 Results

EDA G, EDA H and GA HTBX were each tested 30 times. In each case the al-
gorithms generate an initial population randomly at the beginning of the run. This
ensures a better exploration for all the tested algorithms. We used the same param-
eter settings as in Test Case 2, summarised in table 7. The core model is the same
and only the fuel inventory has changed.

The objective function changed due to the inclusion of the PPF term and the
introduction of the two weights w1 and w2. To ensure a better understanding of this
test case, we first tested the algorithms with only one of the two terms enabled.

The first scenario is to enable the Ke f f term only, which is done by setting w1 to
1 and w2 to 0. This test case then turns into a Ke f f maximisation problem identical
to the previous test cases. The heuristic information is also modified to exclude the
stand-alone PPF . The results are summarised in table 10. The results of maximising
Ke f f show a very similar pattern compared to the previous test cases. EDAs find bet-
ter results than the tested GA. In addition, the standard deviations of 30 independent
EDA runs are much smaller than for GA HTBX. The averaged performances from
30 independent runs are plotted in figure 14.

The second scenario is to enable the PPF term only, which is done by setting w1
to 0 and w2 to -1. This test case then turns into a PPF minimisation problem. The
heuristic information is also modified to exclude the stand-alone Ke f f . The test re-
sults are summarised in table 10. The results of minimising PPF only for Test Case
3 show that both EDAs find smaller PPF values than the tested GA HTBX. The
standard deviation from 30 independent runs also suggests that the tested EDAs are
more robust and less disruptive search methods than the tested GAs. The averaged
performances from 30 independent runs on both scenarios are plotted in figure 14.

It can be seen that the heuristic information used in EDA H, the stand-alone
PPF , did not help EDA H outperform EDA G. The averaged best solution found
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Table 10 Maximisation of Ke f f and minimising PPF only in Test Case 3 by EDAs and GAs.
Results are from 30 independent runs, showing the best, average and standard deviation. The
corresponding PPF when the best Ke f f is found (w1 = 1), and the Ke f f when the best PPF
is found (w2 = -1), are listed in the last column.

Maximising Ke f f only in Test Case 3
Algorithms Best Average Standard Deviation PPF
EDA G 1.047680 1.047672 0.000008 1.187150
EDA H 1.047680 1.047674 0.000007 1.187150
GA HTBX 1.047270 1.046737 0.000378 1.189550

Minimising PPF only in Test Case 3
Algorithms Best Average Standard Deviation Ke f f

EDA G 1.149250 1.149255 0.000007 1.017840
EDA H 1.149250 1.149260 0.000006 1.017840
GA HTBX 1.149660 1.150320 0.000551 1.025590
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Fig. 14 The averaged performance comparison between EDA G, EDA H and EDA HTBX
on Test Case 3, with one objective at a time - Maximising Ke f f (left) and minimising PPF
(right).

in 30 independent runs with random initialisation by EDA H is slightly worse than
for EDA G. It is understood from previous test cases that EDA H concentrates on
an area indicated by the heuristic information, while EDA G performs a better ex-
ploration. This local convergence feature in EDA H, however, may not be desirable
in some cases, such as minimisation of PPF , because two radically different LPs
could have very similar PPF values.

From the two preliminary tests, both EDAs perform well in maximising Ke f f , and
EDA H shows less variation between different independent runs. On minimising
PPF , both EDAs managed to find the best solution. The heuristic information used
in EDA H did not improve the averaged performance.
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By combining Ke f f maximisation and PPF minimisation together using weights
w1 = 0.8 and w2 =−0.2, a more complicated test problem is created. The EDAs are
doing well in maximising Ke f f , but in minimising PPF , the concern is that EDA H’s
strong local search feature may restrict its exploration, and the best solutions found
may consequently lack diversity.

The experimental results summarised in table 11 show a similar pattern com-
pared to the results from Test Case 2. Both EDAs outperformed GA HTBX in
100,000 function evaluations in terms of solution quality and convergence speed.
This comparison shows that the tested EDAs are as good as, if not better than, the
tested GA HTBX in global search, given a reasonably large number of function
evaluations. Figure 15 shows the averaged performance of 30 independent runs of
EDAs and GA HTBX and figure 15 compares the error bounds between EDA H
and GA HTBX. It is clear that EDA H converged much faster than the tested GA,
and found better solutions.

Table 11 The best objective function value found by EDAs and GAs from 30 independent
runs and their corresponding average and standard deviation, the Ke f f and PPF are also
shown.

Algorithms Best Average Standard Ke f f PPF
Deviation

EDA G 0.605366 0.605291 0.000080 1.046260 1.158210
EDA H 0.605366 0.605293 0.000079 1.046260 1.158210
GA HTBX 0.605058 0.604047 0.000578 1.046460 1.160550

Table 12 The maximum and minimum Ke f f and PPF values found by EDAs and GAs from
30 independent runs on Test Case 3 with the combined objective function F - w1 = 0.8 and
w2 = −0.2.

The range of searched Ke f f :
Algorithms Maximum Minimum
EDA G 1.046600 1.007610
EDA H 1.046650 1.007780
GA HTBX 1.046460 1.005450

The range of searched PPF:
Algorithms Maximum Minimum
EDA G 1.196800 1.152800
EDA H 1.194560 1.152980
GA HTBX 1.201160 1.152330

In this case, EDA G and EDA H produce very similar results. The heuristic in-
formation, H, utilised in EDA H did not have a great impact on its performance, in
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terms of solution quality and convergence speed. There is a trade-off between the
objective function and the constraint. A better local convergence, as in EDA H, may
not contribute significantly to exploring the trade-off.

From the Ke f f and PPF values shown in table 12, it can be seen that GA HTBX
is exploring a considerably wider range of objective/constraint function space, while
both EDAs focus on rather limited ranges, particularly EDA H, which is restricted
by the heuristic information. If this heuristic information does not improve the opti-
misation significantly, it might be switched off or possibly replaced by an alternative
set of heuristic information.
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Fig. 15 The comparison between EDA H and GA HTBX on the modified CONSORT case
on the modified CONSORT case with power peaking constraint and the error bounds.

8 Conclusions

We have illustrated how the Estimation of Distribution Algorithm can be applied
to an allocation problem. The basic principles were demonstrated on the Travelling
Salesman Problem, we also discussed how heuristic information can be incorporated
into the algorithm. We then applied the algorithm to the nuclear fuel loading pattern
problem. On three examples we compared the performance of two variants of the
EDA and a GA. The GA has been regarded as the best algorithm available for the
nuclear loading pattern problem. Both EDAs perform better than the GA. On the
more realistic tests the EDA finds better solutions and finds them faster than the
GA. There is little to choose between the EDAs in terms of the final value found.
However the use of the heuristic information does give faster convergence. The
one measure for which the GA out performs the EDAs is the range of objective
function values tested. We interpret this as being a wider search in parameter space.
In problems with a complex search space this may be an advantage.
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1   Introduction 

Many control systems are tuned based on idealized linear or linearized models of 
the controlled processes. However, industrial processes are subjected to paramet-
ric variations of the controlled processes, which result in models that are either 
nonlinear or only locally linearized around several nominal operating points or tra-
jectories. Therefore, it is necessary to do a sensitivity analysis with respect to the 
parametric variations of the controlled process. 

As shown in [1], the uncontrollable process parametric variations lead to undesir-
able behavior of the control systems. As reported in the literature, the parametric 
sensitivity of the control systems can be studied in the frequency domain [2–7] or in 
the time domain [1,8]. 

A variety of optimal control applications employing sensitivity models in the ob-
jective functions were reported in the literature [9–12]. Objective functions as ex-
tended quadratic performance indices were used in the design of Takagi-Sugeno 
proportional-integral-fuzzy controllers [8,13]. An application of Bellman-Zadeh’s 
approach to decision making in fuzzy environments for multi-criteria optimization 
problems is presented in [14]. The elimination of the steady-state control error by an 
augmented state feedback tracking guaranteed cost control is reported in [15]. In a 
recent review paper [16] Campos and Calado present optimal control approaches to 
human arm movement control. A method to estimate the minimum variance bounds 
and the achievable variance bounds for the assessment of the Iterative Learning 
Control-based batch control systems is presented in [17]. 

The optimal control methods with reduced parametric sensitivity presented in this 
chapter use time domain sensitivity models in the objective functions. Building upon 
Precup’s and Preitl’s previous work on controller optimization criteria, [8], we pro-
pose new objective functions that employ the integrals of weighted squared output 
sensitivity functions added to the Integral of Squared Error (ISE), the Integral of Ab-
solute Error (IAE), the Integral of Time multiplied by Squared Error (ITSE), and the 
Integral of Time multiplied by Absolute Error (ITAE) to reduce the effects of the  
parametric disturbances. 

The dynamic regimes with regard to step-type modifications of the reference 
input and disturbance inputs are considered resulting in additional sensitivity 
models and objective functions. While the fundamental deviation of a control sys-
tem relative to its nominal trajectory is described by the control error, the addi-
tional deviation can be described by the output sensitivity function in the sensitiv-
ity model. 

Solving the optimization problems for the usually non-convex objective func-
tions used in many control systems is not a trivial task as it can lead to several lo-
cal minima. Different solutions such as derivative-free optimization algorithms 
[18–21], Particle Swarm Optimization (PSO) [22,23] and Simulated Annealing 
(SA) [24–27] were proposed in the literature to solve these problems. 

PSO algorithms have a number of advantages, which make them attractive for 
the control systems design: 

- compact implementation programs, 
- computational efficiency, 



Optimal Control Systems with Reduced Parametric Sensitivity  179
 

- search algorithm using objective function values instead of the gradient in-
formation, 

- they are not bound by conventional deterministic methods constraints such 
as the linearity, differentiability, convexity, separability or non-existence 
of constraints, 

- very little, if any, solution dependence on the initial states of particles. 

In our recent paper [28] we discussed two new PSO algorithms for the optimal de-
sign of proportional-integral (PI) controllers for a class of second-order processes 
with integral component and variable parameters. Other examples of PSO-based 
designs of robust, adaptive and predictive controllers are presented in [29–32]. 
Optimal fuzzy controllers and combinations of PSO and fuzzy controllers are pre-
sented in [33–35]. Other PSO applications to the design of optimal controllers for 
power systems, transportation systems, electrical drives and artificial intelligence 
are presented in [36–40]. 

SA algorithms have the distinct capability of finding the global minimum of 
certain objective functions under specific conditions. Several applications of SA 
for the adaptive and predictive optimal control are discussed in [41–43]. Intelli-
gent SA-based control systems are presented in [44] and [45], and applications to 
the control of electrical drives and chemical processes are reported in [46–48]. 

This chapter will discuss new PSO and SA-based algorithms for the design of 
optimal control systems with reduced parametric sensitivity. The design of an op-
timal PI controller for a class of second-order processes with integral component 
[49] will then be presented as a representative case study. 

The chapter is structured as follows. Section 2 provides a mathematical  
framework for the design of optimal control systems with reduced parametric sen-
sitivity. Models of the controlled process and controller, sensitivity models and 
objective functions are among the most important topics that are discussed. Sec-
tion 3 focuses on PSO and SA algorithms for the optimization of the controllers 
with objective functions that have a single variable, β . Useful recommendations 

are provided for practitioners on how to set the values of the parameters for PSO 
and SA algorithms. Section 4 is dedicated to the representative case study of opti-
mal designs of PI controllers for a class of second-order processes with integral 
component. Conclusions and further discussions are presented in Section 5. 

2   Framework for Optimal Control Systems Design 

The controlled process is represented by the following Single Input-Single Output 
(SISO) state-space model 
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where: 00 ≥t  is the initial time moment, nT
nPPPP Rxxx ∈= ]...[ ,2,1,x  is 

the state vector of the controlled process, n
P R∈0,x  is the initial state vector of the 

controlled process, u is the control signal, d is the disturbance input, y is the con-
trolled output, mT

m R∈= ]...[ 21 αααα  is the parameter vector containing 

the parameters of the controlled process, mjj ,1, =α , nmn
P RR →××× 11:f , 

RRg mn
P →×× 1:  are functions that are differentiable with respect to α  on mR , T 

indicates the matrix transposition, and the real argument of the functions, 0  , ttt ≥ , 

is omitted to simplify the presentation. 
The state-space model (1) includes the dynamics of the measuring element(s) as 

well as of the actuator(s). 
Fig. 1 shows the structure of a conventional control system, where: C is  

the controller, P is the controlled process, r is the reference input, and e is the  
control error, 

yre −= .                                                       (2) 

 

Fig. 1 Control system structure. 

The controller is represented by the SISO state-space model 
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                                                   (3) 

where: pT
pCCCC Rxxx ∈= ]...[ ,2,1,x  is the state vector of the controller, 

p
C R∈0,x  is the initial state vector of the controller, β  is the design parameter 

and nqp
C RR →×× 1:f , RRg qp

C →×× 1:  are continuous functions. 

The majority of linear controllers [50] and many nonlinear controllers including 
the fuzzy controllers under certain conditions [51] can be expressed in terms of the 
model (3). However, the convergence of the integrals in the objective functions 
requires that all controllers should have an integral component in order to ensure 
the zero steady state of the control error for several disturbance inputs. 

To express the state-space model of the control system, the elements of the two 
state vectors in the models (1) and (3) are grouped in the state vector x  of the  
control system 
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Next, the state-space models of the controlled process and controller in the models 
(1) and (3) are merged using equation (2) and the structure presented in Fig. 1. 
Therefore, the state-space model of the control system becomes 
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Considering the parameter of the controlled process mjj ,1, =α , the state sensi-

tivity functions pnij

i += ,1,αλ , and the output sensitivity function jασ  are de-

fined according to 

 

mjpni
yx

j

j

j

j

jj

i
i ,1  ,,1  ,  ,

0,0,

=+=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
α

α

α

α

α
σ

α
λ ,              (6) 

where the subscript 0 indicates the nominal value of the appropriate parameter. 
Using equations (6) to calculate the partial derivatives in the model (5) we ob-

tain sensitivity models of the control system with respect to mjj ,1, =α , for the 

constant reference input r0 and disturbance input d0: 
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The initial state variables are important in the analysis of the sensitivity models 
(7). 
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In order to obtain good dynamics of the control systems and reduced sensitivity 
we define the following objective functions with the design parameter β  as an in-

dependent variable: 

- the extended ISE: 

 

mjdttteI jjj

ISE ,1  ,})]([)()({)( 2

0

22 =+= ∫
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ααα σγβ ,                    (8) 

- the extended IAE: 
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- the extended ITSE: 
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- the extended ITAE: 
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where ,,1  , mjj =αγ  are the weighting parameters. The dynamic regimes with re-

gard to step-type modifications of the reference input and disturbance inputs are 
considered; therefore, the number of objective functions in (8)–(11) is doubled. 

Making use of the objective functions (8)–(11) the optimization problems 
which ensure the optimal design of the controllers are defined as follows: 
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where *β  is the optimal value of the variable β , and Do is the feasible domain of 

the variable β . 

When setting the domain Do, we should first take in consideration the stability 
of the control system. Other inequality-type constraints can be imposed for the op-
timization problems defined in equation (12). For example, they can concern the 
actuator saturation [52], the robust stability of the control system or the controller 
robustness [53]. 
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3   Particle Swarm Optimization and Simulated Annealing 
Algorithms 

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was originally designed and introduced by 
Eberhart and Kennedy [22,23]. PSO is a search algorithm inspired by the social be-
havior of birds, bees or schools of fishes. PSO uses the swarm intelligence concept, 
modeled by particles (agents) with specific positions and velocities, which interact 
locally with their environment to create coherent global functional patterns. 

Social concepts like evolution, comparison and imitations of other individuals 
are typically associated with intelligent agents that interact in order to adapt to the 
environment and develop optimal patterns of behavior. Mutual learning allows in-
dividuals to behave in a similar way and to acquire adaptive patterns of behavior. 
The swarm intelligence is based on the following principles [54]: 

- proximity, i.e. the population should be able to carry out simple time and 
space calculations, 

- quality, i.e. the population should be able to respond to quality factors in 
the environment, 

- diverse response, i.e. the population should not commit its activity to ex-
cessively long narrow channels, 

- stability, i.e. the population should not change its behavior every time the 
environment changes, 

- adaptability, i.e. the population should be able to change its behavior when 
it is worth the computational price. 

PSO algorithm is an evolutionary algorithm, which similarly with the genetic al-
gorithms starts with a random generation of candidate solutions and then searches 
for the optimal solution. In the case of PSO algorithm, the individual particles are 
updated in parallel, a new solutions depends on the previous one and on the solu-
tions corresponding to its neighboring particles. The same rules apply to all up-
dates. The particles are moving in a D-dimensional search space search space Dℜ  
with randomly chosen velocities and positions, knowing their best values so far 
and the positions in the search space Dℜ . The position and velocity of each parti-
cle in the search space are updated at each step of the iteration. The velocity of 
each particle is adjusted according to its own previous moving history as well as to 
that of the other particles [28]. 

A swarm particle can be represented by two D-dimensional vectors, 
DT

iDiii xxxX ℜ∈= ]...[ 21
 standing for the particle position and the parti-

cle velocity T
iDiii vvvV ]...[ 21= . Let T

iDiiBesti pppP ]...[ 21, =  be the 

best position of a specific particle and T
gDggBestg pppP ]...[ 21, =  be the 

best position of the swarm. 
The particle velocity and position updating rules can be expressed in terms of 

the state-space form [55] as follows: 
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where: r1, r2 are random variables with a uniform distribution between 0 and 1, 

nii ,1  , = , is the index of the current particle in the swarm, n is the number of par-

ticles in the swarm, max,1  , jkk = , is the index of the current iteration, maxj  is the 

maximum number of iterations. The parameter w in equation (13) stands for the 
inertia weight, which shows the effect of the previous velocity vector on the new 
one. maxV  is the upper limit placed on the velocity in all the dimensions preventing 

the particle from moving too rapidly in the search space. The constants c1 and c2 
represent the weighting factors of the stochastic accelerations pulling the particles 
towards their final positions. Adopting too low values of these weights will allow 
particles to roam far from the target regions before being tugged back. On the 
other hand, too high values will result in abrupt movements towards, or overshoot-
ing, the target regions. 

The individual particles within the swarm communicate and learn from each 
other, and based on this they move to improve their previous position relative to 
their neighbors. Different neighborhood topologies can emerge on the basis of the 
communication strategy of the particles within the swarm. A star-type topology is 
created in the majority of cases. In that topology, each particle can communicate 
with every other individual forming a fully connected social network, so that each 
particle could access the overall best position. 

PSO algorithm consists of the following steps [22,23,54,55]: 

1. Initialize the swarm placing particles at random positions inside the d-
dimensional search space, 

2. Evaluate the fitness of each particle using its current position, 
3. Compare the performance of each individual to its best performance so 

far, 
4. Compare the performance of each particle to the best global performance, 
5. Change the velocity of each particle according to equation (13), 
6. Move each particle to its new position according to equation (14), 
7. Go to step 2, until the maximum number of iterations is reached. 

The flowchart of PSO algorithm is presented in Fig. 2 (a). 

Simulated Annealing 

Simulated Annealing (SA) is a random-search technique based on an analogy with 
the well-known annealing process used in metallurgy, consisting in a heat treat-
ment that alters the microstructure of metal causing changes in properties such as 
strength and hardness and ductility. The final properties of the metal are very 
much dependent on the heating and cooling process. If the temperature cools too 
quickly, the final product will be brittle. If the temperature cools down slowly, the 
resulting product will have the right hardness and ductility. 
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Fig. 2 Flowchart of PSO algorithm (a) and of SA algorithm (b). 

 
SA algorithms were originally developed [24] to deal with highly nonlinear 

problems. It approaches the minimization problem similarly to the way a ball is 
rolling from valley to valley down a hill slope until it finally reaches the lowest 
possible (minimum altitude) location. If the ball does not have enough energy, it 
cannot roll high enough and it becomes trapped in a valley somewhere higher on 
the hill slope, above the lowest possible position [27]. The decision making on a 
particle staying in, or rolling off, a valley is based on a probabilistic energy frame-
work. 

SA algorithms start with a high temperature and an initial solution. Considering 
the initial vector solution φ  with the corresponding fitness value )(φC  of the fit-

ness function C, the next probable vector solution ψ  is chosen from the vicinity 

of φ , and it will have the fitness value )(ψC . 
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SA algorithms contain a probabilistic-based framework for solution acceptance. 
Defining 

 
)()( ψφφψ CCC −=Δ ,                                            (15) 

the probability of φ  being the next solution, referred to as ψp , is 
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p                              (16) 

where θ  is the current temperature value of the algorithm. 
If 

nrp >ψ , where 
nr  is a randomly selected number, 10 ≤≤ nr , then ψ  will be 

the new solution. Otherwise a new solution must be generated. As it can be ob-
served in this framework, there is a valid probability of replacing the current solu-
tion with a higher cost solution. 

The above process repeats for a predetermined number of steps, and the tem-
perature is next reduced. The algorithms end when the temperature value is so low 
that it does not allow any modification of the fitness function, and the last value is 
the solution. 

SA algorithms implemented here to solve the optimization problems defined in 
equation (12) can be formulated in terms of the following steps: 

• Step 1. Set 0=m  and the minimum temperature 
minθ . Choose the initial tem-

perature 
mθ . 

• Step 2. Generate the initial solution φ  and calculate its corresponding fitness 

value )(φC . 

• Step 3. Generate a probable solution ψ  by perturbing φ  and evaluate the fit-

ness value )(ψC . 

• Step 4. Calculate φψCΔ  making use of equation (15). If 0≤Δ φψC  then ψ  is 

the new solution. Else select randomly 
nr , 10 ≤≤ nr , and calculate ψp  by 

means of the function defined in equation (16). If 
nrp >ψ  then ψ  is the new 

solution. 
• Step 5. Reduce the temperature according to the temperature decrement rule 

 
)(1 mcsm f θθ =+ ,                                                  (17) 

where 
csf  is the cooling schedule. 

• Step 6. If 
minθθ >m

 then go to step 3, else stop. 

The subscript m in SA algorithms stands for the iteration index. 
The flowchart of an SA algorithm is illustrated in Fig. 2 (b). 
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The most common temperature decrement rule is the well-accepted exponential 
cooling schedule 

 

mcsm θαθ =+1
,                                                  (18) 

where const=csα , 1<csα , 1≈csα . 

The fitness functions C implemented in our SA algorithms to solve the optimi-
zation problems defined in equation (12) are the objective functions defined in 
equations (8)–(11). With this regard the vector arguments φ  or ψ  of these fitness 

functions are replaced by the scalar parameter β . 

SA algorithms are very versatile as they do not depend on any restrictive prop-
erties of a model [24–27]. In addition they can be used in combination with other 
gradient-based algorithms due to their flexibility and ability to approach the global 
optimum. 

4   Case Study 

As shown in [50] the PI controllers can be tuned by the Extended Symmetrical 
Optimum (ESO) method to guarantee a good compromise to the desired / imposed 
control performance indices making use of a single design parameter referred to as 
β . This design parameter ensures the generalization of Kessler’s Symmetrical 

Optimum (SO) method [56,57] to obtain performance enhancements. 
This case study will show how PSO and SA algorithms combined with the ESO 

method can be used for an efficient tuning of a PI controller for a class of second-
order processes with integral component [49]. The ESO method allows simplify-
ing the implementation of PSO and SA algorithms. 

The class of second-order processes with integral component considered here 
as case study is a particular controlled process (P) in the framework of the control 
system structure presented in Fig. 1. The accepted class of controlled processes 
can be modeled by the state-space model as that presented in equation (1) or by 
the transfer function P(s) 

 
)] 1(/[)(/)()( ΣP TssksUsYsP +== ,                               (19) 

where )(sY  is the Laplace transform of y, )(sU  is the Laplace transform of u, 

zero initial conditions are assumed, s is the complex argument specific to the 
Laplace transform, 

Pk  is the controlled process gain, and ΣT  is the small time 

constant or the sum of small time constants of the process. The sum of small time 
constants is used when the transfer function defined in equation (19) is a simpli-
fied model of higher order processes. 
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This process is used as a representative benchmark for many servo systems ap-
plications where equation (19) can be viewed as a convenient simplified linearized 
mathematical model. Thus the two parameters are variable and the sensitivity 
analysis and design of controllers with reduced sensitivity is of interest, and the 
parameter vector of the controlled process is ( 2=m ) 

 
2

21 ][ RTk T
ΣP ∈=== ααα .                                  (20) 

The controlled process consists of the two blocks with the transfer functions pre-
sented in Fig. 3. The integral component of the process, with the transfer function 

s/1 , is illustrated in equation (19) and in Fig. 3 because of the integration prop-
erty of the Laplace transform. 

 

Fig. 3 Process structure. 

The state-space model of this controlled process is the following particular ex-
pression of the state-space model (1): 
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where x1 and x2 are the state variables shown in Fig. 3. 
The performance specifications imposed to the control systems concern first the 

reference input r tracking and the regulation in the presence of disturbance inputs 
(d). These performance specifications are expressed in terms of maximum values 
of the control system performance indices; the control systems design should en-
sure the fulfillment of the constraints resulted from these maximum values, i.e. to 
ensure smaller performance indices with respect to the maximum imposed ones. It 
is difficult to meet generally all performance specifications. 

Fig. 4 exemplifies the definitions of three performance indices with respect to 
the step modification of r: 

1σ  – the overshoot, 
rt  – the 10 % to 90 % rise time, 

and 
st  – the 2 % settling time. The following notations are used in Fig. 4: 

0y  – the 

initial value of y, 
fy  – the final value of y, ||1.0 010 yyy f −= , 

||9.0 090 yyy f −= , ||98.0 098 yyy f −= , and ||02.1 0102 yyy f −= . 
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Fig. 4 Control system performance indices defined with respect to the step modification of r. 

Good control system performance indices can be obtained if the process is con-
trolled by means of the control system structure presented in Fig. 1, where C is a 
PI controller. The transfer function of the PI controller is C(s) 

 

ciCiCic kTkTsksTsksEsUsC =+=+==   )], /(11[/) 1()(/)()( ,         (22) 

where )(sU  is the Laplace transform of u, )(sE  is the Laplace transform of e, 

zero initial conditions are assumed, and the tuning parameters of the PI controller 
are kC (kc) – the gain, and Ti – the integral time constant. 

The choice of the single design parameter β  specific to the ESO method within 

the domain 

 
}201|{ <<= ββDo , (23) 

guarantees a compromise between the control system performance indices as 
shown in Fig. 5. 

 

Fig. 5 Control system performance indices with respect to r versus β . 
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The ESO-based PI tuning conditions give the tuning parameters of the PI  
controller: 

 

) /(1  ,   ),  /(1 2
ΣPCΣiΣPc TkkTTTkk ββββ === ,                (24) 

where the parameter β  is chosen such that so set the performance indices (Fig. 5) 

in order to fulfill the performance specifications, and 4=β  corresponds to 

Kessler’s SO method. 
The control system performance indices can be improved viz. alleviated by fil-

tering the reference input in terms of introducing the reference filter F in the con-
trol system structure. This results in the two-degree-of-freedom control system 
structure presented in Fig. 6, where r~  is the filtered reference input. A simple 
ESO-based reference filter is characterized by the transfer function F(s) 

 

) 1/(1)(/)(
~

)( iTssRsRsF +== ,                                     (25) 

where )(
~

sR  is the Laplace transform of r~ , )(sR  is the Laplace transform of r, 

and zero initial conditions are assumed. 

 

Fig. 6 Two-degree-of-freedom control system structure with reference filter. 

The values of the design parameter β  will be obtained as follows as solutions 

to the optimization problems (12).l 
Accepting that x3 is the output of the integral component in the parallel struc-

ture of the PI controller (Fig. 7), the state-space model of this controller is 
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Fig. 7 Parallel structure of the PI controller. 
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In order to derive the sensitivity models with respect to the parametric varia-
tions of the controlled process, we have to tune the linear PI controller in terms of 
equations (24) for the nominal values of the process parameters 

0Pk  and 
0ΣT . The 

state-space model of the PI controller becomes then 
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Merging the models (25) and (27), the state-space model of the control system is 
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Using formulas (7) in equation (28) we obtain the sensitivity model with respect to 

Pk  
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and the sensitivity model with respect to ΣT  
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Eight optimization problems (12) for the given application, corresponding to the 
dynamic regimes characterized by the unit step modification of the reference  
input, are solved as follows by means of PSO and SA algorithms. The other eight-
optimization problems out of the 16 possible optimization problems, correspond-
ing to the dynamic regimes characterized by modifications of the disturbance in-
put, are not analyzed here because of the following reasons: 

- the controller designs are generally done with respect to the reference in-
put, 

- the sensitivity models (29) and (30) do not depend on the disturbance input 
and the disturbance input affects only the nominal behavior of the control 
system, 

- the controllers have integral character that ensure the disturbance rejection. 

However, the behavior of the optimized control systems with respect to unit step 
modifications of the disturbance input is analyzed in order to outline the distur-
bance rejection. The effects of the weighting parameters on the solutions are ana-
lyzed in all optimization problems. 

The analysis of PSO algorithm involves the effects of the number of particles in 
the swarm, the weightings of the stochastic acceleration terms that pull each parti-
cle towards their end positions and the maximum number of iterations of the algo-
rithm. Besides, the effects of linear cooling schedule, number of steps for each 
perturbation of the solution and the acceptance / rejection rates are analyzed for 
SA algorithm. 

The PSO algorithm described in the previous section was implemented in Mat-
lab in order to validate the proposed PI controller design method for the control of 
the process with the transfer function (19) and the parameters 1=Pk  and s 1=ΣT . 

For the sake of simplicity the fitness functions corresponding to each objective 
function (12) are represented by the generic names PkI  and ΣTI . They were used 
to evaluate the population and calculate the local best 

BestiP ,
 and global best 

BestgP ,
. The fitness functions were calculated by repeated simulations of the con-

trol systems’ behavior with respect to the unit step modification of the reference 
input accepting the presence of the reference filter described by formula (25). 

The optimization problems derived from equations (12) are reduced to finding 
the optimal value *β  of the design parameter β , thus reducing the solution search 

space to 1=D . The values of the weighting parameters used in the minimization 
of PkI  were chosen to belong to the set }10,1,1.0,0{)( 2 ∈Pkγ . The values of the 

parameters in the corresponding PSO algorithm were set to 2.1 ,10 21 === ccn . 

The analysis of the effect of the maximum number of iterations on the optimal 
values of the controller tuning parameters and minimum values of the objective 
functions is illustrated in Tables 1 to 4. 
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Table 1 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of Pk

ISEI  

2)( Pkγ  maxj  *β  *
Ck  *

iT  Pk
ISEI  

0 30 31.7219 0.1776 31.7219 0.2466 
0 50 48.7477 0.1432 48.7477 0.2438 
0 100 53.0471 0.1373 53.0471 0.2432 
0 200 106.7760 0.0968 106.7760 0.2241 
0 500 92.8131 0.1038 92.8131 0.2303 

0.1 30 5.1401 0.4411 5.1401 0.5507 
0.1 50 5.1388 0.4411 5.1388 0.5507 
0.1 100 5.1388 0.4411 5.1388 0.5507 
1 30 2.6509 0.6142 2.6509 2.0253 
1 50 2.6511 0.6142 2.6511 2.0253 
1 100 2.6512 0.6142 2.6512 2.0253 

10 30 2.1286 0.6854 2.1286 15.0580 
10 50 2.1322 0.6848 2.1322 15.0579 
10 100 2.1322 0.6848 2.1322 15.0579 

Table 2 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of Pk

IAEI  

2)( Pkγ  maxj  *β  *
Ck  *

iT  Pk
IAEI  

0 30 3.8982 0.5065 3.8982 2.1032 
0 50 3.8981 0.5065 3.8981 2.1032 
0 100 3.8981 0.5065 3.8981 2.1032 
0 200 3.9027 0.5062 3.9027 2.1031 
0 500 3.9027 0.5062 3.9027 2.1031 

0.1 30 3.8231 0.5114 3.8231 2.2828 
0.1 50 3.8252 0.5113 3.8252 2.2828 
0.1 100 3.8252 0.5113 3.8252 2.2828 
1 30 3.2637 0.5535 3.2637 3.8144 
1 50 3.2309 0.5563 3.2309 3.8139 
1 100 3.2272 0.5567 3.2272 3.8138 

10 30 2.2880 0.6611 2.2880 17.2018 
10 50 2.2861 0.6614 2.2861 17.2018 
10 100 2.2861 0.6614 2.2861 17.2018 
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Table 3 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of Pk

ITSEI  

2)( Pkγ  maxj  *β  *
Ck  *

iT  Pk
ITSEI  

0 30 4.5597 0.4683 4.5597 1.8650 
0 50 4.5596 0.4683 4.5596 1.8650 
0 100 4.5595 0.4683 4.5595 1.8650 
0 200 4.5595 0.4683 4.5595 1.8650 

0.1 30 4.3409 0.4800 4.3409 2.0606 
0.1 50 4.3409 0.4800 4.3409 2.0606 
1 30 3.4282 0.5401 3.4282 3.6606 
1 50 3.4281 0.5401 3.4281 3.6606 
1 100 3.4281 0.5401 3.4281 3.6606 

10 30 2.4135 0.6437 2.4135 17.3087 
10 50 2.4135 0.6437 2.4135 17.3087 

Table 4 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of Pk

ITAEI  

2)( Pkγ  maxj  *β  *
Ck  *

iT  Pk
ITAEI  

0 30 3.5658 0.5296 3.5658 13.0250 
0 50 3.5658 0.5296 3.5658 13.0250 

0.1 30 3.5630 0.5298 3.5630 13.1970 
0.1 50 3.5658 0.5296 3.5658 13.1968 
0.1 100 3.5658 0.5296 3.5658 13.1968 
1 30 3.5732 0.5290 3.5732 14.7451 
1 50 3.5158 0.5333 3.5158 14.7382 
1 100 3.5158 0.5333 3.5158 14.7382 

10 30 3.1316 0.5651 3.1316 29.6065 
10 50 3.3519 0.5462 3.3519 29.7806 
10 100 3.1148 0.5666 3.1148 29.6057 

 
A similar analysis was done for the family objective functions ΣTI  accepting 

the weighting parameter }10,1,1.0,0{)( 2 ∈ΣTγ  and the same parameters in PSO al-

gorithm. The results are illustrated in Tables 5 to 8. 
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Table 5 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of ΣT

ISEI  

2)( ΣTγ  maxj  *β  *
Ck  *

iT  ΣT
ISEI  

0 30 32.0494 0.1766 32.0494 0.2465 
0 50 57.1700 0.1323 57.1700 0.2426 
0 100 45.2117 0.1487 45.2117 0.2443 
0 200 72.4913 0.1175 72.4913 0.2386 
0 500 144.4070 0.0832 144.4070 0.2118 

0.1 30 3.6023 0.5269 3.6023 0.6885 
0.1 50 3.6036 0.5268 3.6036 0.6885 
0.1 100 3.6036 0.5268 3.6036 0.6885 
1 30 2.9529 0.5819 2.9529 2.9854 
1 50 2.9531 0.5819 2.9531 2.9854 
1 100 2.9530 0.5819 2.9530 2.9854 

10 30 2.8696 0.5903 2.8696 25.5593 
10 50 2.8689 0.5904 2.8689 25.5593 
10 100 2.8689 0.5904 2.8689 25.5593 

 

Table 6 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of ΣT

IAEI  

2)( ΣTγ  maxj  *β  *
Ck  *

iT  ΣT
IAEI  

0 30 3.9031 0.5062 3.9031 2.1031 
0 50 3.9027 0.5062 3.9027 2.1031 
0 100 3.9027 0.5062 3.9027 2.1031 

0.1 30 3.6591 0.5228 3.6591 2.3995 
0.1 50 3.6607 0.5227 3.6607 2.3995 
0.1 100 3.6607 0.5227 3.6607 2.3995 
1 30 3.0690 0.5708 3.0690 4.7623 
1 50 3.0887 0.5690 3.0887 4.7619 
1 100 3.0887 0.5690 3.0887 4.7619 

10 30 2.8860 0.5886 2.8860 27.3707 
10 50 2.8860 0.5886 2.8860 27.3707 
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Table 7 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of ΣT

ITSEI  

2)( ΣTγ  maxj  *β  *
Ck  *

iT  ΣT
ITSEI  

0 30 4.5602 0.4683 4.5602 1.8650 
0 50 4.5595 0.4683 4.5595 1.8650 

0.1 30 4.0134 0.4992 4.0134 2.2035 
0.1 50 3.9491 0.5032 3.9491 2.2029 
0.1 100 3.9480 0.5033 3.9480 2.2029 
1 30 3.1716 0.5615 3.1716 4.6304 
1 50 3.1703 0.5616 3.1703 4.6304 
1 100 3.1704 0.5616 3.1704 4.6304 

10 30 2.8994 0.5873 2.8994 27.2770 
10 50 2.8994 0.5873 2.8994 27.2770 

Table 8 Results of the analysis of the effects of the maximum number of iterations on the 
optimal controller parameters and minimum value of objective function in case of ΣT

ITAEI  

2)( ΣTγ  maxj  *β  *
Ck  *

iT  ΣT
ITAEI  

0 30 3.6162 0.5259 3.6162 13.0291 
0 50 3.5658 0.5296 3.5658 13.0250 
0 100 3.5658 0.5296 3.5658 13.0250 

0.1 30 3.5631 0.5298 3.5631 13.3043 
0.1 50 3.5641 0.5297 3.5641 13.3043 
0.1 100 3.5641 0.5297 3.5641 13.3043 
1 30 3.4401 0.5392 3.4401 15.7773 
1 50 3.4450 0.5388 3.4450 15.7773 
1 100 3.4389 0.5392 3.4389 15.7772 

10 30 3.0613 0.5715 3.0613 39.0402 
10 50 3.0620 0.5715 3.0620 39.0401 
10 100 3.0620 0.5715 3.0620 39.0401 

 
Similar results were obtained for different combinations of the parameters re-

garding PSO algorithm for example }30,...,11,10{∈n , 2.13.0 1 <≤ c , and 

2.13.0 2 <≤ c . Therefore, the analysis of the effects of the parameters 
21,, ccn  

proves that starting with a small value of 
maxj  the same value of the optimal solu-

tion is obtained no matter the values of 
21,, ccn  taken into consideration. 

