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Preface

You are holding the proceedings of FSE 2011, the 18th International Workshop
on Fast Software Encryption. This workshop was organized in cooperation with
the International Association for Cryptologic Research. It was held in Lyngby,
Denmark, during February 13–16, 2011.

The FSE 2011 Program Committee (PC) consisted of 21 members, listed on
the next page. There were 106 submissions and 22 were selected to appear in
this volume. Each submission was assigned to at least three PC members and re-
viewed anonymously. During the review process, the PC members were assisted
by 66 external reviewers. Once the reviews were available, the committee dis-
cussed the papers in depth using the EasyChair conference management system.
At the workshop, papers were made available to the audience in electronic form.
After the conference, the authors of accepted papers were given six weeks to pre-
pare the final versions included in these proceedings. The revised papers were
not reviewed again and their authors bear the responsibility for their content.

In addition to the papers included in this volume, the conference also featured
a Rump Session. Vincent Rijmen served as the chair of the Rump Session. The
conference also had the pleasure of hearing invited talks by Willy Meier and
Ivan Damg̊ard. An invited paper corresponding to Willy Meier’s talk is included
in the proceedings. Ivan Damg̊ard considered that the material presented in his
talk was already published and thus did not wish to send an invited paper.

The PC decided to give the Best Paper Award to Takanori Isobe for his pa-
per titled “A Single-Key Attack on the Full GOST Block Cipher.” In addition,
the committee selected another paper for invitation to the Journal of Cryptol-
ogy: “Cryptanalysis of PRESENT-Like Ciphers with Secret S-Boxes” by Julia
Borghoff, Lars Ramkilde Knudsen, Gregor Leander and Søren Thomsen.

I wish to thank all the people who contributed to this conference. First,
all the authors who submitted their work. Second the PC members and their
external reviewers for the thorough job they did while reading and commenting
the submissions. Without them, selecting the papers for this conference would
have been an impossible task. I thank Andrei Voronkov for his review system
EasyChair. Once again, I was very glad to have access to his magic tools that
helped me assemble this volume. I would also like to thank the General Chairs,
Lars Knudsen and Gregor Leander for making this conference possible.

Being the Program Chair for FSE 2011 was a great honor and I may only
hope that the readers of these proceedings find them as interesting as I found
the task of selecting their content.

April 2011 Antoine Joux
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Marine Minier, Maŕıa Naya-Plasencia, and Thomas Peyrin

An Improved Algebraic Attack on Hamsi-256 . . . . . . . . . . . . . . . . . . . . . . . . 88
Itai Dinur and Adi Shamir

Practical Near-Collisions and Collisions on Round-Reduced ECHO-256
Compression Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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Differential Cryptanalysis of Round-Reduced

PRINTcipher: Computing Roots of
Permutations

Mohamed Ahmed Abdelraheem, Gregor Leander, and Erik Zenner

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{M.A.Abdelraheem,G.Leander,E.Zenner}@mat.dtu.dk

Abstract. At CHES 2010, the new block cipher PRINTcipher was
presented. In addition to using an xor round key as is common practice
for round-based block ciphers, PRINTcipher also uses key-dependent
permutations. While this seems to make differential cryptanalysis diffi-
cult due to the unknown bit permutations, we show in this paper that
this is not the case. We present two differential attacks that successfully
break about half of the rounds of PRINTcipher, thereby giving the first
cryptanalytic result on the cipher.

In addition, one of the attacks is of independent interest, since it uses
a mechanism to compute roots of permutations. If an attacker knows the
many-round permutation πr, the algorithm can be used to compute the
underlying single-round permutation π. This technique is thus relevant
for all iterative ciphers that deploy key-dependent permutations. In the
case of PRINTcipher, it can be used to show that the linear layer adds
little to the security against differential attacks.

Keywords: symmetric cryptography, block cipher, differential crypt-
analysis, permutations.

1 Introduction

After the establishment of Rijndael as AES, the need for new block ciphers has
greatly diminished. However, given that the future IT-landscape is supposed to
be dominated by tiny computing devices such as RFID tags or sensor networks,
the need for low cost security has grown substantially. This need opened up the
research field of light-weight cryptography. Quite a number of light-weight block
ciphers have been proposed in the last couple of years, examples among others
are PRESENT [3], HIGHT [7] and KATAN/KTANTAN [4].

PRINTcipher. One recent proposal in this direction is the block cipherPRINT-

cipher presented at CHES 2010. PRINTcipher is an SP-network and comes
in two versions, PRINTcipher-48 and PRINTcipher-96 with block sizes of
48 and 96 bits. PRINTcipher is targeted at IC-printing and makes use of the
fact that this technology allows to make the circuit implementing the cipher key-
dependent. This allows PRINTcipher to be implemented with a considerably

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 1–17, 2011.
c© International Association for Cryptologic Research 2011
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2 M.A. Abdelraheem, G. Leander, and E. Zenner

smaller circuit compared to other light-weight ciphers. In order to maximize the
profit from a key-dependent circuit all round keys in PRINTcipher are iden-
tical. To increase the size of the key space beyond the block size, the key in
PRINTcipher consists not only of a (constant) round key xored to the state,
but also parts of the linear layer are made key-dependent.

Differential Cryptanalysis. This attack, invented by Biham and Shamir [2], is
one of the most powerful and most general attacks on block ciphers known. The
main idea is to encrypt pairs of plaintexts and trace the evolution of their dif-
ference through the encryption process. As most modern block ciphers are round
based, an attacker usually starts by analyzing one round of the cipher with re-
spect to difference propagation and extends to multiple rounds afterwards. Under
well established independence assumptions the probability that a plaintext pair
with a given difference α leads to a ciphertext pair with difference β can easily
be computed by studying single rounds. Thus, differential attacks are most often
based on so-called differential characteristics, that is a sequence of intermediate
differences for all rounds together with their associated probabilities.

Our Results. In this paper we mount a differential attack on round-reduced
versions of PRINTcipher. The main technical problem while doing so is that
the differential characteristics are key-dependent, more precisely they depend on
the (key-dependent) choice of the linear layer. That is to say, without knowing
the key, we do not know the best differential characteristics. At first glance, this
seems to complicate a differential attack on PRINTcipher. There is another
way to look at this, though. If the differential characteristics are key-dependent,
then conversely, knowing the best differential one might be able to deduce in-
formation about the key. In general this dependency might be very complex.
However, in the case of PRINTcipher we show that given the best differen-
tials, computing the key-dependent linear layer can be reduced to computing
roots of permutations in S48 or S96. The remaining key bits, that is the constant
round key xored to the state, can then be recovered using a standard differential
attack, or, at a higher cost, simply by brute force.

Now, computing roots of permutations is a well-studied problem and our
attack will profit from known algorithms. However, note that a permutation can
have a huge number of roots and this causes two problems. First, this makes
algorithms computing all possible roots eventually slow and second, in the case
of PRINTcipher this means that many possible linear layers are proposed. We
explain how both problems can be overcome.

In particular, our results show that making the linear layer of PRINTcipher

key-dependent adds little to no additional security against differential attacks.

Related Work. PRINTcipher is not the first block cipher with key-dependent
components. Other well known examples are Khufu [10], the Khufu variation
Blowfish [12] and Twofish [13]. Along with those proposals, several attempts to
cryptanalyze those block ciphers, see for example [5] for a differential attack on
Khufu or Vaudenay’s attack on round-reduced Blowfish [14] have been published.

This copy belongs to 'VANC03'



Differential Cryptanalysis of Round-Reduced PRINTcipher 3

2 A Short Description of PRINTcipher

This section holds a short description of PRINTcipher, focusing only on the
parts that are of interest for our analysis. For more details we refer to [8].
PRINTcipher-48 (resp -96) is an SP-network with a block size of b = 48 (resp
b = 96) bits and 48 (resp 96) rounds. The key size is 80 bits for PRINTcipher-
48 and 160 bits for PRINTcipher-96. It is closely related to the block cipher
PRESENT in the sense that both ciphers use small s-boxes and a simple bit
permutation as the linear layer. PRINTcipher uses a single 3 bit s-box shown
in the following table.

x 0 1 2 3 4 5 6 7
S[x] 0 1 3 6 7 4 5 2

In the non-linear layer the current state is split into 16 words of 3 bits for
PRINTcipher-48 and into 32 words of 3 bits for PRINTcipher-96 and each
word is processed by the s-box in parallel. The linear layer consists of a bit
permutation, where bit i of the current state is moved to bit position P (i) where

P (i) =
{

3i − 2 mod b − 1 for 1 ≤ i ≤ b − 1,
b for i = b,

where b ∈ {48, 96} is the block size.
The peculiar part of PRINTcipher is to have all rounds identical up to

adding a round constant on a small number of bits. Here identical has to be
understood as including the round key, in other words, all round keys are iden-
tical. As a simple round key xored to the state in each round limits the key
size to 48 resp 96 bits, an additional key-dependent permutation layer was intro-
duced. This permutation layer permutes the input bits of each s-box individually.
Out of 6 possible permutations on 3 bits, only four are valid permutations for
PRINTcipher.

For PRINTcipher-48 the 80-bit user-supplied key k is split into two subkeys
k = sk1||sk2 where sk1 is 48 bits long and sk2 is 32 bits long. The first subkey
sk1 is xored to the state at the beginning of each round. The second subkey sk2

is used to generate the key-dependent permutations in the following way. The
32-bits are divided into 16 sets of two bits and each two-bit quantity a1||a0 is
used to pick one of four of the six available permutations of the three input bits.
Specifically, the three input bits c2||c1||c0 are permuted to give the following
output bits according to two key bits a0||a1.

a1||a0

00 c2||c1||c0

01 c1||c2||c0

10 c2||c0||c1

11 c0||c1||c2

This copy belongs to 'VANC03'



4 M.A. Abdelraheem, G. Leander, and E. Zenner

One round of PRINTcipher-48 is shown in Figure 1.

}
= P

} = K

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Fig. 1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16
3-bit S-boxes from one round to the next. The first subkey is used in the first xor, the
round counter is denoted RCi, while key-dependent permutations are used at the input
to each S-box.

3 Using Differential Cryptanalysis to Recover the
Permutation Key

A classical differential attack against an SP-network finds an input difference α
that produces a certain output difference β with high probability (a so-called
differential). The attacker then analyses a large number of input pairs (x, x′)
with x ⊕ x′ = α and their corresponding output pairs (y, y′), hoping to find the
expected difference β = y⊕ y′. Once this difference actually occurs, the attacker
learns something about the internal behaviour of cipher. In particular, he can
often use this knowledge to recover parts of the key.

For PRINTcipher, this attack can not be directly applied in a straightfor-
ward fashion, since finding good differentials requires the knowledge of the linear
layer, which for PRINTcipher is key-dependent and thus unknown. As already
pointed out, however, this disadvantage can also be turned into an advantage
for the attacker: It can be used to learn something about the part of the key
that defines the linear layer.

3.1 Optimal Differential Characteristic

We start our analysis by proving the following fact about the optimal PRINT-

cipher characteristic.

Theorem 1. Given an input difference α of weight one, the unique most prob-
able r-round differential characteristic is

α → (PK)(α) → (PK)2(α) → (PK)r(α),

which will occur with probability (1/4)r.

Proof. The difference distribution table for the PRINTcipher S-box (see Table
1) shows that all occuring differences are equally probable (prob. 1/4) and that
for every 1-bit input difference, there exists exactly one 1-bit output difference.

This copy belongs to 'VANC03'



Differential Cryptanalysis of Round-Reduced PRINTcipher 5

Table 1. Difference distribution table for PRINTcipher S-box. Note that the differ-
ence table is symmetric. 1-bit to 1-bit differences are marked with boxes.

Δy
000 001 010 011 100 101 110 111

000 8 - - - - - - -

001 - 2 - 2 - 2 - 2

010 - - 2 2 - - 2 2
011 - 2 2 - - 2 2 -

Δx
100 - - - - 2 2 2 2
101 - 2 - 2 2 - 2 -
110 - - 2 2 2 2 - -
111 - 2 2 - 2 - - 2

From this, it follows that starting with a 1-bit input difference, a 1-bit differential
trail through r rounds of PRINTcipher occurs with probability (1/4)r. Note
also that this trail has the minimum possible number of r active S-boxes and
that no other S-box difference is more probable, meaning that this trail is the
most probable one.

Also note that the 1-bit output difference always occurs in the same bit posi-
tion as the 1-bit input difference. This means that if the 1-bit differential occurs,
the S-box does not permute the active bit - its position on the differential trail
is only influenced by the fixed permutation P and the key-dependent permuta-
tion K. Thus, the difference α is indeed mapped to (PK)r(α), which proves the
theorem. ��
The probability of the differential characteristic is based on assumptions, in par-
ticular the assumption of independent round-keys. This assumption is in partic-
ulary questionable for PRINTcipher as all round-keys are identical. Therefore,
we ran (limited) tests to see if the theoretical probability of (1/4)r is actually
met. Our experimental data depicted in Figure 2 suggest that indeed the prob-
ability is slightly higher than expected.

3.2 Targeting the xor Key

In the following, we assume that the attacker has the full code book at his
disposal (i.e. 248 plaintext/ciphertext pairs for r rounds of PRINTcipher-48).
For every 1-bit input difference α1 = (100...0), α2 = (010...0), . . . , α48

= (000...1), the attacker now forms all 247 input pairs with x ⊕ x′ = αi and
checks whether the output difference also has weight one. If yes, he assumes
that he has found the above optimal characteristic. It turns out that as long as
r ≤ 22, this is very likely to happen1.
1 We have 247 pairs and a success probability of (1/4)22 = 2−44, yielding a success

probability close to 1 for any single index i and of ≈ 0.984 for all 48 indices. When
increasing the number of rounds to r = 23, the success probability drops to 0.865
for any single index and to 0.001 for all 48 indices.

This copy belongs to 'VANC03'



6 M.A. Abdelraheem, G. Leander, and E. Zenner

(a) 9 rounds (b) 10 rounds

(c) 11 rounds (d) 12 rounds

Fig. 2. Experimental vs. theoretical estimates for the optimal differentials. The x-axis
shows the number of pairs yielding the correct output difference within 22r+4 tries.
The y-axis shows the relative frequency.

Every successful 1-bit differential gives the attacker information about the
internal behaviour of the cipher which can be used to reconstruct part of the xor
key. Consider the first round of the cipher and note that according to [8], the
order of S-box and key-dependent permutation can be inversed by adding two
constants c and d that do not affect the differential. Thus, we can alternatively
consider one PRINTcipher round to consist of key addition, fixed permutation,
round constant, adding c, S-box, key-dependent permutation, and adding d. In
particular, for the purposes of differential cryptanalysis, we can assume the S-box
to follow directly after the key addition.

Now consider a successful differential with input difference α1 = (100...
0). Three key bits (with indices 1, 17 and 33) will affect the bits that go into the
first S-box. There are a priori 8 possible choices for these bits, generating all
possible 3-bit S-box input pairs with difference α1. However, as shown in Table
1, only 2 of them will lead to a 1-bit output difference after running through the
S-box. Thus, only 1/4 of all keys meet the condition for the first S-box, reducing
the key entropy by 2 bit. Thus, finding 16 successful 1-bit to 1-bit differentials
(one for each S-box) will reduce the key entropy by 32 bit, leaving a brute-force

This copy belongs to 'VANC03'



Differential Cryptanalysis of Round-Reduced PRINTcipher 7

effort of 248 steps. This work factor could be reduced further, but without greatly
affecting the overall running time, which is dominated by the 248 steps of com-
puting the full code book anyway.

The false positive problem: The above description is a simplification since it does
not take false positives into account. For every 1-bit differential, trying out 247

plaintext pairs will yield 247 · 48
248 = 24 false positives on average, i.e. 1-bit output

differences that occur accidentially and not as a result of the correct differential.
The question remains how they can be distinguished from the cases where the 1-
bit output differences really result from the desired differential. It turns out that
for 22 rounds, the probability that all 48 differentials are met at least three times
is 0.514, meaning that in more than half of the cases, the correct 1-bit difference
should be recognizable by occuring more often than the false positives, which
very rarely occur more than twice.

3.3 Targeting the Linear Layer

As it turns out, there is also a different way of using the above differential to
cryptanalyse PRINTcipher. Remembering that according to Theorem 1, every
1-bit to 1-bit characteristic is optimal and describes the mapping α → (PK)r(α),
the following corollary immediately follows:

Corollary 1. Learning all optimal characteristics is the same as learning (PK)r.

If the attacker has the full code book available, he can form 247 plaintext pairs for
every 1-bit input difference. The probability that at least one example of all 48
1-bit differentials is found is 0.984, and as stated above, the probability that they
all can be distinguished successfully from false positives is 0.514. Thus, for up
to r = 22 rounds of PRINTcipher-48, the attacker can learn the permutation
(PK)r.

If he can find the r-th root of this permutation, then he has derived PK and
thus the linear layer key K. Once this has been done, the xor key can be retrieved
bitwise, using a simple divide-and-conquer attack similar to the one described in
Subsection 3.2. It turns out that here too, the overall running time is dominated
by computing the code book, i.e. the attack requires about 248 computational
steps.

This type of differential attack is the dual to the one targeting the xor key
and is relevant for all SPN-like ciphers that use key-dependent permutations.
For this reason, it is not only interesting for the analysis of PRINTcipher, but
also for the understanding of key-dependent permutations in general. In the rest
of this paper, we will thus discuss the computation of permutation roots in more
detail.

4 Finding (PRINTcipher)-Roots of a Permutation

From the previous section, we see that our problem of finding the permutation
key can be reduced to the problem of finding the r-th roots of a given permutation
in the symmetric groups, S48 and S96, where r is the number of rounds.
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8 M.A. Abdelraheem, G. Leander, and E. Zenner

Any permutation can be expressed as a product of disjoint cycles, and it
is this representation that is most useful when computing roots. In particular,
the permutation found through differential cryptanalysis can be expressed as a
product of disjoint cycles in S48 and S96.

Before describing how to find a root for a permutation in general, we outline
the basic ideas. For this, let us first see what happens when we raise a single
cycle to the power r.

Let c = (c0, c1, . . . , cl−1) be a cycle of length l in Sn. Then c2 will remain a sin-
gle cycle when l is odd, namely, c2 = (c0, c2, . . . , cl−1, c1, c3, . . . , cl−2), and will be
decomposed into 2 cycles when l is even, namely, c2 = (c0, c2, . . . , cl−2)(c1, c3, . . . ,
cl−1). In general, depending on l, cr will either remain a single cycle or be de-
composed into a number of cycles having the same length (see Lemma 1). Each
element ci will be in a cycle, say, (ci, ci+r, ci+2r, . . . , ci+(k−1)r), where i + kr ≡ i
(mod l) and i+jr is reduced modulo l for each j. So in order to find the r-th root
we have two cases, the first one is when cr is a single cycle, and here cr equals
exactly (c0, cr, c2r, . . . , c(l−1)r). The second case is when cr consists of a number
of disjoint cycles, and here we combine these disjoint cycles into a single cycle in
a certain way in order to get c (see the proof of Theorem 2). To illustrate this,
let us find the square root of the permutation σ2 = (1, 3, 2)(4, 6, 7)(5)(8) in S8.
According to the above explanation, we know that cycles of the same length are
either a decomposition of a single cycle in the root σ or a reordering of a single
cycle in the root σ. Considering cycles of length 1, (5) and (8), it is obvious that
they arise from either (5)(8) or (5, 8).

Thus, there are two possibilities for cycles of length 1 in σ. Cycles of length 3,
(1, 3, 2) and (4, 6, 7), are either a decomposition of a single cycle in σ, this could
be (1, 4, 3, 6, 2, 7), (1, 6, 3, 7, 2, 4) or (1, 7, 3, 4, 2, 6); or a reordering of disjoint
cycles in σ and this could only be (1, 2, 3)(4, 7, 6). Summarizing, there are four
possibilities for cycles of length 3 in σ. So the total number of square roots for
the permutation σ2 is 8.

4.1 The General Case

The procedure for constructing an r-th root for a permutation, described in [15],
is based on the following basic fact in the theory of symmetric groups which can
be easily deduced from the previous explanation.

Lemma 1. Let C ∈ Sn be a cycle of length l and let r be a positive integer.
Then Cr consists of gcd(l, r) disjoint cycles, each of length l

gcd(l,r) .

The following theorem is due to A. Knopfmacher and R. Warlimont [15, p.
148]. We recall its proof, as the proof describes how to construct an r-th root.
Throughout the rest of this paper, we use the notation l-cycle to mean a cycle
of length l.

Theorem 2. [15,1] Let r = pi1
1 pi2

2 . . . pin
n , where p1, p2, . . . , pn are the prime

factors of r. A permutation Q ∈ Sn has an r-th root, iff for every integer l ≥ 1,
the number of l-cycles in Q is divisible by ((l, r)) :=

∏
{j:pj |l} p

ij

j .
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Proof. (⇐): to prove this, we construct an r-th root, R, of Q. Let al be the
number of l-cycles in Q. Let g = ((l, r)). Then al = gm, where m is an integer,
so we can divide the l-cycles of Q into m groups where each group consists of
g l-cycles. Assume that we have the cycles, cij = (c(0)

ij , c
(1)
ij , . . . , c

(l−1)
ij ) where

1 ≤ i ≤ g and 1 ≤ j ≤ m. For each j, we construct a cycle of length gl, say Rj =
(c(0)

1j , c
(0)
2j , . . . , c

(0)
gj , c

(d)
1j , c

(d)
2j , . . . , c

(d)
gj , . . . , c

((l−1)d)
1j , c

((l−1)d)
2j , . . . , c

((l−1)d)
gj ), where

d = r
g and sd is reduced modulo l for each 1 ≤ s ≤ l − 1. Now Rj is a cycle of

length gl, so according to the previous lemma, Rr
j consists of gcd(gl, r) cycles of

length gl
gcd(gl,r) . Now, since g = ((l, r)), then gcd(l, r

g ) = 1 and so gcd(gl, r) = g,
which means that Rr

j consists of g cycles of length l, namely, c1j , c2j , . . . , cgj . So∏
j:1≤j≤m Rj is an r-th root for the l-cycles of Q. Repeating the same procedure

for all l will yield an r-th root of Q. For the proof of (⇒), see [1]. ��
In [6,9], a procedure to find all the roots of Q is described. Going back to the
previous theorem, we see that the main property that enables us to construct
an r-th root for the l-cycles of Q is having gcd(gl, r) = g. Repeating the same
procedure for all the g’s that satisfy gcd(gl, r) = g will allow us to find all the
possible roots that can come from the l-cycles. Note that g is bounded by al (the
number of l-cycles). To find all the roots, for each group consisting of l-cycles in
Q, we proceed as follows.

First we construct the set Gr(l, al) = {gi : gcd(gil, r) = gi and 1 ≤ gi ≤ al}.
Now, this tells us that the roots have cycles of length gil, but we do not know how
many of them. For this, we solve the following Frobenius equation for xi ≥ 0:

g1x1 + g2x2 + · · · + gkxk = al where k = |G| (1)

This equation will usually have more than one solution. Each solution cor-
responds to a possible cycle structure of the roots. For instance, the solution
x = (x1, x2, . . . , xk), tells us that each corresponding root for the l-cycles of Q
consists of xi cycles of length gil for 1 ≤ i ≤ k.

The efficiency of computing all roots is of course bounded by the total number
of roots. If a permutation has a huge number of roots, computing all of them is
very time consuming. It is therefore of interest to know the number of roots in
advance.

In [9], using the above information about the cycle structure of permutations
that have an r-th root, the following explicit formula2 for calculating the number
of all the possible roots is provided.

Theorem 3. [9] Let r be a positive integer and Q ∈ Sn. Let al be the number of
l-cycles in Q, where 1 ≤ l ≤ n. Let X(l, al) be the set of all the possible solutions
of equation (1). Then the number of r-th roots of Q is

∏
al �=0

al!
( ∑

x∈X(l,al)

k∏
i=1

l(gi−1)xi

gxi

i xi!

)
(2)

where x = (x1, x2, . . . , xk) and {gi : 1 ≤ i ≤ k} are the elements of Gr(l, al).
2 A more complicated formula was previously found by Pavlov in [11].
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10 M.A. Abdelraheem, G. Leander, and E. Zenner

To get a feeling of how many roots of a permutation can be expected for the
case of PRINTcipher-48, let us take the following permutation in S48, suppose
we have

τ24 =(1, 7, 47)(2, 19, 45)(3, 48, 17)(4, 9, 38)(5, 16)(6, 33, 32)(8, 28)(10, 35)
(11, 27, 18)(12, 20)(14, 19, 41)(15, 46)(21, 26, 30)(22, 34)(23, 36)(25,

42, 39)(40, 44)(13)(24)(31)(37)(43) (3)

So we have a1 = 5, a2 = 8, a3 = 9 and al = 0 for 4 ≤ l ≤ 48. G(1, a1) =
{1, 2, 3, 4}, X(1, a1) = {(0, 1, 1, 0), (1, 0, 0, 1), (1, 2, 0, 0), (2, 0, 1, 0), (3, 1, 0, 0),
(5, 0, 0, 0)}, G(2, a2) = {8}, X(2, a2) = {(1)} and G(3, a3) = {3, 6}, X(3, a3) =
{(3, 0), (1, 1)}. Plugging these values into equation (2), we find that the number
of roots is � 251.3. Moreover, the case where τ22 is the Identity has � 2192 roots
in S48.

Note that out of all 48!(96!) permutations only a tiny fraction of 232(264) per-
mutations actually correspond to a valid key in PRINTcipher-48(96). We can
therefore expect that in the above example out of the � 251.3 only a very small
number will actually correspond to a PRINTcipher-permutation. In particular
there is only one root for equation (3) that corresponds to a PRINTcipher

permutation.
The main purpose of the next section is to describe a method that filters

out wrong candidates as soon as possible, allowing to considerably speed up the
computation of all valid PRINTcipher-roots.

4.2 PRINTcipher-Roots

As discussed in the last section, computing all the roots of (PK)r in order
to find the right permutation key is inefficient. In this section we describe a
method that finds the permutation roots PK belonging to the 232(264) possible
permutations in PRINTcipher-48(96). Throughout the rest of this paper, we
only discuss PRINTcipher-48 and unless mentioned explicitly, the assumption
is that everything about PRINTcipher-48 follows for PRINTcipher-96 with
a slight modification.

Our method uses the fact that when we apply the fixed permutation, P , for
all 1 ≤ i ≤ 16, the 3 bits i, i+16 and i+32 go to the ith Sbox, where depending
on the permutation key, they are permuted to only four out of the six possible
permutations. So the result of applying the fixed permutation, P , and then
applying the keyed permutation, K, on a 48 bits plain text, is a permutation
PK that satisfies the following two properties:

1. Property 1: For all 1 ≤ i ≤ 48, PK(i) equals one of the following three
possible values depending on K,

PK(i) =

⎧⎪⎨⎪⎩
3i − 2 (mod 48 if 3i − 2 = 48)
3i − 1 (mod 48 if 3i − 1 = 48)
3i (mod 48 if 3i = 48)
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2. Property 2: Only 4 out of the 6 possible 3-bit permutations are valid, namely,
PK(i), PK(i+16) and PK(i+32) are permuted to one of the four possible
permutations, i.e., for all 1 ≤ i ≤ 48, the following two permutations are not
allowed:
(a) PK(i) = 3i − 1, PK(i + 16) = 3i and PK(i + 32) = 3i − 2.
(b) PK(i) = 3i, PK(i + 16) = 3i − 2 and PK(i + 32) = 3i − 1.

Definition 1. A PRINTcipher permutation root is any permutation on 48
elements satisfying both Property 1 and Property 2.

Definition 2. A PRINTcipher permutation(cycle) is any permutation(cycle)
on less than 48 elements satisfying both Property 1 and Property 2.

To explain these definitions, consider the following two cycles (14, 41, 25, 26,
30, 42, 29, 39, 21) and (14, 42, 30, 41, 25, 26, 29, 39, 21). We want to investigate
whether these cycles are PRINTcipher cycles or not. The latter cycle satis-
fies the two properties and so it is a PRINTcipher cycle, in other words it can
be part of a PRINTcipher permutation root, PK. The former cycle satisfies
only Property 1 but not Property 2 since we have PK(14) = 41 and PK(30) = 42
and therefore PK(42) = 40 , and this is one of the two disallowed permutations
(see item (a) in Property 2) and so it cannot be part of a valid PRINTcipher

permutation root, PK. Sometimes we can have a permutation consisting of two
or more cycles having same or different lengths, that satisfies Property 1 but not
Property 2. For example, the following permutation, (1, 2, 6, 17)(5, 15, 44, 34),
satisfies Property 1 but not Property 2 as we have PK(2) = 6 and PK(34) = 5
and therefore PK(18) = 4, which is an invalid PRINTcipher permutation (see
item (b) in Property 2).

Since the same cycles and permutations can be written in different ways,
our method adopts the notion that starts writing each cycle by its smallest
element and lexicographically order the disjoint cycles of the same length of a
permutation in order to avoid repetitions in the permutation roots of (PK)r.
Our method consists of two algorithms: the first one constructs a PRINTcipher

cycle of length gl and the second one uses the first algorithm to construct k
combined disjoint cycles, each of length gl. In what follows, we shall give a
detailed description of the two algorithms and end this section by showing how to
use Algorithm 2 to find the whole PRINTcipher permutation roots of (PK)r.

Finding single PRINTcipher cycles. Given al cycles of length l, the fol-
lowing algorithm constructs all the possible PRINTcipher cycles of length gl
beginning with an element called first specified in the input (must be one the
the first elements in one of these al cycles). The algorithm performs a depth first
search to find all the other possible g − 1 cycles with minimal elements larger
than first and can be combined with the cycle containing first as described in
Theorem 2 in order to form a PRINTcipher cycle (or just reorder the given
cycle in the case g = 1 as described previously).
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12 M.A. Abdelraheem, G. Leander, and E. Zenner

Algorithm 1. finds a PRINTcipher cycle of length gl
find-cycle(cycle, current, g, l-cycles)
Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first, cycle = first
Ensure: cycle is a PRINTcipher cycle of length gl
1: for count=0 to 2 do
2: next = 3 × current - count
3: if next ∈ l-cycles then
4: if next > first and next.cycleno �= first.cycleno and cycle.length < g then
5: if next.cycleno �= the cycleno of all the elements of cycle then
6: Add next to cycle
7: current = next
8: Perform again this algorithm on cycle, find-cycle(cycle, current, g, l-

cycles)
9: end if

10: else if cycle.length = g and next.cycleno = first.cycleno then
11: Complete the construction of cycle by combining the g different cycles to

get a single cycle of length gl as shown in the proof of Theorem 1 (when
g = 1, reorder the cycle containing first as described previously and assign
it to cycle)

12: if cycle satisfies Property 2 then
13: cycle is a PRINTcipher cycle of length gl
14: end if
15: end if
16: end if
17: end for

Plugging all the 2-cycles of equation (3) and setting first = 5 and g = 8 will
produce the following PRINTcipher cycle of length 16

(5, 15, 44, 36, 12, 35, 8, 22, 16, 46, 40, 23, 20, 10, 28, 34).

Algorithm 1 enables us to find a PRINTcipher permutation consisting of only
one cycle of length gl but note that some of the xi’s in equation (1) can be
more than 1. So we need another algorithm which can find a PRINTcipher

permutation consisting of k disjoint cycles where k ≥ 1.

Finding k combined PRINTcipher cycles. Given al cycles of length l, the
following algorithm constructs a permutation beginning with an element called
first specified in the input (must be the first element in one of these al cycles)
and consisting of k combined and disjoint cycles ordered lexicographically. It
basically performs a recursive depth first search. The recursive algorithm begins
by invoking Algorithm 1 which outputs single cycles of length gl beginning with
first. It then proceeds from each cycle found by Algorithm 1 and concatenates
it with the previously i − 1 concatenated disjoint cycles found after the ith
recursive call and if the concatenation satisfies Property 2, it recursively calls
itself a number of times, each time with a different first element to begin the
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required permutation with as this will enable us to find all the possible i + 1
disjoint cycles, on a reduced number of l-cycles (exactly al−gi cycles) consisting
of all the l-cycles except the gi cycles involved on the i concatenated disjoint
cycles (in each invocation first is set to the smallest element on one of the
currently available al − gi cycles). Each recursive call stops when i = k, or when
Algorithm 1 returns nothing, or when each concatenation of i cycles does not
satisfy Property 2.

Algorithm 2. finds a PRINTcipher permutation that has k disjoint gl-cycles
find-k-cycles(C, current, k, g, l-cycles)
Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first
Require: C = {}
Ensure: k disjoint PRINTcipher gl-cycles, or return {} if there is no k disjoint

PRINTcipher cycles
1: Invoke Alg. 1 on the current l-cycles
2: if number of cycles found by Alg. 1 > 0 then
3: if the number of disjoint cycles in C consists of k − 1 disjoint cycles then
4: for each permutation cycle found by Alg. 1 do
5: C = C ∪ cycle
6: if C satisfies Property 2 then
7: return C
8: else
9: return {}

10: end if
11: end for
12: else
13: for each cycle found by Alg. 1 do
14: C = C ∪ cycle
15: if C satisfies Property 2 then
16: Delete all the l-cycles involved in C from the al cycles of length l
17: for each cycle ∈ currently available l-cycles do
18: {Perform again this algorithm on the current l-cycles to find the other

k − 1 cycles}
19: current = first element in cycle
20: find-k-cycles(C, current, k, g, l-cycles)
21: end for
22: end if
23: end for
24: end if
25: else
26: return
27: end if

Using Algorithm 1 for all the possible g’s along with all the possible first
values and setting a1 = 48, we can find all the possible PRINTcipher cycles.
For instance, when g = 1 and a1 = 48, Algorithm 1 returns four 1-cycles when
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trying all the possible values for first, namely, (1), (24), (25) and (48). When
g = 2 and a2 = 48, we found that there are six possible 2-cycles, namely, (6, 18),
(7, 19), (12, 36), (13, 37), (30, 42) and (31, 43). When g = 3, we found there are
eight possible 3-cycles. This information enables us to reduce the size of the cycle
structure of the roots by removing any structure containing more than four 1-
cycles, six 2-cycles and eight 3-cycles. It also enables us to easily find some roots,
for example, knowing all PRINTcipher cycles of length 1 and 2, we can easily
find that (24)(13, 37)(30, 42) is a PRINTcipher permutation that is a root for
the 1-cycles of equation (3).

Moreover, using Algorithm 2 we find that we cannot have a permutation
consisting of more than 6 disjoint cycles of length 5 in PRINTcipher-48 and
not more than 9 cycles of length 4, 12 cycles of length 5, 13 cycles of length 6
and 12 cycles of length 7 in PRINTcipher-96. This will generally reduce the
number of solutions of equation (1) and therefore the size of the cycle structure
which will speed up the process of finding PRINTcipher permutations roots.

Finding PRINTcipher permutations. Now, when given al cycles of length
l, Algorithm 2 enables us to find PRINTcipher permutations beginning with
a specified element and consisting of k cycles, each of length gl. But in or-
der to find the rth permutation roots for all the l-cycles we use Algorithm 2
together with the elements of the sets G(l, al) and X(l, al). Each entry xj =
(xj1, xj2, . . . , xjk) ∈ X(l, al) where k = |G(l, al)|, represents the cycle struc-
ture of many rth roots for the l-cycles and it might correspond to few or none
PRINTcipher permutations, so for each xj ∈ X(l, al), we try to find all the
possible PRINTcipher permutations beginning with a specific element called
first (must be the first element in one of these al cycles) and that can be roots
for the l-cycles by applying Algorithm 2 through all the nonzero entries of xj .
Trying all the possible values for first gives us all PRINTcipher permutations
that are roots for all the l-cycles.

Now, assume that we find all the possible PRINTcipher permutations for
each l, say σli , for 1 ≤ i ≤ ηl where ηl is the number of permutation roots of
the l-cycles of (PK)r, so all the possible products

∏
al>0 σli where 1 ≤ l ≤ 48

and 1 ≤ i ≤ ηl, represent the PRINTcipher permutation roots which are the
possible values for PK and by brute forcing these PK values we can recover the
permutation key, K.

Let us try to find PRINTcipher permutations that are roots for the nine 3-
cycles in equation (3). We have G(3, a3) = {3, 6} and X(3, a3) = {(3, 0), (1, 1)}.
We start with, x1 = (3, 0), here we only need to apply Algorithm 2 using any
possible first because the 3 disjoint cycles of length 9 would come from all the
9 cycles. Setting first = 1 and applying Algorithm 2 doesn’t give us 3 dis-
joint cycles of length 9, so we conclude that there is no root having the cy-
cle structure x1. So we go to the next cycle structure, x2 = (1, 1), we start
with x21 = 1 and use Algorithm 2 on all the possible first values. Setting
first = 1, 2, 3, 4, 6 and 11 doesn’t yield a single cycle of length 9, while first
= 14 yields the cycle (14, 42, 30, 41, 25, 26, 29, 39, 21), we save it and continue to
the next element x22 = 1 where we use Algorithm 2 on the 6 cycles that are
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not involved in the previous found cycle. Now we want to construct a cycle of
length 18, so all the 6 cycles would be involved in it, setting first = 1, yields
(1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17). Concatenating this cycle
with the previous found cycle, we get (14, 42, 30, 41, 25, 26, 29, 39, 21)(1, 2, 4, 11,
33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17)which satisfies Property 2. This means
that it is a PRINTcipher permutation that is a root for all the 3-cycles in equa-
tion (3). Now, we have found the roots for all the l-cycles in equation (3). Con-
catenating them together gives us the following PRINTcipher permutation
root: (1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17)(5, 15, 44, 36, 12, 35, 8,
22, 16, 46, 40, 23, 20, 10, 28, 34)(14, 42, 30, 41, 25, 26, 29, 39, 21)(13, 37)(30, 42)(24).

5 Experimental Verifications

To demonstrate the efficiency of our attack we implemented the above algo-
rithms. Experiments show that (PK)r could yield more than one PRINTci-

pher root when (PK)r contains several 1-cycles, but in most cases there was
exactly one PRINTcipher root.

To derive bounds for the number of PRINTcipher permutations roots, we
computed the number of all PRINTcipher permutation roots for (PK)r =
Identity where 2 ≤ r ≤ 22. This seems the worst case that could happen for any
r since a1 = 48, which is a1’s largest value, and as shown in Table 2, the number
of PRINTcipher roots when r = 22 is 222.04. These roots are found within less
than 3 hours on a standard PC.

Furthermore, we tried 104 random PRINTcipher-48 permutation keys ex-
cluding the ones that yield (PK)r = Identity. Note that, for a random key, the
probability for the worst case is 222.04

232 = 0.001 for 22 rounds and less than that
for r < 22. These experiments took a few seconds on average on a standard PC
and they show that most of the time there is a unique PRINTcipher permuta-
tion root. Table 2 shows the number of keys (nk), out of the 104 random keys,
that yield more than one PRINTcipher permutation root. It also shows the
number of PRINTcipher permutation roots in the worst case (nw) for each
number of rounds.

Table 2. Results of the 104 trials and the worst case for 2 ≤ r ≤ 22, nk ≡ the number
of keys that yield more than one PRINTcipher permutation root, nw ≡ the number
of PRINTcipher permutation roots in the worst case.

r log2 nk log2 nw r log2 nk log2 nw r log2 nk log2 nw

2 - - 9 7.66 8.58 16 10.80 18.95
3 - - 10 8.33 11.90 17 8.71 -
4 6.11 2 11 7.94 9.31 18 11.16 20.67
5 2 - 12 11.46 17.39 19 8.77 -
6 9.30 4.17 13 8.47 - 20 10.68 21.54
7 3.70 - 14 9.10 16.27 21 9.18 18.73
8 9.59 10.07 15 9.77 16.63 22 9.59 22.04
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6 Conclusions

We have described two differential attacks against 22 rounds of PRINTcipher-
48, requiring the full code book and about 248 computational steps. While this is
far from breaking the full 48 rounds of the cipher, it is the best currently known
result against the cipher. Similar results can be obtained for the 96-bit version
of the cipher.

One of the attacks is a new technique targeting the key-dependent permuta-
tions used in PRINTcipher. Since such key-dependent permutations are cur-
rently not well-studied, the attack is of importance to past and future designs
that use them. We introduced a novel technique for computing permutation
roots, making it possible to retrieve the key-dependent single-round permuta-
tion π given nothing but the r-round permutation πr and the cipher description.
While our technique so far applies only to the case where the linear layer is a
(key-depended) bit permutation, future designers of cryptographic primitives us-
ing key-dependent permutations should be aware of this technique when choosing
parameters like round numbers or S-box layout for their algorithms.
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Abstract. We present the first automatic search algorithms for the best
related-key differential characteristics in DES-like ciphers. We show that
instead of brute-forcing the space of all possible differences in the master
key and the plaintext, it is computationally more efficient to try only a
reduced set of input-output differences of three consecutive S-box lay-
ers. Based on this observation, we propose two search algorithms – the
first explores Matsui’s approach, while the second is divide-and-conquer
technique. Using our algorithms, we find the probabilities (or the upper
bounds on the probabilities) of the best related-key characteristics in
DES, DESL, and s2DES.

Keywords: Cryptanalysis tool, automatic search, differential character-
istic, related-key attack, DES.

1 Introduction

The Data Encryption Standard (DES) [8], adopted by the U.S. National Bureau
of Standards in 1977, was a block cipher standard for several decades. Some
of the design principles of DES were fully understood by the public only after
the first cryptanalysis presented by Biham and Shamir [2]. They introduced the
idea of differential analysis and differential characteristics, and showed that if
one encrypts with DES a pair of plaintexts with a specific XOR difference, then
the pair of corresponding ciphertexts will have some predictable difference with
a probability higher than expected.

In [7] Matsui showed that the differential characteristics found by Biham and
Shamir were indeed the best, i.e. they have the highest probability among all
characteristics. He was able to prove this fact by running a full search on the
space of all possible characteristics, using a special algorithm that speeds up
the search. Matsui’s algorithm was adopted and applied for search of the best
characteristics in LOKI and s2DES [10], Twofish [9], FEAL [1], and others. In
all of these cases, the search was targeting only single-key characteristics, i.e.
the characteristics that have a difference in the plaintext, but not in the master
key. Biryukov and Nikolić in [4] showed that Matsui’s idea indeed can be used
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to build a search algorithm that finds the best related-key characteristics (the
difference can be in the key as well as in the ciphertext) for some classes of byte-
oriented ciphers. To the best of our knowledge, there are no published results on
a search for related-key characteristics in any bit-oriented cipher.

Our contribution. We present algorithms for finding the best (with the high-
est probability) round-reduced related-key differential characteristics in DES and
DES-like ciphers. We show that instead of trying all differences in the key and in
the plaintext, which would result in a search space of size 2120, it is computation-
ally more efficient to try only a reduced set of input-output differences of three
consecutive S-boxes layers. Based on this observation, we are able to propose
two algorithms for automatic search of related-key differential characteristics in
DES-like ciphers – the first is based on Matsui’s approach, while the second is in
line with the technique of divide-and-conquer. We apply our algorithms to DES,
DESL [6], and s2DES [5] and find either the probabilities of the best round-
reduced related-key differential characteristics, or the upper bounds on these
probabilities. Interestingly, although for lower number of rounds these probabil-
ities are much higher than in the case of single-key characteristics, for higher
number of rounds, the best characteristics are single-key characteristics. We ob-
tain an interesting result regarding DES. By providing the probability of the
best related-key characteristic on 13 rounds, we show that Biham-Shamir attack
cannot be improved if one uses related-key characteristic (instead of single-key).
Moreover, the low probabilities of the best related-key characteristics on higher
rounds indicate that NSA did not introduce any weakness (or trapdoor) in the
key schedule of DES with regard to differential attacks. Although in this paper
we apply our algorithms only to the DES-like ciphers, we believe that our ap-
proaches can be used as well to search for high probability related-key differential
characteristics in any bit-oriented ciphers with linear key schedule.

2 Description of DES-Like Block Ciphers

DES [8] is 64-bit block cipher with 56-bit key1. It is 16-round Feistel cipher with
additional permutations IP, IP−1 at the beginning and at the end. The 64-bit
plaintext, after the application of the initial permutation IP is divided into two
halves L0 and R0 - each half has 32 bits. Then, the halves are updated 16 times
with the round function:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, Ki),

where i = 1, . . . , 16 and Ki are 48-bit round keys, obtained from the initial key
K with some linear transforms (rotations that depend on the round number and
bit selection function PC-2). The ciphertext is defined as IP−1(R16||L16).

1 Officially, the key has 64 bits, but 8 bits are only used to check the parity, and then
discarded.
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The round function f(R, Ki) takes 32-bit state R and 48-bit round key Ki and
produces 32-bit output. First it expands the 32-bit value of R to 48 bits with the
linear function E and then it XORs the values of E(R) and Ki to produce some
intermediate result, which we further denote as fi. This 48-bit value is divided
into 8 six-bit values, and each of these values goes through a separate 6x4 S-box.
Finally, the 32-bit output of the S-boxes goes through a bit permutation P and
the output f̃i of the round function is produced.

The DES-like block ciphers DESL [6] and s2DES [5], differ from DES only
in the definition of the S-boxes and the initial and final permutations. Since
these permutations have no cryptographic values, we can assume that the only
difference among the ciphers of the DES-family is in the S-boxes.

3 Automatic Search for Related-Key Differential
Characteristics in DES-Like Ciphers

The best characteristic on r rounds, i.e. the best r round-reduced characteristic,
is the one that has the highest probability among all characteristics on r rounds
of the cipher. In this section we propose two methods for building efficient au-
tomatic search algorithms for finding the best round-reduced related-key differ-
ential characteristics in DES-like ciphers. When constructing these algorithms,
the main problem that has to be tackled is how to deal with the enormous
search space. There are 64 bits in the state and 56 bits in the key, hence in total
there are 2120 starting values for differential characteristics. However, in general,
this number can be reduced significantly. Our first method is based on Matsui’s
search tool applied for finding the best single-key round-reduced characteristics
in DES. The second method, which we call the split approach, can be used when
Matsui’s approach fails – to find characteristics on high number of rounds when
not all the characteristics on lower number of rounds are known.

Due to the complementation property of DES, there are related-key charac-
teristics (including round-reduced) that hold with probability 1. Further, we do
not consider these characteristics.

Considering the different rotation amounts in the key-schedule, the probabil-
ity of the best round-reduced related-key characteristic depends on the rounds
covered by the characteristic. For example, the best 5-round related-key charac-
teristic covering rounds 0-4, can have different probability from the best char-
acteristic that covers rounds 1-5. The best related-key characteristics in our
paper, always cover the last rounds, e.g. the characteristic on 7 rounds, covers
the rounds 9-15.

3.1 Matsui’s Approach for Single-Key Characteristics

The search for the best single-key differential characteristics in DES was success-
fully performed by Matsui in [7]. Note that even in this case, when there is no
difference in the key, the search space is rather large – 264 starting differences.
However, Matsui presented several useful approaches how to deal with a large
number of starting differences and how to significantly reduce the search space.
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A naive approach to search for the best n-round characteristic would be to
try all possible starting differences in the plaintext and try to extend each of
them to n rounds. The non-linearity of the S-boxes will introduce branching,
and a k-round characteristic (k < n) is extended for an additional round only
if its probability is higher than the probability P ∗

n of some known characteristic
on n rounds.

Matsui’s approach on the other hand, cuts out a large number of round-
reduced characteristics in the early stage. Given the probabilities P1, . . . , Pn−1

of the best characteristics on the first n − 1 rounds, and some estimate2 P ∗
n for

the probability of the characteristic on n rounds, the algorithm produces the
best characteristic on n rounds. Hence, the attacker can sequentially produce,
starting from 1 or 2-round reduced, characteristics on all rounds of DES. In short,
the attacker, as in the naive approach, tries all possible starting differences3. For
each of them he produces 1-round characteristic (there can be many one-round
characteristics, and the following procedure is repeated for each of them) that
holds with probability P1. Then, he tries to extend it to two rounds only if
P1 · Pn−1 > P ∗

n . This is because in order to extend 1-round characteristic to
n rounds, one should use an additional (n − 1)-round characteristic. Since the
best one has probability Pn−1, the total probability of the n-round characteristic
will be at most P1 · Pn−1 and this value should be better than the probability
P ∗

n of the best known characteristic on n-rounds. Similarly, if the attacker has
built k-round characteristic with probability Pk than he tries to extended for
an additional round only if Pk · Pn−k > P ∗

n . Note that in the naive approach,
the attacker only checks if Pk > P ∗

n . Therefore, Matsui’s approach stops the
extension of many round-reduced characteristics and that way speeds up the
search.

Now let us take a closer look how to reduce the number of possible starting
differences. Interestingly, the same approach as above can be used. First note
that a characteristic on the first two rounds (assuming this 2-round characteristic
is part of the best n-round characteristic) has a probability P2 such that P2 <
P ∗

n/Pn−2. The following observation is used to explore this property of 2-round
single-key characteristics.

Observation 1. Given the input and the output differences (Δf1, Δf̃1), (Δf2,
Δf̃2) of the S-boxes layers in the first two rounds, one can find the difference in
the plaintext ΔP and the difference (ΔL2, ΔR2) in state at the beginning of the
third round.

Proof. From the Feistel construction it leads that ΔR0 = E−1(Δf1) and
ΔL0 = Δf̃1 ⊕ E−1(Δf2). Then the difference ΔP in the plaintext is ΔP =
IP−1(ΔR0||ΔL0). Similarly, for the difference at the beginning of the third
round we get ΔR2 = ΔR0 ⊕ Δf̃2 and ΔL2 = ΔL0 ⊕ E−1(Δf2). ��

2 For example, the attacker can use the probability of the already known characteristic
on n rounds as an estimate.

3 We will see later, that this requirement can be omitted.
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Therefore, instead of fixing all possible differences ΔP in the plaintext one
can fix only the input and the output differences to the S-boxes in rounds 1,2.
But, since the active S-boxes of the first round have to hold with a probability of
at least P ∗

n/Pn−1, and in the first and the second round with at least P ∗
n/Pn−2,

the number of 2-round characteristics is significantly reduced. For each such
characteristic, one can proceed with Matsui’s technique, and try to extend it to
n-rounds (since the difference at the beginning of round 3 is fixed).

3.2 Applying Matsui’s Approach for Related-Key Characteristics

One can easily reconstruct Matsui’s algorithm to search for related-key charac-
teristics. Note that for a fixed difference in the key, the algorithm still works and
it finds the best characteristic with this specific difference. However, since the
key has 56 bits, this search has to be repeated 256 times and hence this naive
approach is not feasible. We can still run a so-called limited search for related-key
characteristics, by allowing low Hamming difference in the key. For example, to
find the best characteristic that has at most 2-bit difference in the key, we have
to rerun Matsui’s algorithm 1 + C1

56 + C2
56 = 1597 times.

Indeed, finding the best related-key characteristic using Matsui’s approach can
be done efficiently. We only have to find a way to efficiently limit the number
of possible differences in the key and in the plaintext. We want to reduce the
search space, yet to perform a full search of all possible related-key differential
characteristics. The following observation can be used for that purpose.

Observation 2. Given the input and the output differences (Δf1, Δf̃1), (Δf2,
Δf̃2), (Δf3, Δf̃3) of the S-boxes layers in the first three rounds, one can find
the difference in the plaintext ΔP , the difference (ΔL3, ΔR3) in state at the
beginning of the fourth round, and all 28 values for the difference ΔK in the
master key.

Proof. Again we use the property of the Feistel construction and the linearity
of the key schedule. From the definition of DES we get:

Δf1 = E(ΔR0) ⊕ ΔK1 (1)

Δf3 = E(ΔR0 ⊕ Δf̃2) ⊕ ΔK3 (2)

Since E is linear, we get:

ΔK1 ⊕ ΔK3 = Δf1 ⊕ Δf3 ⊕ E(Δf̃2)

The key schedule is linear, and both K1 and K3 are obtained from the master
K with some linear transformation. Therefore ΔK1 ⊕ ΔK3 can be expressed as
L(ΔK), where L is a linear transformation. On the other hand, the input-output
differences of the S-boxes are given, and therefore, the value V = Δf1 ⊕ Δf3 ⊕
E(Δf̃2) is known. Hence, the master key difference ΔK can be found as ΔK =
L−1(V ). However, the key is 56 bits, while V only 48 bits. Therefore we get an
underdefined system of linear equations with 28 solutions. If we fix a particular
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solution for the system, and thereby the difference in the key K, we can easily find
ΔK1, ΔK3 (and ΔK2). Then ΔR0 = E−1(Δf1 ⊕ ΔK1) and ΔL0 = E−1(Δf2 ⊕
K2) ⊕ Δf̃1. Similarly can be found the differences ΔL3, ΔR3. ��
The above observation clearly indicates how to reduce the search space. In-
stead of trying all possible differences in the key K and running Matsui’s al-
gorithm for each of them, one should only fix the input and the output differ-
ences to the S-box layers in the first three rounds. Due to restrictions on the
probability, all the active S-boxes in first, in the first and second, and in the
first, second and third round, should have a combined probability of at least
P ∗

n/Pn−1, P
∗
n/Pn−2, P

∗
n/Pn−3, respectively. Once the active S-boxes for the first

three rounds are fixed, one can easily find all 28 candidates for the difference in
the master key and the difference in the state after the third round and hence
produce 3-round differential characteristic with a fixed difference in the mas-
ter key. Further, Matsui’s approach can be used, and this characteristic can be
extended to any number of rounds. The pseudo-code of the whole algorithm is
given at Alg. 1.

On the complexity and optimization of the search. Calculating the exact
time complexity of the whole search is complex and probably impossible. How-
ever, some estimate can be given, under a certain assumption. Our experiments
indicate that once the difference in the state (after the third round) and in the
key is fixed, extending the characteristic to n rounds becomes fairly easy and
computationally cheap task. The main complexity lies in generating all 3-round
related-key characteristics that have a certain probability. More precisely, from
observation 2 it follows that one should generate all active S-boxes in the first
round that hold with a combined probability P1 of not less than P ∗

n/Pn−1, then
all active S-boxes in the second round with a combined probability not less than
P ∗

n/(Pn−2 · P1) and all active in the third round with probability of not less
than P ∗

n/(Pn−3 · P2) (where P2 is the probability of the active S-boxes in the
first two rounds). Therefore, the number of all 3-round related-key characteris-
tics depends only on the values P ∗

n/Pn−1, P
∗
n/Pn−2 and P ∗

n/Pn−3 – higher the
values, less characteristics exist, and the search is faster.

The complexity of creating all these 3-round characteristics is not the same
(or proportional) as the number of such characteristics. This comes from the
fact that the linear transform E is not a surjective, since it has 32-bit input and
48-bit output. For example, after ΔK1 is found (see the proof of the observation
2), the value ΔR0 = E−1(Δf1 ⊕ ΔK1) exists only with a probability 2−16.
Similar holds for ΔL0. Hence, the optimal strategy for creating the 3-round
characteristics would be to:

1. Fix the probabilities of the first four active S-boxes in the first and the third
round and all the active S-boxes of the second round (that have the above
limitations ), without fixing the exact input-output differences. This can be
done by fixing only the possible values from the difference distribution tables
of the S-boxes.
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Algorithm 1. Search for RK differential characteristic
FullSearch()
{
// The first three rounds
for all Δf1 → Δf̃1|P (Δf1 → Δf̃1)Pn−1 > P ∗

n do
for all Δf2 → Δf̃2|P (Δf1 → Δf̃1)P (Δf2 → Δf̃2)Pn−2 > P ∗

n do
for all Δf3 → Δf̃3|P (Δf1 → Δf̃1)P (Δf2 → Δf̃2)P (Δf3 → Δf̃3)Pn−3 > P ∗

n

do
V = Δf1 ⊕ Δf3 ⊕ E(Δf̃2)
for all ΔK|L(ΔK) = V do

ΔK1 = PC2(rot(ΔK, 1))
ΔK2 = PC2(rot(ΔK, 2))
if E−1(ΔK1 ⊕ Δf1) and E−1(ΔK2 ⊕ Δf2) then

ΔR0 = E−1(ΔK1 ⊕ Δf1)
ΔL0 = E−1(ΔK2 ⊕ Δf2) ⊕ Δf̃1
ΔR3 = ΔL0 ⊕ Δf̃1Δf̃3
ΔL3 = ΔR0 ⊕ Δf̃2
Call NextRound(ΔL3, ΔR3, ΔK, P (Δf1 → Δf̃1)P (Δf2 →
Δf̃2)P (Δf3 → Δf̃3), 4)

end if
end for

end for
end for

end for
}

NextRound(ΔL,ΔR, ΔK, p, round)
{
ΔKr = PC2(rot(ΔK, round))
Δf = ΔKr ⊕ E(ΔR)
for all Δf → Δf̃ |P (Δf → Δf̃) · p · Pn−round > P ∗

n do
ΔLnew = ΔR
ΔRnew = ΔL ⊕ Δf̃
if round == n then

if P (Δf → Δf̃) · p > P ∗
n then

P ∗
n = P (Δf → Δf̃) · p

end if
else

Call NextRound(ΔLnew, ΔRnew , ΔK, P (Δf → Δf̃) · p, round + 1)
end if

end for
}
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2. Fix the input differences to the four S-boxes of round 1,3, and the output
differences of the S-boxes of round 2 (that correspond to the previously fixed
distribution values).

3. Find 28 bits of ΔK, then find 28 bits of ΔK1 and check if there exist preimage
of 24 bits of Δf1⊕ΔK1 for E. This can be done, since the left and the right
28-bit halves of the key are independent.

4. If exists, fix the probabilities of the last four active S-boxes in the first and
the third round.

5. Fix the input differences to these 8 S-boxes.
6. Find the rest 28 bits of ΔK, then of ΔK1 and check if there exist preimage

of last 24 bits of Δf1 ⊕ ΔK1 for E.
7. If exists, find ΔK2, fix the input difference to the S-boxes in the second

round and check if there exist a preimage of Δf2 ⊕ K2 for E.
8. If exists, fix the output differences for the S-boxes of round 3 (it is not

necessary to fix the outputs of S-boxes of round 1).

Although we cannot give a precise estimate for the complexity of creating all 3-
round characteristics, we can give such estimates for some particular fixed values
of P ∗

n ,Pn−1,Pn−2, and Pn−2. For example, when P ∗
n/Pn−1 = 2−3, P ∗

n/Pn−2 =
2−6, P ∗

n/Pn−3 = 2−9, then steps 1-8 are repeated 216.7, 228.9, 232.9, 227.3, 230.8,
234.9, 227.6, 220.3 times, respectively, leading to a total complexity of around 235.
On the other hand, when P ∗

n/Pn−1 = 2−3, P ∗
n/Pn−2 = 2−7, P ∗

n/Pn−3 = 2−10,
then steps 1-8 are repeated 218.7, 232.4, 236.4, 230.8, 234.3, 238.4, 230.9, 222.6 times,
respectively, and hence the complexity is around 239, while there exist around
222.6 (step 8) good 3-round related-key characteristics.

3.3 The Split Approach

To build the best n-round characteristic Matsui’s approach requires first to build
the best characteristics on 1, 2, . . . , n−1 rounds because it uses the probabilities
of these characteristics. One may be able to skip building the characteristics on
some rounds and to assume that they have the same probability as the charac-
teristic on lower number of rounds. Under this assumption, the algorithm still
works and finds the best characteristic on n rounds, however the time complexity
usually suffers significantly.

Avoiding building all round-reduced characteristics can be done with a dif-
ferent approach. Let us assume we search for characteristic on n rounds that
has a probability of at least P ∗

n . This n-round characteristic can be seen as a
concatenation of two n/2-round characteristics, with a combined probability of
at least P ∗

n . Therefore, one of these two characteristics has a probability of at
least

√
P ∗

n . Indeed we can split the n-round characteristic on any (reasonable)
number of k characteristics, each on n/k rounds, and claim that at least one of
them has a probability of k

√
P ∗

n .
Now, let us assume that n = 3k, and the n-round characteristic has been split

into k three-round characteristics. One of these characteristics (we do not know
exactly which), has to have a probability of at least k

√
P ∗

n . Since it is on three
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rounds, and it has a bound on its probability, we can use our previous method
(observation 2), to build all such characteristics. However, unlike in Matsui’s
approach, where each of the three rounds has some bound on probability, now
we build 3-round characteristics that only have the bound on the combined
probability (of all three rounds). Once we have built all such the 3-round char-
acteristics we try to extend them to n rounds (recall that if the difference in the
state and in the key is fixed, then it is easy to extend it to more rounds – the
difficulty lies in creating all such 3-round characteristics). Interestingly, when
extending the three round characteristics, we can use the bounds from Matsui’s
approach.

For example, let us assume we want to build a characteristic on 9 rounds
with a probability at least 2−24. Then we know that one of the three 3-round
characteristics has a probability of at least 2−8. First we assume that this is the
characteristic on the first three rounds. We build all first 3-round characteristics
with probability at least 2−8, i.e. P3 ≥ 2−8, and then try to extend them 6 rounds
forward, thus obtaining a characteristic on 9 rounds. If we have the probabilities
P1, . . . , P6 for the best characteristics on the last 6 rounds, then for rounds 4-9,
we can use Matsui’s approach, e.g. for 4 rounds we take only those with P4 such
that P4 · P5 ≥ 2−24, for 5 rounds P5 · P4 ≥ 2−24, etc. If we do not have the best
probabilities than for each round i (i ≥ 4) we only check if Pi ≥ 2−24. Then
we assume the characteristic on rounds 4-6 has a probability of at least 2−8.
Again, we build all 3-round characteristics with at most 2−8 and extend them
three rounds forward and three backwards (by using Matsui’s bounds). Finally,
we assume this is the 3-round characteristic on the last three rounds (7-9). We
build all such characteristics and extend them 6 rounds backwards (again we
can use Matsui’s bounds if we have the best probabilities for the first 6 rounds).
Among all 9-round characteristics we have produced in these three iterations,
we take the one with the highest probability. If such characteristic exist than it
is the best characteristic on 9 rounds and it has a probability at least 2−24. If it
does not exist then it means all the characteristics on 9 rounds have probability
lower than 2−24.

What is the real advantage of this approach compared to related-key Matsui’s
approach? To find this out, we have to compare the number of possible 3-round
related-key characteristic built in the two approaches. In Matsui’s algorithm, this
number depends on the values P ∗

n/Pn−1, P ∗
n/Pn−2 and P ∗

n/Pn−3, while in the
split approach, the number depends only on P ∗

n . Hence, when the probabilities
Pn−1, Pn−2, Pn−3 are really high, then it is computationally cheaper to build
the n-round characteristic with the split approach.

4 The Case of DES

The notion of (single-key) differentials and differential characteristics was intro-
duced in the seminal paper of Biham and Shamir [2] on cryptanalysis of DES,
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where the authors presented characteristic on 15 rounds of DES with a prob-
ability higher than 2−56. Later in [3], the authors used 13-round characteristic
to give the first attack on all 16 rounds of DES. By performing a full search,
Matsui [7] has shown that the characteristics found by Biham and Shamir were
actually the best round-reduced single-key characteristics for DES. It is well
known that S-boxes and the permutation used in the round function of DES are
very carefully chosen to avoid single-key differential cryptanalysis and even sub-
tle changes in them can weaken the cipher [3]. Our study of related-key attacks
on DES is motivated by the fact that differences in the subkeys could violate
some of the design principles and this could lead to new attacks on DES.

We would like to run a full search of the space of all related-key differen-
tial characteristics in DES by using the approaches of the previous section. We
start with the related-key version of Matsui’s algorithm and try to find the best
related-key characteristics on as many rounds as possible. Although our search
will always find the best characteristics, we should keep in mind that we have
a limited computational power. For example, if we try to find the best n-round
related-key characteristic that holds with a probability at least P ∗

n , then the
time complexity of the search mostly depends on the probability Pn−3 of the
best characteristics on (n − 3) rounds (but also depends on Pn−1, Pn−2). Our
experimental results show that when P ∗

n/Pn−3 < 2−12 ∼ 2−14 we do not have
the resources to perform the search, hence if for some n this holds, then we will
switch to the split approach and continue further with this approach. Note that
even in the case of single-key characteristics a similar limitation holds when for
some n the ratio P ∗

n/Pn−2 is too low.
We start the search by finding the best related-key characteristic on 3 rounds

(we assume that P0 = P1 = P2 = 1). We fix P ∗
3 (the probability of the best

related-key 3-round characteristic) to 2−1 and then gradually decrease by a fac-
tor of 2−1 if we do not find a characteristic that holds with this probability.
There is always a lower bound on this probability – the case of the single-key
characteristic (our tool does not make distinction between these two cases, and
searches for both). Hence, we can be sure that P ∗

3 cannot be lower than 2−4

(this is the probability of the best single-key characteristic on 3 rounds). Having
found the highest P ∗

3 , we fix P3 = P ∗
3 , and then search for P4. We fix P ∗

4 to P3,
i.e. we assume that the characteristic on 4-rounds has the same probability as
the best characteristic on 3 rounds, and then gradually decrease this probability
by a factor 2−1 each time when we cannot find 4-round characteristic with such
probability. Up to P6 we could easily perform the search. However, when search-
ing for P7 we could not find anything even when P ∗

7 was set up to 2−18. We
knew that P7 could not be lower than 2−23.6 (the probability of the single-key
characteristic on 7 rounds), however if we set P ∗

7 = 2−23.6, then P ∗
7 /P4 = 2−19

which is lower than our maximal computational limit of 2−12 ∼ 2−14. Therefore,
we switched to the split approach for finding the best 7-round related-key char-
acteristic. We started with all possible 3.5-round characteristic (with the first
3.5 rounds and the last 3.5 rounds) with probability of at least 2−11 and tried to
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extend it to 7 rounds, thus we allowed a probability of 2−22. The split approach
found that the best related-key characteristic on 7 rounds has a probability of
2−20.38.

The results of the split search on 7 rounds can be used to find if 8-round
characteristic with 2−22 exist, which in our case was negative. If we try to apply
the related-key Matsui’s approach for 8 rounds and allow P ∗

8 = 2−22, then
P ∗

8 /P5 = 2−22/2−7.6 = 2−14.4, which is low. Hence, for 8 rounds we could not
use neither Matsui’s nor the split approach. However, we noted that the best
characteristics of the first 7 rounds have a difference only in a few bits of the
key. Hence, we ran a limited search for 8-round characteristic by allowing only
a few bit difference in the key. The limited search gave us a characteristic with
a probability 2−29.75 – better than the best single-key characteristic with 230.8.

For higher rounds, the related-key Matsui’s approach could not work because
of the low probabilities (P ∗

n/Pn−3 < 2−12 ∼ 2−14). However, if we assume that
the 8-round characteristic found by the limited Matsui’s approach is the best,
then we can still run related-key Matsui’s algorithm for the characteristic on 11
rounds. We found that if this holds, then the best related-key characteristics on
11 rounds is the best single-key characteristics.

For finding the best related-key characteristics on 9, 12, and 13 rounds we
used our split approach. For 9 rounds, we allowed the 3-round characteristics
to have at least 2−10.55 (because (2−10.55)3 = 2−31.65 and the best single-key
on 9 rounds has 2−31.48). The search found that the best 9-round related-key
characteristic is the best single-key characteristic. For 12 and 13 rounds, we
allowed the starting 3-round characteristics with probability at least 2−11.85

(because (2−11.85)4 = 2−47.4 and the best single-key on 13 rounds has 2−47.22).
Again, we obtained similar results – the best related-key characteristics on 12 and
13 rounds have no difference in the key, i.e. they are the single-key characteristics.

The result for the 13-round4 related-key characteristic is especially interesting
since Biham-Shamir analysis uses it for the attack on the whole DES. This
means that if the attacker uses related-key characteristics, he cannot improve
the complexity of Biham-Shamir attack.

The summary of our findings is presented in Tbl. 1. The related-key charac-
teristics for 7 and 8 rounds are given in the Appendix (Fig. 1, 2).

5 The Case of DESL

DESL [6] uses a single S-box instead of eight different S-boxes as in DES. This
S-box has a special design criteria to discard high probability (single-key) differ-
ential characteristics. Indeed, our initial analysis for single-key differential char-
acteristics in DESL confirmed this result. Moreover, we could not find the best
single-key differential characteristics (using the original Matsui’s tool) for DESL
for higher rounds (the absence of the probabilities for the best round-reduced
single-key differential characteristics in the submission paper of DESL [6] seems

4 We rerun the search for characteristics that cover rounds 1 to 12.
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Table 1. Comparison of the probabilities of the best round-reduced differential single-
key and related-key characteristics for DES

rounds Single-key Related-key Method used

3 2−4.0 20 RK Matsui’s

4 2−9.6 2−4.61 RK Matsui’s

5 2−13.21 2−7.83 RK Matsui’s

6 2−19.94 2−12.92 RK Matsui’s

7 2−23.60 2−20.38 Split

8 2−30.48 2−29.75 ≤ P8 < 2−22 Limited Matsui’s

9 2−31.48 2−31.48 Split + Matsui’s

10 2−38.35 ≤ P9

11 2−39.35 2−39.35 if P8 = 2−29.75 RK Matsui’s

12 2−46.22 2−46.22 Split + Matsui’s

13 2−47.22 2−47.22 Split + Matsui’s

14 2−54.09 ≤ P13

15 2−55.09 2−55.09 RK Matsui’s

16 2−61.97 ≤ P15

to confirm our findings). Therefore, even the original Matsui’s tool cannot be
used (it is infeasible) for finding single-key characteristics, when they hold with
low probabilities.

Our related-key Matsui’s search algorithm, however, did find the best related-
key characteristics for up to 7 rounds. Interestingly, the probabilities of these
related-key characteristics are higher in DESL, than in DES (see Tbl. 2). For
more rounds, we used the split approach as well. Nonetheless, for these char-
acteristics, we were able to find only the upper bounds on their probabilities.
For example, for 9-round related-key characteristic we used the split approach
with 3-round probability of 2−10. After running the search for the first, middle,
and third three rounds, the algorithm did not return any characteristic. This
means, there are no related-key characteristics on 9 rounds with probability at
least 2−30. Similarly, we used the split approach for finding the upper bound
on the probability of the best characteristics for 12-rounds, and the related-key
Matsui’s approach for the bounds on 10,13, and 15 rounds. Our findings are
presented in Tbl. 2.

The related-key characteristics that we have found can be used to launch
boomerang attacks on the round-reduced cipher. For example, we can launch a
related-key boomerang attack on 12 rounds (from round 4 to round 15), with
two characteristics on 6 rounds – the first on rounds 4-9, the second on 10-15.
The probability of the first characteristic is 2−14.68 (it is lower because we con-
sider rounds 4-9), while the probability of the second is 2−12.09. Therefore, the
probability of the whole boomerang is 2−2·14.68−2·12.09 = 2−53.54.
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Table 2. Probabilities of the best round-reduced related-key differential characteristics
for DESL

Round Probability

3 20

4 2−4.67

5 2−7.24

6 2−12.09

7 2−19.95

8 ≤ P7

9 < 2−30

10 < 2−31

11 ≤ P10

12 < 2−40

13 < 2−41

14 ≤ P13

15 < 2−50

16 < 2−51

6 The Case of s2DES

Another variant of DES called s2DES was proposed in [5]. The search for the
best single-key differential characteristics in s2DES was performed in [10]. For
this purpose the authors used Matsui’s tool. This analysis showed that the
best round-reduced differential characteristics in s2DES have higher probabil-
ities than in DES.

We ran our search for related-key characteristics using only our related-key
approached based on Matsui’s algorithm. We noted that for each single-key
characteristic on n-rounds, the value Pn/Pn−3 is at least 2−12.75 (for n = 8, see
Tbl. 3), hence building all 3-round related-key characteristic might be feasible.
However, the values Pn−3 for different n could be updated, because they were
the probabilities in the single-key scenario (the probability in the related-key
scenario is not less than in the single-key). Indeed, the probabilities of the round-
reduced related-key characteristics for the first 6 rounds, were higher than the
probabilities of the single-key characteristics. This made P5 to be 2−8 instead
of 2−9.22 as in the single-key case. Hence, for the related-key characteristic on 8
rounds, we had to allow P8/P5 = 2−22/2−8 = 2−14 for the active S-boxes in the
three rounds, instead of the previous 2−12.75. However, we were able to perform
the search for this 7-round characteristic but with a significant computational
cost – the search took around 3 weeks on 64 CPU cores.

After the sixth round, we found that all the best related-key characteristics
have the same probability as the single-key (indeed they are single-key). The
probabilities of the best single and related-key round-reduced characteristics are
given in Tbl. 3.
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Table 3. Comparison of the probabilities of the best round-reduce differential single-
key and related-key characteristics for s2DES

rounds Single-key Related-key

3 2−4.39 20

4 2−6.8 2−5.19

5 2−9.22 2−8.0

6 2−14.35 2−12.61

7 2−17.03 2−17.03

8 2−21.96 2−21.96

9 2−22.71 2−22.71

10 2−27.35 2−27.35

11 2−28.39 2−28.39

12 2−34.07 2−34.07

13 2−34.07 2−34.07

14 2−39.75 2−39.75

15 2−39.75 2−39.75

16 2−45.42 2−45.42

7 Conclusions

We have presented the first algorithms for automatic search of the best round-
reduced related-key differential characteristics in DES-like family of ciphers,
DES, DESL, and s2DES. We have shown that there is no significant differ-
ence between the probabilities of the best related-key and the best single-key
characteristics on higher number of rounds of DES, and thus, the key schedule
of DES has no notable weakness regarding differential attacks.

We believe our algorithms can be applied to similar 64-bit state and 64-
bit key bit-oriented ciphers with linear key schedule. Moreover, our approaches
can be used to search for high probability (up to 2−20) related-key differential
characteristics in any bit oriented ciphers with linear key schedule.
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A Related-Key Characteristics for DES

Fig. 1. The best related-key differential characteristic (with probability 2−20.38) on the
last 7 rounds of DES
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Fig. 2. Related-key differential characteristic (with probability 2−29.75) on the last 8
rounds of DES
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Abstract. Differential cryptanalysis is a well-known statistical attack
on block ciphers. We present here a generalisation of this attack called
multiple differential cryptanalysis. We study the data complexity, the
time complexity and the success probability of such an attack and we
experimentally validate our formulas on a reduced version of PRESENT.
Finally, we propose a multiple differential cryptanalysis on 18-round
PRESENT for both 80-bit and 128-bit master keys.

Keywords: iterative block cipher, multiple differential cryptanalysis,
PRESENT, data complexity, success probability, time complexity.

1 Introduction

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir
[4,5] in order to break the Data Encryption Standard block cipher. This statis-
tical cryptanalysis exploits the existence of a differential, i.e., of a pair (α, β) of
differences such that for a given input difference α, the output difference after
encryption equals β with a high probability. This attack has been successfully
applied to many ciphers and has been extended to various different attacks, such
as truncated differential cryptanalysis, impossible differential cryptanalysis...

In the original version of differential cryptanalysis [4], a unique differential is
exploited. Then, Biham and Shamir have improved their attack by considering
together several differentials having the same output difference [5]. Truncated
differential cryptanalysis introduced by Knudsen [16] uses differentials with many
output differences that are structured as a linear space.

Here, we consider what we name multiple differential cryptanalysis. Similarly
to multiple linear cryptanalysis, multiple differential cryptanalysis is the general
case where the set of considered differentials has no particular structure, i.e.,
several input differences are considered together and the corresponding output
differences can be different from an input difference to another.

The problem of estimating the data complexity, time complexity and success
probability of a differential cryptanalysis is far from being simple. Since 1991, it
is widely accepted that the data complexity of a differential cryptanalysis is of
order p−1∗ , where p∗ denotes the probability of the involved differential [5]. The-
oretical studies based on hypothesis testing theory [2,3,7] confirm this statement

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 35–54, 2011.
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and give more specific results. Concerning the success probability, a formula has
been recently established by Selçuk in [23]. This formula, which is used in many
recent papers on differential cryptanalysis, is derived from a Gaussian approxi-
mation of the binomial distribution. However, as already explained by Selçuk, the
Gaussian approximation is not good in the setting of differential cryptanalysis.
This was the motivation of the general framework presented in [9], that stud-
ies the complexity of any statistical cryptanalysis based on counters that follow
a binomial distribution. But, this work does not apply to multiple differential
cryptanalysis since the involved counters do not follow a binomial distribution
in this case.

Our contribution. The main purpose of this paper is to provide a detailed
analysis of the complexity of any multiple differential attack. It is worth noticing
that it includes the variants of differential attacks such as classical differential
cryptanalysis or truncated differential cryptanalysis. In Section 2, we introduce
multiple differential cryptanalysis and study the complexity of this attack. We
mainly provide formulas for the data complexity and the success probability of a
multiple differential cryptanalysis. Then, in Section 3, we validate this theoretical
framework by many experiments on a reduced version of the cipher PRESENT,
namely SMALLPRESENT-[8]. Then, Section 4 focuses on the general problem
of computing the involved probabilities. This problem arises in any statistical
attack and is not directly related to the use of several differentials. Finally, to
conclude this work, we propose a multiple differential cryptanalysis of 18-round
PRESENT. This attack is not the best known attack on PRESENT since Cho
has presented attacks up to 26 rounds [11]. Nevertheless, it improves the best
previously known differential cryptanalysis on 16 rounds due to Wang [24].

2 Theoretical Framework

In this first section, we propose a framework for analysing multiple differential
cryptanalyses. More precisely we provide estimates for the data complexity and
the success probability of such differential attacks that use any number of differ-
entials. The time and memory complexities of these attacks are also discussed.

2.1 Presentation and Notation

Let us start with some notation that will be used all along this paper. We consider
an iterative block cipher parametrised by a key K.

EK : Fm
2 → Fm

2

x �→ y = EK(x),

where m is the block size. We denote by F the round function of this iterative
cipher: Fk(x) is the result of 1-round encryption of x using the subkey k. A
multiple differential cryptanalysis aims at recovering the key K∗ used to encipher
the available samples. We consider here a last-round differential cryptanalysis
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on an iterative block cipher that recovers nk bits of the last-round subkey that
we will denote by k∗ (this subkey is derived from the master key K∗). Such an
attack belongs to the class of statistical cryptanalyses and thus follows the three
following steps.

– Distillation phase: Extract the information on k∗ obtained from the N
available plaintext/ciphertext pairs.

– Analysis phase: From this information, compute the likelihoods of the can-
didates for the value of k∗ and generate the list L of the best 	 candidates.

– Search phase: Look down the list of candidates and test all the corresponding
master keys until the good one is found.

Now, let us introduce the notation used for the differentials.

Definition 1. [19] An r-round differential for a block cipher is a couple of dif-
ferences (δ0, δr) ∈ Fm

2 × Fm
2 . The probability of the differential is defined by

Pr [δ0 → δr]
def= PrX,K [EK(X) ⊕ EK(X ⊕ δ0) = δr] .

In the setting of multiple differential cryptanalysis, the attacker exploits a col-
lection Δ of differentials. The natural way of ordering these differentials is to
gather the differentials with the same input difference. We denote by Δ0 the set
of all input differences involved in the set Δ

Δ0
def= {δ0, ∃δr, (δ0, δr) ∈ Δ}.

We number the input differences in Δ0: Δ0 = {δ(1)
0 , . . . , δ

(|Δ0|)
0 }. Hence, for a

fixed input difference δ
(i)
0 ∈ Δ0, we obtain a set Δ

(i)
r of the corresponding output

differences:
Δ(i)

r
def= {δr | (δ(i)

0 , δr) ∈ Δ}.
Therefore, if we number thesse sets of output differences, the set of differentials
Δ can be expressed as

Δ =
{(

δ
(i)
0 , δ(i,j)

r

) ∣∣∣ i = 1 . . . |Δ0| and j = 1 . . . |Δ(i)
r |
}

.

It is worth noticing that this definition is more general than truncated differential
cryptanalysis since the set of output differences can be different from an input
difference to another.

As in differential cryptanalysis, the algorithm used in multiple differential
cryptanalysis consists in partially deciphering the N ciphertexts using all possi-
ble values for the last-round subkey and in counting the number of occurrences
of the differentials in Δ1. In other words, we count the number of plaintext
pairs with a difference δ

(i)
0 in Δ0 that lead to an output difference in Δ

(i)
r after

1 This way of combining differentials may not be optimal but it is the one used in all
published attacks. Considering other techniques is out of the scope of this paper that
aims at providing formulas for better estimating complexities of previous attacks.
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r rounds. However, this attack (as it is) may not work because the cost of the
partial decryption is prohibitive (there are too many pairs of ciphertexts and too
many possible values for the subkey). In order to decrease this cost, a sieving
phase is used2 to discard some pairs for which we already know that the difference
after r rounds cannot be in Δ

(i)
r . This phase consists in precomputing the sets

Δ
(i)
r+1 of all δr+1 in Fm

2 such that there exists a j for which Pr
[
δ
(i,j)
r → δr+1

]
= 0

and in discarding every pair with an output difference not in Δ
(i)
r+1. This set of

differences is named a sieve. The multiple differential attack is summarised in
Algorithm 1.

Algorithm 1. Multiple differential cryptanalysis
Input: N chosen plaintext/ciphertext pairs (xi, yi) with yi = EK∗(xi)
Output: The key K∗ used to encipher the samples
Initialise a table D of 2nk counters to 0.1

foreach δ
(i)
0 ∈ Δ0 do2

foreach plaintext pair (xa, xb) such that xb = xa ⊕ δ
(i)
0 do3

if ya ⊕ yb ∈ Δ
(i)
r+1 then4

foreach candidate k do5

Compute δ = F−1
k (ya) ⊕ F−1

k (yb);6

if δ ∈ Δ
(i)
r then D[k] ← D[k] + 1;7

Generate a list L of the � candidates with the highest values of D[k] ;8

foreach k ∈ L do9

foreach possible master key K corresponding to k do10

if EK(x) = y = EK∗(x) then return K;11

Such attacks are successful when the correct subkey is in the list L of can-
didates. Four important quantities have to be taken into consideration when
quantifying the efficiency of a statistical cryptanalysis. The success probability
PS that is the probability of the correct subkey to be in the list of the best
candidates,

PS
def= Pr [k∗ ∈ L] ,

the data complexity N that is the number of plaintext/ciphertext pairs used for
the attack, the time complexity that heavily depends on the size 	 of the list L
and the memory complexity. The first three quantities are closely related since
increasing N will increase PS and increasing 	 will also increase PS together
with the time complexity. We now study the time and memory complexities,
while formulas for the data complexity and the success probability are provided
in Section 2.4.

Remark. In a multiple differential attack, the number of chosen plaintexts N
and the number of samples Ns are different quantities. The number of samples
corresponds to the number of pairs with a difference in Δ0 that we can form

2 This is widely used in differential cryptanalysis.
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with N plaintexts. In an attack with |Δ0| input differences, we can choose the
plaintexts such that the number of samples is Ns = |Δ0|N

2 . This is done by
choosing the plaintext set of the form

⋃
x{x⊕ δ, δ ∈ V ect(Δ0)} where V ect(Δ0)

is the linear space spanned by the elements of Δ0. Such sets are classically named
structures.

2.2 Time and Memory Complexities

In this section we discuss the details of Algorithm 1 in order to compute the time
and the memory complexities of the multiple differential cryptanalysis defined
in Algorithm 1.

In order to analyse the time complexity of this attack we introduce some
notation. Let Sr

def= maxi{|Δ(i)
r |} and Sr+1

def= maxi{|Δ(i)
r+1|}. We denote by

psieve the maximum over all input differences in Δ0 of the probability to pass
the sieve i.e. psieve = 2−mSr+1.

When performing a multiple differential cryptanalysis, one needs to check
many times if some difference belongs to a particular set A of differences. This
step of the algorithm can be done with a time complexity logarithmic in |A|. On
the other hand, this requires the use of |A| memory blocks. Now let us consider
each important step of the algorithm.

The total number of pairs to test is Ns = |Δ0|N/2. For each pair we have to
check if it passes the sieve. Thus the time complexity of this step is Ns log(Sr+1).
Nevertheless, one can decrease this complexity using the following simple trick.
If there exists a set of positions in {1 · · ·m} on which all elements in Δr+1

vanish, then the plaintext/ciphertext pairs can be gathered depending on the
values of the ciphertexts on these bits. Pairs formed by ciphertexts belonging
to two different groups will not pass the sieve and thus only the pairs formed
by ciphertexts in the same group must be considered. Using this trick together
with plaintexts chosen to form structures, this step can take negligible time
regarding the rest of the attack. Since the proposed cryptanalysis is a last-round
attack, a partial inversion of the round function has to be performed for each
pair that passes the sieve and for each last-round subkey. Therefore this step
has a complexity of about 2nk Nspsieve. Extracting the likeliest 	 subkeys can be
handled in linear time (regarding the number of candidates 2nk). The last part
of the algorithm corresponds to an exhaustive search for the remaining bits of
the master key. This step requires 	 · 2nK−nk encryptions where nK is the size
of the master key.

Table 1 summarises the time complexities. The terms corresponding to steps
with a small time complexity are neglected here, and it is assumed that the
generation of the pairs has been done using the aforementioned trick.

The partial decryption cost can be seen as a the 1/(r +1)-th of the cost of an
encryption for an (r + 1)-round cipher. The memory complexity of the attack is
essentially due to the storage of the counters, of the plaintext/ciphertext pairs
and of the sieves.
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Table 1. Time complexity of a multiple differential cryptanalysis where Sr (resp. Sr+1)
denote the maximal number of output differences for a given input difference in Δ0

after r-rounds (resp. (r + 1)-rounds)

Encryptions Partial decryptions Comparisons

O
(
�2nK−nk

)
O
(
2nkNs2

−mSr+1

)
O
(
2nkNs2

−mSr+1 log(1 + Sr)
)

2.3 Theoretical Framework

In this subsection we develop the theoretical framework used to analyse multiple
differential cryptanalysis. In our context, the attacker obtains the ciphertexts
corresponding to a set of N chosen plaintexts generated using structures.

The determination of the data complexity and the success probability of a
multiple differential cryptanalysis requires the knowledge of the distribution of
the counters used in Algorithm 1 and particularly the distribution of D(k).

Definition 2. Let D
(i)
x (k) be the basic counter corresponding to the set of dif-

ferentials with δ
(i)
0 as input difference and with output difference in Δ

(i)
r . For a

given plaintext and a given candidate k, D
(i)
x (k) is defined as

D(i)
x (k) def=

{
1 if F−1

k

(
EK∗(x)

)⊕ F−1
k

(
EK∗(x ⊕ δ

(i)
0 )
) ∈ Δ

(i)
r ,

0 otherwise.

The counters D
(i)
x (k) follow a Bernoulli distribution since, for a fixed input differ-

ence and a fixed plaintext, only one output difference can occur. For k = k∗, the
value of F−1

k (x) corresponds to the value obtained after r rounds of the cipher
and thus the distribution of D

(i)
x (k∗) depends on the probability of the corre-

sponding differential. On the other hand, for k = k∗, it is usually assumed that
the value F−1

k (x) is uniformly distributed among all the possible values. This
assumption is known as the Wrong Key Randomisation Hypothesis [15]. Most
notably the distribution of the D

(i)
x (k)’s is the same for all wrong candidates k.

Hypothesis 1. (Wrong-Key Randomisation Hypothesis in the differ-
ential cryptanalysis setting).

PrX
[
F−1

k (EK∗(X)) ⊕ F−1
k (EK∗(X ⊕ δ

(i)
0 ))=δ(i,j)

r

]
=

{
p
(i,j)
∗ if k = k∗,

p(i,j) = 1
2m−1 for k = k∗.

In the following of this paper we will take the value 2−m instead of 1
2m−1 for p(i,j).

Then, using this hypothesis, we obtain that D
(i)
x (k) follows a Bernoulli distri-

bution with parameter p
(i)
∗

def=
∑|Δ(i)

r |
j=1 p

(i,j)
∗ if k = k∗ and p(i) def=

∑|Δ(i)
r |

j=1 p(i,j) ≈
|Δ(i)

r | 2−m otherwise. Then we define variables corresponding to sums of these
basics counters.
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Definition 3. Let D
(i)
x (k) be the basic counters defined in Definition 2. We

define the sums of these counters over all input differences and the counter we
are interested in that is the mark obtained by a subkey during the attack:

Dx(k) def=
|Δ0|∑
i=1

D(i)
x (k) and D(k) def=

1
2

∑
x

Dx(k).

The factor 1/2 in the sum comes from the fact that for any i, x and any key k, the
counters D

(i)
x (k) and D

(i)

x⊕δ
(i)
0

(k) are equal. Hence, each statistical phenomenon

is counted twice when summing over all possible values for x. Instead of putting
such a factor 1/2 it may be possible to sum over one half of the whole set of
x in a way that each pair of plaintexts will be counted only once. For a fixed
i, we consider only one input difference δ

(i)
0 hence it is easy to split the set of

plaintext in two. The problem is not so easy when we have to consider all input
differences (i.e. for the sum

∑
x Dx(k)). Indeed, it may not be possible to find

a set X containing N/2 plaintexts such that all pairs are counted once and only
once in other words, a set such that

∑
x∈X Dx(k) = 1

2

∑
x Dx(k). The existence

of such a set X depends on the structure of the set of input differences Δ0.

Definition 4. The set of input differences Δ0 is admissible if there exists a set
X of N/2 plaintexts that fulfils the condition

∀δ
(i)
0 ∈ Δ0, ∀x ∈ X , x ⊕ δ

(i)
0 ∈ X . (1)

An efficient way to test if a set Δ0 is admissible is provided in Appendix A.1.
From now, we consider that the set Δ0 has been chosen to be admissible. Hence,
each pair is only counted once, but some dependencies between counters still
remain. Deriving a general formula for the distribution of a sum of dependent
variables is not so easy. Moreover, the variables we consider have really small
dependencies and hence, we will assume that they are independent.

Hypothesis 2. For any subkey k (including k∗) and a set X that fulfils (1),

– For any x, the variables (D(i)
x (k))1≤i≤|Δ0| are independent.

– The variables (Dx(k))x∈X are independent.

This hypothesis is not so far to being true. The same kind of hypothesis is
done in differential cryptanalysis. Indeed, in the differential setting, the random
variables Dx(k) follow a Bernoulli distribution of parameters p∗ or p and the
same kind of independence hypothesis is assumed when saying that the counters
D(k) follow a binomial distribution.

Assuming Hypothesis 2, the end of this section is now dedicated to the problem
of finding good estimates for the distribution of the sum of M independent
variables that follow Bernoulli distributions with different parameters. Actually,
we aim at applying this estimate to the determination of the distributions of
D(k) and D(k∗). In the following, we use D(k) to instantiate some results but
they obviously hold for D(k∗), when p is replaced by p∗.
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The first technique to find a good estimate of the distribution of D(k) is to use
the following theorem which states that the distribution of the counters Di(k)
is close to a Poisson distribution.

Theorem 1. [18] Let D
(i)
x (k) be M independent Bernoulli random variables

with parameters p(i). Let Dx(k) def=
∑M

i=1 D
(i)
x (k) and λ =

∑M
i=1 p(i). Then, for

all A ⊂ {0, 1, . . . , M}, we have∣∣∣∣∣Pr [Dx(k) ∈ A] −
∑
a∈A

λae−λ

a!

∣∣∣∣∣ <
M∑
i=1

(
p(i)
)2

.

Hence, the distribution of Dx(k) is close to a Poisson distribution of parameter∑|Δ0|
i=0 p(i). Then, using the stability of the Poisson distribution under addition,

we conclude that
∑

x∈X Dx(k) follows a Poisson distribution with parameter
N
2 ·∑|Δ0|

i=0 p(i). We then introduce the following quantities that play a particular
role in the analysis of the multiple differential cryptanalysis.

p∗
def=
∑

i p
(i)
∗

|Δ0| =

∑
i,j p

(i,j)
∗

|Δ0| and p
def=
∑

i p(i)

|Δ0| =

∑
i,j p(i,j)

|Δ0| ≈ |Δ| · 2−m

|Δ0| .

The bound on the error due to the use of the Poisson approximation is rel-
atively small regarding probabilities of order 10−1 but it is not clear that this
approximation is still accurate when considering tails of the distribution. Indeed,
we have checked, using some experiments, that the cumulative function of the
Poisson distribution is not a good estimate of the tails of the cumulative distri-
bution function of the counters D(k). For this reason, we have to use another
result from large deviations theory to obtain a better estimate for the tails of
the distribution of the D(k)’s.

Theorem 2. [14, chapter 5.4] Let D(k) =
∑

x Dx(k) be a sum of M discrete,
independent and identically distributed random variables. Let μ(s) be the semi-
invariant moment generating function of each of the Dx(k). Then, for s > 0,

Pr [D(k) ≥ Mμ′(s)] = eM [μ(s)−sμ′(s)]

[
1

|s|√π2Mμ′′(s)
+ o

(
1√
M

)]
.

where μ′ and μ′′ denote the first and second-order derivatives of μ.

From this theorem, we can compute accurate formulas for the tails of the dis-
tribution of D(k) by computing the semi-invariant moment generating function
in the special case where all D

(i)
x (k) follow a Bernoulli distribution. Details of

the computation is done in [10, Appendix3] and leads us to Theorem 3. The
result is expressed using the Kullback-Leibler divergence between two Brnoulli
distributions of parameters x and y.

Definition 5. Let 0 < x < 1 and 0 < y < 1 be two real numbers, the Kullback-
Leibler divergence is defined by:

D(x||y) def= x ln
(

x

y

)
+ (1 − x) ln

(
1 − x

1 − y

)
.
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Before giving the result obtained (Theorem 3), let us recall that Ns =
|Δ0|N

2
.

This quantity appears naturally in the expression of the distribution tails.

Theorem 3. Let D(k) be a counter as defined in Definition 3 (D(k) is a sum
of N/2 independent and identically distributed variables and takes values in
{0, 1, . . . , Ns}). We define two functions of τ and q real numbers in [0, 1] with
τ = q:

G−(τ, q) def= e−NsD(τ ||q) ·
[

q
√

(1 − τ)
(q − τ)

√
2πτNs

+
1√

8πτNs

]
, (2)

G+(τ, q) def= e−NsD(τ ||q) ·
[

(1 − q)
√

τ

(τ − q)
√

2πNs(1 − τ)
+

1√
8πτNs

]
. (3)

Then, the tails of the cumulative distribution function of D(k) can be approxi-
mated by G− and G+, more precisely,

Pr [D(k) ≤ τNs] = G−(τ, p)
[
1 + O

(
p − τ

p

)]
,

Pr [D(k) ≥ τNs] = G+(τ, p)
[
1 + O

(
p − τ

p

)]
.

By combining the results of Theorem 1 and Theorem 3, we define the following
estimate for the cumulative distribution function of the counters D(k).

Proposition 1. Let GP(τ, q) be the cumulative distribution function of the Pois-
son distribution with parameter qNs. Let G−(τ, q) and G+(τ, q) as defined in
Theorem 3. We define G(τ, q) as

G(τ, q) def=

⎧⎨⎩
G−(τ, q) if τ < q − 3 ·√q/Ns,

1 − G+(τ, q) if τ > q + 3 ·√q/Ns,
GP(τ, q) otherwise.

The cumulative distribution functions of the counters D(k) and D(k∗) can be
approximated by G and G∗, where

G∗(τ) def= G(τ, p∗) and G(τ) def= G(τ, p),

with p∗ =

∑
i,j p

(i,j)
∗

|Δ0| and p =

∑
i,j p(i,j)

|Δ0| ≈ |Δ|
2m|Δ0| from the wrong-key ran-

domisation hypothesis.

2.4 Data Complexity and Success Probability

For a set Δ0 that is admissible and if Hypothesis 2 holds, the distributions
of the counters are tightly estimated by Proposition 1 and are similar to the
distributions involved in [9]. Therefore we can use the same framework to esti-
mate the data complexity and the success probability of a multiple differential
cryptanalysis. The results obtained are given in Corollary 1 and Corollary 2.
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Corollary 1. Using notation defined in Section 2.1, the data complexity of a
multiple differential cryptanalysis with success probability close to 0.5 is

N = −2 · ln(2
√

π	 2−nk)
|Δ0|D(p∗||p)

,

where 	 is the size of the list of the remaining candidates and nk is the number
of bits of the key we want to recover.

Proof. In [9], the authors approximate the tails of the binomial cumulative
distribution function by e−Ns·D(τ ||p) (1−p)

√
τ

(τ−p)
√

2πN(1−τ)
to obtain an estimate of

the number of samples required to perform a statistical cryptanalysis. Here,
the tails of the cumulative distribution function of the counters D(k) are simi-
lar (see the definitions of G− and G+ given in Theorem 3). Therefore, we can
use the same method to derive the required number of samples. We fix the
relative threshold τ to p∗ which corresponds to a success probability close to
0.5. Then, Ns is found by solving equation 1 − G(p∗) = �

2nk
(recall that G

depends on Ns). In differential cryptanalysis, p∗ is quite larger than p hence,
G(p∗) = 1 − G+(p∗, p). Therefore a good estimate of Ns can be found using a

fixed point method for solving equation G+(p∗, p) =
	

2nk
. As in [9], we here ob-

tain that Ns is close to − 1
D(p∗||p)

[
ln
(

ν�2−nk√
D(p∗||p)

)
+ 0.5 ln(− ln(ν	2−nk))

]
where

ν
def= (p∗−p)

√
8π(1−p∗)p∗

2p∗(1−p)+(p∗−p)
√

1−p∗
. As proposed in [9], ln(2

√
πD(p∗||p)) can be used

as a good estimate of ln(ν), implying that the number of samples Ns is close
to − ln(2

√
π� 2−nk )

D(p∗||p) . The result finally follows from the fact that the number of
plaintexts is N = 2Ns

|Δ0| . ♦

In [9] it is also conjectured that for a value Ns of the form Ns = −c· ln(2
√

π� 2−nk )
|Δ0|D(p∗||p) ,

the success probability essentially depends on the value of the constant c.
In Corollary 2, we provide an estimate for the success probability of a multiple

differential cryptanalysis. This corollary can be proved using arguments similar
to the one exposed in the proof of Theorem 3 in [9].

Corollary 2. Let G∗(x) (resp. G(x)) be the estimate of the cumulative distri-
bution function of the counter D(k∗) (resp. of D(k)) defined in Proposition 1.
The success probability, PS , of a multiple differential cryptanalysis is given by

PS ≈ 1 − G∗

[
G−1

(
1 − 	 − 1

2nk − 2

)
− 1
]

(4)

where the pseudo-inverse of G is defined by G−1(y) = min{x|G(x) ≥ y}.

2.5 Application to Known Differential Cryptanalyses

Intuitively speaking, exploiting more differentials should decrease the cost of the
attack since we extract more information on the same key. Nevertheless, this

This copy belongs to 'VANC03'



Multiple Differential Cryptanalysis: Theory and Practice 45

intuition is not always true. Let nk be the number of key-bits to recover and
let us fix the size of the list to 	. Then, for a fixed c, taking Ns of the form
Ns = −c · ln(2

√
π� 2−nk )

|Δ0|D(p∗||p) , leads to the same success probability whatever is the set
of differentials considered (and hence whatever are the values of |Δ0|, p∗ and p).
That means that the greater the value |Δ0|D(p∗||p) is, the more information we
extract from the samples. This neither takes into account the time complexity
for extracting information nor the time complexity for analysing it. More details
on these complexities have been given in Section 2.2. We now focus on finding
the set of differentials that provides the more information to the attacker.

A general statement on the best way to choose differentials is not so easy to
make. Therefore, we will take a look at two particular cases.

Multiple inputs, single output. In [5], Biham and Shamir exploit several
differentials to mount their attack on the DES. The differentials they use have
all the same output difference but different input differences. In this case, we have
several differentials (δ(i)

0 , δr) with probabilities p
(i)
∗ and corresponding random

probabilities p(i) ≈ 2−m when a wrong candidate is used for deciphering. We
also assume that differentials are sorted such that the p

(i)
∗ are in decreasing

order. The goal is to find a criterion to determine whether adding the best of the
remaining differentials decreases the data complexity or not. For a fixed success
probability and a fixed size of list, the data complexity decreases if and only if

|Δ0|D
(∑|Δ0|

i=1 p
(i)
∗

|Δ0|
∣∣∣∣∣∣2−m

)
≤ (|Δ0| + 1)D

(∑|Δ0|+1
i=1 p

(i)
∗

|Δ0| + 1

∣∣∣∣∣∣2−m

)
. (5)

This implies for instance that, if we have a set of differentials with several input
differences and having the same probability, exploiting them will decrease the
data complexity by a factor |Δ0| compared to a simple differential attack that
uses only one of them.

Single input, multiple outputs. Some truncated differential attacks [16] can
be seen as multiple differential cryptanalyses with a single input and multi-
ple outputs. Here we assume that we exploit several differentials (δ0, δ

(j)
r ) with

probability p
(j)
∗ for the correct subkey. We assume that the p

(j)
∗ are sorted in

decreasing order. Adding one more differential with the same input decreases
the data complexity until

D

⎛⎝|Δr|∑
j=1

p
(j)
∗
∣∣∣∣∣∣2−m|Δr|

⎞⎠ ≤ D

⎛⎝|Δr |+1∑
j=1

p
(j)
∗
∣∣∣∣∣∣2−m(|Δr| + 1)

⎞⎠ . (6)

Moreover, by studying the derivative of the Kullback-Leibler divergence one can
obtain that, if a > b and 0 < λ ≤ a−1, D(λa||λb) > λD(a||b). Therefore, if we
have |Δr| differences with the same input difference and the same probabilities,
taking this set of differentials decreases the data complexity by a factor greater
than |Δr| compared to a simple differential.
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Multiple inputs, multiple outputs. Both previous cases are particular cases
of the general situation where the differentials are taken with several input differ-
ences and several output differences. Determining the optimal set of differentials
that must be chosen to obtain the smallest data complexity is difficult. The
reasons are that the differentials do not have the same probabilities and both
previously defined criteria use the Kullback-Leibler divergence which is not so
easy to study. For all attacks presented in the following sections, we have decided
to first determine the optimal set of output differences for each input difference
we consider. This has been done using the criterion defined in (6). Then, we have
constructed the final set using (5) once the p

(i)
∗ ’s have been obtained. We do not

claim that the resulting set of differentials is optimal but it is an efficient way for
choosing the differentials that provides good sets. Finding an algorithm to find
the optimal set of differentials (in the sense that provides the more information
to the attacker) is an interesting open problem.

3 Experimental Validation

In this section we experimentally validate the theoretical framework presented in
Section 2. To confirm the tightness of the formulas for the data complexity and
the success probability given by Corollary 1 and Corollary 2, we have mounted
a multiple differential cryptanalysis on a reduced version of PRESENT namely
SMALLPRESENT-[8].

3.1 Description of PRESENT and SMALLPRESENT-[s]

PRESENT is a 64-bit lightweight block cipher proposed at CHES 2007 [6]. It is
a Substitution Permutation Network with 16 identical 4-bit S-boxes. PRESENT
is composed of 31 rounds and is parametrised by a 80-bit or a 128-bit key. More
details on the specification can be found in [6].

SMALLPRESENT-[s]. For relevant experiments, we need to be able to ex-
haustively compute the ciphertexts corresponding to all possible plaintexts for
all possible keys. Therefore, we chose to work on a reduced version of PRESENT
named SMALLPRESENT-[s] [17]. The family SMALLPRESENT-[s] has been
designed to be used for such experiments. Parameter s corresponds to the num-
ber of S-boxes per round. The block size is then 4s. Here, we present the results
obtained on SMALLPRESENT-[8] i.e. on the version with 8 S-boxes and block
size 32 bits. More details on the specification can be found in [17].

Adapting the key-schedule. In the reduced cipher presented in [17], the
key-schedule is the same as for the full cipher PRESENT (i.e. with a 80-bit
master key). But in the original PRESENT, most of the bits of a subkey are
directly reused in the next-round subkey, while this is not the case anymore with
SMALLPRESENT-[8] since the number of key bits is still 80 but each subkey
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only uses 32 bits. Then, we decided to modify the key-schedule for our experi-
ments on SMALLPRESENT-[8]. This new key-schedule uses a 40-bit master key
and is similar to the one of the full version.

The master key is represented as K = k39k38 . . . k0. At round i, the 32-bit
round subkey Ki = k39k38 . . . k8 consists of the 32 leftmost bits of the current
content of the register. After extracting the round key Ki, the key register is
updated as follows: the key is rotated by 29 bit positions to the left, the leftmost
four bits are passed through the PRESENT S-box, and the roundcounter value
is XORed with bits k11k10k9k8k7.

3.2 Experimental Validation of the Obtained Formulas

To validate the formulas for the data complexity and the success probabil-
ity given in Corollary 1 and Corollary 2, we have mounted a toy attack on
SMALLPRESENT-[8] using both the 40-bit and the 80-bit key-schedules. This
attack uses differentials on 9 rounds and aims at recovering some bits of the
last-two-round subkeys, i.e. it corresponds to an attack on 11 rounds of the
cipher.

Design of the toy cryptanalysis. To empirically estimate the success prob-
ability of the attack, we have to experiment this multiple differential attack
a large number of times. This implies that the number of key bits to recover
has to be small enough (i.e. not more than 32). We took differentials with
output differences of the form 0x????0000. This structure enable us to re-
cover 16 bits of both last two subkeys. The set of input differences is Δ0 =
{0x3, 0x5, 0x7, 0xB, 0xD, 0xF}. This set is admissible since we can split the set of
plaintexts into two parts the even plaintexts and the odd plaintexts. This attack
uses 55 differentials over 9 rounds of SMALLPRESENT-[8]. The probability of
each differential for both key-schedule (40-bit and 80-bit) has been estimated by
averaging over 200 keys. These 55 differentials are given in [10, Appendix A.4]
with the estimation of their probabilities. The attack computes the list L of size
	 = 212 of the likeliest candidates for the last two round subkeys.

Validation of the formula given in Corollary 2. The theoretical success
probability of the attack is PS = 1−G∗

[
G−1

(
1 − �−1

2nk−2

)
− 1
]
, where G∗(x) and

G(x) are estimates of the cumulative distribution function of the counter D(k∗)
or of D(k). In Fig. 1, we compare the experimental success probability with the
theoretical success probabilities obtained using the Gaussian approximation [23],
using a Poisson estimation of the distribution of the counters and using the
hybrid cumulative function defined in Proposition 1. For both key-schedules,
250 cryptanalyses have been performed to obtain the empirical success rate.
The curves obtained for 150, 200 and 250 experiments are quite similar thus
we expect that using 250 experiments provides a good picture of the success
probability behaviour. It is worth noticing that the theoretical results in both
figures use empirical estimates for the probabilities of the differentials. It is
clear from Fig. 1 that the Gaussian approximation used up to now for analysing

This copy belongs to 'VANC03'



48 C. Blondeau and B. Gérard

0

0.2

0.4

0.6

0.8

1

28 28.5 29 29.5 30 30.5 31 31.5

P
S

log2(N)

Ours (hybrid)
Poisson only

[23]
Experimental

0

0.2

0.4

0.6

0.8

1

28 28.5 29 29.5 30 30.5 31 31.5

log2(N)

Ours (hybrid)
Poisson only

[23]
Experimental

Fig. 1. Comparison of success probabilities for the 40-bit (left) and 80-bit (right) key-
schedule

the complexity of differential cryptanalysis is not the most relevant, as already
explained in [23]. Using the Poisson distribution (that provides good results
in the case of simple differential cryptanalysis) is not here as good as using the
hybrid cumulative function which results from large deviations theory to estimate
the tails of the distributions. Since �−1

2nk−2 is small, the tightness of the estimate

for G−1
(
1 − �−1

2nk−2

)
heavily depends on the accuracy of the tail estimate and

thus the hybrid approach is the most relevant one. This result shows that the
formula for the success probability given in Corollary 2 is a good approximation
of the success probability of a multiple differential cryptanalysis.

Validation of the formula given in Corollary 1. Using the same experi-
ments, we can also confirm the relevance of Corollary 1. It is conjectured in [9]
that taking N of the form N = −2 · c · ln(2

√
π� 2−nk )

|Δ0|D(p∗||p) should lead to a success
probability of about 50% for c = 1, 80% for c = 1.5 and 90% for c = 2. In
Table 2 we give the empirical success rates corresponding to these three values
of N for both attacks on the 40-bit and 80-bit versions of SMALLPRESENT-[8].

4 On the Estimations of the Probabilities p and p∗

We have shown that the formulas given by Corollary 1 and Corollary 2 are
well-suited for multiple differential cryptanalysis. But all simulations have been
performed on a toy example for which we were able to obtain good estimates
of the probabilities of the differentials. However, one of the main difficulties in
statistical attacks is the estimation of the underlying probabilities p

(i,j)
∗ .

Differential probabilities and trails probabilities. Computing the proba-
bility of a differential is, in general, intractable. Indeed, for an r-round differential
(δ0, δr), there exist many differential trails that have to be taken into account
when computing the probability of this differential.
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Table 2. Empirical success probabilities corresponding to values of N given by Corol-
lary 1

c = 1.0 c = 1.5 c = 2.0

Key-schedule 40-bit 80-bit 40-bit 80-bit 40-bit 80-bit

N 228.92 229.06 229.50 229.65 229.92 230.06

PS 0.55 0.47 0.83 0.75 0.92 0.88

Definition 6. A differential trail β on r rounds of a cipher is a (r + 1)-tuple
(β0, . . . , βr) of elements of Fm

2 . Its probability is the probability that a plaintext
pair with difference β0 follows the differential path β when being encrypted: pβ

def=
PrX,K

[∀i, F i
K(X) ⊕ F i

K(X ⊕ β0) = βi

]
.

The probability of a differential (δ0, δr) can be computed by summing all the
differential trails probabilities with input difference δ0 and output difference δr.
For recent ciphers, for a fixed differential, there is a lot of differential trails. This is
the reason why, for most ciphers, it is impossible to estimate the exact probability
of a differential. Using a branch & bound algorithm similar to the one used in
linear cryptanalysis, it is possible to find all possible trails with given input and
output differences up to a fixed probability. Summing the corresponding trail
probabilities then provides a lower bound on the probability of the differential
and thus on the efficiency of the attack.

Key dependence of the probabilities of the differentials. For Markov
ciphers, introduced in [19], the classical way of estimating the probability of a
differential trail is to use the following theorem.

Theorem 4. [19] If an r-round iterated cipher is a Markov cipher and the r
round keys are independent and uniformly random, then the probability of a
differential trail β = (β0, β1, . . . , βr) is

pβ =
r∏

i=1

PrX,K [FK(X) ⊕ FK(X′) = βi|X⊕ X′ = βi−1] .

The point is that while many recent ciphers are Markov ciphers, their master key
is not large enough to lead to independent and uniformly distributed round sub-
keys and thus, this theorem cannot be applied. Nevertheless, the independence
of the round subkeys is generally assumed to obtain an estimate of a differential
trail probability.

Hypothesis 3. (Round subkeys independence).
The round subkeys of the cipher E are independent and uniformly random.

Using Theorem 4, we define the theoretical probability of a differential trail β =
(β0, β1, . . . , βr) as pt

β
def=
∏r

i=1 PrX,K [FK(X) ⊕ FK(X′) = βi|X ⊕ X′ = βi−1] .
Hence, one may be able to estimate the probability PrX,K [δ0 → δr] of a dif-
ferential δ = (δ0, δr) by summing the theoretical probabilities of the trails that
compose it: pt

δ
def=
∑

β=(δ0,β1...,βr−1,δr) pt
β.
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Now, another problem arises: the problem of fixed-key dependence. Theo-
rem 4 can be used to estimate the probability of a differential δ = (δ0, δr)
but in an attack, the key is fixed and thus we are interested in the proba-
bilities pK

δ
def= PrX [EK(X) ⊕ EK(X ⊕ δ0) = δr] . Most of the analyses assume

that this probability does not depend on the key i.e., for two keys K and K ′,
pK

δ = pK′
δ = pt

δ. This hypothesis is known as the stochastic independence hypoth-
esis. It is actually far from being true since evidences show that the values of
2m−1pKδ are binomially distributed around 2m−1pt

δ [13,8]. Nevertheless, in the
setting of multiple differential cryptanalysis, this phenomenon seems to fade.
The hypothesis we are using is then the following.

Hypothesis 4. (Stochastic equivalence in the multiple differential set-
ting).
For any key K and for a set Δ of differences large enough,

∑
δ∈Δ pK

δ =
∑

δ∈Δ pt
δ.

Impact of the estimation of the probabilities of the differentials on
the success probabilities. We have pointed out the problems related to the
estimation of the probabilities of the differentials. They come from the large
number of trails composing the differential and the fact that their probabili-
ties depend on the key. In our attack on SMALLPRESENT-[8] with the 40-bit
key-schedule, we have computed the success probability of the attack based on
experimental values for the differential probabilities. We have also computed the
theoretical values of the differential probabilities using trails up to probability
2−48. The theoretical probabilities of the differentials are given in [10, Appendix
A.4]. We observe that these values always underestimate the probability of the
differentials. Using this estimation of the probability we have plot the success
rate of the attack (Fig. 2) and we show how this underestimation of the proba-
bilities of the differentials affects the estimation of the success probability of the
attack

Estimation of p. In the analysis of the distribution of the counters, we have
assumed that the p(i,j) were close to 2−m (Hypothesis 1). The probability p(i)

of a wrong-key counter to be incremented by a plaintext pair with difference
δ
(i)
0 has then been estimated by |Δ(i)

r | 2−m. Thus, p that is the mean of the
p(i)’s has been estimated by |Δ|

|Δ0| 2−m. We use the results of the experiments
on SMALLPRESENT-[8] (Section 3) to show that it is a good estimate for
p. Let us recall that we took |Δ| = 55 differentials with |Δ0| = 7 different
input differences. Using the whole codebook we obtain 231 · |Δ0| samples and
thus the expected value of the counters corresponding to wrong subkeys is 231 ·
|Δ0|

(
55

|Δ0|
)

2−m = 27.5. The mean over the counters corresponding to wrong
candidates has been computed for each performed attack and the results are in
the range [27.14; 28.15] (the mean value is 27.68). This confirms the relevance of
the estimation p ≈ |Δ|

|Δ0| 2−m.
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Fig. 2. Success probability of an attack on SMALLPRESENT-[8] with the 40-bit key-
schedule

5 Application to PRESENT

There exists a lot of attacks on reduced versions of PRESENT. These attacks
are summarised in Table 3. The best differential attack on PRESENT is due to
Wang [24]. This attack, using 24 differentials on 14 rounds with same output
difference, can break 16 rounds of PRESENT.

Table 3. Summary of the attacks on PRESENT

#rounds version type of attack data time memory reference

8 128 integral 224.3 2100.1 277.0 [25]
16 80 differential 264.0 264.0 232.0 [24]
17 128 related keys 263 2104.0 253.0 [22]
19 128 algebraic diff. 262.0 2113.0 n/r [1]
24 80 linear 263.5 240.0 240.0 [21]
24 80 statistical sat. 257.0 257.0 232.0 [12]
25 128 linear 264.0 296.7 240.0 [20]
26 80 multiple linear 264.0 272.0 232.0 [11]

We saw in Section 3 that experiments on SMALLPRESENT-[8] corroborate
theoretical expectations. Assuming that this holds for the full cipher PRESENT
too, we propose a multiple differential cryptanalysis for 18 rounds of PRESENT
that improves the attack by Wang. This attack on 18 rounds uses 561 16-
round differentials with 17 input differences forming the set Δ0 = {0x1001} ∪
{0xY00Z, Y, Z ∈ {2, 4, A, C}}. This set Δ0 is admissible (this can be checked using
the method given in Appendix A.1). For each input difference the set of out-
put differences is of size |Δr| = 33 and each output differences is of the form
0x????????00000000. The sieves obtained after 18 rounds are similar for each
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input and of size |Δ(i)
r+2| ≈ 232. The differential probabilities have been estimated

by summing trails with probability up to 2−80 for each differential. The estimates
obtained for the involved probabilities are p∗ = 2−58.50 and p = 2−58.96. The
number of active S-boxes is 8 for both final rounds, implying that the num-
ber of bits we recover is 64. In the case of the 80-bit key-schedule, there are 12
bits shared by both two-last-round subkeys and thus we actually recover nk = 52
bits. Moreover, we can use the trick of decomposing the two rounds of the partial
deciphering (see [24]). The sieves Δ

(i)
r+1, that are the sets of possible differences

after r + 1 rounds, are of size at most 213.2 and thus, only 232−16.8 last-round
subkeys remain after deciphering one round. We give in Table 4 the complexities
of the attack for different values of the data complexity, depending on the size
of the list of remaining candidates.

Table 4. Different attacks on PRESENT with memory complexity 232

80-bit N � PS time c.

260 251 76% 279.00

262 247 81% 275.04

264 236 94% 271.72

128-bit N � PS time c.

260 263 76% 2127.00

262 260 88% 2124.00

264 246 90% 2110.00

6 Conclusions

In this paper, we propose a general framework for analysing the complexity of
multiple differential cryptanalysis. By studying the distributions of the counters
involved in the attack, we obtain formulas for the data complexity, the time
complexity and the success probability of such attacks. We have validated these
theoretical results by mounting an attack on SMALLPRESENT-[8]. Using this
framework we propose an attack on 18 rounds on PRESENT. This is not the
best known attack on PRESENT since linear cryptanalysis seems to perform
better on this cipher, but it improves the best previously known differential
cryptanalysis of PRESENT [24].
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A Appendix

A.1 Checking If a Set Δ0 Is Admissible

For a set of input differences Δ0 we want to determine whether this set is admissi-
ble, that mean we want to know if it is possible to obtain the value of the counter
D(k) by summing N/2 of the Dx(k). This is possible if and only if there exists a
set X containing N/2 plaintexts such that ∀δ

(i)
0 ∈ Δ0, ∀x ∈ X , x⊕δ

(i)
0 ∈ X . This

is the case if X and its complement form the two parts of a bipartite graph where
the edges correspond to the δ

(i)
0 . The existence of such a graph is equivalent to

the non-existence of odd weight cycles (i.e. null sums of an odd number of δ
(i)
0 ).

Testing this can be efficiently done if we now look at the problem in terms
of coding theory. Let G be the matrix whose columns correspond to the binary
decompositions of the differences in Δ0. Then, saying that every odd combina-
tion of the columns is non-zero is equivalent to say that the dual of the code
determined by G has only codewords with even Hamming weights. Also, this is
equivalent to the fact that the dual of this dual code contains the all-one vector.
Since the dual of the dual of a code is the original code, we deduce that the set
Δ0 is admissible if and only if the code determined by G contains the all-one
vector. This can be tested in polynomial time using a Gaussian elimination. In-
deed, putting the matrix G in the systematic form (i.e. G′ = (I||A) where I is
the identity matrix), the following equivalence holds.

(1 . . . 1) · G′ = (1 . . . 1) ⇐⇒ Δ0 is admissible.
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Fast Correlation Attacks: Methods and

Countermeasures

Willi Meier

FHNW, Switzerland

Abstract. Fast correlation attacks have considerably evolved since their
first appearance. They have lead to new design criteria of stream ciphers,
and have found applications in other areas of communications and cryp-
tography.

In this paper, a review of the development of fast correlation attacks
and their implications on the design of stream ciphers over the past two
decades is given.

Keywords: stream cipher, cryptanalysis, correlation attack.

1 Introduction

In recent years, much effort has been put into a better understanding of the
design and security of stream ciphers. Stream ciphers have been designed to be
efficient either in constrained hardware or to have high efficiency in software. A
synchronous stream cipher generates a pseudorandom sequence, the keystream,
by a finite state machine whose initial state is determined as a function of the
secret key and a public variable, the initialization vector. In an additive stream
cipher, the ciphertext is obtained by bitwise addition of the keystream to the
plaintext.

We focus here on stream ciphers that are designed using simple devices like
linear feedback shift registers (LFSRs). Such designs have been the main tar-
get of correlation attacks. LFSRs are easy to implement and run efficiently in
hardware. However such devices produce predictable output, and cannot be used
directly for cryptographic applications. A common method aiming at destroy-
ing the predictability of the output of such devices is to use their output as
input of suitably designed non-linear functions that produce the keystream. As
the attacks to be described later show, care has to be taken in the choice of
these functions. Another well known method to destroy the linearity property
of LFSRs is to use irregular clocking, where the output of an LFSR clocks one
or more other LFSRs. All these are quite classical concepts. However they still
form a valuable model for recent designs, as the hardware oriented finalists of
the eSTREAM project illustrate, [41].

Several different cryptanalytic methods can be applied against stream ciphers.
Amongst these methods, some only work for a specific cipher, whereas quite a
number of other methods are more general, including correlation attacks, linear

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 55–67, 2011.
c© International Association for Cryptologic Research 2011
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attacks, algebraic attacks, time/memory/data tradeoff attacks, and resynchro-
nization attacks. We restrict here mainly to (fast) correlation attacks, and we
comment on linear attacks. Beyond stream ciphers, methods similar to fast corre-
lation attacks are of interest, e.g., in satellite communications, in the construction
of a trapdoor stream cipher, [15], in digital watermarking [48], or for the learning
parity with noise problem, [16], [28]. The appearance of correlation attacks has
motivated various countermeasures in the form of criteria for Boolean functions
that should be chosen in order to provide some correlation immunity.

This review is organized as follows. Section 2 describes the principles of cor-
relation attacks. Section 3 forms the main part, and describes different types of
fast correlation attacks. Sections 4 and 5 are aiming at countermeasures against
these attacks: Section 4 discusses correlation immune functions and Bent func-
tions, whereas Section 5 briefly deals with combiners with memory. In Section
6, linear attacks are discussed. They are viewed as a generalization of correla-
tion attacks, and can be efficient in quite general stream cipher constructions.
Finally, a few open problems are stated.

2 Correlation Attacks

The main targets of correlation attacks are filter generators and combiner gener-
ators. In a classical filter generator, the running device is a single binary LFSR.
The keystream is generated as the output of a nonlinear Boolean function whose
inputs are prespecified stages of a LFSR. The initial state of the LFSR is de-
rived from the secret key and the initialization vector. In a nonlinear combiner
generator, the keystream is generated as the output of a Boolean function whose
inputs are the outputs of several LFSRs. In more detail, suppose the outputs
a
(k)
i of s LFSRs, 1 ≤ k ≤ s, are used as input of a Boolean function f to produce

keystream bits zi for i = 1, 2, . . . ,

f(a(1)
i , . . . a

(s)
i ) = zi.

Then the keystream sequence may be correlated to the output sequence of one
or more of the LFSRs.

Example 1. Let s = 3, and let f be the majority function,

y = f(x1, x2, x3) = x1x2 + x1x3 + x2x3.

Then Prob(y = xk) = 0.75 for k = 1, 2, 3.

In general, if such correlations exist, decoding techniques may be used to deter-
mine the state of the LFSRs in a divide-and-conquer manner. This is the subject
of correlation attacks.

The original correlation attack was proposed by Th. Siegenthaler in [45].
Hereby, it is assumed that some portion of the keystream is known. Suppose
furthermore that the keystream sequence is correlated to the output of a LFSR,
i.e., P (ai = zi) = 0.5, where ai and zi are the i-th output symbols of the LFSR

This copy belongs to 'VANC03'



Fast Correlation Attacks: Methods and Countermeasures 57

and of the keystream generator, respectively. Besides the feedback connection
of the LFSR, no further knowledge is required on the explicit structure of the
generator.

Let the LFSR-length be n. For each of the 2n possible initial states of the
LFSR, the output sequence a = (a1, a2, .., aL) for a suitable length L > n is
generated, and the value α, defined as α = L − dH(a, z) is computed. Here
dH(a, z) denotes the Hamming distance between a and z, i.e., the number of
positions in which a and z are different.

Then it is shown in [45], that α will take the largest value for the correct
initial state with high probability, provided L in dependence of the correlation
probability is sufficiently large.

This concept can be generalized to the situation where the keystream sequence
is correlated to the outputs of a set of more than one LFSR: Assume that a
keystream sequence is generated by a generator with several different LFSR’s,
and that a subset of LFSR-outputs are correlated to the keystream sequence.
Then one can try to find the initial states of these LFSR’s in a divide-and-
conquer type of attack, and to guess the remaining LFSR-states in a separate
phase.

Correlation attacks are often viewed as a decoding problem. For a LFSR of
length n consider all possible output sequences of a fixed length L > n. This
set of truncated output sequences can be viewed as a linear [n, L] block code
[29]. Thus the LFSR sequence a = (a1, a2, ..., aL) is interpreted as a codeword in
this code, and the keystream sequence z = (z1, z2, .., zL) as the received channel
output. The problem of the attacker can now be formulated as: Given a received
word z = (z1, z2, ..., zL), find the transmitted codeword. From coding arguments
[44] it follows that the length L should be at least L0 = L/(1−h(1−p)) for unique
decoding, where h(1 − p) is the binary entropy function, and p = P (zi = ai) is
the correlation probability.

3 Fast Correlation Attacks

A fast correlation attack is a correlation attack that is significantly faster than ex-
haustive search over the initial states of the target LFSR. In [32] two algorithms
for fast correlation attacks are presented. Instead of exhaustive search as orig-
inally suggested in [45], the algorithms are based on using certain parity-check
equations derived from the feedback polynomial of the LFSR. The algorithms
have two different phases: in the first phase, a set of suitable parity-check equa-
tions is found. In the second phase, these equations are used in a fast decoding
algorithm to recover the initial state of the LFSR. These algorithms have been
demonstrated to be successful for quite long LFSR’s (n = 1000 or longer), pro-
vided the number t of feedback taps is small (t < 10). However the algorithms
fail if the LFSR has many taps. Due to these fast correlation attacks, one usu-
ally avoids using LFSR’s with few feedback taps in stream cipher design. In [50],
based on earlier work in [49], the linear syndrome method from coding theory is
proposed for fast correlation attacks, with similar efficiency and limitations as
the algorithms in [32].
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The two algorithms in [32] are described here in order. In a preparation phase,
parity check equations are determined by observing that for a given position j the
digit aj of the LFSR-sequence a satisfies a certain number m of linear relations
involving a fixed number t of other digits of a. Here t denotes the number of taps
of the LFSR. These linear relations are found by shifting and iterated squaring
of the LFSR-relation.

Example 2. Consider the LFSR of length n = 3 with feedback relation

aj = aj−1 + aj−3, j ≥ 3.

Then by squaring, the relation aj = aj−2 + aj−6 does hold as well. And by
shifting, one gets three relations for the same digit aj :

aj−3 + aj−1 + aj = 0
aj−2 + aj + aj+1 = 0

aj + aj+2 + aj+3 = 0

The digits of the known output sequence z are substituted in the linear relations
thus obtained. Some of the relations will still hold, some others will not. It has
been observed that the more relations are satisfied for a digit zj , the higher is the
(conditional) probability that zj = aj. Denote by p∗ the probability for zj = aj ,
conditioned on the number of relations satisfied.

Consider first a digit contained in one relation. Assume the digit a(0) = aj

at a given position j satisfies a linear relation involving t digits at some other
positions of the LFSR-sequence a,

a(0) + a(1) + a(2) + · · · a(t) = 0.

Denote by z(0), z(1), . . . z(t) the digits in the same positions of the output se-
quence. Then

z(0) = a(0) + b(0)

z(1) = a(1) + b(1)

. . . . . . . . . . . . . . . . .

z(t) = a(t) + b(t),

and for the perturbations, Prob(b(0) = 0) = . . . = Prob(b(t) = 0) = p. Denote
s = Prob(b(1) + . . . + b(t) = 0) : s = s(p, t). Then s(p, t) can be computed
recursively:

s(p, 1) = p, s(p, t) = ps · (p, t − 1) + (1 − p)(1 − s(p, t − 1)) for t > 1.

Next assume that a specified digit a = aj is contained in m relations, each
involving t other digits. For a subset S of relations, denote by E(S) the event
that exactly the relations in S are satisfied. Then for z = zj ,

Prob((z = a), and E(S)) = p · sh(1 − s)m−h,

Prob((z �= a) andE(S)) = (1 − p)sm−h(1 − s)h,
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where h = |S| denotes the number of relations in S. Hence the conditional
probability p∗ = Prob(z = a|E(S)) is given by

p∗ =
p · sh(1 − s)m−h

p · sh(1 − s)m−h + (1 − p)sm−h(1 − s)h
.

The probability distributions for the number h of satisfied relations are Binomial
distributions. There are two cases. If the digit z is correct, i.e., if z = a,

p1 =
(

m

h

)
sh(1 − s)m−h.

Alternatively, if z = a,

p0 =
(

m

h

)
sm−h(1 − s)h.

It is intuitively clear that a digit a can be more reliably predicted the more the
two distributions are separated. In [32] it is shown that the average number m
of relations involving a that can be checked in the given output stream z is:

m = log2

(
L

2n

)
(t + 1).

Example 3. Assume a correlation probability p = 0.75, a number t = 2 of taps,
LFSR-length n = 100, and a length of L = 5000 known bits of z. Then m = 12
relations are available (in average), and s = 0.752 + 0.252 = 0.625. The value of
the probability p∗ conditioned on the number h of relations satisfied is:

relations satisfied probability

12 0.9993

11 0.9980

10 0.9944

Based on these considerations, two algorithms, Algorithms A and B for fast
correlation attacks are described in [32].

Algorithm A essentially chooses a set I0 of approximately n digits of the known
output stream z that satisfy the most relations. The digits in I0 are taken as
a reference guess of a at the same positions. Thereafter, the initial state of the
LFSR is found by solving a system of linear equations.

As the selected digits in I0 are only correct with some probability, the correct
guess of the initial state is found by testing modifications of I0 of Hamming
distance 1, 2, . . . by correlation of the corresponding LFSR-sequence with the
given sequence z. Thus Algorithm A has exponential complexity, of order O(2cn),
0 < c < 1. The parameter c is a function of the correlation p, the number of taps
t, and the ratio L/n.
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Example 4. Let p = 0.75, t = 2, and L/n = 100. Then c = 0.012. The search
complexity is of significantly reduced order O(20.012n) compared to O(2n) in case
of exhaustive search.

Algorithm B is described step by step as follows:

Algorithm B

1. Assign the correlation probability p to every digit of z.
2. To every digit of z assign the new probability p∗. Iterate this step a number

of times.
3. Complement those digits of z with p∗ < pthr (for a suitable threshold pthr).
4. Stop, if z satisfies the basic relation of the LFSR, else go to 1.

The number of iterations in 2. and the probability threshold in 3. have to be
adequately chosen to obtain maximum correction effect. In 2. the formula for
recomputing conditional probabilities has to be generalized to the case where
assigned probabilities for each involved digit are different. After a few iterations,
a strong separation effect can be observed between digits having probability p∗

close to 0 or close to 1. Algorithms B is essentially linear in the LFSR-length
n. The success of this algorithm has extensively been verified experimentally
for various correlation probabilities, LFSR-lengths and numbers of taps t <
10. Iterative methods similar to Algorithm B have been applied in decoding.
In [17], R. G. Gallager has developed a decoding scheme, where the decoder
computes all the parity checks and then changes any digit that is contained
in more than some fixed number of unsatisfied parity-check equations. Using
these new values, the parity-checks are recomputed, and the process is repeated.
The method in [32] contrasts to this approach in that the process of assigning
conditional probabilities to every digit is iterated rather than just changing digits
according to the number of parity-check equations satisfied.

As these algorithms work only if the LFSR has few feedback taps, i.e., if
the feedback polynomial is of low weight, the problem persisted, how to design
algorithms that are efficient even if the number of taps is arbitrary.

A first approach is to look for polynomial multiples of the feedback polyno-
mial: If the recursion is not of low weight, consider multiples of the feedback
polynomial that are of low weight.

Example 5. ([30]) Consider the connection polynomial g(x) over GF (2) of degree
7 and of weight 5:

g(x) = x7 + x6 + x4 + x + 1.

g(x) has a polynomial multiple (a trinomial)

f(x) = g(x)m(x) = x21 + x3 + 1

with a polynomial m(x) of degree 14.

Fast correlation attacks can likewise be applied to the linear recursion of sparse
polynomial multiples, [4]. There are quite different methods on how to find low
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weight polynomial multiples. These methods differ in the weight and degree of
an attempted sparse multiple, and in the required memory and computing time,
see, e.g., [18], [47]. In particular, a feedback polynomial of a LFSR of length n
can be shown to have a polynomial multiple of weight 4 (i.e., with 3 taps) of
expected length about 2n/3.

Low weight multiples of feedback polynomials are of more general interest, as
they often allow for distinguishing attacks on LFSR-based stream ciphers, e.g.,
[23], [12], [13]. In these attacks, the primary aim is not to recover the key, but
to distinguish the known keystream from random.

Apart from investigation of sparse multiples of the connection polynomial,
there is vast literature dealing with improvements of the initial algorithms. A
major improvement concerns fast correlation attacks on LFSR’s with an arbi-
trary number of feedback taps. It appears that the algorithms as proposed in [24]
and [35] are amongst the most efficient known thus far. Based on these methods,
in [6], the algorithmic steps have been improved to accelerate the attacks in [24]
or [35]. As to be expected, the complexity of these algorithms depends on the
length n of the target LFSR as well as on the correlation probability p. A version
of one of these algorithms is briefly sketched:

As opposed to other fast correlation attacks, the use of parity-checks is combined
with a partial exhaustive search over a subset B of the initial state of the targeted
LFSR. As predictions are true only with some probability, D > n targeted bits of
the LFSR-output are predicted by evaluating and counting a number of parity-
check equations. As before, the parity-checks are found in a preprocessing phase.
In [6], an elaborate match-and-sort algorithm is described how to generate many
parity-checks. In an example case, the parity-checks involve a number of bits in
the set B, the target bit ai at position i of the LFSR-sequence a to be predicted,
and two other bits at some positions j and m in the known output stream z.
The procedure is informally as follows:

– For each of the D target bits, evaluate a large number of parity-checks sub-
stituted into the output stream z and the guessed bits of B, and count the
number of parity-checks satisfied, Ns, and the number of parity-checks Nu

not satisfied.
– If the expression |Ns − Nu| is larger than a threshold, predict ai = zi if

Ns > Nu, else ai = zi + 1.

Provided this majority poll is decisive for D target bits of the LFSR-sequence,
the initial state can be easily recovered. Estimates of the complexity of this
algorithm suggest that it is possible to attack LFSRs of length n about 100 in
practice, provided p is not too close to 0.5. In [36] and [26], a large part of the
state of the art in fast correlation attacks is found.

Fast correlation attacks have been applied successfully to concrete construc-
tions: In [21], a fast correlation attack is applied to the summation generator.
In [25], the stream cipher LILI-128 has been cryptanalysed by such methods.
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More recently, in [2] the initial version of the eSTREAM finalist Grain with a
key of 80 bits was broken. This motivated a careful tweak, Grain v1, which is
an eSTREAM finalist, [41].

4 Towards Correlation Immunity

In many (fast) correlation attacks, the correlations are deduced as linear ap-
proximations of nonlinear output functions in stream ciphers. The existence of
correlation attacks has thus led to new design criteria for Boolean functions
used in stream ciphers, [46], [33]. In particular, combining (or filter) functions
should have no statistical dependence between any small subset of inputs and
the output.

More formally, let X1, X2, . . . Xn be independent binary variables which are
balanced (i.e., each variable takes the values 0 and 1 with probability 1

2 ). A
Boolean function f of n variables is m-th order correlation immune if for each
subset of m random variables Xi1, Xi2, . . . , Xim the random variable

Z = f(X1, X2, . . . , Xn)

is statistically independent of the random vector (Xi1, Xi2, . . . , Xim). There ex-
ists a tradeoff between the order of correlation immunity and the algebraic degree
of Boolean functions, [46]. Low algebraic degree conflicts with security: Due to
the Berlekamp-Massey algorithm, [31], and due to algebraic attacks, [8], the de-
gree of output functions of combining or filter generators should not be low.
Finally, to prevent good statistical approximations of the output function f by
linear functions, f should have large distance to all affine functions. In this re-
gard, early work by D. Chaum and J.-H. Evertse, [5], [14] on the cryptanalysis of
the DES block cipher motivated a different trail concerning cryptographic prop-
erties of Boolean functions and S-boxes: In [33], a class of Boolean functions,
coined perfect nonlinear functions, was studied, which turned out to coincide
with the class of Bent functions, [42]. These functions have been used in the
context of coding theory, [29]. Bent functions are not balanced, but otherwise
they share a number of desirable properties: They have maximum nonlinearity,
i.e., they have largest possible distance to affine functions, and they satisfy good
correlation resistance. In addition, they have optimum differential properties. In
a series of papers, K. Nyberg has studied Boolean functions and S-boxes related
to Bent functions, starting with [39], [40]. A prominent example of such a vecto-
rial Boolean function is the multiplicative inverse map in the finite field GF (28)
which is used in the S-box of the AES block cipher. The study of Boolean func-
tions with good cryptographic properties has been an ongoing topic, see, e.g.,
the book [9].

5 Combiners with Memory

The tradeoff between correlation immunity and algebraic degree as noticed in
[46] can be avoided if the combining function is allowed to have memory. Results
on combiners with memory have first been published by R. Rueppel, [43].
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A (k, m)-combiner with k inputs and m memory bits is a finite state machine
which is defined by an output function

f : {0, 1}m × {0, 1}k → {0, 1}
and a memory function

ϕ : {0, 1}m × {0, 1}k → {0, 1}m.

For a given stream (X1, X2, . . .) of inputs, Xt ∈ {0, 1}k, and an initial assignment
C1 ∈ {0, 1}m of the memory, an output bitstream (z1, z2, . . .) is defined according
to

zt = f(Ct, Xt).

and
Ct+1 = ϕ(Ct, Xt)

for all t > 0. For keystream generation, the stream of inputs (X1, X2, . . .) is
produced by the output of k driving devices. The initial states are determined
by the secret key. Often, the driving devices are LFSRs.

Example 6. The basic summation generator with k = 2 inputs is a combiner
with m = 1 bit memory, which coincides with the usual carry of addition of
integers: Write Xt = (at, bt). The functions f and ϕ are defined by

zt = f(ct, at, bt) = at ⊕ bt ⊕ ct

and
ct+1 = ϕ(ct, at, bt) = atbt ⊕ atct ⊕ btct.

The function f in this summation generator is 2nd-order correlation immune.
Correlations in combiners with one bit memory have been studied in detail in
[34].

Example 7. The stream cipher E0 used in Bluetooth, [3], is a combiner with
k = 4 inputs and m = 4 bit memory. The stream of inputs is produced by the
outputs of 4 LFSRs of length 128 in total.

More recent (word-oriented) stream ciphers with memory are, e.g., SNOW, [11],
the eSTREAM finalist SOSEMANUK, [41], or ZUC, [37]. A concept related to
combiners with memory are feedback with carry shift registers (FCSRs) as intro-
duced in [27]. A synthesis based on FCSRs enabled to cryptanalyze summation
generators.

6 Linear Attacks

A correlation attack may be successful, if there are found linear relations that
hold with nonnegligible probabilities, between single output bits and a subset
of state bits of the LFSR’s involved. A linear attack is more general, as it seeks
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for “good linear approximations” of the output stream, i.e., for correlations be-
tween linear functions of several output bits and linear functions of a subset of
the LFSR-state bits involved. This type of attacks may be successful for both,
key recovery as well as for distinguishing the output from random. Linear at-
tacks have been developed by Golić, [19]. If there are strong enough correlations,
a number of equations, each of which does hold with some probability, may be
derived. There are fairly efficient methods (reminiscent to fast correlation at-
tacks) to solve such systems of equations, provided the known output stream
is long enough, i.e., provided there are many more equations than unknowns
(see [22] for an attack of this type on the Bluetooth stream cipher algorithm).
The distinction between correlations of a single output bit to linear functions of
state bits of the LFSR’s as opposed to correlations of linear functions of several
output bits to linear functions of state bits of the LFSR’s becomes relevant if
the non-linear combining system contains m bit memory: Consider a block of M
consecutive output bits, ZM

t = (zt, zt−1, ..., zt−M+1) as a function of the corre-
sponding block of M consecutive inputs XM

t = (Xt, Xt−1, ..., Xt−M+1) and the
preceeding memory bits Ct−M+1. Here Xt denotes the bit vector at time t of the
state bits of the LFSRs involved, and similarly, Ct−M+1 denotes the bit vector
of the m memory bits at time t − M + 1. Assume that XM

t and Ct−M+1 are
balanced and mutually independent. Then, according to [20], if M ≥ m, there
must exist linear correlations between the output and input bits, but they may
also exist if M < m. This shows that correlations cannot be easily defeated, even
in presence of memory. Besides key recovery attacks, powerful distinguishing at-
tacks using linear approximations of quite diverse stream cipher constructions
have become known, e.g. a linear distinguisher on the initial version of the stream
cipher SNOW, [7], or a distinguisher on the cipher Shannon, [1].

7 Open Problems

The topic of (fast) correlation attacks has considerably evolved over time. How-
ever, some open problems in this area are identified. A first question is how to
devise fast correlation attacks in an algorithmically optimal way. Important steps
in this direction have been taken in [6] and [10]. In a second direction, various
word-oriented stream ciphers use LFSRs over a binary extension field of GF (2)
rather than over GF (2). In this case, the established methods seem infeasible. It
would be of interest to see fast correlation attacks for LFSRs, e.g, over GF (232).
This question has been addressed initially in [26]. Finally, it was observed that
correlations cannot be easily avoided in whatever construction is used in the
design of a stream cipher. In a complexity-theoretic context, it has been shown
that there exist pseudorandom generators with low computational requirements
so that in a specified sense each linear distinguisher of the output stream has a
bias that can provably be upper bounded, [38]. It would be interesting to come
up with cryptographically secure constructions with similar properties.
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Abstract. In this article, we provide the first independent analysis
of the (2nd-round tweaked) 256-bit version of the SHA-3 candidate
SHAvite-3. By leveraging recently introduced cryptanalysis tools such
as rebound attack or Super-Sbox cryptanalysis, we are able to derive
chosen-related-salt distinguishing attacks on the compression function
on up to 8 rounds (12 rounds in total) and free-start collisions on up to
7 rounds. In particular, our best results are obtained by carefully con-
trolling the differences in the key schedule of the internal cipher. Most
of our results have been implemented and verified experimentally.

Keywords: rebound attack, Super-Sbox, distinguisher, SHAvite-3,
SHA-3.

1 Introduction

In cryptography hash functions are one of the most important and useful tools.
An n-bit cryptographic hash function H is a function taking an arbitrarily long
message as input and outputting a fixed-length hash value of size n bits. One
wants such a primitive to be collision resistant and (second)-preimage resistant: it
should be impossible for an attacker to obtain a collision (two different messages
hashing to the same value) or a (second)-preimage (a message hashing to a
given challenge) in less than 2n/2 and 2n computations respectively. However,
in many protocols hash functions are used to simulate the behavior of a random
oracle [1] and the underlying security proof often requires the hash function H
to be indistinguishable from a random oracle. This security notion naturally
extends to a fixed-input length random oracle with a compression function.

In recent years, we saw the apparition of devastating attacks [23,22] that
broke many standardized hash functions [20,14]. The National Institute of Stan-
dards and Technology (NIST) launched the SHA-3 competition [16] in response
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to these attacks and in order to keep an appropriate security margin consid-
ering the increase of the computation power or potential further cryptanalysis
improvements. The outcome of this competition will be a new hash function
standard, to be selected in 2012. Among the 64 candidates originally submit-
ted and the 14 selected for the 2nd round of the competition, one can observe
that a non negligible proportion are AES-based proposals (reuse of some parts
of the AES block cipher [15,5] or mimicry of its structure), as SHAvite-3 [3] for
example.

This fact motivated the academic community to improve its knowledge con-
cerning the security of the AES block cipher or AES-like permutations in the
setting of hash functions [17,8,13,11,10,12,7]. For an attacker, one of the ma-
jor distinction between cryptanalyzing a block cipher and a hash function is
that in the latter he has full access to the internal computation and thus he
can optimize its use of the freedom degrees. In particular, the recent SHA-1 at-
tacks where made possible thanks to an improvement of the use of the freedom
degrees. In the case of AES-based hash functions, the rebound attack [13,10],
Start-from-the-middle [12] or Super-Sbox cryptanalysis [7] are very handy tools
for a cryptanalyst.

During the first round of the SHA-3 competition, SHAvite-3 was first an-
alyzed by Peyrin [18] who showed that an attacker could easily find chosen-
counter chosen-salt collisions for the compression function. This weakness led
to a tweaked version of the algorithm for the second round. Then, recently new
cryptanalysis results [4,6] on the 512-bit version of SHAvite-3 were published, in
particular a chosen-counter chosen-salt preimage attack on the full compression
function of SHAvite-3-512.

Our contributions. In this paper, we give the first cryptanalysis results on
the tweaked 256-bit version of SHAvite-3-256. By using the rebound attack
or Super-Sbox cryptanalysis, we are able to derive distinguishers for a reduced
number of rounds of the internal permutation of SHAvite-3-256. Those results
can then be transformed into distinguishers or can be used to mount a free-start
collision attack for reduced versions of the compression function. The number
of rounds attacked can be further extended by authorizing the attacker to fully
control the salt values. The results are summarized in Table 1. We emphasize
that most of the attacks have been implemented and verified experimentally.

Table 1. Summary of results for the SHAvite-3-256 compression function

rounds
comput. memory

type section
complexity complexity

6 280 232 free-start collision sec. 3

7 248 232 distinguisher sec. 3

7 27 27 chosen-related-salt distinguisher sec. 4.1

7 225 214 chosen-related-salt free-start near-collision sec. 4.2

7 296 232 chosen-related-salt semi-free-start collision ext. vers.

8 225 214 chosen-related-salt distinguisher sec. 4.2
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2 The SHAvite-3-256 Hash Function

SHAvite-3-256 is the 256-bit version of SHAvite-3 [3], an iterated hash function
based on the HAIFA framework [2]. We describe here the tweaked version of the
algorithm. The message M to hash is first padded and then split into 	 512-bit
message blocks M0‖M1‖ . . . ‖M�−1. Then, the 256-bit internal state (initialized
with an initial value IV ) is iteratively updated with each message block using the
256-bit compression function C256. Finally, when all the padded message blocks
have been processed, the output hash is obtained by truncating the internal state
to the desired hash size n as follows:

h0 = IV, hi = C256(hi−1, Mi−1, salt, cnt), hash = truncn(hi)

Internally, the 256-bit compression function C256 of SHAvite-3-256
consists of a 256-bit block cipher E256 used in classical Davies-Meyer mode.
The input of the compression function C256 consists of a 256-bit chaining value
hi−1, a 512-bit message block Mi−1, a 256-bit salt (denoted salt) and a 64-
bit counter (denoted cnt) that represents the number of message bits processed
by the end of the iteration. The output of the compression function C256 is
given by:

hi = C256(hi−1, Mi−1, salt, cnt) = hi−1 ⊕ E256
Mi−1‖salt‖cnt(hi−1)

where ⊕ denotes the XOR function.

2.1 The Block Cipher E256

The internal block cipher E256 of the SHAvite-3-256 compression function is
composed of 12 rounds of a classical 2-branch Feistel structure. The chaining
variable input hi−1 is first divided into two 128-bit chaining values (A0, B0).
Then, for each round, the Feistel construction computes:

(Ai+1, Bi+1) = (Bi, Ai ⊕ Fi(Bi)), i = 0, . . . , 11

where Fi is a non-linear function composed of three full AES rounds. More pre-
cisely, if one considers that AESr denotes the unkeyed AES round (i.e. SubBytes
SB, ShiftRows ShR and MixColumns MC functions in this order), then Fi is
defined by (see Figure 1) :

Fi(x) = AESr(AESr(AESr(x ⊕ k0
i ) ⊕ k1

i ) ⊕ k2
i ) (1)

where k0
i , k1

i and k2
i are 128-bit local keys generated by the message expansion

of the compression function C256 (it can also be viewed as the key schedule of
the internal block cipher E256). We denote by RKi = (k0

i , k1
i , k2

i ) the group of
local keys used during round i of the block cipher.

This copy belongs to 'VANC03'



Analysis of Reduced-SHAvite-3-256 v2 71

Ai Bi

AESr

k2
i

AESr

k1
i

AESr

k0
i

Ai+1 Bi+1

Fig. 1. Round i of the state update of SHAvite-3-256 compression function

2.2 The Message Expansion

The message expansion of C256 (the key schedule of E256) takes a 512-bit
message block Mi, the 256-bit salt (salt) and the 64-bit counter (cnt) as in-
puts. The 512-bit message block Mi is represented as an array of sixteen 32-
bit words (m0, m1, . . . , m15), the 256-bit salt as an array of eight 32-bit words
(s0, s1, . . . , s7) and the counter as an array of two 32-bit words (cnt0, cnt1). 36
128-bit AES local subkeys kj

i (with 0 ≤ i ≤ 11 and 0 ≤ j ≤ 2) are generated, seen
as 144 words of 32 bits each (one word standing for one AES column), represented
in an array rk[0...143]:

(k0
i , k1

i , k2
i ) = (rk[12 · i], rk[12 · i + 1], rk[12 · i + 2], rk[12 · i + 3]),

(rk[12 · i + 4], rk[12 · i + 5], rk[12 · i + 6], rk[12 · i + 7]),
(rk[12 · i + 8], rk[12 · i + 9], rk[12 · i + 10], rk[12 · i + 11])

The first 16 values of the array rk are initialized with the message block mi,
i.e. rk[i] = mi with 0 ≤ i ≤ 15. Then, the rest of the array is filled by repeating
four times the step described in Figure 2. During one step, sixteen 32-bit words
are first generated using parallel AES rounds and a subsequent linear expansion
step L1 (the salt words are XORed to the internal state before applying the AES
rounds). Note that during each step the two counter words cnt0 and cnt1 (or a
complement version of them) are XORed with two particular 32-bits words at
the output of the AES rounds. Then, sixteen more 32-bit words are computed
using only another linear layer L2. For more details on the message expansion,
we refer to the submission document of the tweaked version of SHAvite-3 [3].

3 Rebound and Super-Sbox Analysis of SHAvite-3-256

Before describing our distinguishing and free-start collision attacks on reduced
versions of the SHAvite-3-256 compression function, we first explain what are
the main tools we are going to use.
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cnt[0]
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1 k0
2 k1
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k2
2 k0

3 k1
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Fig. 2. The first step of the message expansion of the SHAvite-3-256 compression
function. The salt words are XORed to the internal state before the parallel AES rounds
application. The counters are XORed several times at different positions.

3.1 The Cryptanalyst Tool 1: The Truncated Differential Path

When cryptanalyzing AES-based hash functions (or more generally byte-oriented
primitives), it has been shown [17] that it is very handy to look at truncated
differences [9]: instead of looking at the actual difference value of a byte, one
only checks if a byte contains a difference (active byte) or not (inactive byte).
In addition to simplifying the analysis, the direct effect is that the differential
behavior through the non-linear Sboxes becomes deterministic. On the other
hand, the differential transitions through the linear MixColumns layer will be
verified probabilistically.

More precisely, the matrix multiplication underlying the AES MixColumns
transformation has the interesting property of being a Maximum Distance Sep-
arable (MDS) mapping: the number of active input and output bytes for one
column is always greater or equal to 5 (unless there is no active input and out-
put byte at all). When picking random input values, the probability of success for
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a differential transition that meets the MDS constraints through a MixColumns
layer is determined by the number of active bytes in the output: if such a differen-
tial transition contains k active bytes in one column of the output, its probability
of success will approximatively be equal to 2−8×(4−k). For example, a 4 �→ 1 tran-
sition for one column has success probability of approximatively 2−24. Note that
the same reasoning applies when dealing with the invert function as well.

In the following, we will use several different types of truncated differential
masks for a given 128-bit AES state. We reuse the idea from [19] and we restrict
ourselves to four types of byte-wise truncated differential words F, C, D and 1,
respectively a fully active state, one fully active column only, one fully active
diagonal only and one active byte only. Considering those 4 types of differential
masks seems natural because of the symmetry and diffusion properties of an AES
round.

We are especially interested in the truncated differential transitions through 3
rounds of the AES since it is the main basic primitive used in the round function
of the SHAvite-3-256 compression function. We would like to know what is the
probability to go from one truncated differential mask to another (both forward
and backward) and the corresponding differential path. First, we can compute
the approximate probability of success for a one-round transition between the
four types of truncated differential states for both forward and backward di-
rections. Those probabilities are simply obtained by studying the MixColumns
transitions for one AES round. For example, one can easily check that when com-
puting forward, going from D to F with the trail D �→ 1 �→ C �→ F happens with
probability 2−24 with randomly selected input values and active bytes difference
values. The same probability holds for the inverse trail in the backward direction.

3.2 The Cryptanalyst Tool 2: The Freedom Degrees

The second very important tool for a hash function cryptanalyst are the freedom
degrees. The rebound attack [13] uses a local meet-in-the-middle-like technique
in which the freedom degrees are consumed in the middle part of the differential
path, right where they can improve at best the overall complexity. More precisely,
the rounds in the middle are controlled (the controlled rounds) and will be
verified with only a few operations on average, while the rest of the path both
in forward and backward direction is fulfilled probabilistically (the uncontrolled
rounds). This method provides good results [11,10], but the controlled part is
limited to two rounds only. In [12], this technique is generalized to start-from-
the-middle attacks, allowing to control 3 rounds in the middle part, without
increasing the complexity (i.e. only a few operations on average). However, this
technique is more complex to handle and only works for differential paths for
which the middle part does not contain too many active bytes. Finally, the Super-
Sbox cryptanalysis (independently introduced in [10] and [7]) can also control 3
rounds in the middle of the differential trail with only a few operations on average
and works for any differential path. The idea is that one can view two rounds
of an AES-like permutation as the parallel application of a layer of big Sboxes,
named Super-Sboxes, preceded and followed by simple affine transformations.
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This technique can find several solutions for an average cost of 1, but there is a
minimal cost to pay in any case: the complexity of the attack in the case of the
AES permutation is max{232, k} computations and 232 memory, where k is the
number of solutions found verifying the controlled rounds.

3.3 Super-Sbox Attacks for Reduced SHAvite-3-256

Having introduced our cryptanalyst tools, we will derive distinguishing attacks
for the 7-round reduced SHAvite-3-256 compression function, or even free-start
collision attacks (collision for which the incoming chaining variable is fully con-
trolled by the attacker) for the 6-round reduced version. We start with the 6-
round truncated differential path built by removing the last round of the 7-round
differential path depicted in Figure 3. First, one can check that this path is valid
as it contains no impossible MixColumns transitions. Moreover, a simple anal-
ysis of the amount of freedom degrees (as it is done in [7]) shows that we have
largely enough of them in order to obtain at least one valid solution for the whole
differential path: we have a probability of about 2−48 that a valid pair for the dif-
ferential path exists when the Δ and the subkeys values are fixed. Randomizing
those values provides much more than the 248 freedom degrees required.

first round

second round

third round

fourth round

fifth round

sixth round

seventh round

Δ

Δ

Δ

ΔΔ

ΔΔ

Δ

Δ

Δ

2−24

2−24

Super-Sbox

Super-Sbox

Fig. 3. The 7-round truncated differential path. The left part is the three first rounds
and the right part the four last ones. Each gray cell stands for an active byte. A hatched
state denotes a fully active state obtained by applying the MixColumns function on
only one active byte per column. All D 128-bit words contain the difference Δ.

The most costly part is obviously located in the middle, during the third and
fourth rounds where we have fully active AES states (F-type). Thus, we will use
the available freedom degrees at those particular rounds precisely. Let Δ be one
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of the 232 possible D-type difference values. With the Super-Sbox technique and
by using the freedom degrees available on the message input, we will find a valid
128-bit pair for the fourth round, mapping the difference Δ to the very same
difference through the 3 AES rounds. Then, we will do the same for the third
round.

The subkeys used during the fourth round are k0
3 , k1

3 , k2
3 . We first choose

a random value for k2
3 . Then, using the Super-Sbox technique, for a cost of

max{232, 232} = 232 computations and 232 memory, one can generate 232 pairs
of 128-bit states verifying the truncated differential path for the 3 AES rounds in
the right branch of the fourth round: D �→ C �→ F �→ D. At the present time, we
did not fix k0

3 nor k1
3 , because we were only looking at truncated differences: for

each 128-bit solution pair found, the 3 AES rounds truncated differential path
will be verified whatever is the value of k0

3 or k1
3 (more precisely k1

3 will only
have an incidence on the exact D-type difference value on the input of the pairs,
while k0

3 will have no incidence on the difference at all). Note that the Super-
Sbox technique allows us to directly force the exact difference value Δ at the
output of the 3 AES rounds. Indeed, one can observe that the output of the 3 AES
rounds is only a linear combination of the 4 Super-Sboxes outputs. However, the
exact difference value on the four active bytes at the input of the 3 AES rounds
is unknown because of the SubBytes layer of the first AES round. In order to
get the desired difference value Δ on the input as well, for each solution pair we
choose accordingly the value of k1

3 . More precisely, only the first column of k1
3

must be accommodated (only the first column is active when incorporating k1
3)

and this can be done byte per byte independently. Exhausting all the AES Sbox
differential transitions during a 216 operations precomputation phase allows us
to perform this step with only four table lookups. At this moment, for a cost
of 232 computations and memory, we found 232 pairs of 128-bit states that map
Δ to Δ through the 3 AES rounds of the fourth SHAvite-3-256 round. For each
pair, the value of k2

3 and the first column of k1
3 are fixed, but the rest of the

message is free to choose.
We perform exactly the same method in order to find 232 pairs of 128-bit

states that map Δ to Δ through the 3 AES rounds of the third SHAvite-3-256
round. The only difference is that we will have to fix k2

2 and choose the first
column of k1

2 . This can be done independently from the previously fixed values
of k2

3 and the first column of k1
3 (by setting the second column of k1

3 , see Figure 2).
We are left with two sets, each of 232 pairs, verifying independently the third
and fourth rounds. The subkey material that remains free is set to a random
value and the second and fifth rounds of the differential path is verified with
probability 1.

Then, the rest of the path (the uncontrolled rounds) is verified probabilisti-
cally: we have one D �→ 1 �→ C �→ F transition in the first round and another
one in the sixth round. As already demonstrated, this happens with probability
2−2∗24 = 2−48. Overall, one can find a valid candidate for the whole 6-round
truncated differential path with 248 computations and 232 memory.
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If the very last branch switching of the Feistel structure is removed (at the end
of the sixth round) and due to the Davies-Meyer construction, one can obtain a
free-start collision if the active byte differences on the input of the first round
are equal to the active byte differences on the output of the sixth round. This
happens with probability 2−32 because we have the right 128-bit word of the
internal state containing the difference Δ on both the input and output. The
left one is fully active but its differences belong to a 4-byte subspace since only
one MixColumns linear application away from a 4-byte difference (hatched states
in Figure 3). Finally, by repeating the process, one can find a free-start collision
for 6-round reduced SHAvite-3-256 with 248+32 = 280 computations and 232

memory.
We can now move to the full 7-round path depicted in Figure 3. One solution

for the entire path can still be obtained with 248 computations and 232 memory
since the differential trail in the last round is verified with probability 1. A
solution pair will have a difference Δ on its right word input and a difference
maintained in a subspace of roughly 232 elements on its left word input (as
denoted with hatched cells in Figure 3). Concerning the output, the differences
on the left 128-bit output word is kept in the same subspace of 232 elements, while
the right output word will have a random difference. Overall, after application of
the feed-forward, we obtain a compression function output difference maintained
in a subspace of at most 2160 elements, while the input difference is maintained
in a subspace of 232 elements (since the message/salt/counter inputs contain no
difference and the value of Δ is fixed). This is equivalent to mapping a fixed
672-bit input difference (224 bits for the chaining variable, 256 bits for the non
active incoming message chunk, 128 and 64 bits for the non active incoming
salt and counter chunks respectively) to a fixed 96-bit output difference through
a 704-bit to 256-bit compression function. According to the limited-birthday
distinguishers [7], this should require 264 computations in the ideal case.1 Thus,
one can distinguish a 7-round reduced version of the SHAvite-3-256 compression
function with 248 computations and 232 memory.

4 Chosen-Related-Salt Distinguishers

While the previous section takes a full advantage of the Super-Sbox techniques
in its analysis, this section presents an attack that uses rebound attack princi-
ple fully exploiting the message expansion. This leads to 7-round and 8-round
chosen-related-salt distinguishers on the SHAvite-3-256 compression function
with a complexity of 27 and 225 operations respectively. Also, one can find
chosen-related-salt semi-free-start collisions on 7 rounds of the SHAvite-3-256
compression function with a complexity of 296 operations (see extended version
of this article). In this section, we will insert differences in the message and in
1 As shown in [7], if we denote by i (resp. j) the number of fixed-difference bits in the

input (resp. in the output) and by t the total number of input bits of the compression
function, the equivalent complexity to find such a structure for a random compression
function is 2i+j−t = 2672+96−704 = 264 computations.
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the salt input of the compression function. The main principle of those analyses
relies on correcting the differences at the end of each round so that they are
not spread afterwards. The 8-round differential path used is given in Figure 4,
while the 7-round version is obtained by removing the seventh round. All the
differences in the successive internal states will be canceled from state 1 to state
7. This could be done by considering differences in the first four 32-bit words of
the salt denoted (s0, s1, s2, s3), in eight 32-bit message words (m0, m1, m2, m3)
and (m8, m9, m10, m11) and differences in A0, the left part of the initial chaining
value, the other parameters being taken without any difference. The notations
used are the ones of Section 2: Ai denotes the left part of the state at round i
(where i goes from 0 to 8), and Bi the right part of the internal state at round i.

Δ10Δ1

first round

000

second round

000

third round

000

fourth round

Δ2Δ2Δ3

fifth round

Δ3Δ4Δ5

sixth round

Δ6Δ7Δ8

seventh round

???

eight round

Fig. 4. The 8-round truncated differential path. The left part represents the four first
rounds and the right part the four last ones. Each gray cell stands for an active byte.
The Δ’s in each round denote the differences incorporated by the subkeys. For the
7-round differential path, we remove the differences control in the seventh round.

The difference values in the salt words and in the message words are chosen
to be identical (Δ1), so that they cancel for the subkeys generated after the first
round of the message expansion. Moreover, the subkeys involved in rounds 2, 3
and 4 will not contain any difference (as shown on Figure 5). We concentrated
our analysis on the active rounds in the middle of the trail, i.e. rounds 5, 6 (and
7 in the case of the 8-round distinguisher). The probability of success for the rest
of the differential path is one since in the first round the differences can spread
freely.

We start by finding a valid pair that verifies the path for the rounds 5, 6 and
7. Let us remember that at the beginning, we have just established the truncated
differential path, i.e. the actual difference values in the bytes are unknown. Thus,
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Fig. 5. Differential cancellation and differential equalities in the message expansion
for the 7-round and 8-round chosen-related-salt distinguishers on the SHAvite-3-256
compression function. Δ̃ represents the difference Δ after application of the column
switching layer just before the salt incorporation.

when required, we will fix the difference values of the active bytes and also
the values themselves. We will insert differences in the first four salt words
(s0, s1, s2, s3), all their bytes being active. As before, when we refer to words, we
denote the AES column 32-bit words in the message expansion.

For a better understanding of the distinguisher procedure, we discriminate 5
distinct kinds of ways in order to determine values and differences:

– Type a means that we directly choose the values and the differences. This
can be done when there is no previous restriction.

– Type b are determined by the linear part of the message expansion. In this
case, a linear relation of previously fixed differences or values completely
determines the remaining ones.

– Type c are determined by the non-linear part of the message expansion. Here,
a non linear relation of previously fixed differences and values determines the
remaining ones.

– Type d are produced by some previous conditions on the Feistel path. That
is, for example, if the value of Bi ⊕ k0

i+1 is fixed and then this subkey is
determined, we automatically deduce the value of Bi from this equation.
This will directly determine Ai+1 since Ai+1 = Bi.

– Type e are fixed by the AES rounds. This basically represents the conditions
associated to the controlled rounds part.

From now on and for a better clarity, we indicate its type in brackets for each
determination. When omitted, the default type is a. We will first describe the
distinguisher on 7 rounds and then the one on 8 rounds.
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4.1 7-Round Distinguisher with 27 Computations

As partially shown on Figure 4, the aim of the 7-round distinguisher is to find
a pair of plaintext/ciphertext values for the internal block cipher of SHAvite-3-
256 such that there is no difference on the right part of the plaintext and on
the left part of the ciphertext. As shown in [7], the corresponding complexity to
find such a structure for a random permutation is equal to 264 computations.
We show in this section how to find a pair of inputs that verifies the path with
a time and memory complexity of 27 (by omitting the last branch swapping
of the Feistel construction, the attack also applies to the compression function
SHAvite-3-256 with the same practical and ideal complexities). In order to build
this distinguisher, we would like to find values and differences of the subkeys such
that the difference in the 3 AES rounds during SHAvite-3-256 rounds 5 and 6
are auto-erased. The differences generated by the subkeys in the seventh round
are let completely free for the 7-round distinguisher and it will not be the case
for the 8-round distinguisher. We first give in Table 2 how to fix the degrees of
freedom in order to avoid any impossibility.

Table 2. Order and conditions for fixing values and differences. Δ2 and Δ3 are chosen
such that Δ2 and Δ2 ⊕ Δ3 can be both generated from an AES layer with the same
difference in the inputs (for randomly chosen Δ2 and Δ3, this is verified with very
high probability). When going through all these steps followed in the given order, we
are left with the degrees of freedom associated to the values of the words of the salt
s0, s1, s2, s3. Thus, we can pick a random value for those remaining freedom degrees
and finally compute the valid pair for the 7-round differential path. * represents the
steps that are not executed for the distinguisher over 8 rounds.

instant fixed implies type cost
(type a)

begin Δk0
4 = Δ2 Δk1

4 = Δ2 b 1
Δk2

4 = Δ3 Δk0
5 = Δ3 b 1

Δk1
5 = Δ2 ⊕ ((Δ3 ∧ (296 − 1))||((Δ3 >> 96) ⊕ Δ2) ∧ (232 − 1)) b 1

Δk2
5 = Δ2 ⊕ ((Δk1

5 ∧ (296 − 1))||((Δk1
5 >> 96) ⊕ Δ2) ∧ (232 − 1)) b 1

Δk0
6 = Δ3 ⊕ ((Δk2

5 ∧ (296 − 1))||((Δk2
5 >> 96) ⊕ Δ3) ∧ (232 − 1)) b 1

Δk1
6 = Δ3 ⊕ ((Δk0

6 ∧ (296 − 1))||((Δk0
6 >> 96) ⊕ Δ3) ∧ (232 − 1)) b 1

round 5 B4 ⊕ k0
4 k1

4 : AESr(AESr(B4 ⊕ k0
4) ⊕ k1

4)⊕ e 26

AESr(AESr(B4 ⊕ k0
4 ⊕ Δ2) ⊕ k1

4 ⊕ Δ2) = Δ3

round 6 B5 ⊕ k0
5 k1

5 : AESr(AESr(B5 ⊕ k0
5) ⊕ k1

5)⊕ e 26

AESr(AESr(B5 ⊕ k0
5 ⊕ Δ3) ⊕ k1

5 ⊕ Δk1
5) = Δk2

5
k2
5 = k1

4 ⊕ ((k1
5) ∧ (296 − 1)||((k1

5 >> 96) ⊕ k1
4) ∧ (232 − 1) b 1

k0
4 ∧ (232 − 1) = (k1

5 ∧ (232 − 1)) ⊕ (((k1
5) >> 96) ∧ (232 − 1)) b 1

B4 ∧ (232 − 1) = (k0
4 ∧ (232 − 1)) ⊕ (k0

4 ⊕ B4) ∧ (232 − 1) b 1

end δs0 . . . δs3 k2
4 : AES−1

r (k2
4 ⊕ k1

4)⊕ c 1
= Δ1 AES−1

r (k2
4 ⊕ k1

4 ⊕ Δ2 ⊕ Δ3) = Δ1
k0
6 = k2

4 ⊕ ((k2
5 ∧ (296 − 1))||((k2

5 >> 96) ⊕ k2
4) ∧ (232 − 1) b 1

* k0
5 (k0

4 >> 32) ∧ (296 − 1) = k0
5 ∧ (296 − 1) b 1

k1
6 = k0

5 ⊕ (k0
6 ∧ (296 − 1)||((k0

6 >> 96) ⊕ k0
5) ∧ (232 − 1) b 1

s4 . . . s7 : AES−1
r (k0

4 ⊕ cnt ⊕ AES−1
r (k0

5 ⊕ k2
4) ⊕ s4||s5||s6||s7)⊕ c 1

AES−1
r (k0

4 ⊕ ct ⊕ AES−1
r (k0

5 ⊕ k2
4) ⊕ s4||s5||s6||s7 ⊕ Δ2) = Δ1

B4 = k0
4 ⊕ (k0

4 ⊕ B4) d 1
B5 = k0

5 ⊕ (B5 ⊕ k0
5) d 1
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Fifth round: As described in Figure 4, after the fourth round, the inputs of the
fifth do not contain any active byte. The differences will be injected during the
fifth round through the message expansion. The idea is to erase those differences
directly during the fifth round. This will be achieved by carefully choosing the
actual values of the bytes.

We choose (type a) the difference in k0
4 to be Δ2 and this sets (type b) the dif-

ference in k1
4 to be Δ2 as well. Then we pick a random difference value for k2

4 that
we denote Δ3. Note that due to the message expansion, Δ2 and Δ3 ⊕ Δ2 must
be 128-bit output differences that can be obtained from the same input difference
after application of one AES round. Indeed, as shown in Figure 5, Δ2 and Δ3⊕Δ2

are constructed from the Δ1 difference inserted by the salt after application of one
AES round. In fact, for randomly chosen Δ2 and Δ3 values, this is verified with very
high probability. Those particular differences also fix (type b) the difference values
of the 9 subkeys used in rounds 5, 6 and 7. However, note that k2

6 is determined
after one another AES non-linear round (as shown in Figure 5).

Once Δ2 and Δ3 differences fixed, we need to set the values themselves in this
fifth round. To do so, we choose random value for B4 ⊕ k0

4 (see Figure 6) and
we can compute forward the differences just before the SubBytes layer of the
second AES round. We can also propagate the differences backwards from the
insertion of Δ3 up to the output of this SubBytes layer. Due to the AES Sbox
differential property, with a probability of 2−16, the differences before and after
the second SubBytes can be matched (2−1 per Sbox). Thus, we will have to try
216 values of B4 ⊕ k0

4 before finding a match. Note that this cost can be reduced
to 4×24 = 26 by attacking all the columns independently. When such a solution
is found, we directly pick (type e) a value of k1

4 that makes this match happen.

Sixth round: We deal with the sixth round in a very same way. The differences
in the subkeys k0

5 , k
1
5 and k2

5 are already fixed by the message expansion. Thus,
we would like to find the corresponding values that make the cancellation of
differences possible in the sixth round computation. As before, we choose an
appropriate value of B5 ⊕ k0

5 such that we have a possible match between the
input and output differences of the second SubBytes layer. When such a solution
is found, we directly pick (type e) a value of k1

5 that makes this match happen.

The final step: Now, if we randomly fix the values and differences δs0, δs1, δs2,
δs3, and k0

5 , the values of k2
4 , k0

6 , k0
4 , k1

6 , s4, s5, s6, s7, B4 and B5 will also
be determined (as shown in Table 2). At this point, we have obtained some
coherent values that verify the differential path of rounds 5 and 6, and the only
degrees of freedom left are the values of s0, s1, s2 and s3. We can just pick up
one and compute backward and forward, and we obtain the whole path, where
the inputs have just the left part of the state active, and the output, before the
Davies-Meyer, the right one.

The total cost for the distinguisher is driven by the two first steps, that is
2 × 26 = 27 operations in order to find one valid candidate. This distinguisher
has been implemented and verified experimentally. We provide in the extended
version of this article an example of such a structured input/output pair (which
should not be generated with less than 264 operations in the ideal case).
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Fig. 6. Details of rounds 5, 6 and 7 of the 8-round chosen-related-salt distinguisher
on the SHAvite-3-256 compression function. The bytes denoted with north-west lines
are fixed during the fifth round. The light gray bytes are fixed during the sixth round.
The dark gray bytes are fixed at the beginning of the seventh round whereas the bytes
denoted with hatched cells are fixed at the end of the seventh round.

4.2 8-Round Distinguisher with 225 Computations

In this section we describe the 8-round distinguisher. For rounds 5 and 6 the
procedure is the same as the one for the 7-round distinguisher using the equa-
tions described in Table 2. However, now we would like also that the differences
inserted during the seventh round cancel themselves, whereas the differences
inserted during the eighth round can freely spread. In order to fulfill this re-
quirement, after having handled the sixth round, instead of randomly choosing
the value of k0

5 one first chooses the values of s0, s1, s2 and s3, which will allow
us to determine the difference in k2

6 .
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B6

First AES round

k0
6

Δ known

value known

X

SubBytes ShiftRows MixColumns

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Second AES round

k1
6

C4 = f(C1)

Δ known

C1

Δ known Δ known Δ known

SubBytes ShiftRows MixColumns

2 3
3 4
4 1
1 2

Third AES round

k2
6

Δ known

Δ = 0 Δ = 0 Δ = 0 Δ = 0

SubBytes ShiftRows MixColumns

Fig. 7. The 3 AES rounds of the seventh round: the red bytes will determine the middle
columns of k1

6 (because of the message expansion and of previous conditions); the blue
bytes will determine the differences in the 2 middle columns on the input of the second
round; the orange bytes are fixed (due to round 6); the white and light gray bytes are
free. The green bytes are the results of an XOR between blue bytes and orange bytes
whereas pink bytes are the results of an XOR between blue bytes and red bytes.

Fixing the differences in the seventh round: We introduce the following nota-
tions: let S be a 128-bit AES state, we denote (S)i the i-th column of S and (S∗)i

the i-th column of ShR(S) (i.e., the i-th diagonal of S), for i ∈ [0..3]. We give
in Figure 7 a complete illustration of our attack.

Let us analyze the relations that link together the values already fixed and
the values to be fixed. On the one hand, we have:

(B6)i =⇒ (A5)i = (B4)i =⇒ (k0
4)

i (2)

that one can read as “setting the value of (B6)i will fix the value of (A5)i (because
the Feistel structure imposes (A5)i = (B4)i) which will in turn deduce the value
of (k0

4)
i”. It is important to remark that the value of (k0

4)
3 has already been fixed
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in round 6, as shown in Table 2. Therefore, because of Relation (2), (B6)3 will
also be known. Then, from the message expansion, we can derive the following
relations:

(k0
4)i =⇒ (k0

5)
i+1 =⇒ (k1

6)i+1 for i ∈ {0, 1}, (3)
(k0

4)2 =⇒ (k0
5)

3 =⇒ (k1
6)3 = (k0

5)
3 ⊕ (k1

6)0. (4)

One can check that the values of column 0 and column 3 of k1
6 are associated by

a linear relation. We recall that for the time being the difference of k1
6 is already

known, but not its value.
On the other hand, we have (B6∗)i =⇒ (X)i, where X is the state repre-

sented in Figure 7 just before the first MC. We can then write the following
relation:

SB[(k0
6∗)i ⊕ (B6∗)i] ⊕ SB[(k0

6∗)i ⊕ Δ(k0
6∗)i ⊕ (B6∗)i] = Δ(X)i. (5)

For the path to be verified, we need the difference MC(Δ(X)i) ⊕ Δ(k1
6)i to

be compatible with the difference fixed by k2
6 after the second SB, and the

differential transition must be possible by the values of k1
6 (which are not fixed

yet). From the previous equations (2), (3), (4) and (5) we obtain that for making
the path to be verified over each column i, the following columns or diagonals
intervene at the same time: for i = 0, {(B6∗)0, (B6)3}; for i = 1, {(B6∗)1, (B6)0};
for i = 2, {(B6∗)2, (B6)1}; for i = 3, {(B6∗)3, (B6)2}.

From the previous relations we can deduce that there are some bytes of B6

that interact in more than one way with the relations for one column i, ((3,3) for
i = 0, (3,0) for i = 1, (3,1) for i = 2, (3,2) for i = 3). Thus, since we have defined
the main relations that must be verified, we can now describe how to find a valid
pair. A conforming pair is a pair of values that verifies the differential path of
the seventh round as well as the path of the previous rounds. This can be done
with a complexity of 225 in time and 214 in memory with the following process:
• We consider 224 values of the bytes of (B6∗)1 (the ones at byte positions
(0, 1); (1, 2); (2, 3); (3, 0)). As the byte (2, 3) has an already fixed value, because
it belongs to (B6)3 which was determined in the previous steps, the 224 values
are all the possible ones. Thus, the second column of the state after the first
MixColumns of the 7th round will be determined by the previous values (i.e. the
bytes of (B6∗)1). The values of (B6∗)1 that give us the match we are looking for
are such that the differences before and after the second SubBytes match for the
second column. Those differences are influenced for the first one by the already
fixed differences of k1

6 and for the second one by the already fixed differences
of k2

6 . In other words, at this step, the differences are mainly fixed but not the
values. Due to the AES Sbox differential properties, the match between the two
differences will happen with a probability equal to 2−4.

We have then to consider that, when we have fixed the values for the bytes
((0, 1); (1, 2); (2, 3); (3, 0)), the value of the byte (3, 1) of k1

6 will also be deter-
mined due to equations (2) and (3).

So, when we find a match of differences, we also need that one of the two
values for (3, 1) that makes the match possible, collides with the already fixed
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value for this byte. This will happen with a probability of 2−7. We obtain:
224 ·2−4 ·2−7 = 213 values for (B6∗)1 (bytes at positions (0, 1); (1, 2); (2, 3); (3, 0))
that make the differential path possible for the second column of the seventh
round.
• We do the same thing with the bytes of (B6∗)2 (bytes at positions (0, 2); (1, 3);
(2, 0); (3, 1)), and we also obtain 213 values that make the differential path pos-
sible for the third column of the seventh round.
• We now consider the interaction between the two previous steps in order to
simultaneously find the solutions for the two middle columns. The byte at posi-
tion (0, 1) of B6 has already been fixed during the first step, and it determines
the value of the byte (0, 2) of k1

6 , which belong to (k1
6)2 that affects the second

step. Analogously the byte of the position (2, 0) from B6 that was fixed at the
second step determines the value of the byte (2, 1) of k1

6 , that belongs to (k1
6)

1

and that affects the first step. Thus if we want to compute all the valid candidate
values for the two columns in the middle before the second SB we will obtain:
213 · 213 · 2−7 · 2−7 = 212 possible values for fixing (B6∗)1 and (B6∗)2.
• We consider one of the previously determined values among the 212 possibles.
We consider now the yet unfixed bytes corresponding to positions (1, 0); (2, 1)
of B6. Because of Relations (2), (3) and (4) they will determine the values of
the associated bytes of k1

6 . Thus, since the differences are already fixed, each
of these bytes has only 2 possible values that fulfill the difference match in the
second SB for bytes (1, 1) and (2, 2). From (B6∗)3 (i.e. the values from B6 that
will influence the fourth column in the second SB), we still have one byte, (3, 2),
that has no influence on the already fixed parts. Therefore this byte can go
through 28 distinct values. In total, for the fourth column after the first MC
there are 28+2 = 210 possible values and differences that do not interfere with the
differential path of the two middle columns in the second SB. We can compute
how many of these 212 values and differences for (B6∗)3 could satisfy the path for
the fourth column: 22 ·28 ·2−4 ·24 = 210 values for (B6∗)3 make the fourth column
on the second SubBytes also verify the path. The term 2−4 is present because
one requires a possible match of differences and the term 24 comes from the
fact that we can associate 24 values of the fourth column for one fixed difference
before SubBytes.
• By applying the same method to the first column, we will obtain 210 values for
(B6∗)0. We know from Relation (4) that (k1

6)0 and (k1
6)3 must satisfy a linear

relation. This will occur for a fixed (k1
6)

0 and a fixed (k1
6)

3 with a probability of
2−32. As we have 210 possible values of (k1

6)
0 from step 5 and 210 possible values

for (k1
6)3 from step 4, we obtain a valid couple ((k1

6)0, (k1
6)3) with probability

2−12.
• We repeat step 5 about 212 times with the different solutions of step 3, and
we get a valid couple: we obtain all the valid values that verify the differential
path, i.e. that have no differences after the 7th round.

Once those steps performed, all the desired values and differences that verify
the path are determined except the ones in the first round. The values of s4,
s5, s6 and s7 are not fixed yet and we can choose them as explained in Table 2.
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Thus, Δ1 will determine Δ2 and we just compute backwards until we obtain
the initial state that verifies the path (and consequently, also the first round).
From this input, we get a corresponding output that contains no difference after
seven rounds. If we apply the Davies-Meyer transformation, the right part of
the state will not contain any difference. Thus, we have exhibited a free-start
near-collision attack using chosen and related salts on a 7-round reduced version
of the SHAvite-3-256 compression function used in the Davies-Meyer mode with
225 computations and 214 memory. The computation cost and memory require-
ments are quite far from the complexity corresponding to the ideal case (264

operations).
Adding one more round at the end of the seventh round leads to a particular

input/output structure (see Figure 4). More precisely, the subkeys differences of
the eighth round are no more controllable, thus the right part A8 of the state will
contain differences but not the left side B8 which is the seventh round’s right
part due to the Feistel structure. Therefore, after the Davies-Meyer transform,
we will have the same difference in the left side of the input state and in the
left side of the output state and we obtain a chosen-related-salt distinguisher on
an 8-round reduced version of the SHAvite-3-256 compression function used in
the Davies-Meyer mode with the same complexity as for the previous chosen-
related-salt free-start near-collisions: 225 computations and 214 memory. Finding
such a structure in the ideal case should require at least 264 computations.

This 8-round distinguisher has been verified experimentally. We provide in
the extended version an example of such a distinguisher.

5 Conclusion

In this paper, we have presented the first analysis of the (2nd-round tweaked)
256-bit version of the SHA-3 competition candidate SHAvite-3. As it is the
case for many candidates based on the AES round function, we showed that
the Super-Sbox cryptanalysis and the rebound attacks are very efficient when
analyzing reduced-round versions of SHAvite-3-256. Namely, without using the
salt or the counter inputs, one can attack up to seven rounds of the twelve
rounds composing the SHAvite-3-256 compression function. We were even able
to reach eight rounds when the attacker is assumed to be able to control the
salt input. Despite the attacks being quite involved, all our practical complexity
results were verified experimentally.
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An Improved Algebraic Attack on Hamsi-256
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Abstract. Hamsi is one of the 14 second-stage candidates in NIST’s
SHA-3 competition. The only previous attack on this hash function was
a very marginal attack on its 256-bit version published by Thomas Fuhr
at Asiacrypt 2010, which is better than generic attacks only for very
short messages of fewer than 100 32-bit blocks, and is only 26 times
faster than a straightforward exhaustive search attack. In this paper we
describe a different algebraic attack which is less marginal: It is better
than the best known generic attack for all practical message sizes (up
to 4 gigabytes), and it outperforms exhaustive search by a factor of at
least 512. The attack is based on the observation that in order to discard
a possible second preimage, it suffices to show that one of its hashed
output bits is wrong. Since the output bits of the compression function
of Hamsi-256 can be described by low degree polynomials, it is actually
faster to compute a small number of output bits by a fast polynomial
evaluation technique rather than via the official algorithm.

Keywords: Algebraic attacks, second preimages, hash functions, Hamsi.

1 Introduction

The Hamsi family of hash functions [1] was designed by Özgül Küçük and sub-
mitted to the SHA-3 competition in 2008. In 2009 it was selected as one of
the 14 second round candidates of the competition. Hamsi has two instances,
Hamsi-256 and Hamsi-512, that support four output sizes 224, 256, 384 and 512.

Previous results on Hamsi include distinguishers [4] and [5], pseudo-preimage
attacks [6] and near collision attacks [7]. However, these results do not break the
core security properties of a hash function. More recently, Thomas Fuhr intro-
duced the first real attack on Hamsi-256 [2]. The attack exploits linear relations
between some input bits and output bits of the compression function in order
to find pseudo preimages for the compression function of Hamsi-256 (a pseudo
preimage of an arbitrary chaining value h∗

i under the compression function F
is a message block M̄i and a chaining value h̄i−1 such that F(M̄i, h̄i−1) = h∗

i ).
The pseudo preimages can then be used in order to find a second preimage for
a given message with complexity 2251.3, which is better than exhaustive search
by a marginal factor of 24.7 ≈ 26 (whose existence and exact size depends on
how we measure the complexity of various operations). In addition, Fuhr’s at-
tack is better than a generic long message attack only for very short messages

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 88–106, 2011.
c© International Association for Cryptologic Research 2011
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with up to 96 32-bit blocks1(i.e. 384 bytes). Nevertheless, it is the first attack
on Hamsi-256 that violates its core security claims.

In this paper, we develop new second preimage attacks on Hamsi-256 which
are slightly less marginal. Our best attack on short messages of Hamsi-256 runs
in time which is faster than exhaustive search by a factor of 512, which is about
20 times faster than Fuhr’s attack. For longer messages, we develop another
attack which is faster than the Kelsey and Schneier attack by a factor which is
between 6 and 4 for all messages of practical size (i.e., up to 4 gigabytes). Our
short message attack exploits some of the observations made in [2] regarding
the Hamsi Sbox, but uses them in a completely different way to obtain better
results: While Fuhr solved linear equations in order to speed up the search for
pseudo preimages, our attacks use fast polynomial enumeration algorithms to
quickly discard compression function inputs which cannot possibly yield the
desired output.

Since the straightforward evaluation of the compression function of Hamsi-
256, Fuhr’s attack, and our attacks use different bitwise operations, compar-
ing these attacks on Hamsi-256 cannot be done simply by counting the num-
ber of compression function evaluations. Instead, we compare the complexity
of straightline implementations of the algorithms, counting the number of bit
operations (such as AND, OR, XOR) on pairs of bits and ignoring bookkeep-
ing operations such as moving a bit from one position to another (which only
requires renaming of variables in straightline programs). In this model of compu-
tation, the best available implementation of one compression function evaluation
of Hamsi-256 (given as part of the submission package in [1] and used as the ref-
erence complexity in this paper), requires about 10, 500 bit operations. Our best
attack is about 512 times faster, and is thus equivalent to an algorithm than
performs only 20 bit operations per message block.

Polynomial enumeration algorithms evaluate a polynomial function over all its
possible inputs. Clearly, the complexity of such enumeration algorithms must be
at least 2n for n-bit functions and thus they may seem to provide little advantage
over trivial exhaustive search. However, cryptographic primitives are usually
heavy algorithms that require substantial computational effort per execution.
Consequently, the complexity of exhaustive search (measured by the number of
bit operations) can be much higher than 2n. However, for low degree polynomials,
the complexity of enumeration algorithms is higher than 2n only by a small
multiplicative factor. In order to attack Hamsi-256, we search for polynomials of
low degree that relate some of the bits computed by the compression function:
The variables of each polynomial are chosen from the inputs to Hamsi-256, and
the output of each polynomial is either an output bit of Hamsi-256, a linear
combination of output bits of Hamsi-256, or an intermediate state bit of Hamsi-
256 from which an output bit (or output bits) can be easily computed.

1 Since Hamsi-256 is built using the Merkle-Damg̊ard construction and it has a 256-
bit intermediate state, the best known generic second preimage attack on Hamsi-
256 with long messages is the Kelsey and Schneier attack [3] that runs in time
k · 2128 + 2256−k for messages of length 2k.
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Our attack on short messages of Hamsi-256 is divided into two stages: In
the first stage we find multiple pseudo preimages of a single target chaining
value obtained by one of the invocations of the compression function during the
computation of the hash of the given message. In the second stage we obtain
a second preimage for the message by searching for a second preimage for one
of the target pseudo preimages that are found in the first stage (this is done
by traversing a tree-like structure of chaining values, as shown in figure 1). In
both stages, we first efficiently enumerate a set of low degree polynomials for
all the possible values of a carefully chosen set of variables which are input to
Hamsi-256. We then run the compression function only for the inputs for which
the polynomial evaluations match the values of the target (or targets). Since
the compression function of Hamsi-256 mixes the chaining value less extensively
than the message, in the first stage we find only pseudo preimages by select-
ing our set of input variables of the enumerated polynomials among the bits of
the chaining value. In the second stage, we have to find second preimages and
thus we have to select our set of input variables of the enumerated polynomi-
als among the message bits. Therefore, the polynomials enumerated in the first
stage have a lower degree than those enumerated in the second stage, imply-
ing that the first stage gives a better improvement factor than the second stage
(compared to exhaustive search). We note that our two-stage process of finding a
second preimage using an efficient pseudo preimage search algorithm is a variant
of the well-known meet-in-the-middle algorithm, described in the appendix of
the extended version of this paper [12]. The difference is that the second stage
of meet-in-the-middle is performed using exhaustive search, whereas the sec-
ond stage of our algorithm is optimized using efficient polynomial enumeration
algorithms.

For longer messages, the generic attack of Kelsey and Schneier becomes in-
creasingly better with the length, and quickly overperforms both Fuhr’s attack
and our enumeration-based attack. In this case, we develop another attack that
directly plugs into and speeds up the algorithm of Kelsey and Schneier. The at-
tack is based on the second stage of our short message attack, but uses different
parameters since in this case we try to find a second preimage for a potentially
huge number of targets.

The fact that our short message attack is faster than Fuhr’s attack may seem
surprising, as Fuhr’s attack is based on very simple and efficient algorithms for
solving linear equations, whereas our attack is based on exponential-time polyno-
mial enumeration algorithms. However, linear equations are much more difficult
to obtain than non-linear equations of relatively low degree. In particular, Fuhr
can obtain useful linear equations in only 7 or 8 variables in the first stage. The
complexity of interpolating and solving such a system is faster than exhaustive
search (which requires 27 or 28 function evaluations) only by a small factor. In
the second stage, [2] can not obtain any linear equations and proceeds by per-
forming an exhaustive search, which makes the attack faster than Kelsey and
Schneier’s attack only for very short messages. Another reason why our attack
is faster is that in the first stage we also exploit the weak diffusion of the input

This copy belongs to 'VANC03'



An Improved Algebraic Attack on Hamsi-256 91

variables into some of the output bits. This allows our enumeration algorithms
to evaluate some polynomials only over the possible values of small subsets of
variables in order to obtain the values for the entire variable set.

2 Description of Hamsi-256

In this section we provide a brief description of the compression function of
Hamsi-256. For more details, please refer to its specification [1].

The compression function of Hamsi-256 takes as an input a 32-bit message
block Mi and a 256-bit chaining value hi and outputs a new 256-bit chaining
value hi+1. The compression function first expands the 32-bit message to 8 blocks
of 32 bits using a linear code over GF (4): E(Mi) = (m0, m1, ..., m7). The ex-
panded message is then concatenated to the chaining value to form a 512-bit
state treated as a 4 × 4 matrix of 32-bit blocks as follows:

(m0, m1, ..., m7, c0, c1, ..., c7) −→
s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

=

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

The concatenation is followed by a permutation defined by three rounds, where
each round consists of three layers: In the first layer, the state bits are XORed
with some constants. In the second layer, the 128 4-bit columns of the state
undergo simultaneous applications of a 4 × 4 Sbox described in table 1.

Table 1. The Hamsi Sbox

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

The third layer consists of several parallel applications of a linear transforma-
tion L on the state.

(s0, s5, s10, s15) := L(s0, s5, s10, s15)
(s1, s6, s11, s12) := L(s1, s6, s11, s12)
(s2, s7, s8, s13) := L(s2, s7, s8, s13)
(s3, s4, s9, s14) := L(s3, s4, s9, s14)

Finally, the second and fourth rows of the state are discarded and the initial
chaining value hi is XORed with the remaining state to form hi+1. The last
message block is processed differently, by applying 8 rounds of this permutation
8 (instead of the standard 3).
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3 A Direct Attack on Hamsi-256

3.1 The Properties and Weaknesses of Hamsi-256 Which Are
Exploited by the Attack

In the direct attack our goal is to consider the 32 message bits as variables and
the 256-bit chaining value as a fixed input and analyze the degree of the state
bits after each one of the three rounds of the Hamsi-256 compression function
as polynomials in the message bits. Every Hamsi Sbox can be described as a
polynomial of degree 3 in its 4 input variables. However, due to the way the
expanded message bits and the chaining value bits are interleaved in Hamsi-
256, after 1 round of the compression function, each state bit is a polynomial of
reduced degree 2 in the message bits. This may seem insignificant, but after 2
rounds, the degree of each state bit as a polynomial in the message is at most
6 instead of the expected value of 32 = 9. After the final compression function
round, the degree is 18 instead of the expected 27. This low algebraic degree
can be used to obtain distinguishers on Hamsi-256 (as already noticed in [4] and
[5]), but even this reduced degree is too high for our algebraic attack. Instead,
we exploit the low diffusion property of one round of Hamsi-256, namely, that
several output bits of the compression function depend only on a small number
of inputs from the second round.

3.2 Analysis of Polynomials of Degree 6 in 32 Variables

Since the attack on Hamsi-256 relies on a slightly improved version of exhaustive
search, we have to use every possible saving and shortcut in the implementation
of our algorithms, and can not ignore constants or low-order terms. In particular,
we show how to efficiently interpolate and evaluate any polynomial of degree 6
in 32 variables for all the 232 possible values of its inputs using fewer than 7 ·232

bit operations (instead of the 264 complexity of the naive evaluation of the 232

possible terms for each one of the 232 possible inputs):

1. Given any black box implementation of the polynomial (e.g. in the form of
the Hamsi-256 program), evaluate the output of the polynomial (which is a
single bit value) only for input vectors of hamming weight ≤ 6 and store all
the results.

2. Compute the coefficient of each term tI of degree at most 6, where I ⊂
{0, 1, ...31}, |I| ≤ 6 represents some subset of variables multiplied together.
The coefficient of tI is computed by summing all the outputs of the polyno-
mial obtained from all inputs which assign 0 values to all variables that are
not contained in I (where the variables that are contained in I are assigned
all possible values).

3. Allocate an array of 232 bits and copy all the coefficients of the polynomial
into the array. The coefficient tI is copied into the entry whose binary index
is encoded by b0, b1, ..., b31 where bi = 1 if and only if i ∈ I. All the other
entries of the array are set to 0.

This copy belongs to 'VANC03'



An Improved Algebraic Attack on Hamsi-256 93

4. Apply the Moebius transform [8] on the array and obtain an array which
contains the evaluations of the polynomial for all 232 possible input values.

Step 1 requires
6∑

i=0

(
32
i

)
≈ 220 compression function evaluations. Step 2

requires
6∑

i=0

2i

(
32
i

)
< 226 bit operations. Step 3 can be combined with step 2

by writing the coefficients directly into the array and does not require additional
work. A naive implementation of step 4 requires 32 ·231 bit operations, since the
generic Moebius transform consists of 32 iterations, where in each iteration we
add half of the array entries to the other half. However, in our case, the initial
array can contain only about 220 non zero values, whose locations are known
and represent all the vectors with hamming weight of at most 6. In the first
iteration of the Moebius transform, we split the array into 2 parts according to
one variable and add only the entries whose index has a hamming weight of at
most 6 in the remaining 31 variables (the others entries are left unchanged). The

total complexity of the first iteration is thus
6∑

i=0

(
31
i

)
bit operations. In the

second iteration, each half of the array is split into 2 parts according to another
variable. Similarly, we add only the entries whose index has a hamming weight
of at most 6 in the remaining 30 variables. The total complexity of the second

iteration is thus 2
6∑

i=0

(
30
i

)
. Generally, the complexity of the j′th iteration where

0 ≤ j ≤ 25 is min(231, 2j

6∑
i=0

(
31 − j

i

)
). For 26 ≤ j ≤ 31, the complexity is 231.

Summing over all iterations, we get a total complexity of less than 7 · 232. We
note that it is also possible to use the Gray-code based polynomial enumeration
algorithm recently presented in [9] which is a bit more complicated than our
Moebius-based transform, and has a similar time complexity.

Assuming that the straightforward evaluation of one Hamsi-256 compression
function requires about 10, 500 bit operations, step 4 is the heaviest step and
dominates the complexity of the algorithm. Note that when analyzing several
polynomials which correspond to different output bits, step 1 needs to be per-
formed only once since every compression function evaluation gives us the values
of all the required polynomials. In addition, the bit locations XORed together
during the Moebius transformation do not depend on the evaluated polynomial,
and thus the evaluation of k unrelated polynomials can be achieved by XORing
k bit words instead of single bits. This is particularly convenient when k = 32
or k = 64, which are standard word sizes in modern microprocessors.

3.3 Efficiently Eliminating Wrong Messages

Assume that we are given a target chaining value h∗
i , and a fixed chaining value

hi−1. We would like to efficiently find a single message block Mi such that
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F(Mi, hi−1) = h∗
i , or decide that such a message does not exist for the given

hi−1, h∗
i . Due to the short message blocks of Hamsi-256, the probability to find

a desired message for random chaining values hi−1 and h∗
i is about 232−256 =

2−224. Hence, to succeed with high probability for a given h∗
i , we have to generate

about 2224 random values for hi−1. In order to obtain this number of chaining
values, the target h∗

i must be located at least in block number 8 of the message
(i.e. i ≥ 8). This implies that we can apply our attack only when the given
message contains at least 8 blocks.

The idea is to algebraically compute only a small set of output bits (indexed
by N) for all the 232 messages and compare their values to the values of those
bits of the target chaining value. If the bits match, we run the compression
function for the message to compute the whole 256-bit output, and compare
it to the target h∗

i . Otherwise, we discard the message. Using the algorithm of
section 3.2, we efficiently evaluate only the bits produced after 2 rounds of the
compression function, which are required in order to determine the output bits
specified by N . We then combine these values as specified by the last round,
and obtain the values of the output bits indexed by N for all the possible 232

messages.
In order to minimize the complexity of the attack, we need to select a set N

that is big enough to eliminate a large number of messages with high probability.
On the other hand, choosing N too big, will force us to evaluate many bits after
two rounds, increasing the complexity of the attack. In fact we don’t need to
analyze all the second round bits that are required to compute the output bits
N : We write the ANF form of the output bits N as a function of the second
round bits and note that the sum of the second round variables which are not
multiplied together (which we call the simple sum) is itself a polynomial of degree
6 in the message. Thus, the simple sum of each such output bit can be analyzed
in the same way as the second round bits without computing separately each
one of the summed bits. Note that in Step 1 of the analysis (interpolation),
evaluating the polynomial means computing the sum of variables numerically
from the output. The complexity of this computation is negligible compared to
a compression function evaluation of Hamsi-256.

After choosing the set N of output bits and the set of second round bits of
degree 6 S(N) we have to evaluate, we do the following:

1. Given that i ≥ 8: Choose an arbitrary message prefix of i − 8 blocks
M1, M2, ..., Mi−8 and compute hi−8 = F(M1, M2, ..., Mi−8, IV ) (which is
fixed throughout the attack). Use DFS to traverse the tree of chaining values
rooted at hi−8 by assigning values to the blocks
Mi−7, Mi−6, ..., Mi−1 and computing the next chaining value hi−1 (as shown
in figure 1). For each generated hi−1:

2. Evaluate all the bits of S(N) for all possible 32-bit message values using the
algorithm of Section 3.2 and list them as |S(N)| bit arrays of size 232.

3. Using the ANF form of the outputs bits of N as a function of the second
round bits, calculate |N | bit arrays of size 232 representing the values of the
|N | output bits for all the messages.
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4. Traverse the |N | bit arrays and check whether the values of the output bits
in N match the values of those bits in h∗

i , for each message Mi. Store all the
messages for which there is a match.

5. For each message Mi stored in the previous step, evaluate the full Hamsi-
256 compression function output by using its standard implementation and
check whether F(Mi, hi−1) = h∗

i . If equality holds, output
M = M1, M2, ..., Mi. Otherwise go to step 1.

The memory requirements of the algorithm can be reduced by calculating
the bits of N iteratively and eliminating wrong messages according to the cur-
rent calculated bit. We can then reuse some memory which was used for the
calculation of the previous bits of S(N) and which is not required anymore.

Given that |N | = n1, |S(N)| = n2, and the number of bit operations per
message that is required to compute N from S(N) is n3 (calculated using the
ANF form of the outputs bits), the complexity of the attack is about 2224(n3232+
7n2232 + 10500 · 232−n1) =
2256(n3+7n2+10500·2−n1) bit operations. Compared to exhaustive search which
requires about 10500 · 2256 bit operations, this gives an improvement factor of
about (n3+7n2

10500 + 2−n1)−1.
We searched for sets of output bits N that optimize the complexity of the

attack. The best set that we found is N = {5, 156, 184, 214, 221, 249} whose 6
output bits depend just on 56 second round bits. We also have to add 6 bits for
the simple sums of the second round variables, and the full list of 56+6 = 62 bits
is described in appendix A. For this parameter set we get that n2 = 62, n1 = 6
and the computation of all the evaluated output bits requires about n3 = 150
bit operations per message. We calculated this number after a few optimizations
which are based on finding some common parts in the ANF representation of the
output bit polynomials (which can be calculated only once). The improvement
factor (compared to exhaustive search) of this direct attack is therefore a very
modest (150+7·62

10500 +2−6)−1 ≈ 14. The memory complexity is about 64 · 232 = 238

bits and can be further reduced by iterative calculation of the output bits. We
also found another interesting set of parameters: N = {5, 156, 214, 221, 249} gives
a slightly worse improvement factor of 13.

4 Improving the Direct Attack by Using Pseudo
Preimages

While the direct attack seems to be worse than Fuhr’s attack [2] , it can be
the basis for substantial improvements. In this section we consider the general-
ized problem of finding a pseudo preimage, defined as a pair of a message block
and chaining value M̄i, h̄i−1 such that F(M̄i, h̄i−1) = h∗

i for a given value h∗
i .

Whereas in the direct attack described in the previous section we could only se-
lect our variables from the message, here we have the extra power of choosing our
variables also from the chaining value bits which are mixed less extensively than
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Fig. 1. A sketch of the second stage of the attack. After generating a prefix of chaining
values using arbitrary message blocks, we start to traverse a tree-like structure of
chaining values (shown as lightly filled boxes) using DFS: Each node is expanded into
232 successor nodes by selecting the next value for the 32-bit message block in all
possible ways .The tree has 8 levels so that the final level contains 2256 chaining values
(which is roughly the number of chaining values that we need to generate in order
to match the 256-bit target with high probability). The 7 − th level nodes are not
expanded by applying the Hamsi-256 compression function. Instead, we first efficiently
evaluate only a small set of bits for all the 232 possible message blocks. We then execute
the compression function only for the messages for which the evaluation of those bits
match the corresponding values of the target h∗

i . The attack succeeds once we find an
8 − th level node that matches the target.

the message bits by the Hamsi-256 compression function. By carefully choos-
ing these variables, we can lower the degree of the polynomials, allowing us to
compute these outputs more efficiently compared to the direct attack.

Our improved attack exploits the very interesting observations made by
Thomas Fuhr in section 3 of [2]. For a given message block M , we select our
variables from the state that precedes the first Sbox layer as follows: Let x(j)

denote the j′th bit of the 32-bit word x. We define one variable bit x(j) ∈ {0, 1}
for each j such that s

(j)
14 = 1 and set s

(j)
2 = x(j), s

(j)
10 = x(j). In addition, we

define one variable bit y(j) ∈ {0, 1} for each j such that s
(j)
1 = 1, s

(j)
9 = 0 and set

s
(j)
5 = y(j), s

(j)
13 = y(j). According to [2], after 2 rounds of the compression func-

tion of Hamsi-256, the state bits depend linearly on our variable set: We chose
our variable set such that after the first Sbox layer, only s2, s13 depend linearly
on our variable set. After the first round, only s2, s7, s8, s13 depend linearly on
our variable set. After the second Sbox layer, the dependency of the state on
the variables remains linear and the second diffusion layer does not change this
property. Note that for a random message, we expect |V1| = |{x(j)}j∈jx | = 16,
|V2| = |{y(j)}j∈jy | = 8. We define V = V1 ∪ V2 and for a random message we
expect |V | = 24.

The observations of [2] allow us to select a relatively large set of variables
such that the degree of all the output bits in those variables is 3. In addition,
there are 28 specific output bits that depend only on 16 state bits after 2 rounds
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of the compression function. The indexes of these bits are 150 − 156, 182 −
188, 214− 220, 246− 252. Moreover, each one of these output bits usually does
not depend on all of our input variables. We calculate for each of these output
bits the variables on which it actually depends, and efficiently enumerate (over
all their possible values) only a certain subset of output polynomials (whose size
we denote by α), called the analyzed polynomials or analyzed bits. We note that
the dependencies of the 28 output bits on our variable set are influenced by
the values of the message and the chaining value, but there are certain patterns
that are common to most messages and chaining value pairs. For example, if our
variable set contains 21 variables, there is usually an output bit which depends
on only 12 of our variables, another 1 or 2 output bits that depend on 13 of our
variables, another 2 or 3 output bits that depend on 14 of our variables and so
forth.

4.1 The Polynomial Analysis Algorithm

All the 28 polynomials defined above have degree of at most 3 in the input vari-
ables. Given a message, a corresponding set of variables and a chaining value, we
first interpolate the linear state bit polynomials of Hamsi-256 after 2 rounds. We
can then use the optimized Moebius transform of section 3.2 (adapted to cubic
polynomials) to efficiently evaluate any cubic polynomial, which corresponds to
output bits 150 − 156, 182− 188, 214− 220, 246− 252 over all its inputs. These
values are written into an array of size 2|S|, where S ⊆ V is the set of input
variables on which this polynomial depends. The enumeration algorithm starts
with an initialization phase that interpolates the coefficients of the cubic poly-

nomial by evaluating the function
3∑

i=0

(|S|
i

)
times and performing

3∑
i=0

2i

(|S|
i

)
bit operations. The evaluation can be done by running the compression func-
tion, but we can use the second round polynomials in order to speed up this
process: Given that we know the values of the 16 polynomials that are input
to the third round, we can calculate the value of the output bit by evaluating
4 Sboxes and summing 4 of their outputs. An evaluation of one Hamsi Sbox
output bit requires 8 bit operations (computing the 4 Sbox outputs requires 14
bit operations, but this number is reduced for individual bits), and the sum re-
quires 3 more bit operations giving a total of 35 bit operations per evaluation.
The 16 linear polynomials can be efficiently evaluated using a simple differential
method which requires an average of 16 bit operations per evaluation. In total,
one evaluation requires 16 + 35 = 51 bit operations and the initialization step

of the enumeration algorithm requires
3∑

i=0

(51 + 2i)
(|S|

i

)
bit operations. After

optimizations similar to the ones performed in section 3.2 (which exploit the
sparseness of the coefficients in the array in most iterations of the algorithm),
we get that the algorithm itself requires an additional number of 4 · 2|S| bit
operations.
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4.2 The Query Algorithm

Assume that we have already analyzed polynomials pi for 1 ≤ i ≤ α where pi

depends on a subset Si of the variables. The output of the enumeration of each pi

is a table of size 2|Si|. These α tables define a set of about 2|V |−α possible values
for the variables such that when they are used as chaining value bits which are
plugged into the compression function, the values of the α analyzed output bits
match those of the target. Clearly, the remaining values of the variables that do
not match the target can be safely discarded. However, these 2|V |−α solutions
are only implicitly given by the tables and we have to efficiently obtain their
explicit representation.

For example, assume that our set of variables is V = {v1, v2, v3, v4}, and
we have analyzed polynomials p1 that depends on S1 = {v1, v2, v4}, and p2 that
depends on S2 = {v2, v3, v4}. The table obtained after analyzing p1 contains 23 =
8 entries (an entry for each possible value of the variables of S1). Out of these
8 entries, only entries 000, 010, 110, 111 have a value that matches the value of
the corresponding bit of the target. The other 4 entries have the complementary
value (which does not match the value of the corresponding bit of the target).
Note that each entry actually corresponds to two assignments of the 4 variables
(For example, the point 001 corresponds to the assignments 0001 and 0011). Out
of the 8 entries of the table obtained after analyzing p2, the entries 000, 011, 110
have a value that matches the value of the corresponding bit of the target. Our
goal is to find the assignments to the 4 variables whose corresponding entries
in both tables match the bits of the target. The explicit set of solutions in our
example contains the points 0000, 0110, 1110.

A naive approach in order to obtain an explicit representation of the solutions
is to iterate the possible 2|V | values for the variables, and check whether the
value of the entry that corresponds to the value of the variables in each of one
of the tables matches the value of the corresponding analyzed bit (note that
we can discard a potential solution once the entry value in one of the tables
does not match the value of the corresponding analyzed bit). This algorithm
requires at least 2|V | bit operations. We can easily save a factor of 2 by iterating
only the values that match the target in one of the tables. However, we can
do even better by considering the actual variable sets on which each analyzed
output bit depends. The details and analysis of the improved query algorithm are
specified in the appendix of the extended version of this paper [12]. Its expected
complexity is |S1|+2|S1

⋃
S2|−1+...+2|

⋃α
i=1 Si|−α+1 bit operations. Note that this

complexity estimate is not symmetric with respect to the various Si’s, and thus
different orders of analyzing the various tables will yield different complexities.

4.3 Post Filtering the Solutions

After the query algorithm, we are left with 2|V |−α solutions and we have to
determine whether they indeed give a preimage which matches all the 256 bits
of the given chaining value h∗

i . One option is to simply run the compression
function and check whether the solutions match the target. However, it is more
efficient to apply the following post filtering algorithm first.

This copy belongs to 'VANC03'



An Improved Algebraic Attack on Hamsi-256 99

– For each solution, evaluate the remaining 28 − α output bits (that were
not analyzed) one by one, and compare the output to the corresponding
value of h∗

i . If the value of an output bit does not match the value of the
corresponding target bit, drop the solution.

For each solution, we expect to evaluate 2 additional bits (we always evaluate
one additional bit, a second bit is evaluated with probability 0.5, a third with
probability 0.25, and so forth). Evaluating a bit requires evaluation of the 16
input linear polynomials up to round 2 plus 35 additional bit operations for the
Sbox and XOR evaluations. A random linear polynomial in the |V | input bits has
about |V |

2 non zero coefficients, but this is not the case here. Our special choice of
variables makes them diffuse slowly into the state of Hamsi-256, and as a result,
our linear polynomials are very sparse and require about 3 bit operations per
evaluation. The 2 evaluations thus require 2(35 + 3 · 16) = 166 bit operations.
The post filtering requires in total about 166 ·2|V |−α bit operations. The number
of solutions that remain after the post filtering is about 2|V |−28 (i.e. we expect
to have less than one solution per system on average if |V | < 28), and running
the compression function after the post filtering requires negligible time.

4.4 Finding a Good Sequence of Analyzed Bits

In the previous sections we designed and calculated the complexities of the poly-
nomial analysis algorithm, the query algorithm, and the post filtering algorithm.
Given the sets S1, ..., S28 that correspond to the potential analyzed bits, we would
like to find a good sequence of analyzed bits (of size α) which minimizes the com-
plexity of the attack. Since there are many possible sequences, exhaustive search
for the optimal sequence of analyzed bits is too expensive and thus we used a
heuristic algorithm for this problem. A naive greedy algorithm which iteratively
builds the sequence by selecting the next analyzed bit i that minimizes the added
complexity 51|S|3 + 3 · 2|S| + 2|

⋃ i
j=1 Sj |−i+1 seems to give reasonable results, but

we got even better results by combining the greedy algorithm with exhaustive
search over short sequences, as described next.

1. Given the dependencies of the 28 potential analyzed bits, exhaustively search
for the optimal sequence of 3 analyzed bits that minimizes the sum of com-
plexities of the query algorithm and their analysis.

2. Fill in the remaining 28−3 = 25 bits of the sequence by iteratively searching
for the next analyzed bit i that minimizes the added complexity 51|S|3 +
3 · 2|S| + 2|

⋃i
j=1 Sj|−i+1 (the post-filtering complexity is the same given the

value of i).
3. Determine the length of the sequence α by calculating the total complexity

of the attack for each possible value of 1 ≤ α ≤ 28 and truncate the sequence
of 28 bits to size α.

The first step involves exhaustive search over 28!
25! < 214.5 sequences, each

requires a union of sets of at most |V | variables represented as bit arrays, and
an addition operation. The union requires |V | bit operations and the addition a
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few more bit operations since the terms 51|S|3 + 3 · 2|S| are computed only once
and can be rounded in order to nullify the least significant bits. Assuming that
|V | < 25, the complexity of the first step is about 219.5 bit operations, which
can be easily reduced to about 218.5 by considering the sequences in a more
clever way. The second and third steps take negligible time compared to the first
step. Note that this algorithm is performed before analyzing the polynomials,
although it is specified last.

4.5 Details of the Pseudo Preimage Attack on Hamsi-256

The details and analysis of the pseudo preimage attack on Hamsi-256 are speci-
fied below. The input of the algorithm is a chaining value h∗

i , and its output is
a message block M̄i and a chaining value h̄i−1 such that F(M̄i, h̄i−1) = h∗

i .

1. Generate the next message block M̄i (starting from the zero block, and
incrementing its value each time this step is performed).

2. Compute the set of variables V ′ = V1∪V2 according to M̄i. If |V ′| < 21 then
discard the message and go to step 1. Otherwise, obtain the final set of 21
variables V for the current message block by dropping |V ′| − 21 variables
from V ′. The variables that are dropped are arbitrarily chosen from the set
V1 (the variables are dropped from V1 since the variables of V2 tend to diffuse
more slowly into the state of Hamsi-256, as noted in section 4 of [2]).

3. Generate the next partial chaining value h̄i−1 , which does not assign values
to the variables (starting from the zero partial chaining value each time step
1 is performed, and incrementing its value each time this step is performed).
If no more partial chaining values exist, go to 1.

4. Given M̄i, V and h̄i−1, interpolate the linear state bit polynomials of Hamsi-
256 after 2 rounds.

5. For each of the 28 output bits (150 − 156, 182 − 188, 214 − 220, 246 − 252),
determine the variable subset on which it depends. This is done by retrieving
the 16 linear second round state bits on which the output bit depends, and
then performing a union over the variable subsets on which the 16 state bits
depend.

6. Determine the heuristically best sequence of analyzed bits according to the
algorithm in section 4.4.

7. Analyze the selected polynomials according to section 4.1.
8. Use the query algorithm of section 4.2 to determine the set of solutions.
9. Post filter the solutions according to section 4.3. If no solutions remain, go

to step 3.
10. For each remaining solution, compute the compression function after assign-

ing the value of the solution to the unspecified part of the partial chaining
value, and check whether the output is equal to the target. If there is a so-
lution for which equality holds, return the message and full chaining value.
Otherwise, go to step 3.

In order to find at least one pseudo preimage with high probability, we must
verify that we do not use too many degrees of freedom after throwing away mes-
sages and allocating the variables. We start with 32 degrees of freedom since
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the input to the Hamsi-256 compression function contains 256 + 32 = 288 bits,
(32 message bits and 256 chaining value bits) and the output of the compres-
sion function contains only 256 bits. We lose less than 0.5 degrees of freedom
by throwing away messages for which the number of variables is too small. In
addition, every variable sets one constraint on the input of the compression func-
tion and reduces the number of possible inputs to the compression function by
a factor of 2. Thus, we lose a degree of freedom per allocated variable and less
than 21.5 degrees of freedom overall. In total, we remain with a bit more than
32 − 21.5 = 10.5 degrees of freedom which are expected to result in more than
210 pseudo preimages for a random target.

We now estimate the complexity of the pseudo preimage attack: The com-
plexity of some steps can be easily computed: For a given set of variables, step 4
of the algorithms requires 22 compression function evaluations of Hamsi-256 and
21 · 512 < 214 bit operations. Step 5 takes negligible time. Step 6 requires about
218.5 bit operations. Step 10 requires 2|V |−28 compression function evaluations,
which takes negligible time compared to the other steps of the attack. However,
the complexity of the main steps of the attack 7 − 9 cannot be easily computed
since it depends on the message and the value of the chaining value used. Thus,
we can only estimate the complexity of the attack by running simulations for
randomly chosen messages and chaining values. In each simulation, we estimate
the complexity of the attack by summing the complexities of the steps above
with the complexity of steps 7− 9, as calculated in section 4.4. After thousands
of simulations we found that for about 95% of messages and chaining values
the attack is faster than exhaustive search by a factor which is at least 213.
The average complexity of the attack is slightly better than 2256−13.5 = 2242.5

compression function evaluations.
Interestingly, the techniques of our pseudo preimage attack can also be used

to speed up generic pseudo collision search algorithms on Hamsi-256 that are
based on cycle detection algorithms (such as Floyd’s algorithm [11]). The details
of the pseudo collision attack are described in the appendix of the extended
version of this paper [12].

5 Using Pseudo Preimages to Obtain Second Preimages
for Hamsi-256

Given a message M = M∗
1 ||M∗

2 ||...||M∗
� with 	 ≥ 9, we can use the naive meet-

in-the-middle algorithm (described in the appendix of the extended version of
this paper [12]) in order to find an expected number of 213.5/2 = 26.75 pseudo
preimages and use them as targets for the second preimage attack. This gives a
total complexity of about 2256−5.75 = 2250.25 compression function evaluations.
However, we can do better by using the result of section 3: Recall that our
algorithm for finding pseudo preimages has more than 10 degrees of freedom
left. We use 5 of the remaining degrees of freedom to set the input bits that
correspond to the output bits of the set N = {5, 156, 214, 221, 249} in all the
pseudo preimages to some fixed value. As specified in section 3.3, the set N
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represents the target bits for the direct second preimage attack on Hamsi-256
and this choice allows us to speed up the second phase by a factor of about
13 ≈ 23.7. In the first phase of the attack, the bits of N actually function as
input bits to the pseudo preimage search algorithm. The details of the algorithm
are specified below, where x is a numeric parameter:

1. Choose a target block with index of at least 9 (i.e. h∗
i with i ≥ 9) and use

the pseudo preimage search algorithm to find 2x pseudo preimages in which
the set of input bits {5, 156 + 128, 214 + 128, 221 + 128, 249 + 128} is fixed
to an arbitrary value. Note that the number 128 is added to some indexes
of N due to the truncation of the output of the compression function.

2. Use the direct second preimage search algorithm to find a second preimage
to one of the 2x pseudo preimages found in the previous step.

We note that we still have 10−5 = 5 degrees of freedom left, so we must choose
x ≤ 5 in the first step. The complexity of step 1 is about 2256−13.5+x = 2242.5+x

compression function evaluations. The complexity of step 2 is about 2256−x−3.7

compression function evaluations. To optimize the attack, we choose 2x = 30,
i.e x ≈ 4.9 for which the total complexity of the attack is about 2248.4, which is
about 27.6 ≈ 200 times better than exhaustive search.

The algorithm presented above works for any message that contains at least 9
blocks. However, this restriction can be removed with little additional cost using
an observation made by an anonymous referee of this paper: Since the 64-bit
message length is encoded in the last two 32-bit blocks, we can find a pseudo
preimage of the last intermediate chaining value with a non-zero message block.
The 32 bits of the message block function as the most significant bits of the
message length of our second preimage, which now contains enough blocks for
the attack. The chaining value of the pseudo preimage gives us the target which
we require for the algorithm above.

In addition, it is possible to improve the algorithm further by building a
layered hash tree, similar to the one used in [10]. The optimized algorithm yields
a less marginal improvement factor of 29 = 512 over exhaustive search, which
is about 20 times better than the attack published by Thomas Fuhr [2]. The
details of this algorithm are specified in the appendix of the extended version of
this paper [12].

6 Second Preimages for Longer Messages of Hamsi-256

The best known generic algorithm for finding second preimages for any Merkle-
Damg̊ard construction of hash functions is due to Kelsey and Schneier [3]. The
algorithm needs to undergo a slight adaptation in order to be applied to the
special structure of Hamsi-256 (see [2]). The complexity of the generic algorithm
for Hamsi-256 is k·2128+2256−k, where the message length satisfies 	 ≥ 4k+2k+8.
Hence, the algorithm developed in the previous section is better than the generic
algorithm only for k ≤ 9, i.e. for messages that contain at most 4·9+29+8 = 556
blocks. For longer messages, we design a different algorithm that combines the
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techniques used in section 3 with a modified version of the Kelsey and Schneier
algorithm. We elaborate only on the parts of the Kelsey and Schneier algorithm
that are relevant to our modified attack.

Given an 	 block message, in the the first phase of the Kelsey and Schneier
algorithm, the attacker generates a (p, q) expandable message for p = 4k and
q = 4k+2k−1 such that q+8 ≤ 	−1. This phase is left unchanged. We concentrate
on the second phase of the Kelsey and Schneier algorithm, where we apply the
compression function from a common chaining value and try to connect to one of
the chaining values obtained by one of the invocations of the compression function
during the computation of the hash of the given message. If the message is of size
about 2k, the complexity of this phase is 2256−k compression function evaluations,
which forms the bottleneck of the attack (assuming k < 128). Similarly to section
3, the idea is to speed up this phase simply by efficiently computing several bits of
the output for all possible 232 messages and filtering out messages which do not
connect to any of the targets. Assuming that we efficiently compute the values
of x output bits, then we still need to run the compression function a factor of
2−x+k times for x > k compared to the original algorithm.

Unlike section 3, a significant portion of the work here involves computing
the output bits (almost) directly, and a smaller portion of the work involves
analysis of the second round bits. The output bits are of degree 18 which is
too high to be analyzed efficiently. However, we can exploit polynomials of a
lower degree relatively easily. As in section 3.3, we use the ANF form of the
output bits as a function of the second round bits. The symbolic representation
is of degree 3 and we would like to get equations of degree 2. We remove all
terms of degree lower than 3 in the ANF form. We then linearize the system
of polynomials by assigning each distinct term of degree 3 a dedicated variable.
We perform Gaussian Elimination on the linearized system and get a system in
which about 120 rows contain only 1 variable and the rest of the rows contain
2 variables (each linearized variable represents 3 variables of round 2 multiplied
together). This is of course not sufficient in order to reduce the degree. However,
these linearized simple expressions (composed of 3 variables of degree 6 in the
message bits) can be handled separately by the technique specified in section
3.2. We select a set of x linear combinations from the rows which contain only
one linearized variables. The rest of the polynomial is of degree 2 · 3 · 2 = 12 in
the message bits, and is analyzed slightly differently. The analysis algorithm for
such a linear combination is specified below. Its input is an arbitrary chaining
value h and it outputs an array of size 232 that contains the evaluations of the
linear combination of the output bits for all possible 232 message blocks.

1. Analyze the 3 second round variables that appear in the expression of the
linearized variable of the linear combination, as specified in section 3.2.

2. Evaluate the remainder of the output bit combination on all input vectors
of hamming weight ≤ 12 and store the results.

3. Interpolate the coefficients of the output bit combination: Place all its values
in an array of size 232, where the values of entries of hamming weight ≥ 13
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are set to zero. Then apply the Moebius transform [8] on the array and take
only the coefficients of hamming weight ≤ 12 (the rest are known to be 0).

4. Apply the Moebius transform once more on the array and obtain the eval-
uations of the polynomial (not including the linearized variable) for all 232

possible input values.
5. Add the values of the linearized variable to the array by computing it from

the arrays produced in step 1.

Step 1 requires 3 · 7 · 232 = 21 · 232 bit operations. Step 2 requires
12∑

i=0

(
32
i

)
≈

232

10
compression function evaluations (which need to be performed once per

chaining value). In addition, step 2 requires several bit operations to compute
the value of the linear combination. Most of the linear combinations contain
fewer than 40 additions and step 2 requires additional 40 · 0.1 · 232 = 4 · 232

bit operations. Step 3 requires an application of the Moebius transform, which
takes 16 · 232 bit operations. However, only about 0.1 of the entries of the array
are relevant (the others are not accessed), hence the complexity is less than
2 · 232 bit operations. Step 4 requires the full 16 · 232 bit operations. Step 5
requires additional 3 · 232 bit operations. In total, the algorithm requires about
(21+4+2+16+3)·232 = 46·232 bit operations in addition to the 232

10 compression
function evaluations that are performed globally.

The algorithm to find the second preimage is specified below, where x is a
numeric parameter. It get as an input a message M∗

1 ||M∗
2 ||...||M∗

� and outputs
a message of the same length with the same Hamsi-256 hash value.

1. Generate a p, q expandable message for p = 4k and q = 4k + 2k − 1 such
that q + 8 ≤ 	 − 1.

2. Choose a set of x output bit combinations from the Gaussian elimination of
the third round output bits in terms of the second round variables, such that
each of these combinations contains a single expression of 3 second round
bits multiplied together.