Numerous experiments done here with the implemented PSO algorithms prove 
that their sensitivity with respect to the initial conditions associated to equations 
(13) and (14) is relatively small. The considered case study assisted by PSO 
algorithms shows that the results exhibit reduced sensitivity with respect to the 
initial conditions of the sensitivity models. 
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The same generic families of fitness functions PkI  and ΣTI  highlighting the ob-
jective functions (12) were used for SA algorithm implemented in Matlab as well. 

In order to get a higher rate of convergence we used the following linear cool-
ing schedule 

 
KK TT 9.01 =+ ,                                                   (31) 

where T is the temperature and K is the current iteration index. 
A more abrupt cooling schedule could generate similar results, but at the ex-

pense of a higher probability of being trapped into a local minimum. A maximum 
number of 300 iterations at each temperature level, with a success rate of 50 and a 
rejection rate of 1000, allowed obtaining a maximum convergence rate and a low 
probability to be trapped in a local minimum. 

An identical set of weighting parameters, }10,1,1.0,0{)( 2 ∈Pkγ  and 

}10,1,1.0,0{)( 2 ∈ΣTγ , was used for both families of objective functions PkI  and 
ΣTI . 
The optimal controller parameters and minimum objective functions for the 

family of objective functions PkI  are presented in Tables 9 to 12. 

Table 9 Optimal controller parameters that minimize Pk
ISEI  

2)( Pkγ  *β  *
Ck  *

iT  Pk
ISEI  

0 36.8668 0.1647 36.8668 0.2455 
0.1 5.1357 0.4413 5.1357 0.5507 
1 2.6519 0.6141 2.6519 2.0253 

10 2.1319 0.6849 2.1319 15.0579 

Table 10 Optimal controller parameters that minimize Pk
IAEI  

2)( Pkγ  *β  *
Ck  *

iT  Pk
IAEI  

0 3.9030 0.5062 3.9030 2.1031 
0.1 3.8254 0.5113 3.8254 2.2828 
1 3.2271 0.5567 3.2271 3.8138 

10 2.2862 0.6614 2.2862 17.2018 

Table 11 Optimal controller parameters that minimize Pk
ITSEI  

2)( Pkγ  *β  *
Ck  *

iT  Pk
ITSEI  

0 4.5606 0.4683 4.5606 1.8650 
0.1 4.3406 0.4800 4.3406 2.0606 
1 3.4273 0.5402 3.4273 3.6606 

10 2.4134 0.6437 2.4134 17.3087 
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Table 12 Optimal controller parameters that minimize Pk
ITAEI  

2)( Pkγ  *β  *
Ck  *

iT  Pk
ITAEI  

0 3.5727 0.5291 3.5727 13.0251 
0.1 3.5658 0.5296 3.5658 13.1968 
1 3.5024 0.5343 3.5024 14.7393 

10 3.1148 0.5666 3.1148 29.6057 

 
A similar analysis was performed for the family of objective functions ΣTI  

leading to the results shown in Tables 13 to 16. 

Table 13 Optimal controller parameters that minimize ΣT
ISEI  

2)( ΣTγ  *β  *
Ck  *

iT  ΣT
ISEI  

0 37.0825 0.1642 37.0825 0.2454 
0.1 3.6026 0.5269 3.6026 0.6885 
1 2.9536 0.5819 2.9536 2.9854 

10 2.8687 0.5904 2.8687 25.5593 

Table 14 Optimal controller parameters that minimize ΣT
IAEI  

2)( ΣTγ  *β  *
Ck  *

iT  ΣT
IAEI  

0 3.9027 0.5062 3.9027 2.1031 
0.1 3.6620 0.5226 3.6620 2.3995 
1 3.0887 0.5690 3.0887 4.7619 

10 2.8864 0.5886 2.8864 27.3707 

Table 15 Optimal controller parameters that minimize ΣT
ITSEI  

2)( ΣTγ  *β  *
Ck  *

iT  ΣT
ITSEI  

0 4.5607 0.4683 4.5607 1.8650 
0.1 3.9478 0.5033 3.9478 2.2029 
1 3.1709 0.5616 3.1709 4.6304 

10 2.8995 0.5873 2.8995 27.2770 

Table 16 Optimal controller parameters that minimize ΣT
ITAEI  

2)( ΣTγ  *β  *
Ck  *

iT  ΣT
ITAEI  

0 3.5531 0.5305 3.5531 13.0262 
0.1 3.5440 0.5312 3.5440 13.3051 
1 3.4389 0.5392 3.4389 15.7772 

10 3.0619 0.5715 3.0619 39.0401 
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This case study shows the reduced effects of the initial conditions associated to 
the sensitivity models (29) and (30) of SA algorithm on the optimal values of the 
controller tuning parameters. 

 

 

Fig. 8 Simulation results of optimal control systems obtained by PSO algorithm for the sen-
sitivity model (29) (a) and sensitivity model (30) (b). 
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The controlled output (y) versus time diagrams given in Fig. 8 (a) and Fig. 8 (b) 
illustrate the optimization of the control system behavior by the minimization of 
the families of objective functions PkI  and ΣTI , for 1)( 2 =Pkγ  and 1)( 2 =ΣTγ , re-

spectively, for the parameters of the optimal PI controller obtained by PSO algo-
rithm with 100max =j . These simulations employed a unit step reference input, 

followed by a –0.5 step disturbance input applied at 50 s. 
Considering the same simulation scenario, Fig. 9 (a) and Fig. 9 (b) illustrate the 

behaviors of the control systems optimized by the minimization of the objective 
functions PkI  and ΣTI , for 1)( 2 =Pkγ  and 1)( 2 =ΣTγ , respectively, and the pa-

rameters of the optimal PI controller obtained by SA algorithm. 
The simulation results presented in Figs. 8 and 9 convincingly show that the 

controller exhibits good setting time and overshoot performance indices. The rapid 
decay of the system responses in Figs. 8 and 9 is explained by the application of 
the –0.5 step disturbance input (d in Fig. 1 and in Fig. 3) at 50 s. 

Tables 1 to 16 show close values of the optimal parameters of the controllers 
for all the eight optimization problems solved. Furthermore, PSO and SA algo-
rithms applied in solving the same optimization problems lead to very close solu-
tions to those problems. 

Figs. 10 and 11 illustrate the evolution of the design parameter β  and the cor-

responding values of the objective function )(βPk
ISEI  versus the iterations of PSO 

and SA algorithm, respectively. The weighting parameter values used in these 
cases were 1)( 2 =Pkγ  and 1)( 2 =ΣTγ  for both objective functions, and 100max =j  

was considered in PSO algorithm. 
Using the same weighting parameters and maximum number of iterations in 

PSO algorithm, Figs. 12 and 13 illustrate the evolution of the design parameter β  

and the corresponding values of another objective function, )(βΣT
ISEI , versus the it-

erations of PSO and SA algorithm, respectively. 
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Fig. 9 Simulation results of optimal control systems obtained by SA algorithm for the sen-
sitivity model (29) (a) and sensitivity model (30) (b). 
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Fig. 10 Evolution of design parameter β  and objective function Pk
ISEI  versus the iteration 

index in PSO algorithm. 

 

Fig. 11 Evolution of design parameter β  and objective function Pk
ISEI  versus the iteration 

index in SA algorithm. 

 

Fig. 12 Evolution of design parameter β  and objective function ΣT
ISEI  versus the iteration 

index in PSO algorithm. 
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Fig. 13 Evolution of design parameter β  and objective function ΣT
ISEI  versus the iteration 

index in SA algorithm. 

The close values produced by the two PSO and SA optimization algorithms in 
similar situations demonstrate that the global minimum has been reached and thus 
the correct solutions to the optimization problems defined in equations (12) were 
obtained. Both algorithms have also avoided being trapped in local minima. 

5   Conclusions 

In this chapter, an application of PSO and SA optimization algorithms to the opti-
mal design of PI controllers with a reduced sensitivity with respect to the paramet-
ric variations of the controlled process was presented. The proposed optimization 
problems ensure the weighted minimization of several integrals of the control er-
ror eventually weighted by time, and output sensitivity functions. 

The advantages of using these algorithms include an expedient implementation, 
good computational efficiency and convergence. 

Simulations were conducted to illustrate the good behavior of the optimal con-
trol systems in the dynamic regimes characterized by the step modifications of 
reference and disturbance inputs. Both optimization algorithms have a reduced 
sensitivity to the initial conditions of the sensitivity models. 

The main limitation for these algorithms regards the degrees of freedom repre-
sented by some of their parameters. SA algorithm also presents a more computa-
tional-intensive disadvantage compared to PSO algorithm. 

Future research will study the applicability of these optimization algorithms to 
other sensitivity-based optimization problems in the frequency domain, the exten-
sion of their area of application to other processes and controller structures [58–
63]. All applications should be accompanied by the systematic analysis and guar-
antee of the convergence of the algorithms such that to enable the implementation 
of low cost and hybrid algorithms. 
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Abstract. Petroleum reservoir models are vital tools to help engineers in making 
field development decisions. Uncertainty of reservoir models in predicting future 
performance of a field needs to be quantified for risk management practices. 
Rigorous optimisation and uncertainty quantification of the reservoir simulation 
models are the two important steps in any reservoir engineering study. These steps 
facilitate decision making and have a direct impact on technical and financial 
performance of oil and gas companies.  

Optimisation of reservoir models to match past petroleum production data – 
history matching – entails tuning the simulation model parameters to reproduce 
dynamic data profiles observed at the production wells. History matching is an 
inverse problem with non-unique solution; thus, different combinations of 
reservoir model parameters can provide a good match to the data. Multiple history 
matched reservoir models are used to quantify uncertainty of future hydrocarbon 
production from a field. 

Recently application of evolutionary and swarm intelligence algorithms to history 
matching problems has become very popular. Stochastic sampling algorithms are 
used to explore the model parameter space and to find good fitting models. 
Exploration/exploitation of the search space is essential to obtain a diverse set of 
history matched reservoir models. Diverse solutions from different regions of the 
search space represent different possible realizations of the reservoir model and are 
essential for realistic uncertainty quantification of reservoir performance in the future. 

This chapter compares the application of four recent stochastic optimisation 
methods: Ant Colony Optimisation, Differential Evolution, Particle Swarm 
Optimisation and the Neighbourhood Algorithm for the problem of history 
matching. The algorithms are integrated within a Bayesian framework to quantify 
uncertainty of the predictions. 
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Two petroleum reservoir examples illustrate different aspects of the 
comparative study. The Teal South case study is a real reservoir with a simple 
structure and a single producing well. History matching of this model is a low 
dimensional problem with eight parameters. The second case study – PUNQ-S3 
reservoir – is a synthetic benchmark problem in petroleum industry. The PUNQ-
S3 model has a more complex geological structure than Teal South model, which 
entails solving a high dimensional optimisation problem. This model is fitted to 
multivariate production data coming from multiple wells.  

Keywords: Inverse problem, evolutionary algorithms, Ant Colony Optimisation, 
Differential Evolution, Particle Swarm Optimisation, Neighbourhood Algorithm, 
history matching, Bayesian uncertainty quantification, petroleum, reservoir 
modelling. 

1   Introduction 

In the multibillion dollar oil and gas industry, making correct investment decisions 
depend on the ability to predict accurately the future performance of petroleum 
reservoirs. Reservoir simulation models are routinely used in petroleum industry 
to support field development decision making. Reservoir models include different 
information about geological, petrophysical and fluid properties of the reservoir. 
These models are used to estimate future hydrocarbon production from the field or 
to plan additional recovery operations in reservoir engineering studies.  

There are two important steps in any petroleum reservoir forecasting study. 
First, computer simulation models need to be calibrated based on the past 
production observations of the reservoir. This step, called history matching (HM), 
usually takes a lot of manpower and computer resources. History matching entails 
tuning the properties of the reservoir model in such a way that computer 
simulations reproduce the observed production rate or pressure measurements 
available from the wells. History matching being an inverse problem has no unique 
solution. Thus, several combinations of the reservoir model parameter values, e.g. 
rock porosity and permeability, may provide a good match to the data. Non-
uniqueness of history matching solutions describes uncertainty of reservoir 
production modelling. The second step in reservoir studies is uncertainty 
quantification of the predictions made by the computer models. Multiple history 
matched models of the reservoir are used to quantify uncertainty in predicting the 
future behaviour of the reservoir. Each history matched model, which reflects well 
the available production observations, may feature different geological and 
petrophysical properties. Due to a wide range of uncertainty about the sub-surface 
system, there would exist models with different properties that may provide equally 
good history match. Such diverse models are likely to show different production 
behaviour in the future due to different reservoir parameters. Diverse history 
matched models are important for realistic assessment of prediction uncertainty. 

Real reservoir engineering studies are restricted by the number of simulations 
that can be performed in a limited time. Running a single simulation model may 
take hours or even days in a real life problem. This limitation motivates 
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application of effective adaptive optimisation algorithms in a search for possible 
combinations of reservoir model properties which provide a good history match. 
Therefore, powerful and robust optimisation methods are needed to navigate the 
model parameter space and identify good fitting solutions. Such automation of the 
history matching process is seen as a major improvement for subsurface 
engineering teams in history matching studies, which are often done manually in 
contemporary industry practice. 

Use of gradient optimisation methods for history matching started in late 
1960’s [1,2]. Later, when stochastic methods entered reservoir engineering arena, 
many works showed that simple optimisation methods are not good tools for 
solving complex history matching problems [3]. It was in early 90’s that the trend 
in history matching was geared towards generating multiple history matched 
models [4].  Fig. 1 shows an example of misfit function for a history matching 
problem. In this example we will need to identify not only the global minimum, 
but also multiple local minima in the search space. It has been shown that a single 
best history matched model is not necessary a good predictor for future 
performance of the reservoir [5]. On the other hand it is difficult and inefficient to 
obtain multiple history matched models using conventional Monte Carlo 
approaches because these methods are not intelligent enough to maximise the 
number of multiple good-fitting models in a limited number of simulations. 

 

 
 

Fig. 1 Global minimum (pink) and multiple local minima (blue) in history matching 
problems. 

Any optimisation method used in history matching must be fast in navigating 
high dimensional search spaces and efficient in finding multiple good models with 
a limited number of simulations. The importance of the optimisation algorithm 
choice and tuning becomes essential when we try to estimate tens or even 
hundreds of parameters in the presence of multiple local minima. Stochastic 
population-based algorithms are often seen as good candidates to solve history 
matching problems because they adaptively search for multiple good models and 
are less likely to get trapped in local minima. Examples of stochastic optimisation 
methods previously used for history matching include Genetic Algorithms (GA)  
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[6,7], Neighbourhood Algorithm (NA) [8], Particle Swarm Optimisation (PSO) 
[9,10,11], Evolutionary Strategies (ES) [12], Ant Colony Optimisation (ACO) 
[13] and Differential Evolution (DE) [14]. 

In this work we have compared the performance of four recent evolutionary 
and swarm intelligence methods to tackle history matching and uncertainty 
quantification problems. We compare their ability to find multiple history matched 
models which can realistically quantify uncertainty of the model forecast. The 
comparison is made using both synthetic and real reservoir studies, which are well 
known benchmarks in petroleum industry. The algorithms are integrated into a 
Bayesian framework for uncertainty quantification of reservoir predictions. 

2   Uncertainty Quantification within Bayesian Framework 

Uncertainty is an inherent feature of our understanding of reality. We can 
distinguish between uncertainty in mathematical models, which reflect our 
knowledge about nature; numerical errors, related to the accuracy of the computed 
solution due to discretization; and data uncertainty, which correspond to the 
quality and relevance of the available observations, etc.  

Here we suggest a general framework for uncertainty quantification of natural 
systems predictions (see Fig. 2). Our understanding of the modelled natural 
system is based on data. By data we mean prior knowledge, which is used to build 
mathematical model relationships, and observations, which reflect the true but 
actually unknown behaviour of the system subject to measurements uncertainty.  

Our prior beliefs set a range of model definitions described by parameters or 
scenarios. From these beliefs we parameterise the reservoir description and set 
prior probabilities for these parameters. Thus, a mathematical/statistical model of 
a petroleum reservoir describes the distribution of the porous medium properties, 
which can be defined by geological body types, spatial correlation range, etc. For 
example, in a fluvial reservoir laid down by an ancient river system we can 
distinguish sinuosity, width, depth, and other parameters of the meandering 
channels. Our prior knowledge about the parameters is based on the studies of 
equivalent outcrops and contemporary river systems. Setting our prior beliefs wide 
enough within physically realistic ranges provides a way of finding most likely 
and probable model solution. Evolutionary algorithms, in fact, act as the sampling 
method in our search space to find reservoir models that can reproduce the 
historical observations from the field. Multiple models obtained using these 
algorithms are sampled from our prior beliefs described by the probability 
distribution.  

The model likelihood is evaluated by comparing the simulated model solution 
(reservoir simulation) with the available observations (i.e. history matching). By 
minimising the objective function (maximising the likelihood) through sampling a 
number of possible reservoir descriptions from the prior, we update our beliefs 
about a given set of models [15]. The likelihood p(m|O) describes the probability 
of the model given the data, i.e. the measure of to what degree the observed and 
modelled data differ. Hence, it is directly related to the minimised objective 
function via the likelihood model. For instance, it is common to assume the log of  
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Fig. 2 History matching and uncertainty quantification framework. 

the likelihood to equal the negative objective function. The later characterises how 
well the simulations fit the observed data. The goodness of fit is, often, 
evaluated by the square difference between observations and simulations 
normalised by double squared errors (inverse covariance matrix). This definition 
of the objective functions together with it’s relation to the negative log of the 
likelihood assumes Gaussian statistics of errors. However, the choice of the 
objective function may vary depending on the optimisation task; some examples 
will be shown in the case studies section.  

A Bayesian framework is a statistically consistent way relating our beliefs 
about the geological description to the available observations. Bayes theorem 
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provides a formal way to update our beliefs about probabilities when we are 
provided with information: 

 

 
                                                                                       (1) 

 
 

Bayesian theorem relates posterior probability p(m|O)) with prior probability, 
p(m) with the likelihood p(O|m). Bayesian inference provides a way to evaluate 
the posterior probability p(m|O) of the multiple models generated using 
evolutionary optimisation. Multiple good fitting models generated by evolutionary 
algorithms models are highly likely (large p(O|m)) but are not equally probable. 
Their posterior probability (p(m|O)) is computed numerically by Markov Chain 
Monte Carlo (MCMC) integration.  An ensemble of models can be used to 
quantify the uncertainty of predictions (see Fig. 2).  

3   Evolutionary Optimisation 

Adaptive stochastic algorithms have been used for decades for solving 
optimisation and inverse problems in many engineering and scientific fields. 
Many of them, such as Genetic Algorithms (GA) and Simulated Annealing (SA) 
were inspired by the rules of nature. Evolutionary and swarm algorithms are more 
recent developments based on the idea of using a system of simple agents to 
describe complex phenomena with non-parametric dynamics. This is one of their 
key differences from the earlier algorithms, which were based on fairly complex 
components (chromosome in GA or a system state in SA). Recently proposed 
algorithms are more flexible and have more advanced adaptive capabilities 
provided by interaction of simple agents. The agents’ dynamics is the workhorse 
of evolutionary and swarm intelligence algorithms. Similarities and differences 
between the algorithms can be observed by comparing the way how the agents are 
moving between the states of the system. It is essential to maintain a good balance 
between exploration and exploitation while searching for optimal solutions. 
Finding multiple local minima are essential for realistic quantification of 
prediction uncertainty, which is often not the case in many traditional optimisation 
problems. Therefore, this chapter aims to understand the search capabilities of Ant 
Colony Optimisation, Differential Evolution, Particle Swarm Optimisation and the 
Neighbourhood Algorithm using comparative study. 

3.1   Ant Colony Optimisation  

Ant Colony Optimisation (ACO) metaheuristic was proposed in 1992 by Dorigo 
[16]. It was inspired by studying the behaviour of real ants searching for their 
food. Real ants mark the path they follow with a chemical odorous substance 
called pheromone. The amount of pheromone laid by ants is a function of path 
length and food quality. Pheromone serves as a guide for other ants to find their 
way to good quality foods. 
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ACO was first designed for discrete problems and later was adapted to handle 
continuous optimisation problems. One of the most successful attempts to extend 
original ACO concept to handle continuous variables was by Socha and Dorigo 
[17]. The heart of ACOR is a solution archive with k models which keeps the track 
of solutions (Fig. 3). The solutions in this archive are ranked based on their 
quality, which means models with lower misfit values get a higher rank and will 
appear at the top of the list. There are k rows and n columns in the archive, where 
k is the number of models that are kept in the archive and n is the number of 
dimensions of the problem or parameters in history matching. Each single row in 
this archive consists of a vector of reservoir model parameters (s) and 
corresponding objective function f(s) value that we obtain after running the flow 
simulation. The ith unknown parameter value of the lth model is denoted by si

l. The 
misfit values show how well the proposed model can fit historical data. The last 
column in this archive includes the weights (ωl) of the solutions. These weights 
are a function of solution quality (Eq.2) and will be used to probabilistically build 
new solutions.  

 

 
 

Fig. 3 Solution archive in ACOR and its components (adopted from [17]). 

 
The archive is initially filled with random solutions and the misfits (f(s)) of 

models are evaluated. If the number of ants evaluated at each iteration of the 
ACOR algorithm is m, then at each iteration, m new solutions are added to the 
population and from the archive which now contains k+m models, the m worst 
solutions are removed to keep the archive size fixed. This action simulates the 
pheromone update part in discrete ACO. The remaining models in the archive are 
sorted according to their misfit score. The aim is to bias the search process  
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towards the good regions of the search space with low misfit models by 
probabilistically constructing new solutions. Next, we compute the weights for 
each model in the archive. The weight of each member in the archive is computed 
based on the following equation and will be used to probabilistically select the 
members of archive: 

2

2 2

( 1)
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l

q k
l e

qk
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−−
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where k is the size of the archive and q is a parameter of the algorithm that 
controls the balance between exploration/exploitation in ACOR. Small values of q 
give preference to the best-ranked solutions, while for larger q values the 
probability of selecting models in the archive becomes more uniform.  

In ACOR the selection probability is not a direct function of the fitness, but is 
computed indirectly from the fitness considering the effect of parameter q. In 
order to generate new solutions, one of the solutions in the archive is chosen 
according to the following probability: 

 

 
                                                                                                                           (3)                                               

 
                                                                             

    
 

To construct a single model, at each step (i=1, 2 ... n) we sample a value for each 
unknown parameter in the problem. The mixture of Gaussian kernels form the 
probability density function (PDF) which will be sampled to obtain new members 
of the archive. For example in Fig. 4, we have 4 models in the archive to compute 
this mixture. The components of the solutions are used to dynamically generate 
probability density functions and modify their shape. 

 

 

Fig. 4 Gaussian distributions in ACOR which are sampled to obtain new models. 
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For each dimension of the problem, there are k individual Gaussian functions. 
Each Gaussian distribution is characterised by its mean and standard deviation 
values. Mean value of each distribution is equal to the corresponding value in the 
solution archive. Considering a single column in the archive, the first number in 
this column will be considered as the mean value for the first individual Gaussian 
function and so on. For the standard deviations, we compute the average distance 
between the selected member (sl) to the other members of that column in the 
solution archive. This computed value is multiplied by ξ which is called 
pheromone evaporation rate. The higher ξ value, worst solutions are forgotten 
faster. With lower ξ values, the search is less concentrated on the previously 
visited areas of the search space; hence the convergence speed of the algorithm 
will be higher. For obtaining new solutions, ants sample the mixture of Gaussian 
functions. The mixture of Gaussian kernels (Fig. 4, bold line) is the weighted sum 
of the individual Gaussian kernels and is computed with the following equation: 

 

 
                                                                                (4) 

 
 
 

where μi
l and σi

l are the mean and standard deviations of the Gaussian 
distributions. In the next step the Gaussian kernel is sampled to obtain a new 
model and this process is continued for all dimensions of the problem by each of 
the m ants, and at each iteration of the algorithm. The new members replace the 
models with least performance and this process continues until the search 
terminates with a stopping condition. 

Socha and Dorigo showed that ACOR obtains best results among different 
implementations of Ant Colony Optimisation algorithm for handling continuous 
problems [17]. ACOR has also been used in other engineering fields and was 
proven to be a very efficient optimisation algorithm [18,19].  

3.2   Differential Evolution 

Differential Evolution (DE) is a powerful global optimisation algorithm and was 
introduced by Rainer Storn and Kenneth Price in 1995 [20]. DE grew out of 
Price’s attempts to solve the Chebychev Polynomial fitting problem that has been 
posed to him by Storn. DE is a parallel population-based search algorithm which 
uses Np D-dimensional parameter vectors as the population in each generation. 
Then it tries to evolve this population by simple arithmetic operations on these 
vectors to form new solutions to the problem. Fig. 5 illustrates the concept of 
building a difference vector in differential evolution. In this figure, DE is applied 
to find the minimum of a unimodal function. 

In the first step the population is initialized with 6 individuals randomly 
scattered in the search space. Each individual member in the population is a vector 
of real numbers. All vectors are uniquely indexed from 1 to Np for bookkeeping. 
In the second step two vectors are randomly selected among the current population 
and in the next step which is shows in part 3 of Fig. 5, the difference vector  
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Fig. 5 Illustration of Differential Evolution algorithm. 

between two selected members is computed. In step 4, this vector is multiplied by 
a number called scaling factor (F). Depending on the selection of the scaling 
factor value, the difference vector may become larger or smaller than its original 
size. In step 5, we select another member (individual 4) in the population and then 
add the scaled difference vector which is obtained in step 4, to this new selected 
member. This forms the trial vector and can be written as: 

 

 
                                                                                   (5) 

 
 

where r1 is the base vector and r2 and r3 are two other vectors chosen from the 
population. Scaling factor (F) is a real constant parameter. To increase the 
population diversity, crossover operation is performed after mutation step in 
differential evolution. In this step the parent (donor) vector is mixed with the 
mutated vector to produce the trial vector. There are two types of crossover 
schemes for differential evolution – binomial and exponential. In this work, we 
use exponential crossover scheme. Finally we come to the selection step which is 
indicated in part 6 of Fig. 5. In DE each trial vector competes against the 
population vector of same index. Because this new trial vector is the first new 
member generated, it is going to compete with the member indicated by index of 
1. For the function shown in Fig. 5, new trial vector will be selected to proceed to 
the next generation because it has a lower objective function comparing to the 
individual number 1. The above procedure is repeated for each individual in Np 
population to form the next generation of solutions. To summarize the concept of 
DE, we have the following pseudo code: 

 

1. Initialize population with Np individuals. 
2. Obtain objective function values for each member. 

1 1, 2, 3,( )G G G Gr F r rυ + = + −
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3. Select vectors. 
4. Mutation (introduce perturbation). 
5. Crossover (increase population diversity). 
6. Selection (if new vector is better than parent). 
7. Repeat steps 3-6 until stopping criteria is met (maximum number of 

iterations). 
 

Various types of DE are different in the way they perform mutation and crossover 
steps. In the literature usually different variants of DE are presented in the form of 
DE/x/y/z, where x is the vector that will be mutated, y specifies number of 
difference vectors used and z is crossover scheme. In this work, we have used two 
strategies for building the trial vector (random and best). Recalling equation 5, in 
DE/Rand strategy, r1, r2 and r3 vectors are all chosen randomly. For DE/Best 
scheme, the vector with lowest objective function value will be selected as the 
base vector (r1). Since we use one difference vector and an exponential crossover 
scheme in our work, full name of these strategies can be written as DE/Rand/1/exp 
and DE/Best/1/exp. 

3.3   Particle Swarm Optimisation 

The Particle Swarm Optimisation (PSO), originally introduced by Kennedy and 
Eberhart in 1995 [21], has proven to be a powerful contender to other population- 
based evolutionary algorithms for global optimisation problems. It is a stochastic 
optimisation technique inspired by social behaviour of bird flocking or fish 
schooling. PSO has been successfully applied in a variety of fields including 
petroleum engineering (e.g., [9,10]).   

The PSO algorithm starts with a random initialization of a swarm of particles in 
the search space. Each particle is considered as a candidate solution to a problem 
in D–dimensional space, with particle i representing xi. Each particle maintains a 
memory of its previous best position, pbesti, and a velocity along each dimension, 
represented as vi. The pbest vector of the particle with the best fitness in the 
neighbourhood is designated as gbest. The importance of these two positions, 
gbest and the pbesti, is weighted at each iteration by two factors c1 and c2 known as 
the cognitive and social scaling factor parameters [22]. These two elements are 
among the main governing parameters of swarm behaviour and algorithm 
efficiency, and have been the subject of many studies [23,24,25]. The update 
equation of the personal best position pbesti is presented in Eq. (6), assuming a 
minimisation problem where f denotes the objective function that is being 
minimised and k is the iteration (generation) number.    
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In the PSO algorithm, at each iteration, particle i’s velocity (vi) and position (xi) 
are updated using Eqs. (7) and (8),  

vi
k+1 = wvi

k   +  c1 rand1×  ( pbesti 
k  −  xi

k 
 ) +  c2 rand2 × ( gbest k  −  xi

k 
 )     (7) 

                                              xi
k+1 = xi

k  +  vi
k+1                       (8) 

where c1 and c2 are non-negative constant real parameters, rand1, and rand2 are 
two random vectors with each component corresponding to a uniform random 
number between 0 and 1. Inertial weight (w) influences the convergence of the 
algorithm. Usually, the inertial weight is chosen to decrease linearly from 0.8 to 
0.4 facilitating exploration at early stages of the optimisation process while 
focusing on exploitation of promising regions at later stages. We can summarize 
the PSO workflow in the following steps: 

1. Initialize the swarm by assigning a random position in the search space to 
each particle with sensible random velocity. 

2. Evaluate the fitness function for each particle.  
3. For each particle, update the position and value of pbest – the best 

solution the particle has seen. If current fitness value of one particle is 
better than its pbest value, then its pbest value and the corresponding 
position are replaced by the current fitness value and position, 
respectively. 

4. Update the global best fitness value and the corresponding best position. 
5. Update the velocities and positions of all the particles using Equations (7) 

and (8). 
6. Repeat steps 2–5 until a stopping criterion is met. 

 

There exist several variants of PSO for improving the speed of convergence of the 
algorithm. They vary in the neighbourhood topology, velocity update rules, 
handling particle behaviour at the boundary, inertial weight choices (w) and others 
[10]. In our application we used the absorbing boundary strategy for handling the 
particles outside allowable search space. The off-limit particle is relocated at the 
boundary of the search space in that dimension, and the velocity component in that 
dimension is zeroed. Other boundary strategies can be found in [10]. The 
maximum velocity allowed in one dimension is a fraction of the scaled parameter 
range of the corresponding dimension and is set to 0.4 in this work. 

3.4   Neighbourhood Algorithm 

The Neighbourhood Algorithm (NA) is a recent stochastic optimisation method 
proposed by Sambridge [26]. It was originally developed for solving inverse 
problems in seismology and soon was applied in other fields including petroleum 
engineering [8,27]. 

The Neighbourhood algorithm uses the Voronoi cells concept to find good 
regions of the search space. The optimisation process in neighbourhood algorithm 
for generating multiple good fitting models is working in the following way:  
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1. At beginning of the sampling procedure, like almost other stochastic 
methods, the algorithm is initialized by randomly generating nsi 
models in the search space and the objective function value is 
evaluated by running reservoir simulation models and comparing the 
simulated results with observed data.  

2. In each iteration the algorithm generates ns models and calculates the 
objective function value for each of these members.  

3. This is followed by ranking all models according to their misfit value.  
4. From this ranking, the best nr models with lowest misfit scores are 

chosen and then new ns models are generated by uniform random walk 
within Voronoi cells of these best nr cells. It is important to note that 
misfit value is assumed to be constant within each Voronoi cell.  

5. This procedure is repeated until a predetermined stopping criteria 
(maximum number of iterations) is met. 

 

One of the main advantages of the NA is that only two parameters control the 
behaviour of the algorithm, ns and nr. Sambridge states that ns/nr ratio rather than 
the individual values of these two tuning parameters, control the amount of 
exploration and exploitation for NA [26]. For example ns/nr=1 results in maximum 
exploration of the search space and with ns/nr<1, the algorithm will be more 
exploitative. 

4   Case Studies 

We consider two reservoir models in this chapter. The Teal South case study is a 
real reservoir with a simple structure and one well. This model is used to 
understand the behaviour of the algorithms in a low dimensional history matching 
problem. The second case – PUNQ-S3 reservoir – is a synthetic problem (based 
on the data from a real reservoir) which is widely used to benchmark the 
optimisation algorithms for history matching. The PUNQ-S3 model has a more 
complex geological structure than Teal South and history matching is based on 
multivariate data and multiple wells.  

4.1   Teal South Reservoir 

The Teal South reservoir model is used to test different optimisation algorithms 
for a low dimensional history matching problem. This reservoir (Fig. 6) is located 
in Eugene Island in the Gulf of Mexico. Teal South has a single production well 
that penetrates the 4500 ft sand. The reservoir simulation model is set up on an 
11×11×5 corner point grid. The production history of reservoir consisting 
production rates of oil, gas and water for 1247 days is shown in Fig. 7. There are 
five geological layers in the model with uniform properties. The unknown 
parameters in history matching are horizontal permeability multipliers for each of 
these five layers (P1-P5), a single value for vertical to horizontal permeability 
ratio (P6), rock compressibility (P7) and aquifer strength (P8). History matching is 
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only done on field oil production rate, which is included in a univariate objective 
function (Eq. 9). Parameterisation for the Teal South model and their prior range 
are shown in Table 1. 

 
Table 1 Parameterisation and prior ranges for Teal South model 

 
Parameters Units Prior Range 

kh (for each layer)  mD 10{1, 3} 
kv/kh  - 10{-4, -1} 

Rock compressibility psi-1 5×10-6   -  1×10-4 
Aquifer strength MMSTB 10{7, 9} 

 

 
 

Fig. 6 Teal south reservoir. 

 

Fig. 7 Production history for Teal South. 
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We use different optimisation techniques to estimate unknown properties 
reported in Table 1. After estimating these properties, a flow simulation is 
performed for the resulted reservoir model using ECLIPSE simulator. The goal is 
to minimise the difference between output of simulation and the field observations 
using following least square norm objective function: 

 

 
                                                                                         (9) 

 
 
 

where N is the number of observations, qobs is the observed flow rate in production 
well, qsim is the flow rate obtained from reservoir simulator and σ2 is the variance 
of the observed data. 

4.2   PUNQ-S3 Model 

The PUNQ-S3 reservoir is a synthetic model with 5 layers [28]. The top depth of 
PUNQ-S3 reservoir is 2430 m. It has a dip angle of about 1.5 degree and is 
bounded by a fault to the east and south and a relatively strong aquifer on the 
north and west provides a pressure support. There is also a small gas cap in the 
PUNQ-S3 reservoir model in layer 1. Six production wells are marked with black 
dots as can be seen in Fig. 8. The PUNQ-S3 model contains 19×28×5 grid blocks, 
with about two third of the grid blocks (1761) active. The grid blocks have equal 
180 meter sides in x and y directions. The reservoir simulation case has been 
modelled with corner point geometry with a Carter-Tracy aquifer. The complete 
data set for this reservoir is available online [29]. 

The geological parameters are the horizontal (kh) and vertical (kv) 
permeabilities and the porosities (φ). We parameterise the PUNQ-S3 model with 
nine homogenous regions per layer. As mentioned earlier, PUNQ-S3 case has five 
layers. We estimate the porosities in each homogenous region and layer of the 
reservoir using the optimisation algorithms. Five layers times nine regions per 
layer makes 45 porosity values that will be estimated in the assisted history 
matching framework. Horizontal and vertical permeability values are then 
calculated from every 45 porosity values using relations 10 and 11. These 
correlations are obtained from least square fitting of the crossplots of porosity and 
permeability data in well locations [30]. Calculation of horizontal and vertical 
permeabilities completes the necessary parameters required to build the reservoir 
model and perform flow simulations. 
  

 
                                                                                           (10) 
 
                                                                                          (11) 
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Fig. 8 PUNQ-S3 reservoir top surface map and well positions in this reservoir.   

 
The prior ranges for unknown parameters in each layer of PUNQ-S3 reservoir are 
given in Table 2. These values are based on the geological description of the 
reservoir. Layers 1, 3 and 5 are high quality and layers 2 and 4 have lower 
porosity and permeability values. 

 
Table 2 Initial ranges for parameters in PUNQ-S3 reservoir 

 
Layer Porosity (φ) Horizontal Permeability (kh) 

(mD) 
Vertical Permeability (kv) 

(mD) 
1 0.15 - 0.3 133 - 3013 44 - 925 
2 0.05 - 0.15 16 - 133 8 - 44 
3 0.15 - 0.3 133 - 3013 44 - 925 
4 0.1 - 0.2 47 - 376 17 - 118 
5 0.15 - 0.3 133 - 3013 44 - 925 

 
Simulated production history for the first 8 years from the six wells has been 

generated by the Netherlands Organization for Scientific Research (TNO). The 
production history includes pressure, water cuts and gas-oil ratios for each well. In 
order to reflect the real world measurement errors, Gaussian noise has been added 
to the well data. After 8 years, we continue the production for total period of 16.6 
years from current wells. By estimating porosity and permeability values using 
different optimisation algorithms, input files of simulation are ready and the 
reservoir simulation can be performed. After running the simulation, we obtain 
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different simulated field responses such as fluid production rates. By estimating 
proper porosity and permeability values, we try to minimise the following 
objective function in PUNQ-S3 case [31]: 

 
 

                                       (12) 
 
 

 
where nw is number of wells with subscript i running over the wells, np is number 
of production data types with subscript j running over them. Subscript k runs over 
production data report times and nt is the respective number of samples. Observed 
data (oobs) (bottomhole pressures, gas oil ratio and watercuts) and simulated ones 
(osim) for each of the parameters (p) are being reported at time steps tk with 
measurement error of σ. At each time step for the parameters, there are extra 
weighting factors denoted with w. These weights reflect the importance of some of 
data types at some specific time steps and are specifically indicated in the 
provided online dataset [29].  