3. Compute and store all the values of the x output bit combinations of all the
target chaining values h∗

i for p + 8 ≤ i ≤ q + 8.
4. Choose the common digest value of the expandable message h as a chain-

ing variable and traverse the chaining value tree rooted at h using DFS by
generating the next value for message blocks M1, M2, ..., M7 (as shown in
figure 1).

5. Compute the next chaining value h7 = F(M1, M2, ..., M7, h).
6. Analyze each one of the x output bit combinations as specified above for all

possible 232 values for the message block M8, with the input chaining value
h7.

7. Traverse the x bit arrays and check whether the values of the output combi-
nations match the values of the combinations of the target chaining values
h∗

i for p + 8 ≤ i ≤ q + 8, for each possible value of the message block M8.
Store all the messages for which there is a match.
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8. For each message block M8 stored in the previous step, evaluate the full
compression function and check whether F(M8, h7) = h∗

i for p+8 ≤ i ≤ q+8.
If equality holds, output the message
μi−8||M1||M2||...||M8||M∗

i+1||...||M∗
� , where μi−8 is a message prefix of size

i − 8 blocks (computed from the expandable message) such that
h = F(μi−8, IV ). Otherwise, if there is no match, go to step 4.

We analyze the complexity of the algorithm per chaining value h7 (i.e. steps
6− 8) in order to calculate the improvement factor of the attack over the generic
algorithm. The Kelsey and Schneier algorithm requires 232 compression function
evaluations per chaining value, whereas we use only 232

10 compression function eval-
uations. In addition, we require 46·x·232 bit operations in step 6. However, we can
optimize the complexity of this step for a group of combinations by taking com-
binations in which the linearized expressions share some common variables of the
second round (which need to be analyzed only once). In particular, we can easily
select a group of x combinations in which the x linearized expressions depend only
on 2 · x (instead of 3 · x) variables of the second round. This reduces the number
of bit operations in step 4 to 39 · x · 232. The improvement factor of the attack is
thus ( 1

10 + 39x
10500 + 2−x+k)−1. By selecting an optimal value for x, we get a total

improvement factor which is between 6 and 4 for all messages of practical length
containing up to 230 32-bit blocks, whereas Fuhr’s attacks [2] becomes worse than
the generic attack for all messages which are longer than 96 blocks.

7 Conclusions

In this paper, we presented several second preimage attacks on Hamsi-256 that are
based on polynomial enumeration algorithms. Our attacks are faster than Fuhr’s
attack for all message lengths, and unlike Fuhr’s attack they are faster than the
generic Kelsey and Schneier attack for all practical message sizes. Our new tech-
niques can be applied in principle to other hash algorithms whose compression
function can be described by a low degree multivariate polynomial, and demon-
strate the potential vulnerability of such schemes to advanced algebraic attacks.
In addition, our techniques can be used to speed up exhaustive search on secret
key algorithms (such as block cipher, stream ciphers and MACs) that can be de-
scribed by a low degree multivariate polynomial in the key bits. However, hash
function designs with a stronger finalization function and an intermediate state
that is bigger than the output (i.e ”wide-pipe” designs), seem to better resist our
attack.

Acknowledgements. The authors thank Orr Dunkelman and Nathan Keller for
helpful discussions that led to this paper. The authors also thank the anonymous
referees for their very helpful comments on this paper.
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T., Schläffer, M.: Distinguishers for the Compression Function and Output Trans-
formation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 87–103. Springer, Heidelberg (2010)

5. Boura, C., Canteaut, A.: Zero-sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)
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A Appendix: Parameters for the Direct Attack on
Hamsi-256

The 56 second round bits on which the set N = {5, 156, 184, 214, 221, 249} de-
pends are listed below:
{3, 9, 18, 28, 44, 56, 63, 68, 79, 86, 91, 92, 93, 96, 107, 121, 131, 156, 184, 191, 196, 214, 219, 220,

221, 224, 249, 256, 259, 265, 274, 275, 284, 300, 312, 319, 324, 335, 342, 347, 348, 349, 352, 363,

377, 387, 412, 440, 447, 452, 470, 475, 476, 477, 480, 505}. The 6 simple sums for the sets
N = {5, 156, 184, 214, 221, 249} are given in the table below:

Table 2. The 6 simple sums of the second round variables denoted by xi for 0 ≤ i < 512
for the output bits N = {5, 156, 184, 214, 221, 249}

Output Bit Simple Sum
5 x9 + x18 + x19 + x63 + x86 + x92 + x121 + x137 + x146 + x147 + x214 + x249

+x265 + x274 + x275 + x319 + x342 + x393 + x402 + x403 + x470 + x476 + x505
156 x3 + x28 + x79 + x156 + x191 + x207 + x259 + x284 + x387 + x412 + x447 + x463
184 1 + x56 + x63 + x107 + x235 + x319 + x347 + x447 + x475 + x491
214 1 + x9 + x86 + x121 + x137 + xv214 + x249 + x265 + x342 + x393 + x470 + x477 + x505
221 1 + x18 + x63 + x68 + x92 + x96 + x146 + x224 + x274 + x319

+x324 + x352 + x402 + x452 + x476 + x477
249 1 + x28 + x44 + x96 + x121 + x156 + x172 + x224 + x249 + x300

+x377 + x412 + x428 + x480 + x505
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Abstract. In this paper, we present new results on the second-round
SHA-3 candidate ECHO. We describe a method to construct a collision in
the compression function of ECHO-256 reduced to four rounds in 252 op-
erations on AES-columns without significant memory requirements. Our
attack uses the most recent analyses on ECHO, in particular the Super-
SBox and SuperMixColumns layers to utilize efficiently the available
freedom degrees. We also show why some of these results are flawed
and we propose a solution to fix them. Our work improves the time
and memory complexity of previous known techniques by using available
freedom degrees more precisely. Finally, we validate our work by an im-
plementation leading to near-collisions in 236 operations for the 4-round
compression function.

Keywords: Cryptanalysis, Hash Functions, SHA-3, ECHO-256, Collision
attack.

1 Introduction

Recently, the National Institute of Standards and Technology (NIST) initiated an
international public competition aiming at selecting a new hash function design
[12]. Indeed, the current cryptanalysis of hash functions like SHA-1 and MD5
show serious weaknesses [18,19,20,21]. To study hash functions, one of the most
powerful strategy is the differential cryptanalysis, which was introduced in [2] by
Biham and Shamir to study the security of block ciphers. It consists in following
the evolution of a message pair in the cipher by looking at the differences between
the messages while they propagate through the encryption process. This type of
analysis is particularly useful for studying hash functions where no secret-key is
involved: in this known-key model [5], the attacker can thus follow the message
pair at each step of the process. Knudsen generalized the idea in [4] with the
concept of truncated differentials, aiming at following the presence of differences
in a word, rather than their actual values. Initiated by the work of Peyrin on
Grindhal [13], this kind of analysis leads to many other successful attacks against

� This author was partially supported by the French ANR project SAPHIR II and the
French Délégation Générale pour l’Armement (DGA).

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 107–127, 2011.
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block ciphers and hash functions, in particular those based on the AES [6,10]
like ECHO. For the AES, since all differences are equivalent, only their presence
matters.

Thanks to the SHA-3 contest, new kinds of attacks for AES-based permu-
tations have been suggested in the past few years, in particular the rebound
attack [10] and the start-from-the-middle attack [9]. In both cases, the novelty
is to start searching for a message pair conforming to a given differential path
in the middle of the trail. Doing so, we have the freedom of choosing values and
differences where they can reduce greatly the overall cost of the trail.

The rebound technique uses these degrees of freedom to fulfill the most expen-
sive part of the trail at very low average complexity whereas the remaining of the
path is verified probabilistically. The number of controlled rounds in that case
can not exceed two rounds. The start-from-the-middle technique improves the
rebound attack in the sense that it uses the independence in the search process
as much as possible. Consequently, it extends the number of controlled rounds
to three, without any extra time.

In the present case of ECHO, Schläffer uses in [17] the idea of multiple inbound
phases on two different parts of the whole path. Similar techniques have been
introduced on Whirlpool [6] and on the SHA-3 proposal LANE [8]. In comparison
to the rebound or the start-from-the-middle techniques, we are not limited to a
controlled part located in the middle of the path. In the end, the partial message
pairs are merged using remaining degrees of freedom. Schläffer’s nice attacks
permute some linear transformations of the ECHO round function to introduce
the SuperMixColumns layer, which relies on a large matrix presenting non-
optimal diffusion properties. It thus allows to build sparser truncated differential.
In this paper, we show that the latest analyses of ECHO made by Schläffer fail
with high probability at some point of the merging process: the attacks actually
succeed with probability 2−128. Nevertheless, we suggest an attack using degrees
of freedom slightly differently to construct collisions and near-collisions in the
compression function of ECHO-256 reduced to four rounds.

Our new techniques improve the rebound attack by using freedom degrees
more precisely to get and solve systems of linear equations in order to reduce
the overall time and memory complexity. We also describe a similar method
as the one described by Sasaki et al. in [16] to efficiently find a message pair
conforming to a truncated differential through the SuperSBox when not all
input or output bytes are active. Both new techniques allow to repair some
of the Schläffer’s results to construct collisions in the compression function of
ECHO-256. To check the validity of our work, we implement the attack to get a
semi-free-start near-collisions in 236 computations. That is, a chaining value h
and a message pair (m, m′) colliding on 384 bits out of 512 in the compression
function f reduced to four rounds: f(h, m) =384 f(h, m′).

We summarize our results in Table 1.
The paper is organized as follows. In Section 2, we quickly recall the spec-

ifications of the ECHO hash function and the permutation used in the AES. In
Section 3, we describe the differential path we use and present an overview of
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Table 1. Summary of results detailed in this paper and previous analyses of ECHO-
256 compression function. We measure the time complexity of our results in terms
of operations on AES-columns. The notation n/512 describe the number n of bits on
which the message pair collides in the near-collisions. Result from [17] have not been
printed since flawed.

Rounds Time Memory Type Reference

3 264 232 free-start collision [14]

3 296 232 semi-free-start collision � [14]

4.5 296 232 distinguisher [14]

4 236 216 semi-free-start near-collision 384/512 This paper

4 244 216 semi-free-start near-collision 480/512 † This paper

4 252 216 semi-free-start collision This paper
� With chosen salt
† This result is an example of other near-collisions that can be derived from the attack

of this paper.

the differential attack to find a message pair conforming to this path. Then, in
Section 4, we present the collision attack of ECHO-256 compression function re-
duced to four rounds. Finally, we conclude in Section 5. We validate our results
by implementing the near-collision attack.

2 Description of ECHO

The hash function ECHO updates an internal state described by a 16× 16 matrix
of GF

(
28
)

elements, which can also be viewed as a 4 × 4 matrix of 16 AES
states. Transformations on this large 2048-bit state are very similar to the one of
the AES, the main difference being the equivalent S-Box called BigSubBytes,
which consists in two AES rounds. The diffusion of the AES states in ECHO
is ensured by two big transformations: BigShiftRows and BigMixColumns
(Figure 1).

BigSB

0
1
2
3

BigSR

0
1

2
3

BigMC

2 rounds AES AES MixColumns

Fig. 1. One round of the ECHO permutation. Each of the 16 cells is an AES state (128
bits).

At the end of the 8 rounds of the permutation in the case of ECHO-256, the
BigFinal operation adds the current state to the initial one (feed-forward) and
adds its four columns together to produce the new chaining value. In this paper,
we only focus on ECHO-256 and refer to the original publication [1] for more
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details on both ECHO-256 and ECHO-512 versions. Note that the keys used in
the two AES rounds are an internal counter and the salt, respectively: they
are mainly introduced to break the existing symmetries of the AES unkeyed
permutation [7]. Since we are not using any property relying on symmetry and
that adding constants does not change differences, we omit these steps.

Two versions of the hash function ECHO have been submitted to the SHA-
3 contest: ECHO-256 and ECHO-512, which share the same state size, but inject
messages of size 1536 or 1024 bits respectively in the compression function. Fo-
cusing on ECHO-256 and denoting f its compression function, Hi the i-th output
chaining value, Mi = M0

i || M1
i || M2

i the i-th message block composed of three
chunks of 512 bits each M j

i and S = [C0C1C2C3] the four 512-bit ECHO-columns
constituting state S, we have (H0 = IV ):

C0 ← Hi−1 C1 ← M0
i C2 ← M1

i C3 ← M2
i

AES. We recall briefly one AES round on Figure 2 and refer as well to original
publication [11] for further details. The MixColumns layer implements a Max-

SB

0
1
2
3

SR

0
1

2
3

MC AK

AES S-Box mul. by a MDS matrix

Fig. 2. One round of the AES permutation is the succession of four transformations:
SubBytes (SB), ShiftRows (SR), MixColumns (MC) and AddKey (AK). Each of the
16 cells is an element of GF

(
28
)

(8 bits).

imum Distance Separable (MDS) code that ensures a complete diffusion after
two rounds. It has good diffusion properties since its branch number, i.e. the
sum of input and output active bytes, is always 0 or greater or equal than 5.
As for the AES S-Box, it satisfies an interesting differential property: namely,
a random differential transition exists with probability approximately 1/2. By
enumerating each input/output difference pair, this result can be computed and
stored in 216 in the difference distribution table Δ. At the position (δi, δo), this
table contains a boolean value whether the differential transition δi → δo exists.
That is, if the equality S(λ) + S(λ + δi) = δo holds for at least one element
λ ∈ GF

(
28
)
, S being the AES S-Box. We note that this table can be slightly

enlarged to 219 to store one solution when possible.

Notations. Throughout this paper, we name each state of the ECHO permu-
tation after each elementary transformation: starting from the first state S0, we
end the first round after 8 transformations1 in S8 and the four rounds in S32.
Moreover, for a given ECHO-state Sn, we refer to the AES-state at row i and

1 Transformations are: SR - SB - MC - SB - SR - BSR - MC - BMC.

This copy belongs to 'VANC03'



Collisions and ECHO 111

column j by Sn[i, j]. Additionally, we introduce column-slice or slice to refer to
a thin column of size 16 × 1 of the ECHO state. We use ECHO-column or simply
column to designate a column of ECHO, that is a column of four AES states.
Similarly, ECHO-row or row refer to a row of the ECHO state; that is, four AES
states.

3 Differential Attack for Hash Functions

To mount a differential attack on a hash function, we proceed in two steps. First,
we need to find a good differential path, in the sense that, being probabilistic, it
should hold with a probability as high as possible. In the particular case of AES-
based hash functions, this generally means a path with a minimum number of
active S-Boxes. In comparison with the differential attacks where fixed differences
chosen for their high probability go along with the differential path, for this
particular design, all differences behave equivalently. Thus, the path is actually
a truncated path, precising only whether a difference exists or not.

Second, we have to find a pair of messages following that differential path,
which fixes values and differences. In the sequel, we present an equivalent de-
scription of the ECHO-permutation and then detail our choice of differential path,
using the new round description. The part of the attack that finds a valid message
pair for this path using the equivalent description is detailed in Section 3.3.

3.1 Reordering of Transformations in the ECHO Permutation

SuperSBox. The concept of SuperSBox was independently introduced by
Lamberger et al. in [6] and by Gilbert and Peyrin in [3] to study two AES rounds.
By bringing the two non-linear layers together, this concept is useful to find a
message pair conforming to a given differential path and leads to a new kind of
cryptanalysis. The design of one AES round describes the sequence SB-SR-MC
of transformations2, but we can use the independence of bytes to reorder this
sequence. Namely, dealing with the non-linear BigSubBytes layer of ECHO, we
can permute the first ShiftRows with the first SubBytes without affecting the
final result of the computation. We then glue the two non-linear layers into a
unique SB-MC-SB non-linear transformation of the permutation. The so-called
SuperSBox transformation is then viewed as a single non-linear layer operating
in parallel on 32-bit AES-columns.

SuperMixColumns. In a similar way, by permuting the BigShiftRows trans-
formation with the parallel MixColumns transformations of the second AES
round, a new super linear operation has been introduced by Schläffer in [17],
which works on column-slices of size 16 × 1.

This super transformation called SuperMixColumns results of 16 parallel
applications of MixColumns followed by the equivalent in ECHO, that is Big-
MixColumns. This super transformation is useful for building particular sparse
2 While omitting the key adding.
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truncated differential. The matrix of the SuperMixColumns transformation
is defined as the Kronecker product (or tensor product) of M with itself, M
being the matrix of the MixColumns operation in the AES: MSMC = M⊗M.
Schläffer noted in [17] (in Section 3.3) that MSMC is not a MDS matrix and its
branch number is only 8, and not 17.

From this observation, it is possible to build sparse truncated differentials
(Figure 3) where there are only 4 active bytes in both input and output slices
of the transformation. The path 4 → 16 → 4 holds with probability 2−24, which
reduces to 28 the number of valid differentials, among the 232 existing ones.
For a given position of output active bytes, valid differentials are actually in a
subspace of dimension one. In particular, for slice s, s ∈ {0, 4, 8, 12}, to follow
the truncated differential 4 → 16 → 4 of Figure 3, we need to pick each slice of
differences in the one-dimensional subspace generated by the vector vs, where:

v0 = [E000 9000 D000 B000]T v4 = [B000 E000 9000 D000]T

v8 = [D000 B000 E000 9000]T v12 = [9000 D000 B000 E000]T

MC BMC

SuperMixColumns

Fig. 3. The SuperMixColumns layer in the particular case of the truncated differ-
ential 4 → 16 → 4

This new approach of the combined linear layers allows to build sparser trun-
cated differentials but caused erroneous conclusions when it was used in [17] (in
Section 4.1). Namely, at the end of the attack, where two partial solutions need
to be merged to get a solution for the whole differential path, everything relies
on this critical transformation: we need to solve 16 linear systems. We detail
more precisely the problem in Section 3.4, where we study the merge process.

3.2 Truncated Differential Path

As in the more recent analyses of ECHO [15,17], we consider the path at the
byte-level: this allows to build paths sparser than the ones we could obtain by
considering only the AES-state level [1,3,9]. Our path is mostly borrowed from
[17] and counts 418 active S-Boxes for the ECHO-permutation reduced to four
rounds. In comparison to the path from [17], we increase significantly the number
of active S-Boxes in the first round to decrease the time complexity of the attack.
We note that the number of active S-Boxes is not directly correlated with the
complexity of the attack. Moreover, in that case of an AES-based permutation,
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we can consider a truncated differential path because the actual differences are
not really important since they are all equivalent: only their presence matters.

Figure 4 presents the truncated differential path used in this attack on the
compression function reduced to four rounds. The attack being quite technical,
colors have been used in order to improve the reader’s understanding of the
attack.

3.3 Finding a Message Pair Conforming to the Differential Path

Strategy. To find a message pair that follows the differential path of Figure 4,
our attack splits the whole path into two distinct parts and merges them at
the end. In the sequel, we refer to these two parts as first subpart and second
subpart. The attack of Schläffer in [17] proceeds similarly but uses the rebound
attack technique in the two subparts. We reuse this idea of finding message pairs
conforming to partial truncated parts but most of our new techniques avoid
the rebound attack on the SuperSBox. Both subparts are represented in the
Figure 4: the first one starts in S7 and ends in S14 and fixes the red bytes of
the two messages, whereas the second one starts at S16 until the end of the four
rounds in S31 and fixes the yellow bytes. Additionally, the chaining value in the
first round of the path are the blue bytes.

SuperSBox. In the differential path described on Figure 4, there are many
differential transitions through the SuperSBox of the third round where input
differences are reduced to one active byte. We are then interested in differential
transitions such as the one described in Figure 5. For this kind of transition,
the distribution difference table of the SuperSBox would work but requires 264

to be computed and stored3. We show that we can compute a pair of columns
satisfying this path in 211 operations on one AES-column.

Let us consider the input difference to be Δi = [δi, 0, 0, 0]T reduced to one
active byte δi and the output difference Δo =

[
δ1
o , δ2

o , δ3
o , δ4

o

]T: we aim at finding
a pair of AES-columns (c1, c2) conforming to those differences; that is: c1 + c2 =
Δi and SuperSBox(c1)+SuperSBox(c2) = Δo. In a precomputation phase of
216, we compute and store the differential distribution table of the AES S-Box.

Δi

δi

SB

λ

Δ′
i

δ′i
MC

λ1

λ2

λ3

λ4

Δ′
o

δ1
o
′

δ2
o
′

δ3
o
′

δ4
o
′

SB

Δo

δ1
o

δ2
o

δ3
o

δ4
o

Fig. 5. A SuperSBox differential transition with only one active input byte

3 In that case, we could compute and store smaller tables in 240 for the four possible
positions of active bytes.
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Fig. 4. The differential path used in this attack on the ECHO-256 compression function
reduced to four rounds. To find a valid pair of messages, we split the path into two parts:
the first subpart between S7 and S14 (red bytes) and the second subpart between S16
and S31 (yellow bytes). Black bytes are the only active bytes, blue bytes come from
the chaining value and gray bytes in the first round are set to get a collision (or a
near-collision) in the compression step.
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The differential properties of the AES S-Box restrict the number of output
differences of the first SubBytes layer to 27−1 and for each one, the underlying
values are set. Denoting δ′i one of the output differences of this layer and λ the
associated value such that S−1(λ) + S−1(λ + δ′i) = δi, we can propagate this
difference Δ′

i = [δ′i, 0, 0, 0]T linearly to learn the four differences at the input of
the second SubBytes layer. We note Δ′

o = MC(Δ′
i) = [δ1

o
′
, δ2

o
′
, δ3

o
′
, δ4

o
′]T those

differences. Here, both the input and the output differences are known and the
four differential transitions δi

o
′ → δi

o exist with probability approximately 2−4.
Since we can restart with 27 − 1 different δ′i, we get approximately 23 valid dif-
ferential transitions. Each of these transitions fixes the underlying values, noted
λ1, λ2, λ3, λ4. At this point, all intermediate differences conform to the path, but
in terms of values, we need to ensure that λ is consistent with λ1, λ2, λ3, λ4. To
check this, we exhaust the 24 valid vectors of values we can build by interchanging
λi and λi + δi

o
′.

All in all, among the 23+4 vectors of values we can build, only a fraction 2−8

will satisfy the 8-bit condition on λ. This means that the considered differential
transition Δi → Δo through the SuperSBox occurs with probability 2−1 and if
the transition exists, we can recover an actual AES-column pair in 27 24 = 211

operations.

3.4 Overview of the Attack

In this subsection, we describe the main steps used to find a message pair con-
forming to the differential path. We begin by the sensitive part of the attack,
which caused erroneous statements in [17]: the merging phase of the two partial
solutions.

Merging step. Assume for a moment that we solved both subparts of the
path, i.e. the red bytes between S7 and S14 are fixed as well as the yellow ones
between S16 and S31: we have two partial solutions for the complete differential
path. The truncated differential of Figure 4 is then partially verified but to merge
the two parts, we need to set the white bytes so that the SuperMixColumns
transition from S14 to S16 is possible.

Due to the particular construction of MSMC , some algebra considerations
show that for the already-known values in S14 (red) and S16 (yellow), the Su-
perMixColumns transition will not be possible unless a 128-bit constraint is
satisfied: the remaining degrees of freedom can not be used to satisfy this rela-
tion. Since all of the 16 column-slices of the considered matrices are independent,
this leads to 16 constraints on 8 bits.

The flaw in [17] is to assume these relations are true, which holds only with
probability 2−128, whatever the value of unset bytes are. These equalities need to
be true so that the 16 linear systems have solutions. The first system associated
to the first slice is given by:

MSMC

[
a0 x0 x1 x2 a1 x3 x4 x5 a2 x6 x7 x8 a3 x9 x10 x11

]T
=[

b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]T (1)
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where ai and bi are known values, xi are unknowns and ∗ is any value in GF
(
28
)
.

This system has solutions if a particular linear combination of [a0, a1, a2, a3]
T

and [b0, b1, b2, b3]
T lies in the image of some matrices: this constraints the

already-known values to verify an 8-bit relation. The constraint comes from
the fact that MSMC is the Kronecker product M ⊗ M. For example, in the
following, we denote by ai, 0 ≤ i ≤ 3, the four known values of slice 0 of S14
coming from the first subpart (red) and bi the known values for the same slice
in S16, from the second subpart (yellow). With this notation, the first system
will have solutions if and only if the following condition is satisfied:

2a0 + 3a1 + a2 + a3 = 14b0 + 11b1 + 13b2 + 9b3. (2)

See Appendix A for the detailed proof. These constraints for each slice of the
SuperMixColumns transition can also be viewed in a different way: consider
all the bi known for all slices, thus we can only pick 3 out of 4 ai per slice
in S14 and determine the last one deterministically. Alternatively, due to the
ShiftRows and BigShiftRows transitions, we can independently determine
slices 0, 4 and 8 in S12 so that slice 12 of S12 would be totally determined. This
transfers the problem into the first subpart of the path.

Step 1. We begin by finding a pair of ECHO-columns satisfying the truncated
path reduced to the first ECHO-column between S7 and S12. This is done with
a randomized AES-state of the column, used to get and solve linear equations
giving all differences between S7 and S9. Indeed, differences between S7 and S9
for the first column only depend on the four differences in S7[2,0]4. Then, we
search for valid differential transitions through the AES S-Box between S9 and
S10 to finally deduce a good pair of ECHO-columns. This step can be done in 212

operations on AES-columns (Section 4.1).

Step 2. Once we solved the first ECHO-column, we can deduce all differences be-
tween S12 and S16: indeed, the wanted SuperMixColumns transition imposes
them as discussed in Section 3.1. This step is done in constant time (Section 4.2).

Step 3. Now that we have the differences in S16, we have a starting point to
find a message pair for the second subpart of the whole truncated path: namely,
states between S16 and S31 (yellow bytes). To do so, the idea is similar as
in Step 1: since all differences between S20 and S24 only depend on the four
differences of S245, we can use a randomized AES-column c in S18 to get four
independent linear equations in S20 and thus deduce all differences between S20
and S24. Then, we search for input values for the 15 remaining SuperSBoxes,
which have only one active byte at their input (Section 3.3). This succeeds with
probability 2−15 so that we need to retry approximately 215 new random c. The
whole step can be done in 226 operations on AES-columns (Section 4.2).
4 Linear relations can be deduced by linearly propagating differences in S7[2,0] for-

wards until S9.
5 Linear relations can be deduced by linearly propagating the four differences of

S24[0,0] backwards until S20.

This copy belongs to 'VANC03'



Collisions and ECHO 117

Being done, the truncated path is followed until the end of the four rounds in
S32. Note that we can filter the MixColumns transition between S26 and S27
in a probabilistic way so that less slices would be active in S32.

Step 4. Getting back to the first subpart of the truncated path, we now find
a valid pair of ECHO-columns satisfying the truncated path between S7 and S12
reduced to the second ECHO-column. This is basically the same idea as in Step 1.
This can be done in 212 operations on AES-columns as well (Section 4.3). Note
that this step could be switched with Step 3.

Step 5. To construct a valid pair of ECHO-columns satisfying the truncated
path between S7 and S12 reduced to the third ECHO-column, we proceed as
before (steps 1 and 4), but we start by randomizing three AES states instead of
one: indeed, differences between S7 and S9 at the input of the non-linear layer
now depend on 12 differences, the ones in S7[0,2], S7[1,2] and S7[3,2]. Getting
12 linear systems then allow to learn those differences and we can finally search
for four valid differential transitions through the AES S-Box in 24 operations on
AES-columns (Section 4.3).

Step 6. The merging step in [17] fails with high probability, but we know how to
get into the valid cases: since the three first ECHO-columns of the first subpart are
now known, we can deduce the whole last ECHO-column allowing the 16 needed
equations mentioned before. There is no freedom for that column, so we are left
with a probabilistic behavior to check if it follows the column-reduced truncated
differential. We then propagate the pair of deduced values backwards until S8
and check if the invBigMixColumns transition behave as wanted: namely, four
simultaneous 4 → 3 active bytes, which occurs with probability (2−8)4. Hence,
we need to restart approximately 232 times the previous Step 5 to find a valid
pair of ECHO-columns satisfying both the path between S7 and 12 and the 128-
bit condition imposed by the merging step. This step can be performed in 236

operations on AES-columns (Section 4.3).

Step 7. To get a collision in the compression function, we then need to take
care of the compression phase in the BigFinal operation: the feed-forward and
the xor of the four ECHO-columns. The collision is reached when the sum of
the two active AES-states per row in S0 equals the active one in S32. We have
enough degrees of freedom to determine values in associated states of S7 (gray)
to make this happens. Together with the probabilistic filter of Step 3, this step
may impose the global time complexity of the attack; so, weakening the final ob-
jective (to get a near-collision, for instance) can make the whole attack practical
(Section 4.4).

Step 8. The last step consists in filling all the remaining bytes by solving the
16 linear systems mentioned in Step 6, while taking care at the same time that
the invBigMixColumns between S8 and S7 reaches the values determined by
Step 7. Due to the particular structure of the solution sets, the systems can be
solved in parallel in 232 operations on AES-columns (Section 4.5).
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4 Collision on the 4-Round Compression Function

4.1 Partial Message Pair for the First Subpart

This step aims at finding a pair of ECHO-columns satisfying the truncated dif-
ferential of Figure 6. We consider the first column separately from the others in
order to reach a situation where the merging process will be possible. Indeed,
once we fix a slice, we can determine the differences at the beginning of the
second subpart in S16.

BMC SR SB MC

δλ0
λ1
λ2
λ3

S7 S8 S9 S10 S11

(a) Truncated differential. (b) Flow of AES states.

Fig. 6. Truncated differential path (a) used for the first subpart of the attack for one
ECHO-column. We represent on (b) the order in which AES states are randomized (black)
or deduced by a small rebound attack (gray).

The previous method suggested in [17] (in Section 4.1) to find paired values
following this truncated differential is a rebound attack working in time 232 and
using the differential distribution table of the SuperSBox of size 264. We show
how we can find an ECHO-column pair conforming to this reduced path in 212

operations on AES-columns without significant memory usage.
Rather than considering the whole column at once, we start by working on

the top AES state in S11, that is S11[0,0]. We begin by choosing random values
(λ0, λ1, λ2, λ3) for the first AES-column of S11[0,0] (blue bytes), such that the
active byte is set to difference δ, also chosen at random in GF

(
28
)\{0}. Starting

from S11[0,0] and going backwards, those values and differences are propagated
deterministically until S8[0,0]. Since there is only one active byte per slice in the
considered ECHO-column of S7, each of the associated four slices of S8 lies in a
subspace of dimension one. Therefore, solving four simple linear systems leads
to the determination of the 12 other differences of S8.

Therefore, in the active slice of S9 of Figure 6 at the input of the SubBytes
layer, the four first paired bytes have values and differences known, whereas in
the 12 other positions, only differences are set. Our goal now is to find good val-
ues for these byte pairs, which can be achieved by a small rebound attack on the
AES S-Box where the output differences are propagated from S11 by choosing
random differences. Thus, we iterate on the (28)3 possible unset differences of
S11 and propagate them linearly to S10. When both input and output differ-
ences of the 12 AES S-Boxes are known, we just need to ensure that these 12
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differential transitions are possible. This is verified by the precomputed table6

Δ. It ensures that the 12 transitions will occur simultaneously with probabil-
ity 2−12. Since we can try approximately (28)3 output differences, we will have
about (28)3 2−12 (24)3 ≈ 224 different vectors of values by trying them all. The
factor (24)3 comes from the possibility of interchanging the two solutions of the
equations 12 times to get more vectors of values7.

All in all, for any λ0, λ1, λ2, λ3, δ picked at random in GF
(
28
)

(with non-null
difference), we can find 224 ECHO-column pairs in S12 in 212 such that the asso-
ciated truncated differential from S12 to S7 is verified. We could thus build ap-
proximately 224+8×5 = 264 pairs of ECHO-columns following the column-reduced
truncated differential.

4.2 Finding a Message Pair for the Second Subpart

We now get a partial message pair conforming to the first subpart of the trun-
cated path reduced to a single ECHO-column. Rather than completing this partial
message pair for the three other active slices in S12, we now find a message pair
conforming to the second subpart of the truncated path, located in the third
round from S16 to S24 (yellow bytes).

Indeed, the mere knowledge of a single active slice pair of S12 in the first
subpart is sufficient to get a starting point to find a message pair for the second
subpart, i.e. yellow bytes. This is due to the desired transition through the Su-
perMixColumns transition: as explained in Section 3.1, differences in S14 lie
in one-dimensional subspaces. Once a slice pair for the first slice of S12 is known
and computed forwards to S14 (black and red bytes on Figure 7), there is no
more choice for the other differences in S14. Finally, all differences between S12
and S17 have been determined by linearity of involved transformations.

S12

SR

S13

BSR

S14

SuperShiftRows

Fig. 7. The SuperShiftRows layer where only the values and differences of the first
slice of S12 are known (black and red bytes)

At this point, only input differences of SuperSBoxes of the third round are
known. We note that all operations between S20 and S24 are linear, so that all
differences in those states only depend on the four differences of S24. We denote
6 This is the differential distribution table of the AES S-Box, which required 216 bits

to be stored.
7 There are cases where four solutions exist, but for simplicity, we consider only the

more common two-solution case.
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by ki the non-null difference of column slice i ∈ {0, 1, 2, 3} in state S24. By lin-
early propagating differences in S24 backwards to S20, we obtain constraints on
the 64 output differences of the SuperSBox in S20. To find the actual differ-
ences, we need to find the four ki and thus determine four independent linear
equations. Considering arbitrarily the first AES-column of S20[0,0] (Figure 8),
differences are: [84k0, 70k3, 84k2, 70k1]

T (black bytes).

δ λ0

λ1

λ2

λ3

MC

S18[0,0]

SB

S19[0,0] S20[0,0]

Fig. 8. The MixColumns and SubBytes transitions on the first AES-column be-
tween S18[0,0] and S20[0,0]

Starting from S18, let δ a random difference among the 27 − 1 possible ones
imposed by S17 for the considered columns (Figure 8). Any choice imposes the
value associated to the differential transition as well: we denote it λ0. At this step,
we introduce more freedom by picking random values for the three remaining
bytes of the column: (λ1, λ2, λ3). Note that we can choose (28)3 = 224 of them
and thus 231 starting points in total. After this randomization the AES-column
in S18, the same AES-columns in S19 and S20 are fully determined. We then
need to link the four bytes with the differences provided by the right part of
the path from S24 to S20: this is done by simple algebra by solving four linear
equations in four variables, which are ki, 0 ≤ i ≤ 3.

After solving, we have the four differences ki of state S24: we propagate them
backwards from S24 to S20 and learn all the differences between S20 and S24.
Only one pair of AES-columns out of the 16 was used in S18 to deduce differences
ki in S24, so we now try to find values for the 15 left (Figure 9).

Each of the remaining AES-columns, can be viewed as a differential transition
through a SuperSBox between S17 and S20 where all differences have been

S17

SB

S18

MC

S19

SB

S20

SuperSBox

Fig. 9. Last step to get a message pair conforming to the second subpart of the path:
finding the 15 remaining AES-columns using the SuperSBox properties. Black bytes
are active and yellow bytes have already been defined in the previous step, as well as
differences of the first AES-column of the first AES-state. Gray bytes are inactive and
the target of this step.
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previously set. As described in 3.3, we have 15 differential transitions through
the SuperSBox with only one input active byte in each. The 15 transitions
occur simultaneously with probability 2−15 and if so, we can recover the 15 AES-
column pairs in parallel in 211 using the technique previously described. Since
there are 15 AES-columns to find in S17, we need to generate approximately 215

new (δ, λ0), λ1, λ2, λ3 and restart the randomization in S18[0,0].
Considering one message pair conforming to a single ECHO-column of the first

subpart of the truncated path as starting point, the number of pairs we can build
which follow the truncated path for this second subpart is: 27 28×3 2−15 ≈ 216.
We note that we get one in 226 operations in parallel.

In the collision attack on the compression function, we further extend this
step by probabilistically filtering the active bytes in the MixColumns transition
between S26 and S27. Among the 216 message pairs we can build that follow the
truncated path between S16 and S26, only one in average will verify the 4 → 2
transition through MixColumns. If such a pair is found then the pair conforms
the truncated path until the end of the four rounds; otherwise, we need to find
a new starting point, i.e. a new slice pair for slice 0 in S12. We reduce to two
active bytes and not one or three because this is a best compromise we can make
to lower the overall time complexity of the collision attack.

4.3 Completing the Partial Message Pair of the First Subpart

As discussed in Section 3.4, to solve the merging step, slice 12 of S12 is con-
strained by slices 0, 4 and 8 of S12. All values of slice pair 0 have been deter-
mined (Section 4.1) and used to fix yellow bytes and thus get a message pair
conforming to the second subpart of the truncated path (Section 4.2).

Consequently, we only have freedom on the slice pairs 4 and 8 in S12. We
determine values of slice pair 4 in the same way as slice 0 by considering the
first subpart of the truncated path from S7 to S14 reduced to the second ECHO-
column. There is a single active byte per slice in this ECHO-column of S7, so that
we can build approximately 260 valid columns8 in that position in 212 operations
on AES-columns for a single one.

As soon as we have one, we use the remaining freedom of slice 8 to generate
simultaneously slice pairs 8 and 12 of S12. We note that in the two last ECHO-
columns of S7, there are three active bytes per slice (Figure 4). The method
we suggest starts by finding a slice pair for slice 8 conforming to the truncated
differential reduced to the third ECHO-column between S7 and S12. We proceed in
the same way as we did for slices 0 and 4 and then, we deduce deterministically
the slice pair 12 from the constraints imposed by the merge. Finally, we check
whether that slice pair conforms the truncated differential reduced to the last
ECHO-column until S7, namely the four simultaneous transitions 4 → 3 through
invMixColumns between S8 and S7.
8 Note that in Section 4.1, we could build 264 of them because differences were chosen

freely, whereas in the present case, differences are constrained by the AES S-Box
differential properties to sets of size 27 − 1. We thus loose 24 degrees of freedom.
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The cost of 24 to construct a slice pair for slice 8 allows to repeat it 232 times
to pass the probability

(
2−8
)4 of finding a valid slice pair for slice 12 conforming

to both the linear constraints of the merge and the truncated differential through
invBigMixColumns. Note that we have enough degrees of freedom to do so
since we can find approximately (27)4 (28)3×3 = 2100 valid slice pairs for slice
8. However, only 232 are needed, which completes this step in 236 operations on
AES-columns and fixes all the red bytes between S7 and S14.

4.4 Compression Phase in the Feed Forward

After four rounds, the round-reduced compression function applies the feed for-
ward (S33 ← S0+S32) and XORs the four columns together (BigFinal). This
operation allows to build the differential path such that differences would cancel
out each other. As shown in the global path (Figure 4), states S0 and S32 XORed
together lead to state S33 where there are three active AES-states in each row.
In terms of differences, if each row sums up to zero, then we get a collision for
the compression function in S34 after the BigFinal.

As we constructed the path until now, in both S0 and S32, we still have freedom
on the values: only differences in S32 located in the two first slices are known from
the message pair conforming to the second subpart of the truncated path. These
differences thus impose constraints on the two other active pair states per row in
S0. Namely, for each row r of S0 where active AES states are located in columns
cr and c′r, we have S0[r, cr] + S0[r, c′r] = S32[r, 0]. Additionally, differences in S4
are known by linearly propagating the known differences from S7.

After the feed-forward, we cancel differences of each row independently: we
describe the reasoning for an arbitrary row. We want to find paired values in
the two active states of the considered row of S0, say (A, A′) and (B, B′), such
that they propagate with correct differences in S4, which are known, and with
correct diagonal values (red bytes) in S7 after the MixColumns. In the sequel
(Figure 10), we subscript the AES-state A by j to indicate that Aj is the AES-
state A propagated until ECHO-state Sj with relevant transformations according
to Figure 4.

The known differences of S4 actually sets the output differences of the Su-
perSBox layer: namely, A4 + A′

4 = Δ4 and B4 + B′
4 = Δ′

4, where Δ4 and Δ′
4

are the known differences in the considered row of S4. The constraint on the
known diagonal values in A7 and B7 restricts the available freedom in the choice

SR S-SB SR MC

A0 B0 A1 B1 A4 B4 A6 B6 A7 B7

A′
0 B′

0 A′
1 B′

1 A′
4 B′

4 A′
6 B′

6 A′
7 B′

7

Fig. 10. Propagation of the pairs of AES-states (Ai, A
′
i) and (Bi, B

′
i) in a single ECHO-

row in the first round. Non-white bytes represent active bytes; those in S7 (in red) are
the known values and differences from the message pair conforming to the first subpart
of the truncated path.
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of the AES-columns of A6 and B6 (and linearly, to their equivalent A′
6 and B′

6

with diagonal values in A′
7 and B′

7) to reach the already-known diagonal values
in S7 (red bytes). An alternative way of stating this is: we can construct freely
the three first columns of (A4, A

′
4) and (B4, B

′
4) and deduce deterministically

the fourth ones with the next MixColumns transition, since 4 out of 8 input or
output bytes of MixColumns fix the 4 others. Furthermore, this means that if
the three first columns of A1, A′

1, B1 and B′
1 are known, then we can learn the

values of the remaining columns of S1 (bytes in gray).
We thus search valid input values for the three first SuperSBoxes of S1: to do

so, we randomize the two differences per AES-column in this state and get valid
paired values with probability 2−1 in 218 computations with respect to output
differences Δ4 (Section 3.3). Consequently, we can deduce the differences of the
same AES-columns in B1 + B′

1 to get a zero sum with S32 after the BigFinal.
This holds with the same 2−1 probability, with respect to Δ′

4. Once we have the
three differential transitions for the three first AES-columns of both AES-states,
all the corresponding values are then known and we propagate them in A6, A′

6,
B6 and B′

6 (black bytes). Since in S7, diagonal values are known, we deduce the
remaining byte of each column in A6, A′

6, B6 and B′
6 (gray) and propagate them

backwards until S1.
The final step defines the nature of the attack: to get a collision, we check

if those constrained values cancel out in the feed-forward, which holds with
probability 2−32. Restarting with new random values in S1 and in parallel on
the four rows, we find a collision in 218 22 232 = 252 operations on AES-columns.
Indeed, we need to repeat 232 times the search of valid paired input values for
the SuperSBox, which is done in time 218 and succeeds with probability 2−2.

4.5 Final Merging Phase

After we have found message pairs following both subparts of the truncated path
so that the merge is possible, we need to finalize the attack by merging the two
partial solutions.

In practice, this means finding values for each white bytes in the truncated
path and in particular, at the second SuperMixColumns transition between
S14 and S16. For each of the 16 slices, we get a system of linear equations like
(1). In each solution set, each variable only depends on 3 others, and not on all
the 11 others. This stems from the structured matrix MSMC . For example, in
the first slice, we have:

L0(x0, x3, x6, x9) = c0 (3)
L1(x1, x4, x7, x10) = c1 (4)
L2(x2, x5, x8, x11) = c2 (5)

where L0, L1, L2 are linear functions and c0, c1, c2 constants linearly deduced
from the 8 known-values ai and bi, 0 ≤ i ≤ 3, of the considered system.

In this phase of the merging process, we also need to set white bytes ac-
cordingly to the known values in S7 stemming from the feed-forward. We pick
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S7

BMC

S8

SR

S9

SB-MC-SB

S12

SR-BSR

S14

Blue, red and yellow bytes

Green bytes

Fig. 11. After randomization of states S7[1,3] and S7[2,2], all values of gray bytes are
known. Colors show the flow of values in one step of the merging process.

random values for unset bytes in S7[1,3] and S7[2,2] (Figure 11), such that all
values in the two last ECHO-columns of S7 are set. Consequently, by indirectly
choosing values for gray bytes in S14, we set the values of half of the unknowns
per slice. For example, the system for the first slice becomes:

L′
0(x0, x3) = c′0 (6)

L′
1(x1, x4) = c′1 (7)

L′
2(x2, x5) = c′2 (8)

where L′
0, L

′
1, L

′
2 are linear functions and c′0, c′1, c′2 some constants.

The three equations (6), (7), (8) are independent, which allows to do the
merge in three steps: one on each pair of slices (1, 5), (2, 6) and (3, 7) of S12.
Figure 11 represents in color only the first step, on the slice pair (1, 5) of S12.
We show that each of the three steps can be done in 232 computations and detail
only the first step.

Because of the dependencies between bytes within a slice in S14, any choice of
blue bytes in S12[0,0] determines blue bytes on S12[1,1] (and the same for yellow
and red bytes, Figure 11). In total, we can choose

(
28×4

)3 = 296 different values
for the blue, yellow and red AES-columns of state S12. Since we are dealing
with values, we propagate them backwards until S8. The BigMixColumns
transition from S7 to S8 for these two slices imposes the 8 green values in S8[2,0]
and S8[3,1]. Going forwards through the SuperSBox, we deduce green values in
S14 and check whether the four pairs of green bytes satisfy the linear constraints
in S14, which occur with probability

(
2−8
)4 = 2−32. We then have to restart

with approximately 232 new blue bytes and random yellow and red ones before
satisfying the four constraints simultaneously.

After repeating this step for slices (2, 6) and (3, 7), we get a valid message
pair that follows all the truncated path of Figure 4.

5 Conclusion

In this article, we introduce new results on ECHO-256 compression function re-
duced to four rounds by describing a collision attack. Our result is the first
one which does not need to store the large difference distribution table of the

This copy belongs to 'VANC03'



Collisions and ECHO 125

SuperSBox, which contributes in making the attack practical. We also prove
that the latest results by Schläffer on ECHO are flawed and we suggest a way to
correct it in some ways. We also improve the time and space complexity of the
attack by taking into account more precisely the available degrees of freedom.
We describe as well an efficient way to find paired input values conforming to
particular truncated differentials through the SuperSBox where not all input
bytes are active. Finally, we validate our claims by implementing a practical
variant of the described attack. We believe this work can lead to new attacks:
in particular, the collision attack by Schläffer on ECHO-256 might be corrected
using our new techniques.
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A Merging Process in Detail

An instance of the problem to solve is the following: given a0, a1, a2, a3, b0, b1,
b2, b3 ∈ GF

(
28
)
, find x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11 ∈ GF

(
28
)

such that:

MSMC

[
a0 x0 x1 x2 a1 x3 x4 x5 a2 x6 x7 x8 a3 x9 x10 x11

]T
= (9)[

b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]T
where ∗ is any value in GF

(
28
)
. Since we are only interested in the four first

output values (the problem is similar for others slices), we do not take into
consideration the lines other than the four first ones. Let MSMC|0,1,2,3 be that
matrix. The system to be solved can be rewritten as (MSMC|j0,1,2,3 is the matrix
composed of rows 0, 1, 2, 3 and column j from MSMC):

MSMC|1,2,3,5,6,7,9,10,11,13,14,15
0,1,2,3

[
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

]T
=

MSMC|0,4,8,12
0,1,2,3

⎡⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎦+

⎡⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎦
(10)

Now, we make the assumption that at least one solution to the problem ex-
ists. This means that the right-hand side of (10) lies in the image of the ma-
trix MSMC|1,2,3,5,6,7,9,10,11,13,14,15

0,1,2,3 from the left-hand side. Because the matrix
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MSMC is a Kronecker product of M with itself, MSMC|1,2,3,5,6,7,9,10,11,13,14,15
0,1,2,3 ,

MSMC|9,10,11,13,14,15
0,1,2,3 and MSMC|1,2,3,5,6,7

0,1,2,3 share the same image, described by:

S0 =
{

[t0, t1, t2, L(t0, t1, t2)] , t0, t1, t2 ∈ GF
(
28
) }

(11)

where L(t0, t1, t2) = 247t0 +159t1 +38t2. Finally, if a solution exists, this means
that: ⎡⎢⎢⎣

4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3

⎤⎥⎥⎦
︸ ︷︷ ︸

MSMC|0,4,8,12
0,1,2,3

⎡⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎦+

⎡⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎦ ∈ S0 (12)

In other words, this means that the following equality is true:

14b0 + 11b1 + 13b2 + 9b3 = 2a0 + 3a1 + a2 + a3. (13)

The given parameters a0, a1, a2, a3, b0, b1, b2, b3 are then constrained on an
8-bit condition. The converse is then: if this relation is not satisfied, then the
problem has no solution.

We took the example of the very first slice, but the problem is similar for the
16 different slices in S14/S16. Namely, per slice, parameters need to satisfy the
following equalities:

Slice Condition

0 14b0 + 11b1 + 13b2 + 9b3 = 2a0 + 3a1 + a2 + a3

1 11b0 + 13b1 + 9b2 + 14b3 = 2a0 + 3a1 + a2 + a3

2 13b0 + 9b1 + 14b2 + 11b3 = 2a0 + 3a1 + a2 + a3

3 9b0 + 14b1 + 11b2 + 13b3 = 2a0 + 3a1 + a2 + a3

4 14b0 + 11b1 + 13b2 + 9b3 = a0 + 2a1 + 3a2 + a3

5 11b0 + 13b1 + 9b2 + 14b3 = a0 + 2a1 + 3a2 + a3

6 13b0 + 9b1 + 14b2 + 11b3 = a0 + 2a1 + 3a2 + a3

7 9b0 + 14b1 + 11b2 + 13b3 = a0 + 2a1 + 3a2 + a3

8 14b0 + 11b1 + 13b2 + 9b3 = a0 + a1 + 2a2 + 3a3

9 11b0 + 13b1 + 9b2 + 14b3 = a0 + a1 + 2a2 + 3a3

10 13b0 + 9b1 + 14b2 + 11b3 = a0 + a1 + 2a2 + 3a3

11 9b0 + 14b1 + 11b2 + 13b3 = a0 + a1 + 2a2 + 3a3

12 14b0 + 11b1 + 13b2 + 9b3 = 3a0 + a1 + a2 + 2a3

13 11b0 + 13b1 + 9b2 + 14b3 = 3a0 + a1 + a2 + 2a3

14 13b0 + 9b1 + 14b2 + 11b3 = 3a0 + a1 + a2 + 2a3

15 9b0 + 14b1 + 11b2 + 13b3 = 3a0 + a1 + a2 + 2a3

The main problem in the reasoning of [17] is to assume that a solution exists,
while for some parameters, there is no solution.

In the end, if the condition is verified we can choose x0, x1, x2, x3, x4, x5, x6,
x7, x8 freely and determine x9, x10, x11 afterwards. If a solution exists, there
are
(
28
)9 = 272 solutions to the problem. Taking any other slice leads to a very

similar description of the set of solutions, with the same kind of dependencies
between the variables.
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Abstract. Bellare and Kohno introduced a formal framework for the study of
related-key attacks against blockciphers. They established sufficient conditions
(output-unpredictability and collision-resistance) on the set of related-key-deriving
(RKD) functions under which an ideal cipher is secure against related-key attacks,
and suggested this could be used to derive security goals for real blockciphers.
However, to do so requires the reinterpretation of results proven in the ideal-
cipher model for the standard model (in which a blockcipher is modelled as, say,
a pseudorandom permutation family). As we show here, this is a fraught activ-
ity. In particular, building on a recent idea of Bernstein, we first demonstrate a
related-key attack that applies generically to a large class of blockciphers. The
attack exploits the existence of a short description of the blockcipher, and so
does not apply in the ideal-cipher model. However, the specific RKD functions
used in the attack are provably output-unpredictable and collision-resistant. In
this sense, the attack can be seen as a separation between the ideal-cipher model
and the standard model. Second, we investigate how the related-key attack model
of Bellare and Kohno can be extended to include sets of RKD functions that
themselves access the ideal cipher. Precisely such related-key functions underlie
the generic attack, so our extended modelling allows us to capture a larger uni-
verse of related-key attacks in the ideal-cipher model. We establish a new set of
conditions on related-key functions that is sufficient to prove a theorem analo-
gous to the main result of Bellare and Kohno, but for our extended model. We
then exhibit non-trivial classes of practically relevant RKD functions meeting the
new conditions. We go on to discuss standard model interpretations of this the-
orem, explaining why, although separations between the ideal-cipher model and
the standard model still exist for this setting, they can be seen as being much
less natural than our previous separation. In this manner, we argue that our exten-
sion of the Bellare–Kohno model represents a useful advance in the modelling of
related-key attacks. In the full version of the paper, we also consider the topic of
key-recovering related-key attacks and its relationship to the Bellare–Kohno for-
malism. In particular, we address the question of whether lowering the security
goal by requiring the adversary to perform key-recovery excludes separations of
the type exhibited by us in the Bellare–Kohno model.

Keywords: Related-key attack, Ideal-cipher model, Blockcipher.
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1 Introduction

BACKGROUND. Related-key attacks were introduced by Biham and Knudsen [7,8,20],
and have received considerable attention recently partly due to the discovery of var-
ious high-profile key-recovery attacks in this model ([9,10,14]). Some of these new
attacks, in particular the family of attacks against AES, do not restrict key-derivation
functions to either simple XORs or modular addition of constants. Instead non-linear
key-derivation functions are used. This has sparked a debate as to whether these attacks
should be considered valid, and in turn whether related-key attacks should be consid-
ered valid attacks on blockciphers in general. Part of the debate stems from the question
of whether the job of preventing related-key attacks should fall to blockcipher design-
ers or to designers of protocols making use of blockciphers. The latter group could put
a stop to such attacks simply by avoiding the use of related keys within their proto-
cols, and this in turn would remove any real incentive for cryptanalysts to consider ever
more esoteric key relations. However, taking a pragmatic perspective, there are widely
deployed real-world protocols which do make use of such related keys, so the study of
related-key attacks holds relevance and interest both from cryptanalytic and theoretical
perspectives. For example, key-derivation procedures leading to related-key scenarios
seem to be widely used in the financial sector, with a public-domain example being
the EMV specifications for card transactions [15, Appendix A1.3.1]. Other examples
include the 3GPP confidentiality and integrity algorithms f8,f9 [19].

On the theoretical side, Bellare and Kohno [4] provided a thorough study of
related-key attacks. Their main result established a general possibility result concerning
security against related-key attacks, for certain classes of related-key-deriving (RKD)
functions. Bellare and Kohno have as a thesis that the minimal requirement for a block-
cipher security goal to be considered feasible is that it should be provably achievable for
an ideal cipher. To this end, they showed that an ideal cipher is secure against related-
key attacks involving any set of RKD functions that is both collision-resistant and
output-unpredictable. However, to be usable in studying the security of real blockci-
phers, we need to be able to interpret such ideal-cipher-model results in the standard
model, in which we might model a blockcipher as a pseudorandom permutation family.
We note that [4] contains very little in the way of such interpretation.

However, the community’s confidence in our ability to translate such results to the
standard model has recently received a severe dent. In [18], Harris demonstrated that if
the cipher itself is available for use during key derivation, then RKD functions can be
constructed using which keys can be recovered for any cipher. Bernstein [6] presented a
simple distinguishing attack on AES that also made use of the blockcipher itself in the
RKD functions. Moreover, at least heuristically, the sets of RKD functions used in these
attacks fulfil the conditions of collision-resistance and output-unpredictability needed
to prove Bellare and Kohno’s main result about security against related-key attacks.
Researchers subsequently argued that, in view of these examples, the model for related-
key attacks presented in [4] is broken, in the sense that, since any cipher can be broken
in that model, then this model does not tell us anything about ciphers; rather it is simply
too strong a model.
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CONTRIBUTIONS. We begin by exploring the question of how to interpret the main
result of Bellare and Kohno [4], restated here as Theorem 1, in the standard model. We
provide two possible interpretations of this result, which vary only in the order in which
they invoke certain quantifiers. We then formalise Bernstein’s attack as a related-key
attack that applies generically to a large class of blockciphers (those having equal-sized
keys and messages). Moreover, we formally prove, under the standard assumption that
the blockcipher is pseudorandom, that Bernstein’s RKD functions meet the sufficient
conditions of collision-resistance and output-unpredictability needed for the application
of Theorem 1. We then explain how this attack can be seen as a separation between the
ideal-cipher model and the standard model in the context of the second of our two
interpretations of Theorem 1. We also justify why the first interpretation of Theorem 1
for the standard model is less interesting in practical contexts.

In an attempt to restore confidence in the Bellare–Kohno model, we extend the model
to allow RKD functions which access the blockcipher itself. Since we are working with
an ideal cipher, we model such access via oracle calls to the ideal cipher and its in-
verse. This allows us to do several things. Firstly, we can capture attacks like that due
to Bernstein in our model (where it shows up as an attack against an ideal cipher for
a particular set of RKD functions). Secondly, it allows us to prove the security of an
ideal cipher for other sets of RKD functions which make use of the blockcipher dur-
ing key derivation. Thirdly, it allows us to investigate analogues of Theorem 1 for the
new setting. This leads to our main result, Theorem 4, in which we establish that an
ideal cipher is secure against related-key attacks for sets of RKD functions that meet
certain conditions. More precisely, we introduce oracle versions of collision-resistance
and output-unpredictability, along with a new notion called oracle-independence of a
set of RKD functions; we then show that these three conditions taken together are suffi-
cient to establish the security of an ideal cipher against related-key attacks using that set
of RKD functions. We go on to show that our main theorem is not vacuous by exhibiting
non-trivial classes of practically relevant RKD functions meeting the new conditions. In
particular, we show that RKD function sets like those used in the EMV standard meet
the new conditions.

Given the problems we have identified with making standard model interpretations
of Theorem 1, we then proceed to a careful discussion of how our main result, Theo-
rem 4, can be translated into the standard model. When restricted to RKD sets which
are independent of the blockcipher, our theorem becomes equivalent to that of Bellare
and Kohno: its interpretation states that a reasonable blockcipher should resist related-
key attacks when restricted to such an RKD set. On the other hand, for RKD sets which
depend on the blockcipher, our theorem goes beyond that of Bellare and Kohno (which
provides no guarantees) in the following way. Its interpretation asserts that if the de-
pendency of the RKD functions is black box, and furthermore the set satisfies certain
conditions, then a good blockcipher is expected to resist related-key attacks when re-
stricted to such an RKD set. In particular, the RKD sets of Bernstein and Harris do not
satisfy the required conditions. On the positive side, there exist cipher-dependent RKD
sets which satisfy the required conditions.

Our final contribution is to ask whether the problems that arise in translating from
the ideal-cipher model to the standard model in the context of related-key attacks can
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be avoided by lowering our sights. In particular, we consider the topic of related-key
attacks that recover keys (rather than breaking the pseudorandomness of a cipher in
the sense considered in [4]). This asks more of the adversary and therefore represents
a weakening of the model. In turn, this opens up the possibility of excluding separa-
tion results like that we have shown. We can in fact show that the particular set of RKD
functions used in Bernstein’s attack cannot be used to mount a key-recovery attack. Un-
fortunately, we also have a negative result: using a modification of the attack of Harris,
in the full version of the paper [1] we exhibit a specific set of RKD functions that does
lead to a full key-recovery attack against real blockciphers, even though the functions
satisfy the conditions for Theorem 1 to be applicable. Again, the RKD functions access
the blockcipher itself, so the attack can be regarded as another separation between the
ideal-cipher model and the standard model, but now for a weaker security notion than
was originally considered in [4].

OTHER RELATED WORK. Bellare and Kohno also gave constructions of concrete block-
ciphers which are secure against adversaries which only partially transform the key. In
subsequent work, Lucks [21] investigated RKA-secure blockciphers further, and gave
improved security bounds for such partially key-transforming adversaries. In this work,
the author also constructed a concrete blockcipher which is RKA-secure with respect to
a rich set of related-key-deriving functions. Lucks’s construction, however, was based
on a non-standard, interactive number-theoretic assumption. The recent work of Gold-
enberg and Liskov [16] examines whether it is possible to build related-key-secure
blockciphers from traditional cryptographic primitives. They show that while a related-
key/secret pseudorandom bit is sufficient and necessary to build such a blockcipher,
hard-core bits with typical security proofs are not related-secret secure. Very recently,
Bellare and Cash [3] managed to construct PRFs and PRPs which are RKA secure with
respect to key transformations which involve the action of a group element on the key.
Their constructions are based on standard number-theoretic assumptions such as DDH.
In yet another recent work, Applebaum, Harnik and Ishai [2] study related-key attacks
for randomised symmetric encryption schemes. They also discuss the applications of
such RKA-secure primitives to batch and adaptive oblivious transfer protocols.

KDM SECURITY. Key-dependent message (KDM) security [12,17] is a strong notion
for primitives such as private/public-key encryption schemes and PRF/PRPs where one
requires security in the presence of an adversary which can obtain the outputs of the
encryption/function on points which depend, in known (or even chosen) ways, on se-
cret keys. This setting is similar to related-key attacks in the sense that security games
involve functions of an unknown key. However, while superficially similar in this sense,
the RKA and KDM notions hand different capabilities to the adversary. A fuller discus-
sion of the relations between these notions is beyond the scope of the present paper.
In [17], the authors briefly define cipher-dependent KDM security, however their re-
sults are about relations which are independent of the cipher. We note that analogues
of Bernstein’s and Harris’s attack in the context of KDM security were already noted
in [17].

ORGANISATION. In the next section we settle notation and recall a number of defi-
nitions from [4]. Section 3 is concerned with the possible interpretations of the main
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result of [4] in the standard model. In Section 4 we extend the security model of Bellare
and Kohno to include RKD sets that access the ideal cipher itself during key deriva-
tion. We also discuss some positive and negative results in this new model. We close by
discussing the relevance of our results to practice.

2 Notation and Related-Key Attacks

NOTATION. We denote by s
$← S the operation of sampling s uniformly at random

from set S, and by x ← y the assignment of value y to x. For a set S, |S| denotes its
size. We let Perm(D) denote the set of all permutations on D. A blockcipher is a family
of permutations E : K × D → D, where K is the key space and D is the domain or
message space.

We recall a number of definitions from [4].

Definition 1 (Pseudorandomness). Let E : K × D → D be a family of functions. Let
A be an adversary. Then

Advprp
E (A) := Pr

[
K

$← K : AE(K,·) = 1
]
− Pr

[
G

$← Perm(D) : AG(·) = 1
]

is defined as the prp-advantage of A against E.

We let Perm(K,D) denote the set of all blockciphers with domain D and key-space K.

Thus the notation G
$← Perm(K,D) corresponds to selecting a random blockcipher. In

more detail, it comes down to defining G via

For each K ∈ K : G(K, ·) $← Perm(D).

Given a family of functions E : K × D → D and a key K ∈ K, we define the related-
key oracle E(RK(·, K), ·) as an oracle that takes two arguments, a function φ : K → K
and an element x ∈ D, and returns E(φ(K), x). We shall refer to φ as a related-key-
deriving (RKD) function. We let Φ be a set of functions mapping K to K. We call Φ the
set of allowed RKD functions and it will be a parameter of our definitions.

Definition 2 (Pseudorandomness with respect to related-key attacks). Let E : K ×
D → D be a family of functions and let Φ be a set of RKD functions over K. Let A be
an adversary with access to a related-key oracle, and restricted to queries of the form
(φ, x) in which φ ∈ Φ and x ∈ D. Then

Advprp-rka
Φ,E (A) :=Pr

[
K

$← K :AE(RK(·,K),·)=1
]

−Pr
[
K

$← K; G $← Perm(K,D) :AG(RK(·,K),·)=1
]

is defined as the prp-rka-advantage of A in a Φ-restricted related-key attack (RKA)
on E.
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Therefore in a related-key attack an adversary’s success rate is measured by its ability
to distinguish values of the cipher on related-keys from those returned from a random
blockcipher.

Definition 3 (RKA pseudorandomness in the ideal-cipher model). Fix sets K and D
and let Φ be a set of RKD functions over K. Let A be an adversary with access to three
oracles, and restricted to queries of the form (K ′, x) for the first two oracles and (φ, x)
for the last, where K ′ ∈ K, φ ∈ Φ and x ∈ D. Then

Advprp-rka
Φ,K,D (A) := Pr

[
K

$← K; E $← Perm(K,D) : AE,E−1,E(RK(·,K),·) = 1
]

−Pr
[
K

$←K;E $← Perm(K,D);G $← Perm(K,D) :AE,E−1,G(RK(·,K),·)=1
]

is defined as the prp-rka-advantage of A in a Φ-restricted related-key attack on an ideal
cipher with keys K and domain D.

This definition is simply an adaptation of Definition 2 to the ideal-cipher model by al-
lowing oracle access to E and E−1. To de-clutter the notation, we use E and E−1 as
shorthand for E(·, ·) and E−1(·, ·), respectively. An E−1(RK(·, K), ·) oracle can be
added to the above definition to get strong RKA pseudorandomness. In this paper, how-
ever, we will work with the standard (i.e. non-strong) pseudorandomness. Our results
can be extended to the strong setting.

Definition 4 (Output-unpredictability-2). Let Φ be a set of RKD functions on the key-
space K. Let PK(·) and X (·) be a pair of oracles. The oracle PK(·) takes as input an
element φ ∈ Φ and the oracle X (·) takes as input an element K ′ ∈ K. Neither oracle
returns a value. An adversary wins if it queries its X (·) oracle with a key K ′ and if
it queries its PK(·) oracle with a function φ such that φ(K) = K ′. We define the
up2-advantage of an adversary A as

Advup2
Φ (A) := Pr

[
K

$← K : APK(·),X (·) wins
]
.

The above definition captures the intuition that no adversary is able to predict the value
φ(K), for a random K , with a high probability.

Definition 5 (Collision-resistance-2). Let Φ be a set of functions on the key-space K.
Let CK(·) be an oracle that takes as input a function φ ∈ Φ and that returns no value.
An adversary wins if it queries its oracle with two distinct functions φ1, φ2 ∈ Φ such
that φ1(K) = φ2(K). We define the cr2-advantage of an adversary A as

Advcr2
Φ (A) := Pr

[
K

$← K : ACK(·) wins
]
.

The intuition here is that no adversary can trigger a collision between two different
φ’s with high probability. Note also that output-unpredictability is simply collision-
resistance between a non-constant and a constant function. Throughout the paper we
call an RKD set Φ output-unpredictable-2 or collision-resistant-2 if the corresponding
advantage is “small” for efficient any adversary.
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REMARK. Alternative and stronger notions of output-unpredictability and collision-
resistance are also presented in [4]. However, the above definitions are enough for the
main result there. We note that an attractive feature of the above definitions is their non-
interactiveness. In fact, it is possible to simplify these definitions further by requiring
an adversary which returns a single pair (K, φ) in the output-unpredictability-2 game,
and two distinct RKD functions (φ1, φ2) in the collision-resistance-2 game. Using a
standard reduction one can show that the simplified definitions are equivalent to the
above definitions (respectively). In the first case a (multiplicative) security loss of qq′/2,
where q and q′ are, respectively, the number of queries to the X and PK oracles, is
introduced. In the second case, a loss of q(q−1)/2 is introduced, where q is the number
of queries to the CK oracle.

3 A Generic Cipher-Dependent Attack

Bellare and Kohno established the following theorem as their main result in [4].

Theorem 1 (Bellare and Kohno [4]). Fix a key space K and domain D. Let Φ be a
set of RKD functions over K. Let A be an ideal-cipher-model adversary that queries
its first two oracles with a total of at most q′ different keys and that queries its last
oracle with a total of at most q different RKD functions from Φ. Then there are output-
unpredictability-2 and collision-resistance-2 adversaries B and C such that

Advprp-rka
Φ,K,D (A) ≤ Advcr2

Φ (B) + Advup2
Φ (C) ,

where B queries its CK oracle q times, and C queries its PK and X oracles q and q′

times (respectively).

The above theorem states that for all Φ satisfying appropriate properties, an ideal cipher
is secure against Φ-restricted related-key attacks. It is tempting to try to translate this
ideal-cipher-model result to the standard model. Indeed, it is conceivable that a real
blockcipher might also resist such Φ-restricted attacks under the same conditions. This
statement can be interpreted in (at least) two ways.

1. For any Φ which is collision-resistant and output-unpredictable, there is a standard
model blockcipher which resists Φ-restricted attacks; and

2. There is a standard model blockcipher E which resists all Φ-restricted attacks, as
long as Φ is collision-resistant and output-unpredictable.

The essential difference between these two interpretations is their order of quanti-
fiers. In the first interpretation, there may be no dependencies of Φ on E, whereas the
blockcipher in the second interpretation should resist all Φ-restricted attacks, including
those which depend on E. The theorem of Bellare and Kohno, on the other hand, does
not allow the functions in Φ to depend on the ideal cipher itself, as the latter is chosen
uniformly at random and independently from Φ. Therefore, the first interpretation is, in
our opinion, a more accurate translation of the theorem to the standard model. In fact no
natural counterexamples to this interpretation are yet known.1 On the other hand, based

1 Although artificial code-based separation results akin to that in [11] might be constructible.
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on the aforementioned recent example of Bernstein, we show in the next theorem that
the second interpretation is invalid. This result utilises RKD sets ΔE , which depend on
E, for each blockcipher E. The proof is given in the full version of the paper [1].

Theorem 2. Let E : K × D → D be a family of functions with K = D. Let 0, 1 ∈ D
be any two distinct elements of D and consider the set of RKD functions

ΔE := {K �→ K, K �→ E(K, 0)}.
Then there are a ΔE-restricted related-key adversary A against E, and a prp adversary
B against E such that

Advprp-rka
ΔE ,E (A) ≥ 1 − Advprp

E (B) − 2/|K|.
Furthermore, for any collision-resistant-2 or output-unpredictable-2 adversary A, there
is a prp adversary B such that

Advup2
ΔE

(A) ≤ Advprp
E (B) + 2q′/|K| and Advcr2

ΔE
(A) ≤ Advprp

E (B) + 1/|K|,
where q′ is the number of queries that an output-unpredictability-2 adversary A makes
to its X oracle.

Hence if the blockcipher E is prp secure, then ΔE is both collision-resistant-2 and
output-unpredictable-2. This theorem therefore exhibits a class of ciphers E for which
the second standard model interpretation of Theorem 1 does not hold. Note that we have
in fact established a strong falsification of the second interpretation as it is enough to
show that the inequality in the statement of Theorem 1 does not hold in the standard
model. Note also that the inequalities in the above theorem can be somewhat simplified
by observing that prp-rka security with respect to ΔE-restricted adversaries implies prp
security.

Note that in the ΔE set, one can replace 0 with any x ∈ D. Furthermore, there
is no special role played by the identity function as a similar attack applies if the set
was defined to be {K �→ E(K, 0), K �→ E(E(K, 0), 0)}. Note also that no efficiency
requirements on RKD functions are made in Theorem 1, and the result holds even for
φ that are infeasible to compute (in the ideal-cipher model). This allows us to define an
RKD set containing a single function which allows an attacker to recover the key of a
concrete cipher: K �→ K ′ with K ′ such that E(K ′, 0) = K . We stress that this failure
of the model, although technically allowed in the model of [4], is only of theoretical
interest: the ability to compute this function would immediately break the prp-security
of the cipher.

Harris [18] presents another cipher-dependent related-key attack which breaks every
cipher in the standard model. In the full version of the paper [1] we formalise this attack
and study its implications. In particular, the description of the RKD set is unclear in the
original work, and depending on the interpretation, the set might or might not satisfy
the collision-resistance-2 property. We clarify this issue by deriving accurate bounds
for the advantage of a related-key adversary.

Theorem 2 can be seen as a weak separation between the standard model and the
ideal-cipher model as it (only) rules out the second interpretation. It remains an open
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problem to prove or disprove the first interpretation. Disproving it would demonstrate
a strong separation result as it also implies the weak separation.2 We, however, do not
consider this to be an important issue since, in a real-world attack, the attacker can
choose its set of RKD functions after seeing the cipher, which relates more closely
to the second interpretation. Put differently, at the core of the above attacks lies the
dependence of the RKD set on E, which cannot be replicated in the Bellare–Kohno
(BK) model.

Most concrete related-key attacks [9,10,14] lead to the recovery of a blockcipher’s
key. Hence one way to restore confidence in the BK model would be to raise the security
bar for an attacker, and require it to recover keys. We formalise key-recovery in the full
version of the paper [1] and show that this approach cannot succeed.

In the next section, we investigate how the model can be modified so as to capture
such cipher-dependent related-key attacks.

4 RKD Functions with Access to E and E−1

As discussed above, one weakness of the BK model lies in its inability to model related-
key functions which depend on the blockcipher. In this section, we extend the BK model
to address this issue and prove a result akin to Theorem 1 for this extended setting. In
doing so, we treat the RKD functions as being oracle Turing machines and write each
RKD function as φO1,O2 , where Oi are oracles. These oracles will be instantiated with
a random blockcipher E and its inverse E−1 during security games. We denote a set
of such oracle RKD functions by3 ΦE,E−1

. We note that such oracle RKD functions
are of interest in the ideal-cipher model only: a concrete blockcipher has a compact
description and there is no need to grant access to the oracle.

We are now ready to define a refined notion of RKA pseudorandomness in the ideal-
cipher model.

Definition 6 (Oracle RKA pseudorandomness in the ideal-cipher model). Fix sets
K and D, and let ΦE,E−1

be a set of oracle RKD functions over K. Let A be an adver-
sary with access to three oracles, and restricted to queries of the form (K ′, x) for the
first two oracles and (φE,E−1

, x) for the last, where K ′ ∈ K, φE,E−1 ∈ ΦE,E−1
, and

x ∈ D. Then

Advprp-orka
ΦE,E−1 ,K,D (A) :=Pr

[
K

$← K;E $← Perm(K,D) :AE,E−1,E(RK(·,K),·)=1
]

− Pr
[
K

$← K;E $← Perm(K,D);G $← Perm(K,D) :AE,E−1,G(RK(·,K),·)=1
]

is defined as the prp-orka-advantage of A in a ΦE,E−1
-restricted related-key attack on

an ideal cipher with keys K and domain D.

2 We remark that Proposition 9.1 of [4] demonstrates an intermediate result: it considers a re-
stricted set of RKD functions which only alter the last few bits of the key, but may depend on
the cipher.

3 Although we use E and E−1 in the exponent, in the following security definitions they are
chosen during each game.
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Informally, we say that an ideal cipher is secure against ΦE,E−1
-restricted related-key

attacks if the above advantage is “small” for any efficient A.
We now define a set of oracle RKD functions, which is the ideal-cipher model coun-

terpart4 of ΔE defined in Theorem 2, as follows:

ΔE := {K �→ K, K �→ E(K, 0)}.

The next theorem shows that this set can be used to break an ideal cipher in the sense
of Definition 6.

Theorem 3. Fix a set K and let D = K. Then there exists the ideal-cipher model ΔE-
restricted adversary A such that

Advprp-orka
ΔE,K,D (A) ≥ 1 − 2/|K|.

Proof. The proof of this theorem is similar to that of Theorem 2. Adversary
AE,E−1,f(RK(·,K),·), whose goal is to decide whether f = E or f = G, operates as
shown in Figure 1.

Algorithm AE,E−1,f :
Query RK oracle on (K �→ K, 0) to get x = f(K, 0)
Query RK oracle on (K �→ E(K, 0), 0) to get y = f(E(K, 0), 0)
Query oracle E on (x, 0) to get z = E(x, 0)
Return (z = y)

Fig. 1. ΔE-restricted adversary breaking an ideal cipher with K = D

When f = E, we have that x = E(K, 0), y = E(E(K, 0), 0), and z =
E(E(K, 0), 0). Hence z = y with probability 1. On the other hand, if f = G then
x = G(K, 0), y = G(E(K, 0), 0), and z = E(G(K, 0), 0). Similarly to the proof of
Theorem 2 we have that Pr [E(G(K, 0), 0) = G(E(K, 0), 0)] ≤ 2/|K|. The theorem
follows. �

As it can be seen, the proof is analogous to that of Theorem 2, reflecting the ability of
our extended model to capture such cipher-dependent attacks. Another way to look at
this result is to interpret it in terms of the event whose analysis underpins the proof of
Theorem 1 in [4]. In that proof one needs to upper-bound the probability of:

Event D: A queries its related-key oracle with a function φ and queries its ideal
cipher (in either the forward or backward directions) with a key K ′ such that
φ(K) = K ′.

4 Note that we use superscripts to denote an oracle access whereas subscripts are used to denote
dependence. The former is of interest in the ideal-cipher model, and the latter in the standard
model.
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Looking at the code of A in Figure 1, it is easy to check that event D happens with
probability 1: In A’s attack K ′ = E(K, 0) is a key queried to E and the RK oracle
will have a key equal to K ′ when queried with K �→ E(K, 0). This observation moti-
vates the introduction of appropriately modified notions of output-predictability-2 and
collision-resistance-2, as well as additional definitions which might enable a proof of
oracle RKA pseudorandomness in the ideal-cipher model for ΦE,E−1

-restricted adver-
saries to be constructed.

Our first two conditions are modified versions of the collision-resistance-2 and output-
unpredictability-2 notions of Bellare and Kohno as recalled in Section 2.

Definition 7 (Oracle-output-unpredictability-2). Fix a key space K and domain D
and let ΦE,E−1

be a set of RKD functions on the key-space K. Let PK(·) and X (·) be
a pair of oracles for each E. The oracle PK(·) takes as input an element φE,E−1 ∈
ΦE,E−1

and the oracle X (·) takes as input an element K ′ ∈ K. Neither oracle returns
a value. An adversary wins if it queries its X (·) oracle with a key K ′ and if it queries
its PK(·) oracle with a function φE,E−1

such that φE,E−1
(K) = K ′. We define the

oup2-advantage of an adversary A as

Advoup2

ΦE,E−1 ,K,D (A) := Pr
[
K

$← K; E $← Perm(K,D) : APK(·),X (·) wins
]
.

Definition 8 (Oracle-collision-resistance-2). Fix a key space K and domain D and let
ΦE,E−1

be a set of functions on the key-space K. Let CK(·) be an oracle for each E that
takes as input a function φE,E−1 ∈ ΦE,E−1

and that returns no value. An adversary

wins if it queries its oracle with two distinct functions φE,E−1

1 , φE,E−1

2 ∈ ΦE,E−1
such

that φE,E−1

1 (K) = φE,E−1

2 (K). We define the ocr2-advantage of an adversary A as

Advocr2
ΦE,E−1 ,K,D (A) := Pr

[
K

$← K; E $← Perm(K,D) : ACK(·) wins
]
.

Once again we note that oracle-output-unpredictability can be seen as oracle-collision-
resistance between a constant and a non-constant function.

Our third definition provides a sufficient condition on a set of oracle RKD functions
ΦE,E−1

to enable an analogue of Theorem 1 to be proved. Intuitively speaking, if an
oracle RKD set is oracle-independent, then no collisions can take place between the ex-
plicit queries made by an adversary to one of its three oracles, and those made implicitly
through the oracle RKD function, during its attack.

Definition 9 (Oracle-independence). Fix a key space K and domain D and let ΦE,E−1

be a set of functions on the key-space K. Let QK(·, ·) be an oracle for each E that takes
as input a function φE,E−1 ∈ ΦE,E−1 ∪K, where K is the set of constant functions, and
an x ∈ D and returns no value. An adversary wins if it queries its oracle with two (not

necessarily distinct) oracle RKD functions φE,E−1

1 and φE,E−1

2 , and a point x1 ∈ D
such that

(φE,E−1

1 (K), x1) ∈ {(K ′, x′) : φE,E−1

2 (K) queries (K ′, x′) to E or E−1}.
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We define the oind-advantage of an adversary A as

Advoind
ΦE,E−1 ,K,D (A) := Pr

[
K

$← K; E $← Perm(K,D) : AQK(·,·) wins
]
.

Similarly to the remark at the end of Section 2, simpler alternatives of the above defi-
nitions can be formulated. For convenience, we call an oracle RKD set which satisfies
the above three requirements valid.

Let us now state and prove the main result of this section.

Theorem 4. Fix a key space K and a domain D, and let ΦE,E−1
be a set of RKD

functions over K. Let A be an ideal-cipher-model adversary that queries its first two
oracles with a total of at most q′ different keys and that queries its last oracle with a
total of at most q different RKD functions from ΦE,E−1

. Then there exists an oracle-
output-unpredictability-2 adversary B, an oracle-collision-resistance-2 adversary C,
and an oracle-independence adversary D such that

Advprp-orka
ΦE,E−1 ,K,D (A) ≤ Advocr2

ΦE,E−1 ,K,D (B)+Advoup2

ΦE,E−1 ,K,D (C)

+ Advoind
ΦE,E−1 ,K,D (D) ,

where B queries its CK oracle q times, C queries its PK and X oracles q and q′ times
(respectively), and D queries its QK oracle q + q′ times.

The intuition behind the proof of this theorem is similar to that for the proof of The-
orem 1. The three conditions allow us to separate various oracle queries enabling
us to simulate them by returning independently chosen random values. The output-
unpredictability property is used to separate the ideal-cipher oracles from the related-
key oracle. Collision-resistance is used to separate different φ’s queried to the
related-key oracle. The third condition is used in separating φ’s oracles from those
directly given to A; this was not necessary in the previous model when φ did not have
access to any oracles. The proof of the above theorem can be found in the full version
of the paper [1].

Note that if a set of RKD functions does not make any oracle calls to E or E−1 then
the set automatically satisfies the oracle-independence criterion (with advantage 0). The
oracle-collision-resistance-2 and oracle-output-unpredictability-2 conditions are iden-
tical to collision-resistance-2 and output-unpredictability-2 conditions of Bellare and
Kohno respectively, and we also recover Theorem 1 in this case.

Let us now check why the attacks of Bernstein and Harris fail to satisfy the conditions
required in Theorem 4 for an ideal cipher to be resistant to oracle related-key attacks.
We have included a slightly modified and improved version of Harris’s attack in the full
version of the paper [1].

Theorem 5. Let ΔE and ΨE
i denote Bernstein’s and Harris’s set of oracle RKD func-

tions, respectively. Then the oracle RKD sets ΔE and ΨE
i do not satisfy the oracle-

independence property.

Proof. In Bernstein’s attack, the function K �→ E(K, 0) queries E on K , as does the
related-key oracle when queried on the identity function. For Harris’s attack, note that
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HE
i,p(K) queries E on K ⊕ p and K ⊕ p ⊕ [1k]i and then, to compute the actual value

of the related-key oracle when queried with this function, once again E is queried on
one of these values. �

So far we concentrated on ruling out attacks, and have not demonstrated how our choice
of modelling can be used in a positive way. In other words, could it be the case that any
non-trivial access to E or E−1 violates one of the three needed properties, rendering
Theorem 4 meaningless. Fortunately, this is not the case. Our next two results demon-
strate how one can model new cipher-dependent RKD functions which do not compro-
mise security. The next theorem considers an RKD set from the EMV specification [15],
and is proved in the full version of the paper [1].

Theorem 6. Fix a key space K and let D = K. Define

ΩE := {K �→ E(K, x) : x ∈ D}.
Then for any adversary ocr2 adversary A, any oup2 adversary B making at most q and
q′ queries to its PK and X oracles (respectively), and any oind adversary C making at
most q queries to its QK oracle, we have that

Advocr2
ΩE ,K,D(A) = 0,Advoup2

ΩE ,K,D(B) ≤ qq′/(2|K|), and

Advoind
ΩE ,K,D(C) ≤ q2/(2|K|).

The next theorem provides a possibility result in a scenario where the adversary has
access to the identity function as well as other RKD functions.

Theorem 7. Fix a key space K and let D = K. Define

ΘE := {K �→ K, K �→ E(K ′, K) : K ′ ∈ K}.
Then for any adversary ocr2 adversary A making at most q queries to its CK oracle,
any oup2 adversary B making at most q and q′ queries to its PK and X oracles (re-
spectively), and any oind adversary C making at most q queries to its QK oracle, we
have that

Advocr2
ΘE ,K,D(A) ≤ q2/(2|K|),Advoup2

ΘE ,K,D(B) ≤ qq′/(2|K|), and

Advoind
ΘE ,K,D(C) ≤ q2/(2|K|).

The proof of this theorem is presented in the full version of the paper [1].

5 Interpretations in the Standard Model

Standard model interpretations of cryptographic results in an idealised model have al-
ways existed in the research community. The random oracle model and its real-world
interpretations [13] provide a good example of the difficulties involved in attempting
such translations. Another example is a result of Black [11], which gives a hash function
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construction provably secure in the ideal-cipher model, but insecure if the ideal cipher
is instantiated with any concrete blockcipher. The result of [11] holds under related-key
attacks as long as the RKD set under consideration contains the identity function (as
in this case prp-rka security is at least as strong as the standard notion of prp security).
This separation result, although theoretically valid, is unnatural as it is unlikely that a
real-world hash function depends on the code of a blockcipher in the same artificial way
as that used to derive the result in [11].

On the other hand, as shown in Theorem 2, in the related-key attack model of Bellare
and Kohno, a natural (weak) separation result exists. This possibility seems to have
been over-looked by the authors of [4], who did not discuss interpretations of their
main result, Theorem 1, in the standard model. As pointed out in Section 3, this theorem
can be interpreted in two different ways: the first interpretation, which was argued to
be a more accurate translation, lacked a natural separation result, but was of smaller
relevance to practice; the second interpretation, on the other hand, although relevant to
practice, was shown to be invalid in Theorem 2.

Theorem 4 is an attempt to overcome the limitations of Theorem 1: oracle RKD
functions enable modelling RKD functions which might depend on the cipher. For con-
sistency and completeness, we should also investigate possible interpretations of this
result in the standard model.

The first issue in interpreting this result arises when one attempts to relate an oracle
RKD set ΦE,E−1

to a concrete RKD set in the standard model. Our theorem concerns
oracle RKD functions, that is RKD functions which use a blockcipher in a black-box
way. Its relevance to the standard model is therefore restricted to RKD functions which
use the cipher in a black-box (or a symbolic) way. Hence, given such an RKD set ΦE�

making subroutine calls to E� and E�−1, one can rewrite it in the form of a natural
oracle RKD set ΦE,E−1

, such that if it is instantiated at E� (i.e. the oracle calls to E
and E−1 are replaced with subroutine calls to E� and E�−1), one recovers the original
RKD set ΦE� .

Next, the validity of ΦE� should be interpreted in terms of validity of ΦE,E−1
, as

these sets are no longer the same (Note that this issue did not exist in interpreting The-
orem 1 as the sets were identical). The minimum requirement on the set ΦE� is that
the associated oracle RKD set is valid, i.e. it satisfies the oracle-collision-resistant-2,
oracle-output-unpredictable-2, and oracle-independent conditions. We additionally re-
quire that ΦE,E−1

satisfies these conditions if E is no longer sampled uniformly at
random in the games but is fixed to be E�. This latter condition is due to the fact that
validity of the set for a random E is not enough to guarantee that at a specific E� the
set is also “reasonable”.

We are now ready to present interpretations of our theorem that are analogous to
those of Theorem 1. In the following, we let ΦE,E−1

and ΦE� be a pair of associated
sets as discussed above. Our two interpretations, as before, concern the choice of order
of quantifiers:

1. For all valid ΦE,E−1
, there exists a concrete blockcipher E� which resists ΦE� -

restricted attacks if ΦE,E−1
is also valid at E = E�.

2. There is a concrete blockcipher E�, such that for all valid ΦE,E−1
, E� resists ΦE� -

restricted attacks if ΦE,E−1
is also valid at E = E�.
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In attempting to derive counterexamples to the above two interpretations a similar,
but higher level, line of argument to that given for Theorem 1 applies. In Theorem 4,
the strategy of dependence on E is fixed as E is chosen randomly and independently of
ΦE,E−1

. In other words, for each E, each RKD function depends on E in the same way.
This is exactly what is expressed by the first interpretation, and hence as in Theorem 1,
we take this choice of order of quantifiers to be a more accurate interpretation. What
is important here is that unlike the first interpretation of the theorem of Bellare and
Kohno, the RKD functions here may depend on E, and hence this theorem has a greater
relevance to practice than that provided by Theorem 1. As in Theorem 1, we do not
expect there to be natural counterexamples to this interpretation.

Let us turn to the second interpretation. Due to the reversed order of quantifiers the
strategy of dependence in a counterexample may itself depend on each cipher E�. In
fact, Bernstein’s attack still constitutes a counterexample to the second interpretation of
Theorem 4, if one chooses the oracle RKD set to be identical to the concrete RKD set
for each E�, i.e.

ΔE� := {K �→ K, K �→ E�(K, 0)} and ΔE
E� := {K �→ K, K �→ E�(K, 0)}.

Note however that, as pointed out before, the dependency of ΔE
E� on E� is black box.

This oracle RKD set may then be rewritten symbolically as

ΔE := {K �→ K, K �→ E(K, 0)},
and as we saw in Theorem 5, this set is not valid. A similar observation applies to
Harris’s RKD set. In general this dependency in a (natural) counterexample is likely
to be black box, and the functions can be rewritten as an oracle RKD set with a fixed
dependence strategy. This in turn would either constitute a counterexample to the first
interpretation, which we have assumed to be unlikely, or the resulting new oracle RKD
set will be invalid. On the other hand, a non-black-box dependency seems difficult to
achieve. In conclusion, the second interpretation, for practical purposes, is the same as
the first one.

Turning to positive results, Theorems 6 and 7 can be interpreted in the standard
model in the following way. It is a “reasonable” goal to design a blockcipher which
resist ΩE- and ΘE-restricted related-key attacks where

ΩE :={K �→E(K, x) :x ∈ D} and ΘE :={K �→K, K �→E(K ′, K) :K ′ ∈ K}
are respectively the RKD sets associated to ΩE and ΘE as defined in Theorems 6
and 7. These results may have applications in establishing the security of key hierar-
chies which use the cipher to derive new keys.

Let us look at the first standard model interpretations of Theorem 1 and Theorem 4
from a cryptanalytic perspective. Theorem 1 classifies a blockcipher E as broken if
there exists a collision-resistance-2 and output-unpredictable-2 RKD set which can be
used to break E in the related-key attack model and furthermore this set does not de-
pend on E. This theorem provides no answers for RKD sets, such as Bernstein’s set or
that given in Theorem 7, which depend on E. Theorem 4, on the other hand, allowed
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dependency on E at the expense of an extra condition. This theorem classified a block-
cipher E as broken in two cases: 1) the attack is independent of E and we are back at
the conditions of Theorem 1; or 2) the attack is dependent on E in a black-box way, and
the associated oracle RKD set is valid for a random E and also at E�.

According to the above cryptanalytic perspective, Bernstein’s and Harris’s attacks
should not be seen as harmful. Attacks using RKD sets which involve a cipher’s building
blocks demonstrated by Biryukov et al. [9,10] on AES raise the following question: can
Biryukov et al.’s set of RKD functions be simulated using calls to the full encryption
and decryption routines of AES? If this is not the case, or if this is the case and the
resulting oracle RKD set is valid, then the related-key attack against AES should be
seen as interesting. Formalising such a natural dependency remains an open problem,
and hence, in our opinion, Biryukov et al.’s attack should then be seen as a threat against
AES in the related-key attack model (assuming the relevant RKD functions are available
to the cryptanalyst). We note that our model might be further extended to consider RKD
sets with oracle access to round functions so as to model Biryukov et al.’s results which
exploit relations of this type.

REMARK. The requirements of Theorem 4 constitute a set of sufficient conditions for
an ideal cipher to be secure in the prp-orka sense. These conditions, however, are quite
strong and one might alternatively directly prove that an ideal cipher is prp-orka secure.5

Validity at E� now means resilience of an ideal cipher to related-key attacks when the
oracle RKD set is instantiated with E�. Such proofs can then be used to conjecture
the existence of a blockcipher resisting related-key attacks under the associated RKD
set. From a cryptanalytic perspective, if these proofs exists, and the associated RKD
set breaks a specific cipher, then this cipher should be seen as broken. Conversely, if
an oracle RKD set can be used to break an ideal cipher, then the associated RKD set
should not be seen as valid. This in turn means that one should neither expect there to be
a blockcipher which resists such attacks, nor should such an attack be seen as harmful.
These observations also apply to the two conditions used in Theorem 1.

IMPLICATIONS FOR PRACTICE. As well as considering standard-model interpretations
of our main result, we also wish to reflect on what our results might mean for practice.
Suppose we have an RKD set that is invalid for a blockcipher, so that the conditions of
our main theorem are not met. Does this mean that there must be a related-key attack
against the blockcipher? The answer is clearly no, since the possibility of a related-key
attack depends on exactly how the blockcipher is used as a component in an overall
system or protocol: if that environment does not make available to the attacker the
relevant RK oracles, then the related-key attack will not be mountable in practice. A
recent example of an interesting related-key attack which is not mountable in practice
as is would be the attack of Dunkelman et al. [14] against KASUMI when used in
the 3G network. On the other hand, even if we have an RKD set that is valid, then
we can still not rule out related-key attacks altogether, because of the gap that exists
between the ideal-cipher model and the standard model. Finally, we ask: what should a
protocol designer do? The simple answer is to avoid the use of related keys in protocols

5 This is the case for functions expressed in a contrived way such as K �→ K ⊕ 1 = K ⊕
E(K, E−1(K, 1)) or K �→ K ⊕ E(0, 0).
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altogether. If this is not possible, then our best advice is to only use related-keys in such
a way that the relevant RKD set satisfies the conditions of Theorem 4. For example, the
sets of functions exhibited in Theorems 6 and 7 would be suitable in this case.
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Abstract. Analyzing desired generic properties of hash functions is an
important current area in cryptography. For example, in Eurocrypt 2009,
Dodis, Ristenpart and Shrimpton [8] introduced the elegant notion of
“Preimage Awareness” (PrA) of a hash function HP , and they showed
that a PrA hash function followed by an output transformation modeled
to be a FIL (fixed input length) random oracle is PRO (pseudorandom
oracle) i.e. indifferentiable from a VIL (variable input length) random or-
acle. We observe that for recent practices in designing hash function (e.g.
SHA-3 candidates) most output transformations are based on permuta-
tion(s) or blockcipher(s), which are not PRO. Thus, a natural question
is how the notion of PrA can be employed directly with these types of
more prevalent output transformations? We consider the Davies-Meyer’s
type output transformation OT (x) := E(x)⊕ x where E is an ideal per-
mutation. We prove that OT (HP (·)) is PRO if HP is PrA, preimage
resistant and computable message aware (a related but not redundant
notion, needed in the analysis that we introduce in the paper). The sim-
ilar result is also obtained for 12 PGV output transformations. We also
observe that some popular double block length output transformations
can not be employed as output transformation.

Keywords: PrA, PRO, PRP, Computable Message Awareness.

1 Introduction

Understanding what construction strategy has a chance to be a good hash func-
tion is extremely challenging. Further, nowadays it is becoming more important
due to the current SHA3 competition which is intended to make a new stan-
dard for hash functions. In TCC’04, Maurer et al. [17] introduced the notion of
indifferentiability as a generalization of the concept of the indistinguishability
of two systems [16]. Indifferentiable from a VIL (variable input length) random
oracle (also known as PRO or pseudorandom oracle) is the appropriate notion
of random oracle for a hash-design. Recently, Dodis, Ristenpart and Shrimpton
[8] introduced a generic method to show indifferentiable or PRO security proof

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 146–166, 2011.
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of a hash function, whose final output function R is a FIL (fixed input length)
random oracle. More precisely, they defined a new security notion of hash func-
tion, called preimage awareness (PrA), and showed that F (M) = R(HP (M))
is PRO provided HP is preimage aware (supposed to be a weaker assumption).
The result is applied to prove the indifferentiable security of the Skein hash al-
gorithm [2], a second round SHA3 candidate. Informally, a hash function HP

is called PrA if the following is true for any adversary A having access to P :
For any y committed by A, if a preimage of y is not efficiently “computable”
(by an algorithm called extractor) from the tuple of all query-responses of P
(called advise string) then A should not be able to compute it even after making
additional P queries. This new notion seems to be quite powerful whenever we
have composition of a VIL hash function and a FIL output transformation.

Our Result. We start with a preliminary discussion about the different notions
and interrelationship among them. We note that there are hash functions whose
final output transformation cannot be viewed as a random oracle e.g. some SHA3
second round candidates. So one needs to extended results beyond that of Dodis
et al. to cover the cases of hash functions with various output transformations
which are in use and this becomes our major objective, since it is important
to assure good behavior of these hash functions as well. As a good example
of a prevalent transform for construction of hash functions, we choose Davies-
Meyer [21] OT (x) = E(x) ⊕ x where E is a random permutation and study it
in Section 3. We observe that the preimage awareness of HP is not sufficient
for the PRO security of F . In addition to PrA, if HP is also preimage resistant
(PI) and computable message aware (as we define in Section 3.1), then FP,E is
PRO (proved in Theorem 1). Informally speaking, a hash function HP is called
computable message aware (or CMA) if there exists an efficient extractor
(called computable message extractor) which can list the set of all computable
messages whose HP outputs are implied with high probability given the advise
string of P . The main difference with PrA is that here, no adversary is involved
and the extractor does not get any specific target (see Definition 2). We show
that both preimage resistant and CMA are not implied by PrA and hence these
properties can not be ignored. Our result can then be employed to prove that
a close variant of Grøstl is PRO (see Section 4)1. We continue our research in
finding other good output transformations. We found 12 out of 20 PGVs can
be employed as output transformation OT and we require similar properties of
HP , i.e. PrA, PI and CMA, to have PRO property of OT (HP ) (see Section 5).
However these three properties are not sufficient for some DBL post processors.
In section 6 we show PRO attacks when some popular double block length
post processors are employed. It would be an interesting future research work
to characterize the properties of the inner hash function HP and the output
transformation OT such that OT (HP ) become PRO. In the appendix we review
the results of [8,9].

1 The indifferentiable security analysis of Grøstl has been studied in [1].
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2 Preliminaries

A game is a tuple of probabilistic stateful oracles G = (O1, . . . ,Or) where states
can be shared by the oracles. The oracles can have access to primitives (e.g.
random oracle) via black-box modes. It is reasonable to assume that all random
sources of games come from the primitives. A probabilistic oracle algorithm A
(e.g. an adversary) executes with an input x, its oracle queries being answered
by the corresponding oracles of G. Finally it returns y := AG(x). An adversary
A may be limited by different resources such as its runtime, number of queries
to different oracles, size of its inputs or outputs, etc. If θ is a tuple of parameters
describing the available resources of A then we say that A is a θ-adversary. In
this paper HP is an n-bit hash function defined over a message space M based
on a primitive P which can be only accessed via a black-box.
Indifferentiability. The security notion of indifferentiability or PRO was in-
troduced by Maurer et al. in TCC’04 [17]. In Crypto’05, Coron et al. adopted
it as a security notion for hash functions [6]. Let F be a hash function based
on ideal primitives P = (P1, ..., Pj) and F be a VIL random oracle, let SF =
(SF

1 , ..., SF
j ) be a simulator (aimed to simulate P = (P1, . . . , Pj)) with access

to F , where Si’s can communicate to each other. Then, for any adversary A,
the indifferentiability- or PRO-advantage of A is defined by Advpro

F P ,SF (A) =
|Pr[AF,P = 1] − Pr[AF ,S = 1]|. When the value of the above advantage is negli-
gible, we say that the hash function F is indifferentiable or PRO. Maurer et al.
[17] also proved that if F is indifferentiable, then F (a VIL random oracle) used
in any secure cryptosystem can be replaced by FP1,...,Pj with a negligible loss of
security. In other words, F can be used as a VIL PRO.
Preimage-Awareness or PrA. Dodis, Ristenpart and Shrimpton defined
a new security notion called Preimage-Awareness (or PrA) for hash functions
[8,9] which plays an important role in analyzing indifferentiability of a hash
function [2]. Given a game GP (can be P itself), a tuple α = ((x1, w1), . . .,
(xs, ws)) is called an advise string at some point of time in the execution of AG,
if wi’s are responses of all P -queries xi’s until that point of time. A PrA (q, e, t)-
adversary A (making q queries and running in time t) commits y1, . . . , ye during
the execution of AP and finally returns M . We write (y1, . . . , ye) ← AP

guess,
M ← AP and denote the advise string at the time AP

guess commits yi by αi. The
guesses and P -queries can be made in any order.

Definition 1. The PrA-advantage of HP with an extractor E is defined as
Advpra

H,P,E(q, e, t) = maxA Advpra
H,P,E(A) where maximum is taken over all (q, e, t)-

adversaries A and the PrA advantage of A, denoted Advpra
H,P,E(A), is defined as

Pr[∃i, HP (M) = yi, M �= E(yi, αi) : M ← AP ; (y1, . . . , ye) ← AP
guess]. (1)

HP is called (q, e, t, te, ε)-PrA if Advpra
H,P,E(q, e, t) ≤ ε for some extractor E with

runtime te. In short, we say that a hash function is PrA or preimage-aware if
there exists an “efficient” extractor such that for all “reasonable” adversaries A
the PrA advantage is “small”.
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Implication among Collision Resistant, Preimage resistant (PI), PrA.
If a collision attacker BP returns a collision pair (M, M ′), then a PrA attacker
makes all necessary P queries to compute HP (M) = HP (M ′) = y and finally
returns M if E(y, α) = M ′, o.w. returns M ′. So a PrA hash function must be
collision resistant. In [8] the authors consider a weaker version of PrA (called
weak-PrA) where an extractor can return a set of messages (possibly empty)
whose output is y. A PrA adversary wins this new weak game if it can find a
preimage of y different from those given by the extractor. They also have shown
that PrA is equivalent to collision resistant and weak-PrA. One can modify a
definition of a preimage-resistant hash function by introducing only one collision
pair. It still remains preimage resistant as the randomly chosen target in the
particular collision value has negligible probability. However, it is not preimage-
aware since a collision is known. On the other hand HP (x) = P−1(x) or HP (x) =
x are not preimage resistant but PrA.

3 Hash Function with Output Transformation E(x) ⊕ x

In [8], hash functions have been analyzed for which the output transformation
can be modeled as a FIL random oracle. Generally, we can consider various kinds
of output transformations such as Davis-Meyer, PGV compression functions [20]
or some DBL (Double Block Length) compression functions [19,12,13,15] in
the ideal cipher model. Traditionally, the most popular known design of hash
function uses one of the above post-processors. It is well-known that all such
compression functions are not indifferentiably secure [6]. So, we need a sepa-
rate analysis from [8]. In this section, we consider Davis-Meyer transformation
OT (x) = E(x) ⊕ x, where E is a permutation modeled as a “random permu-
tation.” A simple example of HP (e.g. the identity function) tells us that the
preimage awareness is not a sufficient condition to have PRO after employ-
ing Davis-Meyer post-processor. This suggests that we need something stronger
than PrA. We first observe that the preimage attack on identity function can
be exploited to have the PRO attack. So preimage resistant can be a necessary
condition. We define a variant of preimage resistant, called multipoint-preimage
(or mPI), which is actually equivalent to PI. The multipoint-preimage (or mPI)
advantage of a (q, t, s)-adversary A (i.e., adversary which makes q queries, runs
in time t and has s targets) for HP is defined as

AdvmPI
HP (A) = Pr

h1,...,hs
$←{0,1}n

[∃i, HP (M) = hi : M ← AP (h1, . . . , hs)] (2)

When s = 1, it corresponds to the classical preimage advantage AdvPI
HP (A).

Conversely, mPI advantage can be bounded above by preimage advantage as
described in the following. For any (q, t, s)-adversary A with multipoint-preimage
advantage ε against HP , there is a (q, t + O(s))-adversary A′ with preimage-
advantage ε/s. The adversary A′ generates (s−1) targets randomly and embeds
his target among these in a random position. So whenever an mPI adversary A
finds a multipoint preimage of these s targets, it is the preimage of A’s target
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with probability 1/s (since there is no way for A to know the position of the
target for A′). W.l.o.g. one can assume that the targets are distinct and chosen
at random. Otherwise we remove all repeated hi’s and replace them by some
other random distinct targets. So we have the following result.

Lemma 1. Let h1, . . . hs be distinct elements chosen at random (i.e. outputs of
a random permutation for distinct inputs). Then, any (q, t)-adversary AP can
find one of the preimages of hi’s with probability at most s × AdvPI

HP (q, t).

3.1 Computability

Next we show that preimage resistant and PrA are not sufficient to prove the
PRO property. Consider the following example based on an n-bit one-way per-
mutation f and random oracle P .

Example 1. HP (m) = P (f(m)) ⊕ m. Given α = (f(m), w) it is hard to find m
and hence there is no efficient extractor to find the message m even though an
adversary A knows m and its HP -output. An adversary can compute z = F(m)
and makes E−1(z ⊕ w ⊕ m) query. No feasible simulator can find message m
from it with non-negligible probability and hence cannot return w⊕m. However
w⊕m is the response when A interacts with the real situation (FP,E , P, E, E−1).
So A can have a PRO attack to F . It is easy to see that HP is preimage resistant
and PrA (given the advise string α = ((x1, w1), . . . , (xq, wq)) and the target x
(that helps to find m back) the extractor finds i for which f(wi ⊕ x) = xi and
then returns wi ⊕ x).

The above example motivates us to define a computable message given an advise
string. A message M is called computable from α if there exists y such that
Pr[HP (M) = y|α] = 1. In other words, the computation of HP (M) = y can
be made without making any further P -queries. We require the existence of an
efficient extractor Ecomp, called computable message extractor, which can list all
computable messages given the advise string. We note that this is not same
as weak-PrA as the extractor has to find all messages whose outputs can be
computed to a value (unlike PrA, no such fixed target is given here). This notion
does not involve any adversary.

Definition 2. A pair (HP , Ecomp) is called (q, qH , ε)-computable message aware
or CMA if for any advise string α with q pairs, the number of computable mes-
sages is at most qH and Ecomp(α) outputs all these. Moreover, for any non-
computable messages M , Pr[HP (M) = y|α] ≤ ε, ∀y.

A hash function HP is called (q, qH , ε, tc)-computable message aware or CMA if
there is Ecomp with run time tc such that (HP , Ecomp) is (q, qH , ε)-CMA. In short
we say that HP is CMA if it is (q, qH , ε, tc)-computable message aware where
for any feasible q, qH and tc are feasible and ε is negligible. We reconsider the
above example HP (m) = P (f(m)) ⊕ m for an one-way permutation f . We have
seen that it is both PI and PrA. However, there is no efficient extractor that can
not find all computable messages given the advise string say (f(m), w). In fact,
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m is computable but there is no way to know it by the extractor only from the
advise string (extractor can know if the target f(m) ⊕ w = HP (m) is given).

To be a computable message aware, the list of computable message has to be
small or feasible so that an efficient computable message extractor can exist. For
example, the identity function has a huge set of computable messages given any
advise string which cannot be listed by any efficient algorithm even though we
theoretically know all these messages.

3.2 PRO Analysis of a Hash Function with OT E(x) ⊕ x

In this section we prove that OT (HP ()) is PRO whenever HP is PrA, PI and
CMA. We give an informal idea how the proof works. Note that for E-query,
E(x) ⊕ x almost behaves like a random oracle and hence PrA property of HP

takes care the simulation. This would be similar to the random oracle case except
that we have to deal with the fact there is no collision on E. The simulation of
responses of P -queries will be same as P . The non-trivial part is to response
E−1 query. If the E−1-query y is actually obtained by y = F(M) ⊕ HP (M)
then simulator has to find the M to give a correct response. Since simulator has
no idea about the F(M) as he can not see F -queries, the query y is completely
random to him. However, he can list all computable messages and try to compute
HP (M) and F(M). This is why we need CMA property. The simulator should
be able to list all computable messages only from the P query-responses. If he
finds no such messages then he can response randomly. The simulator would
be safe as long as there is no preimage attack to the random output. Now we
provide a more formal proof.

Let FP,E(M) = E(HP (M))⊕HP (M) and A be a PRO adversary making at
most (q0, q1, q2, q3) queries to its four oracles with bit-size lmax for the longest O0-
query. We assume that HP (·) is preimage resistant and (q∗, qH , ε)-computable
message aware for an efficient computable message extractor Ecomp where q∗ =
q1 + q2NQ[lmax]. Let q = qH + q′ and q′ = q0 + q1 + q2 + q3. For any given
PrA-extractor E , we can construct a simulator SF = (S1, S2, S3) (defined in
the oracles of CA in Fig. 3) that runs in time t∗ = O(q2 + q3Time(Ecomp)).
Given any indifferentiability adversary A making at most (q0, q1, q2, q3) queries
to its four oracles with bit-size lmax for the longest O0-query, there exists a
PrA (q, q2 + 1, t)-adversary CA with runtime t = Time(A) + O(q2 · Time(E) +
q0 + q1 + (q2 + q0)NQ[lmax]). Now we state two lemmas which are useful to
prove the main theorem of the section. Proof ideas of these lemmas are very
similar to that of Lemma 8 and Lemma 10. The games G4 and G5 are defined
in the Fig. 2. We use a simulation oracle simE which works given a runtime
database E. A random element from the set {0, 1}n \ Range(E) is returned for
simE[1, y] whenever y is not in the domain of E. Similarly a random element
from the set {0, 1}n \ Domain(E) is returned in simE[−1, c] whenever c is not
in the range of E. Whenever y or c are defined before the simulator oracle just
returns the previous returned value. We use three such simulation oracles for
E0 (which keeps the input output behavior of E due to O0 queries only), E1
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Game G4 and G5

Initialize : Ē = E0 = E1 = φ; H = H’ = β = φ, Bad =F;
300 On O3 - query c
301 S = {X1, . . . , Xr} = Ecomp(β);
302 For all 1 ≤ i ≤ r do

303 yi = HO1 (Xi) := H[Xi]; F(Xi) = zi; ci = yi ⊕ zi;
304 If ∃ unique i s.t. ci = c,
305 If E1[yi] = ⊥ then y = yi;
306 Else if E1[yi] = c′ �= ⊥ then Bad = T ; y = simE1[−1, c];
307 Else if no i s.t ci = c, then y = simE1[−1, c];
308 Else Bad =T; y = simE1[−1, c];

309 If E−1
0 [c] �= ⊥ and E−1

0 [c] �= yi then Bad = T ; y = E−1
0 [c];

310 If y is E1-simulated and E0[y] �= ⊥ then Bad = T ; y = simE[−1, c];

311 E1[y] := c; Ē[y] := c; return y;
200 On O2 - query y

201 X = E(y, β); Ext
∪← (y, X);

202 y′ = HO1 (X), H
∪← (X, y′); z = F(X); c = z ⊕ y′;

203 If y′ �= y then
204 c′ = simE1[1, y];

205 If E0[y] �= ⊥ then Bad =T; c′ = E0[y];

206 Else if c′ ∈ Range(E0) then Bad =T; c′ = simĒ[1, y];

207 E1[y] := c′; Ē[y] := c′; return c′;
208 If y′ = y and c ∈ Range(E1) then
209 c′ = simE1[1, y];

210 If E0[y] �= ⊥, then Bad =T; c′ = E0[y];

211 Else if c′ ∈ Range(E0) then Bad =T; c′ = simĒ[1, y];

212 E1[y] := c′; Ē[y] := c′; return c′;
213 If y′ = y and c �∈ Range(E1) then

214 If E0[y] �= ⊥, then Bad =T; c = E0[y];

215 Else if c ∈ Range(E0) then Bad =T; c = simĒ[1, y];

216 E1[y] := c; Ē[y] := c; return c;
100 On O1 - query u

101 v = P (u); β
‖← (u, v);

102 return v;
000 On O0 - query M

001 z = F(M); y = HP (M); c = z ⊕ y;
002 If ∃ M ′ s.t. M �= M ′ and (M ′, y) ∈ H’ then

Bad =T; H
∪← (M, y); z = F(M ′); return z;

003 H’
∪← (M, y); H

∪← (M, y);

004 If Ē[y] = ⊥ ∧ Ē−1[c] = ⊥ then Ē[y] := c; E0[y] := c; return z;
005 If Ē[y] = c then E0[y] := c; return z;

006 If Ē[y] �= ⊥ ∧ Ē[y] �= c then Bad =T; z = Ē[y] ⊕ y; return z;

007 If Ē[y] = ⊥ ∧ Ē−1[c] �= ⊥ then

Bad =T; simĒ[1, y] = c′; Ē[y] := c′; E0[y] = c′; z = c′ ⊕ y; return z;

Fig. 1. G4 executes with boxed statements whereas G5 executes without these. G4

and G5 perfectly simulate (F P,E, P, E, E−1) and (F , S1, S2, S3), respectively. Clearly
G4 and G5 are identical-until-Bad.
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(which keeps the input output behavior of E due to O2 and O3 queries) and E
(which keeps the input output behavior of E for all queries, i.e. it is the union
of the previous two unions).

Lemma 2.
G4 ≡ (FP,E , P, E, E−1), G5 ≡ (F , S1, S2, S3) and G4, G5 are identical-until-
Bad.