5   Results 

The results of this work are presented in two sections. In section 5.1 we show the 
performance of algorithms for history matching of two reservoir models and in 
section 5.2, we study the uncertainty of predictions made by ensemble of models 
obtained with these algorithms. 

5.1   History Matching  

In this section we present the results of obtaining history matched models using 
evolutionary optimisation algorithms. We first start with Teal South reservoir, 
which is a simple model with 8 unknown parameters. Teal South is used as a 
proof-of-concept example. In the next section, we will discuss the results of 
history matching in PUNQ-S3 model, where we have 45 parameters to match. 

5.1.1   Teal South Reservoir 

For history matching of the Teal South reservoir, we have experimented with 
different combinations of the tuning parameters for optimisation algorithms in 
order to obtain the best results. A full study on effect of tuning parameters of 
algorithms is beyond the scope of this work; however, we have tried to set these 
parameters in such a way that a fair comparison of algorithms can be made. Tables 
3-6 summarize the best results obtained for history matching and corresponding 
algorithm settings. 
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Table 3 Algorithm parameters and best misfit obtained for Differential Evolution (DE) 
 

Algorithm Np F Cr Generations Best Misfit 
DE-Rand 30 0.2 0.9 46 10.86 
DE-Best 30 0.5 0.5 46 10.37 

 
Table 4 Algorithm parameters and best misfit obtained for Particle Swarm Optimisation 
(PSO) 

 
Swarm size Inertial Weight c1 c2 Generations Best Misfit 

30 0.8-0.4 2 2 46 8.42 

 
Table 5 Algorithm parameters and best misfit obtained for Ant Colony Optimisation 
(ACOR) 

 
Number of ants k q ξ Generations Best Misfit 

30 30 0.3 0.3 46 11.27 

 
Table 6 Algorithm parameters and best misfit obtained for Neighbourhood Algorithm (NA) 

 
nsi ns nr Generations Best Misfit 
30 30 15 46 8.42 

 
A look at best misfits in the above tables reveals that all the methods can get to 

reasonably low objective function values, with PSO achieving slightly better final 
misfit. Fig. 9 shows the oil production rate as a result of history matching of Teal 
South reservoir model with different algorithms. As we can see from Fig. 9, in low 
dimensional history matching problem such as Teal South reservoir, performance 
of all algorithms is satisfactory. They all can provide an acceptable level of match 
and there is a marginal difference in terms of the final misfit value. 

5.1.2   PUNQ-S3 Model 

After testing a simple example to illustrate the concept of using evolutionary and 
swarm-based algorithms for history matching of petroleum reservoir models, let’s 
move to a more complex problem with 45 unknown parameters. The goal of this 
study is to investigate the performance of these algorithms in a real life problem, 
where we may deal with tens of parameters to estimate. Tables 7-10 show the 
tuning parameters used in the different algorithms for history matching of PUNQ-
S3 reservoir. These parameters are obtained after trying different settings and 
choosing the best results among these runs. The population size is same in all 
algorithms. 
 
 



Comparison of Evolutionary and Swarm Intelligence Methods  227
 

 
 

Fig. 9 Field oil production rate results obtained by each algorithm in history matching of 
Teal South reservoir. 

 
Table 7 Algorithm parameters and best misfit obtained for Differential Evolution (DE) 

 
Algorithm Np F Cr Generations Best Misfit 
DE-Rand 50 0.5 0.7 60 1.95 
DE-Best 50 0.5 0.5 60 1.45 

 
Table 8 Algorithm parameters and best misfit obtained for Particle Swarm Optimisation 
(PSO) 

 
Swarm size Inertial Weight c1 c2 Generations Best Misfit 

50 0.8-0.4 1 2 60 1.51 

 
Table 9 Algorithm parameters and best misfit obtained for Ant Colony Optimisation 
(ACOR) 

 
Number of ants k q ξ Generations Best Misfit 

50 50 0.4 0.7 60 1.83 

 
Table 10 Algorithm parameters and best misfit obtained for Neighbourhood Algorithm 
(NA) 
 

nsi ns nr Generations Best Misfit 
50 50 50 60 4.07 
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From the best misfits reported in the above tables, we see that DE, PSO and 
ACOR provide good final history matching results. The performance of the NA is 
not satisfactory in this high dimensional history matching problem. We used 
extreme exploration settings for NA (ns/nr=1) to perform widest search. Less 
explorative NA settings obtained larger misfit values, possibly due to over-
refinement of local minima. DE-Best obtains a slightly lower misfit value than 
other algorithms for this case. Figs. 10-13 show the best history matching results 
for selected wells in PUNQ-S3 model. These figures show the quality of match for 
bottomhole pressure (BHP) in well 1, gas oil ratio (GOR) for wells 4 and 11 and 
water cut (WWC) in well 11. In these figures black filled circles show the 
observed data used to calculate misfit values during history matching. Solid black 
line shows the simulation performed using the truth case provided in the online 
dataset [29] for full production period (6025 days). Note that the observations may 
vary from the truth case due to the added noise. 

 

Fig. 10 BHP match result for well 1.                          Fig. 11 GOR match result for well 4.  

Figs 10-13 show different matching quality in wells. For example, both DE-
Best and PSO algorithms have obtained very good misfit values (1.45 and 1.51). 
In Fig. 12 we see that PSO is the only algorithm that can capture the behaviour of 
truth model in prediction period (days 2936 to 6025). In Fig. 13 we see that PSO is 
not able to reproduce the water cut data and other algorithms are better in 
predicting water cut in well 11. We can also see the poor match quality of model 
obtained by NA. Different optimisation algorithms are obtaining history-matched 
models in different regions of the search space. These models represent diverse 
representations of the reservoir model, thus leading to different predictions. 

Fig. 14 shows the convergence graph for the algorithms. It plots the best misfit 
obtained in each generation of the algorithms versus the generation number. 
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Fig. 12. GOR match result for well 11.             Fig. 13. WWC match result for well 11. 

 
 

Fig. 14 Comparison of convergence speeds for different algorithms in history matching of 
PUNQ-S3 model. 

 
As we can see in Fig. 14, PSO and DE-Best algorithms have the fastest 

convergence. ACOR and DE-Rand algorithms are ranked next in terms of 
convergence speed. NA demonstrated a very poor convergence, because the ns/nr 
ratio is set to 1 which corresponds to the most exploratory mode of NA [26]. DE-
Best has a fast convergence due to its base vector selection strategy where the best 
member in the population is selected for adding the difference vector and building 
new candidate solution. The effect of the base vector selection is also reflected in 
the convergence of DE-Rand algorithm. As we can see in Fig. 14, this algorithm 
has more fluctuation in best generational value and a slower convergence in 
comparison with DE-Best algorithm. 
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Fig.14 can be used to quantify the computational efficiency of the algorithms. 
Most of the algorithms (except NA) achieve their 50% efficiency in misfit 
reduction in first 10 generations (500 simulations) by getting to misfit values less 
than 6. After this period, the effort of the algorithms is mostly devoted to find 
global minimum and also discover more local minima in the search space. Table 11 
shows the first simulation for each of the algorithms that a model with misfit value 
less than 4 is found. Also this table shows the number of models that have misfits 
less than 4 in the next 250 simulations (5 generations) after getting the first model 
with a misfit below 4. NA is not represented in this table because the minimum 
misfit value for NA is 4.07. We see that DE-Best obtains the first model in 224th 
simulation while PSO gets to the first model after 415 simulations. DE-Rand 
spends more than 1200 simulations to get a model with a misfit value less than 4.  

 
Table 11 Performance of different algorithms in obtaining first model with misfit value less 
than 4 and number of models obtained with this threshold in next 250 simulations 

 
Algorithm DE-Rand DE-Best PSO ACO 

First simulation with misfit < 4 1285 224 415 790 
models with misfit < 4 in next 250 simulations 2 9 16 11 

 
Sampling history trails show how the algorithms navigate through parameter 

space in each dimension (see Figs. 15-19 for DE, PSO, ACOR and NA). In each 
figure variables of best individuals in each generation are plotted versus the 
generation number. Each figure has 45 tiles showing the 45 parameters we are 
optimising. We have the scaled parameters value (0, 1) in the vertical axis and 
generation number (0, 60) in the horizontal axis.  

 

Fig. 15 Sampling history of DE-Rand for PUNQ-S3 model. 
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Fig. 16 Sampling history of DE-Best for PUNQ-S3 model. 

 

 
 

Fig. 17 Sampling history of PSO for PUNQ-S3 model. 
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Fig. 18 Sampling history of ACOR for PUNQ-S3 model. 

 

 
 

Fig. 19 Sampling history of NA for PUNQ-S3 model. 

 
Sampling history trails give us more insight into the performance of the 

algorithms. For example let’s compare sampling history for PSO and DE-Best 
algorithms in Figs. 16 and 17. Looking at second row from top in these figures, 
which show parameters 28-36, we can see that DE-Best has more fluctuations in 
sampling performance. Also, we can see that DE-Best is mostly sampling from 
middle range of the parameters 28-36, while PSO keeps its search in upper 



Comparison of Evolutionary and Swarm Intelligence Methods  233
 

boundary of these parameters. Sampling figures show that DE-Best and PSO 
algorithms are obtaining different representations of reservoir model by sampling 
in different regions of the search space (multiple local minima) during history 
matching. This diversity of the reservoir models explain different gas oil ratio and 
water cut predictions in Figs. 12-13 for PSO and DE-Best algorithms. DE-Rand 
has a wider sampling performance (Fig. 15) in comparison with PSO and DE-Best 
algorithms. Neighbourhood Algorithm although covers most of the search space, 
but considering its convergence performance in Fig. 14, it is not successful in 
locating the good fitting models in the search space in this problem. An ideal 
situation is that we effectively reduce misfit value during optimisation while 
keeping the diversity of the obtained solutions. In section 5.2.2 we fill further 
explore the effect of sampling history in uncertainty quantification. 

5.2   Uncertainty of Predictions  

In the previous section we successfully showed that evolutionary and swarm 
intelligence algorithms can be used for finding multiple history-matched models. 
These algorithms sample from the prior rather than from the posterior. The 
resulting models have different probabilities which need to be evaluated from 
inference. Thus, a Markov Chain Monte Carlo (MCMC) technique is applied to 
the ensemble of models based on the likelihood values computed during the 
sampling stage.  

Here we use NA-Bayes (NAB) algorithm for posterior inference [32].  NAB is 
a MCMC technique which uses Gibbs sampler to make steps in one dimension of 
the parameter space at a time.  A proxy likelihood surface is also needed to make 
the inference computationally efficient once the flow simulation is not feasible to 
compute the likelihood evaluation for every MCMC step. The algorithm is based 
on the proxy likelihood surface represented by Voronoi cells that are centered 
around the sampled models in the parameter space. The likelihood within each 
Voronoi cell is assumed constant and equal to the one computed at the sampling 
stage for the corresponding model in the centre of the cell. NAB performs 
resampling with the probability of accepting the Metropolis step, which is 
proportional to the volume of the Voronoi cell and likelihood.  The cell volume is 
evaluated by MCMC integration. The main benefits of using NAB algorithm for 
this purpose are: 

 

1) It infers the information from the all models in the ensemble. The idea 
is that even bad models with high misfit values help to get more 
information about the uncertainty of predictions.  

2) There is no need to run forward reservoir simulations for all the 
models generated by the sampling algorithm, but only for the ones 
resampled by NAB. This helps to save computational resources.  

 

As a result, the resampled models from the ensemble at the inference stage are 
assigned the evaluated posterior probabilities. Prediction confidence intervals are 
derived from the probability density function based on the multiple model 
predictions taken with the evaluated posterior probability. 
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5.2.1   Teal South Reservoir 

In Teal South reservoir the history matching is done for 181 days and we extend 
the forecast for 1247 days. The ensemble of 1380 models generated using each of 
the algorithms is submitted to the NAB routine and Fig. 20 shows the uncertainty 
intervals of the prediction made for 1247 days. We can see that the predictions of 
all methods encapsulate the truth total production after 1247 days. PSO algorithm 
has the closest value to the truth production in this example. 

 

 
 

Fig. 20 Uncertainty intervals for total oil recovery after 1247 days in Teal South reservoir 
model obtained by different algorithms compared with the truth solution. 

5.2.2   PUNQ-S3 Model 

Prediction of total oil recovery after 16.5 years for PUNQ-S3 model is one of 
challenges of this problem. It has been shown that many methods give a good 
history matching result, yet fail to correctly predict the total oil recovery after 16.5 
years from this reservoir [28,33].  

Figs. 21 and 22 show the resampled models obtained by NAB routine and their 
match results for BHP of well 1 and cumulative oil production of the PUNQ-S3 
reservoir. Resampled models by NAB have lower misfit values and thus better fit 
to the observations. We use these models and their corresponding posterior 
probability values to quantify the uncertainty associated with the future 
predictions. 
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Figs. 23 and 24 compare the predictions of total oil recovery after 16.5 years 
obtained by the algorithms used in this work and other approaches reported 
previously [28].  

 
 

Fig. 21 Resampled modes and their match results for BHP of well 1(vertical dashed line 
shows the end of history period, solid line represents truth case solution). 

 
 
Fig. 22 Resampled modes and their match results for total oil recovery from the field 
(vertical dashed line shows the end of history period, solid line represents truth case 
solution). 
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Fig. 23 Uncertainty intervals in PUNQ-S3 model and its comparison with gradient methods 
and truth solution. 

 

 
 

Fig. 24 Uncertainty intervals in PUNQ-S3 model and its comparison with stochastic 
methods and truth solution. 
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Methods used for history matching and uncertainty quantification of PUNQ-S3 
which are reported in Figs. 23 and 24 are different in the following 3 aspects. The 
first difference is the parameterisation of the reservoir model, the second is that 
they use different methods to find good matching models (gradient, stochastic) 
and the third is the approach they take to quantify the uncertainty. These three 
aspects are equally important in reservoir engineering studies. In Figs. 23 and 24, 
we compare the results of published works for prediction of oil recovery in 
PUNQ-S3 model and our work. Fig. 23 shows this comparison between our work 
and the approaches that use a gradient-based optimisation technique for finding 
good fitting models [28] and Fig. 24 compares the stochastic-based methods used 
in previous publications [28, 33] and this work. Gradient-based methods in this 
study tend to provide wider and less accurate credible intervals than stochastic 
algorithms, though some exceptions are possible. Also most of the stochastic 
algorithms achieve P50 prediction closer to the true solution. However, it is 
important not to underestimate uncertainty which may be the case when credible 
intervals are based on too few inferred models. 

As we can see from above figures, all algorithms used in this work forecast an 
uncertainty range which covers the truth total production from PUNQ-S3 model. It 
is interesting to note that NA, which had a relatively poor performance in history 
matching, can still give a very good prediction for ultimate oil recovery. PSO and 
DE-Best slightly over-estimate the oil recovery from reservoir. Uncertainty 
estimate of DE-Best is closer to the truth solution in comparison with PSO. 
Looking back to the sampling figures (Figs. 16 and 17), we can see that DE-Best 
samples a wider range in the search space than PSO. Performance of the 
algorithms in sampling of the search space is reflected in their ultimate recovery 
predictions. In PUNQ-S3 case, a more diverse sampling of the search space (DE-
Rand) leads to a recovery estimate which is very close to truth value. NA did not 
find very good fitting regions in the search space, but it is able to make good 
predictions with wide sampling of the search space. 

6   Conclusions 

This chapter describes tackling uncertainty quantification problem using recently 
developed evolutionary and swarm intelligence optimisation algorithms. We 
describe the Bayesian framework to quantify uncertainty of petroleum reservoir 
models with multiple history-matched models. We search the space of parameters 
based on prior beliefs using stochastic optimisation algorithms and evaluate the 
posterior probability of the models via a Bayesian framework. We have reviewed 
and compared performance of different advanced adaptive stochastic algorithms: 
Ant Colony Optimisation, Differential Evolution, Particle Swarm Optimisation 
and Neighbourhood Algorithm for this purpose. The peculiarities of each 
algorithm are discussed by describing different flavours and tuning parameters of 
each algorithm.  
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The application is illustrated by two case studies: a simple model of a real 
reservoir (Teal South), and a more complex synthetic model (PUNQ-S3) with 
more degrees of freedom and variables.  All the reviewed algorithms have 
performed well in both case studies. The predicted uncertainty was compared with 
the result of the earlier studies where different types of optimisation algorithms 
have been used, both gradient and stochastic. 

 
The specific conclusions from this study are: 
 

1) For the Teal South reservoir the difference between the performance of 
the studied algorithms was marginal due to a relatively simple model 
with just eight free parameters and the univariate objective function 
based on the data from a single-well.  

2) In the PUNQ-S3 high dimensional problem, all algorithms also perform 
reasonably well in terms of the best history match models obtained. 
However, DE-Best algorithm and PSO with absorbing boundary strategy 
achieve slightly better fits then NA and ACO.  Also, both DE and PSO 
demonstrate faster convergence rates to the optimal solution than ACO 
and NA. 

3) Different algorithms are able to find different models of similar history 
match quality located in different regions of the parameter space. Such 
diverse models are essential for adequate representation of uncertainty 
and can be found because of the stochastic nature of the optimisation 
algorithms. The NA demonstrates a highly explorative behaviour by 
sampling from all regions of the parameter space to achieve a reasonable 
fit with good predictions. PSO and DE demonstrate the ability to jump 
from one local minimum to another, in search for good history matched 
models. 

4) All algorithms provide the confidence bounds which comfortably 
includes the true solution. The P50 prediction is close enough to the true 
solution in particular for PSO, DE and NA. Sampling behaviour of the 
optimisation algorithm has a direct impact on its prediction. Thus, the 
algorithms performing more exploratively tend to provide wider 
prediction confidence bounds. 

 
Uncertainty quantification using stochastic evolutionary algorithms in the 
Bayesian framework can be used for a wide range of prediction models beyond 
petroleum reservoir modelling.   
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Abstract. The Vehicle Routing Problem (VRP) is a complex combinatorial opti-
mization problem that can be described as follows: given a fleet of vehicles with
uniform capacity, a common depot, and several requests by the customers, find a
route plan for the vehicles with overall minimum route cost (eg. distance traveled
by vehicles), which service all the demands. It is well known that multiple Traveling
Salesman Problem (mTSP) based algorithms can also be utilized in several VRPs
by incorporating some additional constraints, it can be considered as a relaxation
of the VRP, with the capacity restrictions removed. The mTSP is a generalization
of the well known traveling salesman problem (TSP), where more than one sales-
man is allowed to be used in the solution. Because of the fact that TSP is already
a complex, namely an NP-hard problem, heuristic optimization algorithms, like ge-
netic algorithms (GAs) need to be taken into account. The extension of classical GA
tools for mTSP is not a trivial problem, it requires special, interpretable encoding
and genetic operators to ensure efficiency. The aim of this chapter is to review how
genetic algorithms can be applied to solve these problems, and propose a novel, eas-
ily interpretable and problem-oriented representation and operators, that can easily
handle constraints on the tour lengths, and the number of salesmen can vary dur-
ing the evolution. The elaborated heuristic algorithm is demonstrated by a complete
realistic example.
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1 Introduction

The aim of logistics is to get the right materials to the right place at the right time,
while optimizing a given performance measure (e.g. minimizing total operating
cost) and satisfying a given set of constraints (e.g. time and capacity constraints).
Supply chain management includes the planning and management of all activities
involved in sourcing, procurement, conversion, and logistics management as well
as crucial components of coordination and collaboration. It deals with several prob-
lems, like Distribution Network Configuration, Trade-Offs in Logistical Activities,
Inventory Management or Distribution Strategy. In most distribution systems goods
are transported from various origins to various destinations. For example, many re-
tail chains manage distribution systems in which goods are transported from a num-
ber of suppliers to a number of retail stores. It is often economical to consolidate
the shipments of various origin-destination pairs and transport such consolidated
shipments in the same truck at the same time. There are many ways in which such
consolidation can be accomplished. Obviously the challenge is to find the optimal
i.e. the best consolidation according to some objective functions. This is a numeri-
cal optimization problem, commonly an NP-hard task. In logistics, several types of
problems could come up; one of the most remarkable is the set of route planning
problems.

One of the most studied problems is the Vehicle Routing Problem (VRP), which
is a complex combinatorial optimization problem that can be described as follows:
given a fleet of vehicles with uniform capacity, a common depot, and several re-
quests by the customers, find a route plan for the vehicles with overall minimum
route cost (eg. distance traveled by vehicles) which service all the demands. The
complexity of the search space and the number of decision variables makes this
problem notoriously difficult. There are several commercial software on the market
like IBM’s ILOG1, which is based on a constraints programming optimizer, or the
ArcLogistics, a modular system by ESRI2, which includes a complete framework
for optimization and scheduling. VRP problems can be solved by ILOG indirectly
by the help of constraint programming. On the other hand, ArcLogistics provides a
complete solution for VRP including graphical interface, visualization component
or vehicle tracking. The available free softwares present only source codes, or a
programming library (like OR-object at http://opsresearch.com/), thus these imple-
mentations provide only a programming interface instead of a directly usable soft-
ware. A relaxation of the VRP is the multiple Traveling Salesman Problem (mTSP),
where the capacity of the vehicles is infinite, i.e. capacity restrictions are removed.
This means that all the solution procedures and formulations for VRP are also valid
for mTSP, by assigning accordingly large capacities to the vehicles (salesmen). If
there is only one salesman in the problem, the mTSP reduces to the well-studied
Traveling Salesman Problem (TSP). Since TSP is a special case of mTSP, all the

1 http://www.ilog.com/
2 http://www.esri.com/software/arclogistics/
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formulations and solution procedures remain valid for TSP. The available solvers for
TSP are more in number than the others above, a collection of them can be found
in [21]. In most cases, the distance between two nodes in the TSP network is the
same in both directions. The case where the distance from A to B is not equal to
the distance from B to A is called asymmetric TSP. A practical application of an
asymmetric TSP is route optimisation using street-level routing (asymmetric due to
one-way streets, slip-roads and motorways). Naturally every problem above is an
optimization problem where the solution will be optimal, if its cost is minimal. Be-
cause of the fact that TSP belongs to the class of NP-hard problems, it is evident that
mTSP and VRP are NP-hard problems too. Thus the approximate solutions need to
take into account, and the optimization procedures of them could necessitate some
heuristic improvements. The number of solvers for mTSP is much smaller than for
VRP. Some MATLAB implementation can be found in MATLAB Central3, and a
TSP solver, the Concorde package4 includes a linear programming based ANSI C
code to solve mTSP. These implementations are applicable for classical mTSP prob-
lems without special constraints and use approximate method to find the optimal
solution.

The main motivation of the research presented in this paper was that there was
no available algorithm that is "intelligent" enough to handle constraints on tour
lengths, asymmetric distances, and the number of salesmen is not predefined, and
can vary during the evolution of the individual solutions, furthermore the represen-
tation is so transparent that supports not only the implementation, but the initial-
ization and heuristic fine-tuning of the individual routes. Obviously every optimiza-
tion is an intelligent procedure, but they can be differentiating from each other by
the type of intelligence. The solution can include some heuristics to improve its
efficiency, like the appropriate choice of the initial solution set, or decision mak-
ing according to predefined aspects. Another manifestation of intelligence could
be a nature-inspired approach, like a nature-inspired representation of the problem.
It is certified in several papers in the literature that a representation elected cor-
rectly could improve the effectiveness of the solution procedure. Hence, this chap-
ter presents a novel, quite complex representation of the problem, and proposes
genetic operators that can be used for the effective optimization of constrained
mTSP problems.

Firstly, the definition of the problem will be given, the general theory of ge-
netic algorithms (GAs), particularly for mTSP, will be discussed, and the known
solutions, especially the GA-based approaches to solve mTSP, will be reviewed.
It is manifest from the earlier approaches, that the existing representations could
not represent the nature of mTSP sufficiently. Following this detailed introduction
a more sophisticated representation, and a novel genetic algorithm (GA) based so-
lution using this representation will be proposed. Finally some details about the
implementation and utilization of the algorithm will be presented.

3 http://www.mathworks.com/matlabcentral/fileexchange/?term=tag:"mtsp"
4 http://www.tsp.gatech.edu/concorde/
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2 Mathematical Representations and Optimization Algorithms
to Solve mTSP Based Problems

The multiple Traveling Salesman Problem (mTSP) [5] is a generalisation of the
well-known Traveling Salesman Problem (TSP) [21]. It consists of determining a
set of routes for m salesmen who all starts from, and get back to the home city
(depot). In the rest of the section, a problem definition, a review of variations and
application areas, and mathematical definitions will be given.

2.1 Problem Definition and Variations

In case of mTSP, a set of n nodes (locations or cities) are given and m salesmen are
located at a single depot node. The remaining nodes or cities that are to be visited
are the intermediate nodes. Then, the goal is to find tours for all m salesmen, who all
start and end at the central depot, such that each intermediate city is visited exactly
once, and the total travelling cost (the cost of visiting all nodes) is minimised. The
cost metric can be defined in terms of distance, time, etc.

The possible variations of the problem are as follows:

• Single depot: In the single depot case, all salesmen start from and end their tours
at a single central depot (see [29]).

• Multiple depots: If there exist multiple depots with a number of salesmen located
at each, the final destination of the salesmen can be at their original depot or they
can return to any depot, with the restriction, that the initial number of salesmen
at each depot remains the same after all the travel. The former is the so-called
fixed destination case, whereas the latter is named as the nonfixed destination
case (see [29]).

• Number of salesmen: The number of salesmen appearing in the problem can be
a bounded variable or determined a priori.

• Fixed charges: If the number of salesmen in the problem is a bounded variable,
then each salesman usually has an associated fixed cost, incurring whenever this
salesman is used in the solution. In this case, the minimisation of this bounded
variable may be involved in the solution process ([23]).

• Time windows: In this variation, certain cities need to be visited in specific
time periods, named as time windows. This extension of mTSP is referred to
as the multiple Traveling Salesman Problem with Time Windows (mTSPTW).
mTSPTW has immediate applications in school bus, ship and airline scheduling
problems ([11]).

• Other restrictions: These additional special restrictions can consist of bounds of
the number of cities each salesman can visit, the maximum or minimum distance
or travelling duration a salesman travels, or other special constraints.

Further information about the variations of TSP and mTSP can be found in [5]
and [21]. In our case, the problem can be defined as an asymmetric multiple Trav-
eling Salesman Problem with Time Windows (mTSPTW) with additional special
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constraints, where the number of salesmen is an upper bounded variable. The deter-
mined constraints are the following:

• maximum number of salesmen
• maximum travelling time / distance of each salesman
• time window at each location

2.2 Practical Applications of mTSP

mTSP is more capable to model real life applications than TSP, since it handles
more than one salesman. This section describes some applications to demonstrate
the practical importance of the problem. Further information about applications can
be found in [21].

One of the principal applications of mTSP is the scheduling of a printing press
for a periodical with multi-editions [19]. Five pairs of cylinders exist here between
which the paper can roll, and both side of the paper printed concurrently. There
exist three type of forms, and the scheduling problem consists of choosing which
form will be on which run, and the duration of each run. The inter-city costs is
identified by the plate change costs. One of the primary applications is the school
bus scheduling, given by Angel at al. [2], which is a modified mTSP with additional
side constraints. The goal is to obtain a bus loading pattern while the number of
routes is minimized, the total travelling distance by all the buses is kept at minimum,
no bus is overloaded, and there exist a maximum travelling time for each route.
Another early application was presented by Beltrami et al. [6]. This paper focuses
on municipal waste collection, and it addresses the problem of efficiently routing
garbage trucks for residential collection. Another application, a crew-scheduling
problem can be found in [39], which reports an application for deposit carrying
between different branch banks. Here, trusts need to be picked up at banks and
returned to the central office by a crew of messengers. The problem is to determine
the routes of messengers with a total minimum cost.

mTSP can be effectively used in waste collection problem, which can be found
in the work of Bautista et al. in [4]. In this paper, authors solve the NP-hard problem
by the help of a constructive metaheuristic approach: the ant colony optimisation
method. Mission planning includes the scheduling of autonomous mobile robots,
like warehouse automation, military reconnaissance or post-office automation. The
mission plan consists of determining the optimal path for each robot to accomplish
the goals of the mission, in the smallest possible time. For this problem, a variation
of mTSP can be used, where n robots exist and n goals need to be visited by some
robot, and a home city also exists to where all the robots need to return. Planning
of autonomous robots is modelled as a variant of the mTSP by Yu et al. [42] in the
field of cooperative robotics.

A very recent application arises in the design of global navigation system sur-
veying networks [38]. A GNSS is a space-based satellite system which provides
coverage for all locations worldwide, and are quite crucial in real-life applications
such as early warning and management for disasters, environment and agriculture



246 A. Király and J. Abonyi

monitoring, etc. The objective is to determine the geographical positions of un-
known points on and above the earth using satellites.

2.3 Mathematical Formulations of mTSP

Usually, mTSP is formulated by different type of integer programming formula-
tions. Before presenting them, some technical definitions will be presented. The
mTSP is defined on a graph G = (V,A), where V is the set of n nodes (vertices) and
A is the set of arcs (edges). Let C = (ci j) be a cost (distance or duration) matrix asso-
ciated with A. The matrix C is symmetric when ci j = c ji,∀(i, j) ∈ A and assymetric
otherwise. If ci j + c jk ≥ cik,∀i, j,k ∈V , C is said to satisfy the triangle inequality.

2.3.1 Assignment-Based Integer Programming Formulations

mTSP is usually defined using an assignment-based double-index integer linear pro-
gramming formulation. Let’s define the following binary variable:

xi j =
{

1 if arc (i, j) is used on the tour
0 otherwise

A general scheme of the assignment-based directed integer linear programming for-
mulation of the mTSP can be given as follows:

minimize
n

∑
i=0

n

∑
j=0

ci j · xi j (1)

s.t.
n

∑
j=1

x1 j = m, (2)

n

∑
j=1

x j1 = m, (3)

n

∑
i=0

xi j = 1, j = 1, . . . ,n, (4)

n

∑
j=0

xi j = 1, i = 1, . . . ,n, (5)

+ subtour elimination constraints, (6)

xi j ∈ {0,1},∀(i, j) ∈ A (7)

where (4), (5) and (7) are the usual assignment constraints, (2) and (3) ensure that
exactly m salesmen start end return back to the central depot (node 0). Constraints
(6) are used to forbid subtours, which are degenerate tours that are formed be-
tween intermediate nodes, and not connected to the depot. The constraints are the
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so-called subtour elimination constraints (SECs). Several SECs have been proposed
for mTSP in the literature, some are discussed in [5].

2.3.2 Modified Assignment-Based Formulations Related to Present Problem

As it was mentioned in section 2.1, the problem which is analysed in this chapter,
is more complex than the traditional mTSP problem. It is a so-called mTSPTW
with additional constraints, which can be formulated as follows. Let us define the
following binary variable:

xi jk =
{

1 if arc (i, j) is used on the tour of the kth salesman
0 otherwise

Let’s define M as the maximum number of salesmen, and S as the maximum length
of any tour in the solution. Furthermore, let’s define the cost (distance or duration)
matrix associated with A as Ct = (ct

i j), where ct
i j = ci j + ctw

j , and ci j is the ordinary
cost (e.g. distance) of the arci j, and ctw

j is the cost of the time window. Time win-
dow means, that every salesman has to wait in each location, which can be e.g. the
duration of loading the goods. Obviously, Ct can’t be a symmetric matrix, since in
a real life application ci j �= c ji,∀(i, j) ∈ A, because of there can exist e.g. one-way
roads. Thus, the optimisation problem can be given as follows:

minimize
n

∑
i=0

n

∑
j=0

ct
i j ·

m

∑
k=1

xi jk + m · cm (8)

s.t.
n

∑
j=1

m

∑
k=1

x1 jk = m, (9)

n

∑
j=1

m

∑
k=1

x j1k = m, (10)

n

∑
i=0

m

∑
k=1

xi jk = 1, i = 2, . . . ,n, (11)

n

∑
j=0

m

∑
k=1

xi jk = 1, j = 2, . . . ,n, (12)

+ subtour elimination constraints, (13)
n

∑
i=0

n

∑
j=0

ct
i j · xi jk ≤ S, k = 1, . . .m, (14)

xi jk ∈ {0,1},∀(i, j) ∈ A,1 ≤ k ≤ m,1 ≤ m ≤ M (15)

If we use the newly introduced binary variable, equation (1) is altered into equation
(8), where the cost of the involvement of a salesmen appears too (cm). (9) - (12) are
equal with equation (2) - (5) using the binary variable xi jk, and (14) ensures that the
tour length of each salesmen is under the specified bound, S.
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Furthermore, if we want to add penalty for the salesperson who reaches the max-
imal tour length, the above formalism could change slightly. Let

n

∑
i=0

n

∑
j=0

ct
i j · xi jk = Ek, k = 1, . . .m, (16)

Thus, equation (8) is changed in the following way:

minimize
m

∑
k=1

(Ek +λ ·max(Ek −S,0))+ m · cm (17)

In (17), the penalty is proportional to the tour length of a salesmen above the upper
bound S, while the degree of the punishment is determined by the constant λ , which
value much depends on the range of ci j. Note that another sort of penalty could be
a cutoff of the route of a salesmen who reaches the upper bound (see section 5.2).

2.4 Approaches to Solve mTSP

In the last two decades the traveling salesman problem received quite big attention,
and various approaches have proposed to solve the problem, e.g. Branch-and-Bound
[13], cutting planes [28], neural network [7] or tabu search [17]. Some of these meth-
ods are exact algorithms, while others are near-optimal or approximate algorithms.
The exact algorithms usually use integer linear programming approaches with addi-
tional constraints.

The mTSP is much less studied like TSP problem. [5] gives a comprehensive re-
view of the known approaches. There are several exact algorithms of the mTSP with
relaxation of some constraints of the problem, like [25], which is the first approach
to solve the mTSP directly, without any transformation of the TSP. In this problem,
each salesman has a fixed cost f , which is activated whenever a salesman is acti-
vated in the solution. The solution in [1] is based on Branch-and-Bound algorithm,
which is applicable for asymmetric, as well as symmetric problems. Another exact
solution method is in [20]. This approach is based on a quasi-assignment relaxation
obtained by relaxing the subtour elimination constraints (SECs).

Recent research can be found in [12], where mTSP is optimised by mixed
method. Authors combined Particle Swarm Optimization with Ant Colony Opti-
mization to find the best solution of the problem. Another recent solution is pre-
sented in [30] where authors used K-Means Clustering, Shrink Wrap Algorithm and
Meta-Heuristics to solve the mTSP. A multi-objective approach can be found in
[15], where the multiple objective ant colony optimization is used for the bi-criteria
TSP.

Lately GAs are also used for optimization of mTSP. The previous GA-based so-
lutions will be discussed in section 3. In the literature there are several examples that
a good problem-specific representation can dramatically improve the efficiency of
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genetic algorithms. A problem-specific individual design can reduce the search-
space, and in this case, it is needed to implement special operators which can sim-
ulate the nature of the problem. These properties can make the problem-specific
genetic algorithm more effective for the given task, and it becomes more easily
interpretable.

GAs are direct, random search algorithms, based on the evolutionary model [18],
related with Darwin’s evolutionary theory. The researches of GAs have begun in the
sixties by J.H. Holland [22]. GAs belong to the evolutionary computation (EC) [3]
methods, thus their terminology is closely related to biology. Each solution of the
problem, or equivalently, each point in the search space is represented by an individ-
ual which consists of chromosomes, and chromosomes consist of genes. Individuals
constitute a population, which contains all possible solutions. The method is based
on the collective learning process of the population. The individuals are improved
in the course of iterations by the partway forthcoming operators, like selection,
crossover and mutation.

More recently, GAs are successfully implemented to solve TSP [16]. Potvin
presents a survey of GA approaches for the general TSP [33]. In case of mTSP,
due to its combinatorial complexity, it is necessary to apply some heuristic in the
solution, especially in real-sized applications. One of the first heuristic approach
were published by Russell [37] and an other procedure is given by Potvin et al.
[34]. The algorithm of Hsu et al. [24] presented a Neural Network-based solution.
Lately GAs are used for the solution of mTSP too. The first result can be bound
to Zhag et al. [43]. Most of the work on solving mTSPs using GAs has focused
on the Vehicle Scheduling Problem (VSP) [26, 31]. VSP typically includes addi-
tional constraints, like the capacity of a vehicle (it also determines the number of
cities each vehicle can visit), or time windows for the duration of loadings.Recent
application can be found in [40], where GAs were developed for hot rolling
scheduling. There are no constraints on the route lengths of the salesmen, and it
introduces a lot of dummy nodes and some additional binary variable, thus it can
convert the mTSP into a single TSP and apply a modified GA to solve the problem.
You et al. [42] use GAs to solve the mTSP in path planning. A new approach of
chromosome representation, the so-called two-part chromosome technique can be
found in [9], which reduces the size of the search space by the elimination of re-
dundant solutions. According to the referred paper, this representation is the most
effective one so far. The related representations for mTSP will be studied in
section 3.2.2.

Although the salesmen in mTSP are separated from each other "physically",
every previous solutions of mTSP with GA has used a single chromosome to rep-
resent a whole solution, i.e. to represent each salesman. This type of representation
requires several "transformation steps" to extract the individual tours of the sales-
men, and does not support genetic operators defined among solutions with different
number of salesmen. Rely on the previous considerations, the chapter introduces a
new representation for this problem class, which can separate the salesmen from
each other, thus it is more similar to the characteristic of mTSP.
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3 Application of Genetic Algorithms to Solve mTSP

3.1 Introduction to Traveling Salesman Specific GAs

GA starts with an initial solution set, which contains individuals created randomly.
This is called initial population. The initial step can mightily improve the efficiency
of the algorithm, thus a new start strategy can be momentous. The new population is
always generated form the actual population’s participants by the genetic operators.
The generation of new populations is continued until a predefined stop criteria is
satisfied.

Fig. 1 The life cycle of genetic algorithms.

Fig. 1 shows the general case of GA’s life cycle. Obviously in a specific problem,
this process can be much more complicated, almost in every step specific realization
can be required. The first important task is to choose the encoding of the chromo-
somes, considering crossover and mutation operators. A very important problem
is the determination of parents. Several opportunities exist, but most often the al-
gorithm selects the participants with a better attribute with (or with better fitness
value) bigger probability. The reason of this consideration is that individuals with
better fitness could produce descendants with better properties.

If the new population was composed from the newly created descendants only,
the old population’s best individual may be lost. To eliminate this deficiency, a
new approach, the so-called elitism was introduced. This method ensures that the
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previous population’s best individual will get into the new population without any
modification, thus the best solution found so far will survive during the whole evo-
lutionary process.

3.2 Encoding

The encoding of the problem is the mapping of the phenotype to the genotype, while
decoding is the inverse operator, calculating the parameters of phenotype from the
genotype. Genotype codes the genetic information of the individual, this is the rep-
resentation of the problem. The crossover and mutation operators operates on the
genotype. The related encoding techniques to mTSP will be reviewed below.

3.2.1 Permutation Encoding

Permutation encoding is only used in ordering problems, such as Traveling Sales-
man Problem or task ordering problem. Every chromosome is a string of numbers,
which represents numbers in a sequence (see [16]). This technique can be useful for
ordering problems, however, special operators are needed to keep the new individu-
als consistent after crossover and mutation.

Fig. 2 Permutation encoded chromosomes.

3.2.2 Encoding Related to mTSP

In this section, a review of the existing GA representations related to mTSP will be
presented. A simple example route-system is represented in Fig. 3. The following
representations will encode this problem into the genes of the chromosomes.

The first approach is the so-called one chromosome technique [43], which is illus-
trated in Fig. 4. It uses a single chromosome of length (n + m−1) (n is the number
of locations and m is the number of salesmen). The cities are represented by a per-
mutation of integers from 1 to n. This permutation is divided into m subtours by
the insertion of m− 1 negative integer values, which represents the turn from one
salesmen to the next. The cities in a subtour is in the order of the visitation of the
salesman. The corresponding route-system is shown in Fig. 3. Using this chromo-
some representation, there are (n + m−1)! possible solutions of the problem.

Fig. 5 illustrates another approach for chromosome representation of solutions in
mTSP (with n = 15 and m = 4), the so-called two chromosome technique [26, 31].
This method requires 2 chromosomes, each of length n. The first chromosome
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Fig. 3 Example route-system with 15 cities and with 4 salesmen.

Fig. 4 Example of one chromosome representation for a 15 city mTSP with 4 salesperson
([9]).

Fig. 5 Example of two chromosome representation for a 15 city mTSP with four salesperson
([9]).

contains a permutation of the n cities, and the second one assigns a salesperson
to each locations in the same position of the first chromosome. Using this represen-
tation, the search space (i.e. the number of possible solutions) is n! ·mn.

A quite new approach of chromosome representation, the so-called two-part
chromosome technique can be found in [9], which reduces the size of the search
space by the elimination of redundant solutions. As Fig. 6 shows this approach rep-
resents a solution by a single chromosome. The first part is a permutation of integers
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Fig. 6 Example of two-part chromosome representation for a 15 city mTSP with 4 salesmen
([9]).

from 1 to n (number of locations), representing the n cities, and the second part of
the chromosome represents the number of cities assigned to each of the m sales-
person. The related routes are shown in Fig. 3. According to the cited paper, this
representation is the most effective one so far.

3.3 Evaluation of Population

The evaluation of population is done by calculating the fitness value for each in-
dividual, which is a real number. Each individual has an objective-score which is
calculated by the algorithm. The fitness is calculated from the objective score with
a possibility of taking the other individuals into account. The objective score is
an intrinsic parameter to the optimization problem, thus could not be modified to
enhance the evolution process. However, the mapping of objective score to fitness
value makes it available to adjust the goodness of an individual for selection.

The type of objective-score to fitness mapping is either scaling or ranking. In
case of scaling, the fitness is a function of the objective-score, while in the case of
ranking, the population are sorted according to the objective-score, and the fitness
value of the individuals depend on the position in the ranking. Note that in many
cases, objective-score and fitness value are identical ( f (x) = x).

In case of mTSP usually the objective-score and equivalently the fitness value of
an individual is the sum of distances (durations) travelled by each salesman. The
additional constraints like maximal overall travelling distance refers to this value. If
a solution exceeds this constraints, some punishment will be applied, like a propor-
tionately huge fitness value, or the application of a special penal operator.

3.3.1 Operators

A big number of genetic operators can be found in the literature, general ideas are
presented in [8, 16, 18], operators for sequencing problems are in [14]. Expressly
multi-chromosomal approach can be found in [32], and operators refer to TSP are
presented in [27]. In the following sections only a theoretical overview will be given.
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Selection

During GA, two kind of selection exist: selection for reproduction and selection for
survival. The former selects the individuals from the population for reproduction
(parents), and the latter selects the individuals of the new population. This section
presents a widely used selection techniques for reproduction, which is used by the
novel algorithm presented in section 4. A detailed description of selection schemes
is presented in [8].

Tournament Selection

Individuals are chosen from the population randomly for the so-called tournament,
in which the individual with best fitness is selected as the winner. The number of
chosen members for the tournament is determined by the tournament size (t), which
is between 2 and μ , where μ is the size of the population. The winner can either
be removed from, or kept in the population, if it is allowed or disallowed to select
an individual multiple times. Tournament selection has a time complexity of O(N).
The selection pressure is adjustable through the size of the tournament.

Crossover

Crossover or recombination creates new individuals from the genes of the parents.
The easiest way is the one-point crossover, which is shown on the left hand side
of Fig. 7. One crossover point is randomly selected (the 3th gene in the example),
and the two descendants are created by interchanging the parents’ genes after the
crossover point. Similarly, the course of two-point crossover (right hand side of
Fig. 7) two crossover point is randomly selected, and the genes of the parents are
interchanged before and after the crossover points.

Fig. 7 One-, and two-point crossover of binary encoded individuals.

Mutation

After crossover happened, during the mutation randomly chosen genes are selected
and the operator changes their value into an other possible value. An example can be
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seen in Fig. 8. Mutation can prevent the algorithm from the convergence to a local
extrema. Mutation like crossover largely depends on the encoding of the problem.

Fig. 8 Mutation of binary encoded individuals.

Genetic algorithms have further parameters, which could effect the efficiency of
the GA. Crossover probability determines how often the crossover occurs. If no
crossover happens, descendants will be equivalent with their parents, otherwise the
descendant will consist of the copy of the parents’ genetic parts. If the crossover
probability is 100%, every offspring will created by crossover, however if it is 0%,
the new individuals will be the exact copy of the old population’s members (note
that it doesn’t mean that the two population are equal). It is advisable to transmit the
best individuals into the new population without any modification.

Mutation probability determines how often the mutation is used on the offsprings.
If no mutation happens, the offspring will be the result of the crossover, or of the
copy. If mutation happens, some part of the chromosome will change, in case of
100%, every descendant will change, otherwise (0%) no modification will occur.

The population size defines the number of individuals in the population. If it is
too small, the algorithm couldn’t cover the whole search space. When population
size is too big, the GA will slow down.

4 The Proposed Approach to Solve mTSP

There are several representations of mTSP (see Sect. 2.4), like one chromosome
technique [43], the two chromosome technique [26, 31] and the latest two-part chro-
mosome technique [9]. As mentioned in the previous section, every GA-based ap-
proach for solving the mTSP has used single chromosome for representation so far.
The new approach presented here is a so-called multi-chromosome technique, which
separates the salesmen from each other thus may provide more effective approach.

Authors should mention that the representation which is presented here is not
a "classical" multi-chromosomal representation, because in evolutionary computa-
tion, every chromosome of the population represents a global solution of the prob-
lem. However, the classical nomenclature of evolutionary computation couldn’t give
an opportunity to the authors for a proper denomination, since inside an individual,
the salesmen are separated from each other. These separations are named as chro-
mosomes (namely a chromosome represents a salesman), as it will be presented in
the next sections.
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4.1 The Novel Representation for mTSP

The selection and the evaluation of the representation of a problem may have many
aspects. Obviously most of the different genetic representations of the same opti-
mization problem could be transformed into each other. For example, the two-part
chromosome representation can be easily transformed into the two chromosome
representation. However, the transformation can be very expensive computation-
ally. The design of a novel representation can base on several respects. Authors
have developed a novel genetic representation for mTSP which is suitable for the
implementation of the limit handling, which is easy to initialize, and which makes
the local search inside a route of a salesman possible. This novel approach will be
presented in the rest of this section.

The multi-chromosome approach is used in notoriously difficult problems to de-
compose complex solution into simpler components. It was used in mixed integer
problem [32] or in order problems [41]. A usage of routing problem optimization
can be seen in [35] and a lately solution of a symbolic regression problem in [10].
This section discusses the usage of multi-chromosomal genetic programming in the
optimization of mTSP.

Fig. 9 Example of the multi-chromosome representation for a 15 city mTSP (n = 15) with 4
salesperson (m = 4).

Fig. 9 illustrates the proposed chromosome representation for mTSP with 15
cities (n = 15) and with 4 salesmen (m = 4). It shows a single individual of the
population, which represents a single solution of the problem. The first chromo-
some represents the first salesman itself, thus each gene denotes a city (cities were
numbered previously, depot is not presented here, it is the first and the last sta-
tion of each salesman). This is the so-called permutation encoding, because a se-
quence of numbers are encoded into the genes (section 3.2.1). The order of the
cities was defined previously. It is in evidence in the example that salesperson 1
visits 4 cities: city 2, 5, 14 and 6, respectively. In the same way, chromosome 2
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represents salesperson 2, which visits city 1, 11 and 8 respectively, and so on. This
representation is much similar to the characteristic of the problem, because sales-
men are separated from each other "physically". Furthermore, authors consider this
representation more easily interpretable.

4.2 Special Operators for the Proposed Representation

As it was mentioned in subsection 3.3.1, a lot of genetic operators are presented
in the literature. Most of them can be created from other operators, e.g. a multi-
chromosomal mutation can be constructed from multiple single-chromosome mu-
tations. The examples in the following subsections have the same properties, but
the new representation necessitates the introduction of new genetic operators, like
mutation operators. There are two sets of mutation operators, the so-called In-route
mutations and the Cross-route mutations. Authors have implemented several oper-
ators for the novel representation, but only an overview of them are given in the
following subsections.

4.2.1 In-Route Operators

In-route mutation operators work inside one chromosome. The first operator chooses
a random subsection of a chromosome and inverts the order of the genes inside it
(Fig. 10). The second operator reverses two randomly chosen genes in the given
chromosome (Fig. 11) and the third put a randomly chosen gene into a given place
as it can be seen in Fig. 12.

Fig. 10 In-route mutation - gene sequence inversion.

Fig. 11 In-route mutation - gene transposition.

4.2.2 Cross-Route Operators

Cross-route mutation operates on multiple chromosomes. If we think about the
distinct chromosomes as individuals, this method could be similar to the regular
crossover operator. Fig. 13 illustrates the method when randomly chosen subparts
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Fig. 12 In-route mutation - gene insertion.

of two chromosomes are transposed. If the length of one of the chosen subsections
is equal to zero, the operator could transform into an interpolation.

In Fig. 14 it can be seen a contraction of two chromosomes. In this situation the
number of routes in the newly created individual is decreased by one. Fig. 15 illus-
trates the inverse operation of chromosome contraction. In this case a single chro-
mosome is partitioned into two new chromosomes in the newly created individual,
thus the number of salesmen is incremented by one.

Fig. 13 Cross-route mutation - gene sequence transposition.

Fig. 14 Cross-route mutation - chromosome contraction.

4.3 Complexity Analysis of the Proposed Representation

Using the multi-chromosome technique for the mTSP reduces the size of the overall
search space of the problem. Let the length of the first chromosome be k1, let the
length of the second be k2 and so on. Of course ∑m

i=1 ki = n. Determining the genes
of the first chromosome is equal to the problem of obtaining an ordered subset of
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Fig. 15 Cross-route mutation - chromosome partition.

k1 element from a set of n elements. There are
n!

(n− k1)!
distinct assignment. This

number is
(n− k1)!

(n− k1− k2)!
for the second chromosome, and so on. So the total search

space of the problem can be formulated as equation (18).

n!

����(n− k1)!
∗ ����(n− k1)!

������(n− k1 − k2)!
∗ . . .∗���������

(n− k1− . . .− km−1)!
(n− k1 − . . .− km)!

=
n!

(n−n)!
= n! (18)

It is necessary to determine the length of each chromosome too. It can be represented
as a positive vector of the lengths (k1,k2, . . . ,km) that must sum to n. There are(

n−1
m−1

)
distinct positive integer-valued vectors that satisfy this requirement [36].

Thus, the solution space of the new representation is n!

(
n−1
m−1

)
. It is equal with

the solution space in [9], but this approach is more similar to the characteristic of
the mTSP, so it can be more problem-specific therefore more effective, as it will be
proven in section 5.3.

5 Implementation of the Proposed Representation

To analyze the new representation, a GA using this approach was developed in MAT-
LAB. The new algorithm is capable to optimise the traditional mTSP problems, fur-
thermore, it can handle the additional constraints and time windows (see Sect. 2).
The new approach was compared with the best known one (the two-part chromo-
some technique) which is available on MATLAB Central5. Some example code
fragments will be presented in the next sections, but the complete actual MATLAB
implementation of the algorithm is available on the website of the authors6.

5 http://www.mathworks.com/matlabcentral/
6 http://www.fmt.uni-pannon.hu/softcomp/
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5.1 General Description of the Novel Algorithm

The algorithm requires two input sets, the coordinates of the locations (for visual-
isation), and the distance matrix which contains travelling distances (in kilometres
or in minutes) between any two cities. Furthermore, it requires some parameter de-
termination, like population size, iteration number or the additional constraints. The
depot is not presented here, because of complexity reduction (see Sect. 4.3). After
these steps, the initial population can be created, which consists of randomly created
individuals.

The fitness function simply summarizes the overall route lengths for each sales-
man inside an individual. The selection is tournament selection, where tournament
size i.e. the number of individuals who compete for survival is 8. Therefore pop-
ulation size must be divisible by 8. The winner of the tournament is the member
with the smallest fitness, this individual is selected for new individual creation, and
this member will get into the new population without any modification. The imple-
mented operators will be discussed in the next section.

The penalty of routes which exceed the constraints (too long routes) is realised
in an uncommon way. Not a proportionately big fitness value (or a large cost) is
assigned, but these chromosomes are split by the chromosome partition operator
(Sect. 4.2.2). In this way, too long routes are separated into smaller routes, which do
not exceed the constraints (but the number of salesmen is incremented). Because
there exists a constraint for the number of the salesmen, the algorithm involves
the minimization of this amount, hence this penalty has a remarkable effect on the
optimization process.

5.2 Implementation Issues

The creation of initial population is shown in MATLAB code 1. For simplicity, two
separated population has been created for routes and for breaks, filled with random
data (line 1-6).

In line 8-16 this representation is transformed into the multi-chromosome format
(discussed in Sect. 4.1), thus a single pop cell array exists. In this pop variable,
every member is a candidate solution, and every member has several chromosomes
(line 14).
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MATLAB code 1 Initialiazion of the population

1 p o p _ r t e = z e r o s ( pop_s i ze , n ) ; % p o p u l a t i o n o f r o u t e s
2 pop_brk = c e l l ( pop_s i ze , 1 ) ; % p o p u l a t i o n o f b r e a k s
3 f o r k = 1 : p o p _ s i z e
4 p o p _ r t e ( k , : ) = randperm ( n ) ;
5 pop_brk {k} = r a n d b r e a k ( ) ;
6 end

7

...
8 f o r k = 1 : p o p _ s i z e
9 p _ r t e = p o p _ r t e ( k , : ) ;

10 p_brk = pop_brk {k } ;
11 s a l e s m e n = l e n g t h ( p_brk ) +1;
12 rng = [ [ 1 p_brk + 1 ] ; [ p_brk n ] ] ' ;
13 f o r j =1 : s a l e s m e n
14 pop {k} .chromosome { j }= p _ r t e ( rng ( j , 1 ) : rng ( j , 2 ) ) ;
15 end
16 end

The fitness assignment can see in MATLAB code 2 in line 1-4. dindist is an
external function which calculates the data of each tour inside a candidate solution.
total_dist and total_time variables contain the overall length and duration of the
routes for an individual.

From line 7 a redesign happens, which depends on the constraint violation. If one
of the routes in a solution exceeds the constraint of maximal length (line 10-14), the
route in question is partitioned into 2 routes by the chromosome partition operator
(line 12-13, and 16-18). Note that the penetration which was mentioned in equation
(17) can be implemented inside the dindist function (it is available on the authors
website, see footnote 6). Finally the individuals are evaluated again.

MATLAB code 2 Fitness assignment and penalty

1 f o r p = 1 : p o p _ s i z e
2 o u t p u t {p} = d i n d i s t ( pop {p } ) ; %Eval t h e member o f pop
3 t o t a l _ d i s t ( p ) = o u t p u t {p} . t o t a l D i s t ;
4 t o t a l _ t i m e ( p ) = o u t p u t {p} . t o t a l T i m e ;
5 end
6 %Redes ign
7 f o r p = 1 : p o p _ s i z e
8 dum = [ ] ;
9 f o r i = 1 : l e n g t h ( o u t p u t {p} . d i s t )

10 ddum1 = f i n d ( cumsum ( o u t p u t {p} . d i s t { i } ) >max_route ) ;
11 i f s i z e ( ddum1 ) >0
12 dum = [ dum pop {p} .chromosome { i } ( ddum1 ( 1 ) : end ) ] ;
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13 pop {p} .chromosome { i } ( ddum1 ( 1 ) : end ) = [ ] ;
14 end
15 end
16 i f s i z e ( dum ) >0
17 pop {p} .chromosome { i +1} = dum ;
18 end
19 %Eval t h e member o f pop
20 o u t p u t {p} = d i n d i s t ( pop {p } ) ;
21 t o t a l _ d i s t ( p ) = o u t p u t {p} . t o t a l D i s t ;
22 end

MATLAB code 3 shows some example of the implemented operators. Line 2 and
3 present In-route mutations, and lines 6-7 show a Cross-route mutation.

MATLAB code 3 Examples of the implemented genetic operators

1 % F l i p
2 tmp{k} .chromosome { s } ( I : J ) =tmp{k} .chromosome { s } ( J :−1: I ) ;
3 % Swap
4 tmp{k} .chromosome { s } ( [ I J ] ) =tmp{k} .chromosome { s } ( [ J I ] ) ;
5 % C r o s s o v e r
6 tmp{k} .chromosome { s }=[ dum1a dum2b ] ;
7 tmp{k} .gchromosomeene { sc }=[ dum2a dum1b ] ;

5.3 Evaluation of the Proposed Approach

To analyse the effectiveness of the new representation, it was tested by several ex-
amples. Two of them are presented here. The first example has created in order to
test the algorithm. It is shown in Fig. 16, it consists of 3 loops with 10-10 points,
and depot is denoted by a circle. The second example is a realistic problem, where
input is defined by a Google Maps map, it can be seen in Fig. 17. It contains 1 depot
(lighter marker) and 24 additional locations.

The results are presented in Fig. 18 and in Fig. 19. For comparison, the new
representation was compared with an existing MATLAB implementation7. This
implementation realises the so-called two-part chromosome approach [9], which
is the best technique for mTSP using GA in many cases so far. Obviously the com-
parison of two different genetic algorithms couldn’t be totally adequate, because
the performance of GAs greatly vary as the function of their parameters. Thus, one
parameter setting which is appropriate for one algorithm, could be disadvantageous
for the other. Hence, only some experimental results will be presented here to show
the possible capabilities of the novel representation and algorithm.

7 This can be downloaded from MATLAB Central
(http://www.mathworks.com/matlabcentral/
fileexchange/?term=tag%3A"multiple+traveling+salesmen+problem").



Optimization of mTSP by a Novel Representation Based Genetic Algorithm 263

Fig. 16 Simple example for testing.

Fig. 17 Example of input data for distance matrix calculation.

In each cases the population size was 160 and iteration number was 500. The fig-
ures below show an average result of 60 runs of the algorithm, during a single run,
the initial population of the two variety of the algorithm was the same. Figures show
unambiguously that the new approach produces better results in these cases. The
founded minimum is equal in both cases, but the multi-chromosome technique can
converge to the optima faster. In the example above (Fig. 18) multi-chromosome ap-
proach needed only 167 iterations to find the optimal value (210.46), while two-part
chromosome technique required 314 iterations. At the realistic example (Fig. 19)
with a little bit smaller location number, the rate of the iteration numbers are quite
the same, the new approach required 60 iterations, while the other method needed
134 to find the optimum. As we expected, at the synthetic example the algorithm
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Fig. 18 Result of efficiency analysis - synthetic example.

Fig. 19 Result of efficiency analysis - realistic example.

resulted that 3 is the optimal number of salesperson, while in case of the realistic
example this number was 2.

The execution time of the algorithms was equal in most cases, which is due to
the equal complexity of the representations. Thus, the representations can be com-
parable only in case of best objective function value per iteration. These and other
test issues denote that the novel representation, which is presented in this chapter,
can be more effective for the solution of mTSP problems with GAs, than any other
approaches so far.

Summarised, a novel representation based GA was developed to solve the mTSP,
which solution shows a more efficient approach than the previous ones, proved by
several test issues. Furthermore, the new algorithm can handle the constraints for
the routes and the time windows for the locations too, as well as it’s representation
is more similar for the characteristic of the problem than the ones until now, thus it
can be more easily understandable and realisable.
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6 Application Studies

In this section a whole process of a real problem’s solution will be presented. The
problem is given in a Google Maps map, and the final output is a route system
defined by a Google Maps map also.

The first step is the determination of the distance matrix. The input data is given
by a map as it can see in Fig. 20 and a portion of the resulted distance table is shown
in Table 1. It contains 25 locations (with the depot). The task is to determine the
optimal routes for these locations with the following constraints:

• maximum number of salesmen is 5
• maximum travelling distance of each salesman is 450 km

Fig. 20 The map of the studied application (initial input).

Table 1 Example distance table - kilometres.

Kilometres Adony Celldömölk Kapuvár
Adony 0 169.89 147.53
Celldömölk 169.41 0 44.42
Kapuvár 146.56 44.43 0

After distance matrix determination the algorithm computes the solution with the
new representation. The GA ran with population size 320 and it did 200 iterations.
The result of the optimisation is shown on the upper side of Fig. 21.

It resulted that 4 salesman is enough to satisfy the constraints. With the visualiser
component we can visualise the results, as it is shown on the lower side of Fig. 21.
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Fig. 21 Results of the optimization by MATLAB and by the Visualiser component for 25
locations with at most 5 salesmen and at most 450 km tour length per salesman.

The length of the routes are 364 km, 424 km, 398 km and 149 km respectively, i.e.
they satisfy the constraints, thus the algorithm provided a feasible solution of the
problem.

7 Conclusions

The Vehicle Routing Problem (VRP) is a complex combinatorial optimization prob-
lem arising at different type of engineering and logistic systems. The multiple
Traveling Salesmen problem (mTSP) can be considered as a relaxation of the VRP,
with the capacity restrictions removed. The modified mTSP problem with additional
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constraints on the tour length of the individual salesman, asymmetric distances,
unknown and varying number of salesman was introduced and solved by a novel
approach. The literature review has showed unambiguously that the existing rep-
resentations for solving mTSP by the help of GA uses only one chromosome to
represent the whole problem, although the nature of the problem could necessi-
tate the separation of the salesmen on chromosome design level. This observation
motivated the authors to introduce a novel representation in the individual design,
where a separate chromosome is assigned to all salesmen. The approach presented
here is innovative in the representation of individuals, in the handling of the con-
straints, and it gives a whole methodology to solve an NP-hard problem, the mTSP.
This novel approach, the so-called multi-chromosome technique was presented for
solving mTSPs, and the new representation proved to be more effective in terms
of flexibility, complexity and transparency, and also in efficiency than the previous
methods. The algorithm was implemented in MATLAB and integrated with Google
Maps to provide a framework for distance calculation, definition of the initial routes
and visualization of the resulted solutions. Clearly, holistic testing is needed to offer
a valid opinion about the efficiency of the novel method. In this chapter some illus-
trative application examples illustrate that the methodology presented in the chapter
supports a fast, near-optimal solution for route planning, setting out from a single
map and from constraints defined on the number and tour lengths of the available
salesmen.
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Out-of-the-Box and Custom Implementation of
Metaheuristics. A Case Study: The Vehicle
Routing Problem with Stochastic Demand

Paola Pellegrini and Mauro Birattari

Abstract. Metaheuristics are a class of effective algorithms for optimization prob-
lems. A basic implementation of a metaheuristic typically requires rather little de-
velopment effort. With a significantly larger investment in the design, implementa-
tion, and fine-tuning, metaheuristics can often produce state-of-the-art results. Ac-
cording to the amount of development effort, we say that an implementation of a
metaheuristic is either an out-of-the-box version or a custom one. The possibility of
implementing metaheuristics in such a flexible way is one of the major strengths
of these algorithms. Nonetheless, it also hides some possible catches. In particu-
lar, it should be noticed that results obtained with out-of-the-box implementations
cannot be always generalized to custom ones, and vice versa. The goal of this anal-
ysis is to stress that these two ways of using metaheuristics are different. As a case
study, we focus on the vehicle routing problem with stochastic demand and on five
among the most successful metaheuristics—namely, tabu search, simulated anneal-
ing, genetic algorithms, iterated local search, and ant colony optimization. We show
that the relative performance of these algorithms strongly varies whether one con-
siders out-of-the-box implementations or custom ones, in which the parameters are
accurately fine-tuned. Moreover, we underline the relevance of clearly stating the
framework in which the results reported in the literature have been obtained. To this
aim, we consider also an implementation of the same algorithms as described in the
literature.
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1 Introduction

The term metaheuristics [1] is nowadays widely adopted for designating a class of
approaches to tackle optimization problems.

A metaheuristic is a set of algorithmic concepts that can be used to define heuristic
methods applicable to a wide set of different problems.

Dorigo and Stützle, 2004 [2, p. 25]

The generality of metaheuristics and the ease with which they can be applied to
the most diverse combinatorial optimization problems is definitely the main rea-
son for their success. Indeed, compared to exact algorithms and problem-specific
heuristics, metaheuristics typically require a much lower design and implementa-
tion effort. This is particularly true if one does not necessarily aim at state-of-the-art
results but has the main goal of obtaining a fairly good performance, while mini-
mizing the development costs. In these cases, an out-of-the-box implementation of
a metaheuristic is typically the solution of choice for many practitioners. On the
other hand, in a number of applications it has been shown that state-of-the-art per-
formance can be obtained through metaheuristics, provided that a custom version is
developed by taking extra care in the design, implementation, and fine-tuning. This,
quite naturally, implies higher development costs.

This flexibility of metaheuristics is definitely one of their appealing traits: In
practical applications, one can start with an out-of-the-box version of a metaheuristic
for quickly having some preliminary results and for gaining a deeper understanding
of the problem at hand. Then one can move to a custom version for obtaining a better
performance without having to switch to a completely different technology.

Nonetheless, the fact that metaheuristics can be flexibly used either in their out-
of-the-box or custom versions, can be reason of misunderstanding. Indeed, results
obtained with out-of-the-box implementations do not always generalize to custom
ones, and vice versa. In particular, it could well happen that, as we show in the case
study proposed in this work, a metaheuristic M1 performs better than a metaheuristic
M2 on a given problem when out-of-the-box versions of M1 and M2 are considered;
whereas M2 performs better that M1 on the very same problem when custom versions
are considered.

This issue is unfortunately overlooked in the literature: Many research papers
propose comparisons of metaheuristics without providing any measure of the devel-
opment effort devoted to the algorithms under analysis or, in other words, without
clearly stating whether the metaheuristics considered are out-of-the-box versions
or rather high-performing custom versions. Without this piece of information, the
usefulness of these comparisons is somehow impaired1.

The lack of specification about the context in which empirical studies are per-
formed can be partially justified by the fact that, admittedly, measuring the amount
of development effort is not a simple and well-defined task. Much of the ambiguity

1 In a similar way the performance assessment method used may have an impact on the
relative performance of metaheuristics. For the analysis of this impact see for example
[3, 4, 5, 6, 7].
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comes from the fact that there is no such thing as the standard developer: What
costs a great effort to somebody with limited experience in the domain, might be
effortless for a seasoned practitioner. The issue is further complicated by the fact
that researchers and practitioners often specialize on one metaheuristic (or on few).
For example, if an expert in genetic algorithms devotes the same time and attentions
to the development of a genetic algorithm and of a tabu search, the resulting algo-
rithms will have a relative performance that is expectedly much different from the
one that would be obtained if the algorithms had been developed by a tabu search
expert.

Following the preliminary analysis proposed by Pellegrini and Birattari [8], in
this study we show the difference that may result between two experimental studies,
one performed in the out-of-the-box context, and the other in the custom one. More-
over, we highlight the implications of using algorithms as they are described in the
literature. In this case, the question is whether it makes sense to use parameters that
have been selected as reasonably high performing in some context that is possibly
different from the one under analysis. To this aim, we consider as a case study the
vehicle routing problem with stochastic demand, and five of the most successful
metaheuristics—namely, tabu search, simulated annealing, genetic algorithm, iter-
ated local search, and ant colony optimization. The goal is to show that the relative
performance of the above metaheuristics depends on the implementations consid-
ered. With this work, we wish to draw the attention of the research community on
this issue and contribute to establish a better practice for the empirical analysis and
comparison of metaheuristics.

What we wish to underline is that the scope of the studies should be made clear.
Different researches may have different goals, that may justify the use of either out-
of-the-box or custom versions of metaheuristics. Nonetheless, we should be aware
of the fact that the results achieved may not be generalizable. If we use for our ex-
periments an implementation that was built with a goal that is different from ours,
we may be mislead. For supporting this conclusion, we will consider also imple-
mentations of the five metaheuristics as they are described in the literature. We will
show that the relative performance of these versions is different from the one of both
the out-of-the-box and the custom versions of the same metaheuristics.

In order to attenuate the problem concerning the different ability of a single de-
signer in implementing various approaches, we consider the implementations of
the five metaheuristics produced within the Metaheuristics Network,2 a EU funded
research project started in 2000 and accomplished in 2004. In the Metaheuristics
Network, five academic groups and two companies, each specialized in the devel-
opment and application of one or more of the above metaheuristics, joined their
research efforts with the aim of gathering a deeper insight into the theory and prac-
tice of metaheuristics. For a detailed description of the metaheuristics developed by
the Metaheuristics Network for the vehicle routing problem with stochastic demand,
we refer the reader to Bianchi et al. [9]. The availability of this reference makes the

2 http://www.metaheuristics.net/
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vehicle routing problem with stochastic demand, and the five metaheuristics above
mentioned, particularly suitable to our analysis.

In our analysis, these implementations are considered as black-box metaheuris-
tics: By modifying their parameters, we obtain the out-of-the-box, the custom, and
what we call the literature versions. The first ones are obtained by randomly draw-
ing the parameters from a defined range. The second ones are obtained by fine-
tuning the parameters through an automatic procedure based on the F-Race algo-
rithm [10, 11, 12]. This removes some of the ambiguity connected with the measure
of the development effort and guarantees that equal attention is devoted to all meta-
heuristics under analysis. The last ones are exactly the implementations described
in the literature: They are obtained considering the implementations and the values
of the parameters reported by Bianchi et al. [9]. To the best of our knowledge this
paper represents the most recent and successful application of metaheuristics to the
problem considered.

The fact of reducing the difference between the out-of-the-box and the custom
version of metaheuristics to the fine-tuning of the parameters is not free of implica-
tions and needs to be further justified. The following two observations in favor of
the validity and significance of our analysis should be sufficient in order to convince
our reader. Although many research papers fail to provide an exhaustive account
on how the parameters of the algorithms under analysis are obtained, it is widely
recognized that an accurate fine-tuning has a major impact on the performance of
algorithms [11, 13, 3, 14]. Selecting the best values for the parameters, given the
class of instances that are to be tackled, is definitely a sort of customization. Other
elements, as for example an advanced design and implementation of critical data
structures, clearly play a major role in the custom implementation of a metaheuris-
tic. Nonetheless, the goal of the study is to show that an analysis based on custom
implementations might produce radically different results from one based on out-of-
the-box implementations. If we succeed to show this fact when even one single ele-
ment characterizing custom implementations is considered, namely the fine-tuning
of parameters, we have nevertheless reached our goal. The use of advanced data
structures in the custom implementation could only enhance the difference observed.

The rest of the chapter is organized as follows. In Section 2, we present a
panoramic view of the literature concerning the vehicle routing problem with
stochastic demand, the metaheuristics considered, and the tuning problem. In Sec-
tion 3, we describe the specific characteristics of these elements as they appear in
our analysis. In Section 4, the experimental study is reported. Finally, in Section 5,
we make some conclusions.

2 Literature Overview

In this section, we provide the reader with a general overview of the available lit-
erature concerning the three main topics of interest of our analysis: i) the vehicle
routing problem with stochastic demand, ii) the five metaheuristics we consider in
this study, and iii) the problem of fine-tuning metaheuristics.
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The problem we consider in our analysis is the vehicle routing problem with
stochastic demand (VRPSD). It can be described as follows: Given a fleet of vehi-
cles with finite capacity, a set of customers has to be served at minimum cost. The
peculiarity of this variant of the vehicle routing problem is that the demand of each
customer is a priori unknown and only its probability distribution is available. The
actual demand is revealed only when the customer is reached. In this probabilis-
tic setting, the objective of the VRPSD is the minimization of the total expected
traveling cost.

Optimal methods, heuristics, and metaheuristics have been proposed in the lit-
erature for tackling this problem. In particular, the problem is first addressed by
Tillman [15] in 1969. Stewart and Golden [16], Dror and Trudeau [17], Laporte and
Louveau [18] and Laporte et al. [19] used techniques from stochastic programming
to solve optimally small instances. Bertsimas [20] and Bertsimas and Simchi-Levi
[21] proposed different heuristics for solving the VRPSD. They considered the con-
struction of an a priori TSP-wise tour. This tour is then split according to precise
rules. Yang et al. [22] proposed a strategy for splitting the a priori tour allowing
the restocking before a stockout, when this is profitable. Secomandi [23, 24, 25]
analyzed different possibilities for applying dynamic programming to this problem.
Teodorović and Pavković [26] and Gendreau et al. [27] tackled the VRPSD us-
ing metaheuristic approaches. In particular, Teodorović and Pavković [26] adopted
simulated annealing while Gendreau et al. [27] used tabu search. Finally, an ex-
tended analysis on the behavior of different metaheuristics has been proposed by
Bianchi et al. [9].

Two classical local search algorithms have been used for the VRPSD: the Or-opt
and the 3-opt procedures. The first was proposed by Or [28] in 1976. It consists in
the extraction of a string of consecutive nodes from the starting sequence represent-
ing a solution, and in its insertion at a different position. Yang et al. [22] presented an
approximated way for computing the value of each move. In particular, the cost sav-
ing allowed by a move is the difference between the approximated saving obtained
removing the string of consecutive customers from its original position, and the ap-
proximated cost of inserting it somewhere else in the tour: Instead of evaluating
the complete solution before and after the move, the saving and cost are computed
only with respect to the immediate neighbors of the customers shifted. This method
has been adopted also by Bianchi et al. [9], who proposed also another approxima-
tion based on delta values calculated in a TSP-wise fashion, that is, considering the
variation of the length of the a priori tour. Moreover, they extended this TSP-wise
approximation also to the 3-opt local search [29]. In this case, three edges belonging
to the starting solution are removed and replaced by three different ones.

Following Bianchi et al. [9], we focus on five of the most popular metaheuristics:
tabu search (TS), simulated annealing (SA), genetic algorithm (GA), iterated local
search (ILS), and ant colony optimization (ACO).

Tabu search has been introduced by Glover [1] in 1986, on the basis of early
ideas formulated a decade before [30]. It consists in the exploration of the solution
space via a local search procedure. Tabu search accepts non-improving moves and
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uses a short term memory. The latter expedient is introduced to avoid sequences of
moves that constantly repeat themselves [31].

Simulated annealing takes inspiration from the annealing process in crystals,
which assume a low energy configuration when cooled with an appropriate cooling
schedule [32, 33, 34, 35, 36]. The principal idea is the exploration of the search
space via a local search procedure. Simulated annealing escapes from local minima
by allowing moves to worsening solutions. The parameter that controls this mech-
anism is the temperature. It is slowly decreased during the search with the conse-
quence that at the beginning the probability of accepting non-improving solutions is
higher, and then it decreases over time. This technique helps in quitting the basin of
attraction of high-cost local minima that might be encountered in the early stages of
the search.

Genetic algorithms are inspired by the ability shown by populations of living
beings to evolve and adapt to changing conditions, under the pressure of natural se-
lection [37]. This metaheuristic is based on the selection of individuals representing
candidate solutions. From generation to generation, individuals evolve through re-
combination and crossover, and using mutation or modification operators that lead
to self-adaptation [38, 39, 40, 41, 42, 43].

Iterated local search is one of the simplest metaheuristics. It is based on the
reiteration of a local search procedure: It explores the neighborhoods of a sequence
of solutions obtained via successive perturbations [44].

Ant colony optimization is a metaheuristic based on the foraging behavior of
ants [2, 45]. It constructs solutions using a pheromone model, that is, a parameter-
ized probability distribution over the solution space. The solutions found are used to
modify the pheromone values biasing the search toward high quality solutions [46].