Proof. It is easy to see from the pseudocode that G4, G5 are identical-until-
Bad. The games G5 and the oracles simulated by CA (same as (F , S1, S2, S3))
are actually identical. They have common random sources which are namely F ,
P and the simulated oracle simE0 (we can ignore the dead conditional statements
which have boxed statements which are not actually executed in game G5). Now
it remains to show that G5 is equivalent to a real game for a PRO attacker. Note
that oracles O2 and O3 are statistically equivalent to a random permutation
E and its inverse which are simulated runtime. Moreover O0 returns F(M) if
E[y], E

−1
[c] are undefined or E[y] = c where y = HP (M) and c = F(M) ⊕ y. In

all other cases O0(M) either computes or simulates c′ = E[y] and returns c′ ⊕ y.
So O0(M) is statistically equivalent to the oracle E(HP ()) ⊕ HP (). Hence G4 is
statistically equivalent to (FP,E , P, E, E−1).

The following result follows immediately from the fact that F and HP are sta-
tistically independent and F is a random oracle.

Lemma 3. For any adversary CP,F making q queries to the n-bit random oracle
F we have Pr[F(M)⊕HP (M) = F(M ′)⊕HP (M ′), M �= M ′ : (M, M ′) ← C] ≤
q(q − 1)/2n+1.

Lemma 4. Whenever AG5 sets Bad true, CA also sets one of the Bad events
true. Moreover,

Pr[CA sets Bad true ] ≤ Advpra

HP ,P,E(CA) + q3 ×AdvPI
HP (q, t)+

q0q3ε +
2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)
2

2n+1
.

Proof. The first part of the lemma is straightforward and needs to be verified
case by case. We leave the details for readers to verify. It is easy to see that
whenever Badpra sets true C is successful in a PrA attack. Now we estimate the
probability of the other bad events, from which the theorem follows.

1. Pr[BadmPI = T ] ≤ q3 × AdvPI
HP (q∗, t∗). It is easy to see that whenever

BadmPI sets true we have a preimage of some yi which is generated from
simE1. Note that simE1 responds exactly like a random permutation. So by
lemma 1 we have the bound.

2. Pr[Badcomp = T ] ≤ q0q3ε. Whenever Badcomp sets true we should have
HP (Mi) = yi where Mi is not computable (since it is not in the list given
by Ecomp). So from computable message awareness definition we know that
Pr[HP (Mi) = yi] ≤ ε. The number of such Mi’s and yi’s are at most q0q3.
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The Oracles O2 (or S2) and O3 (or S3) The oracles O0 (or F), O1 (or P ) and
Finalization

/The VIL random oracle F is simulated by
CA/

/The VIL random oracle F is simulated
by CA/

Initialize : E1 = L = L1 = F′ = H = β =
φ;

100 On O1 - query u

Run A and response its oracles 101 v = P (u); β
‖← (u, v); return v;

300 On O3 - query c
301 S = {X1, . . . , Xr} = Ecomp(β); 000 On O0 (or F)- query M

302 For all 1 ≤ i ≤ r do 001 z = F(M); L ∪← M ;
303 yi = HO1(Xi) := H[Xi]; F(Xi) =
zi;

304 ci = yi ⊕ zi; F
′[Xi] = ci; L1

∪← X; Finalization()
305 If ∃ unique i, ci = c, 501 If collision in F′ then BadF1 =T;
306 If E1[yi] = ⊥ then y = yi 502 If collision in H then BadPrA =T;

Finish();
307 Else if O3(c

′) = yi was queried and 503 For all M ∈ L do 504-518
308 no i on that query then 504 z = F(M), H[M ] = HP (M) = y;
309 BadPI = T ; y = simE1[−1, c]; 505 F′[M ] = c = y ⊕ z;
310 Else if no i then y = simE1[−1, c]; 506 If F′[X] = c, X �= M then

BadF1 =T;
311 Else BadF1 =T;y = simE1[−1, c]; 507 If H[X] = y,X �= M then

BadPrA =T; Finish();
312 E1[y] = c; return c; 508 If Ext[y] �= ⊥,M then BadPrA =T;

Finish();
509 If O2(y) = ci, y �= yi

200 On O2 - query y := yi, i = i + 1 510 then BadE1 =T;

201 X = E(yi, β); Ext
∪← (y,X); 511 Else if O3(ci) = y �= yi after Mi-

query

202 y′ = HO1(X), H
∪← (X, y′);z =

F(X);
512 then Badcomp =T;

203 L1
∪← X; c = z ⊕ y; F′[X] = c; 513 Else if O3(ci) = y �= yi before Mi-

query
204 If y′ �= y 514 then BadF2 =T;
205 then c = simE1[1, y]; 515 Else if O3(c) = yi after Mi-query,

c �= ci

206 If y′ = y, O3(c) was queried 516 then BadE2 =T;
207 then BadF1 =T; c = simE1[1, y] 517 Else if O3(c) = yi before Mi-query,

c �= ci

208 If y′ = y, O2(y
′′) = c was queried 518 then BadPI =T;

209 then c = simE1[1, y] 519 return ⊥;
210 E1[y] = c; return c;

Fig. 2. The oracles simulated by PrA adversary CA to response an PRO adversary A.
It has a finalization procedure which also sets some bad event true. Finish() which is
defined similarly as in Fig. 4. It mainly completes the PrA attack. It is easy to see that
whenever Finish() is being executed either we have a collision in HP or there is some
message M such that HP (M) = y, (y, M) �∈ Ext.
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3. All other bad events hold due to either the special outputs of F(M) (when
BadF1 = T or BadF2 = T , we apply the lemma 3) or the special outputs of
simE(c) (when BadE1 = T and BadE2 = T ). One can show the following:

Pr[BadE1∨E2∨F1∨F2 = T ] ≤ 2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)2

2n+1
.

We have used Lemma 3 to bound the bad event BadF1. The other bad event
probability calculations are straightforward. We leave details to readers.

The main theorem of the section follows from the above lemmas.

Theorem 1. For any indifferentiability adversary A making at most (q0, q1, q2,
q3) queries to its four oracles with bit-size lmax for the longest O0-query, there
exists a PrA (q, q2 + 1, t)-adversary CA with runtime t = Time(A) + O(q2 ·
Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(CA) + q3 × AdvPI
HP (q, t) + δ,

where δ = q0q3ε + 2q0q3+q2q0
2n−q0−q2−q3

+ (qH+q2+q0)
2

2n+1 , HP (·) is preimage resistant and
(q∗, qH , ε)-computable message aware for an efficient computable message extrac-
tor Ecomp where q∗ = q1 + q2NQ[lmax].

4 Application of Theorem 1: PRO Analysis of a Variant
of Grøstl

As an application of Theorem 1 we prove the PRO analysis of a variant of
Grøstl hash function in which the output transformation is based on a per-
mutation independent of the permutations used in iteration. The compression
function fP,Q(z, m) = P (z ⊕ m) ⊕ Q(m) ⊕ z, where P and Q are invertible
permutations on n-bit modeled to be independent random permutations (ad-
versary can also have access to inverses). The hash function HP,Q of Grøstl
without output transformation is Merkle-Damg̊ard with strengthening (SMD)
and the output transformation is truncs(P (x) ⊕ x). In case of the variant of the
hash function, the output transformation is same as the previous section, i.e.
OT (x) = E(x) ⊕ x where E is a random permutation independent with P and
Q. Since SMD preserves preimage awareness and preimage resistance of the un-
derlying compression function, we focus on the proof of the compression function
fP,Q to prove PrA and preimage resistance. The proof of the following lemmas
are straightforward are given in the full version of the paper [5].

Lemma 5. For any advise string αP and αQ of sizes (q1 + q2) and (q3 + q4)
(for (P, P−1) and (Q, Q−1) respectively) the number of computable messages is
at most qf ≤ (q1 + q2)(q3 + q4) and for any non-computable message (z, m),
Pr[fP,Q(z, m) = c|αP , αQ] ≤ 1

2n−max(q1+q2,q3+q4)
. Moreover there is an efficient

computable message extractor Ef
comp which can list all computable messages.
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Let q = (q1, q2, q3, q4). Now given the computable message extractor one can
define a PrA extractor Ef as follows: Ef (y, αP , αQ) = (z, m) if there exists an
unique computable message (from the list given by Ef

comp) such that f(z, m) = y,
otherwise it returns any arbitrary message.

Lemma 6. AdvPI
HP,Q(q, t) ≤ AdvPI

fP,Q(q, t) ≤ (q1+q2)(q3+q4)
2n−max(q1+q2,q3+q4)

for any t.

Lemma 7. Let q = (q1, q2, q3, q4) and let fP,Q = P (h ⊕ m) ⊕ Q(m) ⊕ h, where
P and Q are invertible ideal permutations. For any preimage awareness (q, e, t)-
adversary A making at most q queries to the oracles P , P−1,Q, Q−1, there exists
an extractor E such that

Advpra
fP,Q,P,Q,E(A) ≤ e(q1 + q2)(q3 + q4)

2n − max(q1 + q2, q3 + q4)
+

(q1 + q2)2(q3 + q4)2

2(2n − max(q1 + q2, q3 + q4))
,

Theorem 2. Let Grøstl′(M) = P ′(HP,Q(M))⊕HP,Q(M) where HP,Q is Grøstl
without the output transformation and P, Q, P ′ are independent random permu-
tations. Then for any adversary making at most q queries to all its oracles the
PRO-advantage is bounded by 	maxq2q′2/2n−2 if If q′ = q1 +q2+q3+q4+ lmax ≤
2n−1.

Proof. The result follows from Lemma 9, 10, 11 and 12, and Theorem 1.

Remark 1. Our bound 	maxq2q′2/2n−2 in the variant of Grøstl seems to be rea-
sonable as we indeed have collision on the compression function in 2n/4 com-
plexity i.e. the collision advantage is q4/2n. We believe the designers also noted
that and this is why they consider at least double length hash function. We also
strongly believe that the same bound can be achieved for original Grøstl. How-
ever to prove that we cannot apply Theorem 2 directly. This would be our one
of the future research work.

5 PRO Analysis of Hash Functions with PGV Output
Transformations

In the previous section, we considered the case that the finial output transfor-
mation is OT (x) = E(x) ⊕ x. In this section, we consider 20 PGV compression
functions shown in Table 1 as candidates of the final output transformation
OT . Such 20 PGV hash functions based on them were proved to be collision
resistant in the ideal cipher model [4]. More precisely, we will consider the case
that FP,E(M) = OT (HP (M1), M2), where E is an ideal cipher, M = M1||M2,
HP (M1) corresponds to hi−1 and M2 corresponds to mi in Table 1. Except for
PGV 11, 13, 15-20 (See Example 2 and 3), Theorem 3 holds. The proof of the
Theorem 3 is same as Davis-Meyer case. However we give the proof idea so that
the reader could justify themselves.
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Proof Idea for 1-10, 12 and 14: Like to the Davis-Meyer case we only need
to worry about the E−1 query since we have chosen those PGV compression
functions which behave like random oracle if adversary makes only E queries.
Note that 5-10 and 12 and 14 PGV have wi as keys. So given a E−1

w (y) query
simulator can make the list of all h which can be computed, i.e. HP (M) = h, and
guess m = h ⊕ w. Once simulator guesses m he can make F queries (M, m) and
obtains responses z’s. Now simulator can find a correct m if y is really obtained
by some F(M, m). If there is no such m, simulator can response randomly and
any bad behavior would be either bounded by the collision probability or by
the preimage attack. The same argument works for PGV 1-4 since HP (M) is
xor-ed with the the E() output. So simulator can verify the correct h among all
computable hash outputs.

Example 2. See PGV 15 in Table 1, which is Emi(wi)⊕v, where wi = hi−1 ⊕mi

and v is a constant. Now we want to give an indifferentiable attack on FP,E

based on PGV 15, even though HP is preimage aware, preimage resistant,
and (q, qH , ε)-computable message aware with feasible q and qH and negligi-
ble ε. Let HP be an Merkle-damg̊ard construction with strengthening, where
the underlying compression function is a preimage aware function based on the
ideal primitive P . As shown in [8,9], SMD (Merkle-damg̊ard construction with
strengthening) preserves preimage awareness of the compression function. Also
SMD preserves preimage resistance. So, HP is also preimage aware and preim-
age resistant. We assume that HP is (q, qH , ε)-computable message aware with
feasible q and qH and negligible ε. Now we construct an indifferentiability ad-
versary A for FP,E(M) = OT (HP (M1), M2), where OT (x, y) = Ey(x ⊕ y) ⊕ v
is PGV 15, and v is a constant. First, A chooses a random query M = M1||M2

to O1, where (O1,O2,O3,O4) is (FP,E , P, E, E−1) or (F , SF
1 , SF

2 , SF
3 ) for any

simulator SF = (SF
1 , SF

2 , SF
3 ). A gets its response z from O1. And A hands

(M2, z ⊕ v) over to O4. Then, A gets its response h from O4. A makes a new
query (M ′

2, h ⊕ M2 ⊕ M ′
2) to O3. Then, A gets its response c from O3. Finally,

A hands (M1||M ′
2) over to O1 and gets its response z′. If (O1,O2,O3,O4) is

(FP,E , P, E, E−1), c ⊕ v = z′. On the other hand, since any simulator cannot
know M1, c ⊕ v �= z′ with high probability. Therefore, FP,E based on PGV 15
is not indifferentiable from a VIL random oracle F . In the similar way, cases of
PGV 11, 13, and 16 are not secure.

Example 3. See PGV 17 in Table 1, which is Ehi−1(mi)⊕mi. Firstly, we define a
hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n-bit constant
and P is a VIL random oracle with n-bit output size.

HP (x) =
{

c, if x = c;
P (x), otherwise.

In the similar way with the proofs of Section 6, we can prove that HP is
preimage aware, preimage resistant, (q, qH(= q + 1), 1/2n)-computable message
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aware, where qH is the number of computable messages obtained from q input-
output pairs of P . Now we want to give an indifferentiable attack on FP,E based
on PGV 17. We construct an indifferentiability adversary A for FP,E(M) =
OT (HP (M1), M2), where OT (x, y) = Ex(y) ⊕ y is PGV 17. First, A chooses
a query M = c||M2 to O1, where M2 is a randomly chosen one-block mes-
sage. A gets its response z from O1. And A hands (c, z ⊕ M2) over to O4.
Then, A gets its response m from O4. If (O1,O2,O3,O4) is (FP,E , P, E, E−1),
m = M2. On the other hand, since any simulator cannot know M2, m �= M2

with high probability. Therefore, FP,E based on PGV 17 is not indifferentiable
from a VIL random oracle F . In the similar way, cases of PGV 18-20 are not
secure.

Theorem 3. [PRO Construction via 12 PGVs]
Let FP,E(M) = OT (HP (M1), M2), where M = M1||M2, OT is any PGV con-
structions except for PGV 11, 13, 15-20, E−1 is efficiently computable, and
E is an ideal cipher. For any indifferentiability adversary A making at most
(q0, q1, q2, q3) queries to its four oracles with bit-size lmax for the longest O0-
query, there exists a PrA (q, q2 +1, t)-adversary CA with runtime t = Time(A)+
O(q2 · Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(CA) + q3 × AdvPI
HP (q, t)

+q0q3ε +
2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)2

2n+1
,

where HP (·) is preimage resistant and (q∗, qH , ε)-computable message aware for
an efficient computable message extractor Ecomp where q∗ = q1 + q2NQ[lmax].

Proof. The proof is very similar to that of Theorem 1. It will be referred to the
full paper [5].

Table 1. 20 Collision Resistant PGV Hash Functions in the Ideal Cipher Model [4].
(wi = mi ⊕ hi−1)

Case PGV Case PGV

1 Emi(hi−1) ⊕ hi−1 11 Emi(hi−1) ⊕ v

2 Emi(wi) ⊕ wi 12 Ewi(hi−1) ⊕ v

3 Emi(hi−1) ⊕ wi 13 Emi(hi−1) ⊕ mi

4 Emi(wi) ⊕ hi−1 14 Ewi(hi−1) ⊕ wi

5 Ewi(mi) ⊕ mi 15 Emi(wi) ⊕ v

6 Ewi(hi−1) ⊕ hi−1 16 Emi(wi) ⊕ mi

7 Ewi(mi) ⊕ hi−1 17 Ehi−1(mi) ⊕ mi

8 Ewi(hi−1) ⊕ mi 18 Ehi−1(wi) ⊕ wi

9 Ewi(mi) ⊕ v 19 Ehi−1(mi) ⊕ wi

10 Ewi(mi) ⊕ wi 20 Ehi−1(wi) ⊕ mi
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6 PRO Attacks on Hash Functions with Some DBL
Output Transformations

Here, we consider DBL (Double Block Length) output transformations. Unfor-
tunately, many constructions with DBL output transformations are not indif-
ferentiability secure, even though HP satisfies all requirements as mentioned
before.
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6.1 The Case of OT (x) = f(x)||f(x ⊕ p)

There are several DBL compression functions of the form OT (x) = f(x)||f(x⊕p)
[19,13] where p is a non-zero constant and f is any function. See Fig. 3, where
F1 was proposed by Nandi in [19] and F2 ∼ F7 were proposed by Hirose in [13].
In fact, the T in F1 Fig. 3 is a permutation without any fixed point and T 2 = id.
Here, we consider only T (x) = x⊕p, where p is a non-zero constant. We define a
hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n-bit constant
and P is a VIL random oracle with n-bit output size. 1n and 0n indicate the
n-bit one and zero strings.

HP (x) =

⎧⎨⎩
c ⊕ p, if x = 0n;
c, if x = 1n;
P (x), otherwise.

The following theorems show that HP is preimage aware, qH is small (more
precisely computable-awareness) and preimage resistant. The proofs are given
in the full version [5].

Theorem 4. Let HP be the above hash function. For any preimage awareness
(q, e, t)-adversary A making at most q queries to the oracles P , there exists an
extractor E such that

Advpra
HP ,P,E(A) ≤ eq

2n
+

(q + 2)2

2n+1
, and qH ≤ q + 2.

Theorem 5. Let HP be the above hash function. Let q be the maximum number
of queries to P . For any preimage-finding adversary A with q queries to P ,
AdvPI

HP (A) ≤ 3+q
2n . For any n-bit y and any M not computable from any advise

string α which consists of q query-response pairs of P , Pr[HP (M) = y|α] ≤ 1/2n.

Indifferentiability Attack on F (M) = HP (M)||(HP (M) ⊕ p).
Let (O1,O2,O3) be (FP,f , P, f) or (F , SF

1 , SF
1 ) for any simulator S. Now we

define an adversary A as follows. First, A makes query ‘0’ and ‘1’ to O1. Then,
A obtains responses (a1||a2) and (b1||b2). If O1 = F , then a1 = b2 and a2 = b1.
But, if O1 = F , a1 = b2 and a2 = b1 with the probability 1/2n. So, F is not
indifferentiably secure.

6.2 PRO Attack with OT (x) = Fi(x) for i = 8, 12, (Fig. 3)

In the case of F8 proposed by Lai and Massey in [15], which is called Tandem DM,
there is the following structural weakness. If for any a gi−1 = hi−1 = Mi = a
in F8 of Fig. 3, then hi ⊕ gi = a. We can show an indifferentiability attack on
F (M) = F9(HP (M)), where HP is preimage aware and qH is small. We define
a hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n/2-bit
constant and P is a VIL random oracle with n-bit output size.

HP (x) =
{

c||c, if x = 0;
P (x), otherwise.
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We can easily show that HP is preimage aware, preimage resistant and (qP , qH(=
qP +1), 1/2n)-computable message aware, where qH is the number of computable
messages obtained from qP input-output pairs of P . and qH is small.

Then, we show that F (M1||M2) = F8(HQ(M1), M2) is not indifferentiable
from a VIL random oracle F as follows. A makes a query ‘(0||c)’ to O1 and get
its response z = (z1||z2). A checks if z1 ⊕ z2 = c. If O1 is F , z1 ⊕ z2 = c with the
probability 1/2n/2. On the other hand, if O1 is F , z1 ⊕z2 = c with probability 1.
So F is not indifferentiability secure. In the case of F12, which is called MDC-2,
if the values of Mi and hi−1 are fixed, the half of bits of the output of F12 is also
fixed regardless of what gi−1 is. Using this weakness, in a similar way as shown
in above, we also can construct HP such that F (M1||M2) = F12(HP (M1), M2)
is not indifferentiably secure.

7 Conclusion

In this paper we extend the applicability of preimage-awareness in those hash
functions whose output transformation cannot be modeled as a random oracle.
We choose Davis-Meyer as an output transformation based on a random permu-
tation and show that the hash function is PRO if HP is PrA, preimage resistant
and computable message aware. The computable message awareness is a new
notion introduced here similar to PrA. However this is not same as PrA as we
can see the separation among these notions. As an application to our result we
prove the PRO property of a variant of Grøstl hash function. We similarly prove
that 12 PGV compression function out of 20 collision resistant PGV hash func-
tions can be employed as output transformation with the similar assumption on
HP . However, some the popular double length hash function can not be used
as we have shown PRO attacks. In summary, we study the choice of output
transformation beyond the random oracle model and found both positive and
negative results.
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Appendix A. Revisiting the Proof of
“RO(PrA(·)) = PRO(·)”
In [8,9] it was proved that FR,P (M) = R(HP (M)) is indifferentiable from a
VIL random oracle F , where R : {0, 1}m → {0, 1}n is a FIL random oracle, P
is an ideal primitive, and HP : M → {0, 1}m is preimage-aware. The result can
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be used to prove the indifferentiable security of any hash function which uses a
post-processor defined independently from the underlying iteration function P .
In the course of our studies we have found that the proof given in [8,9] is not
completely correct (though the claims remain correct). We have reported this in
a limited distribution abstracts on February and May 2010 (recently in October
2010, a correction on the e-print version has appeared by the original coauthors,
further confirming our findings). Let us review the issues. There are two main
flaws (to be described below) in the proof, and we need to provide alternative
definitions of simulator and preimage-aware attacker to fix them. (We note that
while somewhat technical, the revision is crucial). Let NQ[l] be the number of P -
queries required for the computation of HP (M) for |M | = l. We denote Time(·)
and STime(·) to mean the run time and simulation run time of an algorithm.
Now we restate the Theorem 4.1. in [8,9] (in terms of our PrA terminologies)
and provide a sketch of the proof given in [8].

Theorem 4.1 of [8,9]
For any given efficient extractor E , there exists a simulator S = (S1, S2) with
Time(S) = O(q1 · STime(P ) + q2 · Time(E)). The simulator makes at most
q2 F -queries. For any indifferentiability adversary AO0,O1,O2 making at most
(q0, q1, q2) queries to its three oracles with bit-size lmax for the longest O0-
query, there exists a (q1+q0 ·NQ[lmax], q2+1, t)-PrA adversary BP

A with runtime
t = Time(A) + O(q0 · NQ[lmax] + q1 + q2Time(E)) such that

Advpro
F,S(A) ≤ Advpra

HP ,P,E(BA).

Outline of Proof of Theorem 4.1. of [9]. Let E be an arbitrary extractor
for H . Then S = (S1; S2) works as follows. It maintains an internal advice
string α (initially empty) that will consist of pairs (u; v) corresponding to A’s
queries to P (via S1). When A queries u to S1, the simulator simulates v ←
P (u) appropriately, sets α ← α‖(u; v), and returns v. For a query Y to S2, the
simulator computes X ← E(Y ; α). If X = ⊥ then the simulator returns a random
point. Otherwise it simulates Z ← F(X) and returns Z to the adversary. The
games R0, I1, G0, G1 and BA have been defined in [9] and the authors claimed
the following:

(1) G1 ≡ I1 ≡ (F , S1, S2), (2) G0 ≡ R0 ≡ (FP,R, P,R).

Due to the above claim the PRO-advantage of any adversary A is nothing
but |Pr[AG0 = 1] − Pr[AG1 = 1]. From the pseudocodes of games G0 and
G1, it is easy to see that they are identical-until-Bad. Hence Advpro

F,S(A) ≤
Pr[AG1 sets Bad true]. The proof proceeds by defining a PRA-adversary BA

which makes preimage-aware attack successfully whenever BA sets Bad true.
Since BA sets Bad true only if it finds a collision of HP or finds a message
M such that E(α, Y ) �= M where Y = HP (M). So Pr[BA sets Bad true] ≤
Advpra

HP ,P,E(BA). The theorem follows immediately from the following claim:

(3) Pr[AG1 sets Bad true] ≤ Pr[BA sets Bad true].
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7.1 Problems in Proof of Theorem 4.1. of [9]

In this section we explain the flaws we observe in the proof of Theorem 4.1. of
[9]. To understand it one needs to go through the definitions of the games G0,
R0, G1 and G(B) (the tuple of three oracles simulated by B) described in [9].2

Flaw 1. G0 is not equivalent to R0.
If O0 in G0 has not been queried before (so the Bad event in G0 would not
occur) then the output of O2(Y ) query is F(X) whenever X = E(Y, α) �= ⊥,
otherwise it returns R(X) where F and R perfectly simulate two independent
random oracles F and R respectively. We show that O2 cannot be equivalent to
a random oracle. Suppose E is an extractor which returns a special message M∗

whenever the advise string α is empty. If A makes first two successive distinct
O2 queries Y2,1 and Y2,2 then X2,1 = X2,2 = M∗ and hence the outputs of O2

in game G0 are identical (same as F[M∗]).
To get rid of the above problem, we can do the following steps in O2 (also in

simulator S2) immediately after it obtains X = E(Y, α): Compute HP (X) = Y ′

and check whether it is the same as Y or not. If extractor returns a correct mes-
sage, i.e. Y = Y ′, then S2 or O2 returns F(M). Otherwise, it returns randomly.
To compute HP (X) one might need to simulate some P outputs (in case of G0)
or make P -queries (in case of O2 of B).

Flaw 2. G(B) �≡ G1 and G1, G(B) are not identical-until-Bad.
We first observe that the advise string α in G1 is not the same as that of B since
the advice string α is updated whenever A has access to the oracle O1 in Game
G1, but the advice string is updated whenever A has access to the oracle O0 and
O1 of B in Fig 3 of [9]. For example, let E(Y, α) return a message M whenever
HP (M) = Y is “computable’ from α otherwise return ⊥. Any adversary which
can guess HP (M) correctly and turn it to O2 query then OB

2 (Y |τ) returns z.
However, OG1

2 (Y |τ) returns a random string R[Y ] since α is the empty string in
AG1. So G(B) �≡ G1. One can similarly show that G1, G(B) are not identical-
until-Bad.

A possible attempt is to update the advise string for O0 queries in all games, in
particular G1. However, if we do so then the simulator is not independent of F -
queries (since the advise string is updated whenever there is a O0-query and the
advise string is used to define the response of S2). On the other hand, we cannot
ignore the HP (M) computation in B for O0 queries of A. This computation
is essential to making PrA attack successfully. It seems impossible to handle
the advise string so that it is updated in the same way for all games as well
as HP (·) computations are made for O0-queries. We can solve the problem if
we postpone the computation of HP until all queries of A are made.
So we need a finalization procedure in B which essentially does all HP (M)
computations of O0(M)-queries.

2 We have defined the revised version of these games in the paper. We refer readers
to [9] to see the original definitions to understand the flaws.
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7.2 Revised Proof of Theorem 4.1 of [9]

We state the corrected version of theorem 4.1. below. The revised version of B :=
BA, simulators and the games G0 and G1 are defined in Fig. 1. The adversary
BA has a subroutine called Finish() which is defined trivially. It mainly completes
the PrA attack. It is easy to see that whenever Finish() is being executed either
we have a collision in HP or there is some message M such that HP (M) =
y, (y, M) �∈ Ext. For simplicity we ignore the details of the subroutine. Let q =
q1 + (q0 + q2) · NQ[lmax].

Lemma 8. G1 ≡ (OBA
0 ,OBA

1 ,OBA
2 ) ≡ (F , S1, S2). Games G0 and G1 are

identical-until-Bad.

The Lemma is obvious from the games described in Fig. 1. We leave read-
ers to verify. The following lemma essentially says that G0 is equivalent to
(R(HP ), P,R). The proof of the lemma is easy to verify and we skip it for
the full version.

Lemma 9. G0 ≡ (R(HP ), P,R), i.e. for any distinguisher A, the output dis-
tribution of AG0 and AR(HP ),P,R are identically distributed.

Lemma 10. Whenever AG1 sets Bad true, BA sets Bad true and BA makes
PrA attack successful. So we have Pr[AG1 sets bad] ≤ Pr[BA sets bad] ≤
Advpra

HP ,P,E(BA).

Proof. We already know from Lemma 8 that G1 is equivalent to the oracles
simulated by BA. However, the two games defined bad event in different man-
ners. The game G1 sets bad during the computation of responses whereas the
adversary BA sets bad after all responses of the queries. AG1 sets bad true in
line 209, 003 and in line 206, 005. We can see that if the conditional statements
written in 209 and 003 in game G1 hold then we have a collision in HP (there
exist M �= X such that HP (M) = HP (X)). So we have PrA attack which is
taken care of in 401 in the second step of BA. For the lines 205 and 005 we have
M such that HP (M) = y and Ext[y] �= M , i which case PrA attack is possible
due to incorrect guess of the extractor. This has been taken care of in 403.

By using the above lemmas the theorem follows immediately

Theorem 6 (Ro domain extension via PrA). For any given extractor E we
can construct a simulator S = (S1, S2) with Time(S) = O((q1 + q2 · NQ[lmax]) ·
STime(P )+q2 ·Time(E)). For any indifferentiability adversary AO0,O1,O2 making
at most (q0, q1, q2) queries to its three oracles with bit-size lmax for the longest
O0-query, there exists a (q, q2 + 1, t)-adversary B with runtime t = Time(A) +
O(q2 · Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(B),

This copy belongs to 'VANC03'



166 D. Chang, M. Nandi, and M. Yung

Game G0 and G1 Adversary BP
A and Simulator SF =

(S1, S2)

Initialize : H = R2 = R0 = φ; Initialize : H = R2 = R0 = L = β = φ;
i = 1, Bad =F;

L = β = φ, i = 1, Bad =F; Run A and respond queries of A’s as fol-
lows:

200 On O2 - query y := yi, i = i + 1 200 On O2 (or S2)-query y := yi, i = i + 1

201 X = E(yi, β); Ext
∪← (y,X); 201 X = E(yi, β); Ext

∪← (y,X);

202 y′ = HP (X) and update β; 202 y′ = HP (X) and update β;
203 If y′ �= y 203 If y′ �= y
204 then z = R(y); 204 then z = R(y);
205 If y′ �= y ∧ (M, y) ∈ H

206 then Bad =T; z = R0[y];

207 If y′ = y 207 If y′ = y
208 then z = F(X); 208 then z = F(X);
209 If y′ = y ∧ (M, y) ∈ H ∧ M �= X

210 then Bad =T; z = R0[y];

211 R2
∪← (y, z); return z; 211 R2

∪← (y, z); return z;

100 On O1 - query u 100 On O1 (or S1)-query u

101 v = P (u); β
‖← (u, v); 101 v = P (u); β

‖← (u, v);
102 return v; 102 return v;

000 On O0 - query M 000 On O0 (or F)- query M

001 z = F(M); L ∪← M ; 001 z = F(M); L ∪← M ;

002 y = HP (M); H
∪← (M, y); 002 R0

∪← (y, z); return z;

003 If R0[y] �= ⊥ 400 Finalization: (after A finishes
queries.)

004 then Bad = T; z = R0[y]; 401 If ∃M �= M ′ ∈ L, HP (M) =
HP (M ′)

005 Else if R2[y] �= ⊥ ∧ (y, M) �∈ E 402 then bad =T, Finish();

006 then Bad = T; z = R2[y]; 403 If ∃M ∈ L, (y,X) ∈ E, X �= M ,
HP (M) = y

007 R0
∪← (y, z); return z; 404 then bad =T, Finish();

405 return ⊥;

Fig. 4. G0 executes with boxed statements whereas G1 executes without these. Clearly
G0 and G1 are identical-until-Bad and whenever G1 set bad true the adversary BP

A set
also bad true. In this case, Finish() subroutine executes which makes PrA successful.
The tuple of simulated oracles of BA is equivalent to (F , S1, S2).
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Abstract. We present a new variant of cube attacks called a dynamic
cube attack. Whereas standard cube attacks [4] find the key by solving
a system of linear equations in the key bits, the new attack recovers the
secret key by exploiting distinguishers obtained from cube testers. Dy-
namic cube attacks can create lower degree representations of the given
cipher, which makes it possible to attack schemes that resist all previ-
ously known attacks. In this paper we concentrate on the well-known
stream cipher Grain-128 [6], on which the best known key recovery at-
tack [15] can recover only 2 key bits when the number of initialization
rounds is decreased from 256 to 213. Our first attack runs in practical
time complexity and recovers the full 128-bit key when the number of
initialization rounds in Grain-128 is reduced to 207. Our second attack
breaks a Grain-128 variant with 250 initialization rounds and is faster
than exhaustive search by a factor of about 228. Finally, we present an
attack on the full version of Grain-128 which can recover the full key
but only when it belongs to a large subset of 2−10 of the possible keys.
This attack is faster than exhaustive search over the 2118 possible keys
by a factor of about 215. All of our key recovery attacks are the best
known so far, and their correctness was experimentally verified rather
than extrapolated from smaller variants of the cipher. This is the first
time that a cube attack was shown to be effective against the full version
of a well known cipher which resisted all previous attacks.

Keywords: Cryptanalysis, stream ciphers, Grain-128, cube attacks, cube
testers, dynamic cube attacks.

1 Introduction

A well designed cipher is expected to resist all known cryptanalytic attacks,
including distinguishing attacks and key recovery attacks. These two types of
attacks are closely related since in many cases a distinguisher can be extended
to a key recovery attack. Examples include many of the key-recovery attacks
on iterated block ciphers such as differential cryptanalysis [1] and linear crypt-
analysis [2]: First, the attacker constructs a distinguisher for a certain number
of rounds of the iterated block cipher (usually one round less than the total
number of rounds). Then, the attacker guesses part of the secret key and uses
it to partially decrypt several ciphertexts in the final round. The distinguisher

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 167–187, 2011.
c© International Association for Cryptologic Research 2011

This copy belongs to 'VANC03'



168 I. Dinur and A. Shamir

can be easily exploited to verify the guess: Under the correct guess, the partially
decrypted ciphertexts are expected to exhibit the non-random property of the
distinguisher. On the other hand, an incorrect guess is actually equivalent to
adding another encryption round, and hence ciphertexts decrypted with an in-
correct guess are expected to behave randomly. This is a very general technique
for exploiting a distinguisher to recover the secret key of block ciphers, but it
cannot be typically applied to stream ciphers, where partial decryption is not
possible. Moreover, even when dealing with iterated block ciphers, more efficient
key-recovery techniques often exist. In this paper we focus on the specific case
of distinguishers obtained from cube testers (see [3]) and show how to use them
in key recovery attacks.

Cube testers [3] are a family of generic distinguishers that can be applied to
the black box representation of any cryptosystem. Cube attacks [4] are related
to cube testers since both types of attacks sum the output of a cryptographic
function over a subset of its input values. However, cube testers use the resultant
sums to distinguish the cipher from a random function, whereas cube attacks use
the sums to derive linear equations in the secret key bits. The success of cube
testers and cube attacks on a given cryptosystem depends on subtle properties
of the ANF (algebraic normal form) representation of the output function in the
plaintext and key bits over GF(2). Although the explicit ANF representation
is usually unknown to the attacker, cube testers and cube attacks can exploit
a relatively low degree or sparse ANF representation in terms of some of its
variables to distinguish the cipher from a random function and to recover the
secret key.

Both cube attacks and cube testers are performed in two phases: The prepro-
cessing phase which is not dependent on the key, and the online phase in which
the key has a fixed unknown value. Whereas cube attacks are key recovery at-
tacks and are thus stronger than cube testers, the preprocessing phase of cube
attacks is generally more complex and has a lower chance of succeeding than
the preprocessing phase of cube testers. The reason for this is that cube attacks
require that the sum of the cipher’s output function has a very specific property
- it needs to be of low degree when represented as a polynomial in the key bits.
Cube testers do not require such a specific property, but rather require that the
value of the sum exhibits a property which is easily testable. An example of such
a property is balance (i.e. whether the sum (modulo 2) is 0 and 1 with equal
probabilities). Examples where cube testers succeed, while cube attacks seem to
fail include scaled-down variants of the stream cipher Grain-128 (see [5]). Even
in the case of scaled-down variants of the stream cipher Trivium, where cube
attacks succeed ([4]), the preprocessing phase of cube attacks is much more time
consuming than the one of cube testers. The challenge that we deal with in this
paper is to extend cube testers to key recovery attacks in a new generic way.
This combines the key recovery feature of cube attacks with the relatively low
computational complexity of the preprocessing phase of cube testers.

We present a new attack called a dynamic cube attack that recovers the
secret key of a cryptosystem by exploiting distinguishers given by cube testers.
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The main observation that we use for the new attack is that when the inputs
of the cryptosystem are not mixed thoroughly enough, the resistance of such
a marginal cipher to cube testers usually depends on very few (or even one)
non-linear operations that are performed at the latest stages of the encryption
process. These few non-linear operations produce most of the relatively high
degree terms in the ANF representation of the output function. If we manage to
simplify the ANF representation of the intermediate encryption state bits that
are involved in these non-linear operations (e.g. by forcing one of the two inputs
of a multiplication operation to be zero), then the degree of the polynomial will
be much lower, making it much more vulnerable to cube testers. In dynamic
cube attacks, we analyze the cipher, find these crucial state bits and force them
to be zero by using dedicated input bits called dynamic variables. Since the
values of the state bits typically depend also on some key bits, we have to either
guess them, or to assume that they have a particular value in order to apply the
attack. For each guess, we use a different cube tester (that assigns the dynamic
variables according to the guess) to distinguish the cipher from random. For
the correct guess, the ANF representation of the crucial intermediate encryption
state bits is simplified to zero, and the cube tester is likely to detect a strong
non-random property in the output. On the other hand, for a large portion of
wrong guesses, the cube tester is unlikely to detect this property. Thus, we can
efficiently eliminate wrong guesses and thus recover parts of the secret key.

We applied the attack to two reduced variants of the stream cipher Grain-128
[6], and obtained the best known key recovery results for these variants. More
significantly, we present an attack on the full version of Grain-128 which is faster
than exhaustive search by a factor of 215, for a subset of 2−10 of all the possible
keys. The attack can probably be optimized to break a larger set of weak keys
of Grain-128, but even in its current form, it can break a practically significant
fraction of almost one in a thousand keys. This is much better than other weak
key attacks, which can typically break only a negligible fraction of keys.

The idea of assigning dynamic constraints (or conditions) to public variables
and using them to recover key bits already appeared in previous work. In [15], the
dynamic constraints were used to enhance differential and high order differential
attacks by limiting the propagation of differences in the internal state of the
cipher. This technique was applied to reduced variants of a few ciphers, and
in particular was used to recover 2 key bits of Grain-128 when the number
of initialization rounds is reduced from 256 to 213. In dynamic cube attacks,
the dynamic constraints are used in a completely different way: The first and
most crucial step of dynamic cube attacks is the careful analysis of the output
function of the cipher. This analysis allows us to select constraints that weaken
the resistance of the cipher to cube testers. Our carefully selected constrains, in
addition to our novel algebraic key-recovery techniques, allow us to obtain much
improved results on the cipher Grain-128: Our attack on a Grain-128 variant
that uses 207 initialization rounds recovers the complete key (rather than a few
key bits) with feasible complexity. In addition, we break a Grain-128 variant
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with 250 initialization rounds and a weak key set (containing a fraction of 2−10

of all the possible keys) of the full version of the cipher.
Next, we briefly describe the standard cube testers and cube attacks (for more

details, refer to [3] and [4]). We then describe the new attack in detail and present
our results on the cipher Grain-128 [6]. Finally, we conclude and list some open
problems.

2 Cube Attacks and Cube Testers

2.1 Cube Attacks

In almost any cryptographic scheme, each output bit can be described by a mul-
tivariate master polynomial p(x1, .., xn, v1, .., vm) over GF (2) of secret variables
xi (key bits), and public variables vj (plaintext bits in block ciphers and MACs,
IV bits in stream ciphers). The cryptanalyst is allowed to tweak the master
polynomial by assigning chosen values for the public variables, which result in
derived polynomials, and his goal is to solve the resultant system of polynomial
equations in terms of their common secret variables. The basic cube attack [4] is
an algorithm for solving such polynomials, which is closely related to previously
known attacks such as high order differential attacks [11] and AIDA [12].

To simplify our notation, we now ignore the distinction between public and
private variables. Given a multivariate master polynomial with n variables
p(x1, .., xn) over GF (2) in algebraic normal form (ANF), and a term tI contain-
ing variables from an index subset I that are multiplied together, the polynomial
can be written as the sum of terms which are supersets of I and terms that miss
at least one variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Note that the superpoly of I in p is a
polynomial that does not contain any common variable with tI , and each term
in q(x1, .., xn) does not contain at least one variable from I. Moreover, compared
to p, the algebraic degree of the superpoly is reduced by at least the number of
variables in tI .

The basic idea behind cube attacks is that the symbolic sum over GF (2) of
all the derived polynomials obtained from the master polynomial by assigning
all the possible 0/1 values to the subset of variables in the term tI is exactly
pS(I) which is the superpoly of tI in p(x1, .., xn). A maxterm of p is a term tI
such that the superpoly of I in p is a linear polynomial which is not a constant.

The cube attack has two phases: the preprocessing phase, and the online
phase. The preprocessing phase is not key-dependant and is performed once per
cryptosystem. The main challenge of the attacker in the preprocessing phase is
to find sufficiently many maxterms with linearly independent superpolys. Lin-
ear superpolys are not guaranteed to exist, and even when they exist, finding
them can be a challenging preprocessing task. However, once sufficiently many
linearly independent superpolys are found for a particular cryptosystem, we can
repeatedly use them to easily find any secret key during the online phase.
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2.2 Cube Testers

Similarly to cube attacks, cube testers [3] work by evaluating superpolys of terms
of public variables. However, while cube attacks aim to recover the secret key,
the goal of cube testers is to distinguish a cryptographic scheme from a random
function, or to detect non-randomness by using algebraic property testing on
the superpoly. One of the natural algebraic properties that can be tested is
balance: A random function is expected to contain as many zeroes as ones in its
truth table. A superpoly that has a strongly unbalanced truth table can thus be
distinguished from a random polynomial by testing whether it evaluates as often
to one as to zero. Other efficiently detectable properties include low degree, the
presence of linear variables, and the presence of neutral variables.

In the preprocessing phase of cube testers, the attacker finds terms whose
superpolys have some efficiently testable property.

3 A Simple Example of Dynamic Cube Attacks

Both standard (static) cube testers and dynamic cube attacks sum the output
of the cipher over a given cube defined by a subset of public variables, which are
called cube variables. In static cube testers, the values of all the public variables
that are not summed over are fixed to a constant (usually zero), and thus they are
called static variables. However, in dynamic cube attacks the values of some of
the public variables that are not part of the cube are not fixed. Instead, each one
of these variables (called dynamic variables) is assigned a function that depends
on some of the cube public variables and some expressions of private variables.
Each such function is carefully chosen, usually in order to zero some state bits in
order to amplify the bias (or the non-randomness in general) of the cube tester.
Dynamic cube attacks are clearly a generalization of standard cube testers, but
also allow us to directly derive information on the secret key without solving
any algebraic equations. Moreover, choosing the dynamic variables carefully may
help to improve the time complexity of distinguishers obtained by using standard
cube testers (we will need fewer cube variables to obtain a distinguisher). We
note that the drawback of the new attack compared to basic cube attacks and
cube testers, is that it requires a more complex analysis of the internal structure
of the cipher.

To demonstrate the idea of the attack, we consider a polynomial P which is
a function of the three polynomials P1, P2, and P3:

P = P1P2 + P3

P1, P2, and P3 are polynomials over five secret variables x1, x2, x3, x4, x5 and
five public variables v1, v2, v3, v4, v5:

P1 = v2v3x1x2x3 + v3v4x1x3 + v2x1 + v5x1 + v1 + v2 + x2 + x3 + x4 + x5 + 1
P2 = arbitrary dense polynomial in the 10 variables
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P3 = v1v4x3x4 + v2x2x3 + v3x1x4 + v4x2x4 + v5x3x5 + x1x2x4 + v1 + x2 + x4

Since P2 is unrestricted, P is likely to behave randomly and it seems to be
immune to cube testers (or to cube attacks). However, if we can set P1 to zero,
we get P = P3. Since P3 is a relatively simple function, it can be easily distin-
guished from random. We set v4 = 0 and exploit the linearity of v1 in P1 to set
v1 = v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1 which forces P1

to zero. During the cube summation, the value of the dynamic variable v1 will
change according to its assigned function. This is in contrast to the static vari-
able v4, whose value will remain 0 during the cube summation. At this point, we
assume that we know the values of all the secret expressions that are necessary
to calculate the value of v1: x1x2x3, x1, and x2 + x3 + x4 + x5 + 1. Plugging in
the values for v1 and v4, we get:

P = v2x2x3 + v3x1x4 + v5x3x5 + x1x2x4 + x2 + x4+
(v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1) =
v2v3x1x2x3 +v2x2x3 +v3x1x4 +v5x3x5 +x1x2x4 +v2x1 +v5x1 +v2 +x3 +x5 +1

After these substitutions, we can see that the simplified P is of degree 2 in
the public variables, and there is only one term (v2v3x1x2x3) of this degree.
We have 3 free public variables (v2, v3, v5) that are not assigned. We can now
use them as cube variables: The sum over the big cube v2v3v5 and two of its
subcubes v2v5 and v3v5 is always zero. Moreover, the superpoly of v2v3 is x1x2x3,
which is zero for most keys. Thus, we can easily distinguish P from a random
function using cube testers. However, the values of the expressions x1x2x3, x1,
and x2 + x3 + x4 + x5 + 1 are unknown in advance, and it is not possible to
calculate the dynamic values for v1 without them. Thus, we guess the 3 values of
the expressions (modulo 2). For each of the 8 possible guesses (there are actually
6 possible guesses since x1 = 0 implies x1x2x3 = 0, but this optimization is
irrelevant at this point), we run the cube tester, and get 4 0/1 values - a value
for each cube sum. The 7 wrong guesses will not zero P1 throughout the cube
summations. Hence the 4 cube sums for each wrong guess are likely to behave
randomly, and it is unlikely that more than 1 wrong guess will give 4 zero cube
sum values. On the other hand, the 4 cube sums for the correct guess will all
equal to 0 with high probability. Hence, for most keys, we expect to remain with
at most 2 possible guesses for the 3 expressions and we can recover the values
for the expressions that are assigned a common value by these 2 guesses. This
gives us a distinguisher for P and allows us to derive information regarding the
secret key.

In the general decomposition of a polynomial P as P = P1P2 +P3, we call P1

(according to which we assign the dynamic variable) the source polynomial, P2

the target polynomial and P3 the remainder polynomial. There are many ways to
express P is such a way, and the choice of source and target polynomials requires
careful analysis of the given cipher.
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4 Dynamic Cube Attacks on Grain-128

4.1 Description on Grain-128

We give a brief description of Grain-128, for more details one can refer to [6].
The state of Grain-128 consists of a 128-bit LFSR and a 128-bit NFSR. The
feedback functions of the LFSR and NFSR are respectively defined to be
si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si+bi+bi+26+bi+56+bi+91+bi+96+bi+3bi+67+bi+11bi+13+bi+17bi+18+
bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, and
with a 96-bit IV that is loaded into the LFSR, while the remaining 32 LFSR bits
are filled with the value of 1. The state is then clocked through 256 initialization
rounds without producing an output, feeding the output back into the input of
both registers.

4.2 Previous Attacks

Several attacks have been published on Grain-128 variants: [7] found a distin-
guisher when the number of initialization rounds is reduced from 256 to 192
rounds, [8] described shortcut key-recovery attacks on a variant with 180 initial-
ization rounds, and [9] exploited a sliding property to speedup exhaustive search
by a factor of two. Related-key attacks on the full cipher were presented in [10].
However, the relevance of related-key attacks is disputed and we concentrate on
attacks in the single key model. Stankovski [16] presented a distinguishing attack
on a variant that uses 246 initialization rounds, which works for less than half of
the keys. The most powerful distinguishing attack on most keys of Grain-128 was
given in [5], where cube testers were used in order to distinguish the cipher from
random for up to 237 initialization rounds. Moreover, the authors claim that
by extrapolating their experimentally verified results, one can argue that cube
testers may be used in order to attack the full cipher. However, this conjecture
has not been verified in practice due to the infeasibility of the attack. Note that
[5] only gives a distinguisher, and leaves the problem of exploiting cube testers
(or cube attacks) for key recovery open. More recently [15] used conditional dif-
ferential cryptanalyses to recover 2 key bits of Grain-128 with 213 initialization
rounds, which gives the best known key-recovery attack in the single key model
up to this point.

4.3 Outline of the New Attacks on Grain-128

We present 3 attacks:

1. A feasible full key recovery attack on a Grain-128 variant that uses 207
initialization rounds, while utilizing output bits 208 − 218.
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2. An experimentally verified full key recovery attack on a Grain-128 variant
with 250 initialization rounds.

3. An experimentally verified attack on the full Grain-128, which can recover
a large subset of weak keys (containing 2−10 of all the possible keys).

We begin by describing the common steps shared by these three attacks. We
then elaborate on each attack in more detail.

The preprocessing phase of the attacks consists of 2 initial steps:

Step 1. We first choose the state bits to nullify, and show how to nullify them
by setting certain dynamic variables to appropriate values.

This is a complex process that cannot be fully automated and involves man-
ual work to analyze the cipher: When applying the attack to Grain-128, we
would like to decompose its output function into a source and target polynomi-
als (representing intermediate state bits multiplied together), and a remainder
polynomial which should be more vulnerable to cube testers than the original
output. In our small example, this was easy since we could explicitly write down
and analyze its ANF in terms of the public and private variables. However, the
output function of Grain-128 is too complex to decompose and analyze in such a
way. Our approach in this paper is to use the recursive description of the cipher’s
output function in order to find a good decomposition.

In the case of Grain-128, specific non-linear terms in the cipher’s output stand
out as being of higher degree than others and are good candidates to be nullified
or simplified. The output function of Grain-128 is a multivariate polynomial of
degree 3 in the state. The only term of degree 3 is bi+12bi+95si+95, and hence we
focus on nullifying it. Since bi+12 is the state bit that is calculated at the earliest
stage of the initialization steps (compared to bi+95 and si+95), it should be the
least complicated to nullify. However, after many initialization steps, the ANF
of bi+12 becomes very complicated and we were not able to nullify it when more
than 230 initialization rounds are used (i.e. for i > 230). The compromise we
make is to simplify (and not nullify) bi+12bi+95si+95: We write the most signifi-
cant term of degree 3 that is used in the calculation of these state bits, which for
bi+12 is bi−128+12+12bi−128+95+12si−128+95+12 = bi−104bi−21si−21. The most sig-
nificant term for both bi+95 and si+95 is bi−128+12+95bi−128+95+95si−128+95+95 =
bi−21bi+62si+62. We can see that bi−21 participates in all terms, and thus nulli-
fying it is likely to simplify the ANF of bi+12bi+95si+95 significantly.

The ANF of the earlier bi−21 is much easier to analyze compared to the one
of bi+12, but it is still very complex. Thus, we perform more iterations in which
we simplify bi−21 further by using its recursive description to nullify previous
state bits. When the ANF representation of bi−21 is simple enough, we select
a linear public variable in its ANF and assign to it an expression which will
make the whole expression identically zero. We elaborate on this multistage
process for output bit 215 of Grain-128 (used in attack 1): We would like to zero
b215−21 = b194. However, we do not zero it directly. We first zero 4 other state
bits in order to simplify its ANF representation. The details of how these bits
were chosen are given in Appendix A.
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Step 2. We choose a big cube and a set of subcubes to sum over during the online
phase. We then determine the secret expressions that need to be guessed in order
to calculate the values of the dynamic variables during the cube summations.

Some choices of the big cube give better results than other, and choosing a
cube that gives good results is a crucial part of the preprocessing. One can use
heuristics in order to find cubes that give better results (an example of a heuristic
is given in [5]). However, it is difficult to predict in advance which cubes will give
good results without actually executing the attack and calculating the results
for many cubes.

The secret expressions that need to be guessed are calculated according to the
symbolic expressions of the dynamic variables and the chosen big cube. This is
a simple process that can be easily automated:

1. Given the symbolic form of a dynamic variable, look for all the terms which
are combinations of variables from the big cube. In our simple example, the
symbolic form of the single dynamic variable is v2v3x1x2x3 + v2x1 + v5x1 +
v2 + x2 + x3 + x4 + x5 + 1. Our big cube is v2v3v5. The terms which are
combinations of variables from the big cube in the symbolic form are v2v3,
v2, v5 and the empty combination.

2. Rewrite the symbolic form as a sum of these terms, each one multiplied by
an expression of secret variables. In our example, we write v2v3x1x2x3 +
v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1 = v2v3(x1x2x3) + v2(x1 + 1) +
v5(x1) + (x2 + x3 + x4 + x5 + 1),

3. Add the expressions of secret variables to the set of expressions that need to
be guessed. In the example, we add x1x2x3, x1 and x2 + x3 + x4 + 1 (note
that guessing the value of x1 is the same as guessing the value of x1 + 1,
and we do not add it twice). In addition, we do not add expressions whose
value can be deduced from the values of the expressions already in the set.
For example, if x1 and x2 are is the set, we do not add x1x2 or x1 + x2.

In steps 3−4, the attacker uses the parameters obtained in the first two steps
in order to derive information regarding the secret key. These steps constitute
the online phase of the attack that is executed by the attacker after the secret
key has been set. In addition, steps 3 − 4 are simulated by the attacker in the
preprocessing phase for several pseudo random keys, in order to verify his choices
in steps 1 − 2.

Step 3

1. For each possible value (guess) of the secret expressions, sum over the sub-
cubes chosen in the previous step with the dynamic variables set accordingly,
and obtain a list of sums (one sum per subcube).

2. Given the list of sums, calculate the guess score (which measures the non-
randomness in the subcube summations). The output of this step is a sorted
guess score list in which guesses are sorted from the lowest score to the
highest.
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Given that the dimension of our big cube is d, the complexity of summing over
all its subcubes is bounded by d2d (this can be done using the Moebius transform
[13]). Given that we need to guess the values of e expressions, the complexity of
this step is bounded by d2d+e. However, the data complexity of this step can by
significantly lower than the time complexity: Assuming that we have only y ≤ e
dynamic variables, the data complexity is bounded by 2d+y (an output bit for
every possible value of the cube and dynamic variables is sufficient).

After we obtain the summation values for each of the subcubes for a specific
guess, we determine its score. The simple score function that we use in this
paper measures the percentage of 1 values in the summations. The reason that
we consider summation values which are biased towards 0 as non-random (but
not summation values which are biased towards 1) is that the superpolys of the
cubes in our attacks tend to be extremely sparse, and their ANF contains the
constant 1 (or any other term) with very low probability. Such sparse polynomials
evaluate to zero for almost all keys.

Step 4 Given the sorted guess score list, we determine the most likely values for
the secret expressions, for a subset of the secret expressions, or for the entire key.
The straightforward approach to calculate the values for the secret expressions
is to simply take the values for the expressions from the guess that has the
lowest score (or the least percentage of 1 values in its summations values), in
the sorted guess list. However, this approach does not always work. Depending
on the setting of the attack, there could be guesses that have a score that is at
least as low as the correct guess score: In our small example, the correct guess
score is expected to be 0, however there is a reasonable probability that there
is another arbitrary guess with the score of 0. Therefore, the details of this step
vary according to the attack and are specified separately for each attack.

4.4 Details of the First Attack

The first attack is a full key recovery attack on a Grain-128 variant that uses
207 initialization rounds, while utilizing output bits 208− 218. The key bits are
recovered in small groups of size 1 − 3, where each group is recovered using a
different set of parameters that was obtained in the preprocessing phase.

One set of parameters for the attack is given in Table 1 in Appendix B. We
now specify how the attack is carried out given the parameters of this table:
First, we assign to each one of the dynamic variables in the table its symbolic
value. Appendix B shows how to do this given the parameters of Table 1, and
the assignment algorithm for the other tables in this paper is similar.

After all the dynamic variables are assigned, we determine the secret expres-
sions that need to be guessed in order to fully calculate the values of the dynamic
variables during the cube summations (step 2). Altogether, there are 7 expres-
sions that need to be guessed, and since the big cube is of dimension 19, the
total complexity of the step 3 of the attack with this specific set of parameters
is about 19 × 219+7 < 231. We will use only linear expressions for the full key
recovery (step 4), hence we concentrate on retrieving their value from the sorted
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guess list. The two linear expressions actually contain only a single key bit and
are listed in the ”Expressions Retrieved” row. We sum on all subcubes of di-
mension at least 19−3 = 16 of the big cube (of dimension 19), and the score for
each guess is simply the fraction of 1 values among all the subcube sums. In step
4, we retrieve the value of the 2 expressions by taking the corresponding values
from the best guess. We simulated the attack with the above parameters with
hundreds of random keys. The attack failed to retrieve the correct values for the
expressions x127, x122 + 1 for about 10% of the keys. However for all the failed
keys, the score of the best guess was at least 0.44 (i.e. the dynamic cube tester
did not give a strong distinguisher), and thus we know when we fail by declaring
the expressions as ”undetermined” whenever we encounter a key for which the
best guess score is at least 0.44 (this occurs for about 15% of the keys). This is
important for the full key recovery attack that is described next.

We showed how to retrieve 2 key bits with high probability with one carefully
chosen set of parameters. It is not difficult to find more sets of parameters that
allow us to retrieve more key bits. Another example of such a set of parameters
that uses the same output bit is given in table 2 in Appendix B. Note that we only
changed the chosen big cube, which in turn changed the retrieved expressions.
A different set of parameters that uses output bit 218 is given in table 3 in
Appendix B. Altogether, we have 55 sets of parameters that ideally allow us to
recover 86 of the 128 key bits. For each set of parameters, the score calculation
method is identical to the one described above, i.e. we compute the percentage
of 1 values in the cube sums for all cubes of dimension at least d − 3. The key
recovery method is identical as well, i.e. we recover the values of the secret linear
expressions from the guess with the best score, but only if its score is at least
0.44. We simulated the full attack on hundreds of random keys. On average, we
could retrieve about 80 secret key bits per key. The remaining 48 key bits can
be recovered with feasible complexity by exhaustive search.

We note that it is possible to retrieve more key bits in a similar way by using
more output bits (e.g. output bits 219, 220, etc.), or using the same output
bits with different sets of parameters. A more efficient key recovery method can
try to determine values of non-linear secret expressions, some of which can be
made linear by plugging in values for secret key bits which we already recovered.
However, our main goal is to attack much stronger variants of Grain-128, as
described next.

4.5 A Partial Simulation Phase

When attacking Grain-128, we perform the preprocessing steps (1, 2) and then
simulate the online steps of the attack (3, 4) for several random keys. In this
case, steps 3 and 4 are performed in order to estimate the success of the attack
and are called the simulation phase. If we are not satisfied with the results,
we can repeat steps 1 and 2 by choosing different parameters and performing
another simulation phase. This process can be very expensive and its complexity
is generally dominated by step 3. We can significantly reduce the complexity of
the simulation phase by calculating the cube summations only for the correct

This copy belongs to 'VANC03'



178 I. Dinur and A. Shamir

guess and observing whether the correct guess exhibits a significant non-random
property for most keys. This is unnecessary for the first attack in which we can
run the full simulation phase and recover the secret key. However, in the second
and third attacks, we try to attack variants of Grain-128 which are significantly
stronger and the simulation phase becomes infeasible even for a single random
key. In these cases, the observed non-randomness for the correct guess provides
strong evidence that the stronger variants of Grain-128 can also be broken by
the full key recovery version of the attack.

Given that we choose a big cube of size d and guess e expressions, the com-
plexity of the cube summations when running the full simulation phase on one
key is about d2d+e bit operations. However, the complexity of the simulation
phase is actually dominated by the 2d+e executions of the cipher: Assuming that
each execution requires about b bit operations, the total complexity is about
b2d+e (for Grain-128 b > 210 >> d). Similarly, the partial simulation phase on
one key requires b2d bit operations. Since the complexity does not depend on
e, we can feasible verify the behavior of dynamic cube attacks even when their
total complexity is infeasible when the dimension of the cube d is not too large.
This ability to experimentally verify the performance of dynamic cube attacks
is a major advantage over static cube attacks and cube testers.

4.6 A Generic Key Recovery Method

In the first attack, we run the full simulation phase and obtain the sorted guess
list in step 3. Since we can do this many times and calculate the complexity of
the attack, we tailored the key derivation algorithm used in step 4 such that it
is very efficient for our chosen parameter sets. On the other hand, in the second
and third attacks, we must perform the partial simulation phase as described
above and we obtain only the score for the correct guess. Since we do not have
the sorted guess list, we cannot calculate the exact complexity of the attack
and we cannot customize the algorithm used in step 4 as in the first attack (for
example, we cannot verify that the first guess in the sorted guess list assigns
correct values for some expressions, as in the first attack). As a result, we use
a key recovery method which is more generic in a sense that it is not tailored
to a specific cipher, or to a specific set of parameters. The only property of
the parameter sets for the attacks that it exploits, is that many guessed key
expressions are linear. We now describe the details of this method as performed
in real time (not in the simulation phase) and then estimate its complexity.

Assume that we have executed steps 1 − 3 for Grain-128 with n = 128 secret
key bits. Our big cube is of dimension d and we have e expressions to guess,
out of which l are linear. Our sorted guess score list is of size 2e and the correct
guess is located at index g in the sorted list.

1. Consider the guesses from the lowest score to the highest: For each guess
(that assigns values to all the expressions), perform Gaussian Elimination
on the l linear expressions and express l variables as linear combinations of
the other n − l variables.
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2. Exhaustively search the possible 2n−l values for those n − l variables: For
each value, get the remaining part of the key from the linear expressions,
execute the cipher with the key, and compare the result to the given data.
If there is equality, return the full key.

Overall, we have 2n−l iterations per guess. The evaluation of the linear expres-
sions can be performed efficiently if we iterate over the 2n−l values using Gray
Codes. Hence, we assume that the evaluation of the linear expressions takes neg-
ligible time compared to the execution of the cipher. The total running time per
guess is thus about 2n−l cipher executions and the overall running time of step
4 is g × 2n−l. We can also to try improve the running time by using some of the
e − l non linear expressions which can be efficiently evaluated (compared to a
single cipher execution): For each key we first check if the key satisfies these non
linear equations before executing the cipher.

The complexity of the generic key recovery method is dependent on g which
denotes the index of the correct guess in the sorted guess list. The expected
value of g can be estimated for a random key by running several simulations
of the attack on random keys. However, when the simulation phase is infeasible
and we are forced to perform a partial simulation phase, we cannot estimate g
this way since we do not have the guess list. A possible solution to this problem
is to assume that all the incorrect guesses behave randomly (i.e. the subcube
sums are independent uniformly distributed boolean random variables). Under
this assumption, we run the partial simulation on an arbitrary key. If the cube
sums for the correct guess detect a property that is satisfied by a random cipher
with probability p, then we can estimate g ≈ max{p × 2e, 1}.

The assumption that incorrect guesses behave randomly is clearly an oversim-
plification. In the first attack, we retrieve the value of a carefully chosen subset
of the expressions by taking the corresponding values from the best guess. How-
ever for about half of the keys the best guess is not the correct guess, i.e. it does
not assign the correct values for all the expressions, but rather to our chosen
set of expressions. In other words, there are specific (non arbitrary) incorrect
guesses that are likely to have a low score that can be at least as low as the score
of the correct guess. These incorrect guesses usually assign a correct value to a
fixed subset of the guessed expressions. In order to understand this, consider the
following example: assume that P = P1P2 + P3, the source and target polyno-
mials P1 and P2 are of degree 3, and the remainder polynomial is of degree 5
(all degrees are in terms of the public variables). We choose a dynamic variable
to nullify P1, and assume for the sake of simplicity that the degrees of P2 and
P3 do not change after assigning this variable. We choose a cube of dimension
7, and sum on all its subcubes of dimension 6 and 7. Clearly, the correct guess
will have a score of 0. However, any other which reduces the degree of P1 to 1
or 0 will also have a score of 0.

To sum up, our estimation of g (and hence our estimation for the complexity
of the attack) may not be completely accurate since incorrect guesses do not
behave randomly. However, our simulations on Grain-128 variants on which the
simulation phase is feasible, show that the effect of the incorrect guesses biased
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towards 0 is usually insignificant, and our estimation of g is reasonable. In ad-
dition, even incorrect non-uniform guesses are still likely to be highly correlated
with the correct guess, and thus they can actually speed up the attack (this
was experimentally verified in our first attack, which has a feasible complexity).
Hence, our estimation of the complexity of step 4 of the attack is a reasonable
upper bound.

4.7 Details of the Second Attack

In order to attack the almost full version of Grain-128 with 250 initialization
rounds (out of 256), we nullify b251−21 = b230. The parameters of the attack
are specified in Table 4 in Appendix B. As in the first attack, most of the
dynamic variables are used in order to simplify b230. Note that we need many
more dynamic variables compared to the previous attack. This is because it is
much more difficult to nullify b230 than to nullify b194 or b197 (for example). In
addition, we set v82 to the constant value of 1 so that v89 can function as a
dynamic variable that nullifies b197. Since the big cube is of dimension 37 and
we have 24 dynamic variables, the data and memory complexity is 237+24 = 261.
The number of expressions that need to be guessed seems to be 84. However,
after removing many linearly dependent expressions, this number can be reduced
to 59. Thus, the total complexity of the cube summations is about 37×237+59 <
2101, implying that we have to use the partial simulation phase. Out of the 59
expressions that need to be guessed, 29 contain only a single key bit on which
we concentrate for generic key recovery.

During the partial simulation phase, we summed on all subcubes of dimension
at least 35 of the big cube, calculating the percentage of 1 values separately for
all the subcubes of each dimension (35, 36, or 37). We performed the partial
simulation phase on dozens of random keys. For the sake of completeness, we
also sampled a few random incorrect guesses for several keys and verified that
they do not have a significant bias. For about 60% of the keys, the subcube sums
for the correct guess contained only 0 values for the subcube of sizes 36 and 37,
and less than 200 ’1’ values among the 666 subcubes of size 35. Assuming that
incorrect guesses behave randomly, we expect the correct guess to be among
the first guesses in the sorted guess list. The complexity of the unoptimized
version of the attack (that ignores the non-linear expressions) is dominated by
the exhaustive search for the remaining 128−29 = 99 key bits per guess. Overall
the complexity for about 60% of the keys is about 2100 cipher evaluations, and
can almost surely be optimized further. For another 30% of the keys we tested,
the non-randomness in the subcube sums was not as significant as in the first
60%, but still significant enough for the attack to be much faster than exhaustive
search. For the remaining 10% of the keys, the non-randomness observed was
not significant enough and the attack failed. However, we are certain that most
of these problematic keys can still be broken by selecting different parameters
for the attack.
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4.8 Details of the Third Attack

In order to attack the full version of Grain-128 with 256 initialization rounds,
we have to nullify b257−21 = b236. However, the ANF of b236 is too complicated
to zero using our techniques, and we had to make assumptions on 10 secret key
bits in order nullify it. As a result, we could verify the correctness of our attack
on the full version of Grain-128 only for a subset of about 2−10 of the possible
keys in which 10 key bits are set to zero. Our current attack can thus be viewed
as an attack on an unusually large subset of weak keys, but it is reasonable to
assume that it can be extended to most keys with further improvements.

The parameters of the attack are specified in Table 5 in Appendix B. Since
the big cube is of dimension 46 and we have 13 dynamic variables, the data and
memory complexity is 246+13 = 259. After removing many linearly dependent
expressions, the number of guessed expression is 61. Thus, the total complexity
of the cube summations is about 46×246+61 < 2113 bit operations. Out of the 61
expressions that need to be guessed, 30 contain only a single key bit. Moreover,
we can fix the values of 35 more variables such that 30 out of the remaining
61− 30 = 31 expression become linear. In order to recover the key efficiently, we
use an extension of the generic key recovery method: Let the key be n, and denote
the dimension of the big cube by d. Assume that given the values of c variables
we can plug them into l (linear or non-linear) expressions such that they become
linear, and perform Gaussian Elimination which makes it possible to express l
variables as linear combinations of the remaining (unspecified) n−l−c variables.

1. Consider the guesses from the lowest score to the highest: For each guess,
iterate the n−l variables using Gray Coding such that the c variables function
as most significant bits (i.e their value changes every 2n−l−c iterations of the
remaining n − l − c variables).

2. For each value of the c variables, perform Gaussian Elimination and express
l variables as linear combinations of the remaining n − l − c variables.

3. For each value of the remaining n − l − c variables, compute the values of
the l linear variables, execute the cipher with this derived key and compare
the result to the given data. If there is equality, return the full key.

In our case, we have n = 118 (after fixing 10 key bits), c = 35, and l = 60.
We call the second sub-step in which we perform Gaussian Elimination a big
iteration and the third sub-step in which we do not change any value among
the c = 35 variables, a small iteration. Note that big iterations are performed
only every 2n−l−c = 223 small iterations. It is clear that computing the linear
equations and performing Gaussian Elimination with a small number of variables
in a big iteration takes negligible time compared to executing the cipher 223 times
in small iterations. Hence the complexity of the exhaustive search per guess is
dominated by the small iterations and is about 2n−l = 258 cipher evaluations (as
in the original generic key recovery method) . In order to complete the analysis
of the attack, we need to describe the score calculation method and the estimate
the index g of the correct guess.
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During the partial simulation phase, we summed on all subcubes of dimension
at least 44 of the big cube, calculating the percentage of 1 values separately for
all the subcubes of each dimension. We performed simulations for 5 random
keys (note that each simulation requires 246 cipher executions, which stretched
our computational resources): For 3 out of the 5 keys, we observed a significant
bias towards 0 (which is expected to occur with probability less than 2−20 for
a random cipher) in the subcubes of dimension 45 and 46. This implies that
g ≈ 261 × 2−20 = 241 and the total complexity of step 4 is about 241 × 2118−60 =
299 cipher evaluations. Assuming that each cipher evaluation requires about 210

bit operations, the total complexity of the attack remains dominated by step
3, and is about 2113 bit operations. This is better than exhaustive search by
a factor of about 215 even when we take into account the fact that our set of
weak keys contains only 2−10 of the 2128 possible keys. For another key, the bias
towards 0 in the subcubes of dimension 45 and 46 was not as strong and we
also need to use the bias towards 0 in the subcubes of dimension 44. For this
key, we were able to improve exhaustive search by a factor of about 210. For
the fifth key, we also observed a bias towards 0, but it was not strong enough
for a significant improvement compared to exhaustive search. As in the previous
attack, we stress that it should be possible to choose parameters such that the
attack will be significantly better than exhaustive search for almost all keys in
the weak key set.

4.9 Discussion

Any attack which can break a fraction of 2−10 of the keys is sufficiently sig-
nificant, but in addition we believe that our third attack can be improved to
work on a larger set of weak keys of Grain-128. This can be done by making
fewer assumptions on the key and optimizing the process of nullification of b236.
However, we do not believe that nullifying b236 will suffice to attack most keys of
Grain-128. For such an attack, the most reasonable approach would be to choose
a larger big cube to sum over, while nullifying fewer state bits at earlier stages
of the cipher initialization process. The question whether a key recovery attack
on most keys of Grain-128 can be feasibly simulated to yield an experimentally
verified attack remains open.

5 Generalizing the Attack

In the previous section, we described in detail the dynamic cube attack on
Grain-128. However, most of our techniques can naturally extend to other cryp-
tosytems. In this section, we describe the attack in a more generic setting, em-
phasizing some important observations.

Step 1. As specified in the attack on Grain-128, choosing appropriate state
bits to nullify and actually nullifying them is a complex process. In the case of
Grain-128, specific non-linear terms in the cipher’s output stand out as being of
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higher degree and enable us to decompose the output function to a source and
target polynomials relatively easily. It is also possible to find good decomposi-
tions experimentally: We can tweak the cipher by removing terms in the output
function. We then select various cubes and observe whether the tweaked cipher
is more vulnerable to cube testers than the original cipher. If the tweaked cipher
is indeed more vulnerable, then the removed terms are good candidates to nullify
or simplify.

As in the case of Grain-128, there are several complications that may arise
during the execution of this step and hence it needs to be executed carefully
and repeatedly through a process of trial and error. One complication is that
zeroing a certain group of state bits may be impossible due to their complex
interdependencies. On the other hand, there may be several options to select
dynamic variables and to zero a group of state bits. Some of these options may
give better results than others. Another complication is that using numerous
dynamic variables may overdeplete the public variables that we can use for the
cube summations.

Step 2. The choice of a big cube, can have a major impact on the complexity
of the attack. Unfortunately, as specified in the attack on Grain-128, in order
to find a cube that gives good results we usually have to execute the attack
and calculate the results for many cubes. After the big cube is chosen, the secret
expressions that need to be guessed are calculated according to the simple generic
process that is used for Grain-128.

Step 3. The only part of this step that is not automated is the score calcu-
lation technique for each guess from the subcube sums. We can use the simple
method of assigning the guess its percentage of 1 values, or more complicated
algorithms that give certain subcubes more weight in the score calculation (e.g.
the sum of high dimensional subcubes can get more weight than the sum of lower
dimensional ones, which tend to be less biased towards 0).

Step 4. Techniques for recovering information about the key differ according
to the attack. It is always best to adapt the technique in order to optimize the
attack as in the first attack on Grain-128. In this attack, we determined the
values of some carefully chosen key expression from the guess with the best
score. It is possible to generalize this technique by determining the value of a
key expression (or several key expressions) according to a majority vote taken
over several guesses with the highest score. We can also try to run the attack
with different sets of parameters, but with some common guessed expressions.
The values for those common guessed expressions can then be deduced using
more data from several guess score lists.

When the simulation phase (steps 3 and 4) is not feasible we must use the
partial simulation phase. The generic key recovery method and its extension
in the third attack on Grain-128 can be used in case many of the guessed key
expressions are linear, or can be made linear by fixing the values of some key
bits.
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6 Conclusions and Open Issues

Dynamic cube attacks provide new key recovery techniques that exploit in a
novel way distinguishers obtained from cube testers. Our results on Grain-128
demonstrate that dynamic cube attacks can break schemes which seem to resist
all the previously known attacks. Unlike cube attacks and cube testers, the
success of dynamic cube attacks can be convincingly demonstrated beyond the
feasible region by trying sufficiently many random values for the expressions we
have to guess during the attack.

An important future work item that was discussed in section 4.9 is how to
break most keys of Grain-128. In addition, the new techniques should be applied
to other schemes. Preliminary analysis of the stream cipher Trivium [14] suggests
that dynamic cube attacks can improve the best known attack on this cipher,
but the improvement factor we got so far is not very significant.
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A Appendix: Zeroing State Bits of Grain-128

To demonstrate the process that we use to zero state bits of Grain-128, consider
the problem of zeroing b194. The ANF representation of b194 is a relatively small
polynomial of degree 9 in the 128 secret variables and 96 public variables which
contains 9813 terms. It is calculated by assigning all the key and IV bits a
distinct symbolic variable, and calculating the symbolic value of the feedback
to the NFSR after 67 rounds. It may be possible to choose a dynamic public
variable and zero b194 directly. However, since the ANF representation of b194

is difficult to visualize, this has a few disadvantages: After we choose a cube
to sum over, we need to guess all the secret expressions that are multiplied by
terms of cube variables, and the complex ANF representation of b194 will force
us to guess many expressions, which will unnecessarily increase the complexity
of the attack. Moreover, since the ANF representation of b194 is of degree 9,
many of the guessed expressions are expected to be non-linear, while ideally we
would like to collect linear equations in order to be able to solve for the key bits
efficiently. The process that we use to zero b194 is given below.

1. Use the description of Grain-128 to simplify the ANF representation of b194

by writing b194 = b161(b78s161)+Pr1. In this form, b161 is the source polyno-
mial, b78s161 is the target polynomial, and Pr1 is some remainder polynomial
with a simpler ANF representation compared to b194.

2. The ANF representation of b161 is a simpler polynomial of degree 6 which
contains 333 terms. Again, do not zero it directly, but write:
b161 = b128(b45s128) + Pr2, with b128 as the source polynomial with degree 3
and 26 terms. Choose v0 as the dynamic variable and set it accordingly.

3. Now, the ANF representation of b161, with v0 set to its dynamic value is
a polynomial of degree 2 which contains 47 terms. b161 can be zeroed by
choosing v33 as a dynamic variable.
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4. Recalculate the ANF of b194 with v0 and v33 set to their dynamic values.
It is now a polynomial of degree 5 which contains 1093 terms. Write b194 =
b134b150 + Pr3, and choose v6 as the dynamic variable to zero b134.

5. Write b194 = b162 + Pr4 = b129(b46s129) + Pr5 and choose v1 as the dynamic
variable to zero b129.

6. Now, the symbolic form of b194 with v0, v33, v6 and v1 all set to their dynamic
values, is a polynomial of degree 3 with 167 terms. Finally we choose v29 as
the dynamic variable which can zero b194.

B Appendix: Parameters for Our Attacks on Grain-128

The parameter sets for the different attacks are given in the tables below. As an
example, we demonstrate the process of assigning values to the dynamic variables
in Table 1. The process for the other tables is similar.

The first index of the ”Dynamic Variables” list in Table 1 is 0 (i.e v0). It is
used to nullify the first state bit in the ”State Bits Nullified” list (b128). The
symbolic form of v0 is calculated as follows:

1. Initialize the state of Grain-128 with all the key bits assigned a distinct
symbolic variable and all the IV bits set to 0, except the IV bits in the
”Cube Indexes” row and v0 which are assigned a distinct symbolic variable.

2. Clock the state once and obtain the symbolic value of the bit fed back into
the NFSR (note that v0 is a linear variable of the polynomial).

3. Delete the term v0 from the symbolic form of this polynomial and assign
v0 the symbolic sum of the remaining terms, i.e. set v0 = x3x67 + x11x13 +
x17x18 + x27x59 + x40x48 + x61x65 + x68x84 + x0 + x2 + x15 + x26 + x36 +
x45 + x56 + x64 + x73 + x89 + x91 + x96.

Next, we determine the symbolic value of v1 (second in the ”Dynamic Vari-
ables” list), according to the second state bit in the ”State Bits Nullified” list
(b129). It is calculated in a similar way to v0, except that we set v0 to the dy-
namic value calculated in the previous step and set v1 to a distinct symbolic
variable. Finally we assign v1 the symbolic value that is fed back to the NFSR
after 2 initialization rounds (again, removing the linear term of v1 from the
symbolic form). We iteratively continue assigning v6, v33 and v29 according to
the symbolic values fed back to the NFSR after 7, 34 and 67 clocks respectively,
each time setting the previously determined dynamic variables to their dynamic
values.
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Table 1. Parameter set No.1 for the attack on Grain-128, given output bit 215

Cube Indexes {3,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,69,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x127, x122 + 1}

Table 2. Parameter set No.2 for the attack on Grain-128, given output bit 215

Cube Indexes {5,19,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x69, x23}

Table 3. A Parameter set for the attack on Grain-128, given output bit 218

Cube Indexes {19,20,28,29,30,31,41,45,53,54,55,63,64,65,66,67,68,69,89,92}
Dynamic Variables {2,3,4,9,1,36,7,32}
State Bits Nullified {b130, b131, b132, b137, s129, b164, b170, b197}

Expressions Retrieved {x98, x49}

Table 4. Parameter set for the attack on Grain-128, given output bit 251

Cube Indexes {11,12,13,15,17,21,24,26,27,29,32,35,38,40,43,46,49,51,52,
53,55,57,58,63,64,65,66,74,75,77,78,79,81,84, 86,87,95}

Dynamic Variables {8,9,10,14,0,1,39,2,72,3,4,5,80,25,90,92,41,7,36,37,88,23,89,54}
Public Variables Set to 1 {82}

State Bits Nullified {b136, b137, b138, b142, b128, b129, s129, b130, s130, b131, b132, b133,
b148, b153, b158, b160, s162, b163, b164, b165, b174, b186, b197, b230}

Table 5. Parameter set for the attack on a weak key subset of the full Grain-128, given
output bit 257

Cube Indexes {0,3,5,10,11,13,14,15,17,19,21,23,26,31,34,35,37,39,40,43,45,48,49,51,
53,54,55,56,57,59,63,65,66,67,68,71,77,78,79,81,85,91,92,93,94,95}

Dynamic Variables {9,1,12,4,7,6,8,89,2,29,83,25,69}
State Bits Nullified {b137, b129, s133, b132, b135, b134, b136, s168, b169, s150, b176, b192, b236}
Key Bits Set to 0 {x48, x55, x60, x76, x81, x83, x88, x111, x112, x122}
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Cryptanalysis of the Knapsack Generator

Simon Knellwolf and Willi Meier

FHNW, Switzerland

Abstract. The knapsack generator was introduced in 1985 by Ruep-
pel and Massey as a novel LFSR-based stream cipher construction. Its
output sequence attains close to maximum linear complexity and its re-
lation to the knapsack problem suggests strong security. In this paper
we analyze the security of practically relevant instances of this genera-
tor as they are recommended for the use in RFID systems, for example.
We describe a surprisingly effective guess and determine strategy, which
leads to practical attacks on small instances and shows that the security
margin of larger instances is smaller than expected. We also briefly dis-
cuss a variant of the knapsack generator recently proposed by von zur
Gathen and Shparlinski and show that this variant should not be used
for cryptographic applications.

Keywords: knapsack, stream cipher, pseudorandom generator.

1 Introduction

Let w0, . . ., wn−1 be n k-bit integers, and let u0, u1, . . . be a sequence of bits
generated by a linear feedback shift register (LFSR) of order n over F2. At step
i the knapsack generator computes

vi =
n−1∑
j=0

ui+jwj mod 2k, (1)

discards the 	 least significant bits of vi and outputs the remaining k − 	 bits
as part of the keystream. We call u0, u1, . . . the control bits, vi the i-th sum
and w0, . . . , wn−1 the weights of the generator. The entire generator is defined
by n(2 + k) bits: n bits for the connection polynomial of the LFSR, n bits for
the initial control bits (corresponding to the initial state of the LFSR) and kn
bits for the weights. The connection polynomial should be primitive in order
to achieve maximum period in the control sequence. Due to this special choice,
it is natural to consider the connection polynomial as a public parameter. The
remaining n(1 + k) bits form the key of the generator. As a concrete example, a
generator with n = k = 64 has a key length of 4160 bits.

Rueppel and Massey [16] introduced this generator in 1985. They addressed
one of the main issues in the design of LFSR-based cryptosystems, which con-
sists in breaking the linearity of the LFSR. The knapsack generator achieves
this by the use of integer addition modulo 2k which is a highly nonlinear opera-
tion when considered over Fk

2 , see [16,20] for a systematic analysis. Therewith it

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 188–198, 2011.
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provides an interesting alternative to the use of nonlinear boolean filtering and
combining functions. It avoids the tradeoff between high linear complexity and
high correlation immunity which is inherent to nonlinear boolean functions, as it
was shown in [19]. Besides the knapsack generator, Rueppel [14] also introduced
the summation generator to avoid this tradeoff, but it turned out to be vulner-
able to correlation attacks [5,11], algebraic attacks [10] and to attacks based on
feedback with carry shift registers [9]. Compared to the summation generator,
little cryptanalytic work has been published concerning the knapsack generator.
To our knowledge it resisted the well known attack strategies for stream ciphers.
Due to this absence of known security flaws and due to its ease of implementa-
tion, the authors of [2] recommend the knapsack generator for the use in RFID
networks.

The name comes from the close relation to the knapsack problem (also known
as the subset sum problem), which consists in finding a subset of given weights
that add up to a given sum. The decisional version of this problem is known to
be NP-complete and several attempts have been made to use it in cryptography.
A prominent example is the Merkle-Hellman knapsack cryptosystem [13] which
was broken by Shamir [17]. In a different direction, Impagliazzo and Naor [8] con-
structed provably secure pseudorandom generators and universal hash functions
based on the knapsack problem.

Other than the above cryptosystems, the security of the knapsack generator
is not directly related to the hardness of the knapsack problem. In the con-
text of the knapsack problem the weights are known, whereas in the context of
the knapsack generator they are not. For comparison, Howgrave-Graham and
Joux [7] presented new generic algorithms for hard knapsack problems which
allowed them to solve instances with n = k = 96 in practical time. These results
have no implications on the security of the knapsack generator, and knapsack
generators of much smaller size are not a priori insecure (even for n = k = 32,
the key consists of 1056 bits).

Throughout the literature, for example in [2,12,15], it is recommended to
choose k = n. We also focus on these cases and we do not always mention k ex-
plicitly in the following. The cases n = 32, 64 are of particular interest because
they are favorable for software implementation. Besides n, the knapsack gener-
ator has an additional security parameter 	, which is the number of discarded
bits per output. Intuitively, if 	 is small, the output reveals more information
about the control sequence,whereas if 	 is large, the throughput of the generator
gets low.

1.1 Previous Cryptanalytic Results

Rueppel [15] provided a first extensive analysis of the knapsack generator. He
showed that the �log n� least significant bits of the sums do not achieve high
linear complexity, and he provided some evidence that the other bits indeed do.
This let him recommend to choose 	 = �log n�. He further estimated the number
of different boolean functions {0, 1}n → {0, 1} mapping n control bits to the i-th
bit of a sum as in (1), and he found that for �log n� ≤ i < n at least 2n(�log n�−1)
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such functions can be specified by n weights. He stated this as a lower bound on
the effective key length of the generator.

Von zur Gathen and Shparlinski [3] considered scenarios where either the
control bits or the weights are known. In both cases they translate the task
of finding the unknown parts of the key into a short vector problem which
they solve by LLL lattice basis reduction algorithms. In the known control bit
scenario, they can predict the generator if 	 is not too small using about n2 − n
outputs. It is difficult to estimate the practical time complexity of their strategy
when extended to a guess and determine attack, and no empirical results are
provided.

1.2 Contribution of This Paper

We describe a novel guess and determine attack which needs only a few more
outputs than the number of weights n. Our analytical and empirical results show
that the security level of the knapsack generator is not significantly higher than
n bits. For a generator with n = 32 we implemented the full attack on a Desktop
Computer.

Further, we analyze the faster variant of the knapsack generator recently pro-
posed in [4], and show that it should not be used in cryptographic applications.

1.3 Road Map

In Section 2 we describe the knapsack generator as a system of modular equations
and we introduce the notion of an approximation matrix, which is the basic
concept of our analysis. In Section 3 we explain how to find good approximation
matrices. In Section 4 we describe the full attack and illustrate its performance
by empirical results, including a practical attack for n = 32. In Section 5 we
briefly analyze the fast variant of the knapsack generator proposed in [4].

2 Problem Formalization

In this section we address the following problem: Given the control bits and s
outputs of the knapsack generator, predict some bits of subsequent outputs with
probability higher than 1/2. Later, in Section 4, we extend this to a guess and
determine attack when the control bits are not known.

We first formulate the knapsack generator as a system of modular equations
and fix some notation.

2.1 A System of Modular Equations

In order to produce s outputs, the knapsack generator computes s sums accord-
ing to (1). This can be written as

v = Uw mod 2n, (2)

This copy belongs to 'VANC03'



Cryptanalysis of the Knapsack Generator 191

where v = (v0, . . . , vs−1) are the sums, w = (w0, . . . , wn−1) are the weights and
U is a s × n matrix whose coefficients are given by the control bits. We call U
the control matrix. Its rows are the consecutive states of a binary LFSR, and
the control matrix is entirely determined by one of its rows. We write ui for the
i-th row of U and, more generally, for the i-th state of the LFSR generating the
control sequence. It is shown in [3] that n consecutive row vectors ui are always
linearly independent over the integers modulo 2n. Hence, if U is known and s ≥ n,
the system described by (2) can be easily solved for w. The challenge is to deal
with the discarded bits. An attacker can only observe the n − 	 most significant
bits of each component of v. Guessing the discarded bits is too expensive, since at
least n	 bits would have to be guessed. The idea is to recover only the significant
bits of each weight which might be sufficient to make a prediction.

2.2 Weight Approximation Matrices

We write the outputs as a vector z = (z0, . . . , zs−1) such that zi = vi � 	 for
0 ≤ i < s. Here, � denotes a right shift of n-bit integers, left shift is denoted
by �, and when used for vectors, the shifting is applied componentwise. Since
U has full rank modulo 2n, there always exists a n × s matrix T with integer
coefficients such that TU = In mod 2n, where In denotes the n × n identity
matrix. We call such a T an approximation matrix. The name is motivated by
the fact that

w = T (z � 	) + Td mod 2n

for some unknown vector d = (d0, . . . , ds−1) with 0 ≤ di < 2� for 0 ≤ i < s (the
di correspond to the discarded bits), which lets us hope to obtain approximate
weights w̃ by ignoring the discarded bits, that is, by computing

w̃ = T (z � 	) mod 2n. (3)

The matrix T will be derived only from U (independently from z). As soon as
s > n, the choice of T is not unique. In the next paragraph we obtain a criterion
for making a good choice.

2.3 Prediction with Approximate Weights

In order to predict zs = vs � 	, we compute ṽs = usw̃ mod 2n, where us =
(us, . . . , us+n−1) are the corresponding control bits. Substituting w̃, we get ṽs =
usT (z � 	) mod 2n. The generator actually computes

vs = usT (z � 	) + usTd mod 2n.

Intuitively, the significant bits of ṽs are likely to be correct if the integer sum-
mand usTd is small in absolute value. We denote by pλ the probability that at
least λ significant bits of ṽs are correct,

pλ = Pr
[
(vs ⊕ ṽs) � (n − λ) = 0

]
.

The intuition is then formalized by the following lemma.
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Lemma 1. Let m be the smallest integer such that |usTd| < 2m. Then, we have

pλ > 1 − 1
2λ−m

for all λ with m ≤ λ < n.

Proof. For shorter notation we set a = usT (z � 	) and b = usTd. The difference
vs ⊕ ṽs then writes as (a + b) ⊕ a. Let’s first assume that b ≥ 0. Then, the sum
a+b can be recursively described by (a+b)j = aj⊕bj⊕cj−1, cj = ajbj⊕ajcj−1⊕
bjcj−1, where cj denotes the carry bit, and c−1 = 0. For j ≥ m we have bj = 0,
and thus, (a + b)m ⊕ am = cm−1 and for j > m, (a + b)j ⊕ aj = cm−1

∏j−1
i=m ai.

The bound follows immediately under the assumption that the values of the bits
ai are independent and uniformly distributed for m ≤ i < n. The case of b < 0
is very similar (using the recursive description of a− b with a borrow bit instead
of the carry bit).

Lemma 1 guarantees that we can correctly predict at least one bit per output
with probability higher than 1/2 if m < n − 1. Smaller m give more predictable
bits. Hence, we are interested in an upper bound on m. Since the coefficients of
us are restricted to be 0 or 1 and the coefficients of d are strictly smaller than
2�, we have |usTd| < ‖T ‖2�, where we use ‖T ‖ =

∑
i,j |tij | as the norm of T . By

the definition of m, this gives

m < �log‖T ‖� + 	.

It follows that �log‖T ‖� ≤ n−	−1 is a sufficient condition to predict at least one
bit. In the next section we describe a method that finds approximation matrices
with much lower norms than needed for typical values of 	.

3 Finding Good Approximation Matrices

The success of our attack essentially depends on the ability to find good approx-
imation matrices, that is, matrices with small coefficients in absolute value. To
compute such a matrix T we proceed row by row. We search for n row vectors
ti with small norm and such that tiU = ei, where ei is the i-th unit vector of
the standard basis of Fn

2 . This is a special case of the following problem:

Problem 1. Given an s × n integer matrix A and an integer column vector b of
dimension n, find an integer row vector x such that xA = b and such that the
coefficients of x are small in absolute value.

Typically, in our scenario, there are many solutions to the equation xA = b and
it is not difficult to find one of them by linear algebra techniques. The difficult
part is to find one with a small norm. We use an approach which is implemented
in Victor Shoup’s NTL [18]. The idea is the following: Given an arbitrary solution
x′, search for a vector x′′ in the kernel of A such that x = x′ − x′′ has a small
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norm. This essentially corresponds to the approximate closest vector problem in
the lattice spanned by the kernel vectors. Using Babai’s algorithm [1] together
with a LLL reduced kernel basis we can find very close vectors x′′ in practice. A
nice introduction to Babai’s algorithm and its use in combination with LLL can
be found in [6].

In our specific application, the matrix A (= U) has only 0 and 1 as coefficients
and its rows are the successive states of an LFSR. It turns out that the small
coefficients are favorable, that is, the average norm of the returned solution is
smaller than for more general integer matrices. The particular structure of the
control matrix (successive states of an LFSR) has no significant influence, the
results are about the same as for random matrices with binary coefficients. In
particular, the choice of the connection polynomial seems not to be important
(as long as it is primitive).

Not surprisingly, the average norm of the returned solutions depends on s (it
basically determines the kernel dimension of A). Figure 1 illustrates the per-
formance of the method in function of s for n = 64. The graph indicates the
average logarithmic norm as well as the lower and the upper quartile for samples
of 100 approximation matrices obtained for s = 68, 70, . . . , 96. Recall that s is
the number of outputs used to compute the approximate weights.
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Fig. 1. Average logarithmic norm of T for n = 64 in function of s

4 Description of the Attack and Empirical Results

So far, we can predict the generator if the control bits are known. The empirical
results in this section illustrate the effectiveness of the approach. But first, we
describe the extension of our technique to an attack where the control bits are
not known.
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4.1 Description of the Attack

We assume a scenario where the attacker does not know the control bits nor the
weights. Since the whole control sequence is determined by only n bits (typically,
the initial state of the LFSR), the above approach naturally extends to a guess
and determine attack:

1. Guess u0, . . . , un−1 and derive the s × n control matrix U .
2. Find an approximation matrix T based on U .
3. Use T and z0, . . . , zs−1 to compute w̃ as in (3).
4. Compute t predictions and check their λ most significant bits. If almost all

of them are correct, the control bits have been guessed correctly. Otherwise,
go back to step 1.

The parameters t and λ must be chosen such that the checking is reliable. At
least, t should be chosen such that n ≥ tλpλ. This is not a problem, because
the norms of the approximation matrices are very low, and λ can be chosen
such that pλ is almost one. The attack then needs s + t outputs: s outputs
to approximate the weights and t outputs to check the predictions. The most
expensive part of the attack is at step 2, where the approximation matrices are
computed. Instead of computing 2n such matrices, we can check several guesses
by the same matrix T . Using z1, . . . , zs to compute w̃ at step 3, we can check
if u0, . . . , un−1 was the state of the LFSR after one clock and we can easily
compute the initial state. In general, if r ≥ s + t outputs are available, only
2n/(r − s) approximation matrices must be computed. Since this computation
is independent of the observed outputs, it can even be done offline.

4.2 Practical Attack for n = 32

For n = 32 the above attack is practical on a desktop computer. In our ex-
periments we assumed that 552 outputs could be observed. We used control
matrices with s = 40 rows and the parameters for the checking part were t = 20
and λ = 5. Hence, only 223 approximation matrices had to computed. A guess
was accepted when less than 20 of the 100 predicted bits where wrong. On a
Intel Core 2 Duo E8400 3.0 GHz Processor with 4 GB of RAM it took about
three days to identify the correct initial control bits and about 870 bits of the
weights. This allows an attacker to predict more than 22 bits per output (we
used 	 = 5, hence an output has 27 bits).

4.3 Empirical Results for Larger n

For larger n the attack is not practical on a desktop computer, since we could
not circumvent the guessing of the n bits. Hence, we assume in this paragraph
that the control bits are known and that we have observed s outputs. This cor-
responds to a known control bits attack or to the checking part of our guess
and determine attack. We are interested in the average number of significant
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bits per output that we can correctly predict. To be precise, let λ∗ be the largest
λ such that (vs ⊕ ṽs) � (n − λ) = 0. We analyze the average size of λ∗. Note
that if ṽs would be obtained by coin tossing, the expectation of λ∗ would be∑n

i=1 i/2i+1 ≈ 1 bits per output. Table 1 contains the results for n = 32, 64, 128
with 	 = log n and different values of s. The samples were taken randomly from
the key space of the generator (recall that the key consists of n(1 + n) bits).

Table 1. Average number of correctly predicted bits per output (λ∗)

s − n n = 32 n = 64 n = 128 n = 256

8 20.6 42.9 85.3 164.6
16 22.2 48.7 100.9 203.4
24 22.6 50.3 105.9 216.4
32 22.7 50.8 108.1 222.4

The results in Table 1 show that even for large n the security of the knapsack
generator is not significantly higher than n bits. Computing an approximation
matrix which allows to predict about 108 bits per output of a generator with
n = 128 takes a few seconds and needs no more than 160 outputs.

5 Analysis of the Fast Knapsack Generator

In [4], von zur Gathen and Shparlinski describe a variant of the knapsack gen-
erator which achieves faster output generation. We call it the fast knapsack
generator. They consider a slightly more general setting as we did in this paper
by taking the weights in an arbitrary ring R (in this paper we just considered
R = Z/mZ with m = 2n). The speedup is achieved by a special choice of the
weights. Instead of randomly choosing each of the n weights, it is proposed to
choose two elements a, b ∈ R and to compute wj = abn−j for 0 ≤ j ≤ n − 1.
With these weights, the (i + 1)-th sum can be computed recursively from the
i-th sum by

vi+1 = bvi − abn+1ui + abui+n, for i ≥ 0.

Hence, only one multiplication and two additions are needed for generating one
output. If R is a prime field, the sequence (vi) has provable properties concern-
ing the uniformity of its distribution (see Theorem 3.5 in [4]). However, it was
left open whether this specialization affects the cryptographic security of the
generator. We show that the sequence does not provide cryptographic security
if R is a prime field and we believe that the security is highly questionable if
R = Z/mZ for m = 2n. Our attack is a guess and determine attack whose com-
plexity essentially depends on the number of discarded bits (and not on n as
in the case of the original generator). It specifically exploits the strong relation
between the weights.
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5.1 The Fast Generator over Prime Fields

Assume that R is a prime field, i.e. R = Fp for p prime. We think of the elements
of Fp as �log p�-bit integers and as above we denote by 	 the number of discarded
bits. Let’s first suppose that the control bits are known. Then a and b can be
determined as follows (here, all operations are modulo p):

1. Find i0 such that ui0 = 0 and ui0+n = 0
2. Guess the 2	 discarded bits of vi0 and vi0+1

3. Compute b = vi0+1/vi0 and a = vi0/
∑n−1

j=0 ui0+jb
n−j

4. For some i �= i0 compute
∑n−1

j=0 ui+jabn−j and check if the significant bits
agree with those of vi.

The cost of this attack is about the cost of 22� times computing two modular
inverses and two sums with n summands. If we drop the assumption that the
control bits are known, we can not choose i0 suitably in the first step. We have
to guess it and hope that ui0 and ui0+n are zero. Then, at the third step, we
miss n − 1 control bits for computing a. Instead of guessing these control bits,
we speculate on ui0+1 = 0 and ui0+n+1 = 1 such that vi0+2 = bvi0+1 + ab. So,
we only have to guess the discarded bits of vi0+2 for obtaining a. In order to
check a and b we try to find ui0+2, . . . , u2n−1 such that the significant bits of
bvi −abn+1ui +abui+n agree with those of vi+1 for i0 +2 ≤ i < n. If such control
bits can be found, our guess is correct with high reliability. In average we need
about 24 trials for finding a suitable i0 (satisfying the conditions for the first and
the third step) and for each trial we have to guess 23� discarded bits. Checking
a guess costs at most 4n additions of three summands. The attack works with
about 24+n outputs and its total cost is about 24+3� times the cost of computing
two modular inverses and at most 4n + 1 additions.

5.2 The Fast Generator Modulo 2n

The attack of the prime field case does not directly translate to the case R =
Z/mZ for m = 2n (or to other rings). The problem is that, in general, the
elements of a ring do not have a unique inverse. Hence, the divisions at the third
step are not well defined. Instead, we have to find a and b such that

bvi0 = vi0+1,

vi0+2 = bvi0+1 + ab.

For some guesses, no such a and b exist. These guesses can be easily ruled out.
But for other guesses, many choices for a and b are possible and the checking of
them will be more costly.

6 Discussion

It was already noticed by von zur Gathen and Shparlinski in [3] that the security
of the knapsack generator is smaller than suggested by a naive estimate based
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on its key length. The results in this paper show that it is no more than n bits.
Our approach applies to all relevant parameters 	, including the following:

n 32 64 128
	 ≤ 25 ≤ 42 ≤ 98

.

In particular, it applies to 	 = �log n�. The full attack works with only a few
more outputs than the number of weights and it is not difficult to translate our
analysis to the cases where k and n are not equal.

However, we could not circumvent the guessing part of our attack, for example,
using ideas from fast correlation attacks. Due to the high nonlinearity of integer
addition with multiple inputs, it seems very unlikely to find approximate linear
relations between outputs or correlations to the state of the LFSR.

So far, a knapsack generator of size n provides n-bit security. To guarantee
this security level it needs a n(n + 1) bit secret key, and the example of the
fast knapsack generator shows that it is delicate to reduce the potential entropy
of the weights. This has to be taken into account when evaluating the knap-
sack generator as an alternative to nonlinear boolean filtering and combining
functions, or when using it in RFID applications.

Acknowledgements. We thank the anonymous reviewers for helpful com-
ments. Especially, we thank the reviewer who pointed us to the use of LLL for
computing the approximation matrices. This work was partially supported by
European Commission through the ICT programme under contract ICT-2007-
216676 ECRYPT II and by the Hasler Foundation www.haslerfoundation.ch
under project number 08065.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Cole, P.H., Ranasinghe, D.C.: Networked RFID systems and lightweight cryptog-
raphy: raising barriers to product counterfeiting. Springer, Heidelberg (2007)

3. von zur Gathen, J., Shparlinski, I.: Predicting Subset Sum Pseudorandom Gen-
erators. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
241–251. Springer, Heidelberg (2004)

4. von zur Gathen, J., Shparlinski, I.: Subset sum pseudorandom numbers: fast gen-
eration and distribution. J. Math. Crypt. 3, 149–163 (2009)

5. Golic, J.D., Salmasizadeh, M., Dawson, E.: Fast Correlation Attacks on the Sum-
mation Generator. J. Cryptology 13(2), 245–262 (2000)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: An introduction to mathematical cryp-
tography. Springer, Heidelberg (2008)

7. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

8. Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as
Subset Sum. J. Cryptology 9(4), 199–216 (1996)

This copy belongs to 'VANC03'



198 S. Knellwolf and W. Meier

9. Klapper, A., Goresky, M.: Feedback Shift Registers, 2-Adic Span, and Combiners
with Memory. J. Cryptology 10(2), 111–147 (1997)

10. Lee, D.H., Kim, J., Hong, J., Han, J.W., Moon, D.: Algebraic Attacks on Sum-
mation Generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
34–48. Springer, Heidelberg (2004)

11. Meier, W., Staffelbach, O.: Correlation Properties of Combiners with Memory in
Stream Ciphers. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp.
204–213. Springer, Heidelberg (1991)

12. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (2001)

13. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks.
IEEE Transactions Information Theory 24(5), 525–530 (1978)

14. Rueppel, R.A.: Correlation Immunity and the Summation Generator. In: Williams,
H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 260–272. Springer, Heidelberg
(1986)

15. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)
16. Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern.

Symp. of Inform. Theory, vol. 46 (1985)
17. Shamir, A.: A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem. In: CRYPTO, pp. 279–288 (1982)
18. Shoup, V.: NTL: A Library for doing Number Theory, www.shoup.net/ntl
19. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-

tographic applications. IEEE Transactions on Information Theory 30(5), 776–780
(1984)

20. Staffelbach, O., Meier, W.: Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 601–613. Springer, Heidelberg (1991)

This copy belongs to 'VANC03'

www.shoup.net/ntl


Attack on Broadcast RC4 Revisited

Subhamoy Maitra1, Goutam Paul2, and Sourav Sen Gupta1

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India

{subho,souravsg r}@isical.ac.in
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India
goutam.paul@ieee.org

Abstract. In this paper, contrary to the claim of Mantin and Shamir
(FSE 2001), we prove that there exist biases in the initial bytes (3 to 255)
of the RC4 keystream towards zero. These biases immediately provide
distinguishers for RC4. Additionally, the attack on broadcast RC4 to
recover the second byte of the plaintext can be extended to recover the
bytes 3 to 255 of the plaintext given Ω(N3) many ciphertexts. Further,
we also study the non-randomness of index j for the first two rounds of
PRGA, and identify a strong bias of j2 towards 4. This in turn provides
us with certain state information from the second keystream byte.

Keywords: Bias, Broadcast RC4, Cryptanalysis, Distinguishing Attack,
Keystream, RC4, Stream Cipher.

1 Introduction

RC4, designed by Ron Rivest for RSA Data Security in 1987, is the most popular
commercial stream cipher algorithm. There are two components of the RC4 algo-
rithm, namely, the Key Scheduling Algorithm (KSA) and the Pseudo-Random
Generation Algorithm (PRGA), that are presented in Algorithm 1 and Algo-
rithm 2 respectively. Given a secret key k of size l bytes (typically, 5 ≤ l ≤ 16),
an array K of size N bytes (typically, N = 256) is created to hold the key such
that K[y] = k[y mod l] for any y ∈ [0, N − 1]. The KSA uses this secret key
to scramble a permutation S of ZN = {0, 1, . . . , N − 1}, initialized as the iden-
tity permutation. After that, the PRGA generates keystream bytes to be bitwise
XOR-ed with the plaintext. The indices i (deterministic) and j (pseudo-random)
are used to point to the locations of S. All additions in the KSA and PRGA
routines of RC4 algorithm are performed modulo N .

Since the advent of RC4 in 1987, it has faced rigorous analysis over the years
due to its simple structure. Extensive research has been conducted to identify
weaknesses of RC4 in terms of the KSA as well as the PRGA. There are sev-
eral important results in cryptanalysis of RC4 where the initial bytes are not
of concern. The most prominent recent works in this direction are the distin-
guisher proposed by Mantin [4] (based on the occurrence of strings of the pattern

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 199–217, 2011.
c© International Association for Cryptologic Research 2011
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Input: Secret Key K.
Output: S-Box S generated by K.

for i = 0, . . . , N − 1 do
S[i] = i;

end

Initialize counter: j = 0;

for i = 0, . . . , N − 1 do
j = j + S[i] + K[i];
Swap S[i] ↔ S[j];

end

Algorithm 1. KSA

Input: S-Box S, output of KSA.
Output: Random stream Z

generated from S.

Initialize the counters: i = j = 0;

while TRUE do
i = i + 1;
j = j + S[i];
Swap S[i] ↔ S[j];
Output Z = S[S[i] + S[j]];

end

Algorithm 2. PRGA

ABTAB with A, B bytes and T a string of bytes of small length), and the state
recovery attack presented by Maximov and Khovratovich [6].

However, the major portion of the literature in RC4 cryptanalysis involves
results related to initial keystream bytes of PRGA [2,5] (also see the references
therein). To get rid of these problems, one may throw away some initial bytes of
RC4 PRGA as suggested in [3,7]. But it may not be easy to modify the actual
implementations immediately by throwing away some initial keystream bytes,
since RC4 is already in use in many commercial applications. Thus the crypt-
analytic results related to the initial bytes are still of importance. Moreover,
these results are always of theoretical significance in terms of studying one of
the most popular stream ciphers. The trend continues, including the most recent
biases in this direction [8] that relates the initial keystream bytes, state variables
and secret key of RC4. Recently, another paper [9] accepted at Eurocrypt 2011
exploited the known biases of RC4 (mostly involving the initial bytes) to pro-
vide distinguishers against WEP and WPA. Using related idea, this paper also
proposes the best key recovery attack against WPA till date.

Notation. Let Sr, ir, jr, zr denote the state, index i, index j, and the keystream
byte respectively, after r (≥ 1) rounds of PRGA have been performed. Let S0

denote the state just before the PRGA starts, i.e., right after the KSA ends.
Further, let pr,x denote the probability Pr(Sr[x] = x), after r rounds of PRGA,
where r ≥ 1 and 0 ≤ x ≤ N − 1.

Motivation and Contribution. In FSE 2001, Mantin and Shamir [5] pub-
lished the best known distinguishing attack on RC4 based on the bias of the
second byte towards zero. This result states that if the initial permutation is ran-
domly chosen from the set of all (N !) permutations of ZN , then Pr(z2 = 0) ≈ 2

N
in RC4 keystream, whereas this should be 1

N in case of a random stream of bytes.
In [5, Section 3.2], after the description of the bias in the event (z2 = 0), the

following statement has been made:
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“One could expect to see a similar (but weaker) bias towards 0 at all the
other outputs zt with t = 0 mod n, since in 1/N2 of these cases St[2] = 0
and j = 0, which would give rise to the same situation. However, extensive
experiments have shown that this weaker bias at later rounds does not exist.
By carefully analyzing this situation one can show that for any j �= 0, the
output is zero with a slight negative bias, and the total contribution of these
negative biases exactly cancels the positive bias derived from j = 0. The
only time we don’t have this cancellation effect is at the beginning of the
execution, when j always starts as 0 rather than as a uniformly distributed
random value.”

The main two claims implied by the above statement are as follows.

MS-Claim 1: Pr(zr = 0) = 1
N at PRGA rounds 3 ≤ r ≤ 255.

MS-Claim 2: Pr(zr = 0 | jr = 0) > 1
N and Pr(zr = 0 | jr �= 0) < 1

N for
3 ≤ r ≤ 255. These two biases, when combined, cancel each other to produce
no bias in the event (zr = 0) in rounds 3 to 255.

MS-Claim 2 was made to justify MS-Claim 1 in [5]. In the current work, contrary
to MS-Claim 1, we show (Theorem 1) that Pr(zr = 0) > 1

N for all rounds r from
3 to 255. The immediate implications are that we find 253 new distinguishers
of RC4, and that the validity of MS-Claim 2 is questionable. This motivates us
to analyze the work of [5] to refute the aforementioned claims, and to study the
(non)-randomness of j in PRGA. It is quite surprising that this issue has never
been identified over the last decade.

The bias in the second byte was used in [5] to mount a distinguisher. We
use our newly discovered biases to construct a class of 253 new distinguishers
corresponding to the initial 253 keystream bytes zr for r ∈ {3, 4, . . . , 255}.

In addition, we study the non-randomness of index j rigorously to find a
strong bias of j2 towards 4. We can use this bias to guess the internal state
variable S2[2] from the value of keystream byte z2. Very recently, the results
published in [8] claimed an exhaustive search for biases in all possible linear
combinations of the state variables and the RC4 keystream bytes. However, our
result concerning the bias of j2 towards 4 is not covered in [8].

The literature of RC4 cryptanalysis, developed over more than two decades,
is quite rich. In context of this paper, we have only referred to the publica-
tions which have direct relevance with our work. The reader may look into the
references therein for a more detailed overview.

During the proposition and proof of our results in this paper, we shall require
the following well known result in RC4 cryptanalysis from the existing literature.
This appears in [3, Theorem 6.3.1], and we can restate the result as follows.

Proposition 1 ([3]). At the end of KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =

⎧⎪⎪⎨⎪⎪⎩
1
N

[(
N−1

N

)v
+
(
1 − (N−1

N

)v) (N−1
N

)N−u−1
]

if v ≤ u;

1
N

[(
N−1

N

)N−u−1
+
(

N−1
N

)v]
if v > u.
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Remark 1. As Proposition 1 reveals, the underlying assumption of Mantin and
Shamir [5] regarding the randomness of the initial permutation is violated in
practice. This non-randomness in the permutation for the initial state of PRGA
gives rise to the biases that we report in this paper.

2 Bytes 3 to 255 of PRGA are Biased to Zero

In this section we show that all the initial 253 bytes of RC4 keystream from
round 3 to 255 are biased to zero. To prove the main theorem, we require the
following technical result.

Lemma 1. For r ≥ 3, the probability that Sr−1[r] = r is

pr−1,r ≈ p0,r ·
[(

N − 1
N

)r−1

− 1
N

]
+

1
N

.

Proof. The event Sr−1[r] = r may occur in the following two ways.