Tuning is a critical issue when working with metaheuristics. Each metaheuristic can
be seen as a modular structure coming with a set of components, each typically
provided with a set of free parameters. The tuning problem is the problem of prop-
erly instantiating this algorithmic template by choosing the best among the set of
possible components and by assigning specific values to all free parameters [12].
Although this problem is generally recognized to be very important when dealing
with metaheuristics, only in recent years it has been the object of extensive studies
[12, 13, 14, 47, 48, 49, 50]. Some authors adopt a methodology based on factorial
design, which is characteristic of a descriptive analysis. Therefore, rather than solv-
ing directly the tuning problem, they pass through the possibly more complex inter-
mediate problem of understanding the relative importance of each parameter of the
algorithm. For example, Xu and Kelly [51] tried to identify the relative contribution
of five different components of a tabu-search. Furthermore, the authors considered
different values of the parameters of the most effective components and select the
best one. Parson and Johnson [52] and Breedam [53] used a similar approach. Xu
et al. [54] described a more general technique, which is nonetheless based on fac-
torial analysis. Another approach to tuning that has been adopted for example by
Coy et al. [14] and by Adenso-Dı́az and Laguna [13] is based on the method that in
the statistical literature is known as response surface methodology. Bartz-Beielstein
and Markon [48] proposed a method to determine relevant parameter settings. It
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is based on statistical design of experiments, classical regression analysis, tree
based regression and design and analysis of computer experiments (a.k.a. DACE)
models. Hutter et al. [49] provided methods for optimizing a target algorithms per-
formance on a given class of problem instances by varying a set of ordinal and/or
categorical parameters. The authors exploited a family of local-search-based al-
gorithm configuration procedures and presented novel techniques for accelerating
them by adaptively limiting the time spent for evaluating individual configurations.
Some procedures for tackling the tuning problem have been proposed by Birattari
[12]. Among them, the F-Race method is the best performing one and has been used
in a number of works on metaheuristics [55, 56, 57, 58, 59].

For the sake of completeness, we mention here another approach to tuning that
goes under the name of on-line tuning. The key idea behind this second family of
techniques is to modify some parameters of the search algorithm while performing
the search itself. This approach is particularly appealing when one is supposed to
solve one single instance, typically large and complex. One of the most influential
descriptions of on-line adjustment of the parameters of an algorithm has been given
by Battiti and Tecchiolli [60]. The authors introduced a tabu search where the length
of the tabu list is optimized on-line.

3 Main Elements of the Analysis

This section provides details on the three main elements of the case study consid-
ered in the work. In particular, Section 3.1 describes the algorithmic framework of
the vehicle routing problem with stochastic demand and the local search procedures
that we consider. Section 3.2 describes the specific implementations of the five meta-
heuristics under analysis. Section 3.3 describes F-Race, that is, the tuning algorithm
that is used for fine-tuning the metaheuristics in our study.

3.1 The Problem

The vehicle routing problem (VRP) consists in finding the set of tours of minimum
cost for visiting a given number of customers exactly once, starting and ending each
tour at the depot. A fleet of identical vehicles with finite-capacity is to be used for
delivering goods to customers, each having a predefined demand. Moving from a
customer to another has a cost that is known a priori. Typically, problem instances
are represented on graphs in which nodes correspond to customers and a cost is
associated to each edge.

The VRP can be formulated using the following notation: Let G = (V,E) be a
complete undirected graph, with V = {0, ...,n} set of nodes. Each node i ∈V \ {0}
represents a customer having a nonnegative demand qi. Node 0 corresponds to the
depot. A travel cost ci j is associated to each edge (i, j) ∈ E . Let k be the number
of identical vehicles available, each with capacity Q. Let r(S) denote the minimum
number of vehicles needed to serve the customers of a subset S of customers. A
lower bound of r(S) is �∑i∈S qi/Q�. For each s ⊂ V let δ (S) = {(i, j) : i ∈ S, j �∈
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S 7∨ i �∈ S, j ∈ S}, i.e. the set of edges connecting a node belonging to S with one
belonging to V \ S. Let xi j be the integer variable indicating the number of times
edge (i, j) is traversed in the solution. The formulation proposed by Laporte et al.
[61] is then:

min ∑
(i, j)∈E

ci jxi j (1)

s.t.

∑
(i, j)∈δ ({i})

xi j = 1, ∀ i ∈V \ {0}, (2)

∑
(i, j)∈δ ({0})

xi j = 2k, (3)

∑
(i, j)∈δ (S)

xi j ≥ 2r(S), ∀S ⊆V \ {0}, S �= /0, (4)

xi j ∈ {0,1}, ∀(i, j) �∈ δ ({0}), (5)

xi j ∈ {0,1,2}, ∀(i, j) ∈ δ ({0}). (6)

(7)

Constraints (2) impose that each customer is visited exactly once. Constraint (3)
states that k routes are created. Capacity constraints (4) ensure both connectivity
of the tours and respect of vehicles capacity. This is done by imposing a sufficient
number of edges to enter each subset of nodes S. Constraints (5) and (6) imply that
each edge connecting two customers is traversed at most once, while each edge
connecting a customer to the depot is traversed at most twice.

In the vehicle routing problem with stochastic demand, the quantities demanded
by customers are not known a priori but their probability distributions are given.

As in most of the previously published works on VRPSD [9, 20, 21, 22], in this
work the problem is addressed by considering only one vehicle. This element was
proved to give the best solution in absence of additional constraints [22]. The solu-
tion technique consists in constructing an a priori TSP-wise tour. This tour is then
split according to the specific realizations of the random variables representing the
demand of the customers. The objective is finding the a priori tour with minimum
expected cost.

The computation of the expected cost of the solutions follows Yang et al. [22]
and Bianchi et al. [9]. In particular, it is based on a dynamic programming recursion
that moves backward from the last node of the sequence. At each node, the decision
of restocking or proceeding is based on the expected cost-to-go in the two cases.

In this analysis, we consider the two local search procedures that can be found
in the VRPSD literature: Or-opt and 3-opt [9, 22]. Different methods are used for
computing the cost of a move in the local search. In this way, five procedures are ob-
tained: Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-
cost), 3-opt(EXACT-cost). For a detailed description of these techniques we refer
the reader to Bianchi et al. [9].
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In order to reach some significant conclusion with our empirical analysis, a rather
large set of instances is needed. The set of instances considered in Bianchi et al. [9]
is too small for the aim of our research. To the best of our knowledge, these are the
only benchmark instances available for the vehicle routing problem with stochastic
demand. For our experiments, we use instances created with the instance generator
described in Pellegrini and Birattari [62]. We consider instances with either 50 or
60 nodes.

Following [9], we consider instances in which the demand of each customer is
uniformly distributed. The average and the spread of these distributions are reported
in Table 1.

Table 1 Parameters used for generating the instances. U(min,max) means that the value is
randomly extracted from a uniform distribution in the range between min to max.

Instance class average demand spread
I U(20,30) U(5,10)
II U(20,30) U(5,15)
III U(20,35) U(5,10)
IV U(20,35) U(5,15)

The capacity of the vehicle is 80. In this way the average number of customers
that can be served before returning to the depot is about three. Analysis of cases
with such a low ratio between capacity of the vehicle and average customer demand
are not very frequent in the literature. On the other hand it is a situation that can
be easily encountered in reality. A previous study of the performance of algorithms
when tackling instances with this peculiarity can be found in Bianchi et al. [9]. Being
this paper the main reference for our work, we decided to use instances generated
according to the ratio used there.

3.2 Metaheuristics

The implementation of the metaheuristics we consider is based on the code written
by Bianchi et al. [9]3. In the following, we give a short description of the main
element characterizing each algorithm. The parameters of the algorithms are briefly
explained. As a reference algorithm, following Bianchi et al. [9], we considered a
random restart local search (RR). It uses the randomized furthest insertion heuristic
plus local search. It restarts every time a local optimum is found, until the stopping
criterion is met—in our case, the elapsing of a fixed computational time.

In the tabu search, the tabu-list stores partial solutions. An aspiration criterion
allows forbidden moves if the new solution is the new best one. The tabu tenure, that
is, the length of the tabu list, is variable [9]: At each step it assumes a random value
between t(m−1) and m−1, where 0 ≤ t ≤ 1 is a parameter of the algorithm. When

3 Available at http://iridia.ulb.ac.be/vrpsd.ppsn8.
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3-opt is used, m is equal to the number of customers. When Or-opt is used, m is equal
to the number of customers minus the length of the string of consecutive nodes that
are shifted in a move. During the exploration of the neighborhood, solutions that
include forbidden components are evaluated with probability p f and the others with
probability pa. The difference between the EXACT-cost, the VRPSD-cost, and the
TSP-cost implementations concerns only the local search procedure.

Concerning the simulated annealing, the probabilistic acceptance criterion con-
sists in accepting a solution s′ either if it has a lower cost than the current solution s
or, independently of its cost, with probability

p(s′|Tk,s) = exp

(
−Cost(s′)Cost(s)

Tk

)
. (8)

The relevant parameters of the algorithm are related to the initial level of the tem-
perature and to its evolution. The starting value T0 is determined by considering
one hundred solutions randomly chosen in the neighborhood of the first one, by
computing the variation of the cost in this set, and by multiplying this result for the
parameter f . At every iteration k, the temperature is decreased according to the for-
mula Tk = αTk−1, where the parameter α , usually called cooling rate, is such that
0 < α < 1. If after n ·q · r iterations the quality of the best solution is not improved,
the process known as re-heating [32] is applied: the temperature is increased by
adding T0 to the current temperature. Besides the local search procedure used, the
difference between the EXACT-cost, the VRPSD-cost and the TSP-cost implemen-
tations consists in the way Cost(s′) and Cost(s) in Equation 8 are computed. In the
TSP-cost, only the length of the a priori tour is considered.

In the implementation of the genetic algorithm, edge recombination [63] con-
sists in generating a tour starting from two solutions by using edges present in
both of them, whenever possible. Mutation swaps adjacent customers with prob-
ability pm. If mutation is adaptive, pm is equal to the product of the parameter mr
(mutation-rate) and a similarity factor. The latter depends on the number of times
the n-th element of the first parent is equal to the n-th element of the second one. If
the mutation is not adaptive, pm is simply equal to mr. The difference between the
EXACT-cost, the VRPSD-cost and the TSP-cost implementations concerns only the
local search procedure adopted.

The iterated local search is characterized by a function that performs a perturba-
tion on solutions. It returns a new solution obtained after a loop of n random moves
(with n number of nodes of the graph) of a 2-exchange neighborhood. They consist
in subtour inversions between two randomly chosen nodes. The loop is broken if a
solution with quality comparable to the current one is found. We say that the quality
of a solution is comparable to the quality of the current one if its objective function
value is not greater than the objective function value of the current solution plus a
certain value ε . The difference between the EXACT-cost, the VRPSD-cost and the
TSP-cost implementations concerns only the local search procedure adopted.
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In this implementation of ant colony optimization, the pheromone trail is ini-
tialized to τ0 = 0.5 on every arc. The first population of solutions is generated and
refined via the local search. Then, a global pheromone update is performed r times.
At each following iteration, p new solutions are constructed by p artificial ants on
the basis of the information stored in the pheromone matrix. After each step, the
local pheromone update is performed on the arc just included in the route. Finally,
the local search is applied to the p solutions and the global pheromone update is
executed. Local and global pheromone updates are performed as follows:

Local pheromone update: the pheromone trail on the arc (i, j) is modified accord-
ing to the following formula:

τi j = (1−ψ)τi j +ψτ0,

with ψ parameter such that 0 < ψ < 1.
Global pheromone update: the pheromone trail on each arc (i, j) is modified ac-

cording to the following formula:

τi j = (1−ρ)τ+ρΔτbs
i j

where

Δτbs
i j =
{

Q/Cost Solution bs if arc (i, j) ∈ Solution bs
0 otherwise,

ρ is a parameter such that 0 < ρ < 1 and Solution bs is the best solution found
so far.

3.3 The Tuning Process

The parameters of all algorithms considered in the study are tuned through the F-
Race procedure [10, 11, 12]. F-Race is a racing algorithm for choosing a candidate
configuration, that is, a combination of values of the parameters, out of predefined
ranges.

F-race runs the optimization algorithm multiple times testing on several instances
a given set of candidate configurations. On the basis of the results achieved, a con-
figuration can be discarded if it appears suboptimal: For each instance (each repre-
senting one step of the race) the ranking of the results obtained using the different
configurations is computed and a statistical test is performed for deciding whether
to discard some candidates or not. The set of configurations considered at a specific
step h contains all the candidates that survived after step h− 1 (Figure 1). F-Race
is based on the Friedman two-way analysis of variance by ranks [64]. An important
advantage offered by this statistical test is connected with the nonparametric nature
of a test based on ranking, which does not require to formulate hypothesis on the
distribution of the observations.
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Fig. 1 Graphical representation of the computation performed by the racing approach. As
the evaluation proceeds, the racing algorithm focuses more and more on the most promising
candidates, discarding a configuration, as soon as sufficient evidence is gathered that it is
suboptimal [11, 12].

4 Experimental Analysis

The main goal of the computational experiments proposed in this section is to show
that a remarkable difference exists between the results obtained by out-of-the-box
and custom versions of the metaheuristics. Moreover, we wish to study the perfor-
mance of a literature version of the same approaches, that is, a version that repro-
duces as precisely as possible implementation described in the literature. We aim
at showing that by using published versions that have been optimized for solving
possibly different problem instances, the results that one might obtain are not nec-
essarily state-of-the-art. In particular, they might significantly differ from those that
can be obtained through custom implementations specifically tailored to the class of
problem instances at hand.

As we mentioned in the introduction, the various versions differ one from the
other in the values of the parameters. In the literature versions, the values of the pa-
rameters are those proposed by Bianchi et al. [9]. In the custom versions, the param-
eters are accurately fine-tuned with the F-Race automatic procedure. As mentioned
in Section 3.3, F-Race selects the best values of the parameters out of a given set of
candidate ones. Finally, in the out-of-the-box versions, the values of the parameters
are randomly drawn from the same set of candidate values that is considered by
F-Race for custom versions. Equal probability has been associated to each configu-
ration and, for each instance considered in the analysis, a random selection has been
performed. The choice of randomly drawing the values of the parameters is moti-
vated by the observation that an out-of-the-box implementation is often based on an
experience–based selection: Given a set of reasonable values, one makes decisions
that will end up being more or less “lucky”. In order to prescind from our fortune
while testing the thesis at the basis of this work, a sort of average performance is
sought. Such a selection criterion is anyway much different from the random pick-
ing of admissible values for the parameters: Following our experience in the field,
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if we did not have the possibility of tuning parameters, we could have reasonably
chosen any of the available combinations for running experiments.

For each of the metaheuristics, besides the methods used for setting the param-
eters, the implementations considered in the out-of-the-box, custom, and literature
versions are identical.

The values of the parameters represent only one of the elements that may be cus-
tomized when implementing a metaheuristic. By considering only this element in
our study, we somehow underestimate the difference between out-of-the-box and
custom implementations. Nonetheless, if we succeed to show that the results of an
analysis performed on out-of-the-box implementations cannot be generalized to cus-
tom implementations when the difference between the two simply consists in the
values of the parameters, we have reached our goal: Any other element that can be
fine-tuned and customized would simply further reduce the possibility of generaliz-
ing results observed in one context to the other.

All experiments are run on a cluster of AMD OpteronTM 244, and 1000 instances
are considered. We run each algorithm once on each instance [65]. The computation
time is used as a stopping criterion for all the algorithms and it is set to 30 seconds.

In order to obtain the custom versions of the metaheuristics through F-Race, a
number of different configurations ranging from 1200 to about 1600 were consid-
ered for each of them. Table 2 reports, for each metaheuristic, the parameters con-
sidered for optimization, the range of values allowed, and the values selected. A set
of 500 instances of the vehicle routing problem with stochastic demand was avail-
able for the tuning. These instances have the same characteristics of the ones used
for the experimental analysis, but the two sets of instances are disjoint [5]. While
tuning a metaheuristic, the F-Race procedure was allowed to run the metaheuristic
under consideration for a maximum number of times equal to 15 times the number
of configurations considered for that metaheuristic. Also for the random restart lo-
cal search, a custom version has been considered. It has been obtained by selecting,
through the F-Race procedure, the best performing local search. In other words, the
parameter that has been optimized in this case is the underlying local search.

A first analysis of the performance of the algorithms in the two contexts, custom
and out-of-the-box, consists in comparing the results achieved in terms of cost of
the best solution returned. Figure 2 reports the distributions of the difference be-
tween the costs of the solutions obtained in the two contexts by each metaheuristic.
To be precise, we report the distribution of the cost of the solutions found by each
custom version minus the one of its out-of-the-box counterpart. In Figure 2(a), the
whole distributions are shown. In Figure 2(b), the detail of the area around zero is re-
ported. We can observe that, even if the tails of the distributions are sometimes very
long4, almost 75% of the observations fall below the zero line for all metaheuristics.
This means that, in the strong majority of the cases, the difference is in favor of the
custom version. Again, we can observe that some metaheuristics are more sensitive

4 The long tails of the distributions do not appear to be dependent on any specific aspect of
the instances solved. In the same way, it is not possible to find a correlation between the
parameter configurations use in the out-of-the-box versions and the presence of outliers.
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Table 2 Range of values considered for the parameters of the metaheuristics. The values
reported in bold are the ones selected by F-Race for the custom versions.

Tabu search – total number of candidates = 1460
parameter range
p f 0.1, 0.2, 0.25, 0.3, 0.35, 0.4
pa 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9
t 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-cost)

Simulated annealing – total number of candidates = 1200
parameter range
α 0.3, 0.5, 0.7, 0.9, 0.98
q 1, 5, 10
r 10, 20, 30, 40

f 0.01, 0.03, 0.05, 0.07
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-

cost)

Genetic algorithm – total number of candidates = 1360
parameter range
pop. size 10, 12, 14, 16, 18, 20, 22, 24
mr 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,0.7, 0.75, 0.8, 0.85, 0.9
adaptive Yes, No
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-

cost)

Iterated local search – total number of candidates = 1520
parameter range
ε n/x,x ∈ {0.005,0.01,0.05,0.1,0.5, 1.0,1.5,2.0, all multiples of 0.5 up to 150.0}
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-

cost)

Ant colony optimization – total number of candidates = 1620
parameter range
p 5,10, 20
ρ 0.1, 0.5, 0.7

r 100, 150, 200
Q 105,106,107,108,109

local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-
cost)

Random restart – total number of candidates = 5
parameter range
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost), 3-opt(EXACT-cost)

to the value of their parameters and therefore benefit more than others from an ac-
curate fine-tuning. Observing these results, it is immediately clear that, as expected,
the performance achieved by algorithms depend strongly on the values chosen for
the parameters, and then on the contexts considered.

Some further observations can be made considering the distribution of the rank-
ing achieved by each algorithm. These results are reported in Figures 3(a), 3(b), and
3(c), for the custom, out-of-the-box, and literature versions respectively. On the left
of each graph, the names of the algorithms are given. The order in which they appear
reflects the average ranking: The lower the average ranking, the better the general
behavior, and the higher the metaheuristic appears in the list. On the right, the box-
plots represent the distributions of the ranks over the 1000 instances. Between the
names and the boxplots, vertical lines indicate if the difference in the behavior of the
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Fig. 2 Difference between the costs of the solutions obtained by the custom and the out-of-
the-box versions of the metaheuristics under analysis. In Figure 2(a), the entire distribution
is shown for each metaheuristic. Since the distributions are characterized by long tails, in
Figure 2(b) the detail of the more interesting central area is given. For all metaheuristics,
the median of the distribution is below the zero: Being the VRPSD a minimization problem,
the results obtained by the custom versions are in general better than those obtained by their
out-of-the-box counterpart.
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metaheuristics is significant according to the Friedman test: If two metaheuristics
are not comprised by the same vertical line, their behavior is significantly different
according to the statistical test considered, with a confidence of 95%. The differ-
ence in the denomination of the algorithms between the first two figures and the
third one depends on the fact that in Bianchi et al. [9], the local search procedure is
not considered as a parameter of the algorithms. For this reason, the metaheuristics
are presented in Figure 3(c) with the name of the metaheuristic paired with the one
of the variant of the local search used. In Bianchi et al. [9], the 3-opt local search
has been used only in association with iterated local search and genetic algorithms.

As it can be observed, the ranking of algorithms varies in the three contexts. First
of all, let us focus on the graphics representing the out-of-the-box and the custom
versions. The two main differences concern RR and ACO. The former performs the
worst in the custom context, while this is not the case in the out-of-the-box context.
The case of a metaheuristic performing worse than the random restart local search is
to be considered as a major failure for the metaheuristic itself. We consider this point
as a remarkable difference between the two contexts: In the out-of-the-box context,
three out of five metaheuristics perform significantly worse than the random restart
local search; in the custom context, all metaheuristics achieve better results than the
random restart local search.

As far as ACO is concerned, we can observe that the relative performance is vis-
ibly different in the two contexts. The out-of-the-box version behaves significantly
worse than RR, and is among the worst in the set. On the contrary, the custom ver-
sion achieves the best average ranking. This difference shows that this metaheuristic
is more sensitive than the others to variations of the parameters, possibly due to the
large number of parameters of the algorithm. This might be seen as a drawback of
ACO. Anyway, we think that this fact should be read in a different way: If one is
interested in an out-of-the-box metaheuristics, a high sensitivity to the parameters is
definitely an issue; on the other hand, if one wishes to implement a custom meta-
heuristic, the sensitivity is an opportunity that can be exploited in order to finely
adapt the algorithm to the class of instances to be tackled.

Let us consider now Figure 3(c), where the performance of the literature version
is reported. As it can be noted by comparing this graph with Figures 3(a) and 3(b),
the general trend is very similar to the one obtained in the out-of-the-box context.

In order to provide a more precise picture of the sensitivity of each metaheuristics
to its parameters, Figure 4 reports, for each metaheuristic, the comparison of the
results obtained in the three contexts. What clearly emerges is that, as expected,
all metaheuristics achieve the best results in their custom version. The difference
is always statistically significant according to the Friedman test. Moreover, it can
be observed that, less expectedly, literature versions, that is, those in which the
parameters are set according to Bianchi et al. [9], obtain results that are comparable
with those of the out-of-the-box versions. In particular, while for iterated local search
and tabu search the values reported in the literature appear to be better than those
drawn at random, for genetic algorithms and simulated annealing this is not always
the case. Even more striking, in the case of ant colony optimization, the parameters
used in Bianchi et al. [9] yield results that are significantly worse than those drawn
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Fig. 3 Results over 1000 instances of the metaheuristics in the three variants considered.
Two main observations can be made: In the out-of-the-box and literature versions we can see
that some metaheuristics are outperformed by the random restart local search. This represents
a major failure. In the custom versions all metaheuristic achieve better results. Moreover, the
relative behavior of metaheuristics changes. For example, ACO ranks first in Figure 3(a), the
fifth in Figure 3(b), and last in Figure 3(c).
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Fig. 4 Comparison of the results obtained in the three sets of experiments. As it can be ob-
served, the custom versions are always significantly better than all the others. For iterated
local search and tabu search, literature versions are better than their out-of-the-box counter-
parts, that is, the values chosen by Bianchi et al. [9] behave better than the random ones.
On the contrary, the out-of-the-box ant colony optimization works better than the literature
version. Finally, in genetic algorithms and simulated annealing the results are mixed: the out-
of-the-box versions is better than one of the two literature versions and worse that the other
one, or of the other two in the case of genetic algorithms for which three versions where
proposed in Bianchi et al. [9].
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at random. These results clearly support our claim according to which there is a
strong difference between the performance of metaheuristics used out-of-the-box
or in a custom way. Moreover, they show that the versions that can be found in the
literature are not necessarily state-of-the-art, when applied to problem instances that
differ from those considered in the original study.

5 Conclusions

In this chapter, five of the most successful metaheuristics, namely tabu search, sim-
ulated annealing, genetic algorithm, iterated local search, and ant colony optimiza-
tion, have been compared on the vehicle routing problem with stochastic demand.
These five metaheuristics applied to the vehicle routing problem with stochastic de-
mand have been the focus of a research published by Bianchi et al. [9].

Our goal is to highlight that results obtained with out-of-the-box versions of meta-
heuristics cannot be directly generalized to custom versions. In our analysis, what
differentiates a custom version of a metaheuristic from the corresponding out-of-
the-box one, is that the parameters of the former are fine-tuned through the F-Race
algorithm, while those of the latter are drawn at random.

As it could be expected, the empirical results show that the custom version of each
metaheuristic achieves better results than the corresponding out-of-the-box one. The
difference is always statistically significant according to the Friedman test. More-
over, the relative performance of algorithms differs greatly in the two contexts. This
can be ascribed to the fact that different metaheuristics might be more or less sensi-
tive to variations of their parameters.

A second element on which the analysis focuses is whether the results that are
reported in the literature can be a priori associated with to one of the two contexts.
From our experiments it appears clear that this is not the case.

On the basis of this case study, we can conclude that there may be a strong dif-
ference in the results achievable by using the out-of-the-box or the custom version
of metaheuristics. This difference may concern both the quality of the solutions
returned by an approach, and the relative performance of algorithms. As a con-
sequence, one should clearly describe the implementation criteria followed in the
design of an algorithm, in order to allow the readers to focus on the more suitable
implementations, given their specific goals.

The lack of this piece of information cannot be filled by considering all the im-
plementation studied in the literature as custom: as we show, they may refer alterna-
tively to either context. This element confirms the relevance of our research. In this
precise sense, the analysis presented in this work is strongly related to a subject that
has an actual impact on the current research in the field of metaheuristics.
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[26] Teodorović, D., Pavković, G.: A simulated annealing technique approach to the VRP in
the case of stochastic demand. Transportation Planning and Technology 16, 261–273
(1992)
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Analogue Circuit Optimization through a 
Hybrid Approach* 

Mourad Fakhfakh, Amin Sallem, Mariam Boughariou, Sameh Bennour,  
Eya Bradai, Emna Gaddour, and Mourad Loulou 

Abstract. Optimal analogue circuit sizing is investigated in this chapter. It is 
shown that hybridization of a global optimization approach with a local one leads 
to better results in optimization of such circuits, than using classical approaches. 
The case of merging Genetic Algorithms with the Simulated Annealing technique 
is considered. The hybrid algorithm is detailed and is evaluated using test func-
tions. It is shown through three application examples, i.e. optimization of per-
formances of a current conveyor, an operational transconductance amplifier and a 
low noise amplifier, that such hybrid algorithms yield optimal solutions in a much 
shorter time, when compared to conventional meta-heuristics.  

1   Introduction  

Advances in very low scale integration (VLSI) technology nowadays allow the re-
alization of complex integrated electronic circuits and systems [1]. Design auto-
mation of digital circuits has already been widely explored and many CAD tools 
are available [1-3]. However, the automated design of analogue circuits is far to be 
mature. It still lags behind that of digital circuits. Optimal synthesis, design and 
sizing of analogue components/circuits are very often a bottleneck in the design 
flow [1-5].  

Many analogue circuit optimization techniques are proposed in the literature 
with the trend to the use of statistic-based approaches, see for instance [3,6-9]. 
These approaches generally start with finding a “good” DC operating point, and 
then a simulation-based tuning procedure takes place. However, these approaches 
are time consuming and do not guarantee the convergence to the ‘global’ optimum 
solution. Actually, analogue circuit optimization problems simultaneously deal 
with different types of variables, objective functions and constraints. Therefore, 
classical optimization techniques as well as statistic-based approaches are  
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generally not adequate. Meta-heuristics are used to solve such hard constrained 
problems [10,11]. They offer the advantages to be ‘easily’ modified and adapted 
to suit specific problem requirements [10-13]. Even though they don’t guarantee 
to find exactly the optimal solution, a fact due to their stochastic nature, they give, 
within an acceptable computing time, a good approximation of it. Meta-heuristics 
can be classified into two categories [13]:  

• Population based approaches. This category mainly comprises: 

⋅  Evolutionary Algorithms (EA) [14,15]: Genetic Algorithms (GA) [16-
18], the Evolutionary Programming (EP) [14,15,19], etc.,  
and  

⋅  Swarm Intelligence Techniques (SI) [20]: Particle Swarm Optimization 
(PSO) [21,22], Ant Colony Optimization (ACO) [23], Bacterial Forag-
ing Optimization (FBO) [24], etc.  

and 
•  Single solution based approaches, such as Simulated Annealing (SA)  

[25-28], Tabu Search (TS) [29,30]…  

Some among the aforementioned optimization techniques were used in optimizing 
analogue circuits, see for instance [16-18,27,28,31-36]. These approaches are part 
of the so called global optimization (i.e. a global search approaches (GS)). On the 
other hand, SA is sometimes referred in the literature as a local search (LS)  
approach, since it is basically based on a LS one, namely the Metropolis algorithm 
[37].  

Both EA and SI techniques are robust global optimization techniques for solv-
ing problems having many local optima; nonetheless, they require long computa-
tion time. Further, they suffer from poor convergence performances [38]. On the 
other hand, local search algorithms can converge in a few iterations but are defi-
cient in a global outlook; they rely on a suitable starting point: It is the major hur-
dle that can meet LS approaches. Combining a global search procedure and a local 
one should offer the advantages of both, while offsetting their drawbacks.  

Some hybrid algorithms [38,39] are proposed in the literature, such as genetic 
annealing [40]. The latter was used in many optimisation applications, but in the 
circuit design field it was applied only to solve problems related to floorplanning 
and circuit placement [41,44]. According to the knowledge of the authors, such 
hybrid techniques have not been used to the optimal sizing of analog circuits. 

This chapter presents a hybrid optimization technique that merges a genetic al-
gorithm with a local search technique, namely the SA. Fig. 1 depicts the proposed 
idea. The efficiency of this hybrid approach is first shown through a constrained 
mathematical test-case. The hybrid algorithm, called hybrid GA/SA, is then used 
for the optimal sizing of different aspect analogue circuits.  

The rest of the chapter is structured as follows. In section 2, the analogue cir-
cuit optimization problem is detailed. In sections 3 and 4, GA and SA algorithms 
are presented. Section 5 highlights the hybrid GA/SA algorithm. In sections 6, 7 
and 8 three application examples of optimizing the sizing of analogue circuits are 
presented: Section 6 deals with the optimal sizing of a positive second generation 
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current conveyor. Section 7 focuses on the optimal design of a fully differential 
folded cascode transconductance amplifier. Section 8 highlights optimization of an 
ultra wide band low noise amplifier through its symbolic scattering parameters. 
Finally, concluding remarks are given in section 9. 

The global 
minimum

A local minimum
Solution found 

by a global 
approach

Solution found by an 
Hybrid Approach

Local Approach Effect

 

Fig. 1 Effect of combining a LS approach to a GS one. 

2   The Analogue Optimization Problem Formulation 

A general optimization problem can be defined in the following format: 
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m, n and p are numbers of inequality constraints to satisfy, equality constraints to 

assure and parameters to manage, respectively. Lx  and Ux  are lower and upper 

boundary vectors of the parameters. 
Classical meta-heuristics cannot handle inequality constraints, so the con-

strained optimization problem is transformed into an unconstrained one by mini-
mizing the following function: 

)),(()()(
~

Frxdxfxf γ+=  (2) 

where ),( Frxd  is a distance metric of the infeasible point to the feasible region 
Fr. It may simply be zero if no constraint violation occurs and is a positive scalar, 
otherwise [15]. The definition of this distance metric includes the penalty 
coefficients that are used to stress the importance of a particular constraint  
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violation over others. γ is a weight coefficient to set a global importance of the 
constraints with respect to the objective function [15]. 

Optimal design/sizing of analogue circuits consists of finding a variable set 
x ={x1, x2, …, xn} that optimizes a performance function(s), such as gain, offset, 
signal to noise ratio, maximum operating frequency etc., while meeting imposed 
specifications and/or inherent constraints, for example, saturation conditions of 
transistors, technology limits, impedance matching, etc. Vector x  may encompass 
biases, lengths and widths of MOS transistors, component values etc. 

Fig. 2 gives a pictorial view of design optimization approach. 

 

Fig. 2 Pictorial view of a design optimization approach. 

Most of analogue optimization problems require different types of variables, 
objective and constraint functions simultaneously in their formulation. Therefore, 
classical optimization procedures are generally not adequate, as it was highlighted 
in section 1. Meta-heuristics allow solving multi-criterion large size problems. 
They can be adapted to specific problem requirements. Even though they don’t 
guarantee finding the ‘exact’ optimal solution, they give a ‘good’ approximation 
of it within a tolerable CPU computing time. 

In this chapter we focus on two meta-heuristics: a Genetic Algorithm and the 
Simulated Annealing technique, and the hybridization of both. 

3   The Genetic Algorithms 

Genetic algorithms (GAs) [45,46] are inspired by Darwin's theory of evolution; 
they mimic natural evolution processes to evolve a solution to a problem:  
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Fitness
Assignment

Recombination
  

Fig. 3 The basic cycle of evolutionary algorithms. 

combination of selection, recombination and mutation. They form a subclass of 
evolutionary algorithms. Fig. 3 illustrates its basic principle. 

where Evaluation consists of computing the objective values of the solution 
candidates. Fitness Assignment uses the objective values to determine fitness val-
ues. Selection chooses the fittest individuals for reproduction, and Reproduction 
creates new individuals from the mating pool by crossover and mutation [15,46]. 

The pseudo code of a basic GA is given in Fig. 4. 

 Setup the GA. 
 Main ( ) 

  InitPopulation ( ) // random initialization of the population  
  max_fitness := 0 
  for each member chromosome 

   fitness := Fitness_Evaluation (chromosome) 
    if fitness > max_fitness 

    max_fitness := fitness 
     fittest_solution = chromosome 

    end if 
end for 
while generation < max_generations 

                       offspring := Selection&Recombination (parents) // Fig. 5 
                   fitness := Fitness_Evaluation (offspring) 
                   if fitness > max_fitness 

max_fitness := fitness 
fittest_solution = offspring 

                   end if 
    save fittest_solution 

 end 

Fig. 4 The pseudo-code of a GA. 
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Selection&Recombination ( ) 
while num of programs < max_prog/2 Do 

parent_1 := Roulette-Wheel_Selection ( ) 
parent_2 := Roulette-Wheel_Selection ( ) 
randomly choose x-over point 
child_1 := parent_1 [head] ^ parent_2 [tail] 
child_2 := parent_2 [head] ^ parent_1 [tail] 
for each child 

mutation_pt := Random_Mutation_Point (child) 
new_instr := Random_New_Instruction ( ) 
Instruction (mutation_pt, new_instr) 

               end for 
end 

Fig. 5 The pseudo-code Selection & Recombination routine. 

4   The Simulated Annealing Technique 

The simulated annealing technique [26] is inspired by the natural annealing proc-
ess used in metallurgy. The annealing technique is used to create a solid state by 
slowly cooling a melted metal. The gradual decrease of the metal temperature 
produces the crystalline lattice, which minimizes its energy probability  
distribution. 

In fact, when the temperature of a metal is high, the particles within the metal 
are able to move around, changing the structure of the metal, freely. As the tem-
perature is lowered, the particles are limited in the movements they can make as 
many movements have a high energy cost and are increasingly limited to only 
those configurations with lower energy than the previous state.  

From an algorithmic point of view, this can be modeled as a random explora-
tion on a search graph. Each vertex of the substance represents a solution (or a 
state) with a certain fitness value, and the adjacent vertices represent other similar 
solutions (in the sense that their fitness value is not expected to be significantly 
different). At each step, the algorithm selects randomly an adjacent vertex. It tran-
sits to the new state if the current solution improves the actual state. Worse solu-
tions are not radically rejected, but they may be considered and the algorithm may 
use the new ‘worse’ state with a probability determined by the global ‘tempera-
ture’ parameter. This behaviour allows escaping from local minima. As the tem-
perature drops, this becomes less likely and the search drops into a nearby local 
minimum [26-28]. 

The pseudo code of the SA technique is given in Fig. 6.  
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Setup the SA. 
Main ( ) 
Choose a random solution x which takes the minimum solution xmin  
(x=xmin) 
Evaluate the fitness function f(x) 
Initialize the temperature T 
Repeat 
   Repeat 
       Generate a neighbor X' perturbing the solution X. 
           Acceptance with the criterion of ‘Metropolis’// Fig. 7 
    Until thermodynamic equilibrium reaches 
Decrease temperature 
Until maximum iterations or minimum error criteria is attained 
end 

Fig. 6 The pseudo-code of a SA. 

If Δf<0 
Update the current solution (x’  x) 

If not 
Compute P=exp(-Δf/T) 
Generate a random number R∈[0,1] (using an uniform distribution) 
If R≤P 
Accept the new solution x’ and update x 
If not reject the new solution x’ 
end if 

end if 

Fig. 7 The Metropolis pseudo-code. 

Table 1 Advantages of GA and SA 

GA SA 

Optimizes with continuous or discrete 
variables 

Very simple to be set up 

Deals with a large number of variables 
Does not require memory (past) in or-
der to find spaces to seek local follow-
ing (future) 

Optimizes variables with extremely com-
plex –cost surfaces 

Can deal with arbitrary systems and 
cost functions 
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Table 2 Drawbacks of GA and SA  

GA SA 

No guaranteed optimal solution in a fin-
ished time, 

Important choice of the beginning solu-
tion: Knowledge of the problem  

Initialization of several parameters, impor-
tant choice of the methods, 

It is necessary to determinate the pa-
rameters by hand: initial temperature, 
elementary modification... by testing 
various values 

5   The Hybrid GA/SA 

Merging a local search technique and an evolutionary approach is a very fertile 
area [39]. Indeed, the idea consists of taking maximum benefits from the robust-
ness of the search technique of a LS method, and those of the recombination proc-
ess of an evolutionary algorithm (such hybrid algorithms are also known as me-
metic algorithms). At each n iterations (n is a prefixed number), the algorithm 
applies the LS method to the elements of the (current) population, and then recalls 
the recombination mechanism in order to generate new elements. In other words, 
the approach consists of injecting each n iterations a potential solution, obtained 
using SA techniques, in the GA population, in order to refine the whole solution. 
It is also to be noticed that accordingly, the algorithm is capable to overcome the 
premature convergence of the GA algorithm and escape from local optimal  
solutions. 

Tables 1 and 2 summarize main advantages and drawbacks of both GA and SA, 
respectively [47,48], and Fig. 8 presents the GA/SA flowchart. 

In order to show the viability of the proposed approach, the hybrid GA/SA was 
evaluated using the following test functions [47]. Test functions are given by (3), 
(4) and (5). Their plots are given in Fig. 9, Fig. 11 and Fig. 13. Corresponding  
algorithm parameters are given in Table 3. 

Table 3 The algorithm parameters  

Population size 100 

Mutation rate 0.01 

Crossover rate 0.9 

Initial temperature 1 

Stopping temperature 10-6 

Cooling schedule 0.9 
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Fig. 8 Flowchart of a hybrid GA/SA approach. 
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Test function #1: 

( ) ( ) ( )
[ ] [ ]10,0,10,0

2sin1.14sin,

∈∈
+=

yxtosubject

yyxyyxfMinimize
 (3) 

The goal is to find the global minimum of f(x,y) among the large number of lo-
cal minima. 