1. S0[r] = r, and index r is not touched by any i or j during first (r − 1) PRGA
rounds: The first event occurs with probability p0,r. For the second one, note
that index r is not touched by i = 1, . . . , r−1 values, and the probability that
none of j touches it either is approximately (N−1

N )r−1. Thus the contribution
of this case is approximately p0,r · (N−1

N )r−1.
2. S0[r] �= r, and still Sr−1[r] equals r by random association: The probability of

the first event is (1 − p0,r) and given this event, the second one is likely to
occur only due to random association, thus with probability ≈ 1

N . Hence,
the contribution of this case is approximately (1 − p0,r) · 1

N .

Adding the two contributions calculated above, we get the result. ��
Remark 2. RC4 PRGA starts with j0 = 0. For r = 1, we have j1 = j0 + S0[1] =
S0[1] which, due to Proposition 1, is not uniformly distributed. For r = 2, we have
j2 = j1 +S1[2] = S0[1]+S1[2], whose probability distribution is more close to the
uniform random distribution than that in case of j1. In round 3, another pseudo-
random byte S2[3] would be added to form j3. From round 3 onwards, j can safely
be assumed to be uniform over ZN . Experimental observations also confirm this.
A detailed discussion on the randomness of j is presented in Section 4. In Item
1 of the proof of Lemma 1, the product

Pr(j1 �= r) · Pr(j2 �= r) · · ·Pr(jr−1 �= r) = Pr(j1 �= r) · Pr(j2 �= r) ·
(

N − 1
N

)r−3

is approximated as (N−1
N )r−1, but one may always try the exact forms for the

probabilities Pr(j1 �= r) and Pr(j2 �= r) to obtain further accuracy.

Now, we can state our main theorem on the bias of RC4 initial bytes.
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Theorem 1. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte
is equal to 0 is

Pr(zr = 0) ≈ 1
N

+
cr

N2
.

where cr is given by
[(

N−1
N

)r
+
(

N−1
N

)N−r−1 − (N−1
N

)N−1
]
·
[(

N−1
N

)r−2 − 1
N−1

]
.

Proof. We prove the result by decomposing the event (zr = 0) into two mutually
exclusive and exhaustive cases1, as follows.

Pr(zr = 0) = Pr (zr = 0 & Sr−1[r] = r) + Pr (zr = 0 & Sr−1[r] �= r) (1)

Now we consider the events (zr = 0 & Sr−1[r] = r) and (zr = 0 & Sr−1[r] �= r)
individually to calculate their probabilities. In this direction, note that

zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[ir]]
= Sr[Sr[r] + Sr−1[ir]] = Sr[Sr[r] + Sr−1[r]].

This expression for zr will be used in various effects throughout the paper.

Calculation of Pr (zr = 0 & Sr−1[r] = r): In this case Sr−1[r] = r, and thus
we have the probability

Pr (zr = 0 & Sr−1[r] = r)
= Pr(Sr[Sr[r] + r] = 0 & Sr−1[r] = r)

=
N−1∑
x=0

Pr (Sr[x + r] = 0 & Sr[r] = x & Sr−1[r] = r)

=
N−1∑
x=0

Pr (Sr[x + r] = 0 & Sr[r] = x) · Pr (Sr−1[r] = r) (2)

The last expression results from the assumption that the events (Sr[x + r] = 0)
and (Sr[r] = x) are both independent from (Sr−1[r] = r), as a state update
has occurred in the process. Note that Sr−1[r] = r is one of the values that gets
swapped to produce the new state Sr (location [r] denotes [ir] at this stage), and
this is why we can claim the independence of Sr[r] and Sr−1[r]. Otherwise, if a
location [s] is not same as [ir] or [jr], then Sr[s] would be the same as Sr−1[s],
even after the state update.

Now, let us compute Pr(Sr[x + r] = 0 & Sr[r] = x) = Pr(Sr[x + r] = 0) ·
Pr(Sr[r] = x | Sr[x + r] = 0) independently. In this expression, if there exists
any bias in the event (Sr[x + r] = 0), then it must propagate from a similar
bias in (S0[x + r] = 0), as was the case for (Sr−1[r] = r) in Lemma 1. However,

1 In the pre-proceedings version, we had considered the same cases, and had obtained
the same expressions for Pr(zr = 0) and cr. However, the proof for Theorem 1 used
Jenkin’s bias [1] (Glimpse) in an intermediate step as a crude approximation. In this
version, we present a rigorous analysis which does not require to use Jenkin’s bias.

This copy belongs to 'VANC03'



204 S. Maitra, G. Paul, and S. Sen Gupta

Pr(S0[x+r] = 0) = 1
N by Proposition 1, and thus we can safely assume Sr[x+r]

to be random as well. This provides us with Pr(Sr[x + r] = 0) = 1
N .

For Pr(Sr[r] = x | Sr[x+ r] = 0), observe that when x = 0, the indices [x+ r]
and [r] in the state Sr point to the same location, and the events (Sr[x + r] =
Sr[r] = 0) and (Sr[r] = x = 0) denote identical events. Thus in this case,
Pr(Sr[r] = x | Sr[x + r] = 0) = 1. In cases where x �= 0, the indices [x + r] and
[r] refer to two distinct locations in the permutation Sr, obviously containing
different values. In this case,

Pr(Sr[r] = x | Sr[x + r] = 0) = Pr(Sr[r] = x | x �= 0) =
1

N − 1
.

For justifying the randomness of Sr[r] for x �= 0, one may simply observe that
the location [r] = [ir] is the one that got swapped to generate state Sr from
the previous state, and thus the randomness assumption of Sr[r] is based on the
randomness assumption of jr, which is validated for r ≥ 3 later in Section 4.

According to the discussion above, we obtain

Pr (Sr[x + r] = 0 & Sr[r] = x) =
{ 1

N · 1 = 1
N if x = 0,

1
N · 1

N−1 = 1
N(N−1) if x �= 0. (3)

Substituting these probability values in Equation (2), we get

Pr (zr = 0 & Sr−1[r] = r)

= Pr (Sr−1[r] = r)

[
N−1∑
x=0

Pr (Sr[x + r] = 0 & Sr[r] = x)

]

= pr−1,r ·
[

1
N

+
N−1∑
x=1

1
N(N − 1)

]

= pr−1,r ·
[

1
N

+ (N − 1) · 1
N(N − 1)

]
= pr−1,r · 2

N
. (4)

Calculation of Pr (zr = 0 & Sr−1[r] �= r): Similar to the previous case, we can
derive the probability as follows:

Pr (zr = 0 & Sr−1[r] �= r)

=
∑
y �=r

Pr(Sr[Sr[r] + y] = 0 & Sr−1[r] = y)

=
∑
y �=r

N−1∑
x=0

Pr (Sr[x + y] = 0 & Sr[r] = x & Sr−1[r] = y)

An interesting situation occurs if x = r − y. In this case, on one hand, we ob-
tain Sr[x + y] = Sr[r] = 0 for the first event, while on the other hand, we get
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Sr[r] = x = r − y �= 0 for the second event (note that y �= r). This poses a
contradiction (event with probability of occurrence 0), and hence we can write

Pr (zr = 0 & Sr−1[r] �= r)

=
∑
y �=r

∑
x �=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x & Sr−1[r] = y)

=
∑
y �=r

∑
x �=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x) · Pr (Sr−1[r] = y) , (5)

where the last expression results from the fact that the events (Sr[x + y] = 0)
and (Sr[r] = x) are both independent from (Sr−1[r] = y), as a state update has
occurred in the process, and Sr−1[r] got swapped during that update.

Similar to the derivation of Equation (3), we obtain

Pr (Sr[x + y] = 0 & Sr[r] = x) =
{

0 if x = 0,
1

N(N−1) if x �= 0. (6)

The only difference occurs in the case x = 0. In this situation, simultaneous
occurrence of the events (Sr[x + y] = Sr[y] = 0) and (Sr[r] = x = 0) pose a
contradiction as the two locations [y] and [r] of Sr are distinct (note that y �= r),
and they can not hold the same value 0 as the state Sr is a permutation. In all
other cases (x �= 0), the argument is identical to that in the previous derivation.

Substituting the values above in Equation (5), we get

Pr (zr = 0 & Sr−1[r] �= r)

=
∑
y �=r

Pr (Sr−1[r] = y)

⎡⎣ ∑
x �=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x)

⎤⎦

=
∑
y �=r

Pr (Sr−1[r] = y)

⎡⎢⎢⎣0 +
∑

x �=r−y
x �=0

1
N(N − 1)

⎤⎥⎥⎦
=
∑
y �=r

Pr (Sr−1[r] = y)
[
(N − 2) · 1

N(N − 1)

]

=
N − 2

N(N − 1)

∑
y �=r

Pr (Sr−1[r] = y)

=
N − 2

N(N − 1)
· (1 − Pr (Sr−1[r] = r)) =

N − 2
N(N − 1)

· (1 − pr−1,r) (7)

Calculation for Pr(zr = 0): Combining the probabilities from Equation (4) and
Equation (7) in the final expression of Equation (1), we obtain the following.

Pr(zr = 0) = pr−1,r · 2
N

+
N − 2

N(N − 1)
· (1 − pr−1,r)

=
pr−1,r

N − 1
+

N − 2
N(N − 1)

=
1
N

+
1

N − 1
·
(

pr−1,r − 1
N

)
(8)

This copy belongs to 'VANC03'



206 S. Maitra, G. Paul, and S. Sen Gupta

Now, substituting the value of pr−1,r from Lemma 1 in Equation (8), we obtain

Pr(zr = 0) ≈ 1
N

+
1

N − 1
· p0,r ·

[(
N − 1

N

)r−1

− 1
N

]
. (9)

Further, we can use Proposition 1 to get the value of p0,r as

p0,r = Pr(S0[r] = r) =
1
N

[(
N − 1

N

)r

+
(

1 −
(

N − 1
N

)r)(
N − 1

N

)N−r−1
]

.

Substituting this expression for p0,r in Equation (9), we obtain the desired result
Pr(zr = 0) ≈ 1

N + cr

N2 with the claimed value of cr. ��
In Theorem 1, we have presented the bias in the probability Pr(zr = 0) in terms
of the parameter cr, which in turn is a function of r. But we are more interested in
observing the bias for specific rounds of RC4 PRGA, namely within the interval
3 ≤ r ≤ 255. Thus, we are interested in obtaining numerical bounds on the
bias for this specific interval. The next result is a corollary of Theorem 1 that
provides exact numeric bounds on Pr(zr = 0) within the interval 3 ≤ r ≤ 255,
depending on the corresponding bounds of cr within the same interval.

Corollary 1. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte
is equal to 0 is bounded as follows

1
N

+
0.98490994

N2
≥ Pr(zr = 0) ≥ 1

N
+

0.36757467
N2

.

Proof. We calculated all values of cr (as in Theorem 1) for the range 3 ≤ r ≤ 255,
and checked that cr is a decreasing function in r where 3 ≤ r ≤ 255 (one may
refer to the plot in Fig. 1 in this regard). Therefore we obtain

max
3≤r≤255

cr = c3 = 0.98490994 and min
3≤r≤255

cr = c255 = 0.36757467.

Hence the result on the bounds of Pr(zr = 0), depending on the bounds of cr. ��
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Fig. 1. Value of cr versus r during RC4 PRGA (3 ≤ r ≤ 255)
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Fig. 2 depicts a comparison between the theoretically derived vs. experimen-
tally obtained values of Pr(zr = 0) versus r, where 3 ≤ r ≤ 255. The experi-
mentation has been carried out with 1 billion trials, each trial with a randomly
generated 16 byte key.
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Index r of RC4 keystream bytes.
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.
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Probability 1/N (ideal case)

Fig. 2. Pr(zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255)

One may observe in Fig. 2 that the theoretical curve does not exactly coincide
with the mean line of the experimental plot. This is algebraically expressed by
the approximation in Theorem 1. The approximation arises due to the ideal
randomness assumptions in the proof of Lemma 1, which do not hold in practice.

2.1 A Class of New Distinguishers

Theorem 1 immediately gives a class of distinguishers. In [5, Theorem 2], it is
proved that if an event e happens with probabilities p and p(1+ε) in distributions
X and Y respectively, then for p and ε with small magnitude, O

(
p−1ε−2

)
samples

suffice to distinguish X from Y with a constant probability of success.
In our setting, let X and Y denote the distributions corresponding to random

stream and RC4 keystream respectively, and er denote the event (zr = 0) for
r = 3 to 255. From the formulation as in Equation (10), we can write p = 1

N
and ε = cr

N . Thus, to distinguish RC4 keystream from random stream, based on
the event (zr = 0), one would need number of samples of the order of(

1
N

)−1 ( cr

N

)−2

∼ O(N3).

We can combine the effect of all these distinguishers by counting the number of
zeros in the initial keystream of RC4, according to Theorem 2, as follows.

Theorem 2. The expected number of 0’s in RC4 keystream rounds 3 to 255 is
approximately 0.9904610515.

Proof. Let Xr be a random variable taking values Xr = 1 if zr = 0, and Xr = 0
otherwise. Hence, the total number of 0’s in rounds 3 to 255 is given by

C =
255∑
r=3

Xr.
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We have E(Xr) = Pr(Xr = 1) = Pr(zr = 0) from Theorem 1. By linearity of
expectation,

E(C) =
255∑
r=3

E(Xr) =
255∑
r=3

Pr(zr = 0).

Substituting the numeric values of the probabilities Pr(zr = 0) from Theorem 1,
we get E(C) ≈ 0.9904610515. Hence the result. ��
For a random stream of bytes, this expectation is E(C) = 253

256 = 0.98828125.
Thus, the expectation for RC4 is approximately 0.22% higher than that for the
random case. The inequality of this expectation in RC4 keystream compared to
that in a random stream of bytes may also be used to design a distinguisher.

2.2 A Critical Analysis of the Event (zr = 0) Given jr = or �= 0

Recall the expression for Pr(zr = 0) from Theorem 1:

Pr(zr = 0) =
1
N

+
1

N − 1
·
(

pr−1,r − 1
N

)
≈ 1

N
+

cr

N2
. (10)

In the expression for pr−1,r, as in Lemma 1, we see that
(

N−1
N

)r−1
> 1

N for
all 3 ≤ r ≤ 255. Thus, there is always a positive bias in pr−1,r, and in turn in
Pr(zr = 0). Further, for any r ≥ 1, we can write

Pr(zr = 0) = Pr(jr = 0) · Pr(zr = 0 | jr = 0)
+ Pr(jr �= 0) · Pr(zr = 0 | jr �= 0). (11)

One may note that MS-Claim 2 of Mantin and Shamir [5] essentially states that
Pr(zr = 0 | jr = 0) = 1

N + ar and Pr(zr = 0 | jr �= 0) = 1
N − br for 3 ≤ r ≤ 255,

where both ar, br > 0. Plugging these values in Equation (11), we have

1
N

+
cr

N2
=

1
N

(
1
N

+ ar

)
+
(

1 − 1
N

)(
1
N

− br

)
for 3 ≤ r ≤ 255.

Simplifying the above equation, we get ar = cr

N + (N − 1)br. Thus, if MS-Claim
2 is correct, then we must have

Pr(zr = 0 | jr = 0) =
1
N

+
cr

N
+ (N − 1)br =

1 + cr

N
+ (N − 1)br,

where 0.98490994 ≥ cr ≥ 0.36757467 for 3 ≤ r ≤ 255 (from Corollary 1).
However, extensive experiments have confirmed that Pr(zr = 0 | jr = 0) ≈ 1

N ,
thereby refuting MS-Claim 2 of Mantin and Shamir.

2.3 Guessing State Information Using the Bias in zr

Mantin and Shamir [5] used the bias of the second byte of RC4 keystream to
guess some information regarding S0[2], based on the following.

Pr(S0[2] = 0 | z2 = 0) =
Pr(S0[2] = 0)
Pr(z2 = 0)

· Pr(z2 = 0 | S0[2] = 0) ≈ 1/N

2/N
· 1 =

1
2
.
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Note that in the above expression, no randomness assumption is required to
obtain Pr(S0[2] = 0) = 1

N . This probability is exact and can be derived by
substituting u = 2, v = 0 in Proposition 1. Hence, on every occasion we obtain
z2 = 0 in the keystream, we can guess S0[2] with probability 1

2 , and this is
significantly more than a random guess with probability 1

N .
In this section, we use the biases in bytes 3 to 255 (observed in Theorem 1) to

extract similar information about the state array Sr−1 using the RC4 keystream
byte zr. In particular, we try to explore the conditional probability Pr(Sr−1[r] =
r | zr = 0) for 3 ≤ r ≤ 255, as follows.

Pr(Sr−1[r] = r | zr = 0) =
Pr(zr = 0 & Sr−1[r] = r)

Pr(zr = 0)
≈ pr−1,r · 2

N
1
N + cr

N2

In the above expression, cr is as in Theorem 1. One may write

pr−1,r =
1
N

+
cr

N
− cr

N2
,

using Equation (8) from the proof of Theorem 1, and thereby obtain

Pr(Sr−1[r] = r | zr = 0) ≈
(

1
N + cr

N − cr

N2

) · 2
N

1
N + cr

N2

= 2 ·
(

1
N

+
cr

N
− cr

N2

)
·
(
1 +

cr

N

)−1

≈ 2
N

+
2cr

N
.

From the expression for Pr(Sr−1[r] = r | zr = 0) derived above, one can
guess Sr−1[r] with probability more than twice of the probability of a random
guess, every time we obtain zr = 0 in the RC4 keystream. In Fig. 3, we plot the
theoretical probabilities

Pr(Sr−1[r] = r | zr = 0) = 2 ·
(

1
N

+
cr

N
− cr

N2

)
·
(
1 +

cr

N

)−1

against r for 3 ≤ r ≤ 255, and the corresponding experimental values observed
by running the RC4 algorithm 1 billion times with randomly selected 16 byte
keys. It clearly shows that all the experimental values are also greater than 2

N ,
as desired. The crisscross nature of the curves in Fig. 3 originates from a similar
behavior observed in the curves of Fig. 2.

3 Attacking the RC4 Broadcast Scheme

Let us now revisit the famous attack of Mantin and Shamir [5] on broadcast
RC4. As mentioned in their paper,

“A classical problem in distributed computing is to allow N Byzantine gener-
als to coordinate their actions when up to one third of them can be traitors.
The problem is solved by a multi-round protocol in which each general
broadcasts the same plaintext (which initially consists of either “Attack” or
“Retreat”) to all the other generals, where each copy is encrypted under a
different key agreed in advance between any two generals.”
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Fig. 3. Pr(Sr−1[r] = r | zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255)

In [5], the authors propose a practical attack against an RC4 implementation
of the broadcast scheme, based on the bias observed in the second keystream
byte. They prove that an enemy that collects k = Ω(N) number of ciphertexts
corresponding to the same plaintext M , can easily deduce the second byte of M ,
by exploiting the bias in z2.

In a similar line of action, we may exploit the bias observed in bytes 3 to
255 of the RC4 keystream to mount a similar attack on RC4 broadcast scheme.
Notice that we obtain a bias of the order of 1

N2 in each of the bytes zr where 3 ≤
r ≤ 255. Thus, roughly speaking, if the attacker obtains about N3 ciphertexts
corresponding to the same plaintext M (from the broadcast scheme), then he
can check the frequency of occurrence of bytes to deduce the r-th (3 ≤ r ≤ 255)
byte of M .

The most important point to note is that this technique will work for each
r where 3 ≤ r ≤ 255, and hence will reveal all the 253 initial bytes (number
3 to 255 to be specific) of the plaintext M . We can formally state our result
(analogous to [5, Theorem 3]) as follows.

Theorem 3. Let M be a plaintext,and let C1, C2, . . . , Ck be the RC4 encryptions
of M under k uniformly distributed keys. Then if k = Ω(N3), the bytes 3 to 255
of M can be reliably extracted from C1, C2, . . . , Ck.

Proof. Recall from Theorem 1 that Pr(zr = 0) ≈ 1
N + cr

N2 for all 3 ≤ r ≤ 255 in
the RC4 keystream. Thus, for each encryption key chosen during broadcast, the
r-th plaintext byte M [r] has probability 1

N + cr

N2 to be XOR-ed with 0.
Due to the bias of zr towards zero, 1

N + cr

N2 fraction of the r-th ciphertext bytes
will have the same value as the r-th plaintext byte, with a higher probability.
When k = Ω(N3), the attacker can identify the most frequent character in
C1[r], C2[r], . . . , Ck[r] as M [r] with constant probability of success. ��
The attack on broadcast RC4 is applicable to many modern Internet protocols
(such as group emails encrypted under different keys, group-ware multi-user
synchronization etc.). Note that Mantin and Shamir’s attack [5] works at the
byte level. It can recover only the second byte of the plaintext under some
assumptions. On the other hand, our attack can recover additional 253 bytes
(namely, bytes 3 to 255) of the plaintext.
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4 Non-randomness of j in PRGA

During the PRGA round of RC4 algorithm, two indices are used; the first is
i (deterministic) and the second is j (pseudo-random). Index i starts from 0
and increments by 1 (modulo N) at the beginning of each iteration, whereas
j depends on the values of i and S[i] simultaneously. The pseudo-randomness
of the internal state S triggers the pseudo-randomness in j. In this section, we
attempt to understand the pseudo-random behavior of j more clearly.

In RC4 PRGA, we know that for r ≥ 1, ir = r mod N and jr = jr−1+Sr−1[ir],
starting with j0 = 0. Thus, we can write the values assumed by j at different
rounds of PRGA as follows.

j1 = j0 + S0[i1] = 0 + S0[1] = S0[1],
j2 = j1 + S1[i2] = S0[1] + S1[2],
j3 = j2 + S2[i3] = S0[1] + S1[2] + S2[3],
...

...
...

jr = jr−1 + Sr−1[ir] = S0[1] + S1[2] + · · · + Sr−1[r] =
r∑

x=1

Sx−1[x],

where 1 ≤ r ≤ N − 1, and all the additions are performed modulo N , as usual.

4.1 Non-randomness of j1

In the first round of PRGA, j1 = S0[1] follows a probability distribution which
is determined by S0, the internal state array after the completion of KSA. Ac-
cording to Proposition 1, we have

Pr(j1 = v) = Pr(S0[1] = v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
N if v = 0;

1
N

(
N−1

N + 1
N

(
N−1

N

)N−2
)

if v = 1;

1
N

((
N−1

N

)N−2
+
(

N−1
N

)v)
if v > 1.

This clearly tells us that j1 is not random. This is also portrayed in Fig. 4.

4.2 Non-randomness of j2

In the second round of PRGA however, we have j2 = S0[1]+S1[2], which demon-
strates better randomness, as discussed next. Note that we have the following in
terms of probability for j2.

Pr(j2 = v) = Pr(S0[1] + S1[2] = v)

=
N−1∑
w=0

Pr(S0[1] = w) · Pr((S1[2] = v − w) | (S0[1] = w)) (12)
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In the above expression, (v − w) is performed modulo N , like all arithmetic
operations in RC4. The following cases may arise with respect to Equation (12).

Case I. Suppose that j1 = S0[1] = w = 2. Then, we will have S1[i2] = S1[2] =
S1[j1] = S0[i1] = S0[1] = 2. In this case,

Pr((S1[2] = v − 2) | (S0[1] = 2)) =
{

1 if v = 4,
0 otherwise.

Case II. Suppose that j1 = S0[1] = w �= 2. Then S0[2] will not get swapped in
the first round, and hence we will have S1[2] = S0[2]. In this case,

Pr((S1[2] = v − w) | (S0[1] = w �= 2)) = Pr(S0[2] = v − w).

Let us substitute the results obtained from these cases to Equation (12) to obtain

Pr(j2 = v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pr(S0[1] = 2) +
N−1∑
w=0
w �=2

Pr(S0[1] = w) Pr(S0[2] = v − w), if v = 4;

N−1∑
w=0
w �=2

Pr(S0[1] = w) Pr(S0[2] = v − w), if v �= 4.

(13)
Equation (13) completely specifies the exact probability distribution of j2, where
each of the probabilities Pr(S0[x] = y) can be substituted by their exact val-
ues from Proposition 1. However, the expression suffices to exhibit the non-
randomness of j2 in the RC4 PRGA, having a large bias for v = 4. We found
that the theoretical values corresponding to the probability distribution of j2 (as
in Equation (13)) match almost exactly with the experimental data plotted in
Fig. 4. For the sake of clarity, we do not show the theoretical curve in Fig. 4.

0 4 32 64 96 128 160 192 224 255
0.0025

0.0039

0.005

0.0075

0.01

Value v, from 0 to 255.

P
r(

 j 
r =

 v
 )

.

 

 
Distribution of j

1

Distribution of j
2

Distribution of j
3

Fig. 4. Probability distribution of jr for 1 ≤ r ≤ 3
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Calculation of Pr(j2 = 4). Let us now evaluate Pr(j2 = 4) independently:

Pr (j2 = 4)

= Pr(S0[1] = 2) +
N−1∑
w=0
w �=2

Pr(S0[1] = w) · Pr(S0[2] = 4 − w)

=
1
N

[(
N − 1

N

)N−2

+
(

N − 1
N

)2
]

+
N−1∑
w=0
w �=2

Pr(S0[1] = w) · Pr(S0[2] = 4 − w)

Following Proposition 1, the summation term in the above expression evaluates
approximately to 0.965268

N for N = 256. Thus, we get

Pr(j2 = 4) ≈ 1
N

[(
N − 1

N

)N−2

+
(

N − 1
N

)2
]

+
0.965268

N
≈ 7/3

N
.

This verifies our experimental observation, as depicted in Fig. 4.

Guessing State Information Using the Bias in j2. It is also feasible to use
this bias of j2 to guess certain information about the RC4 state S2. In particular,
we shall focus on the event (S2[i2] = 4− z2) or (S2[2] = 4− z2), and prove a bias
in the probability of occurrence of this event, as follows.

Proposition 2. After completion of the second round of RC4 PRGA, the state
variable S2[2] equals the value 4 − z2 with probability

Pr (S2[2] = 4 − z2) ≈ 1
N

+
4/3
N2

.

Proof. First, note that we can write z2 in terms of the state variables as follows

z2 = S2[S2[i2] + S2[j2]] = S2[S1[j2] + S1[i2]] = S2[S1[j2] + S1[2]].

Thus, we can write the probability of the target event (S2[2] = 4− z2) as follows

Pr(S2[2] = 4 − z2) = Pr(S2[i2] = 4 − S2[S1[j2] + S1[2]])
= Pr(S1[j2] = 4 − S2[S1[j2] + S1[2]])
= Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4)

Now, the idea is to exploit the bias in the event (j2 = 4) to obtain the bias in
the probability mentioned above. Thus, we decompose the target event into two
mutually exclusive and exhaustive cases2, as follows.

(S1[j2] + S2[S1[j2] + S1[2]] = 4) = (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)
∪ (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 �= 4)

2 In the pre-proceedings version, we had considered the same cases, and had obtained
the same expression for Pr(S2[2] = 4− z2). However, the proof used Jenkin’s bias [1]
(Glimpse) in an intermediate step as a crude approximation. In this version, we
present a rigorous analysis which does not require to use Jenkin’s bias.
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First event (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4): The probability for the
first event can be calculated as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)
= Pr(S1[4] + S2[S1[4] + S1[2]] = 4 & j2 = 4)

=
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y & j2 = 4)

=
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y) · Pr(j2 = 4)

= Pr(j2 = 4)
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y)

In the last expression, the values taken from S1 are independent of the value
of j2, and thus the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) are both
independent of the event (j2 = 4). Also note that if y = 4, we obtain

S1[4] + S2[y] = S1[4] + S2[4] = S1[4] + S2[j2] = S1[4] + S1[i2] = S1[4] + S1[2],

which results in the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) being
identical. In all other cases, we have S1[4] + S2[y] �= S1[4] + S1[2] and thus the
values are chosen distinctly independent at random. Hence, we obtain

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y) =
{ 1

N if y = 4;
1

N(N−1) if y �= 4.

The probabilities in the above expression are verified through experimentation
by running the RC4 algorithm 1 billion times, choosing a 16 byte key uniformly
at random in each run. The probability for the first event turns out to be

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)

= Pr(j2 = 4) ·
⎡⎣ 1

N
+
∑
y �=4

1
N(N − 1)

⎤⎦
=

7/3
N

·
[

1
N

+ (N − 1) · 1
N(N − 1)

]
=

7/3
N

· 2
N

.

Second event (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 �= 4): For the second event,
the probability calculation can be performed in a similar fashion, as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 �= 4)

=
∑
x �=4

Pr(S1[x] + S2[S1[x] + S1[2]] = 4 & j2 = x)

=
∑
x �=4

N−1∑
y=0

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y & j2 = x)
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Note that the case y = x poses an interesting situation. On one hand, we obtain
S1[x]+S2[y] = S1[x]+S2[x] = S1[x]+S2[j2] = S1[x]+S1[i2] = S1[x]+S1[2] = 4,
while on the other hand, we get S1[x] + S1[2] = x �= 4. We rule out the case
y = x from the probability calculation due to this contradiction, and get

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 �= 4)

=
∑
x �=4

∑
y �=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y & j2 = x)

=
∑
x �=4

∑
y �=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y) · Pr(j2 = x).

As before, in the last expression, the values taken from S1 are independent of
the value of j2, and thus the events (S1[x] + S2[y] = 4) and (S1[x] + S1[2] = y)
are both independent of the event (j2 = x).

Another interesting case occurs if y = 4 in the above calculation. In this
case, one one hand, we have S1[x] + S2[4] = 4, while one the other hand we get
S1[x]+S1[2] = 4. One may notice that S1[4] is a value that does not get swapped
to obtain the state S2. This is because the only two values to get swapped at this
stage are from the locations [i2] = [2] and [j2] = [x] �= [4]. Thus, S2[4] = S1[4]
and we get S1[x] + S1[4] = 4 and S1[x] + S1[2] = 4, indicating S1[4] = S1[2]. As
S1 is a permutation, this situation is not possible, and all other cases deal with
two distinct locations of the permutation S1. Therefore, we obtain

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y) =
{

0 if y = 4;
1

N(N−1) otherwise.

In turn, we obtain the probability of the second event as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 �= 4)

=
∑
x �=4

Pr(j2 = x)
∑
y �=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y)

=
∑
x �=4

Pr(j2 = x)

⎡⎢⎢⎣0 +
∑
y �=x
y �=4

1
N(N − 1)

⎤⎥⎥⎦
=
∑
x �=4

Pr(j2 = x)
[
(N − 2) · 1

N(N − 1)

]
=

N − 2
N(N − 1)

∑
x �=4

Pr(j2 = x)

=
N − 2

N(N − 1)
· (1 − Pr(j2 = 4)) =

N − 2
N(N − 1)

·
(

1 − 7/3
N2

)
.
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Calculation for Pr(S2[2] = 4 − z2): Combining the probabilities for the first
and second events, we obtain the final probability as

Pr(S2[2] = 4 − z2) =
7/3
N2

· 2
N

+
N − 2

N(N − 1)
·
(

1 − 7/3
N2

)
≈ 1

N
+

4/3
N2

.

Hence the desired probability for the event (S2[2] = 4 − z2). ��
Thus, one can guess the value of S2[i2] = S2[2] with probability greater than that
of a random guess (probability 1

N ). For N = 256, the result matches with our
experimental data generated from 1 billion runs of RC4 with randomly selected
16 byte keys.

4.3 Randomness of jr for r ≥ 3

Along the same line of analysis as in the case of j2, it is possible to compute the
explicit probability distributions of jr =

∑r
x=1 Sx−1[x] for 3 ≤ r ≤ 255 as well.

We do not present the expressions Pr(jr = v) for r ≥ 3 to avoid complication.
However, it turns out that jr =

∑r
x=1 Sx−1[x] becomes closer to be random as

r increase. The probability distributions of j1, j2 and j3 are shown in Fig. 4,
where the experiments have been run over 1 billion trials of RC4 PRGA, with
randomly generated keys of size 16 bytes.

One may note that the randomness in j2 is more than that of j1 (apart from
the case v = 4), and j3 is almost uniformly random. This trend continues for
the later rounds of PRGA as well. However, we do not plot the graphs for the
probability distributions of jr with r ≥ 4, as these distributions are almost
identical to that of j3, i.e., almost uniformly random in behavior.

5 Conclusion

In this paper, we revisit the attack on broadcast RC4 introduced in FSE 2001
by Mantin and Shamir [5], and refute some claims made in that paper. Mantin
and Shamir claimed that amongst the initial bytes of RC4 keystream, only the
second one shows a bias to zero, and none of the other initial bytes has any
bias (even weaker). Contrary to this claim, we prove that all the other initial
keystream bytes (3 to 255 to be specific) also exhibit a bias to zero. It comes
as a surprise to us that this observation has escaped the scrutiny of the RC4
research community for a long time.

The above biases can distinguish RC4 keystream reliably from a random
stream of bytes. Further, these biases can also be exploited to mount an at-
tack against broadcast RC4. In addition to the second plaintext byte recovery
as in [5], our technique can retrieve the bytes 3 to 255 of the plaintext. The bias
shown by these initial bytes also allow us to guess some state information from
the RC4 keystream (Sr−1[r] given zr = 0 for 3 ≤ r ≤ 255).

Further, we study the non-randomness of index j in RC4 PRGA that reveals
a strong bias of j2 towards 4. This bias in turn helps in guessing the state value
S2[2] from the second keystream byte.
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We would like to make a small note on a related observation. The probability
calculation for event (zr = 0) in this paper was triggered by the observation
that the event (Sr−1[r] = r) is biased in the first place. There exist similar
biases (though in a much weaker magnitude) in the event (Sr[u] = v) for other
values of u, v as well. These biases may in turn lead to corresponding biases in
events (zr = k) for k �= 0, but we do not study these in the scope of this paper.

Another observation that caught our attention during this work was the no-
ticeable negative bias in Pr(z1 = 0). Similar issues of non-random behavior in
the first keystream byte z1 has been reported earlier in [7, Section 6]. But nei-
ther [7] nor we could provide a satisfactory proof of this bias. We would like to
pose this as an open problem to conclude our paper:

Open problem: Compute Pr(z1 = 0) explicitly to support the observations
made in [7] and the negative bias observed in the line of our work.
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Abstract. We present high probability differential trails on 2 and 3
rounds of BLAKE-32. Using the trails we are able to launch boomerang
attacks on up to 8 round-reduced keyed permutation of BLAKE-32.
Also, we show that boomerangs can be used as distinguishers for hash/
compression functions and present such distinguishers for the compres-
sion function of BLAKE-32 reduced to 7 rounds. Since our distinguishers
on up to 6 round-reduced keyed permutation of BLAKE-32 are practi-
cal (complexity of only 212 encryptions), we are able to find boomerang
quartets on a PC.

Keywords: SHA-3 competition, hash function, BLAKE, boomerang at-
tack, cryptanalysis.

1 Introduction

The SHA-3 competition [6] will soon enter the third and final phase, by selecting
5 out of 14 second round candidates. The hash function BLAKE [2] is among
these 14 candidates, and it is one of the few functions that has not been tweaked
from the initial submission in 2008. Being an addition-rotation-xor (ARX) de-
sign, BLAKE is one of the fastest functions on various platforms in software.
Indeed, among the fastest candidates, BLAKE has the highest published secu-
rity level, i.e. the best published attacks work only on a small fraction of the
total number of rounds. Few attacks, however, were published on the round-
reduced compression function and keyed permutation of BLAKE-32 (which has
10 rounds). In [3] Ji and Liangyu present collision and preimage attacks on 2.5
rounds of the compression function of BLAKE-32. Su et al. [7] give near collisions
on 4 rounds with a complexity of 221 compression function calls. However, one
can argue that the message modification they use, requires an additional effort
of 264 (see Sec. 5). Aumasson et al. in [1], among other, present near collisions
on 4 rounds of the compression function with 256 complexity, and impossible
differentials on 5 rounds of the keyed permutation.

Our Contribution. We show various boomerang distinguishers on round-
reduced BLAKE-32. Our analysis is based on the fact that BLAKE-32, be-
ing a keyed permutation, has some high probability differential trails on two
� This author is supported by the Fonds National de la Recherche Luxembourg grant

TR-PHD-BFR07-031.

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 218–237, 2011.
c© International Association for Cryptologic Research 2011
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and three rounds (2−1 on two and 2−7 on three rounds). Moreover, we can ex-
tend the three round trail to four rounds. First, we use these trails to build
boomerang distinguishers for the round-reduced keyed permutation of BLAKE-
32 on up to 8 rounds. Then we extend the concept of boomerang distinguishers
to hash functions. As far as we know, this is the first application of the standard
boomerangs to hash function. An amplified boomerang attack applied to hash
functions was presented in [4], however it was used in addition to a collision at-
tack. Our boomerang attacks, on the other hand, are standalone distinguishers,
and work in the same way as for block ciphers – by producing the quartet of
plaintexts and ciphertexts (input chaining values and output chaining values).
We also show how to obtain simpler zero-sum distinguisher from the boomerang
and present such distinguishers for 4, 5, 6 rounds of BLAKE-32. Our final re-
sult is a boomerang distinguisher for 7 rounds of the compression function of
BLAKE-32. The summary of our results is given in Table 1.

Although in this paper we focus on BLAKE-32, our attacks can be easily ex-
tended to the other versions of BLAKE (with similar complexities and number of
attacked rounds). The attacks do not contradict any security claims of BLAKE.

Table 1. Summary of the attacks on the compression function (CF) and the keyed
permutation (KP) of BLAKE-32

Attack CF/KP Rounds CF/KP calls Reference

Free-start collisions CF 2.5 2112 [3]

Near collisionsa CF 4 221 [7]

Near collisions CF 4 256 [1]

Impossible diffs. KP 5 - [1]

Boomerang dist. CF 4 267 Sec. 5

Boomerang dist. CF 5 271.2 Sec. 5

Boomerang dist. CF 6 2102 Sec. 5

Boomerang dist. CF 6.5 2184 Sec. 5

Boomerang dist. CF 7 2232 Sec. 5

Boomerang dist. KP 4 23 Sec. 6

Boomerang dist. KP 5 27.2 Sec. 6

Boomerang dist. KP 6 211.75 Sec. 6

Boomerang dist. KP 7 2122 Sec. 6

Boomerang dist. KP 8 2242 Sec. 6

a The attack assumes that message modification can be used anywhere in the trail.

2 Description of BLAKE32

The compression function of BLAKE-32 processes a state of 16 32-bit words
represented as 4 × 4 matrix. Each word in BLAKE-32 has 32 bits. In the Ini-
tialization procedure, the state is loaded with a chaining value h0, . . . , h7, a salt
s0, . . . , s3, constants c0, . . . , c7, a counter t0, t1 as follows:

This copy belongs to 'VANC03'



220 A. Biryukov, I. Nikolić, and A. Roy

⎛⎜⎜⎝
v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

⎞⎟⎟⎠←−

⎛⎜⎜⎝
h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

⎞⎟⎟⎠
After the Initialization, the compression function takes 16 message words

m0, . . . , m15 as inputs and iterates 10 rounds. Each round is composed of eight
applications of G function. A column step:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15)

followed by the diagonal step:

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14)

where Gi(i ∈ {0, . . . , 7}) depend on their indices, message words m0, . . . , m15,
constants c0, . . . , c15 and round index r. At round r, Gi(a, b, c, d) is described
with following steps:

                      

161616 16

12 12 12 12

8 8 8 8

7 7 7 7

v[15]  v[11]  v[7]     v[3]       c[7]    m[6]               v[14]   v[10]  v[6]    v[2]         c[5]   m[4]              v[13]  v[9]    v[5]    v[1]        c[3]    m[2]               v[12]   v[8]    v[4]    v[0]        c[1]    m[0]

c[6]    m[7]                                                             c[4]   m[5]                                                               c[2]    m[3]                                                               c[0]    m[1]

Fig. 1. Column step of round-0
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1 : a ← a + b + (mσr(2i) ⊕ cσr(2i+1))
2 : d ← (d ⊕ a) ≫ 16
3 : c ← c + d
4 : b ← (b ⊕ c) ≫ 12
5 : a ← a + b + (mσr(2i+1) ⊕ cσr(2i))
6 : d ← (d ⊕ a) ≫ 8
7 : c ← c + d
8 : b ← (b ⊕ c) ≫ 7

where σr belongs to the set of permutations as specified in [2]. The Finalization
procedure in BLAKE-32 is depicted as:

h
′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h
′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h
′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h
′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h
′
4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h
′
5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h
′
6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h
′
7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

where h0, . . . , h7 is the initial chaining value and v0, . . . , v15 is the state value
after the ten rounds, and h′

0, . . . , h
′
7 are the words of the new chaining value.

3 Boomerang Attacks on Block Ciphers and Compression
Functions

The boomerang attack [8] is a differential-type attack that exploits high proba-
bility differential trails in each half of a cipher E. When successful, it outputs a
quartet of plaintexts and corresponding ciphertexts with some fixed particular
differences between some of the pairs. This property can be used to distinguish
the cipher from a random permutation, and in some cases, to recover the key.

Let us decompose the initial cipher E into two ciphers E0, E1, i.e. E = E1◦E0.
Let Δ → Δ∗ be some differential trail for E0 that holds with probability p
and ∇ → ∇∗ be a trail for E1 with probability q. We start with a pair of
plaintexts (P1, P2) = (P1, P1 ⊕ Δ) and produce a pair of corresponding cipher-
texts (C1, C2) = (E(P1), E(P2)). Then we produce a new pair of ciphertext
(C3, C4) = (C1 ⊕∇∗, C2 ⊕∇∗), decrypt this pair, and get the corresponding pair
of plaintexts (P3, P4) = (E−1(C3), E−1(C4)). The difference P3 ⊕ P4 is Δ with
probability at least p2q2: 1)the difference E0(P1)⊕E0(P2) is Δ∗ with probability
p; 2) the differences E−1

1 (C1) ⊕ E−1
1 (C3), E−1

1 (C2) ⊕ E−1
1 (C4) are both ∇ with

probability q2; 3)when 1), 2) hold, then the difference E−1
1 (C3)⊕E−1

1 (C4) is Δ∗

(with probability pq2) and E−1(C3) ⊕ E−1(C4) is Δ with probability p2q2.
We would like to address a couple of issues. First, the boomerang distinguisher

can be used even in the case when it returns a pair (P3, P4) with a difference
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P3 ⊕ P4 specified only in certain bits (instead of the full plaintext). When the
difference is specified in t bits (t < n), then the probability of the boomerang (in
order to be used as a distinguisher) should be higher than 2−t, i.e. p2q2 > 2−t.
Second, the real probability of the boomerang is p̂2q̂2, where p̂, q̂ are so-called
amplified probabilities, defined as:

p̂ =
√∑

Δ∗
P [Δ → Δ∗]2, q̂ =

√∑
∇

P [∇ → ∇∗]2 (1)

Since finding these values is hard, in some cases, we try to get experimental
results for the probability of the boomerang. We run a computer simulation,
start the boomerang with a number of pairs with some prefixed difference Δ, and
count the number of returned pairs that have the same difference Δ. Obviously
the ratio of the returned pairs to the launched pairs is the probability of the
boomerang.

The main obstacle for applying the boomerang attack to compression func-
tions, is that in general, the compression functions are non-invertible. Hence,
after obtaining the pairs (C3, C4) from (C1, C2), one cannot go backwards and
obtain the pair (P3, P4). One way to deal with this is to switch to amplified
boomerang attacks [5]. However, this type of boomerangs usually has lower
probability, and more importantly, since it requires internal collisions, in the
case when the underlying compression functions are double pipes, the attack
complexity becomes higher than in a trivial attack.

Indeed, the standard boomerang attack can be used as a differential distin-
guisher for a compression function F . The idea is to start the attack in the middle
of F and then go forward and backwards to obtain the quartets, thus escaping
the feedforward. Let F (H) be obtained from some invertible function f(H) with
a feedforward, for example Davies-Meyer mode F (H) = f(H) ⊕ H . As in the
attack on block ciphers, first step is to decompose f into two functions f0, f1 and
to find two differential trails for f0 and f1 (further we use the same notation as
in the attacks on block ciphers). We start with four states S1, S2, S3, S4 at the
end of the function f0 (beginning of f1) such that S1 ⊕ S2 = S3 ⊕ S4 = Δ∗ and
S1 ⊕ S3 = S2 ⊕ S4 = ∇. From these states we obtain the initial states (input
chaining values) Pi and the final states (output chaining values without the feed-
forward) Ci, i.e. Pi = f−1

0 (Si), Ci = f1(Si), i = 1, . . . , 4. Then with probability
at least p2q2 we have:

P1 ⊕ P2 = Δ, P3 ⊕ P4 = Δ

C1 ⊕ C3 = ∇∗, C2 ⊕ C4 = ∇∗.

Extending the following attack to the whole compression function F is trivial
– we just have to take into account that Ci = f(Pi) = F (Pi) ⊕ Pi. For the
boomerang quartet (P1, P2, P3, P4) we get:

P1 ⊕ P2 = Δ, P3 ⊕ P4 = Δ (2)
[F (P1) ⊕ P1] ⊕ [F (P3) ⊕ P3] = ∇∗, [F (P2) ⊕ P2] ⊕ [F (P4) ⊕ P4] = ∇∗ (3)

This copy belongs to 'VANC03'



Boomerang Attacks on BLAKE-32 223

For a random n-bit compression function F , the complexity of finding the quartet
(P1, P2, P3, P4) with the above relations (2),(3), is around1 2n . Hence when
p2q2 > 2−n one can launch a boomerang attack and thus obtain a distinguisher
for F . The distinguisher becomes even more powerful if the attacker finds several
boomerang quartets with the same differences Δ,∇∗.

A zero-sum distinguisher, can be obtained based on the boomerangs. If in (3),
we XOR the two equations, we get:

0 =[F (P1) ⊕ P1] ⊕ [F (P3) ⊕ P3] ⊕ ∇∗ ⊕ [F (P2) ⊕ P2] ⊕ [F (P4) ⊕ P4] ⊕ ∇∗ =
=F (P1) ⊕ F (P2) ⊕ F (P3) ⊕ F (P4) ⊕ (P1 ⊕ P2) ⊕ (P3 ⊕ P4) =
=F (P1) ⊕ F (P2) ⊕ F (P3) ⊕ F (P4) ⊕ Δ ⊕ Δ =
=F (P1) ⊕ F (P2) ⊕ F (P3) ⊕ F (P4)

Finding a zero-sum distinguisher for a random permutation requires 2n/4 en-
cryptions. However, since we have the additional conditions on the plaintexts
(the XORs of the pairs are fixed), the complexity rises to 2n/2.

It is important to notice that to produce the quartet (for the boomerang
or the zero-sum boomerang) one has to start not necessarily from the middle
states (S1, S2, S3, S4). For example, one can start from two input chaining values
(P1, P2) = (P1, P1 ⊕ Δ), produce the values (S1, S2) = (f0(P1), f0(P2)), then
obtain the values for the two other middle states (S3, S4) = (S1⊕∇, S2⊕∇), and
finally get the two input chaining values (P3, P4) = (f−1

0 (S3), f−1
0 (S4)) and the

four output chaining values (f1(S1) ⊕ P1, f1(S2)⊕ P2, f1(S3) ⊕ P3, f1(S4) ⊕ P4).
Clearly, the probability of the boomerang stays the same. Starting from the
beginning (or from some other particular state before the feedforward) can be
beneficial in the cases when one wants to use message modification or wants to
have some specific values in one of the four states (as shown further in the case
of BLAKE-32).

4 Round-Reduced Differential Trails in BLAKE-32

In order to obtain good differential trails in BLAKE we exploit the structure
of the message word permutation. In fact we can easily obtain good 2-round
differential trail. The idea is to choose a message word mj such that

– It appears at Step 1(Case1 ) or at Step 5(Case2 ) in Gi(0 ≤ i ≤ 3) at round-r
and

– Also appears at Step 5 in Gi(4 ≤ i ≤ 7) at round-(r + 1).

If we choose the message word with the above mentioned strategy then with a
suitable input difference we may pass 1.5 rounds for free2 (i.e. with probability 1).

1 This holds only when the difference between the messages is fixed as well. Otherwise,
the complexity is only 2n/2.

2 A similar technique was used in the analysis presented in [7,1].
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Observation 1. A 2-round differential trail can be obtained in BLAKE-32 with
probability 2−1.

Proof. Choose two rounds with a message word mj as described previously. In

– Case1, we choose Δmj = Δa = 0x80000000
– Case2, we choose Δmj = Δa = Δd = 0x80000000

in the corresponding G function (see Fig. 2). After 1.5 rounds we get Δvk =
0, ∀k ∈ {0, . . . , 15} with probability 1. In the next half of the second round
because of our choice of message word and suitable difference, we get one active
bit only at step 7 in the corresponding G function (see Fig. 3). Hence we get a
differential trail with probability 2−1.

Remark 1. In Case1 if Δmj and Δa have any active bits other than MSB then
at round-r, probability of the trail is 2−t(where t is the number of active bits
in Δmj(=Δa) at round-r) and at round-(r + 1) the probability is 2−s, where
s = 2t − 1, 2t, 2t + 1(depending on the position of active bits). So in this case
the probability for two rounds will be 1/2s+t. Also if mj appears at Step 1 in
Gi(4 ≤ i ≤ 7) at round-(r + 1) then probability of a 2-round differential trail
decreases further.

Remark 2. In Case1 if Δmj = Δa = Δ, such that Δ has two active bits at ith
and (i+16)th position and mj appears at step 1 in Gi(4 ≤ i ≤ 7) at round-(r+1)
then we have 2-round differential trail with probability 2−8−1(= 2−9) when ith
bit is the MSB and ≥ 2−12−2(= 2−14) otherwise.

In order to construct 3-round trails from these 2-round differential trails we
may simply add one more round at the beginning. The occurrence of the chosen
message word in this one round does not affect much in terms of probability of
the difference propagation.

Observation 2. A 3-round differential trail may be obtained from the above
described two round differential trail with probability 2−s, where s = 6, 7 or 8

Proof. After obtaining 2-round differential trail with probability 2−1(Case1 ), we
add one more round(say, round-(r−1)) at the beginning. The probability of this
one round differential trail may vary depending on the position of the message
word mj . Suppose the message word occurs in Gl (for some index l) at round r.
Then at round r − 1:

– If the message word is in Gi(0 ≤ i ≤ 3) or at step 1 of Gi(4 ≤ i ≤ 7),
probability of this one round trail is 2−6.

– If the message word occurs at step 5 of Gl+4, we get differential trail with
probability 2−5 for this one round.

For all other cases the probability of this one round differential trail is 2−7. Hence
we get a 3-round differential trail with probability 2−7,2−6 and 2−8 respectively.
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Fig. 2. Two possible differential trails for G at the beginning of 2-round trail. The top
trail is Case1, while the bottom is Case2.
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Fig. 3. Two possible differential trails for G at the end of 2-round trail. The top trail
is when the message with the difference appears at Step 1, and the bottom at Step 5.
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Remark 3. This 3-round differential trail can be extended for half more round
in the forward direction. If we add half round at the end of this three rounds
and if the chosen message word does not occur there then we can get 3.5-round
trail with probability ≥ 2−24−8(= 2−32).

For this three round differential trail we have to inject two distinct input differ-
ences at v12 and v13 which correspond to the same counter t0. In order to obtain
a 3-round differential trail with consistent input differences at the states corre-
sponding to the counters t0 and t1 we use a 2-round trail with lower probability.

Observation 3. Let Δa = Δc = Δ such that Δ has only ith and (i +16)th bits
active. For a G function if there is no difference in the message words then the
differential trail (Δ, 0, Δ, 0) → (Δ, 0, 0, 0) occurs with probability 2−3 if ith bit is
the MSB and with probability 2−6 otherwise.

Observation 4. A 3-round differential trail with input difference consistent
with counters(t0, t1) may be obtained with probability 2−21 or at least 2−36.

Proof. Starting with Δmj = Δa = Δ = 0x80008000 we obtain a 2-round dif-
ferential trail with probability 2−9(as described in Remark 2 ). Then we add
one more round at the beginning. The position of the message word mj in this
one round determines which three rounds we should consider in order to obtain
the 3-round trail. Such three rounds may be found if we start with round-4.
Now in this one round(added at the beginning) we have two G functions with
differences as described in Observation 3 and one G function with difference
(Δ1, Δ2, Δ, 0) → (0, 0, Δ, 0)(with the message difference at step 5 in it). So
probability for this one round is 2−6−6 = 2−12. Hence we get a 3-round trail
with probability 2−21. If Δ has two active bits (e.g. 0x00080008) then proba-
bility of this one round at the beginning may be at least 2−12−10 = 2−22 and
probability of the 2-round trail is at least 2−14. Hence we get 3-round differential
trail with probability at least 2−36.

The choice of message word for the 3-round differential trail specified in Obser-
vation 4 is available if we start with round-4 and the input differences for the
states corresponding to the counters are Δv12 = Δv13 = Δv14 = Δv15 = 0.
A similar 2-round and 3-round differential trails exist for BLAKE-64.

5 Boomerang Attacks on the Compression Function of
BLAKE-32

The high probability round-reduced differential trails in the permutation of
BLAKE-32 can be used to attack the compression function and find boomerang
distinguishers. However, due to the Initialization procedure, there are a few re-
quirements on the trails. First, since the block index is copied twice, the initial
differences in v12 and v13, as well as the differences in v14 and v15, have to be
the same. Second, even in the case when the attacker has a trail with initial
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differences consistent to the above requirement, if he uses message modification
techniques in the higher rounds of the trail, he might end up with inconsistent
initial states. For example, if the attacker uses some k-round trail and starts fix-
ing the values of the state and the messages at round k, and then goes backward,
he can obtain two states with some predefined difference (as the one predicted
by the trail). However, the probability that these two states are consistent with
the Initialization procedure is 2−64 (if v12⊕v13 = c4⊕c5 and v14⊕v15 = c6⊕c7).
Note that if one of the states is consistent, then the other one is consistent as well
(if the attacker used trails with appropriate initial difference). Therefore, using
message modification techniques in later steps of the trail is not trivial (without
increasing the complexity of the attack). On the other hand, the modification
can still be used at the beginning because the attacker starts with two states
consistent with the Initialization procedure.

For the boomerang attack on 4 rounds of the compression function of BLAKE-
32 we can use two trails each on 2 rounds (see Table 2). Since the probability
of these trails is only 2−1, the probability of the boomerang is 2−4. To create a
quartet of states, consistent with the Initialization procedure, we start with a
pair of states (P1, P2) that have a difference Δ (note that Δ does not have
a difference in the ”block index” words) and consistent with the Initialization
words v12, v13, v14, v15 in both of the states, then go two rounds forward and
obtain the pair (S1, S2). Then we produce the pair (S3, S4) = (S1 ⊕ ∇, S2 ⊕ ∇)
and go backwards two rounds to get the pair of initial states (P3, P4). The
probability that P3 (and therefore P4) is consistent with the Initialization is 2−64.
Also, from S1, S2, S3, S4 we go forward two rounds, produce the outputs and
apply the Finalization to get the new chaining values. Note that Finalization is
linear, hence the differential trail (with XOR difference) holds with probability 1.
Therefore, we can produce the boomerang quartet with a complexity of 4·24+64 =
270 calls to the 4-round reduced compression function of BLAKE-32.

The boomerang attack on 5 rounds is rather similar. We only need one of the
trails to be on 3 rounds, instead of 2 (see Table 3). Such a trail has a probability of
2−7, and we use two round trail with 2−3, hence the boomerang has a probability
of 2−2·3−2·7 = 2−20 and the whole attack (taking into account the Initialization)
has a complexity of around 4 · 220+64 = 286 compression function calls.

For the boomerang attack on 6 rounds we will use two 3-round trails (see
Table 4). However, we cannot use the optimal trails (the ones that hold with
around 2−7) because the starting difference in each such trail is inconsistent with
the Initialization procedure. Therefore, for the top trail of the boomerang we
will use a trail which has lower probability 2−34 but has no differences in any
of the ”block index” words (v12, v13, v14, v15). For the bottom trail we can use
an optimal trail. The complexity of this boomerang distinguisher on 6 rounds
becomes 4 · 22·34+2·7+64 = 2148 calls.

Note, for the top trails for 5 and 6 round boomerangs (see Table 3,4), we did
not use the best trails with probability 2−1, 2−21, but instead used trails with
lower probability (2−3, 2−34). We found that if we use the best trails, then the
boomerang does not work, most likely because of the slow diffusion. We cannot
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get four states in the middle (after the third round), that have pairwise Δ∗ and
∇ difference (Δ∗ is the end difference of the top trail). However, if we take other
trails, as the ones we have taken, the boomerang quartet can be obtained – we
confirmed this experimentally, by producing a boomerang quartet.

Each of the above attacks can be improved if we take into account the am-
plified probabilities for the boomerang attack and if we use message modifi-
cation. We can obtain the amplified probabilities (and the total probabilities)
of the boomerang experimentally: we start with a number of plaintext pairs
with the required difference Δ, and then check how many of the returned (by
the boomerang) differences are Δ. Also, in the first round, for one side of the
boomerang we use message modification, i.e. we pass this round with probability
1. Using these two approaches, we got the following results: the boomerang on 4
rounds has a probability 2−1, on 5 rounds 2−5.2, and on 6 rounds 2−36. Hence,
the attack complexity for 4 rounds drops to 4 · 21+64 = 267, for 5 rounds to
4 · 25.2+64 = 271.2, and for 6 rounds to 4 · 236+64 = 2102 compression function
calls. An example of boomerang quartet for 6 rounds, with the first pair of plain-
text consistent to the Initialization, while only the difference in the second is
consistent, and therefore obtained with around 4 ·236 compression function calls,
is given in Table 9. The complexities of the boomerang distinguishers for 4,5,
and 6 round are bellow 2128, therefore they can be used as zero-sum boomerang
distinguishers, i.e. P1⊕P2 = P3⊕P4 = Δ and F (P1)⊕F (P2)⊕F (P3)⊕F (P4) = 0.

For the boomerang on 6.5 rounds, we use a top trail on 3 rounds (from 0.5
to 3.5) with 2−40, and a bottom trail on 3.5 rounds (from 3.5 to 7), with
2−48 (see Table 5). The complexity of producing the boomerang quartet is
4 · 22·40+2·48+64 = 2242 compression function calls. The probability of the first
round in the top trail is 2−3, hence using message modification does not lower
significantly the attack complexity. However, computing the amplified probabil-
ities can improve the attack. Obviously, we cannot do this experimentally, as
the probability of the boomerang is too low – 2−2·40−2·48 = 2−176. Therefore,
we cannot test for the whole 6.5 rounds, but we can do it for a reduced number
of rounds. We tested for only half round at the end of the first trail (round 3 to
round 3.5). We start with a pair of states with a difference specified by the top
trail at round 3 and go half round forward to obtain a new pair of states. Then,
to each element of the pair, we XOR the same difference (the one specified by
the bottom trail at round 3.5), and produce a new pair states. Finally, we go
backwards a half round, and check if the difference in the pair is at the one we
have started with. Note that the half round can be split into four G functions,
and for each of them the amplified probabilities can be found independently.
By doing so, we found that the amplified probability for this half round of the
boomerang is 2−26 instead of twice 2−33, i.e. 2−2·33 = 2−66. Another low proba-
bility part of the boomerang is the top half round of the second trail – round 3.5
to round 4 holds with 2−41. In this part we can use message modification. We
start at round 3.5 with four states that have pairwise differences Δ∗ and ∇. We
go half round forward and obtain four states with pairwise differences as speci-
fied by the bottom trail at round 4. To obtain such states we need 4 ·22·41 = 284.
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Once we have this half round boomerang, we can freely change the message
words that are not taken as inputs in this half round without altering the input
and the output values of the half round. Hence, we have 28·32 = 2256 degrees of
freedom. From the middle states we can obtain the initial and final states (and
the chaining values). Therefore, the total complexity of the boomerang on 6.5
rounds becomes 284 + 4 · 22·(3+1+3)+26+2·(6+1)+128 = 2184 calls. Note that unlike
as in the case of the boomerangs on 4 and 5 rounds, now the probability that
the initial states are consistent to the Initializationis 2−128 because we use mes-
sage modification in the middle rather than in the beginning. The bottom trail
can easily be extended for additional half round (see Table 5) with probability
2−24. Therefore, the boomerang on 7 rounds requires around 2184+2·24 = 2232

compression function calls.

6 Boomerang Attacks on the Keyed Permutation of
BLAKE-32

Further we present boomerang attacks on the keyed permutation of BLAKE-32,
assuming that the key is unknown to the attacker. These attacks can be seen
as distinguishers for the internal cipher of BLAKE-32. The cipher takes 512-bit
plaintexts and 512-bit key, and after 10 rounds, outputs 512-bit ciphertext (we
discard the Initializationand Finalization procedures).

Switching from the boomerangs for the compression function to the boomerangs
for the keyed permutation has advantages and disadvantages for the attacker. On
one hand, the attacker is not concern any more about the Initialization proce-
dure, and he can use any trails for the boomerang. On the other hand, since the
key is unknown, he cannot use message modification techniques to improve the
probability of the boomerang.

The boomerangs on 4 and 5 rounds of the keyed permutation of BLAKE-
32 have the same probability as in the case of compression function: 2−4 for 4
rounds, and 2−20 for 5 rounds. For 6 rounds, we can use two high probability
trails (2−7, 2−7, see Table 6), and therefore, the probability of the boomerang is
2−28. If we take into account the amplified probabilities, and fix the returning
difference only in 128 bits (the words v1, v5, v9, v13) instead of in 512 bits, for the
total complexity of the boomerang attack we get 23 encryptions for 4 rounds,
27.2 for 5 rounds, and 211.75 for 6 rounds. These results were confirmed on a PC
and a boomerang quartet for 6 rounds is presented in Table 8.

The boomerangs for 7 and 8 rounds, are rather similar: for 7 rounds we use
two trails on 3.5 rounds (the first from round 2 to round 5.5, and the second from
round 5.5 to round 9), and for 8 rounds, we just extend these trails for additional
half round (see Table 7). The complexity of the boomerangs is 4·22·31+2·52 = 2168

for 7 rounds and 4 · 22·73+2·82 = 2312 for 8 rounds. Again, as in the case of 6.5-
round boomerang on the compression function, we can compute experimentally
the lower bounds on the amplified probabilities, by testing only the probability
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of the first half round of the bottom trail. We get 2−48 instead of 2−2·44. Also,
we can fix the returning difference only in 256 bits, instead of 512 bits, and thus
increase the probability in the first half round of the top trail by a factor of 2−6

for 7 rounds, and 2−30 for 8 rounds. Hence, the boomerang on 7 rounds requires
at most 2122, and on 8 rounds at most 2242 encryptions.

7 Conclusions

In this paper we have shown how to apply the concept of boomerang distinguisher
to compression functions, and presented such distinguishers for the compression
function of BLAKE-32, as well as classical boomerang distinguishers for the
keyed permutation of BLAKE-32. Our attacks work on up to 2/3 of the total
number of rounds of the compression function, and on up to 4/5 (the attacks
on up to 3/5 have practical complexity) of the total number of rounds of the
keyed permutation of BLAKE-32. The attacks can be equally well applied to the
other versions of BLAKE. Our attacks do not contradict the security claims of
BLAKE.

Interestingly, tweaking the message permutation in BLAKE can reduce the
number of attacked rounds only by one. Therefore, either tweaks in the function
G or more advanced message expansion is required in order to significantly reduce
the number of attacked rounds.
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A Differential Trails for the Boomerangs

Table 2. Differential trails used in the Boomerang Attack on 4 rounds of BLAKE-32.
On the left is the top trail, while on the right is the bottom trail of the boomerang.
ΔM is the message difference, while ΔVi are the differences in the state. In the left
trail (top trail), ΔV0 is the starting difference of the trail, i.e. ΔV0 = Δ, and ΔV2 is the
ending difference, i.e. ΔV2 = Δ∗. In the right trail (bottom trail), ΔV2 is the starting
difference of the trail, i.e. ΔV2 = ∇, and ΔV4 is the ending difference, i.e. ΔV4 = ∇∗.
The numbers 0,1,2, and 2,3,4, indicate the rounds covered by the boomerang – the top
trail starts at round 0 and ends after round 1, while the bottom trail starts at round
2 and ends after round 3.

Δm Δm
00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R. ΔVi R. ΔVi

0 00000000 80000000 00000000 00000000 2 80000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 00000000 00000000 00000000

1 1
1 00000000 00000000 00000000 00000000 3 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−1 2−1

2 00000000 80000000 00000000 00000000 4 00000000 00000000 00000000 80000000
00000000 00000000 00010000 00000000 00010000 00000000 00000000 00000000
00000000 00000000 00000000 00800000 00000000 00800000 00000000 00000000
00800000 00000000 00000000 00000000 00000000 00000000 00800000 00000000
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Table 3. Differential trails used in the Boomerang Attack on 5 rounds of BLAKE-32

Δm Δm
00000000 00000000 40000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 80000000 00000000 00000000

R. ΔVi R. ΔVi

0 00000000 40000000 00000000 00000000 2 00000800 80008000 80000000 80000000
00000000 00000000 00000000 00000000 80000800 80008000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 80808080 80000000 00000000
00000000 00000000 00000000 00000000 80000000 00800080 80008000 80000000

2−1 2−6

1 00000000 00000000 00000000 00000000 3 00000000 00000000 80000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−2 1
2 00000000 40000000 00000000 00000000 4 00000000 00000000 00000000 00000000

00000000 00000000 00008000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00400000 00000000 00000000 00000000 00000000
00400000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−1

5 00000000 00000000 00000000 80000000
00010000 00000000 00000000 00000000
00000000 00800000 00000000 00000000
00000000 00000000 00800000 00000000

Table 4. Differential trails used in the Boomerang Attack on 6 rounds of CF of
BLAKE-32

Δm Δm
00080008 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

R. ΔVi R. ΔVi

4 80088008 00000000 00080008 00000000 7 80008000 00000000 00000000 00000800
80088008 00000000 00000000 00000000 80008000 00000000 00000000 80000800
00080008 00000000 00080008 00000000 80808080 80000000 00000000 80000000
00000000 00000000 00000000 00000000 00800080 00008000 00000000 80000000

2−21 2−6

5 00000000 00000000 00080008 00000000 8 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−2 1
6 00000000 00000000 00000000 00000000 9 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−11 2−1

7 00880088 00000000 00000000 00000000 00000000 80000000 00000000 00000000
00000000 11011101 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00000000 80088008 00000000 00000000 00000000 00000000 00800000
00000000 00000000 00000000 80008000 00800000 00000000 00000000 00000000
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Table 5. Differential trails used in the Boomerang Attack on 6.5 and 7 rounds of CF
of BLAKE-32

Δm Δm
00000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000
80008000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R. ΔVi R. ΔVi

0.5 00000000 80008000 00000000 00000000 3.5 00800880 c8088848 80440044 00008000
00000000 00000000 00000000 00000000 80000000 80800880 488c0888 80040804
00000000 00000000 00000000 80008000 00000800 00008080 80808080 00000000
00000000 00000000 00000000 00000000 80048040 08408840 00800000 80000000

2−3 2−41

1 00000000 80008000 00000000 00000000 4 80000000 00000000 80000800 80008000
00000000 00000000 00000000 00000000 00000000 00000000 80000800 80008000
00000000 00000000 00000000 00000000 80000000 00000000 80000000 80808080
00000000 00000000 00000000 00000000 80008000 00000000 80000000 00800080

2−1 2−6

2 00000000 00000000 00000000 00000000 5 80000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−3 1
3 00000000 00000000 00000000 80008000 6 00000000 00000000 00000000 00000000

00010001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00800080 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00800080 00000000 00000000 00000000 00000000 00000000

2−33 2−1

3.5 00010001 08000800 08000800 80088008 7 00000000 00000000 80000000 00000000
02000200 10111011 11111111 11101110 00000000 00000000 00000000 00010000
00010001 00880088 80888088 88008800 00800000 00000000 00000000 00000000
00000000 00080008 80088008 08000800 00000000 00800000 00000000 00000000

2−24

7.5 00000800 08000000 80000008 00110010
10010010 01101001 10110101 22222022
00800008 80080080 08808080 11001101
00000008 80080000 08800080 11001100
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Table 6. Differential trails used in the Boomerang Attack on 6 rounds of KP of
BLAKE-32

Δm Δm
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R. ΔVi R. ΔVi

0 80008000 80000000 80000000 00000800 3 80008000 00000000 00000000 00000800
80008000 00000000 00000000 80000800 80008000 00000000 00000000 80000800
80808080 80000000 00000000 80000000 80808080 00000000 00000000 80000000
00800080 80008000 00000000 80000000 00800080 00000000 00000000 80000000

2−6 2−6

1 00000000 80000000 00000000 00000000 4 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

1 1
2 00000000 00000000 00000000 00000000 5 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−1 2−1

3 00000000 00000000 00000000 80000000 6 00000000 80000000 00000000 00000000
00010000 00000000 00000000 00000000 00000000 00000000 00001000 00000000
00000000 00800000 00000000 00000000 00000000 00000000 00000000 00800000
00000000 00000000 00800000 00000000 00800000 00000000 00000000 00000000
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Table 7. Differential trails used in the Boomerang Attack on 7 and 8 rounds of KP of
BLAKE-32

Δm Δm
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 80000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 80000000 00000000 00000000 00000000 00000000 00000000 00000000

R. ΔVi R. ΔVi

1.5 80440044 00008000 80800880 48088848 5.5 80808000 80888080 c80c8008 80440044
488c0888 00040804 80000000 80800880 80040804 80800000 80888000 c8880088
80808080 80000000 00000880 00008080 80000000 00000800 00808080 80000080
00800000 80000000 00040040 88c00840 00800000 00048000 08408840 80800000

2−42 2−44

2 00000800 80008000 80000000 80000000 6 00008000 80000000 00000000 80000800
80000800 80008000 00000000 00000000 80008000 00000000 00000000 00000800
80000000 80808080 80000000 00000000 00808080 80000000 00000000 00000080
80000000 00800080 80008000 80000000 80808080 80008000 00000000 80800000

2−6 2−7

3 00000000 00000000 80000000 00000000 7 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

1 1
4 00000000 00000000 00000000 00000000 8 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2−1 2−1

5 00000000 00000000 00000000 80000000 9 00000000 80000000 00000000 00000000
00010000 00000000 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00800000 00000000 00000000 00000000 00000000 00000000 00800000
00000000 00000000 00800000 00000000 00800000 00000000 00000000 00000000

2−24 2−30

5.5 00110010 00000800 08000000 80000008 9.5 08000000 80000008 80110018 00000800
22222022 10010010 01101001 10110101 01101001 10110101 32332123 10010010
11001101 00800008 80080080 08808080 80080080 08808080 19809181 00800008
11001100 00000008 80080000 08800080 80080000 08800080 19801180 00000008
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B Examples of Boomerang quartets

Table 8. Example of a boomerang quartet for 6 round-reduced keyed permutation of
BLAKE-32

P1 7d8a1f02 206849ad 42413a50 d702fa14 facc9c67 11306e7c eba852eb 4f31f62f
993e3958 bc426fcc 55033261 b2ac26a9 6dfc2edd 32163c44 ef989577 2d6d6bb4

P2 fd8a9f02 a06849ad c2413a50 d702f214 7acc1c67 11306e7c eba852eb cf31fe2f
19beb9d8 3c426fcc 55033261 32ac26a9 6d7c2e5d b216bc44 ef989577 ad6d6bb4

P3 de971194 ae012c6a 4422f8ea fff2d41b 80a79b50 b1d61b36 fe8c23fe a883faf9
e1dab487 e4971af1 51dbf40b 6e32fb27 7c797796 19b156e9 16e0ac52 a12eefcb

P4 5e979194 2e012c6a c422f8ea fff2dc1b 00a71b50 b1d61b36 fe8c23fe 2883f2f9
615a3407 64971af1 51dbf40b ee32fb27 7cf97716 99b1d6e9 16e0ac52 212eefcb

P1 ⊕ P2 80008000 80000000 80000000 00000800 80008000 00000000 00000000 80000800
80808080 80000000 00000000 80000000 00800080 80008000 00000000 80000000

P3 ⊕ P4 80008000 80000000 80000000 00000800 80008000 00000000 00000000 80000800
80808080 80000000 00000000 80000000 00800080 80008000 00000000 80000000

M1 a0a28e67 1fd77849 83d86d19 4a72bc82 3704f04d bb57c994 37612239 0f7ad68a
df14386d 4e2e05c7 55d1a87f 187d8225 fcc527c5 96071c3e 4ae251d8 52de23f2

M2 a0a28e67 1fd77849 83d86d19 4a72bc82 b704f04d bb57c994 37612239 0f7ad68a
df14386d 4e2e05c7 55d1a87f 187d8225 fcc527c5 96071c3e 4ae251d8 52de23f2

M3 a0a28e67 1fd77849 83d86d19 4a72bc82 3704f04d 3b57c994 37612239 0f7ad68a
df14386d 4e2e05c7 55d1a87f 187d8225 fcc527c5 96071c3e 4ae251d8 52de23f2

M4 a0a28e67 1fd77849 83d86d19 4a72bc82 b704f04d 3b57c994 37612239 0f7ad68a
df14386d 4e2e05c7 55d1a87f 187d8225 fcc527c5 96071c3e 4ae251d8 52de23f2

M1 ⊕ M2 00000000 00000000 00000000 00000000 80000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M1 ⊕ M3 00000000 00000000 00000000 00000000 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M2 ⊕ M4 00000000 00000000 00000000 00000000 00000000 80000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

C1 928c1f77 3aa097f2 4d5589bb f307e618 c8ea4ebc c63769df 64e2b7ba f2c76b2b
c909808a 672bcdf3 260608d6 7de7ba36 749c4e7d aef2defd b7d3318a 5080389e

C2 9948791c 21c19a0f 8804efac d56588e4 c6f6b101 32456224 20c423d5 df0105fe
33ee8883 23bde21d bedb2451 2c673c2f bf7d194d cfc78321 5ec259f9 a9c8786b

C3 928c1f77 baa097f2 4d5589bb f307e618 c8ea4ebc c63769df 64e3b7ba f2c76b2b
c909808a 672bcdf3 260608d6 7d67ba36 741c4e7d aef2defd b7d3318a 5080389e

C4 9948791c a1c19a0f 8804efac d56588e4 c6f6b101 32456224 20c523d5 df0105fe
33ee8883 23bde21d bedb2451 2ce73c2f bffd194d cfc78321 5ec259f9 a9c8786b

C1 ⊕ C3 00000000 80000000 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00000000 00000000 00800000 00800000 00000000 00000000 00000000

C2 ⊕ C4 00000000 80000000 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00000000 00000000 00800000 00800000 00000000 00000000 00000000
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Table 9. Example of a boomerang quartet for 6 round-reduced compression function
of BLAKE-32. Note that the initial states P1, P2 are consistent with the Initialization.

P1 30841585 41abc330 447466d0 17ae8472 b94fc56d e9cb678a 1d9d6e9e eb558123
66d322c2 23cbae19 52e9bb2a dd6b8f2b ea1cd197 678ad865 6594bdd4 81f42bc5

P2 b08c958d 41abc330 447c66d8 17ae8472 39474565 e9cb678a 1d9d6e9e eb558123
66db22ca 23cbae19 52e1bb22 dd6b8f2b ea1cd197 678ad865 6594bdd4 81f42bc5

P3 f3383666 710fc071 1990f347 34475dd7 7d41ddc9 68e231ed ea9bba79 a4990860
d7ede8b5 f1c0b054 1c754989 a0e95ceb 3d259f5f 878bffae f511b0fd def26a26

P4 7330b66e 710fc071 1998f34f 34475dd7 fd495dc1 68e231ed ea9bba79 a4990860
d7e5e8bd f1c0b054 1c7d4981 a0e95ceb 3d259f5f 878bffae f511b0fd def26a26

P1 ⊕ P2 80088008 00000000 00080008 00000000 80088008 00000000 00000000 00000000
00080008 00000000 00080008 00000000 00000000 00000000 00000000 00000000

P3 ⊕ P4 80088008 00000000 00080008 00000000 80088008 00000000 00000000 00000000
00080008 00000000 00080008 00000000 00000000 00000000 00000000 00000000

M1 7670ae70 c6539713 373c66b6 3d4522c3 b66689d0 37ee4f5d 467de620 9aabd357
b6b3b13c c6d41a4c cb994b4c b79e16fa 8a9d8079 9914ccb1 9c68b051 86d41e1e

M2 7678ae78 c6539713 373c66b6 3d4522c3 b66689d0 37ee4f5d 467de620 9aabd357
b6b3b13c c6d41a4c cb994b4c b79e16fa 8a9d8079 9914ccb1 9c68b051 86d41e1e

M3 7670ae70 c6539713 373c66b6 3d4522c3 b66689d0 37ee4f5d 467de620 9aabd357
b6b3b13c c6d41a4c cb994b4c b79e16fa 8a9d8079 9914ccb1 1c68b051 86d41e1e

M4 7678ae78 c6539713 373c66b6 3d4522c3 b66689d0 37ee4f5d 467de620 9aabd357
b6b3b13c c6d41a4c cb994b4c b79e16fa 8a9d8079 9914ccb1 1c68b051 86d41e1e

M1 ⊕ M2 00080008 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M1 ⊕ M3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

M2 ⊕ M4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

C1 3f432ef6 5f89fb80 7283d8cf 13731945 344d16f8 2203b3b5 74b3637e 52ed9169
efcea8db 32b84ffc 57cfa772 2258156c 22696ef4 53cb7ac6 3ab6294a ce58038c

C2 f284e034 f866e60d 1e52775f f6f764cb ef09e2e8 da83b2d1 a4a869d1 f22eefb0
821c38c2 6da245e0 7b52665c 0f8ce3ba 7ed4c20c ef76217d 77835c6d 184a17e3

C3 3f432ef6 df89fb80 7283d8cf 13731945 344d16f8 2203b3b5 74b2637e 52ed9169
efcea8db 32b84ffc 57cfa772 22d8156c 22e96ef4 53cb7ac6 3ab6294a ce58038c

C4 f284e034 7866e60d 1e52775f f6f764cb ef09e2e8 da83b2d1 a4a969d1 f22eefb0
821c38c2 6da245e0 7b52665c 0f0ce3ba 7e54c20c ef76217d 77835c6d 184a17e3

C1 ⊕ C3 00000000 80000000 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00000000 00000000 00800000 00800000 00000000 00000000 00000000

C2 ⊕ C4 00000000 80000000 00000000 00000000 00000000 00000000 00010000 00000000
00000000 00000000 00000000 00800000 00800000 00000000 00000000 00000000
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Abstract. Blue Midnight Wish (BMW) is one of the fastest SHA-3 can-
didates in the second round of the competition. In this paper we study
the compression function of BMW and we obtain practical partial col-
lisions in the case of BMW-256: we show a pair of inputs so that 300
pre-specified bits of the outputs collide (out of 512 bits). Our attack re-
quires about 232 evaluations of the compression function. The attack can
also be considered as a near-collision attack: we give an input pair with
only 122 active bits in the output, while generic algorithm would require
255 operations for the same result. A similar attack can be developed
for BMW-512, which will gives message pairs with around 600 colliding
bits for a cost of 264. This analysis does not affect the security of the
iterated hash function, but it shows that the compression function is far
from ideal.

We also describe some tools for the analysis of systems of additions
and rotations, which are used in our attack, and which can be useful for
the analysis of other systems.

1 Introduction

Blue Midnight Wish (BMW) is a candidate in the SHA-3 hash function com-
petition [7] which made it to the second round of the competition, but was not
selected as a finalist. It is one of the fastest second round candidates in software,
and belongs to the ARX family, using only additions, rotations, and xors.

BMW is built by iterating a compression function, similarly to the ubiquitous
Merkle-Damgård paradigm [5, 9]. More precisely, BMW uses a chaining value
twice as large as the output of the hash function (this is known as wide-pipe, or
Chop-MD), and uses a final transformation similar to the HMAC construction.
There are several security proofs for this mode of operation and similar modes [2–
4], which essentially show that if the compression function behaves like a random
function, then the hash function will behave like a random function (up to some
level determined by the width of the chaining variable).

In this paper we explain how to find partial-collisions in the BMW-256 com-
pression function. The same technique could be used to find partial-collisions in
� Supported by a grant from the Villum Kann Rasmussen Foundation.

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 238–251, 2011.
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Practical Near-Collisions on the Compression Function of BMW 239

the BMW-512 compression function, but the complexity would be too high to
carry out the attack in a reasonable amount of time, and so we have not im-
plemented this attack. The attacks are not affected by the value of the security
parameter of BMW.

1.1 Compression Function Attacks

A natural step in the analysis of iterated hash functions is to study the compres-
sion function. Most attacks on the compression function do not lead to attacks
on the iterated hash function, but they can invalidate the assumptions of the
security proofs. This does not weaken the hash function in itself, but it can un-
dermine the confidence in the design, because the security of the hash function
is no longer a consequence of a simple assumption (namely the security of the
compression function).

Recently, new results have shown that some attacks on the compression func-
tion can be integrated inside the security proof of the mode of operation [2].
This shows that the security of the hash function does not need a truly perfect
compression function: some classes of weaknesses of the compression function
cannot be used to attack the iterated hash function. As a general rule, it seems
that most attacks that require control over the chaining value can be covered
by this kind of proofs. However, those attacks usually reveal some unwanted
properties of the function, and might be extended to attacks on the full hash
function using more advanced techniques.

To put such attacks into perspective, one might look at the attacks on MD5.
The first attack on the compression function was found in 1993 by den Boer and
Bosselaers [6], using a very simple differential path. This attack did not threaten
the iterated hash function, but the path used in the attack is a core element of
the successful attack of Wang et al. in 2005 [12].

1.2 Description of BMW

BMW comes in four variants BMW-n, with n ∈ {224, 256, 384, 512}, returning
output size n. There are two variants of the BMW compression functions; The
BMW-256 compression function is used in both BMW-224 and BMW-256, and
the BMW-512 compression function is used in both BMW-384 and BMW-512.

The compression function of BMW-256 takes two inputs, H and M , of 16
32-bit words each. The general structure of the compression function is shown in
Figure 1. It consists of three functions named f0, f1, f2. The function f0 applies
an invertible linear transformation P to H ⊕ M and adds H wordwise modulo
232. We denote by ‘�’ modular addition, by ‘�’ modular subtraction, and by ‘⊕’
the exclusive or. The output of f0 is a 16-word vector Q. P consists of a matrix
multiplication over Z232 , followed by linear functions si mod 5 (see Appendix A)
applied to each word Wi individually and by a wordwise rotation by 1 position
(Wi+1 ← Wi).

The function f1 is a feedback shift register. To begin with, the vector Q
contains 16 elements; in each one of 16 rounds of f1, one more element is added
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f0

f2

M

H

P Qa

f1

Qb

AddElement

H

Fig. 1. Compression function of BMW

to Q. This element is computed from the previous 16 elements of Q, and from
a value called AddElement(i) (where i is the round number + 16), which is the
following function of three words of M and one word of H :

AddElement(i) =

(M≪1+(i mod 16)
i � M

≪1+(i+3 mod 16)
i+3 � M

≪1+(i+10 mod 16)
i+10 � Ki) ⊕ Hi+7

(all indices are to be taken modulo 16, and Ki is a round constant). We note
that if there is a collision in the output of f0 and also in the first, say, j instances
of AddElement(i), then there is a collision in the first 16 + j elements of Q. We
denote by Qa the output of f0, and by Qb the 16 elements computed in f1.

The function f2 performs some final mixing of the elements in Q with M , and
produces the 16-word output of the compression function.

Further details on the compression function of BMW can be found in [7].

1.3 Previous Results

During the first round of the SHA-3 competition, the best attacks on BMW have
been pseudo-attacks due to Thomsen [11]. However, BMW was quite heavily
tweaked at the end of the first round, and those attacks do not apply to the
current version of BMW. In this paper we only consider the second-round version
of BMW.

For the current version of BMW, the best results are differential properties of
the compression function, due to Aumasson and Guo and Thomsen [1, 8]. These
papers essentially show that for some particular differences in the input of the
compression function, a few output bits will be biased.
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1.4 Our Results

In this paper we describe a partial-collision attack on the compression function
of BMW. Our attack is based on differential techniques, and we try to control the
propagation of differences inside the compression function. The general idea is to
control the differences in M , in Qa, and in the first instances of AddElement. This
means that we also control the difference in the first elements of Qb, and since
the final function f2 only has limited diffusion, we will control the differences in
several output words. We managed to cancel all the differences in Q0, . . . Q26,
and to get small differences in Q27, Q28, Q29. This gives a pair of inputs such
that 300 pre-specified output bits collide, for a cost similar to 232 evaluations of
the compression function, using negligible memory. We note that for a random
function, it is expected to take 2150 evaluations before finding such a pair of
inputs. Moreover, we expect a difference in only half of the uncontrolled bits,
and this gives a near-collision attack better than generic algorithms.

Before describing our new attack, we present some useful tools for the analysis
of ARX systems in Section 2. In Section 3, we show how to obtain collisions in
f0 without any message difference, which leads to collisions in Qa, the first half
of the Q register. We then show how to find such collisions with some words of
H inactive, which leads to a collision in Q0 to Q22. In Section 4, we extend this
result by introducing some differences in the message, and we use the message
differences to cancel the chaining value differences in the AddElement function
up to Q26. Finally in Section 5 we use near collisions in AddElement instead of
full collisions, and we can control the differences up to Q29.

2 Solving a System of Additions and Xor

An important step in our attack requires to solve a system of equations involving
only xors and modular additions. In particular, we will often have to solve x⊕Δ =
x � δ, where x is a variable, and Δ and δ are given parameters representing
respectively the xor-difference and the modular-difference in x. It is well-known
that those systems are T-functions, and can be solved from the least significant
bit to the most significant bit. However, the naive approach to solve such a system
uses backtracking, and can lead to an exponential complexity in the worst case.1
A more efficient strategy is to use an approach based on automata: any system
of such equations can be represented by an automaton, and solving a particular
instance take time proportional to the word length. This kind of approach has
been used to study differential properties of S-functions in [10]. Here we use this
technique to decide whether a system is solvable, and to compute a solution
efficiently.

We consider a system of additions and xors, which involves v variables and
p parameters. Our goal is twofold: first determine for which values of the pa-
rameters the system is compatible, and second, when the system is compatible,
determine the set of solutions.
1 e.g., to solve the system x⊕ 0x80000000 = x, the backtracking algorithm will try all

possible values for the 31 lower bits of x before concluding that there is no solution.
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The first step in applying this technique is to build an automaton correspond-
ing to the system of equations. The states of this automaton correspond to the
possible values of the carry bits: a system with s modular additions gives an
automaton with 2s states. The alphabet is {0, 1}v+p, and each transition reads
one bit from each parameter and each variable, starting from the least significant
bit. Figure 2 shows an example of such automaton.

0start 1

1,1,1

0,0,0
0,0,1
1,1,0

1,0,0

1,0,1
0,1,0
0,1,1

Fig. 2. Carry transitions for x ⊕ Δ = x � δ. The edges are indexed by Δ, δ, x

Then we remove the variables from the edges, and this gives a non-determinis-
tic automaton which can decide whether a system is solvable or not. We can then
build an equivalent deterministic automaton using the powerset construction, as
shown in Figure 3.

{0}start {0, 1} {1}

∅

1,1

0,0

1,0
0,1

0,0

1,0
1,1

0,1

1,0

0,1

0,0
1,1

∗

Fig. 3. Decision automaton for x ⊕ Δ = x � δ. The edges are indexed by Δ, δ

This automaton reveals a lot of information about the system of equation.
For instance, one can see that if the state {0, 1} is reached, then setting Δi = 1
assures that the system will have a solution.

In the case of the simple system x ⊕ Δ = x � δ, we can find an extremely
efficient way to check the satisfiability of the system for given parameters, and
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to find the actual solutions. By looking at Figure 3, we see that the state {0}
can only be reached as the initial state or after reading 0, 0, and that the state
{1} can only be reached after reading 0, 1. Moreover, reading 0, 0 can only lead
to state {0} or ∅ and reading 0, 1 can only lead to state {1} or ∅. This allows a
very simple description of the parameters that lead to an inconsistent system,
i.e., that reach state ∅:
– Δ0 �= δ0, or
– one of the following patterns is seen: (0, 0), (1, 0); (0, 0), (0, 1); (0, 1), (0, 0);

(0, 1), (1, 1).

The second condition can be expressed as:

∃i : Δi = 0 and δi ⊕ Δi+1 ⊕ δi+1 = 1

Since those conditions are local they can be tested in parallel using bitwise oper-
ations. The following C expression evaluates to one if the system is incompatible,
and to zero if it is compatible:

((D^d)&1) || ((((D^d)>>1)^d) & (~D)) << 1

Note that the rotation to the left is just used to ignore the MSB of the second
expression.

Given a compatible pair (Δ, δ), we can use the automaton in Figure 2 to
compute a solution x to the equation x⊕Δ = x� δ. First we can remark that if
we are in state 0, the next inputs have to satisfy δi = Δi, while if we are in state
1, the next inputs have to satisfy δi �= Δi. We can now express the possibles
values for x depending on δ and Δ, by looking at the possible transitions in the
automata:⎧⎪⎪⎪⎨⎪⎪⎪⎩

if (Δi, δi) = (0, 0) then xi is arbitrary: xi ∈ {0, 1}
if (Δi, δi) = (0, 1) then xi is arbitrary: xi ∈ {0, 1}
if (Δi, δi) = (1, 0) then xi is given by the next state: xi = δi+1 ⊕ Δi+1

if (Δi, δi) = (1, 1) then xi is given by the next state: xi = δi+1 ⊕ Δi+1

This can be expressed by the following C expression, where r is a random
value:

(D^d)>>1 ^ (r&(~D|0x8000000))

3 Using Collisions in f0

The first step of our attack is to build collisions in f0 without any message
difference. In the following we denote x = H ⊕ M and y = P (H ⊕ M). We have
f0(H, M) = y � H (see Figure 4).
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M

H

P Qa
x y

Fig. 4. BMW f0 function

We propose the following algorithm to find such collisions:

1. Pick a random x, x′.
2. Compute y = P (x), y′ = P (x′).
3. We have H ⊕ H ′ = x ⊕ x′ and H � H ′ = y′ � y. We can solve this and find

H using the tools of Section 2.
4. Compute M from x and H : M = x ⊕ H .

On average, for a random x, x′, we expect one solution. However, there is
a high probability that there will be no solution for a given x, x′, because the
xor-difference and the mod-difference for H will not be compatible. (Experi-
ments suggests there is a probability around 2−13.9 for random differences to be
compatible).

To find collisions in practice, we use the degrees of freedom in x to set an
xor-difference that has a better probability than a random difference. The best
choice is x′ = ¬x, which works with probability 2−1 for each word. However, due
to the structure of P , this leads to incompatible systems (the differences in y are
constrained by the difference in x). Therefore we use differences of high weight,
but we leave some low order bits inactive. This allows to find a compatible system
after a few choices of x, x′.

3.1 Collisions in f0 with Some Words of H Inactive

The next step is to find collisions where some of the words of H are inactive.
This will lead to some instances of AddElement being inactive, and some words
of Qb being inactive.

To achieve this, we need an x, x′ with some inactive words, but we also require
that the same words are inactive in y, y′. Since the inter-word mixing of P is
achieved by a linear transformation over Z232 , we can easily find a suitable mod-
difference in x. Then we can build the pair x, x′ by extending the carries, so that
the xor-difference in x is of high Hamming weight.

We use the following algorithm:

1. Pick a random mod-difference in the kernel of the linear transformation P .
2. Build x, x′ by extending the carries as much as possible.
3. Compute y, y′.
4. Solve for H .

We can have up to 7 inactive words in H . We use H7 . . . H13 because they
are used in the first 7 AddElement rounds. This gives a collision in Q0 . . . Q22.
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Once we have a solution, we can modify the values of H7 . . .H13 to generate new
solutions by adjusting M7 . . . M13 (we have to keep the value of x). This can be
used to get a small difference in Q23 as well.

Each choice of x, x′ gives a new value for the xor-difference and the mod-
difference in H , and we use the tools of Section 2 to check very efficiently whether
those values are compatible. The cost of finding a compatible system is negligible
before the cost of 232 that we require in order to put a small difference in Q23.
This gives some restrictions on the output of the compression function because
the f2 function has 16 outputs and only 9 active inputs, but we do not have any
colliding outputs yet.

4 Using Partial-Collisions in f0

In order to improve this result, and to have stronger properties on the output,
we have to make more values of Qb collide. To achieve this, we now put some
differences in M , so that differences in M and H can cancel each other in the
AddElement function.

More precisely, our best path allows to find collisions in Q0 . . .Q26 using:

– differences in M13, M14, M15;
– differences in H1 . . . H6, H10, H11 and H12.

The first step of the attack is to choose a pair x, x′ such that x0,7,8,9 are
inactive, and y0,7,8,9,13,14,15 are inactive. Moreover, we fix three more differences:
δ�x13 = 218, δ�y1 = 0x04010c43, and δ�x1 = 1. This is used in order to have
δ⊕x13 = 218, δ⊕y1 = 1 (note that s0(0x04010c43) = 1), and δ⊕x1 = 1. This
gives 14 constraints so we have a solution space of dimension 2.

After fixing the modular difference in x and y, we choose the values of x, x′ by
extending the carries as much as possible, in order to have a dense xor-difference
in M14, M15 and H2 . . . H6, H10, H11 and H12. On the other hand, we keep the
difference in M13 and H1 sparse so as to have δ⊕x13 = 218 and δ⊕y1 = 1.

When we find a pair x, x′ with compatible differences for H , this fixes the
values of:

– all active H ’s: H1 . . . H6, H10, H11, H12.
– all M ’s whose corresponding H is active: M1 . . . M6, M10, M11, M12.

The remaining degrees of freedom are:

– H0, H7, H8, H9 and M0, M7, M8, M9, but the values of Hi ⊕ Mi = xi are
fixed (4 degrees of freedom).

– H13, H14, H15; M13, M14, M15; and M ′
13, M ′

14, M ′
15, but the values of Hi ⊕

Mi = xi and Mi ⊕ M ′
i = xi ⊕ x′

i are fixed (3 degrees of freedom).

In order to achieve a collision in Q0 . . . Q26, we need to cancel differences in
AddElement 19, 20, 21 and 26.

AddElement(19) (M≪4
3 � M≪7

6 � M≪14
13 � K19) ⊕ H10

We use the freedom of M13 to extend carries in (M≪4
3 � M≪7

6 � M≪14
13 ).
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AddElement(20) (M≪5
4 � M≪8

7 � M≪15
14 � K20) ⊕ H11

We use the freedom of M14 and M7 to extend carries in (M≪5
4 � M≪8

7 �
M≪15

14 ).
AddElement(21) (M≪6

5 � M≪9
8 � M≪16

15 � K21) ⊕ H12

We use the freedom of M15 and M8 to extend carries in (M≪6
5 � M≪9

8 �
M≪16

15 ).
AddElement(26) (M≪11

10 � M≪14
13 � M≪5

4 � K26) ⊕ H1

We don’t have degrees of freedom available to make this collide, but the
differences have been selected so that it happens with high probability: the
differences in M≪14

13 and H1 are only in the least significant bit.

Finally, when we have one solution which collides in Q0 . . . Q26, we use the
freedom in M0 and M9 to generate many solutions, until we have a collision in
XH =

⊕31
i=16 Qi. This gives a collision in the first three output words for a cost

of 232 (see Appendix B for details of the f2 function). Here is an example of an
input pair showing this property is given in Table 1

Table 1. Partial-collision example with 96 controlled bits

Chaining Value
6ae0a10c 4f14abca 57e66e71 6075a601 6ae0a10c 4f14abcb a819918f 9f8a59fe
bba141a1 46fb0506 e001fffd e89b2ebf 445ebe5f 8934faf9 9ffe0002 e89b2ebf
cb1e82d3 ae2d53d6 cb55b67f e6b080a1 cb1e82d3 ae2d53d6 34aa4980 194f7f5e
8b8c0a70 98d0080b adaacc99 88f0cf2d 7473f58f 98d0080b adaacc99 88f0cf2d

Message
4f5381d3 f96e7f0a 72879df2 e8150fa2 4f5381d3 f96e7f0a 72879df2 e8150fa2
476caf9f fbacf685 d1c47cb8 73a7bf61 476caf9f fbacf685 d1c47cb8 73a7bf61
445261cf a4c0f69f a2316fdd 12dbc43a 445261cf a4c0f69f a2316fdd 12dbc43a
e5197bf4 af952392 c2966021 46cab397 e5197bf4 af992392 3d699fde 39354c6b

Output
fe57177e d1e1157d ccf82758 6aecc4d0 fe57177e d1e1157d ccf82758 80b0c87d
cf3d27ab 590788dc eafe31d9 0e95fe74 0f1b49b9 e0b92229 cf1c1fb4 1fd1f3ab
5b069cc1 b1039e9e a5049da0 c38e8490 174ab741 7768d4bc 947374c1 74ddf4f9
cb6f569c 96fff629 ee5d89a4 71e405a4 8b4d7466 d075a056 0f8d8b0c d987e0cb

5 Using Near Collisions in AddElement

In order to extend the attack with more colliding bits in the output of the
compression function, we use near-collisions in the next instances of AddElement.
Since we do not have enough remaining degrees of freedom with a given pair x, x′,
we use freedom in the choice of the x, x′ pair in order to go further.

In a practical implementation of the attack, one computes some words of
H as a solution to the equation x ⊕ Δ = x � δ as described in the previous
sections. As an example, in order to find H5 and H ′

5 such that H ′
5 ⊕ H5 = δ⊕x5

and H ′
5 � H5 = δ�y5, one may compute H5 as (δ⊕x5 ⊕ δ�y5)	1 (assuming

This copy belongs to 'VANC03'



Practical Near-Collisions on the Compression Function of BMW 247

Table 2. Partial-collision example with 300 controlled bits

Chaining Value
59dfd94b 30b036e3 44ad8a65 47461712 59dfd94b 30b036e2 bb52759b b8b9e8ed
6f56e9b4 425e2d65 40000003 94e62f58 90a9164c bda1d29a bffffffc 94e62f58
12c4bf76 17b18302 4f74ffd3 3ec30f93 12c4bf76 17b18302 b08b002c c13cf06c
8b0f9f9b 7071a4a5 28becf17 6954724f 74f06064 7071a4a5 28becf17 6954724f

Message
bd050fb4 c6925351 991aa15f 60327d4b bd050fb4 c6925351 991aa15f 60327d4b
0212e457 9feb065e d6ab8dac 7b52f8ca 0212e457 9feb065e d6ab8dac 7b52f8ca
2f8a9774 1f189302 2043dc85 7b0eac19 2f8a9774 1f189302 2043dc85 7b0eac19
08fe0408 01c2f910 19abe45b 00000000 08fe0408 01c6f910 e6541ba4 ffffffe0

Output
70588aa3 62e38880 4b32cd23 7da56fd2 70588aa3 62e38880 4b32cd23 7da56fd1
54827a61 d78e6b5f 17cce172 0ae88e5a 54827a62 d78e6b5e f6942bb0 35a96499
232a8830 7f31780e f0865b01 28cb4150 232a8a30 7f31740e 2ad851f7 362f33fb
39ba3bd2 277e9d52 316a7411 c8dbc618 39ba3bd3 27829d53 d239cc6e 29aa1db7

that the pair (δ⊕x5, δ
�y5) is compatible). The value y5 is computed as s4(x1 �

x2 � x9 � x11 � x14). Thus, the freedom in the inactive word x9 can be used to
somewhat control H5 without affecting other conditions. Since M5 is computed
as H5 ⊕x5, this leads to some freedom in AddElement(27) = (M≪12

11 �M≪15
14 �

M≪6
5 � K27) ⊕ H2, and one may use this freedom to search for a collision

in AddElement(27). However, the differences on H2 and M≪15
14 turn out to be

incompatible, so one can only hope for a near-collision in AddElement(27). Still,
this will lead to a near-collision in Q27, which will lead to a near-collision in
output word 3 of the compression function.

In a similar manner, one can use the freedom in x0 (through H12 and thereby
M12) to find a full collision in AddElement(28), which (due to the small difference
in Q27) will lead to a near-collision in Q28. Since Q28 is the only active word
affecting output words 4, 8, and 12 of the compression function, all these three
words will contain a near-collision.

Finally, we can use the freedom of M0 to extend carries in AddElement(29).
However, we cannot reach a full collision because the differences in M≪14

13 and
H4 are incompatible.

To summarize, we use the following techniques to extend our attack:

AddElement(27) (M≪12
11 � M≪15

14 � M≪6
5 � K27) ⊕ H2

We use the freedom in x9 (through H15 and thereby M5) to find a near-
collision.

AddElement(28) (M≪13
12 � M≪16

15 � M≪7
6 � K28) ⊕ H3

We use the freedom in x0 (through H12 and thereby M12) to find a full
collision.

AddElement(29) (M≪14
13 � M≪1

0 � M≪8
7 � K29) ⊕ H4

We use the freedom of M0 to extend carries and find a near-collision.
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We stress that these (near-)collisions can be found before searching for a
collision in XH , and therefore, since the complexity is still below 232, the full
cost of the attack is still around 232. Due to carries, however, it cannot be said
beforehand how many bits will collide, unless one introduces a few additional
bit conditions that will slightly increase the complexity. The search of a collision
in XH is done using the freedom in M9.

Table 2 gives an example of an input pair with an output colliding in 300
pre-specified bits (the search for a (near-)collision in Q0, . . . , Q28 required the
equivalent of about 229.5 compression function evaluations). This example can
be also be considered as a near-collision with 122 active bits.

6 Conclusion

In this paper we describe a technique to build partial-collisions in the compres-
sion function of BMW. We managed to build pairs of input which lead to a
collision in 300 pre-specified bits, with complexity 232. Although it does not
weaken the security of the iterated hash function, it is a strong distinguisher
of the compression function. We also note that if the compression function is
truncated like in the final transformation of BMW, we can still build pairs of
message which collide in more than 110 bits with complexity 232. This is the
first distinguisher on the truncated compression function of BMW.

A similar attack can be mounted on BMW-512 with complexity 264. It will
give pairs of input of the compression function with about 600 colliding bits,
including about 220 bits in the second part of the output.

We believe that the techniques developed for this attacks can be useful for
further analysis of BMW, and other ARX based SHA-3 candidates.
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A Details on the Permutation P Used in f0

The matrix multiplication taking place in f0 can be described as follows. Let
x = H ⊕ M . Let C denote the matrix. If z = C · x, where x is considered a
16-element vector over Z232 , then

z0 = x5 � x7 � x10 � x13 � x14

z1 = x6 � x8 � x11 � x14 � x15

z2 = x0 � x7 � x9 � x12 � x15

z3 = x0 � x1 � x8 � x10 � x13

z4 = x1 � x2 � x9 � x11 � x14

z5 = x3 � x2 � x10 � x12 � x15

z6 = x4 � x0 � x3 � x11 � x13

z7 = x1 � x4 � x5 � x12 � x14

z8 = x2 � x5 � x6 � x13 � x15
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z9 = x0 � x3 � x6 � x7 � x14

z10 = x8 � x1 � x4 � x7 � x15

z11 = x8 � x0 � x2 � x5 � x9

z12 = x1 � x3 � x6 � x9 � x10

z13 = x2 � x4 � x7 � x10 � x11

z14 = x3 � x5 � x8 � x11 � x12

z15 = x12 � x4 � x6 � x9 � x13

The subfunctions si, 0 ≤ i ≤ 4, used in f0 are defined as follows.

s0(x) = x	1 ⊕ x
3 ⊕ x≪4 ⊕ x≪19

s1(x) = x	1 ⊕ x
2 ⊕ x≪8 ⊕ x≪23

s2(x) = x	2 ⊕ x
1 ⊕ x≪12 ⊕ x≪25

s3(x) = x	2 ⊕ x
2 ⊕ x≪15 ⊕ x≪29

s4(x) = x	1 ⊕ x

B Description of the f2 Function

The f2 function performs the following computations:

XL =
23⊕

i=16

Qi XH =
31⊕

i=16

Qi

HH0 = (XH	5 ⊕ Q	5
16 ⊕ M0) � (XL ⊕ Q24 ⊕ Q0)

HH1 = (XH
7 ⊕ Q
8
17 ⊕ M1) � (XL ⊕ Q25 ⊕ Q1)

HH2 = (XH	5 ⊕ Q
5
18 ⊕ M2) � (XL ⊕ Q26 ⊕ Q2)

HH3 = (XH	1 ⊕ Q
5
19 ⊕ M3) � (XL ⊕ Q27 ⊕ Q3)

HH4 = (XH	3 ⊕ Q20 ⊕ M4) � (XL ⊕ Q28 ⊕ Q4)
HH5 = (XH
6 ⊕ Q	6

21 ⊕ M5) � (XL ⊕ Q29 ⊕ Q5)
HH6 = (XH	4 ⊕ Q
6

22 ⊕ M6) � (XL ⊕ Q30 ⊕ Q6)
HH7 = (XH	11 ⊕ Q
2

22 ⊕ M7) � (XL ⊕ Q31 ⊕ Q7)
HH8 = HH≪9

4 � (XH ⊕ Q24 ⊕ M8) � (XL
8 ⊕ Q23 ⊕ Q8)
HH9 = HH≪10

5 � (XH ⊕ Q25 ⊕ M9) � (XL	6 ⊕ Q16 ⊕ Q9)
HH10 = HH≪11

6 � (XH ⊕ Q26 ⊕ M10) � (XL
6 ⊕ Q17 ⊕ Q10)
HH11 = HH≪12

7 � (XH ⊕ Q27 ⊕ M11) � (XL
4 ⊕ Q18 ⊕ Q11)
HH12 = HH≪13

0 � (XH ⊕ Q28 ⊕ M12) � (XL	3 ⊕ Q19 ⊕ Q12)
HH13 = HH≪14

1 � (XH ⊕ Q29 ⊕ M13) � (XL	4 ⊕ Q20 ⊕ Q13)
HH14 = HH≪15

2 � (XH ⊕ Q30 ⊕ M14) � (XL	7 ⊕ Q21 ⊕ Q14)
HH15 = HH≪16

3 � (XH ⊕ Q31 ⊕ M15) � (XL	2 ⊕ Q22 ⊕ Q15)
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In the attack of Section 4, we have differences in M13, M14, M15, and
Q27, . . .Q31, with no difference in XL and XH . In the first part of f2, this results
in differences in HH3, . . . HH7. In the second part, outputs HH8, . . .HH15 are
active.

In the attack of Section 5, we have dense differences in M14, M15, Q30, Q31,
and small differences in M13, Q27, Q28 and Q29, with no difference in XL and
XH . In the first part of f2, this results in small differences in HH3, HH4, HH5,
and dense differences in HH6 and HH7. In the second part, there are dense
differences in HH10, HH11, HH14, HH15, and small differences in HH8, HH9,
HH12 and HH13.
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Abstract. In this paper, we identify higher-order differential and zero-
sum properties in the full Keccak-f permutation, in the Luffa v1 hash
function and in components of the Luffa v2 algorithm. These structural
properties rely on a new bound on the degree of iterated permutations
with a nonlinear layer composed of parallel applications of a number of
balanced Sboxes. These techniques yield zero-sum partitions of size 21575

for the full Keccak-f permutation and several observations on the Luffa
hash family. We first show that Luffa v1 applied to one-block messages
is a function of 255 variables with degree at most 251. This observation
leads to the construction of a higher-order differential distinguisher for
the full Luffa v1 hash function, similar to the one presented by Watanabe
et al. on a reduced version. We show that similar techniques can be used
to find all-zero higher-order differentials in the Luffa v2 compression
function, but the additional blank round destroys this property in the
hash function.

Keywords: Hash functions, degree, higher-order differentials, zero-sums,
SHA-3.

1 Introduction

The algebraic degrees of some hash function proposals and of their building
blocks have been studied for analyzing their security. In particular, the fact that
some inner primitive in a hash function has a relatively low degree can often be
used to construct higher-order differential distinguishers, or zero-sum structures.
This direction has been investigated in [1,13,3] for three SHA-3 candidates, Luffa,
Hamsi and Keccak. Here, we show how to deduce a new bound for the degree
of iterated permutations for a special category of SP-networks. This category
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includes functions that have for non-linear layer, a number of smaller balanced
Sboxes. This class of functions is though quite general: it includes functions
with a large number of small Sboxes (e.g. Sboxes operating on 3 or 4 bits), but
it also includes any nonlinear permutation which can be decomposed as several
independent Sboxes, even of large size. Our new bound shows in particular that,
when it is iterated, the degree of the function grows in a much smoother way
than expected when it approaches the number of variables.

For instance, this new bound enables us to find zero-sum partitions for the
full inner permutations of the hash functions Keccak [2] and for the Luffa v1
hash function [5]. Furthermore, by applying a technique similar to that used in
[13], and by combining it with the results given by the new bound, we show
that the degree of the Luffa v2 compression function [6] is slightly lower than
expected. This also enables us to find distinguishers for the Qj permutations and
for the compression function of Luffa v2. These results do not seem to affect the
security of Luffa v2, but are another confirmation of the fact that the internal
components of Luffa do not behave as ideal random functions.

The rest of the paper is organized as follows. In Section 2, a new bound on the
degree of iterated permutations is presented when the nonlinear layer consists
of several parallel applications of smaller balanced Sboxes. Section 3 recalls how
a low algebraic degree can be exploited for mounting higher-order differential
distinguishers and zero-sum distinguishers. An application to the full Keccak-
f permutation is presented in Section 4, while applications to the Luffa hash
family are described in Section 5.

2 A New Bound on the Degree of Some Iterated
Permutations

In the whole paper, the addition in Fn
2 , i.e. the bitwise exclusive-or will be

denoted by +, while ⊕ will be used for denoting the direct sum of subspaces of
Fn

2 .
A Boolean function f of n variables is a function from Fn

2 into F2. It can
be expressed as a polynomial, called algebraic normal form. The degree of f ,
denoted by deg(f), is the degree of its algebraic normal form. Moreover, the
degree of a vectorial function F from Fn

2 into Fm
2 is defined as the highest degree

of its coordinates. The Hamming weight of a Boolean function, f , is denoted by
wt(f). It corresponds to the number of x such that f(x) = 1. Any function F
from Fn

2 into Fm
2 is said to be balanced if each element in Fm

2 has exactly 2n−m

preimages under F .
In this paper, we are interested in estimating the degree of a composed func-

tion G ◦ F . Obviously, we can bound the degree of the composition G ◦ F by
deg(G ◦ F ) ≤ deg(G)deg(F ). Though, this trivial bound is often very little rep-
resentative of the true degree of the permutation, in particular if we are trying
to estimate the degree after a high number of rounds. A first improvement of
the trivial bound was provided by Canteaut and Videau [7] when the values
occurring in the Walsh spectrum of F are divisible by a high power of 2, i.e. if
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the values wt(ϕb ◦ F + ϕa) for all a ∈ Fn
2 and b ∈ Fm

2 are divisible by a high
power of 2, where ϕa denotes the linear function x �→ a · x.

Theorem 1. [7] Let F be a function from Fn
2 into Fn

2 such that all values

wt(ϕb ◦ F + ϕa), a, b ∈ Fn
2 , b �= 0

are divisible by 2�, for some integer �. Then, for any G : Fn
2 → Fn

2 , we have

deg(G ◦ F ) ≤ n − 1 − � + deg(G).

In particular, this result applies to the functions composed of a nonlinear layer
followed by a linear permutation, where the nonlinear layer is defined by the
concatenation of m smaller balanced Sboxes S1, . . . , Sm, defined over F

n0
2 , n0 ≥

2. Indeed, since all elements wt(ϕb ◦Si +ϕa) for all smaller functions S1, . . . , Sm

are divisible by 2, then we deduce that, for the whole permutation, wt(ϕb◦F+ϕa)
is divisible by 22m−1. We will show here how this bound can be further improved
in this particular case. The result mainly comes from the following observation.

Proposition 1. Let F be a balanced function from Fn
2 into Fm

2 , and let k be
an integer with 1 ≤ k ≤ m. Then, all products of k coordinates of F have the
Hamming weight 2n−k.

In particular, if k < n, the product of any k coordinates of F has degree at
most (n − 1).