SA, GA and GA/SA algorithms were applied to f(x,y). Fig. 10 shows a  
comparison between results obtained using GA/SA and GA, where the rapid conver-
gence of the hybrid algorithm can be noticed. Optimal parameters are 
(x,y)=(0.9039,0.866), and the optimal fitness is f(x,y)=-18.554. Both GA/SA and SA 
give (x,y)=(0.9040,8.664) and f(x,y)=18.559, in 0.9 sec and 14 sec♦, respectively. 
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Fig. 9 Plot of the test function #1. 

  
Fig. 10 Optimizing f(x,y) (function #1): A comparison between GA and GA/SA results. 
                                                           
♦a (2 GHz, 2 Go RAM) core 2 DUO PC was used for this purpose. The same conditions     

are respected for the three test functions. 
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Test function #2: 
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Fig. 11 Plot of the test function #2. 

 
Fig. 12 shows a comparison between results obtained using GA/SA and  

GA. The rapid convergence of the hybrid algorithm is to be noticed. Optimal pa-
rameters are (x,y)=(1.897,1.006). The optimal fitness is f(x,y)=-0.523. Obtained 
‘optimal’ parameters are (2.107,0.362) and (1.754,1.487) for GA/SA and SA, re-
spectively. Reached fitnesses are respectively -0.522 and -0.374. Convergence 
times are 1.2 sec (GA/SA) and 20 sec (SA). 
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Fig. 12 Optimizing f(x,y) (function #2): A comparison between GA and GA/SA results. 
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Test function #3: 

( )
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 (5) 

Fig. 14 shows a comparison between results obtained using GA/SA and GA, 
where the rapid convergence of SA/GA algorithm can be easily noticed. For the 
test function #3, the optimal parameters are (-14.580,-20.000) and the fitness is -
23.806. GA/SA gives (-17.007,-20.730) and -25.230 in 0.7 sec, whereas SA gives 
(-15.356,20.475) and a fitness of -24.646 in 12 sec. 

 

 

Fig. 13 Plot of the test function #3. 
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Fig. 14 Optimizing f(x,y) (function #3): A comparison between GA and GA/SA results. 

6   Application of GA/SA to the Optimization Current 
Conveyors 

Current conveyors are the most well known current mode circuits. They can per-
form many analogue signal processing functions. Besides, they simplify in many 
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ways the design of analogue circuits in comparison to their voltage mode counter-
parts, i.e. operational amplifiers [3]. Current conveyors (CC) can be represented as 
shown in Fig. 15. 

 

 

Fig. 15 General representation of current conveyor. 

The electric behaviour of a positive second generation current conveyor 
(CCII+) [3,49] is described as follows: 
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Fig. 16 presents a translinear loop based CMOS CCII+ [3], where transistors M1-
M4 instantiate the translinear loop and insure VX=VY. I0 is the bias current and 
transistors M9-M12 are current mirrors. Transistors M5-M8 reproduce the current 
applied to pole X, at pole Z. 

 

Fig. 16 A CMOS positive second generation current conveyor. 

It has been confirmed that current bandwidth limits the frequency application 
range of a current conveyor, since the voltage frequency range is intrinsically 
higher than the current one [3]. Thus, in this example we focus on maximizing the  
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current high cut off frequency (fci) of the CCII+.The symbolic expression of fci is 
not given due to their large number of terms. 

MOS transistors forming the CCII+ have to operate in the saturation mode. Ex-
pressions (7) and (8) give these transistors’ saturation conditions for all the MOS 
transistors: 
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where µn, µp and Cox are MOS technology parameters. VTn and VTp represent re-
spectively the threshold voltages of NMOS and PMOS transistors. I0 is the bias 
current and VDD is the supply voltage. Wi/Li is the aspect ratio of the corresponding 
MOS transistor. 

GA and GA/SA were applied to maximize fci. Fig. 17 depicts a comparison be-
tween obtained results, where the rapid convergence of the hybrid algorithm can 
be clearly noticed. Fig. 18 presents SA results (fci vs stages of temperature).  
Table 4 gives the algorithm parameters. 
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Fig. 17 Optimizing fci: A comparison between GA and GA-SA results. 

Fig. 19 shows SPICE simulation results of the CCII+ current transfer corre-
sponding to the optimal values of the CCII+ parameters.  
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Table 4 The algorithm parameters of GA/SA 

Population size 1000 

Numbers of iteration 1000 

Mutation rate 0.01 

Crossover rate 0.8 

Initial temperature 1 

Stopping temperature 10-6 

Cooling schedule 0.95 

fc
i

  
Fig. 18 Optimizing fci using SA: fci vs stage of temperature.  
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Fig. 19 SPICE simulation results: fci=931 MHz. 

Table 5 presents the optimal device sizing and performances obtained by 
GA/SA and SA.  
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Table 5 Optimal device sizing and obtained performances: a comparison. 

 GA/SA SA 

Technology 0.35 µm AMS 0.35 µm AMS 

Voltage supply (V) ±2.5 ±2.5 

Wn(µm)/Ln(µm) 30.25/0.52 19.30/0.54 

Wp(µm)/Lp(µm) 49.95/0.35 33.34/0.35 

GBW (GHz) 1.1 0.924 

Running Time (min) 0.68 1.25 

 
Finally, and in order to highlight robustness of the proposed hybrid algorithm, 

Fig. 20 presents results obtained for 100 runs of the hybrid algorithm. The mean 
value of fci is 0.956 GHz. 

fc
i (

G
H

z)

 

Fig. 20 Values of fci for 100 runs. 

7   Application of GA/SA to the Optimization of Operational 
Transconductance Amplifiers 

The operational transconductance amplifier (OTA), whose schematic symbol is 
represented in Fig. 21, is an amplifier whose output current is proportional to the 
differential input voltage. Expression (9) gives the linear function between the dif-
ferential input voltage and the output current. 

mininout gVVI )( −+ −=  (9) 
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where Vin+ and Vin- are voltages at the non-inverting and the inverting inputs, re-
spectively. gm is the transconductance of the amplifier. 

The amplifier's output voltage is expressed as follows: 

Loutout RIV =  (10) 

RL is the load of the OTA. 
The voltage gain is then the output voltage divided by the differential input 

voltage: 

mL
inin

out
V gR

VV

V
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−
=
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 (11) 

 

Fig. 21 Schematic symbol for the OTA. 

OTAs are generally used to drive small capacitive loads at high frequencies. An 
OTA is basically an Op-Amp without any output buffer, preventing it from driv-
ing resistive or large capacitive loads. They are preferred over op-amps mainly 
because of their smaller size and their simplicity [50]. Typically, OTAs can be 
classified into two basic architectures, namely folded-cascode OTAs and tele-
scopic OTAs. The advent of deep submicron technologies enables increasingly 
high speed circuits, but makes designing high DC gain OTAs more difficult [51]. 
In this application we deal with maximizing the voltage gain of a fully differential 
folded cascode OTA (FDFC). Fig. 22 shows the CMOS implementation of a 
FDFC.  

This OTA uses cascoding in the output stage combined with an unusual imple-
mentation of the differential amplifier to achieve good input common-mode range. 
Thus, the folded cascode OTA offers self-compensation, good input common-
mode range, and the gain of a two-stage OTA [52].  

The open-loop voltage gain (Av) and the unity-gain frequency (Ft) of the FDFC 
are given respectively by equations (12) and (13): 

Av = gm9 Rout (12) 

Ft = gm9 / 2πCL 
(13) 

where Rout = R2 ⁄⁄ (gm3r03R1), R1 = r01 ⁄⁄ r09 and R2 = gm3r05r07. gm3 and gm9 are respec-
tively the transconductances of transistors M3 and M9. r01, r03, r05, r07 and r09 are  
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Fig. 22 Folded cascade OTA. 

respectively the drain-source resistances of transistors M1, M3, M5, M7 and M9. CL 
is the load capacitance. 

The problem consists in maximizing the voltage gain Av while satisfying a set 
of inherent constraints, i.e. MOS saturation conditions, whose expressions are 
given by Eqns. (14)-(18). 
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L

bias

C

I
RateSlew 1=  (18)

where, Ibias1 is the bias current, Wi and Li are respectively widths and lengths of the 
corresponding transistors, VDD and VSS are the supply voltages, KN and KP are 
technology parameters. VTN is the NMOS threshold voltage. 

The static and dynamic performances of the OTA are set according to the speci-
fications of high gain, wide band applications given in Table 6 [53]. The optimiza-
tion problem consists of maximizing the voltage gain Av while satisfying a set of 
constraints, namely the saturation conditions of MOS transistors and the frequency 
bandwidth.  

Table 6 OTA circuit specifications  

Technology CMOS AMS 0.35µm 

Ft (MHz) ≥ 200MHz 

CL (pF) 0.1 

VDD/VSS (V) -1.8/+1.8 

Slew Rate (V/µsec) ≥ 200 

 
Table 7 gives optimal device sizing obtained thanks to GA/SA and GA, the cir-

cuit’s performance, and comparison with two published works. Ibias1 equals 60µA. 
This value gives a slew rate that equals 300V/µsec. Ibias2 directly depends on the 
ratio between aspect ratios of the current mirrors.  

Table 7 Optimal device sizing of the FDFC OTA 

 GA/SA SA [54] Gm/Id [55] 

Technology 
0.35 µm 

AMS 
0.35 µm 

AMS 
0.35 µm 

AMS 
0.35 µm 

AMS 

Voltage supply (V) ±1.8 ±1.8 ±1.8 ±2 

W1(µm)/L1(µm) 50/1 44.03/1 34.85/1 10.8/1 

W3(µm)/L3(µm) 33/1 29.06/1 23/1 5.4/1 

W5(µm)/L5(µm) 50/1 47.15/1 47.15/1 2/1 

W9(µm)/L9(µm) 50/1 49.9/1 49.9/1 14/1 

DC Gain (dB) 84.42 83.89 82.89 77.53 

Running Time (min) 0.086 0.47 -- -- 
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Fig. 23 shows a comparison between results obtained using GA and hybrid 
GA/SA when maximizing the open-loop voltage gain (Av), where the rapid con-
vergence of the hybrid algorithm can be clearly noticed. Fig. 24 presents SA re-
sults: Av vs. stages of temperature. 

Table 8 gives the GA/SA algorithm parameters. 

Table 8 The algorithm parameters of GA/SA  

Population size 2000 

Numbers of iteration 2000 

Mutation rate 0.01 

Crossover rate 0.8 

Initial temperature 1 

Stopping temperature 10-6 

Cooling schedule 0.95 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 104

Generations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
(G

ai
n 

A
v)

GA
Hybrid GA/SA

X: 1830
Y: 1.66e+004

X: 1830
Y: 1.664e+004

 
Fig. 23 Optimizing the FDFC OTA Gain: A comparison between GA and GA-SA               
algorithms. 
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Fig. 24 Optimizing the OTA gain using SA: Av vs stage of temperature. 



Analogue Circuit Optimization through a Hybrid Approach 317
 

Table 9 gives a comparison between theoretical (hybrid GA/SA) and SPICE 
simulation results. 

Table 9 Theoretical and simulation results of hybrid GA/SA 

Performances 
Theoretical values 
(MATLAB) 

Simulation values 
(SPICE) 

Av(dB) 84.42 84.33 

Ft (MHz) 534 517 

 
These values show the good agreement between the SPICE simulation results 

and the theoretical ones obtained by applying hybrid GA/SA.  
Fig. 25 shows SPICE simulation results of the FDFC OTA. 

 

Fig. 25 Spice simulation results for Gain and Phase curve 

The folded cascode OTA presents a high gain (84.33 dB), a large unity-gain 
frequency (517.030 MHz) and a good linearity depicted by its phase margin 
(51.34°). 

Finally, Fig. 26 presents results obtained for 100 runs of the GA/SA algorithm. 
The mean value of Av is 1503. 
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Av

 

Fig. 26 Values of Av for 100 runs. 

8   Application of GA/SA to the Optimization of a RF Circuit 

Low Noise Amplifiers (LNA) form an important block in any Radio Frequency 
chain [56]. The LNA is responsible of amplifying the signal and minimizing the 
noise [57]. Scattering parameters allow characterizing a LNA circuit [56]. In fact, 
these parameters reflect the power gain, the input matching and the output match-
ing of the LNA. It has been shown that the symbolic expressions of the scattering 
parameters can deducted from the symbolic expressions of the Impedance parame-
ters (Z-parameters) [59].  

The definition of the scattering parameters, noticed S-Parameters, is based on 
the theory of the incident and reflected waves [59,60]. Thus, S-parameters de-
scribe the relationship between the different waves of a system. Fig. 27 represents 
a network with two ports including the incident and reflected microwaves [61].  

A two-port

Network

a1

b1

a2

b2

i2i1

V1 V2

 

Fig. 27 A two-port network with incident and reflected waves.  

a1 and a2 represent the electric field of the microwave signal entering the network 
input and output respectively. b1 and b2 represent the electric field of the micro-
wave signal leaving the network input and output respectively. 

Consequently, the S-parameters are defined by the following expressions [61]: 
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S11, S21, S12, S22 are the input reflection coefficient, the forward transmission coef-
ficient, the reverse transmission coefficient, and the output reflection coefficient, 
respectively. 

 

Fig. 28 UWB Common Gate Low Noise Amplifier.  

Fig. 28 shows a Common Gate Low Noise Amplifier [62]. This structure is 
dedicated to the Ultra Wide Band (UWB) standard. The frequency band of this 
standard is defined from 3 GHz to 10 GHz. The input impedance of this structure 
is formed essentially by the inductance LS and the equivalent impedance of the 
transistor M1. The transistor M2 increases low frequency gain and improves isola-
tion. However, the parasitic capacitances of the transistor M2 decrease the gain at 
high frequency. Therefore, the role of the inductance LC is to balance this degrada-
tion. Transistors M3 and M4 improve the output matching of the structure. The in-
ductance LD and the resistance RD permit to obtain a flat gain along the frequency 
band [3, 10] GHz. Due to the large number of terms of the S-parameters, their 
symbolic expressions are not given; they were generated using the symbolic ana-
lyser CASCADES.1 [63,64].  

The hybrid GA/SA approach was used to compute the optimal sizing of the 
transistors forming the common gate LNA and the optimal values of the biases. 
The objective is to maximize the voltage gain (S21). Design and inherent con-
straints (maximum acceptable noise figure value, MOS saturation conditions, 
minimum transition frequency fT, and impedance matching) are given by expres-
sions (20)-(27). 

dBFigureNoise
dB
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= μ , f0 is the central frequency of the consid-

ered band, i.e. 6.3 GHz. VTNi is the threshold voltage, VinMAX is the input maximal 
voltage and Vgsi are gate to source voltages of the corresponding transistor (1≤i≤4). 

|S11|dB < -10dB (26)

|S22|dB < -10dB (27)

Fig. 29 presents a comparison between results obtained using GA and GA-SA. 
Fig. 30 shows SA results: S21 vs. stages of temperature. Table 10 gives the GA/SA 
algorithm parameters. Table 11 presents values of the optimized parameters and 
the reached performances.  
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Fig. 29 A comparison between GA and GA/SA results. 

 

Fig. 30 Optimizing the LNA scattering parameter S21 using SA:                                                      
S21 vs stage of temperature. 

Table 10 The GA/SA algorithm parameters  

Population size 400 

Numbers of iteration 400 

Mutation rate 0.01 

Crossover rate 0.8 

Initial temperature 1 

Stopping temperature 10-6 

Cooling schedule 0.95 
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Table 11 Optimal device sizing and reached performances for the LNA. 

 GA/SA SA 

Technology 0.35 µm AMS 0.35 µm AMS 

W1 (µm)/L1 (µm) 772/0.35 781/0.35 

W2 (µm)/L2 (µm) 772/0.35 781/0.35 

W3 (µm)/L3 (µm) 34.07/0.35 31/0.35 

W4 (µm)/L4 (µm) 34.07/0.35 31/0.35 

Id1 (mA) 5.23 5.18 

Id2 (pA) 6.23 6.23 

S21 13.0 dB 11.8 dB 

S11 -10.9 dB -11.6 dB 

S22 -15.0 dB -18.8 dB 

Running time 
(min) 

5.2 11.4 

 
Table 12 gives a comparison between theoretical (GA/SA) and simulation (Ad-

vanced Design System :ADS) results.  

Table 12 Theoretical and simulation results 

 
Theoretical values 

(MATLAB) 

Simulation values 

(ADS) 

S21 13.0 dB 12.5 dB 

S11 -10.9 dB -12.8 dB 

S22 -15.0 dB -12.6 dB 

Figs 31-33 show the good agreement between ADS simulation results and the 
theoretical ones (MATLAB) obtained by applying hybrid GA/SA.  
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 (a)  (b) 

Fig. 31 S11=f(frequency): (a) ADS, (b) MATLAB 

 (a) (b) 

Fig. 32 S21=f(frequency): (a) ADS, (b) MATLAB 

 (a) (b) 

Fig. 33 S22=f(frequency): (a) ADS, (b) MATLAB. 

Finally, Fig. 34 presents results obtained for 100 runs of the GA/SA algorithm. 
The mean value of S21 is 12.60 dB. 
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Fig. 34 Values of S21 for 100 runs. 
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9   Conclusion 

In this chapter, the hybridization of a genetic algorithm and the simulated anneal-
ing technique, and its application to the optimal design of analogue circuits, are 
proposed. The GA/SA algorithm was implemented in MATLAB. First, it was 
evaluated using some test functions and advantages of such hybridization, when 
compared to conventional meta-heuristics, were highlighted. The hybrid GA/SA 
algorithm was used to optimize the sizing of three typical analogue circuits, 
namely a positive second generation CMOS current conveyor, a fully differential 
folded cascode operational transconductance amplifier, and a radio-frequency cir-
cuit, i.e. a low noise amplifier. Improvements obtained thanks to the use of 
GA/SA, in terms of CPU computing time, were highlighted. Further, robustness of 
the proposed hybrid approach was tested and simulation results (SPICE/ADS) 
were given to show concordance with theoretical results. 
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Evolutionary Inventory Control for
Multi-Echelon Systems

Dilay Çelebi

Abstract. The purpose of this chapter is to present the use of Genetic Algorithm
(GA) for solving multi-echelon inventory problems. The literature of GA dealing
with inventory control problems is briefly reviewed with particular focus on multi-
echelon systems. A novel GA based solution algorithm is introduced for effective
management of a stochastic inventory system across a distribution network under
centralized control. To demonstrate the performance of proposed GA structure, sev-
eral test cases with different operational parameters are studied and experimented.
The percentage differences between the total cost obtained by GA and the lower
bounds and simulation results are used as performance indicators. Findings of the
experiments show that the proposed GA approach can be very useful for obtaining
feasible and satisfying solutions for the centralized inventory distribution problem.

1 Introduction

Most consumer or industrial products are manufactured in and distributed through
multi-echelon systems. Inventory control is critical in multi-echelon systems be-
cause of the financial necessity of maintaining a sufficient supply of products to
meet both customers’ needs and manufacturing requirements. Opportunity cost is
the main component of inventory related costs; money tied up in inventories is not
available for some other use. Inventories also create additional operational cost by
consuming physical space, personnel time, and capital. Holding of inventories can
cost anywhere between 20% and 40% of the product value, hence the effective man-
agement of inventory is critical in supply chain operations (Ballou, 1999).

The importance of a good inventory management in a supply chain is fully
recognized by practitioners and researchers. Besides the traditional inventory
management problems, the variability of orders increases in moving up from the
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downstream members to upstream members in the supply chain. This phenomenon
is known as bullwhip effect (Lee et al., 1997) which causes excessive inventory, loss
of revenue, low customer service levels, and inaccurate production plans throughout
supply chain systems. Much of the literature has shown that the bullwhip effect can
be minimized through information sharing and synchronized inventory control in
the supply chain (Cachon and Fisher, 2000). Hence the supply chain performance
might be improved by the lowering of inventory levels and the reduction of the cycle
times.

The scope of this chapter is confined to use of Genetic Algorithms (GA)s for
handling operational issues of inventory control and management in multi-echelon
inventory networks. The chapter is structured in six parts. Section 2 gives some
fundamental definitions and briefly explains the complexity of multi-echelon inven-
tory control problems. Section 3 provides a review of literature on use of GAs to
solve multi echelon inventory control problems and evaluates the state of GA ap-
plications in these areas. The studies are classified into three categories according
to the network structures they handle. Section 4 presents a novel GA structure for
a stochastic lot sizing problem in a centralized distribution system. Model structure
and the steps involved in development of the proposed GA scheme, such as chromo-
some representation, initialization, fitness function development, and determination
of operational parameters are explained in detail in relevant subsections. The perfor-
mance of GA is demonstrated through experiments conducted on several test cases
with different operational parameters. Finally, section 5 discusses the issues and
boundaries related to the application of the GA on inventory control problems. The
chapter is closed with discussions for further research directions.

2 Inventory Control in Multi-Echelon Systems

A multi-echelon inventory system refers to a multistage production/inventory sys-
tem in which each stage obtains its supply from its predecessor(s) and supplies its
supply to its successor(s). Inventory control in multi-echelon systems deals with the
problem of determining the best replenishment sizes of items at each stage, mostly
with the purpose of minimizing the total cost of the system which usually covers the
costs of carrying inventories, costs of making orders, costs of inter-location trans-
fers, and costs of shortages.

Several multi-echelon inventory/production systems can be modeled as a serial
system (Clark and Scarf, 1960). In a serial system, each installation has at most one
predecessor and at most one successor. An illustration of a serial system is given
in Figure 1. The customer demand only arises at the lowest level. Each installation
is replenished from its predecessor and the highest installation replenishes from an
outside supplier. It is, in general, considerably easier to deal with serial systems than
with other types of multi-echelon systems. The main reason to discuss such systems
is to obtain preliminary results to study more complex systems.
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Fig. 1 A Serial Inventory System.

Within a manufacturing context, a final product is sometimes the result of a pro-
cess which can be decomposed into several levels, broadly corresponding to assem-
bly activities. As illustrated in Figure 2, in an assembly system, each installation has
at most one immediate successor. In such systems, the safety stock levels should be
positioned wisely and the assembly schedule should be done carefully for effec-
tively managing the component procurement and maintaining service levels on the
demand side.

Fig. 2 An Assembly Inventory System.

Meanwhile, inventory distribution systems are generally divergent. A distribution
system involves a number of installations at the lowest level which satisfy customer
demand and in turn act as customers of higher level installations. Figure 3 shows
such a system with two levels: a central warehouse and a number of retailers.

Fig. 3 A Distribution Inventory System.

There exists substantial amount of studies for multi-echelon inventory control,
concerned with the analysis and modeling of systems under different operating
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parameters and modeling assumptions. Extended reviews about the topic might be
found in van Houtum et al. (1996) and Gumus and Guneri (2007).

Two distinct configurations for multi-level inventory systems can be consid-
ered according to the center of management. First is the decentralized systems,
where each member of the network takes replenishment decisions on its own and
based on only local data. Though it is simple to construct and control such sys-
tems, it may not be the most effective. Recently, to increase the competitiveness
and effectiveness of their supply chains, companies have begun to set cooperative
agreements to manage inventory, which requires sharing demand information and
setting mutually agreed upon performance targets for the supply chain. However,
most of the time, it’s mistakenly assumed that efficiency can be attained simply by
sharing information and forming strategic alliances within supply chain partners
(Silver et al., 1998). In fact, only few companies are able to fully exploit the advan-
tages of collaboration in their supply chains (Holweg et al., 2005), because incor-
porating customer demand information into inventory control processes to develop
sound inventory management is critical to long term survival and competitive ad-
vantage. It is important not only to exchange information, but equally, to alter the
replenishment and planning decision structure so that a range of additional benefits
can be achieved. As a result, a second type of systems become popular as cen-
tralized systems, in which the stock control activities of the whole system become
concentrated within a particular member or group of members. These members
take the full control of the inventory replenishment of the chain, and use demand
and cost visibility in planning supply operations. The centralization of inventory
management might provide cost reductions and improved service levels due to the
decreased uncertainty and better utilization of resources for production and trans-
portation (Waller et al., 1999).

Considering centralized solutions for inventory control in supply chains intro-
duces computational difficulty. Schwarz (1973) shows that in a one-warehouse,
multi-retailer situation, the form of the optimal policy can be very complex; in par-
ticular, it requires that the order quantity at one or more of the locations vary with
time, even if all relevant demand and cost factors are time-invariant. Federgruen
(1993) notes that algorithms for determining optimal strategies are complicated even
for most deterministic demand systems, and complexity dramatically increases in
models with stochastic demand.

For centralized control of multi-echelon systems, Clark and Scarf (1960) intro-
duce the concept of echelon stock. Echelon stock consists of the stock at any given
installation plus stock in transit to or on hand inventory at a lower installation. They
have shown that order-up-to policies based on echelon stock inventories are optimal
for serial inventory systems with periodic review. Their optimality results for serial
systems are later generalized to an infinite time horizon by Federgruen and Zipkin
(1984), to assembly systems by Rosling (1989), and to batch ordering by Chen
(2000). However, determination of optimal lot sizes by provided models for large
scale problems still suffers from computational burden. Moreover, it is not possible
to show that echelon stock inventory policy is optimal for distribution systems due
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to the allocation problem, and for some cases a strategy based on echelon stock
inventories might be inferior to a installation stock based strategy (Chen, 2003). The
optimization of such systems requires the analysis of a multi-dimensional dynamic
programming.

There isn’t any known stochastic, multi-period, multi-location model capable of
handling complex systems like inseparable cost structures and nonlinear
transportation costs (Federgruen, 1993; Chen, 2003). In a practical setting, it is con-
sidered too difficult to solve the distribution lot sizing problem by dynamic pro-
gramming numerically due to the curse of dimensionality. Even for the smallest
number of retailers and periods, the exact solution is considered to be impracti-
cal (Federgruen and Zipkin, 1984).

3 GAs for Multi-Echelon Inventory Problem

During the last two decades, the opportunities for efficient control of multi-echelon
inventory systems have increased substantially (Axsater, 2003). One reason is new
information technologies which have created a completely different infrastructure
and increased the possibilities for efficient supply chain coordination. Another rea-
son is progress in research, which has resulted in new and efficient techniques for
solving hard combinatorial optimization problems. Meta-heuristics such as tabu
search, GA and simulated annealing, are examples of such tools which have be-
come popular tools for solving multi-echelon inventory control problems due to
computational complexity of such problems.

GA has received considerable attention regarding their potential as an effective
optimization technique (Gen and Cheng, 2000). First pioneered by Holland (1975),
GA is powerful stochastic search and optimization technique based on principles
of natural selection and evolution that has been widely studied, experimented and
applied in many fields in engineering (Goldberg, 1989; Holland, 1975). Many of the
real world problems, which might be difficult to solve by traditional methods but
are ideal for GA.

There exists wide range of studies which implement GA to cope with the multi-
echelon inventory management problem. Table 1 provides a review of how GAs
have been used to solve multi-echelon inventory problems and following sections
give brief summaries of these studies, classified under three main categories accord-
ing to the network structure they handle.
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3.1 Serial Networks

Fakhrzad and Khademi Zare (2009) present a combination of GA with Lagrange
multipliers for lot-size determination in a multi-stage, multi-product and multi-
period production scheduling problem. First, the original problem is converted to
several individual problems using a heuristic approach based on the limited re-
source Lagrange multiplier. Then, each individual problem has been solved using
GA combined with one of the neighborhood search techniques. Each chromosome
is represented by a (T ×2m) matrix where m is the number of elements and T is the
number of periods. This representation consists of lot-size (X) and inventory values
(I) for each element in each period which is illustrated as follows:⎡

⎢⎢⎢⎣
X11 X12 . . . X1T I11 I12 . . . I1T

X21 X22 . . . X2T I21 I22 . . . I2T
...

...
...

...
...

...
...

...
Xm1 Xm2 . . . XmT Im1 Im2 . . . ImT

⎤
⎥⎥⎥⎦

Fitness function is developed to have two modes. One mode represents the cost value
for the feasible solution and the other indicates the feasibility of the solution. A so-
lution for the initial population is obtained using WagnerWhitin (WW) algorithm.
Two different combinatorial operations, namely a memetic algorithm and WW com-
bination, are used for crossover operation to generate new offsprings. Experiment
results over a set of 60 test problems show that proposed hybrid algorithm solves
the problem in much less time, with better solutions and lower costs compared to
memetic algorithm and CPLEX solution.

Daniel and Rajendran (2005), study the performance of a single-product serial
supply chain operating with a base-stock policy. A single period, multi-echelon,
single product model is formulated to optimize the inventory (i.e. base stock) levels
in the supply chain to minimize the total supply chain cost, comprising holding and
shortage costs for all installations in the supply chain. A set of actual values of the
base-stock levels are used to code all the genes in a chromosome that represent
every member in the chain. The chromosome length is set equal to the number of
installations, because every installation in the supply chain is assumed to operate
with a particular base-stock level. Every chromosome in the population is evaluated
through simulation and fitness value is computed by using the objective function
value. Test results illustrate that the proposed GA performs superior to a random
search procedures for defined experiment sets.

Both Kimbrough et al. (2002) and O’Donnell et al. (2006) manage to decrease
the bullwhip effect by implementing GA on a serial supply chain model based on the
MIT beer game. Each player in the game makes their own ordering decisions based
on only the orders from the next downstream player. The inventory and backorder
cost are calculated for every period in the simulation experiments with each unit
cost being constant throughout and the sum of the two types of costs, called total
cost, is used as the criteria for GAs to determine the optimal ordering policies.
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3.2 Assembly Networks

Torabi et al. (2006) investigate the lot and delivery scheduling problem in a simple
supply chain where a single supplier produces multiple components on a flexible
flow line and delivers them directly to an assembly facility. The main objective is
to find a lot and delivery schedule that would minimize the average of holding,
setup, and transportation costs per unit time for the supply chain where the de-
cision variables are production sequence vectors at each stage and machine. The
problem is formulated as a mixed integer nonlinear program and a Hybrid Genetic
Algorithm (HGA) is developed to solve the problem. The proposed HGA incorpo-
rates a neighborhood search into a basic GA that enables the algorithm to perform
genetic search over the subspace of local optima.

Two different encoding schemes are considered to represent the discrete part
of a solution for the problem. In the first format, each chromosome is composed
of m sub-chromosomes, where m gives the number of stages. So that, each sub-
chromosome represents the production schedule in that stage. At stages with only
one machine, the corresponding sub-chromosomes are permutation vectors of size
n where n is the number of components. At stages with multiple parallel machines,
the corresponding sub-chromosomes are composed of a component symbol list
and a partitioning symbol list, in which integers are used to represent sequence
of components and asterisks are used to designate the partition of components to
the machines. This first format is good for representing a complete solution for the
problem, because it covers the entire solution space and there is a unique string asso-
ciated with every solution for the problem. However, there are difficulties associated
with crossover and mutation operations, so a new encoding scheme is considered.
The second format relates to the set of permutation vectors of size n. Each permu-
tation vector represents the order in which the given set of components is processed
at each stage. Such a vector by itself does not specify the complete solution, so an
appropriate procedure out of two constructive heuristics is used to construct a com-
plete solution for every given permutation vector. The fitness function is set equal
to the objective function of the problem and the optimal lot sizes associated to each
solution representing a given production schedule is solved by a NLP.

Vergara et al. (2002) develop an evolutionary algorithm that calculates the pro-
duction sequence at each supplier that would minimize transportation, setup, and
inventory holding costs across a multi-component assembly system. The goal of
the proposed GA is to determine a common delivery cycle time and production se-
quence of components for each member of a synchronized supply chain. Integer
value representation is used for encoding the solutions. First three places in each
chromosome contain the total cost, synchronized delivery time, and the minimal cy-
cle time. The rest of the chromosome is composed of the production sequences of
components for each supplier. The last space in the chromosome is used for holding
the cost of the assembly center. The performance of the algorithm is tested through
the comparisons with an enumeration procedure that identifies the global minimum.
On the average, GAs are observed to find the global optimum in 97% of the cases
and the error term is less than 0.0038 in the remaining cases.
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Berretta and Rodrigues (2004) deal with the multistage capacitated lot-sizing
problem with an objective of determining the production lot-sizes of multiple items
that minimizes the production, inventory and setups costs subject to demand and
capacity limitations. A memetic algorithm approach is used for solution of the prob-
lem. Each solution is represented by a matrix of size 2N ×T (where N is number
of items and T number of periods), with lot-size and inventory of each item in each
period. Each solution of the initial population is created using the WW algorithm.
Fitness of each solution is composed of two values, one for value of objective func-
tion, the other for representing the feasibility of the solution. Each chromosome uses
a local search algorithm to improve its current fitness value and transfers the best
solution to the population.

Two different crossover schemes are used to stimulate diversity of solutions in
the population. First crossover method determines a production lot size of offspring
randomly over parent chromosomes and updates the inventory level accordingly.
Second method uses WW algorithm, which changes the setup costs of some items
randomly and develops a solution for each item by WW algorithm. The performance
of the algorithm is tested through comparisons of solutions with lower bounds eval-
uated by Lagrangean Relaxation in three groups of instances. The average gaps
between the lower bound and the heuristic solution are observed to be between than
11−12%.

Hnaien et al. (2009) examine supply planning for two-level assembly systems
under lead time uncertainties. They handle an optimization problem for a single pe-
riod system where the finished product demand for a given due date is supposed to
be known. The objective is to find the component release dates in order to minimize
the sum of the holding costs of the components and the shortage cost for the fin-
ished product. Each chromosome has been coded with an array of integer numbers
where each gene of a chromosome represents an order release date. Therefore, with
a chromosome length equal to number of components, a complete encoding that
ensures that all solutions to the problem is represented and considered by the algo-
rithm. The expected total cost of the system is used to evaluate the fitness of each
individual of the population. Two selection phases are considered for generation of
new generations. First is a reproduction selection to determine the individuals on
which the evolutionary operators will be applied. Second is a replacement selection
concerning the evolution of the population from a generation to the next. A standard
single point crossover and mutation is then applied to the generated offsprings to
introduce some diversity in the population. The mutuant gene is selected randomly
at each generation by sampling a uniform random number. In addition to the typ-
ical genetic operators, also a local search is incorporated in order to speed up the
convergence of the algorithm.

3.3 Distribution Networks

Syarif et al. (2002) consider a single period capacitated distribution problem which
also consists of the binary decisions of opening plants and Distribution Center (DC).
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The number of the DC’s to be opened is assumed to be given as a constant. The ob-
jective is to minimize the total transportation, inventory, ordering and warehouse
costs under capacity constraints, while fully supplying deterministic customer de-
mand. A spanning tree based GA is used to solve the model. Vertex encoding is used
with Prüfer number representation which establishes a unique sequence of length
n− 2 associated with the tree with n vertices. The chromosome consists of five
sub-strings as illustrated in Figure 4. The first and the second substrings are binary
digits representing opened/closed plants and DCs, respectively. The last three num-
bers are the Prüfer numbers to represent the production and distribution pattern for
each echelon.

Fig. 4 Chromosome Structure Used by Syarif et al. (2002).

The infeasibility that may result from capacities and distribution structures are
eliminated with a repair strategy, simply by replacing the digits in Prüfer numbers
until the number of connections in the supplier set is equal to the number of con-
nections in the supplier plants set for each node. A single point crossover operation
is used. For mutation, an inversion-displacement operation is employed. Inversion
selects two positions within a chromosome at random and inverts the substring be-
tween these two positions where displacement selects a substring at random and
inserts it in a random position. The results of various experiments show that pro-
posed algorithm provides near optimal solutions both for small and large scaled
problems.

Yokoyama (2002) present a model and a solution procedure based on GA for
single item distribution system with stationary and probabilistic demand. The ob-
jective is to determine the target order-up-to levels for DCs and transportation quan-
tities to minimize the expected total inventory related costs and transportation costs.
Simulation and linear programming are used for calculating the estimates of ex-
pected costs. Each solution is represented by a integer array of size equal to the
number of the DC where each gene holds the order-up-to level for the given DC.
Total expected cost for a given chromosome is estimated by simulation where op-
timal transportation quantities for given inventory levels are determined by linear
programming. Two-point crossover operation, roulette wheel selection, and random
replacement mutation operations are implemented for generating offsprings. The
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results of the algorithm are compared to the results of random local search algo-
rithm. GA is observed to produce slightly better results than random search within
same computation times.

Han and Damrongwongsiri (2005) develop a model to define stochastic, multi-
period, two-echelon inventory with the many-to-many demand-supplier network
problem to develop a (R,S) inventory management system where R refers to the
replenishment period and S is the order-up-to level. GA is applied to derive op-
timal solutions through a two stage optimization problem. First stage covers the
optimization of inventory order-up-to levels of the warehouses based on historical
demand. Binary representation of the order levels is used for encoding where the
length of the bitstream assigned to each warehouse is determined by the capacity
of the warehouse. The fitness function is calculated as the sum of inventory carry-
ing and shortage costs. The optimal inventory order-up-to levels determined in the
first stage are used as inputs of the second stage, distribution planning. The goal of
this stage is to determine the optimal transportation quantities of the retailers that
minimizes inventory related costs. Binary encoding is preferred for chromosome
representation, where the bit length assigned for each retailer is determined by both
the capacity of the retailer and the total warehouses’ maximum inventory level. First
population is randomly generated and roulette wheel approach is used for selection.
Crossover is done by one-cut-point method and random point mutation is used. Re-
sults of numerical experiments do not contain any performance comparisons with
other methods but various experiment sets are presented to illustrate the flexibility
of the method to handle many uncertainty factors.

The approach developed by Han and Damrongwongsiri (2005) is implemented to
solve a real industry case by Wang and Wang (2008). Both the mathematical model
and the GA structure are adopted for optimizing the distribution operations of a
medical products manufacturer which supplies to four Nordic region markets from
three geographically distinct warehouses. The demands at each market are assumed
to be normally distributed with parameters forecasted through past data and inde-
pendent of each other. Again no data is provided for performance comparisons but
it’s noted that GAs are able to compute the trade-off of all parameters and derive a
good inventory and distribution plan, which might lead to a reduction up to 80% on
the total cost of the system.