Proof. Let (f1, . . . , fm) denote the coordinates of F . Let I be any subset of
{1, . . . , m} of size k, and let FI be the function from Fn

2 into Fk
2 whose coordinates

are the fi, i ∈ I. Since FI is balanced, the multiset {FI(x), x ∈ Fn
2} consists of all

elements in Fk
2 , each one with multiplicity 2n−k. Therefore, there exist exactly

2n−k values of x such that FI(x) is the all-one vector, or equivalently such that∏
i∈I fi = 1. �

From the last part of Proposition 1, we deduce the following theorem.

Theorem 2. Let F be a function from Fn
2 into Fn

2 corresponding to the concate-
nation of m smaller Sboxes, S1, . . . , Sm, defined over F

n0
2 . Let δk be the maximal

degree of the product of any k coordinates of anyone of these smaller Sboxes.
Then, for any function G from Fn

2 into F�
2, we have

deg(G ◦ F ) ≤ n − n − deg(G)
γ

, (1)

where
γ = max

1≤i≤n0−1

n0 − i

n0 − δi
.

Most notably, if all Sboxes are balanced, we have

deg(G ◦ F ) ≤ n − n − deg(G)
n0 − 1

.
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Moreover, if n0 ≥ 3 and all Sboxes are balanced functions of degree at most
n0 − 2, we have

deg(G ◦ F ) ≤ n − n − deg(G)
n0 − 2

,

Proof. Let us denote by π the product of d output coordinates of F . Some of
the coordinates involved in π may belong to the same Sbox. Then, for any i,
1 ≤ i ≤ n0, we denote by xi the integer corresponding to the number of Sboxes
for which exactly i coordinates are involved in π. Obviously, we have

deg(π) ≤ max
(x1,...,xn0)

n0∑
i=1

δixi

where the maximum is taken over all vectors (x1, . . . , xn0) satisfying

n0∑
i=1

ixi = d and
n0∑
i=1

xi ≤ m .

Then, we have

γ deg(π) − d ≤ γ

n0∑
i=1

δixi −
n0∑
i=1

ixi

≤ (γ − 1)n0xn0 +
n0−1∑
i=1

(γδi − i)xi

≤ (γ − 1)n0

n0∑
i=1

xi −
n0−1∑
i=1

((γ − 1)n0 − γδi + i)xi

≤ (γ − 1)n −
n0−1∑
i=1

((γ − 1)n0 − γδi + i)xi ≤ (γ − 1)n ,

where the last inequality comes from the fact that all coefficients in the sum are
positive. Actually, we have

(γ − 1)n0 − γδi + i = γ(n0 − δi) − (n0 − i) ≥ 0

by definition of γ. Thus, since γ deg(π) − d ≤ (γ − 1)n, we deduce that

γ (n − deg(π)) ≥ n − d .

Now, we first show that, if all Sboxes are balanced, then γ ≤ n0 − 1. Indeed, for
any 1 ≤ i ≤ n0 − 1, we have

n0 − i

n0 − δi
≤ n0 − 1

1
,
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since we know from Proposition 1 that the degree of the product of (n0 − 1)
coordinates of a balanced n0×n0 Sbox cannot be equal to n0, and thus δi ≤ n0−1.
Also, we can prove that, if the degrees of all Sboxes satisfy deg S < n0 − 1, then
γ ≤ n0 − 2. Indeed, for i = 1, we have

n0 − i

n0 − δi
=

n0 − 1
n0 − δ1

≤ n0 − 1
2

≤ n0 − 2

since n0 ≥ 3. Similarly, for any i, 2 ≤ i < n0, we have δi ≤ n0 − 1, implying that

n0 − i

n0 − δi
≤ n0 − i ≤ n0 − 2 . �

It is worth noticing that Bound (1) and the trivial bound are in some sense
symetric. Indeed, we have

deg(G ◦ F )
deg G

≤ max
1≤i<n0

δi

i
and

n − deg(G ◦ F )
n − deg G

≥
(

max
1≤i<n0

n0 − i

n0 − δi

)−1

.

In other words, when representing deg(G ◦ F ) as a function of deg G, the trivial
bound states that the degree of G ◦ F is upper-bounded by a line through the
origin with coefficient deg F . When representing the “degree deficiency” (n −
deg(G ◦F )) as a function of (n − deg G), (1) states that the degree deficiency of
G ◦ F is lower-bounded by a line through the origin with coefficient γ−1. This
can be observed on Figure 1 where the parameters correspond to the inverse of
the Keccak permutation.
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0 200 400 600 800 1000 1200 1400 1600

deg(G ◦ F )

deg G

trivial bound
bound from [8]

new bound

Fig. 1. Evolution of the degree of G ◦F where F is a 1600-variable function composed
of 320 cubic permutations over F5

2 corresponding to the inverse of Keccak χ function
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3 Distinguishing Properties Related to the Algebraic
Degree

3.1 Higher-Order Derivatives

The algebraic degree of a permutation F provides some particular distinguishers,
which correspond to the values of any derivative of F with respect to a subspace
of Fn

2 with dimension (deg(F )+1). This result comes from the following property
of higher-order derivatives of a function.

Definition 1. [12] Let F be a function from Fn
2 into Fm

2 . For any a ∈ Fn
2 the

derivative of F with respect to a is the function DaF (x) = F (x+ a)+F (x). For
any k-dimensional subspace V of Fn

2 and for any basis of V , {a1, . . . , ak}, the
k-th order derivative of F with respect to V is the function defined by

DV F (x) = Da1Da2 . . .Dak
F (x) =

∑
v∈V

F (x + v), ∀x ∈ Fn
2 .

It is well-known that the degree of any first-order derivative of a function is
strictly less than the degree of the function. This simple remark, which is ex-
ploited in higher-order differential attacks [10], implies that for every subspace
V of dimension (deg F + 1),

DV F (x) =
∑
v∈V

F (x + v) = 0, for every x ∈ Fn
2 .

3.2 Zero-Sum Structures

The existence of zero-sum structures is a distinguishing property which has been
recently investigated by Aumasson and Meier [1], Knudsen and Rijmen [11] and
by Boura and Canteaut [3].

Definition 2. Let F be a function from Fn
2 into Fm

2 . A zero-sum for F of size
K is a subset {x1, . . . , xK} ⊂ Fn

2 of elements which sum to zero and for which
the corresponding images by F also sum to zero, i.e.,

K∑
i=1

xi =
K∑

i=1

F (xi) = 0 .

It has been shown in [3] that any function from Fn
2 into Fm

2 has zero-sums of
size less than or equal to 5. However, when F is a permutation over Fn

2 , a much
stronger property, named zero-sum partition, can be investigated.

Definition 3. Let P be a permutation from Fn
2 into Fn

2 . A zero-sum parti-
tion for P of size K = 2k is a collection of 2n−k disjoint zero-sums Xi =
{xi,1, . . . , xi,2k} ⊂ Fn

2 i.e.,

2n−k⋃
i=1

Xi = Fn
2 and

2k∑
j=1

xi,j =
2k∑

j=1

P (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .
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Here, we focus on the search for zero-sum partitions coming from structural
properties of the permutation P , when P is an iterated permutation of the form

P = Rr ◦ . . . ◦ R1,

where all Ri are simpler permutations over Fn
2 , named the round permutations.

The fact that the permutation used in a hash function does not depend on
any secret parameter allows to exploit the previous property starting from the
middle, i.e., from an intermediate internal state. This property was used by
Aumasson and Meier [1] and also by Knudsen and Rijmen in the case of a
known-key property of a block cipher [11]. The only information needed for
finding such zero-sums on the iterated permutation using this first approach is
an upper bound on the algebraic degrees of both the round transformation and
its inverse.

More precisely, we consider P = Rr ◦ . . . ◦ R1, and we choose some integer t,
1 ≤ t ≤ r. We define the following functions involved in the decomposition of P :
Fr−t consists of the last (r−t) round transformations, i.e., Fr−t = Rr ◦ . . .◦Rt+1

and Gt consists of the inverse of the first t round transformations, i.e., Gt =
R−1

1 ◦ . . . ◦ R−1
t . Then, as detailed in [1] and in [3], we can find many zero-sum

partitions for P of size 2d+1 where d = max(deg(Fr−t), deg(Gt)).
Besides the degree of the round transformation, it has been shown in [3] that

some properties of the linear layer in the round transformation may also be
exploited for constructing zero-sum partitions, in particular when the nonlinear
layer of the round transformation consists of parallel applications of smaller
functions defined over F

n0
2 . In the following, we denote by Bi, 0 ≤ i < m, the

n0-dimensional subspaces corresponding to the inputs of these smaller Sboxes,
i.e.,

Bi = 〈en0i, . . . , en0i+n0−1〉
where e0, . . . , en−1 denotes the canonical basis of Fn

2 and where the positions of
the n bits in the internal state are numbered such that the n0-bit Sboxes apply
on n0 consecutive input variables. Then, it was shown in [3] that it is possible
to extend a number of zero-sum partitions that have been found for t rounds, to
t + 1 rounds, without increasing the complexity.

Proposition 2. [3] Let d1 and d2 be such that deg(Fr−t−1) ≤ d1 and deg(Gt) ≤
d2. Let us decompose the round transformation after t rounds into Rt+1 = A2◦χ◦
A1 where both A1 and A2 have degree 1 and χ corresponds to the concatenation
of m smaller permutations defined over Fn0

2 . Let I be any subset of {0, . . . , m−1}
of size

⌈
(d + 1)/n0

⌉
, let

V =
⊕
i∈I

Bi

and W be its complement. Then, the sets

Xa = {(Gt ◦ A−1
1 )(a + z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2k, with k = n0

⌈
d+1
n0

⌉
, for the r-round

permutation P .

This copy belongs to 'VANC03'



Higher-Order Differential Properties of Keccak and Luffa 259

It is worth noticing that the zero-sum partitions deduced from this proposition
correspond to a structural property which can be described by means of some
close formula. This implies for instance that they can be used for proving that
some given permutations do not satisfy the expected property, and this may only
require the evaluation of the permutation on a few sets Xi. In this sense, they
differ from the zero-sum partitions found by a generic algorithm since all generic
algorithms known so far require the evaluation of the permutation at almost all
points (see [3] for a discussion on generic algorithms for finding zero-sums and
zero-sum partitions).

4 Application to the Keccak-f Permutation

4.1 The Keccak-f Permutation

Keccak [2] is one of the fourteen hash functions selected for the second round
of the SHA-3 competition. Its mode of operation is the sponge construction.
The inner primitive in Keccak is a permutation, composed of several iterations
of very similar round transformations. Within the Keccak-family, the SHA-3
candidate operates on a 1600-bit state, which is represented by a 3-dimensional
binary matrix of size 5 × 5 × 64. Then, the state can be seen as 64 parallel
slices, each one containing 5 rows and 5 columns. The permutation in Keccak

is denoted by Keccak-f [b], where b is the size of the state. So, for the SHA-3
candidate, b = 1600.

The number of rounds in Keccak-f [1600] was 18 in the original submission,
and it has been updated to 24 for the second round. Every round R consists of
a sequence of 5 permutations modifying the state:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

The functions θ, ρ, π, ι are transformations of degree 1 providing diffusion in all
directions of the 3-dimensional state. Then, keeping the same notation as in the
previous section, we have A1 = π ◦ ρ ◦ θ, which is linear and A2 = ι, which
corresponds to the addition of a constant value. Therefore, the linear part of
A = A1 ◦ A2 corresponds to L = π ◦ ρ ◦ θ. The nonlinear layer, χ, is a quadratic
permutation which is applied to each row of the 1600-bit state. In other words,
320 parallel applications of χ0 are implemented in order to provide confusion.
The inverse permutation, denoted by χ−1, is a permutation of degree 3.

4.2 Zero-Sum Partitions for the Full Keccak-f Permutation

We apply here Theorem 2 to the Keccak-f round permutation, which is denoted
by R. For any F ,

deg(F ◦ R) = deg(F ◦ χ) ≤ n − n − deg(F )
3
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and

deg(F ◦ R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n − n − deg(F )
3

by using that the inverse of χ has degree 3. By combining this bound with the
trivial bound, we get the bound presented in Table 1 on the degree of several
iterations of the round permutation of Keccak-f and of its inverse. With this

Table 1. Upper bounds on the degree of several rounds of Keccak-f and of its inverse
(the results in bold are obtained with the new bound, while the other ones correspond
to the trivial bound)

forward backward

# rounds bound on deg(Rr) # rounds bound on deg(R−r) bound on deg(R−r)
using [8]

1 2 1 3 3
2 4 2 9 9
3 8 3 27 27
4 16 4 81 81
5 32 5 243 243
6 64 6 729 729
7 128 7 1309 1164
8 256 8 1503 1382
9 512 9 1567 1491

10 1024 10 1589 1545
11 1408 11 1596 1572
12 1536 12 1598 1586
13 1578 13 1599 1593
14 1592 14 1599 1596
15 1597 15 1599 1598
16 1599 16 1599 1599

new bound, we can use the technique presented in Proposition 2 for finding
zero-sum partitions for the full Keccak-f permutation. Namely, we consider
the intermediate states after the linear layer L = π ◦ ρ ◦ θ in the 11-th round.
Let us choose any subspace V in F1600

2 corresponding to a collection of 318 rows
(out of the 320), implying dim V = 1590. Then, the sets

Xa = {(G10 ◦ L−1)(a + z), z ∈ V }, a ∈ F1600
2 ,

where G10 denotes the inverse of the first 10 rounds, form a zero-sum parti-
tion of size 21590 for the full Keccak-f permutation. This comes directly from
Proposition 2 and from the fact that the inverse of the first 10 rounds of the
permutation has degree at most 1589 < dimV , and that the last 13 rounds have
degree at most 1578 < dimV.

Recently, Duan and Lai [8] have observed that the inverse of χ has the fol-
lowing remarkable property: the product of any 2 components of χ−1 has degree
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at most 3 (instead of 4 which is the bound obtained with Proposition 1). Then,
we deduce that the value of the coefficient γ for χ−1 involved in Theorem 2 is
γ = 2 since δ2 = 3. By using this particular property of χ−1, the previous result
can be improved as follows: for any F ,

deg(F ◦ R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n − n − deg(F )
2

.

This leads to the new bound on several iterations of R−1 as presented in the
last column of Table 1. Now, by choosing the intermediate states after the linear
layer on the 12-th round of Keccak-f in any subspace V corresponding to
a collection of 315 rows, we obtain a zero-sum partition for the full 24-round
Keccak-f permutation of size 21575. This comes from the fact that the inverse
of the first 11 rounds have degree at most 1572 < dimV and that the last
12 rounds have degree at most 1536 < dimV .

5 Application to the Hash Function Luffa

5.1 The Luffa Hash Function

The Luffa hash function [5,6] is also a Round-2 candidate of the NIST SHA-3
competition. Its mode of operation is based on a variant of the sponge design.
The internal state in Luffa consists of w 256-bit words where w equals 3, 4 and 5
for the output lengths 256, 384 and 512 bits respectively. At each iteration, a 256-
bit message block is processed by applying a linear message injection function
MI. Then, a permutation is applied to the output as follows: the state is split
into w 256-bit words and w parallel 256-bit permutations Qj are applied to each
word independently.

The internal state of each permutation Qj is now divided in 8 words of
32 bits, denoted by a0, . . . , a7. Each permutation consists of an input tweak
applied only once at the beginning of each permutation and 8 rounds of a round
transformation Step. The Step function consists of a nonlinear transformation

Fig. 2. The Luffa construction
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Fig. 3. The Step function

called SubCrumb, a linear transformation MixWord and an addition of constants
AddConstant. The nonlinear part SubCrumb consists of 64 parallel applications
of a 4 × 4 cubic permutation.

Finally, a finalization step is applied. It consists of several iterations of a blank
round with fixed message 0x0...00 followed by a linear output function OF. In
Luffa v1, a blank round with message block 0x0...00 is applied at the beginning
of the finalization, only if the number of padded message blocks is strictly greater
than one. In Luffa v2 such a blank round is always applied, in order to prevent
higher-order differential attacks.

The SubCrumb Permutation. The input of every Sbox has four bits, every
one coming from a different word ak: S substitutes the �-th bits of a0, a1, a2, a3

(or a4, a5, a6, a7) by a 4 × 4 Sbox of degree 3. The Sbox used in the original
submission, Luffa v1, was

S1[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14} ,

but the terms of degree 3 in the first three coordinates of this Sbox are similar.
This property has been exploited in [13] for showing that the degree of Qj does
not grow as expected. In particular, Qj reduced to 5 rounds out of 8 has degree
at most 130, and the sum of the first two coordinates of Qj after 6 rounds has
degree at most 214. In order to avoid these unsuitable properties, the designers
have modified the Sbox according to the strategy detailed in [4]. The new Sbox
used in Luffa v2, is then

S2[16] = {13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4} ,

and the algebraic normal forms of its outputs are

y0 = 1 + x0 + x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3

y1 = x0 + x3 + x0x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3

y2 = 1 + x1 + x3 + x0x2 + x1x2 + x1x3 + x2x3 + x0x1x2 + x0x1x3

y3 = 1 + x1 + x2 + x0x3 + x0x2 + x1x2 + x1x3 + x2x3 + x0x1x2 + x0x1x3
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Then the substitution by S is given by

b3,�||b2,�||b1,�||b0,� = S[a3,�||a2,�||a1,�||a0,�], 0 ≤ � < 32,

b7,�||b6,�||b5,�||b4,� = S[a7,�||a6,�||a5,�||a4,�], 0 ≤ � < 32.

in Luffa v1. In Luffa v2, the order of the last four input words is modified when
entering the Sbox in order to break the symmetries exploited in [13]:

b3,�||b2,�||b1,�||b0,� = S[a3,�||a2,�||a1,�||a0,�], 0 ≤ � < 32,

b4,�||b7,�||b6,�||b5,� = S[a4,�||a7,�||a6,�||a5,�], 0 ≤ � < 32.

The MixWord Permutation. MixWord is a linear permutation of two words. If
z0, . . . , z7 are the 8 words of the state after the application of Step we have that

(z0, z4) = MixWord(b0, b4),

(z1, z5) = MixWord(b1, b5),

(z2, z6) = MixWord(b2, b6),

(z3, z7) = MixWord(b3, b7).

5.2 Algebraic Degree of the Qj Permutation and Its Inverse

We now show that the approach used in [13] still applies to some extent to
the Luffa v2 nonlinear function, and that this approach can be combined with
Theorem 2 in order to find a new upper bound on the degree of several iterations
of the Step function.

The remarkable property comes from the fact that the sum of the four coor-
dinates of S2 has degree 2 only: indeed, we deduce from the algebraic normal
forms of the coordinates of S2 that

d = y0 + y1 + y2 + y3 = 1 + x1 + x2 + x0x1 + x0x3 .

Let xr
i =

(
xr

i,�

)
0≤�<32

denote the output words of r rounds of Step, and let dr
0,�

(resp. dr
4,�) denote the sum xr

0,� +xr
1,� +xr

2,� +xr
3,� (resp. xr

4,� +xr
5,� +xr

6,� +xr
7,�).

Now, let us consider the sum of any two distinct monomials of degree 3 in
4 variables. Any such two monomials share two variables. Then, if we denote by
d the sum of all four variables, we obtain that

xixjxk + xixjxk′ = xixjxk + xixj(xi + xj + xk + d)
= xixjxk + xixj + xixj + xixjxk + xixjd

= xixjd .

It follows that, since all coordinates of the Sboxes S2 contain an even number
of distinct monomials of degree 3, the degrees of their outputs (and then the
degree of the output of (r + 1) rounds) satisfy
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deg xr+1
i,� ≤ 2 max

0≤j≤3
deg xr

j,� + deg dr
0,� ∀0 ≤ i ≤ 3 . (2)

Moreover, this property holds for any ordering of the inputs and outputs of the
Sbox, implying

deg xr+1
i,� ≤ 2 max

4≤j≤7
deg xr

j,� + deg dr
4,� ∀4 ≤ i ≤ 7 .

Now, since the linear layer consists of the same function applied to all pairs of
words (bk, bk+4) for 0 ≤ k ≤ 3 separately, we deduce that

dr+1
0,� = xr+1

0,� + xr+1
1,� + xr+1

2,� + xr+1
3,�

=
3∑

i=0

MixWord0,�(bi, bi+4) = MixWord0,�

(
3∑

i=0

bi,

3∑
i=0

bi+4

)

and

dr+1
4,� = MixWord1,�

(
3∑

i=0

bi,

3∑
i=0

bi+4

)
.

Therefore, the degrees of dr+1
0,� and of dr+1

4,� correspond to the degrees of the sum
of the four coordinates of the Sboxes, implying

deg dr+1
i,� ≤ 2 max

i≤j≤i+3
deg xr

j,� , i ∈ {0, 4} . (3)

Both recurrence relations (2) and (3) lead to the bounds presented in Table 2
on the degrees of several iterations of Step for the new nonlinear layer (i.e. for
the new Sbox S2 and the ordering of the input variables).

Table 2. Upper bounds on the algebraic degree of the output of r iterations of Step
for Luffa v2 (and comparison with the results obtained in [13] for Luffa v1)

r Luffa v2 Luffa v1

deg xr
i,� deg dr

i,� deg xr
i,� deg dr

i,�

1 3 2 3 2

2 8 6 8 5

3 22 16 20 13

4 60 44 51 33

5 164 120 130 84

6 - 214

Now, for r ≥ 6, we apply Theorem 2, exploiting the fact that Step is the
composition of a linear layer and of several parallel applications of a smaller
balanced Sbox of degree 3 defined over F4

2. Then, for any G, we have
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deg(G ◦ Step) ≤ 512 + deg(G)
3

,

implying

max
i,�

deg(xr
i,�) ≤ 512 + maxi,� deg(xr−1

i,� )
3

max
i,�

deg(dr
i,�) ≤ 512 + maxi,� deg(dr−1

i,� )
3

.

These new bounds are given in Table 3.

Table 3. Upper bounds on the algebraic degree of the output of r iterations of Step
for Luffa v1 and Luffa v2

r Luffa v2 Luffa v1

deg xr
i,� deg dr

i,� deg xr
i,� deg dr

i,�

1 3 2 3 2

2 8 6 8 5

3 22 16 20 13

4 60 44 51 33

5 164 120 130 84

6 225 210 214 198

7 245 240 242 236

8 252 250 251 249

It is worth noticing that the same upper bounds hold for the degree of r iter-
ations of the inverse of Step in Luffa v2 since the algebraic normal form of the
inverse of S2 is

y0 = x0 + x2 + x3 + x2x3

y1 = 1 + x3 + x0x1 + x0x2 + x0x3 + x2x3 + x0x2x3 + x1x2x3

y2 = x1 + x2 + x3 + x0x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x1x2 + x0x2x3

+x1x2x3

y3 = x1 + x2 + x3 + x0x2 + x2x3 + x0x1x2 + x0x1x3 .

Then, the sum of the four coordinates of S−1
2 is equal to

1 + x0 + x2 + x1x2 + x1x3 + x2x3

and has degree 2 only. Moreover, all four coordinates of S−1
2 have an even number

of monomials of degree 3. Then, the previously described technique for upper-
bounding the degree of several iterations of the round function applies similarly
when computing the inverse.
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5.3 Higher-Order Differentials for the Compression Function of
Luffa v2

The compression function in Luffa v2 takes as input a 256w-bit chaining value
and a 256-bit message block and it outputs a new 256w-bit chaining value, where
w equals 3, 4 and 5 when the output length is 256, 384 and 512. Then, we have
proved that this function has degree at most 252, while it is expected from its
construction to have degree 255.

A first consequence is the existence of all-zero higher-order differentials for the
full compression function of Luffa v2, similar to those found in [13] for Luffa v1
reduced to 7 steps. Let us choose a position �0 among the 32 possible positions
in a word, 0 ≤ �0 < 32, and let us consider any coset of the linear subspace V of
the set of all possible message blocks defined as

V = 〈ei,�, 0 ≤ i ≤ 7, � �= �0〉 ,

where ei,� denotes the 256-bit word of Hamming weight 1 having a one at po-
sition � in word i. Then, V has dimension 248. For any fixed chaining value,
the message injection function MI stabilizes the subspaces 〈ei,�, 0 ≤ i ≤ 7〉,
implying that the input of each Qj is a coset of V . Now, the tweak function at
the beginning of each Qj rotates the least significant four words by a number
of bits depending on j. Its output then corresponds to a coset of a subspace V ′,
which is the direct sum of 4-dimensional subspaces of the form 〈ei,�, 0 ≤ i ≤ 3〉
or 〈ei,�, 4 ≤ i ≤ 7〉. Since the first nonlinear layer applies to those 4-dimensional
subspaces separately, it stabilizes the structure of V ′. Therefore, the output of
the first iteration of Step in each Qj varies in a coset of a subspace of dimen-
sion 248. Then, the outputs of the compression function, i.e., after 8 iterations
of Step, sum to zero when the message block varies in any coset of V , since
dimV = 248 > 246 > deg(Step7). This observation holds for any size of the
hash value. It should be noted that, by nature, this algebraic property is very
different from the properties exploited in previously known distinguishers on the
compression function of Luffa v2 (e.g. [9]).

5.4 Zero-Sum Partitions for the Qj Permutations

We consider the subspace V generated by the first 23 bits in a given word, that
is

V = 〈ei0,0, ei0,1, . . . , ei0,22〉 ,

for some 0 ≤ i0 ≤ 7. Then, we can show that the sets

Xa = {Tweak−1
j ◦ (Step−1

)4
(a + z), z ∈ V }, a ∈ F256

2 .

form a zero-sum partition of size 223 for each Qj .
We first consider any coset of V as input of 4 rounds of Step. Then, the 23

active bits in V correspond to the inputs of 23 different Sboxes and thus the first
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round of Step is a function of degree 1 in these 23 input bits. As 3 iterations of
Step have degree at most 22, we deduce that∑

x∈Xa

Qj(x) = 0 .

We now focus on the backward computation. We first take the image of V under
the inverse of the linear application MixWord. As all the variables are in the same
word ai0 , after the application of the inverse of the linear layer, all words are
constant except the words of index i0 and (i0 + 4). But the bits of the words ai0

and ai0+4 all go to different Sboxes, implying that the first round backwards is
linear. As we have proven that the inverse of 3 iterations of Step has degree at
most 22, we deduce that ∑

x∈Xa

x = 0 .

There exist
(
32
23

)× 8 = 227.7 such zero-sum partitions for each Qj corresponding
to all possible choices for V , i.e., for all possible choices for i0 and for the
23 positions within the word of index i0.

5.5 Higher-Order Differentials for the Full Luffa v1 Hash Function

It is shown in [13] that, when hashing messages of length at most 256 bits, the
reduced version of Luffa v1 hash function, with 7 out of 8 steps in each Qj , does
not behave as a random function. Actually, if the message block varies in some
particular subspace of dimension 216, then some linear combination of the output
words of this reduced version of Luffa v1 sums to zero. This property comes from
the fact that Luffa v1 does not perform any blank round for one-block messages,
and that, after 6 rounds of Step, some linear combinations of the output words
have degree at most 214. Even if the advantage that this property could give to
an attacker is unclear, this unsuitable property has led the designers to modify
the function for the second round of the SHA-3 competition. In particular, a
blank round is performed for any message length in Luffa v2.

It turns out that this was probably a prudent decision, as the new upper
bound on the degree of Qj for Luffa v1 given in Table 3 now shows that a
similar distinguisher can be exhibited for the full Luffa v1, since the degree of
the two words obtained by

(y0 + y1 + y2 + y3, y4 + y5 + y6 + y7)

after 7 iterations of Step is at most 236. We then get a similar distinguisher based
on the fact that the corresponding linear combinations of the bits of the hash
values sum to zero when the message block varies in some particular subspace
of dimension 240.

More interestingly, we have shown that the full Luffa v1 hash function, when
applied to one-block messages, has degree at most 251 in the 255 bits of the
message.
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5.6 Degree of the Full Luffa v2 Hash Function with Chosen IVs

The previous observation does not hold for Luffa v2 since a blank round is
performed for any message length. However, if we would consider the 256w bits
of the initial value of Luffa v2 as an additional input which can freely be chosen,
then we can still make some theoretical observations for the hash function applied
to one-block messages. Recall that w equals 3, 4 and 5 for a message digest of
256, 384 and 512 bits respectively.

In this setting, Luffa v2 is a function from (256(w + 1) − 1) bits to 128(w − 1)
bits, where the input bits correspond to the bits of the initial value and of the
message block. But, Luffa v2 is composed of a linear message injection function,
followed by a function G from 256w bits to 128(w−1) bits. Therefore, the degree
of the (256(w + 1) − 1)-bit function Luffa v2 is equal to the degree of G and
cannot exceed 256w. Moreover, we can show that the degree of this function is
even smaller than 256w due to the particular design of the inner permutation.

This new upper bound on the degree of Luffa v2 comes from the fact that
G can be decomposed as the inner permutation P , i.e., the parallel applica-
tions of w independent nonlinear permutations Qj of n0 = 256 variables with
degree less than (n0 − 2), followed by some rounds of the finalization function
Final. Moreover, the first 256 bits of the message digest are extracted after a
single application of Final. Then, using that the finalization function consists
of 8 iterations of Step and has then degree at most 252, Theorem 2 implies that

deg(Final ◦ P ) ≤ 256w − 256w − deg(Final)
254

≤ 256w − 256w − 252
254

< 256w − (w − 1) .

For the (128(w − 1))-bit version of Luffa v2, we get that the first 256 output
bits of Luffa v2 have degree at most (256w − w). This property must be com-
pared to the probability that this property holds for a randomly chosen function
from F

256(w+1)−1
2 to F256

2 bits. Such a function can be written as a polynomial
with coefficients in F2256 and the number of its monomials of degree greater
than (256w − w + 1) is

256+w−1∑
i=0

(
256(w + 1) − 1

i

)
.

Therefore, the probability that a randomly chosen function with the same pa-
rameters as Luffa v2-256 has degree at most 765 is 2−2837

.
For the 384-bit version (resp. for the 512-bit version), i.e., for w = 4 (resp.

w = 5), we get that Luffa v2 has 1280 variables (resp. 1536 variables) and
degree at most 1020 (resp. 1275). The probability that this property holds for a
randomly chosen function with the same parameters is 2−2933

(resp. 2−21010
).
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6 Conclusions

We have found a new bound for the degree of iterated permutations. This im-
proved bound has firstly led to zero-sum distinguishers for the full Keccak-f
permutation. Even if the security of the hash function is not affected, our re-
sults contradict the so-called hermetic sponge strategy. Additionally, a number of
structural properties related to the existence of all-zero higher-order differentials
and of zero-sum partitions have been presented for the Luffa hash family.
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Abstract. At Eurocrypt 2001, Biryukov and Shamir investigated the
security of AES-like ciphers where the substitutions and affine transfor-
mations are all key-dependent and successfully cryptanalysed two and
a half rounds. This paper considers PRESENT-like ciphers in a similar
manner. We focus on the settings where the S-boxes are key dependent,
and repeated for every round. We break one particular variant which was
proposed in 2009 with practical complexity in a chosen plaintext/chosen
ciphertext scenario. Extrapolating these results suggests that up to 28
rounds of such ciphers can be broken. Furthermore, we outline how our
attack strategy can be applied to an extreme case where the S-boxes are
chosen uniformly at random for each round and where the bit permuta-
tion is secret as well.

Keywords: Symmetric key, block cipher, PRESENT, differential crypt-
analysis.

1 Introduction

Small computing devices are becoming more and more popular and establish a
part of the pervasive communication infrastructure. One example of these tiny
computing devices are RFID systems which are used e.g., for identifying and
tracking animals or on toll roads. A prediction for the future is that RFID tags
will replace bar codes. But this extensive deployment of computing devices is not
only useful and convenient, it also carries a wide range of security risks. At the
same time we are talking about extremely resource constrained environments.
Therefore, the demand for lightweight encryption algorithms increases. The block
cipher PRESENT [1] is an important example of a lightweight cipher. It consists
of alternate layers of substitutions and permutations.

Important design principles of lightweight ciphers are an efficient hardware
implementation, a good performance and a moderate security level. Usually there
is a trade-off between the performance and the security level. In order to speed
up the algorithm we want as few rounds of encryption as possible but there is a
minimum number of rounds required to assure the security level.

PRESENT is a 64-bit iterated block cipher that comes in two variants, one
with an 80-bit key and one with a 128-bit key. Both run in 31 rounds, each
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round has three layers, a substitution layer consisting of 16 parallel applications
of the same 4-bit S-box, a permutation layer consisting of a bit-wise permutation
of 64 bits, and a key addition layer, where a subkey is exclusive-ored to the
text. PRESENT was designed to allow fast and compact implementation in
hardware. The best known cryptanalytic attack on PRESENT is a linear attack
on 26 of the 31 rounds [2]. The attack requires all possible 264 texts and has a
running time of 272. Although this attack is hardly practical, it illustrates that
the number of rounds used should not be dramatically reduced.

An idea of how to strengthen the cipher in a way that enables one to reduce
the number of rounds has been presented by two researchers from Princeton
University. The cipher Maya [3] is a 16-round SP-network similar to PRESENT.
The main difference is that the substitution layer of Maya consists of 16 different
S-boxes which are key dependent and therefore kept secret. The bit permutation
between the S-box layers is fixed and public. In each round a round key is
xored to the text. It is argued that this cipher can be implemented efficiently in
practice and also that “differential cryptanalysis is infeasible”. In this paper we
will investigate the question if such a cipher would be stronger than the original,
and if so, how much stronger.

The Maya design is one particular way of designing a PRESENT-like cipher
with secret components. In an extreme case one could choose 16 S-boxes uni-
formly at random and independently for every round. Furthermore one could
also make the bit permutation part of the key and chosen uniformly at ran-
dom from the set of all such permutations and used repeatedly or as another
extreme, a bit permutation is chosen for each round uniformly at random and
independently for every round.

The idea of having ciphers where the substitutions are not publicly known
and part of the secret key is not new. Notable examples are Khufu [4],the Khufu
variation Blowfish [5] and GOST [6] as well as other proposals [7,8].

Our results. In this paper we focus on the Maya case. We present a novel
differential-style attack which enables us to find the S-boxes in the first round
one by one.

The attack was implemented and successfully recovered the secret key in ver-
sions up to 16 rounds. The complexity of the attack on the 16-round version is
approximately 238 using a similar number of chosen plaintexts/chosen cipher-
texts. In particular, the proposed cipher Maya can be broken with practical
complexity. In our experiments the correct key was usually found in less than
one week on a standard PC.

To better understand the running time of the attack, we establish a simplified,
mathematical model for the complexity of this attack and verify by numerous
experiments that the model fits the real world. Extrapolation of the experimental
data, backed up by our model, indicate that the attack has the potential to break
up to 28 rounds with a chosen plaintext complexity less than 264.

Furthermore, we outline how even the extreme case of PRESENT-like ciphers
with secret components, that is the case where all components in all rounds are
chosen uniformly and independent at random can be attacked.
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Related work. Biryukov and Shamir investigated the security of iterated ci-
phers where the substitutions and permutations are all key-dependent [9]. In
particular they analysed an AES-like cipher with 128-bit blocks using eight-bit
S-boxes. An attack was presented on five layers (SASAS, where S stands for
substitution and A stands for affine mapping) of this construction which finds
all secret components (up to an equivalence) using 216 chosen plaintexts and
with a time complexity of 228. Using the terminology of “rounds” as in the AES,
this version consists of two and a half rounds.

The extreme case of our cipher, where the S-boxes and the bit-permutation are
chosen at random for each round, is a special instance of the SASAS cipher [9].
In fact the attack of Biryukov and Shamir applies to three rounds of this variant
and has a running time of 216 using 28 chosen texts. However the complexity of
the attack for more than three rounds is unclear, but seems to grow very quickly
[9]. The SASAS attack is a multiset attack whereas we use a differential-style
attack to recover the S-boxes. Also, the technique to recover the bit permutation
is different.

There have been other attempts to cryptanalyse ciphers with secret S-boxes.
Gilbert and Chauvaud presented a differential attack on the cipher Khufu [10].
Khufu is an unbalanced Feistel cipher and the attack exploits the relatively slow
diffusion in the cipher and bears some resemblance with our work. Also, Vaude-
nay provided cryptanalysis of reduced-round variants of Blowfish [11]. Moreover,
the cipher C2, which has a secret S-box, was cryptanalysed by Borghoff et al. [12].

Organisation. The paper is organised as follows. In Section 2 the cipher is
presented. Section 3 explains the approach for recovering the secret S-boxes.
In Section 4, practical issues of the attack are discussed. In Section 5 we give
experimental results for the attack when applied to the Maya cipher [3]. Section
6 describes our model to back up the extrapolations of the experimental data. We
outline the more general case and further improvements in Section 7. Section 8
holds the conclusion.

2 The Cipher

We focus on a PRESENT-like cipher where the secret consists of one round
key for each round and 16 secret S-boxes. We assume that the round keys and
the S-boxes are randomly chosen. In practice these secret components might be
derived from a master key using a key schedule which generates key dependent
round keys and S-boxes. These 16 randomly chosen S-boxes form the substitution
layer which is used repeatedly throughout all the rounds. The permutation layer
consists of a bit permutation which is fixed and publicly known.

One round of encryption works as follows (cf. Algorithm 1). The current text
is divided into nibbles of 4 bits which are processed by the 16 S-boxes in parallel.
Then the bit permutation is applied to the concatenation of the output of the
S-boxes and the output is xored with the round-key.
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Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 S-boxes Si and N round keys Ki from K
2: STATE ← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do /*Substitution layer*/
6: STATEj ← Sj(STATEj)
7: end for
8: Reassemble STATE
9: Apply bit permutation to STATE

10: Add round key Ki to STATE
11: end for
12: C ← STATE

Algorithm 1. Pseudo-code of a PRESENT-like cipher with secret S-boxes. The
number of rounds is N .

The cipher Maya, proposed by Gomathisankaran and Lee [3], is an instance
of the cipher described in Algorithm 1 with N = 16. The authors claim that it
is efficient in a hardware implementation.

We attack this cipher by recovering all 16 S-boxes. However, in the general
case, we do not know the last-round key, and therefore what we recover is in
fact the 16 S-boxes xored with the last round key. Once this is done, we can
peel off the first and last layers of encryption, and attack the cipher with two
rounds less; this time, the S-boxes are known and a standard differential or linear
attack can be mounted to extract the round keys. What we obtain in the end
is an equivalent description of the cipher, but not necessarily the key. Still, the
equivalent description of the cipher will allow us to encrypt or decrypt any text
of our choice.

Furthermore, we shall outline how our attack can be applied to a generalization.
Here, the S-boxes are chosen uniformly at random for each round. Additionally,
the bit permutation can be chosen randomly for each round and kept secret as part
of the key. In this case, the addition of the round keys is not necessary because it
can be seen as part of the S-boxes. Furthermore the permutation is omitted in the
last round. This extreme variant can be compared with an instance of SASAS [9].
Note that in this variant nothing but the block size and the number of rounds is
known. The pseudo-code of this variant is described as Algorithm 2.

3 Principle of the Attack

In this section, we explain the idea of our approach to recover the S-boxes in the
basic variant of a PRESENT-like cipher with secret S-boxes. It is a differential-
style attack and the complexity is analysed in Section 6.

Recall that in the basic variant of the cipher (cf. Algorithm 1), there are 16
secret S-boxes which are applied in all rounds. We denote these 16 S-boxes Si,
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Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 · N S-boxes Si,j , 1 ≤ i ≤ N , 0 ≤ j ≤ 15 and N − 1 bit permutations Pi

from K
2: STATE ← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do /*Substitution layer*/
6: STATEj ← Si,j(STATEj)
7: end for
8: Reassemble STATE
9: if i < N then

10: Apply bit permutation Pi to STATE
11: end if
12: end for
13: C ← STATE

Algorithm 2. Pseudo-code of a PRESENT-like cipher with secret S-boxes and
secret bit permutations, all unique for each of the N rounds.

0 ≤ i < 16, and we note that all Si are bijective mappings with the signature
F4

2 → F4
2. For convenience, we introduce the following notation.

Definition 1. Given the S-box S and e ∈ F
4
2, we denote the set of all pairs

{x, y} such that S(x) ⊕ S(y) = e by De. Here, we consider the pairs {x, y} and
{y, x} to be identical. A pair {x, y} belonging to a set De where e has Hamming
weight 1 is called a slender pair. A set consisting of slender pairs is called a
slender set.

Without loss of generality, we explain how to recover the leftmost S-box S0. In
order to obtain information about S0, we encrypt a certain number t of structures
Pri of plaintexts of the form

Pri = {(x‖ri) | x ∈ F4
2}

where each ri ∈ F
60
2 for 0 ≤ i < t is chosen uniformly at random. Two different

plaintexts (x‖ri), (y‖ri) in Pri have an input difference of the form

(x‖ri) ⊕ (y‖ri) = (?‖060),

where 0n denotes the bit string consisting of n zeros.
We shall be looking at the corresponding ciphertexts in order to see if there

is an input pair for which only one S-box is active in the ciphertext. For now,
let p({x, y}) denote the probability that only one S-box is active in the cipher-
text difference when the plaintext pair is {x‖r, y‖r}, taken over all the different
choices of r ∈ F60

2 . The attack is based on some assumptions. The first assump-
tion is a standard one in differential cryptanalysis:

Assumption 1. The probability p({x, y}) depends only on the value of S(x) ⊕
S(y), not specifically on the pair {x, y}. Hence, given e = S(x) ⊕ S(y), we can
denote this probability pe.
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We shall be particularly interested in identifying slender pairs. In order to do
this, we need the following assumption, which has been experimentally verified
to hold in most cases.

Assumption 2. The probability pe is higher when e has Hamming weight 1,
than when e has Hamming weight greater than 1.

Learning all the probabilities pe would require encryptions of all 264 possible
plaintexts, but we can estimate the probabilities by introducing counters

C({x, y}) =
∣∣{ri |∃j : E(x‖ri) ⊕ E(y‖ri) = 04j‖?‖060−4j}∣∣

for all pairs {x, y}, x, y ∈ F4
2. Hence, the counter C({x, y}) counts how often

only one S-box is active in the ciphertext pair when the input pair to S-box S0

is {x, y}.
Assumption 1 says that pairs belonging to the same set De should also have

similar counter values when sufficiently many plaintexts have been encrypted.
Assumption 2 says that the highest counter values will (usually) correspond to
slender pairs. In the attack we are going to try to identify the slender sets, and
this will be relatively easy if the probabilities pe and pe′ , e �= e′, are sufficiently
different. Experiments show that this condition is often satisfied.

The counter C consists of 120 values since there are
(
16
2

)
= 120 different pairs

{x, y}. After encrypting sufficiently many structures we may sort C in descending
order, and thereby hopefully obtain a partitioning of the 120 pairs into a number
of sets corresponding to De for different values of e. For every e �= 0 it holds
|De| = 8. We shall return to this partitioning method in a moment. Our final
goal will be to learn all four slender sets De.

Generalizing to all S-boxes and their inverses. In a practical attack we
do not only want to eventually recover the S-box S0, but all S-boxes. The above
observations can clearly be generalized to all S-boxes by introducing additional
types of structures and additional counters.

Moreover, the symmetry between encryption and decryption in the cipher we
are considering here means that one may obtain the same type of information
about the inverse S-boxes as one obtains about the S-boxes themselves. This can
even be done in a chosen-plaintext setting, although it may require more texts
than in a chosen-ciphertext setting.

Assume now that we have identified u slender sets for some S-box S, and v
slender sets for its inverse S−1. The following table shows the average number
of S-boxes that would give rise to the same u + v sets; these averages are based
on 100,000 randomly generated S-boxes.

u\v 1 2 3 4
1 207 3.52 1.44 1.19
2 3.52 1.16 1.03 1.01
3 1.44 1.03 1.01 1.01
4 1.19 1.01 1.01 1.01
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Evidently, if u + v ≥ 6, the S-box is usually uniquely determined from the u + v
sets, and in many cases, fewer sets are sufficient. However, there exist S-boxes
S which are not uniquely determined even if all four slender sets are known for
both S and S−1.

On a side note: if De and De′ are known for some S-box S, then De⊕e′ does not
give any new information about S, since De⊕e′ can be derived from De and De′ .
Clearly, if {x, y} ∈ De and {x, z} ∈ De′ , then {y, z} ∈ De⊕e′ . This observation
generalizes to more than two sets. In general, given sets Dei one can construct
all sets De where e can be written as a linear combination of the vectors ei, see
Lemma 2 in Appendix A. Therefore, we shall generally only be interested in the
four slender sets, since all other sets give no additional information about the
S-box.

We now describe a number of ways to partition the pairs into sets and to
check that this partitioning is correct.

Partitioning pairs into sets. Assume again that we are trying to recover S-box
S0. Our starting point for partitioning pairs (in particular the slender pairs) into
sets is the counter C.

The straightforward partitioning method simply sorts C in descending order,
and takes the first eight pairs as the first set, the next eight pairs as a second
set, etc. Using this method obviously means that we shall often make the wrong
partitioning into sets, but the partitioning can be checked using the very strong
filtering methods described in the following subsection.

Filtering methods. Given u sets for some S-box S and v sets for its inverse
S−1, the most indicative method to check whether these sets may be correct is to
see how many S-boxes would give rise to the same sets. If no S-box gives rise to
these sets, then clearly the sets must be wrong. However, counting the number
of S-boxes that give rise to these sets is somewhat inefficient (see, however,
Section 4), and as we have seen, if we only know a few sets, there are usually
several S-boxes that give rise to the same sets, and so the probability of a false
positive is high in this case. We call this filter the existence filter.

A much more efficient method is based on the trivial observation that for
any valid set De, we have that {x, y : {x, y} ∈ De} = F

4
2. In other words, a

valid set “covers” all values in F4
2. Hence, if we have identified a candidate set D

containing two pairs {x, y} and {x, z}, then D cannot be a valid set. Although
this method is very simple, it is in fact a very strong filter; the probability that
eight randomly chosen pairs among the 120 pairs cover all values in F4

2 is only

7∏
i=1

(
2i
2

)(
16
2

)− i
≈ 2−18.7,

and therefore in practice, many wrong candidate sets are discovered by this
method. We call this filter the cover filter.

It should be noted that one can prove that the cover filter is not only necessary,
but also sufficient; see Appendix A.
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The final filtering method that we describe here is based on the observation
that if {x1, y1} and {x2, y2} belong to the same set De, then {x1, y2} and {x2, y1}
will also belong to the same set De′ for some e′ �= e, and likewise, {x1, x2}
and {y1, y2} will belong to the same set De′′ for some e′′ �∈ {e, e′}. To see
this, note that if {x1, y1} and {x2, y2} belong to the same set De, then (by
definition) S(x1) ⊕ S(y1) = S(x2) ⊕ S(y2) = e, and therefore S(x1) ⊕ S(y2) =
S(x2) ⊕ S(y1) = e ⊕ S(y1) ⊕ S(y2) �= e, etc. Hence, assume that we know two
sets D′ and D′′ (both already known to cover F

4
2), and that {a, b} ∈ D′ and

{a, c} ∈ D′′. Now, if {c, d} ∈ D′, then for these two sets to both be valid, it
must hold that {b, d} ∈ D′′. We call this filter the bowtie filter; if one follows the
“partner” b of a in the set D′ and jumps to the next set D′′ to find the partner d
of b there and so forth, then one should come back to the pair {a, b} in D′ after
two jumps back and forth between the two sets, hence forming a bowtie-shaped
cycle:

D′ = {

D′′ = {

,

,

{a, b} {c, d} . . .

{a, c} {b, d} . . .

3.1 Relaxed Truncated Differentials

The method considered so far increments a counter only when there is a single
active S-box in the ciphertext pair. The probability of this event is relatively
low, so many plaintext pairs are needed before it is possible to partition pairs
into sets.

It is much more likely that the weight one difference spreads moderately
through the cipher resulting in a few active S-boxes in the ciphertext. Hence, we
might find slender pair candidates more efficiently by looking at ciphertext pairs
with more than one active S-box. The more active S-boxes we allow, the more
noise we will get, and so there is a tradeoff between the signal-to-noise ratio, and
the strength of the signal.

It turns out that allowing even a relatively large number of active S-boxes
does not introduce too much noise. This can be used to make the attack more
efficient. For each input S-box Si and for each pair {x, y} we introduce counters
Ci,j({x, y}). We increment the counter Ci,j({x, y}) every time the input pair
{x, y} to S-box Si (with a random but fixed input to the other S-boxes) leads
to exactly j S-boxes being active, where j ranges from 1 to 15. When we have
done a number of encryptions we may sort the counters Ci,j for some pair i, j.
If the cover filter identifies sets based on this sorting, we assume that these are
correct slender sets. When we have several sets, we use the bowtie filter to check
the validity of the sets. We do this for increasing j from 1 to 15. Since the cover
filter is a very strong filter, the risk of errors is low, both in the cases where the
signal is weak (small values of j), and also in the cases where there is a lot of
noise (large values of j).
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4 The Attack in Practice

We now describe how the attack is carried out in practice. The attack consists
of a data collection phase followed by an S-box recovery phase, and those two
phases are repeated until all or almost all S-boxes have been recovered.

4.1 Data Collection Phase

In the data collecting phase we simply encrypt structures and increment counters
when applicable. Each structure consists of 16 plaintexts differing in only a single
input S-box. Which S-box is active is a random choice among the S-boxes that
have not already been recovered.

After encryption, we check all 120 pairs of ciphertexts to see if any of them
are active in less than 16 S-boxes. If so, we increment the corresponding counter
for the input pair to the S-box that was active in the plaintext.

We also carry out decryptions in order to obtain information about the inverse
S-boxes.

4.2 S-Box Recovery Phase

Every once in a while, we stop collecting data and try identifying sets for each
S-box. This is done by first sorting the counters for each number of active output
S-boxes. We start with the lowest number of active output S-boxes. We check
if the top eight counter values in the sorted list passes the cover filter. If so, we
consider these eight pairs a slender set and add it to a collection of identified sets,
unless the set is already present in the collection. When there are multiple sets
in the collection, we check that they pass the bowtie filter. We then look at the
next eight pairs and so forth. We stop adding sets when we have identified four
sets, or we run into an inconsistency such as a failing bowtie test or non-disjoint
sets. In case of an inconsistency, we give up identifying sets for this S-box.

The bowtie filter can also be used to filter out candidate sets that can be
derived from existing sets. Consider as an example a situation where the following
two candidate sets De and De′ (passing the bowtie test) have been identified:

De = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {a, b}, {c, d}, {e, f}}
De′ = {{0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, a}, {9, b}, {c, e}, {d, f}}.

From these two sets we can derive the set De⊕e′ directly as

De⊕e′ = {{0, 3}, {1, 2}, {4, 7}, {5, 6}, {8, b}, {9, a}, {c, f}, {d, e}}
As an example, S(0) ⊕ S(3) = (S(0) ⊕ S(1)) ⊕ (S(1) ⊕ S(3)) = e ⊕ e′. Hence, if
we identify a set which can be derived from two sets already identified, then we
should not add the third set to our collection (on the assumption that the first
two sets are slender, which means the third is not).

We note that if one swaps two “bowtie pairs” in two valid sets (e.g., the pairs
{0, 1} and {2, 3} could be swapped with {0, 2} and {1, 3} in De and De′ above),
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then the resulting sets will still pass both the cover and the bowtie test. This
is a potential cause for errors; if two sets have roughly the same probability
of causing a single active S-box in the ciphertext, and the distribution of the
probabilities for each output S-box is similar for the two sets, then we are likely
to generate wrong sets that pass both the cover and the bowtie test. This error
may be caught by the existence filter (cf. the following), but if not, then we’ll be
recovering the wrong S-box. This does happen in practice, although it is rather
rare.

We repeat the above method of identifying sets for the inverse S-boxes as well,
maintaining separate counters for these.

Once we have identified as many sets as possible using this method (for both
the S-box and its inverse), we can apply the existence filter to check if these
sets can possibly be valid; if there is no S-box generating these sets, then the
sets are obviously not valid. As mentioned in Section 3, applying the existence
filter is not terribly efficient; on the other hand, it is not terribly slow either.
A reasonably efficient way to implement it is by making guesses for values of
S(0) and the exact values e for the identified sets De until one runs into an
inconsistency with the candidate sets. Note that once these guesses have been
made, we may find the “partner” of 0 in all candidate sets. For instance, if the
two sets De and De′ in the example above are our candidate sets, and we guess
that S(0) = 0, then we would know that S(1) = 2i and S(2) = 2j for some
(guessed) i, j, i �= j and 0 ≤ i, j < 4. We would obtain similar information about
the inverse S-box from the candidate sets for the inverse S-box. This method is
able to find all candidate S-boxes in a fraction of a second given at least one set
for the S-box and one set for its inverse.

If an S-box (or a candidate for it) has been recovered, we stop considering
this S-box both in the data collection and the S-box recovery phase. If not all
S-boxes have been recovered, we continue the data collection phase. In some
cases, we have to give up recovering one or more S-boxes because we are unable
to identify sufficiently many sets, or because we consistently get no candidates
for the S-box based on the identified sets. In the latter case, there is obviously an
error in the partitioning into sets. If we consistently obtain multiple candidates
for an S-box, we may also accept this and consider the S-box recovered, keeping
a record of all candidates.

5 Case Study: The Block Cipher Maya

Maya is a block cipher proposed at WCC 2009 [3]. It is a PRESENT-like cipher
with key dependent S-boxes (repeated in every round) and a fixed, known bit
permutation (see Fig. 1). Each round also contains an addition of a round key.
The round keys and the S-boxes are derived from the 1024-bit master key.

Since the S-boxes are the same in every round, using the differential-style
attack described above, we are able to get information on the S-boxes and their
inverses. We get information on both directions for every encrypted pair and can
choose to also do decryptions to obtain information about the inverse of a specific
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 16 32 48 4 20 36 52 8 24 40 56 12 28 44 60 21 37 53 5 25 41 57 9 29 45 61 13 33 49 1 17

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
42 58 10 26 46 62 14 30 50 2 18 34 54 6 22 38 63 15 31 47 3 19 35 51 7 23 39 55 11 27 43 59

Fig. 1. The Maya bit permutation.

S-box. In this way we often recover at least two sets in each direction, which
usually means all the S-boxes can be determined uniquely. The key addition,
however, means that we only obtain the correct S-boxes up to an xor by the
last round key, which is unknown. However, this still enables us to peel off the
first and the last round of encryption, after which the attack can be repeated
on this reduced cipher. Moreover, we expect that once the S-boxes are known, a
dedicated differential or linear attack is more efficient than our general attack.
In the end, we obtain a description of an equivalent cipher.

The standard number of rounds in Maya is 16 and below the log of the com-
plexity to recover the secret S-boxes for a number of different randomly chosen
example keys is given. Complexities in italics are extrapolated values from run-
ning the attack on fewer rounds.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Complexity 45.5 36.0 35.9 36.9 35.7 39.3 37.4 37.1 40.6 38.5 39.4 39.5 36.0 36.7 38.3 37.4

Moreover, Table 1 (Appendix B) shows the log of the complexity (number of
texts) as a function of the number of rounds for the same example keys. See
Fig. 2 for a graphical representation. The complexities refer to obtaining all 16
S-boxes (whenever possible, see discussion below), so that the first and the last
round can be peeled off, and the cipher with two round less can then be attacked.

In this implementation of the attack, an S-box was considered correctly re-
covered if only one S-box gave rise to the given partitioning into sets (or the
given top 32 pairs). However, if a substantial amount of time had been spent on
an S-box, the conditions were relaxed such that even if there were more than
one candidate S-box, work on this S-box was still discontinued and all candi-
dates were printed. In extreme cases, where there were no candidate S-boxes
after a lot of time had been spent trying to recover the S-box, that S-box was
given up. The choice of when to accept multiple candidates, or when to give up
an S-box, obviously affects the complexity of the attack. A more sophisticated
implementation might adapt better to these situations. As an example, if the
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Fig. 2. A graphical representation of the data in Table 1. The thick line represents the
median computed for each number of rounds.

program consistently gives rise to the same partitioning into sets, and there are
no candidates for this partitioning, one might try swapping elements between
sets in such a way that the bowtie condition still holds.

The error rate of the attack is very low. If we consider the highest number of
rounds broken in each of the 16 test cases, then the total number of S-boxes that
had to be recovered was 16·16 = 256. Of these, 245 were correctly recovered with
only a single S-box candidate. For seven S-boxes, there were multiple candidates,
and the correct S-box was always one of these. The number of candidates ranged
from two to four. Three out of 256 S-boxes were incorrectly recovered with only
a single S-box candidate. One S-box was given up due to too much time spent
trying to recover it.

In a real attack, the fact that some S-boxes were incorrectly recovered would
be discovered after attempting to break the cipher reduced by the first and
the last rounds. By making sure that a large amount of information about the
identified sets and the counter values is recorded, it is likely that one would be
able to locate the S-box causing the problem. For instance, there may be 16
counters that are all similar, meaning that it is likely that two sets have been
mixed up.

6 Model for the Complexity of Recovering Sets De

For a small number of rounds the attack to recover one or more sets De has small
complexity and it is possible to get sufficient experimental data. However, to be
able to extrapolate the attack complexity we describe a theoretical model below.
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We again focus on recovering a single S-box e.g., S0. In the attack we are faced
with the problem to group 120 counters C({x, y}), each belonging to an input
pair to an S-box of the first round, into 15 distinct groups. All pairs within a
group should yield the same output difference, i.e., belong to a set De for some e.

Interpreting the counters C({x, y}) as random variables, a counter C({x, y}),
with S(x) ⊕ S(y) = e is binomially distributed with parameters n and pe . Here
pe is the probability that the difference (e||060) after the first layer of S-boxes
yields to only one active S-box in the output and n is the number of text pairs.

Assumption 2 states that counters C({x, y}) such that S(x) ⊕ S(y) has a
weight greater than one are significantly smaller than others and we therefore
focus only on the 32 counters corresponding to slender pairs. Thus, we consider
8 counters distributed with parameters (n, p1), 8 distributed with parameters
(n, p2), 8 distributed with parameters (n, p4) and finally 8 counters distributed
with parameters (n, p8) (here we identified e = (0, 0, 0, 1) with 1, e = (0, 0, 1, 0)
with 2 etc.). Without loss of generality we assume p1 ≥ p2 ≥ p4 ≥ p8 and
that holds p1 �= p2. The attack works by looking at the 8 highest counters
and is successful if those counters correspond to the same output difference,
e.g., e = 1, of the S-box. The attack fails whenever there exists a pair {x1, y1}
with output difference ’1’ and a pair {x2, y2} with S(x2) ⊕ S(y2) �= 1 such that
C({x1, y1}) ≤ C({x2, y2}). In the following we estimate this failure probability
depending on the number of samples n.

To simplify the problem for now, we consider only two pairs {x1, y1} and
{x2, y2} and their corresponding counters where C({x1, y1}) is distributed with
parameters (n, q) and C({x2, y2}) is distributed with parameters (n, p) for q > p.
The attack fails if C({x1, y1}) ≤ C({x2, y2}) and thus we denote Z =
C({x2, y2}) − C({x1, y1}) and

err = Pr(C({x1, y1}) ≤ C({x2, y2})) = Pr(Z ≥ 0).

To investigate this error further consider the usual approximation of the binomial
distribution by the normal distribution, C({x1, y1}) ∼ N(nq, nq(1 − q)) and
C({x2, y2}) ∼ N(np, np(1 − p)). With this approximation, the distribution of Z
can be approximated by Z ∼ N(μ, σ2), where μ=n(p − q) and σ=n(p(1 − p) +
q(1 − q)).

The density function for the normal distribution with mean μ and variance

σ2 is given by the following formula: f(x) = 1√
2πσ

e−
(x−μ)2

2σ2 . The integral of the
normal density function is the normal distribution function

N(t) =
1√
2π

∫ t

−∞
e−

1
2x2

dx.

The error we make is thus described by

err ≈ 1 − 1√
2πσ

∫ 0

−∞
e−

(x−μ)2

2σ2 = 1 − 1√
2π

∫ −μ
σ

−∞
e−

x2
2 = 1 − N

(−μ

σ

)
.
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The following lemma gives an estimate of the ‘tail’ 1 − N(x) which is useful to
approximate the error.

Lemma 1 ([13]). Let φ(x) = 1√
2π

e−
x2
2 be the normal distribution. As x → ∞

1 − N(x) ≈ x−1φ(x).

Using the approximation of Lemma 1 yields

err ≈ 1 − N(−μ

σ
) ≈ −σ

μ

1√
2π

e−
1
2 ( μ

σ )2 . (1)

From (1) it follows that for a given failure probability err the sample must be of
size

n >
−c(p2 − p + q2 − q)

(p − q)2
, (2)

where c = LambertW
(

1
2 err2 π

)
[14] is a small constant depending on the error. As

example we can assume that q = 2p then in order for the attack to be successful
we need a sample of size 3c

p .
After having estimated the failure probability for 2 counters, assuming inde-

pendence, the total error probability errt, that is, the probability of the event
that one of the 8 counters with parameter (n, p1) being smaller than one of the
24 counters with parameters (n, p2), (n, p4), (n, p8) can be bounded as

errt ≤ 1 − (1 − err)8·24.

If we allow an error probability of errt ≤ 0.5, which in light of the strong cover
filter is clearly sufficient, we need err ≤ 1− 0.51/(8·24) ≈ 0.0036. For this c = 8 is
sufficient.

The next step is to find a way to estimate the probabilities pe. Assuming the
cipher is a Markov cipher we can model the propagation of differences through
the cipher as a matrix multiplication of the difference distribution matrices and
the permutation matrices. Considering the difference distribution table for the
whole layer of S-boxes would yield a 264 × 264 matrix. Therefore we determine
the difference distribution matrix which contains only the probabilities for 1 to
1 bit differences, which as it turns out when comparing to experimental data, is
a good approximation. This matrix is of size only 64 × 64. This enables us to
simulate the propagation of 1 to 1 bit differences through a number of rounds
using matrix multiplications. For the resulting matrix an entry (i, j) contains
the probability that given the single, active input bit i after the first layer of
S-boxes, a single output bit j in the second last round will be active. This matrix
can therefore be used to get an estimate for the parameters of the counters. We
determine the probability that given a fixed 1 bit difference after the first round
exactly one S-box is active in the last round (analogously for the inverse). This
can be done by summing over the corresponding matrix entries. Then we use
formula (2) to calculate the number of plaintexts needed to recover at least two
sets De in each direction. Note that in the original attack we do not restrict
ourselves to having a single active S-box in the last round but a limited number
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Fig. 3. Comparison between the medians of the experimental data and the model for
recovering two sets De in each direction. The black line shows the experimental data
while the red (gray) line shows the data from the model. The complexity unit is one
plaintext.

of active S-boxes. Furthermore, we can expect that a single active S-box will
on average not lead to 16 active S-box after two rounds of encryption. Thus we
believe that in practice we can break at least two more rounds of encryption with
the sample size determined by the model, meaning the model yields an upper
bound for the complexity.

The comparison between the experimental data and the modeled data support
this assumption.

To justify the introduced model we implemented the attack for a small num-
ber of rounds (see Section 5). For each number of rounds we sampled 1000 ciphers
in our model to determine the sample size needed to distinguish between the two
distributions. Fig. 3 gives a comparison of the experimental data with that of the
model for the case that we want to recover at least four sets De for all 16 S-boxes.
The black line shows the experimental data and the red line shows the model for
an error of around 0.3% which corresponds to c = 8. The complexity denotes the
logarithm of the number of plaintexts used. As seen, the model seems to give an
upper bound on the complexity of the attack. In some rare cases the difference be-
tween p and q is close to zero, which leads to a very high attack complexity. These
rare cases have a strong influence on the average complexity, hence we considered
the median instead of the mean to estimate the complexity of the attack.

The modeled data suggest that we are able to break up to 28 rounds before
we reach the bound of 264 available plaintexts.

7 Extensions

In this section we outline some possible extensions of our attack. This includes
some further improvements (cf. Section 7.1) as well as attacks on the more
general variant of the cipher where all components in all rounds are chosen
independently and uniformly at random (cf. Section 7.2).
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7.1 Linear Cryptanalysis

In the differential-style attack one hypothesis is that the probability of a char-
acteristic with a single-bit difference at the output of the S-box layer in the first
round is correlated to a single-bit difference at the input to the S-box layer in
the last round or to the number of active S-boxes in the last round. Using a
similar hypothesis for linear characteristics one can mount a linear attack to
extract information about the secret S-boxes. In the differential-style attack one
tries to identify sets of eight pairs of values related to a certain differential. In
a linear-style attack one tries to identify pairs of eight values related to a cer-
tain linear characteristic. It was confirmed in a small number of experiments
on ciphers with a small number of rounds that this approach can be used to
derive information about the S-boxes. One natural future direction of research
is to combine the differential-style attack outline in this paper with a similar
linear-style attack.

7.2 Fully Random PRESENT-Like Ciphers

In this section we consider PRESENT-like ciphers where the S-boxes and the bit
permutations of all rounds are chosen independently and uniformly at random,
that is ciphers given by Algorithm 2.

For such a cipher one would not get information about the inverse S-boxes
like in the case of Maya. Moreover, the S-boxes are not uniquely determined,
cf. Appendix A for more details. One needs to recover all four slender sets De

for each S-boxes. We implemented a series of attacks on such ciphers and the
results show that recovering four sets is indeed possible, but not for all S-boxes.
The following table shows the results of our tests to fully recover one S-box in
the first round. The complexity is the number of chosen plaintexts needed and
is given as the median of 500 tests.

Rounds Complexity Probability
4 212.5 73%
5 215.5 82%
8 224.5 81%

In each test the computation was stopped if not all 4 slender sets where obtained
with 230 structures. The tests are very time-consuming which is why results for
6 and 7 rounds were not implemented.

Summing up, the attack does not seem to be able to fully recover all S-boxes
of the first (or last) round, merely about 80%. However in the remaining cases,
the attack identifies one, two or three sets Se, which means that only a limited
number of choices for these S-boxes remain. Depending on exactly how many
choices of the S-boxes are left, one possible way to proceed is to simply make a
guess, and repeat the attack on a reduced number of rounds. If S-boxes in other
rounds cannot be successfully recovered, the guess might have been wrong. This
is a topic for further research.
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Recovering the Bit Permutations. Once the first S-box layer has been re-
covered, one can start recovering the first bit permutation layer. Here we outline
the technique.

The idea is similar to the method of recovering S-boxes; one encrypts plaintext
pairs differing in (e.g.) two bit positions. Whenever the output difference is
small (e.g., one active S-box), one increments a counter for the pair of positions
differing in the plaintext. This is repeated a number of times for all pairs of bit
positions. One may now assume that the highest counter values correspond to
pairs of bit positions that are mapped to the same S-box input.

This leads to information about which bit positions are mapped to the same
S-box input in the next round. One can also vary three or four bit positions in
order to obtain more information. The complexity of this method has not been
thoroughly investigated, but preliminary results indicate that it is similar to
(if not lower than) the complexity of recovering S-boxes.

8 Conclusion

In this paper a novel differential-style attack was presented and applied to 64-
bit PRESENT-like ciphers with secret components. A variant with 16 secret
S-boxes can be attacked for up to 28 rounds with a data complexity of less than
264. It is interesting to note that the best known attack on PRESENT, a linear
attack, can be used to cryptanalyse up to 26 rounds of PRESENT (which has
publicly known but carefully chosen S-boxes and bit permutation).

Also, the variant where the S-boxes and bit permutations are chosen at ran-
dom for every round can also be attacked with a data complexity of less than
264 for up to 16 rounds.

It is clear that our attacks exploit that there are weak differential properties
for some randomly chosen four-bit S-boxes, and they do not apply to ciphers
where the S-boxes are chosen as in PRESENT. However, a restriction to strong
S-boxes (w.r.t to differential cryptanalysis) would also limit the size of the key.
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A What We Learn about the S-Boxes from the Sets

In this section, we discuss in detail how much we actually learned about an S-box
after recovering one or more sets De. Here we focus on sets for the S-box itself
and not on sets for its inverse. Before doing so, we remark that it is not possible
to recover the S-boxes uniquely when no set for the inverse S-box is given. In
particular, when two S-boxes S and S′ differ by a permutation of the output
bits and by adding a constant after the S-box, in other words, there exists a bit
permutation P and a constant c such that

S′(x) = P (S(x)) + c,

then those S-boxes cannot be distinguished. We therefore call two S-boxes ful-
filling the above relation equivalent.

Lemma 2. Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, and ei ∈ F4
2 we can

construct all sets Dy where y ∈ span(e1, . . . , er).

Proof. If y ∈ span(e1, . . . , er) then there exists a (not unique) chain of values

y0 = ej0 , y1, . . . , ys = y
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such that yi⊕yi+1 = eji for ji ∈ {1, . . . , r}. We can inductively construct the sets
Dyi . First note that we already know the set Dy0 = Dej0

and we can construct
Dyi+1 using the set Dyi and Deji

given that

{a, b} ∈ Dyi⊕eji
⇔ ∃c ∈ F4

2 such that {a, c} ∈ Dyi and {c, b} ∈ Deji
��

Having this technical lemma in place, we can prove the following theorem.

Theorem 3. Let S : F4
2 → F

4
2 be a (bijective) S-box and for e∈ F

4
2 with wt(e) = 1,

De = {{x, y} | S(x) ⊕ S(y) = e}.

Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, up to equivalence, there are

24−r−1∏
i=1

24 − i2r

possibilities for S. More concretely,

1. given 4 sets the S-box is determined uniquely,
2. given 3 sets there are 8 possible S-boxes,
3. given 2 sets there are 384 possible S-boxes, and
4. given 1 set there are 645120 possible S-boxes.

Proof. Assume we are given r sets De1 , . . . , Der . First, up to equivalence, we can
assume that S(0) = 0 and furthermore e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and so
on. We claim that given this information, S is fixed on the set

{x | S(x) ∈ span(e1, . . . , er)}.

For this, let y ∈ span(e1, . . . , er) be given. From Lemma 2 we know that we can
construct the set Dy. As Dy passes the cover filter, there exists a pair {0, x} ∈ Dy

for some x ∈ F4
2. It follows that we found an x ∈ F4

2 such that

S(0) + S(x) = S(x) = y.

More generally, the same argument shows that, given De1 , . . . , Der , fixing
S(x′) = y′ the values of S are fixed for all x such that S(x) is in the coset
y′ ⊕ span(e1, . . . , er). Noting there are 24−r cosets of span(e1, . . . , er) and taking
into account the bijectivity of the S-box, the theorem follows. ��
In particular, the proof of Theorem 3 implies the following.

Corollary 1. The cover filter is necessary and sufficient. That is to say that
given a number of sets De where e runs through a subspace of F

4
2, there exists

an S-box corresponding to these sets if and only if each of the sets De passes the
cover filter.
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B Example Complexities for Maya

Table 1. The log of the complexity (number of texts encrypted or decrypted) of 16 test
runs of the attack on Maya as a function of the number of rounds. The complexities in
italics are extrapolations based on the assumption of a linear relationship between the
number of rounds and the log complexity. The median was computed on the assumption
that non-existent complexities are infinite.

Rounds
Case 6 7 8 9 10 11 12 13 14 15 16

1 14.4 16.2 18.6 21.0 24.3 28.5 31.6 35.5 40.5 46.8
2 14.1 15.6 17.3 19.7 22.0 23.7 26.9 29.1 32.0 33.8 36.0
3 14.3 16.3 17.4 19.5 22.2 24.7 27.4 29.7 31.3 33.6 35.9
4 14.8 16.1 17.6 19.8 22.3 25.3 27.9 30.1 32.1 34.8 36.9
5 14.6 15.7 17.4 19.4 21.4 23.5 26.0 27.6 30.0 31.4 35.7
6 15.0 16.1 18.3 20.2 22.7 25.6 28.7 31.8 34.2 36.3 39.3
7 14.2 15.6 17.7 19.7 22.4 25.4 27.4 29.9 32.6 35.4 37.4
8 14.5 15.7 17.5 19.4 21.5 24.4 26.9 29.6 31.9 35.5 37.1
9 15.2 16.8 19.1 21.1 23.6 26.5 28.7 31.5 36.3 39.0 41.2
10 14.9 16.5 18.1 20.2 23.0 24.5 27.6 29.8 34.7 38.6 38.5
11 14.4 15.6 17.5 19.8 22.1 25.1 27.5 30.5 33.4 37.7 39.4
12 15.0 15.7 17.5 19.9 22.4 25.3 29.1 31.5 34.2 36.1 39.5
13 14.9 15.9 17.1 19.6 21.7 24.4 27.9 29.3 31.8 35.8 36.0
14 14.4 15.6 17.5 19.3 21.9 24.3 27.7 30.3 32.1 35.4 36.7
15 14.4 15.6 17.2 19.5 22.3 24.0 26.6 29.9 33.0 36.5 40.5
16 14.2 15.7 17.4 19.7 22.4 24.9 27.6 30.4 32.9 34.9 37.4

Median 14.4 15.7 17.5 19.7 22.3 24.8 27.6 30.2 32.5 35.6 37.4
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Abstract. The GOST block cipher is the Russian encryption standard
published in 1989. In spite of considerable cryptanalytic efforts over the
past 20 years, a key recovery attack on the full GOST block cipher with-
out any key conditions (e.g., weak keys and related keys) has not been
published yet. In this paper, we show a first single-key attack, which
works for all key classes, on the full GOST block cipher. To construct
the attack, we develop a new attack framework called Reflection-Meet-in-
the-Middle Attack. This approach combines techniques of the reflection
attack and the meet-in-the-middle attack. We apply it to the GOST
block cipher with further novel techniques which are the effective MITM
techniques using equivalent keys on short rounds. As a result, a key can
be recovered with 2225 computations and 232 known plaintexts.

Keywords: block cipher, GOST, single-key attack, reflection attack,
meet-in-the-middle attack, equivalent keys.

1 Introduction

The GOST block cipher [22] is known as the former Soviet encryption standard
GOST 28147-89 which was standardized as the Russian encryption standard in
1989. It is based on a 32-round Feistel structure with 64-bit block and 256-bit
key size. The round function consists of a key addition, eight 4 × 4-bit S-boxes
and a rotation. Since values of S-boxes are not specified in the GOST standard
[22], each industry uses a different set of S-boxes. For example, one of the S-boxes
used in the Central Bank of the Russian Federation is known as in [27].

The GOST block cipher is well-suited for compact hardware implementations
due to its simple structure. Poschmann et al. showed the most compact im-
plementation requiring only 651 GE [24]. Therefore, the GOST block cipher is
considered as one of ultra lightweight block ciphers such as PRESENT [6] and
KATAN family [8], which are suitable for the constrained environments includ-
ing RFID tags and sensor nodes. Note that for the remainder of this paper we
refer to the GOST block cipher as GOST.

Over the past 20 years, several attacks on GOST have been published. A
differential attack on 13-round GOST was proposed by Seki and Kaneko [28]. In
the related-key setting, an attack is improved up to 21 rounds. Ko et al. showed

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 290–305, 2011.
c© International Association for Cryptologic Research 2011
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Table 1. Key recovery attack on GOST

Key setting Type of attack Round Complexity Data Paper

Single key Differential 13 Not given 251 CP [28]

Slide 24 263 263 ACP [2]

Slide 30 2253.7 263 ACP [2]

Reflection 30 2224 232 KP [17]

Reflection-Meet-in-the-Middle 32 2225 232 KP This paper

Single key Slide (2128 weak keys) 32 263 263 ACP [2]

(Weak key) Reflection (2224 weak keys) 32 2192 232 CP [17]

Related key Differential 21 Not given 256 CP [28]

Differential† 32 2244 235 CP [19]

Boomerang ‡ 32 2248 27.5 CP [15]

CP : Chosen plaintext, ACP : Adaptive chosen plaintext, KP : Known plaintext.

† The attack can recover 12 bits of the key with 236 computations and 235 CP.

‡ The attack can recover 8 bits of the key with 27.5 computations and 27.5 CP.

a related-key differential attack on the full GOST [19]. These results work on
only the GOST that employs the S-boxes of the Central Bank of the Russian
Federation [27]. Fleischmann et al. presented a related-key boomerang attack
on the full GOST which works for any S-boxes [15]. As other types of attacks,
Biham et al. showed slide attacks on the reduced GOST [2]. Their attack utilizes
self similarities among round functions of the encryption process, and does not
also depend on used values of S-boxes. Even if an attacker does not know the
values of S-boxes, the 24-round GOST can be attacked by this approach. If the
values are known, this attack can be improved up to 30 rounds. In addition, for
a class of 2128 weak keys, the full GOST can be attacked by this approach. After
that, Kara proposed a reflection attack on 30-round GOST [17]. This attack
also uses self similarities among round functions, and works for any bijective
S-boxes. The difference from the slide attack proposed by Biham et al. [2] is
to use similarities of both encryption and decryption processes. The reflection
attack utilizes these similarities in order to construct fixed points of some round
functions. Moreover, for a class of 2224 weak keys, the full GOST can be attacked
by using the reflection technique.

In spite of considerable cryptanalytic efforts, a key recovery attack on the
full GOST without any key assumptions (e.g., weak keys and related keys) has
not been published so far. Furthermore, a weak-key attack and a related-key
attack are arguable in the practical sense, because of their strong assumptions.
A weak-key attack is generally applicable to very few keys, e.g., in the attack of
[17], the rate of weak keys is 2−32(= 2224/2256). Hence, almost all keys, (2256 −
2224) ≈ 2256 keys, can not be attacked by [17]. Besides, the attacker can not
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even know whether a target key is included in a weak key class or not. A related-
key attack assumes that the attacker can access to the encryption/decryption
under multiple unknown keys such that the relation between them is known
to the attacker. Though this type of attack is meaningful during the design
and certification of ciphers, it does not lead to a realistic threat in practical
security protocols which use the block cipher in a standard way as stated in
[13]. Therefore, the security under the single-key setting is the most important
issue from the aspect of the practical security. In particular, an ultra lightweight
block cipher does not need a security against related-key attacks in many cases.
For example, in low-end devices such as a passive RFID tag, the key may not
be changed in its life cycle as mentioned in [6, 8]. Indeed, KTANTAN supports
only a fixed key [8] and the compact implementation of GOST proposed by
Poschmann et al. also uses a hard-wired fixed key [24]. Therefore, it can be said
that GOST has not been theoretically broken.

Recently, Bogdanov and Rechberger showed a new variant of the Meet-in-the-
Middle (MITM) attack on block ciphers called 3-subset MITM attack [7]; it was
applied to KTANTAN [8]. This attack is based on the techniques of the recent
MITM preimage attacks on hash functions [1, 25]. It seems to be effective for
the block cipher whose key schedule is simple, e.g., a bit or a word permutation.
In fact, the key schedule function of KTANTAN consists of a bit permutation.
Since GOST also has a simple key schedule function, which is a word permu-
tation, the 3-subset MITM attack seems applicable to it. However, it does not
work well on the full GOST, because the key dependency of the full GOST is
stronger than that of KTANTAN due to the iterative use of key words during
many round functions.

Our Contributions. In this paper, we first introduce a new attack framework
called Reflection-Meet-in-the-Middle (R-MITM) Attack ; it is a combination of
the reflection attack and the 3-subset MITM attack. The core idea of this com-
bination is to make use of fixed points of the reflection attack to enhance the
3-subset MITM attack. If some round functions have fixed points, we can prob-
abilistically remove these rounds from the whole cipher. Since this skip using
fixed points allows us to disregard the key bits involved in the removed rounds,
the key dependency is consequently weakened. Thus, our attack is applicable
to more rounds compared to the original 3-subset MITM attack if fixed points
can be constructed with high probability. Then, we apply it to the full GOST
block cipher with further novel techniques which make the MITM approach more
efficient by using equivalent keys on short rounds. As a result, we succeed in con-
structing a first key recovery attack on the full GOST block cipher in the single
key setting. It can recover a key with 2225 computations and 232 known plain-
text/ciphertext pairs. An important point to emphasize is that our attack does
not require any assumptions for a key unlike the previous attacks. In addition,
our attack can be applied to any S-boxes as long as they are bijective. These
results are summarized in Table 1.
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Table 2. Key schedule of GOST

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Key k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Key k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1

Outline of the Paper. This paper is organized as follows. A brief description
of GOST, a 3-subset MITM attack and a reflection attack are given in Section
2. The R-MITM attack is introduced in Section 3. In Section 4, we present a
R-MITM attack on the full GOST. Finally, we present conclusions in Section 5.

2 Preliminaries

In this section, we give a brief description of GOST, a 3-subset MITM attack
and a reflection attack.

2.1 Description of GOST

GOST is a block cipher based on a 32-round Feistel structure with 64-bit block
and 256-bit key size. The F -function consists of a key addition, eight 4 × 4-bit
S-boxes Sj (1 ≤ j ≤ 8) and a 11-bit left rotation (See Fig.1).

<<<11

S 1

S 8

S 2

ki

L i R i

L i+1 R i+1

F - function

Fig. 1. One round of the GOST block cipher

The 256-bit master key K is divided into eight 32-bit words, i.e., K =
(k1, k2, . . . , k8), ki ∈ {0, 1}32. Each ki is used as a round key in each round
function as shown in Table 2.

In the GOST standard [22], the S-boxes are not specified. Each industry uses
a different set of S-boxes. In this paper, we do not care about specific values of
the S-boxes as long as they are bijective.
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2.2 3-Subset MITM Attack

The basic concept of the MITM attack was proposed by Diffie and Helman
[12]. So far, this attack has been applied to several block ciphers [9–11, 13, 14,
16]. Furthermore, over the past few years, this attack has been improved in
a line of preimage attacks on hash functions, and several novel techniques are
introduced, e.g., a partial matching [1] and an initial structure [25]. Recently, by
using these novel techniques, Bogdanov and Rechberger showed a new variant of
MITM attack on block ciphers called 3-subset MITM attack [7]; it was applied
to KTANTAN [8].

This attack consists of two stages: a MITM stage and a key testing stage.
First, the MITM stage filters out part of wrong keys from key candidates by
using MITM techniques. Then, the key testing stage finds a correct key from the
surviving key candidates in a brute force manner.

Let EK : {0, 1}b → {0, 1}b be a block cipher with an l-bit key K and a b-bit
block. Assume that EK is a composition of round functions as follows;

EK(x) = Fkr ◦ Fkr−1 ◦ · · · ◦ Fk1 (x), x ∈ {0, 1}b,

where r is the number of rounds, k1,. . . ,kr are round keys and Fki is the i-th
round function, Fki : {0, 1}b → {0, 1}b. The composition of j − i + 1 functions
starting from i is denoted by FK [i, j] defined as

FK [i, j](x) = Fkj ◦ · · · ◦ Fki(x), 1 ≤ i < j ≤ r.

In the following, we give details of each stage of the 3-subset MITM attack.

MITM stage : Ek(X) is divided into two functions as EK(X) = FK [a + 1, r] ◦
FK [1, a], 1 < a < r − 1 1. Let K1 and K2 be sets of key bits used in FK [1, a] and
FK [a + 1, r], respectively. A0 = K1 ∩ K2 is the common set of key bits used in
both FK [1, a] and FK [a + 1, r]. A1 = K1 \ K1 ∩ K2 and A2 = K2 \ K1 ∩ K2 are
the sets of key bits used in only FK [1, a] and only FK [a + 1, r], respectively. In
this stage, we use only one plaintext/ciphertext pair (P, C).

The procedure of the MITM stage is as follows. Fig. 2 shows the overview of
the MITM stage.

1. Guess a value of A0.
2. Compute v = FK [1, a](P ) for all values of A1 and make a table of (v, A1)

pairs. In this step, 2|A1| pairs are generated, where |Ai| is the bit length of
Ai and 2|Ai| is the number of elements of Ai.

3. Compute u = F−1
K [a + 1, r](C) for all values of A2. In this step, 2|A2| pairs

are generated.

1 As in the attack of KTANTAN [7], by using the partial matching technique, EK is
divided into FK [1, a] and FK [a + t, r], t > 1. However, in this paper, we consider
only the case of t = 1, because we do not use the partial matching.

This copy belongs to 'VANC03'



A Single-Key Attack on the Full GOST Block Cipher 295

FK[1, a] FK[a + 1,  r]
Plaintext Ciphertext

 (A0 , A1)

matching

v uP C

 (A0 , A2)
 K1  K2

Fig. 2. Meet-in-the-middle stage

4. Add key candidates for which the equation v = u is satisfied to the list of
surviving keys.
The number of surviving keys is 2|A1|+|A2|/2b.

5. Repeat 2-4 for each different value of A0. (2|A0| times)

In this stage, 2l−b key candidates survive, because 2|A1|+|A2|/2b×2|A0| = 2l/2b.

Key testing stage : We test surviving keys in a brute force manner by us-
ing additional plaintext/ciphertext pairs.

We evaluate the cost of this attack. The whole attack complexity Ccomp is
estimated as

Ccomp = 2|A0|(2|A1| + 2|A2|)︸ ︷︷ ︸
MITM stage

+ (2l−b + 2l−2b + . . .).︸ ︷︷ ︸
Key testing stage

The number of required plaintext/ciphertext pair is � l
b�. The required memory

is max(2|A1|, 2|A2|), which is the cost of the table used in the MITM stage.
When min(|A1|, |A2|) > 1 the attack is more effective than an exhaustive search.
Therefore, the point of the 3-subset MITM attack is to find independent sets of
master key bits such as A1 and A2.

2.3 Reflection Attack

The reflection attack was first introduced by Kara and Manap [18]; it was applied
to Blowfish [26]. After that, the attack was generalized by Kara [17]. In this
section, we introduce a basic principle of the reflection attack used in our attack.
See [17, 18] for details about the reflection attack.

The reflection attack is a kind of a self-similarity attack such as the slide
attack [4, 5]. Though the reflection attack utilizes similarities of some round
functions of both encryption and decryption processes, the slide attack exploits
similarities among the round functions of only the encryption process. In the
reflection attack, by using these similarities, fixed points of some round functions
are constructed.
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FK[i, j] Fk j+1 Fk j+tFk i-1Fk i-t

Fixed Point

Xin Xout

Fk j+1
-1

Fk j+t
-1

x x

FK[i - t,  j + t]

Fixed Point

Fig. 3. Basic principle of the reflection attack

Let UK(i, j) be the set of fixed points of the function FK [i, j] defined as follows;

UK(i, j) = {x ∈ {0, 1}n | FK [i, j](x) = x}.

The basic principle of the reflection attack is given by the following Lemma.

Lemma 1. [17] Let i and j be integers such that 0 ≤ j − i < i+ j < r. Assume
that Fki−t = F−1

kj+t
for all t : 1 ≤ t < i. If FK [i − t, i − 1](x) ∈ Uk(i, j), then

x ∈ Uk(i − t, j + t) for all t : 1 < t < i. In addition, if x ∈ UK(i − t, j + t) for
certain t : 1 < t < i, then FK [i − t, i − 1](x) ∈ UK(i, j).

From Lemma 1, if the round functions hold the conditions, a local fixed point
is expanded to previous and next rounds as shown in Fig. 3. Roughly speaking,
fixed points of some round functions can be constructed easily in the certain
setting. These fixed points enable us to probabilistically skip the round functions
from a whole cipher.

We give an example to explain this skip in detail. Let i and j be integers such
that 0 < j − i < i + j < r. Assume that Fki−t = F−1

kj+t
for all t : 1 < t < i, and

EK(x) is expressed as follows;

EK(x) = FK [j + i, r] ◦ FK [j + 1, j + i − 1] ◦ FK [i, j] ◦ FK [1, i − 1](x),
= FK [j + i, r] ◦ F−1

K [1, i − 1] ◦ FK [i, j] ◦ FK [1, i − 1](x).

Besides, assuming FK [1, i−1](x) ∈ UK(i, j), then FK [1, j+i−1](x) = x (Lemma
1). Thus EK(x) is expressed as

EK(x) = F [j + i, r](x).

In this case, the round functions FK [1, j + i − 1] can be skipped from EK . The
probability Pref of that above skip occurs for arbitrary x is |UK(i, j)|/2b. If
Pref > 2−b (i.e., |UK [i, j]| > 1), this skip occurs at FK [1, j + i − 1] with higher
probability than a random function.
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3 Reflection-Meet-in-the-Middle Attack

We propose a new attack framework called reflection-meet-in-the-middle (R-
MITM) attack, which is a combination of the reflection attack and the 3-subset
MITM attack. As mentioned in Section 2.2, the point of the 3-subset MITM
attack is to construct independent sets of master key bits. In general, if the
master key bits are used iteratively in each round and the use of key bits is not
biased among rounds2, it seems to be difficult to find the independent sets of
master key bits, because such cipher have the strong key dependency on even
small number of rounds.

To overcome this problem, we utilize the technique of the reflection attack. In
the reflection attack, some rounds satisfying certain conditions can be skipped
from the whole cipher with the probability Pref . From now on, we call this skip
a reflection skip. Since key bits used in skipped round functions can be omitted,
it becomes easier to construct independent sets of master key bits. This is the
concept of the R-MITM attack. In the following, we give the detailed explanation
of the attack.

3.1 Details of the R-MITM Attack

Suppose that EK is expressed as follows;

EK(x) = FK [a3 + 1, r] ◦ FK [a2 + 1, a3] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x),

where 2 < a1 + 1 < a2 < a3 − 1 < r − 2 and the reflection skip occurs at
FK [a2 +1, a3] with the probability Pref . Then, EK can be redescribed as follows
and denoted by E

′
K(x),

E
′
K(x) = FK [a3 + 1, r] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x).

The R-MITM attack consists of three stages; a data collection stage, a R-
MITM stage and a key testing stage. In the following, we explain each stage.

Data collection stage : We collect plaintext/ciphertext pairs to obtain a pair
in which the reflection skip occurs at FK [a2 +1, a3]. Since the probability of this
event is Pref , the number of required plaintext/ciphertext pairs is P−1

ref .

After that, the R-MITM stage and the key testing stage are executed for all
plaintext/ciphertext pairs obtained in the data collection stage.

R-MITM stage : We divide EK into two functions: FK [1, a1] and FK [a1 +
1, r]3. In this stage, we ignore FK [a2 + 1, a3] as follows;

F ′
K [a1 + 1, r] = FK [a3 + 1, r] ◦ FK [a1 + 1, a2],

2 In KTANTAN [8], 6 bits of master key are not used in the first 111 rounds and other
6 bits of master key are also not used in the last 131 rounds. The attack of [7] utilizes
this bias of used key bits among rounds.

3 Though there are many choices of divisions, we use it as an example.
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FK[1, a1]
Plaintext Ciphertext

(A0 , A1)    

matching

v u FK[a1 +1, a2] FK[a3 +1,  r]FK[a2 +1, a3]

Reflection skip
  (Fixed point)

P C

(A0 , A2)    (A0 , A2)    

K1     K2    K2    

Fig. 4. Reflection-meet-in-the-middle stage

assuming that the reflection skip occurs. Let K1 and K2 be sets of key bits
used in FK [1, a1] and F ′

K [a1 + 1, r], respectively. A0 = K1 ∩ K2 is the set of
key bits used in both FK [1, a1] and F ′

K [a1 + 1, r]. A1 = K1 \ K1 ∩ K2 and
A2 = K2 \ K1 ∩ K2 are the sets of key bits used in only FK [1, a1] and only
F ′

K [a1 + 1, r], respectively. Figure 4 illustrates the R-MITM stage.
The procedure of the R-MITM stage is almost same as the MITM stage of

Section 2.2. The difference is that in the R-MITM stage, we assume that re-
flection skip occurs, i.e., FK [a2 + 1, a3] is ignored. After this stage, 2l−b key
candidates survive.

Key testing stage : We test surviving keys in a brute force manner by us-
ing plaintext/ciphertext pairs.

3.2 Evaluation of the R-MITM Attack

We evaluate the cost of the R-MITM attack. The whole attack complexity Ccomp

is estimated as

Ccomp = ((2|A0|(2|A1| + 2|A2|))︸ ︷︷ ︸
R-MITM stage

+ (2l−b + 2l−2b + . . .)︸ ︷︷ ︸
Key testing stage

) × R−1
ref .

The number of required plaintext/ciphertext pair is max(�l/b�, R−1
ref). The

required memory is max(2|A1|, 2|A2|), which is the cost of the table in the R-
MITM stage. When min(2|A1|, 2|A2|, 2b) > (R−1

ref ), the attack is more effective
than an exhaustive search.

Compared with the basic 3-subset MITM attack in Section 2.2, the number
of required plaintext/ciphertext pairs increases, because the R-MITM attack
utilizes the probabilistic event, i.e., reflection skip. In addition, more independent
key bits are needed for the successful attack. However, this attack has a distinct
advantage, which is to be able to skip some round functions by the reflection
skip. Recall that the most important point of the 3-subset MITM attack is
to find independent sets of master key bits. Since the reflection skip enables
us to disregard key bits involved in some round, it obviously becomes easier to
construct such independent sets. Thus, this attack seem to be applicable to more
rounds than the 3-subset MITM attack when the reflection skip occurs with high
probability.
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4 R-MITM Attack on the Full GOST Block Cipher

In this section, we apply the R-MITM attack to the full GOST block cipher [22].
From Table. 2, in full 32 rounds, the master key is iteratively used four times
and all master key bits are involved in every 8 rounds. The basic 3-subset MITM
attack in Section 2.2 is not applicable to the full GOST, because independent
sets of master key bits can not be constructed in any divisions of 32 rounds.
However, by using the R-MITM attack, we can construct independent sets and
mount a key recovery attack on the full GOST.

We first introduce the reflection property of GOST proposed by Kara [17]
to construct the reflection skip. Next, we present effective MITM techniques to
enhance the R-MITM stage. These techniques make use of the equivalent keys
of short round functions. Finally, we evaluate our attack.

4.1 Reflection Property of GOST

The reflection attack on GOST has been proposed by Kara [17]4. The GOST
block cipher EK : {0, 1}64 → {0, 1}64 is expressed as

EK = S ◦ FK [25, 32] ◦ FK [17, 24] ◦ FK [9, 16] ◦ FK [1, 8],
= F−1

K [1, 8] ◦ S ◦ FK [1, 8] ◦ FK [1, 8] ◦ FK [1, 8],

where S is the swap of the Feistel structure.
S has 232 fixed points, because the probability of that the right halves equal

to the left halves is 2−32. From Lemma 1, F−1
K [1, 8] ◦ S ◦ FK [1, 8] also has 232

fixed points, i.e., |UK(17, 32)| = 232. Thus, with the probability Pref = 2−32 (=
(232/264)), FK [17, 32] can be ignored. EK is redescribed as follows and denoted
by E

′
K

E
′
K = FK [1, 8] ◦ FK [1, 8].

Figure 5 shows this reflection skip of GOST.
Therefore, in the data collection stage, we need to collect P−1

ref = 232 plain-
text/ciphertext pairs. In 232 collected pairs, there is a pair in which the reflection
skip occurs, i.e., last 16 rounds can be removed as E

′
K .

4.2 Effective MITM Technique Using Equivalent Keys on Short
Rounds

In the R-MITM stage, we mount the MITM approach on only E
′
K = FK [1, 8] ◦

FK [1, 8] for all 232 collected pairs.
As mentioned in Section 3.2, we need to construct independent sets A1 and A2

which hold the condition, min(2|A1|, 2|A2|) > 232. However, despite the reduction

4 The similar technique for constructing a fixed point is also used in the attacks on
the GOST hash function [20, 21].
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Plaintext Ciphertext
FK[17,  32]

Reflection skip
  (Fixed point)

FK[9,  16]
=FK[1,  8]

FK[1,  8]

R-MITM stage

P C
C

Pref = 2 -32

Fig. 5. Reflection skip of GOST

of rounds by the reflection skip, in the straightforward method, we can not find
such sets in any divisions of 16 rounds, due to the strict condition of independent
sets.

We introduce effective MITM techniques which make use of equivalent keys of
short round functions (i.e., 4 round). The aim of these techniques is to ignore the
first and the last 4 rounds and to mount the MITM approach in only intermediate
8 rounds. These techniques enable us to construct independent sets enough for
the successful attack.

We treat E
′
K as following four-round units;

E
′
K = FK [5, 8] ◦ FK [1, 4] ◦ FK [5, 8] ◦ FK [1, 4].

In the following, we first explain equivalent keys used in our attack. Then, we
present detail of the R-MITM stage using the equivalent keys.

Equivalent Keys on Short Rounds. Define a set of equivalent keys on
FK [i, j] as Z(FK [i, j], x, y) as follows:

Z(FK [i, j], x, y) = {ek ∈ {0, 1}256 | Fek[i, j](x) = y},
where (x, y) ∈ {0, 1}64. Note that the class of keys defined above is the equivalent
keys with respect to only one input/output pair. To put it more concretely, if
equivalent keys ek ∈ Z(FK [i, j], x, y) are used, input x is always transformed to
y in FK [i, j]. For other input/output pairs, these relations do not hold even if
the same equivalent keys are used.

GOST has an interesting property regarding the equivalent keys on short
rounds as described in the following observation.

Observation 1: Given any x and y, Z(FK [1, 4], x, y) and Z(F−1
K [5, 8], x, y) can

be easily obtained, and the number of each equivalent keys is 264.

For FK [1, 4], k1, k2, k3 and k4 are added in each round. Given the values of k1

and k2, the other values of k3 and k4 are determined from FK [1, 2](x) and y as
follows:

k3 = F−1(zL + yL) − zR, (1)
k4 = F−1(zR + yR) − yR, (2)
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F

k1

F

k2

F

k3

F

k4

k1 : guessed
     (2  )32

k2 : guessed
     (2  )32

k3 : determined
   

k4 : determined
 

xL xR

yL yR

zL zR

(k3 = F  (zL + yL) - zR )
-1

(k4 = F  (zR + yR) - yL )
-1

Fig. 6. Equivalent keys of 4 rounds

where F−1 is the inverse of F function, yL and yR are left and right halves of
y, and zL and zR are those of FK [1, 2](x). Since values of (k1, k2) are 64 bits,
the number of Z(FK [1, 4], x, y) is 264. Figure 6 shows this procedure. A similar
property holds for F−1

K [5, 8].
From Observation 1, we can easily obtain 264 equivalent keys of the first and

the last 4 rounds for any inputs and outputs. Moreover, FK [1, 4] and F−1
K [5, 8] use

different master key bits each other, Ka = (k1||k2||k3||k4) and Kb =
(k5||k6||k7||k8), respectively. Thus, Z(FK [1, 4], x, y) and Z(F−1

K [5, 8], x, y) are ex-
pressed by sets of only Ka and Kb as follows;

ZKa(FK [1, 4], x, y) = {eka ∈ {0, 1}128 | Feka [1, 4](x) = y},
ZKb(F−1

K [5, 8], x, y) = {ekb ∈ {0, 1}128 | F−1
ekb

[5, 8](x) = y}.
Since Ka and Kb are independent sets of mater key, ZKa(FK [1, 4], x, y) and
ZKb(F−1

K [5, 8], x, y) are also independent sets.

Detail of the R-MITM Stage using Equivalent Keys. Let S and T be
FK [1, 4](P ) and F−1[5, 8](C), which are input and output values of 8 interme-
diate rounds, i.e., FK [5, 12] = FK [1, 4] ◦ FK [5, 8].

From Observation 1, given values of P , C, S and T , two sets of 264 equivalent
keys, ZKa(FK [1, 4], P, S) and ZKb

(F−1
K [5, 8], C, T ), can be easily obtained.

When ZKa(FK [1, 4], P, S) and ZKb
(F−1

K [5, 8], C, T ) are used, S and T are not
changed. Thus by using these equivalent keys, the first and the last 4 round
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Plaintext Ciphertext
FK[1,  4] FK[5,  8] FK[1,  4]

k1||k2||k3||k4 k5||k6||k7||k8

S T
FK[5,  8]

Ka Kb

P C

Matching

Equivalent keys Equivalent keys
-1

ZKa(F[1, 4], P, S)

ZKa(F[1, 4], P, S) ZKb(F   [5, 8], C, T)

-1ZKb(F   [5, 8], C, T)

v u

Fig. 7. R-MITM stage using equivalent keys

can be ignored, and we can mount the MITM attack between FK [5, 8](S) and
F−1

K [1, 4](T ). The number of elements in each independent set is 264, which is
enough for the successful attack.

The procedure of the R-MITM stage is as follows and illustrated in Fig. 7.

1. Guess the values S and T .
2. Compute v = FK [5, 8](S) with 264 Kb in ZKb

(F−1
K [5, 8], C, T ) and make a

table of (v, Kb) pairs.
3. Compute u = F−1

K [1, 4](T ) with 264 Ka in ZKa(FK [1, 4], P, S).
4. Add key candidates for which the equation v = u is satisfied to the list of

surviving keys. The number of surviving keys is 264+64/264 = 264.
5. Repeat 2-4 with the different values of S and T . (2128 times).

After this procedure, 2192 (=264 × 2128) key candidates survive. These key can-
didates are evaluated in the key testing stage.

The R-MITM stage utilizes equivalent-key sets of ZKa(FK [1, 4], P, S) and
ZKb

(F−1
K [5, 8], C, T ), 0 ≤ S, T < 264, where each set includes 264 elements. For

ZKa(FK [1, 4], P, S), 0 ≤ S < 264, all elements of every set are different, because if
the values of S are different, equivalent keys of FK [1, 4] are surely different from
Eq. (1) and (2) as long as S-boxes are bijective. Thus, ZKa(FK [1, 4], P, S), 0 ≤
S < 264 covers all 2128 (= 264 × 264) values of Ka. A similar property holds
for Kb. Therefore, all possible values for the master key are tested and the set
of surviving key candidates surely contain the correct key if the reflection skip
occurs.

4.3 Evaluation

The whole attack complexity Ccomp is estimated as

Ccomp = ((2128(264 + 264))︸ ︷︷ ︸
R-MITM stage

+ (2256−64 + 2256−128 + . . .)︸ ︷︷ ︸
Key testing stage

) × 232,

= 2225.

The number of required known plaintext/ciphertext pairs is max(�l/b�, R−1
ref) =

max(�256/64�, 232) = 232. The required memory is max(264, 264) = 264, which
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is the cost of the table used in the R-MITM stage. Therefore, this attack can
recover a key with 2225 computations, 232 known plaintext/ciphertext pairs and
264 memory. It is more effective than an exhaustive attack.

5 Conclusion

This paper has presented a first single-key attack on the full GOST block ci-
pher without relying on weak key classes. To build the attack, we introduced a
new attack framework called Reflection-Meet-in-the-Middle Attack, which is the
combination of the reflection and the 3-subset MITM attacks. The advantage
of this attack over the basic 3-subset MITM attack, some rounds can be prob-
abilistically removed from the whole cipher. Since this allows us to disregard
the key bits involved in the removed rounds, it becomes easier to construct the
independent sets of the key bits. Thus, our attack seems to be applicable to more
rounds when the reflection skip occurs with high probability. Then we applied
it to the full GOST block cipher with further novel techniques which make use
of equivalent keys of short round functions (i.e., 4 rounds). These techniques
enable us to mount the effective MITM approach. As a result, we succeeded
in constructing a first key recovery attack on the full GOST without any key
conditions, which works for any bijective S-boxes. Our result shows that GOST
does not have the 256-bit security for all key classes, even if a fixed key is used
such as [24].

The idea of the R-MITM attack seems applicable to other block ciphers in
which the fixed point can be constructed with high probability and its key sched-
ule is simple in the sense that the key dependency is not strong. Furthermore,
the basic principle of the attack does not constrain the reflection property and
fixed points. Other non-random properties of round functions may also be able
to be utilized as the skip techniques, e.g., the strong correlations among round
functions.

Acknowledgments. We would like to thank to Taizo Shirai, Kyoji Shibu-
tani, Özgül Küçük, and anonymous referees for their insightful comments and
suggestions.
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Abstract. We study software performance of authenticated-encryption
modes CCM, GCM, and OCB. Across a variety of platforms, we find
OCB to be substantially faster than either alternative. For example,
on an Intel i5 (“Clarkdale”) processor, good implementations of CCM,
GCM, and OCB encrypt at around 4.2 cpb, 3.7 cpb, and 1.5 cpb, while
CTR mode requires about 1.3 cpb. Still we find room for algorithmic
improvements to OCB, showing how to trim one blockcipher call (most
of the time, assuming a counter-based nonce) and reduce latency. Our
findings contrast with those of McGrew and Viega (2004), who claimed
similar performance for GCM and OCB.

Keywords: authenticated encryption, cryptographic standards, encryp-
tion speed, modes of operation, CCM, GCM, OCB.

1 Introduction

Background. Over the past few years, considerable effort has been spent con-
structing schemes for authenticated encryption (AE). One reason is recognition
of the fact that a scheme that delivers both privacy and authenticity may be
more efficient than the straightforward amalgamation of separate privacy and
authenticity techniques. A second reason is the realization that an AE scheme
is less likely to be incorrectly used than a privacy-only encryption scheme.

While other possibilities exist, it is natural to build AE schemes from block-
ciphers, employing some mode of operation. There are two approaches. In a
composed (“two-pass”) AE scheme one conjoins essentially separate privacy and
authenticity modes. For example, one might apply CTR-mode encryption and
then compute some version of the CBC MAC. Alternatively, in an integrated
(“one-pass”) AE scheme the parts of the mechanism responsible for privacy and
for authenticity are tightly coupled. Such schemes emerged around a decade ago,
with the work of Jutla [21], Katz and Yung [23], and Gligor and Donescu [11].

Integrated AE schemes were invented to improve performance of composed
ones, but it has not been clear if they do. In the only comparative study to
date [32], McGrew and Viega found that their composed scheme, GCM, was
about as fast as, and sometimes faster than, the integrated scheme OCB [36]
(hereinafter OCB1, to distinguish it from a subsequent variant we’ll call OCB2
[35]). After McGrew and Viega’s 2004 paper, no subsequent performance study

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 306–327, 2011.
c© International Association for Cryptologic Research 2011
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scheme ref date ty high-level description

EtM [1] 2000 C Encrypt-then-MAC (and other) generic comp. schemes

RPC [23] 2000 I Insert counters and sentinels in blocks, then ECB

IAPM [21] 2001 I Seminal integrated scheme. Also IACBC

XCBC [11] 2001 I Concurrent with Jutla’s work. Also XECB

� OCB1 [36] 2001 I Optimized design similar to IAPM

TAE [29] 2002 I Recasts OCB1 using a tweakable blockcipher

� CCM [40] 2002 C CTR encryption + CBC MAC

CWC [24] 2004 C CTR encryption + GF(2127−1)-based CW MAC

� GCM [32] 2004 C CTR encryption + GF(2128)-based CW MAC

EAX [2] 2004 C CTR encryption + CMAC, a cleaned-up CCM

� OCB2 [35] 2004 I OCB1 with AD and alleged speed improvements

CCFB [30] 2005 I Similar to RPC [23], but with chaining

CHM [18] 2006 C Beyond-birthday-bound security

SIV [37] 2006 C Deterministic/misuse-resistant AE

CIP [17] 2008 C Beyond-birthday-bound security

HBS [20] 2009 C Deterministic AE. Single key

BTM [19] 2009 C Deterministic AE. Single key, no blockcipher inverse

� OCB3 new 2010 I Refines the prior versions of OCB

Fig. 1. Authenticated-encryption schemes built from a blockcipher. Checks
indicate schemes included in our performance study. Column ty (type) specifies if the
scheme is integrated (I) or composed (C). Schemes EtM, CCM, GCM, EAX, OCB2,
and SIV are in various standards (ISO 19772, NIST 800-38C and 800-38D, RFC 5297).

was ever published. This is unfortunate, as there seems to have been a major
problem with their work: reference implementations were compared against op-
timized ones, and none of the results are repeatable due to the use of proprietary
code. In the meantime, CCM and GCM have become quite important to crypto-
graphic practice. For example, CCM underlies modern WiFi (802.11i) security,
while GCM is supported in IPsec and TLS.

McGrew and Viega identified two performance issues in the design of OCB1.
First, the mode uses m + 2 blockcipher calls to encrypt a message of m =
�|M |/128� blocks. In contrast, GCM makes do with m + 1 blockcipher calls.
Second, OCB1 twice needs one AES result before another AES computation can
proceed. Both in hardware and in software, this can degrade performance. Be-
yond these facts, existing integrated modes cannot exploit the “locality” of coun-
ters in CTR mode—that high-order bits of successive input blocks are usually
unchanged, an observation first exploited, for software speed, by Hongjun Wu [4].
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Given all of these concerns, maybe GCM really is faster than OCB—and, more
generally, maybe composed schemes are the fastest way to go. The existence of
extremely high-speed MACs supports this possibility [3,5,25].

Contributions. We begin by refining the definition of OCB to address the
performance concerns just described. When the provided nonce is a counter, the
mode that we call OCB3 shaves off one AES encipherment per message encrypted
about 98% of the time. In saying that the nonce is a counter we mean that, in
a given session, its top portion stays fixed, while, with each successive message,
the bottom portion gets bumped by one. This is the approach recommended in
RFC 5116 [31, Section 3.2] and, we believe, the customary way to use an AE
scheme. We do not introduce something like a GF(2128) multiply to compensate
for the usually-eliminated blockcipher call, and no significant penalty is paid,
compared to OCB1, if the provided nonce is not a counter (one just fails to save
the blockcipher call). We go on to eliminate the latency that used to occur when
computing the “checksum” and processing the AD (associated data).

Next we study the relative software performance of CCM, GCM, and the
different versions of OCB. We employ the fastest publicly available code for Intel
x86, both with and without Intel’s new instructions for accelerating AES and
GCM. For other platforms—ARM, PowerPC, and SPARC—we use a refined and
popular library, OpenSSL. We test the encryption speed on messages of every
byte length from 1 byte to 1 Kbyte, plus selected lengths beyond. The OCB code
is entirely in C, except for a few lines of inline assembly on ARM and compiler
intrinsics to access byteswap, trailing-zero count, and SSE/AltiVec functionality.

We find that, across message lengths and platforms, OCB, in any variant,
is well faster than CCM and GCM. While the performance improvements from
our refining OCB are certainly measurable, those differences are comparatively
small. Contrary to McGrew and Viega’s findings, the speed differences we observe
between GCM and OCB1 are large and favor OCB1.

As an example of our experimental findings, for 4 KB messages on an Intel i5
(“Clarkdale”) processor, we clock CCM at 4.17 CPU cycles per byte (cpb),
GCM at 3.73 cpb, OCB1 at 1.48 cpb, OCB2 at 1.80 cpb, and OCB3 at 1.48 cpb.
As a baseline, CTR mode runs at 1.27 cpb. See Fig. 2. These implementations
exploit the processor’s AES New Instructions (AES-NI), including “carryless
multiplication” for GCM. The OCB3 authentication overhead—the time the
mode spends in excess of the time to encrypt with CTR—is about 0.2 cpb, and
the difference between OCB and GCM overhead is about a factor of 10. Even
written in C, our OCB implementations provide, on this platform, the fastest
reported times for AE.

The means for refining OCB are not complex, but it took much work to
understand what optimization would and would not help. First we wanted to
arrange that nonces agreeing on all but their last few bits be processed using the
same blockcipher call. To accomplish this in a way that minimizes runtime state
and key-setup costs, we introduce a new hash-function family, a stretch-then-
shift xor-universal hash. The latency reductions are achieved quite differently,
by changes in how the mode defines and operates on the Checksum.
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Fig. 2. Top: Performance of CCM, GCM, and OCB3 on an x86 with AES-NI. The
x-coordinate is the message length, in bytes; the y-coordinate is the measured number
of cycles per byte. From top-to-bottom on the right-hand side, the curves are for
CCM, GCM, and OCB3. The shaded region shows the time for CTR mode. This and
subsequent graphs are best viewed in color. Bottom: Performance of OCB variants
on an x86 with AES-NI. From top-to-bottom, the curves are for OCB2, OCB1, and
OCB3. The shaded region shows the time for CTR mode.

One surprising finding is that, on almost all platforms, OCB2 is slightly slower
than OCB1. To explain, recall that most integrated schemes involve computing
an offset for each blockcipher call. With OCB1, each offset is computed by xoring
a key-dependent value, an approach going back to Jutla [21]; with OCB2, each
offset is computed by a “doubling” in GF(2128). The former approach turns out
to be faster.

During our work we investigated novel ways to realize a maximal period,
software-efficient, 128-bit LFSR; such constructions can also be used to make
the needed offsets. A computer-aided search identified constructions like sending
A ‖B ‖C ‖D to C ‖D ‖B ‖ ((A�1) ⊕ (A�1) ⊕ (D�15)) (where A, B, C, D are
32 bits); see Appendix A. While very fast, such maps are still slower than xoring
a precomputed value. Our findings thus concretize Chakraborty and Sarkar’s
suggestion [6] to improve OCB using a fast, 128-bit, word-oriented LFSR—but,
in the end, we conclude that the idea doesn’t really help. Of course software-
optimized 128-bit LFSRs may have other applications.

All code and data used in this paper, plus a collection of clickable tables and
graphs, are available from the second author’s webpage.
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2 The Mode OCB3

Preliminaries. We begin with a few basics. A blockcipher is a deterministic
algorithm E : K×{0, 1}n →{0, 1}n where K is a finite set and n≥ 1 is a number,
the key space and blocklength. We require EK(·)=E(K, ·) be a permutation for
all K ∈ K. Let D = E−1 be the map from K × {0, 1}n to {0, 1}n defined by
DK(Y ) = D(K, Y ) being the unique point X such that EK(X) = Y .

Following recent formalizations [1,23,34,36], a scheme for (nonce-based) au-
thenticated encryption (with associated-data) is a three-tuple Π = (K, E ,D).
The key space K is a finite, nonempty set. The encryption algorithm E takes in
a key K ∈ K, a nonce N ∈ N ⊆ {0, 1}∗, a plaintext M ∈ M ⊆ {0, 1}∗, and
associated data A ∈ A ⊆ {0, 1}∗. It returns, deterministically, either a ciphertext
C = EN, A

K (M) ∈ C ⊆ {0, 1}∗ or the distinguished value Invalid. Sets N , M, C,
and A are called the nonce space, message space, ciphertext space, and AD space
of Π . The decryption algorithm D takes a tuple (K, N, A, C) ∈ K×N ×A×C
and returns, deterministically, either Invalid or a string M = DN, A

K (C) ∈
M ⊆ {0, 1}∗. We require that DN, A

K (C) = M for any string C = EN, A
K (M)

and that E and D return Invalid if provided an input outside of K×N ×A×M
or K×N ×A×C, respectively. We require |EN,A

K (M)| = |EN,A
K (M ′)| when the

encryptions are strings and |M | = |M ′|. If this value is always |M |+ τ we call τ
the tag length of the scheme.

Definition of OCB3. Fix a blockcipher E : K × {0, 1}128 → {0, 1}128 and a
tag length τ ∈ [0 .. 128]. In Fig. 3 we define the AE scheme Π = OCB3[E, τ ] =
(K, E ,D). The nonce space N is the set of all binary strings with fewer than 128
bits.1 The message space M and AD-space A are all binary strings. The ci-
phertext space C is the set of all strings whose length is at least τ bits. Fig. 3’s
procedure Setup is implicitly run on or before the first call to E or D. The vari-
ables it defines are understood to be global. In the protocol definition we write
ntz(i) for the number of trailing zeros in the binary representation of positive
integer i (eg, ntz(1)=ntz(3)=0, ntz(4)=2), we write msb(X) for the first (most
significant) bit of X , we write A ∧ B for the bitwise-and of A and B, and we
write A�i for the shift of A by i positions to the left (maintaining string length,
leftmost bits falling off, zero-bits entering at the right). At lines 111 and 311 we
regard Bottom as a number instead of a string.

Design rationale. We now explain some of the design choices made for OCB3.
While not a large departure from OCB1 or OCB2, the refinements do help.

Trimming a blockcipher call. OCB1 and OCB2 took m + 2 blockcipher calls to
encrypt an m-block string M : one to map the nonce N into an initial offset Δ;
one for each block of M ; one to encipher the final Checksum. The first of these
is easy to eliminate if one is willing to replace the EK(N) computation by, say,

1 In practice one would either restrict nonces to byte strings of 1–15 bytes, or else
demand that nonces have a fixed length, say exactly 12-bytes. Under RFC 5116, a
conforming AE scheme should use a 12-byte nonce.
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101 algorithm EN A
K (M)

102 if |N |≥128 return Invalid

103 M1 · · ·Mm M∗←M where each
104 |Mi|=128 and |M∗|<128
105 Checksum ← 0128; C ← ε

106 Nonce ← 0127−|N| 1 N
107 Top←Nonce ∧ 1122 06

108 Bottom←Nonce ∧ 0122 16

109 Ktop←EK(Top)
110 Stretch←Ktop ‖ (Ktop ⊕ (Ktop
8)

)
111 Δ ← (Stretch
Bottom)[1..128]
112 for i ← 1 to m do
113 Δ ← Δ ⊕ L[ntz(i)]
114 C

‖← EK(Mi ⊕ Δ) ⊕ Δ
115 Checksum ← Checksum ⊕ Mi

116 if M∗ �= ε then
117 Δ ← Δ ⊕ L∗
118 Pad ← EK(Δ)
119 C

‖← M∗ ⊕ Pad[1 .. |M∗|]
120 Checksum ← Checksum ⊕ M∗ 10∗

121 Δ ← Δ ⊕ L$
122 Final ← EK(Checksum ⊕ Δ)
123 Auth ← HashK(A)
124 Tag ← Final ⊕ Auth
125 T ← Tag[1 .. τ ]
126 return C ‖ T

201 algorithm Setup(K)
202 L∗ ← EK(0128)
203 L$ ← double(L∗)
204 L[0] ← double(L$)
205 for i←1, 2, · · · do L[i]←double(L[i−1])
206 return

211 algorithm double(X)
212 return (X
1) ⊕ (msb(X) · 135)

301 algorithm DN A
K (C)

302 if |N |≥128 or |C|<τ return Invalid

303 C1 · · · Cm C∗ T ← C where each
304 |Ci|=128 and |C∗|<128 and |T |=τ
305 Checksum ← 0128; M ← ε

306 Nonce ← 0127−|N| 1 N
307 Top←Nonce ∧ 1122 06

308 Bottom←Nonce ∧ 0122 16

309 Ktop←EK(Top)
310 Stretch←Ktop ‖ (Ktop ⊕ (Ktop
8)

)
311 Δ ← (Stretch
Bottom)[1..128]
312 for i ← 1 to m do
313 Δ ← Δ ⊕ L[ntz(i)]
314 M

‖← DK(Ci ⊕ Δ) ⊕ Δ
315 Checksum ← Checksum ⊕ Mi

316 if C∗ �= ε then
317 Δ ← Δ ⊕ L∗
318 Pad ← EK(Δ)
319 M

‖← M∗ ← C∗ ⊕ Pad[1 .. |C∗|])
320 Checksum ← Checksum ⊕ M∗ 10∗

321 Δ ← Δ ⊕ L$
322 Final ← EK(Checksum ⊕ Δ)
323 Auth ← HashK(A)
324 Tag ← Final ⊕ Auth
325 T ′ ← Tag[1 .. τ ]
326 if T =T ′ then return M
327 else return Invalid

401 algorithm HashK(A)
402 A1 · · ·Am A∗←A where each
403 |Ai|=128 and |A∗|< 128
404 Sum ← 0128

405 Δ ← 0128

406 for i ← 1 to m do
407 Δ ← Δ ⊕ L[ntz(i)]
408 Sum ← Sum ⊕ EK(Ai ⊕ Δ)
409 if A∗ �= ε then
410 Δ ← Δ ⊕ L∗
411 Sum ← Sum ⊕ EK(A∗ 10∗ ⊕ Δ)
412 return Sum

Fig. 3. Definition of OCB3[E,τ ]. Here E : K × {0, 1}128 → {0, 1}n is a blockcipher
and τ ∈ [0 .. 128] is the tag length. Algorithms E and D are called with arguments
K ∈ K, N ∈ {0, 1}≤127, and M, C ∈ {0, 1}∗.

K1 ·N , the product in GF(2128) of nonce N and a variant K1 of K. The idea has
been known since Halevi [14]. But such a change would necessitate implement-
ing a GF(2128) multiply for just this one step. Absent hardware support, one
would need substantial precomputation and enlarged internal state to see any
savings; not a net win. We therefore compute the initial offset Δ using a different
xor-universal hash function: Δ = HK(N) = (Stretch�Bottom)[1 .. 128] where
Bottom is the last six bits of N and the (128+64)-bit string Stretch is made by
a process involving enciphering N with its last six bits zeroed out. This stretch-
then-shift hash will be proven xor-universal in Section 4.1. Its use ensures that,
when the nonce N is a counter, the initial offset Δ can be computed without a
new blockcipher call 63/64 ≈ 98% of the time. In this way we reduce cost from
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m + 2 blockcipher calls to an amortized m+1.016 blockcipher calls, plus tiny
added time for the hash.

Reduced latency. Assume the message being encrypted is not a multiple of 128
bits; there is a final block M∗ having 1–127 bits. In prior versions of OCB one
would need to wait on the penultimate blockcipher call to compute the Check-
sum and, from it, the final blockcipher call. Not only might this result in pipeline
stalls [32], but if the blockcipher’s efficient implementation needs a long string
to ECB, then the lack of parallelizability translates to extra work. For exam-
ple, Käsper and Schwabe’s bit-sliced AES [22] ECB-encrypts eight AES blocks
in a single shot. Using this in OCB1 or OCB2 would result in enciphering 24
blocks to encrypt a 100-byte string—three times more than what “ought” to be
needed—since twice one must wait on AES output to form the next AES input.
In OCB3 we restructure the algorithm so that the Checksum never depends on
any ciphertext. Concretely, Checksum = M1 ⊕M2 ⊕Mm−1 ⊕Mm10∗ for a short
final block, and Checksum = M1 ⊕ M2 ⊕Mm−1 ⊕Mm for a full final block. The
fact that you can get the same Checksum for distinct final blocks is addressed
by using different offsets in these two cases.

Incrementing offsets. In OCB1, each noninitial offset is computed from the prior
one by xoring some key-derived value; the ith offset is constructed by Δ ←
Δ⊕L[ntz(i)]. In OCB2, each noninitial offset is computed from the prior one by
multiplying it, again in GF(2128), by a constant: Δ←(Δ�1)⊕(msb(Δ)·135), an
operation that has been called doubling. Not having to go to memory or attend
to the index i, doubling was thought to be faster than the first method. In our
experiments, it is not. While doubling can be coded in five Intel x86-64 assembly
instructions, it still runs more slowly. In some settings, doubling loses big: it is
expensive on 32-bit machines, and some compilers do poorly at turning C/C++
code for doubling into machine code that exploits the available instructions.
On Intel x86, the 128-bit SSE registers lack the ability to be efficiently shifted
one position to the left. Finally, the doubling operation is not endian neutral:
if we must create a bit pattern in memory to match the sequence generated
by doubling (and AES implementations generally do expect their inputs to live
in memory) we will effectively favor big-endian architectures. We can trade this
bias for a little-endian one by redefining double() to include a byteswap. But one
is still favoring one endian convention over the other, and not just at key-setup
time. See Appendix A for some of the alternatives to repeated doubling that we
considered.

Further design issues. Unlike OCB1 and OCB2, each 128-bit block of plaintext
is now processed in the same way whether or not it is the final 128 bits. This
change facilitates implementing a clean incremental API, since one is able to
output each 128-bit chunk of ciphertext after receiving the corresponding chunk
of plaintext, even if it is not yet known if the plaintext is complete.

All AD blocks can now be processed concurrently; in OCB2, the penultimate
block’s output was needed to compute the final block’s input, potentially creating
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pipeline stalls or inefficient use of a blockcipher’s multi-block ECB interface.
Also, each 128-bit block of AD is treated the same way if it is or isn’t the
message’s end, simplifying the incremental provisioning of AD.

We expect the vast majority of processors running OCB3 will be little-endian;
still, the mode’s definition does nothing to favor this convention. The issue arises
each time “register oriented” and “memory oriented” values interact. These are
the same on big-endian machines, but are opposite on little-endian ones. One
could, therefore, favor little-endian machines by building into the algorithm byte
swaps that mimic those that would occur naturally each time memory and reg-
ister oriented data interact. We experimentally adapted our implementation to
do this but found that it made very little performance difference. This is due,
first, to good byte reversal facilities on most modern processors (eg, pshufb can
reverse 16 bytes on our x86 in a single cycle). It is further due to the fact that
OCB3’s table-based approach for incrementing offsets allows for the table to be
endian-adjusted at key setup, removing most endian-dependency on subsequent
encryption or decryption calls. Since it makes little difference to performance,
and big-endian specifications are conceptually easier, OCB3 does not make any
gestures toward little-endian orientation.

A low-level choice where OCB and GCM part ways is in the representation of
field points. In GCM the polynomial a127x127 + · · ·a1x+a0 corresponds to string
a0 . . . a127 rather than a127 . . . a0. McGrew and Viega call this the little-endian
representation, but, in fact, this choice has nothing to do with endianness. The
usual convention on machines of all kinds is that the msb is the left-most bit
of any register. Because of this, GCM’s “reflected-bit” convention can result in
extra work to be performed even on Intel chips having instructions specifically
intended for accelerating GCM [12,13]. Among the advantages of following the
msb-first convention is that a left shift by one can be implemented by adding a
register to itself, an operation often faster than a logical shift.

Security of OCB3. First we provide our definitions. Let Π = (K, E ,D)
be an AE scheme. Given an adversary (algorithm) A, we let Advpriv

Π (A) =
Pr[K $← K : AEK(·,·,·) ⇒ 1]−Pr[A$(·,·,·) ⇒ 1] where queries of $(N, A, M) return
a uniformly random string of length |EN,A

K (M)|. We demand that A never asks
two queries with the same first component (the N -value), that it never ask a
query outside of N ×A×M, and that it never repeats a query. Next we define
authenticity. For that, let Advauth

Π (A) = Pr[K $← K : AEK(·,·,·) forges] where we
say that the adversary forges if it outputs a value (N, A, C) ∈ N×A×C such that
DN,A

K (C) �= Invalid yet there was no prior query (N, A, M ′) that returned C.
We demand that A never asks two queries with the same first component (the
N -value), never asks a query outside of N ×A×M, and never repeats a query.

When E : K × {0, 1}n → {0, 1}n is a blockcipher define Adv±prp
E (A) =

Pr[AEK(·), E−1
K (·) ⇒ 1] − Pr[Aπ(·), π−1(·) ⇒ 1] where K is chosen uniform from K

and π(·) is a uniform permutation on {0, 1}n. Define Advprp
E (A) = Pr[AEK(·) ⇒

1] − Pr[Aπ(·) ⇒ 1] by removing the decryption oracle. The ideal blockcipher of
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blocksize n is the blockcipher Bloc[n] : K × {0, 1}n → {0, 1}n where each key K
names a distinct permutation.

The security of OCB3 is given by the following theorem. We give the result in
its information-theoretic form. Passing to the complexity-theoretic setting, where
the idealized blockcipher Bloc[n] is replaced by a conventional blockcipher secure
as a strong-PRP, is standard.

Theorem 1. Fix n = 128, τ ∈ [0 .. n], and let Π = OCB3[E, τ ] where E =
Bloc[n] is the ideal blockcipher on n bits. If A asks encryption queries that en-
tail σ total blockcipher calls, then Advpriv

Π (A) ≤ 6 σ2/2n. Alternatively, if A

asks encryption queries then makes a forgery attempt that together entail σ total
blockcipher calls, then Advauth

Π (A) ≤ 6σ2/2n + (2n−τ )/(2n − 1) . �

When we speak of the number of blockcipher calls entailed we are adding up the
(rounded-up) blocklength for all the different strings output by the adversary
and adding in q+2 (q =number of queries), to upper-bound blockcipher calls for
computing L∗ and the initial Δ values. Main elements of the proof are described
in Section 4; see the full paper for further details [26].

3 Experimental Results

Scope and codebase. We empirically study the software performance of OCB3,
and compare this with state-of-the-art implementations of GCM, which deliv-
ers the fastest previously reported AE times. Both modes are further compared
against CTR, the fastest privacy-only mode, which makes a good baseline for
answering how much extra one pays for authentication. Finally, we consider
CCM, the first NIST-approved AE scheme, and also OCB1 and OCB2, which
are benchmarked to show how the evolution of OCB has affected performance.

Intensively optimized implementations of CTR and GCM are publicly avail-
able for the x86. Käsper and Schwabe hold the speed record for 64-bit code with
no AES-NI, reporting peak rates of 7.6 and 10.7 CPU cycles per byte (cpb) for
CTR and GCM [22]. With AES-NI, developmental versions of OpenSSL achieve
1.3 cpb for CTR [33] and 3.3 cpb for GCM.2 These various results use different
x86 chips and timing mechanisms. Here we use the Käsper-Schwabe AES, CTR,
and GCM, the OpenSSL CTR, CCM, and GCM, augment the collection with
new code for OCB, and compare performance on a single x86 and use a common
timing mechanism, giving the fairest comparison to date.

The only non-proprietary, architecture-specific non-x86 implementations for
AES and GCM that we could find are those in OpenSSL. Although these im-
plementations are hand-tuned assembly, they are designed to be timing-attack
resistant, and are therefore somewhat slow. This does not make comparisons
with them irrelevant. OCB is timing-attack resistant too (assuming the under-
lying blockcipher is), making the playing field level. We adopt the OpenSSL

2 Andy Polyakov, personal communication, August 27, 2010. The fastest published
AES-NI time for GCM is 3.5 cpb on 8KB messages, from Gueron and Kounavis [13].
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implementations for non-x86 comparisons and emphasize that timing-resistant
implementations are being compared, not versions written for ultimate speed.

The OCB1 and OCB2 implementations are modifications of our OCB3 im-
plementation, and therefore are similarly optimized. These implementations are
in C, calling out to AES. No doubt further performance improvements can be
obtained by rewriting the OCB code in assembly.

Hardware and software environments. We selected five representative
instruction-set architectures: (1) 32-bit x86, (2) 64-bit x86, (3) 32-bit ARM,
(4) 64-bit PowerPC, and (5) 64-bit SPARC. Collectively, these architectures
dominate the workstation, server, and portable computing marketplace. The x86
processor used for both 32- and 64-bit tests is an Intel Core i5-650 “Clarkdale”
supporting the AES-NI instructions. The ARM is a Cortex-A8. The PowerPC
is a 970fx. The SPARC is an UltraSPARC IIIcu. Each runs Debian Linux 6.0
with kernel 2.6.35 and GCC 4.5.1. Compilation is done with -O3 optimization,
-mcpu or -march set according to the host processor, and -m64 to force 64-bit
compilation when needed.

Testing methodology. The number of CPU cycles needed to encrypt a mes-
sage is divided by the length of the message to arrive at the cost per byte to
encrypt messages of that length. This is done for every message length from 1
to 1024 bytes, as well as 1500 and 4096 bytes. So as not to have performance re-
sults overly influenced by the memory subsystem of a host computer, we arrange
for all code and data to be in level-1 cache before timing begins. Two timing
strategies are used: C clock and x86 time-stamp counter. In the clock version,
the ANSI C clock() function is called before and after repeatedly encrypting
the same message, on sequential nonces, for a little more than one second. The
clock difference determines how many CPU cycles were spent on average per
processed byte. This method is highly portable, but it is time-consuming when
collecting an entire dataset. On x86 machines there is a “time-stamp counter”
(TSC) that increments once per CPU cycle. To capture the average cost of
encryption—including the more expensive OCB3 encryptions that happen once
every 64 calls—the TSC is used to time encryption of the same message 64 times
on successive counter-based nonces. The TSC method is not portable, working
only on x86, but is fast. Both methods have their potential drawbacks. The
clock method depends on the hardware having a high-resolution timer and the
OS doing a good job of returning the time used only by the targeted process.
The TSC read instruction might be executed out of order, in some cases it has
high latency, and it continues counting when other processes run.3 In the end,
we found that both timing methods give similar results. For example, in the

3 To lessen these problems we read the TSC once before and after encrypting the
same message 65 times, then read the TSC once before and after encrypting the
same message once more. Subtracting the second timing from the first gives us
the cost for encrypting the message 64 times, and mitigates the out-of-order and
latency problems. To avoid including context-switches, we run experiments multiple
times and keep only the median timing.
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x86-64 AES-NI

Mode T4K TIPI Size Init

CCM 4.17 4.57 512 265

GCM 3.73 4.53 656 337

OCB1 1.48 2.08 544 251

OCB2 1.80 2.41 448 185

OCB3 1.48 1.87 624 253

CTR 1.27 1.37 244 115

x86-32 AES-NI

Mode T4K TIPI Size Init

CCM 4.18 4.70 512 274

GCM 3.88 4.79 656 365

OCB1 1.60 2.22 544 276

OCB2 1.79 2.42 448 197

OCB3 1.59 2.04 624 270

CTR 1.39 1.52 244 130

x86-64 Käsper-Schwabe

Mode T4K TIPI Size Init

GCM 22.4 26.7 1456 3780

GCM-8K 10.9 15.2 9648 2560

OCB1 8.28 13.4 3008 3390

OCB2 8.55 13.6 2912 3350

OCB3 8.05 9.24 3088 3480

CTR 7.74 8.98 1424 1180

ARM Cortex-A8

Mode T4K TIPI Size Init

CCM 51.3 53.7 512 1390

GCM 50.8 53.9 656 1180

OCB1 29.3 31.5 672 1920

OCB2 28.5 31.8 576 1810

OCB3 28.9 30.9 784 1890

CTR 25.4 25.9 244 236

PowerPC 970

Mode T4K TIPI Size Init

CCM 75.7 77.8 512 1510

GCM 53.5 56.2 656 1030

OCB1 38.2 41.0 672 2180

OCB2 38.1 41.1 576 2110

OCB3 37.5 39.6 784 2240

CTR 37.5 37.8 244 309

UltraSPARC III

Mode T4K TIPI Size Init

CCM 49.4 51.7 512 1280

GCM 39.3 41.5 656 904

OCB1 25.5 27.7 672 1720

OCB2 24.8 27.0 576 1700

OCB3 25.0 26.5 784 1730

CTR 24.1 24.4 244 213

Fig. 4. Empirical performance of AE modes. For each architecture we give time
to encrypt 4KB messages (in CPU cycles per byte), time to encrypt a weighted basket
of message lengths (IPI, also in cpb), size of the implementation’s context (in bytes),
and time to initialize key-dependent values (in CPU cycles). Next we graph the same
data, subtracting the CTR time and dropping the curves for OCB1 and OCB2, which
may be visually close to that of OCB3. The CCM and GCM curves are visually hard
to distinguish in the x86-64 AES NI, x86-32 AES NI, and ARM Cortex-A8 graphs.

eighteen x86 test runs done for this paper, the Internet Performance Index val-
ues computed by the two methods varied by no more than 0.05 cpb 10 times, no
more than 0.10 cpb 15 times, and no more than 0.20 cpb all 18 times.
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Results. Summary findings are presented in Figs. 2 and 4. On all architectures
and message lengths, OCB3 is significantly faster than GCM and CCM. Ex-
cept on very short messages, it is nearly as fast as CTR. On x86, GCM’s most
competitive platform, OCB3’s authentication overhead (its cost beyond CTR
encryption) is 4–16%, with or without AES-NI, on both an Internet Perfor-
mance Index (IPI)4 and 4KB message length basis. In all our tests, CCM never
has IPI or 4KB rates better than GCM, coming close only when small registers
make GCM’s multiplications expensive, or AES-NI instructions speed CCM’s
block encipherments. Results are similar on other architectures. The overhead
of OCB3 does not exceed 12% that of GCM or CCM on PowerPC or SPARC,
or 18% on ARM, when looking at either IPI or 4KB message encryption rates.

To see why OCB3 does so well, consider that there are four phases in OCB3
encryption: initial offset generation, encryption of full blocks, encryption of a
partial final block (if there is one), and tag generation. On all but the shortest
messages, full-block processing dominates overall cost per byte. Here OCB3, and
OCB1, are particularly efficient. An unrolled implementation of, say, four blocks
per iteration, will have, as overhead on top of the four blockcipher calls and the
reads and writes associated to them: 16 xor operations (each on 16-byte words),
1 ntz computation, and 1 table lookup of a 16-byte value. On x86, summing the
latencies of these 18 operations—which ignores the potential for instruction-level
parallelism (ILP)—the operations require 23 cycles, or 0.36 cpb. In reality, on
64-bit x64 using AES-NI, we see CTR taking 1.27 cpb on 4KB messages while
OCB3 uses 1.48, an overhead of 0.21 cpb, the savings coming from the ILP.

Short messages are optimized for too. When there is little or no full-block
processing, it is the other three phases of encryption that determine performance.
One gets a sense of the cost of these by looking at the cost to encrypt a single
byte. On x86, OpenSSL’s AES-NI based CTR implementation does this in 86
cycles, while CCM, GCM, and OCB3 use 257, 354, and 249 cycles, respectively.
CCM remains competitive with OCB3 only for very short strings. On 64-bit x86
without AES-NI, using Käsper-Schwabe’s bit-sliced AES that processes eight
blocks at once, OCB3’s performance lead is much greater, as its two blockcipher
calls can be computed concurrently, unlike CCM and GCM. In this scenario,
single-byte encryption rates for CCM, GCM, OCB3, CTR are 2600, 2230, 1080,
1010 cycles. On the other three architectures we see the following single-byte
encryption times for (CCM, GCM, OCB3; CTR): ARM (1770, 1950, 1190; 460),
PowerPC (2520, 1860, 1450; 309), and SPARC (1730, 1520, 1770; 467).

With hardware support making AES very cheap, authentication overhead
becomes more prominent. AES-NI instructions enable AES-128 throughput of
around 20 cycles per block. VIA’s xcrypt assembly instruction is capable of 10

4 The IPI is a weighted average of timings for messages of 44 bytes (5%), 552 bytes
(15%), 576 bytes (20%), and 1500 bytes (60%) [32]. It is based on Internet backbone
studies from 1998. We do not suggest that the IPI reflects a contemporary, real-
world distribution of message lengths, only that it is useful to have some metric
that attends to shorter messages and those that are not a multiple of 16 bytes. Any
metric of this sort will be somewhat arbitrary in its definition.
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cycles per block on long ECB sequences [39]. Speeds like these can make authen-
tication overhead more expensive than encryption. With the Käsper-Schwabe
code (no AES-NI), for example, on an IPI basis, OCB3 overhead is only 3% of
encryption cost, but under AES-NI it rises to 27%. Likewise, GCM overhead
rises from 41% to 70%. One might think CCM would do well using AES-NI
since its overhead is mostly blockcipher calls, but its use of (serial) CBC for
authentication reduces AES throughput to around 60 cycles per block, causing
authentication overhead of about 70%.5

As expected, OCB1 and OCB3 long-message performance is the same due
to having identical full-block processing. OCB2 is slower on long messages on
all tested platforms but SPARC (computing ntz is slow on SPARC). With a
counter-based nonce, OCB3 computes its initial encryption offset using a few
bitwise shifts of a cached value rather than generating it with a blockcipher
as both OCB1 and OCB2 do. This results in significantly improved average
performance for encryption of short messages. The overall effect is that on an
IPI basis on, say, 64-bit x86 using AES-NI, OCB3’s authentication overhead is
only 65% of that for OCB1 and only 40% of that for OCB2. When the provided
nonce is not a counter, OCB3 performance is, in most of our test environments,
indistinguishable from that of OCB1.

4 Proof of Security for OCB3

We describe three elements in the proof of OCB3’s security: (1) the new xor-
universal hash function it employs; (2) the definition and proof for a simple TBC
(tweakable blockcipher) based generalization of OCB3; and (3) the proof that
the particular TBC used by OCB3 is good.

4.1 Stretch-then-Shift Universal Hash

A new hash function H underlies the mapping of the low-order bits of the nonce
to a 128-bit string (lines 108, 110, and 111 of Fig. 3). While an off-the-shelf hash
would have worked alright, we were able to do better for this step. We start with
the needed definitions.

Definition. Let K be a finite set and let H : K × X → {0, 1}n be a function.
We say that H is strongly xor-universal if for all distinct x, x′ ∈ X we have
that HK(x) ⊕ HK(x′) is uniformly distributed in {0, 1}n and, also, HK(x) is
uniformly distributed in {0, 1}n for all x ∈ X . The first requirement is the usual
definition for H being xor-universal; the second we call universal-1.
5 Intel released their Sandy Bridge microarchitecture January 2011, too late for a

thorough update of this paper. Sandy Bridge increases both AES throughput and
latency. Under Sandy Bridge, OCB and CTR will be substantially faster (likely
under 1.0 cpb on long messages) because their work is dominated by parallel AES
invocations. GCM will be just a little faster because most of its time is spent in
authentication, which does not benefit from Sandy Bridge. CCM will be slower
because longer latencies negatively affect CBC authentication.
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The technique. We aim to construct strongly xor-universal hash-functions
H : K × X → {0, 1}n where K = {0, 1}128, X = [0 ..domSize − 1], and n = 128.
We want domSize to be at least some modest-size number, say domSize ≥ 64,
and intend that computing HK(x) be almost as fast as doing a table lookup.
Fast computation of H should not require any large table, nor the preprocessing
of K. Our desire for extreme speed in the absence of preprocessing and big tables
rules out methods based on GF(2128) multiplication, the obvious first attempt.

The method we propose is to stretch the key K into a longer string stretch(K),
and then extract its bits x+1 to x+128. Symbolically, HK(x) = (stretch(K))[x+
1 .. x + 128] where S[a .. b] denotes bits a through b of S, indexing beginning
with 1. Equivalently, HK(x) = (stretch(K)�x)[1 .. 128]. We call this a stretch-
then-shift hash.

How to stretch K? It seems natural to have stretch(K) begin with K, so let’s
assume that stretch(K) = K ‖ s(K) for some function s. It’s easy to see that
s(K)=K and s(K)�c won’t work, but s(K) = K⊕(K�c), for some constant c,
looks plausible for accommodating modest-sized domain. We now demonstrate
that, for well-chosen c, this function does the job.

Analysis. To review, we are considering Hc
K(x) = (Stretch�x)[1 .. 128] where

Stretch = stretch(K) = K ‖ (K ⊕ (K�c)) and c ∈ [0 .. 127]. We’d like to know
the maximal value of domSize for which HK(x) is xor-universal on the domain
X = [0 .. domSize(c)−1]. This can be calculated by a computer program, as we

now explain. Fix c and consider the 256× 128 entry matrix A =
(
I
J

)
where I is

the 128×128 identity matrix and J is the 128×128-bit matrix for which Jij = 1
iff j = i or j = i + c. Let Ai denote the 128 × 128 submatrix of A that includes
only A’s rows i to i + 127. Then Hc

K(x) = Ax+1K, the product in GF(2) of
the matrix Ai+1 and the column vector K. Let Bi,j = Ai + Aj be the indicated
128× 128 matrix, the matrix sum over GF(2). We would like to ensure that, for
arbitrary 0 ≤ i < j < domSize(c) and a uniform K ∈ {0, 1}128 that the 128-
bit string Hc

K(i) + Hc
K(j) is uniform—which is to say that Ai+1K + Aj+1K =

(Ai+1 + Aj+1)K = Bi+1,j+1K is uniform. This will be true if and only if Bi,j

is invertible in GF(2) for all 1 ≤ i < j ≤ domSize(c). Thus domSize(c) can
be computed as the largest number domSize(j) such that Bi,j is full rank, over
GF(2), for all 1 ≤ i < j ≤ domSize(j). Recalling the universal-1 property we
also demand that Ai have full rank for all 1 ≤ i ≤ domSize(c). Now for any c,
the number of matrices Ai,j to consider is at most 213, and finding the rank in
GF(2) of that many 128 × 128 matrices is a feasible calculation.

Our results are tabulated in Fig. 5. The most interesting cases are H5 and H8,
which are strongly xor-universal on X = [0 .. 123] and X = [0 .. 84], respectively.
We offer no explanation for why these functions do well and various other Hc

do not. As both H5 and H8 work on [0 .. 63] we select the latter map for use in
OCB3 and single out the following result:

Lemma 1. Let HK(x) be the first 128 bits of Stretch�x where Stretch =
K ‖ (K ⊕ (K�8)), |K| = 128, x ∈ [0 .. 63]. Then H is strongly xor-universal. �
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c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

domSize(c) 3 15 7 3 124 7 3 85 120 3 118 63 3 31 63 3 7 31 3 7

Fig. 5. Stretch-then-shift hash. Largest X =[0 .. domSize(c)−1] such that Hc
K(x)=

(Stretch(K)�x)[1 .. 128] is strongly xor-universal when c∈ [1 .. 16], K∈{0, 1}128, x∈X ,
and Stretch(K)=K ‖ (K ⊕ (K�c)).

Efficiency. On 64-bit computers, assuming K ‖ (K ⊕ (K�8)) is precomputed
and in memory, the value of HK(x) can be computed by three memory loads and
two multiprecision shifts, requiring fewer than ten cycles on most architectures.
If only K is in memory then the first 64 bits of K⊕(K�8) can be computed with
three additional assembly instructions. In the absence of a preprocessed table
or special hardware-support, a method based on GF(2128) multiplies would not
fare nearly as well.

Computing successive Hc
K values requires a single extended-precision shift,

making stretch-then-shift a reasonable approach for incrementing offsets. Unfor-
tunately, it is not endian-neutral.

4.2 The TBC-Based Generalization of OCB3

Following the insight of Liskov, Rivest, and Wagner [29], OCB3 can be un-
derstood as an instantiation of an AE scheme that depends on a tweakable
blockcipher (TBC). This is a deterministic algorithm Ẽ having signature Ẽ :
K×T ×{0, 1}n →{0, 1}n where K and T are sets and n ≥ 1 is a number—the key
space, tweak space, and blocklength, respectively. We require ẼT

K(·) = Ẽ(K, T, ·)
be a permutation for all K ∈ K and T ∈ T . Write D̃ = Ẽ−1 for the map
from K × T × {0, 1}n to {0, 1}n defined by D̃T

K(Y ) = D̃(K, T, Y ) being the
unique X such that ẼT

K(X) = Y . The ideal TBC for a tweak set T and block-
size n is the blockcipher Bloc[T , n] : K×T × {0, 1}n → {0, 1}n where the keys
name distinct permutations for each tweak T . For T = T ± ∪T +, T ± ∩T + = ∅,
let Advprp[T ±]

Ẽ
(A) = Pr[K $← K : AẼK(·,·), D̃K(·,·) ⇒ 1] − Pr[Aπ(·,·), π−1(·,·) ⇒ 1]

where π is chosen uniformly from Bloc[T , n] and adversary A is only allowed to
ask decryption queries (T, Y ) with T ∈ T ±. Write Adv±prp

Ẽ
(A) for Advprp[T ]

Ẽ
(A)

and Advprp

Ẽ
(A) for Advprp[∅]

Ẽ
(A). Our definition unifies PRP and strong-PRP

security, allowing forward queries for all tweaks and backwards queries for those
in T ±. A conventional blockcipher can be regarded as a TBC with a singleton
tweak space.

The ΘCB3 scheme. Fix an arbitrary set of nonces N ; for concreteness, say
N = {0, 1}<128. Define from this set the corresponding tweak space T by

T = N ×N1 ∪ N ×N0×{∗} ∪ N ×N0×{$} ∪ N ×N0×{∗$} ∪ N1 ∪ N0×{∗}

where N1 and N0 are the positive and nonnegative integers, respectively. Tweaks,
it can be seen, are of six mutually exclusive “types.” Tweaks of the first type are
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101 algorithm EN, A
K (M)

102 if N �∈ N then return Invalid

103 M1 · · ·Mm M∗←M where each
104 |Mi|=n and |M∗|<n
105 Checksum ← 0n, C∗ ← ε
106 for i ← 1 to m do

107 Ci ← Ẽ N i
K (Mi)

108 Checksum ← Checksum ⊕ Mi

109 if M∗ =ε then Final← Ẽ N m $
K (Checksum)

111 else Pad ← Ẽ N m ∗
K (0n)

111 C∗ ← M∗ ⊕ Pad[1 .. |M∗|]
112 Checksum ← Checksum ⊕ M∗ 10∗

113 Final ← Ẽ N m ∗ $
K (Checksum)

114 Auth ← HashK(A)
115 Tag ← Final ⊕ Auth
116 T ← Tag[1 .. τ ]
117 return C1 · · · Cm C∗ ‖ T

301 algorithm HashK(A)
302 Sum ← 0n

303 A1 · · ·Am A∗←A for |Ai|=n, |A∗|< n
304 for i ← 1 to m do

305 Sum ← Sum ⊕ Ẽ i
K(Ai)

306 if A∗ �= ε then
307 Sum ← Sum ⊕ Ẽ m ∗

K (A∗ 10∗)
308 return Sum

201 algorithm DN,A
K (C)

202 if N �∈ N or |C| < τ then return Invalid

203 C1 · · ·CmC∗ T ←C where each
204 |Ci|=n, |C∗|<n, and |T |=τ
205 Checksum ← 0n, M∗ ← ε
206 for i ← 1 to m do

207 Mi ← D̃N i
K (Ci)

208 Checksum ← Checksum ⊕ Mi

209 if C∗ =ε then Final ← Ẽ N m $
K (Checksum)

211 else Pad ← Ẽ N m ∗
K (0n)

211 M∗ ← C∗ ⊕ Pad[1 .. |C∗|]
212 Checksum ← Checksum ⊕ M∗ 10∗

213 Final ← Ẽ N m ∗ $
K (Checksum)

214 Auth ← HashK(A)
215 Tag ← Final ⊕ Auth
216 T ′ ← Tag[1 .. τ ]
217 if T = T ′ then return M1 · · ·Mm M∗
218 else return Invalid

Fig. 6. Definition of ΘCB3[Ẽ,τ ]. Here Ẽ : N × T × {0, 1}n → {0, 1}n is a tweakable
blockcipher and τ ∈ [0 .. n] is the tag length. We have that OCB3[E, τ ] = ΘCB3[Ẽ, τ ]
for an appropriately chosen Ẽ.

in the set T ± = N×N1. Omitting parenthesis and commas when writing tweaks,
TBC calls will look like Ẽ N i

K (X), Ẽ N i ∗
K (X), Ẽ N i $

K (X), Ẽ N i ∗ $
K (X), Ẽ i

K(X), or
Ẽ i ∗

K (X). Now given such a TBC Ẽ : K × T × {0, 1}n → {0, 1}n and given a tag
length τ ∈ [0 .. n], we construct the AE scheme Π = ΘCB3[Ẽ, τ ] = (K, E ,D) as
defined in Fig. 6. The scheme’s nonce space is N , the message space is M =
{0, 1}∗, the AD space is A = {0, 1}∗, and the ciphertext space is C = {0, 1}≥τ .
The scheme is illustrated in Fig. 7.

We now describe the security of ΘCB3 when using an ideal TBC. The proof
is in the full paper [26].

Lemma 2. Let Π = ΘCB3[Ẽ, τ ] where Ẽ = Bloc[T , n] : K × T × {0, 1}n →
{0, 1}n is ideal. Let A be an adversary. Then Advpriv

Π (A) = 0 and Advauth
Π (A) ≤

(2n−τ )/(2n − 1). �

4.3 Instantiating the TBC

Continuing to assume that n = 128 and N = {0, 1}<n, map each blockcipher
E : K×{0, 1}n →{0, 1}n to the TBC Ẽ = Tw[E], Ẽ : K×T × {0, 1}n →{0, 1}n,
where T = N ×N1 ∪ N ×N0 ×{∗} ∪ N ×N0 ×{$} ∪ N ×N0 ×{∗$} ∪
N1 ∪ N0×{∗} by the construction of Fig. 8. There, multiplication is in GF(2128)
using the irreducible polynomial x128+x7+x7+x2+x+1. We use the standard
facts on the Gray code sequence a : N0 → N0 that it is a permutation and 0 ≤
a(i) ≤ 2i. It follows that coefficients Λ = {λi, λ∗

j , λ$
j , λ∗$

j : 1 ≤ i ≤ 2120,
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Checksum

E N 1

C1

E N 3

C3

M1 MM2 M3

E N 2

C2

E N 3 *

C

E N3*$
K K K K K

0*

E N 1 

C1

E N 3

C3

M1 M4M2 M3

E N 2

C2

E N 4

C4

E N 4 $
K K K K K

Checksum

Auth

Auth

*

*

T

T

τ 

τ 

E1 E3

A1 A2 A3

E 2
K K K

Auth

E 2 *
K

10*A *

E1

A1 A2

E 2
K K

Auth

~ ~ ~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

Pad Final

Tag

Final

Tag

0*

Fig. 7. Illustration of ΘCB3. The scheme depends on tweakable blockcipher Ẽ : N×
T ×{0, 1}n→{0, 1}n and tag length τ ∈ [0 .. n]. The top figure shows the treatment of
a message M having a full final block (|M4|=n) (Checksum=M1 ⊕ M2 ⊕ M3 ⊕ M4)
while the middle picture shows the treatment of a message M having a short final
block (1 ≤ |M∗| < n) (Checksum=M1 ⊕ M2 ⊕ M3 ⊕ M∗10∗). The bottom-left picture
shows the processing of a three-block AD; on bottom-right, an AD with two full blocks
and a short one. Algorithm OCB3[E, τ ] coincides with ΘCB3[Ẽ, τ ] for a particular
TBC Ẽ = Tw[E] constructed from E.
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Ẽ N i
K (X) = EK(X ⊕ Δ) ⊕ Δ with Δ = Initial ⊕ λi L for i ≥ 1

Ẽ N i ∗
K (X) = EK(X ⊕ Δ) with Δ = Initial ⊕ λ∗

i L for i ≥ 0

Ẽ N i $
K (X) = EK(X ⊕ Δ) with Δ = Initial ⊕ λ$

i L for i ≥ 0

Ẽ N i ∗ $
K (X) = EK(X ⊕ Δ) with Δ = Initial ⊕ λ∗$

i L for i ≥ 0

Ẽ i
K(X) = EK(X ⊕ Δ) with Δ = λi L for i ≥ 1

Ẽ i ∗
K (X) = EK(X ⊕ Δ) with Δ = λ∗

i L for i ≥ 0

where

Nonce = 0127−|N| 1 N

Top = Nonce ∧ 1122 06

Bottom = Nonce ∧ 0122 16

Ktop = EK(Top)

Stretch = Ktop ‖
(
Ktop ⊕ (Ktop�8)

)
Initial = (Stretch�Bottom)[1..128]

L = EK(0128)

λi = 4 a(i)

λ∗
i = 4 a(i) + 1

λ$
i = 4 a(i) + 2

λ∗$
i = 4 a(i) + 3

a(0) = 0 //Grey code seq 0, 1, 3, 2, 6, . . .

a(i) = a(i − 1) ⊕ 2ntz(i) if i ≥ 1

Fig. 8. Definition of Ẽ =Tw[E], the tweakable blockcipher built from E

0 ≤ j ≤ 2120} are distinct and nonzero points of GF(2128). The reader can check
that OCB3[E, τ ] = ΘCB3[Tw[E], τ ].

Security of the constructed TBC. We show that Ẽ = Tw[E] is a good
TBC if E is a good blockcipher. In formalizing this, forward queries may be
asked throughout T , but backwards queries must be of the form ẼN i

K .

Lemma 3. Let n=128 and let E=Bloc[n] be the ideal blockcipher on n bits. Let
Ẽ=Tw[E], the tweak space being T , and let T ±=N×N1. Let A be an adversary
that asks at most q queries, non employing an i-value in excess of 2120. Then
Advprp[T ±]

Ẽ
(A) ≤ 6q2/2n. �

The proof is in the full version [26]. Combining it with Lemma 2 gives Theorem 1.
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A New Word-Oriented LFSRs

Recall that in OCB2 each 128-bit offset is computed from the prior one by
multiplying it, in GF(2128), by the constant x = 2 = 012610. Concretely, the
point X ∈ {0, 1}128 is stepped (or “incremented” or “doubled”) by applying the
map S(X) = (X�1) ⊕ (msb(X) · 135). The constant 135 (decimal) represents
(without the x128 term) the primitive polynomial g(x) = x128+x7+x2+x+1.

Chakraborty and Sarkar suggested [6] that there might be an increment-
ing function more efficient than S; they suspected that one might achieve ef-
ficiency gains with a word-oriented LFSR [38], as exemplified by the blockcipher
SNOW [9]. After all, multiplication by x and reducing mod g(x) is just the “Ga-
lois configuration” of a particular 128-bit LFSR [28], and one that has not been
optimized for software performance. Some other 128-bit LFSRs might run faster.

To develop this idea, let S be an n × n binary matrix that is invertible over
GF(2). Then we may regard S as the feedback matrix of an LFSR that transforms
the row vector X ∈ {0, 1}n into the row vector X · S, a process we refer to as
stepping the string X under S. The t-fold stepping of X by S is realized by
matrix St. If the characteristic polynomial of S is primitive (over GF(2)) then
the order of S in the general linear group GL(n, GF(2)) will be 2n − 1 and the
map X �→ X · S will have two cycles: the length-1 cycle from 0n to itself and
the cycle of length 2n − 1 passing through all remaining n-bit strings [28]. The
matrices 〈S〉 = {Si : 1 ≤ i ≤ 2n−1−1}, along with the matrix n×n zero matrix,
can be regarded as a representation of GF(2n) under the operations of matrix
multiplication and matrix addition, both mod 2.

Based on the paragraph above, the following is a simple way to obtain max-
imal and fast-to-compute 128-bit LFSRs. Generate candidate LFSRs by ran-
domly combining a small number of shifts, ands, xors, using small or random
constants. Represent each scheme by its feedback matrix. For each candidate
matrix, check if it has a primitive characteristic polynomial. This is roughly
the same approach taken by Zeng, Han, and He [42] to devise some software-
efficient maximal-period shift registers intended for stream-cipher use. Using it,
we generated and tested thousands of 128-bit stepping functions. Some efficient-
to-compute schemes giving rise to maximal LFSRs are as follows:

X Y �→ Y ((X�1) ⊕ (msb(X) · 101201010001) ⊕ Y ) (1)

X Y �→ Y ((X�1) ⊕ (X�1) ⊕ (Y ∧ 148)) (2)

A B C D �→ C D B ((A�1) ⊕ (msb(A) · 831) ⊕ B ⊕ D) (3)

A B C D �→ C D B ((A�1) ⊕ (A�1) ⊕ (D ∧ 107)) (4)

A B C D �→ C D B ((A�1) ⊕ (A�1) ⊕ (D�15)) (5)
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Here |X |= |Y |=64 and |A|= |B|= |C|= |D|=32. Our experience searching for
such maximal LFSRs suggests that they are rather finicky and sparse.

Implementing the candidate LFSRs on a variety of platforms revealed no clear
winner. Beyond this, we found that none of the stepping functions were compet-
itive with xoring in a pre-computed 128-bit value. All of the candidate stepping
function introduce endian favoritism. In the end, then, we decided against using
an LFSR stepping function to update offsets, going back to the OCB1 approach,
instead.
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Abstract. Hummingbird-1 is a lightweight encryption and message authentica-
tion primitive published in RISC ’09 and WLC ’10. Hummingbird-1 utilizes a
256-bit secret key and a 64-bit IV. We report a chosen-IV, chosen-message attack
that can recover the full secret key with a few million chosen messages processed
under two related IVs. The attack requires at most 264 off-line computational
effort. The attack has been implemented and demonstrated to work against a real-
life implementation of Hummingbird-1. By attacking the differentially weak E
component, the overall attack complexity can be reduced by a significant fac-
tor. Our cryptanalysis is based on a differential divide-and-conquer method with
some novel techniques that are uniquely applicable to ciphers of this type.

Keywords: Hummingbird cipher, constrained devices, lightweight cryptogra-
phy, stream cipher cryptanalysis.

1 Introduction

The advent of small-form wireless control and communication devices, sensors and
authentication tags is affecting commercial, military and domestic security engineering
in ways which were almost unimaginable only 10–20 years ago.

An important selection criterion when choosing cryptographic security components
for such extremely constrained devices is obviously cost, which directly relates to the
complexity of hardware and software implementation of the component and its compu-
tational efficiency. These lightweight cryptographic solutions must also meet stringent
security requirements as they are often critical links in the overall “chain of security” –
user authentication with a RFID token, a private conversation using a wireless hands-
free set and encryption of key presses on a wireless keyboard are some examples.

Hummingbird-1 [2,5] is a recent cryptographic algorithm proposal for RFID tags and
other constrained devices. It is covered by several pending patents and is being commer-
cially marketed by the Revere Security [7]. Revere has invested into Hummingbird’s
cryptographic security assurance before its publication by contracting ISSI, a private
consultancy employing some ex-NSA staff [6] and members of U. Waterloo CACR [4].
After this work was originally done, an improved version, Hummingbird-2, has been
developed.

In the present report we show that the published version of Hummingbird-1 is sus-
pectible to a chosen-IV, chosen message attack that has an attack complexity of signif-
icantly less than 264 operations and data complexity of only few megabytes, the entire

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 328–341, 2011.
c© International Association for Cryptologic Research 2011
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256-bit secret key can be recovered. The attack has been implemented and demonstrated
to work against a validated implementation of Hummingbird-1.

This paper is structured as follows. In Section 2 we give a description of
Hummingbird-1 and make a key observations about its initialization procedure. In Sec-
tion 3 we build an attack, step by step, that breaks Hummingbird-1. Section 4 contains
a discussion about the implementation and implications of the attack, followed by con-
clusions in Section 5.

2 Description of Hummingbird-1

Hummingbird-1 [2,4,5] is an encryption and message authentication primitive that has
a 256-bit secret key, uses a 64-bit IV (nonce) and optionally produces a 64-bit authenti-
cator for the message. Hummingbird-1 is similar to ciphers such as Helix [3] and Phelix
[10] in that it is a word-based stream cipher that can also be used for authentication. We
have not analyzed the security of the proposed authentication functionality and it will
not be discussed in this paper.

2.1 Notation and Parameters

The 256-bit secret key K is indexed as a vector of four 64-bit subkeys K(i). Each one
of the 64-bit subkeys further consists of 16-bit words K

(i)
j as follows:

K = (K(1), K(2), K(3), K(4))

K(1) = (K(1)
1 , K

(1)
2 , K

(1)
3 , K

(1)
4 )

K(2) = (K(2)
1 , K

(2)
2 , K

(2)
3 , K

(2)
4 )

K(3) = (K(3)
1 , K

(3)
2 , K

(3)
3 , K

(3)
4 )

K(4) = (K(4)
1 , K

(4)
2 , K

(4)
3 , K

(4)
4 ).

The 80-bit internal state of Hummingbird-1 at round t consists of four 16-bit registers
RS1t, RS2t, RS3t, RS4t and the independent shift register LFSRt.

When considering differential attacks, we denote by Δ the additive difference be-
tween two values. In our differential analysis we will be working on pairs of related
instances of Hummingbird-1 which share the same secret key K . The state of the first
and second instance at round t is written as

(RS1t, RS2t,RS3t, RS4t, LFSRt)
and

(RS1′t, RS2′t,RS3′t, RS4′t, LFSR′
t).

The additive state difference Δ(RS1t, RS2t, RS3t, RS4t, LFSRt) is

(RS1t � RS1′t, RS2t � RS2′t, RS3t � RS3′t, RS4t � RS4′t, LFSRt � LFSR′
t).
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Here � denotes two’s complement subtraction modulo 216. We will also write ΔPi =
Pi � P ′

i and ΔCi = Ci � C′
i to denote plaintext and ciphertext difference at message

word i. Numerical values for differentials are in hexadecimal notation.

2.2 The 16-Bit Permutation E

The 16-bit permutation component E(x, K(i)) consists of five invocations of four S-
Boxes, interleaved with a mixing of a 16-bit subkey and a linear transform L. Figure 1
illustrates the operation of the the block cipher E.

K
(i)
1

S1

S2

S3

S4

L

K
(i)
2

S1

S2

S3

S4

L

K
(i)
3

S1

S2

S3

S4

L

K
(i)
4

S1

S2

S3

S4

L

K
(i)
1 ⊕K

(i)
3

S1

S2

S3

S4

K
(i)
2 ⊕K

(i)
4

Fig. 1. The “E box” is a 16-bit permutation with a 64-bit key. L is a 16-bit linear transform
L(x) = x ⊕ (x ≪ 6) ⊕ (x ≪ 10).

Four permutations of values 0..15 are used as the four-bit S-boxes S1(x), S2(x),
S3(x) and S4(x). We have discovered that at least two variants of the four S-Boxes
exist, one set being described in [5] and an another set in ISSI’s analysis [6]. The second
set of S-Boxes is equivalent to S4-S7 of Serpent-1 [1] and is compatible with test vectors
provided by Revere Security [9]. Tables 1 and 2 give both S-Boxes in full.

Table 1. Hummingbird S-Boxes as reported in [5]

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 8 6 5 15 1 12 10 9 14 11 2 4 7 0 13 3
S2(x) 0 7 14 1 5 11 8 2 3 10 13 6 15 12 4 9
S3(x) 2 14 15 5 12 1 9 10 11 4 6 8 0 7 3 13
S4(x) 0 7 3 4 12 1 10 15 13 14 6 11 2 8 9 5

Table 2. The actual Hummingbird S-Boxes in an implementation obtained from its authors [9]

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S2(x) 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S3(x) 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S4(x) 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

Any particular choice of S-Boxes does not affect the main cryptanalysis presented in
this paper. In fact, the attack is applicable regardless of what type of E function is used
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as long as it is keyed with only 64 bits. Hence the particular choice of the number of
rounds, S-Boxes and the linear transformation has little effect to the overall security of
the cipher.

We define the linear transform L(x) as

L(x) = x ⊕ (x ≪ 6) ⊕ (x ≪ 10), (1)

where ≪ is a left circular shift operator. By S(x) we denote the application of the four
S-boxes in parallel on the four nibbles of x = x0 | x1 | x2 | x3:

S(x) = S1(x0) | S2(x1) | S3(x2) | S4(x3). (2)

The complete 16-bit keyed permutation E(x, K(i)) is described by:

u0 = x ⊕ K
(i)
1

u1 = L(S(u0)) ⊕ K
(i)
2

u2 = L(S(u1)) ⊕ K
(i)
3

u3 = L(S(u2)) ⊕ K
(i)
4

u4 = L(S(u3)) ⊕ K
(i)
1 ⊕ K

(i)
3

E(x, K(i)) = S(u4) ⊕ K
(i)
2 ⊕ K

(i)
4 .

2.3 Initialization

To set up Hummingbird-1, we first load the 64-bit IV value to the state registers:

(RS1−4, RS2−4, RS3−4, RS4−4) = (IV1, IV2, IV3, IV4). (3)

After this, four rounds of special stepping is performed for t = −4,−3,−2,−1:

v12t
= E((RS1t � RS3t) � RS1t, K(1))

v23t
= E(v12t

� RS2t, K(2))

v34t
= E(v23t

� RS3t, K(3))

tvt = E(v34t
� RS4t, K(4))

RS1t+1 = RS1t � tvt

RS2t+1 = RS2t � v12t

RS3t+1 = RS3t � v23t

RS4t+1 = RS4t � v34t
.

Here the � operator denotes addition modulo 216. After the final round, we set the
bit 12 (or the 13th bit as it is expressed in the specification) in the tv temporary variable
and assign that as the LFSR value:

LFSR0 = tv3 ∨ 1000. (4)

Therefore the 80-bit state after the initialization phase consists of the five words

(RS10 RS20 RS30 RS40 LFSR0). (5)
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Observation 1. The Hummingbird-1 initialization function has a high-bit XOR differ-
ential that holds with probability 1:

Δ(IV1, IV2, IV3, IV4) = (8000, 0000, 0000, 0000)
⇓

Δ(RS10, RS20, RS30, RS40, LFSR0) = (8000, 0000, 0000, 0000, 0000).

2.4 The Encryption Function

Each Hummingbird-1 encryption round accepts a 16-bit plaintext word Pi to produce a
ciphertext word Ci. Figure 2 illustrates one round of Hummingbird encryption.

For t ≥ 0 (after initialization) we have

v12t
= E(Pt � RS1t, K(1))

v23t
= E(v12t

� RS2t, K(2))

v34t
= E(v23t

� RS3t, K(3))

Ct = E(v34t
� RS4t, K(4))

LFSRt+1 = STEP(LFSRt)
RS1t+1 = RS1t � v34t

RS4t+1 = RS4t � v12t
� RS1t+1

RS2t+1 = RS2t � v12t
� RS4t+1

RS3t+1 = RS3t � v23t � LFSRt+1.

The Hummingbird LFSR has been implemented in a slightly unusual right-cyclical
fashion, which is best desribed in the C language:

lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & 0xCA44);

THe LFSR operates independently from the other registers as there is no feedback
from them or the plaintext to it. The particular LFSR selection or its operation does not
affect on our attack in any way.

In this paper we will denote by HB(IV, v) = z a query for encryption of vec-
tor v with the given IV value. Conversely, HB−1(IV, z) = v is a decryption query.
Since Hummingbird is attacked in a “black box” fashion in this chosen-IV, chosen
message attack, we don’t include the unknown secret key into the notation of encryp-
tion/decryption queries.

3 Building an Attack

Our attack proceeds in several stages, first attacking the initialization function and then
each 64-bit subkey individually, proceeding from the “outer layer” subkeys K(1) and
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K(4) towards the “inner layer” subkeys K(3) and K(2). Each stage of the attack is
constructed differently.

The line of attack described in this paper is just one of many. A small modification
of the algorithm or adjustment of the usage model may lead to wholly different security
properties.

We will first describe a very simple chosen-IV distinguisher for Hummingbird, which
will be a part of subsequent stages of the attack. For any two nonces (IVs) that have a
difference in the most significant bit (MSB) of the first word, we can simply flip the
MSB of the plaintext word and the ciphertext words will match.

Observation 2. There is a Chosen-IV distinguisher for Hummingbird that works with
probability P = 65535/65536 and has data complexity of 1 word. One can use the
high-bit differential of Observation 1 and the following differential for the first round:

Δ(P0, RS10, RS20, RS30, RS40, LFSR0) = (8000, 8000, 0000, 0000, 0000, 0000)

�
Δ(C0, RS11, RS21, RS31, RS41, LFSR1) = (0000, 8000, 8000, 0000, 8000, 0000)

The differential works both ways (chosen plaintext and chosen ciphertext). If we deci-
pher the same word, say, 0000 under the two different nonces that are related by only
having a MSB difference in the first word, there will be a high-bit difference in the first
word of the corresponding plaintext. This constitutes the distinguisher.

3.1 An Iterative Differential

Observation 3. There is a one-round iterated differential that works if a collision oc-
curs inside the cipher as follows:

Δv12t = 8000 , Δv23t = 0000 , Δv34t = 0000

Δ(RS1t, RS2t, RS3t, RS4t, LFSRt) = (8000, 8000, 0000, 8000, 0000)
+

Δ(RS1t+1, · · ·RS4t+1, LFSRt+1) = (8000, 8000, 0000, 8000, 0000).

The initial condition for t = 5 can be satisfied using the initialization and first-round
encryption differentials given in Observations 1 and 2.

To verify Observation 3, one may find it useful to trace the high-bit differentials (and
their internal cancellation) in Figure 2 with a highlighting pen. We note that each one
of the conditions Δv12 = 8000, Δv23 = 0000, Δv34 = 0000 implies the other two if
the input (or output) state differential holds.

From the algorithm description we see that the internal value v34 satisfies

Δv34 = ΔE−1(Ci, K
(4)) � ΔRS4t. (6)

For the condition Δv34 = 0000 to be satisfied and the iterative differential to work
it suffices to find a pair of ciphertext words Ci = a and C′

i = b such that

E−1(a, K(4)) � E−1(b, K(4)) = 8000. (7)
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Pt RS1t RS2t RS3t RS4t LFSRt

EK(1)

(v12)

EK(2)

(v23)

EK(3)

(v34)

EK(4)

Ct RS1t+1 RS2t+1 RS3t+1 RS4t+1

STEP

LFSRt+1

Fig. 2. Encrypting a single 16-bit word Pt to produce a ciphertext word Ct with Hummingbird.
After initialization t ≥ 0.

The first stage of our overall attack is based on chosen-ciphertext queries of the type

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a, a, . . . , a)

)
(8)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b, b, . . . , b)

)
. (9)

If a and b are related in as in Equation 7, the iterative differential of Observation 3
will hold for all t ≥ 1 in Equations 8 and 9 above. The initial x word is arbitrary; the
differential will work as long as C0 = C′

0. This will result in ΔP0 = 8000.
For our attack any pair (a, b) satisfying Equation 7 will suffice. It is easy to see that

there are 216 such pairs. By the birthday paradox, by decrypting about
√

216 = 28

vectors of the form given in Equations 8 and 9, we should have found one such pair.
How to distinguish it from the other pairs ?
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From the algorithm definition we can see that if the iterative differential holds, then
Δv12 = 8000, ΔRS1t = 8000 and the plaintext words satisfy for all t > 0

ΔPt = E−1(v12t
, K(1)) �

(
E−1(v12t

� 8000, K(1)) � 8000
)
. (10)

To analyze this condition, we may consider a random bijective function F on n-bit
values and the behavior of the differential

ΔF (x) = F (x) � F (x � c) (11)

where c is some nonzero constant and x takes on all values 0 ≤ x ≤ 2n. It is easy to
show that the behavior of ΔF (x) resembles that of a random function in that its range
can be expected to be 2n(1−e−1) ≈ 0.6321×2n rather than 2n. For ease of exposition
we will be considering the absolute delta value

abs(Δx) = x − x′ if x > x′ and x′ − x otherwise. (12)

ΔPi in Equation 10 has similarly limited range if the iterative differential holds. If
the differential does not hold, ΔPi may have any value. We use this feature to test for the
right pair; if the iterative differential holds for some ciphertext words x and y, the range
of abs(ΔPi) values will be close to 215(1 − e−1) ≈ 20713 rather than 215 = 32768.
The procedure is given by Algorithm 1. The complexity of Algorithm 1 is less than
230 operations and data complexity is equivalent to decrypting eight megabytes of data.
The choice of looping through 29 values of i and using 212 words of data in Algorithm
1 may not be optimal, but will be sufficient for actually finding a correct pair with a
reasonable probability.

In practice the algorithm finds a right pair in a few seconds. The current implemen-
tation also rechecks the pair with longer decryptions and performs a retry if the count
of the absolute range is larger than 25000.

Algorithm 1. Probabilistically find a pair (a, b) satisfying Equation 7 as discussed in
Section 3.1

for i = 1, 2, . . . , 29 do
v = (0000, i, i, . . . , i), a vector of 212 words.
x[i][1..212 ] = HB−1

(
(0000, 0000, 0000, 0000), v)

)
.

y[i][1..212 ] = HB−1
(
(8000, 0000, 0000, 0000), v)

)
.

end for
a = 0, b = 0, m = 215.
for i = 0, 1, . . . , 29 do

for j = 0, 1, . . . , 29 do
Count the number of different words n in the set defined by abs(x[i][k] � y[j][k]).
if n < m then

a = i, b = j, m = n.
end if

end for
end for
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3.2 Attacking K(1)

Our first target is to attack the 64-bit subkey K(1). With the (a, b) ciphertext word pair
obtained with Algorithm 1, and further chosen-message queries, we will extract the
entire range S1 of the function δ1 defined by

δ1(x) = abs
(
E−1(x, K(1)) � E−1(x � 8000, K(1))

)
. (13)

The expected size of S1 is 215(1− 1
e ) ≈ 20713 elements. To compute S1, we decrypt

two at least megaword-long vectors consisting of the a and b words:

P = HB−1
(
(0000, 0000, 0000, 0000), (0000, a, a, . . . , a)

)
(14)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (0000, b, b, . . . , b)

)
. (15)

Since the iterative differential of Observation 3 holds for all rounds t > 1 but the
internal state is otherwise evolving and can be modelled as random, each difference in
corresponding plaintext words can be simply inserted into the set S1:

abs(Pi � P ′
i ⊕ 8000) ∈ S1 when i > 0. (16)

Note that the completeness of S1 is highly dependent on the length of the ciphertext
vectors; one million words will yield a complete set with high certainty, but one hundred
thousand words with very low certainty.

Armed with the set S1, we can perform an off-line attack on the first subkey. To
test a subkey candidate K(1) it suffices to loop through values x doing the membership
test δ(x) ∈ Si, as indicated by Equation 13. For a false key candidate the membership
test will fail with probability of roughly 63.2%. Most key candidates can be discarded
after two trials. Since each membership test (for x) is independent, the certainty that a
correct key has not been found after n successful trials (1 − 1

e )n. n = 97 trials gives a
2−64 uncertainty. Our implementation performs all n = 215 trials, as the performance
penalty is negligible due to the early exit strategy.

3.3 Attacking K(4)

The next subkey to be attacked after K(1) is the last to be used during encryption, K(4).
There are several ways to do this efficiently. We will describe the one we implemented.

We use our knowledge of K(1) and the differential of Observation 3 to find more
ciphertext pairs (Ci, C

′
i) that have a Δ = 8000 input difference to the last invocation

of E. This implies that these ciphertext pairs satisfy the equation

E−1(Ci, K
(4)) = E−1(C′

i, K
(4)) � 8000. (17)

If at least four such ciphertext word pairs are available, we may do a conclusive
exhaustive search over the entire 64-bit subkey K(4) by using Equation 17 as a test.

We will first obtain a known value for RS11. We use the known (a, b) pair from
Section 3.1 and Algorithm 1 and decrypt a set of two-word vectors for few running
values of initial ciphertext word x:

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a)

)
(18)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b)

)
. (19)
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For each decryption ΔP0 = 8000 as indicated by Observation 2. The second plain-
text word will satisfy

E(P1 � RS11, K
(1)) = E(P ′

1 � RS11 � 8000, K(1)) � 8000 (20)

since ΔRS11 = 8000. There usually is only one or at most few possible values of RS11

that satisfy Equation 20. Such an unique value is found for some x by simply searching
through all possible 216 values of RS11 using the knowledge of the subkey K(1) (that
was obtained in the previous section). This gives us information about the internal state
of the cipher after one encryption round.

Let y = P0 = P ′
0 � 8000 for some pair of related decryptions described in Equations

18 and 19 such that an unique value for RS11 can be established. To create pairs suitable
for testing by Equation 17 we again turn into a chosen-plaintext attack and encrypt few
vectors for a chosen running value of v121 :

C =HB
(
(0000, 0000, 0000, 0000), (y, E−1(v121 , K

(1)) � RS11)
)

C′ =HB
(
(8000, 0000, 0000, 0000),

(y � 8000, E−1(v121 � 8000, K(1)) � RS11 � 8000)
)
.

The ciphertext words C1 and C′
1 can be used for exhaustive search of the 64-bit

subkey K(4) using Equation 17.

3.4 Attacking K(3)

Thus far we have recovered 128 bits of the secret key K , K(1) and K(4) using MSB
differentials only. The next in turn is K(3), which appears to require a slightly more
complicated attack also involving second highest bit.

We will be using the two new differentials in addition to the ones given in Observa-
tion 1 for initialization rounds t = −4, . . . ,−1 and Observation 2 for t = 0. For t = 1
the differential is:

Δv121 = C000 , Δv231 = d , Δv341 = 8000

Δ(RS11, RS21, RS31, RS41, LFSR1) = (8000, 8000, 0000, 8000,0000)
⇓

Δ(RS12, RS22, RS32, RS42, LFSR2) = (0000, 8000, d, 4000, 0000).

To make this differential work, we will use the known value for RS11 obtained in
Section 3.3. Loop through the values y = v121 = 0, 1, . . . , 216 − 1 and for each one
of those make the following two-word encryption queries until C1 = C′

1 condition is
reached:

C =HB
(
(0000, 0000, 0000, 0000), (x, E−1(y, K(1)) � RS11))

C′ =HB
(
(8000, 0000, 0000, 0000),

(x � 8000, E−1(y � C000, K(1)) � RS11 � 8000))
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From the C1 = C′
1 condition we will know that Δv341 = 8000 as it cancels out

the differential ΔRS41 = 8000 before invocation of the last E function. When the
condition is met by some x, d = Δv231 = ΔRS32 will be a quantity that satisfies

E−1(v341 , K
(4)) � E−1(v341 � 8000, K(4)) = d. (21)

Now we will extend the chosen-plaintext attack by one more round. We will use the
differential:

Δv122 = 8000 , Δv232 = 0000 , Δv342 = 8000

Δ(RS12, RS22, RS32, RS42, LFSR2) = (0000, 8000, d, 4000, 0000)
⇓

Δ(RS13, RS23, RS33, RS43, LFSR3) = (8000, 4000, d, 4000, 0000).

We now proceed to deriving the contents of RS12. We choose the first two plaintext
words P0, P

′
0, P1, P

′
1 as before. For some z and y = 0, 1, . . . , 216 − 1 the third words

will be chosen as

P2 = E−1(z, K(1)) � y (22)

P ′
2 = E−1(z � 8000, K(1)) � y (23)

until the corresponding ciphertext

C = HB
(
(0000, 0000, 0000, 0000), (P0, P1, P2)

)
C′ = HB

(
(8000, 0000, 0000, 0000), (P ′

0, P
′
1, P

′
2)
)

satisfies the previous conditions and the additional condition

E−1(C2, K
(4)) � E−1(C′

2, K
(4)) = 4000. (24)

This will imply that the second differential works and the conditions Δv122 = 8000,
Δv232 = 0000, and Δv342 = 8000 hold. Furthermore we will have the contents of
register RS12 = y and v122 = z. Note that if the guess for RS12 = y is correct, then
Equation 24 will hold for any z in Equations 22 and 23.

We now have sufficient information about the internal state of Hummingbird to
mount a “quartet” attack on K(3). Additional quantities of the internal state can be
derived as follows:

v341 = RS12 � RS11 (25)

RS41 = E−1(C1, K
(4)) � v341 (26)

RS42 = RS41 � E(P1 � RS12, K
(1)) � RS12 (27)

v342 = E−1(C2, K
(4)) � RS42. (28)

We can now perform an exhaustive search for K(3) that satisfies

E−1(v341 , K
(3)) � E−1(v341 � 8000, K(3)) = d and (29)

E−1(v342 , K
(3)) � E−1(v342 � 8000, K(3)) = d (30)
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for some value d. We call this a “quartet test” as it involves four (inverse) E invocations.
To get more quartets (you will need at least four), increase z in Equations 22 and 23
and perform more chosen-plaintext queries.

3.5 Attacking K(2)

After the recovery of K(1), K(3) and K(4), there is only 64 bits of unknown keying
material left to discover. A simple known-plaintext exhaustive search for K(2) will
suffice to recover this last missing piece.

4 Discussion

Hummingbird has some superficial similarities to the Helix [3] and Phelix [10] ciphers
– these are stream ciphers where message data is used to modify the internal state of the
cipher and an authentication code is produced. An analysis by Muller also used a lack
of high-bit propagation in a distinguishing attack [8].

4.1 Implementing the Attack

Our attack on Hummingbird-1 was implemented using the C language on Linux plat-
form. Due to the divide-and-conquer technique that we are using, we may efficiently
demonstrate the attack with keys that have limited entropy in each one of the subkeys.
Our demonstration code attacks a variant that has four 24-bit subkeys, bringing the total
effective key size to 96 bits. Note that this is not a reduced cipher; the subkey entropy
has simply been reduced.

The demonstration code first performs a self-test of its Hummingbird-1 implemen-
tation against test vectors supplied by Revere Security It then chooses a random key
and lets the attack code perform black-box chosen-IV encryption or decryption queries.
Typical execution time is 15-20 seconds before the correct 96-bit key is found on an
Intel Core 2 Duo clocked at 3.16 GHz.

It seems reasonable to assume that the the E function described in Section 2.2 offers
less than 264 security since its diffusion properties are far from perfect. To illustrate
this, we note that in Figure 1 it is easy to see that the 16-bit subkey K

(i)
4 affects two

invocations of the S-Box layer and a single bit linear diffusion layer – therefore a single
bit change in this subkey won’t even necessary affect all ciphertext bits. Since the se-
curity of Hummingbird-1 is reduced to the security of the E function by the techniques
described in this paper, we feel confident in estimating that Hummingbird-1 offers sig-
nificantly less than 64 bits of security.

Throughout this paper the any constant pair of IVs can be used as long as

Δ(RS10, RS20, RS30, RS40, LFSR0) = (8000, 0000, 0000, 0000, 0000).

This initial condition follows from ΔIV = (8000, 0000, 0000, 0000) by Observa-
tion 1, but if the flaw in the initialization function is fixed, we may find such pairs by
the birthday paradox. If the initialization function would be completely random, finding
such a pair would require about

√
280 = 240 queries. Testing for the condition can be

done with Observation 2.
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4.2 Lessons Learned

Due to its extremely light-weight application target scenario, the security margins used
in the design of Hummingbird-1 are very small. In addition to the unfortunate bug in the
initialization function (Observation 1), the security of Hummingbird-1 seems to suffer
from the fact its state size is very small and that chosen input can directly affect almost
all of its internal state bits (apart from the LFSR “counter”) in an adaptive attack. We
suggest that the number of state bits which run independently from input data should
be increased in future encryption algorithm designs of the Hummingbird type.

5 Conclusions

We have described a key-recovery attack against the 256-bit authenticated encryption
primitive Hummingbird-1. The attack is based on a divide-and-conquer and differen-
tial techniques and has complexity upper bounded by 264 operations. Significant im-
provements to this bound are possible by attacking the E function. The attack requires
processing of few megabytes of chosen messages under two related nonces (IVs).

The attack proceeds in four stages, attacking each one of the 64-bit subkeys individ-
ually. The attacks are mainly based on differentials in in the high bits of words. It is
noteworthy that the described attacks work regardless of the design of the main nonlin-
ear component, the E keyed permutation. The present line of attack are made effective
by a clear design flaw in the Hummingbird-1 initialization function, but similar attacks
can be envisioned for many possible straightforward fixes.

We conclude that the published version of Hummingbird-1 may not offer adequate
security for some cryptographic applications. The Revere Security team is actively de-
veloping an improved version that will remedy the security issues reported in this paper.
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Abstract. We analyze adpARX, the probability with which additive dif-
ferences propagate through the following sequence of operations: mod-
ular addition, bit rotation and XOR (ARX). We propose an algorithm to
evaluate adpARX with a linear time complexity in the word size. This algo-
rithm is based on the recently proposed concept of S-functions. Because
of the bit rotation operation, it was necessary to extend the S-functions
framework. We show that adpARX can differ significantly from the multi-
plication of the differential probability of each component. To the best
of our knowledge, this paper is the first to propose an efficient algorithm
to calculate adpARX. Accurate calculations of differential probabilities are
necessary to evaluate the resistance of cryptographic primitives against
differential cryptanalysis. Our method can be applied to find more accu-
rate differential characteristics for ARX-based constructions.

Keywords: Additive differential probability, differential cryptanalysis,
symmetric-key, ARX.

1 Introduction

Many cryptographic primitives are built using the operations modular addition,
bit rotation and XOR (ARX). The advantage of using these operations is that
they are very fast when implemented in software. At the same time, they have
desirable cryptographic properties. Modular addition provides non-linearity, bit
rotation provides diffusion within a single word, and XOR provides diffusion be-
tween words and linearity. A disadvantage of using these operations is that the
diffusion is typically slow. This is often compensated for by adding more rounds
to the designed primitive.
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Examples of cryptographic algorithms that make use of the addition, XOR
and rotate operations, are the stream ciphers Salsa20 [2] and HC-128 [16], the
block cipher XTEA [13], the MD4-family of hash functions (including MD5 and
SHA-1), as well as 6 out of the 14 candidates of NIST’s SHA-3 hash function
competition [12]: BLAKE [1], Blue Midnight Wish [7], CubeHash [3], Shabal [4],
SIMD [8] and Skein [6].

Differential cryptanalysis is one of the main techniques to analyze crypto-
graphic primitives. Therefore, it is essential that the differential properties of
ARX are well understood both by designers and attackers. Several important re-
sults have been published in this direction. In [15], Meier and Staffelbach present
the first analysis of the propagation of the carry bit in modular addition. Later,
Lipmaa and Moriai proposed an algorithm to compute the XOR differential prob-
ability of modular addition (xdp+) [9]. Its dual, the additive differential proba-
bility of XOR (adp⊕), was analyzed by Lipmaa, Wallén and Dumas in [10]. The
latter proposed new algorithms for the computation of both xdp+ and adp⊕,
based on matrix multiplications. The differential properties of bit rotation have
been analyzed by Daum in [5].

In [11], Mouha et al. propose the concept of S-functions. S-functions are a
class of functions that can be computed bitwise, so that the i-th output bit
is computed using only the i-th input bits and a finite state S[i]. Although S-
functions have been analyzed before, [11] is the first paper to present a fully
generic and efficient framework to determine their differential properties. The
methods used in the proposed framework are based on graph theory, and the
calculations can be efficiently performed using matrix multiplications.

In this paper, we extend the S-function framework to compute the differential
probability adpARX of the following sequence of operations: addition, bit rotation
and XOR. We describe a method to compute adpARX based on the matrix multipli-
cation technique proposed in [10], and generalized in [11]. The time complexity
of our algorithm is linear in the word size. We provide a formal proof of its
correctness, and also confirm it experimentally. We performed experiments on
all combinations of 4-bit inputs and on a number of random 32-bit inputs.

We observe that adpARX can differ significantly from the probability obtained
by multiplying the differential probabilities of addition, rotation and XOR. This
confirms the need for an efficient calculation of the differential probability for the
ARX operation. We are unaware of any results in existing literature where adpARX

is calculated efficiently. Accurate and efficient calculations of differential proba-
bilities are required for the efficient search for characteristics used in differential
cryptanalysis.

The outline of the paper is as follows. In Sect. 2, we define the additive differ-
ential probability of bit rotation (adp≪). We give an overview of S-functions and
we describe how they can be used to compute the additive differential probability
of XOR (adp⊕) in Sect. 3. The additive differential probability of ARX (adpARX) is
defined in Sect. 4. We show that adpARX can deviate significantly from the prod-
uct of the probabilities of rotation and XOR. In Sect. 5, we propose a method for
the calculation of adpARX. The theorem stating its correctness is formulated in
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Table 1. Notation

Symbol Meaning

n Number of bits in one word

x n-bit word

x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,
x[0] is the least-significant bit (or element)

+ Addition modulo 2n

- Subtraction modulo 2n

r Rotation constant, 0 ≤ r < n

≪ r Left bit rotation by r positions

≫ r Right bit rotation by r positions

� 1 A signed shift by one position to the right (e.g. −1 � 1 = −1)

⊕ Exclusive-OR (XOR)

Δx n-bit additive difference (x2 − x1) mod 2n

‖ Concatenation of bit strings

ARX The sequence of the operations: +,≪,⊕
adp≪ The additive differential probability of bit rotation

adp⊕ The additive differential probability of XOR

adpARX The additive differential probability of ARX

x2 Number x in binary representation

Δα → Δβ Input difference Δα propagates to output difference Δβ

Sect. 6. In Sect. 7, we confirm the computation of adpARX experimentally. Sec-
tion 8 concludes the paper. The matrices used to compute adpARX are given in
Appendix A. Appendix B contains the full proof of correctness of the adpARX

algorithm. Throughout the paper, we use the notation listed in Table 1.

2 Definition of adp≪

The additive differential probability of bit rotation, denoted by adp≪, is the
probability with which additive differences propagate through bit rotation. This
probability was studied by Daum in [5]. We give a brief summary of the results
in [5] that are relevant to our work.

Let Δα be a fixed additive difference. Let a1 be an n-bit word chosen uniformly
at random and (a1, a1 + Δα) be a pair of n-bit words input to a left rotation
by r positions. Let Δβ be the output additive difference between the rotated
inputs:

Δβ = ((a1 + Δα) ≪ r) − (a1 ≪ r) . (1)

In [5, Corollary 4.14, Case 2] it is shown that there are four possibilities for Δβ:

Δβ ∈ {Δβu,v = (Δα ≪ r) − u2r + v, u, v ∈ {0, 1}} . (2)
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f

. . .

a1[0] a2[0] ak[0]

b[0]

S[0]
f

. . .

a1[1] a2[1] ak[1]

b[1]

S[1]
f

. . .

a1[n − 1] a2[n − 1] ak[n − 1]

b[n − 1]

S[n − 1] S[2]S[n]
. . .

Fig. 1. Representation of an S-function

The probabilities for the output differences Δβ are:

P0,0 = P (Δα → Δβ0,0) = 2−n(2r − ΔαL)(2n−r − ΔαR) , (3)

P0,1 = P (Δα → Δβ0,1) = 2−n(2r − ΔαL − 1)ΔαR , (4)

P1,0 = P (Δα → Δβ1,0) = 2−nΔαL(2n−r − ΔαR) , (5)

P1,1 = P (Δα → Δβ1,1) = 2−n(ΔαL + 1)ΔαR . (6)

In the above equations, ΔαL is the word composed of the r most significant bits
of Δα and ΔαR is the word composed of the n − r least significant bits of Δα
such that

Δα = ΔαL ‖ ΔαR . (7)

We define the additive differential probability of bit rotation as

adp≪(Δα
r−→ Δβ) =

{
Pu,v , if Δβ = Δβu,v for some u, v ∈ {0, 1} ,

0 , otherwise .
(8)

3 Computation of adp⊕ Using S-Functions

S-functions were introduced by Mouha et al. in [11]. An S-function (short for
state-function) accepts n-bit words a1, a2, . . . , ak and a list of states S[i] (for
0 ≤ i < n) as input, and produces an n-bit output word b in the following way:

(b[i], S[i + 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i < n . (9)

Initially, we set S[0] = 0. A schematic representation of an S-function is given
in Fig. 1.

In [11], S-functions were used to compute the additive differential probability
of XOR (adp⊕). This is the probability with which additive differences propagate
through the XOR operation. The results of [11] confirm the calculation of adp⊕

obtained in [10]. They are relevant to the calculation of adpARX, and will therefore
be briefly described below.
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Fix the additive differences Δα, Δβ, Δγ. With Δe we designate the additive
difference:

Δe = e2 − e1 = ((c1 + Δα) ⊕ (d1 + Δβ)) − (c1 ⊕ d1) . (10)

The probability adp⊕ is equal to the number of pairs (c1, d1) for which Δe = Δγ,
divided by the total number of pairs (c1, d1):

adp⊕(Δα, Δβ → Δγ) =
|{(c1, d1) : Δe = Δγ}|

|{(c1, d1)}| . (11)

The i-th bit of the output difference Δe[i] can be computed from the i-th bits
of the input differences Δα[i], Δβ[i] and the state S[i]. The state S[i] consists of
the carries s1[i], s2[i] and the borrow s3[i]:

s1[i] = (c1[i − 1] + Δα[i − 1] + s1[i − 1]) � 1 , (12)
s2[i] = (d1[i − 1] + Δβ[i − 1] + s2[i − 1]) � 1 , (13)
s3[i] = (e2[i − 1] − e1[i − 1] + s3[i − 1]) � 1 , (14)

where s1[0] = s2[0] = s3[0] = 0. Note that the bit shift by one position to the
right in (14) is a signed shift (e.g. −1 � 1 = −1). The S-function for adp⊕ is
defined as

(Δe[i], S[i + 1]) = f(c1[i], d1[i], Δα[i], Δβ[i], S[i]), 0 ≤ i < n . (15)

By definition, the state S[i] of an S-function has the same fixed size for every
0 ≤ i < n. In the case of adp⊕, this size is 3 bits. Therefore, there are eight
distinct states S[i] in total for any bit position 0 ≤ i < n. For fixed input
differences, the transition between consecutive states S[i] and S[i + 1] can be
described by an 8× 8 adjacency matrix. There are eight such matrices in total –
one for each value of the 3-tuple (Δα[i], Δβ[i], Δγ[i]). These eight matrices are
derived in [11] and are shown to be equal (up to a permutation) to the matrices
previously computed in [10].

The probability adp⊕ is computed by iterating over all bit positions 0 through
n − 1. At each position i, one of the eight matrices is selected depending on the
value of the bits of the differences Δα[i], Δβ[i], Δγ[i]. All n matrices that are
selected in this way are multiplied. The resulting matrix is right-multiplied by
the column vector representing the initial state. We now obtain a column vector.
After summing its elements, we end up with the number of pairs (a1, b1) for
which Δe = Δγ. The probability adp⊕ is computed by dividing the obtained
value by the total number of pairs (a1, b1). This whole process is summarized by
the following formula:

adp⊕(Δα, Δβ → Δγ) = 2−2nLAw[n−1] · · ·Aw[1]Aw[0]C . (16)

In (16), the factor 22n corresponds to the total number of n-bit pairs (c1, d1).
C =

(
1 0 0 0 0 0 0 0

)T
is a column vector indicating the initial state S[0] = 0,
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Fig. 2. Additive differences passing through the ARX operation

corresponding to the two initial carries s1[0], s2[0] and the initial borrow s3[0]
being equal to zero. Multiplication by the row vector L =

(
1 1 1 1 1 1 1 1

)
is equivalent to adding the elements of the column vector resulting from the
product Aw[n−1] · · ·Aw[0]C. The matrix indices w[i], 0 ≤ i < n are in the set
{0, 1, . . . , 7}. Index w[i] is obtained by concatenating the i-th bits of the differ-
ences: w[i] = Δα[i] ‖ Δβ[i] ‖ Δγ[i]. At every bit position i, the index w[i] selects
one of the eight distinct adjacency matrices Aw[i]. They are given in Appendix A.

In the next sections, we define the additive differential probability of ARX and
we describe a method to compute this probability using S-functions.

4 Definition of adpARX

The operation ARX is defined as:

ARX(a, b, d, r) def= ((a + b) ≪ r) ⊕ d . (17)

Let the additive differences Δα, Δβ, Δλ, Δη be fixed. Let Δe be the difference
between two outputs of ARX:

Δe = e2 − e1 = ARX(a1 + Δα, b1 + Δβ, d1 + Δλ, r) − ARX(a1, b1, d1, r) . (18)

Equation (18) is illustrated in Fig. 2. Additive differences pass through modular
addition with probability one. Therefore we can directly compute the output
difference after the addition: Δγ = Δα + Δβ. Let c1 = a1 + b1 be any output
from the addition (Fig. 2). The additive differential probability of ARX is defined
as the number of pairs (c1, d1) for which Δe = Δη, divided by all pairs (c1, d1):

adpARX(Δγ, Δλ
r−→ Δη) def=

|{(c1, d1) : Δe = Δη}|
|{(c1, d1)}| . (19)

An estimation of adpARX can be obtained as the product of the probabilities of
rotation and XOR. We designate the probability computed in this way by Protxor:

Protxor =
4∑

j=0

(adp≪(Δγ
r−→ Δρj) · adp⊕(Δρj , Δλ → Δη)) , (20)

(a1, a1 + Δα) (b1, b1 + Δβ)

≪ r
(c1, c1 + Δγ) (q1, q1 + Δρ)

(d1, d1 + Δλ)

(e1, e1 + Δe)
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where Δρj , 0 ≤ j < 4 are the four possible output differences after the rotation
(2). Equation (20) would be an accurate evaluation of adpARX if the inputs to the
rotation and the inputs to the XOR operation were independent. In reality they
are not, as illustrated by the following example.

Example 1. Let n = 4, r = 1, Δγ = 10002, Δλ = 00002, Δη = 00012. Two
output differences after the rotation are possible: Δρ0 = 00012 and Δρ2 = 11112,
each with probability 2−1. They both propagate through the XOR operation with
probability 2−1.54. The total probability Protxor is

Protxor = adp≪(10002
1−→ 00012) · adp⊕(00012, 00002 → 00012)

+ adp≪(10002
1−→ 11112) · adp⊕(11112, 00002 → 00012)

= 2−1 · 2−1.54 + 2−1 · 2−1.54 = 2−1.54 . (21)

The actual probability is, however, higher than Protxor and is Pexper = 2−1. The
reason for the discrepancy is the fact that there exist pairs of inputs to XOR
that satisfy the differences Δρ0 or Δρ2, but when they are rotated back they
do not satisfy the difference Δγ. One such input pair is (q1, q2) = (2, 1). This
pair satisfies the difference Δρ2: q2 − q1 = (1 − 2) mod 16 = 15 = 11112. Yet,
it does not satisfy the difference Δγ: (q2 ≫ 1)− (q1 ≫ 1) = (8 − 1) mod 16 =
7 = 01112 �= 10002. There are 8 such pairs in total: (0, 15), (2, 1), (4, 3), (6, 5),
(8, 7), (10, 9), (12, 11), (14, 13). Given the output difference Δρ2, these pairs are
impossible. Thus the total number of possible inputs to the XOR is reduced from
256 to 128. The reason is, that for every impossible pair (q1, q2), there are 16
possibilities for the second input pair (d1 +Δλ, d1). Of those 128 pairs, 64 satisfy
the output difference Δη. Thus the actual probability is adp⊕(11112, 00002 →
00012) = 64/128 = 2−1 and not 88/256 = 2−1.54. We have a similar situation
for the difference Δρ0. In that case the impossible pairs are (1, 2), (3, 4), (5, 6),
(7, 8), (9, 10), (11, 12), (13, 14), (15, 0) and the adp⊕ probability is again 2−1.
Thus the final probability adpARX is 2−1.

5 Computation of adpARX

In Example 1, we showed that the inputs to the rotation and to the XOR operation
are not independent. This causes the additive differential probability of ARX, es-
timated by the multiplication of the probabilities of the rotation and the XOR, to
differ from the actual probability. This problem can be solved if the intermediate
differences Δρj , 0 ≤ j < 4 are not computed explicitly. Consider the ARX oper-
ation (17). Let a1 + b1 = c1, q1 = (c1 ≪ r) and e1 = ARX(a1, b1, d1, r), e2 =
ARX(a2, b2, d2, r), as shown in Fig. 2. Note that c1[i] = q1[i + r]. Therefore
q1[i + r] ⊕ d1[i + r] = e1[i + r] is equivalent to

c1[i] ⊕ d1[i + r] = e1[i + r] . (22)

Using this representation, we can compute the bits of the output e1 without
using the intermediate variable q1. Consequently, we can compute the output
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difference Δe = e2 − e1 without using the intermediate differences Δρi:

c2[i] = c1[i] ⊕ Δγ[i] ⊕ s1[i] , (23)
d2[i + r] = d1[i + r] ⊕ Δλ[i + r] ⊕ s2[i + r] , (24)
Δe[i + r] = e1[i + r] ⊕ e2[i + r] ⊕ s3[i + r] , (25)

where

s1[i] = (c1[i − 1] + Δγ[i − 1] + s1[i − 1]) � 1 , (26)
s2[i + r] = (d1[i + r − 1] + Δλ[i + r − 1] + s2[i + r − 1]) � 1 , (27)
s3[i + r] = (e2[i + r − 1] − e1[i + r − 1] + s3[i + r − 1]) � 1 . (28)

The S-function for adpARX is defined as

(Δe[i + r], S[i + 1]) = f(c1[i], d1[i + r], Δγ[i], Δλ[i + r], S[i]),
0 ≤ i < n . (29)

The definitions of the S-functions for adpARX (29) and adp⊕ (15) are very similar.
Yet the computation of the two differ in several aspects. We describe these
differences below.

5.1 The Initial State

As described in Sect. 3 for adp⊕, the state is composed of two carries and one
borrow arising from the three modular operations involved in computing the
output (10). At position i = 0, these values are all zero. Therefore, the initial
state is S[0] = (s1[0], s2[0], s3[0]) = (0, 0, 0). In the case of adpARX the situation is
slightly different. The reason is that when we perform the ARX operation bitwise,
at position 0, we compute the 0-th bit of c2 and the r-th bits of d2 and Δe
(23)-(25). Similarly to adp⊕, the carry s1[0] is zero. However the carry s2[r] and
the borrow s3[r] are not necessarily zero:

s1[0] = 0 , (30)
s2[r] = (d1[r − 1] + Δλ[r − 1] + s2[r − 1]) � 1 , (31)
s3[r] = (e2[r − 1] − e1[r − 1] + s3[r − 1]) � 1 . (32)

Thus the initial state of the adpARX S-function is S[0] = (s1[0], s2[r], s3[r]). Be-
cause s2[r] ∈ {0, 1} and s3[r] ∈ {−1, 0}, there are four possibilities for S[0]. Each
of them corresponds to one of the 3-tuples (0, 0,−1), (0, 1,−1), (0, 0, 0), (0, 1, 0).
We map all 8 possible values of any state S[i] = (s1[i], s2[i + r], s3[i + r]) to
the set of integers {0, 1, ..., 7} as shown in Table 2. Following this convention,
S[0] ∈ {0, 2, 4, 6}.

5.2 The Final State

From (30)-(32), it follows that in order to compute S[0] we have to know s2[r−1]
and s3[r − 1]. In other words, in order to compute the initial state of the adpARX
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Table 2. Mapping between the 8 states of the adpARX S-function and the set of integers
{0, . . . , 7}

S[i] 0 1 2 3 4 5 6 7

(s1[i], s2[i + r], s3[i + r]) (0,0,-1) (1,0,-1) (0,1,-1) (1,1,-1) (0,0,0) (1,0,0) (0,1,0) (1,1,0)

S-function we need information from the final state S[n − 1] = (s1[n − 1], s2[r −
1], s3[r − 1]). However, at the start of the computation (i = 0) we do not know
the output of the S-function at position i = n − 1 yet. We solve this problem
by iterating over all four values of (s2[r − 1], s3[r − 1]) at i = 0. For each of
them, we compute S[0] and we proceed with the computation of the S-function.
From the set of final output states S[n − 1], we accept as valid only those that
match the values of (s2[r − 1], s3[r − 1]) at position i = 0. Each value of the
tuple (s2[r − 1], s3[r − 1]) will match exactly two of all eight final states S[n− 1]
corresponding to the two possibilities for c1[n − 1] ∈ {0, 1}. For example the
initial state (0, 0,−1) will be matched by final states (0, 0,−1) and (1, 0,−1). In
general, following the mapping in Table 2, an initial state S[0] = j ∈ {0, 2, 4, 6}
will match final states S[n − 1] = j and S[n − 1] = j + 1.

5.3 A Special Intermediate State

There is one final issue that should be taken care of, before we are able to
compute adpARX. Consider step i = n − r − 1 of the computation of the S-
function of adpARX. At this step, we are operating on bits at position n − 1 in
order to compute s2[0] and s3[0]. Since these are the most-significant input bits,
the carries and borrows that they generate should be discarded. Consequently,
s2[0] and s3[0] should be set to zero at this step:

s1[n − r] = (c1[n − r − 1] + Δγ[n − r − 1] + s1[n − r − 1]) � 1 , (33)
s2[0] = 0 , (34)
s3[0] = 0 . (35)

Therefore state S[n−r] = (s1[n−r], s2[0], s3[0]) is a special intermediate state for
which the only permissible values are (0, 0, 0) and (1, 0, 0) i.e. S[n − r] ∈ {4, 5}.
Because of this special state, it is necessary to construct an 8 × 8 projection
matrix R in addition to the matrices Aq, 0 ≤ q < 8 used in the computation
of adp⊕ (16). By multiplying the matrix Aw[n−r−1] at position n − r − 1 to
the left by R, the transition from the set of output states corresponding to
the value of the 3-tuple (Δγ[n − r], Δλ[0], Δη[0]) to the set of reachable output
states is performed (cf. Sect. 3). This operation effectively transforms every state
S[n − r] = (s1[n − r], s2[0], s3[0]) to the permissible value for the special state
S[n − r] = (s1[n − r], 0, 0).
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5.4 Computing adpARX

The probability adpARX can be computed as follows:

adpARX(Δγ, Δλ
r−→ Δη) =

2−2n
∑

j∈{0,2,4,6}
(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) . (36)

In (36), j ∈ {0, 2, 4, 6} iterates over the four possible initial states. The binary
column vector Cj of dimension 8 × 1 indicates the initial state. It has 1 at
position j and 0 elsewhere. The vector Lj is a 1×8 binary row vector that has 1 at
positions j and j+1 and has 0 elsewhere. By multiplying the result of the matrix
multiplication by Lj , we are effectively adding only the two final states that
correspond to the initial state j (cf. Sect. 5.2). The indices w[0], . . . , w[n−1] are
in the set {0, 1, . . . , 7}. Index w[i] is obtained by concatenating the corresponding
bits of the differences: w[i] = Δγ[i] ‖ Δλ[i + r] ‖ Δη[i + r]. For every bit position
0 ≤ i < n, index w[i] selects one of the eight 8 × 8 adjacency matrices Aq, 0 ≤
q < 8. For position i = n − r − 1, matrix Aw[n−r−1] is additionally multiplied to
the left by the projection matrix R. The matrices Aq are the same as the the ones
used in the computation of adp⊕. Matrices Aq and R are given in Appendix A.

The computation of adpARX (36) is slightly different from the computation
of adp⊕ (16). The main difference is that there are four evaluations of the S-
function. From each of them, two of the eight final states are selected. The second
difference is the presence of the additional projection matrix R.

In Example 2, we demonstrate the computation of adpARX for the additive
differences given in Example 1.

Example 2. For n = 4, r = 1, Δγ = 10002, Δλ = 00002, Δη = 00012, we want
to compute adpARX(Δγ, Δλ

r−→ Δη). First we compute the indices w[i] = Δγ[i] ‖
Δλ[i + 1] ‖ Δη[i + 1], 0 ≤ i < 4:

w[0] = Δγ[0] ‖ Δλ[1] ‖ Δη[1] = 000 ,

w[1] = Δγ[1] ‖ Δλ[2] ‖ Δη[2] = 000 ,

w[2] = Δγ[2] ‖ Δλ[3] ‖ Δη[3] = 000 ,

w[3] = Δγ[3] ‖ Δλ[0] ‖ Δη[0] = 101 .

Indices w[0], w[1], w[2] select matrix A000; index w[3] selects matrix A101. The
probability adpARX is computed as

adpARX(10002, 00002
1−→ 00012)

= 2−8
∑

j∈{0,2,4,6}
LjA101RA000A000A000Cj = 2−1 ,
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where

C0 =
(
1 0 0 0 0 0 0 0

)T
, L0 =

(
1 1 0 0 0 0 0 0

)
,

C2 =
(
0 0 1 0 0 0 0 0

)T
, L2 =

(
0 0 1 1 0 0 0 0

)
,

C4 =
(
0 0 0 0 1 0 0 0

)T
, L4 =

(
0 0 0 0 1 1 0 0

)
,

C6 =
(
0 0 0 0 0 0 1 0

)T
, L6 =

(
0 0 0 0 0 0 1 1

)
.

6 Proof of Correctness

With the following theorem we state that the computation of the probability
adpARX (36) is correct. To prove this, we use arguments similar to [11, §3.4,
Theorem 1]. The full proof is given in Appendix B. In this section, we provide
the intuition behind it.

Theorem 1.

2−2n
∑

j∈{0,2,4,6}
(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) =

|{(c1, d1) : Δe = Δη}|
|{(c1, d1)}| . (37)

Proof. The full proof is given in Appendix B.

Theorem 1 states that the probability computed using the proposed method (36)
is equal to the probability adpARX as defined by (19). The most natural way to
see this is by using a graph representation of the S-function [11]. In [11, §3.4]
it is shown that an S-function can be represented as a directed acyclic graph
composed of bipartite subgraphs. In this representation, all pairs of inputs that
satisfy the input differences are equal to the number of paths through the graph.
Each path connects a valid initial state to a valid final state. A subset of these
paths corresponds to the set of input pairs that satisfy both the input and the
output differences. Therefore, the computation of the S-function is equivalent
to counting the number of paths in the subset and dividing the result by the
number of all paths. Since, in the process, no path is counted more than once,
the result is exactly equal to adpARX as defined by (19).

7 Experiments

In this section, we confirm the correctness of the computation of adpARX (36)
experimentally. We performed two sets of experiments: one for 4-bit words and
one for 32-bit words. In both sets, we compare three computations of the additive
differential probability of ARX:

– Pexper: the probability computed experimentally, using (19), over a certain
number of inputs that satisfy the input differences
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Table 3. Comparing three ways of computing the additive differential probability of
ARX for 4-bit words. Shown are the 24 cases for which the deviation of Protxor (20)
from the experimentally obtained value Pexper (19) is highest: |Pexper − Protxor | > 0.1.

The probability adpARX(Δγ, Δλ
r−→ Δη) (36) matches exactly the probability obtained

experimentally Pexper . The latter is computed over all 28 possible inputs. The values of
the differences are in binary format.

# Δγ Δλ Δη r Pexper PARX Protxor

1 1000 0000 0001 1 0.500 0.500 0.344
2 1000 0000 0010 2 0.500 0.500 0.375
3 1000 0000 0110 2 0 0 0.125
4 1000 0000 1010 2 0 0 0.125
5 1000 0000 1110 2 0.500 0.500 0.375
6 1000 0000 1111 1 0.500 0.500 0.344
7 1000 0001 0000 1 0.500 0.500 0.344
8 1000 0010 0000 2 0.500 0.500 0.375
9 1000 0010 1000 2 0 0 0.125
10 1000 0110 0000 2 0 0 0.125
11 1000 0110 1000 2 0.500 0.500 0.375
12 1000 0111 1000 1 0.500 0.500 0.344
13 1000 1000 0010 2 0 0 0.125
14 1000 1000 0110 2 0.500 0.500 0.375
15 1000 1000 0111 1 0.500 0.500 0.344
16 1000 1000 1001 1 0.500 0.500 0.344
17 1000 1000 1010 2 0.500 0.500 0.375
18 1000 1000 1110 2 0 0 0.125
19 1000 1001 1000 1 0.500 0.500 0.344
20 1000 1010 0000 2 0 0 0.125
21 1000 1010 1000 2 0.500 0.500 0.375
22 1000 1110 0000 2 0.500 0.500 0.375
23 1000 1110 1000 2 0 0 0.125
24 1000 1111 0000 1 0.500 0.500 0.344

– adpARX: the probability computed using the proposed method (36)
– Protxor: the probability computed as a product of the probabilities adp≪

and adp⊕ (20)

In the set of experiments on 4-bit words, we exhaustively searched over all pos-
sible combinations of input and output differences Δγ, Δλ, Δη and over all non-
zero rotation constants r ∈ {1, 2, 3}. We performed 12, 288 experiments in total.
For each of them we computed Pexper, adpARX and Protxor. The probability Pexper

was computed over all 28 possible input words. In each experiment, the proba-
bility adpARX was equal to Pexper, while Protxor often deviated. The 24 cases in
which the absolute deviation is higher than 0.1 are shown in Table 3.

We experimented over random 32-bit input and output differences of relatively
low weight (less than 16). The probability Pexper was computed over 222 random
inputs. We performed 210 experiments in total. For all of them, the estimation
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Table 4. Comparing three ways of computing the additive differential probability
ARX for 32-bit words. Shown are 11 selected cases for which the deviation of Protxor

(20) from the experimentally obtained value Pexper (19) is high. The probability

adpARX(Δγ, Δλ
r−→ Δη) (36) closely follows the experimentally obtained value Pexper.

The latter is computed over 222 random inputs. Base-2 logarithms of the probabilities
are given.

# Δγ Δλ Δη r Pexper PARX Protxor

0 0x80000100 0x00000000 0x0007fc00 11 −2.58331 −2.58496 −4.17006
1 0x40000008 0x00000000 0x000001d0 6 −4.58591 −4.58496 −5.59061
2 0x80000008 0x04000000 0xfc000f00 9 −4.16817 −4.16711 −5.70768
3 0x40010001 0x04000000 0xd3ffc000 30 −5.90603 −5.91254 −6.60771
4 0xa2005800 0x00400000 0xf4000b00 29 −7.53935 −7.54954 −8.57279
5 0x45003700 0x00000000 0xc8ffbb00 16 −8.77902 −8.76145 −9.37302
6 0x4007800d 0x03800300 0x01e803f0 21 −11.14047 −11.17440 −11.86110
7 0xbf006400 0x00900050 0xf37ff9f0 28 −11.85917 −11.82987 −12.81410
8 0x8d00ec00 0x00a000f0 0xfbf7f870 27 −12.04435 −12.05139 −13.47130
9 0x7c005e00 0x00700080 0xffb3fe78 9 −9.96830 −9.98809 −11.36139
10 0xda008200 0x001000d0 0xe01d9f38 20 −15.05749 −15.10578 −15.77518
11 0xe4006600 0x00f00040 0xf0cff9e0 28 −15.04580 −15.04912 −15.32160

of the probability adpARX was closer to the experimentally obtained value Pexper

than to Protxor. A selection of 11 cases for which the absolute deviation from
Protxor was observed to be relatively high is shown in Table 4.

8 Conclusions

In this paper, we analyzed the probability adpARX with which additive differences
propagate through the sequence of operations: modular addition, bit rotation
and XOR. We proposed a method for the computation of adpARX, based on the
recently proposed concept of S-functions. The time complexity of our algorithm
is linear in the word size n. To the best of our knowledge, our algorithm is the
first to calculate adpARX efficiently for large n.

In Sect. 7, we observed that the estimated probability obtained by analyzing
the components of ARX separately, can differ significantly from the actual prob-
ability. In our method, we analyze the three operations as a single operation
(ARX). In this way, we obtain the exact probability adpARX. Our algorithm can be
used to evaluate the probability of differential characteristics for cryptographic
algorithms more accurately.

An interesting topic for future research, is therefore to use our technique in
the search of differential characteristics. Possible targets include several hash
functions from NIST’s ongoing SHA-3 competition, as well as stream ciphers
(e.g. Salsa20), or block ciphers such as XTEA.
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A Appendix

A000 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 4 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A001 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A010 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
1 0 0 1 0 1 4 0
0 0 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A011 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 4 0 1 0 0 1
0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A100 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 4 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A101 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0
0 4 1 0 1 0 0 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A110 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 1 1 0 1 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A111 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 4 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

B Proof of Correctness of the Computation of adpARX

In this section, we provide the full proof of Theorem 1. We use the graph rep-
resentation of an S-function [11]. For input words of size n, an S-function can
be represented as a directed acyclic graph, composed of n bipartite subgraphs.
Each bipartite subgraph corresponds to one of the eight adjacency matrices
Aq, q ∈ {0, 1, . . . , 7}. The vertices of the i-th subgraph are composed of the
two disjoint sets of eight input states S[i] ∈ {0, 1, . . . , 7} and eight output states
S[i + 1] ∈ {0, 1, . . . , 7}. Furthermore, the output states of the i-th subgraph are
input states for the (i + 1)-th subgraph. An edge between a vertex in S[i] and a
vertex in S[i + 1] corresponds to a value of the tuple (c1[i], d1[i + r]) that results
in the fixed output difference Δe[i + r] = Δη[i + r]. With this representation in
mind, we state the following two lemmas before we proceed to the main theorem.

Lemma 1. Let input differences Δγ[i], Δλ[i+r] be given. Then, for every input
value (c1[i], d1[i + r]) and input state S[i], the output value Δe[i + r] and the
output state S[i + 1] are uniquely determined.
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Proof. The proof follows directly from (23)-(25). ��
Lemma 2. The i-th subgraph in the graph representation of the adpARX S-function
(29) contains an edge if and only if Δe[i + r] = Δη[i + r]

Proof. The statement holds by construction of the subgraphs. ��

Theorem 1

2−2n
∑

j∈{0,2,4,6}
(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) =

|{(c1, d1) : Δe = Δη}|
|{(c1, d1)}| . (38)

Proof. Proving the statement of the theorem is equivalent to proving that the re-
sult computed by formula (36) is equal to the definition of adpARX (19). Consider
the S-function for adpARX (29) and the i-th subgraph of its graph representation.
Fix the inputs Δγ[i], Δλ[i + r]. From Lemma 1, it follows that every edge in the
subgraph corresponds to a distinct pair of inputs (c1[i], d1[i+ r]), (c2[i], d2[i+ r])
that satisfies the input differences (Δγ[i], Δλ[i + r]). From Lemma 2, it follows
that the subgraph contains only those among all edges, for which the pair of
inputs satisfies also the output difference Δη[i + r]. Consider next the graph
composed of all n subgraphs. A path in this graph is composed of n edges:
one edge from each subgraph. For bit position i, one edge corresponds to dis-
tinct pairs (c1[i], d1[i + r]), (c2[i], d2[i + r]) that satisfy differences Δγ[i], Δλ[i +
r], Δη[i + r]. Therefore, a path composed of n edges will correspond to distinct
pairs (c1, d1), (c2, d2) that satisfy the n-bit differences Δγ, Δλ, Δη. It follows
that the number of paths in the S-function graph is equal to the number of
pairs of inputs that satisfy both the input and the output differences. The num-
ber of paths that connect input state S[0] = u ∈ {0, . . . , 7} to output state
S[n − 1] = v ∈ {0, . . . , 7} is equal to the value of the element in column u and
row v of the matrix A, denoted by Au,v with indexing starting from zero. The
matrix A is obtained by multiplying the n adjacency matrices corresponding to
each of the n subgraphs

A = Aw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0] , (39)

where R is the projection matrix derived in Sect. 5. In Sect. 5, it was shown
that due to the bit rotation in the ARX operation, the only valid initial states
for the S-function are S[0] = u ∈ {0, 2, 4, 6}. Their corresponding valid final
states are S[n − 1] = u and S[n − 1] = u + 1. Therefore the number of paths
connecting valid input and output states is equal to the sum of elements Au,v

u ∈ {0, 2, 4, 6}, v ∈ {u, u + 1} of A:∑
u∈{0,2,4,6}

∑
v∈{u,u+1}

Au,v =
∑

j∈{0,2,4,6}
LjACj , (40)
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where Cj and Lj are the same as in (36). It remains to prove that (40) is equal
to |{(c1, d1) : Δe = Δη}|. For this it is enough to show that none of the paths
corresponding to Au,v overlap. This is indeed the case since the four initial states
u do not overlap (no two values of u are equal) and each of them ends in a set
of final states so that no two sets {u, u + 1} overlap. From this, and because
|{(c1, d1)}| = 22n, it follows that

2−2n
∑

j∈{0,2,4,6}
LjACj =

|{(c1, d1) : Δe = Δη}|
|{(c1, d1)}| = adpARX(Δγ, Δλ

r−→ Δη).

��
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Abstract. Addition modulo 231 − 1 is a basic arithmetic operation in
the stream cipher ZUC. For evaluating ZUC’s resistance against linear
cryptanalysis, it is necessary to study properties of linear approximations
of the addition modulo 231 − 1. In this paper we discuss linear approxi-
mations of the addition of k inputs modulo 2n − 1 for n ≥ 2. As a result,
an explicit expression of the correlations of linear approximations of the
addition modulo 2n − 1 is given when k = 2, and an iterative expression
when k > 2. For a class of special linear approximations with all masks
being equal to 1, we further discuss the limit of their correlations when
n goes to infinity. It is shown that when k is even, the limit is equal to
zero, and when k is odd, the limit is bounded by a constant depending
on k.

Keywords: Linear approximation, modular additions, linear cryptanal-
ysis.

1 Introduction

Linear cryptanalysis [1] is one of the most powerful and general cryptanalytic
methods. Its main task is to find linear relations between the inputs and outputs
of target functions. In block ciphers, we usually find some linear relations among
keys, plaintexts and ciphertexts that hold with certain probability. If some plain-
text/ciphertext pairs are known, some bits of the key can be recovered with high
probability [1, 2]. In stream ciphers, linear cryptanalysis is usually combined with
distinguishing cryptanalysis together, and its goal is to establish a linear distin-
guisher to distinguish the keystream generated by the target algorithm from a
random sequence [3, 4].

For both block ciphers and stream ciphers, it is important to find an efficient
method to evaluate their resistance against linear cryptanalysis. Most crypto-
graphic algorithms are usually designed by composing distinct and well chosen
components and operations. Hence we should calculate linear approximations

� This work was supported by the Natural Science Foundation of China (Grant No.
60833008 and 60902024) and the National 973 Program (Grant No. 2007CB807902).

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 359–377, 2011.
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of those components or operations. The addition modulo 2n, especially when
n is equal to the length of a computer word, e.g., 8, 16 or 32, is one of the
most common operations, and is widely used in the design of cryptographic al-
gorithms [5–8]. Many results on the addition modulo 2n have been obtained,
see [9–15].