4 A GA Approach for Stochastic Lot-Sizing in a Centralized
Distribution Network

This section presents a novel GA structure and the implementation issues for so-
lution of a stochastic lot sizing problem in a centralized distribution system. To
author’s knowledge, this is the first study that investigates the use of GA for
the capacitated lot sizing problem of One Warehouse - Multi Retailer (OWMR)
system under stochastic and time varying demand. A similar study is given by
Celebi and Bayraktar (2008) for deterministic demand case. The main
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contribution of the proposed GA structure is the domain specific encoding scheme
and the fitness value calculation technique that uses dynamic programming for
evaluating best order structure of the warehouse. This structure can be utilized as
a collaborative supply chain planning tool to effectively manage the distribution
process.

This section also presents an extensive numerical study over simulations which
identifies the parameter settings where the proposed GA based method performs
better or poorer than a widely used approximation technique. These results also
implicitly shows the impact of cost parameters on the performance of the studied
distribution network.

4.1 Model Description

A two-echelon distribution inventory system with a single central warehouse and
multiple retailers is considered. The network is controlled by a central distributor
which is occupied with all relevant information. That means, the distributor moni-
tors the end customer demand and retailers’ inventory levels in order to decide on
order quantities, shipping and timing of replenishment orders.

Retailers directly replenish their stocks from the warehouse where warehouse
orders from an outside supplier. It is assumed that the outside supplier have infinite
source of supply or work at very high service levels so delays from the supplier
side are negligible. All facilities follow a periodic inventory order policy where
the lengths of planning periods are the same for all retailers and the warehouse.
Customer demands are probabilistic and only placed in retail locations. It is assumed
that the demand rates might change from one period to another, but remain constant
within a period. This is not a restrictive assumption when the period length is kept
small enough compared to the planning horizon. Moreover, this assumption is a
good representative of the practical situation when demand quantities are forecasted
by a time series method. In such a case there exists a demand forecast for given
period, and the variations of demand within the period are estimated by a probability
distribution.

An inventory problem for T periods is considered. There is a fixed ordering cost
incurred with each replenishment with a cost function δ (q);

δ (qn
t ) =
{

cqn
t + Kn

t , if qn
t > 0

0, if qn
t = 0,

(1)

where Kn
t is the setup cost, c is the unit purchasing cost, and qn

t is the replenishment
quantity at period t. During each period, the stock on hand is decreased by an amount
equal to the demand.

In addition to ordering cost, for all locations, carrying inventories incurs holding
costs at a rate of h which is charged on the inventory level at the end of each period.
Unfilled customer demands are fully back-ordered at retailer level and the retailer
shortages are penalized a rate of π , the back-order cost per unit.
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L(xn
t ) =

⎧⎨
⎩

h∑xn
t

u=0(x
n
t −u)P(u)+π∑∞

u=xn
t
(u− xn

t )P(u), if xn
t > 0

π∑∞
u=0(u− xn

t )P(u), if xn
t ≤ 0.

(2)

In equation (2), xn
t is used to express the inventory level and P(u) is the probability

of observing u units of demand.
The allocation decision made for shipping to a total number of N retailers has

direct impact on warehouse’s costs. At the beginning of each period, warehouse al-
locates a total of ∑N qn

t units to the retailers. Delivery of a replenishment arrives �
periods after the allocation decision, when the stock on hand is increased by the
amount of the replenishment. Since customer transactions only occur at retailer
points and the warehouse directly replenishes from an infinite supply source, there
aren’t any costs associated with inventory shortages on warehouse side. Inventory
carrying costs for the warehouse for holding y units of inventory, is denoted by
H(y,qt) and given as:

H(y,qt) = h0(y−∑
N

qn
t ) (3)

In a centralized system the optimal policy is not necessarily the aggregation of in-
dividual optimal policies because of the dependencies among members and costs
associated with those dependencies. The purpose of our model is to obtain the min-
imum total cost for the overall system which is formulated as follows:

Minimize
T

∑
t=1

(
H(yt ,qt)+ δ (pt)+

N

∑
n=1

(
L(xn

t )+ δ (qn
t )
))

. (4)

subject to

xn
t+1 = xn

t −Dn
t + qn

t−� n = 1, . . . ,N (5)
N

∑
n=1

qn
t ≤ yt t = 1, . . . ,T (6)

xn
t ≤Cn t = 1, . . . ,T,n = 1, . . . ,N (7)

yt ≤C0 t = 1, . . . ,T (8)

The solution of model presented above for the lot sizing problem of the centralized
system gives the minimum value of objective function (4) under given constraints.
The first two terms in the objective function refer to total expected warehouse in-
ventory costs. Last two terms are the sum of expected inventory related costs of
all retailers. First constraint is a balance equation which adjusts the inventory lev-
els between two consecutive periods. This is not a simple linear equation due to
the stochastic variable Dn

t . Second constraint limits the number of shipped prod-
ucts from warehouse to all retailers with warehouse’s on-hand stock in period t.
Constraints (7) and (8) ensures that retailers’ and warehouse’s inventory holding
capacities are not exceeded.

Due to the stock allocation problem of distribution systems, the optimality for-
mulations are functions of distributor’s and N retailers’ inventory levels and can not
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be broken down in the form of independent formulations (Clark and Scarf, 1960).
The state of the system at the beginning of period t can be described by the vec-
tor (xt ,qt−�n+1, . . . ,qt−1). For any period t ∈ 1 . . .T , the minimum total expected
cost function is defined as ft (xt ,qt−�+1, . . . ,qt−1,yt , pt−�0+1, . . . , pt−1). Here xt and
qt refers to the vector of the inventory levels and replenishment quantities of all
retailers, yt and pt refers to the inventory level and replenishment quantity of the
warehouse for period t. The optimal lot sizing policy in centralized system is given
by one combined formulation due to the dependencies between retailers’ and dis-
tributor’s orders. The recursive formulation for period t then becomes:

ft (xt ,qt−�, . . . ,qt−1,yt , pt−�0 , . . . , pt−1) = (9)

min
0≤yt≤C0

{
min

0≤∑qt≤min(yt ,Cn)

{
δ (qt)+ δ (pt)+ H(yt , pt)+ L(xt)

+ ft+1(xt + qt−�−u,qt−�+1, . . . ,qt ,yt + pt−�0 −∑qt , pt−�0+1, . . . , pt)P(u)
}}

.

Solving (9) recursively for T periods gives us optimal policy for allocation and
inventory replenishment strategy of the overall system.

4.2 Motivation for Using Genetic Algorithms

For finding the global optimum convexity plays a crucial role in minimization prob-
lems. Finding a local optimum solution is an important step of solving the global
problem, however it is not sufficient most of the time. Traditional optimization tech-
nique works by obtaining the zeros of a function’s derivative, and testing for op-
timality. Such derivative tests obtain local information, and hence yield solutions
that are locally optimal. Removing the convexity assumption on the function to be
optimized, this method may prove severely inefficient, as it cannot provide anything
more than local information. In such a case, the characteristics of the solution space
should be investigated for ensuring the global optimum.

The problem presented in section 4.1 is proven to be NP-complete (Florian et al.,
1980) and there is no known method to decompose the model into smaller ones.
Besides the non convex behavior of total cost function, (4), distribution network lot
sizing problem consists of variables that are diverse in their behavior, boundaries,
and the probability distribution type. Moreover, the individual objective functions of
the parties are not linear and multiple objectives can not be combined into a single
metric. The combinatorial and sequential behavior of the two-echelon lot sizing
problem can not be easily handled by traditional optimization techniques. Then it is
reasonable to investigate a search algorithm to approximate the global minimum of
the inventory distribution problem.

The known methods developed so far need considerable computational effort to
obtain an optimal solution and so are only able to solve relatively small problems
within a reasonable time. The problem requires a considerable computational burden
when the problem instance is large. Even for a simple example which represents a
very small instance of a problem, the total cost function might have multiple local
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minima (Çelebi, 2008). A search algorithm that only uses the gradient ascent will
be trapped in a local optimum, but any search strategy that analyzes a wider area
will be able to cross the local optimum and achieve better results.

GAs are capable of handling non-linear functions and can also deal with multiple
objectives. They do not have any restrictions on the nature of data or mathematical
requirements about the problem structure, unlike most traditional approaches. Due
to their evolutionary nature, they can handle any kind of objective functions and
constraints (linear or nonlinear) defined on discrete or continuous, or mixed search
spaces (Gen and Cheng, 1997).

One of the difficulties when dealing with non convex optimization problems by
search algorithms is that one often falls into local optima. When this happens, of-
ten the global optimum is then impossible to reach. The probabilistic evolution of
operators makes GA very effective at performing global search and reaching global
optima. The GA based solution methods have the advantage of being able to gen-
erate both convex and non convex points of the optimization curve, accommodate
nonlinearities in the objective functions, and not be restricted by the peculiarities of
a weighted objective functions (Scott et al., 1995).

One should keep in mind that as it is common with all heuristic methods, GAs
cannot guarantee to locate the global optimum in a problem space in a finite time.
But still, for some engineering problems such as many design and simulation tasks,
the most desirable solution may not be the conventional global optimum but instead
a solution representing a robust answer to the problem in hand is sought.

4.3 The Proposed GA Structure

The construction of a GA for any problem can be separated into four distinct and
yet related tasks (Hou et al., 1994):

1. The choice of the representation of the solutions,
2. The determination of the fitness function,
3. The design of the genetic operators to be used for creation of new generations,

and
4. The determination of the probabilities controlling the genetic operators.

Each of the above four components greatly affects the solution obtained as well as
the performance of the GA. The summary of these steps involved in the proposed
GA structure are described in detail in the following sections.

4.3.1 Encoding and Initialization

The most critical problem in applying a GA is in finding a suitable encoding of the
examples in the problem domain to a chromosome. A good choice of representation
will make the search easy by limiting the search space, a poor choice will result in
a large search space. Our candidate solutions are combinations of all possible order
quantities of each retailer and the distributor, for a number of T periods, hence the
phenotype space P is the set of all such combinations. To design a GA defined by
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a representation of phenotypes from P, integer value representation is used where
each chromosome represents retailers order up to levels for each period. Each chro-
mosome takes the following sequence in the proposed encoding scheme:

C = q1
1q1

2 . . .q1
T q2

1 . . .q2
T . . .qN

1 . . .qN
T

Here, qn
t is the direct value representation of the replenishment quantity for retailer

n in period t. Each chromosome is a string of N × T genes, where N is the total
number of retailers and T is the number of periods. That means, ith gene in the
sequence is the replenishment quantity for retailer �i/T� in period i(mod T ). Each
gene can take values between 0 and Cn which corresponds to the inventory carrying
capacity of retailer n.

This design guarantees the completeness and the correctness requirements of en-
coding. Completeness is simply a consequence of using allocation quantities for all
retailers in all periods. The correctness condition is provided by a simple check be-
fore fitness calculation. If the inventory on hand exceeds the capacity level for the
given allocation quantity in any period, allocation quantity is updated to provide a
feasible inventory level. Hence, feasibility of the chromosomes are kept in the legal
domain without use of any additional constraint. First population is created with
randomly generated individuals.

4.3.2 Fitness Evaluation and Selection

The role of the fitness function is to represent the requirements for improve-
ment (Eiben and Smith, 2007) for a given individual. The quality of the given solu-
tion f , represented by a chromosome C , is determined by the minimum expected
total cost of the system given by equation (4). The total cost represented by any
chromosome is evaluated in three steps:

1. Each retailer’s expected costs for the replenishment scheme proposed by the
chromosome are calculated by using equation (10) for total of T periods.

gn
t (x

n
t ,q

n
t−�, . . . ,q

n
t−1) =

{
δqn

t + L(xn
t ) (10)

+
∞

∑
u=0

gt+1(xn
t + qn

t−�−u,qn
t−�+1, . . . ,q

n
t )P(u)

}
.

2. The replenishment quantities are summed up to develop the aggregate allocation
quantities (∑qt ) and the ordering policy of the distributor is evaluated by dynamic
programming formulation as given in equation (11).

ft (yt , pt−�0 , . . . , pt−1) = min
pt≥0

{
δ pt + H(yt ,∑qt) (11)

+ ft+1(yt + pt−�0 −∑qt , pt−�0+1, . . . , pt)
}
.

3. The objective function value is taken as the sum of the cost of warehouse
(Eqn. (10)) and total cost of retailers (Eqn. (11)).
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Resulting raw fitness scores are converted to values in a range that is suitable for
the selection function. To avoid the effect of the spread of the raw scores, Rank
fitness scaling method is used which scales the raw scores based on the rank of
each individual instead of its score (Gen and Cheng, 1997). The selection of mating
parents is done through roulette wheel algorithm. The pseudocode of this algorithm
can be found in (Eiben and Smith, 2007).

4.3.3 Creation of New Generations

At each iteration, the current population is used to create the offsprings that make
up the next generation through a general replacement scheme, so that, the chro-
mosomes in the current population are completely replaced by the offspring. That
means, population size is kept constant in its initial level through generations. The
creation of next generation is conducted by three types of children. Figure 5 presents
the schematic illustration of the three types of children.

Fig. 5 Schematic Illustration of Three Types of Children.

Elite children are the individuals in the current generation with the best fitness
values. These individuals are automatically passed to the next generation without
any modification. Such an elitist algorithm is recorded to be able to speed up the
performance of the GA significantly by preventing loss of good solutions once they
are found (Zitzler et al., 1998). Experimenting on varying numbers (from 0 to 10)
of elite chromosomes, the number of elite chromosomes is set to 2 which has given
highest scoring individuals and provided best results in means of fitness value and
time of convergence.

Crossover children are created by paring up the chromosomes and combining the
vectors of a pair of parents. Intermediate recombination, which creates a new value
for each gene of the offspring that lies between those parents. The function creates
the child, c from parent1, and parent2 using the following formula:
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offspring = αparent1 +(1−α)parent2,

where α is a random number generated from the range [0,1].
This method protects the feasibility of the chromosomes but might assign frac-

tional numbers to the offspring genes. Such genes are repaired by rounding the
number to the nearest integer for representing a valid order quantity.

Mutation children are created by introducing random changes, or mutations, to
a single parent. To introduce variations into the chromosomes, Random Resetting
in multiple points is implemented. Genes are selected according to a probability of
being mutated, Pmut , which is defined by the mutation rate. Selected genes are then
replaced with a value which is a realization of uniformly distributed random variable
within the capacity range.

4.3.4 Setting Operational Parameters for GA Cycles

The selection of the best genetic parameters such as population size, number of gen-
erations, probability of crossover, and probability of mutation, is one of the impor-
tant issues for the successful application of GA. Identifying the best parameters for
a specific task is an open and challenging problem. Larger population sizes reduce
the chance that GA will return a local minimum by searching the solution space
more thoroughly but it also causes the algorithm to run more slowly. Experimenting
on different population sizes, for the given problem instance it is observed that a
population size of 50 gives satisfactory results both in sense of convergence speed
and fitness values for our problem.

Two genetic operators, crossover and mutation, competes over the field of conver-
gence. High crossover rate decreases the level of variation in the population so forces
the convergence, while mutation forces diversity in the population. As a result of this
fact, an optimum setting for the operator probabilities should have been determined.
Optimal rates of these operators are problem specific and there are no defined rules
on selecting the best GA operator fractions. To overcome this, the crossover and
mutation rates are determined through several GA experiments for different rates
of crossover and mutation by linear variations as suggested by Davis (1991). The
experiment sets are composed by all combinations of 11 different crossover frac-
tions over [0.5,1.0] and 11 different mutation rates over [0,0.2]. The performance
of each configuration is calculated by the value of the objective function, which is
total system cost.

First one problem instance with 10 periods which represents the maximum period
is used in our test cases. GA is run 121(11×11) times to observe each configuration
of crossover and mutation rate combinations. Two terminating conditions are set:
First on the maximum number of generations, as 500, and second, on the number
of generations without any improvement on fitness function, as 100. The minimum,
average fitness function values of these three runs are recorded and crossover and
mutation parameters are set to ones which give the minimum fitness values. The
experiment results are presented in Figure 6.
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Fig. 6 Determination of Best Crossover and Mutation Rates.

Experiment results show that one of the crossover or mutation rates perform su-
perior than others. Generally, high crossover rates are observed to give better results
when mutation rate is also increased, however best results are obtained by a mod-
erate crossover fraction, 0.7. On the average, mutation rate of 0.12 is observed to
perform slightly better than others.

4.4 Numerical Study and Discussions

To demonstrate the performance of proposed GA approach, several test cases with
different operational parameters are experimented. All algorithms are implemented
in Matlab due to its efficiency for numerical computations, advanced data analysis
capabilities, visualisation tools, and special purpose application domain toolboxes.
The built-in functions of population creation, crossover, mutation, and fitness evalu-
ation of Matlab-GA toolbox are modified according to the structure of the proposed
GA design. Cost function and dynamic programming algorithms are coded as a
common set of interdependent functions which are both used by GA algorithm and
Balance Assumption (BA).

Since the optimal policy and the associated cost are unknown, instead of com-
paring the cost obtained by GA to the optimal cost, the cost of the system eval-
uated under BA and the cost realizations of system simulations(sim) are taken as
the benchmark values. BA implies that in each period the downstream stock levels
are balanced in such a way that a cost minimizing allocation without restrictions
on the allocation variables will never result in negative allocation quantities. Thus,
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the system-wide cost calculated analytically under BA provides a lower bound for
the true optimal cost. Detailed explanation of the balance assumption may be found
in Eppen and Schrage (1981).

Assumption of zero lateral transshipment among retailers leads to a relaxation of
the original optimization problem and is infeasible in real life. To provide a real-
istic benchmark value, an estimate for the real cost of the given policy (by BA) is
obtained by simulation, so the cost of a feasible policy can be achieved. Each sim-
ulation is run for at least 100 times and terminated as soon as the width of a 99%
confidence interval about the average cost function was within 1% of the average
cost. The relative gaps between the results of the GA runs and the lower bound and
the simulation runs (%εlb = 100× GA−LB

LB and %εsim = 100× SIM−GEN
LB respectively)

are used as measures to assess the performance of the proposed GA method. Since
the optimal cost of the original problem is between LB and GA, a small relative
gap (εlb) implies that GA value is close to the optimal cost of the original problem,
meaning that GA leads to an accurate approximation of the true optimal cost. On the
other hand, even though the ”balance assumption” might seem somewhat unrealis-
tic, it has since been used extensively in the inventory literature and has been shown
to produce solutions of very good quality in many different situations, (see for exam-
ple Eppen and Schrage (1981); Federgruen and Zipkin (1984); van Houtum et al.
(1996)). Policies that can provide considerable improvements over the BA in less
or equal computation times, might be considered as well performing. Hence, a large
relative gap between the simulation of ”balance” policy and GA policy (%εsim) is
an indicator of the success of proposed GA structure for solving the given inventory
distribution problem.

Due to the curse of dimensionality, only the case with two retailers with demands
distributed over integers in [0,4] with probabilities [0.1,0.2,0.4,0.3] is considered.
This approximately corresponds to a moderate level of coefficient of variation. Both
lead times for the retailers and the distributor are taken as 1. A limited number of
test cases are structured by varying following cost parameters:

Fixed Costs: A variety of cases is considered for fixed replenishment costs de-
fined by three different values for the retailers, (Kn = 0,5,10) and three for the
distributor:(K0 = 20,10,0)).

Inventory Carrying Costs: Inventory carrying cost of retailers is taken constant,
hn = 1, and the variation is provided by changing the added value of the distrib-
utor: (h0 = 0.1,0.5,0.9).

Shortage Costs: The values of shortage costs are chosen as 4, 9, 19 and 99 which
approximately correspond to no-stockout probabilities of 80%, 90%, 95% and
99% respectively.

A full factorial design is used to generate experimental cases that corresponds to
108 problem instances. All test cases are set for 10 periods.

First the lower bound and relevant simulation values for each test case are calcu-
lated. Then GA is run three times for each test and the run is stopped when either
a pre-specified number of searches reaches to 1000, or there is no improvement in
the best fitness value for 100 generations. The performance of each configuration is
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calculated by the value of the objective function, which is the expected total system
cost. The best of these three runs which provides the minimum cost is used. The rel-
ative gap measures (%εlb and %εsim) for scenarios 1−108 are graphically depicted
in Figure 7.

Fig. 7 Experiment Results.

When these 108 test instances are ranked with respect to %εlb, 61 of them have
%εlb > 50%. Among these cases only 11 of them have a %εsim < 0, that means for
remaining 50 cases, balance assumption fails to provide a good lower bound and an
effective replenishment policy. In general, GA produced better results than balance
assumption in 82 out of 108 cases with an %εsim > 0. Savings over the total cost that
are achieved by use of GA is 21.82% on the average, while savings up to 136.23%
are recorded.

In order to see the influence of the cost parameters on the results, test results
are also given in Tables 2 and 3, where data is summarized with respect to one
parameter at a time. For example, the left part of Table 2 is dedicated to display the
effect of the fixed replenishment costs of retailers. The first column gives the values
of various measures for a set of 36 test instances in which Kn = 0. The measures used
in the analysis are minimum, maximum and average %εlb (denoted by %ε−lb , %ε+

lb
and %ε̄lb, respectively), the minimum, maximum and percentage of improvement
(denoted by %ε−sim, %ε+

sim and %ε̄sim, respectively), and the number of the cases that
GA produced better and worse results than the simulation of balance assumption
(denoted by ⊕ and �, respectively).

The findings can be summarized as follows:

1. In the test bed of 36 problem instances with Kn = 0, there are 14 scenarios with
%εsim < 0. This number decreases with increasing value of Kn. Similarly, the
average improvement is 13.31% when retailer fixed replenishment costs are zero,
and the improvement increases up to 30.79% with increasing value of Kn. This is
in line with expectations. Balance assumption implies zero transshipment costs



350 D. Çelebi

Table 2 The summary of the results - Fixed Replenishment Costs

Retailers’ Fixed Costs Distributor’s Fixed Costs
Kn = 0 Kn = 5 Kn = 10 K0 = 0 K0 = 10 K0 = 20

%ε−lb 22.19 26.98 30.37 40.69 27.22 22.19
%ε+

lb 147.06 173.80 165.65 173.80 86.96 73.57
%ε̄lb 48.83 71.81 75.37 105.35 50.56 41.32
%ε−sim −22.98 −12.13 −4.13 −44.08 −31.86 −20.79
%ε+

sim 136.23 91.69 82.28 136.23 79.45 62.23
%ε̄sim 13.31 22.59 30.79 33.34 17.35 14.78
⊕ 22 27 33 29 26 27
� 14 9 3 7 10 9

Table 3 The summary of the results - Inventory Carrying and Penalty Costs

Inventory Carrying Costs Penalty Costs
h0 = 0.9 h0 = 0.5 h0 = 0.1 π = 4 π = 9 π = 19 π = 99

%ε−lb 22.19 23.40 23.68 22.19 28.22 29.85 22.49
%ε+

lb 173.80 165.65 133.42 165.65 173.80 148.52 100.47
%ε̄lb 74.57 63.82 58.84 68.26 67.50 74.02 53.19
%ε−sim 0.58 −4.73 −44.08 −22.19 −35.84 −44.08 −20.79
%ε+

sim 136.23 78.01 38.72 136.23 99.09 74.05 62.17
%ε̄sim 48.80 21.42 −4.76 36.43 27.44 14.60 8.82
⊕ 36 34 12 21 22 19 20
� 0 2 24 6 5 8 7

between retailers thus increasing transshipment costs decreases the effectiveness
of the method. That means when retailer replenishment costs are high, GA may
provide better solutions than the policies based on balance assumption.

2. Similarly, when the distributor’s replenishment costs are high, GA tend to per-
form better on the basis of comparisons to LB. This is not parallel to compar-
isons to SIM. Though increasing K0 doesn’t have a visible impact on the number
of cases that GA performs better, the level of average improvement decreases
dramatically.

3. Highest impact on performance of GA is observed on added value of the trans-
portation to retailers. The performance of GA is top when the costs of carrying
inventories in the warehouse is high. When h0 = 0.9, GA never performed poorer
than the policy based on balance assumption even though there is not signifi-
cant change on the value of %ε̄lb. The average improvement on the cost value
is almost 50% where it reaches up to 136.23%. On the other hand, GA perform
poorest when the carrying costs of inventories in the warehouse is comparably
lower than carrying costs of retailers. When h0 = 0.1, policy based on balance
assumption produces better results than GA in 67% of the cases.
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4. The value of the penalty costs has the lowest impact of GA performance. No
trend can be observed on the number of the cases GA performs better and the
value of the %ε̄lb with increasing value of the penalty costs, but the average
rate of improvement %ε̄sim decreases visibly with increasing value of the penalty
costs. The reason is not that GA performs poorer in such cases but balance as-
sumption based policy performs better. For example, when π increases from 4 to
99, the average improvement of GA drops from 36.4% to 8.82% but the average
gap between the GA and the lower bound, %ε̄lb, also decreases from 68.26% to
53.19%.

The experiment results show that GA generally produce better results than the pol-
icy based on balance assumption. However in some cases, the solution provided by
GA give higher total system costs than the benchmark. This shows that as in com-
mon with all heuristic methods, GAs cannot guarantee to locate the global optimum
in a problem space in a bounded time. This is mainly through stochastic search be-
havior of the GAs. The results can be improved by increasing the number of trials
and the computation time of the algorithm, and also experimenting on different GA
operators such as population size, mutation and crossover. Besides, in practice the
most desirable solution may not be the conventional global optimum but instead a
solution representing a robust answer to the problem in hand is sought. Hence, for
a large system with a high number of periods and retailers, GAs can be used as
an effective algorithm for solving the multi-echelon inventory distribution problem
under stochastic demand.

This study only presents the comparison of the proposed GA method with most
known and used heuristic, for a system under a limited number of parameters. The
experiment results can be strengthened by a more comprehensive numerical study,
specifically targeting to assess the performance of the proposed heuristic. Another
extension can be comparison of these results with the results obtained by other
heuristic solutions, as well as the real optimal solution of the system.

5 Conclusion

GAs have been applied to a wide variety of multi-echelon inventory control prob-
lems in various studies. Tests on artificial data sets show that GA are pretty suc-
cessful for determining a good solution even for the most complicated problems.
However, some barriers might exist for the successful implementation of the pro-
posed methods to real life. The complexity of today’s business world means that it
is often not possible to link external sources of information into the vendor’s pro-
duction and inventory control processes (Stank et al., 2001), as in many cases the
same level of detailed information cannot be obtained from all of the distribution
channels. For some environments, centralization may be expensive, very complex,
or the coordination may be too much of a burden. This is especially true for large
systems, which would require substantial computational power to store and process
large amounts of information for centralized decision-making. A practical contribu-
tion can be made if GAs are applied to industrial inventory problems as integrated
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with interactive decision support systems where application data and test results on
the algorithms performance are collected from real life applications.

Main assumption of multi-stage inventory control is the share of information
among the supply chain members, however in practice, this assumption might be
restrictive. The companies involved in strategic or incidental supply-network part-
nerships might be not willing or prepared to share information needed required for
coordination of supply chain. Hence, the participants might agree to share only par-
tial information due to the unwillingness of the participants to share private infor-
mation such as cost structure. A distributed algorithm based on evolutionary algo-
rithms that allows the distributed system to perform just as well as a centralized one
may be designed for such cases. For example, Shin (2007) propose a framework for
such a collaborative coordination mechanism: The coordinator solves the aggregate
problem and delivers the solution results to all members. Each member evaluates
the performance of the delivered solution from the coordinator using its own cost
structure, solves its own problem in terms of its own objectives and measures the
performance, calculates its penalty, and returns the penalty with its solution to the
coordinator. Then, the coordinator selects the facility with the largest penalty value,
modifies and solves the problem again, and redistributes the solution results to the
all members. Not only the local optimization procedures but the collaboration mech-
anism can easily be optimized by GA to provide a global optimal solution.

For most of the multi-echelon systems, uncertainty is an unavoidable factor of
inventory control and recognized to have a major impact on the manufacturing and
service functions (Wilding, 1998). Uncertainties such as high variability in demand,
manufacturing processes or supply create problems in planning, scheduling and con-
trol that jeopardize delivery performance (Fisher et al., 1997). Incorporating uncer-
tainty might pose severe problems for the current GA structures developed for multi-
stage inventory control. Explicitly, incorporating uncertainty will undoubtedly result
in very complex models. However, the power of GAs to deal with such complex
models proposes a promising topic of investigation and new research opportunities.
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� Transportation lead time, page 13
π Unit Shortage Cost, page 13
c Unit purchasing cost, page 12
C0 Maximum replenishment quantity for the distributor, page 14
Cn Inventory holding capacity of retailer n, page 14
Dn

t Demand faced by retailer n in period t, page 13
h Unit Inventory Holding Cost, page 12
Kn

t Fixed Cost per Order of retailer n at period t, page 12
L(x) One period expected inventory carrying and shortage penalty costs, page 13
N The number of retailers, page 13
P(u) Probability of observing u units of demand, page 13
Pmut Mutation Rate, page 18
qn

t Replenishment quantity of retailer n at period t, page 12
T Number of periods in planning horizon, page 12
xn

t Inventory level of retailer n in the beginning of period t, page 13

Acronyms

BA Balance Assumption
DC Distribution Center
GA Genetic Algorithm
HGA Hybrid Genetic Algorithm
OWMR One Warehouse - Multi Retailer
WW WagnerWhitin
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Çelebi, D.: Stochastic Lot Sizing in a Centralized Distribution Network. PhD thesis, Istanbul
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Waller, M., Johnson, M.E., Davis, T.: Vendor managed inventory in the retail supply chain.
Journal of Business Logistics 20(1), 183–203 (1999)

Wang, K., Wang, Y.: Applying genetic algorithms to optimize the cost of multiple sourcing
supply chain systems an industry case study. Studies in Computational Intelligence 92,
355–372 (2008)

Wilding, R.: The supply chain complexity triangle: uncertainty generation in the supply chain.
International Journal of Physical Distribution & Logistics Management 28(8), 599–616
(1998)

Yokoyama, M.: Integrated optimization of inventory distribution systems by random local
seach and a genetic algorithm. Computers & Industrial Engineering 42, 172–188 (2002)

Zitzler, E., Deb, K., Thiele, L.: Comparison of multi-objective evolutionary algorithms: Em-
pirical results. Evolutionary Computation 8(2), 173–195 (1998)



Fuzzy Skyhook Surface Control Using
Micro-Genetic Algorithm for Vehicle Suspension
Ride Comfort

Yi Chen

Abstract. A polynomial function supervised fuzzy sliding mode control
(PSFαSMC), collaborated with a skyhook surface method, is presented for the
ride comfort of a vehicle semi-active suspension. The multi-objective micro-genetic
algorithm (MOμGA) has been utilised to the PSFαSMC controller’s parameter
alignment in a training process with three ride comfort objectives for the vehicle
semi-active suspension, which is called the ‘offline’ step. Then, the optimised pa-
rameters are applied to the real-time control process by the polynomial function
supervised controller, which is named ‘online’ step. A two degree of freedom dy-
namic model of a vehicle semi-active suspension system is given for passenger’s
ride comfort enhancement studies and a simulation with the given initial conditions
has been devised in MAT LAB/SIMULINK. The numerical results have shown that
this hybrid control method is able to provide a real-time enhanced level of ride com-
fort performance for the semi-active suspension system.

1 Introduction

Ride comfort is a measure of the sensations felt by a vehicles’ passengers whilst
it is in motion. It is mainly dependent on the magnitude and type of the vibrations
experienced by the vehicle body and is one of the most important characteristics to
consider when designing a vehicle suspension system. Usually, a major component
of vehicle body vibration is due to the road surface irregularities that are trans-
mitted through the suspension system. The magnitude and characteristics of road
surface irregularities vary from that of standard test roads to the random variations
of the road surface elevation profile. An example of a vehicle suspension is shown in
Fig. 1 [1], which includes tyres, springs, dampers and some other accessory
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components. The multibody vehicle suspension dynamic model of a certain com-
mercial vehicle has been built for the studies on the ride comfort and driveline tor-
sional vibration, A, B, C and D are the rear and front tyres with the disturbances
of the road roughness; E and F are the springs and the dampers; G is the five-gear
manual transmission; H is the engine; I is the vehicle body, I0 is the centre of mass
(COM) of the rigid vehicle body.

Fig. 1 A vehicle suspension system prototype [1].

1.1 Passive, Active and Semi-active Suspensions

As shown in Fig. 2, the main components include vehicle body, springs, dampers
and tyres, in which

	 (1) is a passive suspension system, and the spring stiffness, in which damping
coefficient values are fixed and cannot be adjusted during operation;

	 (2) is a semi-active suspension system, in which only the viscous damping
coefficient can be changed and which does not invoke any energy inputs to the
vehicle suspension system;
	 (3) is an active suspension system, which uses the actuator to exert an inde-
pendent force on the suspension system so as to improve the ride characteristics,
and requires extra energy inputs.
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Fig. 2 Passive, semi-active and active suspension systems.

The active suspension system has been investigated since the 1930s, but due to the
complexity and high cost of its hardware, it has not had widespread usage and is
typically only implemented on sports vehicles, military vehicles or premium luxury
vehicles [2]. The active suspension system is designed to use independent electro-
magnetic actuators to improve the suspension system’s ride comfort performance.

By reducing the vibration transmission and keeping proper tyre contact, the active
and semi-active suspension systems are designed and developed to achieve a better
ride comfort performance than the passive suspension system.

The semi-active (SA) suspension system was introduced in the early 1970s [3],
and it has been considered to be a good compromise between the active and the
passive suspension systems. The conceptual idea of SA suspension involves replac-
ing active force actuators with continually adjustable elements, which can vary or
shift the rate of the energy dissipation in response to the instantaneous condition of
motion. The SA suspension system only changes the viscous damping coefficient of
the shock absorber, it does not add additional energy to the suspension system. The
SA suspension system also has less energy costs than the active suspension system
during average working conditions [4].

Over recent years, the research on the SA suspension system has continued to
advance with respect to its capabilities, narrowing the gap between the SA and the
active suspension system. The SA suspension system can achieve the majority of the
performance characteristics of the active suspension system, which produces a wide
class of practical applications. The magnetorheological (MR) and the electrorheo-
logical (ER) [5, 6, 7, 8] dampers are the most widely studied and tested components
of the SA suspension system. MR and ER fluids are materials that respond to applied
magnetic or electrical fields with a change in rheological behaviour.
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In this chapter, a mathematical model for the SA suspension system will be dis-
cussed as the plant for the ride comfort control, in which the viscous damping co-
efficient is adjustable on the MR or ER damper. The micro-GA method will be
utilised as the optimiser for the parameters of the newly proposed polynomial func-
tion supervised fuzzy sliding mode controller, which will then be applied to the ride
comfort control for a semi-active suspension system.

1.2 Fuzzy Sliding Mode Control

The variable structure control (VSC) with sliding mode was introduced in the early
1950s by Emelyanov and was published in the 1960s [9], and further work was de-
veloped by several researchers [10, 11, 12]. Sliding mode control (SMC) has been
recognized as a robust and efficient control method for complex high order nonlin-
ear dynamical systems. Sliding mode control is one of the most popular methods,
and has been applied to the MR/ER damper control for SA suspension systems.
The major advantage of sliding mode control is its low sensitivity to changes of a
system’s parameters under various uncertain conditions, and that it can decouple
system motion into independent partial components of lower dimension, which re-
duces the complexity of the system control and feedback design. A major drawback
of traditional SMC is chattering, which is the high frequency oscillation of the sys-
tem outputs, excited by the actuators (or sensors) ignored in the system’s modelling
process.

In order to deal with the chattering phenomenon, one of the widest known
methods is the fuzzy logic theory. The fuzzy logic theory was first proposed by
Zadeh in 1965 [13] and was based on the concept of fuzzy sets. Fuzzy logic con-
trol (FLC) has been used in a wide variety of applications in engineering, such as
in aircraft/spacecraft, automated highway systems, autonomous vehicles, washing
machines, process control, robotics control, decision-support systems, portfolio se-
lection, etc. Practically speaking, it is not always possible to obtain a precise math-
ematical model for nonlinear, complex or ill-defined systems. FLC is a practical
alternative for a variety of challenging control applications since it can provide a
convenient method for constructing nonlinear controllers via the use of heuristic in-
formation (or knowledge). The heuristic information may come from an operator
that acts as a ‘human-in-the-loop’ controller and from whom experimental data is
obtained.

In recent years, a lot of literature were published in the area of fuzzy sliding mode
control (FSMC) [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], which
covered the chattering phenomenon of the traditional SMC designing. The smooth
control feature of fuzzy logic can be helpful in overcoming the disadvantages of
chattering and this is why it can be useful to combine the FLC method with the
SMC method, and thus to create the FSMC method. The involvement of FLC in
the design of the FSMC based controller can be harnessed so as to help avoid the
chattering problem.



Fuzzy Skyhook Surface Control for Ride Comfort 361

A fuzzy slide mode control with skyhook surface scheme will be discussed in
section 5, and then an improved control method supervised by a polynomial function
will be presented in section 6.

1.3 Genetic Algorithms

Many real world problems involve finding optimal parameters, which might prove
difficult for traditional methods but are ideal for genetic algorithms (GA). The GA
method was introduced in the 1970s by John Holland [30] at the University of
Michigan. It is inspired by Darwin’s theory of natural evolution and involves ap-
plying genetic operators, namely: selection, crossover and mutation, to a population
of individuals.

As expressed in Fig. 3, a population P(t) is a group of individuals created ran-
domly and t is the timing argument. The individuals in the population are evaluated
by a fitness function and then operated on by the three genetic operators.

The choice of fitness function is based on the criteria of the given task. The indi-
viduals are then selected based on their fitness. The higher the fitness, the higher the
chance of being selected. These individuals then ‘reproduce’ to create one or more
offspring, after which the offspring are mutated randomly. This loop continues until
it reaches the termination condition, which could be when a suitable solution has
been found or a certain number of generations have passed.

Fig. 3 The pseudo-code of the simple genetic algorithm.