The addition modulo 2n−1 is another important arithmetic operation [16, 17].
Some properties of the addition modulo 2n − 1 have been explored in [18, 19].
However few results on linear approximations on the addition modulo 2n −1 can
be found from public literature. Recently a new stream cipher named ZUC [20],
together with 128-EEA3 and 128-EIA3, has been proposed as the third suite
of LTE encryption and integrity candidates, see [21] for details. In ZUC, the
addition modulo 231−1 is a basic operation since the linear feedback shift register
(LFSR) of ZUC is defined over the prime field F231−1. For evaluating ZUC’s
resistance against linear cryptanalysis, it is necessary to study the properties of
linear approximations of the addition modulo 231 − 1. In this paper, by means
of known results on the addition modulo 2n, we directly derive an expression for
the correlations of arbitrary linear approximations of the addition modulo 2n −1
with two inputs. For the case where more than two inputs are involved, we give
an iterative expression. Moreover, for a class of special linear approximations
with all masks being equal to 1, we discuss the limit of their correlations when
n goes to infinity. Let k be the number of inputs of the addition modulo 2n − 1.
It is shown that when k is even, the limit is equal to zero, and when k is odd,
the limit is a constant depending on k.

The rest of the paper is organized as follows: in section 2, we give the defini-
tions of linear approximations and their correlations and recall some properties
of the addition modulo 2n briefly. In section 3 some basic properties of linear
approximation of the addition modulo 2n − 1 are given, and more properties for
the case k = 2 are given in section 4. In section 5 we further discuss the limit
of linear approximations with all masks being equal to 1. Finally we conclude in
section 6.

2 Preliminaries

2.1 Linear Approximation and Its Correlation

Let n be a positive integer. Denote Z2n the set of integers x such that 0 ≤ x ≤
2n − 1. Given an integer x ∈ Z2n , let

x = x(n−1)x(n−2) · · ·x(0) =
n−1∑
i=0

x(i)2i

be the binary representation of x, where x(i) ∈ {0, 1}. We call x(i) the i-th bit
of x, 0 ≤ i ≤ n − 1. In the rest of the paper, without further specification, we
always denote by x(i) the i-th bit of the integer x in its binary representation.
For arbitrary two integers w, x ∈ Z2n , the inner product of w and x is defined
as
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w · x =
n−1⊕
i=0

w(i)x(i).

Let J be a nonempty subset of Z2n , k be a positive integer and f be a
function from Jk to J . Given k + 1 constants u, w1, · · · , wk ∈ Z2n , the linear
approximation of the function f associated with u, w1, · · · , wk is an approximate
relation of the form

u · f(x1, · · · , xk) =
k⊕

i=1

wi · xi, (1)

and the (k + 1)-tuple (u, w1, · · · , wk) is called a linear mask of f . The efficiency
of the linear approximation (1) is measured by its correlation which is defined
as

corf (u; w1, · · · , wk) = 2 Pr(u · f(x1, · · · , xk) =
k⊕

i=1

wi · xi) − 1

=
1

|J |k
∑

(x1,··· ,xk)∈Jk

(−1)u·f(x1,··· ,xk)⊕⊕k
i=1 wi·xi ,

(2)

where the probability is taken over uniformly distributed x1, · · · , xk over J , and
|J | denotes the cardinality of the set J .

2.2 Linear Approximations of the Addition Modulo 2n

In this section we recall some properties of linear approximations of the addition
modulo 2n briefly, for more details please refer to [9, 10].

Denote by � the addition modulo 2n, that is, for any x1, x2 ∈ Z2n , we have
x1 � x2 = (x1 + x2) mod 2n. Let (u, w1, w2) be a linear mask of the addition
�, and denote by cor�(u; w1, w2) the correlation of the linear approximation
u · (x1 � x2) = w1 · x1 ⊕ w2 · x2. From the linear mask (u, w1, w2) we derive a
sequence z = zn−1 · · · z0 as follows

zi = u(i)22 + w
(i)
2 2 + w

(i)
1 , i = 0, 1, · · · , n − 1. (3)

It’s easy to see that 0 ≤ zi ≤ 7 for all 0 ≤ i ≤ n − 1. Define

Mn(u, w1, w2) =
n−1∏
i=0

Azi , (4)

where Aj (j = 0, 1, · · · , 7) are constant matrices of size 2 × 2 and defined as
follows

A0 =
1
4

(
3 1
1 3

)
, A1 = A2 = −A4 =

1
4

(
1 1
−1 −1

)
,

−A3 = A5 = A6 =
1
4

(
1 −1

−1 1

)
, A7 =

1
4

(
3 −1
1 −3

)
.

Then we have
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Theorem 1 ([9]). For any given linear mask (u, w1, w2), let Mn(u, w1, w2) be
defined as above. Set Mn(u, w1, w2) = (Mi,j)0≤i,j≤1. Then we have

Mi,j = Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j)
− Pr(u · (x1 � x2) �= w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j),

where c0 is an initial carry bit, and cn is the n-th carry bit of the addition of x1

and x2 with the initial carry bit c0. By convention c0 = 0, and we have

cor�(u; w1, w2) = M0,0 + M1,0. (5)

Note that for any integers x1 and x2, if c0 = 1, then the addition of x1 and
x2 modulo 2n with the initial carry c0 is equivalent to (x1 + x2 + 1) mod 2n.
Therefore we get the following corollary.

Corollary 1. Let x1�x2 = x1 � x2 � 1 and (u, w1, w2) be a linear mask of
�. Denote by cor�(u; w1, w2) the correlation of the linear approximation u ·
(x1�x2) = w1 · x1 ⊕ w2 · x2. Then we have

cor�(u; w1, w2) = M0,1 + M1,1. (6)

3 Some Properties on Linear Approximations of the
Addition Modulo 2n − 1

In this section we will discuss some properties of linear approximations of the
addition modulo 2n − 1 with k inputs, where we always assume that n ≥ 2 and
k ≥ 2. For consistency with the definition of the addition of the prime field F2n−1

in ZUC [20], here we make the convention that the set of representatives of the
residue class modulo 2n −1 are { 1, 2, · · · , 2n − 1 } instead of { 0, 1, · · · , 2n − 2 }.
It should be pointed out that all results in this paper can induce the correspond-
ing ones in { 0, 1, · · · , 2n − 2 } directly.

Let J = { 1, 2, · · · , 2n − 1 }, and denote by �̂ the addition modulo 2n − 1 as
defined in ZUC, more precisely, for any x1, x2 ∈ J , we have

x1�̂x2 =
{

x1 + x2 if x1 + x2 < 2n,
(x1 + x2 + 1) mod 2n if x1 + x2 ≥ 2n.

(7)

For example, set n = 3, then J = {1, 2, · · · , 7}, and 2�̂6 = 1, 3�̂4 = 7.
In the following we consider the addition modulo 2n −1 over J with k inputs.

For any given linear mask (u, w1, · · · , wk), we denote by cor�̂(u; w1, · · · , wk) the
correlation of the linear approximation

u · (x1�̂ · · · �̂xk) =
k⊕

i=1

wi · xi.

For simplicity we write cor�̂(u; w1, · · · , wk) as cor(u; w1, · · · , wk).
The following two theorems can easily be derived.
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Theorem 2. For any given linear mask (u, w1, · · · , wk) and any permutation
(i1, · · · , ik) of (1, · · · , k), we have

cor(u; w1, · · · , wk) = cor(u; wi1 , · · · , wik
). (8)

Proof. Define

J(u; w1, · · · , wk) = { (x1, · · · , xk) ∈ Jk | u · (x1�̂ · · · �̂xk) =
k⊕

i=1

wi · xi } .

By the definition of the correlation (see Eqn. (2)), we only need to prove that

|J(u; w1, · · · , wk)| = |J(u; wi1 , · · · , wik
)|. (9)

For any (x1, · · · , xk) ∈ J(u; w1, · · · , wk), we have

u · (�̂k

j=1xij ) = u · (�̂k

i=1xi) =
k⊕

i=1

wi · xi =
k⊕

j=1

wij · xij ,

which shows (xi1 , · · · , xik
) ∈ J(u; wi1 , · · · , wik

), and vice versa. So Eqn. (9)
holds. �
Theorem 3. For any given linear mask (u, w1, · · · , wk) and integer 	 such that
1 ≤ 	 ≤ n − 1, we have

cor(u; w1, · · · , wk) = cor(u ≪ 	; w1 ≪ 	, · · · , wk ≪ 	), (10)

where x ≪ 	 denotes the cyclic shift of x 	 bits to the left .

Proof. Similarly to the proof of Theorem 2, we only need to prove that

|J(u; w1, · · · , wk)| = |J(u ≪ 	; w1 ≪ 	, · · · , wk ≪ 	)|. (11)

It is easy to see that x ≪ 	 ≡ 2�x mod (2n − 1) holds for any x ∈ J , which
means that for any x1, · · · , xk ∈ J , we have

(
k∑

i=1

xi) ≪ 	 ≡ 2�
k∑

i=1

xi ≡
k∑

i=1

2�xi ≡
k∑

i=1

(xi ≪ 	) mod (2n − 1),

namely, (�̂k

i=1xi) ≪ 	 = �̂k

i=1(xi ≪ 	).
So for any (x1, · · · , xk) ∈ J(u; w1, · · · , wk), we have

(u ≪ 	) · (�̂k

i=1(xi ≪ 	)) = (u ≪ 	) · ((�̂k

i=1xi) ≪ 	) = (u · (�̂k

i=1xi)) ≪ 	

= (
k⊕

i=1

wi · xi) ≪ 	 =
k⊕

i=1

(wi ≪ 	) · (xi ≪ 	).

It follows that (x1 ≪ 	, · · · , xk ≪ 	) ∈ J(u ≪ 	; w1 ≪ 	, · · · , wk ≪ 	),
that is, |J(u; w1, · · · , wk)| ≤ |J(u ≪ 	; w1 ≪ 	, · · · , wk ≪ 	)|. Note that
(x ≪ 	) ≪ (n − 	) = x for any x ∈ J . By shifting each mask cyclicly n − 	 bits
to the left, we have

|J(u ≪ 	; w1 ≪ 	, · · · , wk ≪ 	)| ≤ |J(u; w1, · · · , wk)|.
So Eqn. (11) follows. �
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3.1 Addition of Two Inputs in F2n−1

In this section we will derive an explicit expression of cor(u; w1, w2) for any linear
mask (u, w1, w2) from Theorem 1. For any given linear mask (u, w1, w2), we keep
the notations z, Mn(u, w1, w2) and Mi,j (0 ≤ i, j ≤ 1) defined in section 2.

One can notice that when x1 + x2 < 2n, we have x1�̂x2 = x1 � x2, and
when x1 + x2 ≥ 2n, we have x1�̂x2 = x1 � x2 � 1. Thus by Theorem 1 and
Corollary 1, it seems that cor(u; w1, w2) is almost equal to M0,0 + M1,1 if the
difference between Z2n and J is ignored. Below we give an explicit expression
for cor(u; w1, w2).

Theorem 4. Let (u, w1, w2) be a linear mask of the addition �̂ modulo 2n − 1,
and Mn(u, w1, w2) = (Mi,j)0≤i,j≤1 be defined as above. Then we have

cor(u; w1, w2) =
22n(M0,0 + M1,1) + 2n · c + 1

(2n − 1)2
, (12)

where

c =

⎧⎪⎪⎨⎪⎪⎩
−3, if u = w1 = w2 and wH(w2) is even,

1, if u �= w1 = w2 and wH(w2) is odd,
0, if u, w1 and w2 are pairwise different,

−1, otherwise,

and wH(w2) denotes the hamming weight of w2 in its binary representation.

Proof. For any given x1, x2 ∈ J , we consider x1�̂x2 from the following two
aspects.

First, when 0 < x1 +x2 < 2n, it is known that x1�̂x2 = x1 �x2. By Theorem
1, we have

M0,0 =Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)
− Pr(u · (x1 � x2) �= w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n).

Since

Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)
+Pr(u · (x1 � x2) �= w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)

=Pr(x1 + x2 < 2n) =
2n + 1
2n+1

,

thus we have

Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n) =
1
2
M0,0 +

2n + 1
2n+2

.

It follows that there are 2n−2(2n + 1) + 22n−1M0,0 pairs (x1, x2) satisfying u ·
(x1 � x2) = w1 · x1 ⊕ w2 · x2 and 0 ≤ x1 + x2 < 2n. We consider those pairs of
the form (0, x2). When x1 = 0, we get (u ⊕ w2) · x2 = 0 due to u · x2 = w2 · x2.
It follows that there are 2n−1 solutions x2 if u �= w2 and 2n solutions if u = w2.
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Hence there are 2n−1 pairs of the form (0, x2) among all the above pairs not in
J × J if u �= w2 and 2n pairs not in J × J if u = w2. By the symmetric position
of x1 and x2, we have the same conclusion for x2 = 0. In addition, the pair (0, 0)
always satisfies u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 but is not in J × J .

Second, when x1 + x2 ≥ 2n, we have x1�̂x2 = x1 � x2 � 1. Similar to the
above case, there are totally 2n−2(2n + 1) + 22n−1M1,1 pairs (x1, x2) satisfying
both x1 + x2 + 1 ≥ 2n and u · (x1 � x2 � 1) = w1 · x1 ⊕ w2 · x2. Now we consider
how to remove some pairs (x1, x2) satisfying x1 + x2 + 1 = 2n from the above
pairs. Note that x1 � x2 � 1 = 0, thus we only need to count pairs (x1, x2) such
that x1 + x2 = 2n − 1 and w1 · x1 = w2 · x2. Since x1 + x2 = 2n − 1 = x1 ⊕ x2,
it follows that

(w1 ⊕ w2) · x1 = w2 · (2n − 1). (13)

If w1 �= w2, Eqn. (13) has 2n−1 solutions; if w1 = w2, when wH(w2) is an odd
number, Eqn. (13) has no solutions, and when wH(w2) is an even number, Eqn.
(13) has 2n solutions.

Denote by d the number of pairs (x1, x2) ∈ Z2n × Z2n which satisfy the
linear approximation defined by mask (u, w1, w2) and x1 = 0 or x2 = 0 or
x1 + x2 = 2n − 1. Combine the above two cases, we have

d =

⎧⎪⎪⎨⎪⎪⎩
3 · 2n − 1, if u = w1 = w2 and wH(w2) is even,

2n − 1, if u �= w1 = w2 and wH(w2) is odd,
3 · 2n−1 − 1, if u, w1 and w2 are pairwise different,

2 · 2n − 1, otherwise.

By the definition of correlation, we have

cor(u; w1, w2)

=2 · (2n−2(2n + 1) + 22n−1M0,0) + (2n−2(2n + 1) + 22n−1M1,1) − d

(2n − 1)2
− 1

=
22n(M0,0 + M1,1) + 3 · 2n − 1 − 2d

(2n − 1)2
.

Then we can get the desired conclusion. �

3.2 Addition of More than Two Inputs in F2n−1

In this section we will derive an iterative expression of cor(u; w1, · · · , wk) for
any linear mask (u, w1, · · · , wk). The addition of k inputs x1, · · · , xk can be seen
as the addition of x1�̂ · · · �̂xk−1 and xk.

Theorem 5. For any given linear mask (u, w1, · · · , wk) and integer k > 2, we
have

cor(u; w1, · · · , wk) =
2n − 1

2n

2n−1∑
w=0

cor(w; w1, · · · , wk−1)cor(u; w, wk). (14)
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Proof. By Eqn. (2), we have

cor(u; w1, · · · , wk) =
1

(2n − 1)k

∑
(x1,··· ,xk)∈Jk

(−1)u·(�̂k

i=1xi)⊕
⊕k

i=1 wi·xi .

Denote y = x1�̂ · · · �̂xk−1. Then we have

2n−1∑
w=0

cor(w; w1, · · · , wk−1)cor(u; w, wk)

=
1

(2n − 1)k+1

2n−1∑
w=0

∑
(x1,··· ,xk−1)∈Jk−1

(z,xk)∈J2

(−1)w·y⊕⊕k−1
i=1 wi·xi(−1)u·(z�̂xk)⊕w·z⊕wk·xk

=
1

(2n − 1)k+1

∑
(x1,··· ,xk,z)∈Jk+1

(−1)u·(z�̂xk)⊕⊕k
i=1 wi·xi

2n−1∑
w=0

(−1)w·z⊕w·y

Note that

2n−1∑
w=0

(−1)w·z⊕w·y =
{

2n, if z = y,
0, if z �= y.

Then we have

2n−1∑
w=0

cor(w; w1, · · · , wk−1)cor(u; w, wk)

=
2n

(2n − 1)k+1

∑
(x1,··· ,xk)∈Jk

(−1)u·(y�̂xk)⊕⊕k
i=1 wi·xi

=
2n

2n − 1
cor(u; w1, · · · , wk). �

4 More Properties of Linear Approximations of the
Addition Modulo 2n − 1 with Two Inputs

In this section we will provide more properties of linear approximations of the
addition modulo 2n − 1 with two inputs, that is, k = 2. First we introduce some
notations and concepts.

Let Q be the rational field. Define

I =
{(

a b
b a

)
|a, b ∈ Q

}
,

II =
{(

a −b
b −a

)
|a, b ∈ Q

}
,
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and call a matrix in the set I (or II) to be type-I (or type-II). It is easy to see
that A0, A3, A5, A6 ∈ I and A1, A2, A4, A7 ∈ II (which are defined in section 2).
The following two properties can easily be verified.

Lemma 1. The product of arbitrary two type-I (or type-II) matrices is a type-I
matrix.

Lemma 2. The product of a type-I matrix and a type-II matrix is a type-II
matrix.

By the definition of Mn(u, w1, w2) and Lemmas 1 and 2, we have

Lemma 3. For any given linear mask (u, w1, w2), Mn(u, w1, w2) is either type-I
or type-II.

For any given square matrix M , denote by Tr(M) the trace of the matrix M ,
that is, the sum of elements on the main diagonal of M . Since the trace of an
arbitrary type-II matrix is zero, thus the following conclusions hold.

Corollary 2. For any given linear mask (u, w1, w2), let z = zn−1 · · · z0 be the
sequence derived from (u, w1, w2) by the formula (3). If the number of elements zi

such that zi ∈ {1, 2, 4, 7} is odd, i = 0, 1, · · · , n−1, then Tr(Mn(u, w1, w2)) = 0.

Corollary 3. Let u ∈ Z2n and wH(u) be odd. Then Tr(Mn(u, u, u)) = 0. Thus
we have

cor(u; u, u) = − 1
2n − 1

and
lim

n→∞ cor(u; u, u) = 0.

Corollary 4. Let u ∈ Z2n and wH(u) be even. Then Mn(u, u, u) is type-I, that
is, M0,0 = M1,1. Thus we have

cor(u; u, u) =
22n · 2M0,0 − 3 · 2n + 1

(2n − 1)2
.

If all 1’s of u in the binary representation are adjacent, then we have

cor(u; u, u) =
22n · (2 wH(u)

2 −n + 2−
wH(u)

2 ) − 3 · 2n + 1
(2n − 1)2

and
lim

n→∞cor(u; u, u) = 2−
wH(u)

2 .

Proof. By Theorem 3, we only need to consider the masks whose binary ex-
pression be of the form (0, · · · , 0︸ ︷︷ ︸

n−wH(u)

1, · · · , 1︸ ︷︷ ︸
wH(u)

). Then Mn(u, u, u) = A
n−wH(u)
0 A

wH(u)
7 .

Denote by I2 the 2 × 2 identity matrix. It is easy to see that A2
7 = 1

2I2. Since
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wH(u) is even, we have A
wH(u)
7 = 2−

wH(u)
2 I2. So Mn(u, u, u) = 2−

wH(u)
2 A

n−wH(u)
0 .

Since A0 is a symmetric matrix of the form
(

a b
b a

)
, it is easily proved by induc-

tion that (
a b
b a

)t

=
1
2

(
(a + b)t + (a − b)t (a + b)t − (a − b)t

(a + b)t − (a − b)t (a + b)t + (a − b)t

)
for t≥ 1. Then we have Tr(An−wH(u)

0 ) = 1 + 2wH(u)−n. So Tr(Mn(u, u, u)) =
2−

wH(u)
2 Tr(An−wH(u)

0 ) = 2−
wH(u)

2 + 2
wH(u)

2 −n, and the conclusion follows. �

Below we give some facts on Ai, 0 ≤ i ≤ 7, which will be used later.

Lemma 4. 1. A0Ai = 1
2Ai, for ∀ i ∈ {1, 2, 3, 4, 5, 6};

2. AiA0 = Ai if i ∈ {1, 2, 4} and AiA0 = 1
2Ai if i ∈ {3, 5, 6};

3. AiAj = 0, i ∈ {1, 2, 4} and j ∈ {1, 2, 3, 4, 5, 6};
4. A1A7 = A2A7 = −A4A7 = A6.

Now we consider a class of special linear masks (u, 1, w). Let z = zn−1 · · · z0 be
the sequence derived from (u, 1, w). It is easy to see that z0 ∈ { 1, 3, 5, 7} and
zi ∈ { 0, 2, 4, 6}, 1 ≤ i ≤ n − 1. In the rest of the paper we simply write M
instead of Mn(u, 1, w).

Lemma 5. For any integers u, w ∈ Z2n , if Tr(M) �= 0, then the sequence z is
of the form either {0, 6}n−1{3, 5} or {0, 6}∗{2, 4}0∗7.

Proof. Let r be the number of zi such that zi ∈ { 2, 4 }, i = 1, 2, · · · , n − 1. We
first prove that r ≤ 1. Assume that r > 1. Then there exist two indexes i and j
such that zi, zj ∈ { 2, 4 }, 1 ≤ i < j ≤ n − 1. By Items 2 and 3 of Lemma 4, we
have Azi · · ·Azj = 0. It follows that M = 0, which contradicts Tr(M) �= 0.

When r = 0, if z0 ∈ { 1, 7 }, by Corollary 2, it is known that the matrix M
is of type-II, which contradicts Tr(M) �= 0 as well. Thus z0 ∈ { 3, 5 }. So z is of
the form {0, 6}n−1{3, 5}.

When r = 1, let zj ∈ { 2, 4 }, where 1 ≤ j ≤ n − 1. First we claim that zi = 0
for all 1 ≤ i < j. If there exists some index i such that zi �= 0, by Items 2 and 3 of
Lemma 4, we have Azi · · ·Azj = 0, furthermore M = 0, which is a contradiction.
Second, if z0 ∈ { 1, 3, 5}, by Items 2 and 3 of Lemma 4, we have Az0 · · ·Azi = 0.
So z is of the form {0, 6}∗{2, 4}0∗7. �

Theorem 6. For any integers u, w ∈ Z2n, Tr(M) �= 0 if and only if u = w⊕2i,
where 0 ≤ i ≤ LNB(w⊕ 1), LNB(x) denotes the least index where 1 appears in
the binary representation of x if x �= 0, and LNB(0) = n − 1.

Proof. The necessity follows directly from Lemma 5. Below we prove the suf-
ficiency. First we prove that Tr(At

6) = 2−t for any t ≥ 1. In fact, it is easy
to calculate two characteristic roots 0 and 2−1 of A6. Thus we have Tr(At

6) =
0t + (2−1)t = 2−t.
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If i = 0, i.e., u = w ⊕ 1, then z is of the form {0, 6}n−1{3, 5}. Let t be the
number of zi such that zi = 6, i = 1, 2, · · · , n − 1. Then 0 occurs in zn−1 · · · z1

for n − 1 − t times. Thus by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · · Az0)

= Tr(2−(n−1−t)At
6Az0)

= (−1)w2−(n−1−t)Tr(At+1
6 )

= (−1)w2−(n−1−t)2−(t+1)

= (−1)w2−n.

If i > 0, then z is of the form {0, 6}∗{2, 4}0∗7 and zi ∈ { 2, 4 }. Let t be the
number of repetitions of 6 appearing in zn−1 · · · zi+1. Then by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · · Az0)

= Tr(2−(n−1−i−t)At
6AziA7)

= (−1)s2−(n−1−i−t)Tr(At+1
6 )

= (−1)s2−(n−1−i−t)2−(t+1)

= (−1)s2−(n−i),

where s = w(i) ⊕ 1. �

Theorem 6 gives a sufficient and necessary condition for judjing whether or not
M is of type-II for any linear mask (u, 1, w). From its proof we can get the
following result.

Corollary 5. For any integers u, w ∈ Z2n such that u = w ⊕ 2i, where 0 ≤ i ≤
LNB(w ⊕1), we have Tr(M) = (−1)s2−(n−i), where

s =
{

0 if i = 0 and w(0) = 0 or i > 0 and w(i) = 1,
1 otherwise.

By Theorem 4 and Corollary 5, we can derive the following corollary.

Corollary 6. The correlation of the linear approximation of addition in F2n−1

with a mask of the form (w, 1, 1) is given by

cor(w; 1, 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(2n−1)2 if w = 0,

− 1
2n−1 if w = 1,

−2n+i+2n+1
(2n−1)2 if w = 2i + 1, 1 ≤ i ≤ n − 1,

2n+1
(2n−1)2 otherwise.

When the mask is of the form (1, w, 1), the correlation is given by

cor(1; w, 1) =

⎧⎪⎨⎪⎩
1

(2n−1)2 if w = 0,
2n+i−2n+1

(2n−1)2 if w = 2i + 1, 1 ≤ i ≤ n − 1,

− 1
2n−1 otherwise.
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Finally we give an upper bound of |cor(u; 1, w)|. For any given integer x ∈ Z2n ,
define

Jx = {x ⊕ 2i|1 ≤ i ≤ LNB(x ⊕ 1)}.

Theorem 7. For any integers u, w ∈ Z2n , if w /∈ Ju, then

|cor(u; 1, w)| <
3

2n − 1
. (15)

Proof. If w �= u⊕1, by Theorem 6, we have Tr(M) = 0, that is, M0,0+M1,1 = 0.
If u = w = 1, Eqn. (15) follows directly from Corollary 6. If u �= w, by Theorem 4
we have

|cor(u; 1, w)| ≤ 2n + 1
(2n − 1)2

<
3

2n − 1
.

If w = u ⊕ 1, by Corollary 5 and Theorem 4, we have

|cor(u; 1, w)| ≤ 22n · 2−n + 2n + 1
(2n − 1)2

=
2 · 2n + 1
(2n − 1)2

<
3

2n − 1
. �

5 The Limit of cor(1; 1k) for the Addition in F2n−1 when
n → ∞

In this section we will discuss the limit of correlations cor(u; u, · · · , u︸ ︷︷ ︸
k

) when n

goes to infinity, where wH(u) = 1. By Theorem 3, it is known that cor(u; u, · · · , u︸ ︷︷ ︸
k

)

= cor(1; 1, · · · , 1︸ ︷︷ ︸
k

). So below we only consider cor(1; 1, · · · , 1︸ ︷︷ ︸
k

). For simplicity, we

denote it by cor(1; 1k).

Lemma 6. For any integers n ≥ 2 and k ≥ 2, we have∑
u∈Z2n

|cor(u; 1k)| < (n + 3)k−1.

Proof. Note that |Jx| ≤ n for all x ∈ Z2n . When k = 2, by Theorem 7, we have∑
u∈Z2n

|cor(u; 1, 1)| =
∑
u∈J1

|cor(u; 1, 1)| +
∑
u/∈J1

|cor(u; 1, 1)|

≤
∑
u∈J1

1 +
3

2n − 1

∑
u/∈J1

1 < n + 3.
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Suppose that when k = k0, we have
∑

u∈Z2n

|cor(u; 1k0)| < (n + 3)k0−1. Then∑
u∈Z2n

|cor(u; 1k0+1)|

=
2n − 1

2n

∑
u∈Z2n

|
∑

w∈Z2n

cor(w; 1k0)cor(u; w, 1)|

<
∑

u∈Z2n

∑
w∈Z2n

|cor(w; 1k0)cor(u; w, 1)|

=
∑

u∈Z2n

(
∑

w∈Ju

|cor(w; 1k0)cor(u; w, 1)| +
∑

w/∈Ju

|cor(w; 1k0)cor(u; w, 1)|)

<
∑

u∈Z2n

∑
w∈Ju

|cor(w; 1k0)| + 3
2n − 1

∑
u∈Z2n

∑
w/∈Ju

|cor(w; 1k0)|

< n · (n + 3)k0−1 +
3

2n − 1
· (2n − 1) · (n + 3)k0−1

= (n + 3)k0 .

By induction the conclusion of the theorem holds. �

Lemma 7. For any integer t ≥ 1 and i ≥ 2, we have

lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

cor(ut; 1i)
t∏

j=1

cor(uj−1; uj , 1) = 0,

where u0 = 1.

Proof. By Lemma 6 and Theorem 7, we have∣∣∣∣∣∣
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

cor(ut; 1i)
t∏

j=1

cor(uj−1; uj, 1)

∣∣∣∣∣∣
<

3
2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

|cor(ut; 1i)
t−1∏
j=1

cor(uj−1; uj , 1)|

≤ 3
2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

|cor(ut; 1i)|

<
3

2n − 1
(n + 3)i−1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

1

<
3

2n − 1
(n + 3)i−1nt−1.

Since 3
2n−1 (n + 3)i−1nt−1 approaches 0 when n approaches infinity, thus the

conclusion holds. �
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Lemma 8. For any integer k ≥ 3, if lim
n→∞cor(1; 1k) exists, then

lim
n→∞ cor(1; 1k) = lim

n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1; uj , 1),

where u0 = uk−1 = 1.

Proof.

lim
n→∞ cor(1; 1k)

= lim
n→∞

∑
u1∈Z2n

cor(u1; 1k−1)cor(1; u1, 1)

= lim
n→∞(

∑
u1∈J1

+
∑

u1 /∈J1

)cor(u1; 1k−1)cor(1; u1, 1)

= lim
n→∞

∑
u1∈J1

cor(u1; 1k−1)cor(1; u1, 1) (by Lemma 7)

= lim
n→∞

∑
u1∈J1

∑
u2∈Z2n

cor(u2; 1k−2)cor(u1; u2, 1)cor(1; u1, 1)

= lim
n→∞

∑
u1∈J1

(
∑

u2∈Ju1

+
∑

u2 /∈Ju1

)cor(u2; 1k−2)cor(u1; u2, 1)cor(1; u1, 1)

= lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

cor(u2; 1k−2)cor(u1; u2, 1)cor(1; u1, 1) (by Lemma 7)

= lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1; uj, 1). �

Theorem 8. For any integer k ≥ 3, if lim
n→∞cor(1; 1k) exists, then

lim
n→∞ cor(1; 1k) = lim

n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−1∈Juk−2

k−1∏
j=1

Tr(Mn(uj−1, uj , 1)),

where u0 = uk−1 = 1.

Proof. Recall that A1 = A2 and A5 = A6, then it is easily proved that for arbi-
trary two integers u, w ∈ Z2n , the matrices sequence derived from (u, 1, w) is the
same with the matrices sequence derived from (u, w, 1). So we have Mn(u, 1, w) =
Mn(u, w, 1). By Theorem 4, Theorem 6 and Corollary 5, we have

cor(u; w, 1) = Tr(Mn(u, w, 1)) +
δ(u, w, 1)
2n − 1

,
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where

|δ(u, w, 1)| =
∣∣∣∣(2n+1 − 1)Tr(Mn(u, w, 1)) + 2n · c + 1

2n − 1

∣∣∣∣
≤ (2n+1 − 1)|Tr(Mn(u, 1, w))| + 2n · |c| + 1

2n − 1

≤ (2n+1 − 1) + 2n · 3 + 1
2n − 1

< 7.

Then

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1; uj, 1)

=
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

(Tr(Mn(u0, u1, 1))+
δ(u0, u1, 1)

p
)
k−1∏
j=2

cor(uj−1; uj, 1)

= A + B,

where

A =
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

Tr(Mn(u0, u1, 1))
k−1∏
j=2

cor(uj−1; uj, 1)

and

B =
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

δ(u0, u1, 1)
2n − 1

k−1∏
j=2

cor(uj−1; uj, 1).

Since

|B| ≤ 7
2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

|
k−2∏
j=2

cor(uj−1; uj, 1)|

≤ 7
2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

1

≤ 7
2n − 1

nk n→∞−−−−→ 0,

thus we have

lim
n→∞ cor(1; 1k) = lim

n→∞A.

Repeat the above procedure, and we always strip δ(uj−1,uj ,1)
2n−1 from

cor(uj−1; uj , 1), j = 2, 3, · · · , k − 1. Then finally we can get the desired con-
clusion. �
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Corollary 7. lim
n→∞cor(1; 12) = 0 and lim

n→∞cor(1; 13) = − 1
3 .

Proof. Since Mn(1, 1, 1) = An−1
0 A7 is of type-II, thus Tr(Mn(1, 1, 1)) = 0, fur-

thermore we have lim
n→∞cor(1; 1, 1) = 0. By Theorem 8 and Corollary 6, we have

lim
n→∞ cor(1; 13)

= lim
n→∞

∑
u∈J1

Tr(Mn(u, 1, 1))Tr(Mn(1, u, 1))

= lim
n→∞

n−1∑
i=1

Tr(Mn(2i + 1, 1, 1))Tr(Mn(1, 2i + 1, 1))

= lim
n→∞

n−1∑
i=1

(−2−(n−i)) · 2−(n−i)

= − lim
n→∞

n−1∑
i=1

4−(n−i) = −1
3
. �

In order to deal with the general case lim
n→∞ cor(1; 1k), for a given integer k ≥ 3,

we define

Uk = {u0u1u2 · · ·uk−2uk−1|uj ∈ Juj−1 , 1 ≤ j ≤ k − 1, uk−1 = u0 = 1}. (16)

Then Theorem 8 can also be written as:

Theorem 9. For given integer k ≥ 3, if lim
n→∞cor(1; 1k) exists, then

lim
n→∞ cor(1; 1k) = lim

n→∞

∑
u0u1···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj, 1)).

For any string u0u1u2 · · ·uk−2uk−1 ∈ Uk, by the definition of Juj−1 , we have uj >
0 for 0 ≤ j ≤ k − 1, and there is only one bit in uj different from uj−1, that is,
wH(uj−1)−wH(uj) = ±1. Note that wH(u0) = 1 is odd, thus wH(u2), wH(u4), · · ·
are all odd and wH(u1), wH(u3), · · · are all even.

When k is even, it is known that wH(uk−1) is even, which contradicts uk−1 =
1. It follows that Uk = ∅. Hence we have the following conclusion.

Theorem 10. For any even positive integer k, we have lim
n→∞cor(1; 1k) = 0.

When k is odd, set u2j = 1 and u2j+1 = 2n−1 + 1 for 0 ≤ j ≤ k−1
2 . Then

u0 · · ·uk−2uk−1 ∈ Uk. It shows that Uk �= ∅. For all odd integer k, we define

Ik = {i1i2 · · · ik−1|2ij = uj ⊕ uj−1, u0 · · ·uk−2uk−1 ∈ Uk},

Ik,d = {i1i2 · · · ik−1|d =
k−1∑
j=1

ij, i1i2 · · · ik−1 ∈ Ik},

and denote Nk,d = |Ik,d|.
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Theorem 11. For any odd integer k ≥ 3, we have

∑
u0u1···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj , 1)) = (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑
d=k−1

Nk,d · 2d.

Proof. For any u0 · · ·uk−1 ∈ Uk, by Corollary 5, when wH(uj)−wH(uj−1) = 1, the
sign of Tr(Mn(uj−1, uj , 1)) is positive, and when wH(uj) − wH(uj−1) = −1, the
sign of Tr(Mn(uj−1, uj, 1)) is negative. So the sign of

∏k−1
j=1 Tr(Mn(uj−1, uj , 1))

is the same as that of
∏k−1

j=1 (wH(uj) − wH(uj−1)). Note that
∑k−1

j=1 (wH(uj) −
wH(uj−1)) = 0. It follows that the number of j such that wH(uj) − wH(uj−1) =
1 is equal to that of j such that wH(uj) − wH(uj−1) = −1. Thus the sign of∏k−1

j=1 Tr(Mn(uj−1, uj, 1)) equals (−1)
k−1
2 . Then we have

∑
u0···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj , 1))

= (−1)
k−1
2

∑
i1i2···ik−1∈Ik

k−1∏
j=1

2−(n−ij)

= (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑
d=k−1

Nk,d · 2d. �

Theorem 12. For any odd integer k ≥ 3, if lim
n→∞cor(1; 1k) exists, then

1. lim
n→∞cor(1; 1k) ≥ 1

32−(k−3), if k ≡ 1 mod 4;

2. lim
n→∞cor(1; 1k) ≤ − 1

32−(k−3), if k ≡ 3 mod 4.

Proof. For any given u0 · · ·uk−1 ∈ Uk, denote 2ij = uj ⊕ uj−1, 1 ≤ j ≤ k − 1.
Then i1i2 · · · ik−1 ∈ Ik. Note that 2i1 ⊕ 2i2 ⊕ · · · ⊕ 2ik−1 =

⊕k−1
j=1 (uj ⊕ uj−1) =

0, which means that i1, i2, · · · , ik−1 can be divided into two identical sets. So
d =

∑k−1
j=1 ij is always even. Note that 1 ≤ ij ≤ n − 1, thus k − 1 ≤ d ≤

(k − 1)(d − 1). In addition, by the definition of Ik and Ik,d, for any even integer
k − 1 ≤ d ≤ (n − 1)(k − 1), it is easy to verify that there exist i1, i2, · · · , ik−1

such that i1i2 · · · ik−1 ∈ Ik,d, that is, Nk,d ≥ 1. For example, when d = k − 1,
set ij = 1 for 1 ≤ j ≤ k − 1, then i1 · · · ik−1 ∈ Ik,k−1; when d = (k − 1)(n − 1),
set ij = n− 1 for 1 ≤ j ≤ k − 1, then i1 · · · ik−1 ∈ Ik,(k−1)(n−1). By Theorem 11,
we have

| lim
n→∞ cor(1; 1k)|

= lim
n→∞ 2−(k−1)n

(k−1)(n−1)/2∑
d=(k−1)/2

Nk,2d22d
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≥ lim
n→∞ 2−(k−1)n

(k−1)(n−1)/2∑
d=(k−1)/2

22d

= lim
n→∞ 2−(k−1)n 2(k−1)(n−1)+2 − 2k−1

22 − 1

=
1
3
2−(k−3). �

6 Conclusion

In this paper we discussed some properties of linear approximations of the addi-
tion modulo 2n − 1. We presented an explicit expression for the case when two
inputs are involved, and an iterative expression for the case when more than two
inputs are involved. For a class of special linear approximations with all masks
being equal to 1, we further discussed the limit of their correlations when n ap-
proaches infinity. More precisely, let k be the number of inputs of the addition
modulo 2n −1, we show that when k is even, the limit is equal to zero, and when
k is odd, the limit is bounded by a constant depending on k.

Finally when both n and k approach infinity, we have a conjecture on cor(1; 1k).

Conjecture 1. lim
k→∞

lim
n→∞cor(1; 1k) = 0.
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Abstract. We study the security of AES in the open-key setting by
showing an analysis on hash function modes instantiating AES includ-
ing Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preneel modes.
In particular, we propose preimage attacks on these constructions, while
most of previous work focused their attention on collision attacks or dis-
tinguishers using non-ideal differential properties. This research is based
on the motivation that we should evaluate classical and important secu-
rity notions for hash functions and avoid complicated attack models that
seem to have little relevance in practice. We apply a recently developed
meet-in-the-middle preimage approach. As a result, we obtain a preim-
age attack on 7 rounds of Davies-Meyer AES and a second preimage
attack on 7 rounds of Matyas-Meyer-Oseas and Miyaguchi-Preneel AES.
Considering that the previous best collision attack only can work up to
6 rounds, the number of attacked rounds reaches the best in terms of the
classical security notions. In our attacks, the key is regarded as a known
constant, and the attacks thus can work for any key length in common.

Keywords: AES, hash function, Davies-Meyer, Matyas-Meyer-Oseas,
Miyaguchi-Preneel, PGV, preimage, meet-in-the-middle, Whirlpool.

1 Introduction

Block ciphers are taking important roles in various aspects of our life. Currently,
one of the most widely used block-ciphers all over the world is AES [12,34].

Since 2009, great progress in the cryptanalysis on AES has been made.
Related-key attacks against full-round AES-256 [6,7], full-round AES-192 [6],
7-round AES-128 [9], and 10-round AES-256 with a practical complexity [5] have
been proposed. Regarding AES-128, besides the above related-key boomerang
attack [9] several non-marginal single-key attacks have been proposed; an im-
possible differential attack [25] and a single-key attack [15] based on a collision
attack [16]. In any attack, the maximum number of attacked rounds is 7.

On the other hand, block ciphers are sometimes used as hash functions
through mode-of-operations. For example, if one needs both a block-cipher and
a hash function in a resource-restricted environment such as RFID Tag, only a
block-cipher is implemented and a hash function is built using it. Besides, many

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 378–396, 2011.
c© International Association for Cryptologic Research 2011
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Tag-based applications, such as authentication or anonymity/privacy, do not
need the collision resistance [10]. Hence, building a 128-bit hash function with
AES is a possible candidate. In fact, [10] proposed 80-bit and 64-bit hash func-
tions using block-cipher PRESENT. Another concern is that many hash func-
tions, even in the SHA-3 competition [35], are designed based on block-ciphers.
Hence, block-ciphers’ security in hashing modes is an interesting research object.

The known-key attack proposed by Knudsen and Rijmen [21] is the framework
for this context. In this model, a secret key is randomly chosen and given to
attackers. Then, attackers aim to efficiently detect a certain property of a random
instance of the block cipher, where the same property cannot be observed for a
random permutation with the same complexity. The attack can be extended to
the chosen-key model. e.g. [7]. In the known-key model, the key size is irrelevant
to the attack. In other words, all key sizes are simultaneously attacked. While, in
the chosen-key model, the attack depends on the key-schedule algorithm. Hence,
different strategies is necessary for different key sizes.

The first known-key attack was presented by Knudsen and Rijmen [21], which
found a non-ideal property of 7-round AES. Then, Mendel et al. presented the
known-key attack on 7-round AES [26] based on the rebound attack proposed
by Mendel et al. [27]. Finally, Gilbert and Peyrin [17] and Lamberger et al.
[22] independently applied Super-Sbox analysis to the rebound attack. Gilbert
and Peyrin [17] showed that 8-round AES was not ideal in the known-key set-
ting. Regarding the chosen-key attack, Biryukov et al. [7] presented a chosen-key
distinguisher on full-round AES-256, which is converted to a q-pseudo-collision
attack on AES-256 based compression functions. Biryukov and Nikolić also dis-
covered a chosen-key distinguisher on 8-round AES-128 [8].

Although the above results led to significant progress for theoretical crypt-
analysis in the secret-, known-, and chosen-key settings, one major drawback is
the use of complicated attack models, which are sometimes too theoretic such as
related-subkey attacks on block ciphers and distinguishers on block-cipher based
compression functions. From this background, several researchers recently have
attempted to analyze AES in a simple attack model. For example, Dunkelman et
al. [15] and Wei et al. [36] avoided the related-key model and proposed attacks
on 8 round AES-256 or AES-192 in the single-key model.

In this paper, we follow the similar principle as Dunkelman et al. [15] and Wei
et al. [36]. That is to say, we analyze the security of hashing modes instantiat-
ing AES in terms of the classical security notions of hash functions, which are
actually important for their applications. In particular, we study the preimage
resistance of hash functions rather than compression functions.

For hash functions, three security notions are classically considered to be
important; collision resistance, second-preimage resistance, and preimage resis-
tance. Among these three, the collision resistance of reduced-round AES can be
attacked by applying the techniques used in the rebound attack [27]. In fact,
Lamberger et al. [23, Section 5.3] describe a collision attack on an AES-based
hash function Whirlpool [30] reduced to 5.5 rounds, which is trivially converted
to a collision attack on the Matyas-Meyer-Oseas mode [28, Algorithm 9.41]
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Table 1. Comparison of attacks. 0.5 round of collision and near-collision attacks on
Whirlpool by [23] is omitted.

Attack Rounds Key-size Mode Comp. Func. Hash Ref.
(Time, Mem.) (Time, Mem.)

Attacks on AES Hasing modes

Collision 6 128/192/256 MMO,MP (256, 232) (256, 232) [23]
2nd preimage 6 128/192/256 MMO,MP (2112, 216) (2112, 216) Ours
2nd preimage 7 128/192/256 MMO,MP (2120, 28) (2120, 28) Ours

Preimage 6 128/192/256 DM (2112, 216) (2121, 216) Ours
Preimage 7 128/192/256 DM (2120, 28) (2125, 28) Ours

Near collision 7 128/192/256 MMO,MP (232, 232) (232, 232) [23]
Distinguisher 8 128/192/256 MMO,MP (248, 232) - [17]

q-multicollision 14 256 DM (q · 267, negl.) - [7]

Attacks on Whirlpool

Collision 5 - - (2120, 264) (2120, 264) [23]
2ne Preimage 5 - - (2504, 28) (2504, 28) Ours

Near collision 7 - - (2112, 264) (2112, 264) [23]
Collision 7 - - (2184, 28) - [23]

Near collision 9 - - (2176, 28) - [23]
Distinguisher 10 - - (2176, 28) - [23]

instantiating 6-round AES. As far as we know, there is no result that attacks
second-preimage resistance or preimage resistance of such an AES usage. Note
that the attack by [23] can generate near-collisions on some PGV compression
functions with 7-round AES, which might be a valid security notion.

Our Contributions. In this paper, we propose preimage attacks on AES hash-
ing modes including Davies-Meyer (DM) [28, Algorithm 9.42], Matyas-Meyer-
Oseas (MMO), and Miyaguchi-Preneel (MP) [28, Algorithm 9.43] modes. As a
result, we obtain a preimage attack on 7 rounds of DM-AES with a complexity
of 2125 7-round AES computations and the memory of 28 AES state. We also
obtain a second preimage attack on 7 rounds of MMO-AES and MP-AES with
a complexity of 2120 7-round AES computations and the memory of 28 AES
state. Our attack can also generate second preimages of 5-round Whirlpool with
a complexity of 2504. The attack results are summarized in Table 1.

We apply a meet-in-the-middle preimage approach developed by Aoki and
Sasaki [3]. This approach has successfully been applied to many hash functions
e.g. MD5 [32] and Tiger [18]. All of previously analyzed hash functions adopt
the DM mode with a relatively weak message schedule, and the weak message
schedule is in fact exploited by the attack. However, for AES, the situation is very
different because AES has a heavy round function and key schedule. Moreover,
it is unclear how to perform preimage attacks against MMO and MP modes.

In our attacks, we fix the value of key-input to a randomly chosen value and
search for a plaintext-input that achieves the given hash target. This allows us
to attack All PGV modes [29] in the same procedure. We then show that the
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splice-and-cut technique proposed by [3] and the omission of a MixColumns
operation in the last round can be combined well and lead to a significant im-
provement for the preimage attack. Intuitively, this is because the round function
without MixColumns is computed as a middle round. This breaks the AES de-
sign principle, where AES two rounds achieve the full diffusion, and leads to an
attack improvement. Finally, we optimize several techniques of the meet-in-the-
middle preimage attack for AES. Specifically, the initial-structure and matching
through MixColumns contribute to increase the number of attacked rounds.

Paper Outline. In Sect. 2, we describe AES. In Sect. 3, we introduce previous
work. In Sect. 4, we explain a basic idea of our attack. In Sect. 5, we present a
preimage attack on 7-round AES. In Sect. 6, we give observations on our attack
and apply it to 5-round Whirlpool. Finally, we conclude this paper in Sect. 7.

2 Specifications

Advanced Encryption Standard (AES) [34,12] is a 128-bit block cipher support-
ing three different key sizes; 128, 192, 256 bits. AES computes 10, 12, and 14
rounds for AES-128, -192, and -256, respectively.

By using the key schedule function, round keys are generated from the original
secret key. We omit its description because our attacks regard round keys as given
constant numbers and thus they are irrelevant to our attacks.

When the data is processed, the internal state is represented by a 4 ∗ 4 byte
array. At the first, the original secret key is XORed to the plaintext, and then, a
round function consisting of the following four operations is iteratively applied.

- SubBytes(SB): substitute each byte according to an S-box table.
- ShiftRows(SR): apply the j-byte left rotation to each byte at row j.
- MixColumns(MC): multiply each column by an MDS matrix. MDS guaran-

tees that the sum of active bytes in the input and output of the MixColumns
operation is at least 5 unless all bytes are non-active. The matrices for the en-
cryption and decryption are shown below. Note that X [j] is the input value
and Y [j] is the updated value. Numbers with x are hexadecimal numbers.⎛⎜⎜⎝

Y [0]
Y [1]
Y [2]
Y [3]

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠
⎛⎜⎜⎝

X [0]
X [1]
X [2]
X [3]

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
Y [0]
Y [1]
Y [2]
Y [3]

⎞⎟⎟⎠ =

⎛⎜⎜⎝
xe xb xd x9
x9 xe xb xd

xd x9 xe xb

xb xd x9 xe

⎞⎟⎟⎠
⎛⎜⎜⎝

X [0]
X [1]
X [2]
X [3]

⎞⎟⎟⎠ (1)

- AddRoundKey(AK): apply bit-wise exclusive-or with a round key.

Note that the MixColumns operation is not computed at the last round.
Byte positions in a state S are denoted by integer numbers B, B ∈ {0, 1, 2, . . . ,

15}, as shown in Fig. 1, where the byte 4j + i corresponds to the byte in the
i-th row and j-th column of S, and is denoted by S[4 · j + i]. We often denote
several bytes of state S by S[a, b, . . .], e.g. 4 bytes in the right most column are
denoted by S[12, 13, 14, 15].
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0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Fig. 1. Byte positions

EK

MN-1

HN-1 HN

DM-mode Miyaguchi-PreneelMMO-mode

EK

HN-1

MN-1 HN EK

HN-1

MN-1 HN

Fig. 2. Illustrations for DM, MMO, and MP modes

Hash Functions Based on Block Ciphers. To build a hash function, we
need a domain extension for iteratively applying the compression function. The
Merkle-Damg̊ard domain extension is probably mostly used one in practice. It
applies the padding to the input message M so that the last block includes the
original message length, and splits the padded message to M0‖M1‖ · · · ‖ML−1,
where the size of each MN is the block length. An initial value H0 is defined, and
HN = CF(HN−1, MN−1) is iteratively applied for N = 1, 2, . . . , L. Finally, HL

is output as a hash value of M . This paper assumes that the Merkle-Damg̊ard
domain extension is used as a domain extender.

The PGV modes [29] are mode-of-operations to build a compression function
from a block cipher. In fact, many hash functions, e.g. MD5, SHA-2, and several
SHA-3 candidates, use the PGV modes. Among PGV modes, the DM, MMO,
and MP modes are used in practice. Let us denote a block cipher E with a key
K by EK . The construction of each mode is as follows, which is shown in Fig. 2.

DM mode: CF(HN−1, MN−1) = EMN−1(HN−1) ⊕ HN−1,
MMO mode: CF(HN−1, MN−1) = EHN−1(MN−1) ⊕ MN−1,
MP mode: CF(HN−1, MN−1) = EHN−1(MN−1) ⊕ MN−1 ⊕ HN−1.

3 Previous Work

3.1 Meet-in-the-Middle Preimage Attacks

To mount the preimage attack, we apply a meet-in-the-middle (MitM) preimage
approach developed by Aoki and Sasaki [3], which is based on the pioneering
work by Leurent [24]1. In this approach, the compression function is divided
into two sub-functions so that a portion of bits of the input message only affect
one sub-function and another portion of bits of the input message only affect the
other sub-function as shown in Fig. 3. This allows attackers to mount the meet-
in-the-middle attack. Sub-functions are called chunks (stands for chunks of steps
or rounds) and bits affecting only one chunk are called neutral. In this paper,
we call the chunk that computes the round function in the forward direction
forward chunk and in the backward direction backward chunk.

In addition to the basic concept, several techniques have been proposed to
extend the attack framework. The splice-and-cut technique [3] regards that the
first and last steps are consecutive, and thus any step can be the start point or

1 A basic idea of the MitM preimage finding technique can also be seen in [4] and [19].
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HN-1 HN

MN-1

ma mb

mamb mamb

key schedule

Backward chunkForward chunk

Check the match

Independent of ma Independent of mb

Fig. 3. Basic MitM attack on DM mode

HN-1 HN

MN-1

ma mb

ma mamb ma mb

key schedule

Backward 
chunk

Forward 
chunk

Backward 
chunk

Partial-
Match

Check the match of the partial-bits

Initial-
structure

mb ma

Fig. 4. Advanced techniques for MitM

matching point of the MitM attack. However, as a side-effect, generated items
become pseudo-preimages rather than preimages. The local-collision technique
[31], initial-structure technique [32] and probabilistic initial-structure technique
[18] ignore the order of message words at the start point of the MitM attack. For
example in Fig. 4, the order of neutral words ma and mb is reversed between the
start points of the forward and backward chunks. These techniques enables MitM
attacks even in such a situation. Finally, the partial-matching/-fixing techniques
[3] and indirect partial-matching technique [1] match two chunks partially and
efficiently. A framework with these techniques is illustrated in Fig. 4.

In n-bit narrow-pipe iterated hash functions, pseudo-preimage attacks with a
complexity of 2m, where m < n−2, can be converted to preimage attacks with a
complexity of 2

m+n
2 +1 in generic [28, Fact9.99]. Several researchers showed that

pseudo-preimage attacks satisfying certain special properties can be converted to
preimage attacks more efficiently than the generic approach [11,18,24]. Because
our attacks cannot satisfy such properties, we omit their details.

The MitM preimage approach has been applied to many hash functions such
as HAVAL [31], MD5 [32], reduced SHA-0/-1 [2], reduced SHA-2 [1], and Tiger
[18]. All of previously attacked hash functions adopt the DM mode and their
weak key-schedules are exploited by the attack. This strategy cannot work for
AES because, in the AES key-schedule, the impact of any change on the secret
key or a subkey always propagate to all other subkeys. This indicates that neutral
words such as described in Fig. 3 or Fig. 4 do not exist for AES. Moreover, if
the message is input as a plaintext in the MMO and MP modes, no input value
is available to separate the compression function into two parts.

3.2 Previous Analysis on AES

The security of AES in hash function modes was first evaluated by Knudsen
and Rijmen [21]. They showed a non-ideal property of 7-round AES. Lamberger
et al. showed a collision attack on 5.5-round Whirlpool based on the rebound
attack [27], which is trivially converted to a collision attack on 6-round AES. As
far as we know, no result is known on the second-preimage or preimage resistance.
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Note that current collision attacks can be applied only if the mode-of-operation
is MMO or MP, where attackers fix HN−1 and search for (MN−1, M

′
N−1). If the

DM mode is used instead, attackers fix MN−1 and search for (HN−1, H
′
N−1).

Hence, only pseudo-collisions on the compression function can be generated.
As analysis methods against the AES block cipher, there exist attacks named

collision attack [16] and Meet-in-the-Middle attack [13] (and their extension
[15]). These attacks are not related to attacks on hash functions. These attacks
based on an observation that a function from a certain input byte to a certain
output byte after 4 rounds can be described by 25-byte parameters. Hence, this
collision attack does not find paired messages producing an identical state, or
this Meet-in-the-Middle attack does not separate the cipher into two independent
sub-functions. The goal of these attacks is recovering the secret key of the AES
block cipher. Their applicability to hashing modes is not understood well.

4 Basic Idea of Our Attack and Techniques for Extension

We first explain a basic idea of our attack by using 4-round AES as an example
(Sect. 4.1). We fix the block-cipher’s key to a constant. This approach is different
from previous work in Sect. 3.1 which utilize the independence among subkeys.
In this attack, for simplicity, we only apply the splice-and-cut technique. We then
explain several techniques to extend the number of attacked rounds (Sect. 4.2).

4.1 Basic Attack for 4-Round AES

Goal of the Attack. We fix the key-input when we perform the MitM attack,
and the goal is to find the plaintext-input that provides the given target. This ap-
proach is irrelevant to the mode-of-operation used. That is, in the DM-mode, we
fix a message MN−1 to some constant and try to find a chaining variable HN−1

that produces the given target HN . Similarly, in the MMO- and MP-modes,
we fix a chaining variable HN−1 and search for a message MN−1. Generated
pseudo-preimages are later converted to preimages with a technique in Sect. 3.1.

Chunk Separation. We separate 4-round operations into two chunks as shown
in Fig. 5. The start point of each chunk is state #9. We choose #9[0] as a neutral
byte for the forward chunk and #9[12] for the backward chunk. We fix the other
bytes, i.e. #9[1, 2, . . . , 11, 13, 14, 15], to randomly chosen values. The backward
chunk covers the computation from state #9 to #5 and the forward chunk covers
from state #9 to #16 and #0 to #5. Results from two chunks will match at #5.

Forward Computation. The forward computation starts from #9. Because
#9[12] is a neutral byte for the backward chunk, we regard #9[12] to be unknown
during the forward computation. Hence, one byte is unknown at #11 and the
unknown byte is expanded to 4 bytes at #12. Similarly, by simply tracing the
computation, we obtain 8-byte information at #5 (#5[0,1,2,3,8,9,10,11]).
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SB SR MC AK

MC AK

#9 #10 #11 #12

#4

#5 #6 #7 #8

#0 #1 #2 #3

: values depending on neutral bytes for the backward chunk

: values depending on neutral bytes for the forward chunk

Given target

SB SR MC AK

AK

SB SR

start point

match?

Fig. 5. Basic attack idea: chunk separation for 4-round AES

An important observation is that the omission of the MixColumns operation
in the last round extends the number of rounds that can be computed indepen-
dently. The diffusion of AES is designed so that the full diffusion can be achieved
after the 2-round operation. In fact, if MixColumns exists between #15 and #16,
all bytes become unknown after this operation and it limits the attack efficiency
strongly. However, the omission of MixColumns yields 12 known bytes at #16,
and to make things worse, the positions of unknown bytes will overlap by the
next ShiftRows operation, and thus attackers can compute MixColumns for an-
other round. As a conclusion, we can summarize this property as follows;

AES 2-rounds achieve the full diffusion, however, if MixColumns is omit-
ted in the second round, 4 rounds are needed to achieve the full diffusion.

This property is illustrated in Fig. 6. This situation does not seem to occur for
the AES block cipher. However, in hash function modes, the splice-and-cut can
exploit it by starting the forward chunk from the second last round.

Overall Attack Procedure. Because the backward computation is similar
and straight-forward, we omit its explanation. Overall, if we fix 14 bytes at #9
as shown in Fig. 5, we can compute the forward chunk for 28 values of #9[0] and
obtain 8-byte information at #5. The obtained results are stored in a table and
sorted. Similarly, we can compute the backward chunk for 28 values of #9[12]
and obtain 12-byte information at #5. Because 2 bytes (#5[1,11]) are overlapped
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SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR AK

SB SR MC AK

SB SR MC AK

Fig. 6. Slow diffusion with the omission of MixColumns in the second round

between the results from both chunks, we can efficiently check the match of those
results. If the match is not found, the attack is repeated by changing the values
of fixed 14 bytes at #9 or the values for the AES key-input.

Each chunk can be built using 28 possible neutral values with 28 computations.
The results are stored in a table of the size 28 AES state and then sorted. After
that, 216 pairs are tested in the 2-byte match and 1 pair will succeed. Hence, if
we repeat the attack 2112 times, we will find a pair that also matches other 14
bytes. The final complexity for generating pseudo-preimages is 28 · 2112 = 2120.
This is converted to a preimage attack on the hash function with a complexity
of 2

120+128
2 +1 = 2125 using a generic conversion in Sect. 3.1.

Note that the attack efficiency is not optimized because the purpose of this
attack is to demonstrate the basic idea of our attack. Also note that, the impact
of the change of #9[12] does not propagate to all bytes at the matching stage.
This is because the backward chunk is too short. If the number of attacked rounds
is extended as explained in Sect. 5, the impact will propagate to all bytes.

4.2 Techniques for Attacking More Rounds

We show that a technique similar to the initial-structure [32] can extend the num-
ber of rounds in each chunk by one round (in total 2 rounds), and by considering
the MixColumns operation deeply, we can include one more round during the
matching stage. These techniques are directly applied to our 7-round attack that
will be explained in Sect. 5. Specifically, the differential path described in Fig. 7
and Fig. 8 are the copy of a part of differential path in Fig. 9.

Initial-Structure. The idea is choosing several bytes as neutral bytes, and
determining these values so that several output bytes of the MixColumns or
InverseMixColumns operations can be constant values. This minimizes the num-
ber of unknown bytes after the first MixColumns operation in each chunk, and
thus, the number of attacked rounds is extended by one round in each chunk.
The construction of the initial-structure is shown in Fig. 7.
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Fig. 7. Initial-structure technique for AES
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Fig. 8. Known-byte patterns for
matching through MixColumns

The neutral bytes for the forward chunk are 4 bytes #B[0,1,2,3]. We choose 28

values of these bytes and use them to compute the forward chunk independently
of the backward chunk. These values are determined as follows;

1. Randomly choose constant values for 3 bytes at #A (#A[1,2,3]).
2. For all possible 28 values of #B[0], we calculate the values of #B[1,2,3] so

that the chosen 3 bytes at #A (#A[1,2,3]) can be achieved through the
InverseMixColumns operation. Note that, according to Eq. (1), #A[1,2,3] is
computed by Eq.(2). Because there are 3 free variables to control 3 bytes,
this is possible by solving a system of equations.

⎛⎝#A[1]
#A[2]
#A[3]

⎞⎠ =

⎛⎝x9 xe xb xd

xd x9 xe xb

xb xd x9 xe

⎞⎠
⎛⎜⎜⎝

#B[0]
#B[1]
#B[2]
#B[3]

⎞⎟⎟⎠ (2)

As a result, for any 28 neutral values of #B[0,1,2,3], #A[1,2,3] become constant,
and thus, the backward computation from #A can start with 15 known bytes
and only 1 unknown byte.

The neutral bytes for the backward chunk are 3 bytes #E[12,14,15]. We choose
28 values of these bytes as follows;

1. Randomly choose constant values for 2 bytes, which will be the impact from
#E[12,14,15] to the chosen 2 bytes at #F (#F[13,15]). In details, by consid-
ering the MixColumns operation in Eq. (1), #F[13,15] are written as follows:

#F [13] = (1 · #E[12]) ⊕ (2 · #E[13]) ⊕ (3 · #E[14]) ⊕ (1 · #E[15]), (3)
#F [15] = (3 · #E[12]) ⊕ (1 · #E[13]) ⊕ (1 · #E[14]) ⊕ (2 · #E[15]). (4)

This copy belongs to 'VANC03'



388 Y. Sasaki

The impacts on #F[13] and #F[15] from #E[12,14,15] mean the following
values respectively.

(1 · #E[12]) ⊕ (3 · #E[14]) ⊕ (1 · #E[15]), (5)
(3 · #E[12]) ⊕ (1 · #E[14]) ⊕ (2 · #E[15]). (6)

2. For all possible 28 values of #E[12], we calculate the values of #E[14,15] by
solving a system of equations so that the impact on the chosen 2 bytes at #F
(#F[13,15]) can be achieved through the MixColumns operation. Because
there are 2 free variables to control 2 bytes, this is always possible.

As a result, for any 28 neutral values of #E[12,14,15], the impact from these
values to #F[13,15] becomes the determined constant. Note that #F[13,15] are
also influenced by #E[13], and thus, final values of #F[13,15] are exclusive-or of
the determined constant and values depending on #E[13]. Finally, the forward
computation from #F can start with 14 known bytes and only 2 unknown bytes.

Match through MixColumns. Assume that many values of the partially
known states of the form #a and #b in Fig. 8 are stored in tables. The goal
of this match is efficiently finding paired values (#a, #b) that match through
the MixColumns operation. Because MixColumns is applied column by column,
the match is also tested column by column. We explain the match for the first
column as an example. The other columns can be tested in the same procedure.

Let us consider the InverseMixColumns operation from #b to #a. From
Eq. (1), #a[0] and #a[2] are expressed as follows;

#a[0] = ( xe · #b[0] ) ⊕ ( xb · #b[1] ) ⊕ ( xd · #b[2] ) ⊕ ( x9 · #b[3] ) (7)
#a[2] = ( xd · #b[0] ) ⊕ ( x9 · #b[1] ) ⊕ ( xe · #b[2] ) ⊕ ( xb · #b[3] ) (8)

Considering that #b[1,2,3] are known values, the equations can be transformed
by using some constant numbers C0 and C1 as follows;

#a[0] ⊕ C0 = xe · #b[0], #a[2] ⊕ C1 = xd · #b[0]. (9)

Whether or not these equations are satisfied can be checked efficiently by using
the idea based on the indirect partial-matching [1]. Namely, xd · (#a[0] ⊕ C0) =
xe·(#a[2]⊕C1) is obtained from Eq. (9), and then obtain the following equation:

xd · #a[0] ⊕ xe · #a[2] = xd · C0 ⊕ xe · C1. (10)

Let us denote xd · #a[0] ⊕ xe · #a[2] and xd · C0 ⊕ xe · C1 by Cfor and Cback,
respectively. By computing Cfor and Cback in the computation for each chunk,
we can perform the match by just comparing these values.

Note that AES has 4 columns in a state. Because the number of candidates
for the match can be reduced by a factor of 2−8 per column, for 4 columns, the
number of candidates is reduced by a factor of 2−32.
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Fig. 9. Chunk separation for 7-round AES

5 Preimage Attack against 7-Round AES

By considering the techniques explained in Sect. 4.2, we can attack up to 7
rounds of AES. The chunk separation for this attack is depicted in Fig. 9.

In this attack, states #16 to #19 are chosen as the initial-structure and we
apply the match between states #7 and #8. The neutral bytes for the forward
computation are 4 bytes at #16, namely, #16[0,1,2,3]. The neutral bytes for the
backward computation are 3 bytes at #19, namely, #19[12,14,15].

To make the initial-structure work, we choose neutral bytes for the forward
chunk so that 3 bytes #15[1,2,3] can be pre-determined constant values. Simi-
larly, neutral bytes for the backward chunk are computed so that impacts on 2
bytes #20[13,15] can be pre-determined constant values. The matching proce-
dure is exactly the same as the one explained in Section 4.2. The detailed attack
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procedure is explained below. Note that the procedure below is a preimage at-
tack on the compression function. To convert this attack to the one for a hash
function, we need additional effort depending on the mode-of-operation used.

1. Choose a value for the key-input, and compute all sub-keys. How to choose
the value depends on the mode-of-operation. In this procedure, we assume
that the key-input can be any value. We remove this assumption later.

2. Randomly choose constant values for 9 bytes in state #16 (#16[4,5,7,8,9,10,
13,14,15]), for 3 bytes in state #15 (#15[1,2,3]), and for impacts on 2 bytes
in state #20 (#20[13,15]) from the neutral bytes of the backward chunk.

3. For all 28 values of #16[0], do as follows.
(a) Calculate #16[1,2,3] so that 3 bytes #15[1,2,3] can be pre-determined

constant values.
(b) Compute the forward chunk from #20 to #28, and then, from #0 to

#7. Also compute Cfor in Eq. (10) for each column.
(c) Store the results in a table Tfor.

4. Sort the table Tfor after obtaining 28 values.
5. For all 28 values of #19[12], do as follows.

(a) Calculate #19[14,15] so that the impacts from these values to 2 bytes
#20[13,15] can be pre-determined constant values.

(b) Compute the backward chunk from #15 to #8.
(c) From 12 known bytes of #8, compute Cback in Eq. (10) for each column.
(d) Check if there exists an entry in Tfor that matches the computed Cback.
(e) If exits, compute all bytes of #7 and #8 with matched values and check

if all 128-bit values of #7 and #8 match.
(f) If all 128-bits match, output the corresponding (HN−1, MN−1).

6. If the attack does not succeed with 28 values of #19[12], go back to Step 2
(or Step 1 if necessary) and repeat the attack with different constant values.

Complexity Evaluation. In this attack, the sum of the complexity for com-
puting 28 results of #7 and #8 is roughly 28 7-round AES computations. At
Step 3c, we need a memory to store 28 · 4-byte information for Cfor. At Step 5d
we search for the table of the size 28. Hence, for all 28 values of #19[12], the cost
is about 28 · log 28 memory access, which is enough small compared to 28 7-round
AES for computing #7 and #8. The success probability of the match is 2−8 for
each column, and thus 2−32 for 4 columns. Hence, after generating 28 results for
#7 and 28 results for #8, 28 · 28 · 2−32 = 2−16 candidate will remain, where a
remaining candidate satisfies 4-byte linear relations in a state. Therefore, if we
iterate the above procedure 2112 times, we obtain 2112 · 2−16 = 296 candidates
satisfying the match and one of them will satisfy the other 12-byte linear rela-
tions in a state, in other words, a preimage on the compression function is found.
Note that, at Step 6, the algorithm can go back to Step 2 up to 2112 times for
a fixed key-input. To repeat the attack more, we need to change the key-input
at Step 1. The final complexity of the attack is 28 · 2112 = 2120 AES 7-round
computations and we need a memory for storing 28 · 4-byte information.
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Fig. 10. (Top) Given first-preimage (Bottom) Second-preimage construction

Conversion to Hash Function Scenario. How to convert this attack to
the hash function scenario depends on the mode-of-operation used. For the DM
mode, this attack finds (HN−1, MN−1), where the value of MN−1 is chosen at
Step 1 and the value of HN−1 is determined randomly during the attack. In this
scenario, we can choose the message so that the padding string can be satisfied.
Instead, HN−1 cannot be fixed to IV. Hence, we choose MN−1 at Step 1 so
that the padding string for 2-block messages is satisfied, and convert pseudo-
preimages into preimages with the conversion in Sect. 3.1. Finally, the attack
generates preimages of 2-block long with a complexity of 21+(120+128)/2 = 2125.

For the MMO or MP modes, the value of HN−1 is chosen at Step 1 and
the value of MN−1 is determined randomly during the attack. Therefore, we
can always start from the IV, but cannot satisfy the padding string. Because
of the padding problem, this attack cannot generate preimages. Hence, we aim
to generate second preimages. Assume that the given first preimage is 3-block
long. The attack is depicted in Fig. 10. Our attack copies the last message block
in which the padding string is included. For the first block, we choose several
different message values M

(x)
0 to find several different chaining variables H

(x)
1 .

Finally, for the second block, we choose one of generated H
(x)
1 and search for a

message M ′
1 that satisfies CF(M ′

1, H
(x)
1 ) = H2 using the pseudo-preimage attack.

Hence, second preimages are generated with a complexity of 2120. Note that, a
fixed H2 cannot be mapped from a fixed H

(x)
1 for any M ′

1 with a probability of
1 − e−1. In such a case, we choose another H

(x)
1 and repeat the attack. After

several trials of H
(x)
1 , we will find a valid M ′

1 with a probability almost 1.

6 Discussion

Other PGV Modes. In PGV, 12 schemes in Table 2 are secure. Our at-
tacks can be applied to all 12 schemes. In our attack, the key is chosen and
fixed. Therefore, as long as the key is equivalent to Hi, the same attack as the
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Table 2. Twelve secure PGV constructions. Xi represents Hi ⊕ Mi.

No. Computation No. Computation No. Computation No. Computation

1 EHi(Mi) ⊕ Mi 2 EHi(Xi) ⊕ Xi 3 EHi(Mi) ⊕ Xi 4 EHi(Xi) ⊕ Mi

5 EMi(Hi) ⊕ Hi 6 EMi(Xi) ⊕ Xi 7 EMi(Hi) ⊕ Xi 8 EMi(Xi) ⊕ Hi

9 EXi(Mi) ⊕ Mi 10 EXi(Hi) ⊕ Hi 11 EXi(Mi) ⊕ Hi 12 EXi(Hi) ⊕ Mi

MMO-mode can be performed. Hence, on No.1 to No.4, a second-preimage attack
with 2120 computations is possible. Similarly, on No.5 to No.8, a preimage attack
with 2125 computations is possible. On No.9 to No.12, the key Xi is chosen but
either Hi or Mi cannot be chosen. Hence, only a second-preimage attack with
2125 computations is possible. Considering the long message attack [20], our
attack has an advantage only if the length of the given message is 3- to 7-blocks.

As a further generalization, applications to the generalized PGV construction
proposed by [33] seems interesting. We leave this work as an open problem.

Complexity on AES 6-Rounds. To demonstrate the change of the complexity
with a different number of rounds, we attacked 6-rounds. The idea is omitting
the match through the MC and apply the direct match instead. This enables
attackers to reduce the number of known bytes in the backward chunk, and thus
to keep 216 neutral values for each chunk. The final results are listed in Table 1.

Known-Key Attack on 7-Round AES. Our attack can be regarded as a new
approach of the known-key attack on AES, which finds fixed points on 7-round
AES. The success probability of the attack is 1 − e−1.

The attacker is given a randomly chosen key k. Then, she carries out the
pseudo-preimage attack on 7-round AES in Sect. 5 with setting the given target
hash value to 0. With a complexity of 2120, a plaintext p s.t. p = Ek(p) will be
found, while finding such p will cost 2128 for a 128-bit random permutation.

Note that Gilbert and Peyrin proposed a known-key distinguisher on 8-round
AES [17]. They find some non-ideal differential property, while our attack finds
a fixed point which has been discussed for a long time. The application of our
known-key distinguisher to the hash function scenario is meaningful, which finds
a preimage of 0 in several PGV constructions. However, [17] attacks 8-round with
a feasible complexity, while ours attacks 7-round with an infeasible complexity.

Difficulties in Chosen-Key Setting. In our attack, the key-input is fixed to a
constant. It might be possible to extend the attack by actively choosing the key-
input. However, this is not trivial. Firstly, the splice-and-cut technique cannot
be used for the key-schedule function, namely, most part of the first round key
cannot be obtained from the last round key without computing the inversion.
Hence, the MitM attack would be difficult. Secondly, the previous related-key
attacks on AES focused their attention on differential properties. It is unclear
how to use the weak property of the key-schedule function to build preimages.
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Fig. 11. Chunk separation for second preimage attack on 5-round Whirlpool.
Whirlpool computes ShiftColumns(SC) and MixRows(MR) instead of SR and MC.

Application for Whirlpool. Our attack exploits the omission of MixColumns
in the last round. Here, we discuss a variant of AES, which computes MixColumns
in the last round2. To check the number of attacked rounds, we again use Fig. 9.
Due to MixColumns in the last round, we need to remove the 7th round from
our target. Note that known byte positions at states #25 and #5 are identical.
This indicates that we also need to remove the first round, and state #25 should
be connected to state #6. As a result, we can attack only 5 rounds.

Whirlpool [30] is a hash function which is deeply based on AES with a larger
state size. Because Whirlpool computes MixColumns during the last round,
the above analysis can be directly applied as a preimage attack on reduced
Whirlpool. Whirlpool uses 8∗8-byte (512-bit) state and consists of 10 naturally-
expanded AES rounds. It produces the compression function output with the
MP mode. In Fig. 11, we show the chunk separation for attacking 5-round
Whirlpool.

The attack strategy is the same as 7-round attack on AES. Hence we omit the
details. Pseudo-preimages can be generated faster than the brute force attack
by a factor of 28, which is 2504. Because Whirlpool uses the MP mode, this can
be a second-preimage attack with a complexity of 2504 and a memory of 28.

2 One may note another study on the effects of the omission of MixColumns [14].
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7 Concluding Remarks

In this paper, we studied the security of AES hashing modes in terms of the
classical and important security notions. We proposed a preimage attack on the
PGV modes instantiating AES by applying the meet-in-the-middle approach.
As a result, we obtained a preimage attack on 7 rounds of DM-AES and second-
preimage attack on 7 rounds of MMO-AES and MP-AES. This attack can also
generate second preimages of Whirlpool reduced to 5 rounds.

Note that our results do not give impact on other AES-based hash functions
e.g. several SHA-3 candidates, in particular, those with the wide-pipe structure.
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Abstract. We present new attacks on the Feistel network, where each
round function consists of a subkey XOR, S-boxes, and then a linear
transformation (i.e., an SP round function). Our techniques are based
largely on what they call the rebound attacks. As a result, our attacks
work most effectively when the S-boxes have a “good” differential prop-
erty (like the inverse function x �→ x−1 in the finite field) and when the
linear transformation has an “optimal” branch number (i.e., a maximum
distance separable matrix). We first describe known-key distinguishers on
such Feistel block ciphers of up to 11 rounds, increasing significantly the
number of rounds from previous work. We then apply our distinguishers
to the Matyas-Meyer-Oseas and Miyaguchi-Preneel modes in which the
Feistel ciphers are used, obtaining collision and half-collision attacks on
these hash functions.

Keywords: known-key, block cipher, Feistel-SP, rebound attack, MDS,
collision attack, hash function, MMO, Miyaguchi-Preneel.

1 Introduction

The security of block ciphers usually relies on the fact that the key value is kept
secret in its encryption and decryption process. However, recently cryptographers
have become interested in the security of block ciphers when the key value is
known to the attackers. That is, in the traditional secret-key setting, it is the
randomness and secrecy of a key that guarantees security of block ciphers. On the
other hand, in the known-key setting, the value of the key is revealed to attackers;
it becomes only the randomness of the key that retains (some) security of the
cipher.

In practical applications, block ciphers are indeed used in such a way as their
key values are known publicly. A typical example is the hash function con-
structed from block ciphers, including the Davies-Meyer (DM), Matyas-Meyer-
Oseas (MMO) and Miyaguchi-Preneel hashing modes. In particular, the latter
two modes make the known-key setting potentially relevant, because a known
and essentially random (at least not under the attacker’s full control) value is
fed into the key input of the block cipher.

Recently, many papers have been published in the context of known-key at-
tacks. In particular, there have been quite a few results on AES and Rijndael

A. Joux (Ed.): FSE 2011, LNCS 6733, pp. 397–415, 2011.
c© International Association for Cryptologic Research 2011
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[13,19,17,12,24]. Among them is the work by Gilbert and Peyrin [12] of a known-
key distinguisher on AES, which is one of the few attacks that can break 8 rounds
of AES-128.1

On the other hand, there appear to be only a couple of results that analyzed
the known-key security of the Feistel network [13,8]. Both pieces of work assume
that a round function consists of a key XOR followed by a mixing function. In
practice, the “mixing function” part is frequently realized by a combination of
S-boxes (Substitution boxes) and a linear transformation.

In this paper, we show new attacks on the Feistel network. We consider the
Feistel network which has SP round functions. That is, we assume that a round
function consists of an XOR with a subkey, S-boxes, and then a linear matrix P .
Our attacks work effectively up to 11 rounds, improving over the previous best 7
rounds.2 We first present known-key distinguishers on such Feistel block ciphers
and then translate them to collision and half-collision attacks on the MMO and
Miyaguchi-Preneel hashing modes using these ciphers.

Our techniques are based on the so-called rebound attacks. Consequently,
in our attacks we assume “attacker-unfriendly” properties of S-boxes and of P .
Though not mandatory, these properties make our attacks most effective to work
and simplest to describe. More specifically, we assume that the S-boxes have
low maximum differential probabilities (like the multiplicative inverse function
x �→ x−1 in the finite field) and that the linear transformation P is an MDS
(maximum distance separable) matrix. These are believed to be “good” choices
of S-boxes and of P for designing a secure symmetric-key primitive.

Organization of the Paper. In Sect. 2 we review previous work, basic no-
tions, and the rebound attacks. We present our new distinguishers on the Feistel
network in Sect. 3 and apply them to the MMO and Miyaguchi-Preneel hashing
modes in Sect. 4. In Sect. 5 we discuss the generality and applicability of our
attack techniques. We conclude the paper in Sect. 6.

2 Preliminaries

2.1 Previous and Related Work

The concept of known-key distinguishers was introduced by Knudsen and Ri-
jmen [13]. They showed known-key attacks on AES reduced to 7-rounds and
on 7-round Feistel ciphers with a round function consisting of a round-key XOR
followed by an arbitrary key-independent transformation. Their attack on AES(-
128) leads to non-ideal behaviors of its MMO hashing mode. Their attack on
Feistel ciphers has an even stronger impact, as a pair of blocks colliding in half
of the output state can be found only with a complexity of two encryptions.

1 Another attack on the 8-round AES-128 is [5], which is a “chosen-key” distinguisher.
2 The 7-round attack [13] works for the Feistel network which has a round function

consisting of an XOR with a subkey followed by any function f rather than SP.
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Subsequently, Minier et al. [19] suggested a formalization of known-key at-
tacks. They also presented known-key distinguishers on Rijndael having large
blocks, which was further studied by [24].

As for AES, Mendel et al. [17] presented a new known-key distinguisher on
7-round AES-128 with a less attack complexity. Gilbert and Peyrin [12] attacked
AES-128 and increased the number of rounds to eight.

The work [8] by Bouillaguet et al. presented new attacks on the Feistel net-
work. This work is actually about analyzing certain hash functions (Lesamnta
and SHAvite-3) but can be regarded as known-key attacks on two types of (gen-
eralized) Feistel ciphers. See also [11,20] for other attacks on SHAvite-3.

There is another type of attack in the open key scenario, namely, the “chosen-
key” distinguishers. In the chosen-key setting, attackers can control, rather than
know, the key value of block ciphers. For example, Biryukov et al. showed chosen-
key distinguishers on the full-round AES-256 in the “related-key” scenario [4].
Biryukov and Nikolić showed chosen-key distinguishers on the 8-round AES-
128 [5] and on several other block ciphers [6]. Lamberger et al. [14] presented a
chosen-key distinguisher on the full Whirlpool compression function. See also [21]
for other known-key and chosen-key distinguishers on several block ciphers.

2.2 Basic Notions

S-Boxes. An S-box
S : {0, 1}c → {0, 1}c

is a substitution table, being most of the time a non-compressing fixed function.
Popular choices are c = 4, 8. The main purpose of using S-boxes in block ciphers
is to introduce non-linearity over the finite field F(2c).

A typical example of an S-box is the multiplicative inverse function

S : x �→ x−1

in the field F(2c). This is a popular choice for an S-box in block ciphers, is
believed to be a good choice for increasing the cipher’s resistance to differential [2]
and linear [16] cryptanalyses, and is indeed adopted by AES. With such an S-box
the maximum differential and linear probabilities become 2−c+2, being close to
the best possible bounds [22,10].

Branch Numbers and MDS Matrices. Recall that the linear diffusion layer
P : {0, 1}n → {0, 1}n can be written in the form of an r × r constant matrix
over the field F(2c), where c is the number of bits in a byte (i.e., the size of an
S-box) and r is the number of bytes (i.e., the number of S-boxes) in the input
to the round function, so that we have n = r · c. Here we treat {0, 1}n as F(2c)r.
For an input X ∈ {0, 1}n = F(2c)r we can write

P · X =

⎛⎜⎜⎜⎝
p11 p12 · · · p1r

p21 p22 · · · p2r

...
...

. . .
...

pr1 pr2 · · · prr

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

...
xr

⎞⎟⎟⎟⎠ ,
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where each of pij and xi is an element of the field F(2c).
The weight wt(X) (over the field F(2c)) of a vector X ∈ F(2c)r is the number

of non-zero components in X , so that we have 0 ≤ wt(X) ≤ r. The branch
number br(P ) of an r × r matrix P over the field F(2c) is defined as

br(P ) := min
X

{
wt(X) + wt(P · X)

}
,

where the minimum runs over all X ∈ F(2c)r such that X �= 0. For block ciphers
in the secret-key setting, it is desirable to use a linear transformation P having
a high branch number in order for the cipher to be resistant to differential and
linear cryptanalyses.

The Singleton bound [25] in coding theory implies that the highest branch
number possible is r + 1. An r × r matrix P having such a branch number is
called an MDS (Maximum Distance Separable) matrix and is frequently utilized
in cryptography. For example, the block cipher AES [26] uses a 4 × 4 MDS
matrix, whereas the hash function Whirlpool [1] uses an 8 × 8 MDS matrix.

Hashing Modes Using Block Ciphers. Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel modes provide efficient ways to construct a compression func-
tion from a block cipher. They are among the 12 secure schemes [7] of PGV
style [23].

Let E be a block cipher, and let EK denote its encryption algorithm with a
key K. The MMO compression function outputs Hi by computing

Hi = EHi−1(Mi−1) ⊕ Mi−1

for a message block Mi−1 and a previous chaining value Hi−1. Similarly, the
Miyaguchi-Preneel mode computes Hi by

Hi = EHi−1(Mi−1) ⊕ Mi−1 ⊕ Hi−1,

given Mi−1 and Hi−1.
In the above definitions, the Merkle-Damg̊ard construction is implicitly as-

sumed (by setting the initial chaining value to be a fixed constant IV and by
letting the final output be the hash value). We keep it implicit, as all attacks
presented in the current paper deal only with one-block input messages.

2.3 Rebound-Attack Technique

Here we briefly review a technique called rebound attacks, which was first intro-
duced by Mendel et al. in analyzing AES-based hash functions [18]. Mendel et
al. later applied it to a known-key attack on reduced-round AES [17], as already
mentioned in Section 2.1. The attacks presented in the current paper mainly
depend on this technique as well.

In rebound attacks, an attacker first builds a truncated differential path, fixing
byte positions which have a difference. At this stage, the attacker is not interested
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Fig. 1. Example of the inbound phase with 4-byte state (Gray bytes are active.)

in the exact differential value inside each byte. We call a byte position with
a difference an active byte. Then the attacker tries to find efficiently a pair of
values that follows the path.

The truncated differential path is divided into two phases: The inbound phase
and the outbound phase. The inbound phase consists of a linear layer, a non-linear
layer, and another linear layer in this order. The inbound phase corresponds to
a low probability part of the truncated differential path. The attacker gener-
ates sufficiently many paired values that satisfy the truncated differential path
of the inbound phase. This can be done with a small complexity on average.
These paired values are called starting points. Then, the attacker computes the
outbound phase with the generated starting points and checks whether or not
any of the starting points satisfies the truncated differential path of the out-
bound phase. The attacker succeeds if he finds a starting point conforming to
the truncated differential path of the outbound phase.

Let us explain the basic procedure of the inbound phase by using a 4-byte
(1 byte = 8 bits) state with an 8-bit S-box as an example. In this example, the
goal of an attacker is to find a pair of values (M, M ′) that satisfies the truncated
differential path 1 → 4 → 1 (one active byte diverging to four active bytes and
then converging to one active byte again) which is illustrated in Fig. 1.

A naive method to obtain such a pair is to generate many pairs with a 1-
byte difference at state #0 and then to compute the corresponding difference at
state #3. After trying 224 pairs, the attacker should be able to find a desired
pair.

The rebound attack can generate such pairs more efficiently. It generates
approximately 28 pairs satisfying the differential path with a complexity of ap-
proximately 28—in other words, each pair is generated with a complexity of 1
on average. The detailed attack procedure is as follows:

0. Prepare the differential distribution table (DDT) for the 8-bit S-box.
1. For all 28 (more precisely, 28 − 1) possible differences of state #0, compute

the corresponding 4-byte differences of state #1 and store them in a table T .
Note that we can determine differential propagation irrespective of the byte
values owing to the linearity of computation.

2. Choose a difference of state #3 and compute the corresponding 4-byte dif-
ference of state #2. For each 4-byte difference in T , check whether or not the
computed 4-byte difference of state #2 can be output through the S-boxes
by looking up the DDT. If the differences match, output such paired values.
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Table 1. Our attack results for practical parameters of Feistel network

Block Word Byte #Bytes
2c

?

≥ r
Cipher MMO Hash

N n c r Known-key Collision Half-collision

128 64
8 8 � 11R 9R 11R

4 16 11R 9R 11R

64 32
8 4 � 9R 7R 9R†

4 8 � 11R 9R 11R
† This 9R attack generates (N − c)-bit collisions rather than half-collisions.

In the case of the AES S-box (i.e., the multiplicative inverse function in the
finite field), for a pair of randomly determined input difference ΔSin and output
difference ΔSout, an equation S(x)⊕S(x⊕ΔSin) = ΔSout has approximately one
solution with a probability of approximately 2−1. If we find a solution x, then
we will automatically obtain two paired values (x, x ⊕ ΔSin) and (x ⊕ ΔSin, x)
that satisfy the differential propagation through the S-box. In this example there
are four S-boxes between state #1 and state #2. Therefore, if we have 24 pairs
of Δ#1 and Δ#2, then one of these pairs can be expected to have a solution
for each of the four S-boxes. Hence we obtain 24 paired values that satisfy the
truncated differential path of the inbound phase.

Consequently, for a difference of state #3 in the above procedure, there are
28 ·2−4 = 24 differences in T that have approximately one solution for each of the
four S-boxes. So we obtain 24 · 24 = 28 paired values that satisfy the truncated
differential path (starting points). In other words, we can obtain one starting
point with a complexity of 1 on average (Note that the average complexity to
obtain one starting point is always 1 for any S-box).

We also need to count the number of starting points obtained. The above
procedure can be iterated for all 28 differences of state #3 in Step 2. As a result,
we obtain 28 · 28 = 216 starting points at maximum.

3 New Known-Key Attacks on Feistel Ciphers

Now we present known-key attacks on Feistel ciphers of the SP structure. Table 1
summarizes our attack results (R stands for rounds), where we use the following
variables (which are fixed henceforward):

N : The block length of the cipher (in bits),
n: The word size in bits, equal to the size of the input and output of the round

function, so that n = N/2,
c: The byte size in bits (In this paper the byte size is not fixed), equal to the

size of an S-box,
r: The number of bytes in a word, so that r = n/c.
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Fig. 2. Left: Detailed description of the SP round function Right: Simplified one

Recall that many of the block ciphers designed in practice are equipped with
128-bit or 64-bit blocks and use 8-bit or 4-bit S-boxes. Table 1 includes these
practical parameters.

For the sake of simplicity, we assume 2c ≥ r at the moment. Even with this
restriction, our attacks cover most of the block ciphers that are used today:
128-bit block with 8-bit S-box, 64-bit with 8-bit, and 64-bit with 4-bit.

For the sake of completeness, in Sect. 5.3 we shall explain a simple extension of
our attacks to treat the case 2c < r. This case includes the remaining parameter
of 128-bit block with 4-bit S-box, which is probably most unlikely to be used
in practice among the 4 parameters listed in Table 1. This is because this case
requires an MDS matrix acting on 16-byte state, where today such a large MDS
matrix is still considered to be too costly to be implemented in systems.

Description of the SP Round Function. Before we proceed to describing
our attacks, we specify the SP round function of the Feistel network to be ana-
lyzed. The round function is depicted in Fig. 2, consisting of the following three
operations:

Key XOR: This layer computes the XOR of a round-function input and a
round key Ki.

S-box layer: This layer substitutes each byte value by using one or several
S-boxes; the S-boxes S1, S2, . . . , Sr may differ from each other. We assume
that all S-boxes are designed to be resistant to differential and linear crypt-
analyses, like the ones used in AES [9,26]. Hence, given a pair of randomly
chosen input and output differences, there exist paired values following the
given input/output differences with a probability of approximately 2−1. If
exist, then the number of such paired values is approximately two.

Permutation layer: This layer mixes values by multiplying the word value
and an r × r matrix P over F(2c) together. We make the assumption that
P is an MDS matrix, so that the total number of active bytes in the input
and output of P is always greater than or equal to r + 1, as long as there is
at least one active byte.

The assumptions that we make about S and P are not quite mandatory. In
Sect. 5 we discuss the feasibility of our attacks when S or P does not have these
properties.
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Table 2. Attack strategy

Input:†

– Subkeys generated from a random master key via a key schedule function
– S-boxes secure against differential and linear cryptanalyses
– A linear transformation with a branch number r + 1 (i.e., an MDS)

Procedure:

1. Prepare DDTs for all S-boxes in use.
2. Find a pair of values that satisfies the truncated differential path of the in-

bound phase.
3. Verify that the pair found in Step 2 also follows the truncated differential path

of the outbound phase.
4. Confirm that the above procedure requires a less complexity than finding such

a pair for a random permutation.
† In Sect. 5 we discuss the case where S or P does not satisfy these conditions.

Overview of Our Attacks. Our attack procedure is summarized in Table 2.
We shall explain the details of Steps 2 and 3 in the following sections; in Sect. 3.1
we first explain a basic version of our attacks which is effective up to 9 rounds,
and then extend it to 11 rounds in Sect. 3.2.

Hereafter, we fix a system of notations as follows:

Xj: The j-th byte of a word X , where 1 ≤ j ≤ r and the size of Xj is c bits,
0: A word where all bytes are non-active,
1: A word where only one byte of the predetermined (j-th) position is active,
F: A word where all bytes are active.

Our attacks amount to finding a pair of values whose input difference is of the
form

(
P (1),F

)
and whose output difference is also

(
P (1),F

)
. The point is that

our attacks can find such a pair for the Feistel ciphers more efficiently than one
could for a random permutation.

So let us mention in advance the time and memory complexities of the above
procedure. The cost of Step 1 is r · 22c in time and r · 22c in memory for both
9R and 11R attacks. The cost of Step 2 is r · 2c in time and r · 22 in memory for
9R attacks and r · 22c in time and r · 22c in memory for 11R attacks. Step 3 can
be done at a cost of 1. Overall, our attacks can find a pair of values following
the truncated differential path with a complexity of r · 22c in time and r · 22c in
memory.

This means that our known-key attacks work effectively, because for a ran-
dom permutation such a pair cannot be found with that complexity. Namely,
let us consider the complexity to find a pair of values that has the differential
form of

(
P (1),F

)
for both of the input and output states in a random per-

mutation. Attackers have an access to both encryption and decryption oracles.
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Fig. 3. Basic 9R attack

For such attackers, this problem is regarded as finding a 2n−c-bit collision. Be-
cause enough freedom degrees are available to mount the birthday attack, this
requires a complexity of 2(n−c)/2.

Note that we make use of the property of MDS and DDTs generated at Step 1
in performing Step 2 (the inbound phase) efficiently. Also, the outbound phase
works for any S-box and any linear transformation.

3.1 Basic 9R Attack on the Feistel Ciphers

Entire Truncated Differential Path. Recall that in rebound attacks, an
attacker needs to construct a differential path and divide it into inbound and
outbound phases. Here the truncated differential path that we use is

(F,F) 1stR−−−→ (1,F) 2ndR−−−→ (0,1) 3rdR−−−→ (1,0)

(1,0) 4thR−−−→ (F,1) 5thR−−−→ (1,F) 6thR−−−→ (0,1)

(0,1) 7thR−−−→ (1,0) 8thR−−−→ (F,1) 9thR−−−→ (F,F),

which is shown in Fig. 3.
In the basic 9R attack, we use a 3-round differential path for the inbound

phase. The difference propagates from (1,0) to (0,1) through the three rounds
(4thR – 6thR).

The outbound phase consists of three rounds in backward direction (3rdR –
1stR) and three rounds in forward direction (7thR – 9thR), in total six rounds.
In both directions, the differences propagate to (F,F). Here the patterns in F
are limited in a certain way (Not all patterns are formed).

Given any paired value satisfying the truncated differential path of the in-
bound phase, the truncated differential path of the outbound phase is satisfied
with a probability of 1. Hence, we need only one starting point from the inbound
phase.
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Three-Round Inbound Phase. In this phase, our goal is to find a pair of

values whose difference will propagate as (1,0) 4thR−−−→ (F,1) 5thR−−−→ (1,F) 6thR−−−→
(0,1). We use the differential path depicted in the middle of Fig. 3.

We start by choosing differences of the form 1 in words #A and #B in Fig. 3.
We propagate these differences through the linear operations with actual word
values undetermined. We then search for a matched set of differences at the
S-box operation in the 5th round and finally find word values that follow the
desired differential path of the 3R inbound phase. More specifically, our attack
procedure is as follows:

0. Prepare DDTs for all S-boxes. Choose a byte-position j (1 ≤ j ≤ r) in a
word to be activated in the differential form of 1.

1. For all 2c possible differences in word #A, compute the corresponding full-
byte differences after applying the permutation layer and store the results
in a table T . Note that the difference in word #C must be the same as that
in #A, which of course takes the differential form of 1.

2. For each of the 2c possible differences in word #B, compute the correspond-
ing full-byte difference after applying the inverse permutation. For S-boxes
in the 5th round, check whether or not we can match the full-byte difference
evolved from Δ#B with any of the 2c differences stored in T . This can be
done by looking up the DDTs.

3. Assuming that we find such a matched set of differences, choose one of
them and fix word values in accordance with the chosen differences. Now
the difference in word #A is fixed. Also, the word values on the bold lines
drawn in Fig. 3 are all fixed.

4. For each of the 2c possible values of #Aj , compute the corresponding differ-
ence in #Cj and check whether or not the difference becomes equal to Δ#Aj .
This computation is denoted by the broken lines in Fig 3. Namely, compute
and check the following:

Δ
[
Sj

(
S−1

j (#Aj) ⊕ Kj
4 ⊕ #Bj ⊕ Kj

6

)]
?= Δ#Aj . (1)

5. A solution for (1) is the value we want for the active byte. Make an arbitrary
choice for values of the remaining non-active bytes. Now all the values within
the inbound phase are determined. In other words, we obtain a starting point.

Let us estimate the time and memory complexities necessary for each of the
above steps. We also verify that the success probability of the inbound phase is
sufficiently high.

– In Step 0 we need 22c computations and 22c memory to prepare the DDT
for each c-bit S-box. When S-boxes are all different, Step 0 requires r · 22c

computations and r · 22c memory.
– Step 1 requires 2c computations and 2c memory.
– In Step 2, with a complexity of 2c, we can check the match of 22c pairs at

maximum. Because each match succeeds with a probability of 2−r, we can
expect to find one or more matched pairs as long as 2c ≥ r.
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– Step 3 requires negligible computations and memory.
– Step 4 requires 2c 3-round computations and negligible memory. Note that

this step needs to examine only one byte, and thus the actual complexity is
lower than 2c 3-round computations.

– In Step 5 we expect to find a solution for (1), because we can carry out a
match check as many times as the number of possible patterns of Δ#Cj ,
which is 2c.

– Therefore, the total complexity for Step 0 through Step 5 is r · 22c compu-
tations and r · 22c memory.

Outbound Phase. We explain the outbound phase for the last 3 rounds, which
is shown in the right part of Fig. 3. As a result of the inbound phase, we obtain

the difference (0,1) as an input to the 7th round. This propagates as (0,1) 7thR−−−→
(1,0) 8thR−−−→ (F,1) 9thR−−−→ (F,F) with a probability of 1. Because the input to the
8th round has a difference of the form 1, the corresponding output differences
are of the form P (1), which is emphasized by a circled F in Fig. 3. Hence, the
number of possible differences in the output word is limited to 2c. Therefore,
although all bytes are active in ciphertexts (Recall that P is an MDS), only
2c · 2n = 2c+n differential patterns are formed in the ciphertexts.

The same applies to the differential propagation in backward direction for the
first 3 rounds. The differential path reaches (F,F) after the 3 rounds with a
probability of 1. Since differential patterns in the left half of the plaintext are
limited to 2c variations, only 2c+n differential patterns appear in the plaintext
pairs.

Comparison with a Random Permutation. The inbound phase finds a
starting point with a time complexity of r · 22c using r · 22c memory. Given
any solution of the inbound phase, the outbound phase, with a probability of 1,
generates a pair of values that has a differential form of

(
P (1),F

)
for both

plaintext and ciphertext.
By comparing the above complexity with the generic birthday bound, we can

derive a condition of parameters with which our attacks work effectively. That
is, an inequality r · 22c < 2(n−c)/2 gives us a condition

c <
1
5
(n − 2 · log2 r), (2)

which needs to be satisfied in order for the above attack to be successful.
Let us consider parameters in practical use with which the condition is satis-

fied. We see that the condition is met by 128-bit block ciphers having 4- or 8-bit
S-boxes and by 64-bit block ciphers having 4-bit S-boxes. See Table 1. Unfor-
tunately, the condition is not met by 64-bit block ciphers having 8-bit S-boxes.
This case will be treated separately in Sect. 3.3.
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Fig. 4. 5-round inbound phase

3.2 Extended 11R Attack on the Feistel Ciphers

We extend the previous 9R attack to 11 rounds. We change the number of rounds
in the inbound phase from three to five. The outbound phase is exactly the same
as the basic 9R attack.

Five-Round Inbound Phase. The differential path of the new 5R inbound
phase is

(1,0) 4thR−−−→ (F,1) 5thR−−−→ (0,F) 6thR−−−→ (F,0) 7thR−−−→ (1,F) 8thR−−−→ (0,1), (3)

which is depicted in Fig. 4. We start with the same difference of the form 1
in words #A and #A′ and then try to find matched sets of differences at the
S-boxes in the 5th and 7th rounds, with the differences being expanded from
words #B and #B′, respectively. After finding matched sets, we determine the
value of #C and compute values indicated by broken lines. We finally check
the consistency of differences in words #A and that in #A′. A detailed attack
procedure is as follows:

0. Prepare DDTs for all S-boxes. Choose an active-byte position j for differen-
tial 1.
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1. For all 2c differences of the active byte in word #A, compute the correspond-
ing full-byte differences after applying the (forward) permutation layer and
store them in a table T . Set the difference in word #A′ to be the same as
that in #A. This guarantees that the difference in word #C is 0.

2. For each of the 2c differences in word #B, compute the corresponding full-
byte difference after applying the inverse permutation. For each difference
stored in T , check whether we can match it with the above difference by
looking up the DDTs. If a matched set of differences for #A and #B is
found, we can instantly obtain a matched set for #A′ and #B′ by setting
#B′ = #B.

3. Now that a matched set of differences is found, we can fix word values and
compute the value of word #C. Here the values drawn in broken lines in
Fig. 4 are fixed.
(a) Check whether or not the computed differences in #A and #A′ in Step 3

and the chosen difference in #A = #A′ at Step 1 are consistent. Namely,
compute and check the following:

Δ

[
Sj

(
S−1

j

((
P−1(#C)

)j)⊕ Kj
6 ⊕ #Bj ⊕ Kj

4

)]
?= Δ#Aj , (4)

Δ

[
Sj

(
S−1

j

((
P−1(#C)

)j)⊕ Kj
6 ⊕ #B′j ⊕ Kj

8

)]
?= Δ#A′j . (5)

(b) If we find a solution for the above two equations, then it means that we
have found a starting point of the inbound phase.

Let us evaluate the time and memory complexities necessary for the above pro-
cedure:

– Step 0 requires r · 22c computations and r · 22c memory to prepare r-many
DDTs.

– Step 1 requires 2c computations and 2c memory.
– In Step 2, we are expected to find 22c−r matches between #A and #B after

trying 2c differences in #B. Since 2r solutions are obtained from a match,
we obtain 22c solutions for #A and #B.

– Similarly, we obtain 22c solutions for #A′ and #B′.
– Step 3 requires just one computation for each solution and can be iterated

22c · 22c = 24c times at maximum.
– In Step 3a, each match succeeds with a probability of 2−c. Therefore, by

iterating Step 3a 22c times, we will find a match.

To sum up, we can find a starting point for the 5R inbound phase with a com-
plexity of r · 22c time and r · 22c memory.

Outbound Phase, Ideal Case, and Attackable Parameters. The out-
bound phase is exactly the same as the one used in the basic 9R attack. Any
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pair of values satisfying the differential path of the inbound phase, with a prob-
ability of 1, generates a pair of values that has a differential form of

(
P (1),F

)
for both of the input and output states.

The attack complexity for the ideal case is also the same as before, which
requires 2(n−c)/2. Therefore, (2) is also the condition that needs to be satisfied
for our 11R attack to be applicable.

Since the condition is the same as the one for the basic 9R attack, the same
parameters apply: (N, c) = (128, 8), (128, 4) and (64, 4). See Table 1.

3.3 “Shrunken” 9R Attack: Case (N, c) = (64, 8)

Our attacks in previous sections cannot be applied to 64-bit block ciphers having
8-bit S-boxes. However, by reducing the number of outbound rounds of the
11R attack, we can attack up to 9 rounds of such ciphers. Namely, we let the
differential path consist of

– 2-round backward outbound phase,
– 5-round inbound phase, and
– 2-round forward outbound phase.

Now the differences in plaintext and ciphertext are both
(
1, P (1)

)
. The cost

for finding a pair of values satisfying this differential form with a random per-
mutation is equal to the one for finding a collision of 2(n − c) bits, which is
22(n−c)/2 = 2n−c. Hence, the condition on the parameters becomes r ·22c < 2n−c,
which is converted as

c <
1
3
(n − log2 r),

and thus, 64-bit block ciphers with 8-bit S-boxes can be attacked up to 9 rounds.

4 Application to MMO and Miyaguchi-Preneel Modes

We apply the known-key distinguishers to attacking the MMO and Miyaguchi-
Preneel hashing modes using these Feistel ciphers. The attacks we present in this
section can generate either full N -bit collisions or half n-bit collisions depending
on the parameters.

We consider this aspect of our known-key attacks quite important, as it shows
that the attacks endangers real-world security of these hash functions. Sometimes
known-key attacks tend to become fairly complex. People may wonder what
practical implications such results have, which is certainly not the case for our
attacks.

Here we only describe our attacks on the MMO mode, but all the attacks
can be trivially extended to the Miyaguchi-Preneel mode. This is because the
key (randomly given constant) addition to the hash output state used by the
Miyaguchi-Preneel mode does not make any impact upon the output value dif-
ferences.

When we apply the distinguishers to collision attacks on the MMO mode, we
iterate Step 2 of Table 2 in order to generate more paired values satisfying the
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inbound phase. We perform Step 3 of Table 2 and then check whether ciphertext
differences cancel out plaintext differences. If they do, then we obtain a collision
of the compression function (due to the feedforward used in the MMO mode).

We also present half-collision attacks. Generally, half-state collisions possibly
become full collisions if more than half of the bits are truncated; systems in
practice often truncate hash values to their desired length (e.g., SHA-224 and
SHA-384). Due to the nature of the Feistel network, in our half-collision attacks
it is important which (left or right) half is chopped—our attacks work effectively
on odd numbers (9 and 11) of rounds, whereas Feistel ciphers in practice usually
have even number of rounds.

4.1 Eleven-Round Half-Collision Attack

We start with the parameters where the extended 11R attack applies. Recall
that in our 11-round attack the differential forms of input and of output are
both

(
P (1),F

)
. Therefore, a feed-forward operation (due to the MMO mode)

makes the difference in the left half of the output state zero (cancellation) with
a probability of 2−c, which yields a half-state collision. Recall that our 11-round
attack can generate up to x starting points with a complexity of x · r · 22c and
with r · 22c memory, where x ≤ 22c. So by choosing x := 2c, we can generate
a half-state collision with a total complexity of r · 23c. Note that it requires
a complexity of 2N/4 to find a left-half-state collision of an N -bit ideal hash
function due to the birthday attack. We can verify that for all the parameters
in consideration the complexity r · 23c is faster than the birthday bound 2N/4.

4.2 Nine-Round Full-Collision Attack

Our attack can generate 9-round full collisions by using the outbound phase
reduced to 2-rounds and using the 5-round inbound phase as described in Sec-
tion 3.3 (but here we are treating the cases (N, c) = (128, 8), (128, 4) and (64, 4),
not the case (N, c) = (64, 8)). Now the differential forms of input and output are
both

(
1, (P (1)

)
, and after a feed-forward operation, the xored values cancel each

other with a probability of 2−2c. Hence, setting x := 22c allows us to generate
a full collision. Of course to find a full collision of an N -bit ideal hash function
should require a 2N/2 complexity, so our attack beats this birthday bound for
all the parameters in consideration.

One may doubt that there is an adequate degree of freedom available. How-
ever, we can vary the degree of freedom as follows. In Step 0 of the attack
procedure described in Section 3.2, we choose an active-byte position for 1. Be-
cause this can be chosen from r options, the degree of freedom becomes r times,
and this makes the attack success probability almost 1.

4.3 Nine-Round Near-Collision Attack: Case (N, c) = (64, 8)

Now we discuss the remaining case of 64-bit blocks with 8-bit S-boxes. The
shrunken 9-round attack can generate up to x starting points with a complexity
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of x·r ·22c and with r ·22c memory, where x ≤ 22c. The differential forms of input
and output are both

(
1, (P (1)

)
. Hence, by choosing x := 22c and by spending

a running time of r · 24c, a full collision could be generated. However, for this
specific parameter, the cost of finding a collision for a random permutation is 24c,
which is obviously faster than r · 24c.

Therefore, instead of generating a full collision, we consider only cancelling the
differences of the right half state. Such a cancellation occurs with a probability
of 2−c, and if this occurs, then we immediately obtain a collision of (2r− 1) = 7
bytes out of 8 bytes because the left half state only has the difference in one
byte. Thus we can generate 7-byte collision with a complexity of r · 23c, which
is faster than the complexity for a random function, namely 23.5c.

4.4 Seven-Round Full-Collision Attack: Case (N, c) = (64, 8)

If one wants to generate a full collision with the parameter (N, c) = (64, 8), then
one would need to use the previous 3R inbound phase and two sets of the 2R
outbound phases. This can generate a full collision with a complexity of r · 23c,
which is faster than the birthday bound 24c.

5 Generality of Our Known-Key Distinguishers

So far our known-key distinguishers make the assumptions that a) S-boxes have
balanced differential probabilities, b) the linear transformation has the branch
number of r + 1, and c) the inequality 2c ≥ r holds. In this section, we discuss
possibilities of handling the situations where these conditions are not met.

5.1 When S-Boxes Are Biased

We have made the assumption that the S-boxes have the least maximum differ-
ential probabilities like the inverse function x �→ x−1, so that we can estimate
the matching probability roughly at 1/2. This is not an essential requirement,
and in fact S-boxes can be “suboptimal” in order for our attacks to work; one
just needs more refined estimate of success probabilities in that case.

It is true that our attacks become infeasible when S-boxes have “very” biased
differential distributions. However, block ciphers having such S-boxes are usually
vulnerable to differential cryptanalysis, and the attacks should let us construct
other types of distinguishers any way.

5.2 When P Is Not an MDS Matrix

The attacks described in Section 3 are based on the assumption that an MDS
matrix is used in the P -layer. Again, this is not an absolute requirement. First
note that the MDS property is used only in the inbound phase; it is completely
irrelevant to the outbound phase. For example, in the inbound phase of the 9-
round attack described in Section 3.1, we have used the fact that the branch
number is r + 1 for satisfying the following three conditions:
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1. Active-byte positions in Δ#A and Δ#B must be identical and should be
minimized as much as possible,

2. Active-byte positions in P (Δ#A) and P−1(Δ#B) must be identical, and
3. The degree of freedom for varying the differences in Δ#A and in Δ#B must

be sufficient to find a match over the substitution (S-box) layer.

We have used the fact that the branch number is r+1 to simplify the description
of our attacks and to minimize the attack complexity.

However, even if the branch number is smaller than r + 1, there is a fair
chance that the attack would work. If P is not an MDS matrix, then we search
for byte positions that satisfy the above three conditions. This can be done in
the pre-computation stage, because properties of a linear transformation P can
be analyzed independently of a key value (Recall that P is a constant matrix).

5.3 When 2c < r

The attacks described in Section 3 do not work if 2c < r, because the number
of pairs is insufficient to find a match of differences over the S-box layer (with
a probability about 1). This problem can be solved by increasing the number of
active bytes in a word. The essence of this generalization is to activate d ≥ 1
bytes in a word so that 2cd ≥ r. The minimum value of such a d is 1 for
(c, r) = (8, 8), (8, 4), (4, 8) and 2 for (c, r) = (4, 16). Hence, by activating two
bytes instead of using the differential form 1, we can attack, for example, Feistel
ciphers having a 128-bit block size and 4-bit S-boxes.

With this generalization the total complexity becomes r · 22cd computations
plus r ·2cd memory for both 9-round and 11-round attacks. So for example, when
N = 128, c = 4 and d = 2, these figures beat the birthday bound 2(n−cd)/2 for
an ideal permutation.

Here we need to be careful about the fact that activating more than one byte
may yield non-active bytes in the output of P or of P−1. If that occurs, then
most likely the match over S-boxes would fail (similarly to the case when P is
not an MDS matrix). If we activate more than one byte, then such a case is
inevitable even if P is an MDS matrix. However, the probability of output with
non-active byte should not be so high, and we presume that a match can be
found without a considerable increase in complexity even when we activate two
bytes in a word.

6 Conclusion

We have presented new known-key distinguishers on block ciphers using the
Feistel network whose round function consists of a key XOR, byte-oriented S-
boxes, and an MDS matrix. We have considered most of the parameters used
in practice and shown that “weak” parameters include 128-bit block with 8-bit
S-box, where we can attack the cipher up to 11 rounds.

Our distinguishers can be extended to the MMO and Miyaguchi-Preneel hash-
ing modes. With the weak parameters attackers can find full collisions up to 9
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rounds and half-state collisions up to 11 rounds faster than the birthday bounds.
To the best of our knowledge, as a generic attack on Feistel-SP ciphers, our
attacks significantly increase the number of analyzable rounds from previous
results.
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4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)
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