The term micro-GA refers to a small population genetic algorithm with reinitial-
isation, which was first introduced by Krishnakumar [31]. The idea of micro-GA
was supported by some theoretical results obtained by Goldberg [32], according
to which a population size of three was sufficient to converge, regardless of the
chromosomal length.
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The population size used in a GA is usually of the order of tens to hundreds, or
sometimes thousands. With such a large number of individuals, the time needed to
perform calculations of the fitness function can become formidable. It is therefore
important to design a high efficient GA for multi-objective optimisation problems.
One of the popular methods in this direction is the micro-GA which has a very small
internal population (3 to 6 individuals) [45].

2 Two Degree of Freedom Semi-active Suspension System

The role of the vehicle suspension system is to support and isolate the vehicle body
and payload from road disturbances, and to maintain the traction force between the
tyres and the road surface. The SA suspension system can offer both reliability and
acceptable passenger ride comfort over a range of operating conditions with less
power consumption than an active system.

Fig. 4 Two degree of freedom semi-active suspension system.

To achieve a basic understanding of the passengers’ response to the vehicle’s
vibrational behaviour, as shown in Fig. 4, a two-degree-of-freedom (2-DOF) vehicle
ride model which focuses on the passenger ride comfort performance is represented
for a SA suspension system, in which:
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	 m1 and m2 are the unsprung mass and the sprung mass respectively;

	 k1 is the tyre stiffness coefficient;
	 k2 and c2 are the suspension stiffness and the suspension damping coefficient,
respectively;
	 ce is the semi-active suspension damping coefficient, which can generate the
semi-active damping force fd by MR/ER absorber;
	 z1, z2 and q are the displacements of the unsprung mass, the sprung mass and
the road disturbance respectively;
	 v0 is the vehicle speed, which is the one of the input parameters for the road
disturbance;
	 g is the acceleration of gravity.

Using Newton’s second law, the 2-DOF SA suspension model can be stated by the
system’s equations (1), where fd is the damping force as stated by equation (2).{

m1z̈1 + k2 (z2 − z1)+ (c2 + ce) (ż2 − ż1)− k1 (z1 −q)+ m1g = 0
m2z̈2 − k2 (z2 − z1)− (c2 + ce) (ż2 − ż1)+ m2g = 0

(1)

fd = ce (ż2 − ż1) (2)

{
Ẋ = AX + BQ+ EU
Y = CX + DQ+ FU

(3)

X =

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

z1 −q
z2 − z1

ż1

ż2

⎫⎪⎪⎬
⎪⎪⎭ (4)

Y =

⎧⎨
⎩

y1

y2

y3

⎫⎬
⎭ =

⎧⎨
⎩

z̈2

z1 −q
z2 − z1

⎫⎬
⎭ (5)

ftyre = k1 (z1 −q) (6)

U =
{

fd
}

(7)

Q =

⎧⎨
⎩

q̇
g
0

⎫⎬
⎭ (8)

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 −1 1
k1

m1
− k2

m1

c2

m1
− c2

m1

0
k2

m2
− c2

m2

c2

m2

⎤
⎥⎥⎥⎥⎥⎦ (9)
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B =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0
0 0 0

0 −1 − 1
m1

0 −1
1

m2

⎤
⎥⎥⎥⎥⎥⎦ (10)

C =

⎡
⎢⎣0

k2

m2
− c0

m2

c0

m2
1 0 0 0
0 1 0 0

⎤
⎥⎦ (11)

D =

⎡
⎢⎣0 −1

1
m2

0 0 0
0 0 0

⎤
⎥⎦ (12)

E =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
0

− 1
m1
1

m2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13)

F =

⎧⎪⎨
⎪⎩

1
m2
0
0

⎫⎪⎬
⎪⎭ (14)

In order to observe the state of the 2-DOF SA suspension system, Newton’s sec-
ond law equations, as given by equations (1), can be re-written as the state-space
equations in equations (3). The state-space analysis concerns three types of vari-
ables (input variables, output variables and state variables) [20, 33], as shown in
equations (4), (5) and (7) [34] in the form of matrixes (state matrices), where

	 X is the state matrix for 2-DOF SA suspension system, which includes the
tyre deformation (x1 = z1 − q), the suspension deformation (x2 = z2 − z1), the
unsprung mass velocity (x3 = ż1) and the sprung mass velocity (x4 = ż2), as
given in equation (4). Ẋ is the derivative of the X , as can be seen in Fig. 5;

	 Y is the output matrix with three state variables for the 2-DOF SA suspension
system, which includes the vehicle body acceleration (y1 = z̈2), the tyre defor-
mation (y2 = z1 −q), and the suspension deformation (y3 = z2 − z1), as given in
equation (5). According to the tyre deformation(y2), the tyre load ftyre is stated
in equation (6);
	 U is the input matrix (control force matrix) in equation (7);
	 Q is the external road disturbance matrix in equation (8), which contains two
external disturbance signals of road velocity profile and acceleration of gravity;
	 A, B, C, D, E , F are the coefficient matrices in equations (9) to (14).
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Practically, it is convenient to select the measurable quantities as the state vari-
ables by a block diagram, because the control law requires the feedback of all state
variables with suitable weighting. The block diagram for the state-space equations
is given in Fig. 5, which represents the 2-DOF SA suspension system for further
controller design.

Fig. 5 Block diagram for the two degree of freedom semi-active suspension system.

3 Sliding Mode Control with Skyhook Surface Scheme

The skyhook control strategy was introduced in 1974 by Karnopp et al. [3]. As
expressed in Fig. 6, the ideal skyhook damper scheme was introduced, which was
one of the most effective methods in terms of the simplicity of the control algorithm.
The basic idea is to link the vehicle body sprung mass to the stationary sky by a
controllable ‘skyhook’ damper, which could reduce the vertical vibrations caused
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Fig. 6 Ideal damper of skyhook law, adopted from [3].

by road disturbance of all kinds. The skyhook control can reduce the resonant peak
of the sprung mass quite significantly and thus produces a good ride quality by
adjusting the skyhook damping coefficient when vehicle body velocity and other
conditions are changing.

By borrowing the idea of skyhook damping, a soft switching control law is in-
troduced [34, 35, 36] for the major sliding surface switching activity - the ‘Sky-
hookSMC’, which is utilised so as to reduce the sliding chattering phenomenon
[34, 35, 36]. As shown in Fig. 7, s = 0 is the stationary sky location, uSkyhookSMC

is the SkyhookSMC control force, the smooth control time-function generated by
the SkyhookSMC is expressed in equation (15), where c0 is an assumed positive
damping ratio of the control law.

uSkyhookSMC =

{
−c0 tanh

( s
δ

)
sṡ > 0

0 sṡ ≤ 0
(15)
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Fig. 7 Sliding mode surface with skyhook scheme [34, 35, 36].

The SkyhookSMC law needs to be chosen in such a way that the existence and the
reachability of the sliding mode s = 0 are both guaranteed. It is noted that δ is an
assumed positive constant, which defines the thickness of the sliding mode boundary
layer [37].

Fig. 8 Sliding surface generation with skyhook scheme [20, 35, 36, 37].

A plant is a set of functional objects or sub-systems to be controlled, such as a
mechanical device, a chemical reactor or a spacecraft. In this chapter, the plant is
the 2-DOF SA suspension system for its ride comfort control.
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The SkyhookSMC technique defines a surface, along which the process slides
to its desired value and a reaching function. As shown in Fig. 8, when designing
a SkyhookSMC, the objective is to consider the 2-DOF suspension system as the
control plant, which is defined by the state-space equations, as stated in equation
(3), where

◦ As given in equation (16), the sliding surface s(e, t) is a function of the order
of the process model by Slotine [20];

◦ λ is a positive constant that defines the slope of the sliding surface;

s(e, t) =
(

d
dt

+λ
)n−1

e (16)

As the 2-DOF SA suspension system is a second-order system, it can be given n
= 2, in which s defines the position and velocity errors, and equation (16) can be
re-written as equation (17).

s = ė +λe (17)

According to equation (17), the second-order tracking problem of 2-DOF SA sus-
pension system is now being represented by a first-order stabilisation problem, in
which s is kept at zero by means of a governing condition defined by the Sky-
hookSMC control law [20].

The SkyhookSMC is obtained from the use of the Lyapunov stability theorem,
given in equation (18), and it states that the origin is a globally asymptotically sta-
ble equilibrium point for the control system. The Lyapunov function V , as given
in Equation (18), is positive definite and its time derivative is given in inequality
(19). To satisfy the negative definite condition, the control system should satisfy the
inequality in (19).

V (s) =
1
2

s2 (18)

V̇ (s) = sṡ = λ 2e(t)ė(t)+λ
(
ė2(t)+ e(t)ë(t)

)
+ ė(t)ë(t) < 0 (19)

4 Fuzzy Logic Control

Generally, in the FLC design methodology, the human operator needs to write down
a set of rules, which shows how to control the process and is called the ‘rule-base’.
A fuzzy controller can emulate the decision-making process of the human under the
guidance of the rule-base, in which the heuristic information (knowledge) may come
from a control engineer who has performed extensive mathematical modelling, anal-
ysis, and development of control algorithms for a particular process.

Again, such expertise is loaded into the fuzzy controller to automate the reason-
ing processes and control actions. Regardless of where the heuristic information
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Fig. 9 Fuzzy logic controller architecture [35].

comes from, fuzzy control provides a user-friendly formalism for representing and
implementing the ideas which can help to achieve high-performance control.

As shown in Fig. 9, the fuzzy controller has four main components:

• A ‘rule-base’ (a set of ‘IF-THEN’ rules) contains a fuzzy logic quantification of
the expert’s linguistic description of how to achieve good control;

• An ‘inference mechanism’, which emulates the expert’s decision making in inter-
preting and applying knowledge about how efficiently to control the plant. A set
of the ‘IF-THEN’ rules are loaded into the rule-base, and an inference strategy is
chosen, then the system is ready to be tested, and the closed-loop specifications
are needed;

• A ‘fuzzification’ interface converts ‘crisp’ inputs into ‘fuzzy’ information, in
which the inference mechanism can be interpreted and compared to the rules
in the rule-base;

• Conversely, a ‘defuzzification’ interface converts the conclusions by the infer-
ence mechanism into the FLC crisp (actual) outputs as the control inputs for the
plant.

Briefly, fuzzy control system can be designed using the following steps:

〈1〉 Choosing the fuzzy controller inputs and outputs;
〈2〉 Choosing the preprocessing that is needed for the controller inputs and pos-
sibly post-processing that is needed for the outputs;
〈3〉 Designing each of the four components of the fuzzy controller, as shown
in Fig. 9, which includes fuzzification, inference mechanism, rule-base and de-
fuzzification;

Fuzzification is the process of decomposing the system inputs into fuzzy sets. That
is, it is to map variables from the crisp space to the fuzzy space. The process of
fuzzification allows the system inputs and outputs to be expressed in linguistic terms
so that rules can be applied in a simple manner to express a complex system. In the
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FLC for the 2-DOF SA suspension system, the velocity and acceleration of the
vehicle body are selected as the crisp error (e) and the crisp change-in-error (ec)
feedback signals for the 2-DOF SA suspension system control.

There are 7 linguistic terms in the fuzzy sets for two inputs of the fuzzified error
(E) and the fuzzified change-in-error (EC), and one output of fuzzified force (U),
which are: 〈 NL, NM, NS, ZE , PS, PM, PL 〉, as stated in Table 1, and their linguistic
values are also listed in it for further numerical simulation with proper ranges of
[-5,5] and [-2,2]. Defuzzification is the opposite process of fuzzification, it is to
map variables from fuzzy space to crisp space.

Table 1 Fuzzy Linguistic Values

Fuzzy Linguistic Value Description E EC U
NL Negative Large -5 -5 -2
NM Negative Middle -4 -4 -1.5
NS Negative Small -3 -3 -1
ZE Zero 0 0 0
PS Positive Small 3 3 1
PM Positive Middle 4 4 1.5
PL Positive Large 5 5 2

A membership function (MF) is a manner that defines how each point in the input
space is mapped to a membership value between 0 and 1. The MF for the 2-DOF
SA suspension system is a triangular-shaped membership function and is defined by
equation (20), where the parameters a and c locate the ‘feet’ of the triangle and the
parameter b locates the peak.

The a, b and c are the parameters of fuzzy membership functions for the linguistic
variables (E, EC and U), as listed in Table 1. In the case of 2-DOF SA suspension
control, as shown in Fig. 10, the MF of the input E is stated, the MFs of EC and U
are of similar shape to the range [-5,5] and [-2,2].

f (x,a,b,c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

x−a
b−a

, a ≤ x ≤ b

c− x
c−b

, b ≤ x ≤ c

0, c ≤ x

(20)

The inputs of E and EC are interpreted from the fuzzy set, and the degree of mem-
bership is interpreted. The structure of the FLC for the 2-DOF SA suspension system
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Fig. 10 The triangular-shaped membership function.

is a ‘2-in-1-out’ FLC with two inputs and 1 output, and the ‘If-Then’ rule-base is
then applied to describe the expert’s knowledge. The FLC rule-base is characterised
by a set of linguistic description rules based on conceptual expertise which arises
from typical human situational experience. In particular, the 2-in-1-out FLC rule-
base for the ride comfort of the 2-DOF SA suspension system is given in Table 2
[34], with two inputs and 7 linguistic values for each of the two inputs, there are at
most 72 = 49 possible rules as shown in the following list:

〈1〉 IF E = NL, AND EC = NL, THEN U = PL;
〈2〉 IF E = NL, AND EC = NM, THEN U = PL;
〈3〉 IF E = NL, AND EC = NS, THEN U = PM;

...
〈49〉 IF E = PL, AND EC = PL, THEN U = NL;

Table 2 came from the previous experience gained for the semi-active damping force
control over the changing of the body acceleration for ride comfort control, which
defines the relationship between 2 inputs of the fuzzified error (E) and the fuzzified
change-in-error (EC) with 1 output of the fuzzified control force (U). Briefly, the
main linguistic control rules are:
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Table 2 2-in-1-out FLC rule table for 2-DOF SA suspension system [34]

U EC

NL NM NS ZE PS PM PL

NL PL PL PM PS PS PS ZE
NM PL PM PS PS PS ZE NS

E NS PM PS ZE ZE ZE NS NM
ZE PM PS ZE ZE ZE NS NM
PS PM PS ZE ZE ZE NS NM
PM PS ZE ZE ZE NS NM NL
PL ZE NS NS NS NM NL NL

Fig. 11 The fuzzy inference system for 2-DOF SA suspension system.

〈1〉 when the body acceleration and velocity increase, the SA damping force
decreases;

〈2〉 when the body acceleration and velocity decrease, the SA damping force
increases.

Fuzzy inference is the process of formulating the mapping from a given input to an
output using fuzzy logic. The mapping then provides a basis from which decisions
can be made, or patterns discerned. The process of fuzzy inference involves all of the
pieces that are described in the previous sections: Membership Functions, Logical
Operations, and ‘IF-THEN’ Rules. Mamdani’s fuzzy inference method [40, 41, 42]
is the most commonly seen fuzzy methodology, it was among the first control sys-
tems built using fuzzy set theory.

It was proposed in 1975 by Mamdani as an attempt to control a steam engine and
boiler combination by synthesizing a set of linguistic control rules obtained from
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experienced human operators. Mamdani’s effort was based on Zadeh’s research [43]
on fuzzy algorithms for complex systems and decision processes in 1973. As shown
in Fig. 11, the Fuzzy Inference System (FIS) of Mamdani-type inference for the
2-in-1-out FLC is a type of fuzzy inference in which the fuzzy sets from the conse-
quent of each rule are combined through the aggregation operator and the resulting
fuzzy set is defuzzified to yield the output of the system.

5 Fuzzy Sliding Mode Control with Switching Factor α

A fuzzy sliding mode control with switching factor α (FαSMC) [35, 36] was in-
troduced to combine the FLC with the SkyhookSMC to deal with the chattering
phenomenon, which has been harnessed to reduce the 2-DOF SA suspension sys-
tem ride comfort control with proper parameter selection.

A flow diagram for the FαSMC, applying the SkyhookSMC approach, is given
in Fig. 12. The control effects of the FLC and the SkyhookSMC are combined by
equation (21).

In equation (21), α is a switching factor which balances the weight of the FLC
to that of the SkyhookSMC, α ∈ [0,1]. Clearly,

α = 0 represents SkyhookSMC, as discussed in section 3;

α = 1 represents FLC, which has been discussed in section 4.

uFαSMC = αuFLC +(1−α)uSkyhookSMC (21)

Fig. 12 FαSMC control flow diagram.
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Fig. 13 Micro-genetic algorithm for PSFαSMC work flow diagram.
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6 Polynomial Function Supervising FαSMC - An Improvement

To make the proper improvement to the FαSMC method, a hybrid real-time poly-
nomial function [44] supervised FαSMC with skyhook surface (PSFαSMC) is pro-
posed and then will be applied to the ride comfort control for the 2-DOF SA vehicle
suspension system.

The basic idea of PSFαSMC is to generate a series of supervised functions (SF)
in polynomial function (PF) form. The SFs are used to generate parameters for
FαSMC in the online real-time control step.

The concepts of SF and PF were proposed by Chen, et al. in 2004 [44], which
are optimised and produced by micro-GA in the offline step for the PSFαSMC
in this case of application. The micro-GA is a training process for the PSFαSMC
parameter selection.

Briefly, there are two steps in PSFαSMC controller design: the offline step and
the online step:

〈1〉 the offline step is to take the micro-GA as the optimiser to generate poly-
nomial functions for each parameter in FαSMC, including Ke, Kec, Ku, α , c0,
δ , λ . In the micro-GA optimisation process, each loop will take more time than
is practical for real-time control, so polynomial functions are used as practical
real-time control parameter generators for the online step;

〈2〉 the online step is to generate proper parameters using the polynomial func-
tions, which came from offline step. The polynomial functions are the real-time
parameter generators in the online step and will supervise the actual FαSMC
control on SA semi-active suspension system by setting the proper parameters.

The parameters’ selection for FαSMC needs a lot of manual testing which is time
consuming. In order to reduce the working time for parameter selection in this hy-
brid control method PSFαSMC, the micro-genetic algorithm (micro-GA) is to be
applied as the optimiser to generate proper results for parameter selection. This
method has been widely applied in industrial applications [51] and in this case is
utilised for the SA suspension system ride comfort control application.

6.1 Multi-objective Micro-GA for the Offline Step

Originally, Pareto optimality is a concept in economics with applications in engi-
neering which named after an Italian economist Vilfredo Pareto. Given a set of
alternative allocations of solutions for a set of individuals, a change from one al-
location to another that makes at least one individual better off without making the
rest worse off is called a Pareto improvement. A Pareto optimum is a maximal ele-
ment for the partial order Pareto improvement: it is an allocation such that no other
allocation is “better” in the sense of the order relation. An allocation is defined as
“Pareto optimal” where no further Pareto improvements can be accessed [52, 53].

As shown in Fig. 13, generally there are two loops in the multi-objective micro-
GA (MOμGA) process: the internal cycle and the external cycle. Meanwhile, there
are also two groups of population memories: the internal population memory, which
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is used as the source of diversity of the micro-GA internal loop, and the external
population memory, which is used to archive individuals of the Pareto optimal set
[54]. The Pareto ranking is a kind of ranking method interested in the distribution
of solutions, which asks how many individuals have a greater value than the given
individual [55]. In the internal loop, the internal population memory is divided into
two parts: a replaceable part and a non-replaceable part, and the percentages of each
part can be adjusted by the user. In the elitism block, the Pareto ranking methods
are taken into the process inside the internal cycle, which could include Goldberg’s
method [46] or Fonseca and Fleming’s method [57].

For the small internal population, mutation is an optional operator for micro-
GA. Practically, there are three parts in micro-GA optimisation: (1) fitness functions
definition, (2) encoding and decoding definition and (3) genetic operators definition,
which includes selection, crossover and mutation. Once the three parts have been
well defined, the micro-GA can then create a population of solutions and apply
genetic operators such as mutation and crossover to evolve the solutions in order to
find better results.

As defined in equation (5), the output matrix Y contains three state variables for
the 2-DOF SA suspension system, which are related to the ride comfort perfor-
mance, including vehicle body acceleration (y1), tyre deformation (y2) and suspen-
sion deformation (y3). H(Y ) is the error state function, as defined in equation (22),
which can generate the error state variables (e1, e2 and e3) for three output state
variables (y1, y2 and y3). y1|re f , y2|re f and y3|re f are the reference state variables for
the PSFαSMC.

H(Y ) ==

⎧⎨
⎩

e1

e2

e3

⎫⎬
⎭=

⎧⎨
⎩

y1 − y1|re f

y2 − y2|re f

y3 − y3|re f

⎫⎬
⎭=

⎧⎨
⎩

z̈2 − y1|re f

z1 −q− y2|re f

z2 − y3|re f

⎫⎬
⎭ (22)

As shown in Fig. 14, in the PSFαSMC offline step, the micro-GA is used to optimise
and generate polynomial functions for each parameter (Ke, Kec, Ku, α , c0, δ , λ ),
and there are three fitness values for three objectives as Ji, as stated in equation (23),
where:

◦ F(∗) is the function for the fitness function;

Ji = F(ei) = MIN{RMS[ITAE (ei)]}, i = 1,2,3 (23)

◦ RMS[∗] is the function for the values of root mean square, as defined in equa-
tion (24), t is the timer, n is the time series data of the error state variables ei.

RMS[xt ] =

√
x2

1 + x2
2 + ...+ x2

t

n
, t = 1, ...,n (24)

According to the International Standard Organisation (ISO) 2631-1:1997 “Mechan-
ical vibration and shock – Evaluation of human exposure to whole-body vibration
– Part 1: General requirements” [58], the ride comfort is specified in terms of RMS
acceleration over a frequency range, then the fitness functions (Ji) for the 2-DOF
SA suspension system are the functions of the error state variables (ei), which are
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Fig. 14 PSFαSMC offline step - training.

the values of the root mean square (RMS[∗]) of the integral of time, times the abso-
lute error (ITAE) performance indexes, that is, J1, J2 and J3 are the RMS of ITAE
indexes for the error state variables: body acceleration (e1), suspension deformation
(e2) and tyre loads (e3), respectively. The ITAE of the error state variables (ei) is
expressed in equation (25).

ITAE (ei) =
∫ ∞

0
t |ei(t)|dt (25)

As stated in equation(23), the micro-GA’s optimising criteria is to minimise the
fitness functions (Ji) and to generate a set of solutions for the better supervised
function parameters (Ke, Kec, Ku, α , c0, δ , λ ) via the interval arguments a1, a2, a3

and Γ , which will be discussed in section 6.2.
Then, the micro-GA can provide the optimality of a set of solutions for the multi-

objective applications of the ride comfort control in the online step, and the engi-
neers can try each of the solution or select the solution by proper policy, e.g. outer
range, inner range or average of the Pareto set as an engineering solution.

In the optimisation process by micro-GA, binary encoding/decoding, roulette-
wheel selection, and single point crossover are taken in micro-GA evolutional
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process. In the micro-GA optimisation process, the initial conditions need to be
given to the seven design variables, as given in Table 4.

6.2 Offline Step

As shown in Fig. 14, the offline step is a training process used to optimise and
generate a series of polynomial functions for further use in the online step, and the
micro-GA is the optimiser as discussed in section 6.1.

f [Γ (Ji),{a0,a1, ...,aN}] = aNΓ (Ji)N +aN−1Γ (Ji)N−1 + ...+a2Γ (Ji)2 +a1Γ (Ji)+a0
(26)

As stated in equation (26), f [Γ (Ji),{a0,a1, ...,aN}] is the supervised function in
polynomial form, which is fitted by the least squares principle based on output data
from the ‘micro-GA optimiser’ block, where N is a positive integer; a0, a1, ..., aN

are constant coefficients.

Γ (Ji) =

√√√√√√√√√

3

∑
i=1

Jiwi

3

∑
i=1

wi

(27)

Γ (Ji) is a component of the polynomial supervised function
f [Γ (Ji),{a0,a1, ...,aN}], as defined in equation (27), which is a weighted index by
the optimised 2-DOF SA suspension ride comfort indexes Ji.

f [Γ (Ji),{a0,a1,a2}]Ke
= a2J2

i + a1Ji + a0 (28)

Basically, a smooth supervised function curve is required in the SA suspension sys-
tem ride comfort control, N = 2 is chosen as the highest degree of the supervised
polynomial functions. Equation (28) is for the parameter Ke generation, and the
similar processes will go with other parameters.

There are seven supervised functions for the seven PSFαSMC parameters (Ke,
Kec, Ku, α , c0, δ , λ ), as given in equation (29). As shown in Fig. 14, the supervised
functions will be applied to the FαSMC block, where i = 1,2,3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ke = f [Γ (Ji),{a0,a1,a2}]Ke

Kec = f [Γ (Ji),{a0,a1,a2}]Kec

Ku = f [Γ (Ji),{a0,a1,a2}]Ku

α = f [Γ (Ji),{a0,a1,a2}]α
c0 = f [Γ (Ji),{a0,a1,a2}]c0

δ = f [Γ (Ji),{a0,a1,a2}]δ
λ = f [Γ (Ji),{a0,a1,a2}]λ

(29)
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Fig. 15 PSFαSMC online step - control for SA suspension system.

6.3 Online Step

As shown in Fig. 15, the online step is to apply the polynomial functions to supervise
the FαSMC for the 2-DOF SA suspension system. There are seven design variables
(Ke, Kec, Ku, c0, δ , λ , α) in PSFαSMC in the online step which are given in equation
(29).

As stated in equation (29), the supervised functions are the functions of Γ (Ji),a0,
a1, a2, which can generate the parameters for the FαSMC during the real-time
simulation.

In Fig. 15, the polynomial functions are the optimised data source for FαSMC
parameters (Ke, Kec, Ku, α , c0, δ , λ ), which have been produced in the offline step,
which include,

	 Ke is FLC scaling gains for e;

	 Kec is FLC scaling gains for ec;
	 Ku is FLC scaling gains for u;
	 c0 is SkyhookSMC damping coefficient;
	 δ is the thickness of the sliding mode boundary layer;
	 λ is the slope of the sliding surface;
	 α is the switching factor of FαSMC in PSFαSMC.



380 Y. Chen

Table 3 2-DOF SA vehicle suspension system parameters

m1 unsprung mass 36 kg
m2 sprung mass 240 kg
c2 suspension damping coefficient 1400 Ns/m
k1 tyre stiffness coefficient 160000 N/m
k2 suspension stiffness coefficient 16000 N/m
g gravity acceleration 9.81 m/s2

Ω0 reference spatial frequency 0.1 m−1

Sg(Ω0) degree of roughness 128×10−6 m2/cycles/m
v0 vehicle speed 72 km/h
w1 body acceleration weight factor 0.9
w2 suspension deformation weight factor 0.05
w3 tyre load weight factor 0.05

Table 4 Micro-GA parameters

external cycle 100
internal cycle 4
external population 50
internal population 6
replaceable population 2
crossover probability 0.9
a0 initial range [−100,100]
a1 initial range [−100,100]
a2 initial range [−100,100]

Table 5 A set of polynomial function coefficients for ai by Micro-GA

{a2,a1,a0}|Ke ai coefficients of Ke {−3.3,2.11,0.31}
{a2,a1,a0}|Kec ai coefficients of Kec {0.08,−0.19,−10.12}
{a2,a1,a0}|Ku ai coefficients of Ku {5.34,0.61,15.42}
{a2,a1,a0}|α ai coefficients of α {−0.09,−0.22,0.92}
{a2,a1,a0}|c0 ai coefficients of c0 {0.04,1.56,4999.04}
{a2,a1,a0}|δ ai coefficients of δ {4.34,1.86,25.15}
{a2,a1,a0}|λ ai coefficients of λ {0.46,0.26,9.64}

6.4 Road Surface Profile

To simulate the road excitation for the vehicle suspension system, a road profile is
defined as the cross sectional shape of a road surface under the given conditions,
which can be expressed by statistical procedures [59, 60].

There are a few types of excitations for the road surface profile, such as sine
waves, step functions and triangular waves, which can provide a basis for
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Fig. 16 Road profile as a random function.

comparative studies under some simple road surfaces, but these can hardly serve
as a valid and general basis for a practical road roughness of ride behaviour.

As shown in Fig. 16, it is more realistic to describe a road surface profile as a ran-
dom function or data sequence. There are some existing methods such as the Interna-
tional Roughness Index values and the Fourier transform-based sequence, described
in the ISO 8608:1995 ‘Mechanical vibration-Road Surface Profiles-Reporting of
Measured Data’[61], however, both only give an average condition for a relatively
long section of the pavement.

	 International Roughness Index (IRI);

	 Mean Panel Rating (MPR);
	 Profile Index (PI);
	 Ride Number (RN);
	 Slope Variance (SV);
	 Root Mean Square Vertical Acceleration (RMSVA);
	 Waveband Indices (WI);
	 Wavelet Based Power Spectra (WPS);
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One statistical way to generate road excitation is to describe the road roughness
using power spectral density (PSD). When the road surface profile is regarded as a
random function, it can be characterised by a PSD function [62].

To classify the roughness (irregularities) of road surfaces, the International Stan-
dards Organisation has proposed a road roughness classification, roughness-A (very
good) to roughness-H (very poor) based on the PSD, in which the relationships be-
tween the PSD function Sg(Ω) and the spatial frequency Ω for different classes of
road roughness can be approximated by two straight lines with different slopes on a
log− log scale, which can be expressed as equation (30) [63], and the values of N1

and N2 are 2.0 and 1.5 respectively.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sg(Ω) = Sg(Ω0)
(
Ω
Ω0

)−N1

,Ω ≤Ω0 =
1

2π
cycles/m

Sg(Ω) = Sg(Ω0)
(
Ω
Ω0

)−N2

,Ω >Ω0 =
1

2π
cycles/m

(30)

In this case, to generate the road profile of a random base excitation for the 2-DOF
SA suspension simulation, a spectrum of a geometrical road profile with road class
‘roughness-C’ is considered and Ω0 is the reference spatial frequency. The vehicle
is travelling at a constant speed v0, and the historical road irregularity is given by
the PSD method [64, 65, 66].

7 Simulations

All the results for the ride comfort are obtained by using the parameters for the
2-DOF SA vehicle suspension system and PSFαSMC in Table 3. The numerical
results are obtained using a specially devised simulation toolkit of Micro-GA for
MAT LAB, known henceforth here as SGALAB [67]. Unless stated otherwise all the
results are generated using the parameters of the genetic algorithms as listed in Table
4, in which binary encoding/decoding, tournament selection, single point crossover
and mutation are utilised by the Micro-GA evolutionary process, and a set of poly-
nomial function coefficients ai by Micro-GA are given in Table 5.

As discussed in section 6.1, there are three performance indexes for the vehicle
suspension system, which includes body acceleration y1, tyre deformation y2 and
suspension deformation y3. In this context, the results for the three indexes are ap-
plied to evaluate the performance for the ride comfort of the 2-DOF SA vehicle
suspension system.

The PSFαSMC parameters require a judicious choice as follows:
	 the FLC scaling gains of Ke and Kec for fuzzification of e and ec, Ku is the
defuzzification gain factor;

	 the SkyhookSMC damping coefficient c0, as stated in equation (15), is re-
quired to expand the normalised controller output force into a practical range.
The thickness of the sliding mode boundary layer is given by δ , and the slope of
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Fig. 17 Polynomial supervised functions of PSFαSMC parameters for ride comfort control.
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Fig. 18 Fitness functions J1, J2 and J3 for the GA evaluation.

the sliding surface λ , both of δ and λ data come from design step by micro-GA
in the offline step;
	 in the PSFαSMC, α is required to balance the control weight between the
FLC and SkyhookSMC. It is easy to switch the controller between the Sky-
hookSMC and FLC with a proper value of α .
	 the coefficients {a2,a1,a0} for the polynomial supervised functions are given
in Table 4, which are fitted by the least mean squares (LMS) algorithm based
on data from offline step by micro-GA optimisation.

The polynomial functions for Ke, Kec, Ku, α , δ , λ and c0 are shown in Fig. 17(a) to
Fig. 17(g) with a set of coefficients {a2,a1,a0}, which are listed Table 5. The co-
efficients {a2,a1,a0} for the polynomial functions are optimised by the micro-GA
in the offline step, and then applied to the supervised functions for the ride comfort
control in the online step. As can be seen from Fig. 17(a) to Fig.17(g), the coeffi-
cients {a2,a1,a0} have direct effects on the shapes of the polynomial functions.

With the initial conditions for the micro-GA listed in Table 4, the evolutionary
process for each fitness function is listed in Fig. 18, in which Fig. 18(a), Fig. 18(b),
and Fig. 18(c) are the Pareto optimal set of J1 vs. J2, J1 vs. J3 and J2 vs. J3.
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Fig. 19 Vehicle body acceleration response in time domain, y1.

Fig.18(d) is a 3-D surface for the relationship among J1, J2 and J3, in which the
position with higher scatter data density means the Pareto optimal of ‘trade-off’
solutions. A set of polynomial function coefficients ai for one of the selected Pareto
front is given in Table 5.

Fig. 19 gives the suspension vertical behaviour of the body accelerations,
PSFαSMC has a better control effect than the FLC and SkyhookSMC on the ve-
hicle body acceleration, and both the PSFαSMC and SkyhookSMC methods can
provide better ride comfort control effects than the FLC method on the 2-DOF SA
suspension system.

Fig. 20 shows the tyre load response, PSFαSMC and SkyhookSMC control
methods have the similar tyre load level, which is smaller (better) than the FLC
control method for the 2-DOF SA suspension system.

Fig. 21 shows the relative displacement (suspension deformation) between vehi-
cle sprung mass and unsprung mass. Compared with passive suspension deforma-
tion, PSFαSMC, SkyhookSMC and FLC control methods can reduce the 2-DOF
SA suspension deformation, and the PSFαSMC and SkyhookSMC control methods
have a similar suspension deformation level, and all of their suspension deforma-
tions are smaller than the FLC and passive suspension system’s suspension defor-
mation. That is, PSFαSMC can provide better ride comfort performance for the
2-DOF SA suspension system.
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Fig. 23 Vehicle body response phase plot.

Fig. 22 is the body acceleration in frequency domain, which shows that the con-
trol methods of PSFαSMC, SkyhookSMC and FLC control methods can reduce the
amplitudes at two of the key resonance points (1 Hz and 101 Hz). It also shows the
PSFαSMC can have better control effects on the 2-DOF SA suspension system ride
comfort than the FLC and the SkyhookSMC control methods for the 2-DOF SA
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Fig. 24 Sliding surface switching plot.

suspension system, and in higher frequency range (> 10 Hz) PSFαSMC has better
performance than the other controllers, to some extent.

The phase plot (body velocity vs. body acceleration) is shown in Fig. 23 as
the limit cycles, which represented the improved ride comfort performance of the
2-DOF SA suspension body vertical vibration with controllers. The curves, which
corroborated the 2-DOF SA suspension system’s interpretations of steady-state,
started from the initial value point of (0, g) and gathered to the stable area around
(0,0) in close-wise direction. The PSFαSMC goes faster than FLC, and smoother
than SkyhookSMC to the steady-state area.

Fig. 24 shows that all the 2-DOF SA suspension system’s sliding surfaces are
switching and going around s = 0, and the PSFαSMC has the smaller and smoother
switching behaviour than the FLC and the SkyhookSMC for the ride comfort
control.

8 Conclusions

A polynomial function supervised fuzzy skyhook surface sliding mode control
(PSFαSMC) has been presented for the ride comfort control on a 2-DOF semi-active
vehicle suspension system, in which the MOμGA has been utilised to optimise the
parameters for the polynomial functions in the offline step and the polynomial func-
tions have been applied to supervise the PSFαSMC in the online step for the 2-DOF
SA vehicle suspension system’s ride comfort.
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According to the simulation results, it has been demonstrated that the PSFαSMC
can adjust control effects. It switches the factor α between the FLC and the
SkyhookSMC. In the online step, the polynomial functions are supervising the con-
trol effects for the ride comfort control of the 2-DOF SA suspension system. In the
offline step, the MOμGA has been applied as an optimiser for the parameters of the
polynomial functions.

Also, the architecture for the PSFαSMC (controller) can be applied to the control
applications for other dynamical systems and industrial processes.
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Notations

m1 the unsprung mass
m2 the sprung mass
k1 tyre deflection stiffness coefficient
k2 the suspension stiffness coefficient
c2 the suspension damping coefficient
ce the semi-active suspension damping coefficient
z1 the displacements for unsprung mass
z2 the displacements for sprung mass
q the road disturbance
v0 the vehicle speed
g the acceleration of gravity
fd the semi-active control force
ftyre the tyre load
X the state matrix
Y the output matrix
U the input matrix
Q the external road disturbance matrix
A the coefficient matrices
B the coefficient matrices
C the coefficient matrices
D the coefficient matrices
E the coefficient matrices
F the coefficient matrices
y1 the output state variable - the body acceleration
y2 the output state variable - the tyre deformation
y3 the output state variable - the suspension deformation
y1|re f the reference state variable for y1

y2|re f the reference state variable for y2

y3|re f the reference state variable for y3

x1 the state variable - the tyre deformation
x2 the state variable - the suspension deformation
x3 the state variable - the unsprung mass velocity
x4 the state variable - the sprung mass velocity
n the order number of a non-linear system
N the degree of a polynomial function
α the switching factor
s the sliding surface
V the Lyapunov function
c0 the positive damping ratio for SkyhookSMC
e error
ei error state variable
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ec change-in-error
H(∗) the error state function
E fuzzified error
EC fuzzified change-in-error
uFαSMC the control force by the FαSMC
uFLC the control force by the FLC
uSkyhookSMC the control force by the SkyhookSMC
Ke the factor for e
Kec the factor for ec
Ku the factor for u
δ the thickness of the sliding mode boundary layer
λ the slope of the sliding surface
J1 the fitness function for y1

J2 the fitness function for y2

J3 the fitness function for y3

ai the constant coefficient for the polynomial functions
Γ (∗) the weighted index
Ω the spatial frequency
Ω0 the reference spatial frequency
Sg(Ω0) degree of roughness
w1 the body acceleration weight factor
w2 the suspension deformation weight factor
w3 the tyre load weight factor
RMS root mean square
ITAE the integral of time times the absolute error
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